
Felix - a Simulation-Tool for Neural Networks(and Dynami
al Systems)USER GUIDE
Thomas WennekersCentre for Theoreti
al and Computational Neuros
ien
eUniversity of PlymouthPL4 8AA Plymouth, Devon, United KingdomMay 15, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/266991203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iDear valued ReaderThis is the User Guide of �Felix�, a simulation environment for neural networks anddynami
al systems. It is C-based and provides a simple to use graphi
al interfa
eas well as real time
ontrol of simulation parameters. The main aim of the toolis to simplify the implementation and simulation of distributed neural networks
onsisting of either homogeneous pools or 2-dimensional layers of simple spikingneurons. Other, more general dynami
al systems
an be implemented and visualisedas well, and several examples are provided (
oupled map latti
e,
oupled Roessleros
illators). The simulation of
ondu
tan
e-based neuron types is possible but onlymarginally supported.The tool
an make use of
ode-parallelisation on three levels: single CPU ve
-torisation using BLAS-SSE2, SMP-shared memory parallelism via OpenMP(threads), and the message passing interfa
e (MPI) for
omputer
lusters. HybridBLAS/OpenMP/MPI
ode is possible, e.g., for use on SMP-
lusters. Felix
an bedownloaded from http://www.pion.a
.uk, whi
h provides run-time libraries, thedevelopment tool, and a
ouple of examples. Sour
e
ode is also available and,beside on Linux single- and multi-pro
essor
omputers, and Linux Beowulf
lusters,
an be
ompiled and run on Windows using the Cygwin-Linux emulator.Have funThomas Wennekers
Copyright (C) 1992-2008 Thomas.Wennekers�plymouth.a
.ukFelix is free software; you
an redistribute it and/or modify it under the terms of theGNU General Publi
 Li
ense as published by the Free Software Foundation; eitherversion 2 of the Li
ense, or (at your option) any later version.Felix is distributed in the hope that it will be useful, but WITHOUT ANY WAR-RANTY; without even the implied warranty of MERCHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE. See the GNU General Publi
 Li
ense for moredetails.You should have re
eived a
opy of the GNU General Publi
 Li
ense along with thisprogram; if not, write to the Free Software Foundation, In
., 59 Temple Pla
e, Suite330, Boston, MA 02111-1307 USA

ii

Contents
1 Introdu
tion 11.1 Overview . 11.2 The main philosophy of Felix . 11.3 A little Felix History . 31.4 Installation Notes . 42 Getting Started 52.1 General Program Stru
ture . 52.2 Example: Leaky-integrate-and-�re Neural Network 72.3 Adding a Graphi
al User Interfa
e . 92.3.1 Displaying Views on Variables . 92.3.2 Coupling of Parameters and Panel Controls 102.3.3 Running simulations using the graphi
al interfa
e 112.4 Adding Output of Data . 123 Graphi
al User Interfa
e 153.1 Creating a GUI . 153.2 Simulation Control Elements . 163.2.1 Swit
hes . 163.2.2 Sliders . 173.2.3 Timer . 193.3 Display Windows and Views on Variables . 193.3.1 Display Windows . 193.3.2 Views . 203.3.3 Pla
ement of Views inside a Window . 20iii

iv CONTENTS3.3.4 Types of Display Variables . 213.3.5 Image-Views . 223.3.6 Raster Plots . 233.3.7 Single Variable Graphs . 243.3.8 xy-Plots . 243.3.9 Arrays of Images . 253.3.10 Fun
tions . 253.4 View Settings Frames . 263.5 Loading and Saving GUI Settings . 274 Libraries 294.1 Outline: Pools and Fields . 294.2 Some Low-level De�nitions . 304.3 Matrix and Ve
tor Operations . 304.3.1 Operations on S
alar Variables . 314.3.2 Memory Allo
ation Routines . 314.3.3 Cleaning Ve
tors and Matri
es . 324.3.4 A

ess to Elements of a Matrix . 324.3.5 Raw I/O of Ve
tors and Matri
es to/from �les 324.3.6 Ve
tor and Matrix Operations . 334.3.7 �Neural� Operations for Ve
tors and Matri
es 354.4 Stimuli . 364.4.1 Temporal Stimulus Fun
tions . 364.4.2 Spatial Stimulus Fun
tions . 374.4.3 Dynami
 Stimuli . 394.5 Field Models, Spatial Convolutions . 404.5.1 Kernels or Filters . 404.5.2 Correlation and Convolution Fun
tions . 404.5.3 Orientation Tuning Maps . 424.5.4 Layers and SpikeLayers . 434.6 Delays . 434.6.1 Containers for Delay Variables . 44

CONTENTS v4.6.2 A

essing Containers . 454.6.3 Arbitrary Delays for Pools . 464.6.4 Convolution Fun
tions with Distan
e-dependent Delays 464.7 Random Numbers . 474.8 Sparse Ve
tors and Matri
es . 484.8.1 Sparse Ve
tors, semi-sparse Matri
es . 484.8.2 Allo
ating, Loading, and Saving Sparse Arrays 494.8.3 Sparse Matrix Ve
tor Multipli
ations . 504.8.4 Orientation Tuning Maps with Distan
e-dependent Delays 524.8.5 Displaying Sparse Arrays in the GUI . 524.8.6 Example: Sparse Integrate-and-Fire Network 534.9 Dynami
 Synapses . 554.9.1 Types of Synapti
 Dynami
s . 554.9.2 npq-model: synapti
 failure . 564.9.3 BT-model: fa
ilitation and depression . 564.9.4 Alpha fun
tion
ondu
tan
e
hanges . 574.9.5 Coupling of npq- and BT-model . 594.9.6 Type Sele
tion and Parameter Stru
tures . 594.9.7 Synapse Ve
tors and Matri
es . 614.9.8 Synapti
 Matrix-Ve
tor Multipli
ation and Updates 634.9.9 Example: Integrate-and-Fire Network with Dynami
 Synapses 654.9.10 Pat
hy Conne
tivities in SynapseMatri
es 674.9.11 Example for dense lo
al
onne
tions . 694.10 Synapti
 Plasti
ity . 694.10.1 Plasti
ity Rules . 704.10.2 Update Fun
tions . 714.10.3 Unlearning . 724.10.4 Example . 744.10.5 Some Ben
hmarks . 774.11 Online Correlations . 794.12 numeri
s.
/h . 79

vi CONTENTS4.12.1 Numeri
al Integration . 804.12.2 Solving Matrix Equations . 804.12.3 Eigenvalues . 814.12.4 Nonlinear Least-Square Fitting . 814.12.5 Root Finding . 824.12.6 Optimization . 825 File I/O 855.1 Interfa
e for File Output . 855.1.1 Output Files . 865.1.2 Output Variables . 875.1.3 Temporal Sele
tions . 875.1.4 Spatial Sele
tions . 885.1.5 The Timer . 895.1.6 Examples . 895.2 Input . 905.3 Raw I/O . 916 Felix Parameter Sear
h & Sensitivity Module 936.1 General Usage . 936.2 Parameter S
an Fun
tions . 946.2.1 Initialisation and setup . 946.2.2 Iteration through the parameter produ
t spa
e 956.2.3 Running multiple simulations for ea
h parameter set 956.2.4 Changing several parameters per sear
h dimension 956.2.5 Support fun
tions to print indexes and parameters 956.3 Example: S
anning a parameter spa
e . 966.4 Interfa
ing parameter sear
h and �le output . 976.5 Parameter Sensitivity of Simulations . 996.5.1 Spike-train and other metri
s . 1006.5.2 Sensitivity Measures . 1006.5.3 Gradient Computation . 100

CONTENTS vii6.5.4 Example: Gradient
omputation . 1017 The Felix MIDI Interfa
e 1057.1 Introdu
tion . 1057.2 Fun
tions provided by mymidi.o . 1067.2.1 Compilation . 1067.2.2 Initialisation . 1077.2.3 Setting up an event loop . 1077.2.4 A �rst example . 1077.2.5 Sending note events . 1087.2.6 Threaded event re
eivers . 1097.2.7 Example 2: A threaded MIDI re
eiver . 1097.2.8 Simple MIDI startup . 1107.3 A Felix appli
ation . 1107.4 Sending Events over a lo
al network . 1137.4.1 Lo
al Network Routing � dmidid . 1137.4.2 MIDI over LAN . 1147.5 Appendi
es . 1157.5.1 Appendix 1 � The midi_a
tion_print_event fun
tion 1157.5.2 Appendix 2 � snd_seq_event_t and snd_seq_ev_note_t 1158 Felix Remote Control and Data Streaming over Internet 1178.0.3 Simulation Client Fun
tionality . 1178.0.4 Meeting points . 1188.1 Remote Conne
tion Fun
tionality . 1208.2 Example: Remote Control . 1208.3 Streaming Data . 1218.4 Example 1: Data Streaming to a Disk on the Remote Ma
hine 1228.5 Example 2: Data Streaming to a Remote MIDI Devi
e 1239 Parallel Programming with Felix 1279.1 History and Future . 1279.2 SSE, BLAS, ATLAS . 128

viii CONTENTS9.3 OpenMP . 1309.4 MPI . 1329.5 Hybrid MPI/OpenMP Code . 1339.6 Parallelising Serial Felix Code . 1349.6.1 OpenMP and p�x . 1349.6.2 MPI . 1369.6.3 Example: Two intera
ting Neuron Pools . 13610 Example Programs 14110.1 Leaky-Integrate-and-Fire Neural Network . 14110.2 Coupled Chaoti
 Roessler Os
illators . 14210.3 Homogeneous Fields . 146A Installation Guide 153A.1 Standard (serial) Installation . 154A.1.1 Prerequisites . 154A.1.2 Serial Felix Installation . 154A.1.3 Additional Notes . 155A.2 Installation of Parallel Felix . 155A.2.1 Prerequisites . 156A.2.2 Compilation of Parallel Felix . 157A.2.3 Additional Notes . 158A.3 Windows / Cygwin . 158

