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AN EXPLICIT CONDUCTOR FORMULA
FOR GLn ×GL1

ANDREW CORBETT

ABSTRACT. We prove an explicit formula for the con-
ductor of an irreducible, admissible representation of GLn(F )
twisted by a character of F× where the field F is local
and non-archimedean. As a consequence, we quantify the
number of character twists of such a representation of fixed
conductor.

1. The problem of the twisted conductor. Let F denote a non-
archimedean local field of characteristic zero, and let n ≥ 2. For an
irreducible, admissible representation π of GLn(F ) and a quasi-character
χ of F×, we can form the twist χπ = (χ ◦ det)⊗ π. Our main result,
Theorem 2.6, is an explicit formula for the conductor a(χπ), equal to
the Artin conductor, as defined in Section 3.1. This formula is given by

(1.1) a(χπ) = a(π) + ∆χ(π)− δχ(π),

where ∆χ(π) and δχ(π) are non-negative integers as defined in Theo-
rem 2.6; they denote a dominant and a non-twist-minimal interference
term, respectively. We give a detailed analysis of these terms in Sec-
tion 4.2, answering questions such as, “for what number of χ is there
interference present?”

As an example, computing a(χπ) in the limit a(χ)→∞ is straight-
forward: from Proposition 2.2 and equation (2.2), we deduce that

(1.2) a(χπ) = na(χ),

whenever a(χ)>a(π). In this case, ∆χ(π) =na(χ)−a(π) and δχ(π) = 0.
Bushnell and Henniart [2] extend (1.2) by proving the upper bound1

(1.3) a(χπ)≤max{a(π), a(χ)}+ (n− 1)a(χ),
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surrendering to a weaker bound in the region 0≤ a(χ)≤ a(π). Never-
theless, this bound is sharp in that it is attained for some π and χ, as
in (1.2), for example.

However, in general, such examples become sparse, rendering (1.3)
as rather coarse as one averages over χ with a(χ)� a(π). In such cases,
evaluating the integers ∆χ(π) and δχ(π) exactly is of crucial importance
for numerous problems in analytic number theory.

In this paper, we consider applications to studying a(χπ) in a
quantitative fashion. For example, we count the number of χ for
which a(χπ) is equal to a given integer (see Section 4). Such an analysis
would most commonly be applied when considering a(χπ) on average.

Our formula may be utilized when studying the analytic behavior of
automorphic L-functions. In particular, it is applicable in conjunction
with the following two techniques: taking harmonic GL1-averages
and applying the functional equation for GLn×GL1-L-functions. For
example, conductors of such character twists arise in the work of Nelson,
Pitale and Saha [13], who address the quantum unique ergodicity
conjecture for holomorphic cusp forms with “powerful” level (see [13,
Remarks 1.9, 3.16]). The current record for upper and lower bounds for
the sup-norm of a Maaß-newform on GL2 in the level aspect [17, 18, 19]
also depends crucially on the n= 2 case of Theorem 2.6.

An instance where (1.1) is applied constructively is carried out in [4],
once again, when n= 2. Originally, in [1], Brunault computed the value
of ramification indices of modular parameterization maps of various
elliptic curves over Q. Whenever the newform attached to E is “twist
minimal,” Brunault could prove that this index was trivial (equal to 1),
holding, in particular, whenever the conductor of E is square-free. This
problem has now been completely solved by Saha and Corbett [4]. In
our solution, it is the degenerate cases of (1.1), with non-trivial ∆χ(π)
and δχ(π), that give rise to the few examples of non-trivial ramification
indices.

These results all concern the case n = 2, where the conductor for-
mula for twists of supercuspidal representations was given by Tunnell
[21, Proposition 3.4] in his thesis (see [4, Lemma 2.7] for the general
case). Tunnell himself applied his formula to count isomorphism
classes of supercuspidal representations of fixed odd conductor [21,
Theorem 3.9]. He used this observation in his proof of the local
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Langlands correspondence for GL2(F ) in the majority of cases.

Our present result is suggestive of similar applications: a bound for
local Whittaker newforms (and a corresponding global sup-norm bound)
in the level aspect; bounds for matrix coefficients of local representations,
and estimates relating to the Voronŏı summation problem for GLn, to
name a few.

