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MMHelper: An automated 
framework for the analysis of 
microscopy images acquired with 
the mother machine
Ashley Smith   1,2, Jeremy Metz   1,2 & Stefano Pagliara1,2

Live-cell imaging in microfluidic devices now allows the investigation of cellular heterogeneity 
within microbial populations. In particular, the mother machine technology developed by Wang 
et al. has been widely employed to investigate single-cell physiological parameters including gene 
expression, growth rate, mutagenesis, and response to antibiotics. One of the advantages of the 
mother machine technology is the ability to generate vast amounts of images; however, the time 
consuming analysis of these images constitutes a severe bottleneck. Here we overcome this limitation 
by introducing MMHelper (https://doi.org/10.5281/zenodo.3254394), a publicly available custom 
software implemented in Python which allows the automated analysis of brightfield or phase contrast, 
and any associated fluorescence, images of bacteria confined in the mother machine. We show that 
cell data extracted via MMHelper from tens of thousands of individual cells imaged in brightfield are 
consistent with results obtained via semi-automated image analysis based on ImageJ. Furthermore, we 
benchmark our software capability in processing phase contrast images from other laboratories against 
other publicly available software. We demonstrate that MMHelper has over 90% detection efficiency for 
brightfield and phase contrast images and provides a new open-source platform for the extraction of 
single-bacterium data, including cell length, area, and fluorescence intensity.

Phenotypic heterogeneity is a common feature within isogenic bacterial populations1–3. Cell-to-cell variations 
have been observed in bacterial growth rate3, virulence4, and resistance to stress1. As a result, it has been suggested 
that such heterogeneity may allow some cells to survive within fluctuating environments1,5–8 and hence promote 
evolutionary adaptation9,10. Traditional microbiological assays are based on ensemble measurements and thus 
unable to measure cell-to-cell differences within microbial populations. In contrast, microfluidics allows the pre-
cise manipulation of fluids at the submillimetre level11 and when used in combination with microscopy can be 
utilised for biological assays with single-cell resolution12,13. Microfluidics has already been adapted for investigat-
ing heterogeneity across multiple domains of life. For instance, Hansen et al. developed a protocol which enables 
measurement of signalling dynamics in single yeast cells14, Li et al. investigated heterogeneity in the migration 
ability of a population of lung cancer cells15, Yuan et al. looked at the effects of genome deletions on bacterial 
growth16, Pagliara et al. showed that embryonic stem cells exhibit auxetic properties17, and Otto et al. measured 
the mechanical deformability of single cells to identify cell sub-populations in whole blood samples18. There are a 
multitude of microfluidic designs and devices available for investigating single bacterial cells. One popular exam-
ple is the mother machine19, which provides an ideal platform for tracking single bacterial cells over time while 
continuously supplying growth nutrients or compounds to be tested such as antibiotics.

Wang et al. designed the mother machine (MM) to allow the trapping of a single mother cell at the dead-end 
of each of thousands of microfluidic channels and the tracking of its daughter cells over hundreds of genera-
tions19. This tool has since been employed to investigate a variety of research questions with single-cell resolution. 
Tanouchi et al. and Kaiser et al. used the MM to investigate gene regulation20–22. Robert et al. and Uphoff inves-
tigated the emergence of mutations in single cells and the dynamics of mutagenesis23,24. Moolman, et al. utilised 
it to explore protein stoichiometry and dynamics25 whereas Chait et al. used it to engineer bacterial population 
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behaviour26. Multiple groups have use it to investigate single cell response to antibiotics4,27,28, and Yang et al. stud-
ied bacterial adaptation under physical confinement29.

