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Abstract 41 
 42 
Objective 43 
The effectiveness of intracranial electroencephalography (iEEG) to inform epilepsy surgery depends 44 
on where iEEG electrodes are implanted. This decision is informed by noninvasive recording 45 
modalities such as scalp EEG. Herein we propose a framework to interrogate scalp EEG and 46 
determine epilepsy lateralization to aid in electrode implantation. 47 
 48 
Methods 49 
We use eLORETA to map source activities from seizure epochs recorded from scalp EEG and 50 
consider 15 regions of interest (ROIs). Functional networks are then constructed using the phase-51 
locking value and studied using a mathematical model. By removing different ROIs from the 52 
network and simulating their impact on the network’s ability to generate seizures in silico, the 53 
framework provides predictions of epilepsy lateralization. We consider 15 individuals from the 54 
EPILEPSIAE database and study a total of 62 seizures. Results were assessed by taking into account 55 
actual intracranial implantations and surgical outcome. 56 
 57 
Results 58 
The framework provided potentially useful information regarding epilepsy lateralization in 12 out of 59 
the 15 individuals (𝑝 = 0.02, binomial test).  60 
 61 
Conclusions 62 
Our results show promise for the use of this framework to better interrogate scalp EEG to determine 63 
epilepsy lateralization. 64 
 65 
Significance 66 
The framework may aid clinicians in the decision process to define where to implant electrodes for 67 
intracranial monitoring.    68 
 69 
 70 
Highlights 71 

• Computational modelling is combined with scalp EEG to assess epilepsy lateralization. 72 
• Our approach proved useful in informing lateralization in 12 out of 15 individuals studied.  73 
• The framework proposed may be used to aid deciding where to implant intracranial 74 

electrodes.  75 
 76 

Keywords (max 6):  77 
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1 Introduction 88 
 89 
According to the World Health Organization, an estimated fifty million people worldwide have 90 
epilepsy. Approximately one third do not respond to anti-epilepsy drugs and are therefore potential 91 
candidates for epilepsy surgery (Kwan and Brodie, 2000). Surgery aims to resect the epileptogenic 92 
zone (EZ) (Rosenow and Lüders, 2001); the brain area that is necessary and sufficient for the 93 
generation of seizures. An evaluation to determine the location of this brain area precedes the 94 
surgical procedure (Duncan et al., 2016). Several brain imaging modalities may be employed in this 95 
evaluation, namely scalp electroencephalography (EEG) and magnetic resonance imaging (MRI) at 96 
an initial stage, possibly followed by other multimodal neuroimaging techniques (see Figure 1 in 97 
Duncan et al., 2016). In particular, intracranial EEG (iEEG) is usually used to complement or clarify 98 
information obtained from noninvasive modalities (Jayakar et al., 2016). There is a variety of 99 
different iEEG techniques (see Table 4 in Jayakar et al., 2016), which should be selected according to 100 
the available information extracted from noninvasive data, semiology, and clinical history (Jayakar et 101 
al., 2016). One key decision is whether to place electrodes in one brain hemisphere or both. This is 102 
frequently not straightforward. For example, up to 68% of unilateral-onset seizures may show 103 
bilateral onset on scalp EEG in mTLE (mesial temporal lobe epilepsy), the most common form of 104 
epilepsy (Alarcón et al., 2001). Ictal scalp EEG may even suggest false lateralization (Adamolekun et 105 
al., 2011). A poor lateralization hypothesis based on noninvasive modalities may lead to an incorrect 106 
placement of intracranial electrodes, which in turn may make surgery ill-advised and potentially 107 
unsuccessful if performed (Jayakar et al., 2016).    108 
 109 
Many computational methods have been proposed in the last two decades to aid clinicians in 110 
identifying epilepsy lateralization using different noninvasive recording modalities, such as scalp 111 
EEG (Caparos et al., 2006; Verhoeven et al., 2018), MRI (Keihaninejad et al., 2012; Pustina et al., 112 
2015), and MEG (Wu et al., 2018). Most of these methods aimed to build classifiers using data-113 
driven approaches. For example, Cantor-Rivera et al. (2015) used support vector machines to build a 114 
classifier based on diffusion tensor imaging to identify people with TLE. Verhoeven et al. (2018) 115 
used functional networks estimated in different frequency bands to build a classification system 116 
based on Random Forests classifiers. Indeed, machine learning is an attractive tool to build data-117 
driven classifiers (Jordan and Mitchell, 2015). Although such data-driven methods may in some 118 
cases achieve high classification power, they lack a description of the fundamental mechanisms 119 
underpinning the phenomena under consideration. They also require sufficiently large datasets, which 120 
are often not available. Furthermore, machine learning usually relies on manual labelling of training 121 
data, which may be error-prone and time consuming. In the case of epilepsy lateralization, a data-122 
driven approach is unable to describe the mechanisms that may cause the generation of seizures in 123 
one hemisphere, making it hard to interpret its predictions together with other clinical information.  124 
 125 
In contrast, recent studies have used mathematical models of epilepsy to better interrogate iEEG data 126 
and make predictions for epilepsy surgery (Goodfellow et al., 2016; Sinha et al., 2017; Jirsa et al. 127 
2017). In these studies, iEEG was either used to construct functional brain networks (Goodfellow et 128 
al., 2016; Sinha et al., 2017), or to validate model parameters (Jirsa et al. 2017). Computational 129 
simulations then allowed to make predictions of which brain regions were more likely to be the EZ. 130 
Herein we sought to explore whether such methodology when applied to scalp EEG may aid in 131 
determining epilepsy lateralization and may be used to inform intracranial electrode implantation. We 132 
used 15 individuals from EPILEPSIAE (a European epilepsy database comprising long-term 133 
continuous EEG data) (Ihle et al., 2012) and studied a total of 62 seizures. All patients had iEEG, 134 
received surgery, and their postsurgical outcome was known. We used exact low-resolution brain 135 
electromagnetic tomography (eLORETA) to map source activities from seizure epochs (Pascual-136 
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Marqui, 2007, 2009), and mapped them into a predefined list of 15 regions of interest (ROIs) that 137 
were selected according to their established importance across epilepsy syndromes. We then 138 
constructed functional networks using the phase-locking value (Tass et al., 1998; Lachaux et al., 139 
1999; Mormann et al., 2000). Finally, the networks were studied using a canonical model of 140 
ictogenicity (Lopes et al., 2017) and lateralization was inferred based on the concept of node 141 
ictogenicity (Goodfellow et al., 2016; Lopes et al., 2017). This measure assesses the importance of 142 
different brain regions in the ability of the network to generate seizures. Our results showed that our 143 
scalp EEG based predictions were more likely to be concordant with the performed surgery when the 144 
individual had a positive postsurgical outcome and were more often discordant or inconclusive when 145 
the individual had a poor outcome. 146 
 147 