In Section 2, we describe how irreducible, admissible representations
of GLn(F ) are classified and then go on to give a full account of our
main result. This classification assumes the least amount of necessary
information in order to give a completely explicit formula. In Section 3,
we give a uniform proof of our main result for the quasi-square-integrable
representations (see Proposition 2.2); these representations are used
as building blocks to arrive at the general case. Lastly, in Section 4,
we provide a detailed analysis of the terms ∆χ(π) and δχ(π) as found
in (1.1).

2. An explicit formula for twisted conductors. Here, we give
full details of the formula proposed in (1.1). We first describe the
formula for quasi-square-integrable representations of GLn(F ), which is
then used to build the result in its full generality.

2.1. The Langlands classification for GLn(F ). Let AF (n) denote
the set of (equivalence classes of) irreducible, admissible representations
of GLn(F ). The natural building blocks that describe AF (n) are the
quasi-square-integrable representations; these are the π ∈ AF (n) for
which there exists an α ∈ R such that | · |απ has square-integrable
matrix coefficients on GLn(F ) modulo its center.

The ‘Langlands classification’ (due to Berstein and Zelevinsky, in
this case) describes the structure of each representation in the graded
ring

AF =
⊕
n≥1

AF (n)

in terms of the subset S G F of quasi-square-integrable representations.
By [24, Theorems 9.3, 9.7], we deduce an addition law � on S G F , by
which S G F generates a free commutative monoid Λ. The classification
is then the assertion that there is a bijection between AF and the
semi-group of non-identity elements in Λ, thus endowing AF with the
addition law �. Crucially, the maps (AF ,� ) → (C, · ), given by
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applying L- or ε-factors, are homomorphisms of semi-groups (see [22,
Section 2.5] for their definitions). Both expositions [14, 22] provide
excellent background on this topic.

The upshot of this classification is that, for any π ∈ AF (n), there
exists a unique partition n1 + · · ·+ nr = n alongside a collection of
quasi-square-integrable representations πi ∈S G F ∩AF (ni) for 1≤ i≤ r
such that

(2.1) π = π1 � · · ·�πr

and, for any quasi-character χ of F×, we have

(2.2) a(χπ) = a(χπ1) + · · ·+ a(χπr).

Equation (2.2) follows from the definition of the conductor a(π) via the
ε-factor in (3.2). Recall, too, that, for a quasi-character χ of F×, the
conductor a(χ) is defined to be the least non-negative integer such that
χ(o× ∩ (1 + pa(χ))) = {1}, where o is the ring of integers of F and p⊂ o
the unique maximal ideal.

2.2. The formula for quasi-square-integrable representations.

Definition 2.1. An irreducible, admissible representation π of GLn(F )
is called twist minimal if a(π) is the smallest of the integers a(χπ) as χ
varies over the quasi-characters of F×.

Recall that, for a quasi-character χ of F×, define its conductor a(χ)
to be the least non-negative integer such that χ(UF (a(χ))) = {1}. For
quasi-square-integrable representations, the notion of twist-minimality
is sufficient to give an exact formula for the conductor of their twist.

Proposition 2.2. Let π be an irreducible, admissible, quasi-square-
integrable representation of GLn(F ), and let χ be a quasi-character of
F×. Then:

(2.3) a(χπ)≤max{a(π), na(χ)}

with equality in (2.3), whenever π is twist minimal or a(π) 6= na(χ).

We defer our proof of Proposition 2.2 until Section 3.4.
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Remark 2.3. In practice, those π ∈S G F ∩AF (n) which are not twist
minimal may be handled as follows. Tautologically, write π = µπmin,
where µ is a quasi-character of F× and πmin is twist minimal. Then,
Proposition 2.2 implies that

a(χπ) = max{a(πmin), na(χµ)}.

In particular, if a(πmin)< a(π), then n | a(π).

We briefly mention the conductor formula of Bushnell, Henniart
and Kutzko [3, Theorem 6.5] for GLn×GLm-pairs of supercuspidal
representations. There, they deploy the full structure theory of
supercuspidal representations to prove a detailed identity relating the
conductor to the respective inducing data of the given supercuspidal
representations. However, this formula is difficult to apply in practice.
Indeed, our own Proposition 2.2 may be derived from their work.
Comparing the m= 1 case of [3] to our present result, our formula is
simpler and uniformly holds on the larger set S G F . This set contains
not only the supercuspidal representations, but also, for example, the
special representations, for which Proposition 2.2 recovers the known
formula of Rohrlich [16, page 18]. Accordingly, we give an elementary
proof of Proposition 2.2. This promotes our observation that the subset
of twist minimal elements in S G F contains sufficient and necessary
information to explicitly determine the conductor of any twist.

