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Abstract

Persistent insecticides sprayed onto house walls, and incorporated into insecticide-treated bednets, 

provide long-acting, cost-effective control of vector-borne diseases such as malaria and 

leishmaniasis. The high concentrations that occur immediately post-deployment may kill both 

resistant and susceptible insects. However, insecticide concentration, and therefore killing ability, 

declines in the months after deployment. As concentrations decline, resistant insects start to 

survive while susceptible insects are still killed. The period of time after deployment, within which 

mortality of resistant individuals is lower than that of susceptible ones, has been termed the 

‘window of selection’ in other contexts. It is recognised as driving resistance in bacteria and 

malaria parasites, both of which are predominantly haploid. We argue that paying more attention 

to these mortality differences can help understand the evolution of insecticide resistance. Because 

insects are diploid, resistance encoded by single genes generates heterozygotes. This gives the 

potential for a narrower 'window of dominance', within the window of selection, where 

heterozygote mortality is lower than that of susceptible homozygotes. We explore the general 

properties of windows of selection and dominance in driving resistance. We quantify their likely 

effect using data from new laboratory experiments and published data from the laboratory and 

field. These windows can persist months or years after insecticide deployments. Differential 

mortalities of resistant, susceptible and heterozygous genotypes, after public-health deployments, 

constitute a major challenge to controlling resistance. Greater attention to mortality differences by 

genotype would inform strategies to reduce the evolution of resistance to existing and new 

insecticides.

Keywords : insecticide resistance, window of selection, window of dominance, malaria, 

insecticide resistance management, vector-borne diseases, drug resistance, dose-response
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1. Introduction.

Seventeen percent of human infectious diseases are estimated to be transmitted by vectors such as 

mosquitoes, ticks and fleas (WHO, 2014a). Malaria alone, despite recent declines, killed an 

estimated 435,000 people in 2017 (World Health Organisation, 2018). Insecticides, used in public 

health interventions to control vector-borne diseases, have saved millions of malaria deaths (Bhatt 

et al., 2015) and  averted deaths and morbidity from other infections such as dengue, zika, 

lymphatic filariasis, Leishmaniasis and Japanese encephalitis. The control of such diseases is 

threatened by insecticide resistance, that is now widespread in many vector species (Gould, 

Brown, & Kuzma, 2018; Ranson & Lissenden, 2016). Insecticide-resistance management (IRM) 

programs have been designed and implemented to slow the evolution of resistance (Denholm & 

Rowland, 1992; Gould et al., 2018; Huijben & Paaijmans, 2017; Roush, 1989; Sternberg & 

Thomas, 2017). The design of effective, appropriate IRM strategies depends on understanding the 

forces that drive the spread of insecticide resistance. Most IRM strategies have been developed for 

agricultural use, adapted for public health and imported into public health programmes (IRAC, 

2011; WHO, 2012). One important operational factor in insecticide deployment is that insecticide 

concentrations decline after application. In agriculture, this decline tends to be rapid, either as a 

deliberate policy to avoid residual insecticides on human food, or because the insecticide is rapidly 

washed off crops by rain or degraded by sunlight. Conversely, most public health applications are 

specifically designed to deploy highly persistent insecticides in order to maximize their long-term 

impact and cost-effectiveness (White, Conteh, Cibulskis, & Ghani, 2011). The key objective of 

this paper is to explore how long-term persistence of insecticides, used in many public health 

applications, is likely to accelerate the evolution of insecticide resistance.

We investigate the impact of insecticide persistence by borrowing the term 'window of selection' 

which has previously been applied to the evolution of drug resistance in malaria (e.g. Kay & 

Hastings, 2015; Slater, Okell, & Ghani, 2016) and antibiotic resistance in bacteria (Gullberg et al., 

2011). We illustrate the basic principles in Figure 1A. The highest insecticide concentrations occur 

immediately after application/deployment and, in the best case scenario, are sufficient to kill both A
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resistant and susceptible insects. In that case the window of selection is closed. As concentrations 

decline, the mortality of resistant insects declines before that of susceptible ones, leading to the 

differential survival that drives the evolution of resistance; the selective window is open. In many 

places, resistance to target doses means that the window of selection is already open on 

deployment. After further decline, insecticide concentrations reach levels such that both resistant 

and susceptible forms survive, resistance is not selected for and the window closes again. If there 

are fitness costs, the mortality of resistant individuals may be higher than that of susceptible 

individuals at lowest concentrations and this would be expected to select for a return to 

susceptibility. The window of selection for resistance could be defined in terms of differential 

fitness, as anything that allows the resistant individuals to leave more progeny will promote 

selection (such as better mating success (Rowland, 1991)). However, for operational purposes it is 

likely that mortality is the most important and measurable factor. 

