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The heterogeneous effects of neonatal care: a model of endogenous demand for 
multiple treatment options based on geographical access to care 

Neonatal units in the UK are organised into three levels, from highest Neonatal Intensive Care Unit 
(NICU), to Local Neonatal Unit (LNU) to lowest Special Care Units (SCU). We model the endogenous 
treatment selection of neonatal care unit of birth to estimate the average and marginal treatment 
effects of different neonatal designations on infant mortality, length of stay and hospital costs. We 
use prognostic factors, survival and hospital care use data on all preterm births in England for 2014-
2015, supplemented by national reimbursement tariffs and instrumental variables of travel time 
from a geographic information system. The data were consistent with a model of demand for 
preterm birth care driven by physical access. In-hospital mortality of infants born before 32 weeks 
was 8.5% overall, and 1.7 percentage points lower for live births in hospitals with NICU or LNU 
compared to those with an SCU; differences estimated using instrumental variables were smaller 
and attributable to chance. We find imprecise differences in average total hospital costs by unit 
designation, with  positive unobserved selection of those with higher unexplained absolute and 
incremental costs into NICU. Our results suggest a small but limited scope for improvement in infant 
mortality by increasing in-utero transfers based on unit designation alone. 
 
Keywords: Endogeneity, Instrumental variables, control function, multiple treatments, geographical 

access, semi-parametric, average treatment effects, neonatal, seemingly unrelated regression 

equations; latent factor, policy evaluation 
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1 | INTRODUCTION 

Preterm birth is accompanied by high risks of morbidity and neonatal mortality, and need for 

specialised neonatal care services. Since 2003 neonatal services in England are organised into 

managed clinical networks (DH 2003; Marlow et al. 2007) in which specialist care is centralised and 

low-level care is distributed across the network. These services are provided in neonatal units of 

three designated levels of specialisation: level 1 or Special Care units (SCU) look after infants needing 

level 1 care involving continuous monitoring of their breathing or heart rate, oxygen supply, tube 

feeding and recovery from phototherapy; level 2 or local neonatal units (LNU) can provide level 1 

care as well as providing level 2 care such as short-term intensive care and support including 

continuous positive airway pressure (CPAP); level 3 or neonatal intensive care units (NICU) can 

provide level 1 and level 2 care and can additionally provide level 3 care for infants requiring 

ventilation, CPAP, and weighing <1kg. According to clinical guidelines, births of <28 weeks of 

gestational age (extremely preterm) should be cared for at a level 3 neonatal unit (NICE 2010). 

Nevertheless some extremely preterm infants are still born in hospitals with lower level units. Thus 

the relative effectiveness between neonatal unit designation levels is a key policy issue. 

Estimating the relative effects of different designations on infant mortality requires inferring 

causality from observational data. Infant assignment to hospital of birth may be non-random, 

thereby confounding the observed mortality differences for true causal effects. Mothers of high-risk 

preterm infants may seek giving birth at designated level 3 units even among babies of the same 

gestational age and birthweight (Marlow et al. 2014). Instrument variables (IV) estimation is a 

method commonly used in economics to infer causality in observational studies (Wooldridge 2010) 

and increasingly used to estimate causal treatment effects in health service research (Garabedian et 

al. 2014). 

Studies exploring the effects of neonatal unit designation at hospital of birth have shown that low-

designated units are associated with increased rates of in-hospital mortality (Lasswell et al. 2010, 

Phibbs et al. 2007), although a recent study of very low-birthweight infants in California found no 

such association (Jensen and Lorch 2016). However, differences in organisation structure between 

UK neonatal services and other nationally funded neonatal services (Kelly et al. 2017), and  the much 

larger neonatal units typical of the US, may limit the generalisability of results across countries. In 

the UK, Watson et al. estimated the causal effect of level 3 unit on infants born at ≤32 weeks using 

an instrumental variable (IV) approach and found no evidence that birth in NICU affects in-hospital 

mortality compared to lower unit designations (Watson et al. 2014a). They also found that higher 

nurse-to-patient ratios and higher per diem costs reduced infant mortality in NICUs (Watson et al. 

2014b, Watson et al. 2017).  However, none of these studies sought to analyse unobserved 

heterogeneity in treatment effects (Cornelissen et al. 2016).  

The paper’s methodological contribution is to develop an IV estimation framework with  the first 

stage endogenous treatment choice modelled as a demand system, thus  providing structural 

validation tests of identification  with continuous geographical access, travel time, IVs. We  test for 

unobserved heterogeneity in marginal treatment effects of NICU vs. other designations combined, 

and introduce a control function approach for estimating heterogeneous treatment effects with 

more than two treatment options. These methods are used to estimate the causal effects of preterm 

birth in a hospital with a SCU, LNU, or NICU, on in-hospital mortality, length of stay and hospital 

costs.  
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2 | Causal estimation approach 

In this study our IV identification strategy is based on variation in travel time as measure of physical 
access to treatment. A systematic review of 187 comparative health effectiveness studies using an IV 
approach between 1993-2011 found that 65 studies had estimated mortality effects and, of these, 
27 studies used travel distance (defined as straight line, Euclidean distance, or travel time) as 
instrumental variable, the second most common instrument after variation in regional treatment 
patterns (Garabedian et al. 2014). 
  