The arguments of Section 3.4 also lead to a proof of the following
result on the central character.

Proposition 2.4. Let π be an irreducible, admissible, quasi-square-
integrable representation of GLn(F ) with central character ωπ. Then

(2.4) a(ωπ)≤ a(π)

n
.

Remark 2.5. The central character of a quasi-square-integrable repre-
sentation has a relatively small conductor. In general, highly ramified
central characters arise due to the components in a given π1 � · · ·�πr
for r ≥ 2. For this reason, such representations should be handled
separately, as is distinguished in this work.
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2.3. The general formula. We arrive at our main result, having
defined the necessary set of properties of the representations in AF in
order to give a complete and explicit formula for the conductor of their
twists.

Theorem 2.6. Let π be an irreducible, admissible representation
of GLn(F ) given in terms of quasi-square-integrable representations
πi of GLni(F ), as described in (2.1), where n = n1 + · · · + nr and
π = π1 � · · ·�πr. Let χ be a quasi-character of F×. Then:

a(χπ) = a(π) + ∆χ(π)− δχ(π),

where ∆χ and δχ are semi-group homomorphisms (AF ,� )→ (Z≥0,+),
defined by their values on the representations πi ∈S G F as follows:

∆χ(πi) =

{
max{nia(χ)− a(πi), 0} if a(χ) 6= a(µi)

0 if a(χ) = a(µi),

and

δχ(πi) =

{
a(πi)−max{a(πmin

i ), nia(χµi)} if a(χ) = a(µi)

0 if a(χ) 6= a(µi),

where πmin
i is twist minimal and µi a quasi-character of F× such that

we may write πi = µiπ
min
i .

Remark 2.7. As exhibited in the following proof, both terms ∆χ(π)
and δχ(π) are non-negative for any choice of π and χ.

Proof. Applying Proposition 2.2 to the formula in (2.2), we obtain

(2.5) a(χπ) =

r∑
i=1

max{a(πmin
i ), nia(χµi)}.

We now use the basic fact that, for two quasi-characters, µ and χ of
F×, we have

(2.6) a(χµ)≤max{a(χ), a(µ)}

with equality in (2.6) whenever a(χ) 6=a(µ). In particular, if a(χ) 6=a(µi)
for a given 1≤ i≤ r, then, by Proposition 2.2 and (2.6), the respective
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summand in (2.5) is equal to

max{a(πmin
i ), nia(χµi)}= max{a(πi), nia(χ)}.

This determines the dominant term ∆χ(πi), which is non-negative
by construction. The interference term δχ(πi) describes the cases for
which a(χ) = a(µi), when the assertion that δχ(πi)≥ 0 follows from the
inequality a(πi)≥max{a(πmin

i ), nia(χµi)}. �

Remark 2.8. In the special case n = 2, we prove Theorem 2.6 [4,
Lemma 2.7]. In general, one should understand the non-vanishing of
δχ(π) as rarely occurring, whereas ∆χ(π) describes the dominant or
“usual” behavior of a(χπ). We make these statements explicit in a
quantitative sense in subsection 4.2.

Corollary 2.9. Let π = π1 � · · · � πr and χ be as in Theorem 2.6
with πi = µiπ

min
i for twist minimal representations πmin

i . Define
the ‘totally minimal’ representation πtot = πmin

1 � · · ·� πmin
r , and let

Ωχ(π) = {1≤ i≤ r : a(πi)> nia(χ)}. Then:

(2.7) a(πtot)≤ a(χπ)≤ a(π) + a(χ)

(
n−

∑
i∈Ωχ(π)

ni

)
.

Proof. The lower bound of (2.7) follows immediately from (2.2) and
(2.5). On the other hand, for i ∈ Ωχ(π), we have ∆χ(πi) = δχ(πi) = 0,
by definition, noting that πi = πmin

i in the case a(χ) = a(µi). The
upper bound now follows from using Proposition 2.2 to coarsely bound
a(χπi)≤ a(πi) +nia(χ) for i /∈ Ωχ(π). �

Proof of inequality (1.3). We recover Bushnell and Henniart’s bound
(1.3) using Corollary 2.9. If a(χ)> a(π), then a(χπ) = na(χ) by (2.5).
On the other hand, if a(χ)≤ a(π), then (1.3) is a special case of (2.7)
since we have Ωχ(π) 6= ∅ and each ni ≥ 1. �

3. Conductors of twists via division algebras. In this section,
we provide proofs for Propositions 2.2 and 2.4. These results uniformly
apply to all quasi-square-integrable representations as is reflected in
our proof. In particular, our conductor formula bypasses many of the
complications occurring in the formula for supercuspidal representations
given in [3].
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3.1. Notation and definition of the conductor. Let π denote
an irreducible, admissible representation of GLn(F ). Denote by π̃
the contragredient representation and ωπ the central character of π,
respectively.