Some research groups have developed software which can be used for the analysis of images of bacteria con-
fined in the mother machine30, although most still use scripts customised around their experimental and imaging 
set-up23,26,27,31. Initially, Arnoldini, et al. developed mmj, a semi-automatic ImageJ plug-in which facilitates the 
analysis of mother machine images4. However, it is inefficient to use this semi-automated approach on thousands 
of images. Sachs et al. developed Molyso an unsupervised software implemented in Python30. Molyso, provides a 
fast and efficient framework capable of analysing 90 GB of mother machine images in 30 min. Nonetheless, their 
program has limitations which prevent its use by the wider mother-machine community, including not being 
suitable to analyse standard brightfield images, and constraints on initial channel orientation. Another ImageJ 
plug in, MoMA, is also available and the authors claim to achieve unprecedented accuracy in segmenting and 
tracking bacteria22. However, we were unable to install and run MoMA, on any datasets, within a reasonable 
(2 hour minimum) time period. Using the suggested installation method we successfully installed MoMA but 
always encountered a FIJI exception error when trying to run the application due to its dependency on Gurobi, 
even when running on MoMA’s own image set.

In order to overcome the limitations above, we introduce MMHelper, an analysis framework that, to the best 
of our knowledge, is the first fully automated program applicable to multiple imaging modalities of the mother 
machine. MMHelper is implemented as a user-friendly python module which detects bacteria confined within 
the MM and tracks their progeny and fate through time. These detected bacterial regions can then be used to 
access information on length and area as well as any accompanying fluorescence intensity data. We demonstrate 
that by using MMHelper, brightfield imaging can be used for extracting phenotypic information from individual 
bacteria (e.g. length, width, morphology) in the mother machine as well as phase contrast imaging; with the 
added value that brightfield imaging does not rely on the use of specialised optical components. Furthermore, 
we have recently used MMHelper to analyse the response to antibiotics of 11,823 single bacteria thus generating 
novel insight on the physiology of phenotypic variants28. Therefore, we believe that the efficiency and accuracy of 
MMHelper will assist the investigation of a variety of biological questions by significantly improving the through-
put and reliability of mother machine experiments.

Methods
Our image analysis pipeline can be decomposed into two core stages, detection and tracking, which are followed 
by the extraction of the temporal changes of single-cell parameters including length, width, area, and fluorescence 
intensity. After determining the imaging modality (1A), each stage is comprised of channel-centric (Fig. 1B,D) 
and bacteria-centric (Fig. 1C,E) sub-stages. The detection stages (Figs 1B,C and S1) take place independently of 
the time-point of the experiment and are shown in more detail in Fig. 2A–D and Fig. 3A–D, respectively. In com-
parison, the tracking stages (Fig. 1D,E) are performed relative to the previous time point (i.e. the t = 0 h left hand 
panel images are used as a reference for the tracking on the t = 1 h right hand panel images).

Data organisation and loading.  Each image is loaded as a multi-dimensional numpy array using the 
scikit-image module. For experiments including fluorescence images, these arrays are split such that detection is 
only performed on the brightfield (or phase contrast) images. MMHelper can be run specifically on single images 
or on image time-series and it also contains a batch run mode. This mode allows the analysis of a whole folder that 
contains images from tens of different time points and areas of the MM. In this instance, a naming protocol is 
used to associate images with areas on the chip. Specifically, a string is used at the start followed by an underscore 
that identifies which MM area the respective image is from. After this underscore, a time stamp is used in order 
to sort the images in chronological order (e.g. a suitable filename for an image of area 1 of the MM acquired at 
12:33:01 on the 16th October 2017 would be: “Area01_171016_123301.tiff ”).

Detection.  The first stage of the detection process is to determine whether the image is a phase or brightfield 
image (Fig. 1A). We noted that the pixel intensity distributions of brightfield and phase-contrast images, obtained 
with similar N.A. objectives, are significantly different. Therefore, we used the skewness of the pixel intensity 
distribution to detect the imaging modality. As we have a large sample size in terms of pixel count (for a square 
image that is 1000 pixels in length: ≈ =n 1,000 1,000,000pixels

2 ), we used the uncorrected expression for the 
skewness G1

32, with the samples third and second central moments of the pixel data, m3 and m3 respectively.
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If this equation returns G1 as a positive value, the image is assumed to be phase contrast, whereas a negative 
value suggests the input image was acquired in brightfield.

After determining the imaging modality, the input image is filtered (Fig. 2A) using a gradient magnitude Sobel 
edge for phase contrast images or Frangi ridge filter for brightfield images33.