Previous discussion of windows of selection has compared resistant and susceptible 'strains'. In 

malaria and bacteria this easily equates to selection on a single gene (or plasmid) because these 

organisms are haploid when they encounter the drug in humans, so in the simplest cases have only 

two genotypes i.e. R and S. However, insects are diploid with potential for three distinct genotypes 

at a resistance locus (i.e. RR, SR and SS), making the dynamics of selection more complicated 

(Figure 1B). As insecticide concentrations decline, the relative mortality of the SR genotype 

changes, reflecting increasing dominance of the resistance gene (see also Denholm & Rowland, 

1992; Gould et al., 2018; Levick et al., 2017 Figure 1). At initial high concentrations, dominance 

is expected to be low and the mortality of the SR close to the SS. As concentrations decline 

dominance is also expected to decline and mortality of the SR becomes closer to the RR. We use 

the term 'window of dominance' to describe the region within the window of selection where 

dominance is greater than zero. The importance of dominance for the evolution of insecticide 

resistance has been recognised previously (Bourguet, Genissel, Raymond, & Raymond, 2000; 

Gould et al., 2018; Levick et al., 2017; Mallet, 1989), but the effect on selection of changing 

dominance, in response to insecticide concentration, has not been quantified. 

2. Methods.A
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2.1 Population genetic and computational analyses of windows of selection and dominance

Mortality estimates of all three genotypes (SS, SR and RR), where available, allowed us to 

quantify the magnitude of selection for resistance using two approaches. Firstly, using population 

genetics to calculate the selective advantage of resistance over a single generation. Secondly, 

using a published computer simulation (Levick et al., 2017; South & Hastings, 2018) to calculate 

how rapidly evolution drives resistance allele frequency to 50%. 

Both approaches require the proportion of the population exposed to the insecticide and the 

frequency of the resistance allele. The frequency of the resistance allele alters the proportion of 

insects in each of the three genotypes, and hence the impact of dominance. We used two 

illustrative starting resistance allele frequencies 0.01 and 10-4 (i.e. 1% and 0.01%). The proportion 

of the population exposed to the insecticide was set at 30% for both sexes [increasing it gave 

higher selective advantage and lower times-to-resistance but qualitatively similar results (Fig 

S2.1)].

2.1.1 Population genetics to calculate the selective advantage of resistance

Let the fitnesses of the SS, SR and RR genotypes exposed to the insecticide be Wss, Wsr  and Wrr  

respectively. Here we assume fitness is the proportion of the genotype that survives exposure. Let 

p and q(=1-p) be the frequency of resistant and susceptible alleles respectively. Assuming there is 

no selection on those not exposed to the insecticide (i.e. that there are no fitness costs of 

resistance) and that the genotypes are initially in Hardy-Weinberg equilibrium (i.e. the frequencies 

of RR, SR and SS genotypes are p2, 2pq, q2 respectively), then the frequencies of p and q next 

generation, denoted p’ and q’ are :

𝑝′ =
𝑥[𝑝2𝑤𝑅𝑅 + 2𝑝𝑞 ∗ 0.5 ∗ 𝑤𝑆𝑅] + (1 ― 𝑥)[𝑝2 + 2𝑝𝑞 ∗ 0.5]

𝑊

𝑞′ =
𝑥[2𝑝𝑞 ∗ 0.5 ∗ 𝑤𝑆𝑅 + 𝑞2𝑤𝑆𝑆] + (1 ― 𝑥)[2𝑝𝑞 ∗ 0.5 + 𝑞2]

𝑊A
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where  is a normalising factor equal to the sum of the numerators. The relative fitness of the R 𝑊

allele is given by p’/p but fitness is often broken down to w=1+z, where z is the selective 

advantage (we avoid the conventional symbol, s, for selective advantage to avoid confusion with 

the S allele). The value of z can therefore be obtained as 

-1𝑧 =
𝑝′
𝑝

We generally present values of z (rather than w) because changes in its value are more obvious in 

the plots. Note that z will also depend on the frequency of the resistance allele because this 

frequency determines the relative frequency of insects in the three genotypes.

2.1.2 Computer simulation to calculate times to resistance thresholds

Computer simulation of the evolution of resistance used a published model (Levick et al., 2017; 

South & Hastings, 2018). The model represents the genetics of a single randomly mixing 

population and, as in standard population genetic models, tracks frequencies of alleles and 

genotypes without tracking demography. Hence, it does not include changes in population size or 

dispersal. The mortalities of resistant and susceptible genotypes, at different time points, were 

used to calculate model inputs, namely insecticide effectiveness (mortality of the SS), resistance 

restoration (the proportion of SS mortality that is prevented by the RR genotype) and dominance. 

