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Abstract—Resource provisioning for cloud computing necessitates the adaptive and accurate prediction of cloud workloads. However,
the existing methods cannot effectively predict the high-dimensional and highly-variable cloud workloads. This results in resource wasting
and inability to satisfy service level agreements (SLAs). Since recurrent neural network (RNN) is naturally suitable for sequential data
analysis, it has been recently used to tackle the problem of workload prediction. However, RNN often performs poorly on learning long-
term memory dependencies, and thus cannot make the accurate prediction of workloads. To address these important challenges, we
propose a deep Learning based Prediction Algorithm for cloud Workloads (L-PAW). First, a top-sparse auto-encoder (TSA) is designed
to effectively extract the essential representations of workloads from the original high-dimensional workload data. Next, we integrate TSA
and gated recurrent unit (GRU) block into RNN to achieve the adaptive and accurate prediction for highly-variable workloads. Using real-
world workload traces from Google and Alibaba cloud data centers and the DUX-based cluster, extensive experiments are conducted to
demonstrate the effectiveness and adaptability of the L-PAW for different types of workloads with various prediction lengths. Moreover,
the performance results show that the L-PAW achieves superior prediction accuracy compared to the classic RNN-based and other
workload prediction methods for high-dimensional and highly-variable real-world cloud workloads.

Index Terms—Cloud computing, workload prediction, resource provisioning, sequential data analysis, deep learning
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1 INTRODUCTION

A S one of the most prevailing computing paradigms [1],
cloud computing promises on-demand provisioning of

computing, storage and networking resources with service
level agreements (SLAs) between cloud service providers
(CSPs) and users. When user requests arrive simultane-
ously, workloads burst so the available resources might be
insufficient. On the contrary, the idle status occurs when
workloads stay at a low level, resulting in resource waste.
Workload variations lead to the over-provisioning or under-
provisioning of resources, which causes unnecessary over-
heads or poor SLAs [2], [3]. Therefore, CSPs must be able to
rapidly determine the strategies of resource provisioning for
guaranteeing SLAs while improving resource utilization [2].
To achieve these objectives, the fast and adaptive methods
for workload prediction are necessary for cloud computing
[4]. Based on the effective prediction for future workloads,
more efficient and rational resource provisioning can be
achieved through configuring and allocating resources in
advance. However, workload prediction in cloud computing
faces two main challenges as follows:
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• High variance of workload patterns. Workload pat-
terns (e.g., the randomly-changing workloads in Google
cloud data centers [5], and the autocorrelated and peri-
odic workloads in the DUX-based cluster [6]) vary on
different time scales (e.g., seconds and days) in cloud
computing. According to the analysis report of Alibaba
cloud data centers [7], the average CPU utilization of
their entire cluster changes from 5% to 80% during
a day with high fluctuations. This high variance of
workload patterns makes it very hard to accurately and
effectively predict workloads.

• High dimensionality of workload data. Workload data
in cloud computing usually suffers from the problem
of high-dimensional space [8]. For instance, a 1000-
dimensional set of workload data is required to be
constructed and used as the input of a prediction model
for training purposes when there are 1,000 working
machines in a cloud data center. This high-dimensional
data with redundant and noisy information not only
results in more errors in workload prediction but also
leads to higher computational overheads of a prediction
model [9].

In response to the high variance of workload patterns,
the correlations of workload patterns should be effectively
captured and utilized in order to develop an accurate
workload prediction method that can adapt well to highly-
variable workloads. To tackle the challenge of high dimen-
sionality of workload data, the features of original workload
data should be further analyzed and extracted in order to
reduce the dimensionality of workload data and prediction
errors for more efficient and accurate workload prediction.

The problem of workload prediction has received con-
siderable research interests. However, many classic meth-
ods are based on the regression theories, heuristics or tra-
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ditional neural networks, which require workloads with
obvious regularity or clear tendency in order to achieve
the accurate workload prediction. Meanwhile, traditional
neural networks do not make full use of the correlation
between neurons for better prediction results. Thus, they
cannot effectively realize the accurate prediction of highly-
variable workloads. Furthermore, most of these methods
focus on the workloads in a small-scale grid or high-
performance computing (HPC) system, which present much
lower variance compared to a large-scale cloud computing
system (e.g., cloud data centers) [10]. Therefore, these meth-
ods cannot well adapt to the real-world cloud computing
environment with highly-variable workloads, which may
result in the severe degradation in the accuracy of workload
prediction.

Due to its excellent capability of sequential processing,
a recurrent neural network (RNN) [11] can be used to han-
dle the prediction problem with highly-variable workloads.
However, it would be an essential challenge to train an
effective RNN for workload prediction. Due to the problem
of gradient vanishing, the traditional RNN cannot effi-
ciently learn long-term memory dependencies. Some variant
RNNs, such as long short-term memory (LSTM) [11] and
gated recurrent unit (GRU) [12], exhibit a powerful ability
to address this issue [13]. Especially, compared to LSTM,
GRU can achieve not only comparable prediction accuracy
but also higher learning efficiency with fewer parameters.

