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Abstract  This paper investigates the robustness against localized impacts of elastic spherical 

shells pre-loaded under uniform external pressure.  We subjected a pre-loaded spherical shell that 

is clamped at its equator to axisymmetric blast-like impacts applied to its polar region.  The 

resulting axisymmetric dynamic response is computed for increasing amplitudes of the blast.  

Both perfect shells and shells with axisymmetric geometric imperfections are analyzed.  The 

impact energy threshold causing buckling is identified and compared with the energy barrier that 

exists between the buckled and un-buckled static equilibrium states of the energy landscape 

associated with the pre-loaded pressure.  The extent to which the impact energy of the threshold 

blast exceeds the energy barrier depends on the details of its shape and width.  Targeted blasts 

that approximately replicate the size and shape of the energy barrier buckling mode defined in 

the paper have an energy threshold that is only modestly larger than the energy barrier.  An 

extensive study is carried out for more realistic Gaussian-shaped blasts revealing that the 

buckling threshold energy for these blasts is typically in the range of at least ten to forty percent 

above the energy barrier, depending on the pressure pre-load and the blast width.  The energy 

discrepancy between the buckling threshold and energy barrier is due to elastic waves spreading 

outward from the impact and dissipation associated with the numerical integration scheme.  

Buckling is confined to the vicinity of the pole such that, if the shell is not shallow, the buckling 

thresholds are not strongly dependent on the location of the clamping boundary, as illustrated for 

a shell clamped half way between the pole and the equator.  

Keywords:  Dynamic buckling, energy barrier, impact loading, spherical shells 

 

1. Introduction 

The design of imperfection-sensitive shell structures such as spherical shells under external 

pressure makes heavy use of a knockdown factor which accounts for structural imperfections by 

reducing the expected buckling load below the prediction for the perfect version of the structure.  

The literature on shell buckling is replete with theoretical and experimental papers addressing the 

evaluation of knockdown factors.  While this approach is intended to ensure that a shell will not 

buckle for loads below the knocked-down value, it does not give insight into how robust a loaded 

shell will be to accidental disturbances or ancillary loads.  For assessing the robustness of  

imperfection-sensitive shells against buckling, recent research [1-6] has focused on the energy 
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barrier that exists at loads below the buckling load.  For a shell with unstable post-buckling 

behavior (which is, thus, imperfection-sensitive), the energy barrier to buckling at a given static 

load is the difference between energy of the shell/load system in the quasi-static buckled state 

from that in the unbuckled state.  The quasi-static buckled state sits at the center of the ‘saddle’ 

of the energy landscape such that only disturbances imparting energies equal to or greater than 

the energy barrier can escape the vicinity of the unbuckled state and cause buckling.  For systems 

with multiple quasi-static buckled states at a given load, the state with the lowest energy must be 

identified for this principle to apply. 

1.1 Static Behavior and Energy Barriers.  Fig. 1 presents the energy barrier against 

axisymmetric buckling for a perfect elastic spherical shell subject to uniform external pressure p  

for three sets of boundary conditions: a full sphere buckling symmetrically about its equator, a 

hemisphere clamped at its equator and a deep spherical cap clamped at 45o from the equator .  In 

Fig. 1 and throughout this paper, elastic spherical shells are considered with radius R , thickness 

h , Young’s modulus E , and Poisson’s ratio ν .  The reference values, 

2

2 2

2

3(1 )
C

Eh
p

Rν
=

−
 and 

2

2

4 (1 )

3(1 )
C

R h
V

π ν

ν

−
∆ =

−
,      (1.1) 

are the pressure and the volume decrease of the full perfect spherical shell at bifurcation, the so-

called classical buckling condition.  In Fig. 1, the normalized buckling energy barrier, 

/ [( / 2) / ]
b C C

E p V Ch R∆ , with 
23 /[(1 ) 1 ]C ν ν= − − , is plotted as a function of the normalized 

pressure applied to the shell, /
C

p p , on the vertical axis.   Each of the curves in Fig. 1 has been 

computed assuming axisymmetric behavior about the axis through the North-South poles of the 

sphere.  For thin shells (e.g., / 50R h ≥ ), the post-buckling mode is confined to vicinity of the 

pole, as will be seen in results to follow, and has almost no interaction with the buckle on the 

opposite pole in the case of the full sphere or with the clamped boundary in the other cases.  For 

thin shells, the dimensionless energy barrier plots in Fig. 1 are essentially independent of /R h  

and ν  as well as the clamping condition for / 0.85
C

p p ≤ .  The factor ( / 2) /
C C

p V Ch R∆  used 

to normalize the energy barrier is the product of the elastic energy in the full spherical shell at the 

classical bifurcation pressure, / 2
C C

p V∆ , and the small term /Ch R  proportional to the thickness 

to radius ratio of the shell.  Thus, it is evident from Fig. 1 that the energy barrier is a small 

fraction of the total elastic energy stored in the shell except possibly at very low applied 

pressures. It is also evident in Fig. 1 that there is negligible difference between the energy barrier 

(per dimple buckle) for the clamped shells and the full shell in the range / 0.85
C

p p ≤ .    

 Based on Huang’s [7] analysis of the elastic buckling of deep spherical caps, non-

axisymmetric quasi-static buckled states of the perfect spherical shell clamped at the equator are 

expected to generate lower saddle energies than those for axisymmetric states for applied 
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pressures above about / 0.85
C

p p ≅ .  However, for pressures below about / 0.85
C

p p ≅  there is 

strong evidence that the quasi-static saddle buckled states having the lowest energy are 

associated with axisymmetric dimple-like modes, as will be discussed in the sequel.  Because the 

study in this paper is limited to axisymmetric behavior, we will primary focus our attention for 

the perfect shell on the range of applied pressures 0.25 / 0.85
C

p p≤ ≤ . 

 

 

Fig. 1  Energy barrier for buckling under prescribed fixed pre-loaded pressure.  Barriers 

are plotted for a perfect spherical shell clamped at its equator, for a perfect full spherical shell 

deforming symmetrically about its equator, and for a perfect spherical shell clamped at 45o from 

the equator.  These results have been computed with / 100R h =  and 0.3ν = , but they are 

essentially independent of /R h  and ν  over the range plotted. 