3.1.1. The non-archimedean local field. We denote by o the ring
of integers of F ; p the maximal ideal of o; $ a choice of uniformizing
parameter, that is, a generator of p; and q = #(o/p). Let |x| denote
the absolute value of x ∈ F , normalized so that |$|= q−1 and vF the
valuation on F defined via |x| = q−vF (x). We define a basis of open
neighborhoods UF (m) of 1 in UF (0) = o× by UF (m) = 1 +$mo for
m> 0. Let K = GLn(o) and, for each m≥ 0, let K1(m) be the subgroup
of K stabilizing the row vector (0, . . . , 0, 1), from the right, modulo pm.

3.1.2. The floor and ceiling functions. For α ∈ R, let bαc denote
the floor of α, defined via bαc=m if and only if m∈Z and m≤α<m+1.
Similarly, let dαe denote the ceiling of α, defined via dαe=m′ if and
only if m′ ∈ Z and m′ − 1 < α ≤ m′. Then, bαc = dαe if and only if
α ∈ Z.

3.1.3. Epsilon constants and the conductor. Here, we define the
integer a(π) as the conductor of π. Let ψ be an additive character of F ,
and define the exponent of ψ by n(ψ) := min{m : ψ|pm = 1}. Godement
and Jacquet proved the existence of ε-factors ε(s, π, ψ)∈C[q−s, qs] in [7,
Theorem 3.3 (4)]. Applying the local functional equation of Godement
and Jacquet twice, we obtain

(3.1) ε(s, π, ψ)ε(1− s, π̃, ψ) = ωπ(−1).

Hence, ε(s, π, ψ) is a unit in C[q−s, qs], that is, a C×-constant multiple
of an integral power of q−s. Explicitly, using [7, (3.3.5)] we deduce

(3.2) ε(s, π, ψ) = ε(1/2, π, ψ) q(a(π)−n(ψ)n)(1/2−s),

in which the conductor a(π) is implicitly defined. By the local
Langlands correspondence for GLn(F ), proven in [8], the conductor a(π)
coincides with the Artin conductor of an n-dimensional Weil-Deligne
representation. A fundamental property of ε-factors is that

ε(s, χπ, ψ) =

r∏
i=1

ε(s, χπi, ψ) for π = π1 � · · ·�πr,



AN EXPLICIT CONDUCTOR FORMULA FOR GLn ×GL1 1101

as in (2.1) (see [7, Theorem 3.4]). This observation proves (2.2) by
applying (3.2). Moreover, if π is generic, the conductor a(π) may be
interpreted in terms of newform theory, as we now explain.

3.1.4. Conductors of generic representations and newform
theory. Each representation in S G F is generic. Indeed, by showing so
for the regular representation of GLn(F ) of the fixed central character,
Jacquet showed that all discrete series representations are generic [9,
Theorem 2.1 (3)]. By the Langlands classification, any π ∈ AF (n) is
generic (or “non-degenerate”) if and only if π is equivalent to the
(irreducible) representation parabolically induced from the external
tensor product π1 � · · ·� πr of GLn1

(F )× · · · ×GLnr(F ) associated
to n1 + · · ·+ nr (by [24, Theorem 9.7 (a)]). The elements of S G F

corres-pond to those irreducible representations with r = 1.

Assume that π ∈AF (n) is generic. Then, the conductor a(π) may
be equivalently constructed in a language more familiar to the theory
of automorphic forms: let us re-define the conductor a(π) of π to
be the least non-negative integer m such that π contains a non-zero
K1(m)-fixed vector.

The fundamental theorem of newform theory is that the space of
K1(a(π))-fixed vectors is one dimensional. This theorem is due to
Gelfand and Každan [6] in the present context. The coincidence of the
definitions for a(π), given in subsections 3.1.3 and 3.1.4, is proven by
Jacquet, Piatetski-Shapiro and Shalika [11, Theorem (5)].