2 Methods  148 

2.1 Data  149 

We studied 15 individuals from EPILEPSIAE (Ihle et al., 2012). We used three criteria to choose 150 
these individuals: (i) had both intracranial and scalp EEG recordings; (ii) received surgery; and (iii) 151 
had at least 12 months follow-up. We used these criteria so that we could compare predictions from 152 
scalp EEG with the placement of implanted electrodes and use postsurgical outcome as a validation 153 
for whether our predictions could have added value in presurgical evaluation. Each case had a 154 
different electrode implantation scheme, which included grid, strip and depth electrodes. 5 155 
individuals had a bilateral electrode implantation. Scalp EEG was recorded using the 10-20 system 156 
for electrode placement. The standard 19 channels were considered (T1, T2, FP1, F7, FP2, F3, F4, 157 
C4, P3, P4, O1, O2, T3, T4, T5, T6, Fz, Cz, C3, F8, and Pz). 10 individuals achieved a positive 158 
postsurgical outcome (Engel class Ia and Ib), and 5 had a poor outcome (Engel class IIa and IIIa). 159 
Table 1 contains a summary of the clinical details relevant for this study, namely the foci identified 160 
from intracranial EEG and surgery localization. 161 
 162 
For each individual, we selected from the available scalp EEG data up to 5 seizures according to the 163 
following criteria: a seizure had to be at least 1h apart from other seizures or subclinical events and 164 
be at least 16 seconds long. The first criterion aimed at increasing the chance of analyzing 165 
independent and informative seizures. For example, two succeeding seizures may be less informative, 166 
as the second may be provoked by the first, and therefore predictions based on the two seizures may 167 
not be independent. The second criterion was used to make sure we had enough data samples per 168 
seizure for subsequent analysis. In individuals with more than 5 seizures, we selected the first 5 that 169 
obeyed the criteria. We considered 62 seizures in total, with an average seizure duration of 170 
102.9±52.5 seconds. Table 1 indicates the number of seizures considered per individual.  171 
 172 
EEG data was recorded at sampling rates of 256, 512, and 1024 Hz. For consistency, all data were 173 
down-sampled to 256 Hz. Furthermore, we applied a broadband (1-25 Hz) band-pass filter (fourth-174 
order Butterworth filter with forward and backward filtering to minimize phase distortions. This 175 
frequency band contains the traditional clinical frequency bands (delta, theta, alpha, and most of beta 176 
(Buzsaki, 2016)), while avoiding high frequencies which may be corrupted with muscle electrical 177 
activity (Whitham et al., 2007). 178 

2.2 Source mapping 179 

For each seizure considered, cortical source mapping was performed using the Fieldtrip toolbox 180 
(Oostenveld et al., 2011; http://www.ru.nl/neuroimaging/fieldtrip). The Montreal Neurological 181 
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Institute 'ICBM152_2016' average MRI (Mazziotta et al., 2001) implemented in the Brainstorm 182 
software (Tadel et al. 2011) was used to develop a 3-layer boundary element method head model 183 
(Fuchs et al. 2002) and a 8004 voxel cortical source space limited to the grey matter cortical surface. 184 
Use of template models has previously been demonstrated to perform well compared to individual 185 
models derived from MRI (Fuchs et al., 2002). Dipoles were oriented normal to the surface of the 186 
cortical sheet (Hassan et al., 2014).  187 
 188 
We used exact low-resolution brain electromagnetic tomography (eLORETA) to solve the inverse 189 
problem and reconstruct source activity at each of the 8004 source points (Pascual-Marqui, 2007, 190 
2009). eLORETA is a linear, regularized, weighted minimum norm inverse solution with 191 
theoretically exact zero error localization even in the presence of structured biological or 192 
measurement noise (Pascual-Marqui, 2007). It has been shown to be appropriate for the study of 193 
whole brain phase synchronization (Pascual-Marqui et al., 2011; Finger et al., 2016), and the 194 
LORETA family of solutions has been validated against numerous imaging modalities (Dierks et al., 195 
2000; Vitacco et al., 2002; Mulert et al., 2004; Pizzagalli et al., 2004; Zumsteg et al., 2005, 2006; 196 
Olbrich et al., 2009) and simulations (Pascual-Marqui et al., 2011; Finger et al., 2016). 197 

2.3 Regions of Interest 198 

The human EEG captures signals that arise from postsynaptic potentials generated in regions of the 199 
cerebral cortex (Olejniczak, 2006; Cohen, 2017). These regions need to be sufficiently large to 200 
produce measurable signals (6-30 cm2) (Rose and Ebersole, 2009). Due to volume conduction, EEG 201 
scalp potentials reflect a time-dependent sum of activity from many cortical regions. Finding 202 
individual regions from ongoing EEG is therefore ill-posed, and neuroanatomical assumptions are 203 
needed to obtain plausible solutions (Michel et al., 2004). Here, we selected a set of neuroanatomical 204 
ROIs for EEG source mapping that are relevant for epilepsy. Although epilepsy can arise from 205 
multiple different neuroanatomical regions, there is a set of core areas that appear to be affected 206 
across epilepsy syndromes (Richardson, 2012; O’Muircheartaigh and Richardson, 2012; Besson et 207 
al., 2017). These regions can be mapped onto three intrinsic “attentional networks”: the default mode 208 
network, the salience network, and the frontoparietal control network (Besson et al., 2017; Pittau et 209 
al. 2012; de Campos et al., 2016). Table 2 specifies these networks, the brain areas involved, and the 210 
respective regions of interest (ROIs) identified in the Desikan-Killiany atlas (Desikan et al., 2006). 211 
Note that due to the intrinsically low spatial resolution of EEG, we fused some of the midline ROIs 212 
(see the ROIs identified with an asterisk in Table 2). We consider 15 ROIs in total.  213 
 214 
Parcellation was performed by taking the first principal component of all source points within a given 215 
ROI in order to construct a single time series for that ROI (Hassan and Wendling, 2018; Tait et al. 216 
2019). For eLORETA solutions, which constrain spatial smoothness and are low resolution, the 217 
activity of local voxels is highly correlated. The time course of the first principal component of all 218 
voxels in the ROI is a single time series whose value at each time point is minimally different to the 219 
activity of all voxels, i.e. it accounts for a maximal spatial variance.   220 

2.4 Functional network 221 

Following the procedure above, for each considered seizure epoch we obtained 15 time series 222 
describing the seizure dynamics within the selected ROIs. We then divided the time series in 223 
consecutive nonoverlapping segments of 16 seconds (4096 data samples, a choice that is a 224 
compromise between needing a sufficient number of samples for further analysis, being a power of 2 225 
for computational efficiency, and signal stationarity (Rummel et al., 2015)). Functional networks 226 
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were constructed from each segment (15 ROIs x 4096 data samples) using the Phase Locking Value 227 
(PLV) (Tass et al., 1998; Lachaux et al., 1999; Mormann et al., 2000; Le Van Quyen et al., 2001; 228 
Aydore et al., 2013). ROIs were considered as network nodes, and weight connections between pairs 229 
of ROIs 𝑖 and 𝑗 were calculated as 230 

𝑃𝐿𝑉+, =
1
𝑁/
01𝑒+3456(89)
;<

=>?