The proportion of the population exposed to the insecticide was set at x=0.3 and initial starting 

frequencies at 0.01 and 10-4, as above. A 'time-to-resistance' was calculated as the number of 

generations taken to reach a resistance allele frequency of 50%. This illustrates the changing 

selective pressure at each concentration and is compatible with previous analyses using this metric 

to quantify the rate of evolution of resistance (Birget & Koella, 2015; Levick et al., 2017; South & 

Hastings, 2018). 

2.2. Laboratory experiments quantifying the duration of windows of selection 

We conducted two experiments to quantify windows of selection in terms of insecticide 

concentration ranges and timescales post application. Windows of selection were indicated where 

there was a difference in mortality between resistant and susceptible mosquito strains. Note that, A
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because these experiments used strains rather than known genotypes, they did not allow us to 

measure windows of dominance. The first experiment exposed resistant and susceptible strains of 

Anopheles gambiae to filter papers impregnated with deltamethrin at a range of concentrations and 

measured mortality. The second experiment exposed resistant and susceptible strains of Anopheles 

gambiae, Anopeheles funestus and Aedes aegypti to different surfaces (cement, wood and mud) 

sprayed with deltamethrin. These surfaces were stored at temperatures and humidity representative 

of sub-Saharan Africa. Mortality was measured at regular intervals in the 18 months after 

spraying. Full methods of both experiments are provided in the SI, part 1.

2.3 Literature search for existing data to estimate windows of selection and dominance

We searched the literature for other work reporting differences in mortality between resistant and 

susceptible strains, or individual RR, SR, SS genotypes, that can be used to quantify windows of 

selection and dominance. Details of search methods are provided in SI part 3.

All figures were created in R using ggplot2 and patchwork (Pedersen, 2018; R Core Team, 2017; 

Wickham, 2009).

3. Results.

3.1 theoretical approaches for estimating evolution of insecticide resistance within windows of 

selection and dominance

The selective advantage of the resistance allele can be calculated from the mortalities of the three 

genotypes in our idealised plot Figure 1B, and is shown in Figure 1C. Selection for resistance 

starts to occur as declining concentrations allow the window of selection to open. There is then a 

rapid increase in selective advantage as the window of dominance opens, due to declining A
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mortality of the SR. Selective advantage remains high throughout the window of dominance, only 

declining to zero once concentrations become sufficiently low that all SS survive the same as RR. 

These patterns are similar for different resistance frequencies except that lower frequencies give 

lower selective advantage and a greater increase on entering the window of dominance. 

The selective advantage, shown in Figure 1C, operates over a single generation. The same pattern 

(although inverted) occurs when selection is compounded over generations in the computer 

simulation to estimate time-to-resistance. Figure 1D plots the time until resistance allele frequency 

reaches 50%, a conventional endpoint in many studies of insecticide resistance (e.g. Birget & 

Koella, 2015). The shortest time values (i.e. most rapid selection) occur in the window of 

dominance. For the lower resistance starting frequency, the simulation does not reach the 

resistance threshold within 500 generations when outside of the window of dominance. Time to 

resistance may be >500 generations as the window starts to open, but falls to 21 generations when 

selection is greatest. 

The magnitudes of the selective advantage and time-to-resistance are both dependent on the 

proportion of the population exposed to the insecticide. In Figure 1 an exposure value of 0.3 is 

used. Settings with higher exposure values had higher selective advantage and lower times to 

resistance, but a qualitatively similar pattern of greatest selection within the window of dominance 

(SI Fig S2.1). In summary, both the population genetics equation and simulations indicate 

evolution of resistance within the window of selection, and faster evolution within the window of 

dominance.

3.2. laboratory experiments illustrating windows of selection

Resistant and susceptible Anopheles gambiae strains were exposed to different deltamethrin 

concentrations (Figure 2). The observed mortality pattern was very similar to the idealised window 

of selection shown in Figure 1A. At high concentrations, mortality is high for both strains; a 

window of selection is open at intermediate concentrations where mortality is higher for the 

susceptible than the resistant strain; at low concentrations, mortality is low for both strains. The 

window of selection operates over a 320 fold range of concentrations; opening around the highest 

concentration of 0.8% and closing around 0.0025%.A
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In operational settings, the time (rather than concentration range) for which windows of selection 

are open, is the more important driver of resistance. Figure 3 shows the changing mortality over 18 

months, for resistant and susceptible strains of three mosquito species, exposed to three 

deltamethrin sprayed substrates. Large differences, between the mortality of susceptible and 

resistant strains, can be seen in all combinations of species/substrate, clearly confirming the 

presence of windows of selection. In all cases, the windows of selection seem to be open 

immediately after spraying, and not to have closed by month 18. The clearest example is for An. 