However, due to the high dimensionality of workload
data, training an RNN-based prediction model is a time-
consuming task with high computational complexity. To ad-
dress this issue, one way is to reduce the dimensionality of
workload data by extracting the essential feature represen-
tations of the original workload data. Some methods have
been proved to be good candidates for reducing the data
dimensionality such as the principal component analysis
(PCA) [14] and auto-encoder [11]. However, PCA relies on
linear methods to find the direction of the largest variance
in high-dimensional data, which limits the types of dimen-
sion that can be reduced. By contrast, the auto-encoder
based methods (e.g., sparse auto-encoder [11]) overcome
this limitation by introducing the nonlinearities of neural
networks. But the classic auto-encoder usually overuses
hidden units, which results in low efficiency when reducing
the dimensionality of workload data.

To solve these essential challenges in workload predic-
tion, we first design a top-sparse auto-encoder (TSA) to
efficiently reduce the dimension of workload data. Next,
the compressed workloads are used as the input of the pro-
posed deep Learning based Prediction Algorithm for cloud
Workloads (L-PAW), in order to achieve an adaptive, precise
and efficient prediction for highly-variable workloads in
cloud computing. The main contributions of this paper are
summarized as follows:
• A top-sparse auto-encoder (TSA) is designed to effi-

ciently extract the low-dimensional but essential feature
representations of workloads from the original high-
dimensional workload data, which is able to achieve
the effective workload compression through selecting
the hidden units with high-level activation degrees.

• An efficient deep Learning based Prediction Algorithm
for cloud Workloads (L-PAW) is proposed to learn long-

term memory dependencies from historical workloads
through integrating the TSA and GRU block into RNN.
The L-PAW can adapt well to highly variable workloads
and obtain the accurate workload prediction through
capturing the essential historical information with the
settings of update and reset gates in the GRU block.

• Extensive simulation experiments using the real-world
workload traces are conducted to validate the effective-
ness and adaptability of the proposed L-PAW on cloud
workload prediction. The results demonstrate that the
L-PAW outperforms the classic RNN-based and other
prediction methods for high-dimensional and highly-
variable real-world cloud workloads.

The rest of this paper is organized as follows. Section
2 introduces the preliminaries of SA and RNN. In Section
3, we analyze the related work on workload prediction.
Section 4 describes the system model. In Section 5, the
proposed TSA and L-PAW are discussed in detail. Section 6
evaluates the proposed methods via simulation experiments
with real-world datasets of cloud workloads. Finally, we
conclude this paper in Section 7.

2 PRELIMINARIES

In this section, the sparse auto-encoder (SA) and recurrent
neural network (RNN) are briefly introduced. Based on the
basic principles of these two techniques, we aim to solve the
problem of high dimensionality and high variance on cloud
workload prediction.

2.1 Sparse Auto-Encoder
Sparse auto-encoder (SA) [11] can automatically learn the
essential feature representations from the unlabeled data. In
practice, the representations extracted by SA can be used
to replace the original data, which often leads to better
performance for the learning process of neural networks.
More specifically, SA is constructed with a single hidden
layer, which requires the output data to be as similar as
possible to the input data. Moreover, the hidden layer must
satisfy certain sparsity, which also means that the hidden
layer cannot carry too much information. Therefore, the
input data would be compressed in the hidden layer and
decompressed in the output layer.

SA learns a function yi = f(Wxi + b) ≈ xi, where xi
and yi ∈ Rn. In other words, SA targets to approximate an
identity function so that the output yi can be close to the in-
put xi. During this process, some important features would
be extracted from the input data. Moreover, the input data
can be replaced by hidden units (i.e., neurons of the hidden
layer), which achieves the effect of data compression. Even
if the number of hidden units is large, the essential features
of the input data can still be found by adding the sparsity
constraint. Especially, a(h)j is used to represent the activation
degree of the hidden unit j and its average, ρ̂j , can be
denoted as follows:

ρ̂j =
1

n

n∑
i=1

[
a
(h)
j (xi)

]
. (1)

ρ̂j is commonly enforced to be ρ, where ρ is the sparsity
parameter and should be close to 0 for satisfying the sparsity
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constraint on hidden units. Therefore, the following term is
used as a penalty when ρ̂j seriously deviates from ρ.

Nh∑
j=1

ρ ln
ρ

ρ̂j
+ (1− ρ) ln 1− ρ

1− ρ̂j
, (2)

where Nh is the number of hidden units and the above
formula can also be denoted as

∑Nh

j=1KL(ρ||ρ̂j) according
to the Kullback-Leibler (KL) divergence [11].

As a standard function for measuring the level of differ-
ence between two particular distributions, the minimum of
KL-divergence can be reached when ρ̂j is close to ρ, which
also means that the process for minimizing the penalty term
has the same effect on approximating ρ̂j to ρ. Thus, the
overall cost function of SA, Jsparse(W, b), is as follows:

Jsparse(W, b) = J(W, b) + β
Nh∑
j=1

KL(ρ||ρ̂j), (3)

where J(W, b) is the cost function of neural networks and β
is the weight used to control the sparsity penalty term.

