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Abstract 

Context: Physical inactivity and high-fat overfeeding have been shown to independently induce insulin 

resistance. Objective: Establish the contribution of muscle disuse and lipid availability to the 

development of inactivity-induced insulin resistance. Design, setting, participants, and interventions: 

Twenty healthy males underwent seven days of forearm cast immobilization combined with a fully-

controlled eucaloric (CON, n=10, age 23±2 yr, BMI 23.8±1.0 kg·m-2) or high-fat diet providing 50% 

excess energy from fat (HFD, n=10, age 23±2 yr, BMI 22.4±0.8 kg·m-2). Main outcome measures: Prior 

to casting, and following 2 and 7 days of immobilization, forearm glucose uptake (FGU) and non-

esterified fatty acid (NEFA) balance were assessed using the arterialized venous-deep venous (AV-V) 

forearm balance method following ingestion of a mixed macronutrient drink. Results: Seven days of 

HFD increased body weight by 0.9±0.2 kg (P=0.002), but did not alter fasting, arterialized whole-blood 

glucose and serum insulin concentrations or the associated HOMA-IR or Matsuda indices. Two and 

seven days of forearm immobilization led to a 40±7% and 52±7% decrease in FGU, respectively 

(P<0.001), with no difference between day 2 and 7 and no effect of HFD. Forearm NEFA balance 

tended to increase following two and seven days of immobilization (P=0.095). Conclusions: forearm 

immobilization leads to a rapid and substantial decrease in FGU, which is accompanied by an increase 

in forearm NEFA balance but is not exacerbated by excess dietary fat intake. Altogether, our data 

suggest that disuse-induced insulin resistance of glucose metabolism is occurs as a physiological 

adaptation in response to the removal of muscle contraction. 
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Précis 

Seven days of forearm immobilization leads to rapid changes in forearm glucose uptake and fatty acid 

balance. These changes are not exacerbated by ingestion of a high-fat, hypercaloric diet.  D
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Introduction 

Physical inactivity is a significant predictor of major non-communicable metabolic diseases including 

type 2 diabetes and cardiovascular disease (1), and has been proposed the 4th leading cause of death 

worldwide (2). A key hallmark of the physical inactivity-induced reduction in metabolic health is the 

development of insulin resistance of glucose metabolism, i.e. impaired glucose uptake in an insulin-

stimulated state (1). Insulin resistance can also be induced via the removal of muscle contraction in an 

experimental setting, e.g. by subjecting individuals to acute muscle disuse via limb immobilization or 

bed rest (3). Although the development of insulin resistance with muscle disuse occurs much more 

rapidly than with chronic physical inactivity (i.e. a sedentary lifestyle), these experimental models 

represent suitable approaches to study physical inactivity in a more mechanistic manner. 

It is well-established that experimental muscle disuse leads to insulin resistance of glucose metabolism 

(4-9), demonstrated by a 30-40% decrease in whole-body glucose uptake under hyperinsulinaemic-

euglycaemic conditions following 7-9 days of bed rest, that plateaus for several weeks thereafter 

(10,11). We have recently shown that merely a single day of bed rest begins to reduce glucose tolerance 

and insulin sensitivity (12), which becomes frank insulin resistance following 3 days of bed rest 

(5,13,14). Taken together, this would suggest that a plateau in muscle insulin resistance may be reached 

within the first few days of disuse. However, bed rest may not be the most suitable experimental model 

to mechanistically study muscle disuse, since it is often (15,16), but not always (5,8,17), accompanied 

by a whole-body positive energy balance (15,16) and perturbed metabolism of other tissues (4,5). Limb 

immobilization on the other hand isolates muscle disuse whilst the rest of the body remains relatively 

active and in energy balance. Previous work has demonstrated that limb immobilization leads to a ~15-

25% decrease in glucose uptake across the leg, as a direct measure of insulin sensitivity, following 7 

days of disuse (9). The degree of insulin resistance with such ‘isolated’ disuse appears to be greater than 

with whole-body bed rest (6), but neither the time course nor the rapidity of its development have been 

established. Knowledge on the time course will provide insight in the underlying mechanism(s) of 

insulin resistance, i.e. establishing the order of occurrence of certain events can inform on potential 

causality. This is also of clinical relevance, since it will inform on when potential interventional 
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strategies (e.g. nutrition and/or exercise (mimetics) (18)) during periods of hospital admission or limb 

immobilization, are likely most effective. 

One of the most commonly suggested mechanisms for the development of insulin resistance with 

muscle disuse is the reduced turnover and subsequent accumulation of lipid, or lipid intermediates, in 

skeletal muscle tissue (19). In non-disuse situations, lipid infusion directly impairs insulin sensitivity 

(20,21), and muscle lipid accumulation is strongly negatively correlated with insulin resistance (22). In 

line, prolonged (>4 weeks) bed rest and lower limb suspension studies have shown substantial skeletal 

muscle lipid accumulation, ranging from 15 to 75% increases in muscle lipid content following four 

weeks of muscle disuse (23,24). However, we have recently shown that such overt muscle lipid 

accumulation does not yet occur following 5-7 days of disuse (5,25), suggesting that the intramuscular 

accumulation of triglycerides per se is not involved in the rapid development of insulin resistance and 

might simply occur as a consequence. However, we have observed suggestions for specific changes in 

intramuscular diacylglycerol (DAG) metabolism in the first week of muscle disuse (5,12). Specifically, 

this was indicated by a trend for an increase in PKCθ gene expression following a single day of bed rest 