Chapter 1Introdu
tion
1.1 OverviewThis is a preliminary version of a User Guide for �Felix� - A simulation tool for neural networksand dynami
al systems. It is
urrently being written. This introdu
tion, the qui
k-start guide inse
tion 2, se
tions 3 about the graphi
al user interfa
e and 5 about �le I/O, the des
ription of themain fun
tion libraries in se
tion 4, and the appendix about installation A are something like ina readable state. The examples (se
tion 10) and the se
tion about parallel Felix extensions 9 arestill mostly empty or bad. You would probably want to
onsult the examples that
ome with Felixdire
tly, if you think about using the tool and want to learn more about how to do so. Serial andparallel example programs are available.Felix is a development tool for neural network and dynami
al systems simulations. It is C-basedand provides a simple to use graphi
al interfa
e as well as a
ore of routines needed in manyappli
ations. Routines required in spe
ial appli
ations
an easily be added. Felix is best suited forone and two-dimensional network models, but other topologies are possible as well.1.2 The main philosophy of FelixMain philosophy of Felix is to
onsider a neural network or more general dynami
al system as a setof variables, x, whi
h obey a
ertain dynami
s, and a se
ond set of parameters, p, whi
h
ontrolthis dynami
s. Canoni
al examples are di�eren
e s
hemes, x(t + 1) = f(x(t); p) or di�erentialequations, dx/dt = f(x; p), whi
h are omni-present in neural network and dynami
al systemstheory.The Felix
ore implements and solves these dynami
al equations and the graphi
al interfa
e thenpresents the variables in various possible views like graphs and raster plots over time, images orfun
tions displayed per single time-step, or xy-plots as on an os
illos
ope.The parameters of a simulation are further displayed as a
olle
tion of buttons and sliders inthe graphi
al user interfa
e, whereby it be
omes possible to
hange them while the simulationis running and immediately observe the indu
ed
hanges in the system dynami
s. Figure 1.1displays the graphi
al user interfa
e of a typi
al small Felix program (a
tually a network of so-
alled integrate-and-�re neurons). 1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A typi
al Felix simulation showing a panel with
ontrol parameters at the bottomand windows for displaying variables of a running simulation at the top. Changing parameters isimmediately re�e
ted in the displayed variables.A se
ond design prin
iple of Felix is that it aims at either �pool� networks
omprising (more or less)large ensembles of potentially all-to-all
onne
ted units, or at layered one- and two-dimensionalnetworks with a neighbourhood topology. Several su
h �pools� or �layers� may be
ombined intolarger super-networks, see Figure 1.2. The �rst type of network model appears if lo
al ensembles of
ells in the brain are
onsidered, the se
ond if the fo
us is on the distributed pro
essing within wholebrain areas. In more general dynami
al systems the �rst alternative refers to globally
onne
tedsystems, whereas the se
ond turns up, e.g., in partial di�erential equations and integro-di�erentialequations. The
ore of the Felix simulation tool provides a number of often used routines toimplement and simulate neural stru
tures of the respe
tive ar
hite
ture, i.e., randomly
onne
tedpools, asso
iative memories, or distributed systems with Gaussian or DOG (diferen
e of Gaussian)lateral
oupling kernels.Re
ently Felix has been extended towards supporting various kinds of
ode parallelisation. Philos-ophy here is to simplify the development of parallel
ode for the types of networks des
ribed aboveas mu
h as possible. Using about a handful of simple
onstru
ts it is now in fa
t possible to write

1.3. A LITTLE FELIX HISTORY 3
1

2

3
4

23x23

11x11

11x11

I

25x25

FF
E

REC

INH

11x11
FB

E−cells

I−cells

I

J J

J

Jii

ee

ie ei

I
e

i

Two−pool Model Two−Layer ModelFigure 1.2: Left: A typi
al pool model (Wilson-Cowan Os
illator). Right: A two-layer, ex
itatory-inhibitory topographi
 neural �eld.Felix programs that
an be
ompiled on single CPU ma
hines, where they reveal a graphi
al userinterfa
e, but that run also on Beowulf
omputer
lusters. Small programs
an therefore run ona PC or laptop, where the GUI and real-time simulation
ontrol ni
ely support an understandingof what is going on in the simulation. The same simulation, however,
an now be easily s
aledup and run on a mu
h larger s
ale on a
omputer
luster without no or only small
hanges at thesour
e
ode.1.3 A little Felix HistoryFelix is old. The original program was written about 1990/91 in �multiC�, a diale
t of C forthe parallel
omputer �Wavetra
er�, whi
h (in the version we had available at that time at theUniversity of Ulm, Germany)
onsisted of 4096 one-bit pro
essors running at 8MHz in a SIMD-ar
hite
ture (single instru
tion multiple data � ea
h pro
essor does the same on possibly di�erentdata). Ea
h pro
essor had something like 16MBit lo
al memory and the pro
essor grid was freely
on�gurable as a 1, 2 or 3-D array. The early Felix was meant to serve as a graphi
al interfa
e forthat ma
hine. The Wavetra
er was about 20 times faster than a standard Sun-Workstation 15 yearsago. When standard workstations be
ame qui
ker, and in parti
ular qui
ker than the Wavetra
er,I ported Felix to the SunOs and Solaris operating systems, and later, when I dis
overed that even
heap laptops are faster than standard Sun-workstations, I further ported it to Linux. Now, I amalmost ex
lusively using it under Linux on desktops, laptops, and
omputer
lusters.Be
ause Felix is old it makes use of an outdated windows toolkit
alled XView. For a while thatwas standard for Sun X11 appli
ations with the Open-Look look and feel. However, Sun stopped

4 CHAPTER 1. INTRODUCTIONdeveloping XView further in about 1995. Meanwhile it has been repla
ed by more modern toolkitslike Motif, QT, and other pa
kages. Although I often thought I should, I never found the timeto re
ode the GUI using a modern toolkit. XView is still available and
omes with some Linuxdistributions. It might however be that it is not installed on your ma
hine by default. I am notsure it is available in 64 bit at the moment. You don't need the graphi
s libraries if you wantto use the tool on
omputer
lusters. Graphi
al interfa
es don't make too mu
h sense in highperforman
e
omputing.Some resour
es:
• Open-Look FAQ: http://www.faqs.org/faqs/open-look/01-general/
• XView FAQ: http://www.faqs.org/faqs/open-look/03-xview/
• O'Reilly provides free books about XView programming on their homepagehttp://www.oreilly.
om/openbook/openlook
• Dr Andreas Knoblau
h, a former
ollegue at the University of Ulm (now at Honda Re-sear
h, O�enba
h, Germany) has written C++ extensions for Felix whi
h you
an �nd here:http://www.informatik.uni-ulm.de/ni/mitarbeiter/AKnoblau
h.htmlSin
e relatively re
ently I am experimenting with parallelised Felix versions. This means Felix getsba
k to its roots, to parallel
omputers. The
ode
ontained in the distributed Felix version shouldbe
onsidered preliminary and is not well tested. However, it supports hybrid OpenMP/MPI
ode,whi
h
an be very useful for some types of layered network models of the brain. We are studyingsu
h models at the University of Plymouth as part of two big resear
h proje
ts: The EU-integratedFACETS proje
t (
omprising more than 100 s
ientists) and the UK-wide COLAMN proje
ts (
a10 resear
h groups).1.4 Installation NotesThroughout this Guide it will be assumed that a fun
tioning serial Felix evironment with graphi
aluser interfa
e is available. Only few se
tions in addition assume a parallel installation, in parti
ular
hapter 9. Appendix A explains, how Felix
an be installed on serial and parallel
omputers, and
omputer
lusters.