In our context, IV estimation assumes that study subjects are a mix of high or low risk mothers that 
by chance live close to a particular unit. The IV estimates based on travel time or distance apply to 
mothers whose hospital designation at delivery is determined by the relative closeness of different 
hospital designations,  and these mothers are known as ‘compliers’, because their randomly 
allocated ‘treatment’ (i.e. closest unit level) determines their place of delivery. Travel distance or 
time is a natural predictor of place of birth, and therefore candidate for instrument, as women 
prefer to deliver in a local unit (Hollowell et al 2016) and birthing units recommend avoiding 
excessive distances to limit the risk of out-of-hospital birth (Blondel, 2011). Previous distance-based 
IV studies have used differenced and absolute measures of distance or travel time as instruments in 
almost equal measure (Garabedian et al. 2014). In this study we use absolute travel times as the 
more accurate and less restrictive option for a set of IVs and  validate them by comparing their 
actual and expected effects when interpreted as implicit access prices in a model of demand for 
treatment. 
 

In addition, the continuous scale of both travel time and distance permits us to analyse how 

treatment effects vary across individuals with different unobserved propensities to use treatments, 

by estimating marginal treatment effects (MTE, Carneriro, Heckman and Vytlacil 2010),   the 

continuous version of the ‘local average treatment effect’ (Imbens and Angrist 1994; Angrist and 

Pishcke 2001). Few studies in health economics have analysed treatment effect heterogeneity (Basu 

et al. 2007; Basu et al. 2014; Evans and Garthwaite 2012; Tyler-Brown et al. 2011) and this is an 

aspect we seek to address in this study. 

Finally, the IV estimator implies a testable relationship between distance or travel time instruments 
and demand for the different treatment options. For example, Cutler evaluated heart services using 
difference in access (distance to hospital of each type) to intervention and control treatments as 
instruments (Cutler 2007). Watson similarly relied on IV estimation but only used information on the 
closest hospital  and thus ignored instruments on alternative treatment options (i.e. when the 
closest unit was a non-NICU the characteristics of NICU were omitted and vice versa; Watson et al. 
2014). We add to the literature by introducing a control function approach to extend the 
endogenous heterogeneous treatment effects model to ≥3 treatments.  
 

3 | Methods 

3.1 |Data 
Data from the National Neonatal Research Database (NNRD) for years 2014 and 2015 were 
employed in the analysis. The NNRD contains selected information from the BadgerNet Neonatal 
Electronic Patient Record (https://www.clevermed.com/badgernet/badgernet-neonatal/) on all 
admissions to NHS neonatal units. Outcomes considered were any in-hospital mortality in the period 
from birth up to hospital discharge home or to a ward. Data available from the database include 
antenatal, delivery and neonatal treatments and outcomes. Neonatal unit level designation was 
taken from the 2015 National Neonatal Audit Programme report (RCPCH 2015). In our sample, 90% 
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of the 161 neonatal units in England gave permission to access NNRD data (100% of NICUs, 85% of 
LNUs, and 90% of SCUs). . 
 
Expected fastest road travel times were calculated from a Geographic Information System 
(Maptitude® 2016) with MPMileCharter® add-in based on coordinates of postcode closest to the 
population-weighted centroids of the 2011 LSOA (there is one LSOA for each postcode in England) of 
the parents’ residences and closest hospitals of each type and information on typical duration of 
journey on actual road grid. This created three IVs, i.e. three travel times for each individual, one per 
neonatal unit level. The 2015 Multiple Index of Deprivation (IMD) for each LSOA was obtained from 
the Office of National Statistics (ONS 2015). Ethical approval was obtained from the Neonatal Data 
Analysis Unit at Imperial College, London. 
  
3.2 | Main outcome equation 

Three types of infant outcomes are separately analysed: in-hospital mortality, length of hospital stay 

and associated reimbursement costs, and number of hospital days spent by the infant at three levels 

of critical care. The binary (mortality), continuous (costs) and discrete count (hospital days) scales of 

these outcomes required analysis using generalised linear models (Debb and Trivedi 2006) of 

individual infant outcomes as a function of place of birth (LNU and SCU) relative to a reference unit 

type (NICU), 

𝑌𝑖 = 𝑔(𝛽1𝑆𝐶𝑈𝑖 + 𝛽2𝐿𝑁𝑈𝑖 + 𝑋𝑖
′𝛿 + 𝜆1𝑙𝑆𝐶𝑖 + 𝜆2𝑙𝐿𝑁𝑖) + 𝑣𝑖      (1) 

 

where  Yi is an observed continuous or discrete outcome of infant i in the follow-up period up to 

hospital discharge, SCUi is a binary variable equal to 1 if the neonatal unit of birth of infant i is SCU 

and 0 otherwise, and LNUi is likewise defined for birth in LNU. The term Xi’δ stands for a linear vector 

of adjusting covariates commonly used in this literature (Gale et al. 2013, Cole et al. 2010, 

Manktelow et al. 2013, Ge et al. 2013, Tucker et al.  2002, Lorch et al. 2012; Appendix 0) including 

birthweight, gestational age, index of multiple deprivation, and number of pregnancies (plus a 

constant), with their respective coefficients δ.   

The terms lSCi and lLNi are unobserved latent utility factors (section 3.3) for SCU and LNU, respectively, 

that serve to control for the endogeneity of SCU and LNU in Eq. 1, which occurs when coefficients 

λ1≠0 and λ2 ≠0.. They account for possible   unmeasured confounders, including prognostic factors 

e.g. congenital abnormalities that place  infants at higher risks of neonatal adverse events including 

death. If, for example, women with high-risk pregnancies choose or are somehow determined by 

unmeasured factors to deliver at NICUs, a (‘naïve’) model excluding lSCi and lLNi will incorrectly 

attribute some of the systematic variation in outcomes to the SCU and LNU variables and likely result 

in biased estimates of β1i and β2i.  