The edge or ridge filtering accentuates the channel outlines, and is followed by Li’s iterative minimum 
cross-entropy based automated thresholding34 to binarize the image. This mask image is labelled using 
connected-component labelling, and the labelled regions are filtered based on area to remove non-channel 
regions.

The resulting channel-outlines are morphologically dilated to close small gaps in the outline, and the subse-
quent closed regions are filled using a region-filling algorithm. These inner channel regions are extracted as the 
difference between the outlines and the filled regions (Fig. 2B). The inner-channel perimeters are converted to 
pixel locations and, by determining the pixel locations that are farthest apart, channel vectors are generated. These 
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vectors are filtered for length to select only regions in a predetermined range (default: 100–400 pixels) based on 
the images acquired from our typical experimental set-up, however they can be adjusted using a scale factor (see 
additional parameters section). The resulting vectors correspond to the long channel edges, therefore the perpen-
dicular distance between them is also filtered to ensure that the selected channels correspond to single channels. 
The resulting channel regions form the basis for a subsequent interpolation stage (Fig. 2C). First, the aforemen-
tioned channel regions are analysed to determine the single channel-to-channel spacing, to allow the identifica-
tion of undetected channels. Using this spacing, the positions of eventually undetected channels are interpolated 
from the detected channel positions. The detected average channel shape is stamped into each interpolated posi-
tion. Using the channel contours, the perimeter of each detected channel can be seen in the final output images 
(Fig. 2D). Note that at least three channels must be detected in any given image to allow the algorithm to attempt 
interpolation. If two or less channels are detected the algorithm warns the user that it was unable to accurately 
detect channels in this image, and the frame is not considered for further detection.

Figure 1.  Overview of the analysis pipeline. The analysis pipeline is broken down into five major steps. (A) 
The imaging mode is detected, determining whether images are brightfield or phase contrast. (B) Channels are 
detected, assigned specific labels and ordered consecutively from left to right. (C) Bacteria are detected in each 
channel. (D) Channels are tracked throughout the image time-series. In these representative images, the mother 
machine device at t = 1 h has moved approximately 10 μm to the left with respect to t = 0 h, as indicated by the 
arrow. Our algorithm quantifies this frame shift and relabels each channel accordingly, for example the channel 
indicated by the arrow is recoloured in yellow. (E) After channel tracking, the detected bacteria in each channel 
are tracked accordingly and relabelled where necessary, each bacterium keeping the same unique colour 
through consecutive time points as indicated by the arrow.
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The next sub-stage in detection is to detect bacteria within the channels identified from the process above. 
In these images, the bacteria initially appear darker than the background (Fig. 2D). Therefore, the images are 
inverted to allow for the use of standard algorithms to detect bright objects on dark background. To do this, the 
background intensity for each channel is estimated using a rolling ball filter and subtracted from its respective 
image35 (Fig. 3A). Furthermore, by subtracting the background intensity, the watershed segmentation can remain 
the same for bacteria located anywhere along the channel profile (Fig. S2).

These channel images are then processed as follows: first each channel image is scale-space filtered36 using a 
Laplace of Gaussian convolution at multiple scales, and maximum-projected along the scale axis (Fig. 3B). Using 
these filtered channel images, a threshold value is determined using Li’s algorithm to avoid over-segmentation of 
empty channels. Each filtered channel image is then binarized using this threshold value and outlines generated 
by taking the difference between the dilation (grow) and the erosion (shrink) of the initial binary image. An initial 
crude region-splitting stage is included as occasionally multiple bacteria are detected as a single region, which 
reduces the accuracy of the region size filtering step. For this, the algorithm uses the marker-controlled Watershed 