Chapter 2Getting Started
This se
tion presents the main features of Felix by showing a simple example and how it is imple-mented. The example will
onsist of a small network of leaky-integrate-and-�re neurons. It willdemonstrate how a typi
al Felix program is stru
tured, how a simulation
an be
ontroled by thegraphi
al user interfa
e, and how the simulated data
an be
onveniently written to �les on dis
.2.1 General Program Stru
tureA Felix appli
ation
onsists of a single C-�le. Ea
h appli
ation needs to de�ne �ve subroutinesthat de�ne the GUI, the output of some data to �les, a main-initialisation routine whi
h is
alledon
e at start up, an initialisation routine whi
h is
alled ea
h time a simulation is reset, and astep-routine whi
h
ontains everything to do in a single simulation step. Some or all of thesefun
tions
an be empty. The smallest Felix program hen
e reads:// The most simple Felix program# in
lude <felix.h>NO_DISPLAYNO_OUTPUTmain_init(){}init(){}step(){}
< felix.h > is the main Felix header �le that always has to be in
luded and by itself in
ludesseveral other header-�les ne

essary for proper
ompilation.The ma
ro NO_DISPLAY in the example a
tually expands to MakeDisplay(){}, e.g., an emptyde
laration of the graphi
al user interfa
e. Similarly, the ma
ro NO_OUTPUT likewise expands toMakeOutput(){}, an empty de
laration of output to �les. Simple examples for the GUI and �leoutput follow below. The GUI is treated in detail in
hapter 3 and File Output in
hapter 5.The main_init()-routine
ontains initialisations needed only on
e during exe
ution of a simulationprogram. It is exe
uted when the program starts. It may load data from �les or settings of5

6 CHAPTER 2. GETTING STARTED
Figure 2.1: Graphi
al user interfa
e generated by the minimal Felix program given in se
tion 2.1.parameter-values not a

essible by sliders. If the appli
ation uses dynami
ally allo
ated ve
torsor arrays, memory for these variables MUST be allo
ated in main_init(), too, in parti
ular if thevariables are supposed to be displayed in the GUI.The init()-routine in
ontrast is invoked ea
h time a simulation is reset. The GUI provides init-and run-buttons in the main-window to do this. It typi
ally
ontains
ode to initialise variablesrandomly. In
onjun
tion with an additional
ounter variable in the
ode that in
rements ea
htime a reset is performed the init-routine
an also be used to s
an a parameter range systemati
allyand intialise ea
h simulation in a well de�ned state using that
ounter.The step()-fun
tion
ontains all things to be exe
uted in a single simulation step. There is no
onstraint about the
ontent of this fun
tion, but in general it will
omprise fun
tions to iteratethe dynami
s of the simulated systems and possibly also to do some data analysis. The step()-fun
tion is repeatedly
alled if a simulation is in run-mode as long as it is not expli
itly stopped.The GUI further supports single- and multi-step modes, in whi
h
ase the step-routine is exe
utedon
e or a �xed number of times.The above trivial Felix program
an already be
ompiled and exe
uted. For that, the
ode hasto be stored in a C-�le, i.e., a �le
alled <sim_name>.
, where <sim_name> is some basename(e.g., �empty�, be
ause all subroutines are empty fun
tions). Calling �Felix <sim_name>� (i.e.,�Felix empty�)
ompiles the program and generates an exe
utable
alled <sim_name> (�empty�),whi
h
an be run from the
ommand line. This should pop up the main-window of the simulation,whi
h should look as displayed in Figure 2.1. (Note: The Felix example dire
tory should
ontainan �empty.
� fun
tion, as well as others.)The graphi
al user interfa
e in Figure 2.1
ontains simulation
ontrol elements that by defaultappear automati
ally in the GUI of ea
h simulation program. The top label bar re�e
ts the (base-)name of the
ompiled program. The �Windows-�button in general
omprises a list of de�nedwindows, but in our simple example this list is empty. The �Environment-�button in
ontrast
ontains several entries (not shown) that allow to store and load parameter settings for the slidersfollowing below. The �Steps� and �Display-Steps� sliders
ontrol the multi-step and display modeof the GUI, respe
tively. If �Display-Steps� di�ers from 1, the variable windows (none is shownsin
e they are empty, but see later) are updated only at the respe
tive interval. This is usefulto
ompress time in the display if the simulation step-size is small; it
an sometimes also help tospeed up simulations, be
ause updating the display needs some time. The �Steps�-slider in the GUI
ooperates with the Step-button just below it. If the simulation is in multi-step mode (Display-Steps > 1), the �Steps�-slider spe
i�es how many steps are exe
uted until the simulation stopsagain, after the �Steps�-button has been pressed. This means, the bottom-row buttons
ontrolthe overall exe
ution of a simulation: Ea
h time the Init-button is pressed the init()-routine is
alled. �Run� also
alls the init()-routine, but afterwards the step()-routine iteratively � this is

2.2. EXAMPLE: LEAKY-INTEGRATE-AND-FIRE NEURAL NETWORK 7the standard simulation mode. �Stop� stops a simulation, �Step� runs a
ertain number of steps asexplained above, and �Cont� (
ontinue) enters the standard run mode again after a simulation hadbeen stopped. Finally, the footer of the GUI main window
ontains a
ounter of the simulationstep.2.2 Example: Leaky-integrate-and-�re Neural NetworkWe now
onsider a more interesting example that indeed simulates something. This is a neuralnetwork
omprising a
ertain number (N = 100) of noisy leaky-integrate-and-�re neurons
oupledrandomly in a network. These simple neurons are des
ribed by membrane potentials xi thatintegrate in
oming input as low-pass �lters with time-
onstant τ . If a potential
rosses a �ringthreshold of 1 from below it is reset to zero and a spike is emitted. Spikes are represented bya se
ond array of binary variables, zi, i = 1, . . . , N . Equation (2.1) des
ribes the membranedynami
s and (2.2) the resest at threshold
rossings:
τ
dx(t)

dt
= −x(t) + I +

J0

N

N∑
i=1

Jijzj(t) + σηj(t) (2.1)if xi(t) ≥ 1 then zi(t) = 1, and xi(t) = 0 else zi(t) = 0. (2.2)
τ(= 10) in (2.1) is the membrane time
onstant and J0 = 1.1 sets the
oupling strength betweenunits globally. The Jij in
ontrast are individual
ouplings/synapses between pairs of neurons. Inthe simulation they are independent and identi
ally distributed (i.i.d) Gaussian random numberswith mean 1 and standard deviation 0.4. The ηi(t) in (2.1) are furthermore i.i.d. temporallyGaussian white noise pro
esses with mean 0 and standard deviation 1. The fa
tor σ s
ales this�noise� inje
ted into the individual
ells.Networks of this type have been intensively studied in Neural Network Theory.The following
ode implements the network model:/* Example-program: inf.
 */# in
lude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time
onstant */float I = 1.1, /* Common input to units */J0 = 1.1, /* Coupling strength */sigma = .1; /* noise level */Ve
tor x; /* potentials */Matrix J; /*
onne
tions */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */NO_DISPLAYNO_OUTPUT

8 CHAPTER 2. GETTING STARTEDint main_init(){ /* init. random number generator and stepsize */randomize(time(NULL));SET_STEPSIZE(.1)/* allo
ate ve
tors and matri
es */J = Get_Matrix(N, N);x = Get_Ve
tor(N);z = Get_bVe
tor(N);v = Get_Ve
tor(N);}int init(){ int i;Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);/* init. potentials with random values between 0 and 1 */for (i=0; i<N; i++)x[i℄ = equal_noise();/* init. J with gaussian distr. random numbers */Make_Matrix(N, N, J, 1.0/N, .4/N);}int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, x[i℄,I + J0*v[i℄ + sigma*gauss_noise());Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetbMult(N, N, J, z, v); // redistribution spikes}Observe the general stru
ture of the
ode. First felix.h is in
luded and as (some) parameters of themodel are de�ned as ma
ros (this
ould also be variables). Then arrays for the neural variables
x, J, z and an auxilliary array v are de
lared. The
ode still does de�ne an empty GUI and dataoutput routine (NO_DISPLAY and NO_OUTPUT). After that the three obligatory fun
tionsmain_init(), init(), and step() follow.main_init() initialises the random number generator and sets the simulation time-step to 0.1.Afterwards the routine allo
ates the three ve
tors v, x, z, and the array J . Note that the z-arrayis a �bVe
tor� � a binary Ve
tor. [Many fun
tions in Felix operate either on �oating point ve
torsand matri
es or on binary ones, where binary values (0/1) are represented by the C-type �
har�.℄