 

The axisymmetric quasi-static pre-buckling and post-buckling normal deflections of the 

perfect shell clamped at the equator are presented in Fig. 2 for the full range of pressures and 

paired with the plot of pole deflection.  A plot of pressure versus change in volume is also 

included.  In the two plots on the left in Fig. 2, the upper part of each curve ( / 0.5w h > − ) is the 

stable response characterizing the unbuckled state (or ‘node’ state in the terminology of 

nonlinear dynamics), while the lower part of the curve ( / 0.5w h < − ) is the unstable post-buckled 

state (saddle point).  The static buckling pressure of the shell clamped at the equator is slightly 
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reduced to 0.956
fold C

p p=  compared to the perfect full spherical shell. Static buckling 

(assuming a rotationally symmetric response) occurs at the point fold
p p= , with / 0.5

pole
w h ≈ − , 

connecting the stable and unstable responses (see Fig. 12 middle panel, maximum of /
C

p p ).  

The left panel shows the radial displacement distribution, ( ) /w hθ , for all equilibria.  For saddles 

the deformations are strongly localized for pressures at some distance from fold
p  (below about  

0.85
C

p p= ).  The deformation accommodating the clamping is concentrated near the equator 

and is separate from the buckling dimple for saddles at pressures � away from fold
p , explaining 

why the energy barrier for buckling in Fig. 1 is insensitive to the clamping condition in this 

range.   

 

 

Fig. 2 Quasi-static equilibrium solution for the perfect shell clamped at the equator subject to 

uniform external pressure (computed with COCO’s COLL toolbox [8]).  The plot on the left is 

the radial displacement distributions, ( ) /w hθ , for multiple values of /
C

p p in the range of 

interest in this paper, while the middle plot  gives the pole deflection, / ( / 2) /
pole

w h w hπ= , 

linking to the respective curve on the left.  On the right is the pressure change versus the 

decrease in volume, with , / 2
C hemisphere C

V V∆ = ∆ .  These plots have been computed for a shell 

with / 100R h =  and 0.3ν = .  In the greyed out area the axisymmetric response is not stable [7]. 
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The right panel of Fig. 2 shows the stable and unstable branches in the ( , )V p∆ -plane.  In 

this plane the fold is very sharp (at the top right) such that stable and unstable branches are close 

together. Showing the static response in this plane illustrates that the energy barrier 
b

E  between 

the stable and unstable equilibrium states is very small: the energy difference 
b

E  for a particular 

p  equals the area under the curve above p , reflecting the trend seen in Fig. 1.  Fig. 3 shows the 

spatial profile of a stable and unstable equilibrium at 0.6
C

p p=  again. 

1.2  Outline of the Paper.  The energy barrier plays a central role in providing an understanding 

of the robustness of the pre-loaded shell against disturbances such as local impacts, and it 

enables a quantitative means of rationalizing the energies of disturbances required to buckle the 

shell.  To back up this statement, an extensive study has been conducted in this paper of perfect 

and imperfect elastic spherical shells that are clamped at the equator and subject to blast-like 

impacts of various amplitudes and shapes in the vicinity of the pole.  The quasi-static saddle 

buckling mode at pressures below fold
p  has the form of a dimple with axial symmetry about its 

center.  Except at applied pressures just below fold
p , published simulations and experimental 

observations indicate that the buckling behavior is dominantly axially symmetry about the center 

of the emerging dimple buckle.  Non-axisymmetric features only develop deep into the post-

buckling response, well beyond the range of relevance to the considerations in this paper [2].  

For these reasons, an axisymmetric dynamic analysis of the hemispherical shell captures the 

essential aspects of the dynamic buckling process.  For the imperfect shells investigated here, the 

initial geometric imperfection is also assumed to have axial symmetry.  The pre-loaded shell is 

initially at rest and then subject to a suddenly imposed localized initial velocity distribution that 

simulates the blast-like impact.  Two basic axisymmetric disturbances are considered: one in 

which the shape targets the initial velocity distribution directly towards the buckled state 

associated with the saddle equilibrium state, and the other in which the normal velocity 

component has a Gaussian shape centered at the pole.  The amplitude of the blast impact, as 

measured by the initial kinetic energy imparted to the shell, is systematically increased until it 

attains a threshold large enough to buckle the shell.  Plots of the threshold blast energy for 

buckling normalized by the energy barrier as a function of the applied pressure provide a clear 

picture of the influence of width and shape of this type of disturbance.   

 In brief, the outline of the paper is as follows.  The shell model is introduced in the 

remainder of this Introduction.   The protocol of the numerical experiments for studying the blast 

load is presented in Section 2 with further details discussed in context later.  The method is used 

to produce results for blasts tailored in shape to replicate the quasi-static saddle mode in Section 

3, thereby targeting the saddle in the energy landscape and giving rise to buckling from 

disturbance energies only slightly above the energy barrier.  Trends for the more realistic 

Gaussian-shaped blasts are presented in Section 4 where it is also demonstrated that the blast 

energy threshold for buckling depends only weakly on the meridional clamping angle, assuming 
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the shell is not a shallow cap.  Selected trends for the blast threshold are presented in Section 5 

for hemispherical shells clamped at the equator and having a Gaussian-shaped initial geometric 

imperfection at the pole.  Additional implications of the study are discussed in the concluding 

section. 

1.3 The Shell Model.   As previously noted, the model assumes a response that is rotationally 

symmetric around the vertical North-South pole axis with θ  as the meridional angle with 0θ =  

at the equator and / 2θ π=  at the pole.  The model is based on the small strain-moderate rotation 

theory of Sanders [9] and Koiter [10].  If the shell is clamped at the equator, then the lower limit 

is �� = 0 while 0 / 4θ π=  for 45o clamping.  The upper limit �� in the numerical integration 

process is slightly below �/2 because the coordinates are singular at the pole (�/2 − �� ≈

1.68 × 10��� in all simulations).  The model corresponds to the situation where a small rigid 

disc is inserted and ‘welded’ at the North pole.  Throughout the following sections we will 

typically display all quantities in a non-dimensionalized form. The applied pressure p  is 

measured in multiples of the critical (buckling) pressure of the perfect fully symmetric shell, 
C

p . 

Dimensionless time is 0/t Tτ = , where 0T is the period of volume oscillations of the sinusoidal 

spherically symmetric vibration mode of the perfect shell 

 0

2(1 )
T R

E

ν ρ
π

−
=         (1.2) 

with ρ  as the density of the material.   

