

# LSHTM Research Online

Cheung, Ka Shing; Chan, Esther W; Wong, Angel YS; Chen, Lijia; Wong, Ian CK; Leung, Wai Keung; (2017) Long-term proton pump inhibitors and risk of gastric cancer development after treatment for Helicobacter pylori: a population-based study. Gut, 67 (1). pp. 28-35. ISSN 0017-5749 DOI: https://doi.org/10.1136/gutjnl-2017-314605

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/4655331/

DOI: https://doi.org/10.1136/gutjnl-2017-314605

#### **Usage Guidelines:**

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

https://researchonline.lshtm.ac.uk

| 1  | LONG-TERM PROTON PUMP INHIBITORS AND RISK OF GASTRIC                                                       |
|----|------------------------------------------------------------------------------------------------------------|
| 2  | CANCER DEVELOPMENT AFTER TREATMENT FOR H. PYLORI: A                                                        |
| 3  | POPULATION-BASED STUDY                                                                                     |
| 4  | Ka Shing Cheung, MBBS, MPH; <sup>1</sup> Esther W Chan, PhD; <sup>2</sup> Angel YS Wong, BSc; <sup>2</sup> |
| 5  | Lijia Chen, B. Med, MPH; <sup>1</sup> Ian CK Wong, PhD; <sup>3</sup> Wai K Leung, MD <sup>1</sup>          |
| 6  |                                                                                                            |
| 7  | <sup>1</sup> Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong                |
| 8  | Kong                                                                                                       |
| 9  | <sup>2</sup> Centre for Safe Medication Practice and Research, Department of Pharmacology and              |
| 10 | Pharmacy, The University of Hong Kong, Hong Kong                                                           |
| 11 | <sup>3</sup> UCL School of Pharmacy, University College London, London, United Kingdom                     |
| 12 |                                                                                                            |
| 13 | Keywords: PPI, stomach cancer, gastric adenocarcinoma, Helicobacter pylori                                 |
| 14 | Correspondence to:                                                                                         |
| 15 | Wai K. Leung                                                                                               |
| 16 | Department of Medicine, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong                                  |
| 17 | Email: waikleung@hku.hk                                                                                    |
| 18 | Fax: +852 2816 2863                                                                                        |
| 19 | Phone: + 852 2255 3348                                                                                     |

1 Guarantor of the article: Prof. Wai K Leung

| 2                    | Specific author contributions: Dr. Ka Shing Cheung was involved with study                                                                                                                                                                            |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                    | concept and design; analysis and interpretation of data; drafting of manuscript; and                                                                                                                                                                  |
| 4                    | approval of the final version of the manuscript. Dr. Esther W Chan, Ms. Angel YS                                                                                                                                                                      |
| 5                    | Wong and Lijia Chen were involved with acquisition of data; critical revision of the                                                                                                                                                                  |
| 6                    | manuscript for important intellectual content; and approval of the final version of the                                                                                                                                                               |
| 7                    | manuscript. Professors Ian CK Wong, and Wai K Leung were involved with the study                                                                                                                                                                      |
| 8                    | concept and design; analysis and interpretation of data; drafting of manuscript; critical                                                                                                                                                             |
| 9                    | revision of the manuscript for important intellectual content; study supervision; and                                                                                                                                                                 |
| 10                   | approval of the final version of the manuscript.                                                                                                                                                                                                      |
| 11                   |                                                                                                                                                                                                                                                       |
|                      |                                                                                                                                                                                                                                                       |
| 12                   | Financial support: Nil                                                                                                                                                                                                                                |
| 12<br>13             | Financial support: Nil Potential competing interests: WKL has received honorarium for attending advisory                                                                                                                                              |
|                      |                                                                                                                                                                                                                                                       |
| 13                   | Potential competing interests: WKL has received honorarium for attending advisory                                                                                                                                                                     |
| 13<br>14             | <b>Potential competing interests:</b> WKL has received honorarium for attending advisory board meetings of Takeda and Abbott Laboratories. There are no competing interests                                                                           |
| 13<br>14<br>15       | <b>Potential competing interests:</b> WKL has received honorarium for attending advisory board meetings of Takeda and Abbott Laboratories. There are no competing interests for other authors.                                                        |
| 13<br>14<br>15<br>16 | Potential competing interests: WKL has received honorarium for attending advisory<br>board meetings of Takeda and Abbott Laboratories. There are no competing interests<br>for other authors.<br>Word count: 4134 (excluding abstract and references) |

## 1 LIST OF ABBREVIATIONS

| _ |  |
|---|--|
|   |  |
| 2 |  |
| L |  |

| AF        | Atrial fibrillation                                      |
|-----------|----------------------------------------------------------|
| CDARS     | Clinical Data Analysis and Reporting System              |
| CHF       | Congestive heart failure                                 |
| COX-2     | Cyclooxygenase-2                                         |
| CRF       | Chronic renal failure                                    |
| DM        | Diabetes mellitus                                        |
| DU        | Duodenal ulcer                                           |
| GC        | Gastric cancer                                           |
| GERD      | Gastroesophageal reflux disease                          |
| GU        | Gastric ulcer                                            |
| HR        | Hazard ratio                                             |
| H2RA      | Histamine 2-receptor antagonist                          |
| H. pylori | Helicobacter pylori                                      |
| ICD-9     | International Classification of Diseases, Ninth Revision |
| IHD       | Ischemic heart disease                                   |
| IQR       | Interquartile range                                      |
| NSAIDs    | Non-steroidal anti-inflammatory drugs                    |
| PPIs      | Proton pump inhibitors                                   |

## 1 ABSTRACT

| 2  | Objective: Proton pump inhibitors (PPIs) is associated with worsening of gastric             |
|----|----------------------------------------------------------------------------------------------|
| 3  | atrophy, particularly in H. pylori (HP)-infected subjects. We determined the                 |
| 4  | association between PPIs use and gastric cancer (GC) among HP-infected subjects              |
| 5  | who had received HP therapy.                                                                 |
| 6  | Designs: This study was based on a territory-wide health database of Hong Kong. We           |
| 7  | identified adults who had received an outpatient prescription of clarithromycin-based        |
| 8  | triple therapy between year 2003 and 2012. Patients who failed this regimen, and             |
| 9  | those diagnosed to have GC within 12 months after HP therapy, or gastric ulcer after         |
| 10 | therapy were excluded. Prescriptions of PPIs or histamine-2 receptor antagonists             |
| 11 | (H2RA) started within 6 months before GC were excluded to avoid protopathic bias.            |
| 12 | We evaluated GC risk with PPIs by Cox proportional hazards model with propensity             |
| 13 | score adjustment. H2RA was used as a negative control exposure.                              |
| 14 | <b>Result:</b> Among the 63,397 eligible subjects, 153 (0.24%) developed GC during a         |
| 15 | median follow-up of 7.6 years. PPIs use was associated with an increased GC risk             |
| 16 | (HR 2.44; 95% CI 1.42–4.20), while H2RA was not (HR 0.72; 95% CI:0.48–1.07).                 |
| 17 | The risk increased with duration of PPIs use (HR 5.04 [95% CI:1.23–20.61], 6.65              |
| 18 | [95% CI:1.62–27.26] and 8.34 [95% CI:2.02–34.41] for $\ge 1$ year, $\ge 2$ years and $\ge 3$ |

| 1  | years, respectively). The adjusted absolute risk difference for PPIs versus non-PPIs |
|----|--------------------------------------------------------------------------------------|
| 2  | use was 4.29 excess GC (95%:CI 1.25 to 9.54) per 10,000 person-years.                |
| 3  | Conclusion: Long-term use of PPIs was still associated with an increased GC risk in  |
| 4  | subjects after HP eradication therapy.                                               |
| 5  |                                                                                      |
| 6  |                                                                                      |
| 7  |                                                                                      |
| 8  |                                                                                      |
| 9  |                                                                                      |
| 10 |                                                                                      |
| 11 |                                                                                      |
| 12 |                                                                                      |
| 13 |                                                                                      |
| 14 |                                                                                      |
| 15 |                                                                                      |
| 16 |                                                                                      |
| 17 |                                                                                      |
| 18 |                                                                                      |
| 19 |                                                                                      |

## **1 SIGNIFICANCE OF THIS STUDY**

| 2  | Wha | it is already known on this subject?                                             |
|----|-----|----------------------------------------------------------------------------------|
| 3  | •   | Although Helicobacter pylori (H. pylori) eradication has been shown to reduce    |
| 4  |     | the risk of gastric cancer development, a considerable proportion of these       |
| 5  |     | individuals continues to progress to gastric cancer even after successful        |
| 6  |     | eradication of <i>H. pylori</i> .                                                |
| 7  | •   | Previous studies have shown that the risk of gastric cancer was increased by     |
| 8  |     | 43% among PPI users but the major confounding factor, H. pylori, was not         |
| 9  |     | adjusted in these analyses and the causal relationship may be biased.            |
| 10 |     |                                                                                  |
| 11 | Wha | at are the new findings?                                                         |
| 12 | •   | Long-term PPI use was associated with a 2.4-fold increase in gastric cancer risk |
| 13 |     | in <i>H. pylori</i> -infected subjects who had received eradication therapy.     |
| 14 | •   | The risk of gastric cancer increases with the dose and duration of PPI use.      |
| 15 |     |                                                                                  |
| 16 | How | might it impact on clinical practice in the foreseeable future?                  |
| 17 | •   | Physicians should exercise cautions when prescribing long-term PPI to H.         |
| 18 |     | pylori-infected individuals even after successful eradication of H. pylori.      |
| 19 |     |                                                                                  |