Figure 2.  Pipeline for channel detection. (A) The original image is filtered (Sobel for phase images and Frangi 
for brightfield) followed by thresholding to identify potential ridges. These ridges are then filtered by size to 
leave the masks of the channels. (B) A new mask is created with the centre of each channel filled and through 
a simple subtraction of the previous mask with the new one, the centre of each channel is extrapolated. These 
masks can appear irregular in shape due to the presence of the bacteria they host. Consequently, new profiles 
are determined by creating vectors around the perimeter to form an average channel shape. (C) The spacing 
between these channels is determined and, after interpolation to determine the location of missing channels, the 
average channel shape is stamped in place. Noteworthy, our algorithm performs well also with images where the 
main channel is not horizontal resulting in slightly staggered labels. (D) A yellow contour is drawn around each 
label to delineate the detected channels.
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transform37. Markers are generated from all regions greater than a predefined distance from the mask back-
ground, and used to delineate bacteria. These regions are finally filtered for width and size (Fig. 3C). Following 
the initial bacteria segmentation, a second dedicated bacteria-splitting stage was included to improve the segmen-
tation quality of adjacent bacteria (Fig. 3C). The initially detected bacteria are skeletonised and “splits” identified 
using a combination of distance transformation and pixel intensity, with the threshold values determined using 
the median and median absolute deviation of all the initially detected bacteria from the original image.

Tracking.  The detected channels and bacteria are tracked in two stages. First global frame shift is determined 
for whole images using cross-correlation based template matching38. This allows channels from consecutive time-
points to be matched using simple distance-based greedy assignment, which matches each point to its near-
est neighbour as long as it is also the nearest neighbour to that point. To do so, channel centroid positions are 
extracted and channels in consecutive frames are linked if each is the nearest neighbour to the other (Fig. 1D). 
Once channels have been tracked in adjacent time frames, bacteria can be tracked in each channel. This proceeds 
according to a simple multiple-hypothesis tracking where probabilities of all possible assignments are calculated. 
These assignments take into account the centroid position and area of each bacterium, as well as adjustable prob-
abilities that each bacterium remains an individual entity (no-change, Fig. 4A), or fades away from the channel 

Figure 3.  Pipeline for bacteria detection. (A) By using the masks for the detected channels, the corresponding 
original image for each channel is identified and the image inverted using background subtraction. (B) This 
is followed by scale space filtering and thresholding. As a result, markers are identified that can be used 
for a watershed transformation. (C) Each single element within each channel identified by the watershed 
transformation is given a unique label, represented by a different colour. The result of the watershed is filtered to 
remove non-bacterial particles. Bacterial splits are identified, using a combination of width and pixel intensity, 
and a mask of the detected bacteria produced using a combination of distance transformation and pixel 
intensity along the skeleton.
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(cell death, Fig. 4B), or gives rise to progeny (cell division, Fig. 4C). These events can occur in a number of differ-
ent combinations to produce the number of bacteria detected in the current frame relative to the preceding frame 
(t = 1 h compared to t = 0 in Fig. 4A–C). Therefore, a list of all these possible combinations is generated and for 
each of these possibilities the total number of bacterial divisions that would be required is determined. A prob-
ability based on the change in area between the bacteria and its offspring is determined and normalised by the 
number of divisions. A second probability based on the change in centroid, is calculated taking into account that 
for each division the change in centroid location is expected to move by half the length of an average bacterium. 
Finally, the algorithm calculates the likelihood of a cell dividing, lysing, or remaining a single cell between consec-
utive time points. All three of these probabilities are then multiplied together to determine the overall likelihood 
that the given event occurred for an individual bacterium. The determined probability for each bacterium within 
the channel is multiplied to produce an overall probability for the respective combination of events. The resulting, 
most probable, combination is then used to correctly relabel each bacterium in each image (e.g. second channel 
from the left in Fig. 4D), with newly generated bacteria assigned a new unique label (e.g. first and second channels 
from the left in Fig. 4E).