The radial and tangential displacement components of the shell, ( , )w tθ  and ( , )u tθ , are 

functions of θ  and t , and the initial stress-free displacement of middle surface when the shell is 

imperfect is ( )
imp

w θ .   Following the non-dimensionalization used in [11,12], the dimensionless 

counterparts are ( , , ) ( , , ) /
imp imp

W U W w u w R= .  Derivatives of the dependent variables with 

respect to angle � are denoted by a prime (e.g., W ′ ) and with respect to τ  by a dot (e.g.,Wɺ ).   

The non-zero stretching strains of the shell middle surface are  ( , )θ ωε ε .  The non-zero curvature 

changes of the middle surface are ( , )K Kθ ω  with dimensionless bending strains defined as 

( , ) ( , )R K Kθ ω θ ωκ κ = .  The dimensionless strain-displacement relations are  

21
, tan

2

, tan

impW U W W Uθ ω

θ ω

ε ϕ ϕ ε θ

κ ϕ κ ϕ θ

′ ′= + + − = −

′= = −

     (1.3) 

with W Uϕ ′= − + .  The non-zero resultant in-plane stresses, ( , )N Nθ ω , and bending stresses, 

( , )M Mθ ω , have dimensionless components ( , ) ( , ) /n n N N Ehθ ω θ ω=  and 
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( , ) ( , ) /m m M M R Dθ ω θ ω= , with 3 2[12(1 )]D Eh ν= −  as the bending stiffness.  The 

dimensionless stress-strain relations are  

 
2

( , ) ( , ) / (1 )n nθ ω θ ω ω θε νε ε νε ν= + + − ,  ( , ) ( , )m mθ ω θ ω ω θκ νκ κ νκ= + +  (1.4) 

In dimensionless form, expressions for the volume decrease, the potential energy of the 

time-independent applied uniform external pressure, the kinetic energy and the strain energy of 

the shell are respectively 

0

/2

3

( )
cos

2

V
W d

R

π

θ

τ
θ θ

π

∆
= −  ,    

0

/2

3

( )
cos

2

PE
p W d

R

π

θ

τ
θ θ

π
=  ,

0

/2
2 2( ) 1

cos
2 2

KE
W U d

D

π

θ

τ
θ θ

π
 = +  ɺ ɺ , 

 ( ) ( )
0

/2
2 2 2 2 2( ) 1

2 12( / ) 2 cos
2 2

SE
R h d

D

π

θ ω θ ω θ ω θ ωθ

τ
κ κ νκ κ ε ε νε ε θ θ

π
 = + + + + +   

where 3 /p pR D=  is the dimensionless pressure, which is positive pointing inward.  In 

evaluating the integrals, the integrands are extrapolated from values of θ  greater than 1θ  to the 

pole.  The inertia of any fluid medium inside and outside the shell is neglected.  For the problems 

considered in this paper, apart from dissipation arising from the numerical method discussed in 

the sequel, the formulations are conservative such that SE PE KE+ +  does not change once the 

shell is set in motion.  The energy barrier at a fixed pressure p  is defined in terms of the static 

equilibrium solutions at the node and saddle to be ( ) ( )b s n
E SE PE SE PE= + − +  with the 

subscripts s  denoting saddle and n  denoting node. 

2. Spatial shape of initial conditions and buckling threshold trajectories 

The numerical experiment subjects the clamped shell which is initially at rest and subject to a 

uniform pressure � to a locally applied “blast”, represented by an initial axisymmetric velocity 

distribution.   The initial deformation will always be taken to be the stable equilibrium state at 

pressure p  (the node), as shown in Fig. 2.  We consider two blast shapes:  targeted shapes and 

Gaussian shapes.  By shape, we are referring to the spatial distribution of the velocity imposed 

on the shell at 0t = .  The targeted shapes are selected to buckle the shell with as small initial 

kinetic energy as possible—these involve initial velocity components which are unlikely to be 

produced by a real blast.  The Gaussian shapes are expected to be more realistic.  With ( )
ini

W θɺ  

and ( )
ini

U θɺ  as the dimensionless velocities imposed at 0t = , the initial kinetic energy associated 

with the blast is 
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0

/2
2 21

cos
2 2

ini
ini ini

KE
W U d

D

π

θ
θ θ

π
 = +  ɺ ɺ       (2.1) 

The work done by the instantaneous impact is 
ini

KE .  We have not investigated impacts applied 

over a short but finite time period 
ini

T  for which one would again want to compare the work done 

by the impact with the energy barrier.  This would require a more detailed analysis of the 

behavior while the impact is acting.  The dynamic responses for the instantaneous impacts 

should approximate the finite time impacts if 0/
ini

T T  is sufficiently small, but the precise 

requirement has not been established here. 

2.1 Blasts Targeted Towards the Saddle Post-buckling State.  The targeted blast will illustrate 

that indeed it is possible to impact the shell and cause it to buckle with a disturbance energy that 

is just slightly above the energy barrier.  The targeted blast will also allow us to judge how far 

from ‘optimal’ are the Gaussian-shaped blasts.    

       Denote the displacement components in the stable and unstable (i.e., the node and the 

saddle) static equilibrium states at pressure p  by ( , )
n n

W U  and ( , )
s s

W U , respectively.   Then 

define the targeted initial velocities and the initial conditions on the displacements by 

 
( ) [ ( ) ( )], ( ) [ ( ) ( )].

( ) ( ), ( ) ( ),

ini s n ini s n

ini n ini n

W a W W U a U U

W W U U

θ θ θ θ θ θ

θ θ θ θ

= − = −

= =

ɺ ɺ

    (2.2) 

where a  is the amplitude of the initial velocity.  This choice directs the initial velocity in 

proportion to the difference between the saddle and node states.  Because the unstable buckled 

state is localized to the pole, ( ) ( )
s n

W Wθ θ−  and ( ) ( )
s n

U Uθ θ−  vanish outside the polar region, 

giving rise to an initial velocity distribution that is localized around the pole with the same width 

as the saddle buckling mode.  It is unlikely that such targeted blasts will arise from an actual 

blast, in part because the initial radial velocity points outward for some angles near the pole (see 

the saddle mode shapes in Figs. 2 and 3) and because it contains a nonzero tangential component.  

The amplitude factor a  is increased systematically until buckling is attained, as discussed 

below, and it is directly related to  
ini

KE  by (2.1). 

