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At zero energy the difference in the number of spin up and spin down modes of the Dirac equation
is determined by the topology of both space, and the gauge field in which the system sits. Writing
Maxwell’s equations in a Dirac–like form, we identify cases where a combination of material pa-
rameters plays the role of ‘energy’. At zero ‘energy’ we thus find electromagnetic modes that are
indifferent to local changes in the material parameters, with a dispersion relation depending only
on the asymptotic values of the material parameters at infinity. We give several examples, and
show that this theory has implications for non–Hermitian media, where it can be used to construct
permittivity profiles that are either reflectionless, or act as coherent perfect absorbers, or lasers.

Most physical theories are concerned with the local be-
haviour of physical variables, such as the electromagnetic
or graviational field. By contrast, topology is the mathe-
matical subject concerned with finding invariant global
properties of abstract objects. Nevertheless there are
some fascinating examples where topology has been ap-
plied to physics: the vacuum energy of a scalar field is
sensitive to the topology of space [1], and topology char-
acterizes Skyrmions in magnetic systems [2]; defects in
liquid crystals [3]; vacuum states in non–Abelian gauge
theories [4]; the theory of general relativity in 2 + 1 di-
mensions [5]; and the theory of topological insulators in
condensed matter physics [6].

This work applies topological methods to electromag-
netic materials, predicting mode characteristics that are
independent of the detailed inhomogeneity of the mate-
rial. The results are rather different from theories such as
transformation optics [7–9], where the function of a de-
vice depends on an accurate implementation of the mate-
rial tensors across space. Topological results are by defi-
nition insensitive to the local details of the material, and
have already been shown to govern the number of inter-
face states between adjoining materials [10–13]. The the-
ory has been developed for both continuous and periodic
media [14–16], and has been connected to the properties
of the Dirac equation [17, 18], which also plays a role in
this work. Because these trapped interface states can be
predicted using topological methods, they are rather ro-
bust to the details of the interface, and have been exper-
imentally observed to propagate past extreme obstacles
without backscattering [11].

Here we find an interesting set of electromagnetic
modes whose existence only depends on the behaviour of
the material parameters at infinity (or rather, large dis-
tances from the inhomogeneity). For example, we find a
family of media with modes that have a dispersion rela-
tion that is invariant to local changes to the material. To
find these solutions we make use of an analogy between
Maxwell’s equations in inhomogeneous media and the
Dirac equation [17, 19]. To understand this analogy con-
sider the Dirac equation in two dimensions, for a particle
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of mass m and energy E in a gauge field A = Axx̂+Ayŷ(
0 D
D† 0

)(
ψ+

ψ−

)
=

(
E −m 0

0 E +m

)(
ψ+

ψ−

)
(1)

where D = −2i ∂/∂z − A+, ψ+,− are the wavefunc-
tions for the two spin components, z = x + iy, and
A+ = Ax − iAy. Besides being a limiting case of the rel-
ativistic description of electrons, this equation appears
as an effective description in planar optics, notably in
deformed honeycomb lattices [20, 21] and gyrotropic me-
dia [17]. Rather unexpectedly, Maxwell’s equations for
fields of a fixed frequency ω can be written in a very sim-
ilar form to (1) if the electric E and magnetic H fields
are combined into a single six–vector [17],(

0 D
D† 0

)(
E
η0H

)
= −k0

(
ε 0
0 µ

)(
E
η0H

)
(2)

where η0 =
√
µ0/ε0 is the impedance of free space,

k0 = ω/c is the free space wavenumber, and ε, µ and ξ
are respectively the permittivity, permeability and bian-
isotropy tensors for a lossless medium. In this case the
differential operator is given by D = −i∇ × +k0ξ. A
comparison between equations (1) and (2) shows that,
broadly speaking the electric and magnetic fields play
the role of the two spin components in an effective Dirac
equation: the bianisotropy plays the role of the gauge
field, the ‘energy’ is given by the average of the perme-
ability and permittivity −k0(µ+ ε)/2, and the ‘mass’ by
half their difference k0(ε−µ)/2. Although the vector na-
ture of the wavefunction components make this analogy
incomplete, for one dimensional variations we shall show
it can be made exact.

Now for the role of topology: if both the energy E and
mass m are zero in the Dirac equation (1), the two spin
components ψ± become decoupled, satisfying

Dψ− = 0 (3)

D†ψ+ = 0. (4)

The difference in the number of solutions to (3), N =
dim[kerD] and the solutions to (4), N̄ = dim[kerD†] is
governed by a rather deep and far–ranging result in topol-
ogy known as the Atiyah–Singer index theorem [22, 23].
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This theorem is an extreme generalization of the Gauss–
Bonnet theorem [23], and has been connected to the
aforementioned work on interface states between periodic
media [24, 25]. In general it states that

index[D] = N − N̄

=

∫
M

Â(M) ∧ ch(V ) (5)

where the integration is taken over the manifold of in-
terest M , ‘∧’ is the exterior product, Â(M) is the ‘A–
hat genus’, depending on the curvature of the space, and
ch(V ) is the ‘Chern character’ depending on the curva-
ture of the gauge field [26–28]. To put this theorem in
physical terms, the difference in the number of solutions
N − N̄ cannot be altered though any continuous change
of the system parameters. The implications of this index
theorem are well known for the true Dirac equation, but
do not seem to have been considered seriously in electro-
magnetism. Are electromagnetic modes also controlled
by this theorem? This seems a natural question to ask,
given the close similarity between (1) and (2). Restrict-
ing ourselves to planar media, we find that this theorem
indeed dictates the existence of many electromagnetic
modes, and that these turn out to be analogous to the
so–called ‘Jackiw–Rebbi modes’ of the Dirac equation.
This connects several existing results in the literature,
from photonic topological insulators to non–Hermitian
reflectionless media, as well as predicting new materials
exhibiting modes with a dispersion relation that is in-
sensitive to local variations of the material parameters.