(12), potentially as a consequence of DAG-induced PKCθ activation, which is thought to impair muscle 

insulin signalling (19), and two-fold increases in muscle content of several different DAG species 

following 7 days of bed rest (5). These changes in DAG metabolism were likely caused by a reduced 

turnover (possibly due to a reduced demand for lipid as a fuel in inactive muscle tissue) or an excess 

muscle lipid uptake caused by positive energy balance. In our single-day bed rest study we tested the 

impact of 33% overfeeding during muscle disuse, and showed a negligible impact on measures of 

insulin sensitivity or muscle transcriptional responses (12). However, we overfed all macronutrients to 

a relatively moderate extent, which precluded us from delineating the role of excess lipid during disuse, 

and suggests a greater degree of specific high-fat overfeeding is perhaps required. As such, a greater 

degree of specific high-fat overfeeding (i.e., 50% excess energy, as in (26,27)) would potentially drive 

NEFA uptake in immobilized tissue, and thereby provide further mechanistic insight in the role of lipid 

in disuse-induced insulin resistance. Moreover, the results from this study have implications for 

population health, since physical inactivity and intake of a high-fat, high-caloric diet are becoming 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article-abstract/doi/10.1210/clinem
/dgz049/5586896 by U

niversity of Exeter user on 26 N
ovem

ber 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

6 

increasingly prevalent in modern society and are key factors in non-communicable diseases such as 

type 2 diabetes and obesity. 

In the present study we aimed to determine the effect of lipid availability on the development of 

inactivity-induced insulin resistance by applying the arterialized venous-deep venous (AV-V) forearm 

balance method prior to, and following 2 and 7 days of forearm immobilization in healthy young males 

consuming either a hypercaloric high-fat diet (i.e. 50% excess energy from fat) or eucaloric control diet. 

Forearm immobilization was selected as experimental model, since it induces muscle disuse in an 

isolated limb whilst only moderately impacting on activities of daily living (especially when compared 

to leg immobilization). In combination with the AV-V forearm balance technique, which is a feasible 

and relatively non-invasive method, this allowed us to assess the impact of muscle disuse on muscle 

substrate balance. The specific 2 and 7 day time points were selected to investigate whether the 

substantial insulin resistance that is observed following 7 days of muscle disuse can already be detected 

after 2 days, and assess whether this is associated with changes in forearm fatty acid balance. We 

hypothesized that a ~2.5-fold increase in dietary fat intake would create a positive lipid balance in the 

immobilized forearm tissue and therefore exacerbate the early development of insulin resistance, 

reflected by reduced forearm glucose uptake in response to a mixed macronutrient meal.  
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Methods 

 

Participants 

Twenty-two healthy, young men (age 23±1 y) were included in the present study. However, due to 

problems with cannulation and/or blood sampling on day 2 (n=1, control (CON) participant) and day 7 

(n=1, high-fat diet (HFD) participant), data presented are for n=20. Participants’ characteristics are 

displayed in Table 1. Prior to inclusion, participants attended the laboratory for a routine medical 

screening to ensure their eligibility to take part. Participants fulfilling one or more of the following 

criteria were excluded: age below 18 or over 40 y, BMI below 18.5 or over 30 kg·m-2, metabolic 

impairment (e.g. type 1 or 2 diabetes), hypertension, cardiovascular disease, chronic use of any 

prescribed over the counter pharmaceuticals, regular use of nutritional supplements, metallic implants, 

a personal or family history of thrombosis, any previous motor disorders, any disorders in lipid 

metabolism, presence of an ulcer in the stomach or gut, and severe kidney problems. All participants 

were informed on the nature and risks of the experiment before written informed consent was obtained. 

After obtaining written informed consent, height and weight were measured, and body composition was 

determined by Air Displacement Plethysmography (Bodpod; Life Measurement, Inc., Concord, CA, 

USA). The present study was part of a larger project investigating the impact of forearm immobilization 

and high-fat overfeeding on muscle metabolism, registered on clinicaltrials.gov as NCT02980952. The 

study was approved by the Department of Sport and Health Sciences, University of Exeter’s Ethical 

Committee (proposal reference number 161026/B/09) in accordance with the Declaration of Helsinki 

(version October 2013). 

 

Experimental overview 

Following inclusion, participants visited the laboratory for a baseline metabolic test day during which 

postabsorptive and postprandial forearm glucose uptake (FGU) and forearm non-esterified fatty acid 

(NEFA) balances were assessed using the arterialized venous-deep venous (AV-V) forearm balance 

method. Minimally 3 days later (average 10±2 days), participants attended the laboratory for the 

application of a forearm cast. This visit signified the beginning of the 7-day immobilization period. 
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During these 7 days, participants were randomized into receiving a fully controlled eucaloric (CON, 

n=10) or a high-fat (HFD, n=10) diet providing 50% excess energy from fat. Following 2 and 7 days of 

immobilization, the metabolic test day was repeated. The forearm cast was removed following the final 

test day. 

 

Forearm immobilization 

On the morning of the start of the 7-day immobilization period, participants arrived at the laboratory at 

07:30 to have a forearm cast fitted on their non-dominant arm. Firstly, stockinette and undercast padding 

were applied to protect the skin. Next, a fiberglass (Benecast™, BeneCare Medical, Manchester, UK) 

cast was fitted to the arm to immobilise the wrist. This resulted in a cast which extended from 5 cm 

distal of the antecubital fossa to 2 cm proximal of the finger tips. Participants were provided with a 

sling and instructed to wear that during all waking hours to keep the hand elevated above the elbow. A 

waterproof cover was provided to keep the cast dry whilst showering. 

 

Dietary intake 

Prior to the immobilization period participants were instructed to keep a food diary for three consecutive 

days, including two weekdays and one weekend day. Habitual energy and macronutrient intakes were 

calculated from these food diaries using online licensed software (28). 

During the seven days of forearm immobilization, participants received a fully controlled diet, which 

was weighed out and prepared in a metabolic kitchen, from the research team. Participants received all 

individually packaged food products from the research team, and received instructions on how to cook 

the different meals via step-by step recipes. All meals and snacks were provided, whereas water and 

non-caloric drinks were allowed ad libitum. Energy requirements were calculated as basal metabolic 

rate (Henry equations, (29)) multiplied by an activity factor (International Physical Activity 

Questionnaire, IPAQ; (30)). Participants in the CON group received an individually tailored energy-

balanced diet, containing 1.2 g protein·kg body weight-1·d-1. The target macronutrient composition was 

50-55 energy percent (en%) carbohydrate, 30-35 en% fat, 10-15 en% protein, and 2 en% dietary fibre. 