gambiae (Figure 3, upper panels), where the window of selection is open at near maximum extent 

over the full 18 month period after spraying. The results are equally clear-cut for An. funestus 

(Figure 3 middle panels), where the window of selection is open for the whole 18 month period, 

although maximal differential mortality does not arise until around 3 months post treatment. In Ae. 

aegypti (Figure 3, lower panels), the window of selection is open for 18 months, but the difference 

in mortality between resistant and susceptible strains is slightly less than in the two Anopheline 

species. The apparent increase in mortality of the resistant strain on wood, between 5 and 18 

months after spraying, is counter-intuitive and probably reflects declining colony health. 

Nevertheless resistant mortality remains lower than susceptible, suggesting the window of 

selection remains open.

3.3. Published work illustrating windows of selection

Our laboratory experiments above indicated windows of selection. In Table 1 we summarise  other 

published studies illustrating windows of selection and dominance. These are further described in 

the SI, part 3 together with replotted data. These published studies confirm the results described 

above, i.e. that windows of selection are routinely observed and that their magnitude is large, often 

covering several hundred-fold changes in concentration, and typically persisting for many months 

or years. As an illustrative example, Figure 4 shows changing mortality of Anopheles strains in the 

months after spraying deltamethrin and clothianidin (Sumishield), replotted from Agossa et al. 

(2018). For deltamethrin, free flying mosquitoes in hut trials (Fig 4A) suggested a window of 

selection of at least 8 months and those in cone bioassays (Fig 4C) suggested 5 months. For 

clothianidin, a newer insecticide, there appears to be a window of selection opening 6 months after 

spraying (Fig 4 B & D).   A
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Windows of dominance can be estimated from rarer published studies reporting mortalities of RR, 

SR and SS genotypes exposed to a range of insecticide concentrations or times after deployment 

(Table 1). Windows of dominance, where SR mortality is less than SS, are observed in all studies, 

but exhibit qualitatively different patterns. In one example, with cattle ticks, the window of 

dominance occurs over a narrow range because the mortalities of SR and SS decline together and 

are close to each other (Figure 5A). In another example, with Culex mosquitoes, the window of 

dominance is relatively wide as a result of a greater concentration gap between the SR and SS 

mortality curves (Figure 6A). The theoretical predictions from these study data are similar to those 

from the idealised example shown in Figure 1 B & C, i.e. selective advantage and time to 

resistance (e.g. panels B & C of Figs 5&6) are most intense during the window of dominance. This 

is particularly true for lower starting frequencies of resistance. The changes in the measures of 

selection vary according to the mortality patterns described above. For the ticks (Fig 5), there is a 

single peak in selection at a relatively low concentration, due to the SR mortality not declining 

until low concentrations. A longer period of high selective advantage is shown for Culex (Fig 6), 

because the window of dominance is open over a wider concentration range. 

These results show the importance of dominance, and that the precise nature of mortality 

differences between genotypes, with concentration, is needed to know the implications for 

selection. Often those data are not available. To illustrate how different selection can be under 

different dominance values, we ran our simulation model under three scenarios; a best-case with 

dominance constant at zero, a worst-case with dominance constant at 1 and an intermediate-case 

the same as our idealised example in Fig 1B. The results showed that uncertainty in dominance 

values, at either high or low concentrations, could lead to differences in predictions of times-to-

resistance of hundreds of generations (Fig 7).
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4. Discussion.

Windows of selection and dominance are straightforward ideas that emerge from three simple 

principles. Firstly, that the mortality of resistant strains is lower than susceptible ones, when 

exposed to some insecticide concentrations. Secondly, that insecticide efficacy declines with 

decreasing concentration, or its surrogate, time since deployment. Thirdly, that dominance of 

resistance genes is not a fixed genetic parameter, but is likely to increase as concentrations 

decline. These principles combine to create a window of selection, in units of time or 

concentration, where insecticide resistance is selected, and within which a window of dominance 

occurs where selection is much stronger. We provide idealised representations of these windows 

of selection and dominance in Figure 1 We show, using data generated by ourselves (Figures 2 

and 3) and others (Figures 4 to 6 and SI section 3), that this idealised representation matches 

observed field and laboratory data.