A. Jackiw–Rebbi modes

Before considering the electromagnetic case, we re-
view a one dimensional example of the Dirac equation
where the allowed modes depend on the behaviour of
the system at infinity, and show that this behaviour is
connected to the index of the operator appearing in (5).
The modes given in this section are the so–called Jackiw–
Rebbi modes of the Dirac equation [29]. In the field of
toplogical insulators these modes are typically connected
with the Chern number, computed as an integral over
k space [6]. Here instead we show that more directly
(and more generally) this mode can be connected with
the index of a first order operator.

The two–dimensional Dirac equation (1) with zero
magnetic field takes the following form

[−iσx∂x − iσy∂y +m(x)σz] |ψ〉 = E|ψ〉 (6)

where we allow the particle mass to depend on position,
and |ψ〉 is the two component wavefunction. Assuming
translational symmetry along y (−i∂y → ky), and writing
the wave in terms of the eigenfunctions ay,± of σy with
eigenvalue ±1

|ψ〉 = ψ+ay,+ + ψ−ay,− (7)

FIG. 1. Jackiw–Rebbi modes of the Dirac equation (6) with
position dependent mass. Different arbitrarily chosen mass
distributions are shown as solid blue curves in panels (i) and
(ii), plus mode profiles ψ± (red dashed lines, computed from
(9)). The mass profiles can be classified in terms of their topo-
logical degree (see Eq. (11)), the calculation of which is per-
formed through summing intersection points along the thin
horizontal lines as indicated in (i–ii). The degree is a topo-
logical invariant, independent of the choice of horizontal line
(assuming the mass ultimately diverges at infinity, without
changing sign). The lower plot sketches the dispersion rela-
tion for the Dirac equation (6), where for E > m (shaded blue)
we have propagation in the region of space where m ∼ const..
The red lines crossing the ‘mass gap’ E ∈ [−m,m] indicate
the dispersion of the two modes shown in the upper panels.

where ay,± = (1,±i)T , the Dirac equation (6) can be
reduced to the form(

0 D
D† 0

)(
ψ+

ψ−

)
=

(
E − ky 0

0 E + ky

)(
ψ+

ψ−

)
(8)

where D = −∂x + m(x). From the above pair of equa-
tions (8) we see that the difference in the number N of
solutions to Dψ− = 0 and the number N̄ of solutions to
D†ψ+ = 0 is equivalent to the difference in the number
of modes with E = −ky and those with E = ky. For
positive energy within a gap, where propagation in the
bulk is disallowed, this is the difference in the number of
modes propagating down or up the y axis.

As discussed above, the difference N−N̄ is fixed by the
behaviour of m(x) at infinity. We do not need the sophis-
ticated mathematics of (5) to see this: it is immediately
evident from the solutions to (8),

ψ± = exp

(
∓
∫ x

0

m(x′)dx′
)

(E = ±ky) (9)

The solutions (9) are the well–known Jackiw–Rebbi
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modes [29] that occur between regions where the mass
has a different sign. If m(x) has the same sign at x = +∞
and x = −∞ then neither of the states (9) is normaliz-
able and N = N̄ = 0. Conversely if m(x) takes a differ-
ent sign at these two limits then N − N̄ equals ±1, for
the respective cases of negative and positive m at +∞.
A compact way of writing this result is in terms of the
mapping degree of deg[m(x)] [30]

index[D] = N − N̄− = −deg[m(x)] = ±1, 0, (10)

where the degree is defined as

deg[m(x)] =
∑

xa∈m−1(a)

sign[m′(xa)]. (11)

In this one dimensional case the degree is the topological
invariant appearing on the right hand side of the index
theorem (5). Examples are shown in panels (i) and (ii)
of Fig. 1. As can be established from an examination of
Fig. 1, strictly speaking the mass m(x) should diverge at
infinity for the degree deg[m] to be well defined [31]. In
practice however, the modes we predict do not depend
on this restriction.

It is also possible to write the invariant (11) in terms
of a winding number, corresponding to the behaviour of
the Dirac Hamiltonian in k space at spatial infinity [32].
We do not take this approach here. Firstly the degree
is simpler, but more importantly the parameters in our
Dirac–like equation (e.g. the prefactor of σy) cannot in
general be identified with points in k–space.

B. Electromagnetic modes in stratified media

In electromagnetic terms the above modes (9) are
bound modes in stratified media where the dispersion
relation connecting the frequency and wave–vector is in-
sensitive to the specific spatial distribution of the mate-
rial parameters. We now explain the problem of finding
the modes of generic stratified electromagnetic materials
(schematic shown in Fig. 2), illustrating why confined
modes usually have a dispersion relation sensitive to the
precise distribution of material parameters.

For generic stratified media inhomogeneous along x,
Maxwell’s equations (2) reduce to

i Γ1
d

dx

(
E
η0H

)
= k0

(
ε ξ̄
ξ̄† µ

)(
E
η0H

)
= k0χ

(
E
η0H

)
(12)

where we have introduced a set of matrices Γj to repre-
sent the curl operator

Γj =

(
0 Lj
−Lj 0

)
(13)

with the three Lj matrices given by

L1 =

0 0 0
0 0 −1
0 1 0

 ,L2 =

 0 0 1
0 0 0
−1 0 0

 ,L3 =

0 −1 0
1 0 0
0 0 0

 .

(14)

FIG. 2. Schematic of configuration. We consider an electro-
magnetic material that is inhomogeneous along x (in this ex-
ample tending to uniformity at infinity), and look for bound
electromagnetic modes |ψ〉 (here confined to the interface).
In general the bound modes have a dispersion relation that
is sensitive to the specific spatial distribution of the material
parameters (found from the general result (19)).