3.2. Central simple division algebras. Let D be a division algebra
over F of dimension [D : F ] = n2. Let Nrd = NrdD denote the reduced
norm on D. (See [12, subsection 4.1] for a pleasant construction.) Any
valuation on D may be obtained via composing the reduced norm with
a valuation on F (see [20, Theorem 1.4]); let us normalize such a choice
by vD = vF ◦Nrd.

3.2.1. Unit groups. Define a basis of neighborhoods of 1 ∈ D× by
UD(m) = {x ∈D× : vD(x−1)≥m} for m> 0, and let UD(0) = ker(vD).
Note that, if n= 1 (so that D = F ), we recover UD(m) = UF (m). It is
an important fact that the norm map

Nrd: D× −→ F×
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is surjective (see [23, page 195, Proposition 6] for instance). Upon
restriction to the above neighborhoods, for each m ≥ 0, we have
Nrd(UD(m)) = UD(m)∩F .

Lemma 3.1. For m≥ 0, we have the following :

(i) UD(m)∩F× = UF (dm/ne);
(ii) Nrd(UD(m)) = UF (dm/ne).

Proof. To prove (i), note that, for all a ∈ F×, we have

vD(a) = vF (Nrd(a)) = vF (an) = nvF (a).

The definition of UF (dm/ne) is then equivalent to that of the intersection.
Now (ii) follows by applying (i) to Nrd(UD(m)) = UD(m)∩F . �

3.2.2. The level of a representation of D×. If χ is a quasi-character
of F× and π′ an irreducible, admissible representation of D×, analogous
to the unramified case, we form the twist χπ′ = (χ ◦Nrd)⊗π′. Define
the level l(π′) of π′ to be the least non-negative integer m such that
π′|UD(m) acts trivially. The notion of an ε-factor, as well as a conductor
a(π′), is defined by Godement and Jacquet [7], mutatis mutandis as in
subsection 3.1.3.

Lemma 3.2. Let π′ be an irreducible, admissible representation of D×.
The conductor a(π′) is related to the level l(π) by the formula

a(π′) = l(π′) +n− 1.

Proof. This is proven in [12, subsection 4.3] and explicitly stated
in [12, (4.3.4)]. To assist with (mathematical) translation, we remark
on the following: their unit groups Vj equal our UD(j) for j ≥ 0. Fix
their element χ ∈ Hom(Vj/Vj+1,C×) to be the restriction of π′ to Vj
where j = l(π′)−1. Then, their c∈D, “der Kontrolleur von χ,” satisfies
vD(c) =−a(χ) =−a(π′); it is constructed in [12, (4.3.1)], from where
we have vD(c) =−n−j, noting the non-triviality of χ on Vj . Altogether,
this implies a(π′) = n+ j = n+ l(π′)− 1. �

Lemma 3.3. Let χ be a quasi-character of F×. Then:

l(χ ◦Nrd) = na(χ)−n+ 1.
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Proof. By Lemma 3.1 (ii), consider χ restricted to UF (dm/ne) for
each m≥ 0 as this set is equal to the image of UD(m) under Nrd. By the
minimality of a(χ), the character χ ◦Nrd is trivial on UD(m) whenever

(3.3) n(a(χ)− 1)≤m− 1.

By the minimality of the level, we have equality in (3.3) when m =
l(χ ◦Nrd). �

3.3. The Jacquet-Langlands correspondence for division alge-
bras. This special case of functoriality stipulates a bijection between
the following:

• the set of equivalence classes of irreducible, admissible represen-
tations of GLn(F ), with unitary central character, which are square-
integrable modulo center. These are precisely the square-integrable
elements of S G F ∩AF (n).

• The set of equivalence classes of irreducible, admissible representa-
tions of D× with unitary central character, where D is a central-simple
F -algebra of dimension n2.

Remark 3.4. In the above bijection, if π corresponds to π′, then their
central characters agree: ωπ = ωπ′ . Moreover, χπ corresponds to χπ′

for any quasi-character χ. As a consequence of the Peter-Weyl theorem,
the irreducible representations of D× are finite dimensional (since D×

is compact modulo center).

The correspondence as stated here is due to Rogawski [15, Theo-
rem 5.8], where the original case n= 2 was famously proven by Jacquet
and Langlands [10]. The most general statement allows one to replace
D× with GLm(D), where D has dimension d2 and m must satisfy
n=md. This is established in [5] by Deligne, Kazhdan and Vignéras.

3.4. The main proofs. Here, we provide a stand-alone proof of
Proposition 2.2, our main result in the quasi-square integrable case.
Assume the hypotheses and notation of Propositions 2.2 and 2.4, in
particular, π ∈S G F .