0 231 

 232 
where 𝑁/ is the number of samples (𝑁/ = 4096), and Δ𝜙+,(𝑡=) is the instantaneous phase difference 233 
between the time series from ROI 𝑖 and 𝑗 at time 𝑡=. These phase differences were computed using 234 
the Hilbert transform. We then excluded spurious connections by comparing the PLV values to other 235 
PLV values computed from surrogate time series. We generated 99 surrogates from the signals of the 236 
ROIs using the iterative amplitude-adjusted Fourier transform (IAAFT) with 10 iterations (Schreiber 237 
and Schmitz, 1996, 2000) and computed 99 PLV values of every pair of ROIs. PLV values from the 238 
original ROIs that did not exceed the 95% significance level compared to the corresponding PLV 239 
values from the surrogates were rejected. Thus, the functional networks considered in this study are 240 
weighted and correspond to the matrices of statistically significant PLV values. 241 

2.5 Mathematical model 242 

To study the importance of different ROIs to the network’s ability to generate seizures, we placed a 243 
canonical mathematical model of ictogenicity at each network node (Goodfellow et al., 2016; Lopes 244 
et al., 2017, 2018, 2019). Within the model, nodes’ activity was described by a phase oscillator 𝜃+. 245 
Two states were defined: ‘resting state’ when the oscillator fluctuated close to a fixed stable phase 246 
𝜃(/) and a ‘seizure state’ corresponding to a rotating phase. Oscillators’ time dependence was 247 
described by the theta model (Lopes et al., 2017, 2018, 2019): 248 

𝜃Ġ = (1 − cos 𝜃+) + (1 + cos 𝜃+)𝐼+(𝑡) 249 
where 𝐼+(𝑡) is the input current received by node 𝑖 at time 𝑡. This current comprised noise and the 250 
interaction with other oscillators in the network: 251 

𝐼+(𝑡) = 𝐼O + 𝜉(+)(𝑡) +
𝐾
𝑁1𝑎,+

+S,

[1 − cos(𝜃, − 𝜃(/))] 252 

where 𝐼O + 𝜉(+)(𝑡) represents Gaussian noise, 𝐾 is a global scaling factor of the network’s 253 
interaction, 𝑁 is the number of nodes (𝑁 = 15), and 𝑎,+ is the 𝑗, 𝑖th entry of the weighted adjacency 254 
matrix representing the functional network. The noise aims to account for signals coming from 255 
remote brain regions outside of the functional network under consideration. This model describes a 256 
saddle-node on invariant circle (SNIC) bifurcation at 𝐼+ = 0, which separates the resting state (𝐼+ < 0) 257 
and the seizure state (𝐼+ > 0). This simple model has been shown to approximate the interaction 258 
between neural masses (Lopes et al., 2017). Parameters were chosen according to previous studies 259 
(Lopes et al. 2017, 2018, 2019): 𝐼O = −1.2 and noise standard deviation 𝜎 = 0.6. The global scaling 260 
factor 𝐾 was used as a free parameter (see section 2.6). 261 

2.6 Node Ictogenicity 262 

To measure the relative importance of each ROI to the network’s ability to generate seizures, we 263 
computed the Node Ictogenicity (𝑁𝐼) (Goodfellow et al., 2016, Lopes et al. 2017, 2019). The 𝑁𝐼 264 
concept was first introduced in (Goodfellow et al., 2016), and it quantifies the effect of removing 265 
nodes on the networks ability to generate seizures. In turn, the networks ability to generate seizures 266 
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can be measured using the concept of Brain Network Ictogenicity (𝐵𝑁𝐼), which is the fraction of time 267 
that the network spends in the seizure state (Petkov et al., 2014): 268 

𝐵𝑁𝐼 = 	
1
𝑁1

𝑡/]
(+)

𝑇
+

 269 

where 𝑡/]
(+) is the time that node 𝑖 spends in the oscillatory state during a total simulation time 𝑇 (we 270 

used 𝑇 = 4 × 10`, as in (Lopes et al., 2019); see Lopes et al. (2017) for more details on the 271 
calculation of 𝑡/]

(+)). 𝑁𝐼 was then calculated as  272 

𝑁𝐼(+) =
𝐵𝑁𝐼abc − 𝐵𝑁𝐼ad/8

(+)

𝐵𝑁𝐼abc
 273 

where 𝐵𝑁𝐼abc is 𝐵𝑁𝐼 prior to node removal, and 𝐵𝑁𝐼ad/8
(+)  is 𝐵𝑁𝐼 after the removal of node 𝑖. As in 274 

our previous works, we selected the parameter 𝐾 such that 𝐵𝑁𝐼abc = 0.5 (Goodfellow et al., 2016; 275 
Lopes et al. 2017, 2019). 𝐵𝑁𝐼ad/8

(+)  is typically equal or smaller than 𝐵𝑁𝐼abc, depending on whether 276 
the node 𝑖 contributes to seizure generation. If the removal of node 𝑖 stops the network from 277 
generating seizures (𝐵𝑁𝐼ad/8

(+) = 0), then 𝑁𝐼(+) = 1, whereas if it plays no role in seizure generation 278 
(𝐵𝑁𝐼ad/8

(+) = 𝐵𝑁𝐼abc), then 𝑁𝐼(+) = 0. In this study we were interested in identifying the ROIs with 279 
the highest 𝑁𝐼. 280 

2.7 Lateralization  281 

To extract a prediction based on our framework of which brain hemisphere is more likely to contain 282 
the epileptogenic zone, we identified the ROIs with highest 𝑁𝐼. The maximum 𝑁𝐼 resected as 283 
computed from intracranial EEG functional networks has been shown to be able to predict 284 
postsurgical outcome (see Figure 4b in Goodfellow et al., 2016). Given that we obtained functional 285 
networks for each 16-second segment of each seizure, we first found the ROIs that consistently 286 
presented higher 𝑁𝐼 within single seizures. Furthermore, since we analyzed multiple seizures per 287 
individual, we then gathered together one predicted ROI per seizure. Finally, a consensus analysis 288 
was performed by which the most frequent ROI across seizures was identified. In cases where two or 289 
more ROI located in both hemispheres were identified as equally frequent, we defined the prediction 290 
as inconclusive. These ROIs are then compared to the placement of electrode implantation, the 291 
surgery localization, and patient postsurgical outcome (see Table 1). Figure 1 summarizes the key 292 
steps of our methods.   293 
 294 

