<u>Cardiopulmonary exercise testing in young people with cystic fibrosis –</u>
 <u>methods, limitations, and clinical practice</u>

3

4 Dr Owen Tomlinson, Dr Alan Barker & Professor Craig Williams FBASES

5 Children's Health and Exercise Research Centre, University of Exeter

6

7 Cystic fibrosis (CF) is a genetically inherited disease that currently affects ~11,000 8 people in the UK. The disease presents with an accumulation of thick mucus that 9 blocks the airways and digestive systems, and can reduce exercise tolerance and 10 increase breathlessness. As there is currently no cure for CF, exercise forms an 11 important treatment and regular exercise testing is recommended, with 12 cardiopulmonary exercise testing (CPET) acknowledged as the 'gold standard' by international clinical organisations (Hebestreit et al., 2015). Aerobic fitness (as defined 13 14 using peak oxygen uptake, $\dot{V}O_{2peak}$), a primary outcome of CPET, is significantly 15 associated with mortality in CF (Vendrusculo et al., 2018), highlighting the need to 16 accurately identify this value and understand pathophysiological causes behind any 17 changes. However, there are several aspects surrounding its application that have 18 warranted further investigation.

19

20 By its nature, maximal exercise testing requires maximal effort from patients, which is 21 not always possible due to clinical status, breathlessness or motivation. As such, 22 suitable submaximal parameters have warranted investigation. This programme of 23 research investigated the oxygen uptake efficiency slope; firstly utilising allometric 24 scaling to remove residual effects of body size (Tomlinson et al., 2017b), then 25 subsequently determining its invalidity as a submaximal alternative to VO_{2peak}, as it is 26 unable to discriminate fitness in the same way as VO_{2peak} (Williams et al., 2018). 27 However, we identified that the oxygen uptake efficiency plateau instead holds 28 interesting potential, as it does not require scaling for body size, and is associated with 29 disease status and severity in CF (Tomlinson et al., 2018a). Interestingly, these results 30 contrast similar studies in heart failure, highlighting that clinical groups cannot be 31 simply grouped together, but that each warrants its own dedicated avenue of research. 32

Furthermore, this programme of research has further utilised CPET, alongside
 magnetic resonance imaging, to investigate the musculoskeletal basis of exercise

intolerance in CF. This research identified that once thigh muscle volume has been fully quantified (not estimated) and mathematically scaled for, there remains a difference in VO_{2peak} between children with CF, and healthy matched controls (Tomlinson et al., 2017a). This therefore provides evidence towards a qualitative defect in skeletal muscle in CF, which has implications for management of the disease, in particular the selection of exercise training regimens to improve musculoskeletal health.

42

43 Finally, a clinical application of research findings is essential for the benefit of the end 44 user – people with CF themselves. Integrating CPET into standard clinical care is a 45 priority, and to fulfil this requirement, a working group of clinically-based exercise 46 professionals has been established in the UK. This 'Cystic Fibrosis and Exercise 47 Network' has an emphasis on continued professional development, meeting annually 48 to exchange best practice. Surveys from this group reveals that exercise technicians 49 (individuals typically trained in sport and exercise sciences) play an increasingly 50 important role in clinics, responsible for exercise testing and training within CF centres. 51 We have also been identified that one-third of clinical teams are not confident in 52 discussing exercise with patients (Tomlinson et al., 2018b), thus highlighting an urgent 53 need to improve, increase, and standardise exercise education for clinicians in both 54 CF and beyond.

55

There is a promising future for applied exercise science in clinical environments, as well as an anticipated need for increased numbers of exercise scientists in clinical roles. As the importance of exercise in the management of CF continues to grow, as does the demand on both health care professionals and the exercise science community to collaborate and further integrate exercise into health care for chronic disease.

62

63 Authors

64 Owen is an Associate Research Fellow at the University of Exeter.

Alan is a Senior Lecturer in Paediatric Exercise and Health at the University of Exeter.

66 Craig is a Professor of Paediatric Exercise and Health and Director of the Children's

- 67 Health and Exercise Research Centre at the University of Exeter.
- 68

69 **References**

- HEBESTREIT, H., et al. 2015. Statement on exercise testing in cystic fibrosis. *Respiration*, 90, 332-351.
- TOMLINSON, O. W., et al. 2018a. Analysis of oxygen uptake efficiency parameters in
 young people with cystic fibrosis. *European Journal of Applied Physiology*, 118,
 2055-2063.
- TOMLINSON, O. W., et al. 2017a. Scaling maximal oxygen uptake for thigh muscle
 volume in children with cystic fibrosis. *Pediatric Exercise Science*, 29, 6.
- TOMLINSON, O. W., BARKER, A. R., OADES, P. J. & WILLIAMS, C. A. 2017b.
 Scaling the oxygen uptake efficiency slope for body size in cystic fibrosis. *Medicine and Science in Sports and Exercise*, 49, 1980-1986.
- TOMLINSON, O. W., et al. 2018b. Promotion of exercise in the management of cystic
 fibrosis Summary of national meetings. *European Journal for Person Centred Healthcare,* 6, 196-203.
- VENDRUSCULO, F. M., et al. 2018. Peak Oxygen Uptake and Mortality in Cystic
 Fibrosis: Systematic Review and Meta-Analysis. *Respiratory Care*.
- WILLIAMS, C. A., et al. 2018. The oxygen uptake efficiency slope is not a valid
 surrogate of aerobic fitness in cystic fibrosis. *Pediatric Pulmonology*, 53, 36-42.

87