Assuming a mean zero error, Evi =0,  

𝑔−1(𝐸𝑌𝑖) = 𝛽1𝑆𝐶𝑈𝑖 + 𝛽2𝐿𝑁𝑈𝑖 + 𝑋𝑖
′𝛿 + 𝜆1𝑙𝑆𝐶𝑖 + 𝜆2𝑙𝐿𝑁𝑖         (2) 

 

with g-1(EY) denoting the link function (logit or probit for mortality, log for costs, and log for days in 

hospital) evaluated at the mean of outcome Y, i.e., mortality status, costs, or days in hospital. Eq. 1 is 

estimated by maximum simulated likelihood, given a suitably chosen parametric distribution for v 

(binomial for mortality, normal for costs and negative binomial for days in hospital). We estimated 
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Eq. 1 using IV and control function methods, which required estimating a treatment choice model of 

the endogenous SCU and LNU binary variables as explained next. 

 

 

3.3 | Instrumental variables 

 

We evaluate the causal effects on infant outcomes of birth at LNU and SCU vs. NICU hospitals using 

the three available instruments of travel time to the closest hospital of each neonatal unit type, zSC, 

zLN, zIC, for SCU, LNU and NICU respectively. At least two instruments were required for estimating 

treatment effects of the potentially endogenous SCU and LNU variables in Eq. (1) (rank condition; 

Wooldridge 2010). To be valid, the IVs have to determine the probability of delivering at a LNU and 

SCU (relevance condition), and be correlated with the outcome Y only through their association with 

LNU and SCU (conditional independence condition; Appendix 1 eq. 2).The individual may be born in 

one of three types of neonatal unit, a discrete treatment selection process which we analyse as a 

multinomial latent demand model where the neonatal unit level in the hospital of birth is the 

treatment option of maximum latent utility for the mother.  

3.4 Demand for hospital type for a very preterm birth 

In order to model the endogenous multinomial treatment selection, we define ICU*, LNU*, SCU* as 

the corresponding latent utilities of birth at the three neonatal unit levels: 

𝑆𝐶𝑈𝑖
∗ = 𝜃3𝑧𝑆𝐶𝑖 + 𝜃2𝑧𝐿𝑁𝑖 + 𝜃1𝑧𝐼𝐶𝑖 + 𝑋𝑖

′𝛾𝑆𝐶 + 𝜖𝑆𝐶𝑖      (3) 

𝐿𝑁𝑈𝑖
∗ = 𝛼3𝑧𝑆𝐶𝑖 + 𝛼2𝑧𝐿𝑁𝑖 + 𝛼1𝑧𝐼𝐶𝑖 + 𝑋𝑖

′𝛾𝐿𝑁 + 𝜖𝐿𝑁𝑖   

𝐼𝐶𝑈𝑖
∗ = 𝜋3𝑧𝑆𝐶𝑖 + 𝜋2𝑧𝐿𝑁𝑖 + 𝜋1𝑧𝐼𝐶𝑖 + 𝑋𝑖

′𝛾𝐼𝐶 + 𝜖𝐼𝐶𝑖 

where  

𝜖𝑗𝑖 = 𝑊𝑖
′𝜔𝑗 + 𝜐𝑗𝑖     𝑗 = {𝑆𝐶, 𝐿𝐶, 𝐼𝐶} 

are linear indices of unmeasured demand attributes (W) that are prognostic factors in outcome 

equation (2) plus an independently distributed random error (υ), while other Greek symbols are 

coefficients to be estimated. Birth occurs in the unit type of maximum utility: 

𝑆𝐶𝑈𝑖 = 1 𝑖𝑓 𝑆𝐶𝑈𝑖
∗ > 𝐼𝐶𝑈𝑖

∗ 𝑎𝑛𝑑 𝑆𝐶𝑈𝑖
∗ > 𝐿𝑁𝑈𝑖

∗, 

𝑆𝐶𝑈𝑖 = 0                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;  

𝐿𝑁𝑈𝑖 = 1 𝑖𝑓 𝐿𝑁𝑈𝑖
∗ > 𝐼𝐶𝑈𝑖

∗ 𝑎𝑛𝑑 𝐿𝑁𝑈𝑖
∗ > 𝑆𝐶𝑈𝑖

∗, 

𝐿𝑁𝑈𝑖 = 0                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; 

birth in a NICU occurs when SCU=0 and LNU=0. 

We expect θ3<0, α2 <0, and π1 <0, whilst the coefficients of remaining instrumental variables are 

expected to be positive or zero. The coefficients of the multinomial choice model of Eq. 3 are not 

identifiable (Train 2003, p. 26-27). Subtracting the utility of a reference option, say, ICUi* from each  

equation in Eq. 3, results in an identifiable  system of two independent equations of differenced 

utility for SCU and LNU relative to the utility of NICU: 
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𝑆𝐶�̃�𝑖
∗ = �̃�3𝑧𝑆𝐶𝑖 + �̃�2𝑧𝐿𝑁𝑖 + �̃�1𝑧𝐼𝐶𝑖 + 𝑋𝑖

′�̃�𝑆𝐶 + 𝜖�̃�𝐶𝑖     (4a), 

𝐿𝑁�̃�𝑖
∗ = �̃�3𝑧𝑆𝐶𝑖 + �̃�2𝑧𝐿𝑁𝑖 + �̃�1𝑧𝐼𝐶𝑖 + 𝑋𝑖

′�̃�𝐿𝑁 + 𝜖�̃�𝑁𝑖     (4b) 

 

where utility differences depend on the three instruments, one for travel time to the closest unit of 

each type, and the Greek symbols denote the estimable coefficients. The accents denote coefficients 

transformed by subtracting the corresponding coefficient in the NICU latent equation, and 𝜖�̃�𝑁𝑖  and  

𝜖�̃�𝐶𝑖 are the error terms in the propensity equations after subtracting the error in the NICU latent 

equation. We expect the own-‘access price’ effect to be negative (�̃�2<0 and �̃�3<0), and the cross-

price of access to NICU effect to be positive (�̃�1 >0 and �̃�1 > 0). In contrast, the expected signs of �̃�3 

and �̃�2 are ambiguous a priori (Appendix 1). Birth in NICU (ICU=1) occurs when 𝑆𝐶�̃�𝑖
∗<0 in 4a and 

𝐿𝑁�̃�𝑖
∗<0 in 4b, otherwise, birth occurs in a lower level unit (ICU=0). The case of birth at LNU (LNU=1) 

and SCU (SCU=1) are defined analogously.  