Participants in the HFD group received a high-fat diet providing 50% excess energy from fat, which 
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was composed of the CON diet plus extra food products such as double cream and nuts, as well as larger 

amounts of cooking oils and sauces. Protein intake was identical to the CON group, at 1.2 g protein·kg 

body weight-1·d-1. Consequently, target macronutrient composition was 34-36 en% carbohydrate, 54-

56 en% fat, 7-9 en% protein, and 1-2 en% dietary fibre. Compliance with the nutritional intervention 

was assessed via completed 7-day food diaries, returned food containers, and daily communication with 

the participants. 

 

Experimental test day 

Participants arrived at the laboratory at 08:00 in an overnight fasted state for the experimental test day 

(Figure 1). Body weight was measured with a digital balance with an accuracy of 0.1 kg (Seca, 

Hamburg, Germany). Participants rested on the bed in a semi-supine position for the entire experimental 

test day. Prior to the start of the experiment, cannulas were placed 1) retrograde into a dorsal hand vein 

of the non-immobilized hand for arterialized venous blood sampling, and 2) retrograde into a deep-

lying antecubital vein of the (to-be) immobilized arm to sample venous blood draining the forearm 

muscle bed (31,32). The cannulated hand (with cannula 1)) was placed in a heated hand warmer (55°C). 

At t=0 min, participants ingested an Ensure Plus drink (Abbott Nutrition, Lake Forest, IL, USA) 

containing 1.0 g carbohydrates, 0.3 g protein, and 0.2 g fat per kg body weight (7.2 kcal/kg body 

weight). This results in participants ingesting on average 71±2 g carbohydrates, 22±1 g protein, and 

17±1 g fat. Arterialized venous and deep-venous blood was sampled simultaneously prior to drink 

ingestion (i.e. t=-20 and t=0), as well as every 20 min during the 3 hour postprandial phase. Prior to 

every blood sample, brachial artery blood flow of the (to-be) immobilized arm was determined by high-

resolution ultrasound imaging in duplex mode (~12 MHz, Apogee, 1000. SIUI, China). Luminal 

diameter was imaged 5 cm proximal to the antecubital fossa for a 2 sec period. Mean blood velocity 

was determined at the same anatomic location by integration of the pulsed-wave Doppler signal for a 

minimum of 8 cardiac cycles (33). Files were analysed semi-automatically using Brachial Analyzer for 

Research, version 6.8.5 (Medical Imaging Applications LLC, Coralville, IA, USA, (34)). Forearm 

glucose uptake and forearm NEFA balance were calculated as the arterialized venous-deep venous 
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difference (AV-V) in glucose and NEFA concentrations, respectively, multiplied by brachial artery 

blood flow (35). 

 

Sample analyses 

Arterialized venous and deep-venous blood samples were collected for determination of whole-blood 

glucose and serum insulin and non-esterified fatty acid (NEFA) concentrations, and plasma cholesterol 

profile. Therefore, one part of every sample (0.5 mL) was collected in a BD Vacutainer® 

fluoride/oxalate tube, rolled on a tube roller for 2 min to inhibit glycolysis, and subsequently analysed 

for whole blood glucose concentrations (YSI 2300 PLUS, Yellow Springs, OH, USA). A second part 

(2 mL) was collected in BD Vacutainer® SST II tubes, which were left to clot at room temperature for 

≥30 min and then centrifuged at 2,900g at 4°C for 10 min to obtain serum samples. Arterialized serum 

samples were used to determine insulin concentrations (Human insulin ELISA kit, DX-EIA-2935; 

Oxford Biosystems Ltd, Milton Park, UK). Arterialized venous and deep-venous serum samples were 

used for the determination of serum NEFA concentrations (Randox Laboratories Ltd, Crumlin, UK). 

Arterialized glucose and insulin concentrations were used to calculate the HOMA-IR (homeostatic 

model assessment of insulin resistance; (36)) and Matsuda (37) indices. The latter index was adjusted 

to capture the full 3 hour postprandial period, and calculated using the formula: Matsuda index = 

10,000/√([fasting glucose x fasting insulin] x [mean glucose x mean insulin during 3 h postprandial 

period]). A third part of every sample (4 mL) was collected in BD Vacutainer® PST Lithium Heparin 

tubes and immediately centrifuged at 2,900g at 4°C for 10 min to obtain plasma samples. Fasting plasma 

triglyceride and cholesterol concentrations were measured in venous plasma samples using colorimetric 

assays on a Cobas 8000 modular analyser with 702 spectrophotometric module (Roche Diagnostics, 

Indianapolis, IN, USA). 

 

Statistics 

All data are expressed as means±SEM. Baseline characteristics between groups were tested using an 

independent samples t-test. Data were analysed using a Repeated Measures ANOVA with day (baseline 

vs day 2 vs day 7) and time (within the experimental test day) as within-subjects factor, and diet (CON 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article-abstract/doi/10.1210/clinem
/dgz049/5586896 by U

niversity of Exeter user on 26 N
ovem

ber 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

11 

vs HFD) as between-subjects factor. In case of a significant interaction, Bonferroni post hoc tests were 

applied to locate individual differences. Pearson correlation coefficient was used to test for significant 

correlation between baseline indices for whole-body insulin sensitivity (i.e. HOMA-IR, Matsuda) and 

the change in FGU over 7 days of forearm immobilization. Statistical data analysis was performed using 

SPSS version 25.0 (IBM Corp, Armonk, NY, USA). Statistical significance was set at P<0.05.  
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Results 

 

