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Abstract 27 

Thermal performance curves (TPCs) are used to predict changes in species interactions, and 28 

hence, range shifts, disease dynamics and community composition, under forecasted climate 29 

change. Species interactions might in turn affect TPCs.  Here, we investigate how temperature-30 

dependent changes in a microbial host-parasite interaction (the bacterium Pseudomonas 31 

fluorescens, and its lytic bacteriophage, SBWΦ2) changes the host TPC and the ecological and 32 

evolutionary mechanisms underlying these changes. The bacteriophage had a narrower thermal 33 

tolerance for infection, with their critical thermal maximum ~6ºC lower than those at which 34 

the bacteria still had high growth. Consequently, in the presence of phage, the host TPC 35 

changed, resulting in a lower maximum growth rate. These changes were not just driven by 36 

differences in thermal tolerance, with temperature-dependent costs of evolved resistance also 37 

playing a major role: the largest cost of resistance occurred at the temperature at which bacteria 38 

grew best in the absence of phage. Our work highlights how ecological and evolutionary 39 

mechanisms can alter the effect of a parasite on host thermal performance, even over very short 40 

timescales.  41 
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Introduction 42 

An often overlooked concern surrounding climate change is its impacts on host-parasite 43 

interactions [1]. The effect of temperature on species interactions is likely widespread, as 44 

temperature influences the physiology, ecology, and evolution of both hosts and parasites [2–45 

5]. However, the sign and strength of the effects of warming on host-parasite interactions may 46 

be context dependent, changing with the host, parasite, and environmental conditions in 47 

question [6]. One approach to predict the potential impacts of warming on host-parasite 48 

interactions has been based around thermal performance curves (TPCs) of, and differences 49 

between, key host and parasite traits [2, 6, 7]. For example, it has been argued that as hosts 50 

generally have a narrower thermal range and lower thermotolerance than their parasites [8–51 

10], they are more susceptible to disease at temperatures further away from their optimum 52 

temperature.  53 

 A probable consequence of temperature dependent changes in host-pathogen 54 

interactions [11] is a change in the host’s TPC in the presence, versus the absence, of the 55 

parasite.  For example, if the largest impact of the parasite occurs at the host’s optimum growth 56 

temperature, key traits such as maximum growth rate, optimum temperature of the host could 57 

change.  In addition to the ecological feedbacks resulting from differences in the thermal 58 

performance of host and parasite traits, rapid (co)evolution of resistance and infectivity traits 59 

could play a major role in altering TPCs [12, 13]. Crucially, TPCs of hosts and parasites are 60 

typically assumed to be fixed across time and in different abiotic and biotic environments [6, 61 

8, 14, 15], but the presence of a predator can alter the TPC of the prey [16] and the prey’s 62 

evolutionary response to warming [17]. If parasites affect the thermal performance of their 63 

host, this may alter some of the predictions of range shifts and disease dynamics expected under 64 

climate change.  65 
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 To date, most experimental and theoretical work on the thermal performance of 66 

organisms is done on single species under highly controlled conditions, where naturally 67 

occurring parasites, symbionts and microbiota are greatly or completely removed [18–20]. 68 

Consequently, it is unknown if parasites alter the TPC of host fitness and influence key species-69 

level traits such as the optimal, $%&', and cardinal (critical thermal maximum, ($)*+, and 70 

minimum, ($),-) temperatures of host growth. Understanding these potential impacts is 71 

critical to assess the effect of climate change on ecological and evolutionary dynamics of host-72 

parasite pairs, as well as predicting the consequences of novel host-parasite interactions that 73 

will occur in a warmer world.  Here, we explicitly determine how and why interactions with a 74 

parasite affect host thermal performance in arguably the most common host-pathogen 75 

interaction on the planet: that between bacteria and their viruses (bacteriophage)[21]. 76 

 We focus on a well-studied system, the bacterium Pseudomonas fluorescens SBW25 77 

and its lytic phage, ./0Φ2. This system has been used extensively for studying host-parasite 78 

ecological and evolutionary interactions [22–25]. Over a wide range of temperatures, we 79 

measured the replication rate of the phage and the growth rate of the bacteria in the presence 80 

and absence of the phage. We utilised the ‘traits’ that underpin TPCs to compare biologically 81 

meaningful parameters [15]. We hypothesised that any large difference in thermal performance 82 

of bacteria and phage would change the thermal performance of bacteria in the presence vs. the 83 

absence of phage. Given the importance of evolution occurring over ecological timescales [26, 84 

27], especially in microbial populations with large population sizes and short generation times, 85 

we also investigated evolutionary changes in host populations to determine whether resistance 86 

evolution explained any changes in host thermal performance. 87 

 88 

Materials and Methods 89 

Measuring bacterial growth in the presence and absence of phage 90 
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Isogenic Pseudomonas fluorescens SBW25 was cultured overnight (from a frozen stock) at 28 91 

ºC in 6 mL of M9 minimal salts media (M9), supplemented with 5 g of glycerol and 10 g of 92 

peptone (50 % concentration of King’s medium B) in glass vials at 180 r.p.m. Overnight stocks 93 

were then diluted to ~ 50,000 cells per 10 µL (5 x 106 cells per mL). Growth curves were 94 

measured in 96 well plates, with 180 µL of altered M9 (described above). We inoculated wells 95 

with 10 µL of bacteria and either 10 µL of M9 or 10 µL of phage (~50 phage) giving a 96 

multiplicity of infection (MOI) of 0.001. We used this low MOI and low starting densities to 97 

ensure rapid bacterial growth. Six wells were left free for both bacteria and bacteria plus phage 98 

treatments at each temperature as blank controls. We set up 6 replicates of bacteria and bacteria 99 

plus phage simultaneously at 8 temperatures (15, 20, 25, 28, 30, 33, 35 and 37 ºC). Each plate 100 

was placed in a plastic box with a moist sponge at the bottom to prevent evaporation of media 101 

from the wells which may confound measurements of optical density (OD). OD (600 nm 102 

wavelength) was measured as a proxy for density of Pseudomonas fluorescens using a plate 103 

reader (Biotek Instruments Ltd). Readings of OD were taken with the lid off at an average of 104 

every 3 hours for up to 75 hours. 105 

 106 

Measuring phage replication rate 107 

Replication of the lytic phage SBWΦ2 was measured using methods similar to Knies et al. [28, 108 