2.2  Gaussian-shaped Blasts.  This set of blasts has an initial inward normal velocity component 

and no initial tangential component.  Let / 2β π θ= −  be the angular distance measured from the 

pole, and let 

 
2

1.5

1 /
ref

R h

β
ν

=
−

        (2.3) 



ASME© CC-by

be a reference angle.  For Gaussian-shaped geometric imperfections, this reference angle lies in 

the range of imperfection widths which are most deleterious for buckling, capturing the 

dependence on /R h  and ν [11].  Take the initial velocity distribution to be 

 ( )2

int( ) exp ( / ) , ( ) 0
ini G

W a Uθ β β θ= − − =ɺ ɺ      (2.4) 

with the displacements at 0t =  given by ( ) ( )
ini n

W Wθ θ=  and ( ) ( )
ini n

U Uθ θ= .  In the 

simulations, the width 
G

β  of the blasts will be chosen to lie between 0.2 refβ  and 1.2 refβ , and 

thus the blasts will be localized to regions of various widths centered at the pole.  The velocity 

amplitude a  is again tied to the kinetic energy imparted by the blast by (2.1). 

2.3  Buckling Threshold.  Starting from the stable equilibrium position at fixed background 

pressure p  and a given initial kinetic energy 
ini

KE , we numerically integrate the moderate 

rotation equations for some maximal time 04
E

t T=  (recall that �� is the period of sinusoidal 

volume oscillations of the spherically symmetric vibration mode of the perfect shell) but check if 

at any time before 04T  the deflection at the pole ( )poleW t  exceeds the deflection (0)
s

W  of the 

saddle by a factor of 1.5, in which case we classify the kinetic energy 
ini

KE  as “leading to 

buckling”.  Our simulations reveal that trajectories reaching this level of pole deflection will 

subsequently result in large buckling deformations characteristic of a snap buckling process.  

Otherwise, we classify the kinetic energy 
ini

KE  as “not leading to buckling”.  By systematically 

altering the initial velocity amplitude a  we perform a simple bracketing iteration until we find a 

sufficiently tight bracket [( ) , ( ) ]ini low ini upKE KE  for the buckling threshold.  Then we consider 

( )
ini low

KE  the buckling threshold, labeling it 
C

KE  or the critical energy.  The trajectory 

associated with this is called the critical trajectory or trajectory leading to buckling (short 

buckling trajectory). 

2.4 Systematic Errors from Initial Numerical Dissipation in Buckling Thresholds.  Fig. 3 

illustrates the geometry of Gaussian blasts in the considered range of widths, compared to the 

deflection, ( ) /w hθ , of the static unbuckled (node) and buckled (saddle) states for / 0.6
C

p p = , 

shown as solid curves. The other two solid curves represent the ‘widest’ Gaussian-shaped impact 

(1.2
ref

β ) and the most ‘narrow’ one ( 0.2
ref

β ). For each of these Gaussian blasts Fig, 3 also 

shows a dashed curve. This dashed curve was obtained by numerically time-stepping 5 time 

steps forward and 5 time steps backward from the initial blast. We make this distinction because 

our numerical time-stepping scheme causes a short sharp drop in energy during the first few time 

steps. This effect is caused by the finite step size 0 / 32Tτ∆ =  because in the continuous-time 

system energy should be conserved. Accounting for this effect, we determine an effective initial 

velocity, which has a slightly lower kinetic energy and is shown as the dashed graph in Fig. 3. 

Any feasible time stepping scheme will have similar behavior to ours in this respect. 
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Consequently, some results will show two curves for buckling thresholds: one if curve assumes 

that the full kinetic energy of the initial velocity shape is transferred. The other curve subtracts 

the amount of energy ( )SE PE KE+ +  lost during 5 initial forward and backward time steps, 

resulting in an effective initial kinetic energy. See Figs. 4 and 5 below. 

 

Fig. 3   Stable (node) and unstable (saddle) static equilibrium deflections, ( ) /w hθ , for 

/ 0.6
C

p p =   are shown together with illustrations of the early stages of the response as 

dependent on two ways of dealing with the initial kinetic energy. We show the effect of the 

initial velocity profiles for two different widths 
G

β   ( 0.2
ref

β  and 1.2
ref

β ) by showing the 

profiles ( ) /w hθ   where 0/ 1 / 32t Tτ∆ = ∆ =  is the time step. The numerical scheme causes 

strong dissipation for the first few time steps for high velocities of “unnatural” spatial shape such 

as the Gaussian blasts. The curves for the impacts which have the initial dissipation subtracted 

are dashed while those for which it is not subtracted off are solid lines.  ( / 100R h =  and 0.3ν = ) 

 

3. Buckling Thresholds for Targeted Blasts  

The fact that the threshold targeted blast energy needed to buckle the shell, 
C

KE , is only 

slightly above the energy barrier 
b

E  is seen in Fig. 4.  The buckling threshold energy is slightly 

larger than the theoretical energy barrier ��, but dependent on /
C

p p .  Since the theoretical 

energy barrier 
b

E  is very small for 0.85
C

p p>  the ratio between 
C

KE  and 
b

E  is a ratio between 
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two small numbers.  Thus, inaccuracies such as numerical dissipation and numerical tolerances 

create some uncertainty for 0.85
C

p p> .  The ratio increases at lower pressures.  Because the 

distance between the stable node and the unstable saddle equilibrium is larger at lower pressures, 

a blast in the linear direction from stable to unstable equilibrium may no longer be the blast 

leading to buckling with the minimal energy.  Nevertheless, these results demonstrate that 

dynamic disturbances with energies only slightly above the energy barrier can induce buckling.  

In the discussion of the Gaussian blasts in the next section, further insights into the dynamic 

responses including details of energy lost due to elastic waves spreading out from the impacted 

region will be provided.  The results for the shell clamped at 45o will be discussed later. 

 

 

Fig. 4.  Buckling thresholds for blasts targeted toward the saddle for a perfect hemispherical shell 

that is clamped at the equator (on the left) and clamped at 45o (on the right) subject to a fixed 

uniform pressure p .  These results have been computed for a shell with / 100R h =  and 0.3ν = .  

The lower of the two curves for 
C

KE  is that which subtracts off the small amount of energy 

dissipated by the numerical method in the first few time steps as discussed more fully in the text.  

The energy barrier 
b

E  used in the normalization for each of the two cases is plotted in Fig. 1.   