The propagation constants along y and z are ky and kz re-
spectively, and we have combined the terms arizing from
this propagation into a modified bianisotropy tensor ξ̄

ξ̄ = ξ +
ky
k0
L2 +

kz
k0
L3 (15)

The problem with comparing equation (12) to the Dirac
equation is that Γ1 is not an element of a Clifford algebra.
This is due to the transverse nature of the electromag-
netic field, where any field vector with E and H pointing
along x̂ is reduced to zero by Γ1 (and hence the x com-
ponents of the fields do not appear on the left of (12)).
For planar media we can sidestep this difficulty through
solving (12) for the field components Ex and Hx normal
to the interface, finding that(

Ex
η0Hx

)
= −χ−1xxχxp

(
E‖
η0H‖

)
, (16)

where χxx is the 2×2 matrix with elements εxx, ξ̄xx, ξ̄?xx,
and µxx and χxp is a 2×4 matrix with elements εx‖, ξ̄x‖
etc., and a subscript ‖ indicates components in the y–z
plane. Using the result (16) to eliminate these x̂ field
components, Eq. (12) reduces to

iγ1
d

dx
|ψ〉 = k0γ1γ2

[
χpp − χpxχ−1xxχxp

]
|ψ〉 (17)

where |ψ〉 = (E‖, η0H‖)
T, and the 4× 4 γj matrices are

of the usual Dirac form

γ0 =

(
12 0
0 −12

)
, γj =

(
0 σj
−σj 0

)
, γ5 =

(
0 12

12 0

)
.

(18)
and now form a Clifford algebra. In a planar geometry
in general we can thus reduce Maxwell’s equations to a
form (17) that is analogous to the four component Dirac
equation, with the material parameters corresponding to
generally rather complicated contributions to the Hamil-
tonian. One advantage of recasting Maxwell’s equations
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into this Dirac–like form is that it is immediately evident
that the solution to Eq. (17) can be written in terms of
a path ordered exponential

|ψ〉 = P
[
e−ik0

∫ x
0
γ2(χpp−χpxχ

−1
xxχxp)dx′

]
|ψ0〉 (19)

where |ψ0〉 is the form of the in–plane electromagnetic
field at x = 0. Importantly this is the general solution to
Maxwell’s equations in a layered material.

The result given in Eq. (19) already resembles the
Jackiw–Rebbi mode (9). However they are crucially not
the same, and this reveals why the dispersion of confined
electromagnetic modes is almost always sensitive to the
precise distribution of the material parameters. Firstly,
the exponent of (19) is not generally a Hermitian opera-
tor. This means that the exponent can be either real or
complex valued. Secondly, the path ordering is necessary
because the basis vectors of the matrix in the exponent
(i.e. the polarization basis) will change with position,
continually rotating |ψ0〉 as we move along the x axis.
The combination of these two properties means that an
arbitrary choice of |ψ0〉 in Eq. (19) will most often ei-
ther be propagating or divergent at infinity, rather than
tending to zero as the mode (9) does.

To find the bound modes in a particular material pro-
file one must carefully choose ky, kz, and k0 such that
the field amplitude vanishes asymptotically. This careful
choice is of course equivalent to the dispersion relation
of the mode, and due to the path ordering this choice
must be made differently if the distribution of the mate-
rial properties is changed. From this perspective, electro-
magnetic Jackiw–Rebbi modes are those special families
of material parameters where the path ordering can be
dropped from (19). Using our analogy with the Dirac
equation, we shall now show examples of such confined
modes, the existence of which can also be understood in
terms of the topological invariant (11).

At this point it may be useful to give an analogy. Our
calculation may sound rather exotic, but there is a very
simple well–known example of the kind of mode we are
looking for. Consider a parallel plate waveguide, where
the plates cover the y–z plane, are highly conducting,
and separated by a distance L. For nearly all the modes,
the dispersion relation depends on the plate separation
as e.g. k2y = k20−(nπ/L)2. This is true except for the n =
0 mode, which always has the same dispersion relation
k2y = k20, and is insensitive to the plate separation. Here
we are using the topological invariant (11) to find the
analogous guided modes in graded material profiles.

C. Examples of electromagnetic Jackiw–Rebbi
modes

To keep the discussion simple we do not work in terms
of our general solution (19), but rather specialize to a
particular case of the optical Dirac equation (17). As-
suming zero propagation constant along z, and modes

that are either Ez or Hz polarized waves (i.e. have ei-
ther their electric, or magnetic fields pointing only along
the ẑ axis), we are restricted to the following form of the
material tensors

ε =

(
ε‖ 0
0 εzz

)
, µ =

(
µ‖ 0
0 µzz

)
, ξ =

(
0 vT

w 0

)
. (20)

where v and w are two element complex vectors, i.e.
v = (vx, vy). With these assumptions the optical Dirac
equation (17) reduces to a pair of uncoupled two compo-
nent Dirac–like equations. For the Ez polarization the
equation is given by[
−iσx

(
k−10

d

dx
+ iα1

)
− α2σy +mσz

]
|ψ〉 = E|ψ〉

(21)
where |ψ〉 = (Ez, η0Hy)T, and the complex number α is
given by

α = wy +
µxy
µxx

(
ky
k0
− wx

)
(22)

with its real and imaginary parts labelled as α = α1+iα2.
The ‘mass’ and ‘energy’ in (21) are given by m = (β −
γ)/2 and E = (β + γ)/2, where

β = −det[µ‖]

µxx
, γ = −εzz +

∣∣∣kyk0 − wx∣∣∣2
µxx

. (23)

A similar formula to the above Dirac–like equation (21)
holds for the Hz polarization with permittivity and per-
meability interchanged, and w → v. It should be em-
phasized that the meaning of ‘energy’ and ‘mass’ are here
given in terms of material parameters through equation
(23), which is conceptually similar to the treatment given
in [17]. Despite this difference in interpretation from the
true Dirac equation, we can apply the same index the-
orem summarized in (9–11) to identify the existence of
‘topological’ modes within electromagnetic materials, ex-
actly as we did for the true Dirac equation in Sec. A.