29], at the same temperatures as the bacterial growth curves, with the addition of 3 additional 109 

temperatures (22.5 ºC, 26 ºC and 27 ºC) to better characterise temperatures around the optimum 110 

of phage replication. First, isogenic P. fluorescens was grown overnight in conditions described 111 

above. The bacteria were transferred into fresh media at 28 ºC and allowed to grow for 6 hours 112 

while shaking to increase density (~ 107 cells). We then added 20 µL of phage (~ 106; MOI ~ 113 

0.02, 45) to each tube (six replicates per temperature). Vials were left static for 4 hours at each 114 

temperature, after which phage was extracted using chloroform extraction. 100 µL of 115 
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chloroform was added to 900 µL of culture, then vortexed and centrifuged at 10000 g for 5 116 

minutes. The supernatant was removed and placed in fresh Ependorf tubes. Final phage titres, 117 

46, were measured using plaque assays against the ancestral bacteria at 28 ºC. Phage replication 118 

rate, 7, was then calculated as 7	 = 	 :;	(=>?=@)
6

 . 119 

 120 

Measuring resistance of bacteria 121 

To investigate the mechanism behind any effect of phage on bacterial growth, we measured 122 

the resistance of bacteria within a single growth curve. We set up 18 wells of 96 well plates at 123 

8 temperatures that contained ~50,000 cells and ~50 phage (as described above). We then 124 

destructively sampled 6 wells at three time points through the growth curve (after 12, 24 and 125 

48 hours). To do this, 20 µL of each well was placed in 180 µL of M9. These were then serially 126 

diluted and plated onto KB agar. Twelve colonies from each replicate were taken per time point 127 

and grown overnight in 150 µL of altered M9, shaking at 28 ºC. Each clone was then checked 128 

for resistance against the ancestral phage using a phage streak assay. Phage streak assays were 129 

incubated overnight at 28 ºC. 130 

 131 

Measuring the cost of resistance 132 

To determine whether any effect of phage was due to a cost of resistance, we grew 12 replicates 133 

of P. fluorescens in the presence and absence of phage for 12 hours at 28 ºC. After 12 hours, 134 

each population was plated onto KB agar and grown for 2 days at 28 ºC. Three clones were 135 

isolated from each replicate and grown for two days in modified M9 media. Each isolate was 136 

checked for resistance against the ancestral phage. Growth curves of each clone were done 137 

using the methods described above, but inoculate density was ~500,000 cells to reduce the lag 138 

time and no phage was added. 139 

 140 
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Statistical analyses 141 

Calculating exponential growth rate for bacteria 142 

For bacterial growth, we wanted to estimate exponential population growth rate in the presence 143 

and absence of phage, and for resistant and susceptible clones. In the presence and absence of 144 

phage, prior to model fitting, we removed 3.42% of points (Figures S1-S8) in order to obtain 145 

the best estimate of exponential growth at each temperature. The results were qualitatively 146 

unchanged by the data cleaning procedure (Figure S9). For a full explanation of the data 147 

cleaning procedure please see the supplementary methods section. After this initial data 148 

cleaning, we fitted the Gompertz model [30] to measurements of ABCD5EFG55 through time, H, 149 

in hours, using code extracted from the R package ‘nlsMicrobio’ [31]: 150 

ABCD5EFG55 = 	 ABCD5I5 + (ABCD5I)*+ −	 ABCD5I5) ×151 

	M(?N
OP	Q	×	RO	×	S

TUVWX
(TYVO@Z[U\W	TYVO@Z@)	×	]^	(O@)

_
	)          (1) 152 

Where ABCD5I5 is the starting density, ABCD5I)*+ is carrying capacity, 7 is the exponential 153 

growth rate (hr-1) and A`C is the lag time in hours. Model fitting was done using nonlinear least 154 

squares regression using the R package ‘nls.multstart’ [32]. This method of model fitting 155 

involved running up to 500 iterations of the fitting process with start parameters drawn from a 156 

uniform distribution and retaining the fit with the lowest Akaike Information Criterion score 157 

(AIC). The parameters of the model (7, ABCD5I5, ABCD5I)*+ and A`C) can be seen as 158 

population-level growth ‘traits’ which may vary with both temperature and the presence and 159 

absence of phage. In this study, 7 is defined as exponential growth rate of the population and 160 

A`C is likely determined by the time it takes until growth is detected by the OD reader. 161 

Consequently, lag time confounds any actual lag phase with decreases in abundance and slower 162 

growth rates that increase the time it takes for abundance to be detected. Other growth models 163 

were fitted (e.g. Baranyi, Buchanan; Table S1), but the Gompertz model returned lower AIC 164 

scores for the majority of model fits (Figure S10).  165 
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For susceptible and resistant clones, we cleaned the data by removing the first 166 

measurement (where bubbles due to pipetting could alter the OD reading) and setting time zero 167 

to the time at which the first optical density measurement was detected for each clone. We 168 

initially used the same modelling approach, but this time the Baranyi model without lag was 169 

the model most selected using AIC scores (Figure S11). However, after examining the 170 

predictions and residuals of the model fits (Figure S12, Figure S13), we found that exponential 171 

growth rate was underestimated at temperatures where bacteria grew best, and at these 172 

temperatures there was a significantly greater underestimation of growth rate in susceptible, 173 

rather than resistant, bacteria (Figure S14). Consequently, exponential growth rate per clone 174 

was calculated here using rolling regression, taking the steepest slope of the linear regression 175 

between AIEFG55 and time in hours in a shifting window of every 4 time points (~7 hours) as 176 

the estimate of exponential growth. Average growth rate per replicate was calculated by taking 177 

the mean clonal growth rate. After data cleaning and model fitting, every growth curve had 178 

estimates of exponential growth rate which were then used to model the thermal performance 179 

of bacteria. 180 

 181 

Fitting thermal performance curves to phage and bacteria  182 

Thermal performance curves were fitted for phage replication rate and 7 of bacteria in the 183 

presence and absence of phage, and for resistant and susceptible bacterial clones. We used the 184 

Sharpe-Schoolfield equation for high-temperature inactivation [33], which extends the original 185 

Boltzmann equation to incorporate a decline in growth rate beyond the optimum. 186 

a($) = b(cd)N
e( O
fgd

W O
fg)

DhN
ei(

O
fgi

W O
fg)

                                             (2) 187 

a($) is the rate of phage replication or bacterial growth at temperature, $, in Kelvin (K). 188 