Dietary intervention 

The two experimental groups did not differ in any of the participants’ characteristics prior to the start 

of the study (Table 1). Habitual dietary intake was not different between the CON and HFD groups 

(Table 2; all variables between P=0.101 and P=0.987). The controlled diet during immobilization had 

a lower protein content (in g·d-1 and en%, P=0,003 and P=0.000, respectively) and higher carbohydrate 

content (in g·d-1, P=0.000) than the habitual diet in both groups. During immobilization, the HFD group 

had a greater energy intake than the CON group (P=0.000), which was attributed to a ~2.5-fold greater 

fat intake (in g·d-1 and en%, both P=0.000). Saturated fat intake was 33±1 vs 126±5 g per day in the 

CON vs HFD groups, respectively (P=0.000). The controlled diet during immobilization resulted in a 

significant day*diet interaction for body weight (P=0.001), such that no change was observed in the 

CON group (from 75.0±4.2 to 74.5±4.2 to 74.3±4.1 kg on day 0, 2, and 7, respectively; P=0.103) but a 

significant increase was seen in the HFD group (from 71.9±3.1 to 72.0±3.1 to 72.8±3.1 kg on day 0, 2, 

and 7, respectively; P=0.002). 

 

Whole-body glucose, insulin and NEFA concentrations, and calculated insulin sensitivity 

Fasting arterialized blood glucose concentrations showed a tendency for a day*diet interaction 

(P=0.061), although no change was seen in the CON group (from 4.39±0.06 to 4.23±0.14 to 4.34±0.07 

at baseline, day 2, and day 7, respectively; P=0.287) or HFD group (from 4.41±0.08 to 4.52±0.09 to 

4.47±0.10 at baseline, day 2, and day 7, respectively; P=0.121). Instead, this trend was due to a tendency 

for a higher fasting glucose in the HFD on day 2 (P=0.096). 

Arterialized fasting insulin concentrations showed a significant day effect (P=0.014), which was caused 

by increased insulin concentrations on day 2 and 7 (P=0.050 and P=0.040, respectively) in both groups, 

but no interaction or diet effect (interaction P=0.573, diet P=0.076). Specifically, fasting serum insulin 

concentrations in the CON group were 10.6±1.0, 13.0±2.0, and 12.7±1.4 mU·L-1 at baseline, day 2, and 

day 7, respectively, whereas serum insulin concentrations in the HFD group were 13.7±1.6, 16.4±1.6, 

and 17.6±1.8 mU·L-1. 
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Arterialized fasting non-esterified fatty acid (NEFA) concentrations decreased by 32±12 and 21±16% 

on day 2 and day 7 (both P=0.000), respectively, with no difference between day 2 and 7 (P=0.959). 

Despite a visual difference (Figure 2E and F), no significant difference between groups was observed 

(P=0.122). 

Arterialized blood glucose concentrations in response to mixed meal ingestion are displayed in Figure 

2A and 2B. Aside from a ~2.5 mmol·L-1 increase in arterialized glucose concentration following drink 

ingestion (time effect, P=0.000) a significant three-way interaction was observed (P=0.121), which was 

caused by a time*diet interaction on day 7 (P=0.004). This implies that after 7 days of forearm 

immobilization, postprandial glucose concentrations in the HFD at t=60, 80, and 100 min had returned 

back to fasting values (P-values between 0.096 and 0.942), whereas at those time points they were still 

elevated in the CON group (P-values between 0.000 and 0.009). Taken together, the 3 h postprandial 

area under the curve (AUC) for arterialized glucose concentrations (insets in 2A and 2B) was not 

different between diets or days (P=0.848 and P=0.323, respectively), indicating that the same amount 

of glucose was available in the total postprandial period. 

Arterialized serum insulin concentrations in response to mixed meal ingestion are displayed in Figure 

2C and 2D. Serum insulin concentrations increased to 102.2±5.9 mU·L-1 after drink ingestion (time 

effect P=0.000), and trends for a day effect (P=0.066) and day*time*diet interaction (P=0.063) were 

observed. Despite these significant effects, the total 3 h postprandial AUC for serum insulin 

concentrations (insets in 2C and 2D) was not affected by immobilization or diet (P=0.080 and P=0.452, 

respectively). 

Arterialized non-esterified fatty acid (NEFA) concentrations (Figure 2E and F) decreased substantially 

in the first hour after mixed meal ingestion (time effect, P=0.000), and showed a significant day effect 

and day*time interaction (P=0.005 and P=0.000, respectively). As a result, the total 3-h postprandial 

NEFA availability (insets) was 22±10% lower following 7 days of standardized nutrition (P=0.006). 

Despite a large visual difference in AUC between diets, this interaction effect only reached a trend for 

statistical significance (P=0.071), which was due to an effect of immobilization in HFD (P=0.001) but 

not in CON (P=0.718). 
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The HOMA-IR and Matsuda indices for insulin sensitivity are displayed in Figure 3. Although HOMA-

IR was higher in HFD than in CON at all times (diet effect, P=0.049), CON and HFD showed similar 

~15-30% increases with immobilization (day effect, P=0.014). The Matsuda index, a proxy for 

peripheral insulin sensitivity, tended to be lower at all times in HFD (P=0.052). Moreover, an 11±5% 

decrease in the Matsuda index was observed in both groups during the 7-day immobilization period 

(day effect, P=0.048). Neither HOMA-IR (Pearson’s r=0.078, P=0.743) nor the Matsuda index 

(Pearson’s r=0.147, P=0.536) at baseline correlated with the change in FGU over 7 days of 

immobilization, suggesting that baseline insulin sensitivity did not affect the response to immobilization 

with or without overfeeding. 