3 Results  295 

The 𝑵𝑰 framework described in the Methods has been shown to be able to extract relevant 296 
information from iEEG in the context of epilepsy surgery (Goodfellow et al., 2016, Lopes et al., 297 
2017, 2018). Here we aimed to explore whether the same framework could yield useful information 298 
for presurgical evaluation when applied to source mapped data from scalp EEG using relevant ROIs. 299 
As summarized in Figure 1, our methods consisted in (i) mapping cortical sources using eLORETA 300 
applied to scalp EEG, (ii) parcellating the sources into ROIs, (iii) inferring functional networks, and 301 
(iv) computing 𝑵𝑰 to determine lateralization. Note, however, that in this preliminary study we do 302 
not attempt to localize the specific brain region responsible for seizure generation. On one hand we 303 
do not expect source mapping based on 19-channel EEG to have sufficient spatial resolution for this 304 
purpose, and on the other hand the specific region targeted by surgery is not indicated in the 305 
EPILEPSIAE database. 306 
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 307 
Figure 2 shows the ROIs identified in two individuals using our framework. Individual FR 253 had a 308 
bilateral intracranial electrode implantation, received surgery on the right hemisphere and the 309 
individual achieved seizure freedom (Engel class Ia). Application of the 𝑵𝑰 framework identified the 310 
regions in the right hemisphere (superior parietal and supramarginal regions) in line with the 311 
performed surgery. In this case, our methods could suggest that a bilateral electrode implantation had 312 
been unnecessary, and instead an implantation on the right hemisphere could have sufficed. In 313 
contrast, individual FR 273 had intracranial electrodes implanted on the left hemisphere, surgery 314 
targeted the left hemisphere, and the individual continued to experience seizures after the surgery 315 
(Engel class IIIa). In this case, the 𝑵𝑰 framework applied to scalp EEG was unable to lateralize the 316 
epileptogenic zone, i.e. it identified regions in both hemispheres. This result might indicate a bilateral 317 
implantation of intracranial electrodes, which could help determine whether a single epileptogenic 318 
zone was located in the left or right hemisphere, or whether there were multiple epileptogenic zones.  319 
 320 
 321 
Similar interpretations to those derived from Figure 2 were applied individually to the 15 patients 322 
considered in this study (see the Supplementary Figure 1 and Supplementary Table 1). Our results are 323 
summarized in the two columns on the right of Table 3. Predictions were classified as either 324 
concordant if in agreement with the performed surgery, discordant if not in agreement with the 325 
performed surgery, and inconclusive if unable to lateralize the responsible area for the seizures. The 326 
value of a prediction being concordant, discordant or inconclusive was considered to depend on 327 
whether the performed surgery achieved a good postsurgical outcome. We therefore summed the 328 
different types of prediction stratified by postsurgical outcome. Figure 3 shows that in good outcome 329 
individuals, 6 of our predictions were concordant with the performed surgeries, 2 were discordant 330 
and 2 were inconclusive. In contrast, in bad outcome individuals the predictions were only 331 
concordant in one individual and inconclusive and discordant in the remaining individuals. In 332 
general, the framework could provide potentially useful information for all individuals except the 2 333 
discordant good outcome individuals and the one concordant bad outcome individual (red slices in 334 
the figure).  335 
 336 
We tested the hypothesis of whether our results could be obtained by chance, namely whether the 337 
fraction of potentially useful predictions (12 out of 15) could be achieved by a random predictor and 338 
found a p-value of 0.02 (binomial test). Thus, our results are statistically significant at the 339 
significance level of 0.05.  340 
 341 
4 Discussion  342 
In this study we posed the question as to whether a previously proposed framework to interrogate 343 
iEEG to inform epilepsy surgery could be extended to assess scalp EEG with the aim of improving 344 
its value in the presurgical decision-making process, particularly in inferring epilepsy lateralization. 345 
The framework to explore iEEG data (Goodfellow et al., 2016) consisted in building a functional 346 
network from the data and examine it by placing a mathematical model of epilepsy into the network. 347 
Computer simulations of the model then enabled to study the effect of different node removals from 348 
the network on the overall propensity of the network to generate seizure dynamics in silico. The 349 
framework was validated in a cohort of 16 patients that underwent epilepsy surgery, and it showed 350 
that patients who had a good postsurgical outcome received surgeries that aligned better with optimal 351 
surgeries as predicted by the framework than patients who did not. Similarly, here we applied the 352 
framework to source mapped data from scalp EEG of 15 individuals who received epilepsy surgery 353 
(EPILEPSIAE database). Source activity was inferred using eLORETA, and sources were parcellated 354 
into 15 ROIs belonging to the default mode network, the salience network, and the frontoparietal 355 
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control network (see Table 2). These networks were chosen as they have been found to play a role 356 
across different epilepsy syndromes (Richardson, 2012; O’Muircheartaigh and Richardson, 2012; 357 
Besson et al., 2017). For each individual, we studied up to 5 different seizures (see Table 1) and 358 
extracted conclusions based on a consensus analysis of the most ictogenic ROIs identified from each 359 
seizure. We divided the patients into two groups: good postsurgical outcome (Engel class Ia and Ib) 360 
and poor postsurgical outcome (Engel class IIa and IIIa). In good postsurgical outcome cases, we 361 
expected that most of our predictions should agree with the location of resection in the performed 362 
surgery. Indeed, in 6 out of 10 individuals who had good outcome the framework identified ROIs 363 
with the highest ictogenicity in the operated brain hemisphere. In the other 4 individuals in this group 364 
the framework was either inconclusive (2/10) or discordant (2/10) compared to the actual performed 365 
surgery. Note that inconclusive cases could potentially become conclusive by adding more seizure 366 
epochs to the analysis. If such ambiguity would remain, this could be interpreted as advising the use 367 
of bilateral iEEG, which could in turn disambiguate these results from noninvasive EEG. In contrast, 368 
in the poor outcome group, only 1 out of 5 individuals received surgery with resection location 369 
concordant with the lateralization predicted by our framework. Given that for this group we would 370 
expect that the performed surgeries would disagree with the framework predictions, we have to 371 
acknowledge a number of further confounding factors. First, even if lateralization was correctly 372 
identified during presurgical evaluation, this does not guarantee that the surgery should be successful, 373 
as it may have not targeted the EZ, or may not have removed a sufficient portion of it. Also, overlap 374 
between the EZ and eloquent cortex could have limited the extent of the surgical resection. For the 375 
other 4 individuals with bad outcome, the framework was inconclusive in 2 and discordant with the 376 
performed surgery in the other 2. As above, the inconclusive cases could potentially be 377 
disambiguated by considering more seizure epochs or could indicate the use of bilateral iEEG 378 
monitoring. Interestingly, in all 4 cases where our framework was inconclusive (in both good and bad 379 
outcome cases), all these individuals did not have bilateral implanted iEEG, but at least in the 2 bad 380 
outcome cases could have potentially benefited from it. Bilateral electrode implantation was used in 5 381 
individuals (see Table 1), 4 with good postsurgical outcome and 1 with bad postsurgical outcome. 382 
The framework was concordant with 3 of the surgeries performed in the good postsurgical outcome, 383 
suggesting that the bilateral implantation could have been avoided in these cases. In the bad outcome 384 
case with bilateral iEEG (FR 1073), the framework was discordant with the performed surgery, 385 
suggesting that a more careful mapping of the left hemisphere could have been valuable.  386 
 387 
A number of data-driven approaches have been explored to build classifiers of epilepsy lateralization 388 
from scalp EEG (Caparos et al., 2006; Verhoeven et al., 2018). In Caparos et al. (2006), the authors 389 
observed that nonlinear correlation coefficients were higher on the side where seizures started, and 390 
this could be used as a marker of seizure lateralization. More recently, Verhoeven et al. (2018) 391 
produced the first automatic tool for diagnosis and lateralization of temporal lobe epilepsy using 392 
scalp EEG and machine learning. As we commented in the Introduction, such methods may achieve 393 
good classification, but their results may be difficult to interpret at an individual basis and together 394 
with other clinical information given that their output is usually binary. A more mechanistic 395 
description such as the one proposed here opens avenues to integrate information from different data 396 
modalities and may be more helpful in the decision-making process during presurgical evaluation.   397 
 398 
The results of our study are potentially confounded by a number of factors. We acknowledge that the 399 
dataset used in this work is small. Whilst we aim for person-specific predictions, valid for use in pre-400 
surgical planning, larger data sets would help us to more accurately quantify the percentage of people 401 
for whom the framework is expected to be useful. As more data becomes publicly available, future 402 
studies will facilitate this. Furthermore, as more data is added into the analysis, more tailored 403 
predictions may be possible, by taking into account possible confounding factors such as epilepsy 404 
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syndrome and epilepsy duration. More data will also provide the opportunity to optimize the 405 
preliminary methodology presented here. For example, here we examined scalp EEG in a broad 406 
frequency band between 1 and 25 Hz. Results could potentially be improved using other frequency 407 
bands (Schmidt et al., 2014). More seizure epochs per individual would also be useful, as it would 408 
enable a more robust analysis. This would enable to examine the variability in lateralization. Such 409 
analysis is crucial to determine the value of any biomarker, as it has been recently exemplified in the 410 
case of HFOs (Gliske et al., 2018). Future studies should also consider using other data segments 411 
other than seizures. For example, it may be tested whether our framework could be applied to 412 
functional networks inferred from interictal epileptiform discharges (IEDs). Coito et al. (2016) have 413 
inferred functional connectivity from IEDs and showed that people with temporal lobe epilepsy have 414 
reduced connectivity in the default mode network compared to healthy controls. The two 415 
methodologies could be merged, and results could be compared using IEDs and seizure epochs. 416 
Furthermore, here we decided to study 15 ROIs from the default mode network, the salience network, 417 
and the frontoparietal control network. A bias towards temporal epilepsies cannot be excluded, but 418 
these networks may be a useful first approach. Future studies may explore other networks and 419 
different numbers of ROIs. It would also be worth exploring how predictions change according to the 420 
number of electrodes considered in scalp EEG. It has been shown that higher electrode densities 421 
enable a more accurate source localization (Lu et al., 2012). This would allow us to consider and 422 
compare denser ROI parcellations, and potentially better resolve midline parcellations which in the 423 
current approach comprise one third of all ROIs considered, but do not provide information on 424 
epilepsy lateralization. Finally, in this study we used a template head model for source mapping. 425 
Although it has been shown that template models perform well compared to individual models 426 
constructed from MRI (Fuchs et al., 2002), the use of personalized head models may further optimize 427 
our framework. 428 
 429 