2.3. ADDING A GRAPHICAL USER INTERFACE 9The init()-funtion initialises the data-arrays: v and z are
leared, ie., set to 0; the potentials areset to equally distributed random numbers in the range [0,1[; and the
oupling matrix J is �lledwith i.i.d. Gaussian random numbers, N(1., 0.4).Finally, the step()-routine implements the dynami
s of the network. It mainly uses fun
tions fromthe Felix libraries. The leaky integration in equation (2.1) is
oded expli
itly using the ma
ro�leaky_integrate�, whi
h implements a simple Euler-s
heme to integrate the low-pass dynami
s.�Fire_Reset()� afterwards does the thresholding part of the leaky-integrate-and-�re dynami
s,and �bMult()�
omputes the Matrix-Ve
tor produ
t between the
oupling Matrix J and the binaryve
tor of spikes z. The result v is used in the leaky integration in the next step.Again, the
ode shown
an be
ompiled and run using Felix, but sin
e it neither de�nes graphi
alnor �le-output, we would not be able to observe what the network is doing. The interfa
e wouldjust look as in Figure 2.1 with now ni
e windows or �le output at all. Therefore, we next add somegraphi
al output.2.3 Adding a Graphi
al User Interfa
eThe graphi
al user interfa
e serves di�erent tasks, the two most important are displaying variablesof the simluation and providing sliders to
ontrol it (other task
on
ern �le I/O and saving/loadingparameters). In the �rst
ase the information �ow is from the running simulation to the GUI,whereas in the se
ond it is the other way round � the user
hanges sliders, whi
h in turn modifysimulation parameters. The next two sub-se
tions explain how these tasks are set up.In general the fun
tion MakeDisplay() represents the main-interfa
e between the C-
ode and theXWindows-System. It
ontains statements that de�ne how variables shall be displayed on thes
reen and, if needed, de
lares buttons (
alled swit
hes) and sliders, whi
h allow for intera
tive
ontrol of a running simulation. MakeDisplay always generates a main-window with several buttonsand sliders, whi
h are used to
ontrol the simulator-kernel even if the MakeDisplay() fun
tion isexpli
itly de
lared empty or the ma
ros NO_DISPLAY is used (whi
h does the same), see Figure2.1.2.3.1 Displaying Views on VariablesAs outlined in se
tion 1.2 a simulation
an be
onsidered a dynami
al system
omprising variablesand parameters. Variables are displayed to the user and parameters
an be used to modify thesimulation online. The
ode below shows how a typi
al Graphi
al User Interfa
e for the leaky-integrate-and-�re neural network program
an be de
lared.BEGIN_DISPLAYWINDOW("time
ourses")IMAGE("x", AR, AC, x, VECTOR, 10, 10, 0.0, 1.0, 4)RASTER("x", NR, AC, x, VECTOR, N, 0, 0.0, 1.0, 1)GRAPH("x", NR, AC, x, VECTOR, N, 0, 0, 0, -.01, 1.01)RASTER("z", NR, AC, z, bVECTOR, N, 0, -.01, 1.01, 2)

10 CHAPTER 2. GETTING STARTEDWINDOW("
ouplings")IMAGE("J", AR, AC, J, CONSTANT MATRIX, N, N, -4./N, 4./N, 4)END_DISPLAYThe ma
ros BEGIN_DISPLAY and END_DISPLAY en
lose the de�nition of a GUI; they expandinto a MakeDisplay(){} fun
tion body (thus, you
an also de�ne this fun
tion dire
tly without usingthe ma
ros). Everything between the BEGIN_ and END_DISPLAY ma
ros is exe
uted when theGUI is build. In the present example two windows are de�ned with names �time
ourses� and�
ouplings�, respe
tively. It is possible to de�ne an arbitrary number of su
h display windows.Ea
h display window
an in turn
omprise an arbitrary number of so-
alled �views�. A view is aview of a variable, e.g., a s
alar, ve
tor, or a matrix. Ea
h variable
an be viewed in di�erent ways,and se
tion 3 des
ribes the possibilities in detail. Here, it may su�
e to observe that the window�
ouplings� displays the N × N
oupling matrix J as an IMAGE, i.e., a grey-s
ale
oded pi
turethat re�e
ts the values of the matrix entries. Be
ause J is de
lared as a CONSTANT MATRIX inthe IMAGE-de�nition, the image of J is updated only on
e, after ea
h
all to the init()-fun
tion.This saves unne

essary updates, whi
h
ost time.On the other hand, the window �time
ourses� de�nes four views, three di�erent ones onto the
x-variables (potentials), and one on the spikes z. The potentials are displayed as an IMAGE ofsize 10 × 10 (just for demonstration), a RASTER whi
h displays the potentials over time as agrey-level plot, and a GRAPH, whi
h sele
ts a single potential tra
e and plots it as a fun
tionover time. The spikes are, �nally, also plottet as a RASTER, ie., the values of the whole array aredisplayed over time. More about this later, when we look at the a
tual graphi
al output (Figure2.3 for the impatient).2.3.2 Coupling of Parameters and Panel ControlsThe views on variables de�ned in the previous se
tion allow to observe in real time variables of thesimulations. However, we might also want to
hange parameters and see where that leads to. Todo this we have to add
ontrol elements to the main window of the GUI (e.g., 2.1). These elements
an then be
oupled to parameters of the simulations.There are two types of
ontrol elements available in Felix: Swit
hes and Sliders. Swit
hes arerepresented by buttons; they
an be ON or OFF, and thereby they
an �swit
h�
ode exe
utionbetween alternative segments (Swit
hes are not used in this se
tion, but see se
tion 3). The se
ond
ontrol element are Sliders. These
an take values in a whole range and
an thereby represent
ontinuous parameters of the simulations.How does this work inpra
ti
e? Let us assume we want to
ontrol the parameters I, J0 and σin the simulation of the leaky-integrate-and-�re network. These are the global input, the globale�e
tive
oupling strength, and the noise level. For ea
h of these we have to de�ne a new variableof type SliderValue (the reason for this follows soon). These new variables we have to embed inthe GUI, and we
an use them in the simulation
ode as well. The
ode below shows how this isa
hieved.SliderValue sI = 100;

2.3. ADDING A GRAPHICAL USER INTERFACE 11SliderValue sJ0 = 50;SliderValue ssigma = 0;BEGIN_DISPLAYSLIDER("input", sI, 0, 200)SLIDER("
oupling", sJ0, 0, 200)SLIDER("noise", ssigma, 0, 100)WINDOW("time
ourses")....END_DISPLAYsI, sJ0 and ssigma are the new variables of type SliderValue. The SLIDER()-ma
ros then addthe slider to the GUI, giving them names and
ertain lower and upper bounds. This
ode-snippetre�e
ts one problem with Sliders: Constrained by the XWindows/XView system they
an onlytake integer values. In the example these ranges are {0, 1, 2, . . . , 200} for input sI and
oupling
sJ0, and {0, 1, 2, . . . , 100} for the noise level ssigma. A

ordingly, when the variables are usedin the
ode implementing the dynami
 equations of the simulated system they have to be s
aledappropriately. For instan
e, in the step()-routine we
ould have
ode likefor (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, pot[i℄,0.01*(sI + sJ0*v1[i℄ + ssigma*gauss_noise()));The fa
tor 0.01 s
ales the ranges for sI , sJ0 into the intervals [0,2[and that for ssigma into therange [0,1[. This is somewhat un
omfortable, but one gets used to it qui
kly.Finally, note that now that we have repla
ed the original variables I, J0, and σ by slider variables,we
an delete their original de
larations in the program. They don't appear in the
ode anymore,but instead they are
ontroled by the graphi
al user interfa
e, see Figure 2.2.2.3.3 Running simulations using the graphi
al interfa
eFigure 2.2 displays the GUI after the
ontrol elements have been added. The display windows wehave de�ned are still hidden. We
an open them by right-
li
king the �Windows�-button, whi
hpops up a list of all availabe windows.Figure 2.3 shows the interfa
e after the display windows have been opened and pla
ed on thes
reen. On top of the
ontrol panel is shown the
oupling matrix and to the left of both thewindow �time
ourses�
ontaining the simulation variables.By left-
li
king the �Environment�-button this
on�guration
an be saved su
h that the GUI
omesup in the same state the next time the program is started again (right
li
king the �Environment�-button gives some more options). This automati
 loading of parameters from a default environment�le overrides any expli
it initialisations of slider variables possibly done in the sour
e
ode.

12 CHAPTER 2. GETTING STARTED

Figure 2.2: Graphi
al user interfa
e after adding sliders for parameters of the simulation.The Felix example dire
tory
ontains the
ode of a leaky-integrate-and-�re network with GUI and�le output. You might want to experiment with it, before pro
eeding to the next se
tion whi
hdes
ribes how �le output is de
lared. In parti
ular, note that the label on top of ea
h view is
li
kable and brings up
ontrol panels for the grey-s
ales of images and rasters, or the sele
tedvariable index in graphs that display arrays.2.4 Adding Output of DataAnalogous to MakeDisplay() whi
h de�nes the graphi
al output, the fun
tion MakeOutput() de-�nes output that is supposed to go to �les. The ma
ro NO_OUTPUT
an be used if no su
houtput is required. The ma
ros BEGIN_OUTPUT and END_OUTPUT in turn en
lose
ode fordata output. This de�nes a fun
tion MakeOutput() whi
h is
alled just after the initialisation,and after ea
h subsequent simulation step. It is possible to sele
t temporal sub-ranges for outputonly as well as subsets of arrays; this is explained in detail in
hapter 3. The following
ode showshow variables of the leaky-integrate-and-�re model
an be saved.BEGIN_OUTPUTOUTFILE("potentials")SAVE_VARIABLE("pot", x, VECTOR, N, 0, 0, 0, 0)OUTFILE("spikes")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SAVE_VARIABLE("out", z, bVECTOR, N, 0, 0, 0, 0)END_OUTPUTTwo output �les are de�ned, �potentials� and �spikes�, with obvious meaning. An arbitrary number(up to operating system
onstraints)
an be opened, ea
h of whi
h
an save a number of variablesper step. [Those are stored in sequential order, whi
h might
ause problems when the data hasto be reread in data-analysis programs, be
ause of the possibly
ompli
ated re
ord stru
ture. Itis probably more
onvenient to store only one variable per �le as in the shown example.℄ The

2.4. ADDING OUTPUT OF DATA 13

Figure 2.3: User interfa
e showing the
ontrol panel and the two windows
reated for displayingdynami
 variables.