Our control function approach for estimating Eq. 2 (Debb and Trivedi 2006), uses equations 4a & 4b  

and,  

 𝜖�̃�𝑁𝑖 ≡ 𝜖𝐿𝑁𝑖 − 𝜖𝐼𝐶𝑖 = 𝑊′(𝜔𝐿𝑁 − 𝜔𝐼𝐶) + 𝜐𝐿𝑁𝑖 − 𝜐𝐼𝐶𝑖 ≡ 𝑙𝐿𝑁𝑖 + �̃�𝐿𝑁𝑖                                              

(5) 

 𝜖�̃�𝐶𝑖 ≡ 𝜖𝑆𝐶𝑖 − 𝜖𝐼𝐶𝑖 = 𝑊′(𝜔𝑆𝐶 − 𝜔𝐼𝐶) + 𝜐𝑆𝐶𝑖 − 𝜐𝐼𝐶𝑖 ≡ 𝑙𝑆𝐶𝑖 + �̃�𝑆𝐶𝑖  

where lLNi and lSCi  are the values of unobserved indirect utility factors affecting the neonatal outcome 

Y in Eq. 2. We assume that these terms are distributed standard normal across mothers,  and 

integrate them out of the likelihood function using simulation methods. To derive the likelihood we 

assume that  �̃�𝐿𝑁𝑖 and �̃�𝑆𝐶𝑖 are independently identically extreme-value distributed error terms that 

are independent from lLNi and lSCi and whose joint distribution implies a multinomial logit treatment 

choice probability function of the linear indices of covariates and unobserved factors in 4a & 4b 

(Appendix 2).   

In addition, we estimate the multinomial probit treatment choice model (Roodman 2011) that 

relaxes the independence of irrelevant alternatives (IIA) assumption of the multinomial logit model 

by allowing the indirect utility equations 4a and 4b to be correlated (Train 2003). In sensitivity 

analysis we impose the exclusion restrictions on 4a and 4b that all instrument coefficients other than 

θ3, α2, and π1 equal zero, i.e. 𝑆𝐶�̃�𝑖
∗ = 𝜃3𝑧𝑆𝐶𝑖 − 𝜋1𝑧𝐼𝐶𝑖 + 𝑋𝑖

′�̃�𝑆𝐶 + 𝜖�̃�𝐶𝑖, 𝐿𝑁�̃�𝑖
∗ = 𝛼2𝑧𝐿𝑁𝑖 − 𝜋1𝑧𝐼𝐶𝑖 +

𝑋𝑖
′�̃�𝐿𝑁 + 𝜖�̃�𝑁𝑖, to address possible issues of identification with this model (Keane 1992; Appendix 1). 

3.5 |In-hospital mortality 

The endogenous treatment model was specified as a logit outcome with multinomial logit treatment 

control function (Debb and Trivedi 2006) and, alternatively, as a probit outcome with multinomial 

probit treatment (Roodman 2011; Appendix 2). We present results in terms of marginal effects. 

3.6 |Costs and length of stay 

Reimbursement cost and length of hospital stay were analysed as linear outcomes with endogenous 

multinomial logit (Debb and Trivedi 2006) or probit treatment (Roodman 2011). Reimbursement 

costs were calculated by multiplying the number of days at each level of care (section 3.7) by the 

corresponding English 2015 per diem (HRG) tariff. We also estimated heterogeneous treatment 

effects in correlated random coefficients models (Card 2001), by limited information maximum 

likelihood (Aakvik, Heckman and Vytalacil 2005; Appendix 2).  
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3.7 | Inpatient days by level of care 

We estimated the effect of neonatal unit designation on the number of days at British Association of 

Perinatal and Maternity (BAPM) levels of care 1, 2 and 3 separately, which together accounted for 

98% of total LOS (the ‘super spell’ including any post-natal transfer) in our sample. This analysis used 

a negative binomial endogenous multinomial logit treatment model. We present treatment effect 

estimates in terms of incidence rate ratios and marginal effects (Appendix 2).  

 

We estimate the MTE of NICU vs. non-NICU birth (Carneiro, Heckman and Vitlacil 2011; Cornelissen 

et al. 2016) on mortality and the logarithm of hospital costs using a linear endogenous binary 

treatment model. These analyses use a Gaussian family with an identity link, i.e. a linear probability 

model for mortality and log linear model for costs. The treatment indicators SCU and LNU in (1) are 

replaced by a treatment indicator, ICU, equal to 1 when SCU=0 and LNU=0 and 0 otherwise. Also, the 

strong assumption that the latent factors enter linearly in (1) is relaxed by replacing them with a 

non-parametric function KY(p) of the ‘resistance to NICU’ treatment or propensity score (p): 

𝐸𝑌𝑖 = 𝑋𝑖
′𝛿𝑌0 + 𝑋𝑖

′(𝛿𝑌1 − 𝛿𝑌0)𝑝𝑖 + 𝐾𝑌(𝑝𝑖)   (6)The MTE is the derivative of (6) 

with respect to p, 

𝑀𝑇𝐸𝑖 ≡
𝜕𝐸𝑌𝑖

𝜕𝑝
= 𝑋𝑖

′(𝛿𝑌1 − 𝛿𝑌0) + 𝜕𝐾𝑌(𝑝)/𝜕𝑝 

MTEs are estimated semi-parametrically (Brave and Walstrum 2014) and plotted relative to p.  We 

estimate alternative MTEs under the parametric probit treatment choice model (Appendix 3). 