Extraction of single-cell parameters.  Once bacteria detection and tracking has been completed, extrac-
tion of all quantities of interest can be achieved through the detected and tracked region-based properties. Each 
bacterium’s length, width, and area are determined using the various standardised algorithms presented via the 
regionprops function. The binary masks can then be used to extract the raw fluorescence intensity values from the 
corresponding fluorescence images reporting for example the activity of transcriptional reporters or the intra-
cellular accumulation of spectrally distinct substrates. The background fluorescence is obtained from the empty 
areas (parts of the channels not containing detected bacteria) of each channel and subtracted from each respective 
bacterium’s fluorescence intensity. These quantities are then saved in a csv file. We have recently used MMHelper 
to measure the temporal changes in promoter activity in 11,823 individual Escherichia coli28. Figure 5A–C report 
the temporal changes in area, length and GFP fluorescence for three representative bacteria, and their progeny, 
growing in lysogeny broth. The fluorescence reported in Fig. 5C is the mean pixel intensity and the gradual 

Figure 4.  Overview of bacteria tracking. Individual bacteria detected in an experiment using (A) minimal 
medium, (B) antibiotic treatment, or (C) growth medium at t = 0 and at t = 1 h (channels at the left and right 
hand side of each panel, respectively). (D–F) Corresponding tracked bacteria are relabelled, where necessary 
(e.g. second channel from the left in D), at t = 1 h so that their label (i.e. contour colour) matches that at t = 0. 
When a division occurs each of the offspring is assigned a new unique label (e.g. first and second channel from 
the left in F).
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decline in the fluorescence values reported is not due to photobleaching, but is a genuine proxy for the expres-
sion of the multi efflux pump tolC (the promoter upstream of GFP in the plasmid carried by the strain), due to 
the reduction of cellular stress upon continuous exposure to fresh media, similar to the profile we previously 
observed28.

Additional parameters and module usage.  MMHelper can be used to analyse image time series 
acquired with different microscopy setups (e.g. different objective magnification and numerical aperture, different 
cameras) by adjusting a single “Scale factor” parameter. Furthermore, the user can specify how many fluorescence 
image channels are acquired for each brightfield (or phase contrast) image. More information on parameters and 
how to adjust them will be available on the repository wiki page (https://github.com/jmetz/mmhelper/wiki).

Due to the 2D nature of MMHelper’s detection, it performs the analysis on any image orientation and there is 
no need for tilt correction. Furthermore, the modular nature of MMHelper makes it suitable for future adaptation 
to slightly different experimental set ups such as microchemostat devices39.

Statistical comparison.  In order to compare the performances of MMHelper and Molyso, we manually 
drew ground truth detection masks in the images using the freely available GIMP drawing program and used 
them to quantify three parameters: the Jaccard index, precision and recall values of the automated detection 
(Fig. S3). We ran both software programs on our own brighfield images, and three independent sets of phase 
contrast images from (i) the the Locke’s laboratory40, (ii) the work by Sachs, et al. (Molyso)30 and (iii) the work by 
Kaiser, et al. (MoMA)22. In order to use Molyso on brightfield images, we inverted these images before analysis 
since the authors did not develop this software for brightfield imaging. We then directly compared the respective 
values for each parameter, statistical significance was tested by unpaired t test with Welch’s correction, where 
p ≤ 0.05 is *p ≤ 0.01 is **p ≤ 0.001 is *** and p ≤ 0.0001 is ****respectively.

Results and Discussion
We developed MMHelper to work on both brightfield and phase contrast images with high detection efficiency 
and accuracy, this also allowing accurate extraction of data from any associated fluorescence images. In order 
to quantify the performances of our software, we randomly selected 5 of our brightfield datasets28 and analysed 
image time-series for 4 consecutive time-points, resulting in the analysis of 14 frames containing between 18 and 
120 bacteria each. We characterised the detection efficiency as the percentage of bacteria which were detected 
and, from a total of 562 bacteria across all of the brightfield images, the efficiency was determined as 98 ± 1%. 
However, in some cases one bacterium was labelled as multiple bacteria or multiple bacteria detected as an indi-
vidual bacterium. In these circumstances the detection cannot be said to be accurate, therefore we termed detec-
tion accuracy as the percentage of bacteria correctly identified by a single label and calculated it to be 80 ± 3% 
across the 14 previously mentioned brightfield images. Furthermore, we used MMHelper to analyse an image 
dataset acquired with a phase contrast microscope in the Locke’s laboratory40, obtaining a bacterial detection 

Figure 5.  Dynamics in single-bacterium parameters. Temporal changes in (A) area, (B) length, and (C) GFP 
fluorescence for three representative bacteria, and their progeny, growing in lysogeny broth. Data bifurcations 
indicate bacterial divisions, e.g. bacterium 3 divided at t = 3 h and its daughters divided at t = 5 h.
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efficiency of 95 ± 1% and an accuracy of 65 ± 1%. This demonstrates i) the capability of MMHelper to detect bac-
teria in mother machine images in both brightfield and phase contrast modalities and ii) the capability to work 
equally well across independent experimental setups.