3.4.1. Proof of Proposition 2.2. The following lemma reduces the
proof to the case where π is square-integrable.
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Lemma 3.5. For all quasi-characters χ with a(χ) = 0, we have
a(χπ) = a(π).

Proof. Let m≥ 0. The space πK1(m) of K1(m)-fixed vectors in π is
non-zero if and only if (χπ)K1(m) 6= {0}. Since π ∈S G F , both π and
χπ are generic, and so, a(π) = min{m≥ 0 : πK1(m) 6= 0}= a(χπ). �

Henceforth, we assume π to be square-integrable. The generalized
Jacquet-Langlands correspondence implies a(χπ) = a(χπ′), where π′ is
the irreducible, admissible, unitary representation of D× associated to
π as determined by [15, Theorem 5.8]. The proof of Proposition 2.2
now follows by applying Lemmas 3.2 and 3.3 to the following.

Lemma 3.6. Let π′ be an irreducible, admissible, unitary representation
of D× and χ a quasi-character of F×. Then:

(3.4) l(χπ′)≤max{l(π′), l(χ ◦Nrd)}

with equality in (3.4) whenever π′ is twist minimal or l(π′) 6= l(χ◦Nrd).

Proof. By definition, (χπ′)(x) = χ(Nrd(x))π′(x) for every x ∈ D×.
We immediately obtain (3.4) by minimality. Equality also follows in the
given cases, noting that twist minimality in a(π′) is equivalent to twist
minimality in l(π′) since they are linearly related (by Lemma 3.2). �

3.4.2. Proof of Proposition 2.4. Taking m= l(π′) in Lemma 3.1 (i)
and using the formula of Lemma 3.2, we deduce that

a(ωπ)≤
⌈
l(π′)

n

⌉
<
a(π)−n+ 1

n
+ 1 =

a(π) + 1

n
.

Thus, we infer that na(ωπ)≤ a(π), as required. �

4. Characters preserving the conductor under twisting. The
goal of this section is twofold: in subsection 4.1, we count the number
of characters χ such that a(χπ) is equal to a given integer. Then, in
subsection 4.2, we explicitly analyze the behavior of the dominant and
interference terms of Theorem 2.6. These questions are motivated by
their applications to analytic number theory.

4.1. Sets of twist-fixing characters.
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4.1.1. Characters of a given conductor. The valuation vF defines
a split exact sequence

1−→ o× −→ F×
vF−→Z−→ 1.

We thus write any quasi-character χ on F× as χ(x) = χ′(x)q−vF (x)α for
some α ∈ C and a character χ′ of F× such that χ′($) = 1. We denote
the space of such χ′ by X so that the unitary dual of o× satisfies ô×∼=X.
With interest in characters that fix the conductor under twisting, we
define the following X-subsets:

(4.1)
X(k) = {χ ∈ X : a(χ)≤ k};
X′(k) = {χ ∈ X : a(χ) = k}

and

(4.2) X′π(k, j) = {χ ∈ X : a(χ) = k and a(χπ) = j}

for some k, j ≥ 0.

Our present point of departure is to count the number of characters
contained in X′π(k, j). We first consider the cardinalities of X(k) and
X′(k).

Lemma 4.1. For each k ≥ 1, #X(k) = qk−1(q − 1), #X′(1) = q − 2,
and for k ≥ 2, #X′(k) = qk−2(q− 1)2.

Proof. Consider the subgroup series

{1}= X(0)≤ X(1)≤ · · · ≤ X(k)≤ X.

For k ≥ l ≥ k/2≥ 1, we have

X(k)/X(l)∼=UF (l)/UF (k)∼=o/pk−l.

In particular, taking l = k − 1 and noting X(1)∼=(o/p)×, we induc-
tively count the given cardinalities. The number #X′ is obtained by
subtraction. �

We remark that, in [4, Lemmas 2.1, 2.2] we counted the elements
χ ∈ X′(k) for which a(χµ) remains fixed for a given µ ∈ X′(k),
characterizing the existence of such elements as q becomes small. In
the present work, we consider a “nonabelian” variant of this result by
characterizing the set X′π(k, j).
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4.1.2. Character twists of a given conductor. Suppose that π ∈
S G F ∩AF (n) so that Proposition 2.2 applies. For integers k, j ≥ 0, if
either π is twist minimal or k 6= a(π)/n, then

(4.3) X′π(k, j) =

{
X′π(k) if j = max{a(π), nk}
∅ if j 6= max{a(π), nk}.

