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SUMMARY

The Fungi are a diverse kingdom, dominating terres-
trial environments and driving important ecologies.
Although fungi, and the related Opisthosporidia,
interact with photosynthetic organisms on land and
in freshwater as parasites, symbionts, and/or sapro-
trophic degraders [1, 2], such interactions in the ma-
rine environment are poorly understood [3–8]. One
newly identified uncultured marine lineage has been
named novel chytrid-like-clade-1 (NCLC1) [4] or
basal-clone-group-I [5, 6]. We use ribosomal RNA
(rRNA) encoding gene phylogenies to demonstrate
that NCLC1 is a distinct branch within the Opistho-
sporidia (Holomycota) [7]. Opisthosporidia are a
diverse and largely uncultured group that form a sis-
ter branch to the Fungi or, alternatively, the deepest
branch within the Fungi, depending on how the
boundary to this kingdom is inferred [9]. Using cul-
ture-free lineage-specific rRNA-targeted fluorescent
in situ hybridization (FISH) microscopy, we demon-
strate that NCLC1 cells form intracellular infection
of key diatom species, establishing that intracellular
colonization of a eukaryotic host is a consistent life-
style across the Opisthosporidia [8–11]. NCLC1
infection-associated loss and/or envelopment of
the diatom nuclei infers a necrotrophic-pathogenic
interaction. Diatoms are one of the most diverse
and ecologically important phytoplankton groups,
acting as dominant primary producers and driving
carbon fixation and storage in many aquatic environ-
ments [12–14]. Our results provide insight into the di-
versity of microbial eukaryotes that interact with
diatoms. We suggest that such interactions can
play a key role in diatom associated ecosystem func-
tions, such as the marine carbon pump through
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necrotrophic-parasitism, facilitating the export of di-
atoms to the sediment [15, 16].

RESULTS AND DISCUSSION

An Addition to the Opisthokont Phylogeny
Symbiotic interactions, from parasitism through to mutualism,

influence global biogeochemical processes by shaping microbi-

al community composition and phenology [15, 17]. In marine en-

vironments, parasites have been shown to terminate algal

blooms and drive phytoplankton succession [18, 19] and carbon

sequestration into the deep oceans by killing algae and facili-

tating transit of algal carcasses down the water column

[15, 16]. Diatoms can be one of the most abundant eukaryotic

algae in marine environments [20], but little is known about the

top-down control of these algae, particularly the role of para-

sitism. In freshwater and some marine ecosystems, diatoms

are parasitized by zoosporic fungi, chytrids (fungi that produce

spore cells with a swimming tail) [21–24]. Oomycete protist par-

asites i have also been shown to act as a significant source of

top-down control of toxic diatom bloom species [25]. However,

in many marine ecosystems, the abundance and diversity of

fungi, and their influence on food webs, remain poorly under-

stood [3, 26]. The phylogenetic analyses of small subunit rRNA

encoding gene (SSU rDNA) data demonstrate a diversity of se-

quences branching with chytrids [3, 5]. One environmental

SSU rDNA groupwith weak phylogenetic affinities to known chy-

trids and which has been detected in both the sunlit water col-

umn and deep-sea sediments is the NCLC1 group [4, 5].

The opisthokonts include a huge diversity of eukaryotic

forms but are composed of two major clades: (1) the animals

and their protist relatives (the Holozoa) and (2) the fungi and

their protist relatives (the Holomycota). Understanding the

biodiversity of these groups is important for interpreting

the evolutionary ancestry of these major clades (Figure 1A).

The branching position of the NCLC1 group remains unre-

solved, with some analyses suggesting a weak association

with holozoan taxa [6], while other analysis suggest that this
ber 2, 2019 Crown Copyright ª 2019 Published by Elsevier Ltd. 1
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Figure 1. Phylogeny Assessing the Placement of the NCLC1 SSU rDNA Sequences Relative to the Fungi and Other Opithokonts

(A) Summary of the taxonomy and current best understood evolutionary relationships of the opisthokonts. Major phylogenetic relationships are based upon the

phylogenetic data reported in [27].

(legend continued on next page)
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group branches within the Holomycota [32] close to the Fungi

[5]. Here, we investigated the phylogenetic position of the

NCLC1 cluster by reconstructing maximum-likelihood (ML)

and Bayesian phylogenetic trees including additional SSU

rRNA gene sequences from a range of environmental DNA

studies [5, 6, 33, 34]. NCLC1 sequences were found to branch

sister to the Cryptomycota [35] (known variously as Rozello-

mycota [28], Rozellida [36], Rozellosporidia [7], or short-

branch microsporidia [31]), which includes the genus Rozella.

The NCLC1-Cryptomycota clade branches sister to the Aphe-

lidea, with both relationships weakly supported by bootstrap

analysis (Figure 1B). We recovered moderate bootstrap sup-

port (80%) for the separation of the Holomycota and the Hol-

ozoa, with the NCLC1 phylotypes clustered with the Holomy-

cota. These results suggest that the NCLC1 represents a

newly identified major group that branches with the Opistho-

sporidia and within the Holomycota, consistent with another

analysis [31].

Fluorescent In Situ Hybridization Identification of
NCLC1 Cells
A previous study on fungal molecular diversity in European

coastal waters identified NCLC1-like sequence tags at high rela-

tive abundance compared to true fungal sequence tags at an

Oslofjord (Norway) sampling site [4, 37]. NCLC1-like sequences

were recovered from both large (3–20 mm and 20–1,000 mm) and

small (0.6–3 mm) filtration fractions, suggesting that this group

has a multifaceted life cycle, either coupled to the infection of

larger cells and/or consisting of a larger, possibly multicellular

life-cycle stage [4]. To explore the NCLC1 life cycle in marine en-

vironments, we used fluorescent in situ hybridization (FISH) mi-

croscopy to target cells from fixed filtrates sampled from the

Oslofjord coastal station shown previously to harbor NCLC1

DNA/RNA diversity. Sampling was conducted to recover water

from the sub-surface (1-meter depth) and deep chlorophyll

maximum (DCM; 20-meter depth) fractions. From both depths,

cells were recovered in two ways; water was sequentially filtered

onto two different size-selective filters (0.6–3 mm and 3–20 mm)

and recovered from a plankton net haul with a 1,000 mm pre-

filtration sieve allowing for the recovery of cells in the range of

20–1,000 mm.