 

4. Buckling Thresholds for Gaussian-shaped Blasts 

In this section Gaussian-shaped impacts having a range of widths defined by (2.3) and (2.4) 

will be imposed on the shell.  We begin by reporting the results for the buckling thresholds for 
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the perfect clamped hemispherical shell in Fig. 5 and 6 and follow up by presenting details of the 

dynamic response of the shell and a discussion of the level of error expected in computing the 

buckling thresholds.   

The effect of the blast width on the threshold buckling energy for any fixed pressure in the 

range 0.25 / 0.85
C

p p≤ ≤  is displayed in the contour plots in Fig. 5.  The plot on the left in Fig. 

5 shows the contours of  constant / [( / 2) / ]C C CKE p V Ch R∆  with /
C

p p  on the vertical axis and 

/
G ref

β β  on the horizontal axis, while the plot on the right has contours of  constant /
C b

KE E , 

with 
b

E  given in Fig. 1.  In the plot on the left, two sets of contours are shown: one which 

subtracts off the initial dissipation from the kinetic energy (solid line curves) , as discussed 

earlier, and the other which does not (dashed line curves).  The contours plotted on the right are 

for the lower estimate of the threshold kinetic energy computed by subtracting off the initial 

dissipation.   The width producing the smallest blast threshold for buckling has 0.6
G ref

β β≅  over 

the entire range of pressures.  The minimum value of /
C b

KE E  with respect to the width for 

fixed /
C

p p  has been extracted from the contour plots and plotted in Fig. 6 for both sets of 

computations, accounting for initial dissipation and disregarding it.  As the illustration in 

Figure 2 had suggested, this initial dissipation is only strong for sharply localized blasts, e.g., 

/
G ref

β β  small.  The blasts widths which generate the minimum buckling thresholds are not 

strongly affected by the numerical dissipation. 
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Fig. 5.  Buckling thresholds for Gaussian shaped blasts for a perfect spherical shell clamped at 

the equator and subject to a fixed uniform pressure p .  These results have been computed for a 

shell with / 100R h =  and 0.3ν = .  The left-hand panel displays a contour plot of constant 

values of the buckling threshold normalized as / [( / 2) / ]C C CKE p V Ch R∆  with /
C

p p  on the 

vertical axis and the blast width /G refβ β  on the horizontal axis.  The solid lines are computed 

with the initial numerical dissipation subtracted off from the initial kinetic energy while the 

dashed lines are based on the full initial kinetic energy.  The right-hand plot shows constant 

values of the normalization /
C b

KE E  for the computation with the initial dissipation subtracted 

off.  Included in this plot is curve cutting through the contours showing the minimum of 

/
C b

KE E  with respect to the blast width for fixed values of /
C

p p .   The curve labeled maximal 

overlap in the left-hand panel will be explained later. 

 

 

Fig. 6.  Normalized threshold kinetic energy for Gaussian shaped blasts, /
C b

KE E , as a function 

of the normalized fixed pressure supported by the shell, /
C

p p , minimized with respect to 

impact width, 
G

β .  These pertain to both a perfect hemispherical shell clamped at the equator 

and a perfect spherical shell clamped at 0 45
oθ = (see Section 4.3) ( / 100R h =  and 0.3ν = ).  

Results are shown with the initial dissipation subtracted from the imparted KE  and for the full 

initially imparted.  
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4.1 Approximate Dependence of Threshold Kinetic Energy on Blast Shape.  We observe that 

there is a distinct intermediate optimal blast shape for buckling, where the blast is neither too 

localized nor too wide. This optimum is shown as a black almost vertical curve in Figure 5 at 

roughly 0.6 refβ .  For larger pressures ( 0.5 )
C

p p>  we can formulate a simple criterion for 

determining the optimal blast shape: what proportion of the blast is directed toward the saddle? 

This would correspond to the measuring how similar the spatial shape of the initial velocity is to 

the difference between saddle and node shapes at the given pressure. A natural measure of 

similarity between two initial velocity shapes would be the scalar product based on the kinetic 

energy, scaled by the energy barrier 

0

/2

1 1 2 2 1 2 1 2

2
( , ), ( , ) ( ) ( ) ( ) ( ) cos .

2KE
b

D
W U W U W W U U d

E

π

θ

π
θ θ θ θ θ θ = + ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ   (4.1) 

In this scalar product, the squared norm (“length”) of an initial velocity shape, i.e., 

1 1 2 2( , ) ( , )W U W U=ɺ ɺ ɺ ɺ , is its (scaled) kinetic energy, for example, /
ini b

KE E .  The similarity of an 

initial velocity shape (�� ���, �� ���) with a given amount of kinetic energy with the directions 

targeted toward the saddle is measured by the overlap 

: ,
ini n s KE

OV v v ↔=  , where 0( , ), ( , ) / .ini ini ini s n s n s nv W U v W W U U T↔= = − −ɺ ɺ  (4.2) 

The dashed line curve in Fig. 5 shows where this overlap is maximal. We observe that 

this approximation is acceptably accurate (close to the true minimal curve dotted in Fig. 5) for 

0.5
C

p p> .  Conversely, the threshold initial velocity for a shape which has low overlap is 

expected to be associated with higher threshold 
C

KE .  In fact, it is reasonable to expect that for 

fixed background pressure the threshold kinetic energy and its associated initial velocity field, 

ini
ν , satisfies approximately 

,

C b b

b ini n s KE

KE E E

E OV v v ↔

=∼   

This means that the threshold kinetic energy for buckling (as measured by its “length”) of the 

initial blast is inversely proportional to its overlap with the optimal, targeted, blast.  The 

proportionality constant will depend on the pressure. Fig. 7 shows how close this proportionality 

is to a constant by plotting the graph of 

 
C

b b

KEOV

E E
         (4.3) 

as a (nearly constant) function of the blast width �� and for several pressures � ≥ 0.4�" (observe 

the scale of the #-axis, which is a narrow range compared to changes by factor of up to 4 in Fig. 

5).  The largest deviation of the proportionality from a constant occurs for lower pressures.  This 
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deviation coincides with the observation that at lower pressures the blasts in the direction of the 

saddle ($%↦') can no longer cause buckling with an energy close to the energy barrier ��. So, 

this deviation may be caused by the fact that the overlap here is computed with respect to a less 

optimal direction (with respect to buckling energy).  