The cases considered in (4.3) are special cases of the following lemma.

Lemma 4.2. For each π ∈S G F ∩AF (n), write π = µπmin for a twist
minimal representation πmin. For integers j, k≥ 0, we have X′π(k, j) =∅
unless a(πmin)≤ j ≤max{a(π), nk}, in which case

(4.4) #X′π(k, j)≤#X

(⌊
j

n

⌋)
.

Proof. If either π is minimal or k 6= a(π)/n, then the lemma follows
by (4.3). Hence, assume that a(π) = kn and π = µπmin, where πmin is
twist minimal with a(πmin)< a(π) and µ ∈ X′(k). Then, X′π(k, j) = ∅
unless a(πmin) ≤ j ≤ nk. In this case, if there exists a χ ∈ X′(k) such
that max{a(πmin), na(χµ)}= j, then there are #X(bj/nc) of them, as
we must have χ ∈ µ−1X(bj/nc). �

More generally, Lemma 4.2 may be assembled to describe all of
AF (n).

Corollary 4.3. Let π ∈ AF (n). For integers j, k ≥ 0, we have
X′π(k, j) = ∅ if j > a(π) +nk. Write π = π1 � · · ·�πr as in (2.1)

(i) For each 1≤ i≤ r, if πi is either minimal or a(πi) 6= kni, then

#X′π(k, j)≤#X

(⌊
j

n

⌋)
;

(ii) otherwise, define the set of indices Ψk(π)⊂ {1, . . . , r} such that
i∈Ψk(π) if and only if a(πi) =nik and a(πmin

i )<a(πi), where πmin
i is a

minimal representation satisfying πi =µiπ
min
i . Then, for any i′ ∈Ψk(π),

we have

#X′π(k, j)≤#X

(⌊
1

ni′

(
j−

∑
i/∈Ψk(π)

nik−
∑

i∈Ψk(π)

{i′}a(πmin
i )

)⌋)
.
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Proof. The bound j > a(π) + nk is derived from the fact that
a(χπ) ≤ a(π) + na(χ) for any χ ∈ X (see Corollary 2.9). Now,
suppose that a(χ) = k and a(χπ) = j. By Proposition 2.2, we have
a(χπi) = max{a(πi), nik} for all i /∈Ψk(π). In particular, for χ ∈ X′(k),
we have that a(χπ) = j if and only if

(4.5) j =
∑

i∈Ψk(π)

a(χπi) +
∑

i/∈Ψk(π)

max{a(πi), nik}.

Then, if Ψk(π) = ∅ for each χ ∈X′(k), as in case (i), we have a(χπ) = j
for each χ, given (4.5) holds. Moreover, since j ≥ kn, we obtain
#X′π(k, j)≤#X(bj/nc), as claimed. Otherwise, choose i′ ∈Ψk(π), as
in case (ii). If a(χπ) = j, then a(χπi′) = j′, where we define

j′ = j−
∑
i 6=i′

a(χπi).

Then, the number of χ ∈ X′(k) such that a(χπi′) = j′ is at most
#X(bj′/ni′c) by Lemma 4.2, whence we deduce the claim. �

4.2. The leading and interference terms. Here, we detail the
asymptotic behavior of ∆χ(π) and δχ(π). Our first port of call
is to describe the rarity with which the interference term satisfies
δχ(π) 6= 0. The next lemma directly follows from the definition of δχ(π)
in Theorem 2.6.

Lemma 4.4 (Absence of interference). Let π be an irreducible, ad-
missible representation of GLn(F ) written, as in (2.1), in terms of
irreducible, quasi-square-integrable representations, π = π1 � · · ·� πr.
Recall that πi ∈S G F is a representation of GLni(F ) for 1≤ i≤ r. Let
χ be a quasi-character of F×.

(i) We have δχ(π) = 0 if ni - a(πi) for each 1≤ i≤ r.
(ii) Suppose that ni | a(πi) for some 1 ≤ i ≤ r. Then, δχ(πi) = 0,

whenever a(πi) 6= nia(χ).

(iii) Suppose that a(πi) = nia(χ) for some 1≤ i≤ r. Then, δχ(πi) = 0
if and only if a(χµi) = a(χ), where πi =µiπ

min
i is written as the µi-twist

of a minimal representation πmin
i .