We designed three different FISH probes from the SSU V4

rRNA gene region: probe 1 (CHY-NCLC1-01), which is predicted

to target the wider NCLC1 group, including OTU groups 445,

832, 521, 684, 766, and 1012 ([4]; Figure S1) and two probes

(CHY-445-01 and CHY-445-02), which specifically target the

NCLC1 OTU cluster 445, shown to be highly represented at

Oslofjord ([4]; Figure S1). To test each probe, we used two alter-

native negative controls for comparison; these consisted of
(B) Maximum-likelihood phylogenetic tree inferred from an SSU alignment of 200

tutionmodel. For collapsed groups (gray triangles), the values indicate the number

(also named Rozellomycota [28], Rozellida [29], Rozellosporidia [30], and/or sho

angles, respectively. The six representative sequences recovered from the Oslo

order of bootstrap support values (percentages; computed from 100 non-paramt

converged PhyloBayes chains). Code numbers in front of species names are NC

branch leading toM. vibranswas truncated for display purpose. SSU sequences o

form excessively long branches in SSU rRNA gene trees. The phylogenetic tree

estimated substitutions per site. A variant reproduction of this tree is shown in F
either the hybridization buffer without a DNA probe or with the

reverse complement of each probe. In each case, the negative

controls failed to detect candidate cells.

Using the true probes, the FISH approach identified a series

of candidate cells. For all sample types assayed, we observed

the same cell typeswith the three probes in independent hybrid-

ization experiments. The FISH probes identified four variant cell

forms or ‘‘cellular types’’ (Figures 2, 3, and S2), indicative of

detection of either a heterogenous population of microbes or

a target group with multiple life-cycle phases. These cell types

included an extracellular diatom association, intracellular

diatom association, an un-associated, apparently free-living

stage, and a multinucleated structure (also not associated

with diatoms). The different FISH probe types recovered a

similar percentage detection of each cell type and a similar

detection profile (Figures 4A and 4B) across all filters, suggest-

ing that the probes are independently, and consistently, detect-

ing the same target population of cells. None of these or any

other FISH-labeled cell types were identified in the negative

controls.

Identification of NCLC1-Diatom Interactions
One of the four cell types observed using FISH microscopy was

an irregular cellular form found inside a range of putative frus-

tules (exoskeletons) of diatom species (Figures 2A–2F). This

cell-cell association was only recovered in the 20–1,000 mm

plankton net samples. Using bright-field microscopy, we

discriminated the diatom’ frustules from other phytoplankton

species (e.g., dinoflagellates). Using calcofluor white (CFW)

staining, which preferentially labels cellulose and/or chitin cell-

wall structures, e.g., on the surface of thecate dinoflagellates

[18], we further excluded the possibility that NCLC1 was associ-

ating with dinoflagellates or any other cells with chitin-cellulose

cell walls.

For a separate parallel water mass sample taken at the same

time as the FISH samples, the diversity and abundance of the

most abundant planktonic species were identified and counted

using microscopy of samples fixed with Lugol’s solution [40]

(Table S1; Figure S3). The combination of the taxonomic identi-

fications obtained using diatom’ frustule analysis from the FISH

microscopy and species identifications from the fixed-sample

analysis allowed us to identify the taxonomy of the host groups

as Chaetoceros, Skeletonema, Pseudonitzschia, and Leptocy-

lindrus diatoms (Figures 2A–2F).

We counted the number of diatom intracellular associations

observed across the two sample depths (20–1,000 mm plankton

net samples taken from both the surface and DCM water sam-

ples) using the three different probes. In each case, the individual

FISH hybridization experiments were replicated three times each
sequences (1,221 parsimony informative sites) under the GTR+F+R6 substi-

of sequences present in a given group. Aphelidea, NCLC1, and Cryptomycota*

rt-branch microsporidia [31]) are represented by green, blue, and purple rect-

coastal station [4] are colored in red. Numbers on branches are shown in the

eric ML bootstrap replicates) and then posterior probabilities (inferred from two

BI - GenBank identifiers. Each collapsed branch is detailed in Table S4. The

f classically definedmicrosporidia are excluded from this analysis because they

is rooted on an Apusozoa outgroup; the scale bar represents the number of

igure S1 with information about probe specificity annotated on the tree.
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Figure 2. FISH Microscopy Evidence for

NCLC1 Intracellular Associations with

Diatom Phytoplankton

(A) Intracellular infection of Chaetoceros-like di-

atoms, (B) infection of Leptocylindrus-like diatoms,

(C) infection of Pseudonitzschia-like diatoms, (D)

infection of Skeletonema-like diatoms, and (E)

infection of Chaetoceros-like diatoms. Scale bars,

10mm. PI corresponds to nuclear DNA staining with

propidium iodide; green displays cells with a posi-

tive signal for the horseradish peroxidase (HRP)

FISH-labeled probes, with the specific name of the

probe included on each image. BF (bright-field)

corresponds to the transmitted light with differential

interference phase contrast.

(F) 3D confocal reconstruction micrograph dis-

playing an intracellular infection of a Chaetoceros

spp. diatom by NCLC1. Figure S2 contains more

details of this image, including section images

showing the presence of PI staining within the

parasite conglomeration but absent from the

diatom carcass. We used the 3D reconstruction

here and in Figure S2 to investigate the precise

intracellular geography of the NCLC1 cells; these

micrographs show that all DNA-containing com-

partments within the infected cells are surrounded

by the FISH probe, suggesting that they are NCLC1

nuclei. Furthermore, these DNA structures appear

more condensed compared to the nuclei of the

parallel uninfected diatoms present in the filament.

Based on these observations, we hypothesize that

the NCLC1 has consumed the host diatom,

including the nucleus; however, we cannot exclude

the possibility that the NCLC1 cell(s) has encap-

sulated the diatom nucleus. Either interaction

would suggest a parasitic association. Interest-

ingly, these 3D reconstructions suggest that the

intracellular NCLC1 cell is showing properties of

amoeba-like growth; such properties have been

shown for Rozella [38] and Aphelids (e.g., [7]), and

some bona fide fungal chytrids also show amoeba-

like crawling [39]. Some of the micrographs show

internal illumination of the diatom frustule. We note

that (1) we did not see this in any of the negative

controls and (2) the 3D reconstruction demon-

strates that some of this is associated with cellular

amoeba-like extensions of the NCLC1 cell, and (3)

we hypothesize that some of this signal is derived

from the reflection of the strong FISH light signal off

the internal glass structure of diatom frustule.