2.2 Recurrent Neural Network

Recurrent neural network (RNN) [11] emphasizes the con-
nectivity of neurons between hidden layers, which can be
used to process the sequential problems through using his-
torical memories. Typically, the hidden layers of a traditional
neural network are fully-connected or partially-connected,
but the neurons between different neural networks are
connectionless. By contrast, RNN aims to use a sequence
to construct a relationship between historical memories and
the current status. Therefore, the neurons between hidden
layers in RNN are connected, which also means that the
input of hidden layers not only comes from the input layer
at the current moment but also the output of hidden layers
at the previous time. The structure of classic RNN is shown
in Fig. 1, where the chained features reveal that RNN is
essentially related to sequential processing.
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Fig. 1. The structure of classic RNN.

Based on the historical memories and the current input,
the future output can be predicted as follows:

st = tanh(U · xt +W · st−1), yt = softmax(V · st), (4)

where st, xt, and yt denote the hidden status, the input and
the output at time t, respectively.

3 RELATED WORK

Workload prediction in cloud computing has attracted much
research attention, while many scholars have contributed to
addressing this important problem. In this section, we first
review the classic methods and then present the RNN-based
approaches for cloud workload prediction.

3.1 Classic Methods for Workload Prediction

An auto-regression (AR) based prediction model was de-
signed in [15], where the time-series based historical CPU
utilization was used to predict the future workloads. How-
ever, this model is strictly linear in essence and lack the
adaptability to highly-variable workloads in a more com-
plex cloud environment. Linear regression (LR) and wavelet
neural network (WNN) were integrated for the short-term
prediction of workloads in [16], but it suffers from high
errors for the long-term prediction. Kumar and Singh [17]
proposed a workload prediction model by combining arti-
ficial neural network (ANN) and self-adaptive differential
evolution algorithm, which promises higher prediction ac-
curacy than LR and the back-propagation based methods.
A clustering-based learning approach was presented in [18]
for enhancing the accuracy of workload prediction, but it
is hard to determine a proper learning rate. The authors
proposed two collaborative filtering techniques using k-
nearest neighbors (k-NN) to obtain the good performance
of workload prediction among various multi-core systems
[19]. But k-NN is inefficient, which usually leads to huge
computational overheads. Swarm and evolutionary opti-
mization algorithms are applied to train the neural networks
for predicting the host utilization [20], but this approach
might suffer from the difficulty of selecting parameters (e.g.,
mutation and crossover rates). Kaur et al. [21] developed an
ensemble-based prediction method for CPU usage of scien-
tific applications, which takes the average accuracy of eight
regression-based prediction models into the consideration
of final prediction results. However, this method might be
restricted by the long training time for different models.

In general, most of the classic methods for workload
prediction depend on the heuristics, traditional neural net-
works or regression-based methods. Therefore, they require
workloads with obvious regularity or clear tendency in
order to achieve precise prediction. For instance, without
utilizing the correlations between neurons, the traditional
neural networks cannot achieve the accurate workload pre-
diction effectively. Moreover, these methods mainly execute
workload prediction in a small-scale grid or HPC systems,
which exhibit lower variance compared to the large-scale
cloud data centers. To effectively solve these important
challenges and achieve better prediction performance for
highly-variable workloads in the cloud environment, more
intelligent strategies are demanded. The emergence of RNN,
a competent architecture for sequence processing, presents
great potentials for cloud workload prediction.

3.2 RNN-Based Approaches for Workload Prediction

RNN [11] emphasizes the connectivity of neurons between
hidden layers in order to efficiently process the sequential
problem through using the historical memories in neural
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networks. Over the past few years, RNN has also been
used to deal with the problem of workload prediction in
cloud computing. Zhang et al. [22] proposed an RNN-based
model for improving the accuracy of workload prediction.
Similarly, the classic RNN architecture was adopted in [23]
and [24] to forecast the future workloads in cloud data
centers. It turns out that RNN can work well when coping
with short-term dependencies. However, the authors in [25]
and [26] have proved that RNN cannot effectively guarantee
the excellent performance of long-term prediction. This is
because that the traditional RNN is unable to address the
problem of gradient vanishing in training. Therefore, RNN
will lose the ability to connect and use the meaningful
information when the distance between the information and
the predicted value increases. This problem is known as
the long-term dependencies. To solve this problem, LSTM
was developed as an improvement of RNN [11], in order
to better deal with long-term dependencies. Song et al.
[27] utilized LSTM for the host load prediction, which
improved their previous work using RNN-based echo state
networks (ESN) [28]. Similarly, an LSTM-based model using
association learning was proposed to capture the relation-
ship among different resource metrics to achieve accurate
prediction for future workloads [29]. Compared with LSTM,
GRU is able to converge more easily with fewer settings of
parameters [12]. But there is little research work [30] using
GRU-based approaches with the consideration of training
efficiency of neural networks for workload prediction in the
cloud environment.

Overall, most of the RNN-based approaches depend on
the classic RNN architecture, which can neither survive
the problem of gradient vanishing nor capture long-term
memory dependencies from historical workloads. There-
fore, they are unable to learn the precise prediction results
for cloud workloads with high variance or adapt to the real-
world requirements of cloud computing, which might result
in the deterioration of prediction accuracy and efficiency.
Although there exist small amount of research using im-
proved forms of RNN (e.g., LSTM and GRU) to address
the issue of gradient vanishing [13], the problem of high-
dimensional workload data in cloud computing has not
been well considered. This might lead to low accuracy and
high computational complexity for workload prediction.