 

 

Fig. 7.  The normalized overlap, OV , between the Gaussian shaped initial velocities and 

velocities targeted towards the saddle are plotted as a function of the width of the Gaussian shape 

for various pressures.   

 

4.2 The Nature of Buckling Thresholds and Critical Trajectories.  In this subsection we 

provide some details of the nature of the critical trajectory associated with the buckling 

threshold.  Fig. 8 shows two examples of critical blasts at the buckling threshold for background 

pressure 0.6
C

p p= .  The examples have initial velocities with Gaussian shapes of different 

widths 
G

β   ( 0.2
G ref

β β= on the left, 1.2
G ref

β β= on the right), resulting in different thresholds 

(0)
C

KE KE=   These threshold values equal the value of KE  at 0t =  in the upper panel: very 

slightly below 2
b

E  for 0.2
G ref

β β=  and at about 3
b

E  for 1.2
G ref

β β= . The lower panels of Fig. 

3 show the full spatio-temporal profile of the trajectory ( , ) /w t hθ  as a contour plot. 
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Fig. 8. Time profiles for threshold trajectories for two example blasts with Gaussian shape at 

background pressure / 0.6
C

p p =  for a perfect shell with / 100R h =  and 0.3ν = .  The scaling 

for all energies in the top panels is the energy barrier �� at this pressure.  Note that 

( ) /
s b

PE PE E− +  has been plotted in the upper figures revealing that the relatively large 

oscillations of  SE  and PE  are nearly equal in magnitude with opposite sign. The dashed curve 

at the left end of the bottom panels reveals the width of the Gaussian blast in the θ -direction.   

 

In Fig. 8 the time profiles of ,( ( ) ) /pole pole sw t w h−  of the buckling trajectory at the 

threshold perform small oscillations around the saddle equilibrium for times 0/ 1t T > .  Study 

[12], which applied spatially uniform pressure steps, discussed the typical spatio-temporal shape 

of critical trajectories in detail.  A critical trajectory does not reach the saddle equilibrium (in the 

limit of zero damping) but rather its center-stable set (center-stable manifold) at an energy level 

that is slightly higher than that of the saddle equilibrium. This extra energy is visible in the form 

of small-amplitude waves across the surface in Fig. 8. In Fig. 8 for both examples, the trajectory 

approaches the neighborhood of saddle within 0t T<  and then performs small-amplitude 

oscillations around the saddle, before escaping toward the buckling regime (which is not shown 

in Fig. 8). 
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The time profiles of the strain energy SE  and the potential energy PE  (proportional to 

the deformation volume V∆ ) both start at the values for the stable equilibrium. They show that 

the nature of the small amplitude oscillations around the saddle is different for the very sharply 

localized blast with 0.2G refβ β=  (left) compared to the large-width blast with 1.2G refβ β=

(right). The left blast causes small-amplitude traveling waves across the surface (diagonal stripes 

in lower left panel) before developing standing wave patterns near the pole (spots at the top right 

of the bottom left panel). The traveling waves do not contain much strain energy SE  or potential 

energy PE  such that SE and PE  are close to their saddle value at least for t   from 0T  to 03T . 

(Figure 8 panels shows (−(� + (�')/��.)  The kinetic energy KE  is also close to zero for t   

from 0T  to 04T .  Note that the #-axis of the upper left panel and the color code in the lower left 

panel are smaller than in the upper and lower right panels.    

Comparatively, the large-width threshold blast in the right panels shows volume 

oscillations which are more spatially uniform, visible in the oscillations of PE  and SE  in the 

top right and the vertical strips in the bottom right. This is similar to the spatial patterns observed 

in applying spatially uniform pressure as sudden step at 0t =  which was analyzed and discussed 

in our earlier paper [12],  We conclude that the Gaussian blast with 1.2G refβ β=  can indeed be 

considered as having a large width.  Further increases of the width will lead to patterns of larger 

spatial scale with volume (and PE  and SE ) oscillations of increasing amplitude at the threshold, 

with correspondingly increasing necessary initial kinetic energy KE .  The study [12] of step 

loading of uniform pressure revealed that the work done by the pressure greatly exceeded the 

energy barrier associated with the pressure, so much so that the energy barrier was irrelevant for 

this loading.  Unlike the blast-like impacts considered here which are local and comparable in 

width to the saddle buckling mode, the step loaded pressure is applied over the entire shell. 

Study [12] found that the threshold value reported in this way is not necessary the lowest 

threshold (such that the attribute “first in time” threshold value was used in [12]). More 

precisely, trajectories that do not escape at this first threshold (because their initial kinetic energy 

*� is below *�") may pass another (lower) threshold at a later time (delayed buckling). The 

number and values of these later (and lower) buckling thresholds depend strongly on the amount 

and precise nature of the small damping (in study [12] and here we only have artificial numerical 

damping). The number of further delayed lower thresholds may become arbitrarily large as the 

damping goes to zero. 

For this study we focus only on the first, “immediate” buckling threshold. This first 

threshold *�" is robust in the sense that it converges to a limit when the damping (which is 

introduced by the finite step size of the numerical scheme) goes to zero.   

 4.3 Spherical Shells Clamped at 0 45
oθ = .  There are a variety of static and dynamic buckling 

phenomena displayed by clamped shallow spherical shells, or caps as they are often called, but 
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this paper will not venture into the domain of shallow shells.  The kinetic energy thresholds for 

buckling by the targeted blasts for the perfect shell clamped at 0 45
oθ =  have been included in 

Fig. 4, illustrating that at least for these impacts the clamping location plays a secondary role.  

We have also analyzed the effect of Gaussian shaped impacts, (2.3) and (2.4), on the buckling of 

a perfect spherical shell clamped at 0 45
oθ = .  Our main objective again is to demonstrate that 

the clamping location has a minor effect on the buckling threshold for shells that are not shallow.  

Detailed numerical simulations have been carried out for shells with / 100R h =  and 0.3ν = .  

With this radius to thickness ratio even for the widest impacts considered (with 1.2G refβ β= ), the 

impacted area does not extend more than to about half-way from the pole to the clamped 

boundary.  The impacts considered are shallow, consistent with the nature of the saddle buckling 

mode. 