For each software and each dataset we then measured three different parameters: detection precision as the 
overlap area between the detected and ground truth masks divided by the detection mask; detection recall as the 
overlap area divided by the ground truth mask41,42 (Fig. S3); and finally the Jaccard index, defined as the overlap 
area divided by the total combined area42. The use of precision and recall allows a comparison of the trade-off 
between ensuring no areas are missed (recall) and how precise the algorithm is, with the Jaccard index repre-
senting a combination of these values42. We compared these parameters for MMHelper and Molyso applied to the 
detection of 310 channels from our brightfield and Locke’s phase contrast images (Fig. S4 and Table 1). The corre-
sponding Kernel Density Estimation for channel detection precision v recall is reported in Fig. 6A for brightfield 
and Fig. 6B for phase contrast datasets, respectively. Noteworthy, the multi-modal distribution of density for 
channel detection in brightfield is probably due to small variations in the quality (e.g. focus) of images acquired, 
resulting in the precision values varying slightly for individual images. For instance, of the total 14 birghtfield 
frames, the majority clustered around 0.8, one frame had a precision level of 0.9 and two frames had precision 
levels close to 1 (Fig. S6).

As expected, according to the Jaccard index, MMHelper shows significantly better channel detection than 
Molyso on the brightfield datasets (p ≤ 0.0001, Fig. S4E), although Molyso performed better on the phase contrast 
dataset (p ≤ 0.0001, Fig. S4B). MMHelper shows a channel detection recall close to 100% for both phase contrast 
and brightfield images as a result of the detected channels being slightly larger than the ground truth masks, and 
was significantly better than Molyso (p ≤ 0.0001, Figs S4C and S4D). The detected channels being larger than the 
ground truth masks was also reflected in the precision values which were slightly lower, with Molyso being signif-
icantly better than MMHelper for phase contrast (p ≤ 0.0001, Fig. S4B), although MMHelper was still significantly 
better for brightfield (p ≤ 0.0001, Fig. S4A). This over-estimation, however, does not affect the level of accuracy 
of bacterial detection, see below, which is the ultimate aim of this pipeline. Figure 6C reports the Kernel Density 
Estimation obtained on the precision and recall values for 434 bacteria from brightfield images whereas Fig. 6D 
shows the Kernel Density Estimation measured for 494 bacteria from phase contrast images.

Secondly, we compared the Jaccard index of the Molyso and MMHelper performances in detecting channels 
from phase contrast images from the works by Sachs, et al. (Molyso)30 and by Kaiser, et al. (MoMA)22. Surprisingly, 
in terms of Jaccard index channel detection MMHelper performed better than Molyso on the Molyso image 
sets (p < 0.0001, Fig. S5F), whereas Molyso performed slightly better than MMHelper on the MoMA’s dataset 
(p = 0.0104, Fig. S5E). Similar to the results on our datasets, this appeared to be a result of MMHelper detecting 
slightly larger channels than the ground truth masks. MMHelper performed better in terms of detection recall 
for both MoMA (p ≤ 0.0001, Fig. S5C) and Molyso image sets (p ≤ 0.0001, Fig. S5D). Finally, Molyso performed 
better than MMHelper in terms of detection precision on the Molyso (p ≤ 0.0001, Fig. S5B) and MoMA image sets 
(p = 0.0073, Fig. S5A).