5 Conclusions 430 
 431 
In summary, our results show promise that a framework based on functional networks inferred from 432 
scalp EEG and their analysis by the use of computational models of ictogenicity may be informative 433 
in the presurgical evaluation process, particularly for deciding the placement of intracranial EEG 434 
electrodes. It may also be useful in resource-poor countries, where access to expensive neuroimaging 435 
techniques may be limited (Radhakrishnan, K., 2009), and therefore there is a need to make a better 436 
use of scalp EEG. 437 
 438 

6 References  439 
 440 
Adamolekun, B., Afra, P., and Boop, F. A. (2011). False lateralization of seizure onset by scalp EEG 441 
in neocortical temporal lobe epilepsy. Seizure 20, 494-499. doi: 10.1016/j.seizure.2011.01.019 442 
 443 
Alarcón, G., Kissani, N., Dad, M., Elwes, R. D. C., Ekanayake, J., Hennessy, M. J., et al. (2001). 444 
Lateralizing and localizing values of ictal onset recorded on the scalp: evidence from simultaneous 445 
recordings with intracranial foramen ovale electrodes. Epilepsia 42, 1426-1437. doi: 10.1046/j.1528-446 
1157.2001.46500.x 447 
 448 
Aydore, S., Pantazis, D., and Leahy, R. M. (2013). A note on the phase locking value and its 449 
properties. NeuroImage 74, 231-244. doi: 10.1016/j.neuroimage.2013.02.008 450 
 451 



 

 11 

Besson, P., Bandt, S. K., Proix, T., Lagarde, S., Jirsa, V. K., Ranjeva, J. P., et al. (2017). Anatomic 452 
consistencies across epilepsies: a stereotactic-EEG informed high-resolution structural connectivity 453 
study. Brain 140, 2639-2652. doi: 10.1093/brain/awx181 454 
 455 
Buzsaki, G. (2006). Rhythms of the Brain. Oxford University Press. 456 
 457 
Cantor-Rivera, D., Khan, A. R., Goubran, M., Mirsattari, S. M., and Peters, T. M. (2015). Detection 458 
of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR 459 
imaging. Comput. Med. Imaging Graph 41, 14-28. doi: 10.1016/j.compmedimag.2014.07.002 460 
 461 
Caparos, M., Louis-Dorr, V., Wendling, F., Maillard, L., and Wolf, D. (2006). Automatic 462 
lateralization of temporal lobe epilepsy based on scalp EEG. Clin. Neurophysiol. 117, 2414-2423. 463 
doi: 10.1016/j.clinph.2006.07.305 464 
 465 
de Campos, B. M., Coan, A. C., Lin Yasuda, C., Casseb, R. F., and Cendes, F. (2016). Large‐scale 466 
brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. Hum. Brain 467 
Mapp. 37, 3137-3152. doi: 10.1002/hbm.23231 468 
 469 
Cohen, M. X. (2017). Where does EEG come from and what does it mean?. Trends Neurosci. 40, 470 
208-218. doi: 10.1016/j.tins.2017.02.004 471 
 472 
Coito, A., Genetti, M., Pittau, F., Iannotti, G. R., Thomschewski, A., Höller, Y., et al. (2016). Altered 473 
directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: a high 474 
density EEG study. Epilepsia 57(3), 402-411. doi: 10.1111/epi.13308 475 
 476 
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An 477 
automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based 478 
regions of interest. NeuroImage 31, 968-980. doi: 10.1016/j.neuroimage.2006.01.021 479 
 480 
Dierks, T., Jelic, V., Pascual-Marqui, R. D., Wahlund, L. O., Julin, P., Linden, D. E., et al. (2000). 481 
Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral 482 
EEG-generators in Alzheimer's disease. Clin. Neurophysiol. 111, 1817-1824. doi: 10.1016/S1388-483 
2457(00)00427-2 484 
 485 
Duncan, J. S., Winston, G. P., Koepp, M. J., and Ourselin, S. (2016). Brain imaging in the assessment 486 
for epilepsy surgery. Lancet Neurol. 15:420-33. doi:10.1016/S1474-4422(15)00383-X 487 
 488 
Finger, H., Bönstrup, M., Cheng, B., Messé, A., Hilgetag, C., Thomalla, G., et al. (2016). Modeling 489 
of large-scale functional brain networks based on structural connectivity from DTI: comparison with 490 
EEG derived phase coupling networks and evaluation of alternative methods along the modeling 491 
path. PLoS Comput. Biol. 12, e1005025. doi: 10.1371/journal.pcbi.1005025 492 
 493 
Fuchs, M., Kastner, J., Wagner, M., Hawes, S., and Ebersole, J. S. (2002). A standardized boundary 494 
element method volume conductor model. Clin. Neurophysiol. 113, 702-712. doi: 10.1016/S1388-495 
2457(02)00030-5 496 
 497 
Gliske, S. V., Irwin, Z. T., Chestek, C., Hegeman, G. L., Brinkmann, B., Sagher, O., et al. (2018). 498 
Variability in the location of high frequency oscillations during prolonged intracranial EEG 499 
recordings. Nat. Commun. 9, 2155. doi: 10.1038/s41467-018-04549-2 500 