Importantly, this signal is absent from uninfected

diatom cells next to the infected cells on the same

filament (see Figure S2). Micrographs were ob-

tained using a Confocal Zeiss LSM780microscope.

Putative diatom nuclei are marked with an arrow-

head and are labeled ‘‘dn,’’ and putative NCLC1

nuclei are marked with an arrowhead labeled ‘‘nn.’’

(G) Distribution of different observed extracellular

NCLC1-diatom associations from FISH counts of

the two water samples. Counts were summed per

slide and probe type and then ordered by median

values. Significance testing was performed per

interaction under a corrected binomial test with

blue indicating an adjusted p value >0.05 and red %0.05. Co is abbreviated from Cocconeis sp.; Cy, Cylindrotheca sp.; Go, Gophonema sp.; Rh, Rhizosolenia

sp.; Le/Sk, Leptocynlindrus/Skeletonema sp.; Ch, Chaetoceros sp.; Pn, Pseudonitzschia sp. Box and whisker plots are shown with the outliers excluded

(values more than 1.5x the inter-quartile range from the 1st or 3rd quartile) and are shown as dots. The bottom of the whisker line indicates the minimum, the start

of box is the first quartile, the median line is shown, the 3rd quartile is the top of box, and maximum is the top of the whisker line.

See also Figure S3 and Table S1.
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Figure 3. Merged Epifluorescence Micro-

graphs of Additional NCLC1 Putative Life-

Cycle Stages Detected and a Cartoon

Showing the Inferred Life Cycle of the

NCLC1 Group Identified

(A–F) FISH microscopy evidence for additional pu-

tative life-cycle phases of the NCLC1 cells identi-

fied is shown. The red and green colors correspond

with the nuclear staining with propidium iodide and

the FISH positive signal of the labeled probes,

respectively (probes are named on the bottom

corner of each image). (A–C) putative multinucle-

ated structures and (D–F) putative spore or cyst life

stage or potentially secondary host associations.

The cells identified in (D), (E), and (F) are marked by

sub-compartment localization of the FISH probe,

suggesting either that the cyst cells have an

extensive vacuole or organelle systems or that

these cells represent infections of additional sec-

ondary hosts. Scale bars, 10 mm.

(G) Carton illustration of the putative partial life cycle

of the NCLC1 cluster 445 organisms; these are

surmised from the FISH data presented and

demonstrate (1) attachment to host diatoms, (2)

intracellular invasion (Figures 2 and S2), (3) spread

of NCLC1 between cells in a diatom filament (Fig-

ure S2), (4) release of NCLC1 cells or a secondary

infection (Figures 3D–3F), and (5) NCLC1 multi-

nucleate phase (Figures 3A–3C).
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with three independant counts. These analyses consistently

demonstrated that �2%–8% of the FISH identified cells were

indicative of intracellular infections of diatoms (Figures 4A and

4B; Table S2).

Counterstaining of DNA with propidium iodide demonstrated

that the FISH probe staining often surrounded a DNA structure.

In several of the images, the diatom nucleus was not visible

within the infected cell as a separate entity (Figure 2A, 2B, 2E,

and S2), yet in some cases the diatom nucleus was observed

in uninfected diatom cells residing next to the NCLC1-infected

cell within the diatom filament (Figures 2E and S2). These micro-

scopy results suggest that the DNA structure identified is either

the NCLC1 nucleus/nuclei and that the diatom nucleus is absent,

suggesting, in some cases, that the NCLC1 association is with a

diatom carcass, or, alternatively, that the host diatom nucleus is

actually surrounded by the infecting NCLC1 cell(s) (see Figures

2B, 2D, 2E, and S2, with further rationale outlined in the Figure 2

legend). Either characteristic implies a parasitic interaction; how-

ever, we note that such analyses are complicated by the FISH

process of sampling, which can damage cells, and the limitations

of microscopy, which cannot completely account for cellular
C

structures throughout the z axis of the

microscopic field. These limitations also

prevent quantitative comparisons. None-

theless, these results are consistent with

the hypothesis that NCLC1 cells are pre-

sent within dead diatom cells or diatom

cells with nuclei smothered by the

NCLC1 infection.

In addition to the intracellular associa-

tions identified, the FISH analysis demon-
strated a large proportion of candidate NCLC1 cells positioned

proximate to a diatom cell surface, suggesting an epibiotic (sur-

face-to-surface) association. Three diatom genera were de-

tected in high cell concentrations: Chaetoceros, Skeletonema,

andPseudonitzschia (Table S1; Figure S3). From our FISHmicro-

graphs, we inferred the taxonomic affiliation of the NCLC1-

bearing diatoms based on the bright-field silhouette present on

the filter. These results indicate that the NCLC1 association

was present across a range of diatom hosts, including members

from the most abundant diatom genera identified (i.e., Chaeto-

ceros, Skeletonema, and Pseudonitzschia). We note that the

pattern of epibiotic associations was similar for both surface

and DCM water-column samples (�30%; see Table S2; Figures

4A and 4B), consistent with the detection of similar patterns of

phytoplankton biodiversity present in both samples (Figure S3;

Table S1), a result that suggests that the surface and DCM zones

were highly homogeneous in terms of diatom species commu-

nity composition.

Although this putative extracellular association and, indeed,

the intracellular associations discussed above suggest a symbi-

otic-parasitic interaction between NCLC1 and diatoms, these
urrent Biology 29, 1–9, December 2, 2019 5



Figure 4. Detection Provenance of NCLC1

(A and B) Percentage of different cell types recovered in the FISH analysis from

(A) Sub-surface and (B) DCM depths. The different probes used are listed

across the x axis of (B). The total number of NCLC1 cells identified using each

probe is also listed below the x axis. Mean % shown is derived from inde-

pendent hybridization experiments conducted on three separate filter pieces

per probe. In each case, three independent counts were conducted per filter

piece with a minimum of 200 FISH positive cells observed. Error bars indicate

the standard deviation. See Table S2 for data.