Instead of the intercept being at 0 K (-273.15 ºC), a($k)	is the rate at a common temperature, 189 
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$k = 20 ºC (293.15 K)[34]. l (eV) is describes the thermal sensitivity of the biological rate, m 190 

is Boltzmann’s constant (8.62 × 10-5 eV K-1),  ln (eV) characterises the decline in the rate past 191 

the optimum temperature and $n (K) is the temperature at which half the rate is reduced due to 192 

high temperatures. Equation 2 yields an optimum temperature, $%&', (K).  193 

$%&' =
oici

oihpciq-r
ei
e ?Ds

                                          (3) 194 

Maximal growth rate, 7)*+, was calculated by using the estimated model parameters to predict 195 

the rate at $%&'. As in previous studies [18, 19], these ‘traits’ were then used to look for 196 

differences between (1) bacteria in the presence and absence of phage, and (2) resistant and 197 

susceptible bacteria. Similar species-level ‘traits’ are used in climate change research to explain 198 

range shift dynamics [15, 35], but how they are influenced by species interactions remains 199 

relatively unknown [16]. As phage replication was negative at high temperatures, an offset was 200 

added to the equation to raise all rates above 0 to allow model fitting. This invalidated any 201 

interpretation of the thermal sensitivities of phage replication. However, this was already 202 

difficult as phage replication is partially determined by bacteria growth rate, which is also 203 

temperature dependent and could cause differences in the number of susceptible hosts across 204 

temperatures. Consequently, for phage replication we concentrated on the optimum 205 

temperature ($%&') and critical thermal maximum (($)*+) which is the temperature at which 206 

phage replication became negative at high temperatures. 207 

For phage and bacteria, Equation 2 was fitted to the data using non-linear regression in 208 

a Bayesian framework using the R package ‘brms’ [36]. This method allows for prior 209 

information on suitable parameter values and the estimation of uncertainty around predictions 210 

and parameters, including derived parameters not present in the original model formulation 211 

such as $%&', ($)*+ and 7)*+. Different models were fitted for phage replication rate, 212 

exponential growth rate of bacteria in the presence and absence of phage, and exponential 213 
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growth rate of resistant and susceptible bacterial clones. For the analysis including resistant 214 

and susceptible clones, a random effect was added to account for the non-independence of 215 

measurements of the same clone across temperatures. For bacteria exponential growth rate, 216 

phage presence/absence or susceptible/resistance was added as a factor that could alter each 217 

parameter of the model. Models were run for 5000 iterations and 3 chains were used with 218 

uninformative priors. Model convergence was assessed using posterior predictive checks, Rhat 219 

values (all values were 1) and manually checking of chain-mixing. Differences between 220 

parameter estimates are described using 95% credible intervals. Credible intervals of 221 

predictions and parameters were calculated from the posterior distribution using the R package 222 

‘tidybayes’ [37]. Non-overlapping 95% credible intervals indicate statistical significance at (at 223 

least) the p = 0.05 level. 224 

 Using predictions from the model for bacterial growth, the relative fitness of bacteria 225 

in the presence of phage was estimated across the continuous temperature range (15 – 37 ºC). 226 

The difference was calculated as a selection coefficient, where relative fitness at each 227 

temperature, t($), was calculated as: 228 

 t($) = 	
u(c)vUdX	P	wiUVR
u(c)vUdX	UTYZR

	           (4) 229 

where 7($)b*k'	h	&n*xN is the growth rate at a given temperature in the presence of phage and 230 

7($)b*k'	*q%-Nis the growth rate in the absence of phage. When the 95% credible intervals of 231 

the predictions do not cross 1, it indicates that phage significantly altered bacterial growth rate. 232 

When there is overlap with the predictions and 1, it means there is no significant change in 233 

relative fitness. An identical statistical approach was taken for analysing the growth rates of 234 

susceptible and resistant clones. In this instance, the relative fitness across temperatures, t($), 235 

represented the cost of resistance. 236 

 237 

Analysing phage resistance assays 238 



 11 

A logistic regression was used to analyse the proportion of resistance through time and across 239 

temperatures. A binomial model was fitted to the number of resistant and susceptible 240 

individuals per replicate at each temperature and time point using the logit transformation. As 241 

there were many populations where all clones were completely susceptible or resistant 242 

(resulting in zero and one inflated data), we added one to both the number of resistant and 243 

susceptible individuals in each population and used a quasibinomial error structure to control 244 

for overdispersion. By adding one to both susceptible and resistant totals, it meant that the 245 

model tended to produce slight underestimates for resistance in fully resistant populations, and 246 

slight overestimates of resistance in fully susceptible populations, while having little effect on 247 

populations with intermediate resistance. This led to the model giving conservative estimates 248 

of differences in resistance between temperatures and through time. We fitted a model that 249 

combined the number of resistant and susceptible clones in a population as the response 250 

variable and included temperature and time (in hours) as discrete predictor variables. Model 251 

selection was done through likelihood ratio tests using F tests. Pairwise post-hoc comparisons 252 

were done on the response scale using the R package ‘emmeans’ [38]. All analyses were done 253 

using the statistical programming language R (v3.5.1) [39] and all plots were made using the 254 

R package ‘ggplot2’ [40]. 255 

 256 

Results 257 

Bacteria and phage had mismatches in their thermal performance 258 

We measured phage replication rate and bacterial growth rate across eight temperature (15 – 259 

37 ºC) to determine whether there were mismatches in the thermal performance of the host and 260 

its parasite. To do this, we modelled the thermal performance curve of each rate and used 261 

estimated and derived parameters of the model (see Equation 2 in Methods) as traits that we 262 

used to compare the thermal responses of bacteria and phage. Phage replication rate increased 263 
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to a thermal optimum, $%&', of 27 ºC (95% credible intervals [CI]: 26.5 – 27.5 ºC) before rapidly 264 

declining to a negative replication rate by 30 ºC (Fig. 1a). The critical thermal maximum, 265 

($)*+, of phage replication was 29.2 ºC (95% CI: 29.0 – 29.4 ºC), beyond which phage 266 

decreased in abundance over 4 hours (Fig. 1a). This indicated that phage struggled to infect the 267 

host at temperatures beyond their $%&', which was similar to previous work that measured the 268 

coevolution of this bacteria-phage system across temperatures [25]. The bacteria, 269 

Pseudomonas fluorescens, had a similar optimum temperature (Fig. 1b [blue]; $%&' = 28 ºC; 270 

95% CI: 27.1 – 29.0 ºC), but growth was maintained well beyond $%&', with high growth rates 271 

still occurring at 35 ºC (Fig. 1b), > 6 ºC above the ($)*+	of the phage. This could act as a high 272 

temperature refuge for the bacteria as phage infection at these temperatures is extremely low. 273 

Due to these mismatches in the thermal performance of phage infection and bacterial growth, 274 

it was expected that the parasite would alter the thermal performance of its host. 275 