# 1 INTRODUCTION

| 2  | Gastric cancer is the third leading cause of cancer related mortality in the world. <sup>1</sup>                   |
|----|--------------------------------------------------------------------------------------------------------------------|
| 3  | Although Helicobacter pylori (H. pylori) eradication has been shown to reduce the                                  |
| 4  | risk of gastric cancer development by 33-47% <sup>2, 3</sup> , a considerable proportion of these                  |
| 5  | individuals continues to progress to gastric cancer even after eradication of <i>H. pylori</i> .                   |
| 6  | Apart from baseline gastric histology at the time of eradication <sup>4</sup> , data are sparse on                 |
| 7  | other modifiable risks of gastric cancer development, particularly on the role of                                  |
| 8  | concurrent medications.                                                                                            |
| 9  |                                                                                                                    |
| 10 | Proton pump inhibitors (PPIs) are among the most commonly prescribed medications                                   |
| 11 | in the world since the first PPI has become available in the 1980s. <sup>5</sup> Although PPIs are                 |
| 12 | generally considered safe, recent data have demonstrated various adverse effects                                   |
| 13 | associated with long-term use of PPIs including bone fracture, <sup>6</sup> Clostridium difficile                  |
| 14 | infection, <sup>7</sup> pneumonia, <sup>8</sup> myocardial infarction and even stroke. <sup>9</sup> Apart from the |
| 15 | systemic adverse effects, there are also concerns on the long-term safety profile of                               |
| 16 | PPIs in the stomach. The use of PPIs is associated with profound acid suppression,                                 |
| 17 | which could worsen atrophic gastritis. <sup>10</sup> The risk is considerably higher in individuals                |
| 18 | infected with <i>H. pylori</i> who are susceptible to the development of corpus atrophy. <sup>11</sup>             |
| 19 | Moreover, PPIs stimulate the production of gastrin, which is a potent growth factor,                               |

| 1  | and hypergastrinemia has been shown to induce hyperplasia of enterochromaffin-like                     |
|----|--------------------------------------------------------------------------------------------------------|
| 2  | cells. <sup>11</sup> A recent meta-analysis showed that the risk of gastric cancer is increased by     |
| 3  | 43% among PPI users. <sup>12</sup> However, these studies included both <i>H. pylori</i> -infected and |
| 4  | H. pylori-negative subjects. Although previous short-term studies had suggested the                    |
| 5  | resolution of corpus atrophy with <i>H. pylori</i> eradication therapy in patients with                |
| 6  | gastroesophageal reflux disease <sup>13, 14</sup> , it remains uncertain whether the potential risk of |
| 7  | PPIs on gastric cancer development could be eliminated by clearance of <i>H. pylori</i> .              |
| 8  |                                                                                                        |
| 9  | This population-based study aimed to determine the risk of gastric cancer                              |
| 10 | development among individuals who had received treatment for <i>H. pylori</i> with focus               |
| 11 | on the role of long-term PPIs.                                                                         |
| 12 |                                                                                                        |
| 10 |                                                                                                        |
| 13 |                                                                                                        |

## 1 METHODS

#### 2 Data source

| 3  | Data were retrieved from Clinical Data Analysis and Reporting System (CDARS) of                              |
|----|--------------------------------------------------------------------------------------------------------------|
| 4  | the Hong Kong Hospital Authority. The Hospital Authority is the sole public                                  |
| 5  | healthcare provider for primary, secondary and tertiary health services through 7                            |
| 6  | hospital clusters and covers 87-94 % of all secondary and tertiary care in Hong Kong                         |
| 7  | with a population of around 7.3 million. <sup>15</sup> Under this system, there are altogether 42            |
| 8  | public hospitals, 47 specialist out-patient clinics and 73 general out-patient clinics. All                  |
| 9  | essential clinical information including patients' demographics, hospitalization, visits                     |
| 10 | to outpatient clinics and emergency departments, diagnoses, laboratory results,                              |
| 11 | procedures, prescriptions, dispensing of medications and death are recorded in                               |
| 12 | CDARS, which is an electronic database managed by the HA. This database was                                  |
| 13 | established in 1995 for both audit and research purposes. To protect patient's                               |
| 14 | confidentiality, each patient is assigned a unique, anonymous patient identifier, which                      |
| 15 | is linked to all the clinical data contained in CDARS. A number of high-quality,                             |
| 16 | population-based studies <sup>16-18</sup> and multinational pharmacovigilance studies <sup>19, 20</sup> have |
| 17 | been conducted based on the data retrieved from CDARS. The International                                     |
| 18 | Classification of Diseases, Ninth Revision (ICD-9) was used for disease coding and                           |
| 19 | previous studies have verified the accuracy of the coding in CDARS with high                                 |

| 1  | positive and negative predictive values of more than 90%. <sup>17, 21</sup> The study protocol was      |
|----|---------------------------------------------------------------------------------------------------------|
| 2  | approved by the Institutional Review Board of the University of Hong Kong and the                       |
| 3  | West Cluster of Hospital Authority, Hong Kong (reference no: UW 16-545).                                |
| 4  |                                                                                                         |
| 5  | Study Subjects                                                                                          |
| 6  | We identified all adult patients who were aged 18 years or above and had been                           |
| 7  | prescribed a minimum of 7-day course of clarithromycin-based triple therapy for <i>H</i> .              |
| 8  | pylori infection in outpatient clinics between 1 January 2003 and 31 December 2012.                     |
| 9  | H. pylori infection was diagnosed by either upper endoscopy with biopsy based tests                     |
| 10 | or urea breath test in this study, as serology and stool antigen tests were not available               |
| 11 | in the public hospitals in Hong Kong. The prescription of clarithromycin-based triple                   |
| 12 | therapy was identified by the co-prescription of one of the proton pump inhibitors                      |
| 13 | (PPIs) with clarithromycin and either amoxicillin or metronidazole, with doses as                       |
| 14 | described previously. <sup>22</sup> The start date of the prescriptions should be the same, with an     |
| 15 | overlapping duration of seven to 14 days. Clarithromycin-based triple therapy was the                   |
| 16 | first-line therapy for <i>H. pylori</i> in Hong Kong during the study period due to the low             |
| 17 | clarithromycin resistance rate $(8\%)^{23}$ and overall high eradication rate (> 90%). <sup>24</sup> To |
| 18 | remove the confounding effects of symptoms from gastric cancer leading to the use of                    |
| 19 | PPIs or histamine 2-receptor antagonist (H2RA) (i.e. protopathic bias), prescriptions                   |

of these agents started within six months prior to the gastric cancer diagnosis were excluded from analyses.<sup>25, 26</sup> 

| 4  | Since gastric cancer can masquerade as non-healing ulcer, all patients with gastric            |
|----|------------------------------------------------------------------------------------------------|
| -  | Since gastre cancer can masquerade as non-nearing deer, an patients with gastre                |
| 5  | ulcer diagnosed at the time of or any time after receiving triple therapy were excluded.       |
| 6  | As there may be a delay in the diagnosis of gastric cancer, patients who developed             |
| 7  | gastric cancer within the first year of <i>H. pylori</i> eradication therapy were excluded.    |
| 8  | Patients with history of gastric cancer, previous gastrectomy or those who failed triple       |
| 9  | therapy were also excluded to ensure homogeneity of our study cohort. We defined               |
| 10 | failure of <i>H. pylori</i> eradication therapy as the requirement of subsequent prescriptions |
| 11 | of (a) repeated course of clarithromycin-based triple therapy; (b) a second-line               |
| 12 | therapy (bismuth-based quadruple therapy or PPI-levofloxacin-amoxycillin); or (c) a            |
| 13 | third-line therapy (rifabutin-based therapy). Figure 1 illustrates the inclusion and           |
| 14 | exclusion process of patients in this study. The time frame of the study is shown in           |
| 15 | eFigure 1.                                                                                     |
| 16 |                                                                                                |
| 17 | Outcomes                                                                                       |
| 18 | The primary outcome was the development of gastric adenocarcinoma. The                         |

observation period commenced from the date of first triple therapy prescription (i.e.

| 1  | index date) and was censored at the date of diagnosis of gastric cancer, death, or end       |
|----|----------------------------------------------------------------------------------------------|
| 2  | of the study (31 December 2015). The date of diagnosis of gastric cancer was defined         |
| 3  | as the first date of hospitalization for gastric cancer workup or treatment. Follow-up       |
| 4  | duration of individual patient was defined as the duration of observation between the        |
| 5  | index date and the censored date. All cases of gastric adenocarcinoma were identified        |
| 6  | in accordance with the ICD-9 (International Classification of Diseases, ninth revisions)     |
| 7  | (eTable 1). We excluded patients with diagnosis of gastric lymphoma in this study. In        |
| 8  | order to ensure the validity of the case definition, a list of diagnostic codes was          |
| 9  | reviewed and finalized by a group of gastroenterologists.                                    |
| 10 |                                                                                              |
| 11 | Study variables                                                                              |
| 12 | The primary exposure of interest was the subsequent prescription of PPIs after               |
| 13 | receiving the triple therapy for <i>H. pylori</i> . Potential confounders for gastric cancer |
| 14 | development were also evaluated including the age of receiving triple therapy, sex,          |
| 15 | smoking status, alcohol consumption, past history of gastric ulcer, past history of          |