The window of selection in our specific example of deltamethrin and An. gambiae, extended over 

about a 320-fold concentration range (Figure 2). Operationally, it is the length of time these 

windows are open, and the patterns of differential mortality within the window, that are the critical 

factors driving insecticide resistance. Our sprayed surface experiment shows that these 

differences, between resistant and susceptible mortality, can last for more than 18 months (Figure 

3). Published data, for spray and nets, suggest windows of selection can act over wide 

concentration ranges and be open for months or years (Table 1). 

The most accessible examples of windows of selection are obtained by comparing resistant and 

susceptible strains, over a range of concentrations or times post-deployment. The reasoning is that 

the resistant and susceptible strains can represent the range of genotypes potentially present in a 

local population. The problem with this comparison is that it is usually unknown whether the 

strains differ at only a single locus (i.e. a comparison between RR vs SS), at a small number of 

loci, or whether a significant polygenic component is present. Comparisons made between insects 

of known genotype are logistically more complex, as they usually require generating a F1 cross, 

but are much more informative as dominance coefficients can be inferred and both window of 

selection and window of dominance can be quantified. Our analyses applied to published data 

indicate highest selection occurs within these windows of dominance (Figs 5,6, S3.5, S3.6).A
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We have formulated a methodological framework to interpret windows of selection and 

dominance in diploids. It is important to note that previous authors have identified different parts 

of this story, for example, that mortality and dominance change over time with insecticide 

concentration (e.g. Denholm & Rowland, 1992; Gould et al., 2018; Roush, 1989), and that the 

mortality of different strains or genotypes responds differently over time (e.g. McKenzie & 

Whitten, 1982; Wanjala et al., 2015) or concentration (e.g. Georghiou & Taylor, 1986; Li, Davey, 

Miller, Guerrero, & George, 2008). The potential for more persistent insecticides to speed the rate 

of evolution of resistance was demonstrated more than 30 years ago by computer simulations 

(Taylor & Georghiou, 1982) and experiments with houseflies (Taylor, Quaglia, & Georghiou, 

1983). Our work is the first we know of to attempt quantify changing selection over time or 

declining insecticide concentration.

4.1 Caveats

We have provided a more detailed understanding of the implications of declining insecticide 

concentrations, but we have still had to make simplifications and there are, inevitably, caveats to 

our interpretations. We include little consideration in our analysis of the implications of bioassay 

reliability, polygenic resistance, competitive release or costs of resistance. We discuss them briefly 

as follows. 

Firstly, mosquitoes do not naturally encounter insecticides in cone and bottle bioassays, so 

there is some doubt whether findings based on bioassays reflect mortality that occurs in the field 

(Malima et al., 2008). The use of bioassay data is supported by the fact that the windows of 

selection shown in Figure 4 A are based upon free flying mosquitoes in experimental huts (Agossa 

et al., 2018) and show a very similar pattern to the cone bioassays in Figure 4B. In addition, 

Churcher et al. (2016) and Sherrard-Smith et al. (2018) show evidence that bioassay results are 

good predictors of mortality in hut trials of insecticidal nets and sprays respectively. 

Secondly, our predictions of selection strength assume resistance is coded by a single gene. We 

recognise that resistance is frequently a polygenic trait encoded by alleles at many genes, each 

with a small effect (see discussion in Ffrench-Constant, Daborn, & Le Goff, 2004; Groeters & 

Tabashnik, 2000). Theory predicts that polygenic resistance will also generate windows of A
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selection, containing regions of higher selection similar to the window of dominance. We outline 

this argument further in SI part 5. 

Thirdly, we have only considered the selective advantage of resistance in terms of the reduced 

mortality of resistant phenotypes. There is also the potential for ‘competitive release’, where 

resistant phenotypes have an additional advantage, due to the suppression of susceptibles by a 

drug or insecticide. Competitive release has been recognised as important for the evolution of drug 

resistance by parasites within hosts (e.g. Hastings, 2011; Read, Day, & Huijben, 2011), and may 

also be relevant for insecticide resistance, if competition between individuals is high. Such 

competition is likely in small breeding pools where larvicides may be applied (Russell et al., 

2011), and may potentially drive competition between egg-laying females for access to quality, 

sparsley-populated breeding sites. Competitive release, where it does occur, could contribute to 

the length and magnitude of windows of selection by increasing the selective advantage to 

resistance. We note, however, that the evolution of drug resistance is a different system, where 

absolute fitness and the ability of a genotype to create enough cells to cause disease and 

transmission can be more important (Day, Huijben, & Read, 2015) than the relative fitness that is 

likely to promote the evolution of insecticide resistance. 