(C) Geographical distribution of NCLC1 and diatoms across the Ocean Sam-

pling Day (OSD) data. Samples where SSU-V4 amplicon sequence variants

(ASV) classified as NCLC1 and diatoms (Bacillariophyta) were detected are

6 Current Biology 29, 1–9, December 2, 2019
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observations could also be the product of filtration, which arti-

factually, but consistently, suggests a physical contact between

abundant diatom species and NCLC1 cells. To test if the

observed NCLC1-diatom extracellular associations were a filtra-

tion artifact, we used conservative Bonferroni-corrected exact

binomial tests with a minimal hypothesized association param-

eter (0.01). This resulted in rejection of a null hypothesis of min-

imal chance interaction between NCLC1 and Chaetoceros spp.

and between NCLC1 and Pseudonitzschia spp. (both intracel-

lular or extracellular diatom associations were counted), regard-

less of probe used (Figure 2G). Collectively, these data suggest

that the NCLC1 group detected is forming a bona fide cellular as-

sociation with multiple diatom species.

To further explore this association, we used the publicly

available 2014 Ocean Sampling Day citizen science [41] pro-

jects’ SSU V4 rRNA gene sequences to examine the co-occur-

rences of NCLC1 amplicon sequence variants (ASVs) with other

eukaryotic ASVs (see Table S3). These data demonstrate that

the detection of NCLC1 was geographically restricted to the

North-East Atlantic and the North Sea (Figure 4C). This consti-

tutes an incomplete and biased sampling profile, but it sug-

gests that NCLC1 is resident in these environments but is

absent and/or undetected from water samples on the western

side of the Atlantic on the date of sampling. This analysis iden-

tifies a relatively low abundance for NCLC1, except for one

sample (OSD-148), which demonstrated an �4% relative abun-

dance of an NCLC1 SSU rRNA gene sequence (Figure 4C and

Table S3). We identified three significant NCLC1 co-occur-

rences within the Ocean Sampling Day data; one association

was between an NCLC1 ASV and a rhizarian ASV, although

we note that sampling of this ASV within the Ocean Sampling

Day dataset had limited reads and so may be an artifact,

even though a significant pseudo p value was recovered

(Table S3). More convincingly, and consistent with the FISH

identification of a NCLC1-diatom association reported here,

we identified two significant co-occurrence patterns between

an NCLC1 and a diatom ASV, providing further support

for this interaction across geographically distributed sites (Fig-

ure 4C; Table S3).

Detection of Additional NCLC1 Life-Cycle Stages
The FISH experiments also detected two additional variant cell

types that were absent from the negative controls and were

not associated with diatoms or an identifiable second-party

cell, suggesting detection of free-living forms of the target

NCLC1 group. This alternative cell type was detected in the

3–20 mm filtrate and the 20–1,000 mm plankton net samples.

Using both specific and general NCLC1 probes, we observed

a multi-nucleated structure (Figures 3A–3C). This structure was

rarely seen in our samples but was detected independently using

all three probes and from samples recovered from both sub-sur-

face and DCM water fractions. Specifically, we identified 0%,

0.47% (±SD 0.55), and 0.35% (±0.41) of all the FISH-detected

cells from the sub-surface water samples and 0.77% (±0.89),
indicated by orange diamonds and purple circles, NCLC1 and diatoms,

respectively. Diamond and circle marker sizes are scaled according to NCLC1

and diatom relative abundance recovered (see key).

See also Table S3.



Please cite this article in press as: Chambouvet et al., Intracellular Infection of Diverse Diatoms by an Evolutionary Distinct Relative of the Fungi, Current
Biology (2019), https://doi.org/10.1016/j.cub.2019.09.074
0%, and 0.3% (±0.41) of all the FISH-detected cells from the

DCMwater samples. These data are consistent with the hypoth-

esis that the putative NCLC1 cells detected form a multi-

nucleate sporangium-like reproductive life-cycle stage. The

low detection rate suggests that this form is rare and/or short-

lived; alternatively, the process of fixation or filtration may have

disrupted thesemulticellular life-cycle stages, making them diffi-

cult to recover.

The second cell type observed was ovoid (length = 7.70 ±

1.08 mm, width = 3.72 ± 0.55 mm, n = 20) or round (diameter =

6.73 ± 0.58 mm, n = 20). These cellular structures are likely to

correspond to either a spore or a cyst life-cycle stage (Figures

3D–3F) or alternatively they may represent an association with

a yet- unidentifiable second host. We identified a high proportion

of these putative life-cycle-stage cells (60%–70%; see Figures

4A and 4B) from both sample depths using the general and spe-

cific NCLC1 probes. CFW staining of the filters coupled with

FISH microscopy demonstrated that all cell types identified did

not possess a detectable cellulose and/or chitin cell wall; how-

ever, we note that the cells sampled possibly represent only a

fraction of the NCLC1 life cycle.

Conclusions
These results demonstrate a hitherto-undetected intracellular

infection of diatoms, an ecologically important group of marine

phytoplankton, including Chaetoceros, Skeletonema, and Pseu-

donitzschia species, that can form blooms in marine waters. The

host range also includes groups responsible for harmful algal

blooms (e.g., Pseudonitzschia spp.). The infectious agent consti-

tutes a phylogenetically unique branch—most likely a distinct

and diverse addition to the Holomycota and possibly the Opis-

thosporidia [7]—adding an additional branch close to the base

of the radiation of the fungal kingdom. The nature of the

NCLC1-diatom interaction is unknown but potentially represents

a parasitic infection, a mutualistic interaction, a saprotrophic

degradation of dead diatoms, or, indeed, an infection that transi-

tions between all three modes of interaction. NCLC1 DNA- and

RNA-derived sequences have been detected in themarine water

column and sediments, suggesting that NCLC1 is active in both

pelagic and benthic environments [4]. As such, the NCLC1 cells

may follow diatom carcasses into the marine sediment as sapro-

trophic degraders of these phytoplankton cells. Consistent with

this later hypothesis, we observe NCLC1 as an intracellular infec-

tion within diatoms with no identifiable nuclei next to diatoms

with identifiable nuclei, consistent with the hypothesis that the

host is dead and/or that the diatom nucleus has been smothered

by NCLC1 cells. We therefore suggest that this interaction repre-

sents a necrotrophic-parasitic interaction followed by a

saprotrophic interaction with Chaetoceros, Skeletonema, and

Pseudonitzschia diatom carcasses. As such, NCLC1 joins an

increasing list of viral (e.g., [42, 43]), protist [2, 24, 25], and fungal

pathogens, including putative chytrid associations [44, 45],

which are hypothesized to infect diatoms and determine the

fate of important phytoplankton blooms.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Sampling

d METHOD DETAILS

B Phytoplankton counts

B Probe design

B Fluorescent in situ hybridization

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Statistical testing of NCLC1-diatom associations

B SSU sequence alignment and phylogenetic tree recon-

struction

B Ocean Sampling Day 2014 and sequence co-occur-

rence analysis

d DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cub.2019.09.074.