In order to address these open challenges, we first pro-
pose TSA to improve the compression efficiency in response
to the high dimensionality of workload data. Next, to better
deal with the high variance of workload patterns, the TSA
and GRU block are integrated into an RNN structure to cap-
ture long-term memory dependencies in neural networks
for achieving the accurate prediction of future workloads.

4 SYSTEM MODEL

CSPs promise the rapid resource provisioning to meet user
requests, which enables the scale of servers to be expanded
or reduced based on the current resource usage so that the
better load balancing can be achieved in a cloud data center.
However, due to workload variations, it is impossible to
determine an ideal resource provisioning strategy through
immediate operations, which dramatically degrades the
user experience. Meanwhile, inefficient and unreasonable

resource provisioning would also lead to unnecessary over-
heads (e.g., energy consumption) or SLAs violations. In
response to the high variance and high dimensionality of
workloads, we propose a workload prediction model for
cloud data centers in order to minimize the errors be-
tween the predicted workloads and the actual ones while
maintaining the satisfactory processing efficiency. The key
components of the proposed model are shown in Fig. 2.
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Fig. 2. The proposed workload prediction model in cloud data center.

Workload processor: Historical workload data from the
cloud data center is used in the proposed prediction model.
After the preprocessing and compression of historical work-
loads, workload data is regarded as the input of the pre-
diction processor. Generally, the historical workload data
includes various metrics about the system running status
(e.g., CPU usage, memory usage, and disk I/O time), which
increases the redundancy and complexity to the computa-
tion process. According to the published data from Google’s
production cluster [5] and Amazon AWS EC2 [31], the
average CPU utilization was quite low, at only 20% and
7%, respectively. The huge cost of investment in cloud data
centers with low CPU utilization has been a great concern
to cloud service providers. Therefore, the industry has seen
the CPU utilization as a key factor to improve the resource
provisioning in cloud data centers. As many state-of-the-art
works [32], [33], [34] on the resource provisioning of cloud
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data centers, we also consider CPU utilization as the main
performance indicator of workloads and extract this metric
during the workload preprocessing, which is denoted as
~X = (x1, x2, ..., xn), where n ∈ R and xn is the CPU usage
at time n. As there exists a huge difference in the value range
of workload data in different time intervals, the original
workload data needs to be normalized before proceeding to
the next step, which can help accelerate the convergence of
learning-based algorithms. More specifically, we adopt one
of the most widely used normalization methods in machine
learning (i.e., standardization) as follows:

x′ =
x−mean( ~X)

σ
, (5)

where mean( ~X) is the mean value of ~X and σ =√
E( ~X2)− (E( ~X))2 is the standard deviation.

After preprocessing, the normalized workload data ~X ′

is forwarded to the workload compression. The high di-
mensionality and redundancy of the workload data can
seriously degrade the prediction accuracy and lead to high
computational complexity. To this end, a top-sparse auto-
encoder (TSA) is proposed to compress the workload data,
which effectively extracts lower-dimensional but essential
feature representations of workload data as the input of the
gated RNN-based workload prediction in the next step. The
detailed description of the TSA is given in Section 5.

Prediction processor: Using the normalized and com-
pressed historical workload data from workload processor,
the future workloads are predicted by prediction processor
and transferred to CSPs, who will use the predictions to
determine the suitable resource provisioning strategies for
load balancing in a cloud data center. In the prediction
processor, the L-PAW, a gated RNN-based learning method,
is proposed for capturing long-term memory dependencies
from historical workloads in order to achieve more accurate
prediction for the problem of time series. Before adopting
the L-PAW for workload prediction, the CPU usage of each
trace measured during each time interval is added into the
historical workloads and used as the input of RNN. Through
the setting of the time length of prediction, the workload
prediction for different future periods can be realized. The
details of the L-PAW are given in Section 5. We then use the
mean-squared error (MSE) [11] to measure the accuracy of
workload prediction:

MSE =
1

N

N∑
i=1

(ŷi − yi)2 , (6)

where N denotes the time length of prediction, ŷi and yi are
the predicted workload and the actual one, respectively.

5 DEEP LEARNING BASED PREDICTION FOR
CLOUD WORKLOADS

This section presents the proposed L-PAW, a deep learning
based algorithm for cloud workload prediction. First, a top-
sparse auto-encoder (TSA) is designed to efficiently extract
the low-dimensional but essential feature representations of
the workload data. Second, the TSA and GRU block are

integrated into RNN to capture long-term memory depen-
dencies from historical workloads for achieving the efficient
and precise workload prediction.

As shown in Fig. 3, the input of the TSA is a vector of
workload examples ~X = (x1, x2, ..., xn), where n ∈ R and
xn is the CPU usage at time n. Similar to SA, TSA also tries
to approximate an identity function yn = f(Wxn+ b) ≈ xn
so that the output yn can be close to the input xn. Typically,
SA is a combination of linear activation functions and fixed
weights, which usually leads to the overuse of hidden units
and results in low learning efficiency. The proposed TSA
can also be regarded as an improved form of SA, where
top k hidden units with the highest activation degree are
selected for reconstructing the input data rather than using
all hidden units as SA does. During the forward propaga-
tion, the average activation degree of each hidden unit, ρ̂, is
calculated by Eq. (7) as follows:

ρ̂ =
1

n

n∑
i=1

[a(h)(xi)], (7)

where a(h) is the activation function of the hidden layer.
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Fig. 3. The network structure of the proposed TSA.