The next set of comparisons was done in terms of bacterial detection which is the ultimate goal of both Molyso 
and MMHelper. Therefore, ground truth masks were produced for bacteria allowing for the evaluation of bacterial 
detection precision, recall and Jaccard index for both Molyso and MMHelper. Bacteria detection is more difficult 
than channel detection, due to the inherent heterogeneity in bacterial shape and size within a clonal popula-
tion. As a result, the levels of the three parameters are lower relative to channel detection (Table 1). However, 
according to the Jaccard index, MMHelper demonstrates superior performances compared to Molyso for both 
imaging modalities on our brightfield and Locke’s lab phase contrast datasets (p ≤ 0.0001, Figs S7E and S7F). 
In fact, MMhelper also performed significantly better in terms of recall (p ≤ 0.0001, Fig. S7C and Fig. S7D) and 
precision (p ≤ 0.0001, Fig. S7A for and p = 0.0044, Fig. S7B) on our brightfield and Locke’s lab phase contrast 
datasets (Table 1). We then compared the two pipelines in detecting bacteria from the MoMA and Molyso image 
sets. Interestingly, according to the Jaccard index, MMHelper again performed better than Molyso on the MoMA 
dataset (p = 0.0041, Fig. S8E) and their own dataset (p ≤ 0.0001, Fig. S8F). All the median values for the three 
parameters are listed in Table 1.

The fact that MMHelper outperformed Molyso in terms of Jaccard index for bacterial detection for all data-
sets further emphasises the flexibility of MMHelper for use on different experimental set ups as well as different 
bacterial species. The superior performances of MMhelper are probably due to the fundamental difference in the 
approaches to detection: the MMhelper algorithm is applied to the 2D images, whereas Molyso reduces 2D images 
to 1D by using line profiles and projections for channel and bacteria detection, respectively.

Finally, in order to determine the efficiency of our tracking algorithms we quantified the number of cor-
rectly tracked channels or bacteria in consecutive frames. In order to decouple tracking accuracy from detection 

Pipeline

Bright field Phase

Precision (%) Recall (%)
Jaccard index 
(%) Precision (%) Recall (%)

Jaccard 
index (%)

Channels
MMHelper 77.8 ± 1.9 97.6 ± 1.4 77.2 ± 3.1 53.8 ± 0.2 99.4 ± 0.6 53.7 ± 0.3

Molyso 64.3 ± 25.7* 58.9 ± 22.2* 42.1 ± 21.7* 79.9 ± 9.0 77.1 ± 9.4 64.6 ± 12.8

Bacteria
MMHelper 78.8 ± 14.6 76.3 ± 14.0 57.1 ± 14.1 47.3 ± 15.0 96.5 ± 3.5 43.9 ± 14.3

Molyso 43.8 ± 21.7* 12.7 ± 7.9* 11.4 ± 6.5* 39.0 ± 17.1 19.5 ± 8.2 15.2 ± 7.1

Table 1.  Medians and median absolute deviations of Jaccard index, precision and recall for ground truth 
detection for MMHelper and Molyso. *Molyso was not specifically developed for brightfield imaging.
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accuracy, we excluded from the image datasets illustrated above any channels or bacteria that were incorrectly 
detected. MMHelper returned 100% and 94 ± 2% efficiency in channel and bacteria detection on the brightfield 
image datasets and 100% and 67 ± 4% efficiency in channel and bacteria detection on the phase contrast image 
datasets.

An obvious benefit of automated image analysis is the removal of human error. In order to demonstrate the 
superior performances of MMHelper, we analysed a brightfield image and the corresponding fluorescence image 
both via MMHelper and via a semi-automated approach based on ImageJ and requiring user input. Briefly, three 
different users measured each bacterium length from the brightfield image by drawing a straight line through 
the bacterium and using the corresponding intensity plot to determine where the line crossed the edges of the 
bacterium thus deducting the bacterial length (Fig. S9A). They then drew a box around each bacterium to meas-
ure its area (Fig. S9B). Using this same box, the fluorescence pixel intensity was extracted from the correspond-
ing fluorescence image (Fig. S9C). For each bacterium we calculated the mean and standard deviation of these 
semi-automated measurements (red shaded areas in Fig. S8) and compared these values to the ones obtained 
via MMHelper (blue circles in Fig. S9). Whereas MMHelper is able to accurately detect the bacterial contour, the 
semi-automated approach consistently overestimates the area of individual bacteria and underestimates the GFP 
fluorescence from single bacteria. Therefore, in order to allow a direct comparison between the values obtained 