 276 

Phage altered the thermal performance of its bacterial host 277 

Due to the thermal mismatches between bacteria and phage, we explored whether phage altered 278 

the thermal performance of its host. To do this, we measured the growth rate of bacteria in the 279 

presence and absence of the phage and compared key traits that underpinned the thermal 280 

performance curve (see Methods). We observed marked differences in the response of bacteria 281 

to temperature when in the presence of its phage (Fig. 1b & Table S2). Phage presence changed 282 

the optimum temperature of bacterial growth (Fig. 2c), shifting $%&' from 28 ºC (95% CI: 27.1 283 

– 29.0 ºC) to 30.6 ºC (95% CI: 29.0 – 32.1 ºC). Moreover, phage presence resulted in a 20.1% 284 

(95% CI: 13 - 27.3%) decline in the maximal growth rate, 7)*+, in the presence of phage (Fig. 285 

2d). To better understand the non-linear, temperature dependent effect of phage on bacterial 286 

growth, we calculated the relative fitness of bacteria in the presence of phage across 287 

temperatures (see Methods; Fig. 2a). The largest impacts of phage on bacterial growth occurred 288 
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at intermediate temperatures where growth in the absence of phage was highest (Fig. 2a, where 289 

relative fitness was <1), whereas no significant change in growth rate was observed at the low 290 

and high temperatures measured (credible intervals of predictions overlap 1). The non-linear 291 

changes to bacterial growth also resulted in differences in other key traits (Table S2) such as 292 

the thermal sensitivity of the rate before (l; Fig. 2b) and after (ln; Fig. 2e) the optimum 293 

temperature. 294 

 295 

The evolution and cost of resistance was temperature dependent 296 

It is possible that the change in thermal performance of Pseudomonas fluorescens could have 297 

resulted simply from the mismatches in thermal performances of the host and parasite.  Up to 298 

$%&' of the phage (~27 ºC), phage presence reduced the abundance and thus population growth 299 

rate of the bacteria.  Consequently, the rapid decline of phage replication at temperatures above 300 

30 ºC, while bacteria still had high growth rates, could explain observed shift in the thermal 301 

performance of the bacteria. However, bacteria can rapidly evolve resistance to phage within 302 

the timescales of our assays, and this has been demonstrated in our host-parasite pair [41, 42]. 303 

If, as expected, resistance is costly, and resistance does not evolve at temperatures beyond the 304 

phage ($)*+,			the effect of phage on the thermal performance of the host may in part be driven 305 

by evolutionary change. To investigate this, we measured the resistance of bacteria through a 306 

single logistic growth curve at each temperature (Fig. 3). The evolution of phage resistance 307 

changed across temperatures and through time, and there was a significant time x temperature 308 

interaction (likelihood ratio test comparing models with and without time x temperature 309 

interaction: Dd.f. = 13, F = 11.56, P < 0.001). There was no measurable resistance in the 310 

ancestral bacteria, but after just 12 hours, all populations at 28 ºC (close to $%&' of phage 311 

replication [~27 ºC]) or lower were close to 100% resistant (Fig. 3a), consistent with a selective 312 

sweep in which susceptible cells are lysed and resistant mutants reach fixation. Moreover, after 313 



 14 

12 hours, bacterial abundance was much lower than expected at temperatures where phage 314 

infection occurred, indicative of a phage epidemic that wiped out susceptible hosts.  In contrast, 315 

resistance rarely, or never, evolved at temperatures well above those of the critical thermal 316 

maximum of phage replication rate (33 ºC and higher, Fig. 3). Where resistance did evolve at 317 

these temperatures, it was at very low frequency (1 clone out of 12). We found no bacteria still 318 

living at 37 ºC after 48 hours, indicating that although growth occurs at those temperatures, 319 

this is quickly proceeded by death. 320 

At temperatures where phage altered the growth rate of bacteria (25, 28 & 30 ºC), we 321 

observed significant changes in the proportion of resistance through time (see Table S3 for 322 

pairwise differences of resistance through time for each temperature). Resistance evolved and 323 

was at high proportions after 12 or 24 hours where populations were still in exponential growth 324 

phase. However, after 48 hours, when populations had reached stationary phase at all 325 

temperatures apart from 15 and 20 ºC (Figure S15), the proportion of resistance decreased 326 

significantly (Fig. 3c). From 24 to 48 hours, 25 ºC resistance fell from 0.89 (95% CI: 0.83 - 327 

0.94) to 0.69 (95% CI: 0.60 – 0.78), at 28 ºC from 0.89 (95% CI: 0.83 - 0.93) to 0.48 (95% CI: 328 

0.40 - 0.57) and at 30 ºC from 0.77 (95% CI 0.68 – 0.83) to 0.17 (95% CI: 0.11 - 0.25). This 329 

temporal effect did not occur at low and high temperatures where there was little effect of 330 

phage on bacterial growth rate (Fig. 2a & Table S3), suggesting that there was a non-linear cost 331 

of resistance across the temperature range. 332 

 To confirm whether there was a cost of resistance and if any cost varied with 333 

temperature, we isolated clones that were either resistant or susceptible to the phage and 334 

measured their thermal performance in the absence of phage. The thermal performance of 335 

resistant clones differed from that of susceptible clones (Fig. 4), closely matching the patterns 336 

observed when bacteria were grown with phage (Fig. 1b & Fig. 2a). At low and high 337 

temperatures, there were no differences in the growth rate of resistant and susceptible clones 338 



 15 

(Fig. 4). However, at temperatures where growth of susceptible clones was highest (25 – 30 339 

ºC), there was a cost of resistance (Fig. 4b), resulting in a 13.4% (95% CI: 6.8 - 20.2%) 340 

reduction in maximal growth rate. This temperature dependent cost of resistance was 341 

qualitatively similar to the effect of phage on bacteria growth, being greatest at intermediate 342 

temperatures (Fig. 2a and Fig. 4b). 343 

 344 

Discussion 345 

Here, we show that the presence of a parasite can profoundly impact the thermal performance 346 

of its host. Notably, phage reduced bacterial growth most at temperatures where the bacteria 347 

grew fastest, close to the bacterial 7)*+, while having little or no impact at cold or high 348 

temperatures well beyond $%&'	(Fig. 1 & Fig. 2). This resulted in changes to the thermal 349 

performance curve of bacterial growth in the presence of phage (Fig. 2b). These results can be 350 

explained by a combination of ecological and evolutionary processes. Ecologically, at 351 

temperatures below the critical thermal maxima of the phage, phage presence vastly reduced 352 

bacterial abundance (i.e. increased lag time in the logistic growth curve, Figures S1-S4). In 353 

contrast, phage could not infect above 30 ºC, but bacteria still had high growth rates. However, 354 

rapid evolution also played an important role in altering the thermal performance of P. 355 

fluorescens. While phage resistance evolved rapidly and was at high levels at all temperatures 356 

below the phage ($)*+,	at higher temperatures there was no selection for resistance (Fig. 3). 357 

Crucially, there were costs associated with resistance, but these costs changed non-linearly 358 

with temperature (Fig. 4). At low temperatures and temperatures far beyond the bacteria $%&', 359 

there was no measurable cost of resistance, but significant costs of resistance at intermediate 360 

temperatures where bacteria growth was highest (Fig. 4). At some temperatures, susceptible 361 

bacteria re-emerged after resistance had evolved (Fig. 3) during stationary phase, which could 362 

be a result of nutrient limitation or reduced phage infection of susceptible bacteria in stationary 363 
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phase [43], both of which would alter the fitness cost of resistance. Overall, these results 364 

demonstrate that phage alter the TPC of their host (Fig. 1b) through both ecological (due to 365 

differences in thermal tolerance between phage infection and bacterial growth) and 366 

evolutionary processes (temperature dependent costs of resistance), resulting in a shift in the 367 

TPC for the host in the presence of the phage (Figure S16). It is worth noting that costs of 368 

phage resistance were also greatest at the optimum temperature in another well studied 369 

bacteria-phage system; Escherichia coli and bacteriophage T4 [44, 45]. 370 

 How general are these results likely to be?  We suggest that parasites (and symbionts 371 

more generally) impacts on host TPCs are likely widespread, because no change in host TPC 372 

would occur only when host and parasite traits respond equivalently with temperature. In 373 

reality, there are almost certainly mismatches between host and parasite TPCs and differences 374 

in local adaptation to prevailing temperatures appears to be the norm [7, 46]. Here, we observed 375 

rapid evolutionary interactions between our bacteria-phage pair because of the strong parasite-376 

imposed selection and the large population size and short generation time of P. fluorescens 377 

(~14 generations after 12 hours at 30 ºC). As this is true of most micro-organisms, we expect 378 

that evolutionary mechanisms could frequently drive changes in population-level TPCs, 379 

although the selection for resistance is likely to be lower in more heterogeneous environments 380 

and with different parasitic lifecycles. 381 

Across other host-parasite systems, similar genotype x genotype x environment 382 

interactions (G x G x E) occur in different traits, but may be driven more by ecological, rather 383 

than evolutionary, processes. For example, in larger, longer-lived hosts, individuals may 384 

experience substantial variation in temperature and parasitism over the course of a single 385 

generation. In such instances, the individual-level cost of parasitism can still be highest at 386 

intermediate temperatures [47] and variation in critical thermal maxima between different host 387 

species [8] and thermal mismatches between host and parasite [6] can drive temperature-388 
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dependent changes in host susceptibility. Consequently, the effect of parasites on the thermal 389 

performance of the host may be widespread across many host-parasite systems, driven by 390 

ecological or rapid evolutionary processes depending on host lifespan and magnitude of 391 

parasite-imposed selection.  392 

However, as with the effect of changing temperature on disease severity, precisely how 393 

TPCs will change will be context dependent, changing with, amongst other factors, the host-394 

parasite pair and the biological traits measured. For example, phage replication across 395 

temperature depends on the thermal sensitivity of multiple processes such as latency period, 396 

burst size, and thermal stability [48], such that the limiting factor for phage replication may 397 

also differ across temperature. Moreover, the effect of any of these phage traits in isolation 398 

may result in a different impact on the host TPC. Marine phage are generally more thermally 399 

stable than their hosts [9], but, as shown here, it that does not mean that the phage can infect at 400 

all temperatures [49]. Across ectotherms, thermal breadth across multiple traits is generally 401 

wider in smaller organisms [10], but whether this impacts host or parasite TPCs (parasites are 402 

generally smaller than their host) in the presence of each other remains to be seen.  403 

In conclusion, our study demonstrated that host-parasite interactions change in non-404 

linear ways with temperature (G x G x E interaction), and this had a significant impact on the 405 

thermal performance of the host. By measuring the thermal performance of the host and the 406 

parasite simultaneously, and also examining the evolution and cost of resistance, we identified 407 

the mechanisms through which phage altered the thermal performance of the host. Our results 408 

highlight that TPCs measured under axenic conditions should be interpreted with caution; 409 

measuring TPCs in the absence of their parasites (and other associated microbiota) may not be 410 

reflective of the host’s TPC in nature where such interactions are ubiquitous. Future work 411 

should investigate the longer term evolutionary and coevolutionary consequences of climate 412 

warming [13] and in a broader, more realistic ecological context, to determine how this impacts 413 
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host-parasite interactions. In an era of human-induced climate change, it is more important than 414 

ever to gain a deeper understanding of how evolutionary and ecological processes can 415 

indirectly impact thermal performance and how host-parasite interactions will change with 416 

temperature.  417 

  418 
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Figures 540 

 541 

Figure 1. Thermal performance of phage and bacteria. (a) Phage replication increases with 542 

temperature up to an optimum of before declining rapidly to a negative replication rate at 30 543 

ºC. (b) Bacteria growth shows unimodal responses to temperature in the presence (black) and 544 

absence of phage (blue). However, phage changed the shape of the thermal response. Points 545 

represent an independent replicate at each temperature. Solid lines represent the mean 546 

prediction and shaded bands represent the 95% credible interval of predictions. In (a) the 547 

dashed line represents 0 growth, below which phage abundance decreased. In (b), the dashed 548 

line represents the CTmax of the phage, beyond which phage abundance decreased. 549 
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 551 

Figure 2. Effect of phage on the thermal performance of bacteria. (a) Phage altered the 552 

growth rate of bacteria (calculated as relative fitness) in a non-linear fashion with increasing 553 

temperatures. (b-e) The effect of phage on key thermal performance traits. Phage altered the 554 

(b) activation energy, (c) optimum temperature, (d) optimal growth rate and (e) deactivation 555 

energy. In (a) the solid line represents the mean prediction and shaded band represents the 95% 556 

credible interval of predictions. The dashed line at y = 1 would indicate that phage do not alter 557 

growth rate. Below 1, phage reduces the growth rate of the bacteria. In (b-e) points and lines 558 

represent the mean and 95% credible intervals of the estimated parameters. 559 
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 561 

Figure 3. Levels of resistance of Pseudomonas fluorescens to phage through time and 562 

across temperatures. After 12 hours, populations are completely resistant at temperatures of 563 