 Simulations computing the threshold values 
C

KE  for the full range of widths of Gaussian 

blasts considered for the hemi-spherical shell have been carried out for the shells clamped at 

0 45
oθ =  for values of pressure in the range 0.25 / 0.8

C
p p≤ ≤ .  As before, 

C
KE has been 

evaluated with no allowance for initial dissipation and with it subtracted off.  The contour plots 

of  
C

KE are similar to those for the hemispherical shell in Fig. 5.  In particular, the minimum 

blast energy 
C

KE  with respect to the blast width at each /
C

p p  occurs when 0.6G refβ β≅ , just 

as for the hemispherical shell.  The plot of minimum /
C b

KE E  versus /
C

p p  for these shells has 

been included in Fig. 6.  Separate calculations for 
b

E  as a function of /
C

p p  have been made for 

the shell clamped at 0 45
oθ =  (c.f., Fig. 1) , and these have been used in normalizing the curves 

for 0 45
oθ =  in Figs. 6.  In the range of 0.25 / 0.65

C
p p≤ <  there is essentially no difference 

between the predictions of /
C b

KE E  for clamping at 0 0θ =  and 0 45
oθ = , nor is there any 

noticeable difference between 
b

E  for the two cases in Fig. 1.  A dependence of both /
C b

KE E  

and 
b

E  on the two clamping locations begins to emerge for / 0.65
C

p p > .  The role of the 

clamping location will be increasingly influential for more shallow spherical caps.  For static 

buckling Huang’s [7] analysis reveals significant interaction between clamping location and 

buckling for caps with 22 3(1 ) / 20H hλ ν≡ − <  where H  is the height of the cap, and this is 

likely to apply to the dynamic case too. 

 

5. Buckling Thresholds of Clamped Geometrically Imperfect Hemispherical Shells 

Subject to Gaussian-shaped Blasts. 

The examples presented thus far are all for perfect spherical shells.  A more complete 

understanding of the buckling energy barrier and buckling thresholds under dynamic impact 
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requires consideration of the strong sensitivity of the spherical shell under external pressure to 

initial geometric imperfections [13].  Axisymmetric geometric imperfections have recently been 

characterized [11,12,14,15] for uniform thickness shells with a middle surface having an initial 

stress-free, Gaussian-shaped inward dimple at the pole in the form 

 ( )2exp ( / )
imp imp imp

w δ β β= − −         (5.1) 

The knockdown in the maximum uniform pressure the shell can support, maxp , is exemplified by 

imperfection widths imp refβ β= , where refβ  is given in (2.3).  Representative knockdowns for 

the choice imp refβ β=   are max / 0.74, 0.61,0.39,0.24
C

p p ≅  for / 0.1,0.2,0.5,1imp hδ =  , 

respectively [11].  These knockdowns apply to a full spherical shell or to a hemispherical shell 

clamped at the equator and they are independent of /R h  for thin shells.   

 To illustrate the role an imperfection plays in the relation between the energy barrier and 

buckling thresholds under local impact, we consider a clamped hemispherical shell with an initial 

imperfection (5.1) having imp refβ β= .  The shell is quasi-statically pre-loaded to a fixed uniform 

pressure 0.5
C

p p=  and then subject to Gaussian-shaped impacts of the type considered in the 

earlier sections with width equal to the ‘optimal’ value 0.6G refβ β= .  The shell can only support 

the pressure load, 0.5
C

p p= , if / 0.325imp hδ <  because, with / 0.325imp hδ = , the quasi-static 

maximum support pressure is precisely max 0.5
C

p p= .   Thus, the relevant range of imperfection 

amplitude for the pre-load being considered is 0 / 0.325imp hδ≤ ≤ . 

 First, some details of the quasi-static pre-load solution relevant to the node, saddle and 

energy barrier are presented. Fig. 9 presents the deflection modes and the volume changes 

associated with the node and the saddle equilibrium states for the relevant range of imperfection 

amplitudes noted above, all with the pressure fixed at 0.5
C

p p= .  As indicated in the figure 

caption, the nodal states are associated with / 0.75polew h > −  and ,/ 0.495C hemisphereV V∆ ∆ < , 

while the saddle states are associated with / 0.75polew h < −  and ,/ 0.495C hemisphereV V∆ ∆ > .  The 

buckling process is localized in the vicinity of the pole (1 / 2θ π< ≤  for this radius to thickness), 

with clamping influencing the deflections only in the range 0.5θ < , independent of the 

imperfection amplitude.  
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Fig. 9.  Details of the quasi-static nodal and saddle solutions for clamped imperfect 

hemispherical shells (with / 100R h = , 0.3ν =  and imp refβ β= ) which are pre-loaded to 

/ 0.5
C

p p = (computed with COCO’s COLL toolbox [8]).  The middle panel displays the 

normalized pole deflection, /polew h , as a function of the imperfection amplitude, /imp hδ , with 

pressure fixed at / 0.5
C

p p = .  The segment of the curve with / 0.75polew h > −  pertains to nodal 

equilibrium states while the lower segment pertains to saddle states.  The left panel displays the 

deflection, ( ) /w hθ , over the entire hemisphere for both nodal and saddle states associated with 

the selected values of /polew h  indicated by the horizontal connections, again with / 0.5
C

p p = .  

The panel on the right displays the normalized change of volume as dependent on /imp hδ  for 

both the nodal states ( ,/ 0.495C hemisphereV V∆ ∆ < ) and the saddle states ( ,/ 0.495C hemisphereV V∆ ∆ > ). 

 

For imperfection amplitudes approaching the limit, / 0.325imp hδ = , the nodal and saddle 

states coalesce such that the energy barrier vanishes.  This is evident in the plot of the 

dimensionless energy barrier as a function of imperfection amplitude in the left panel of Fig. 10: 

/ [( / 2) / ] 0
b C C

E p V Ch R∆ =  for / 0.325imp hδ = , consistent with the fact that the shell is unstable 

at this level of imperfection when the preload is / 0.5
C

p p = .  The other limit in Fig. 10 for the 

perfect shell ( / 0imp hδ = ) is / [( / 2) / ] 0.062
b C C

E p V Ch R∆ =  in agreement with the result for 

/ 0.5
C

p p =  in Fig. 1. 

Threshold buckling calculations for the imperfect shells preloaded to / 0.5
C

p p =  have been 

carried out following the procedures described earlier.  The results for the threshold kinetic 

energy (with and without subtracting off the initial dissipation) of the Gaussian blasts with 



ASME© CC-by

0.6
G ref

β β=  are included in the left panel of Fig. 10.  These same results are replotted in the 

right panel of Fig. 10 normalized by the energy barrier at the corresponding values of /
imp

hδ .  