- 16 duodenal ulcer, other comorbidities (including diabetes mellitus, hypertension,
- 17 dyslipidemia, obesity, ischemic heart disease, atrial fibrillation, congestive heart
- 18 failure, stroke, chronic renal failure and cirrhosis) and uses of various medications

| 1  | including statin, metformin, aspirin, non-steroidal anti-inflammatory drugs (NSAIDs),          |
|----|------------------------------------------------------------------------------------------------|
| 2  | cyclooxygenase-2 (COX-2) inhibitors, clopidogrel and H2RA.                                     |
| 3  |                                                                                                |
| 4  | PPIs are much more potent than H2RA in terms of gastric acid suppression, <sup>27</sup> and    |
| 5  | previous studies did not reveal any association between gastric cancer development             |
| 6  | and H2RA. <sup>25, 28, 29</sup> Hence, H2RA was selected as a negative control exposure in our |
| 7  | study. If there is a positive association between H2RA and gastric cancer, this will           |
| 8  | suggest some unmeasured factors that confound the causal relationship between PPIs             |
| 9  | and gastric cancer development including protopathic bias.                                     |
| 10 |                                                                                                |
| 11 | To further control for possible confounding effects, another cohort of PPIs users (at          |
| 12 | least weekly use) who had not received <i>H. pylori</i> eradication therapy and fulfilled the  |
| 13 | same inclusion and exclusion criteria as our <i>H. pylori</i> eradication cohort was recruited |
| 14 | for comparison. These PPI users who had not received <i>H. pylori</i> eradication therapy      |
| 15 | were then matched with the PPI users who had received <i>H. pylori</i> eradication therapy     |
| 16 | (n = 3,271) by age (+/- 5 years), sex, duration of follow-up (+/- 2 years) and                 |
| 17 | frequency of PPI use (+/- 0.3) in a 1:4 ratio. The incidence rates of gastric cancer in        |
| 18 | the two PPI cohorts were then compared.                                                        |

| 1  | We used similar approaches as adopted by Poulsen et al <sup>28</sup> to ascertain smoking status                       |
|----|------------------------------------------------------------------------------------------------------------------------|
| 2  | and alcohol consumption as these data was not available in the CDRAS. Smoking was                                      |
| 3  | identified by the ICD-9 code of V15.82 while chronic obstructive pulmonary disease                                     |
| 4  | (COPD) (ICD-9 codes: 491, 492, 496) was also used as proxy of heavy smoking.                                           |
| 5  | Heavy alcohol consumption was identified by alcohol-related diseases, including                                        |
| 6  | hepatic and gastrointestinal diseases, neurological and psychiatric diseases (ICD-9:                                   |
| 7  | 291, 303, 305.0, 571, 980). The diagnostic codes of other variables are listed in                                      |
| 8  | eTable 1.                                                                                                              |
| 9  |                                                                                                                        |
| 10 | In the primary analysis, the exposure categories of various medications were                                           |
| 11 | categorized similarly into non-regular use ( <weekly and="" group)="" reference="" regular<="" td="" use;=""></weekly> |
| 12 | use (at least weekly use) as described by Thrift et al. <sup>30</sup> The treatment duration of each                   |
| 13 | prescription of a particular medication was defined as the difference between the                                      |
| 14 | prescription start date and end date within the observation period. The total treatment                                |
| 15 | duration of that particular medication was then calculated by summing up the                                           |
| 16 | treatment duration of each prescription.                                                                               |
| 17 |                                                                                                                        |
| 18 | To study the dose-response relationship of PPIs on gastric cancer, the frequency of                                    |
| 19 | PPIs use was classified into three groups: (i) < weekly use, (ii) weekly to < daily use                                |

| 1  | and (iii) daily use. The frequency of PPIs use was calculated by dividing the total                      |
|----|----------------------------------------------------------------------------------------------------------|
| 2  | treatment duration by the duration of follow-up. The effect of PPIs was also studied                     |
| 3  | with regard to the duration of the<br>rapy into $\ge 1$ year, $\ge 2$ years and $\ge 3$ years as defined |
| 4  | in a recent meta-analysis. <sup>12</sup>                                                                 |
| 5  |                                                                                                          |
| 6  | Data validation                                                                                          |
| 7  | As individual's identification is anonymized in the electronic database (CDARS), we                      |
| 8  | could only retrieve detailed information of individual gastric cancer cases who were                     |
| 9  | managed in our centre (Queen Mary Hospital), which is a tertiary referral centre and a                   |
| 10 | university teaching hospital. Of the 153 gastric cancer cases, 12 cases were managed                     |
| 11 | in our centre and were reviewed in details for gastric histology.                                        |
| 12 |                                                                                                          |
| 13 | Statistical analyses                                                                                     |
| 14 | All statistical analyses were performed using R version 3.2.3 (R Foundation for                          |
| 15 | Statistical Computing) statistical software. Continuous variables were expressed as                      |
| 16 | median and interquartile range (IQR). Mann-Whitney U-test was used to compare                            |
| 17 | continuous variables of two groups. Chi-square test or Fisher's exact test was applied                   |
| 18 | for categorical variables. Cox proportional hazards model was used to estimate the                       |
| 19 | crude and adjusted hazard ratio (HR) of gastric cancer development with PPIs use. To                     |

| 1  | control for the confounders, propensity score adjustment was performed. Propensity                |
|----|---------------------------------------------------------------------------------------------------|
| 2  | scores were derived from logistic regression to represent the conditional probability of          |
| 3  | PPIs use given the other variables (age, sex, comorbidities and concomitant                       |
| 4  | medications). To further reduce the bias from unmeasured confounding, individuals                 |
| 5  | with extreme scores in the upper and lower tails of the propensity score distribution             |
| 6  | were excluded. <sup>31</sup> In order to establish the cut-points for trimming, we constructed 20 |
| 7  | categories of 5% each for the distribution of scores.                                             |
| 8  |                                                                                                   |
| 9  | In the primary analysis, the first and 20 <sup>th</sup> propensity score strata were trimmed, and |
| 10 | the estimated propensity score was then used as an adjustment variable in the Cox                 |
| 11 | proportional hazards model to derive the HR (propensity score adjustment with                     |
| 12 | trimming). A sensitivity analysis was also performed without trimming the extreme                 |
| 13 | propensity score strata (propensity score adjustment without trimming). In addition,              |
| 14 | the HR by univariate and multivariable analyses (with all covariates included) from               |
| 15 | Cox proportional hazards model were presented. For subgroup analysis, the risk of                 |
| 16 | gastric cancer with PPIs use was stratified according to the tumour sites (cardia and             |
| 17 | non-cardia regions). Moreover, we estimated the propensity score adjusted absolute                |
| 18 | difference in gastric cancer risk for PPIs vs non-PPIs use by the adjusted HR minus 1,            |
| 19 | followed by the multiplication of the crude incidence rates among patients who did                |

| 1  | not use PPIs. <sup>32</sup> As H2RA was selected as a negative control exposure, propensity |
|----|---------------------------------------------------------------------------------------------|
| 2  | scores were also derived from logistic regression to represent the conditional              |
| 3  | probability of H2RA use given the other variables. The HR of gastric cancer with            |
| 4  | H2RA was determined by propensity score adjustment after trimming. All statistical          |
| 5  | tests were two-sided, and a p-value of <0.05 was used to define statistical significance.   |
| 6  |                                                                                             |
| 7  |                                                                                             |
| 8  |                                                                                             |
| 9  |                                                                                             |
| 10 |                                                                                             |
| 11 |                                                                                             |
| 12 |                                                                                             |
| 13 |                                                                                             |
| 14 |                                                                                             |
| 15 |                                                                                             |
| 16 |                                                                                             |
| 17 |                                                                                             |
| 18 |                                                                                             |
| 19 |                                                                                             |

## 1 **RESULTS**

#### 2 Patient Characteristics

| 3  | A total of 74,612 subjects had received clarithromycin-based triple therapy during the        |
|----|-----------------------------------------------------------------------------------------------|
| 4  | 10-year period. After excluding patients who did not fulfil our inclusion criteria            |
| 5  | (Figure 1), 63,397 subjects were included in the final analysis. The median age of this       |
| 6  | cohort at the time of <i>H. pylori</i> eradication therapy was 54.7 years (IQR: $46.0 - 65.4$ |
| 7  | years) and 46.5% were men. The median follow-up was 7.6 years (IQR: $5.1 - 10.3$              |
| 8  | yeas) and the total follow-up duration was 483,259 person-years. The baseline                 |
| 9  | characteristics of the whole cohort and the subgroups according to PPIs and H2RA              |
| 10 | use are shown in Tables 1 and 2.                                                              |
| 11 |                                                                                               |
| 12 | Risk of Gastric Cancer Development                                                            |
| 13 | One hundred and fifty-three (0.24%) subjects developed gastric cancer after H. pylori         |
| 14 | eradication therapy. Among them, 31 (20.3 %) cancer were in the cardia and 95 (62.1           |
| 15 | %) in the non-cardia regions. The sites were not specified in the remaining 27 (17.6%)        |
| 16 | cases (ICD-9: 151.9). Similar ratio were observed for all the stomach cancer cases            |
| 17 | (n=12,898) diagnosed in Hong Kong during the study period (13.4% in cardia, 67.5%             |