Figure 2.4: Control panel of the graphi
al user interfa
e after output �les have been de
lared inthe program.variable x is stored as a ve
tor of length N to the �le �potentials�, whereas z is stored as a binaryve
tor of length N to the �le �spikes�.By default, data is saved in binary format, so that it would not be readable by humans, butsave spa
e. The default is
hanged for the se
ond �le in the example, where a �ag is set for(human-readable) ASCII output.Figure 2.4 shows the main GUI window after �le output has been de�ned. The new button "Save isOFF" indi
ates that the ouput has not yet been a
tivated. If it is pressed, �le output starts. If it is

14 CHAPTER 2. GETTING STARTEDpressed repeatedly during a simulation, the state of the button toggles, and data generated duringthe a
tivated phases are appended to the output �les. Right-
li
king on the "Save is OFF"-buttonbrings up further options, not all of whi
h are fully implemented, nor well tested.Have a look into
hapter 5 (or the example programs, or the sour
e
ode of output.
/h) for possi-bilities to sele
t sub-ranges of array variables for output. This
an be useful for large simulations,be
ause otherwise the amount of generated data
an qui
kly be
ome tremendeous.

Chapter 3Graphi
al User Interfa
e
Chapter 2 presented a brief example of how Felix programs are stru
tured and what the mainproperties of the Graphi
al User Interfa
e are. The present
hapter looks into the GUI in moredetail.In general ea
h Felix program has a main window with
ontrol elements for running a simulationand manipulating its parameters in real-time. Swit
hes are binary (ON/OFF)
ontrols that allowfor a
onditioned exe
ution of
ode segments. Sliders in
ontrast
an take values in a range ofnumbers and
an therefore be used to set parameters of a simulation. Beside the main windowa Felix simulation in general will have one or more display windows. These
an
ontain graphi
sobje
ts of various types, whi
h display views on variables as, e.g., graphs, fun
tions, images,or plots. Finally ea
h Felix simulation has an �Environment� allowing the user to store and loadparameter settings in external �les. The present
hapter will go through the mentioned
omponentsstep by step.3.1 Creating a GUIEa
h Felix appli
ation has to de�ne whi
h obje
ts (variables, ve
tors, matri
es ...) are displayedon the s
reen and how this shall be done. For this a fun
tionvoid MakeDisplay(){...}has to be supplied whi
h
ontains de�nitions of the graphi
s obje
ts to be displayed. The fun
tion-body of �MakeDisplay�
an be empty, if no graphi
al output is needed. In that
ase a basi
 mainwindow is still generated, see Figure 2.1, but no display windows. There are three Ma
ros thatsupport the de�nition of the interfa
e#define BEGIN_DISPLAY void MakeDisplay(){#define END_DISPLAY }#define NO_DISPLAY void MakeDisplay(){}Beside a number of buttons to initialialise, run, stop, and resume a simulation, the ea
h GUI bydefault
ontains two sliders �Steps� and �Display Steps�. These
ontrol the display and multi-step15

16 CHAPTER 3. GRAPHICAL USER INTERFACEmode of a simulation. �Display Steps� sets the interval in simuation steps at whi
h the graphi
sobje
ts in the display windows are updated. �Steps� in
ontrast sets the number of steps thatare exe
uted in multi-step mode (i.e., after stopping an initialised simulation) when the Steps-button of the GUI is pressed. The maximum steps of both these sliders by default is 100, whi
his
onvenient for most situation. Should it be ne
essary, the numbers
an be
hanged using thema
ros MAXSTEPS() and MAXDISPLAYSTEPS() in the de�nition of MakeDisplay().MAXSTEPS(steps)MAXDISPLAYSTEPS(steps)In very new versions of Felix the
olormap for the variable views
an be sele
ted by using thema
ro COLOR_MAP(map) somewhere at the top of the display de
laration. Possible values for�map� are:CMAP_BW : The default gray-s
ale map; bla
k: low-values; white: high valuesCMAP_RED : Bla
k to
rimson-red intensity
oded (quite hellish)CMAP_GREEN : All green (looks like the aliens are around the blo
k)CMAP_BLUE : All blue (deep not light blue)CMAP_RAINBOW : Blue - green - red
olour s
ale (quite fan
y)In the non-gray maps the lowest and highest values are bla
k and white, respe
tively. This makes
lipping at range boundaries ni
ely visible.3.2 Simulation Control Elements3.2.1 Swit
hesSwit
hes are logi
al �ags, that may be used in a simulation to intera
tively sele
t exe
ution ofdi�erent parts of the sour
e-
ode.A swit
h must be globally de
lared as a variable of type 'Swit
hValue' on the top of the appli
ation-sour
e �le.A swit
h
an be ON or OFF:#define OFF 0#define ON 1To
reate a button in the main-window that a�e
ts the swit
h-variable the fun
tion MakeSwit
h()or the Ma
ro SWITCH() must be
alled in MakeDisplay() :#define SWITCH(name, var) MakeSwit
h(name, &var);

3.2. SIMULATION CONTROL ELEMENTS 17Here �name� is a string that appears on the swit
h-button in the GUI and �var� is its a

o
iatedvariable of type Swit
hValue.If a user wants to
hange values of swit
h-variables at the sour
e-
ode level the fun
tion SetSwit
h()or the Ma
ro SET_SWITCH() MUST be used. Simply assigning a value to a swit
h-variable isnot enough, be
ause the new value will not be signalled to the XWindows-system, su
h that thestate of the swit
h would be no longer represented by its
orresponding button.#define SET_SWITCH(var, value) SetSwit
h(&var, value);�var� is the variable to be set; possible values are ON or OFF.Example:...Swit
hValue sw = OFF; /* define the swit
h-variable */...BEGIN_DISPLAY...SWITCH("this-or-that", sw) /* define the swit
h-button */...END_DISPLAYint void step()....if (sw) /* exe
ute
ode depending onthe state of sw. */{ /* do this */...}else{ /* do that */....}}3.2.2 SlidersAs swit
hes sliders are used to intera
tively
ontrol a running simulation. The di�eren
e is, thatthey are multi-valued and thus may be
hosen to in�uen
e parameters of the model. To
reate

18 CHAPTER 3. GRAPHICAL USER INTERFACEa slider the user has to de
lare a global variable of type 'SliderValue' (i.e., int). This variable isasso
iated with a graphi
al slider in the GUI by a
all to the fun
tion MakeSlider() or the ma
roSlider() inside the initialization routine MakeDisplay().Sliders appear in the main-window in the order of their de
laration in MakeWindow(). The ma
roSLIDER_COLUMNS(
olumns)
an be used to arrange them in more than 1
olumn (default).#define SLIDER(name, var, min, max) MakeSlider(name, &var, min, max);�name� is a string that appears to the left of the slider. �var� is the variable of type SliderValuethat stores the
urrent value of the slider. �min� and �max� set the range allowed for
hanges inthe sliders value.To set or
hange slider-values at sour
e-
ode level the fun
tion SetSlider() (or ma
roSET_SLIDER) must be used:#define SET_SLIDER(var, value) SetSlider(&var, value);�var� is the name of the slider-variable and �value� the new slider-value of type SliderValue (i.e.,int).Unfortunately, XView restri
ts sliders to integer-values. Thus, if an appli
ation
ontains �oating-point parameters whi
h shall be modi�able from the graphi
al interfa
e, one has to s
ale the
orresponding slider-values to the appropriate range.Example :SliderValue param = 50; /* define and initialize a slider-variable */...BEGIN_DISPLAY...SLIDER("parameter", param, 0, 100) /* generate an instan
e of aXView-slider in the main windowasso
iated with variable "param"The name of the slider is"parameter", its range [0,100℄*/...END_DISPLAYint void step(){ float float_param;

3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 19..float_param = .01*param; /* this
asts the slider-value to float* in the range [0,1.0℄. Observe, that* only 100 different values are possible!*/..if (any_
ondition)SET_SLIDER(param, 50) /* this sets the slider to a well-defined* value (here 50).*/}3.2.3 TimerUsage of the Ma
ro TIMER() in the de�nition of MakeWindow()
reates an extra slider whi
hin�uen
es the time between two su

essive simulation-steps.TIMER(max)The timer slider will have a range from 0 to max. If the value is zero the timer is o�. Otherwise ite�e
ts the times between
alls to the step() routine in a running simulation. The value in prin
ipleis supposed to be in Millise
onds, but this shouldn't be taken too seriously.3.3 Display Windows and Views on Variables3.3.1 Display WindowsThe Ma
ro WINDOW() or fun
tion MakeWindow()
reate a new window for graphi
al output.The string �name� appears at the top of the window and in the Window list of the main
ontrolwindow.#define WINDOW(name) MakeWindow(name);The WINDOW-statement must be
alled in MakeDisplay() before any other output
an be dire
tedto the s
reen, i.e. before any graph, image, raster, or other variable views are de�ned.Several windows
an be de�ned by repeated
alls to WINDOW(). In this
ase the last de
laredwindow is always the a
tive one, meaning that subsequently de
lared graphi
s obje
ts are pla
edinto that window.All window-names are
olle
ted into the �Windows�-menue at the top left of the main
ontrolwindow. If a window is
losed sele
ting it from this menue will reopen it.