ACKNOWLEDGMENTS

The authors are grateful to Vladyslava Hostyeva for phytoplankton counting

and Valentin Foulon for his help with the epifluorescence microscope and

the Cytometry core facilities of LEMAR, Brest. We thank Prof. Keith Gull for

use of TAT1 antibody. A.C. was supported by the ANR project ACHN 2016

PARASED (ANR-16_ACHN_0003). F.M. is supported by Genome Canada via

a Genome Atlantic Postdoctoral Fellowship and a Donald Hill Family Fellow-

ship. A.M. and T.A.R. are funded by the Royal Society through University

Research Fellowships. Parts of this project were supported by the

BiodivERsA ERA-Net project BioMarKs and a Gordon and Betty Moore Foun-

dation MMI Grant (GBMF3307).

AUTHOR CONTRIBUTIONS

A.C., A.M., and T.A.R. conceived and designed the study. A.C. conducted

FISH Microscopy, A.M. and A.C. conducted phylogenetic and Ocean Day

sampling analysis, and F.M. designed and conducted statistical analysis.

B.E. and W.E. conducted marine sampling and conducted plankton counts.

All authors contributed to drafting the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 20, 2019

Revised: July 12, 2019

Accepted: September 30, 2019

Published: November 14, 2019

REFERENCES

1. James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B., Hofstetter, V., Cox,

C.J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., et al. (2006).

Reconstructing the early evolution of Fungi using a six-gene phylogeny.

Nature 443, 818–822.

2. Gleason, F.H., Kagami, M., Lefevre, E., and Sime-Ngando, T. (2008). The

ecology of chytrids in aquatic ecosystems: roles in food web dynamics.

Fungal Biol. Rev. 22, 17–25.

3. Richards, T.A., Jones, M.D.M., Leonard, G., and Bass, D. (2012). Marine

fungi: their ecology and molecular diversity. Annu. Rev. Mar. Sci. 4,

495–522.

4. Richards, T.A., Leonard, G., Mah�e, F., Del Campo, J., Romac, S., Jones,

M.D.M., Maguire, F., Dunthorn, M., De Vargas, C., Massana, R., and
Current Biology 29, 1–9, December 2, 2019 7

https://doi.org/10.1016/j.cub.2019.09.074
https://doi.org/10.1016/j.cub.2019.09.074
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref1
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref1
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref1
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref1
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref2
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref2
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref2
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref3
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref3
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref3
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref4
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref4
http://refhub.elsevier.com/S0960-9822(19)31304-1/sref4


Please cite this article in press as: Chambouvet et al., Intracellular Infection of Diverse Diatoms by an Evolutionary Distinct Relative of the Fungi, Current
Biology (2019), https://doi.org/10.1016/j.cub.2019.09.074
Chambouvet, A. (2015). Molecular diversity and distribution of marine

fungi across 130 European environmental samples. Proc. Biol. Sci. 282,

20152243.

5. Nagahama, T., Takahashi, E., Nagano, Y., Abdel-Wahab, M.A., and

Miyazaki, M. (2011). Molecular evidence that deep-branching fungi are

major fungal components in deep-sea methane cold-seep sediments.

Environ. Microbiol. 13, 2359–2370.

6. Bass, D., Howe, A., Brown, N., Barton, H., Demidova, M., Michelle, H., Li,

L., Sanders, H., Watkinson, S.C., Willcock, S., and Richards, T.A. (2007).

Yeast forms dominate fungal diversity in the deep oceans. Proc. Biol.

Sci. 274, 3069–3077.

7. Karpov, S.A., Mamkaeva, M.A., Aleoshin, V.V., Nassonova, E., Lilje, O.,

and Gleason, F.H. (2014). Morphology, phylogeny, and ecology of the ap-

helids (Aphelidea, Opisthokonta) and proposal for the new superphylum

Opisthosporidia. Front. Microbiol. 5, 112.

8. Letcher, P.M., Lopez, S., Schmieder, R., Lee, P.A., Behnke, C., Powell,

M.J., and McBride, R.C. (2013). Characterization of Amoeboaphelidium

protococcarum, an algal parasite new to the cryptomycota isolated from

an outdoor algal pond used for the production of biofuel. PLoS ONE 8,

e56232.

9. Richards, T.A., Leonard, G., and Wideman, J.G. (2017). What defines

the ‘‘kingdom’’ fungi? Microbiol. Spectr. 5, https://doi.org/10.1128/

microbiolspec.FUNK-0044-2017.

10. Powell, M.J. (1984). Fine structure of the unwalled thallus of Rozella poly-

phagi in its host Polyphagus euglenae. Mycologia 76, 1039–1048.

11. Corradi, N. (2015). Microsporidia: eukaryotic intracellular parasites

shaped by gene loss and horizontal gene transfers. Annu. Rev.

Microbiol. 69, 167–183.

12. Falkowski, P.G., Barber, R.T., and Smetacek, V. (1998). Biogeochemical

controls and feedbacks on ocean primary production. Science 281,

200–207.

13. Field, C.B., Behrenfeld, M.J., Randerson, J.T., and Falkowski, P. (1998).

Primary production of the biosphere: integrating terrestrial and oceanic

components. Science 281, 237–240.

14. Armbrust, E.V. (2009). The life of diatoms in the world’s oceans. Nature

459, 185–192.