18 in non-cardia and 19.1% cases with sites unspecified).

| 1        | Twelve out of 153 patients (7.8%) with gastric cancer who fulfilled the inclusion and                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|
| 2        | exclusion criteria from our centre were verified for histological findings. All patients                                             |
| 3        | were negative for <i>H. pylori</i> on gastric biopsies at the time of diagnosis and had                                              |
| 4        | underlying chronic gastritis, while intestinal metaplasia was reported in 5 cases.                                                   |
| 5        |                                                                                                                                      |
| 6        | The median age at cancer diagnosis was 71.4 years (IQR $61.1 - 81.5$ years). Patients                                                |
| 7        | who developed gastric cancer received <i>H. pylori</i> eradication therapy at a median age                                           |
| 8        | of 65.4 years (IQR 56.4 – 76.2 years), and the median time from <i>H. pylori</i> treatment                                           |
| 9        | to cancer development was 4.9 years (IQR: 2.7 – 7.2 years). The overall incidence                                                    |
| 10       | rate of gastric cancer in this cohort was 3.2 per 10,000 person-years. The incidence                                                 |
| 11       | rate of gastric cancer for each year is shown in <b>eTable 2</b> , which ranged from 2.5 to                                          |
| 12       | 5.8 per 10,000 person-years. Notably, there were no gastric cancer cases within the                                                  |
| 13       | first year of follow-up, as these cases were excluded.                                                                               |
| 14       |                                                                                                                                      |
|          |                                                                                                                                      |
| 15       | Association of PPIs use and risk of gastric cancer                                                                                   |
| 15<br>16 | Association of PPIs use and risk of gastric cancer<br>Table 3 and eTable 3 show the associations between PPIs use and gastric cancer |
|          |                                                                                                                                      |
| 16       | Table 3 and eTable 3       show the associations between PPIs use and gastric cancer                                                 |

| 1  | use with gastric cancer development by either multivariable analysis (HR 2.19, 95%      |
|----|-----------------------------------------------------------------------------------------|
| 2  | CI 1.31 – 3.66) or propensity score adjustment without trimming (HR 2.14, 95% CI        |
| 3  | 1.27 – 3.58).                                                                           |
| 4  | The propensity score adjusted absolute risk difference for PPIs use compared with       |
| 5  | non-PPIs use was 4.29 excess gastric cancer (95% CI 1.25 to 9.54) per 10,000 person-    |
| 6  | years.                                                                                  |
| 7  |                                                                                         |
| 8  | After stratification by the site of tumour, PPIs use was only found to be significantly |
| 9  | associated with an increased risk of non-cardia gastric cancer (HR 2.59, 95% CI 1.42    |
| 10 | – 4.72) but not cardia cancer (HR 1.97, 95% CI 0.57 – 6.82). Sensitivity analysis       |
| 11 | yielded similar results.                                                                |
| 12 |                                                                                         |
| 13 | Frequency and duration of PPIs use on risk of gastric cancer                            |
| 14 | A total of 3,271 (5.2%) patients in this cohort had used PPIs and the median duration   |
| 15 | of PPI use was 2.7 years (IQR: 1.5 – 5.1 years). Among them, 19 (0.6%) developed        |
| 16 | gastric cancer (8.1 per 10,000 person-years). We further determined the frequency and   |
| 17 | duration of PPIs use on gastric cancer development. Patients were first stratified      |
| 18 | according to the frequency of PPI use (Table 4) into three groups as described in the   |
| 19 | Method section. When compared with the reference group (< weekly use), there was a      |

| 1                          | progressive increase in the risk of gastric cancer with more frequent use of PPIs (HR                                                                                                   |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                          | 2.43 [95% CI 1.37 – 4.31] for "weekly to < daily use", and HR 4.55 [95% CI 1.12 –                                                                                                       |
| 3                          | 18.52] for "daily use"). Sensitivity analysis yielded similar results (eTables 2 and 3).                                                                                                |
| 4                          | Furthermore, the effect of long-term PPIs on gastric cancer development was studied                                                                                                     |
| 5                          | with regard to the duration of PPIs therapy ( $\geq 1$ year, $\geq 2$ years and $\geq 3$ years). As                                                                                     |
| 6                          | shown in Table 4, the risk increased with longer duration of PPIs use (HR 5.04 [95%                                                                                                     |
| 7                          | CI 1.23 – 20.61] for at least 1 year of use; HR 6.65 [95% CI 1.62 – 27.26] for at least                                                                                                 |
| 8                          | 2 years of use and HR 8.34 [95% CI 2.02 – 34.41] for at least 3 years of use).                                                                                                          |
| 9                          |                                                                                                                                                                                         |
| 10                         | Association of H2RA use and risk of gastric cancer                                                                                                                                      |
|                            |                                                                                                                                                                                         |
| 11                         | To test for potential confounding, H2RA was used as a negative control exposure.                                                                                                        |
| 11<br>12                   | To test for potential confounding, H2RA was used as a negative control exposure.<br>The HR of gastric cancer with H2RA use on univariate analysis was 0.95 (95% CI                      |
|                            |                                                                                                                                                                                         |
| 12                         | The HR of gastric cancer with H2RA use on univariate analysis was 0.95 (95% CI                                                                                                          |
| 12<br>13                   | The HR of gastric cancer with H2RA use on univariate analysis was 0.95 (95% CI $0.67 - 1.33$ ), while the HR from propensity score adjustment with trimming was 0.72                    |
| 12<br>13<br>14             | The HR of gastric cancer with H2RA use on univariate analysis was 0.95 (95% CI $0.67 - 1.33$ ), while the HR from propensity score adjustment with trimming was 0.72                    |
| 12<br>13<br>14<br>15       | The HR of gastric cancer with H2RA use on univariate analysis was 0.95 (95% CI 0.67 – 1.33), while the HR from propensity score adjustment with trimming was 0.72 (95% CI 0.48 – 1.07). |
| 12<br>13<br>14<br>15<br>16 | The HR of gastric cancer with H2RA use on univariate analysis was 0.95 (95% CI 0.67 – 1.33), while the HR from propensity score adjustment with trimming was 0.72 (95% CI 0.48 – 1.07). |

| 1 | comparison. Altogether, 142,460 PPI users without <i>H. pylori</i> eradication therapy were           |
|---|-------------------------------------------------------------------------------------------------------|
| 2 | identified with a total of 705,094 person-years follow-up. Among them, there were 59                  |
| 3 | gastric cancer cases making a crude incidence rate of 0.8 cases per 10,000 person-                    |
| 4 | years. After matching, the incidence rate was 8.1 case per 10,000 person-years and 1.0                |
| 5 | cases per 10,000 person-years in the two cohorts of PPIs users with and without $H$ .                 |
| 6 | <i>pylori</i> eradication therapy, respectively (incidence rate ratio $0.12$ ; 95% CI $0.05 - 0.26$ ) |
| 7 | (Table 5).                                                                                            |
| 8 |                                                                                                       |

## **DISCUSSION**

| 2  | In this population-based study that addressed the risk of gastric cancer development in                       |
|----|---------------------------------------------------------------------------------------------------------------|
| 3  | H. pylori-infected individuals after receiving eradication treatment, we found that                           |
| 4  | long-term use of PPIs increased the risk of gastric cancer development. Our results                           |
| 5  | showed that even after apparent successful H. pylori eradication therapy, those who                           |
| 6  | used long term PPIs had a 2.4-fold increase in risk of gastric cancer development than                        |
| 7  | non-users. This increase in risk was not observed among H2RA users. Further                                   |
| 8  | analysis demonstrated a dose- and time-dependent increase in the HRs of gastric                               |
| 9  | cancer with PPIs use, with the highest risk observed in daily users of PPIs (HR 4.55).                        |
| 10 | Patients who took PPIs daily for at least three years were at the highest risk (HR 8.34).                     |
| 11 | Notably, the increase in HR was limited to non-cardia cancer, although this result                            |
| 12 | should be interpreted with caution as this subgroup analysis has a relatively small                           |
| 13 | number of cardia cancers.                                                                                     |
| 14 |                                                                                                               |
| 15 | Gastric atrophy is generally considered to be a precursor of gastric cancer, which is                         |
| 16 | usually associated with chronic H. pylori infection. While PPIs are potent acid                               |
| 17 | suppressors, there have been concerns on the possible worsening of gastric atrophy by                         |
| 18 | long term PPIs and the associated increase in gastric cancer risk. <sup>10, 12</sup> Most published           |
| 19 | data supported that long term PPIs could worsen corpus gastritis and atrophy,                                 |
| 20 | particularly in <i>H. pylori</i> -positive subjects. <sup>10, 33</sup> Although the long-term use of PPIs for |

