
1

Communication-Efficient Federated Learning for
Wireless Edge Intelligence in IoT

Jed Mills, Jia Hu*, Geyong Min*

Abstract—The rapidly expanding number of IoT devices is
generating huge quantities of data, but public concern over
data privacy means users are apprehensive to send data to a
central server for Machine Learning (ML) purposes. The easily-
changed behaviours of edge infrastructure that Software Defined
Networking provides makes it possible to collate IoT data at
edge servers and gateways, where Federated Learning (FL) can
be performed: building a central model without uploading data to
the server. FedAvg is a FL algorithm which has been the subject
of much study, however it suffers from a large number of rounds
to convergence with non-Independent, Identically Distributed
(non-IID) client datasets and high communication costs per
round. We propose adapting FedAvg to use a distributed form
of Adam optimisation, greatly reducing the number of rounds
to convergence, along with novel compression techniques, to
produce Communication-Efficient FedAvg (CE-FedAvg). We per-
form extensive experiments with the MNIST/CIFAR-10 datasets,
IID/non-IID client data, varying numbers of clients, client par-
ticipation rates, and compression rates. These show CE-FedAvg
can converge to a target accuracy in up to 6× less rounds than
similarly compressed FedAvg, while uploading up to 3× less data,
and is more robust to aggressive compression. Experiments on
an edge-computing-like testbed using Raspberry Pi clients also
show CE-FedAvg is able to reach a target accuracy in up to 1.7×
less real time than FedAvg.

Index Terms—Federated Learning, Internet of Things, Dis-
tributed Computing, Edge Computing, Compression.

I. INTRODUCTION

THERE are over 8 billion Internet of Things (IoT) devices
worldwide, as of 2019 [1]. These are typically low-

powered, embedded devices used for data collection. The
expansion of the number of IoT devices has therefore led to an
explosion in the quantity of data available for organisations to
use for Machine Learning (ML) purposes. These organisations
can use this data for insights, consumer products, and scientific
research. However, there is growing public concern over the
distribution of private data. Many IoT devices, such as security
cameras, fitness and health trackers and smartphones gather
sensitive data that users would not wish to share with a central
server.

The combination of increasing IoT devices and data, along
with user privacy concerns presents a series of opportunities
and challenges for ML. There is the potential to use the
large number of IoT devices to perform distributed ML, rather

J. Mills, J. Hu and G. Min are with the College of Engineering, Maths and
Physical Science, University of Exeter, United Kingdom. E-mail: {jm729,
j.hu, g.min}@exeter.ac.uk.

* Corresponding authors.
Copyright (c) 20xx IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

than in a central server, distributing expensive training and
inference while keeping private data on user devices. However,
distributed ML schemes are typically designed for the data-
centre, assuming high performance computing and networking
hardware, contrasting the highly heterogeneous computing and
communication capabilities of low-powered IoT devices. Also,
IoT devices collect data from different users, so the distribu-
tion over devices can be highly non-Independent, Identically
Distributed (non-IID), making it difficult to create ML models
with good performance.

Software Defined Networking (SDN) has the potential to
help alleviate some of the distributed ML problems. Edge
network architecture typically involves IoT devices connected
to IoT gateways. Gateways and similar devices often possess
much more computing and storage capacity than IoT devices
and are located at the network edge, closer to user devices,
meaning data does not need to be centrally collected. SDN
could be used to easily alter the behaviour of IoT gateways:
collecting data from a group of local IoT devices and perform-
ing distributed ML, or delivering these data securely to nearby
edge servers.

To address the issue of distributed ML, the concept of
Federated Learning (FL) [2] – collaboratively training a model
across devices without sharing their data – was introduced.
McMahan et al. [3] proposed an implementation of FL with
their FedAvg algorithm, designed for user devices such as
smartphones. In FedAvg, clients independently train Deep
Neural Networks (DNNs) on their local data and periodically
average them. FedAvg has been shown to work in real-world
settings by Google with their GBoard [4] next-word-prediction
and emjoi-prediction [5] software. FedAvg can be used in the
IoT/SDN framework described above to provide distributed
ML at the network edge.

Modern DNNs contain a huge number of weights, in the
order of tens to hundreds of millions. As FedAvg requires
uploading and downloading these models between the clients
and the central server, several works have been published on
reducing the amount of communication performed by FedAvg
to reduce bottlenecks and help ease network use.

A standard method of training DNNs is minibatch-
Stochastic Gradient Descent (mb-SGD): model weights are
updated with their gradients multiplied by a fixed learning rate.
Most works on FL use mb-SGD for their DNNs, however,
there are more sophisticated optimisation techniques based
on mb-SGD, such as AdaGrad [6] and RMSProp [7]. Adam
[8] is one popular technique that features both per-parameter
learning rates and momentum. It has been shown to be a very
efficient optimizer for many tasks, and has the potential to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/266991882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

improve the convergence rate of FedAvg.
FedAvg therefore has the following problems when con-

sidered with the IoT edge-computing scenario. First is the
high communication cost per round due to large models being
sent between the clients and the server, and the second is the
high number of rounds to convergence, especially in non-
IID settings. This paper proposes Communication-Efficient
FedAvg (CE-FedAvg), which reduces the number of rounds to
convergence, and the total data uploaded per round over Fe-
dAvg. We therefore make the following contributions:
• Proposal of the CE-FedAvg algorithm, which is com-

posed of two parts: distributed Adam optimisation and
compression of uploaded models. CE-FedAvg reduces the
number of communication rounds taken to reach a target
accuracy, and the total data uploaded per round compared
to uncompressed FedAvg.