15. Worden, A.Z., Follows, M.J., Giovannoni, S.J., Wilken, S., Zimmerman,

A.E., and Keeling, P.J. (2015). Environmental science. Rethinking the ma-

rine carbon cycle: factoring in the multifarious lifestyles of microbes.

Science 347, 1257594.

16. Durkin, C.A., Van Mooy, B.A.S., Dyhrman, S.T., and Buesseler, K.O.

(2016). Sinking phytoplankton associated with carbon flux in the Atlantic

Ocean. Limnol. Oceanogr. 61, 1172–1187.

17. Sime-Ngando, T. (2012). Phytoplankton chytridiomycosis: fungal para-

sites of phytoplankton and their imprints on the food web dynamics.

Front. Microbiol. 3, 361.

18. Chambouvet, A., Morin, P., Marie, D., and Guillou, L. (2008). Control of

toxic marine dinoflagellate blooms by serial parasitic killers. Science

322, 1254–1257.

19. Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F.,

Chaffron, S., Ignacio-Espinosa, J.C., Roux, S., Vincent, F., et al.; Tara

Oceans coordinators (2015). Ocean plankton. Determinants of community

structure in the global plankton interactome. Science 348, 1262073.

20. Shubha, S., Louisa, W., Emmanuel, D., Trevor, P., Carla, C., and Heidi, M.

(2004). Discrimination of diatoms from other phytoplankton using ocean-

colour data. Mar. Ecol. (Berl.) 272, 59–68.

21. Ibelings, B., de Bruin, A., Kagami, M., Rijkeboer, M., Brehm, M., and Donk,

E. (2004). Host parasite interactions between freshwater phytoplankton

and chytrid fungi (Chytridiomycota). J. Phycol. 40, 437–453.

22. Canter, H.M., and Lund, J.W.G. (1951). Studies on plankton parasites: III.

examples of the interaction between parasitism and other factors deter-

mining the growth of diatoms. Ann. Bot. 15, 359–371.

23. Sparrow, F.K. (1960). Aquatic Phycomycetes (University of Michigan

Press).
8 Current Biology 29, 1–9, December 2, 2019
24. Scholz, B., Guillou, L., Marano, A.V., Neuhauser, S., Sullivan, B.K.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Tat1 Tubulin Antibody Gift K. Gull Uni. Oxford,

By request

TAT1; RRID: AB_10013740

Fluorescein isothiocyanate (FITC)-conjugated goat

anti-mouse immunoglobulins

Jackson ImmunoResearch/

Stratech

https://www.jacksonimmuno.com/catalog/

products/115-095-003

Biological Samples

Filter sections taken as part of the BioMarks project Biomarks Consortium, by

request, but exhaustible.

N/A

Chemicals, Peptides, and Recombinant Proteins

Calcofluor White Sigma-Aldrich, USA https://www.sigmaaldrich.com/catalog/

product/sial/18909?lang=en&region=GB

Deposited Data

All physical and chemical parameters of the samples

water column obtained using a CTD

This paper are available at http://biomarks.eu/ctd007

(and replicated at FigShare https://doi.org/10.6084/

m9.figshare.9821936)

tree file, masked and unmasked SSU rDNA alignments This paper Zenodo repository: https://doi.org/10.5281/

zenodo.2788876.

Ocean Sampling Day 2014 Data [41, 46] https://github.com/MicroB3-IS/osd-analysis/

wiki/Guide-to-OSD-2014-data

see also

http://mb3is.megx.net/osd-files?path=/2014/

protocols

Oligonucleotides

FISH Probe (50-30) GTCCTAGATTCACTGCTC This paper, ordered from

biomers.net (Germany)

CHY-NCLC-01

FISH Probe (50-30) GATTCTAATGCCCCCCAA This paper, ordered from

biomers.net (Germany)

CHY-445-01

FISH Probe (50-30) CGATTCTAATGCCCCCCA This paper, ordered from

biomers.net (Germany)

CHY-445-02

FISH Probe (50-30) [reverse complement negative control]

GAGCTGTGAATCTAGGAC

This paper, ordered from

biomers.net (Germany)

CHY-NCLC-01_RC

FISH Probe (50-30) [reverse complement negative control]

TTGGGGGGCATTAGAATC

This paper, ordered from

biomers.net (Germany)

445_01_RC

FISH Probe (50-30) [reverse complement negative control]

GTTGGGGGGCATTAGAAT

This paper, ordered from

biomers.net (Germany)

445_02_RC

Software and Algorithms

The R code used to test statistical association between

NCLC1 and Diatoms in the FISH data

This paper Zenodo repository: https://doi.org/10.5281/

zenodo.2788876.

mathFISH for FISH probe design [47] http://mathfish.cee.wisc.edu

ARB software (v.6.0.4) for SSU rRNA probe design [48] (https://www.arb-silva.de)

TESTPROBES for FISH probe optimization [48] (https://www.arb-silva.de)

R programming language (RCore2013) ‘tidyverse’ set

of tools for statisitical analysis

N/A (https://www.tidyverse.org/)

BLASTN similarity search for sequences with shared

sequence identify from NCBI nt database

[49] https://blast.ncbi.nlm.nih.gov

MAFFT v7.2 sequence alignment for automated

sequence alignment

[50] https://mafft.cbrc.jp/alignment/server/

trimAL v4 for automated sequence alignment

refinement and sampling

[51] http://trimal.cgenomics.org

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

seaview v4 manual sequence alignment program [52] http://doua.prabi.fr/software/seaview

IQ-TREE v1.6 for phylogenetic analysis [53] http://www.iqtree.org/release/v1.6.7

ModelFinder for finding appropriate model of sequence

evolution for phylogenetic analysis

[54] http://www.iqtree.org/ModelFinder/

PHYLOBAYES v3.3 for Bayesian phylogenetic analysis [55] http://megasun.bch.umontreal.ca/People/

lartillot/www/download.html

DADA2 for sequence tag analysis [56] https://benjjneb.github.io/dada2/

dada-installation.html

R package ‘ggmap’ [57] https://github.com/dkahle/ggmap

SparCC [58] https://bitbucket.org/yonatanf/sparcc

Other

PR2 v4.10 SSU rDNA reference database [59] https://github.com/pr2database/pr2database
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Thomas

Richards (T.A.Richards@exeter.ac.uk). This study did not generate any unique reagents other than the FISH oligonucleotide probes.