| 1  | more than 12 months was shown to be associated with an increased risk of gastric                            |
|----|-------------------------------------------------------------------------------------------------------------|
| 2  | cancer, <sup>12</sup> these results are largely confounded by the unknown prevalence of $H$ . pylori        |
| 3  | in the study population. <sup>25, 28, 29</sup> On the other hand, treatment of <i>H. pylori</i> in patients |
| 4  | with reflux esophagitis requiring long-term PPIs was found to eliminate gastric                             |
| 5  | mucosal inflammation and possibly induce regression of corpus glandular atrophy. <sup>13</sup>              |
| 6  | Hence, current guideline recommends eradication of <i>H. pylori</i> prior to the initiation of              |
| 7  | long-term PPIs. <sup>34</sup> Whilst gastroesophageal reflux is related to over-production of               |
| 8  | gastric acid and hence a lower prevalence of corpus atrophy, these patients may not be                      |
| 9  | the ideal population to study relationship between PPI use and worsening of corpus                          |
| 10 | atrophy and gastric cancer. There is so far no long-term data to support that H. pylori                     |
| 11 | eradication is sufficient in preventing cancer development in these individuals who                         |
| 12 | use long-term PPIs.                                                                                         |
| 13 |                                                                                                             |
| 14 | To our knowledge, this is the first study to demonstrate that long-term PPIs use, even                      |
| 15 | after H. pylori eradication therapy, is still associated with an increased risk of gastric                  |
| 16 | cancer. This is likely related to the profound acid suppression of PPIs that worsens                        |
| 17 | atrophic gastritis, particularly in those patients with established gastric atrophy as a                    |
| 18 | result of chronic H. pylori-induced inflammation. The lack of association between                           |
| 19 | H2RA uses and gastric cancer development further supports the specific role of PPIs                         |

| 1  | on gastric cancer development. One of the strengths of our study is the use of data                  |
|----|------------------------------------------------------------------------------------------------------|
| 2  | from population-based database with complete information on subsequent diagnoses                     |
| 3  | and drug prescriptions, thus minimizing the selection, information and recall biases.                |
| 4  | As all medications are dispensed by the hospital pharmacy at a very low cost to                      |
| 5  | patients (i.e. £1 per item for 16 weeks), the prescription records are expected to be                |
| 6  | identical to dispensing records. The large sample size and the relatively long duration              |
| 7  | of follow-up (median 7.6 years) allow for more precise effect estimation of gastric                  |
| 8  | cancer risk attributed to various factors, and enable subgroup analysis. The                         |
| 9  | association was also consistent in both the frequency and duration of PPIs treatment                 |
| 10 | which demonstrated a dose- and time-response trend suggestive of a cause-effect                      |
| 11 | relationship.                                                                                        |
| 12 |                                                                                                      |
| 13 | Another strength of this study was the use of a strict exclusion criteria as well as                 |
| 14 | propensity score adjustment to control for potential confounders in determining the                  |
| 15 | causal relationship between PPIs use and gastric cancer development. The results                     |
| 16 | remained significant by various sensitivity analyses. In addition, we recruited patients             |
| 17 | with successful H. pylori eradication only. In fact, failure to adjust for H. pylori                 |
| 18 | infection is one of the major concerns in studying the effect of PPIs on gastric cancer              |
| 19 | risk in previous studies. <sup>25, 28, 29</sup> The indication bias and protopathic bias was another |

| 1  | major concern that leads to the undetermined conclusion of the causal relationship                     |
|----|--------------------------------------------------------------------------------------------------------|
| 2  | between PPIs use and gastric cancer development in previous studies. <sup>25, 28, 29</sup> First, as   |
| 3  | gastric cancer can present with dyspepsia leading to an increase use of PPIs, all                      |
| 4  | prescriptions of PPIs in the six months preceding the diagnosis of gastric cancer were                 |
| 5  | excluded to avoid protopathic bias in this study. We used six months as the priori cut-                |
| 6  | off because previous study that specifically addressed the issue of protopathic bias                   |
| 7  | showed that this was the most appropriate lag-time to be applied for the assessment of                 |
| 8  | PPIs exposure on gastric cancer risk in pharmaco-epidemiological studies. <sup>26</sup> Moreover,      |
| 9  | PPIs are not approved as first-line therapy for dyspepsia in the Hong Kong Hospital                    |
| 10 | Authority, and H2RAs are usually the recommended treatment for this indication.                        |
| 11 | One would anticipate a similar increase in gastric cancer risk among those taking                      |
| 12 | H2RAs (negative control exposure) if there was significant indication bias in this                     |
| 13 | cohort. The minimization of protopathic bias and indication bias was further                           |
| 14 | supported by the findings that the matched cohort of PPIs users without H. pylori                      |
| 15 | eradication therapy had the lowest incidence rate when compared to the two post-H.                     |
| 16 | <i>pylori</i> eradicated cohorts ( <b>Table 5</b> ). By comparing the incidence rate of gastric cancer |
| 17 | of a matched cohort of PPIs users who had not received <i>H. pylori</i> eradication therapy,           |
| 18 | we showed that <i>H. pylori</i> infection, even prior infection, was a more important factor           |
| 19 | than PPIs use in determining gastric cancer risk. PPIs increase the risk of gastric                    |

| 1  | cancer development likely only in the context of underlying H. pylori-associated                          |
|----|-----------------------------------------------------------------------------------------------------------|
| 2  | chronic gastritis and atrophy only. Second, we excluded patients who had active                           |
| 3  | gastric ulcer diagnosed at the time of <i>H. pylori</i> eradication therapy or during                     |
| 4  | surveillance intervals as gastric cancer may masquerade as non-healing gastric ulcer.                     |
| 5  |                                                                                                           |
| 6  | Our study has several limitations. First, the information of some risk factors (e.g. diet,                |
| 7  | family history and socioeconomic status) could not be obtained from the electronic                        |
| 8  | database. Second, the identification of certain parameters (smoking, alcohol use and                      |
| 9  | obesity) via coding may underestimate their true prevalence, as only patients who had                     |
| 10 | heavy consumption of smoking and alcohol or who were morbidly obese would be                              |
| 11 | coded. Third, although patients who failed triple therapy were identified by the                          |
| 12 | repeated prescription of clarithromycin-based triple therapy or prescription of second                    |
| 13 | and third line therapies, it remained possible that a small proportion of patients who                    |
| 14 | failed <i>H. pylori</i> eradication therapy might be missed. In this study, about 13.2% of                |
| 15 | patients had received a second course of eradication therapy which was compatible                         |
| 16 | with the observed success rate of clarithromycin-based triple therapy in our                              |
| 17 | population with relatively low prevalence of clarithromycin resistance during the                         |
| 18 | study period. <sup>23</sup> In addition, we have validated the negative <i>H. pylori</i> status of all 12 |
| 19 | gastric cancer cases from our hospital. Fourth, although we included more than                            |

| 1  | 63,000 H. pylori-infected subjects, the small number of gastric cancer cases did not       |
|----|--------------------------------------------------------------------------------------------|
| 2  | allow for any meaningful evaluation of the dosage effect and role of different PPIs.       |
| 3  | However, it was recently shown that there was no difference in the gastric cancer risk     |
| 4  | between longer and shorter-acting PPIs. <sup>35</sup> Fourth, PPIs users may have a higher |
| 5  | chance to undergo endoscopy than non-PPI users, and therefore surveillance bias may        |
| 6  | lead to a higher risk of gastric cancer as observed in current study. However, as          |
| 7  | shown in eTable                                                                            |
| 8  |                                                                                            |
| 9  | Lastly, the detailed histological findings of gastric biopsies at baseline and at the time |
| 10 | of gastric cancer development were not available in the CDARS, precluding more in-         |
| 11 | depth analysis between the association of PPIs and baseline histology on gastric           |
| 12 | cancer development.                                                                        |
| 13 |                                                                                            |
| 14 | CONCLUSION                                                                                 |
| 15 | Long-term use of PPIs in subjects with prior H. pylori eradication was still associated    |
| 16 | with an increased risk of gastric cancer development, particularly for non-cardia          |
| 17 | cancer. There was also a clear dose- and time-response trend of PPI uses and gastric       |
| 18 | cancer risk. Physicians should therefore exercise cautions when prescribing long-term      |
| 19 | PPIs to these patients even after successful eradication of <i>H. pylori</i> .             |