28 ºC or lower. After 24 hours, most bacteria populations at 30 ºC, close to the estimated critical 564 

thermal maxima (CTmax) of the phage, have evolved resistance, but populations beyond the 565 

CTmax of phage infection remain susceptible. After 48 hours, at temperatures where phage 566 

impact bacterial growth, intermediate levels of resistance are observed. Small points represent 567 

the observed level of resistance for a population. Large points represent the predicted levels of 568 

resistance (of transformed data [see Methods]) from a binomial regression with 95% 569 

confidence intervals. Shaded regions represent the upper and lower confidence intervals of the 570 

optimum temperature and critical thermal maxima of the phage. 571 
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 573 

Figure 4. Temperature dependent cost of resistance in Pseudomonas fluorescens in the 574 

absence of phage. (a) The thermal performance of susceptible (blue) and resistant (black) 575 

clones. Resistant clones have a lower maximum growth rate. (b) The derived selection 576 

coefficient of resistance across temperatures. The cost of resistance changes across 577 

temperatures, being greatest at 30 ºC and other temperatures where growth in the absence of 578 

phage is high. In (a) points represent individual clones, solid lines represent the mean prediction 579 

and shaded bands represent the 95% credible interval of predictions. In (b) the dashed line at y 580 

= 1 would indicate that phage do not alter growth rate. Below 1, phage reduces the growth rate 581 

of the bacteria. 582 
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Supplementary methods 
 
Data cleaning and model selection process 

When processing the data on bacterial growth from the optical density reader, we first corrected 

the raw OD600 by the blank control (OD600 corrected = OD600 observed – OD600 blank). As the 

inoculum of the bacteria was too small to be accurately measured by the OD reader, if OD600 

corrected was less than the smallest value the OD reader could measure (0.001), the value was 

replaced with 0.001. This meant that the estimate of lag time estimates the time at which the 

bacteria could first be measured by the OD reader, but does not impact any of the estimates of 

exponential growth.  

 

In the presence of phage, to ensure that the best possible estimate of exponential growth was 

obtained, we implemented data cleaning after visualising the data. This is because during the 

bacterial growth curve, phage infections occur which result in decreases in abundance that are 

not expected based on the shape of the logistic growth curve. Moreover, where in the logistic 

growth curve these abundance changes due to phage infection occur alters the effect on the 

logistic growth curve. If lysis of host cells occurred in the lag phase (as determined by the 

model; Figure S1-S4), there is little to no impact of these changes in abundance on the model 

fit. However, at 30 ºC (Figure S5), the lysis of host cells occurred in mid-log growth phase and 

consequently drastically changes the estimate of exponential growth obtained from the model 

(Figure S5; red line). Consequently, we removed the points that we were certain were a result 

of phage infection (Figure S1-S8; red points) and then modelled the data. This resulted in the 

removal of 3.42 % of all points. Reassuringly, if the analysis of TPCs was run on the estimates 

of exponential growth of the raw data, similar results were obtained (Figure S17), with the 

biggest cost difference in fitness occurring at intermediate temperatures. 

 

For susceptible and resistant clones, the higher inoculum (ten-fold higher), and a lack of phage, 

resulted in an alternative data cleaning procedure being implemented. The higher inoculum 

resulted in fewer readings being initially beyond the range of the OD reader, and therefore a 

model without a lag time was favoured in most cases. Instead, we simply removed the first 

measurement (which was prone to error due to the bubbles present after pipetting the inoculum) 

and set time zero to the time at which the first optical density measurement was detected for 

each clone. 
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Table S1. Logistical growth equations used in the modelling of bacterial growth in the 

presence and absence of phage. 

Model Equation 

Gompertz !"#$%&'(%% = 	 !"#$%+%

+	(!"#$%+./0 −	!"#$%+%)	×	4(56
78	9	×	:7	×	; <=>?@

(<A>7BCD=E?	<A>7BCB)	×	FG	(7B)H	) 

Baranyi !"#$%&'(%% = 	 !"#$%+./0 + !"#$%( 5$I	69	×	<=>I	69	×	@
69	×	@5$I	69	×	<=>×	$%(<A>7BCD=E?	<A>7BCB)) 

Baranyi without lag !"#$%&'(%% = 	 !"#$%+./0 − !"#$%J1 +	(10(MNO7BPD=E5MNO7BPB) − 1Q × 45R	×	S) 
Buchanan !"#$%&'(%% = 	 !"#$%+% for when T	 ≤ !V# 

!"#$%&'(%% = 	 !"#$%+% + W(T − !V#)   for when !V#	 ≤ T	 ≤ TX 
!"#$%&'(%% = 	 !"#$%+./0   for when T	 ≥ TX 

Buchanan without 

lag 

!"#$%&'(%% = 	 !"#$%+% + W(T − !V#)   for when T	 ≤ TX 
!"#$%&'(%% = 	 !"#$%+./0   for when T	 ≥ TX 

Where !"#$%&'(%% is the log10 of the absorbance measurement,	!"#$%+% is the starting density, !"#$%+./0 is carrying 

capacity, W is the exponential growth rate (hr-1), !V# is the lag time in hours and TX is the time to stationary phase in hours.   

Model equations were copied from the R package ‘nlsMicrobio’. Code for fitting each equation and comparing AIC scores 

can be found on the GitHub repository for this manuscript. 
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Table S2. Point estimates and 95% credible intervals (as determined using Bayesian 

methods) for fitted and derived metabolic traits. 

Rate Parameter Mean 2.5% 97.5% 
phage replication CTmax (ºC) 29.2 29 29.4 

Topt (ºC) 27.0 26.5 27.5 
bacteria growth 
without phage 

E (eV) 0.84 0.59 1.16 
Eh (eV) 2.36 2.03 2.79 
Topt (ºC) 28.0 27.1 29.0 
rmax (hr-1) 0.72 0.68 0.76 

bacteria growth with 
phage 

E (eV) 0.33 0.20 0.50 
Eh (eV) 4.25 2.57 6.63 
Topt (ºC) 30.6 29.0 32.1 
rmax (hr-1) 0.57 0.54 0.62 

bacteria growth of 
susceptible clones 

E (eV) 0.49 0.42 0.57 
Eh (eV) 2.32 1.95 2.77 
Topt (ºC) 30.5 30.0 31.0 

 rmax (hr-1) 0.77 0.73 0.81 
bacteria growth of 
resistant clones 

E (eV) 0.42 0.33 0.56 
Eh (eV) 1.95 1.47 2.57 
Topt (ºC) 30.2 29.2 31.0 
rmax (hr-1) 0.66 0.63 0.70 

bacteria growth % change in rmax due to 
presence of phage 

-20.6 -13.1 -27.3 

% change in rmax due to phage 
resistance 

-13.6 -6.8 -20.2 

Parameters include CTmax, the critical thermal maximum, Topt, the optimum temperature, E, the activation energy, Eh, the 

deactivation energy, rmax, the maximum growth rate and the % change in maximum growth rate due to phage presence and due 

to phage resistance. Not all parameters are shown for each rate because they were either outside the range of the data collected 

or were not biologically meaningful for the data collected. 
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Table S3. Results of multiple pairwise comparisons between resistance through time at 

each temperature. 