We tested for the existence of unobserved selection by prognosis (H0: ρ1 =0), where infants who 

have worse unobserved prognosis may be more likely to be born in NICU than infants with better 

prognosis, and selection by returns (H0: ∂KY(p)/∂p=0 in (6) or σ1ρ1-σ0ρ0=0 in (7)), where infants with 

unobserved characteristics predisposing them to benefit more from treatment are more likely to be 

born in NICU (Appendix 3).  

Standard errors are calculated using the method by White (1980), to account for clustering of infants 

in hospitals, except for MTEs, which are estimated at the mean of covariates X, using the bootstrap 

percentile method. Stata code illustrating the implementation of main analyses is provided in 

Appendix 4.     

 

4 | RESULTS 

4.1 | Distribution of sample characteristics by geographical access  

Data on 14,727 live births at less than 32 weeks’ gestation were available from the NNRD, 12,990 of 

which had complete data on infant and hospital characteristics for analysis, with 303 observations 

having invalid data values. Of the 12,687 remaining observations, 1650 (13%) individuals had no 

travel time to the closest SCU or LNU hospitals data and were excluded from the analysis. The 

remaining sample included 11,037 patients from 154 hospitals, of which 11 were hospitals that 

delivered at least 100 infants weighing <1500 g per year on average during the study period ( ‘high-

volume’); all of these hospitals were ICU and 42% (2377) of the 5595 infants born in a NICU level 

were delivered in a high-volume hospital. Fifteen infants were born in a hospital without a neonatal 

unit and were transferred ex-utero to the closest neonatal unit in the network (14 to SCU, 1 to LNU); 
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they were analysed according to the level of these units. In-hospital mortality in the analysis sample 

was 8.52% (8.43% including missing travel time data cases). 

There are no systematic differences in most descriptive characteristics of the analysed sample across 

travel time to NICU tertiles (Table 1). In addition to the exposure variables (delivery at NICU, LNU 

and SCU), systematic differences arise only for deprivation of residence, unknown delivery mode and 

suggest the need to control for possible confounding by these variables in our analyses. Similar 

results were obtained for tables in terms of travel times to LNU and SCUs and in London (Appendix 

5). 

 

 

Table 1 Sample characteristics by travel time to NICUs (% unless stated otherwise) 

 All available observations 
(N=12,687) 

Excluding cases with missing 
travel time to LNU or SCU data 

(N=11,037) 
Lower 
tertile 

N=4,191 

Medium 
tertile 

N=4,185 

High 
tertile 

N=4,311 

Lower tertile 
N=3,855 

Medium 
tertile 

N=3,500 

High 
tertile 

N=3,682 

Died 8.26 8.89 8.14 8.40 9.17 8.04 
Discharged home 87.30 84.49 81.52 87.16 85.77 86.77 
Discharged ward 1.29 1.53 2.07 1.37 1.66 2.01 
Last record: transferred 
to another hospital/unit  

2.94 4.56 7.66 2.88 3.20 3.02 

Unknown destination 0.21 0.55 0.60 0.18 0.20 0.16 
Gestational age at birth 
(weeks), mean (SD) 

28.41 
(2.37) 

28.43 
(2.33) 

28.47 
(2.30) 

28.38 
(2.38) 

28.46 
(2.33) 

28.53 
(2.29) 

Birthweight (kg), mean 
(SD) 

1.19 
(0.38) 

1.20 
(0.38) 

1.21 
(0.39) 

1.18 
(0.38) 

1.20 
(0.38) 

1.22 
(0.39) 

Foetus 2+ 25.84 27.60 27.70 26.04 27.49 27.59 
Female sex 46.36 45.16 46.69 46.46 44.80 45.95 
Residence: Most 
deprived quintile1 

47.67 29.49 21.76 49.55 30.36 22.44 

Residence: 2nd most 
deprived quintile1  

23.00 24.35 21.87 22.65 23.74 21.27 

Residence: 3-5 least 
deprived quintile3 

29.33 46.16 56.36 27.80 45.90 56.29 

Caesarean delivery 48.34 50.75 51.54 48.50 51.14 51.54 
Spontaneous vaginal 37.06 36.92 36.67 37.15 36.46 36.85 
Unknown delivery mode 4.84 3.70 0.00 4.77 3.74 0 
Delivery at NICU 81.53 42.39 26.70 83.24 43.00 23.93 
Delivery at LNU 13.36 47.22 58.76 11.47 46.11 60.81 
Delivery at SCU 5.11 10.39 14.54 5.29 10.89 15.26 
Delivery at high volume2 32.38 19.52 10.69 34.42 19.40 10.08 

1 Ranked by the index of multiple deprivation of residential postcode. 2 Defined as born in hospital 

delivering more than 100 infants with <1500 g birthweight per year during the study period. SD: 

Standard deviation. 
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4.2 | Demand (choice) model–first stage 

Table 2 presents estimates obtained from multinomial probit and multinomial logit models for the 

probability of birth in LNU (second and fourth columns) and the probability of birth at SCU (third and 

fifth columns), adjusted for covariates. The signs of these coefficients are consistent with our a priori 

expectations. The two coefficients with ambiguous expectations a priori, the cross-price effects of 

access to SCU in the LNU equation and to LNU in the SCU equation are negative with p>0.10, 

suggesting that the effect of travel time to LNU on the utility of SCU, and vice versa, is equal to or 

smaller than its effect on the utility of NICU (eq. 4a, and $b). The probability of birth in a LNU level 

facility was positively related with longer travel times to the closest NICU, and with longer travel 

times to the closest SCU, whereas being negatively related with longer travel times to the closest 

LNU facility. The price elasticity of demand decreases with level of specialisation, with NICU care 

being the least responsive option to an increase in its own travel-time price of access. Birth at SCU is 

nine times as responsive to travel time to NICU as it is to travel time to LNU (0.61 vs. 0.07).           