## **1 REFERENCES**

| 2  | 1. | World Health Organisation. Cancer Fact Sheets: Stomach Cancer.                 |
|----|----|--------------------------------------------------------------------------------|
| 3  |    | http://gco.iarc.fr/today/fact-sheets-cancers?cancer=5&type=0&sex=0             |
| 4  | 2. | Lee YC, Chiang TH, Chou CK, et al. Association Between Helicobacter pylori     |
| 5  |    | Eradication and Gastric Cancer Incidence: A Systematic Review and Meta-        |
| 6  |    | analysis. Gastroenterology 2016;150:1113-1124.e5.                              |
| 7  | 3. | Ford AC, Forman D, Hunt RH, et al. Helicobacter pylori eradication therapy     |
| 8  |    | to prevent gastric cancer in healthy asymptomatic infected individuals:        |
| 9  |    | systematic review and meta-analysis of randomised controlled trials. BMJ       |
| 10 |    | 2014;348:g3174.                                                                |
| 11 | 4. | Wong BC, Lam SK, Wong WM, et al. Helicobacter pylori eradication to            |
| 12 |    | prevent gastric cancer in a high-risk region of China: a randomized controlled |
| 13 |    | trial. JAMA 2004;291:187-94.                                                   |
| 14 | 5. | Forgacs I, Loganayagam A. Overprescribing proton pump inhibitors. BMJ          |
| 15 |    | 2008;336:2-3.                                                                  |
| 16 | 6. | Yang YX, Lewis JD, Epstein S, et al. Long-term proton pump inhibitor           |
| 17 |    | therapy and risk of hip fracture. JAMA 2006;296:2947-53.                       |
| 18 | 7. | Janarthanan S, Ditah I, Adler DG, et al. Clostridium difficile-associated      |
| 19 |    | diarrhea and proton pump inhibitor therapy: a meta-analysis. Am J              |
| 20 |    | Gastroenterol 2012;107:1001-10.                                                |

| 1  | 8.  | Laheij RJ, Sturkenboom MC, Hassing RJ, et al. Risk of community-acquired         |
|----|-----|----------------------------------------------------------------------------------|
| 2  |     | pneumonia and use of gastric acid-suppressive drugs. JAMA2004;292:1955-          |
| 3  |     | 60.                                                                              |
| 4  | 9.  | Sherwood MW, Melloni C, Jones WS, et al. Individual Proton Pump                  |
| 5  |     | Inhibitors and Outcomes in Patients With Coronary Artery Disease on Dual         |
| 6  |     | Antiplatelet Therapy: A Systematic Review. J Am Heart Assoc 2015;4.              |
| 7  | 10. | Kuipers EJ, Lundell L, Klinkenberg-Knol EC, et al. Atrophic gastritis and        |
| 8  |     | Helicobacter pylori infection in patients with reflux esophagitis treated with   |
| 9  |     | omeprazole or fundoplication. N Engl J Med 1996;334:1018-22.                     |
| 10 | 11. | Lundell L, Vieth M, Gibson F, et al. Systematic review: the effects of long-     |
| 11 |     | term proton pump inhibitor use on serum gastrin levels and gastric histology.    |
| 12 |     | Aliment Pharmacol Ther 2015;42:649-63.                                           |
| 13 | 12. | Tran-Duy A, Spaetgens B, Hoes AW, et al. Use of Proton Pump Inhibitors and       |
| 14 |     | Risks of Fundic Gland Polyps and Gastric Cancer: Systematic Review and           |
| 15 |     | Meta-analysis. Clin Gastroenterol Hepatol 2016.                                  |
| 16 | 13. | Kuipers EJ, Nelis GF, Klinkenberg-Knol EC, et al. Cure of Helicobacter           |
| 17 |     | pylori infection in patients with reflux oesophagitis treated with long term     |
| 18 |     | omeprazole reverses gastritis without exacerbation of reflux disease: results of |
| 19 |     | a randomised controlled trial. Gut 2004;53:12-20.                                |

| 1  | 14. | Schenk BE, Kuipers EJ, Nelis GF, et al. Effect of Helicobacter pylori          |
|----|-----|--------------------------------------------------------------------------------|
| 2  |     | eradication on chronic gastritis during omeprazole therapy. Gut 2000;46:615-   |
| 3  |     | 21.                                                                            |
| 4  | 15. | The Hospital Authority. Hospital authority statistical report 2012–2013.       |
| 5  |     | http://www.ha.org.hk/haho/ho/stat/HASR1415_2.pdf. Accessed                     |
| 6  |     | January 12, 2017.                                                              |
| 7  | 16. | Chiu SS, Lau YL, Chan KH, et al. Influenza-related hospitalizations among      |
| 8  |     | children in Hong Kong. N Engl J Med 2002;347:2097-103.                         |
| 9  | 17. | Chan EW, Lau WC, Leung WK, et al. Prevention of Dabigatran-Related             |
| 10 |     | Gastrointestinal Bleeding With Gastroprotective Agents: A Population-Based     |
| 11 |     | Study. Gastroenterology 2015;149:586-95.e3.                                    |
| 12 | 18. | Cheung KS, Seto WK, Fung J, et al. Epidemiology and natural history of         |
| 13 |     | primary biliary cholangitis in the Chinese: A territory-based study in Hong    |
| 14 |     | Kong between 2000 and 2015 . Clin Transl Gastroenterol 2017 (in press).        |
| 15 | 19. | Pratt N, Chan EW, Choi NK, et al. Prescription sequence symmetry analysis:     |
| 16 |     | assessing risk, temporality, and consistency for adverse drug reactions across |
| 17 |     | datasets in five countries. Pharmacoepidemiol Drug Saf 2015;24:858-64.         |
| 18 | 20. | Roughead EE, Chan EW, Choi NK, et al. Variation in Association Between         |
| 19 |     | Thiazolidinediones and Heart Failure Across Ethnic Groups: Retrospective       |

| 1  |     | analysis of Large Healthcare Claims Databases in Six Countries. Drug Saf        |
|----|-----|---------------------------------------------------------------------------------|
| 2  |     | 2015;38:823-31.                                                                 |
| 3  | 21. | Wong OF, Ho PL, Lam SK. Retrospective review of clinical presentations,         |
| 4  |     | microbiology, and outcomes of patients with psoas abscess. Hong Kong Med J      |
| 5  |     | 2013;19:416-23.                                                                 |
| 6  | 22. | Wong AY, Wong IC, Chui CS, et al. Association Between Acute                     |
| 7  |     | Neuropsychiatric Events and Helicobacter pylori Therapy Containing              |
| 8  |     | Clarithromycin. JAMA Intern Med 2016;176:828-34.                                |
| 9  | 23. | Gu Q, Xia HH, Wang JD, et al. Update on clarithromycin resistance in            |
| 10 |     | Helicobacter pylori in Hong Kong and its effect on clarithromycin-based triple  |
| 11 |     | therapy. Digestion 2006;73:101-6.                                               |
| 12 | 24. | Hung IF, Chan P, Leung S, et al. Clarithromycin-amoxycillin-containing triple   |
| 13 |     | therapy: a valid empirical first-line treatment for Helicobacter pylori         |
| 14 |     | eradication in Hong Kong? Helicobacter 2009;14:505-11.                          |
| 15 | 25. | Tamim H, Duranceau A, Chen LQ, et al. Association between use of acid-          |
| 16 |     | suppressive drugs and risk of gastric cancer. A nested case-control study. Drug |
| 17 |     | Saf 2008;31:675-84.                                                             |

| 1  | 26. | Tamim H, Monfared AA, LeLorier J. Application of lag-time into exposure        |
|----|-----|--------------------------------------------------------------------------------|
| 2  |     | definitions to control for protopathic bias. Pharmacoepidemiol Drug Saf        |
| 3  |     | 2007;16:250-8.                                                                 |
| 4  | 27. | Howden CW, Hunt RH. The relationship between suppression of acidity and        |
| 5  |     | gastric ulcer healing rates. Aliment Pharmacol Ther 1990;4:25-33.              |
| 6  | 28. | Poulsen AH, Christensen S, McLaughlin JK, et al. Proton pump inhibitors and    |
| 7  |     | risk of gastric cancer: a population-based cohort study. Br J Cancer           |
| 8  |     | 2009;100:1503-7.                                                               |
| 9  | 29. | Garcia Rodriguez LA, Lagergren J, Lindblad M. Gastric acid suppression and     |
| 10 |     | risk of oesophageal and gastric adenocarcinoma: a nested case control study in |
| 11 |     | the UK. Gut 2006;55:1538-44.                                                   |
| 12 | 30. | Thrift AP, Anderson LA, Murray LJ, et al. Nonsteroidal Anti-Inflammatory       |
| 13 |     | Drug Use is Not Associated With Reduced Risk of Barrett's Esophagus. Am J      |
| 14 |     | Gastroenterol 2016;111:1528-1535.                                              |
| 15 | 31. | Sturmer T, Rothman KJ, Avorn J, et al. Treatment effects in the presence of    |
| 16 |     | unmeasured confounding: dealing with observations in the tails of the          |
| 17 |     | propensity score distributiona simulation study. Am J Epidemiol                |
| 18 |     | 2010;172:843-54.                                                               |

| 1  | 32. | Svanstrom H, Pasternak B, Hviid A. Use of azithromycin and death from         |
|----|-----|-------------------------------------------------------------------------------|
| 2  |     | cardiovascular causes. N Engl J Med 2013;368:1704-12.                         |
| 3  | 33. | Kuipers EJ, Uyterlinde AM, Pena AS, et al. Increase of Helicobacter pylori-   |
| 4  |     | associated corpus gastritis during acid suppressive therapy: implications for |
| 5  |     | long-term safety. Am J Gastroenterol 1995;90:1401-6.                          |
| 6  | 34. | Malfertheiner P, Megraud F, O'Morain CA, et al. Management of Helicobacter    |
| 7  |     | pylori infectionthe Maastricht IV/ Florence Consensus Report. Gut             |
| 8  |     | 2012;61:646-64.                                                               |
| 9  | 35. | Schneider JL, Kolitsopoulos F, Corley DA. Risk of gastric cancer,             |
| 10 |     | gastrointestinal cancers and other cancers: a comparison of treatment with    |
| 11 |     | pantoprazole and other proton pump inhibitors. Aliment Pharmacol Ther         |
| 12 |     | 2016;43:73-82.                                                                |
| 13 |     |                                                                               |
| 14 |     |                                                                               |
| 15 |     |                                                                               |
| 16 |     |                                                                               |
| 17 |     |                                                                               |
| 18 |     |                                                                               |
| 19 |     |                                                                               |
| 20 |     |                                                                               |