 12 

 501 
Goodfellow, M., Rummel, C., Abela, E., Richardson, M. P., Schindler, K., and Terry, J. R. (2016). 502 
Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep. 6, 29215. 503 
doi: 10.1038/srep29215 504 
 505 
Hassan, M., Dufor, O., Merlet, I., Berrou, C., and Wendling, F. (2014). EEG source connectivity 506 
analysis: from dense array recordings to brain networks. PloS One 9, e105041. doi: 507 
10.1371/journal.pone.0105041 508 
 509 
Hassan, M., and Wendling, F. (2018). Electroencephalography source connectivity: toward high 510 
time/space resolution brain networks. arXiv preprint arXiv:1801.02549. 511 
 512 
Ihle, M., Feldwisch-Drentrup, H., Teixeira, C. A., Witon, A., Schelter, B., Timmer, J., et al. (2012). 513 
EPILEPSIAE–A European epilepsy database. Comput. Meth. Prog. Bio. 106, 127-138. doi: 514 
10.1016/j.cmpb.2010.08.011 515 
 516 
Jayakar, P., Gotman, J., Harvey, A. S., Palmini, A., Tassi, L., Schomer, D., et al. (2016). Diagnostic 517 
utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia 57, 518 
1735-1747. doi: 10.1111/epi.13515 519 
 520 
Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Gonzalez-Martinez, J., et al. 521 
(2017). The virtual epileptic patient: individualized whole-brain models of epilepsy spread. 522 
NeuroImage 145, 377-388. doi: 10.1016/j.neuroimage.2016.04.049 523 
 524 
Jordan, M. I., and Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. 525 
Science 349, 255-260. doi: 10.1126/science.aaa8415  526 
 527 
Keihaninejad, S., Heckemann, R. A., Gousias, I. S., Hajnal, J. V., Duncan, J. S., Aljabar, P., et al. 528 
(2012). Classification and lateralization of temporal lobe epilepsies with and without hippocampal 529 
atrophy based on whole-brain automatic MRI segmentation. PloS One 7, e33096. doi: 530 
10.1371/journal.pone.0033096 531 
 532 
Kwan, P., and Brodie, M. J. (2000). Early identification of refractory epilepsy. N. Engl. J. Med. 342, 533 
314-319. doi: 10.1056/NEJM200002033420503 534 
 535 
Lachaux, J. P., Rodriguez, E., Martinerie, J., and Varela, F. J. (1999). Measuring phase synchrony in 536 
brain signals. Hum. Brain Mapp. 8, 194-208. doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-537 
HBM4>3.0.CO;2-C 538 
 539 
Le Van Quyen, M., Foucher, J., Lachaux, J. P., Rodriguez, E., Lutz, A., Martinerie, J., et al. (2001). 540 
Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. 541 
Neurosci. Methods 111, 83-98. doi: 10.1016/S0165-0270(01)00372-7 542 
 543 
Lopes, M. A., Richardson, M. P., Abela, E., Rummel, C., Schindler, K., Goodfellow, M., et al. 544 
(2017). An optimal strategy for epilepsy surgery: Disruption of the rich-club?. PLoS Comput. Biol. 545 
13, e1005637. doi: 10.1371/journal.pcbi.1005637 546 
 547 



 

 13 

Lopes, M. A., Richardson, M. P., Abela, E., Rummel, C., Schindler, K., Goodfellow, M., et al. 548 
(2018). Elevated ictal brain network ictogenicity enables prediction of optimal seizure control. Front. 549 
Neurol. 9, 98. doi: 10.3389/fneur.2018.00098 550 
 551 
Lopes, M. A., Goodfellow, M., and Terry, J. R. (2019). A model-based assessment of the seizure 552 
onset zone predictive power to inform the epileptogenic zone. Front. Comput. Neurosci. 13, 25. doi: 553 
10.3389/fncom.2019.00025 554 
 555 
Lu, Y., Yang, L., Worrell, G. A., and He, B. (2012). Seizure source imaging by means of FINE 556 
spatio-temporal dipole localization and directed transfer function in partial epilepsy patients. Clin. 557 
Neurophysiol. 123, 1275-1283. doi: 10.1016/j.clinph.2011.11.007 558 
 559 
Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A probabilistic atlas 560 
and reference system for the human brain: International Consortium for Brain Mapping (ICBM). 561 
Philos. Trans. R. Soc. Lond., B, Biol. Sci. 356, 1293-1322. doi: 10.1098/rstb.2001.0915 562 
 563 
Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., and de Peralta, R. G. (2004). 564 
EEG source imaging. Clin. Neurophysiol. 115, 2195-2222. doi: 10.1016/j.clinph.2004.06.001 565 
 566 
Mormann, F., Lehnertz, K., David, P., and Elger, C. E. (2000). Mean phase coherence as a measure 567 
for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144, 358-568 
369. doi: 10.1016/S0167-2789(00)00087-7 569 
 570 
Mulert, C., Jäger, L., Schmitt, R., Bussfeld, P., Pogarell, O., Möller, H. J., et al. (2004). Integration of 571 
fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-572 
course of brain activity in target detection. NeuroImage 22, 83-94. doi: 573 
10.1016/j.neuroimage.2003.10.051 574 
 575 
Olbrich, S., Mulert, C., Karch, S., Trenner, M., Leicht, G., Pogarell, O., et al. (2009). EEG-vigilance 576 
and BOLD effect during simultaneous EEG/fMRI measurement. NeuroImage 45, 319-332. doi: 577 
10.1016/j.neuroimage.2008.11.014 578 
 579 
Olejniczak, P. (2006). Neurophysiologic basis of EEG. J. Clin. Neurophysiol. 23, 186–189. doi: 580 
10.1097/01.wnp.0000220079.61973.6c 581 
 582 
O’Muircheartaigh, J., and Richardson, M. P. (2012). Epilepsy and the frontal lobes. Cortex 48, 144-583 
155. doi: 10.1016/j.cortex.2011.11.012 584 
 585 
Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J. M. (2011). FieldTrip: open source software for 586 
advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 587 
2011, 156869. doi: 10.1155/2011/156869 588 
 589 
Pascual-Marqui, R. D. (2007). Discrete, 3D distributed, linear imaging methods of electric neuronal 590 
activity. Part 1: exact, zero error localization. arXiv preprint arXiv:0710.3341. 591 
 592 
Pascual-Marqui, R. D. (2009). Theory of the EEG inverse problem. In Tong, S. and Thakor, N.V., 593 
editors. Quantitative EEG analysis: methods and clinical applications. Artech House, Boston, p. 121-594 
140. 595 
 596 