20 CHAPTER 3. GRAPHICAL USER INTERFACE3.3.2 ViewsAfter a Window has been de�ned it
an be �lled with graphi
al views on simulation variables(images, graphs, et
). The fun
tions to
reate the various possible views all have a similar stru
ture.Consider, e.g.,
reation of an image by using the ma
ro IMAGE():IMAGE(name, row,
ol, var, type, dim_x, dim_y, min, max, zoom)The �rst argument is the �name� of the view. It will appear on a button on top of the view.�row� and �
ol� are two arguments to
ontrol positioning of the view in the display window. Thisis
overed in the next subse
tion 3.3.3.�var, type, dim_x, dim_y� then
hara
terise what is a
tually displayed. The type of a displayedvariable �var� must be de
lared and, if it is a ve
tor or an array, also its dimensions. Possibledisplay types are des
ribed below in subse
tion 3.3.4.The last argument of a view de�nition, �zoom�, is a (small) integer number that
ontrols how big aview appears on s
reen. Default value is 1. In that
ase, e.g., ea
h entry of a matrix-valued variablewill be displayed by one pixel in a re
tangular image. Larger numbers for zoom
orrespond withmore pixels and bigger images.3.3.3 Pla
ement of Views inside a WindowThere is a simple me
hanism to
ontrol positioning of view elements.The 2
d and 3rd arguments of a view-de�nition are
oordinates for the upper left
orner of theview. These
an be given dire
tly by spe
ifying raw pixel
oordinates.Alternatively, ea
h display window
an be
onsidered as being partitioned into a
oarser re
tangulargrid. Several ma
ros support pla
ing views in that
oarse grid.R0, AR and NR
an be used as values for the 2
d, and C0, AC, and NC as values for the thirdargument of a view de�ning fun
tion.R0 and C0 spe
ify the �rst row and
olumn, respe
tively.AR and AC spe
ify that the view has to be pla
ed in the a
tual row or
olumn, respe
tively.NR and NC spe
ify that the view has to be pla
ed in the next row or
olumn, respe
tively.Example (
f., se
tion 2.3)BEGIN_DISPLAYWINDOW("time
ourses")IMAGE("x", AR, AC, x, VECTOR, 10, 10, 0.0, 1.0, 4)RASTER("x", NR, AC, x, VECTOR, N, 0, 0.0, 1.0, 1)GRAPH("x", NR, AC, x, VECTOR, N, 0, 0, 0, -.01, 1.01)

3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 21RASTER("z", NR, AC, z, bVECTOR, N, 0, -.01, 1.01, 2)WINDOW("
ouplings")IMAGE("J", AR, AC, J, CONSTANT MATRIX, N, N, -4./N, 4./N, 4)END_DISPLAYThis example de�nes two windows with names �time
ourses� and �
ouplings�. The �rst window
ontains four graphi
s views, the se
ond only 1. In both
ases the �rst view is pla
ed at position(AR, AC), the a
tual row and a
tual
olumn, whi
h by default after
reating a new window withWINDOW() is equal to (R0, C0), the upper left lo
ation in the
oarse grid. The subsequentviews in the �rst window are then pla
ed at (NR, AC), meaning the next row but a
tual
olumn.Therefore, the four views are pla
ed in a single verti
al
olumn. In
ontrast, repla
ing (NR, AC)by (AR, NC) in the
ode would pla
e the views all in a horizontal row, and (NR, NC) pla
es themalong the diagonal of the
oarse grid (whi
h wouldn't look too ni
e).3.3.4 Types of Display VariablesFelix supports displaying of variables of three base types:
har, int, and �oat. A fourth type,pa
ked bits, is obsolete and shouldn't be used. Displaying double, long, and unsigned variables isnot supported.Variables
an be s
alars or ve
tors / arrays. There are several type ma
ros that
an be used inthe view display type de�nitions:#define CHAR_TYPE 0x02#define INT_TYPE 0x04#define FLOAT_TYPE 0x08#define ARRAY_TYPE 0x20#define ARRAY_CHAR_TYPE (ARRAY_TYPE | CHAR_TYPE)#define ARRAY_INT_TYPE (ARRAY_TYPE | INT_TYPE)#define ARRAY_FLOAT_TYPE (ARRAY_TYPE | FLOAT_TYPE)The basi
 display types above are
onveniently rede�ned in some of the Felix libraries, e.g.:ve
tor.
/h : VECTOR, MATRIX = ARRAY_FLOAT_TYPEbVECTOR, bMATRIX = ARRAY_CHAR_TYPEnn.
/h : LAYER = ARRAY_FLOAT_TYPESPIKE_LAYER = ARRAY_CHAR_TYPEIt is sometimes desired not to provide just a variable to a view, but a pointer to a variable. Thevariable the pointer referen
es
an then
hange dynami
ally in every display step. The POINTER-ma
ro sets the respe
tive type bit.

22 CHAPTER 3. GRAPHICAL USER INTERFACE#define POINTER 0x8000#define TO |#define CONST_BIT 0x4000#define CONSTANT CONST_BIT |A variable
an be de
lared CONSTANT if it does not need to be updated during a runningsimulation. A CONSTANT variable is updated only after a
all of the init()-fun
tion at thebeginning of a simulation, ie., by pressing the Init- or Run-buttons of the GUI.ExamplesBEGIN_DISPLAYWINDOW("time
ourses")IMAGE("v", AR, AC, v, MATRIX, 10, 10, 0.0, 1.0, 4)IMAGE("z", AR, NC, z, CONSTANT MATRIX, 10, 10, 0.0, 1.0, 4)IMAGE("y", AR, NC, y, POINTER TO bVECTOR, 10, 10, 0.0, 1.0, 4)IMAGE("x", AR, NC, x, POINTER TO CONSTANT VECTOR, 10, 10, 0.0, 1.0, 4)...The �rst IMAGE de�nes a view on a MATRIX (ARRAY_FLOAT_TYPE) of size 10 × 10. Thisis how a view de�nition usually de
lares a variable type. The se
ond IMAGE also de�nes a viewon a MATRIX , but be
ause the matrix is de
lared CONSTANT the graphi
s view will only beupdated when the simulation starts. The third IMAGE refers to a binary ve
tor image (bVECTOR= ARRAY_CHAR_TYPE). However, a pointer to the variable y is de
lared so that the array ymay
hange dynami
ally. The fourth image also de
lares the variable z a pointer, but this timea
onstant one, so that it
ould
hange where it points at, but its view is refreshed only at thebeginning of a simulation. (I
an't remember I ever used this possibility during the last 15 years).3.3.5 Image-Views

Figure 3.1: 2d grey-s
ale images of 3 arrays in a neural �eld model. Left: input; middle: potentials;right: spikes of the
ells in the model.An image is a two-dimensional grey-s
ale plot of the
urrent state of a two-dimensional variable.It is
reated by
alling the ma
ro IMAGE() inside the fun
tion MakeDisplay():

3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 23IMAGE(name, row,
ol, var, type, dim_x, dim_y, min, max, zoom)Here �name� is a string that appears on a button above the image. �row� and �
olumn� give theposition of the image in the
urrently a
tive window, see se
tion 3.3.3.�var� is the variable to display as an image, �dim_x� and �dim_y� its dimensions, and �type� itsdisplay type as des
ribed in se
tion 3.3.4.The �oating point variables �min� and �max� set the grey-s
ale of the image and should be set tothe expe
ted min- and max-values for the variable.The integer valued argument �zoom� sets the size of the image. Ea
h element of the variable isdisplayed as a square of size zoom×zoom.Ve
tors, i.e. one dimensional arrays,
an be displayed as images, too, by providing appropriatedimensions in the
all to IMAGE(). If dim_x*dim_y is bigger than the a
tual ve
tor size, thebehaviour is unde�ned and
ore dumps
an potentially o

ur. If it is smaller the remaining
omponents are not displayed.3.3.6 Raster Plots

Figure 3.2: Raster plot of the grey-s
ale-
oded potentials of 100 leaky-integrate-and-�re neuronsover time.A raster plot displays a ve
tor or 2d-array as a fun
tion of time. Ea
h
omponent of the variableis shown grey-level
oded on a seperate line.RASTER(name, row,
ol, var, type, dim_x, dim_y, min, max, zoom)The arguments are the same as in image. If �dim_y� is not zero it is assumed that �var� is a2-dimensional array that has to be interpreted as a ve
tor of length dim_x*dim_y.�zoom� only sets the height of ea
h displayed line (in pixels). It has no in�uen
e on the number oftime-steps that �t on one line.

24 CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.3: Two single variable graphs over time3.3.7 Single Variable GraphsA graph displays a single s
alar variable, or a
omponent of a 1 or 2d-array as a fun
tion of time.GRAPH(name, row,
ol, var, type, dim_x, dim_y, x, y, min, max)All but the �x� and �y� parameters are the same as in IMAGE.In
ase of ARRAY_TYPES (see se
tion 3.3.4) �x� and/or �y� spe
ify whi
h
omponent of thevariable has to be displayed initially.3.3.8 xy-Plots

Figure 3.4: Example showing an x-y-plot of two variables of a Roessler os
illatorThis view obje
t displays an xy-plot of two variables. The variables may be independently
hosenas single s
alars or
omponents of 1 or 2d-arrays.