Details of these probes are available in the key resource table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sampling
Samples were taken as part of the BioMarKs project (http://www.biomarks.eu) [37] in the outer Oslofjorden station OF (59.253735N,

10.710908E) on the 22nd September 2009. All physical and chemical parameters of the water column obtained using a CTD are avail-

able at http://biomarks.eu/ctd007 (and replicated here DOI: 10.6084/m9.figshare.9821936). Water and plankton samples were

collected from sub-surface at 1 m depth and the DCM at 20m depth from the University of Oslo research vessel R/V Trygve Braarud.

Sampling was conducted using either: 1) a plankton net with 20 mm mesh-size, for a horizontal net haul where the net sample was

then passed through a 1000 mmmetallic sieve, or 2) Niskin bottles for collecting water samples. Aliquots from all samples were fixed

onboard with neutralized formaldehyde (3.7% final conc.) and kept at 4�C until processed in the lab the day after. In the lab the sam-

ples from the plankton net (with a 20 mm ‘aperture’ size) were collected onto a 47 mm polycarbonate (PC) filters of 12 mm pore-size

rendering recover of cells of 20 - 1000 mm diameter. For the Niskin bottle samples, water was pre-filtrated through 20 mm nylon sieve

and then successively size-fractionated throughout 3 mm and 0.8 mm PC filters of 25 mm diameter. All filters (including plankton net

water samples of 20- 1000 mm and water samples of 3- 20 mm and 0.6- 3 mm size fractions) were then dehydrated in sequential 50%,

80%and 100%ethanol incubations with 3min of incubation at each step followed by drying at room temperature before final storage

at �80�C.

METHOD DETAILS

Phytoplankton counts
Cell counts was performed on 10 mL water samples collected by the Niskin bottles and fixed immediately with Lugol’s solution

(1% final. conc.). Cells were counted using the Utermöhl method [60, 61].

Probe design
FISH probes were designed based on an alignment of 136 sequences and 316 alignment positions of the V4 region of the SSU rRNA

encoding gene (see [4]) using the probes-design tool available through ARB v6.0.4 [62]. We designed three oligonucleotide probes, a

general probe targeting the wider NCLC1 clade named CHY-NCLC-01 and two probes, CHY-445-01 and CHY-445-02, which spe-

cifically target the cluster 445 (see Key Resources Table). The thermodynamic parameters for all three probes were evaluated using

mathFISH [47]. For the two specific probes of the cluster 445, only one specific region of the V4 SSU rDNA contained enough nucle-

otide polymorphism to allow design of highly specific probes with the optimal themodynamic properties. We therefore decided to use

two different probes with a single shift in the nucleotide sequence position (i.e., CHY-445-01 and CHY-445-02).

For negative controls for the specific and general probe we used the reverse complement of each probe named CHY-445-01-RC,

CHY-445-02-RC and CHY-NCLC-01-RC (see Key Resources Table) and the hybridization buffer without any probe. All probes were
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tested in silico using both ARB software (v.6.0.4) and TESTPROBES available on the Silva website (https://www.arb-silva.de) [48].

The six oligonucleotide probes were purchased from biomers.net (Germany) and were labeled at 50 end with horseradish peroxidase

(HRP).

Fluorescent in situ hybridization
For in situ hybridization, we followed the protocol described by Chambouvet et al. 2008 [18]. This method is outlined as follows: filter

samples prepared for FISH were incubated with 3 mL of probes (10 pmol L-1) and 27 mL of hybridization buffer (HB) that include 35%

(v/v) formamide, 0.9 M NaCl, 20 mM TrisBase pH = 7.5, 0.01% SDS (sodium dodecyl sulfate, Sigma-Aldrich, UK) and 2% blocking

reagent. Samples were hybridized for 12 h at 35�C or 42�C depending of the probe used (see Key Resources Table) before washing

twice at 46�C during 20min in a washing buffer (56mMNaCl, 5mMEDTA, 0.01%SDS, 20mMTris HCl pH = 7.5). Filter samples were

then equilibrated for 15 min at room temperature in the dark in TNT buffer (100 mM Tris-HCl pH = 7.5, 150 mM NaCl, 0.05% (v/v)

Tween 20 (Sigma Aldrich, UK)). Each filter was then transferred onto a new slide before adding 10 ml of TSA mix (TSATM Fluorescein

System, Perkin Elmer, UK) per filter piece (2 ml of FT, 50 ml of amplification diluent and 50ml of 40% dextran sulfate) and incubated for

30min at room temperature in the dark. To remove excess TSA amplification, samples were incubated twice at 55�C for 20min in TNT

buffer. Filters were then washed twice in sterile water and left dry at room temperature. Finally, filter samples were mounted between

a slide and a cover glass using an anti-fade mounting solution AF1 (CitifluorTM, Electron Microscopy Science, USA) previously mixed

with DNA counterstaining, propidium iodide (final concentration of 10 mg/ ml-1). Counts were performed with a Zeiss Observer Z1.

Each picture was obtained from a single image extract from a Z stack using Zeiss Observer Z1 epifluorescencemicroscope equipped

with a 3Dmodule VivaTome, a laser excitation light and a camera AxioCamMR. All FISH experiments were conducted in triplicate for

each sample type and each experimental condition.

To detect flagellum structures, we used antibodies and the protocol reported in [35] to identify major tubulin cytoskeleton of

flagella. Briefly to ascertain presence of a flagellum, sections of filter that were subjected to TSA-FISH hybridization were re-permea-

bilized with 0.1% v/v nonidet P-40 in PBS (10mMNa2HPO4, 2mMKH2PO4, 137mMNaCl, 2.7mMKCl, pH 7.2), blockedwith 1%w/v

bovine serum albumin in PBS then incubated for 1 hwith the TAT1monoclonal antibody [63] against a-tubulin, followed by fluorescein

isothiocyanate (FITC)-conjugated goat anti-mouse immunoglobulins (Jackson ImmunoResearch/Stratech). The antibody was a gift

from Professor Keith Gull’s lab at the university of Oxford. Across all samples, candidate flagella seemed dissociated from cells, this

was specifically apparent in the dinoflagellates, where the flagella seemed sheared off, indicating that the fixation and dehydration

steps were too rough to perform this cellular structure assay. Therefore we could not reliably assess NCLC1 cells for candidate

flagella.