 14 

Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B., et al. (2011). 597 
Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. 598 
Trans. A Math. Phys. Eng. Sci. 369, 3768-3784. doi: 10.1098/rsta.2011.0081 599 
 600 
Petkov, G., Goodfellow, M., Richardson, M. P., and Terry, J. R. (2014). A critical role for network 601 
structure in seizure onset: a computational modeling approach. Front. Neurol. 5:261. doi: 602 
10.3389/fneur.2014.00261 603 
 604 
Pittau, F., Grova, C., Moeller, F., Dubeau, F., and Gotman, J. (2012). Patterns of altered functional 605 
connectivity in mesial temporal lobe epilepsy. Epilepsia 53, 1013-1023. doi: 10.1111/j.1528-606 
1167.2012.03464.x 607 
 608 
Pizzagalli, D. A., Oakes, T. R., Fox, A. S., Chung, M. K., Larson, C. L., Abercrombie, H. C., et al. 609 
(2004). Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Mol. 610 
Psychiatry 9, 393. doi: 10.1038/sj.mp.4001469 611 
 612 
Pustina, D., Avants, B., Sperling, M., Gorniak, R., He, X., Doucet, G., et al. (2015). Predicting the 613 
laterality of temporal lobe epilepsy from PET, MRI, and DTI: A multimodal study. NeuroImage Clin. 614 
9, 20-31. doi: 10.1016/j.nicl.2015.07.010 615 
 616 
Radhakrishnan, K. (2009). Challenges in the management of epilepsy in resource-poor countries. 617 
Nat. Rev. Neurol. 5, 323. doi: 10.1038/nrneurol.2009.53 618 
 619 
Richardson, M. P. (2012). Large scale brain models of epilepsy: dynamics meets connectomics. J. 620 
Neurol. Neurosurg. Psychiatry 83, 1238-1248. doi: 10.1136/jnnp-2011-301944 621 
 622 
Rose, S., and Ebersole, J. S. (2009). Advances in spike localization with EEG dipole modeling. Clin. 623 
EEG Neurosci. 40, 281-287. Doi: 10.1177/155005940904000410 624 
 625 
Rosenow, F., and Lüders, H. (2001). Presurgical evaluation of epilepsy. Brain 124:1683-700. 626 
doi:10.1093/brain/124.9.1683 627 
 628 
Rummel, C., Abela, E., Andrzejak, R. G., Hauf, M., Pollo, C., Müller, M., et al. (2015). Resected 629 
brain tissue, seizure onset zone and quantitative EEG measures: towards prediction of post-surgical 630 
seizure control. PLoS One 10, e0141023. doi: 10.1371/journal.pone.0141023 631 
 632 
Schmidt, H., Petkov, G., Richardson, M. P., and Terry, J. R. (2014). Dynamics on networks: the role 633 
of local dynamics and global networks on the emergence of hypersynchronous neural activity. PLoS 634 
Comput. Biol. 10, e1003947. doi: 10.1371/journal.pcbi.1003947 635 
 636 
Schreiber, T., and Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 637 
77, 635. doi: 10.1103/PhysRevLett.77.635 638 
 639 
Schreiber, T., and Schmitz, A. (2000). Surrogate time series. Physica D 142, 346-382. doi: 640 
10.1016/S0167-2789(00)00043-9  641 
 642 
Sinha, N., Dauwels, J., Kaiser, M., Cash, S. S., Brandon Westover, M., Wang, Y., et al. (2016). 643 
Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 644 
140, 319-332. doi: 10.1093/brain/aww299 645 



 

 15 

 646 
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011). Brainstorm: a user-647 
friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 8. doi: 648 
10.1155/2011/879716 649 
 650 
Tait, L., Stothart, G., Coulthard, E., Brown, J. T., Kazanina, N., and Goodfellow, M. (2019). Network 651 
Substrates of Cognitive Impairment in Alzheimer’s Disease. Clin. Neurophysiol. 130, 1581-1595. 652 
doi: 10.1016/j.clinph.2019.05.027 653 
 654 
Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky,  A., Volkmann, J., et al. (1998). 655 
Detection of n: m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. 656 
Lett. 81:3291. doi: 10.1103/PhysRevLett.81.3291 657 
 658 
Verhoeven, T., Coito, A., Plomp, G., Thomschewski, A., Pittau, F., Trinka, E., et al. (2018). 659 
Automated diagnosis of temporal lobe epilepsy in the absence of interictal spikes. NeuroImage Clin. 660 
17, 10-15. doi: 10.1016/j.nicl.2017.09.021 661 
 662 
Vitacco, D., Brandeis, D., Pascual‐Marqui, R., and Martin, E. (2002). Correspondence of event‐663 
related potential tomography and functional magnetic resonance imaging during language processing. 664 
Hum. Brain Mapp. 17, 4-12. doi: 10.1002/hbm.10038 665 
 666 
Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R., Loveless, S., et al. (2007). 667 
Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz 668 
are contaminated by EMG. Clin. Neurophysiol. 118, 1877-1888. doi: 10.1016/j.clinph.2007.04.027 669 
 670 
Wu, T., Chen, D., Chen, Q., Zhang, R., Zhang, W., Li, Y., et al. (2018). Automatic lateralization of 671 
temporal lobe epilepsy based on MEG network features using support vector machines. Complexity 672 
vol. 8. doi: 10.1155/2018/4325096 673 
 674 
Zumsteg, D., Wennberg, R. A., Treyer, V., Buck, A., and Wieser, H. G. (2005). H215O or 13NH3 675 
PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology 65, 676 
1657-1660. doi: 10.1212/01.wnl.0000184516.32369.1a 677 
 678 
Zumsteg, D., Friedman, A., Wieser, H. G., and Wennberg, R. A. (2006). Propagation of interictal 679 
discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial 680 
foramen ovale electrode recordings. Clin. Neurophysiol. 117, 2615-2626. doi: 681 
10.1016/j.clinph.2006.07.319 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
 694 



 16 

 695 
 696 
 697 
 698 

Patient 
ID 

Gender Age Electrode 
implantation 

focus in intracranial 
EEG 

Surgery 
localization 

Outcome # of sz. 

FR 115  M 34 right temporal mesial right temporal right  Ia 5 
FR 253  F 37 bilateral  (1) temporal mesial left; 

(2) temporal mesial right 
temporal right  Ia 4 

FR 384  F 50 right frontal right frontal right  Ia 4 
FR 442  M 21 right (1) temporal lateral right;  

(2) temporal mesial right 
temporal right  Ia 5 

FR 548  M 17 bilateral  (1) temporal mesial left; 
(2) temporal lateral left 

temporal left  Ia 4 

FR 590  M 18 bilateral  (1) temporal basal left; 
(2) temporal lateral left; 
(3) temporal basal right 

temporal left  Ia 1 

FR 916  M 23 left temporal mesial left temporal left  Ib 5 
FR 958  F 14 left (1) temporal left; 

(2) temporal lateral left 
none  
(no MRI) 

Ia 1 

FR 1096 F 32 bilateral  temporal mesial left temporal left  Ia 5 
FR 1125 F 11 right temporal mesial right temporal right Ia 4 
FR 273  F 3 left (1) temporal mesial left; 

(2) temporal lateral left 
temporal left  IIIa 5 

FR 583  F 22 left temporal lateral left temporal left  IIa 5 
FR 818  F 27 left temporal left temporal left  IIIa 4 
FR 970  M 15 right temporal basal right temporal right  IIa 5 
FR 1073 F 47 bilateral  (1) temporal mesial right; 

(2) temporal lateral right 
temporal right  IIIa 5 

Table 1 699 
Clinical characteristics of the individuals considered in this study. The first column identifies the patients’ ID, the second 700 
indicates their gender (F = female, M=male), and the third their age in years. The electrode implantation column specifies 701 
whether intracranial electrodes were implanted either in the right or in the left hemispheres or both (bilateral). Focus in 702 
intracranial EEG indicates the region or regions that were identified during monitoring (the numbers sort the foci by 703 
importance, with higher numbers denoting regions of lower relevance). Surgery localisation defines the brain region 704 
targeted by the performed surgery (established from an MRI after surgery). The outcome column describes the 705 
postsurgical outcome achieved by each individual according to the Engel classification measured at least 12 months after 706 
surgery. The last column on the right indicates the number of seizures (# of sz.) used in this study that follow the criteria 707 
described in the text.  708 
 709 
 710 
 711 
 712 
 713 
 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
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 724 
 725 
 726 
 727 

Network Brain area Chosen ROI in the Desikan-Killiany atlas 
Default mode network Dorsal medial prefrontal cortex Medial orbito frontal* 

Rostral anterior cingulate Rostral anterior cingulate* 
Lateral frontal cortex (superior 
frontal cortex and inferior frontal 
gyrus) 

Rostral middle frontal* 

Medial parietal cortex (posterior 
cingulate and retrosplenial cortex) 