Proof. Recall that δχ(πi)=a(πi)−max{a(πmin
i ), nia(χµi)} for a(χ)=

a(µi), and vanishes otherwise. If ni - a(πi), then a(πi) = a(πmin
i ) ≥
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nia(µi)≥ nia(χµi) for each 1≤ i≤ r. This proves (i). For (ii), we let
ni | a(π). If a(πmin

i ) = a(πi), we argue as in (i). Else, a(πi) = nia(µi) =
nia(χ) when δχ(πi) 6= 0, as claimed. The vanishing of δχ(πi) in (iii)
is characterized by the condition nia(χ) = max{a(πmin

i ), nia(χµi)} for
a(χ) = a(µi). If nia(χ) = a(πmin

i ), we again argue as in (i), forcing the
remaining condition a(χµi) = a(χ). �

Corollary 4.5 (Dominant behavior). In each case of Lemma 4.4 for
which χ and π= π1� · · ·�πr satisfy δχ(π) = 0, we have the “dominant”
conductor formula

(4.6) a(χπ) =

r∑
i=1

max{a(πi), nia(χ)}.

Our final task is to quantify the rarity of δχ(π) = 0, as in Lemma 4.4.

Lemma 4.6 (Regularity of interference). Let π = π1 � · · · � πr as
in (2.1). Suppose that χ ∈ X and that, for some 1 ≤ i ≤ r, we have
δχ(πi) 6= 0. Write πi = µiπ

min
i as per Lemma 4.4 (iii). Then, for each

0< j ≤ a(πi)− a(πmin
i ) satisfying j ≡ a(πi) modni, there are precisely

(4.7) #X

(
a(πi)− j

n

)
characters χ ∈ X such that δχ(πi) = a(πi) − j. The number of
χ ∈ X(a(πi)/n) satisfying δχ(πi) = a(πi) is

(4.8) (q− 2)×#X

(
a(πi)

n
− 1

)
.

Proof. The number in (4.7) is determined by the necessity that

χ ∈ µ−1
i X

(
a(πi)− j

n

)
.

Similarly, we count up to the number in (4.8) by observing that
χ ∈ X(a(πi)/ni), but χ is not an element of X((a(πi)/ni) − 1) nor
µ−1
i X((a(πi)/ni)− 1). �
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ENDNOTES

1. Inequality (1.3) is a special case of both [2, Theorem 1] and our
main result, Theorem 2.6. (See also Corollary 2.9 for a more precise
inequality.)
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représentations du groupe linéaire, Math. Ann. 256 (1981), 199–214.

12. H. Koch and E.-W. Zink, Zur Korrespondenz von Darstellungen der Galois-
gruppen und der zentralen Divisionsalgebren über lokalen Körpern (der zahme Fall),
Math. Nachr. 98 (1980), 83–119.

13. P. Nelson, A. Pitale and A. Saha, Bounds for Rankin-Selberg integrals and
quantum unique ergodicity for powerful levels, J. Amer. Math. Soc. 27 (2014),

147–191.

14. D. Prasad and A. Raghuram, Representation theory of GL(n) over non-

Archimedean local fields, ICTP Lect. Notes 21 (2008), 159–205.



1110 ANDREW CORBETT

15. J. Rogawski, Representations of GL(n) and division algebras over a p-adic

field, Duke Math. J. 50 (1983), 161–196.

16. D. Rohrlich, Elliptic curves and the Weil-Deligne group, Elliptic curves and
related topics, CRM Proc. Lect. Notes 4 (1994), 125–157.

17. A. Saha, On sup-norms of cusp forms of powerful level, ArXiv e-prints

(2014).

18. , Hybrid sup-norm bounds for Maass newforms of powerful level,
ArXiv e-prints (2015).

19. , Large values of newforms on GL(2) with highly ramified central
character, Int. Math. Res. Not. (2016), 4103–4131.

20. J.-P. Tignol and A. Wadsworth, Value functions on simple algebras, and
associated graded rings, Springer (2015).

21. J. Tunnell, On the local Langlands conjecture for GL(2), Invent. Math. 46

(1978), 179–200.

22. T. Wedhorn, The local Langlands correspondence for GL(n) over p-adic
fields, ICTP Lect. Notes 21 (2008), 237–320.

23. A. Weil, Basic number theory, Grundlehren der Math. Wiss. 144, Springer,
Berlin (1967).

24. A. Zelevinsky, Induced representations of reductive p-adic groups, II, On
irreducible representations of GL(n), Ann. Sci. Ecole Norm. 13 (1980), 165–210.

Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen, Germany

Email address: andrew.corbett@uni-goettingen.de