a. Isotropic media: For the simplest case of a van-
ishing propagation constant, ky = 0, and isotropic mate-
rials (µ = µ1, ε = ε1 and ξ = 0), our Dirac–like equa-
tion reproduces the recent findings of Shen et al. [34],
where it was noticed that planar isotropic media could
be understood in terms of a two component Dirac equa-
tion. We give a different viewpoint here, emphasizing
the indifference of a bound mode to the details of the
inhomogeneity. For these parameters our general Dirac
equation (21) reduces to a simple form where α = 0 and
the mass and energy are given in terms of the difference
and the average of the permittivity and permeability, as
we anticipated in the general case of equation (2)

m = −1

2
(µ− ε)

E = −1

2
(µ+ ε) . (24)
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FIG. 3. A numerical illustration of the Jackiw–Rebbi mode in
an isotropic medium where ε = −µ = m(x). The blue curves
in panels (a) and (c) show two different arbitrarily chosen
permittivity profiles with degree +1 and 0 respectively. Ac-
cording to Eq. (10) a confined mode should exist for case (a)
but not (c). Panels (b) and (d) show numerical simulations
(COMSOL Multiphysics [33]; note periodic boundary condi-
tions applied along y) for cases (a) and (c) respectively, where
a line current source of frequency k0 = 2π/λ is positioned
at the white cross. In these plots the color indicates phase
(red, green, cyan,purple) → (0, π/2, π, 3π/2), and saturation
indicates magnitude (scale arbitrary, but identical in (c) and
(d)). The electric field Ez along the line y = y0 is plotted as
the red line in panel (a) on top of which (blue dashed line) is
plotted the analytical solution (9).

If the magnetic and electric responses vary in space, but
are such that ε(x) = −µ(x) = m(x) then the solutions
to Maxwell’s equations become equivalent to the zero en-
ergy modes of the Dirac equation (6), with a position de-
pendent mass m = m(x). In electromagnetic terms such
a medium would not be expected to support any bound
modes because the refractive index n =

√
εµ = im(x)

is purely imaginary everywhere. This agrees with the
Dirac picture sketched in the lower panel of Fig.1, where
zero energy lies in the centre of the energy gap, and no
propagation is possible. However, as we established in
section A (see Eq. (8–11)) there can be modes in such a
system. Their number is again governed by the degree of
the function m(x) (see Eq. (10)). Therefore an inhomo-
geneous medium where the permittivity and permeability
have equal magnitude and opposite sign supports a single
ky = 0 mode if the permittivity and permeability have
different signs at +∞ and −∞. The details of the inter-
face are irrelevant. This is demonstrated numerically in
Fig. 3. One obvious concern with all the modes we find
here is that they require a particular relationship between
the material parameters. In appendix A we investigate
the robustness of the mode shown in Fig. 3 to deviations
from the condition ε = −µ.

It is interesting to compare this interface mode with

the surface plasmon. In the electrostatic limit, the sur-
face plasmon requires ε = −1 = −µ, which is identical
to the above condition. However, this limiting case of
the plasmon is not the same mode we have found here.
Firstly the plasmon exists at an interface with air, where
ε = µ = 1 (rather than ε = 1 = −µ), and secondly
the electrostatic limit requires ky/k0 → ∞ rather than
ky = 0, as we have for this mode. The mode given here

requires the impedance
√
µ/ε of the two media to be

imaginary, but with each having a different sign, like the
media investigated in [35–37].

FIG. 4. Maxwell’s equations in an isotropic material can be
understood as a special case of the Dirac equation. (a) The
effect of a material is usually understood in terms of the re-
fractive index n =

√
εµ, via the dispersion relation k2x = n2k20.

A refractive index greater than unity moves the dispersion
cone into the red region, and one of less than unity moves the
dispersion into the blue region. (b) An alternative interpreta-
tion is to write the dispersion as (kx/k0)2 = E2−m2, as given
in Eq. (25). This shows that the region of disallowed propa-
gation |ε+ µ| < |ε− µ| is equivalent to the ‘mass gap’ shown
in the lower panel of Fig. 1, in this case separating regions of
positive (PIM) and negative (NIM) index media. Accordingly
there is a Jackiw–Rebbi like mode at E = −(µ+ ε)/2 = 0, the
existence of which depends only on the zero energy condition
and the properties of µ and ε at infinity.

This analogy with the Dirac equation also reveals a
rather unusual but informative way to understand the
dispersion of electromagnetic waves in isotropic mate-
rials, which is worth commenting on. For the case of
propagation along x through a homogeneous medium the
dispersion relation derived from (21) is given by(

kx
k0

)2

= E2 −m2 =

(
ε+ µ

2

)2

−
(
ε− µ

2

)2

= εµ. (25)

This way of writing the equation reveals an interpretation
of propagation in isotropic media in terms of an ‘energy’
and a ‘mass’, with propagation only possible when the
sum of permittivity and permeability is greater in mag-
nitude than their difference. This modified interpretation
is sketched in Fig. 4. If we imagine a family of materials
with a fixed difference between ε and µ, this is analo-
gous to a fixed mass in the Dirac equation, and results
in a gap in the allowed values of the average (ε + µ)/2,
analogous to the ‘mass gap’ shown in the lower panel
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of Fig. 1. As an illustrative example consider a non–
magnetic material, E = −(1 + ε)/2 and m = −(1− ε)/2.
The boundary between allowed and forbidden propaga-
tion is when E = m, which in this case is when ε = 0,
i.e. the tipping point between dielectric and metallic be-
haviour. The gap in the dispersion relation also closes
when m = 0, which equivalently is when ε = µ. This is
the condition for impedance matching, and is when the
effect of the material is equivalent to that of a coordinate
transformation [8].

As a further comment, note that from (25) propagat-
ing waves are only possible when ε and µ have the same
sign; when both are positive we have positive index,
or ‘right–handed’ media, and when both are negative
we have ‘left–handed’ or negative index media [38, 39].
The two signs of E in our analogy thus correspond
respectively to positive and negative index media, as
indicated by the colouring of the two regions of allowed
propagation in Fig. 4b.