• We develop two novel schemes for the quantization of
communicated weights and moment values of Adam
(Uniform and Exponential Quantization). These two
schemes are used alongside sparsification and Golomb
encoding for the compression in CE-FedAvg.

• Extensive simulated experiments of CE-FedAvg using the
MNIST and CIFAR-10 datasets, three DNN architectures,
and varying numbers of clients and client participation
rates. These show CE-FedAvg is able to reach a target
accuracy in far fewer rounds than FedAvg in non-IID
scenarios, and that it is more robust to aggressive com-
munication reduction.

• Further experimentation on an edge-computing-like
testbed using Raspberry Pi clients show CE-FedAvg
reduces the real time to convergence over FedAvg.

The remainder of this article is structured as follows: we
outline related work in the fields of FL and ML for the IoT; we
then describe our proposed algorithm, CE-FedAvg, in detail;
after that we outline the simulation and testbed experiments
we ran comparing CE-FEdAvg to FedAvg; and we finally give
our conclusions of this work in the last section.

II. RELATED WORK

A. Federated Learning

McMahan et al. [3] proposed the original FedAvg algorithm
to train an aggregate model without uploading client data
to a server. FedAvg drastically reduces total communicated
data compared to datacentre-style distributed SGD (where
each worker performs a single step of SGD before aggrega-
tion).

FL considers clients with non-IID data distributions, which
is an obstacle to training a good central model. Zhao et al.
[9] proposed sharing a small amount of data between non-IID
clients to reduce the difference between clients distributions,
increasing the maximum accuracy their FedAvg models were
able to attain.

Devices participating in FL are assumed to have highly het-
erogeneous computing and networking resources. Wang et al.
[10] addressed this with a control algorithm that dynamically
changes the number of local SGD updates that clients perform
before uploading their models, based on a trade-off between

the computing power and networking bandwidth available to
the client.

Several papers have been written on the task of reducing
the amount of data communicated during FedAvg. Konečný
et al. [11] introduced the concepts of structured and sketched
model updates, and were able to significantly reduce the
quantity of uploaded data during training. Similarly, Sattler et
al. [12] demonstrated their Sparse Binary Compression system
against uncompressed FedAvg, and were able to achieve
better accuracy while communicating much less data. Lin
et al. proposed Deep Gradient Compression [13], a system
applicable to FedAvg, where gradient updates are accumulated
at clients until their magnitude is greater than a threshold.
Sattler et al. [14] proposed Sparse Ternary Compression to
compress weight updates during FedAvg, including using
Golomb Encoding [15] to compress the indexes of weights
in sparse matrices produced by sparsification.

As well as compression of weights, other techniques to
reduce communication during FedAvg have been proposed.
Chen et al. [16] aggregated shallow layers more frequently
than deep layers (they assert that shallow layers learn general
features and deep layers learn more specific features). Their
scheme was able to converge to a target accuracy with up to
7× less communication than FedAvg. Liu et al. [17], proposed
having clients aggregate with intermediate servers which then
aggregate with a main server with two given frequencies. Their
experiments showed that increasing aggregation frequency
causes the global model to converge faster (as would be
expected), and that the global aggregation frequency has the
biggest impact on convergence rate.

Leroy et al. [18] proposed adapting the Adam optimizer to
the FedAvg algorithm. In their system, clients perform SGD
using all their local data, and send their weight updates to the
server. The server holds 1st and 2nd moment values for each
weight, which it uses to compute the central model weight
updates using the Adam update rule. However, the way we
use Adam is different in our work from [18]: our method uses
Adam optimisation at clients, and the Adam values are also
aggregated at the server, as opposed to using Adam solely
at the server. We also propose compression schemes for our
version, which Leroy et al. do not.

B. Internet of Things and Machine Learning

Some works have been published combining Deep Learning
and the IoT. One seminal work by Liu et al. [19] created a
system for identifying foods. In it, image preprocessing and
segmentation was performed on edge devices, and classifi-
cation was done on a central server, reducing the latency at
inference time. Li et al. [20] put forward a similar idea where
a ML model was trained in the cloud, then initial layers of the
model were distributed to edge servers. At inference time, the
edge servers compute the first layers before sending the result
of these to the cloud for the final inference, resulting in less
data sent to the cloud over sending the raw input.

For training near the network edge, Kyu et al. [21] created
Fog Privacy-Preserving Deep Learning (FPPDL), which com-
bines privacy-preserving techniques with intermediate-layer

3

aggregation of IoT data at ‘Fog’ nodes before aggregation with
a central server.

ML has been applied to a large variety of edge-like devices.
Reina et al. [22] treated Unmanned Aerial Vehicles (UAVs)
as edge devices, and solved the Multi-Objective Optimization
Problem for their area coverage using a Multi-Subpopulation
Genetic Algorithm.