3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 25PLOT(name, row,
ol, var1, type1, dim_x1, dim_y1, x1, y1, min1, max1,var2, type2, dim_x2, dim_y2, x2, y2, min2, max2,zoom)All parameters are the same as in GRAPH, but note that one has to spe
i�y two variables withadjoined information about variable type, the subelement to sele
t from arrays, and the grey-s
alesettings.3.3.9 Arrays of ImagesThis type of view mainly aims at displaying 2-dimensional arrays of 2-dimensional images as theyarise, e.g., in neural �eld models, where ea
h lo
al unit in a 2d-�eld has an individual 2d-lateral
onne
tion kernel. 1-dimensional arrays of 2-dimensional images (e.g., a sta
k of
orti
al layers)
an also be displayed.IMAGE_ARRAY(name,row,
ol, var,t, dim_x, dim_y, d_x, d_y, x, y, min,max,zoom)�name, row,
ol, min, max, zoom� have the same meaning as usual (see IMAGE).�var� and �t� de�ne the variable and its display type (whi
h must be an ARRAY_TYPE (usuallyMATRIX) and
an be a POINTER type)�dim_x� and �dim_y� de�ne the dimensions of the array of images. If �dim_y� is zero, but �dim_x�positive a one dimensional array of images is assumed.�x� and �y� spe
ify whi
h of the sub-images of the array of images is displayed initially (
an beoverridden by the Environment).�d_x� and �d_y� de�ne the size of the displayed images in x and y dire
tion. They must both bepositive.3.3.10 Fun
tions
Figure 3.5: A fun
tion viewA fun
tion view plots a one-dimensional array (VECTOR) as a fun
tion of the array index. Singlefun
tions , and one- and two-dimensional arrays of fun
tions are possible (
f., IMAGE_ARRAYS).FUNCTION(name, row,
ol, var, type, points, dim_x, dim_y, x, y, min, max)

26 CHAPTER 3. GRAPHICAL USER INTERFACE�name, row,
ol, var, type, min, max� are the same as in GRAPH.�points� is the number of data points in any individual array that is to be plotted as a fun
tion.�dim_x, dim_y, x, y� are used for arrays of fun
tions. If �dim_x� is bigger than 0 and �dim_y�is zero a one-dimensional array of fun
tions is assumed; if they are both bigger than 0, a two-dimensional one. �x� and �y� de�ne the initially sele
ted fun
tion to display (
an be overridden bythe Environment).
3.4 View Settings FramesEa
h graphi
al view obje
t in a window has a �settings frame� asso
iated with it that
an be usedto
ontrol the grey-s
ale ranges of the view and to sele
t sub-elements in
ase of array variables forgraphs, fun
tions, or image arrays. The settings frame pops up, if the button of a view showingthe view's name is pressed.

Figure 3.6: A two-dimensional settings frameFigure 3.6 shows a two-dimensional settings frame as it
ould o

ur for a graph of single elementof a 2d array. The frame shows the full array as a grey-s
ale image where the parti
ular elementto display is indi
ated by the red
rosshair. The element
an further be sele
ted by the x andy text�elds. If a variable has to be sele
ted from a one-dimensional array only, the 2D-image isrepla
ed by a slider. If the variable to display is a s
alar, no extra element sele
tors will appear inthe
orresponding settings frames, but only the
ontrols for setting the grey-level.The de�nitions of all views
ontain arguments �min� and �max�. These set the initial grey-s
alefor that view. They
an be
hanged in the settings frame, too. If the s
ale is
hanged, the newsettings
an be stored to an environment �le (see se
tion 3.5).

3.5. LOADING AND SAVING GUI SETTINGS 273.5 Loading and Saving GUI SettingsThe Felix GUI for
onvenien
e provides the possibility to load and store settings of the graphi
alinterfa
e. The �Environment�-button on the main
ontrol window serves this task.Right-
li
king the �Environment�-button brings up a menue with four options.Save This saves the
urrent settings in a default �leLoad This loads settings form the default �leSave as .. This pops up a window where the
urrent settings
an be stored in an arbitrary �leLoad ..℄ This pops up a window where settings
an be loaded from an arbitrary �leLeft-
li
king the �Environment�-button by default saves the
urrent settings in the default �le.The default �le is lo
ated in a sub-dire
tory �env� of the
urrent working dire
tory, ie., the dire
torythe exe
utable is lo
ated and run in. The default �le has the same name as the exe
utable.The default �le does not exist until it is
reated (by left-
li
king the �Environment�-button). Ifthe environment dire
tory �env� does not already exist, it is
reated, too.If a default �le exists it is automati
ally loaded when an appli
ation starts. This overrides anyexpli
it initialisations of swit
h or slider values, image grey-s
ales, or sub-sele
tions in views that
an plot array obje
ts. O

asionally this behaviour is unwanted,. You then need to rename ordelete the default environment �le in the �env�-subdire
tory.Note: Changing the number of graphi
 obje
ts (swit
hes, sliders, windows, views) in the GUIde�nition of an appli
ation typi
ally invalidates the environment �le(s). Instead of using the �le,the appli
ation will print an error message on the s
reen. This is sometimes un
omfortable for
omplex appli
ations, be
ause all settings have to be set anew. It
an then be easier to hand-editthe environment �les: If proper entries for the new (or deleted) obje
ts are added, the �le
an beused again.

28 CHAPTER 3. GRAPHICAL USER INTERFACE

Chapter 4Libraries
Felix
omes with a number of fun
tion pa
kages / libraries suitable for tasks often en
ountered inthe modeling of neural networks and dynami
al systems. The present se
tion provides an overview.4.1 Outline: Pools and FieldsAlthough not restri
ted to them, two types of models have been in the main fo
us during thedesign of Felix - networks
omprising homogeneuos neural pools and layered, topographi
allyordered neural �elds,
f., Figure 1.2 in se
tion 1.2.Given a single neural pool of N neurons its dynami
s
ould be des
ribed mathemati
ally by

τφi(t) = −φi(t) + Ii(t) +

N∑
i=1

wijf(φj(t)) + σηi(t) (4.1)Here, the
ells are modelled by a single variable for their membrane potentials, φi, i = 1, . . . , N ,and by a graded sigmoid output or rate-fun
tion f . Single units are identi
al: they obey the samemebrane low-pass dynami
s with time-
onstant τ and have the same rate-fun
tion. They might,however, re
eive di�erent inputs Ii(t) and noise ηi(t) of strength σ, and their synapti
 weights
wij , j = 1, . . . , N will di�er. More
ompli
ated single neuron models are of
ourse possible. Cells,in general, also don't need to be identi
al.The dynami
s of a single neural �eld in
ontrast
an be written as

τφ(x, t) = −φ(x, t) + I(x, t) +

∫
w(x, x′)f(φ(x, x′, t)) + ση(x, t) (4.2)In
ontrast to (4.1)
ells do not just have indexes, but a
ontinuous spatial lo
ation x (whi
h will,of
ourse, typi
ally be dis
retised in
omputer models). Units at one lo
ation intera
t only withneighbours nearby. This is re�e
ted by the synapti
 kernels w(x, x′) in (4.2). Beside this, themeaning of the symbols in equations (4.1) and (4.2) are the same.Both kinds of models need similar
onstru
t to de�ne and simulate the single units they
onsistof, e.g., the dynami
s of the membranes φ and the output type of the units. Both, (4.1) and (4.2)above use �rst order low-pass �lters and graded output by means of nonlinearities f . The maindi�eren
e
on
erns their
onne
tivity patterns. In pool-models all
ells in one pool
an potentially29

30 CHAPTER 4. LIBRARIESrea
h all
ells in the same or another pool � matrix-ve
tor operations are most
onvenient toimplement this kind of model, see se
tion 4.3 below. Neural �elds on the other hand revealtopographi
 neighbourhood stru
tures - Felix provides
onstru
ts for the implementation of thiskind of �integro-di�erential equation�, too, see se
tion 4.5.Delays further play an important role in many neural models. They are supported in Felix by a
ontainer
lass that stores model traje
tories over time and a number of fundamental routines toa

ess delyed variables in simulations. There are in parti
ular delayed
onvolution fun
tions, thatare needed if lateral propagation speeds in a �eld model are �nite. Details
an be found in se
tion4.6.Noise is omnipresent in neural systems and in many other physi
al systems, too. In (4.1) and(4.2) noise inputs into the system is, for instan
e, represented by the pro
esses η. These are
ommonly assumed independent and identially distributed Gaussian white noise with mean 0; σsets the standard deviation. Other
hoi
es are Poisson pro
esses of some rate whi
h would re�e
tthe spiking nature of inputs to neurons. Felix has a built-in pseudo-random number generatordes
ribed in se
tion 4.7.Felix also has libraries with some numeri
al and image pro
essing routines. Be
ause, these are notwell developed, they will not be des
ribed in this do
ument.4.2 Some Low-level De�nitionsIf not de�ned already in system headers, the Felix headers de�ne the following ma
ros# define TRUE 1# define FALSE 0# define MIN(a, b) ((a) > (b)? (b) : (a))# define MAX(a, b) ((a) > (b)? (a) : (b))4.3 Matrix and Ve
tor OperationsThe Matrix/Ve
tor fun
tionality is a
entral part of Felix. Two base-types for variables are ingeneral supported. Most Felix fun
tions operate on s
alars, ve
tors, or matri
es of those.BaseType : �oating point values (for histori
al reasons these are C-type ��oat�; I don't want togo into the mess if
hanging to �double�).bBaseType: binary (0/1) values. One bit stored per memory-byte (unsigned
har).BaseType is used for all kinds of
ontinuous
ell variables, whereas bBaseType is useful for therepresentation fo binary ve
tors of �spikes�.(The bitBaseType available in early versions of Felix is obsolete and shouldn't be used. It used apa
ked binary format; one bit stored per memory-bit.)Ve
tor and Matrix-types are derived from the base-types