Temperature Contrast Odds ratio SE z ratio p value 

15 12 hours vs. 24 hours 1 0.43 0 1 
 12 hours vs. 48 hours 1.26 0.54 0.54 0.85 

 24 hours vs. 48 hours 1.26 0.54 0.54 0.85 

20 12 hours vs. 24 hours 1.04 0.45 0.08 0.99 

 12 hours vs. 48 hours 1.01 0.44 0.03 0.99 
 24 hours vs. 48 hours 0.98 0.43 -0.05 0.99 

25 12 hours vs. 24 hours 1.16 0.62 0.89 0.65 

 12 hours vs. 48 hours 5.61 2.05 4.71 <0.001 

 24 hours vs. 48 hours 3.85 1.29 4.02 <0.001 

28 12 hours vs. 24 hours 1.62 0.66 1.17 0.47 

 12 hours vs. 48 hours 13.9 4.96 7.36 <0.001 

 24 hours vs. 48 hours 8.60 2.81 6.59 <0.001 

30 12 hours vs. 24 hours 0.02 0.01 -10.46 <0.001 
 12 hours vs. 48 hours 0.37 0.16 -2.35 0.049 
 24 hours vs. 48 hours 16.8 5.48 8.68 <0.001 

33 12 hours vs. 24 hours 0.92 0.41 -0.19 0.98 

 12 hours vs. 48 hours 1 0.43 0 1 
 24 hours vs. 48 hours 1.1 0.49 0.194 0.98 

35 12 hours vs. 24 hours 0.85 0.35 -0.40 0.92 
 12 hours vs. 48 hours 0.99 0.43 -0.03 0.99 
 24 hours vs. 48 hours 1.12 0.49 0.37 0.93 

37 12 hours vs. 24 hours 1 0.433 0 1 

 12 hours vs. 48 hours - - - - 

 24 hours vs. 48 hours - - - - 
At temperatures where growth was highest, resistance changed significantly through time. P values were adjusted using the 

Tukey method for comparing a family of 3 estimates and tests were performed on the log odds ratio scale. An odds ratio of 1 

would indicate that resistance was the same in both groups, with a higher odds ratio indicating that resistance was higher in 

the first group, and a lower odds ratio would indicate that resistance was higher in the second group. 
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Figure S1. Effect of data cleaning on logistic growth curves for bacterial growth in the 

presence (black) and absence (blue) of phage at 15 ºC. The Gompertz model for logistic 

growth was fitted to each independent replicate and the exponential growth parameter was 

extracted for use in the thermal performance curves. Points that were removed in the final 

dataset and predictions of the model using the raw dataset are shown in red. A lack of red 

indicates no points were removed and predictions are equal between the two datasets. Points 

represent individual measurements and lines represent predictions of the best fitting model for 

each replicate at each temperature. 
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Figure S2. Effect of data cleaning on logistic growth curves for bacterial growth in the 

presence (black) and absence (blue) of phage at 20 ºC. The Gompertz model for logistic 

growth was fitted to each independent replicate and the exponential growth parameter was 

extracted for use in the thermal performance curves. Points that were removed in the final 

dataset and predictions of the model using the raw dataset are shown in red. A lack of red 

indicates no points were removed and predictions are equal between the two datasets. Points 

represent individual measurements and lines represent predictions of the best fitting model for 

each replicate at each temperature. 
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Figure S3. Effect of data cleaning on logistic growth curves for bacterial growth in the 

presence (black) and absence (blue) of phage at 25 ºC. The Gompertz model for logistic 

growth was fitted to each independent replicate and the exponential growth parameter was 

extracted for use in the thermal performance curves. Points that were removed in the final 

dataset and predictions of the model using the raw dataset are shown in red. A lack of red 

indicates no points were removed and predictions are equal between the two datasets. Points 

represent individual measurements and lines represent predictions of the best fitting model for 

each replicate at each temperature. 
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Figure S4. Effect of data cleaning on logistic growth curves for bacterial growth in the 

presence (black) and absence (blue) of phage at 28 ºC. The Gompertz model for logistic 

growth was fitted to each independent replicate and the exponential growth parameter was 

extracted for use in the thermal performance curves. Points that were removed in the final 

dataset and predictions of the model using the raw dataset are shown in red. A lack of red 

indicates no points were removed and predictions are equal between the two datasets. Points 

represent individual measurements and lines represent predictions of the best fitting model for 

each replicate at each temperature. 
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Figure S5. Effect of data cleaning on logistic growth curves for bacterial growth in the 

presence (black) and absence (blue) of phage at 30 ºC. The Gompertz model for logistic 

growth was fitted to each independent replicate and the exponential growth parameter was 

extracted for use in the thermal performance curves. Points that were removed in the final 

dataset and predictions of the model using the raw dataset are shown in red. A lack of red 

indicates no points were removed and predictions are equal between the two datasets. Points 

represent individual measurements and lines represent predictions of the best fitting model for 

each replicate at each temperature. 
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Figure S6. Effect of data cleaning on logistic growth curves for bacterial growth in the 

presence (black) and absence (blue) of phage at 33 ºC. The Gompertz model for logistic 

growth was fitted to each independent replicate and the exponential growth parameter was 

extracted for use in the thermal performance curves. Points that were removed in the final 

dataset and predictions of the model using the raw dataset are shown in red. A lack of red 

indicates no points were removed and predictions are equal between the two datasets. Points 

represent individual measurements and lines represent predictions of the best fitting model for 

each replicate at each temperature. 
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Figure S7. Effect of data cleaning on logistic growth curves for bacterial growth in the 

presence (black) and absence (blue) of phage at 35 ºC. The Gompertz model for logistic 

growth was fitted to each independent replicate and the exponential growth parameter was 

extracted for use in the thermal performance curves. Points that were removed in the final 

dataset and predictions of the model using the raw dataset are shown in red. A lack of red 

indicates no points were removed and predictions are equal between the two datasets. Points 

represent individual measurements and lines represent predictions of the best fitting model for 

each replicate at each temperature. 
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Figure S8. Effect of data cleaning on logistic growth curves for bacterial growth in the 

presence (black) and absence (blue) of phage at 37 ºC. The Gompertz model for logistic 

growth was fitted to each independent replicate and the exponential growth parameter was 

extracted for use in the thermal performance curves. Points that were removed in the final 

dataset and predictions of the model using the raw dataset are shown in red. A lack of red 

indicates no points were removed and predictions are equal between the two datasets. Points 

represent individual measurements and lines represent predictions of the best fitting model for 

each replicate at each temperature. 
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Figure S9. Effect of phage on the thermal performance of bacteria using the raw data. (a) 