Pathinarupothi et al. [23] developed a unique IoT-based
system to provide health alerts to doctors for patients. Patients
were fitted with multiple physiological sensors, which could
be connected to the internet using the patient’s smartphone as
a gateway. The gateways had software to determine if doctors
need be alerted of patients. This system shows the ability for
smartphones to be used as intelligent, programmable gateways
for nearby IoT devices, which could be applicable to the
scheme proposed in this work.

Other authors have investigated the resource consumption
of DNNs on IoT and edge devices. Chandakkar et al. [24]
developed a system for re-training and pruning networks at
the edge as nodes receive data over time. Similarly, DeepIoT
[25] was created to reduce the size of DNNs for inference
by using a second network to determine the best weights to
drop from the original network. Guo et al. [26] proposed a
novel approach that involved training a DNN and using an
automata to gradually prune the network weights over time.
They were able to slightly improve the MNIST performance
of dense networks with this method while pruning > 40% of
weights.

Most current work exploring ML and the IoT focuses
on centralised training, and using IoT/edge computing for
inference, or on decreasing the size of DNNs for these devices.
This work, however, investigates decentralised training using
full DNNs.

III. CE-FEDAVG

The FedAvg algorithm has a single master model that is an
aggregate of client models. For each round of communication,
the server selects a subset of clients and pushes the master
model to these clients. Each client then performs a predeter-
mined number of rounds of gradient descent using the client’s
local data, pushes their model weight deltas to the server, and
the server then averages these updates to become the new
master model.

FedAvg features a fixed learning rate across devices as
per normal mb-SGD. As shown below, this can result in a
very large number of rounds required to converge to a given
accuracy. mb-SGD can result in low convergence rates in later
rounds of training because some weights need finer ‘tuning’
than others. Adam optimization is a popular alternative to
standard mb-SGD. It stores two values for each model weight:
m (the 1st moment) and v (the 2nd moment), which are
used along with gradients computed by backpropagation and
global decaying learning rates to update model weights for
each minibatch. Adam reduces both the problems of weights
requiring different degrees of tuning (having adaptive rates for
each weight), and local minima (via momentum).

Alongside this, in FedAvg, the entire DNN model is sent
from clients to server each round. Modern DNNs have a

Fig. 1. One communication round of CE-FedAvg: 1. Clients download the
global model weights, 1st and 2nd moments (ω,m, v); 2. Clients perform
training on their IoT-derived datasets; 3. Clients compress their models; 4.
Clients upload their compressed parameters and indexes (ω′,m′, v′, i); 5. The
server decompresses the model weights and moments; 6. The server aggregates
all client models before starting a new round of training.

huge number of weights, and the upload bandwidth of edge
clients is typically far lower than the download bandwidth.
Therefore, uploading models to the server is a significant
potential bottleneck of the system. Previous works have shown
that these uploaded weight tensors can be compressed without
significantly harming the performance of the model [11] [12]
[13] [14]. However, these schemes typically increase the
number of rounds FedAvg takes to converge, albeit with lower
total data uploaded by clients.

To address the above problems, we propose CE-FedAvg:
a scheme that both reduces the number of rounds taken to
converge to a given accuracy and decreases the total data
uploaded during training over FedAvg. Algorithm 1 shows the
details of CE-FedAvg. The UniQ, UniDQ, ExpQ and ExpDQ
functions are shown in Algorithms 2 and 3.

In CE-FedAvg, the server first initialises the global model
with random weights and 0 values for the 1st and 2nd Adam
moments (line 3). Each communication round, the server
selects a subset of clients (line 5) and sends the weights and
moments to them. In our algorithm, clients are selected at
random, but in reality clients would be selected based on their
power/communication properties at the time as in [4]. These
clients then perform their local Adam SGD (lines 7-8), and
upload their data to the server. The server dequantizes and
reconstructs the sparse updates from the clients (lines 10-17),
averages the updates (lines 20-22) and starts the next round.
Each client updates by replacing their current model with the
downloaded global weights and moments (line 27), performing
E epochs of Adam SGD (lines 28-34), sparsifying and then
quantizing the model deltas and sparse indexes (lines 36-40)

4

and uploading the model to the server. Barring compression,
CE-FedAvg would communicate 3× the data as FedAvg (the
shapes of m and v are the same as ω). However, as shown later,
ω, m and v can be aggressively compressed in CE-FedAvg
while still taking less rounds to converge than FedAvg.

Algorithm 1 CE-FedAvg
1: Server Executes:
2: // Global weights, 1st and 2nd moments
3: initialise ω; m← 0; v← 0
4: while termination condition not met do
5: S ← random set of max(C ·K, 1) clients
6: for each k ∈ S in parallel do
7: (ωq,mq,vq, g, b

∗, lzmin, lzmax, gzmin,
8: gzmax, bm, bv)← ClientUpdatek(ω,m,v)
9: // Decompress deltas and indexes

10: ∆ωk ← 0
11: ∆mk ← 0
12: ∆vk ← 0
13: idxs← GDecode(g, b∗)
14: ∆ωk,idxs ← UniDQ(ωq, lzmin,
15: lzmax, gzmin, gzmax)
16: ∆mk,idxs ← ExpDQ(mk, bm)
17: ∆vk,idxs ← ExpDQ(vk, bv)
18: end for
19: // Update global weights
20: ω←ω +