Fourthly, we have paid little attention to potential fitness costs of resistance, except for noting that 

our conceptual model of the window of selection can accommodate costs, as a decrease in 

mortality of resistants below susceptibles to the right of Figure 1 A. Fitness costs could similarly 

be incorporated into plots including heterozygotes, but we chose to exclude them here for 

simplicity and because the evidence for them is not conclusive (ffrench-Constant & Bass, 2017). 

High costs of resistance could create a region at low concentrations, after the window of selection, 

where resistance is selected against. 

Finally, we emphasise that this work focuses only on the evolution of insecticide resistance, which 

is, of course, not the only measure of the success or failure of an insecticide intervention. If the 

evolution of resistance was the only concern then the best strategy would be to use no insecticides 

at all. Our modelling does not take into account mosquito population change or disease 

transmission, which would both be expected to increase as insecticide concentrations decline. For 

a combined modelling approach, including the effect of insecticide interventions on mosquito A
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populations, the evolution of resistance and resulting disease outcomes see Barbosa, Kay, Chitnis, 

& Hastings (2018). Note that this earlier work, as with all previous models that we are aware of, 

did not consider the likely impact of declining insecticide concentrations and the presence of the 

windows of selection and dominance.

4.2 Policy implications and conclusions.

We speculate that three aspects of insecticide interventions are most likely to affect the duration, 

and magnitude, of windows of selection and dominance.

1) Target doses and quality of application, influence whether windows are open on deployment. 

2) The rate of decline in concentration, influences when the windows open and close.

3) The interval before the intervention is replaced, influences when windows are closed.

We have demonstrated that selection is highest within the window of dominance. This high 

selection can be avoided on initial deployment by ensuring that concentrations are high enough to 

kill all heterozygotes. This is the approach taken in agriculture to maintain the effectiveness of 

transgenic insecticidal crops (see SI part 4). Transgenic crops keep producing insecticidal toxins, 

so declining concentration is not the issue for them that it is for public health. Thus, in public 

health declining concentration can open the window of dominance, which can remain open until 

the intervention is replaced. 

If interventions are not replaced or reapplied, our work shows that selection for resistance may 

persist long after deployment, due to continued slight advantages of resistance. Selection can be as 

intense at low concentrations, when susceptible mortality is low and resistant mortality is zero, as 

it is at higher concentrations, when susceptible mortality is high and resistant mortality is 

moderate (Figures 1,5,6). For example, the Culex data in Figure 6 show an insecticide 

concentration of 0.0007 ppm gives a higher selective advantage than the concentration 0.06. The 

corresponding mortalities of RR,SR,SS are 0,88%,100% in the first case, and 0,0,24% in the 

second. Thus, a situation where only 24% of the susceptible mosquitoes are being killed could be 

selecting for resistance more than one where 88% of the SR and 100% of the SS are being killed. 

This potential of low concentrations to promote resistance has also been demonstrated for 

antibiotics (Gullberg et al., 2011). Also, note that low insecticide concentrations are likely to lead A
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to more mosquitoes and thus a greater potential for disease transmission and dispersal of resistant 

mosquitoes.   

Bednets too have high potential to promote selection long after deployment, due to their 

endurance. Nets collected after 7 years use in Tanzania still caused 40-50% mortality of 

susceptible strains in a hut trial (Malima et al., 2008) and after 4 years use in Cameroon gave 

susceptible mortalities of 3-83% in cone bioassays (Boussougou-Sambe et al., 2017). Whilst the 

mortality of resistant strains was not measured, it would be expected to be less than that of 

susceptible strains, suggesting windows of selection continue to be open after 4-7 years. The 

current WHO advice (WHO, 2014b) is to keep using bed nets, even if they have already been in 

use for years, unless a new one becomes available. This is based on the personal protection 

benefit, from both the physical barrier and some residual (but low) mosquito killing. Currently 

WHO documents on measuring and dealing with ageing nets include no consideration of their 

potential role in selecting for insecticide resistance (WHO, 2011, 2013b, 2014b). Insecticidal 

effectiveness against susceptible mosquitoes after 3 years is included in initial net acceptance 

criteria (WHO, 2013a).Mortality beyond this has been removed from considerations of net life 

because of difficulties measuring it (WHO, 2013c, 2014b). 

Our results highlight the importance of considering declining insecticide concentration in the 

evolution of insecticide resistance. To our knowledge, existing models of the evolution of 

insecticide resistance have not allowed inputs such as insecticide effectiveness and dominance to 

change over time (e.g. Birget & Koella, 2015; Levick et al., 2017; Barbosa, Kay, Chitnis, & 

Hastings, 2018; South & Hastings, 2018). There are important implications of changing 

insecticide concentrations for the epidemiology of disease transmission, both directly through 

altering mortality rates of vectors, and indirectly through driving increasing levels of resistance. 