To detect cellulosic and/or chitin cell wall structures, we stained with Calcofluor White (1% final concentration, Sigma-Aldrich,

USA) using the protocol reported in [35]. We also used this protocol to check for NCLC1 associations with additional cellulosic

and/or chitin containing host cells such as dinoflagellates, which were also present in the environmental samples (Table S1). This

check was conducted to rule out additional host associations among cells damaged during the process of cell sampling and

FISH microscopy preparation, which could potentially limit our ability to identify host cell morphology.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical testing of NCLC1-diatom associations
In order to test whether each observed NCLC1-diatom interaction was significantly different from an incidental interaction due to

filtering artifacts we used a series of 1-sided binomial tests (alpha = 0.05) using a binomial distribution with a minimal theta (0.01).

In other words, each observed interaction was treated as a ‘success’ with the total number of NCLC1 interactions observed (i.e.,

the row sum) as the total number of trials. In order to control for the multiple comparisons a Bonferroni correction was applied to

the results. The boxplots were generated to show the distribution of different interactions by summing the replicates per slide. Plots

were ordered by their median values and interactions where the null hypothesis of aminimal interaction was rejectedwere highlighted

in blue. This analysis was conducted in the R programming language (RCore2013) using the ‘tidyverse’ (https://www.tidyverse.org/)

set of tools. The code used to perform these calculations (plotting_and_testing_association.r) can be found in the supplemental data,

see Zenodo repository: DOI 10.5281/zenodo.2788876.

SSU sequence alignment and phylogenetic tree reconstruction
SSU sequences from 200 taxa were retrieved from previous publications [4, 6]; additional sequence homologs were identified

through BLASTN similarity searches (http://blast.ncbi.nlm.nih.gov//blast.ncbi.nlm.nih.gov/). Sequences were then aligned using

MAFFT v7.2 iterative refinement method Q-INS-i (https://mafft.cbrc.jp/alignment/server/, [50]). The alignment was subsequently edi-

ted with trimAL v4 [51] using the ‘gappyout’ parameter (‘‘distribution0based algorithm’’) and manually masked with seaview v4 [52],

resulting in a final alignment of 1542 nucleotide sites (of which 1221 were parsimony informative). The ML phylogenetic tree was re-

constructed with IQ-TREE v1.6 [53] using a thorough nearest neighbor interchange search (‘-allnni’) under the GTR+F+R6model that

is, the general time reversible model with empirical base frequencies and FreeRate model [64] with 6 categories; this substitution

model was determined as best fitting the data byModelFinder [54], as implemented in IQ-TREE, and based on the Akaike Information

Criteria. To evaluate node supports, 100 nonparametric bootstrap trees were reconstructed using the same methodology. In addi-

tion, to the ML reconstructions, Bayesian inferences were conducted with PHYLOBAYES v3.3 [55] under the GTR-CAT-G model
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(with 4 discrete categories). Two independent Markov chain Monte Carlo chains (MCMC) were run for 20k generations and sampled

every 10 generations with the first 3k discarded as the burnin. Resulting posterior probabilities were mapped onto the ML phylogeny

presented.

Ocean Sampling Day 2014 and sequence co-occurrence analysis
SSU rDNA amplicon sequence and contextual data from the Ocean Sampling Day 2014 initiative [41] were retrieved from the Micro

B3 project repository (https://github.com/MicroB3-IS/osd-analysis/wiki/Guide-to-OSD-2014-data); microbial community filtering,

DNA extraction and Illumina MiSeq sequencing protocols are described in the OSD handbook (http://mb3is.megx.net/osd-files?

path=/2014/protocols; see also [46] for an overview of the sampling and sequencing protocol). OSD amplicon sequences were

retrieved as pre-processed sequences (technical sequences removed; non-merged paired end reads) and only SSU-V4 sequences

obtained following the NPL022 protocol (according to the OSD nomenclature) were analyzed as part of this study. To allow compar-

ison between depth samples, only samples collected from surface waters were kept for analysis. All OSD amplicon were then

processed with DADA2 [56]; SSU-V4 sequences were first error corrected and dereplicated, and paired end reads were merged

to produce an amplicon sequence variant (ASV) dataset. ASV sequences were then checked for potential chimeras. ASVs were

taxonomically classified using the PR2 v4.10 reference database ([59]; https://github.com/pr2database/pr2database) and the RDP

naive Bayesian classifier [65] using a minimum bootstrap confidence of 50, as implemented in DADA2. To produce an SSU-V4 data-

set representing only protists sampled during OSD-2014, ASVs classified as multicellular eukaryotes were discarded from the study.

Furthermore, to detect spurious SSU-V4 sequences, ASVs were aligned to PR2 representatives using MAFFT v7 [66] and ASVs with

poor sequence overlap thresholds, identified with trimAl v1.4 ([51]; ‘-seqoverlap’ lower than 0.8), were discarded. The final SSU-V4

sequence dataset was comprised of 7,766 ASVs totalling 2,552,000 sequences across 145 samples. ASV geographical distributions

were plotted using the R package ‘ggmap’ [57]. ASV sequence correlations were determined for ASV represented by at least 20 se-

quences (to limit computation time and potential spurious correlations) using the ‘sparse correlations for compositional data’

algorithm, SparCC [58], with 20 iterations; to identify significant co-occurrences, pseudo p values were computed from

resampled correlation matrices (i.e., 100 bootstrap replicates).

DATA AND CODE AVAILABILITY

All data and code are available with DOI’s given in the methods section. Specifically, physical and chemical parameters of the water

column obtained using CTD ocean water sampling are available at http://biomarks.eu/ctd007 (and replicated here at figshare DOI:

10.6084/m9.figshare.9821936). The phylogenetic tree file, masked and unmasked SSU rDNA alignments are available at Zenodo re-

pository: DOI 10.5281/zenodo.2788876. All sequence data used were derived from the NCBI ‘GenBank’ database and accession

numbers are provided in Figure. 1B. The R code used to test statistical association in the FISH data are available at Zenodo

repository: DOI 10.5281/zenodo.2788876.
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