∑K
k=1

nk

n ∆ωk

21: m←m +
∑K

k=1
nk

n ∆mk

22: v← v +
∑K

k=1
nk

n ∆vk

23: end while
24:
25: function CLIENTUPDATEk(ω,m,v)
26: // Client weights, 1st and 2nd moments
27: ωk ←ω; mk ←m; vk ← v
28: for epoch ← 1 : E do
29: batches ← (data Pk in batches of size B)
30: for each b ∈ batches do
31: // Perform Adam gradient descent
32: ωk,mk,vk ← AdamSGD(ωk,mk,vk)
33: end for
34: end for
35: // Compress ωk, mk, vk deltas and indexes
36: ωs, idxs← Sparsify(ωk −ω)
37: g, b∗ ← GEncode(idxs)
38: ωq, lzmin, lzmax, gzmin, gzmax ← UniQ(ωs)
39: mq, bm ← ExpQ(mk −m)
40: vq, bv ← ExpQ(vk − v)
41: Return (ωq,mq,vq, g, b

∗, lzmin, lzmax,
42: gzmin, gzmax, bm, bv) to server
43: end function

CE-FedAvg provides other practical benefits over FedAvg.
Due to the adaptive learning rates inherited from Adam,
CE-FedAdam works well with the default Adam parameters.
FedAvg, on the other hand, requires finding learning rates for
each specific dataset and scenario [3]. Not only is this time-
consuming and costly, but in the FL setting, the server does not
have access to client datasets, so it is unclear how this would

be done in reality. Also, as CE-FedAvg reduces the number of
rounds of communication to reach a target accuracy, the total
amount of computation required of clients is also reduced:
the extra cost of performing one round of CE-FedAvg over
FedAvg is outweighed by reduced rounds of learning. We are
not aware of any work on FL that reduces the amount of
computation at clients in this way.

IV. COMPRESSION STRATEGIES

Previous work compressing the models uploaded by clients
typically rely on sparsification of weights and/or quantization
of weights from typical 32-bit floats.

Algorithm 2 Uniform Quantization (UniQ) and Dequantiza-
tion (UniDQ)

1: function UNIQ(a)
2: lzmin ← min(a−)
3: lzmax ← max(a−)
4: gzmin ← min(a+)
5: gzmax ← max(a+)
6: q← 0|a| // initialise q, type 8-bit int
7: qa<0 ← b 127

lzmax−lzmin
(aa<0 − lzmin)c

8: qa>0 ← 128 + b 127
gzmax−gzmin

(aa>0 − gzmin)c
9: return q, lzmin, lzmax, gzmin, gzmax

10: end function
11:
12: function UNIDQ(q, lzmin, lzmax, gzmin, gzmax)
13: d← 0|q| // initialise d, type 32-bit float
14: dq<128 ← (lzmax−lzmin

127 qq<128) + lzmin

15: dq≥128 ← (gzmax−gzmin

127 (qq≥128 − 128)) + gzmin

16: return d
17: end function

Our proposed technique comprises of sparsification fol-
lowed by quantization. To sparsify gradients, for each tensor,
the top (s − 1)% of deltas with the largest absolute value
are chosen, and they are extracted along with their (flattened)
indexes. In CE-FedAvg, the corresponding m and v deltas are
also sent along with the weight deltas, using the same indexes.
We found that if non-corresponding m and v values are sent
(i.e. the m and v tensors are sparsified independently, in the
same manner as the weight tensors) this quickly produces
exploding gradients at the clients, likely due to stale m
and v values producing problems in the Adam optimization
algorithm.

After sparsification, the weight deltas, m and v are quan-
tized from 32-bit floats to 8-bit unsigned ints. The weight
deltas contain positive and negative values with the greatest
(s−1)% of magnitudes, and are quantized as per the Uniform
Quantization scheme shown in Algorithm 2. To quantize using
Uniform Quantization, the values with the greatest positive and
greatest negative, and lowest positive and lowest negative are
chosen (lines 2-5). These are used to map all values lower than
zero to the integers 0-127 (line 7) and values greater than zero
to 128-255 (line 9). To dequantize, the reverse functions are
applied (lines 14-15) to return a vector of floats.

Analysis of m and v values produced by Adam show that
there is a large range in the scale of these values: the authors

5

experiencing values with exponents ranging from 10−1 to to
10−35. Attempts to quantize m and v deltas show that they
are very sensitive to errors in their exponent, and quantizing
them using Uniform Quantization or schemes from other
works results in exploding gradients within a few rounds.
Therefore, we propose a different method of quantization,
dubbed Exponential Quantization, for these deltas.

Algorithm 3 Exponential Quantization (ExpQ) and Dequan-
tization (ExpDQ)

1: function EXPQ(a)
2: b← min(abs(a))

1
127

3: q← 0|a| // initialise q, type 8-bit int
4: p← b 1

log(b) log(abs(a))c
5: qa<0 ← abs(pa<0)
6: qa>0 ← 128 + abs(pa>0)
7: return q, b
8: end function
9:

10: function EXPDQ(q, b)
11: d← 0|q| // initialise d, type 32-bit float
12: d0<q<128 ← −b−q0<q<128

13: dq≥128 ← b128−qq≥128

14: return d
15: end function

In Exponential Quantization, negative values are again
mapped to the range 0-127, and positive to 128-255. Algorithm
3 shows the procedure. To quantize a tensor, the smallest
absolute value, δ, is found, and b = δ−1/127 is computed
(line 2). This provides the base for quantization: the minimum
base with exponent of 127 able to represent the value with the
smallest magnitude in the tensor. Using the minimum possible
base provides the highest resolution for the quantized values.
The logarithm with base b for all values in the tensor is then
found and rounded to the nearest integer (line 4), with 128
added to positive values to map them to 128-255 (line 6). To
dequantize, b is simply raised to the power of q for each value,
times by −1 for q < 128 (lines 12-13).

The last item to be compressed are the indexes of the values
in the sparse arrays sent from clients to server. For these
values, we use the lossless Golomb Encoding [15] technique as
used by Sattler et al. [14] in their Sparse Ternary Compression
scheme.

Using these techniques, compressed FedAvg therefore up-
loads for each weight tensor: the weight deltas (8-bit integers);
the four min/max values from Uniform Quantization (4 × 32
bits); their indexes (Golomb encoded); and b∗ (a 32-bit float
used for Golomb encoding). CE-Fedvgm must communicate
all of these, plus the m and v deltas (both 8-bit integers) and
the base, b for both of these from Exponential Quantization
(32-bit floats). The total number of uploaded bits after com-
pression, per client per round, is therefore:

FedAvg: bitsup = 160|W |+ (1− s)(8 + gs)
∑
ω∈Ω

|ω| (1)

CE-FedAvg: bitsup = 224|W |+(1−s)(24+gs)
∑
ω∈Ω

|ω| (2)

where s is the sparsity, Ω is the set of weight tensors
comprising the network, and gs is the expected number of
bits needed to Golomb encode one index value for a given
sparsity.

Fig. 2. Top: expected number of bits per value, gs, using Golomb Encoding
versus sparsity. Bottom: compression ratio of CE-FedAvg and FedAvg, and
CE-FedAvg:FedAvg uploaded data ratio versus sparsity.

The implementation of Golomb Encoding (GE) [15] is the
same as used in [14]. The expected number of bits per value
for a given sparsity, gs, is given as:

gs = b∗ +
1

1− s2b∗ (3)

b∗ = 1 + blog2(
φ− 1

s
)c (4)

where φ =
√

5+1
2 ≈ 1.62 is the golden ratio. The value of b∗

is sent from client to server to convert the GE bit string back
to integer values.

Plotting gs (Figure 2, top), the second terms of the above
equations, and the nominal (without |W | terms) ratio of CE-
FedAvg to FedAvg uploaded data with different s (Figure 2,
bottom) shows that CE-Fedvg compresses more than FedAvg
using this scheme. This means the total amount of data
uploaded by a CE-FedAvg client in a single round is between
2.6−2× that of FedAvg for 0.5 ≤ s < 1.0, as opposed to 3×

6

if there was no compression. However, despite communicating
2− 2.6× more data than FedAvg per client per round, due to
the reduction in rounds achieved by CE-FedAvg, clients still
upload less total data than FedAvg in many cases.

V. EXPERIMENTS

A. Simulation Setup

A series of experiments were conducted to evaluate CE-
FedAvg against FedAvg. The experiments were image
classification tasks using the MNIST [27] and CIFAR10 [28]
datasets. Models were implemented using Tensorflow [29].

MNIST: 28 × 28 greyscale images of handwritten
digits in 10 classes. Two models were trained
on this dataset. The first (MNIST-2NN) had
two fully connected layers of 200 neurons with
ReLU activation, and a softmax output layer.
The second (MNIST-CNN) was a convolutional
network consisting of: two 5 × 5 convolutional
layers with 32 and 64 output neurons, respectively,
each followed by 2 × 2 max pooling and ReLU
activation; a fully connected layer with 512 neurons
and ReLU activation; and a softmax output layer.

CIFAR10: 32 × 32 colour images of objects in 10
classes. One network (CIFAR-CNN) was trained
on this dataset with: two 3× 3 convolutional layers
with 32 output neurons, L2 regularization and
each followed by batch normalization; a dropout
layer with d = 0.2, two 3× 3 convolutional layers
with 64 output neurons, L2 regularization, and
batch normalization; a second dropout layer with
d = 0.3; two final 3 × 3 convolutional layers with
L2 regularization and batch normalization; a final
d = 0.4 dropout layer; and a softmax output layer.

The networks were trained on the datasets using differing
numbers of clients, classes per client, client participation rate,
compression rates, and either FedAvg or CE-FedAvg until
a given target accuracy was achieved. The models had the
following target accuracies: MNIST-2NN, 97%; MNIST-CNN,
99%; CIFAR-CNN, 60%. For each setting, values of E were
tested to find the best for that setting, and when using FedAvg,
different learning rates were also tested.

The entire dataset was split across all clients in each
case. Therefore, increasing numbers of clients resulted in less
samples per worker. To produce IID data, the datasets were
shuffled and each client given an equal portion of the data.
For non-IID data, the datasets was sorted by class, divided
into slices, and each client was either given two slices. This
resulted in most clients having data from only two classes.
The test data for each dataset was taken from the official test-
sets.