Next, all hidden units are sorted by their respective val-
ues of ρ̂ and the top k hidden units can be identified, which
is denoted as a vector τ = topk(ρ̂). Therefore, the non-linear
calculation only occurs while processing topk(ρ̂), which
greatly reduces the computational complexity compared to
SA. More specifically, the value of k affects the similarity
between workload data before and after compression. For
example, the TSA cannot fully capture the features of raw
data while using a small value of k (too few hidden units),
which will distort the compressed data. Conversely, the TSA
may contain much redundant information while using a
large value of k (too many hidden units), which will increase
the complexity of the following prediction work. The key
steps of the proposed TSA are illustrated in Algorithm 1.
The complexity of Algorithm 1 is O(n), linear to the size n
of the hidden layer in TSA.

Therefore, the problem of workload compression is
transformed to the computation for the weight W and the
bias b through minimizing the cost function JTSA(W, b).
Especially, the cost function of standard neural networks,
J(W, b), is shown as follows:

J(W, b) =
λ

2n

2∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
+

1

n

n∑
i=1

(
1

2
‖xi − yi‖2

)
,

(8)
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Algorithm 1: Top-Sparse Auto-encoder (TSA)

1 Input: workload examples ~X = (x1, x2, ..., xn)
2 Initialize: the number of hidden units Nh and the

number of hidden units with the largest activation k,
where k < Nh

3 for each training epoch n = 1, 2, ..., N do
4 for each hidden unit j = 1, 2, ..., Nh do
5 Execute the forward propagation and compute

the average activation degree of hidden units

ρ̂j =
1

n

∑n
i=1

[
a
(h)
j (xi)

]
6 end
7 Select top k hidden units from ρ̂ with the largest

activation and set the others to zero
ρ̂(τ)c = 0, where τ = topk(ρ̂)

8 Compute the cost function of TSA
JTSA(W, b) = J(W, b) + β

∑k
j=1KL(ρ||ρ̂j)

9 Ouput the compressed workloads
xcn =Wxn + b

10 Execute the backpropagation of cost JTSA(W, b)
through the definition of τ = topk(ρ̂)

11 end

where the first item is the regularization for avoiding over-
fitting and the second item is the MSE between the original
workload xi and the decoded one yi.

In order to merge the KL-divergence [11] into the compu-
tation for derivative, the original derivative of hidden layers
during the backpropagation is modified as Eq. (9). During
the forward propagation, all training samples should be
calculated for obtaining the average activation degree ρ̂i
before processing to the backpropagation.

δ
(h)
i =

No∑
j=1

δ
(o)
j W

(h)
ji + β

(
− ρ
ρ̂i

+
1− ρ
1− ρ̂i

) f ′(z(h)i ), (9)

where No is the number of output units and f ′(z
(h)
i ) is the

derivative of activation f(z(h)i ) = a
(h)
i .

Then, we regard the compressed workloads as the high-
level feature representations of the original data and use
them as the input vector of the RNN-based workload pre-
diction, which is denoted as ~Xc = (xc1, x

c
2, ..., x

c
t). Suppose

the vector of predicted workloads is ~Y = (ŷ1, ŷ2, ..., ŷt),
then the prediction model is trained by comparing the
errors between the predicted workload ŷt and the actual
one xct+1, where xct+1 represents the actual workload at time
t + 1. Especially, the backpropagation through time (BPTT)
[11] is adopted as the training algorithm for RNN. When
there exists only a short time interval between the historical
workload and the predicted one, RNN can learn useful
information for effective prediction. However, RNN reads
and updates all previous information, the accumulation of
gradients in RNN will be close to 0 as the time interval
increases. As a result, network parameters of RNN cannot
be updated effectively and RNN gradually fails to learn.
This problem is known as gradient vanishing [12], which
can also be expressed as the poor ability for capturing
long-term memory dependencies. Therefore, the historical

Algorithm 2: Deep Learning based Prediction Algo-
rithm for cloud Workloads (L-PAW)

1 Input: workload examples ~X = (x1, x2, ..., xt)
2 Initialize: the learning rate γ, the learning rate decay
λ, the truncated number T , the epoch threshold Et,
and the batch size Nbs

3 Call TSA to compress X and obtain the new input
~Xc = (xc1, x

c
2, ..., x

c
t)

4 for each training epoch n = 1, 2, ..., N do
5 Segment the epoch N

Et = segment(N)
6 if n > Et then
7 γ = γ ∗ λ
8 end
9 for each truncated number t = 1, 2, ..., T do

10 The updating mode of the update gate zt
zt = σ(Wz · [ŷt−1, xct ])

11 The updating mode of the reset gate rt
rt = σ(Wr · [ŷt−1, xct ])

12 Compute the new memory content ỹt
ỹt = tanh(W · [rt · ŷt−1, xct ])

13 The output of the GRU block
ŷt = (1− zt) · ŷt−1 + zt · ỹt

14 for i = 1, 2, ..., Nbs do
15 Train GRU(Wz,Wr,W ) by using the

mini-batch SGD
16 end
17 end
18 end

workloads from a long time ago cannot be effectively used
for workload prediction through traditional RNN structure.