Bacteria growth shows unimodal responses to temperature in the presence (black) and absence 

of phage (blue). However, phage changed the shape of the thermal response. (b) Phage altered 

the growth rate of bacteria (calculated as relative fitness) in a non-linear fashion with increasing 

temperatures. (c-f) The effect of phage on key thermal performance traits. Phage altered the (c) 

activation energy, (d) optimum temperature, (e) optimal growth rate and (f) deactivation 

energy. In (a) the solid line represents the mean prediction and shaded band represents the 95% 

credible interval of predictions. The dashed line at y = 1 would indicate that phage do not alter 

growth rate. Below 1, phage reduces the growth rate of the bacteria. In (c-f) points and lines 

represent the mean and 95% credible intervals of the estimated parameters. 

 

 

 

  



 15 

 
Figure S10. Distribution of AICc scores for different logistical growth models fitted to 

bacteria growth in the presence and absence of phage. Numerous logistical growth models 

were fitted to each bacterial growth curve in the presence and absence of phage. The Akaike’s 

Information Criterion score adjusted for small samples (AICc) for each model was calculated 

and compared across models to select the best, consensus model. The table in the bottom right 

demonstrates that for 74% of the curves, the Gompertz model returned the lowest AICc score. 

The red and blue lines per panel represent the mean and median AICc score of that model 

respectively. 
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Figure S11. Distribution of AICc scores for different logistical growth models fitted to 

bacteria growth of susceptible and resistant clones. Numerous logistical growth models 

were fitted to each bacterial growth curve in the presence and absence of phage. The Akaike’s 

Information Criterion score adjusted for small samples (AICc) for each model was calculated 

and compared across models to select the best, consensus model. The table in the bottom right 

demonstrates that for 63% of the curves, the Baranyi model without a lag phase returned the 

lowest AICc score. The red and blue lines per panel represent the mean and median AICc score 

of that model respectively. 
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Figure S12. Logistic growth curves for bacterial growth of susceptible (blue) and resistant 

(black) clones. The Baranyi model without a lag phase was fitted to each independent replicate 

and the exponential growth parameter was extracted for use in the thermal performance curves. 

Points represent individual measurements and lines represent predictions of the best fitting 

model for each replicate at each temperature. 

  



 18 

(o) 37 ºC (p) 37 ºC

(m) 35 ºC (n) 35 ºC

(k) 33 ºC (l) 33 ºC

(i) 30 ºC (j) 30 ºC

(g) 28 ºC (h) 28 ºC

(e) 25 ºC (f) 25 ºC

(c) 20 ºC (d) 20 ºC

(a) 15 ºC (b) 15 ºC

0 10 20 30 40 50 0 10 20 30 40 50

−0.6
−0.3

0.0
0.3
0.6

−0.6
−0.3

0.0
0.3
0.6

−0.6
−0.3

0.0
0.3
0.6

−0.6
−0.3

0.0
0.3
0.6

−0.6
−0.3

0.0
0.3
0.6

−0.6
−0.3

0.0
0.3
0.6

−0.6
−0.3

0.0
0.3
0.6

−0.6
−0.3

0.0
0.3
0.6

Time (hours)

R
es

id
ua

ls
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S13. Fit residuals through time of logistic growth curves of susceptible (blue) and 

resistant (black) bacterial clones. The residuals of the Baranyi model without a lag phase 

were plotted as a function of time for each clone. There is some systematic variation in the 

residuals that are similar across most temperatures and resistant and susceptible clones. 

However, there does appear to be systematic variation in the first 7 hours after growth was first 

measured which could result in growth being underestimated at some temperatures more than 

others. The vertical line is drawn after 7 hours after growth was first detected and is a key 

portion of the curve used to estimate exponential growth rate. 
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Figure S14. Systematic variation in the residuals during the exponential growth phase of 

susceptible (blue) and resistant (black) bacterial clones. The slope between the residuals 

and time over the first 7 hours growth was detected was investigated. A slope of 0 would 

indicate that the model estimates exponential growth adequately, whereas a slope greater than 

1 would indicate that the model underestimates growth rate given the data. Exponential growth 

rate is underestimated at temperatures where bacteria grew best, and at these temperatures there 

was a significantly greater underestimation of growth rate in susceptible, rather than resistant 

bacteria. Points represent the slope of individual fits. Tops and bottoms of the bars represent 

the 75th and 25th percentiles of the data, the white lines are the medians, and the whiskers 

extend from their respective hinge to the smallest or largest value no further than 1.5 * 

interquartile range.  
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Figure S15. Time to stationary phase of bacteria growth in the presence of phage across 

temperatures. Time to stationary phase was estimated as the time at which the predictions of 

the model were 90% of the estimated carrying capacity, !"#$%+./0. Temperatures above 20 

ºC are all in stationary phase before the final sampling point of 48 hours, indicating nutrient 

limitation between 24 and 48 hours at these temperatures. Points represent the time to 

stationary phase of independent replicates. Dashed lines indicate the times at which samples 

were taken to test for resistance in equivalent trials. 
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Figure S16. Temperature dependent evolution and cost of resistance in Pseudomonas 

fluorescens. The thermal performance of the average susceptible clone (blue, solid line) and 

resistant clone (blue, solid line) represent the same curve as in Figure 4. However, there is very 

little phage infection beyond 30 ºC (Figure 3), so to emphasise the effect of ecological 

(differences in CTmax) and evolutionary (evolution of resistance) mechanisms, we plotted the 

modelled thermal performance curve of the average resistant clone at temperatures <= 30 ºC 

and the average susceptible clone at temperatures > 30 ºC. The shift in Topt observed in Figure 

1 is only visible by combining ecology and evolutionary mechanisms. Lines represent 

predictions based on the model fit to the mean rate values for each curve in (Figure 4). Dashed, 

vertical line represents the CTmax of the phage, beyond which little phage infection occurred. 