## **1 FIGURE LEGEND**

| 2  |                                                      |
|----|------------------------------------------------------|
| 3  | Figure 1: Study patient selection flow diagram       |
| 4  | Abbreviations: GC, gastric cancer; GU, gastric ulcer |
| 5  |                                                      |
| 6  |                                                      |
| 7  |                                                      |
| 8  |                                                      |
| 9  |                                                      |
| 10 |                                                      |
| 11 |                                                      |
| 12 |                                                      |
| 13 |                                                      |
| 14 |                                                      |
| 15 |                                                      |
| 16 |                                                      |
| 17 |                                                      |

#### 1 Table 1. Characteristics of PPI and non-PPI users

|                       | All                | PPI users          | Non-PPI users      |  |
|-----------------------|--------------------|--------------------|--------------------|--|
|                       | (n=63,397)         | (n=3,271)          | (n=60,126)         |  |
| Age at triple therapy | 54.7 (46.0 - 65.4) | 64.1 (53.6 - 75.3) | 54.3 (45.7 - 64.7) |  |
| (years)*              |                    |                    |                    |  |
| Male sex (n, %)       | 29499 (46.5%)      | 1641 (50.2%)       | 27858 (46.3%)      |  |
| Duration of follow-   | 7.6 (5.1 – 10.3)   | 7.4 (4.5 - 10.0)   | 7.6 (5.2 – 10.3)   |  |
| up (years)*           |                    |                    |                    |  |
| Smoking (n, %)        | 1629 (2.6%)        | 162 (5.0%)         | 1467 (2.4%)        |  |
| Alcohol (n, %)        | 552 (0.9%)         | 50 (1.5%)          | 502 (0.8%)         |  |
| Dyspepsia (n, %)      | 4145 (6.5%)        | 262 (8.0%)         | 3883 (6.5%)        |  |
| GERD (n, %)           | 3278 (5.2%)        | 593 (18.1%)        | 2685 (4.5%)        |  |
| History of GU (n, %)  | 1268 (2.0%)        | 153 (4.7%)         | 1115 (1.9%)        |  |
| History of DU (n, %)  | 1897 (3.0%)        | 139 (4.2%)         | 1758 (2.9%)        |  |
| DM (n, %)             | 7383 (11.6%)       | 772 (23.6%)        | 6611 (11.0%)       |  |
| Hypertension (n, %)   | 13065 (20.6%)      | 1334 (40.8%)       | 11731 (19.5%)      |  |
| Dyslipidemia (n, %)   | 5045 (8.0%)        | 579 (17.7%)        | 4466 (7.4%)        |  |
| Obesity               | 637 (1.0%)         | 61 (1.9%)          | 576 (1.0%)         |  |
| IHD (n, %)            | 5701 (9.0%)        | 906 (27.7%)        | 4795 (8.0%)        |  |
| AF (n, %)             | 2404 (3.8%)        | 371 (11.3%)        | 2033 (3.4%)        |  |
| CHF (n, %)            | 2512 (4.0%)        | 463 (14.2%)        | 2049 (3.4%)        |  |
| Stroke (n, %)         | 3965 (6.3%)        | 561 (17.2%)        | 3404 (5.7%)        |  |
| CRF (n, %)            | 1388 (2.2%)        | 236 (7.2%)         | 1152 (1.9%)        |  |
| Cirrhosis (n, %)      | 1037 (1.6%)        | 98 (3.0%)          | 939 (1.6%)         |  |
| Statins (n, %)        | 13180 (20.8%)      | 1351 (41.3%)       | 11829 (19.7%)      |  |
| Metformin (n, %)      | 7935 (12.5%)       | 605 (18.5%)        | 7330 (12.2%)       |  |
| Aspirin (n, %)        | 8965 (14.1%)       | 1358 (41.5%)       | 7607 (12.7%)       |  |
| NSAIDs/               | 3556 (5.6%)        | 391 (12.0%)        | 3165 (5.3%)        |  |
| COX-2 inhibitors      |                    |                    |                    |  |
| (n, %)                |                    |                    |                    |  |
| Clopidogrel (n, %)    | 980 (1.5%)         | 200 (6.1%)         | 780 (1.3%)         |  |
| H2RA (n, %)           | 21729 (34.3%)      | 1499 (45.8%)       | 20230 (33.6%)      |  |

\* Age was expressed as median (years) with interquartile range

Categorical variables were expressed as number (%)

Drug use was defined as at least weekly use, and expressed as number (%)

PPIs, proton pump inhibitors; GERD, gastroesophageal reflux disease; GU, gastric ulcer; DU, duodenal ulcer; DM, diabetes mellitus; IHD, ischemic heart disease; AF, atrial fibrillation; CHF, congestive heart failure; CRF, chronic renal failure; NSAIDs, non-steroidal anti-inflammatory drugs; COX-2, cyclooxygenase-2; H2RA, histamine 2 receptor antagonist

3

2

4

#### 1 Table 2. Characteristics of H2RA and non-H2RA users

|                       | All                | H2RA users         | Non- H2RA users    |  |  |
|-----------------------|--------------------|--------------------|--------------------|--|--|
|                       | (n=63,397)         | (n=21,729)         | (n=41,668)         |  |  |
| Age at triple therapy | 54.7 (46.0 - 65.4) | 60.0 (51.6 - 71.0) | 52.0 (43.4 - 61.6) |  |  |
| (years)*              |                    |                    |                    |  |  |
| Male sex (n, %)       | 29499 (46.5%)      | 9454 (43.5%)       | 20045 (48.1%)      |  |  |
| Duration of follow-   | 7.6 (5.1 – 10.3)   | 7.2 (4.8 - 9.8)    | 7.8 (5.3 – 10.5)   |  |  |
| up (years)*           |                    |                    |                    |  |  |
| Smoking (n, %)        | 1629 (2.6%)        | 863 (4.0%)         | 766 (1.8%)         |  |  |
| Alcohol (n, %)        | 552 (0.9%)         | 232 (1.1%)         | 320 (0.8%)         |  |  |
| Dyspepsia (n, %)      | 4145 (6.5%)        | 1826 (8.4%)        | 2319 (5.6%)        |  |  |
| GERD (n, %)           | 3278 (5.2%)        | 1629 (7.5%)        | 1649 (4.0%)        |  |  |
| History of GU (n, %)  | 1268 (2.0%)        | 446 (2.1%)         | 822 (2.0%)         |  |  |
| History of DU (n, %)  | 1897 (3.0%)        | 503 (2.3%)         | 1394 (3.3%)        |  |  |
| DM (n, %)             | 7383 (11.6%)       | 3885 (17.9%)       | 3498 (8.4%)        |  |  |
| Hypertension (n, %)   | 13065 (20.6%)      | 7137 (32.8%)       | 5928 (14.2%)       |  |  |
| Dyslipidemia (n, %)   | 5045 (8.0%)        | 2939 (13.5%)       | 2106 (5.1%)        |  |  |
| Obesity               | 637 (1.0%)         | 351 (1.6%)         | 286 (0.7%)         |  |  |
| IHD (n, %)            | 5701 (9.0%)        | 3560 (16.4%)       | 2141 (5.1%)        |  |  |
| AF (n, %)             | 2404 (3.8%)        | 1468 (6.8%)        | 936 (2.2%)         |  |  |
| CHF (n, %)            | 2512 (4.0%)        | 1512 (7.0%)        | 1000 (2.4%)        |  |  |
| Stroke (n, %)         | 3965 (6.3%)        | 2466 (11.3%)       | 1499 (3.6%)        |  |  |
| CRF (n, %)            | 1388 (2.2%)        | 814 (3.7%)         | 574 (1.4%)         |  |  |
| Cirrhosis (n, %)      | 1037 (1.6%)        | 425 (2.0%)         | 612 (1.5%)         |  |  |
| Statins (n, %)        | 13180 (20.8%)      | 7401 (34.1%)       | 5779 (13.9%)       |  |  |
| Metformin (n, %)      | 7935 (12.5%)       | 3899 (17.9%)       | 4036 (9.7%)        |  |  |
| Aspirin (n, %)        | 8965 (14.1%)       | 6376 (29.3%)       | 2589 (6.2%)        |  |  |
| NSAIDs/               | 3556 (5.6%)        | 3092 (14.2%)       | 464 (1.1%)         |  |  |
| COX-2 inhibitors      |                    |                    |                    |  |  |
| (n, %)                |                    |                    |                    |  |  |
| Clopidogrel (n, %)    | 980 (1.5%)         | 602 (2.8%)         | 378 (0.9%)         |  |  |
| PPIs (n, %)           | 3271 (5.2%)        | 1499 (6.9%)        | 1772 (4.3%)        |  |  |

\* Age was expressed as median (years) with interquartile range

Categorical variables were expressed as number (%)

Drug use was defined as at least weekly use, and expressed as number (%)

H2RA, histamine 2 receptor antagonist; GERD, gastroesophageal reflux disease; GU, gastric ulcer; DU, duodenal ulcer; DM, diabetes mellitus; IHD, ischemic heart disease; AF, atrial fibrillation; CHF, congestive heart failure; CRF, chronic renal failure; NSAIDs, non-steroidal anti-inflammatory drugs; COX-2, cyclooxygenase-2; PPIs, proton pump inhibitors;