 

Forearm glucose uptake 

The arterialized venous to deep-venous (AV-V) forearm glucose difference demonstrated significant 

effects of immobilization and drink ingestion (both P=0.000), as well as an interaction between the two 

(P=0.000; data not shown). This interaction was caused by the AV-V glucose difference returning to 

fasting values after 140 min (baseline test day), 80 min (day 2), and 60 min (day 7), indicating that the 

postprandial difference in arterialised and venous glucose concentrations became smaller with 

immobilization. Brachial artery blood flow (Figure 4A and B) increased by 75±11% following drink 

ingestion (P=0.000), with no differences between groups or days (effect of diet P=0.898, interaction 

effect P=0.478). The increase in blood flow was significantly different from fasting values from t=100 

onwards on all test days (P-values between 0.001 and 0.047). 

Figure 5 depicts forearm glucose uptake (FGU), calculated as the product of the AV-V glucose 

difference and brachial artery blood flow. Due to the lack of change in blood flow by immobilization 

or diet, FGU (5A and B) closely resembled the AV-V glucose difference. As such, significant effects 

of immobilization and drink ingestion were observed (both P=0.000), as well as a day*time interaction 

(P=0.002). This interaction was caused by FGU being different from fasting values between 20-120 

min (baseline test day), 20-60 as well as 100-120 min (day 2), and 20 min (day 7; P-values between 

0.000 and 0.047), indicating that the postprandial period of increased FGU decreased with 

immobilization. Total postprandial FGU (Figure 5C and D), calculated as the AUC over the 3 h 
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postprandial period, demonstrated a significant decrease with immobilization (day effect, P=0.001). 

More specifically, this was due to day 2 (-40±7%) and day 7 (-52±7%) being significantly lower than 

total FGU at baseline (P=0.002 and P=0.001, respectively), with no difference between day 2 and day 

7 (P=1.000). No diet or interaction effect was observed (P=0.975 and P=0.995, respectively). 

When FGU was expressed relative to arterialized glucose concentrations (i.e. as fractional glucose 

uptake) or relative to arterialized serum insulin concentrations, no difference between groups was 

observed (effects of diet: P=0.840 and P=0.962; day*diet interactions: P=0.931 and P=0.650, 

respectively). 

 

Forearm NEFA balance 

The AV-V forearm NEFA difference merely demonstrated a significant effect of drink ingestion 

(P=0.000; data not shown). The forearm NEFA balance, calculated as the product of the AV-V NEFA 

difference and brachial artery blood flow (Figure 4), is depicted in Figure 6A and B. Similarly to the 

AV-V NEFA difference, an effect of feeding (P=0.008) but no other significant effects or interactions 

were observed. Despite a large visual increase in 3-h postprandial forearm net NEFA balance following 

2 and 7 days of immobilization (Figure 6C and D), this only reached a tendency for a significant effect 

(P=0.095). 

 

Circulating triglycerides and cholesterol 

Fasting plasma triglyceride and cholesterol concentrations are depicted in Figure 7. Immobilization and 

HFD did not lead to changes in plasma triglyceride (A), total cholesterol (B), LDL cholesterol (D), or 

non-HDL cholesterol (E) concentrations (P-values for interaction effects between 0.112 and 0.300). A 

significant day*treatment interaction was observed for plasma HDL (C, P=0.019), such that an 18±4% 

increase in plasma HDL concentrations was observed after 7 days of the HFD (P=0.010). However, this 

did not result in changes in the cholesterol:HDL ratio (F, interaction effect P=0.186).  

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article-abstract/doi/10.1210/clinem
/dgz049/5586896 by U

niversity of Exeter user on 26 N
ovem

ber 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

16 

Discussion 

The present study demonstrates that the profound insulin resistance observed with skeletal muscle 

disuse is already present after merely 2 days of forearm immobilization. This manifested as a ~50% 

reduction in forearm glucose uptake in response to a physiologically relevant mixed meal, and did not 

progress further in the subsequent 5 days. Insulin resistance was accompanied by a shift towards more 

positive net forearm NEFA balance, suggesting larger uptake and/or reduced release of NEFAs in 

forearm tissues. However, consumption of a high-fat, hypercaloric diet during immobilization did not 

exacerbate the development of insulin resistance, suggesting that inactivity induced insulin resistance 

is likely predominantly due to the lack of muscle contraction per se. 

It is well-established that ≥1 week of muscle disuse leads to a substantial decrease in insulin-stimulated 

glucose uptake (4-9,11,14). Work by ourselves (5,12) and others (13) suggests that this insulin 

resistance develops between day 1 and 3 of muscle disuse, and plateaus off thereafter. Here we 

demonstrate for the first time that seven days of forearm immobilization leads to ~50% decrease in 

postprandial forearm glucose uptake (Figure 5A and C), measured via the arterialized venous-deep 

venous (AV-V) forearm balance method (38,39) in response to mixed meal ingestion. These data 

corroborate the aforementioned clamp studies showing a 30-40% decrease in insulin sensitivity 

following one week of disuse (4-8). Moreover, due to the use of the forearm balance method we now 

know that forearm immobilization did not affect the postprandial-mediated increase in brachial artery 

blood flow ((40); Figure 4A). We quantified that total postprandial forearm glucose uptake was 1.2 g 

during the total 3 h postprandial period on the baseline test day, which equates to 1.7% (i.e. 1.2 g of 

71.3±2.4 g carbohydrates in the test drink) of ingested carbohydrates being taken up by the forearm 

muscles prior to immobilization. Assuming that forearm muscle mass accounts for 2% of whole-body 

muscle mass (i.e. 0.6 kg forearm muscle mass and 30 kg whole-body muscle mass, (32,38,41)) and 

glucose uptake is equal across all muscles, the 1.7% of glucose uptake taking place in the forearm 

muscles is directly in line with clamp data showing approximately 85% of glucose uptake takes place 

in muscle tissue (42). Importantly, this expands our knowledge by confirming earlier suggestions that 

bed rest-induced whole-body insulin resistance occurs primarily in skeletal muscle tissue (7), and 

supports the validity of the forearm balance technique to quantify glucose uptake as a direct measure of 
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muscle insulin sensitivity. Crucially, our novel data clearly demonstrate that the dramatic decline in 

insulin sensitivity occurs following merely two days of immobilization (Figure 5). Since the decrease 

in forearm glucose uptake was not linear but instead plateaued after two days (Figure 5C), our data 

suggest that the removal of muscle contraction per se, rather than duration of the disuse period, 

primarily dictates the degree of disuse-induced insulin resistance. Moreover, this plateau suggests that 

there is a certain basal level of glucose uptake that is reached when muscle contraction is taken away, 

and which cannot be reduced any further. The reason why this takes >1 day to occur (12) potentially 

has to do with protecting the muscle against daily periods of severely reduced muscle contraction, such 

as those occurring the overnight period. Physical inactivity of more than the normal daily ~8 hours of 

sleep might therefore be recognised as abnormal, and lead to the negative consequences observed here. 

Importantly, our data clearly demonstrate that in order to gain more insight into the mechanisms 

underlying disuse-induced insulin resistance, it is crucial to study muscle tissue within the first few days 

of muscle disuse. 

The most commonly suggested mechanism for the development of insulin resistance with muscle disuse 

is the intramuscular accumulation of triglyceride (3,23,24) and/or lipid intermediates (5,12). To test the 

involvement of lipid in the development of immobilization-induced insulin resistance, we measured net 

forearm non-esterified fatty acid (NEFA) balance prior to, and following two and seven days of forearm 

immobilization. Here we demonstrate for the first time that net postprandial NEFA forearm balance 

tends to increase following merely two days of forearm immobilization (Figure 6C), accompanying the 

observed reduction in postprandial glucose uptake. This shift towards more positive net NEFA forearm 

balance can be caused by an increased muscle or adipose uptake, reduced adipose release, or a 

combination of these. Under normal non-disuse conditions, meal ingestion leads to a shift from adipose 

tissue fatty acid release (-1000 nmol·100 g adipose tissue-1·min-1) to fatty acid uptake (500 nmol·100 g 

adipose tissue-1·min-1), thereby creating a positive net fatty acid balance in the period 1 to 5 hours after 

meal ingestion (43). Simultaneously, muscle NEFA uptake decreases from ~115 at fasting levels to 

nearly 0 nmol·100 ml forearm volume-1·min-1 with mixed meal ingestion (44), which is directly in line 

with our data (Figure 6A). Since the contribution of adipose tissue to forearm NEFA balance is several 

fold greater than the contribution of muscle, adipose tissue is therefore likely to contribute to changes 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article-abstract/doi/10.1210/clinem
/dgz049/5586896 by U

niversity of Exeter user on 26 N
ovem

ber 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

18 

in forearm NEFA balance. Indeed, a reduction in whole-body and adipose tissue lipolysis has been 

shown in previous bed rest studies under basal and insulin-stimulated conditions (4,45), although the 

underlying mechanism remains to be established. However, since the temporal response of forearm 

NEFA balance became less negative with immobilization (Figure 6A) and it is unlikely that adipose 

tissue had become more insulin sensitive (i.e. taking up more NEFA in response to meal ingestion), it 

is possible that muscle tissue contributes to the more positive balance seen with disuse. A possible 

explanation for the observed shift towards more positive NEFA balance, which previous longer-term 

immobilization studies have failed to show (9,46), might be our novel approach of providing a mixed 

meal in the present study. This suggests that exogenous dietary fat plays an important role in the shift 

towards positive forearm NEFA balance, which is in line with previous work demonstrating that muscle 

disuse alters dietary fat trafficking (47). We have repeatedly shown that muscle triglyceride 

accumulation does not take place in the first 5-7 days of muscle disuse (5,25) but instead takes multiple 

weeks to occur (23,24), which is when insulin resistance has already plateaued off. This suggests that 

muscle triglyceride accumulation occurs in response to the development of insulin resistance, possibly 

as a consequence of a reduction in muscle fat oxidation (3,5) and likely influenced by a reduction in 

energy expenditure with disuse (5). However, the observed positive NEFA balance in this study might 

be related to the accumulation of specific lipid species such as diacylglycerols (DAGs), for which we 

have seen clear suggestions in our earlier work (5,12). As such, this study provides evidence for a 

potential role of lipid in disuse-induced insulin resistance, although future detailed mechanistic studies 

in the first few days of disuse are required to further elucidate this relationship. 

In order to provide additional insight to the involvement of lipid in the development of disuse-induced 

insulin resistance, we aimed to drive muscle NEFA uptake via high-fat overfeeding. Specifically, 

participants were provided with a fully-controlled high-fat diet containing 50% excess energy, which 

increased total fat intake from ~100 g per day (in the control group) to ~270 g per day (in the high-fat 

overfed group, Table 2). Despite this substantial increase in dietary fat intake the high-fat overfed group 

showed a similar decline in forearm glucose uptake as the group fed in energy balance (Figure 5). 

Although contrary to our hypothesis, this shows that intake of excess lipid and energy via a high-fat, 

hypercaloric diet does not impact on insulin sensitivity of immobilized muscle tissue. Moreover, such 
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an increased dietary lipid intake did not affect forearm NEFA balance (Figure 6B and D). The lack of 

additional effect of the high-fat diet on forearm insulin sensitivity and NEFA balance are in line with 

the modest systemic changes caused by the high-fat diet. For example, high-fat overfeeding led to small 

increases in fasting glucose, but not fasting insulin, concentrations. Despite this, HOMA-IR increased 

with high-fat feeding to the same extent as the control group (Figure 3A). Moreover, the lack of impact 

on the modified Matsuda index suggests that high-fat overfeeding did not affect peripheral insulin 

sensitivity either (37), corroborating our forearm glucose uptake data. Despite this we are confident that 

participants adhered well to the provided diet. The ~1 kg gain in body mass was in line with other 