 

Table 2 Linear index coefficients of instruments in IV multinomial treatment models 

 Multinomial probit Multinomial logit Elasticities (multinomial logit) 

Instrumental 
variable 

Birth at 

LNU†  

Birth at 

SCU†  

Birth at 

LNU†   

Birth at 

SCU†   

Birth at ICU Birth at LNU Birth at SCU 

N= 11,037 N= 11,037 N= 11,037 N= 11,037 

Minimum 
travel time 
(mins) to NICU  

0.063*** 
(0.006) 

0.075*** 
(0.024) 

0.087*** 
(0.009) 

0.076*** 
(0.013) 

-1.34 
(-1.72, -0.97) 

0.80 
(0.58, 1.02) 

0.61 
(0.06, 1.16) 

Minimum 
travel time 
(mins) to LNU  

-0.064*** 
(0.008) 

-0.034 
(0.021) 

-0.109*** 
(0.013) 

-0.026 
(0.016) 

0.69 
(0.47, 0.92) 

 

-1.55 
(-1.96, -1.14) 

0.07 
(-0.49, 0.63) 

Minimum 
travel time to 
SCU 

-0.014 
(0.009) 

-0.112 
(0.105) 

-0.003 
(0.012) 

-0.152*** 
(0.017) 

0.27 
(-0.07, 0.60) 

0.13 
(-0.24, 0.51) 

-4.14 
(-4.95, -3.33) 

Wald F test Ho: 
all instruments 
have no effect  

188*** 36*** 153*** 172*** N/A N/A N/A 

Correlation 
across 
equations  (ρ13) 

0.82** Not allowed    

†1=yes; 0=no equation. Controlled covariates: Age and age squared at birth, birthweight, birthweight squared, sex, 

deprivation of residence, foetus no. N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01.N/A: Not applicable. *p< 0.10 ** 

p<0.05 ***p<0.01. Statistical inferences based on robust standard errors adjusting for clustering of observations by 

hospital. Figures in parentheses are standard errors except under elasticities, which are 95% CI.   

 

 4.3 | Estimates of in-hospital mortality  

Table 3 summarises the  estimated marginal effects of birth at LNU vs NICU and birth at SCU vs. NICU 

in the naïve single equation probit model (second column) and corresponding average treatment 

effects of the IV model that adjusts for unobserved confounding  (third column). In the naïve probit 

model birth in a SCU is associated with a 1.7 percentage point higher risk of neonatal death than 

birth in NICU (p=0.09), while LNU with 0.4 percentage point excess risk over NICU (p=0.54). In the IV 

model, the respective estimates are 0.1 (p=0.96) and 1.2 (p=0.23) under a probit specification. 
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According to the IV model diagnostic statistics, the hypothesis that birth at SCU is exogenous cannot 

be rejected at p=0.05. Results were similar for logit specifications. 

Similar results were obtained in the subgroup of infants born at less than 28 weeks’ gestation 

(Appendix 5). 

 

Table 3 Causal effects on mortality of birth in LNU & SCU relative to ICU in infants born at <32 weeks 

 Naïve IV Naïve IV 

Probit 
regression 

Probit with 
endogenous 
multinomial probit 
treatment 

Probit with 
endogenous 
multinomial 
probit 
treatment – 
with 
exclusion 
restrictions  

logit 
regression 

Logit with 
endogenous 
multinomial logit 
treatment 

Birth at LNU 
([0,1] range) 

0.004 
(0.007) 

0.012 
(0.010) 

0.013 
(0.009) 

0.006 
(0.008) 

0.012 
(0.010) 

Birth at SCU 
([0,1] range)  

0.017* 
(0.010) 

0.001 
(0.015) 

-0.001 
(0.015) 

0.020* 
(0.010) 

0.003 
(0.017) 

ρ12, λ1  -0.04 -0.06  -0.202 

ρ13, λ2  0.07 0.12  0.391 

ρ23  0.82* 0.20   

Instrument 
strength:  
Wald F test 
statistic (3 
degrees of 
freedom) 

N/A LNU equation: 
191*** 

SCU equation: 
34*** 

LNU 
equation: 
200*** 

SCU 
equation: 

98*** 

N/A LNU equation: 
171*** 

SCU equation: 
151*** 

N 11,037 11,037 11,037 11,037 11,037 

Hausman test z 
statistic of H0: 
no endogeneity 
LNU treatment 
variable 

N/A -0.63 -1.23 N/A -1.0 

Hausman test z  
statistic of H0: 
no endogeneity 
SCU treatment 
variable 

N/A 0.77 1.32 N/A 1.1 

z statistic: no 
correlation 
between utility 
equations (IIA) 

N/A 1.82* 0.59   

Test z statistic 
Ho: valid over-
identifying 
restriction of 
minimum travel 
time to NICU 

N/A -0.42 0.26 N/A 0.59 

Controlled covariates: Age and age squared at birth, birthweight, birthweight squared, sex, deprivation of residence, foetus 

no. N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01.N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01. Statistical 

inferences based on robust standard errors (in parentheses) adjusting for clustering of observations by hospital. 
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Our main results (reproduced in Table 4 column a) were robust to excluding socio-economic and 

including mode of delivery covariates, and to variation in the specification of the endogenous 

treatment model. Moreover, tests on the estimated correlations between the random error terms of 

the multinomial treatment equations and the mortality equation do not reject the null hypothesis 

that birth at LNU and birth at SCU are exogenous in the mortality equation at p=0.05 under bothlogit 

and probit specifications. 