To this end, we propose the L-PAW for better addressing
the above problems in workload prediction. Based on the es-
sential feature representations of workloads extracted by the
proposed TSA, we replace the hidden layers of classic RNN
with GRU blocks. The key steps of the L-PAW are shown in
Algorithm 2. After calling the TSA to obtain the compressed
workloads, we set a learning rate decay λ to control the
learning rate γ segmentally, which aims to achieve more
efficient learning at different stages for training the neural
networks. To solve the problem of gradient vanishing occurs
in the traditional RNN structure, some gated RNNs were
proposed, such as LSTM [11] and GRU [12]. Compared
to LSTM, GRU can achieve higher learning efficiency with
fewer parameters. Different from the traditional RNN, the
GRU utilizes gate structures to selectively read and update
the previous information. Therefore, the GRU only reserves
the information that is useful for prediction and filters out
irrelevant information. Meanwhile, the GRU automatically
creates short links between different network layers by
using gate structures and directly transfers the previous
information it reserved. Therefore, the GRU is able to solve
the problem of gradient vanishing by re-parametrizing the
traditional RNN [13] based on the settings of different gate
structures. The core idea of GRU is to make hidden units
to preserve some long-term memories, which enables the
gradient to be progressed over many timesteps. GRU is a
simplified form of LSTM that merges the forget gate and
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the input gate of LSTM into an update gate. Thus, GRU
consists of two gates, which are the update gate zt and the
reset gate rt. As shown in Fig. 4, we illustrate the structure
of GRU block in the proposed L-PAW algorithm. Similar
to LSTM, the update mode of these two gates is based
on the current input xct and the previous hidden status
ŷt−1. The new memory content ỹt is regarded as the new
information at current time t, where the reset gate rt is
used to control whether the previous memories need to
be retained. Besides, the update gate zt is used to control
whether the previous memory content ŷt−1 and the new
memory content ỹt is to be forgotten or added. Thus, the
output of GRU block ŷt (the predicted workload) can be
calculated based on the update gate zt. The complexity of
Algorithm 2 is related to the model capacity (i.e., the number
of parameters in the model), denoted by O(3(n2+nm+n)),
wherem is the size of input, n is the size of hidden layer, and
there are three sets of operations requiring weight matrices
in the GRU block (two sets of matrices for update gate and
reset gate, and one set of matrices for new memory content).
Especially, the GRU is trained by using mini-batch stochastic
gradient descent (SGD)for higher accuracy [35].

𝑦"#

𝑦$#

Reset Gate 𝑟#

Update Gate 𝑧#

Output

𝑥#( Input𝑦$#)*

𝑦$#

New memory content

GRU Block

Fig. 4. The structure of GRU block in the L-PAW.

The integration of TSA and GRU block enables the
classic RNN to learn long-term memory dependencies from
historical workloads more effectively. Whenever historical
memories are considered to be critical, the update gate is
closed for reserving the essential workload features over
multiple time steps. Moreover, the reset gate enables the
GRU block to reasonably utilize the model capacity through
resetting when the reserved memories are not necessary.
Therefore, the proposed L-PAW is built on a simpler struc-
ture with fewer gates than LSTM and can also achieve faster
convergence speed than GRU with the high-level represen-
tations of workload data extracted by the proposed TSA.
By contrast, LSTM consists of more gates and parameters,
which requires a larger number of training samples and a
longer time in order to train a good model. While GRU may
encounter the degradation of learning efficiency caused by
the overuse of hidden units in the classic SA.

6 EXPERIMENTS

In this section, we first present the simulation settings and
datasets of our experiments. Then, we evaluate the perfor-
mance of the proposed L-PAW and conduct comparisons
with the RNN-based and other classic methods for work-
load prediction in cloud data centers.
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Fig. 5. The highly random workloads in Google cloud data centers.
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Fig. 6. The highly random workloads in Alibaba cloud data centers.
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Fig. 7. The highly autocorrelated workloads in the DUX-based cluster.
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Fig. 8. The highly periodic workloads in the DUX-based cluster.