studies (26,27), as was the trend for a reduction in circulating fasting NEFA (Figure 2F; (48-50)) and 

increase in HDL cholesterol (Figure 7C). These changes are in line with previous work (26,49,50), and 

indicative of a substantial change in fatty acid composition of the diet (49). Although most studies show 

that short-term (i.e. 3-7 days) high-fat overfeeding induces insulin resistance (26,27,50-52), well-

controlled studies showing no effect of high-fat feeding on insulin sensitivity also exist (48,49). The 

reason for the lack of impact on whole-body insulin sensitivity in our study is possibly the contribution 

of dietary fat to total energy in our high-fat diet (i.e. 55 en% fat, Table 2), which was somewhat lower 

than the 55-78 en% (average >65 en%) fat diets used in other studies (26,27,51,52). Indeed, our previous 

work demonstrated that even in isocaloric conditions, a 75% fat diet increases plasma FFA 

concentrations, inhibits pyruvate dehydrogenase complex (PDC), and reduces carbohydrate oxidation, 

which contribute to insulin resistance (53). This is supported by work from Lundsgaard and co-workers, 

who demonstrated that short-term overfeeding of dietary lipid, but not carbohydrate, decreases whole-

body and leg glucose disposal under insulin clamp conditions in moderately trained individuals (52). 

However, since our diet was designed to contain the same absolute amount of carbohydrates and protein 

as the control diet (plus the addition of 50% extra energy from fat), increasing the relative fat content 

would have required a relative decrease in the other macronutrients, which is known to influence muscle 

metabolism during disuse (54). Altogether, despite the large amount of surplus fat ingested as part of 

the high-fat diet, our data demonstrate that this did not impact on systemic or local insulin sensitivity, 

or NEFA balance, in response to a physiologically relevant mixed meal, and therefore cannot provide 

further insight to the role of lipid accumulation in inactivity-induced insulin resistance. 
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The forearm balance technique is a well-established method to quantify forearm glucose uptake 

(9,11,14,39) and forearm NEFA balance (55,56), but to this point had not been applied to quantify 

forearm immobilization-induced insulin resistance and NEFA balance in the first days of muscle disuse. 

The simultaneous sampling of arterialized venous and deep-venous blood, which is directly draining 

forearm muscle tissue (39), represents a feasible and minimally invasive technique to study muscle 

metabolism in vivo. Moreover, due to the use of a mixed meal, the physiological response to meal 

ingestion can be quantified both systemically and locally, whilst the contribution of circulating glucose 

and insulin concentrations can be corrected for. Moreover, the method could be applied to study the 

balance of other nutrients (e.g. amino acid metabolism) or nutrient subspecies. However, an important 

limitation of this two-pool model is the lack of muscle tissue sampling, which precludes us from taking 

measurements of intracellular signalling/processes/fuel stores to gain further insight into the 

mechanisms underlying insulin resistance and a shift towards positive NEFA balance. We speculate 

that a likely mechanism is the removal of muscle contraction leading to a lack of stimulus for GLUT4 

translocation to the plasma membrane. Indeed, although muscle GLUT4 translocation following disuse 

has never been measured, bed rest has been shown to decrease muscle GLUT4 protein expression 

(17,57). Future work should aim to elucidate the role of GLUT4 translocation in the development of 

insulin resistance in the first few days of muscle disuse. 

A first limitation to the study we would like to acknowledge is that despite thorough dietary control, 

based on well-established methods (29,30), the control group demonstrated a non-significant decline in 

body weight. Despite this, we are confident that our approach in overfeeding lipid was successful as it 

resulted in significant body mass gains in the high-fat overfed group. Secondly, although the decrease 

in whole-body insulin sensitivity might be a consequence of ingesting a controlled diet instead of a 

habitual diet, a reduction in physical activity during the immobilization period may also contribute. 

Although we consider it unlikely that forearm immobilization decreases physical activity to this extent, 

we unfortunately did not collect physical activity data to support this. Thirdly, the used test meal was 

moderately high in carbohydrates and fat (i.e. containing 71±2 and 17±1 g carbohydrates and fat, 

respectively), and it may have impacted on our results if a meal of different composition was used. 

Indeed, an extensive meta-analysis has previously shown that dietary macronutrient composition of a 
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test meal directly effects postprandial insulin sensitivity (58). Lastly, although we clearly demonstrate 

that the disuse-induced development of insulin resistance is accompanied by an increase in forearm 

NEFA balance, future work adopting a stable isotope fatty acid tracer approach is required to determine 

the fate and origin of the NEFAs. 

We conclude that short-term forearm cast immobilization leads to the rapid development of severe 

peripheral insulin resistance. Crucially, this develops entirely in the first two days of immobilization, 

suggesting a physiological adaptation to reduced substrate requirements rather than a pathological 

condition. Insulin resistance occurs in parallel with a shift towards more positive forearm NEFA 

balance, which might in part be explained by an increased muscle NEFA uptake but is more likely due 

to decreased adipose tissue lipolysis. Although the provision of excess lipids via high-fat overfeeding 

did not exacerbate insulin resistance, the shift towards more positive NEFA balance means we cannot 

rule out a contribution of lipid to inactivity-induced insulin resistance. Irrespective of this, our data 

demonstrating the rapid decrease and subsequent plateau in insulin sensitivity suggest that the removal 

of muscle contraction is a key contributor to disuse-induced insulin resistance. As such, this stresses the 

relevance of incorporating some level of muscle contraction immediately following the onset of muscle 

disuse, in order to maintain metabolic health.  
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Figure legends 

 

Figure 1: Outline of the experimental test days, performed at baseline, and after 2 and 7 days of forearm 

immobilization in n=20 healthy, young males. 