3

2

4

\_

#### Table 3. Association between PPI use and risk of gastric cancer for the whole cohort and

3 according to gastric cancer sites (non-cardia and cardia regions)

| PPI<br>frequency                          | Univariate<br>analysis |                       | Multivariable<br>analysis |                       |                       | PS adjustment<br>without trimming |                       |                       | PS adjustment<br>with trimming |                       |           |             |
|-------------------------------------------|------------------------|-----------------------|---------------------------|-----------------------|-----------------------|-----------------------------------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------|-------------|
| All GC                                    | (n=63,397,<br>GC=153)  |                       |                           | (n=63,397,<br>GC=153) |                       |                                   | (n=63,397,<br>GC=153) |                       |                                | (n=57,057,<br>GC=139) |           |             |
| All OC                                    | HR                     | 95%<br>CI             | p-<br>value               | HR                    | 95%<br>CI             | p-<br>value                       | HR                    | 95%<br>CI             | p-<br>value                    | HR                    | 95%<br>CI | p-<br>value |
| Non-user<br>( <weekly<br>use)</weekly<br> | Ref                    | -                     | -                         | Ref                   | -                     | -                                 | Ref                   | -                     | -                              | Ref                   | -         | -           |
| At least                                  | 2.80                   | 1.73                  | 0.003                     | 2.19                  | 1.31                  | 0.003                             | 2.14                  | 1.27                  | 0.004                          | 2.44                  | 1.42      | 0.002       |
| weekly                                    |                        | 4.52                  |                           |                       | _<br>3.66             |                                   |                       | 3.58                  |                                |                       | 4.20      |             |
| (n=63,366,<br>GC=122)<br>Non-             |                        | (n=63,366,<br>GC=122) |                           |                       | (n=63,366,<br>GC=122) |                                   |                       | (n=57,028,<br>GC=112) |                                |                       |           |             |
| cardia GC                                 | HR                     | 95%<br>CI             | p-<br>value               | HR                    | 95%<br>CI             | p-<br>value                       | HR                    | 95%<br>CI             | p-<br>value                    | HR                    | 95%<br>CI | p-valu      |
| Non-user<br>( <weekly<br>use)</weekly<br> | Ref                    | -                     | -                         | Ref                   | -                     | -                                 | Ref                   | -                     | -                              | Ref                   | -         | -           |
| At least                                  | 2.98                   | 1.76                  | 0.001                     | 2.56                  | 1.46                  | 0.001                             | 2.43                  | 1.38                  | 0.002                          | 2.59                  | 1.42      | 0.002       |
| weekly                                    |                        | 5.05                  |                           |                       | <br>4.49              |                                   |                       | 4.28                  |                                |                       | 4.72      |             |
| (n=63,275,<br>GC=31)                      |                        | (n=63,275,<br>GC=31)  |                           |                       | (n=63,275,<br>GC=31)  |                                   |                       | (n=56,947,<br>GC=27)  |                                |                       |           |             |
| Cardia<br>GC                              | HR                     | 95%<br>CI             | p-<br>value               | HR                    | 95%<br>CI             | p-<br>value                       | HR                    | 95%<br>CI             | p-<br>value                    | HR                    | 95%<br>CI | p-valu      |
| Non-user<br>( <weekly<br>use)</weekly<br> | Ref                    | -                     | -                         | Ref                   | -                     | -                                 | Ref                   | -                     | -                              | Ref                   | -         | -           |
| At least                                  | 2.10                   | 0.64                  | 0.222                     | 1.24                  | 0.35                  | 0.736                             | 1.26                  | 0.35                  | 0.722                          | 1.97                  | 0.57      | 0.286       |
| weekly                                    |                        | -<br>6.90             |                           |                       | 4.34                  |                                   |                       | 4.52                  |                                |                       | 6.82      |             |

Significant p-values were highlighted in bold

HR, hazard ratio; 95% CI, 95% confidence interval; PPI, proton pump inhibitor; PS, propensity score; GC, gastric cancer

.

1 Table 4 . HRs and 95% CIs for the association between frequency and duration of PPI

2 use and risk of gastric cancer (propensity score adjustment with trimming)

| <b>PPI</b><br>frequency<br>Non-user<br>( <weekly< th=""><th></th><th>HR</th><th></th><th>(1</th><th>n=57,057, GC=1</th><th>130)</th><th></th><th></th><th></th></weekly<>         |         | HR                |             | (1   | n=57,057, GC=1  | 130)               |                   |                 |             |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|-------------|------|-----------------|--------------------|-------------------|-----------------|-------------|--|--|--|--|--|--|
| <b>frequency</b><br>Non-user<br>( <weekly< th=""><th></th><th>HR</th><th></th><th></th><th></th><th colspan="10">(n=57,057, GC=139)</th></weekly<>                                |         | HR                |             |      |                 | (n=57,057, GC=139) |                   |                 |             |  |  |  |  |  |  |
| ( <weekly< th=""><th></th><th></th><th></th><th></th><th>95%</th><th></th><th colspan="3">p-value</th></weekly<>                                                                  |         |                   |             |      | 95%             |                    | p-value           |                 |             |  |  |  |  |  |  |
| use)                                                                                                                                                                              | Ref     |                   |             |      | -               |                    | -                 |                 |             |  |  |  |  |  |  |
| Weekly to<br><daily< td=""><td></td><td>2.43</td><td></td><td></td><td>1.37 – 4</td><td></td><td colspan="2">0.002</td></daily<>                                                  |         | 2.43              |             |      | 1.37 – 4        |                    | 0.002             |                 |             |  |  |  |  |  |  |
| Daily                                                                                                                                                                             |         | 4.55              |             |      | 1.12 – 1        | 8.52               |                   | 0.034           |             |  |  |  |  |  |  |
| PPI<br>frequency                                                                                                                                                                  |         | PPI use ≥ 1 yea   | ar          |      | PPI use≥2 years |                    |                   | PPI use≥3 years |             |  |  |  |  |  |  |
|                                                                                                                                                                                   | (n      | n=50,932, GC=1    | 12)         | (1   | n=49,462, GC=   | 88)                | (n=48,511, GC=69) |                 |             |  |  |  |  |  |  |
|                                                                                                                                                                                   | HR      | 95% CI            | p-<br>value | HR   | 95% CI          | p-<br>value        | HR                | 95% CI          | p-<br>value |  |  |  |  |  |  |
| Non-user<br>( <weekly<br>use)</weekly<br>                                                                                                                                         | Ref     | -                 | -           | Ref  | -               | -                  | Ref               |                 | -           |  |  |  |  |  |  |
| Weekly to<br><daily< td=""><td>1.81</td><td>0.90 - 3.64</td><td>0.098</td><td>0.98</td><td>0.31 – 3.17</td><td>0.979</td><td>0.58</td><td>0.08 - 4.23</td><td>0.590</td></daily<> | 1.81    | 0.90 - 3.64       | 0.098       | 0.98 | 0.31 – 3.17     | 0.979              | 0.58              | 0.08 - 4.23     | 0.590       |  |  |  |  |  |  |
| Daily                                                                                                                                                                             | 5.04    | 1.23 - 20.61      | 0.024       | 6.65 | 1.62 – 27.26    | 0.009              | 8.34              | 2.02 - 34.41    | 0.004       |  |  |  |  |  |  |
| Daily<br>Significant p-va<br>HR, hazard ratio                                                                                                                                     | lues we | re highlighted in | ı bold      |      |                 |                    |                   |                 | 0.4         |  |  |  |  |  |  |

#### 1 Table 5. Comparison of incidence rates of gastric cancer in different cohorts according

## 2 to PPI uses and prior *H. pylori* eradication therapy

3

| Before matching                         | Number of patients | Number of<br>person-years | Number of<br>GC cases | Incidence rate<br>(per 10,000<br>person-years) | Incidence rate<br>ratio with<br>95% CI |
|-----------------------------------------|--------------------|---------------------------|-----------------------|------------------------------------------------|----------------------------------------|
| non-PPI users with<br>prior HP therapy  | 60,126             | 459,864                   | 134                   | 2.9                                            | Ref                                    |
| PPI users with prior<br>HP therapy      | 3,271              | 23,395                    | 19                    | 8.1                                            | 2.81<br>(1.68 – 4.43)                  |
| PPI users without prior HP therapy      | 142,460            | 705,094                   | 59                    | 0.8                                            | 0.29<br>(0.21 – 0.39)                  |
| After<br>matching                       | Number of patients | Number of person-years    | Number of<br>GC cases | Incidence rate<br>(per 10,000<br>person-years) | Incidence rate<br>ratio with 95%<br>CI |
| PPI users with prior<br>HP therapy      | 3,270              | 23,384                    | 19                    | 8.1                                            | Ref                                    |
| PPI users without<br>prior HP therapy * | 13,080             | 93,500                    | 9                     | 1.0                                            | 0.12<br>(0.05 – 0.26)                  |

\* matched with age (+/- 5 years), sex, duration of follow-up (+/- 2 years) and frequency of PPI use (+/- 0.3) in a 1:4 ratio

PPI, proton pump inhibitor; HP, Helicobacter pylori; GC, gastric cancer; 95% CI, 95% confidence interval

| 4  |  |
|----|--|
| 5  |  |
| 6  |  |
| 7  |  |
| 8  |  |
| 9  |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |