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1.  BACKGROUND

Anthropogenic noise is altering marine soundscapes
globally (Hildebrand 2009, Williams et al. 2015, Ellison
et al. 2016, Estabrook et al. 2016, Hatch et al. 2016,
Cholewiak et al. 2018). In particular, seismic airguns
are one of the loudest and most pervasive anthro-
pogenic sources of sound in the ocean (National
 Research Council 2003, Bröker et al. 2015). Used pri-
marily in oil and gas exploration and reservoir moni-
toring — and sometimes in research — seismic surveys
release highly compressed air from an array of
airguns towed behind a survey vessel, though survey

designs vary widely (National Research Council 2003,
Hildebrand 2009). These air pockets expand and col-
lapse rapidly to form a pulse of sound that penetrates
the seafloor, and the reflecting and refracting sound
waves provide an image of the substructure, including
potential oil and gas deposits (Caldwell & Dragoset
2000). Noise from airguns is dominated by low fre-
quencies, thus undergoing little attenuation and
propagating across vast distances; the distance trav-
eled and intensity vary by region, survey characteris-
tics, and environmental factors (Hildebrand 2009).

Sound is the primary sensory modality for many
marine vertebrates, vital for communication, orienta-
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ABSTRACT: Anthropogenic noise is increasing throughout the world’s oceans. One major contrib-
utor is industrial seismic surveys — a process typically undertaken to locate and estimate the
quantity of oil and gas deposits beneath the seafloor — which, in recent years, has increased in
magnitude and scope in some regions. Regulators permit this activity despite widespread uncer-
tainties regarding the potential ecological impacts of seismic surveys and gaps in baseline infor-
mation on some key species of conservation concern. Research to date suggests that impacts vary,
from displacement to direct mortality, but these effects remain poorly understood for most species.
Here, we summarize potential effects of seismic surveys, describe key knowledge gaps, and rec-
ommend broad-scale research priorities for 3 impacted taxonomic groups: fish, marine mammals,
and sea turtles. We also suggest further technological advances, improved mitigation measures,
and better policy and management structures to minimize the ecological impacts of seismic sur-
veys in light of scientific uncertainty.
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tion, and foraging (Compton et al. 2007, Nowacek et
al. 2007, Videsen et al. 2017). There is growing con-
cern that seismic surveys may have adverse impacts
on marine life, ranging from physiological to behav-
ioral impacts. Broadly, these include disruption of
communication (Cerchio et al. 2014, Dahlheim &
Castellote 2016), temporary displacement from habi-
tat (Yazvenko et al. 2007, Castellote et al. 2012), and
potential mortality (Gordon et al. 2003, Hildebrand
2005). Of particular concern are the effects of chronic
noise on animals, such as stress (Nowacek et al. 2007,
Tyack 2008, Rolland et al. 2012) and hearing damage,
especially from accumulated exposure (Weilgart
2007). The extent of impact depends on factors such
as proximity to the sound source, life stage, and other
biological and physical factors — a complicated and
contextual mix of factors that are difficult to study in
field settings (Dunlop et al. 2017, Ellison et al. 2018).
Wider ecosystem effects may impact vertebrates in -
directly, such as through prey shifts (Gordon et al.
2003). It has been found that adult and larval zoo-
plankton abundance decreased within an hour of ex-
perimental airgun exposure (McCauley et al. 2017).

In recent decades, the potential effects of seismic
surveys and general anthropogenic noise on marine
species have received increased attention in both the
policy and scientific contexts (Forney et al. 2017, Har-
foot et al. 2017, Vilardo & Barbosa 2018). The interna-
tional policy field is gradually recognizing the need
to better understand and manage ocean noise (e.g.
the Agreement on the Conservation of Cetaceans of
the Black Sea, Mediterranean Sea and contiguous
Atlantic area [ACCOBAMS] contains a resolution on
addressing ocean noise), but regulatory actions and
mitigation designs fall short of the actions needed to
effectively reduce impacts. Despite this growing
attention, the impacts of seismic surveys specifically
on marine vertebrates — fish, turtles, and marine
mammals — remain poorly understood as seismic
surveys continue and expand into new areas (Nelms
et al. 2016, Carroll et al. 2017).

2.  OVERVIEW OF KNOWLEDGE GAPS

Most research has focused on the effects of a spe-
cific sound source on one species in a single location
(e.g. Richardson & Miller 1999, Di Iorio & Clark 2009,
Miller et al. 2009). Ocean noise, however, can propa-
gate swiftly across vast distances — especially the low
frequencies employed in seismic surveys (Nieukirk et
al. 2012) — and therefore can affect a range of species
(Hildebrand 2009, Nowacek et al. 2015). Additionally,

the aggregate impact of noise from multiple sources
(e.g. commercial shipping and seismic surveys) needs
to be considered and modeled, especially in key habi-
tats (Dunlop et al. 2017, Frankel & Gabriele 2017,
Redfern et al. 2017, Small et al. 2017).

Regulatory bodies sometimes permit surveys with-
out baseline information about potentially affected
species, including accurate data on distribution and
abundance, and instead extrapolate potential
impacts from studies in other areas. This makes it
nearly impossible to assess basic individual- and/or
population-level impacts (Stone & Tasker 2006, Weir
& Pierce 2012, Przeslawski et al. 2018). Very few
marine vertebrate species have received adequate
attention, and most remain unstudied. For example,
from 1983 to 2013, only 29 studies (including some in
the grey literature) on sea turtles and seismic surveys
were published, while 187 papers were published on
fish, and 414 were published on marine mammals
(Nelms et al. 2016).

Consequently, further targeted research is needed
on the effects of seismic surveys (McKenna et al.
2016, Hawkins & Popper 2017). This includes impacts
on short- and long-term physiological responses,
important fitness parameters (e.g. breeding, forag-
ing, predator avoidance), and distribution and move-
ment at various spatio-temporal scales in both field
and laboratory settings. We recommend the follow-
ing broad research priorities for the 3 main taxo-
nomic groups:

2.1.  Fish

2.1.1. Research potential displacement in the
water column, and physiological impacts. The extent
and duration of displacement, as well as the thresh-
olds of received sound levels that lead to such move-
ment (e.g. duration, geographic distance), are poorly
understood (Slotte et al. 2004, Paxton et al. 2017).
Such displacement not only carries ecological impli-
cations, but could also impact fisheries (Løkkeborg et
al. 2012, Carroll et al. 2017).

2.1.2. Better understand potential impacts of mask-
ing with acoustically active fish species. Many fish
rely on sound to communicate, breed, and find key
habitat, but little is understood about how anthro-
pogenic noise may disrupt these activities (Popper &
Hastings 2009, Slabbekoorn et al. 2010, Holles et al.
2013, Radford et al. 2014, Simpson et al. 2015).

2.1.3. Assess potential for avoidance of essential
habitat areas, including reefs or other spawning,
mating, or foraging sites. Recent evidence shows that
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some fish may avoid reef sites, aggregate in lower
densities (Simpson et al. 2011, Paxton et al. 2017), or
their distribution (Bruce et al. 2018) and abundance
(Rivera et al. 2018) may be affected after exposure to
elevated noise levels. Studies of impacts on key habi-
tat areas, such as monitoring utilization of key
spawning grounds before and after surveys, can help
delineate population-level consequences.

2.2.  Marine mammals

2.2.1. Understand how marine mammals respond
to potential masking caused by seismic surveys, and
subsequent implications for fitness. There is wide-
spread concern that seismic surveys will lead to
masking of important acoustic signals vital to com-
munication in marine mammals, particularly in
baleen whales (Clark et al. 2009, Di Iorio & Clark
2009, Hatch et al. 2012). Dedicated research is
needed to understand the received sound levels at
which different species exhibit masking, as well as
the response to, and biological consequences of,
masking.

2.2.2. Examine the extent and duration of avoid-
ance behavior, and how it varies with ontogeny and
subsequent implications for fitness. Marine mam-
mals exercise avoidance behavior when exposed to
certain low-frequency sound sources (McCauley et
al. 2000, Harris et al. 2001, Weilgart 2007), poten-
tially resulting in exclusion from important habitats,
such as feeding and breeding areas. More informa-
tion is needed on the received sound levels, duration,
and biological states that lead to avoidance (Dunlop
et al. 2017).

2.2.3. Conduct studies to assess stress and physio-
logical consequences in marine mammals, particu-
larly from long-term, chronic seismic exposure. One
of the main potential impacts from seismic exploration
is stress (Romano et al. 2004, Rolland et al. 2012),
which can affect reproduction, immune systems,
growth, health, and other important life functions.
The impacts on marine mammal hearing, survival,
and reproduction could be examined by comparing
populations with and without such exposure, or by
conducting health assessments before and after a sur-
vey. For example, targeted studies to examine pathol-
ogy of stranded animals in areas with/without seismic
activities could lend insights into physiological im-
pacts of animals exposed to sound. All of these types
of studies could be conducted in areas of recurring
surveys, such as around Sakhalin Island, Russia
(Bröker et al. 2015, Muir et al. 2015, 2016), West

Africa (DeRuiter & Doukara 2012), and the Beaufort
Sea (Richardson & Miller 2013, Robertson et al. 2013,
2016), to name just a few places. Ideally, this type of
information would be collected at an individual- and
population-level setting to determine demographic
consequences from surveys.

2.3.  Sea turtles

2.3.1. Measure and observe physiological re -
sponses of sea turtles to airguns, including stress
hormone levels, in a field setting. These studies
should be conducted with control and experimental
groups of turtles, assessed before, during, and after
surveys. The physiological responses should be ana-
lyzed in repeat surveys to assess long-term physio-
logical impacts, rather than just immediate impacts.

2.3.2. Monitor short- and long-term behavioral
responses, including changes to diving, foraging,
migration patterns, and nesting behavior. Of these,
impacts on migratory corridors and nesting behavior
should be prioritized. Behavioral impacts are easier
to assess than physiological responses, because such
impacts can be assessed using readily available
methods, such as satellite-linked telemetry and other
biologging devices (Tyson et al. 2017). Research to
date has noted some dive response to seismic surveys
(DeRuiter & Doukara 2012), but implications of this
behavior are poorly understood.

2.3.3. Conduct studies of the impact of airguns on
sea turtle distribution and abundance at sea. Both
density models and actual measurements of density
before and after surveys could be used to assess
impacts (e.g. using biologging devices, unmanned
aerial devices, etc.). Not only will such studies help
reveal impacts of seismic surveys on marine turtle
distribution and abundance, but they may reveal in -
sight into displacement vs. habituation/tolerance in
marine turtles. Recent studies demonstrate progress
on methodological approaches to the study of sea tur-
tle distribution and abundance in the context of
anthropogenic activity (Pikesley et al. 2018).

3.  KNOWLEDGE GAPS SURROUNDING
 MITIGATION MEASURES

Globally, and sometimes even within waters of
the same country (e.g. the United States), no single
minimum standard of mitigation measures exists
(Verfuss et al. 2018). In countries where mitigation
measures are recommended, the standards are often
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guidelines rather than requirements (Compton et al.
2007, Parsons et al. 2009, Nowacek et al. 2015). The
standards are designed to mitigate impacts on marine
mammals, with no current set of standards or guide-
lines for sea turtles and fish. Within the patchwork of
mitigation measures, little is known about the effi-
cacy of mitigation in protecting marine vertebrates
from the sounds of airguns (Weir & Dolman 2007,
Weir 2008, Parsons et al. 2009). Furthermore, without
baseline information on species before surveys (Aho-
nen et al. 2017), it is challenging to conduct manage-
ment and assess the efficacy of these standards dur-
ing or after surveys.

In areas where mitigation measures are used, several
procedures are commonly employed: ramp-up (or soft
start) — where airguns build sound over time to reach
full amplitude — which is intended to alert animals to
the sound source and allows them to leave the area
(Weir & Dolman 2007); visual monitoring by protected-
species observers; and exclusion zones, which define
a radius where surveys are required to shut down if
animals are detected (Compton et al. 2007, Weir &
Dolman 2007). Important issues exist with these stan-
dards, such as the ineffectiveness of visual monitoring
in poor visibility conditions (e.g. low light, fog) and the
practicability of exclusion zones due to difficulties de-
tecting animals below the ocean’s surface, in rough
seas, or as a result of observer bias (Compton et al.
2007, Weir & Dolman 2007). Passive acoustic monitor-
ing can be used to detect the presence of vocalizing
cetaceans near airguns (Weir & Dolman 2007); how-
ever, cessation of vocalization is one of the docu-
mented responses to airguns (Blackwell et al. 2015).

Many nations have established ‘safe’ sound expo-
sure levels for marine mammals exposed to seismic
surveys, which are typically applied uniformly to all
species (Compton et al. 2007, Southall et al. 2007,
Nelms et al. 2016). Most of these mitigation measures
were created for marine mammals based on published
hearing thresholds, but are then applied to other taxa
(i.e. sea turtles; Nelms et al. 2016, Hawkins & Popper
2017) and/or to species or groups for which no
hearing data exist (e.g. baleen whales). It is also often
unclear what impacts these measures intend to miti-
gate — such as hearing loss, basic behavioral disrup-
tion, injury, or death.

4.  INNOVATIVE APPROACHES TO SEISMIC
SURVEYS

We encourage a holistic approach to reducing im -
pacts from the process, involving research, policy,

and technology fields. In addition to a lack of policy
and regulatory consensus on mitigation standards
described above, the permitting process for seismic
surveys is often extremely haphazard (Nowacek et
al. 2015). For example, in the United States, duplica-
tive surveys are permitted in the same area, which
increases the potential for cumulative effects from
the noise of multiple surveys. If only a single survey
were permitted in a particular lease area, total noise
levels would decrease. In the same vein, governments
could commission surveys to one party, and then sell
the data to generate revenue. Likewise, as employed
by Norway and several other nations, governments
could consider multi-client surveys (CGG 2015,
Larsen & Ashby 2017), where interested parties can
purchase seismic data rather than conduct repetitive
surveys. Lastly, regulatory bodies should consider
requiring seismic companies to use the smallest array
and survey the smallest area necessary to further
reduce total noise introduced into the environment.

Additionally, quieter, less invasive technologies
exist. Vibroseis, for example, offers continuous, lower
peak sound with a narrower frequency response than
a typical airgun array (Nowacek & Southall 2016,
Duncan et al. 2017). Other alternative sources in clude:
gravity gradiometry, which is used by oil and mineral
prospectors to measure the density of the subsurface,
as well as the E-Bolt airgun, designed to reduce the
high-frequency components that have potential for
causing disturbance to some marine life while retain-
ing the low-frequency components critical to seismic
exploration (www. teledynemarine. com/ eSource).

Technological advances also now exist to augment
mitigation measures, such as drone technology for
direct monitoring (Christie et al. 2016, Nowacek et al.
2016, Rees et al. 2018), enhanced species distribution
modeling (Gregr et al. 2013, Becker et al. 2014, Wilk-
gren et al. 2014, Forney et al. 2015), and acoustic
telemetry for fish and sea turtles (Przeslawski et al.
2018). Technological advances also include methods
for reducing the amount of seismic survey noise that
spreads away from the array. Bubble curtains using
arrays of large tethered encapsulated bubbles can
attenuate underwater sound in the 50 to 1000 Hz fre-
quency band from a variety of continuous and impul-
sive sources by as much as 50 dB (Lee et al.
2012a,b,c, Lee & Wilson 2013, Wochner et al. 2013).
Air-filled resonators, similar to Helmholtz resonators,
have been demonstrated as effective in abating the
noise from a sound source by as much as 30 dB
(Wochner et al. 2014). Without economic or regula-
tory incentives to use this technology, however,
industry is not prioritizing this technology in surveys.
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Thus, regulators should consider requiring a shift
towards quieter and mitigation-focused technology,
which could be considered to be part of a mitigation
package.

5.  PROGRESS TO DATE

We applaud recent progress to mitigate the
impacts of seismic surveys. In September 2016, for
example, the International Union for Conservation of
Nature (IUCN) released guidelines for best practices
during seismic survey planning, execution, and mon-
itoring (Nowacek & Southall 2016). Concerning
ocean noise pollution more generally, several non-
governmental organizations and collaborators made
a voluntary commitment at the United Nations Ocean
Conference to prevent and reduce ocean noise pollu-
tion in June 2017, indicating they will develop a
‘noise inventory’ of the main global ocean noise
sources, as well as form working groups under this
commitment. The ACCOBAMS agreement has a
2010 resolution to address anthropogenic noise in the
Black Sea and Mediterranean waters, which encour-
ages signatories to the ACCOBAMS to consider
noise in management plans and reduce noise where
applicable.

Some countries are taking important steps to
address the potential effects of seismic surveys. In
the vein of a more regulatory approach to addressing
seismic surveys, the Italian Environmental Impact
Assessment Commission, the body that regulates
permits for oil and gas activity in Italy’s waters within
Italy’s Ministry of the Environment and Protection of
Land and Sea, implemented a requirement in 2015
for studies to be conducted 60 d before and after a
seismic survey to determine marine mammal density
and abundance (Fossati et al. 2018). The United
States has made recent progress in addressing ocean
noise more generally. In 2016, the National Oceanic
and Atmospheric Administration (NOAA) — the
agency tasked with regulating the marine environ-
ment in the USA — released their first Ocean Noise
Strategy Roadmap, which addresses seismic surveys
at the federal policy level (Gedamke et al. 2016).
NOAA also published technical acoustic guidelines
for determining thresholds at which noise levels
could impact marine mammal hearing sensitivity
(National Marine Fisheries Service 2016). At the
same time, however, the USA is at a critical juncture
in regulating seismic surveys and marine mammals,
with NOAA recently permitting marine mammal
take incidental to seismic surveys in the US Atlantic

Ocean for the first time (National Marine Fisheries
Service 2018). At the time of writing, regulatory bod-
ies are not requiring any advanced studies, testing of
mitigation measures, or requiring the use of alterna-
tive technology, while the scope of potential seismic
activity represents a precedent-setting opportunity
to do so.

6.  CONCLUSION

Much remains to be learned about the impact of
seismic surveys on marine vertebrates. So far, most
research has focused on the impacts on individual
organisms or species, with little attention on popula-
tion-level impacts over large spatial and temporal
scales. In addition to the studies referenced in Sec-
tion 2 above, we encourage governments to revisit
their permitting processes and consider more effec-
tive governance methods. A more prudent approach
to the scale and number of surveys, as well as critical
consideration of enhanced mitigation measures, is
needed to avoid undermining conservation gains
made with marine megafauna over the past decades.
Regulatory bodies are at a critical juncture to address
this issue, particularly when managing sensitive spe-
cies that are in decline and highly vulnerable to
ocean noise, such as North Atlantic right whales
Eubalaena glacialis.
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