 

Figure 2: Arterialized venous glucose (A+B) and insulin (C+D) concentrations at baseline and 

following 2 and 7 days of forearm immobilization in healthy young males fed a eucaloric control diet 

(CON; A+C) or a high-fat diet providing 50% excess energy from fat (HFD; B+D). The insets represent 

the total area under the curve (AUC) for the 180 min postprandial period following ingestion of a mixed 

meal drink. For arterialized venous glucose concentrations, a time*treatment interaction was observed 

for day 7 (P<0.01). On that day, postprandial glucose concentrations in the HFD at t=60, 80, and 100 

min were no longer different from fasting values (all P>0.05), whereas they were still elevated in the 

CON group (all P<0.05). For arterialized venous insulin concentrations, a time effect was observed 

(P<0.05). Arterialized venous non-esterified fatty acid (NEFA) concentrations are displayed for 

participants in the CON (E) and HFD (F) groups. Significant day, time, and day*time effects were 

observed (all P<0.05). * Significantly different from baseline. 

 

Figure 3: Indices of whole-body insulin sensitivity at baseline and following 2 and 7 days of forearm 

immobilization in healthy young males fed a eucaloric control diet (CON) or a high-fat diet providing 

50% excess energy from fat (HFD). Open bars: baseline; grey bars: day 2, black bars: day 7. A: 

Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). B: Matsuda index. * Significantly 

different from Baseline (P<0.05). $ Significantly different from CON (P=0.049). # Trend for a 

difference between CON and HFD (P=0.052). 

 

Figure 4: Brachial artery blood flow (measured via Doppler Ultrasound) following consumption of a 

mixed meal drink (at t=0) prior to, and following 2 and 7 days of forearm immobilization in healthy 

young males. During immobilization, participants consumed a eucaloric control diet (CON; A) or a diet 
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containing 50% excess energy from fat (HFD; B). Blood flow was significantly higher than fasting 

values from t=100 onwards on every test day (P<0.05). 

 

Figure 5: Forearm glucose uptake (FGU) at baseline and following 2 and 7 days of forearm 

immobilization in healthy young males fed a eucaloric control diet (CON, A) or a high-fat diet providing 

50% excess energy from fat (HFD, B). A significant day*time interaction (P<0.01) was observed, due 

to FGU being different from fasting values between 20-120 min (Baseline test day), 20-60 as well as 

100-120 min (Day 2), and 20 min (Day 7; all P<0.05). Panels C (CON) and D (HFD) represent total 

forearm glucose uptake, calculated as area under the curve (AUC) from A and B, over the entire 3 hour 

postprandial period. * Significantly different from baseline test day (P<0.05). 

 

Figure 6: Forearm non-esterified fatty acid (NEFA) balance at baseline and following 2 and 7 days of 

forearm immobilization in healthy young males fed a eucaloric control diet (CON, A) or a high-fat diet 

providing 50% excess energy from fat (HFD, B). A significant effect of feeding was observed 

(P=0.000), independent of diet (interaction effect P=0.927). Panels C (CON) and D (HFD) represent 

total forearm NEFA balance, calculated as area under the curve (AUC) from A and B, over the entire 3 

hour postprandial period. The increase in NEFA AUC following 2 and 7 days of immobilization tended 

to be statistically significant (P=0.095). # Trend for an effect of immobilization (P=0.095). 

 

Figure 7: Fasting plasma triglyceride and cholesterol concentrations in healthy young males at baseline 

and after 2 and 7 days of a eucaloric control diet (CON, n=10) or high-fat diet providing 50% excess 

energy from fat (HFD, n=10). * Significantly different from baseline (P=0.004) and day 2 (P=0.029). 
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Table 1: Participants´ characteristics 

 CON (n=10) HFD (n=10) 

Age (y) 23 ± 2 23 ± 2 

Body mass (kg) 75.1 ± 4.1 71.9 ± 3.0 

Height (m) 1.77 ± 0.02 1.79 ± 0.02 

BMI (kg·m-2) 23.8 ± 1.0 22.4 ± 0.8 

Body fat (%) 14.3 ± 3.7 11.7 ± 2.6 

Values represent means ± SEM. BMI, body mass index. No significant differences were observed 

between groups. 
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Table 2: Dietary intake 

 CON (n=10) HFD (n=10) 

 Habitual Immobilization Habitual Immobilization 

Energy (MJ·d-1) 11.5 ± 1.0 11.9 ± 0.3 10.8 ± 0.8 18.2 ± 0.6 * # 

Protein (g·kg BW-1·d-1) 1.70 ± 0.17 1.21 ± 0.00 * 1.67 ± 0.18 1.20 ± 0.00 * 

Protein (g·d-1) 126 ± 14 91 ± 5 * 119 ± 12 86 ± 3 * 

Carbohydrates (g·d-1) 311 ± 24 370 ± 8 * 265 ± 18 381 ± 12 * 

Fat (g·d-1) 103 ± 13 105 ± 3 111 ± 12 267 ± 8 * # 

Fibres (g·d-1) 29 ± 4 30 ± 1 22 ± 1 36 ± 1 * # 

Protein (En%) 19 ± 1 13 ± 1 * 18 ± 1 8 ± 0 * # 

Carbohydrate (En%) 46 ± 1 52 ± 1 * 42 ± 2 35 ± 0 * # 

Fat (En%) 33 ± 2 33 ± 1 38 ± 2 55 ± 0 * # 

Fibres (En%) 2 ± 0 2 ± 0 2 ± 0 2 ± 0 # 

Values (means±SEM) represent parameters of dietary intake from n=20 healthy, male volunteers. Self-

reported habitual food intake was assessed using 3-day food diaries, while the diet during 7 days of 

forearm immobilization was calculated and provided by the research team. During immobilization, 

participant were fed a fully-controlled eucaloric diet (CON) or a high-fat diet providing 50% excess 

energy from fat (HFD). Abbreviations: BW, body weight; En%, energy percentage; MJ, Mega Joule. * 

Significantly different from corresponding habitual intake values (P<0.05). # Significantly different 

from corresponding CON value (P<0.05). 
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