Figure 6.  Comparison of MMHelper and Molyso performances. Kernel density estimation for precision and 
recall of channel detection from (A) brightfield and (B) phase contrast images via MMHelper (red) and Molyso30 
(blue). The distribution of precision and recall values obtained via MMHelper on phase contrast images tightly 
clusters around a recall value of 1 and a precision value of 0.55. Therefore, we have zoomed this area in the 
dashed circle to facilitate its visualisation. (C,D) Corresponding kernel density estimation for precision and 
recall of bacteria detection. Insets: representative images of channel (A) and bacteria (C) detection.
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via the two approaches, Fig. S4 reports each single-bacterium value normalised to the corresponding mean of 
all the single-bacterium values. This allows us to demonstrate that MMHelper robustly and accurately extracts 
single-cell data with 69% of MMHelper measurements falling within 1 S.D. of the mean, 97% within 2 S.D., and 
100% within 3 S.D. of the mean of the values obtained via the semi-automated approach (Fig. S9C).

Input images can vary in quality and magnification and the bacterial geometry can vary depending on species, 
phase of growth, and due to the phenotypic heterogeneity inherent in clonal populations. In order to account 
some of these variations, some of the input parameters for MMHelper can be varied accordingly. For exam-
ple, tuning the scale factor accounts for changes in image magnification. Furthermore, we are also developing a 
graphic interface for the manual correction of MMHelper output, where needed, which aims to make this process 
both easier and more efficient.

MMHelper, to the best of our knowledge, is the only automated analysis pipeline that has been designed for 
the analysis of both brightfield and phase contrast images acquired with the mother machine. Some research-
ers use fluorescent tags in order to perform their image analysis24,29, but this requires exposure to strong light 
sources that are known to be extrinsic damage-producing agents43. Conversely, MMHelper allows the extraction 
of single-bacterium length and area measurements from brightfield or phase contrast images, allowing meas-
urements of single-cell parameters such as growth rate and elongation time that are crucial when investigating 
phenomena such as ageing19,44,45, bacterial susceptibility28,46 and cell size regulation20.

When needed, fluorescence can be used as a reporter for intracellular pH, gene expression, or substrate accu-
mulation. Therefore, MMHelper, will facilitate the study of mutagenesis, gene regulation, and cellular homeostasis 
at the single cell level. Furthermore, when current microbiological assays are performed at the population level, 
viable but non-culturable bacteria are overlooked. VBNC cells are a subpopulation of cells which enter a dormant 
state allowing them to survive otherwise lethal concentrations of antibiotics but they do not resuscitate immedi-
ately upon exposure to fresh media47. As a result, they can be responsible for the recalcitrance of chronic infec-
tions and act as a stepping stone in the development of antibiotic resistance47. In contrast, our high-throughput 
system can be used to ensure that non-growing phenotypes can be detected for example during the testing of 
new antimicrobials or exposure to stress. In this respect, we have recently used MMHelper to demonstrate that 
persister and viable but non culturable E. coli cells differentially regulate genes associated with tryptophan metab-
olism before exposure to ampicillin28 opening new opportunities to map the detailed biochemical makeup of 
these clonal subpopulations.

Conclusion
MMHelper provides an automated framework for the analysis of any type of microscopy images acquired with the 
mother machine. This automated approach provides large amounts of data with a high level of accuracy in both 
a time efficient and reproducible manner. For instance, on average it would take a user approximately an hour 
to analyse a series of 8 consecutive images using ImageJ, whereas MMHelper can acquire the same information 
in approximately one minute, requiring only a limited amount of manual editing of the output data thanks to 
the high level of accuracy provided. After thoroughly testing MMHelper to analyse our own mother machine 
experiments performed on different experimental set-ups and different bacterial strains we are now making this 
open-source software available for all the research groups already using the mother machine around the world. 
Finally, we believe that, thanks to the ease of installation and use, MMHelper will be an incentive for researchers 
from a variety of scientific backgrounds to employ this powerful technology for investigating biological questions 
with single cell resolution.
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