Recent work has shown both how declining concentrations and levels of resistance influence 

transmission (Sherrard-Smith et al., 2018). There remains an important knowledge gap of exactly 

how declining concentrations are likely to drive the evolution of resistance, threatening the 

effectiveness of control measures. Different insecticide-based intervention strategies will each 

have different sizes of beneficial effects (reducing mosquito populations and disease 

transmission), and different sizes of detrimental effects (promoting the evolution of resistance). 

There is a lack of data and understanding to inform such trade-offs. Management decisions, such A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

as choosing between an intervention with one long lasting insecticide or repeatedly applying short 

lasting ones, are not straightforward. In addition, trade-offs will depend on the timescale of 

evaluations i.e. short-term impact on disease transmission vs longer-term impact on resistance and 

future transmission. These are complex decisions that we do not address here; we simply argue 

that extensive windows of selection and windows of dominance will, almost inevitably, arise in 

public-health deployments of long-acting insecticides, and that these windows will need to be 

incorporated into such evaluations. We agree with Huijben & Paaijmans (2017), that a greater 

understanding of the evolutionary processes causing resistance is needed to develop better 

strategies to manage it. We have shown how the forces driving the evolution of resistance can be 

usefully documented, interpreted and quantified in terms of windows of selection and dominance. 

We argue that focusing attention onto the relative mortalities of resistant, susceptible and 

heterozygous genotypes, over time, is necessary to inform strategies to reduce the evolution of 

resistance to existing and new insecticides.
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Table 1. Durations of windows of selection and dominance measured in this study and from the literature.

Paper Organism Genetics Mortality 

measurement

Time or 

concentration

Insecticide Duration* of 

windows of 

selection

Duration of 

windows of 

dominance

Fig.

This study, 

South et al. 

2019

Anopheles

Anopheles & 

Aedes

Strains Cone bioassays on 

filter papers and 

sprayed surfaces

Concn.

Time

Deltamethrin 320X

18 months

2

3

Agossa et al. 

2018

Anopheles Strains Free flying and 

cone bioassays in 

sprayed huts

Time Deltamethrin 

Clothianidin 

7 months

2 months

4

Anshebo et al. 

2014

Anopheles Strains Cone bioassays on 

treated nets

Time & 

Concn.

Deltamethrin > 12 months

6.5X

S3.1

Bagi et al. 

2015

Anopheles Strains Bottle assays Concn. Permethrin 400X S3.2

Etang et al. 

2016

Anopheles Strains Tube assays and 

cone bioassays

Concn. & # 

net washes

Deltamethrin 

treated nets

100X

35 washes

S3.3

Mahama et al. 

2007

Anopheles Strains Cone bioassays on 

treated nets

Time Deltamethrin 

treated nets

12 months S3.4
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*Duration of windows of selection (WoS) and dominance (WoD) is given as approximate x-fold difference in concentration or in units of time (i.e. concentration 

on closing divided by concentration on opening). Note that WoD can only be determined if mortality is by genotypes.

Li et al. 2008 Ticks Genotypes Larval bioassay Concn. Permethrin 450X 15X 5

Georghiou & 

Taylor 1986

Culex 

mosquitoes

Genotypes Larval bioassay Concn. Permethrin 1400X 85X 6

Corbel et al. 

2004

Anopheles Genotypes Tunnel test Concn. Permethrin 

treated nets

5X

(the entire 

range tested)

5X S3.5

McKenzie & 

Whitten 1982

Blowfly Genotypes Larvae exposed on 

sheep

Time Dieldrin 

Diazinon

30 weeks

19 weeks

30 weeks

11 weeks

S3.6

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Figure 1. Idealised windows of selection and windows of dominance for insecticide resistance. A. Window 

of selection when there is only data on resistant and susceptible strains: selection for resistance occurs 

when resistant strains have lower mortality than susceptible ones (yellow shaded region). Fitness costs of 

resistance may cause the mortality of resistant insects to exceed that of susceptible ones at low 

concentrations, as shown at the lower right, and resistance will be selected against. B-D. Idealised 

windows of selection and dominance when resistance is encoded by a single gene and there are data on 

mortalities for all three genotypes (SS, SR and RR). The x-axis is shared between panels B-D. Panel B 

illustrates how the mortality probabilities change for each genotype and the row of numbers along the 

top of the plot is the dominance of resistance at each time point. Panel C shows selective advantage per 

generation which is highest within the window of dominance. Panel D shows predicted time until 

resistance allele frequency reaches 50% for simulations started at each point along the X axis in panel B. 