Precuneus*    

Medial temporal lobe (hippocampus 
and parahippocampal cortices) 

Parahippocampal left  
Parahippocampal right    

Lateral parietal cortex (angular 
gyrus and posterior supramarginal 
gyrus/TPJ) 

Supramarginal left  
Supramarginal right 

Lateral temporal cortex (including 
temporal poles) 

Superior temporal left   
Superior temporal right 

Salience network Dorsal anterior cingulate cortex Caudal anterior cingulate*  
Anterior insulae Insula left 

Insula right 
Frontoparietal control  
network 

Dorsolateral prefrontal cortex Rostral middle frontal* 
Posterior parietal cortex Superior parietal left 

Superior parietal right 
 728 
Table 2 729 
Regions of interest (ROIs) selected for source mapping. The left column presents the brain networks considered, the 730 
middle column the brain areas involved in each network, and the right column the regions that were chosen from the 731 
Desikan-Killiany atlas as representative of these areas for our analysis. The selected ROIs represent a compromise 732 
between mapping regions from the three networks considered and the number of EEG channels used in this study. 733 
Furthermore, deep brain regions were not considered since these are unlikely to be recorded with EEG. Note that ROIs 734 
identified with an * comprised both left and right regions, meaning that we merged them (these were regions close to the 735 
brain’s midline). Note that the rostral middle frontal region appears twice on the right column because it belongs to both 736 
the default mode network and frontoparietal control network.  737 
 738 
 739 
 740 
 741 
 742 
 743 
 744 
 745 
 746 
 747 
 748 
 749 
 750 
 751 
 752 
 753 
 754 
 755 
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 756 
 757 
 758 
 759 

Patient 
ID 

Outcome Electrode 
implantation 

focus in intracranial 
EEG 

Surgery 
localization 

# of sz. Prediction CDI 

FR 115  Ia right temporal mesial right temporal right  5 right C 
FR 253  Ia bilateral  (1) temporal mesial left; 

(2) temporal mesial right 
temporal right  4 right C 

FR 384  Ia right frontal right frontal right  4 right C 
FR 442  Ia right (1) temporal lateral right;  

(2) temporal mesial right 
temporal right  5 left D 

FR 548  Ia bilateral  (1) temporal mesial left; 
(2) temporal lateral left 

temporal left  4 left C 

FR 590  Ia bilateral  (1) temporal basal left; 
(2) temporal lateral left; 
(3) temporal basal right 

temporal left  1 left C 

FR 916  Ib left temporal mesial left temporal left  5 left C 
FR 958  Ia left (1) temporal left; 

(2) temporal lateral left 
none  
(no MRI) 

1 inconclusive  I 

FR 1096 Ia bilateral  temporal mesial left temporal left  5 right D 
FR 1125 Ia right temporal mesial right temporal right 4 inconclusive I 
FR 273  IIIa left (1) temporal mesial left; 

(2) temporal lateral left 
temporal left  5 right D 

FR 583  IIa left temporal lateral left temporal left  5 left C 
FR 818  IIIa left temporal left temporal left  4 inconclusive I 
FR 970  IIa right temporal basal right temporal right  5 inconclusive I 
FR 1073 IIIa bilateral  (1) temporal mesial right; 

(2) temporal lateral right 
temporal right  5 left D 

Table 3 760 
Clinical characteristics of the individuals considered in this study and epilepsy lateralization predicted. As in Table 1, the 761 
first column identifies the patients’ ID. The outcome column describes their postsurgical outcome (we consider Engel Ia 762 
and Ib good outcome, and IIa and IIIa bad outcome). The electrode implantation column specifies whether intracranial 763 
electrodes were implanted either in the right or in the left hemispheres or both (bilateral). Focus in intracranial EEG 764 
indicates the region or regions that were identified during monitoring (the numbers sort the foci by importance, with 765 
higher numbers denoting regions of lower relevance). Surgery localisation defines the brain region targeted by the 766 
performed surgery (established from an MRI after surgery). The next column to the right indicates the number of seizures 767 
(# of sz.) used in this study that follow the criteria described in the text. The column prediction presents the lateralization 768 
as predicted from our framework. Finally, the last column clarifies whether the predictions are concordant (C), discordant 769 
(D) or inconclusive (I) compared to the surgery localization.  770 
 771 
 772 
 773 
 774 
 775 
 776 
 777 
 778 
 779 
 780 
 781 
 782 
 783 
 784 
 785 
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Figures 786 
 787 

 788 
Figure 1 789 
Scheme of the data analysis procedure. (A) 19-channel scalp EEG recordings containing seizures are considered. (B) 790 
Cortical source mapping is performed using eLORETA. (C) 15 ROIs are studied by taking the first principal component 791 
from all sources within the regions. (D) Example time series of the ROIs reconstructed from the signals displayed in (A). 792 
(E) Functional networks are inferred from the signals of the ROIs using the PLV. (F) A computational model of 793 
ictogenicity (the theta model) is employed to simulate dynamics on the networks. (G) Example times series generated 794 
using the theta model on the network (E). (H) The NI is computed by measuring the impact of removing nodes on the 795 
network’s ability to generate seizures in silico. (I) The ROI with the highest NI is identified (colored blue) and the 796 
prediction is compared with intracranial electrode implantation (black dots), performed surgery and postsurgical outcome 797 
(metadata not represented here). The comparison consists of observing whether the ROI with highest NI is in the same 798 
hemisphere where surgery was performed, and whether it is concordant with intracranial electrode placement. The aim is 799 
to observe whether this framework could have added value to the clinical decision-making process of defining where to 800 
implant intracranial electrodes to map the epileptogenic zone.  801 
 802 
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 803 
 804 
Figure 2 805 
Two exemplar applications of the framework to individuals with good and bad postsurgical outcome. (A) Patient FR 253 806 
had a bilateral intracranial electrode implantation (see black dots), and the performed surgery targeted a region in the 807 
right hemisphere (not represented). The patient achieved a good postsurgical outcome (Engel Ia).  Four seizures recorded 808 
from scalp EEG were analyzed using our framework and two candidate regions for resection were identified in the right 809 
hemisphere (superior parietal and supramarginal; regions highlighted in green), concordant with the hemisphere where 810 
surgery was performed. (B) Patient FR 273 had intracranial electrodes implanted in the left hemisphere, and the 811 
performed surgery targeted a region in the left hemisphere. The postsurgical outcome was poor (Engel IIIa). In this case 812 
we studied five seizures and each of them identified a different possible candidate region for resection (regions 813 
highlighted in blue). Such inconclusive result from scalp EEG would support a bilateral electrode implantation. 814 
 815 

 816 
Figure 3 817 
Summary of individual comparison of performed surgeries and framework predictions based on scalp EEG stratified by 818 
postsurgical outcome: (A) good postsurgical outcome individuals and (B) bad postsurgical outcome individuals. 819 
Concordant (discordant) indicates the fraction of individuals for which the framework prediction was concordant 820 
(discordant) with the performed surgery. Inconclusive represents the cases in which the framework was uncapable of 821 
identifying one hemisphere as more likely to contain the epileptogenic zone. Note that we colored the cases where the 822 
framework could be useful with green (concordant in good outcome individuals and discordant in bad outcome 823 
individuals); with red where predictions may be inadequate; and with blue where the predictions were inconclusive (and 824 
therefore potentially useful, particularly in the bad outcome cases).    825 
 826 