FIG. 5. One of the confined modes in a medium where the
gyrotropy changes sign can be understood as Jackiw–Rebbi
mode, and has a dispersion relation that is insensitive to how
the gyrotropy parameter Im[µxy] changes sign. Panel (a)
compares the numerically calculated dispersion relation for
one such mode (red dots) to the analytical prediction (blue
solid line). The dashed black lines indicate the frequency
and wave–vector of the numerically determined Ez polarized
mode shown in panel (b) (colouring as in Fig. 3). Panel (c)
shows the spatial profile of the gyrotropy parameter, the cen-
tral region of which was generated using an interpolation of a
set of random numbers (red crosses). Panel (d) compares the
numerical mode shape (blue solid line), evaluated along the
white dashed line in panel (b), to the analytical prediction
(9). In all these plots we have taken µxx = εzz = 1

b. Gyrotropic media: A second example of these
electromagnetic Jackiw–Rebbi modes is the case of a
general complex Hermitian permeability µ‖ (zero bian-
isotropy ξ = 0). A complex Hermitian form for either
the permeability or the permittivity encodes the physical
phenomenon known as gyrotropy [40], that has already

been found to lead to unidirectional propagation of elec-
tromagnetic modes [14], modes that can be counted using
topological invariants [15, 17, 32]. As found in [32], this
is intimately connected with the properties of the Dirac
equation. We now show that, without having to com-
pute anything as complicated as a Chern number, very
general statements can be made about such materials on
the basis of the index theorem summarized in (9–11).

For these gyrotropic media we find that (21) reduces
to (

0 D
D† 0

)(
Ez
η0Hy

)
=

(
iγ 0
0 −iβ

)(
Ez
η0Hy

)
(26)

where D = k−10 ∂x + iα1−α2. There are solutions to (26)
that are in the kernel of either D or D†

D†Ez = 0 γ =
1

µxx

(
ky
k0

)2

− εzz = 0, Hy = 0

DHy = 0 β = −det[µ‖]

µxx
= 0, Ez = 0. (27)

The modes where D†Ez = 0 and DHy = 0 are again of
the form (9) and are respectively given by

Ez = E0 exp

(
− ky
µxx

∫ x

0

(Im[µxy] + iRe[µxy]) dx′
)

Hy = H0 exp

(
ky
µxx

∫ x

0

(Im[µxy]− iRe[µxy]) dx′
)
. (28)

Whether these states can be normalized is determined by
the sign of the imaginary part of µyx. A comparison with
(9–10) shows that the index of D is given by

index [D] = −deg

[
ky
µxx

Im[µxy]

]
(29)

From Eq. (27) we can see that when the index equals −1,
the propagation constant satisfies the dispersion relation
k2y = εzzµxxk

2
0 (for simplicity it is assumed that εzzµxx is

constant in space). Eq. (29) also shows that this mode
corresponds to a degree of kyIm[µxy]/µxx equal to +1.
For ky/µxx < 0, the imaginary part of µxy must thus
be positive at −∞ and negative at +∞. This behaviour
is verified in Fig. 5, where it is shown that the asymp-
totic behaviour of µxy (rather than the local details of the
material) determines both the dispersion and the propa-
gation direction of this electromagnetic mode. Note that
this linearly dispersing interface mode is present irrespec-
tive of whether propagation is allowed in the bulk of the
two media, meaning that the wave–vector along the in-
terface is always greater than the wave–vector of prop-
agating waves in the bulk of the two media (something
already established in [17]). Note also that, as estab-
lished in [17], the gyrotropy Im[µxy] plays the role of the
mass in the analogous Jackiw–Rebbi mode (9).

Eq. (27) shows that in the second case where
index[D] = 1 we must have β = det[µ‖] = 0. This corre-
sponds to the case where one of the eigenvalues of the per-
meability vanishes. As shown in Ref. [32], this is rather
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special point which can be understood as a zero in the
refractive index for propagation in a complex direction.
The mode corresponding to DHy = 0 is unusual because
it has no constraint on the magnitude of ky (i.e. the con-
dition β = 0 does not give rise to a dispersion relation,
unlike γ = 0). This ‘unconstrained’ part of the electro-
magnetic field was also found in [32], and has its value
determined by the boundary conditions of the system.
For example, if a magnetic mirror is placed anywhere
along the y–axis this forces Hy = 0, which eliminates
this part of the field.

FIG. 6. Jackiw–Rebbi modes in anisotropic chiral media. The
existence of these modes is governed by the sign of the product
of the chirality and the permeability at infinity. Panel (a)
shows the numerical simulation of the Ez field, from an out–
of–plane line source (black cross), where the index of D is
+1, and we do not predict the presence of a localized mode.
Here we made the arbitrary choice for the spatial profile of
µxy = ∓ tanh(4x/λ)/2, the asymptotic sign of which is shown
at the bottom of each plot. In panel (c) we performed the
same simulation for an index of D of −1. The fixed chirality
κx = −iwx is indicated in the upper right corners of panels
(a) and (c). The colours of the plots in panels (a) and (c)
are as in Fig. 3. Panels (b) and (d) verify the predictions of
Eq. (32) where we plot the numerical Fourier transform [41]
of the fields in panels (a) and (c). The horizontal dashed
white lines in panels (b) and (d) show the expected dispersion

of the confined modes, ky,0 = k0
√
µxxεzz − κ2

x. Note the
parameters: εzz = µxx = 1, µxy ∈ [−0.5, 0.5], wy = −iκy = 0,
and excitation frequency f = c/λ = 1.199× 1010 GHz.

c. Anisotropic chiral media: As a third example the
medium exhibits a combination of anisotropy (µxy real
and non–zero) and chirality (the bianisotropy is imag-
inary w = iκ). This case doesn’t seem to have been
considered before, and the optical Dirac equation (21)
reduces to the equation (26) as in section Cb. In this

case the equivalent to the modes (28) are given by

Ez = exp

{
k0

∫ x

0

[
µxy
µxx

(
κx −

iky
k0

)
− κy

]
dx′
}

(30)

and

Hy = exp

{
−k0

∫ x

0

[
µxy
µxx

(
κx − i

ky
k0

)
− κy

]
dx′
}
.

(31)
Therefore the difference in the number of solutions to
DHy = 0 and D†Ez = 0, N − N̄ is given by

index[D] = deg

[
µxy
µxx

κx − κy
]
. (32)

We assume only the permeability component µxy changes
with position, with everything else constant over space.
If the degree equals −1 then, as in the previous exam-
ple the mode must have the dispersion relation k2y =

k20(µxxεzz−κ2x), although in this case the sign of ky is not
restricted. Fig. 6 shows a numerical verification of this ef-
fect, again for an arbitrary choice of spatially dependent
µxy. Note that, apart from the interface mode we have
predicted, we have an unusual radiation pattern from the
line source in Fig. 6, that is not symmetric in y. On ei-
ther side of the interface, the materials are homogeneous
and anisotropic, and we expect elliptical phase fronts.
The radiation pattern of Fig. 6 can thus be understood
as two sets of tilted elliptical phase fronts, respectively
inverted around x = 0, where they are joined.

In this example we have thus shown that our formal-
ism predicts slightly unusual materials where a pair of
linearly dispersing electromagnetic modes exist, provided
only that κy − µxyκx/µxx increases from a negative
value at −∞ to a positive one at +∞, but not the reverse.

D. Non–Hermitian materials

So far our results concern bound modes within lossless
media. In section we shall consider non–Hermitian me-
dia where the topologically determined modes are prop-
agating rather than bound, showing that the topological
invariant (11) can also govern the behaviour of propagat-
ing electromagnetic waves. Non–Hermitian systems have
recently attracted interest in electromagnetism [42], pro-
viding a different route to realise reflectionless [43] and
invisible [44] materials. There are some interesting im-
plications of the above results in non–Hermitian systems.
Analogues of the Jackiw–Rebbi modes exist in media
with profiles of loss and gain. We shall show that the
degree (11) controls not the index of the operator, but
the character of the modes; either indicating a lack of
reflection, coherent perfect absorption or lasing. This ex-
plains some recent findings of Makris and coworkers [45]
who discovered a family of complex profiles that do not
exhibit reflection, for an arbitrary amount of disorder.
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Although we could begin the discussion from our ear-
lier general point of view (17), we can make the same
point in a simple example. Take a fixed frequency, TE
polarized wave propagating through an isotropic dielec-
tric (µ = 1) where the complex dielectric constant ε(x)
varies in one spatial direction only. For propagation along
x, Maxwell’s equations reduce to the one dimensional
Helmholtz equation for the wave amplitude Ez[

d2

dx2
+ k20ε(x)

]
Ez = 0 (33)

Rather than considering separate field components as we
did in the previous section, we now separate the electric
field amplitude into its real and imaginary parts Ez =
E1 + iE2. This scalar equation for the complex variable
Ez thus becomes a pair of coupled equations for the real
variables E1 and E2[

d2

dx2
+ k20ε1(x)− ik20ε2(x)σy

]
|ψ〉 = 0 (34)

where |ψ〉 = (E1, E2)T and the permittivity was written
ε = ε1 + iε2. For a certain class of complex permittiv-
ity profiles ε(x) the second order operator (34) can be
written as the square of a Dirac operator

D2 =

(
−iσx

d

dx
− iσzk0α(x)

)2

= − d2

dx2
− k20α2(x) + ik0σyα

′(x) (35)

where α(x) is some real valued function of position. This
idea is similar to that used by Longhi [46], who iden-
tified the transfer matrix formula as an effective Dirac
operator. Equation (35) shows that when the Helmholtz
operator equals D2, the permittivity is a complex func-
tion of the form

ε(x) = α2(x) +
i

k0
α′(x). (36)

This form of the permittivity was recently considered
in [45] because they found that, however disordered such
a profile, it could support waves that propagate without
either backscattering or intensity variation. Here we see
these properties are a consequence of the factorization
given in (35), and are another example of Jackiw–Rebbi
modes appearing in electromagnetism.

One of the solutions to equation (33) is that where
D|ψ〉 = 0, which is again the one dimensional Dirac equa-
tion for zero energy[

−iσx
d

dx
− iσzk0α(x)

]
|ψ〉 = 0. (37)

As we have seen many times, there are solutions (9) to
this equation not governed by the detailed behaviour of
the ‘mass’ m(x), but by its value at ±∞. The difference
in this case is that the ‘mass’ is an imaginary quantity

FIG. 7. For the complex permittivity profiles (36), the
Helmholtz equation becomes an effective Dirac equation with
an imaginary mass m = −ik0α(x). Two example profiles
(central region constructed using an interpolation of random
numbers) are given in panels (a) and (c), with the correspond-
ing waves in panels (b) and (d) (real part blue, imaginary
part red, and magnitude green). The wave equation was in-
tegrated numerically using functions from the Python Scipy
library [41]. For imaginary mass, the Jackiw–Rebbi modes
(9) are constant amplitude travelling waves, and the degree
of α determines, via (40), whether the mode is a travelling
wave, is purely out–going, or purely in–coming.

m(x) = −ik0α(x) and the two solutions (9) to Eq. (37)
are given by

|ψ〉 =
1

2

ay,+ei
∫ x
0
α(x′)dx′ + ay,−e−i

∫ x
0
α(x′)dx′

iay,−e−i
∫ x
0
α(x′)dx′ − iay,+ei

∫ x
0
α(x′)dx′

(38)

where the linear combinations of (9) have been chosen so
that the components of |ψ〉 are real valued. In the case of
an imaginary mass, the degree of Im[m(x)] is not related
to the kernel of D. This is because the ‘mass’ now only
controls the phase of the solution, and whatever its sign
at infinity this is irrelevant to the norm of |ψ〉. Never-
theless the degree of α still controls something important
about the wave.

Writing the solution (38) in component form we have

|ψ〉 =

(
cos
(∫ x

0
α(x′)dx′

)
− sin

(∫ x
0
α(x′)dx′

)) , (sin
(∫ x

0
α(x′)dx′

)
cos
(∫ x

0
α(x′)dx′

))
(39)

both of which correspond to the same wave, Ez =
exp(−i

∫ x
0
α(x′)dx′) which is left going if α is positive as

x→ ±∞. We can thus see that if the degree of α is zero,
the material supports a wave of constant amplitude that
propagates either to the left or the right, depending on
the sign of α, without reflection. Meanwhile if the degree
of α is −1 the wave is outgoing on both the right and the
left hand side of the profile, and the material thus acts as
a ‘laser’. Finally, for a degree of +1 the wave is incoming
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on the left and the right of the profile and we have so–
called coherent perfect absorption (CPA) [47, 48]. Lasing
and coherent perfect absorption are the time reverse of
one another, and are fundamentally non–Hermitian phe-
nomena, where a pole or a zero of the scattering matrix
is present at a real valued excitation frequency [47]. In
these cases the material acts either as a perfect source, or
a perfect drain for wave energy. The relationship between
α(x) and the character of our modes can be summarized
as follows

deg[α(x)] =


+1 (CPA)

−1 (Lasing)

0 (No reflection)

(40)

Fig. 7 shows a numerical demonstration of this effect,
where two α profiles have been constructed using an in-
terpolation of random numbers, with |α| → 1 at infinity.
Although no longer a consequence of the Atiyah–Singer
index theorem, the degree of α(x) appearing in the per-
mittivity profiles (36) determines something about the
wave that is again independent of the detailed behaviour
of the material profile.

E. Summary and Conclusions

In this work we investigated the electromagnetic ana-
logues of the Jackiw–Rebbi modes of the Dirac equation,
illustrating that for some families of stratified electro-
magnetic materials, one can vary the material in an ar-
bitrary fashion without changing the dispersion of one of
the bound modes. The examples considered here show
that known modes of both isotropic and gyrotropic me-
dia can be understood in this way, and one can also pre-
dict new unusual modes such as the example given for
anisotropic chiral materials. In all these cases the ex-
istence of the mode can be determined using the same
simple topological invariant.

Finally we showed in section D, that these applica-
tions are not restricted to bound states and one can use
the same topological invariant to predict the character
of non–Hermitian media via formula (40). This result
showed that the recent discovery of disordered scatter-
ing free non–Hermitian media [45] is, rather surprisingly,
actually an instance of a Jackiw–Rebbi mode in electro-
magnetism.

As a final comment, we note that we found for stratified
media that the Maxwell equations can be written as a
four component Dirac equation, from which we can find
the general solution as the path ordered product (19).
Aside from the examples given here, there seem to be
many more interesting applications of this formula.
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Appendix A: Robustness of profiles

One obvious question is whether the modes we predict are robust to deviations from the zero energy condition.
In this electromagnetic case the zero energy condition is a restriction relating the spatial profile of different material
parameters. For example, in the case of isotropic media, this was equivalent to the requirement that ε = −µ, which
in practice may be difficult to achieve. There is of course a huge space of possible deviations from perfection. In this
appendix we perform some initial investigations. In Fig. 8 we investigate the robustness of the mode shown in Fig. 3
of the main text. We look at deviations from the condition ε = −µ through introducing a scale factor s, ε = −sµ. As
shown in the three panels of Fig. 8, there is a surprising insensitivity to this condition, with almost the same mode
evident when ε = −µ/2. Figures 9 and 10 show the effect of deviations of the permittivity from being homogeneous,
for the gyrotropic and anisotropic chiral media given in Figures 5–6 of the main text.

FIG. 8. The effect of deviations from the zero energy condition, for the isotropic material investigated in Fig. 3. All parameters
identical to Fig. 3, except the profile µ(x) is now proportional to −ε(x), with the proportionality constants shown in panels
(i–iii). The colour scheme is the same as that used in Fig. 4s, and the saturation scale is identical in panels (i–iii). The leftmost
panel shows the normalized mode profiles evaluated along the white dashed lines in (i–iii), with the black dashed line showing
the mode profile determined analytically from the zero energy condition.

−0.5 0.0 0.5

x(m)

1.0

1.5

2.0

ε z
z
(x

)

−20 −10

k(m−1)

0.2

0.4

0.6

0.8

ω
(×

10
10

ra
d

s−
1
)

FIG. 9. In the main text we considered gyrotropic media supporting a Jackiw–Rebbi mode with a linear dispersion relation that
was insensitive to the spatial variation of the gyrotropy (see Fig. 5). To obtain this mode we assumed a uniform out of plane
permittivity. Here we investigate the effect of making the out of plane permittivity inhomogeneous. A spline fit through a set of
random numbers was used to generate the two inhomogeneous permittivity profiles in panel (a) (uniform case also included, for
reference). Panel (b) shows the corresponding dispersion relation of the lowest order mode (found using COMSOL multiphysics,
as in Fig. 5) for the three cases shown in panel (a). As would be expected from the dispersion relation k2y = εzzµxxk

2
0, the slope

of the dispersion changes (the value of the out of plane permittivity is now different where the mode is confined), however the
mode remains unidirectional and the dispersion remains extemely close to linear.
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FIG. 10. As in Figs. 8 and 9, we show the effect of a spatially inhomogeneous permittivity on the modes of the anisotropic chiral
medium shown in Fig. 6 (here some of the simulation parameters are changed from Fig. 6, with a 12 times bigger simulation
area, a randomly generated profile for µxy, and µxx = 2). In panel (a) the Fourier transform of the point source field for a
uniform permittivity is shown, with the dashed line indicating the expected value of ky for the Jackiw–Rebbi mode. In panel
(b), the permittivity is given by the spatial profile shown in panel (c), and the Jackiw–Rebbi mode is still clearly visible, but
with an increased wave–vector, as expected from the increase in permittivity indicated in panel (c).
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photonics. Nature Phot., 8:821, 2014.

[14] A. R. Davoyan and N. Engheta. Theory of Wave Propa-
gation in Magnetized Near-Zero-Epsilon Metamaterials:

Evidence for One-Way Photonic States and Magnetically
Switched Transparency and Opacity. Phys. Rev. Lett.,
111:257401, 2013.

[15] M. G. Silveirinha. Bulk-edge correspondence for topolog-
ical photonic continua. Phys. Rev. B, 94:205105, 2016.

[16] M. G. Silveirinha. Topological classification of Chern-
type insulators by means of the photonic Green function.
Phys. Rev. B, 97:115146, 2018.

[17] S. A. R. Horsley. Topology and the optical Dirac equa-
tion. Phys. Rev. A, 98:043837, 2018.

[18] T. Van Mechelen and Z. Jacob. Photonic Dirac
monopoles and Skyrmions: spin-1 quantization. Opt.
Mat. Exp., 9:95, 2019.

[19] S. M. Barnett. Optical dirac equation. New J. Phys.,
16:093008, 2014.

[20] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer,
D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Sza-
meit. Photonic floquet topological insulators. Nature,
496:196, 2013.

[21] J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang. First-
principles study of dirac and dirac-like cones in phononic
and photonic crystals. Phys. Rev. B, 86:035141, 2012.

[22] M. F. Atiyah and I. M. Singer. The index of Elliptic
Operators on Compact Manifolds. Bull. Amer. Math.
Soc., 69:422, 1963.

[23] S. Rosenberg. The Laplacian on a Riemannian manifold.
Cambridge University Press, 1997.

[24] G. E. Volovik. The Universe in a Helium Droplet. Claren-
don Press, 2003.

[25] A. J. Neimi and G. W. Semenoff. Spectral asymmetry
on an open space. Phys. Rev. D, 30:809, 1984.

[26] A. Wassermann. The Atiyah-Singer index theorem, Lent
2010 (lecture notes). https://www.dpmms.cam.ac.uk/

~ajw/AS10.pdf. Accessed: 2019-01-23.
[27] E. Getzler. A short proof of the local Atiyah-Singer index

theorem. Topology, 25:111, 1986.



12

[28] A. Mostafazadeh. Supersymmetry, Path Integration, and
the Atiyah-Singer Index Theorem. Dissertation, Univer-
sity of Texas (arXiv:hep-th/9405048), 1994.

[29] R. Jackiw and C. Rebbi. Solitons with fermion number .
Phys. Rev. D, 13:3398, 1976.

[30] E. Outerelo and J. M. Ruiz. Mapping Degree Theory.
American Mathematical Society, 2009.

[31] E. Witten. Supersymmetry and Morse theory. J. Diff.
Geom., 17:661, 1982.

[32] Horsley. S. A. R. Unidirectional propagation and complex
principal axes. Phys. Rev. A, 97:023834, 2018.

[33] COMSOL Multiphysics R© v. 4.4.
http://www.comsol.com.

[34] W. Tan, Y. Sun, H. Chen, and S.-Q. Shen. Photonic sim-
ulation of topological excitations in metamaterials. Sci.
Rep., (3842), 2014.

[35] Alú, A. and Engheta, N. Pairing an Epsilon-Negative
Slab With a Mu-Negative Slab: Resonance, Tunneling
and Transparency. IEEE Trans. Ant. Prop., 51:2558,
2003.

[36] S. A. R. Horsley. One dimensional electromagnetic waves
on flat surfaces. J. Phys. D, 47:435103.

[37] D. J. Bisharat and D. F. Sievenpiper. Guiding Waves
Along an Infinitesimal Line between Impedance Surfaces.
Phys. Rev. Lett., 119:106802, 2017.

[38] V. G. Veselago. The Electrodynamics of Substances with
Simultaneously Negative Values of ε and µ. Sov. Phys.
Usp., 10:509, 1968.

[39] J. B. Pendry. Negative refraction makes a perfect lens.
Phys. Rev. Lett., 85:3966, 2000.

[40] L. D. Landau and E. M. Lifshitz. Electrodynamics of
Continuous Media. Butterworth–Heinemann, 2004.

[41] Eric Jones, Travis Oliphant, Pearu Peterson, and et al.
SciPy: Open source scientific tools for Python, 2001–.
[Online; accessed 2019-03-18].

[42] S. Longhi. Parity–time symmetry meets photonics: A
new twist in non-hermitian optics. Europhys. Lett.,
120:64001, 2018.

[43] S. A. R. Horsley, M. Artoni, and G. C. La Rocca. Spa-
tial Kramers–Kronig relations and the reflection of waves.
Nat. Phot., 9:436, 2015.

[44] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao,
and D. N. Christodoulides. Unidirectional Invisibility In-
duced by PT –Symmetric Periodic Structures. Phys. Rev.
Lett., 106:213901, 2011.

[45] K. G. Makris, A. Brandstötter, P. Ambichl, Z. H. Mus-
slimani, and S. Rotter. Wave propagation through disor-
dered media without backscattering and intensity varia-
tions. Light: Science & Applications, 6:e17035, 2017.

[46] S. Longhi. Optical Realization of Relativistic Non-
Hermitian Quantum Mechanics. Phys. Rev. Lett.,
105:013903, 2010.

[47] Y. D. Chong, L. Ge, H. Cao, and A. D. Stone. Coherent
perfect absorbers: Time-reversed lasers. Phys. Rev. Lett.,
105:053901, 2010.

[48] S. Longhi. PT –symmetric laser absorber. Phys. Rev. A,
82:031801, 2010.