6.1 Simulation Settings and Datasets

We implement the proposed model for cloud workload
prediction based on TensorFlow 1.4.0 [36]. Three real-world
datasets are used in the experiments. The first one is Google
cluster-usage traces [5], which contain the running infor-
mation over 125,000 machines in Google cloud data centers
during May 2011. The second one is Alibaba cluster traces
[7], which include 4,000 machines with the runtime resource
usage in 8 days. The third one is the DUX-based cluster
traces collected by Dinda [6]. In our experiments, we regard
the CPU usage as the main performance index of workloads
[32], [33], [34]. More specifically, we randomly select 1,000
machines from Google datasets over 29 days, where each
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(c) Top 64 hidden units.
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(d) Top 128 hidden units.
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Fig. 9. Performance evaluation of the TSA for workload data compression with different top k hidden units.

machine contains around 100,000 traces. Similarly, we also
randomly select 1,000 machines from Alibaba datasets over
8 days, where each machine contains around 7,000 traces.
Then, we extract several essential metrics related to the
workload prediction, including the machine ID, start time,
end time, CPU usage, memory usage, and disk I/O usage of
each trace in both Google and Alibaba datasets. As shown in
Figs. 5 and 6, we present the per-day and per-minute work-
load fluctuation of a machine in Google and Alibaba cloud
data centers, respectively. As the DUX-based cluster traces
have been classified according to features of workloads, we
select two datasets over two specific machines, one contains
1,296,000 highly autocorrelated workload traces over 15
days and another one contains 1,123,200 highly periodic
workload traces over 13 days. Figs. 7 and 8 show the per-day
and per-minute workload fluctuation of these two machines
in the DUX-based cluster, respectively. As we can see from
Figs. 5 to 8, the workloads of Google and Alibaba cloud data
centers exhibit a more random feature, while the workloads
of the DUX-based cluster displays higher autocorrelation
and periodicity. In average, the size of workload examples of
a host machine is around 8000 after workload preprocessing.
We feed data into our prediction model in batches. In more
detail, we randomly split the datasets into three parts, which
are the training set (50%), the validating set (25%) and the
testing set (25%). The training set is used for model training
(calculating the weights of neural networks), the valida-
tion set is used for model selection (choosing the hyper-
parameters and preventing overfitting), and the testing set
is used to evaluate the performance of the selected optimal
model. Moreover, the total number of training epochs is
100, the initial learning rate is 0.03, the number of truncated
backpropagation steps is 32, and the batch size is 128.

6.2 Experimental Results
We first evaluate the performance of the proposed TSA
for compressing workloads in terms of the value of cost
function and compression effect, using Google datasets with
different numbers of top hidden units, where the value of
k changes from 32 to 512. Fig. 9(a) illustrates that the value
of cost function drops dramatically after around 50 training
epochs and gradually converges with different numbers of
top hidden units. More specifically, the value of cost is
relatively high when the number of top hidden units is small
(e.g., k ≤ 64). Because the neural networks of the TSA have
to be reconstructed largely for fitting in the compression
requirements when the number of top hidden units is small.
When the number of top hidden units is large (e.g., k ≥ 128),
the value of cost function exhibits no obvious distinction
among the cases with different numbers of top hidden units,
as the network structures are ready to learn the essential
feature representations from raw workload data. Thus, we
set the number of top hidden units as 128 (i.e., k = 128) and
use this setting in our following experiments. Meanwhile,
we plot the workload data before and after using the TSA
under different settings of top hidden units. As shown
in Figs. 9(b) to (f), the TSA for workload compression is
effective under proper settings of top hidden units, which
is able to provide an effective feature representation that
can greatly reduce the computational complexity of our
proposed method for cloud workload prediction.

Based on the Google datasets and the preprocessed re-
sults of workload compression by using the TSA, we evalu-
ate the proposed L-PAW and other recent RNN-based meth-
ods for workload prediction, including recurrent neural
network (RNN) [22], long short-term memory (LSTM) [27],
gated recurrent unit (GRU) [30], and echo state networks
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(ESN) [28]. We compare both the prediction accuracy and
learning efficiency among these methods, measured by MSE
and the average training time, respectively. Fig. 10 shows the
MSE of different RNN-based methods with various levels of
prediction length. In general, MSE rises with the increase
of prediction length for all these methods. More specif-
ically, for the second-level prediction, there is not much
difference in prediction accuracy between the L-PAW and
other RNN-based methods. With the increase of prediction
length (from the minute-level prediction to the day-level
prediction), the L-PAW exceeds other RNN-based methods
in terms of prediction accuracy and exhibits a bigger gap in
performance improvements. This is because that the L-PAW
can address the problem of gradient vanishing and capture
long-term memory dependencies from historical workloads.
The results demonstrate that the L-PAW is more effective for
workload prediction than other RNN-based methods under
the high-dimensional and highly-variable cloud workloads.
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Fig. 10. Prediction accuracy (MSE) of different RNN-based methods with
various levels of prediction length.
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Fig. 11. Average training time (s/epoch) of different RNN-based methods
with various levels of prediction length.

Next, we compare the learning efficiency of the pro-

posed L-PAW and other RNN-based methods for work-
load prediction with various levels of prediction length.
As shown in Fig. 11, the values of average training time
of the above methods with different levels of prediction
length are recorded. RNN consumes the lowest training
time at different levels of prediction length due to its simple
neural network structure. However, the prediction accuracy
of RNN is worse than other RNN-based methods due to the
workload variations in cloud data centers, as presented in
Fig. 10. When it comes to gated RNN-based methods, GRU
consumes less average training time compared to LSTM due
to the setting of fewer gates. However, the average training
time of GRU is much higher than ESN, because ESN reduces
the computational complexity by using auto-encoder for
workload compression. By contrast, the L-PAW achieves less
average training time than ESN through integrating TSA
and GRU block into RNN. Therefore, the L-PAW can achieve
a better trade-off between prediction accuracy and learning
efficiency than other RNN-based methods with the increase
of prediction length.