Table 4 Robustness check: marginal effects on mortality of birth in LNU & SCU relative to ICU 

 Multinomial probit treatment model Multinomial logit treatment model 

 (a) (b) (c) (d) (e) (f) 

Birth at LNU 
(difference [0,1] range)   

0.012 
(0.010) 

0.009 
(0.010) 

0.011 
(0.010) 

0.012 
(0.010) 

0.010 
(0.010) 

0.011 
(0.010) 

Birth at SCU 
 (difference [0,1] range) 

0.001 
(0.015) 

-0.003 
(0.015) 

0.000 
0.015) 

0.003 
(0.017) 

-0.000 
(0.017) 

0.003 
(0.017) 

Included Covariates? 

Gestational age (GA), GA 
squared 

Yes Yes Yes Yes Yes Yes 

birthweight,  
birthweight squared 

Yes Yes Yes Yes Yes Yes 

Infant’s sex Yes Yes Yes Yes Yes Yes 

Foetus number Yes Yes Yes Yes Yes Yes 

Quintiles of multiple 
deprivation index 

Yes No Yes Yes No Yes 

Mode of delivery and 
labour 

No No Yes No No Yes 

Instrument strength:  
Wald F test statistic (3 
degrees of freedom) 

LNU 
equation: 

191*** 
SCU 

equation: 
34*** 

LNU 
equation: 
190*** 

SCU 
equation: 

38*** 

LNU 
equation: 
188*** 

SCU 
equation: 

36*** 

LNU 
equation: 
171*** 

SCU 
equation: 
151*** 

LNU 
equation: 
167*** 

SCU 
equation: 
146*** 

LNU 
equation: 
172*** 

SCU 
equation: 
154*** 

N 11,037 11,037 11,037 11,037 11,037 11,037 

z statistic of H0: no 
endogeneity LNU 
treatment 

-0.63 -0.38 -0.57 -1.05 -0.82 -1.01 

z  statistic of H0: no 
endogeneity SCU 
treatment 

0.77 0.92 0.77 1.06 1.20 1.04 

N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01.N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01. Statistical 

inferences based on robust standard errors (in parentheses) adjusting for clustering of observations by hospital. 

The IV estimates will not apply to those mothers who deliver in NICUs regardless of the distance or 
time required to travel from home to their closest NICU. For example, high-risk mothers with history 
of preterm birth may be booked in for birth at a hospital with a NICU in spite of it not being their 
closest hospital; the so-called always takers of the intervention (birth at NICU) regardless of travel 
time. The IV estimates will also not apply to high-risk mothers who are not transferred to higher 
level units because of their infants’ poor life prospects; the so-called never takers of birth at NICU. 
The proportion of always takers in our dataset appears to be higher than the proportion of never 
takers: 732 (22%) of those mothers who would need more time to reach their closest NICU than to 
reach their closest LNU and their closest SCU would still deliver at a NICU; in contrast, only 56 (1.5%) 
and 388 (8.9%) mothers whose closest (minimum travel time) hospital was a NICU delivered in a SCU 

and LNU, respectively. The analysis of MTE of birth at hospitals with NICUs vs. hospitals with a 
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lower-designation neonatal unit produced  treatment effect estimates with 95% CI crossing 
zero throughout the unobserved resistance to NICU treatment (Appendix 6).     

4.4 | Estimates on length of stay and costs  

The estimated total duration of the neonatal hospital stay including hospital transfers (i.e. the ‘super 
spell’) of an infant born in NICU, LNU and SCU was, respectively 66, 66, and 67 days (differences: SCU 
vs NICU 1.0, p=0.76; LNU vs. NICU 0.6, p=0.81; Appendix 7 Table A7.1). The reimbursement cost of 
birth was respectively £42,776, £44,854 and £43,220 per infant (NICU minus LNU, -£2078 [95% CI: -
5551,1396]; NICU minus SCU, -£444 [-4690,3802]). The results for reimbursement cost and LOS 
(Appendix 7 Table A7.1) are robust to varying the covariates (available from the authors).  

Different test results for homogeneous effects were obtained for LNU (p<0.05) and SCU (p>0.05) 
using a control function approach.  Unobserved characteristics that led mothers to prefer LNU over 
ICU were also associated with lower in-hospital costs; e.g. conditional on covariates, mothers in the 
top 16 percent LNU utility ranking cost under £4634 less than the average. Moreover, individuals 
with below-average unobserved LNU utility factors (i.e. ceteris paribus above-average NICU utility, 
eq. 4b) have above-average returns (cost savings vs. NICU) with LNU (Appendix 6).   

Parametric normal MTE for NICU vs non-NICU had 95% CI that crossed zero (H0: no positive 

selection into NICU by non-observably more  costly patients, p=0.001; more incrementally costly 

patients, p=0.17) (Appendix 7). Semi-parametric analysis reveals, however, that mothers who 

delivered in NICU despite having the 20 to 40 percentile lowest predicted probabilities of doing so 

(‘unobserved resistance’ on the x-axes in Figure 1) have the highest incremental costs relative to a 

non-NICU birthplace.  

Figure 1. Marginal Treatment Effects on hospital reimbursement costs (in logarithms) of level 3 vs. lower 

designation hospital 
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Notes: Parametric model was estimated as log linear model and a probit model for NICU vs.non-NICU birth under the 

Potential outcomes framework. The x-axis depicts the unobserved resistance to treatment, V in Appendix 3, which equals 

the predicted probability of treatment in the first stage choice model. Semiparametric model is the local IV estimator 

(Heckman and Vytlacil 1999) as implemented by Brave and Walstrum (Brave and Walstrum 2014).   