Times to the 50% resistance threshold are lowest within the window of dominance and the threshold of 

500 generations is not reached for points outside of the window of selection. Panels C & D assume that 

30% of all mosquitoes are exposed to the insecticide, equivalent plots at different exposure levels are 

shown in the SI.
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Figure 2. Window of selection in units of insecticide concentration for Anopheles gambiae exposed to 

deltamethrin. Points show the percentage mortality 24 hours after exposure, by replicate, for resistant 

and susceptible strains and lines show a locally weighted smoother (loess). The x axis is plotted from high 

to low concentrations, for consistency with time plots because concentrations decline with time after 

deployment. Vertical dashed lines indicate the WHO standard discriminating concentrations at 1x, 5x and 

10x used to estimate resistance intensity (WHO, 2013a).
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Figure 3. Windows of selection, in units of time, associated with deltamethrin exposure of three vector 

species; Anopheles gambiae, Anopeheles funestus and Aedes aegypti. Deltamethrin initially applied to 

three different substrates (cement, mud, and wood tiles) then kept in a stability chamber mimicking 

African field conditions. Percentage mortality was assessed by cone bioassay, 24 hours after exposure, for 

resistant and susceptible strains. Mortality lines show a locally weighted smoother (loess). Windows of 

selection are open for all species-surface combinations across the whole time of the experiment. (Control 

mortality of mosquitoes exposed to tiles not treated with insecticide is shown in SI figure S2.3, indicating 

no difference in resistant and susceptible mortality in the absence of insecticide).
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Figure 4. Windows of selection in units of time for Anopheles mosquitoes in sprayed experimental hut 

trials in Benin; data extracted from Figures 3 to 6 of Agossa et al. (2018). A & B. Free flying mosquitoes, C 

& D. Cone bioassays. A. & C. show 24 hour mortality for deltamethrin and B. & D. show 120 hour (5 day) 

mortality for clothianidin (Sumishield) (a slower acting neonicotinoid insecticide for which 5 day mortality 

is a better measure). A window of selection is open from deployment for deltamethrin and starting to 

close by month 8. Conversely, for clothianidin the window of selection is initially shut and opens in later 

months. 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Figure 5. Windows of selection and dominance, in units of concentration, associated with 

permethrin resistance in the tick species Boophilus microplus; Panel A shows the mortality data 

reported in Figure 1 of Li et al. (2008) from bioassays on tick larvae of a susceptible, resistant and 

F1 crosses exposed for 24 hours. The row of numbers along the top of panel A is our calculation 

of dominance of resistance at each concentration. Panels B and C show our measures of selection 

plotted along the same concentration x axis. Where mortality data was absent we extrapolated to 0 

or 100% to extract values for the calculation (e.g. mortality of RR was assumed to be 0 at 

concentrations ≤1% and mortality of RS, SR was assumed to be 100% at concentrations >0.05). 

We used the mean mortality of the two heterozygous genotypes (in the original experiment, the SR 

came from SS fathers and RR mothers, RS from the reverse). Panel B shows how selective 

advantage within a single generation changes during the windows of selection and how it depends 

on the starting frequency of resistance. Panel C shows simulation results of the number of 

generations needed to reach a resistance allele frequency of 50%.
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Figure 6. Windows of selection and dominance, in units of concentration, associated with 

permethrin resistance in Culex quinquefasciatus. Panel A shows data reported in Georghiou & 

Taylor (1986) from larvae exposed to the insecticide. The row of numbers along the top of panel A 

is our calculation of dominance of resistance for each concentration. Panels B and C show our 

measures of selection calculated on the same concentration x axis. Where mortality data was 

absent we extrapolated to 0 or 100% to extract values for the calculation (e.g. mortality of RR was 

assumed to be 0 at concentrations < 0.1 ppm and mortality of SS was assumed to be 100% at 

concentrations >0.01ppm). Panel B shows how selective advantage changes during the windows 

of selection and how it depends on the starting frequency of resistance. Panel C shows simulation 

results of the number of generations needed to reach a resistance allele frequency of 50%.
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Figure 7. Implications for selection of not knowing dominance values. Panels A to C show three scenarios 

for a window of selection, Panel A. is a best-case where dominance is constant 0, mortality of the SR is the 

same as the SS, and there is no window of dominance. Panel B is an intermediate scenario the same as Fig 

1B. Panel C is a worst-case scenario where dominance is a constant 1, and the window of dominance is 

open for the whole of the window of selection. The x-axis is shared between panels A-D. Panel D shows 

predicted time until resistance allele frequency reaches 50% for simulations started at each point along 

the X axis in panels A-C. The difference between the best and worst-case scenarios can be hundreds of 

generations.
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