B. Simulation Results

We ran experiments using FedAvg and CE-FedAvg to reach
a given target accuracy as described above. The networks

were run with IID (Y = 10), and non-IID (Y = 2) data
partitioning, where Y is the number of classes per worker.
For FedAvg, multiple global learning rates were also trialled
for each scenario. The following tables show the average
number of rounds to reach a given target accuracy for the
best parameter setup in each case. ‘NC’ is used where no set
of parameters could be found to get the algorithm to converge
to the target. Sparsity rates of s = {0.6, 0.9, 0.95} provides
approximately {7, 25, 53}× compression for FedAvg, and
approximately {9, 33, 68}× compression for for CE-FedAvg,
respectivley, resulting in a FedAvg:CE-FedAvg uploaded data
ratio per round of of ≈ 1 : 2.3.

TABLE I
ROUNDS REQUIRED TO REACH TARGET TEST ACCURACIES FOR FEDAVG
(GREY) AND CE-FEDAVG (WHITE), WITH UPLOAD SPARSITY s = 0.6.

MNIST-2NN

Y W 10 20 40
C 0.5 1.0 0.5 1.0 0.5 1.0

10 2.0 2.0 3.8 4.0 7.2 7.2
2.8 2.0 4.2 4.0 8.2 7.4

2 134.8 118.0 143.8 117.2 171.6 152.4
79.4 56.2 77.6 60.8 81.6 60.8

MNIST-CNN

10 3.2 3.0 7.2 4.4 10.0 9.6
3.0 3.0 4.2 4.0 8.6 8.4

2 143.2 121.4 146.6 119.4 190.2 230.0
56.4 36.2 54.0 41.0 58.8 43.0

CIFAR-CNN

10 3.0 3.0 5.2 5.0 10.6 9.8
2.8 3.0 3.0 3.0 5.2 5.4

2 111.2 99.2 159.2 138.2 225.2 241.0
80.2 82.8 58.6 75.4 53.8 92.7

Table I shows that more rounds are required to converge
in non-IID scenarios than IID, as is consistent with other FL
works. As clients’ distributions are very different in non-IID
scenarios, their models diverge more between aggregations,
harming the global model. Table I also shows that with
moderate compression, CE-FedAvg was able to reach the
target in significantly fewer rounds in non-IID scenarios.
This may be because of CE-FedAvg’s adaptive learning rates:
Adam was able to make more fine-tuned changes to the
worker models between aggregations so these models did
not diverge as much. CE-FedAvg did comparatively better
with more workers/decreasing dataset size per worker. CE-
FedAvg reduced the rounds taken by ≥ 2.3× in 10 cases,
including all the MNIST-CNN non-IID cases. In the MNIST-
CNN, W = 40, C = 0.5, Y = 2 case, CE-FedAvg reduced
the number of rounds by 5.3× over FedAvg.

Tables II and III show that higher compression rates increase
the number of rounds to reach the target, especially in non-
IID cases. Again, in all non-IID cases, CE-FedAvg is able
to reach the target far faster than FedAvg. For s = 0.9, CE-
FedAvg reached the target in ≥ 2.3× less rounds in 7 cases.
For s = 0.95, CE-FedAvg took ≥ 2.3× less rounds in 5 cases.
Taking the same MNIST-CNN case, with s = 0.9, CE-FedAvg
reaches the target in 6× fewer rounds, and 4.3× fewer for
s = 0.95.

7

TABLE II
ROUNDS REQUIRED TO REACH TARGET TEST ACCURACIES FOR FEDAVG
(GREY) AND CE-FEDAVG (WHITE), WITH UPLOAD SPARSITY s = 0.9.

‘NC’ DENOTES CASES UNABLE TO CONVERGE.

MNIST-2NN

Y W 10 20 40
C 0.5 1.0 0.5 1.0 0.5 1.0

10 3.0 2.8 4.8 4.8 9.6 9.6
4.2 4.0 7.0 6.0 13.0 11.6

2 210.2 192.0 212.2 185.6 271.8 258.4
114.8 86.4 104.6 86.4 138.4 96.8

MNIST-CNN

10 4.4 3.8 7.4 6.4 14.2 13.4
4.8 4.8 7.8 7.4 13.6 12.4

2 256.8 184.4 216.6 462.8 495.6 447.6
85.8 50.2 78.0 56.0 79.2 74.8

CIFAR-CNN

10 4.4 4.0 8.2 7.0 14.0 14.2
5.2 5.6 6.0 6.0 9.2 9.4

2 NC NC NC NC NC NC
83.2 60.4 74.2 68.2 75.8 71.4

For all non-IID CIFAR-10 s = 0.9, 0.95 cases, compressed
FedAvg could not converge within 1000 rounds. The CIFAR-
10 problem is much more complex than MNIST. It is likely
FedAvg could not converge due to its fixed learning rate.
CE-FedAvg, on the other hand, could reliably converge even
in these extreme settings. Not considering these cases, CE-
FedAvg was less likely to diverge during training than FedAvg.
Over the total 962 FedAvg and 1034 CE-FedAvg experiments
conducted (after finding suitable E values, and learning rates
for FedAvg, and not including the ‘NC’ FedAvg cases),
FedAvg diverged before reaching the target in 2% of the
experiments, whereas CE-FedAvg diverged in 0.1% of cases
(a single case). This reliability may be to due to the adaptive
gradients of Adam: discrepancies between the model weights
downloaded from the server and what is suitable for the
specific client’s learning problem are more easily overcome
with adaptive learning rates.

TABLE III
ROUNDS REQUIRED TO REACH TARGET TEST ACCURACIES FOR FEDAVG
(GREY) AND CE-FEDAVG (WHITE), WITH UPLOAD SPARSITY s = 0.95.

‘NC’ DENOTES CASES UNABLE TO CONVERGE.

MNIST-2NN

Y W 10 20 40
C 0.5 1.0 0.5 1.0 0.5 1.0

10 3.8 3.3 6.3 6.0 13.0 12.5
6.0 6.0 10.0 9.8 19.3 17.8

2 397.0 290.4 338.0 293.2 308.8 362.8
173.8 130.6 156.0 139.2 211.4 169.2

MNIST-CNN

10 4.6 4.6 9.6 9.0 21.0 19.4
7.8 7.0 13.0 11.5 21.0 19.0

2 264.2 282.3 400.3 421.5 585.3 698.3
133.8 94.3 126.3 107.8 160.8 161.8

CIFAR-CNN

10 5.6 5.0 9.6 8.6 20.2 18.0
10.0 10.6 10.2 9.6 14.2 13.8

2 NC NC NC NC NC NC
173.6 126.6 148.6 112.4 306.0 186.8

While also being more reliable than FedAvg, CE-FedAvg
was able to achieve this using the default parameters for
Adam optimization in every case. This resulted in much faster
experiment set times for CE-FedAvg, as multiple learning rates
did not have to be trialled. Tuning the Adam parameters may
have achieved even better results than those listed above. FL
considers machine learning where a central server does not
have access to training data due to client privacy. Therefore,
this presents a major advantage over FedAvg: without a central
test/validation set of data, it would be infeasible to test multiple
learning rates for FedAvg before conducting the actual FL,
whereas CE-FedAdam, for all of the above experiments,
worked out of the box with no parameter tuning.

Figure 3 shows the compressed size of the MNIST-CNN
updates for FedAvg and CE-FedAvg, including an uncom-
pressed case (s = 0). It is interesting to see that while CE-
FedAvg uploads more data per client per round (due to the
extra variables from Adam) in all cases, the total data uploaded
by CE-FedAvg is far lower than FedAvg in all cases. This is
due to the large decrease in rounds to convergence CE-FedAvg
gives.

Fig. 3. Top: Compressed uploaded data per client per round for FedAvg and
CE-FedAvg with different sparsities, for the MNIST-CNN W = 40, C = 1.0,
Y = 2 scenario. Bottom: Total uploaded data during training for the same
scenario.

C. Testbed Setup

To test the real-time convergence of CE-FedAvg over FedAvg,
we used a Raspberry-Pi (RPi) testbed to simulate a hetero-
geneous low-powered edge-computing scenario. The testbed

8

consisted of 5 Raspberry Pi 2Bs and 5 Raspberry Pi 3Bs.
A desktop acted as the server over a wireless network to
emulate lower-bandwidth networking. The work of the server
in these experiments was small: receiving and decompressing,
aggregating and resending models to clients. Therefore, the
server had a small impact on the time experiments took to
run, and the vast majority of time taken in the FedAvg/CE-
FedAvg algorithm was on the RPi clients. The RPi clients
all had an install of Raspbian OS. Software was written with
Python using Tensorflow 1.12.

Experiments with 10 workers, the MNIST-2NN and
MNIST-CNN models, and sparsity rate s = 0.6 were per-
formed to evaluate the runtime of CE-FedAvg and FedAvg.
Round times were taken and averaged, and then used with the
total-rounds from the relevant parts of Table I to determine
the total time that experiment would take on the testbed. Time
taken to complete rounds was very consistent on the testbed,
making this a reliable estimator of total time.

D. Testbed Results

We ran experiments to get the estimated real time on a
RPi testbed for a set of 4 experiments to reach given target
accuracies. The results of this are shown in Figure 4.

Fig. 4. Estimated time on Raspberry Pi testbed of different FL scenarios.

The times in Figure 4 show that CE-FedAvg is able to
converge to a given target accuracy in less real time than
FedAvg with similar compression. Although the time taken
per round is greater for CE-FedAvg than FedAvg (due in small
extra computation required from Adam, but mostly due to
the increased communication per round compared to similarly
compressed FedAvg), the number of rounds taken to converge,
as per Table I, was lower in all the given experiments. Figure
4 shows CE-FedAvg was able to converge 1.2 − 1.7× faster
than FedAvg.

VI. CONCLUSION

Federated Learning (FL) can allow distributed Machine Learn-
ing to be performed on the network edge using data gen-
erated by IoT devices. We adapted FedAvg (a popular FL

algorithm) with Adam optimisation and compression to pro-
duce Communication-Efficient FedAvg (CE-FedAvg), which
reduces total uploaded data and rounds compared to similarly
compressed FedAvg. Extensive experiments on the MNIST
and CIFAR-10 datasets showed CE-FedAvg was generally
able to reach a target accuracy in far fewer communication
rounds than FedAvg in non-IID settings (up to 6× fewer).
These experiments showed CE-FedAvg is also far more robust
to aggressive compression of uploaded data, and able to
converge with up to 3× less total uploaded data per client.
Further experiments using a Raspberry-Pi testbed showed CE-
FedAdam could converge in up to 1.7× less real-time. CE-
FedAvg therefore presents the benefits of being able to train
a model in less communication rounds (reducing the overall
data and computing cost of training), less real-time, and with
less uploaded data than uncompressed FedAvg, a unique result
considering most schemes using compression reduce uploaded
data at the cost of more rounds to convergence. Future work in
this area could investigate other SGD-type algorithms applied
to FL, and in compressing the models downloaded by clients
from the server.

ACKNOWLEDGEMENT

This work was supported by EPSRC DTP Studentship.

REFERENCES

[1] K. L. Lueth, “State of the iot 2018: Number of iot devices
now at 7b - market accelrating,” August 2018. [Online].
Available: iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-
of-iot-devices-now-7b/

[2] H. B. McMahan and D. Ramage, “Federated learning: Collaborative
machine learning without centralized training data,” Google, April
2017. [Online]. Available: https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html

[3] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated
learning of deep networks using model averaging,” arXiv preprint
arXiv:1602.05629, 2016.

[4] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” arXiv preprint arXiv:1811.03604, 2018.

[5] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated
learning for emoji prediction in a mobile keyboard,” arXiv preprint
arXiv:1906.04329, 2019.

[6] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[7] T. Tieleman and G. Hinton, “Coursera: Neural networks for machine
learning,” Tech. Rep., 2012.

[8] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, pp. 1–13, 2014.

[9] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[10] S. Wang, T. Tuor, T. Salonidis, K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[11] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” NIPS Workshop on Private Multi-Party Machine Learning,
2016.

[12] F. Sattler, S. Wiedemann, K. Müller, and W. Samek, “Sparse binary
compression: Towards distributed deep learning with minimal commu-
nication,” 2019 International Joint Conference on Neural Networks, pp.
1–8, 2018.

[13] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” International Conference on Learning Representations, 2018.

9

[14] F. Sattler, S. Wiedemann, K. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” arXiv
preprint arXiv:1903.02891, 2019.

[15] S. Golomb, “Run-length encodings (corresp.),” IEEE Trans. Inf. Theor.,
vol. 12, no. 3, pp. 399–401, Sep 2006.

[16] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with asynchronous model update and temporally weighted
aggregation,” arXiv preprint arXiv:1903.07424, 2019.

[17] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Edge-assisted
hierarchical federated learning with non-iid data,” arXiv preprint
arXiv:1905.06641, 2019.

[18] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Fed-
erated learning for keyword spotting,” ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6341–6345, 2019.

[19] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yunsheng, S. Chen,
and P. Hou, “A new deep learning-based food recognition system for
dietary assessment on an edge computing service infrastructure,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 249–261, 2018.

[20] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[21] L. Lyu, J. C. Bezdek, X. He, and J. Jin, “Fog-embedded deep learning
for the internet of things,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 7, pp. 4206–4215, 2019.

[22] D. Reina, H. Tawfik, and S. Toral, “Multi-subpopulation evolutionary al-
gorithms for coverage deployment of uav-networks,” Ad Hoc Networks,
vol. 68, pp. 16–32, 2018.

[23] R. K. Pathinarupothi, P. Durga, and E. S. Rangan, “Iot-based smart edge
for global health: Remote monitoring with severity detection and alerts
transmission,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2449–
2462, 2019.

[24] P. S. Chandakkar, Y. Li, P. L. K. Ding, and B. Li, “Strategies for re-
training a pruned neural network in an edge computing paradigm,” 2017
IEEE International Conference on Edge Computing, pp. 244–247, 2017.

[25] Y. Shuochao, Z. Yiran, Z. Aston, S. Lu, and A. Tarek, “Deepiot:
Compressing deep neural network structures for sensing systems with a
compressor-critic framework,” Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems, pp. 4:1–4:14, 2017.

[26] H. Guo, S. Li, B. Li, Y. Ma, and X. Ren, “A new learning automata-
based pruning method to train deep neural networks,” IEEE Internet of
Things Journal, vol. 5, no. 5, pp. 3263–3269, 2018.

[27] Y. LeCun and C. Cortes, “Mnist handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[28] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[29] M. Abadi, A. Agarwal, P. Barham et al., “Tensorflow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org.

Jed Mills is a Computer Science Ph.D. student
in the College of Engineering, Maths and Physical
Science at the University of Exeter, UK. He received
a B.Sc. in Natural Science from the University of
Exeter in 2018. His research interests are in machine
learning, distributed machine learning and mobile
edge computing.

Jia Hu is a Lecturer in Computer Science at the
University of Exeter. He received his Ph.D. de-
gree in Computer Science from the University of
Bradford, UK, in 2010, and M.Eng. and B.Eng.
degrees in Electronic Engineering from Huazhong
University of Science and Technology, China, in
2006 and 2004, respectively. His research interests
include cloud and edge computing, resource op-
timization, applied machine learning, and network
security.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department of
Computer Science within the College of Engineer-
ing, Mathematics and Physical Sciences at the Uni-
versity of Exeter, United Kingdom. He received
the PhD degree in Computing Science from the
University of Glasgow, United Kingdom, in 2003,
and the B.Sc. degree in Computer Science from
Huazhong University of Science and Technology,
China, in 1995. His research interests include future
Internet, computer networks, wireless communica-

tions, multimedia systems, information security, high-performance computing,
ubiquitous computing, modelling and performance engineering.