 

While birth at lower level units results in very preterm infants spending the same total number of 

days in hospital as they would if born at a NICU, birth at LNU results in more intensive care (BAPM 1) 

days (IRR 1.40, 95% CI: 1.26,1.55) and fewer specialised intensive care (BAPM 3) days (IRR 0.95, 95% 

CI:  0.90,1.01) relative to what would happen if the same infant were born in ICU (or SCU; Figure 2). 

Birth at SCU results in similar numbers of inpatient days of treatment at the three levels of care 

relative to birth at NICU (Appendix 9).     

Figure 2 Causal Incidence rate ratios for number of hospital days at the three levels of care LNU, SCU vs ICU 

  

Notes: Coefficient estimates and 95% CI from negative binomial regression models with endogenous multinomial logit 

treatment for number of days spent at each level of care (See Appendix 2). Fur separate models were estimated, one for 

each outcome measure (Overall LOS or ‘superspell’, BAPM1 days,  BAPM 2 days, BAPM 3 days). Model estimated by the 

control function approach (Debb and Trivedi 2006).     

 

5 | DISCUSSION 

 

Our study found that the occurrence of very preterm births outside NICUs was consistent with a 

model of demand for preterm birth care driven by physical access. Using data on physical access as 

instrumental variables produced a 0.9-1.3 percentage points lower mortality  in NICU and SCU 

relative to LNU. In contrast, in the simple naïve model with common prognostic covariates, in-

hospital mortality was 1-2 percentage points lower in hospitals with NICU or LNU compared to those 

with an SCU. The 95% CI of all these estimated differences crosses zero, suggesting they are due to 

chance alone.  

We found that our data were compatible with a mortality model in which there is no unobserved 
confounding. In cases without such confounding, the IV method is inefficient relative to simple 
regression analysis and may lead to incorrect inferences (Wooldridge 2010). However, we have a 
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Incidence Rate Ratio (IRR)  LNU vs ICU

0 1 2

Incidence Rate Ratio (IRR) SCU vs ICU
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priori reasons to suspect endogeneity is present e.g. from selective choice of NICU by pregnancies 
with risk factors not recorded in our data, and our instruments were found to be strong and valid. 
Therefore the likely treatment effect for designated units lies with the IV results. Moreover, there is 
no evidence of an increase in the total length of the infant stay in these neonatal units or cost to 
commissioners when these outcomes are analysed unadjusted for the competing death risk. Since 
there are few ‘never NICU takers’, our IV estimates may be interpreted as the treatment effect on 
the NICU-untreated (Angrist and Pischke 2009). Thus our results suggest that increases of in-utero 
transfers from lower unit designations alone are unlikely to bring large improvements in in-hospital 
mortality (Gale et al. 2012a,b). 
 
Our study also exploited continuous instruments to analyse the heterogeneity in treatment effects 

on mortality and costs. Our results failed to reject the hypothesis that there is no residual 

unobservable self-selection of women into NICU according to neonate severity or expected mortality 

risk reduction at conventional significance levels; however, it is possible that a larger sample would 

have rejected it. In terms of costs, there is evidence of unobservable self-selection of complex (i.e. 

more costly) cases into NICU hospitals and of negative selection by returns as some infants with the 

highest additional costs relative to non-NICU care are prone to be born in NICU hospital for reasons 

unrelated to birthweight, gestational age, socio-economic status, number of pregnancies and sex.  

We found a significant causal reduction in the number of hospital days spent under the most 

intensive care level (BAPM 1) that was accompanied by an increase in the number of days under 

lower care intensity (BAPM 3) with NICU relative to LNU. While the associated net effect on overall 

reimbursement costs to the NHS is apparently zero, and we did not find the mortality benefits 

documented by Marlow and colleagues (Marlow et al. 2014), these results suggest nevertheless that 

birth at NICU would reduce neonatal morbidity among those currently born in LNU. Further research 

that investigates this question is warranted using measures of neonatal morbidity including 

ventilator days; bronchopulmonary dysplasia; intraventricular haemorrhage, particularly the severe 

grades 3-4; late-onset infection; necrotizing enterocolitis; and retinopathy of prematurity, 

particularly severe stages 3 and above. 

A limitation of our analysis is that the IV method requires the assumption that travel time to the 

closest neonatal unit did not affect infant mortality by means other than through its role in 

determining the level of the neonatal unit of the hospital of birth. It is possible that longer travel 

time to a NICU increased the chance of in-hospital mortality among those infants delivered in a NICU 

due to delays in receiving the required specialised care. However, we would expect these effects, if 

present, to be secondary to the effects of travel time on mortality that are due to exposure to the 

level of care of the neonatal unit of birth. 

Our measure of mortality, in-hospital infant death, did not include stillbirths, which exceed neonatal 
deaths in England (2952 versus 1721 annually, ONS 2015). Another limitation of our dataset is its 
lacking information on antenatal steroid use (ANS), which may account for the poorer mortality 
results for the SCUs as these use less steroids (RCPCH 2017). Watson et al. using the same database 
reported that covariates, including ANS, were evenly distributed between level 3 and non-level 3 
born very preterm infant groups, after controlling for the lowest decile of index of multiple 
deprivation (Watson et al. 2015). We thus expect any omitted variable bias from ANS in our analysis, 
after controlled for quintiles of socioeconomic deprivation, to be limited. Low socio-economic status 
is itself linked to an increased risk of preterm births through low maternal weight and smoking 
(Taylor-Robinson et al. 2011). Therefore, any unmeasured differences in socio-economic status that 
are not captured by our multiple deprivation measure may have confounded our results also. 
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Future work should investigate differences in mortality and costs between high and low-volume 
NICUs since a high volume of births may be more influential on neonatal mortality and outcomes 
than a high designation level of unit (Jensen and Lorch 2015). Our findings comprise 42% of NICU 
infants born in high-volume units in our sample.   
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