We have not attempted to extrapolate these curves to the limit / 0.325
imp

hδ = .  The important 

feature that stands out is that the ratio of threshold energy to the energy barrier, /
C b

KE E , has a 

relatively weak dependence on /
imp

hδ  over most of the relevant range, while the energy barrier 

itself is a strong function of the imperfection amplitude.  Stated otherwise, the trends in /
C b

KE E

for the imperfect shell are similar to those for the perfect shell, but the normalizing factor in the 

denominator, 
b

E , depends rather strongly on /
C

p p  and /
imp

hδ  as seen in Fig. 11. 

 

 

Fig. 10.  Left panel:  The dimensionless energy barrier and the two threshold kinetic energies for 

Gaussian impacts with 0.6
G ref

β β=  for clamped imperfect hemispherical shells (with 

/ 100R h = , 0.3ν =  and imp ref
β β= ) plotted over the relevant range of /

imp
hδ  for a preload 

/ 0.5
C

p p = .  Right panel:  The ratios of two threshold kinetic energies to the energy barrier as a 

function of  /
imp

hδ  for preload / 0.5
C

p p = . 
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Fig. 11.  Energy barrier per dimple as dependent on pre-loaded pressure for full perfect and 

imperfect elastic spherical shells buckling symmetrically about their equator (adapted from [12])  

( / 100R h = , 0.3ν = , imp ref
β β= ).  For thin shells, these curves are independent of  /R h , and, 

for preloads satisfying / 0.85
C

p p < , they are essentially independent of whether the shell is 

symmetric or clamped at the equator. 

 

6. Implications for Buckling of Imperfection-sensitive Shell Structures 

This study has shown that the energy barrier against buckling for both perfect and imperfect 

elastic spherical shells subject to a prescribed uniform pressure provides a relevant estimate of 

the buckling resistance of the shell to extraneous localized blast-like impacts.  The kinetic energy 

imparted to the shell must exceed the energy barrier at the preloaded pressure.  For impacts 

whose widths are comparable to the width of the dimple buckle associated with the saddle in the 

energy landscape, the threshold energy to buckle the shell imparted by the impact may be only 

slightly larger than the energy barrier.  Shells preloaded to pressures close to the quasi-static 

buckling pressure associated with the level of imperfection are precarious because the energy 

barrier becomes very small, as seen in Fig. 11.  The energy barrier plot in Fig. 11 provides a 

rationale for NASA’s [16] long standing recommendation that thin spherical shells not be loaded 

to external pressures above / 0.2
C

p p ≅ .  If one can be certain the imperfection level of a shell is 

not too large, e.g.,  / 0.5
imp

hδ <  for Gaussian-type imperfections, then one can be sure that there 
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is a significant energy barrier for buckling if / 0.2
C

p p ≤ .  While all the results in this paper 

have assumed a pre-load pressure that is held fixed during the impact event, the energy barrier is 

almost the same for a spherical shell that is loaded to the same pre-load pressure and then 

buckled with no subsequent change in volume, except in the range of low pressures, as discussed 

in detail in [2,5].  We fully expect that the findings in this paper relating threshold buckling 

energy to the energy barrier will carry over to spherical shells impacted under conditions where 

the internal volume of the shell remains unchanged, the so-called rigid volume constraint.  This 

expectation is tempered by the fact that we have assumed that inertia of the fluid medium inside 

and outside the shell can be ignored in modeling the shell dynamics.  There is a regime in which 

the dynamic fluid-structure interaction must be considered and that has not been addressed here. 

Arguments for assigning buckling knockdown factors for spherical shells under external pressure 

based on the energy barrier concept have recently been promulgated [3].  

While the analysis in this paper has been restricted to be axisymmetric with respect to the pole of 

the spherical shell, the results apply equally well to thin shells with dimple-like imperfections 

and localized impacts located anywhere away from the clamped boundary.  The widths of the 

saddle dimple buckle, the most critical imperfections, and the blast impacts, each scale with 

Rh  and are small compared to the size of the shell.  Thus, the present results should be 

applicable to a dimple imperfection at any location with impacts focused on it if they have 

locally axial symmetry and lie outside the boundary layer influenced by clamping.  An 

experimental demonstration of the susceptibility of clamped hemispherical shells to local dimple 

buckling at any location away from the boundary is given in [17].  There is another important 

consequence of the locality of dimple buckling.   Regardless of the presence of other 

imperfections, if the pre-loaded shell is impacted in a locality that is free of imperfections 

extending over a region large compared to Rh , then the energy barrier should be essentially 

that of a perfect shell.  The simple measure OV, given in (4.2), for similarity of the blast with the 

buckling dimple can also be applied to blast shapes different from Gaussian.  Shapes for which 

OV is maximal would be expected to have the lowest buckling threshold kinetic energy.  The 

measure OV may also provide insights into impacts that do not possess local axial symmetry 

which have not been addressed in this paper.  One might anticipate that such impacts will require 

more energy to trigger buckling.  It is also worth noting that the importance of localized buckling 

of cylindrical shells under axial compression has also emerged in recent studies [18-20], and we 

anticipate that the principles seen here for the spherical shells will also apply to axially 

compressed cylindrical shells subject to localized impacts. 

This study and the earlier one on step pressure loading [12] have been informed by 

developments in nonlinear dynamics.  There is a rich array of phenomena associated with the 

dynamic responses of the highly nonlinear equations governing spherical shell buckling which 

are only hinted at in this paper.  The thresholds for dynamic buckling in this paper were 

computed by limiting the computed responses to times no greater than four times the period of 



ASME© CC-by

the spherically symmetric vibration mode of the full sphere, i.e., 0/ 4t T ≤ .  As noted in the 

paper, had this time limit been set to a larger value, almost certainly somewhat lower thresholds 

would have been obtained.  The earlier paper on step loading [12] explores the dependence of 

dynamic buckling thresholds on the time limit and the nature of the buckling trajectories in more 

detail.  Nevertheless, we believe the values presented here of the threshold buckling energy to 

energy barrier, /
C b

KE E , for the blast-like impacts to spherical shells are realistic and 

representative assuming the impacts are aligned with the local imperfections.  Further refinement 

would require greater attention to misaligned impacts and imperfections as well as dissipation 

associated with both the numerical scheme and physical damping processes in shell.  
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