TABLE 1
Prediction Accuracy (MSE) of the L-PAW with Various Levels of

Prediction Length over Different Types of Workloads

Prediction
length

MSE of workload prediction
Highly auto-

correlated
(DUX)

Highly
periodic
(DUX)

Highly
random
(Google)

Highly
random

(Alibaba)

20 s 0.000313 0.000297 0.003887 0.003753
40 s 0.000313 0.000298 0.003889 0.003754
60 s 0.000314 0.000298 0.003893 0.003759

20 min 0.000317 0.000303 0.004061 0.003947
40 min 0.000321 0.000307 0.004232 0.004102
60 min 0.000327 0.000309 0.004306 0.004287

2 h 0.000342 0.000322 0.004628 0.004563
4 h 0.000359 0.000339 0.005169 0.004998
6 h 0.000378 0.000361 0.005746 0.005574

1 day 0.000526 0.000509 0.006812 0.006693
2 day 0.000682 0.000656 0.009123 0.008867
3 day 0.000767 0.000728 0.011598 0.011285

Next, we evaluate the performance of the proposed L-
PAW for workload prediction with various levels of predic-
tion length over different types of workloads, including the
highly random, highly autocorrelated, and highly periodic
workloads, respectively. As shown in Table 1, with the
increase of prediction length, the L-PAW can achieve and
maintain very high prediction accuracy in terms of MSE
when workloads (indexed by CPU usage) are highly auto-
correlated or highly periodic. While dealing with highly ran-
dom workloads, the L-PAW can still obtain good prediction
results although the workload variations bring great diffi-
culty to workload prediction. For example, Fig. 12 depicts
the performance of L-PAW over different types of workloads
at second-level prediction, where the L-PAW can achieve a
highly accurate workload prediction from the perspectives
of CPU, memory, and disk I/O usage. As shown in Figs.
13 and 14, the L-PAW still exhibits excellent prediction
accuracy in response to the highly random workloads from
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Fig. 12. Performance display of the L-PAW over different types of workloads at second-level prediction.
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Fig. 13. Performance display of the L-PAW over highly random workloads of Google cloud data centers with different levels of prediction length.
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Fig. 14. Performance display of the L-PAW over highly random workloads of Alibaba cloud data centers with different levels of prediction length.

Google (memory usage) and Alibaba (disk I/O usage) cloud
data centers, respectively. Even for the day-level prediction,
the L-PAW can predict the future tendency of workloads
accurately. Therefore, the above results demonstrate the
strong adaptability of the L-PAW for handling different
types of workloads with various levels of prediction length.

Finally, we compare the proposed L-PAW with other
classic methods for workload prediction, including auto-
regression (AR) [15], linear regression (LR) [16] and artificial
neural network (ANN) [17], in terms of prediction accuracy
measured by MSE. Fig. 15 illustrates the cumulative dis-
tribution function (CDF) of MSE under different methods
of workload prediction with various levels of prediction
length using Google datasets. As shown in Fig. 15(a), for
the second-level prediction, the value of MSE achieved by
the L-PAW is lower than all the other methods when CDF
is close to 1. With the increase of prediction length, the L-

PAW achieves more significant performance improvements
compared to other classic methods, as shown in Figs. 15(b)
and (d). This is because that these classic methods cannot
effectively make the long-term prediction for highly random
workloads without obvious regularity. By contrast, the L-
PAW can better address this problem, because it can extract
the representative features from raw workload data through
using the TSA and capture long-term dependencies of mem-
ory from historical workloads through integrating the GRU.

7 CONCLUSIONS

The adaptive and effective workload prediction is essen-
tial to efficient resource provisioning in cloud computing.
However, workload prediction is confronted with important
challenges caused by the high variance and high dimension-
ality of cloud workloads. In this paper, we first design a TSA
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Fig. 15. Performance comparison between the L-PAW and other classic methods for workload prediction.

to efficiently extract the essential feature representations of
workloads from original high-dimensional workload data.
Next, an L-PAW was proposed through integrating TSA and
GRU block, in order to achieve the adaptive and accurate
prediction for highly-variable workloads. The extensive ex-
periments using real-world workload datasets from Google
and Alibaba cloud data centers and the DUX-based cluster
demonstrate that the L-PAW yields high prediction accuracy
measured by MSE for highly autocorrelated, highly periodic
and highly random workloads. Furthermore, the prediction
errors only produce small increases with the growth of
prediction length, which verifies the strong adaptability of
the L-PAW. Moreover, the L-PAW outperforms the classic
RNN, LSTM, GRU, and ESN for workload prediction with
the improvements in MSE, while achieving high learning
efficiency. In addition, with the increase of prediction length,
larger improvements of prediction accuracy are achieved
by the L-PAW compared to other classic methods, which
reveals the ability of the L-PAW for addressing the problem
of long-term memory dependencies in cloud workload pre-
diction. Based on the accurate and efficient prediction for
cloud workloads, our future work is to explore an adaptive
strategy for resource provisioning with deep reinforcement
learning (DRL) in response to the complex and dynamic
environment of cloud computing.
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