4.3. MATRIX AND VECTOR OPERATIONS 31typedef BaseType * Ve
tor;typedef bBaseType * bVe
tor;typedef BaseType * Matrix;typedef bBaseType * bMatrix;Note: Matri
es are internally stored as linearized arrays of rows in memory (ie., not as ve
tors ofpointers to rows or
olumns).4.3.1 Operations on S
alar VariablesBaseType leaky_integrate(float tau, BaseType v, BaseType expr)This ma
ro implements a simple Euler-S
heme for simulating leaky-integrator membranes: τ dv
dt

=
−v + expr. Integration stepsize is set with SET_STEPSIZE(dx) and should be
hosen su
h thatdx/tau is small
ompared to 1. The variable �step_size�
an be used expli
itly in
ode if required.In
onjun
tion with the later explained �re_reset()-fun
tion, �leaky-integrate and �re neurons� arestraightforward to implement (see the example program inf.
).Several basi
 nonlinear fun
tions are available as rate-fun
tions or for other purposes. They alltake a single �oat as argument and return a single �oating point value.triangle(x) : f(x) = 1 − |x| if |x| < 1 and 0 if |x| >= 1re
tangle(x) : f(x) = 1 if |x| <= .5 and 0 if |x| > .5gaussian(x) : f(x) = exp(−4 ∗ ln(2) ∗ x ∗ x) (The fa
tor 4*ln(2) ensures f(.5) = .5)fermi(x) : f(x) = 1/(1 + exp(−4 ∗ x)) (The fa
tor 4 ensures df/dx(0) = 1.)ramp(x) : f(x) = 1 if x > 1, 0 if x < 0 and x elselin(x) : f(x) = xtlin(x) : f(x) = x if x > 0 and 0 if x <= 0tquad(x) : f(x) = x ∗ x if x > 0 and 0 if x <= 04.3.2 Memory Allo
ation RoutinesBefore use, any ve
tor or matrix-variable must be allo
ated. This is usually done in the top-levelfun
tion main_init(). It must be done there if the variable is a

essed for display in the graphi
aluser interfa
e. Use the following template for fun
tions to allo
ate ve
tors and matri
es:<var_type> var;var = Get_<var_type>(<dims>);

32 CHAPTER 4. LIBRARIES
<var_type> stands for �Ve
tor�, �bVe
tor�, �Matrix�, or �bMatrix�. If a Ve
tor-Type is supplied
<dims> is the requested length. In
ase of a matrix <dims> = �rows,
olumns�.Allo
ated memory-spa
e should be set free if no longer need. This is done by ma
ros of the typeFree_<var_type>(var);or simply by a
all to the system-library fun
tion free(< var >).Example:Matrix m = Get_Matrix(10, 10); /* allo
ate memory for m */......Free_Matrix(m); /* or alternatively: free(m); */4.3.3 Cleaning Ve
tors and Matri
esAll entries of a Ve
tor or Matrix are set to zero by one of the following ma
ros:Clear_<var_type>(<dims>, <var>) .For example:Clear_bMatrix(rows,
olumns, m);Clear_Ve
tor(length , v);4.3.4 A

ess to Elements of a Matrixelem(m, i, j,
olumns)This is a ma
ro that gets or sets the element m[i][j] of the Matrix or bMatrix m. '
olumns' is thenumber of
olumns of m. (If i is set to 0 the ma
ro
an be used for Ve
torTypes, too.)For example:elem(m, 5, 6, 10) = 3.14; /* Set m[5℄[6℄ to 3.14 */x = elem(m, 5, 6, 10); /* set x to m[5℄[6℄ */If you don't use this ma
ro for matri
es you have to keep in mind that matri
es are stored seriallyin memory, i.e, elem(m, 5, 6, 10) would be equivalent to m[5 ∗ 10 + 6], but note that m[5][6] doesnot work!4.3.5 Raw I/O of Ve
tors and Matri
es to/from �lesRaw output in binary format to or from a stream is done with one of the ma
ros:

4.3. MATRIX AND VECTOR OPERATIONS 33Write_<var_type>(<dims>, <var>, stream);Read_<var_type>(<dims>, <var>, stream);These ma
ros dire
tly
all the system-library fun
tions fread() and fwrite(), thus they return thenumber of bytes a
tually read or written. For error-indi
ations see fread() and fwrite().For ASCII-output use the fun
tionsSave_<var_type>(<dims>, <var>, stream);Load_<var_type>(<dims>, <var>, stream);Ve
tors and Matri
es are stored row by row; b-Types are stored as sequen
es of zeros and ones.Entries are separated by blanks. On error the fun
tions return -1; otherwise zero;There are fun
tions mainly for debugging purposes that print out Ve
tors and Matri
es to stdoutin the same manner as the Save-family does to �les. These areShow_<var_type>(<dims>, <var>);4.3.6 Ve
tor and Matrix OperationsS
alar Multipli
ation of two ve
tors of length n.BaseType Skalar(int n, Ve
tor v1, Ve
tor v2)BaseType bSkalar(int n, Ve
tor v1, bVe
tor v2)int bbSkalar(int n, bVe
tor v1, bVe
tor v2)Observe that the purely binary operation returns int-type.Matrix-Ve
tor Multipli
ation.Ve
tor Mult(int z, int s, Matrix matrix, Ve
tor ve
tor, Ve
tor dest)Ve
tor bMult(int z, int s, Matrix matrix, bVe
tor ve
tor, Ve
tor dest)dest = matrix * ve
tor, where �matrix� has z rows and s
olumns, �ve
tor� has length s, and�dest� has length z. The fun
tions return �dest�. Observe that the purely binary operations returnint-type, thus a ve
tor to integers has to be supplied as 'dest' .Maximum, Minimum, and Sum over Elements.BaseType Sum(int, Ve
tor);int bSum(int, bVe
tor);BaseType Max_Elem(int, Ve
tor);BaseType Min_Elem(int, Ve
tor);

34 CHAPTER 4. LIBRARIESNorms and S
aling The following
ompute Ve
tor Norms. (Indu
ed) Matrix norms are notimplemented at the moment, but matri
es
an be supplied to the fun
tions below as well.BaseType Ve
tor_Norm_1(int n, Ve
tor v);BaseType Ve
tor_Norm_2(int n, Ve
tor v);BaseType Ve
tor_Norm_sup(int n, Ve
tor v);void Norm_Ve
tor_1(int, Ve
tor v, Ve
tor out);void Norm_Ve
tor_2(int, Ve
tor v, Ve
tor out);void Norm_Ve
tor_sup(int, Ve
tor v, Ve
tor out);The �Ve
tor_Norm_� fun
tions
ompute the 1, 2, and ∞- (or max- or sup-)norm of a ve
tor,respe
tively (ie, the sum of absolute values, square-root of squares, or the largest absolute element).The �Norm_Ve
tor_� fun
tions �rst
ompute the norms and then s
ale the ve
tors to a norm of1. They return the result in �out� whi
h
an be the same as �v�.The subsequent fun
tions s
ale ve
tors and matri
es or apply more general fun
tions to ea
helementVe
tor S
ale_Ve
tor(int n, Ve
tor v, BaseType offs, BaseType s
ale, Ve
tor out);Ve
tor Ve
tor_Apply(int n, Ve
tor v, BaseType (*fun
)(BaseType), Ve
tor out);Ve
tor Ve
tor_Apply_Arg(int n, Ve
tor v,BaseType (*fun
)(BaseType, void *), void *args, Ve
tor out));Matrix S
ale_Matrix(int z, int s, Matrix m, BaseType offs, BaseType s
ale, Matrix out);Matrix Matrix_Apply(int z, int s, Matrix m, BaseType (*fun
)(BaseType), Matrix out);Matrix Matrix_Apply_Arg(int z, int z, Matrix m,BaseType (*fun
)(BaseType, void *), void *args, Matrix out);S
ale_Ve
tor and S
ale_Matrix apply an a�ne transformation to the elements of the ve
tor �v�or matrix �m�. That is, they multiply all values by �s
ale� and add an o�set �o�s�.Ve
tor_Apply and Matrix_Apply apply a user de�ned fun
tion �fun
� to all elements in the array.The user-de�ned fun
tion �fun
� takes a single �oat as input and returns a �oating point value;the previously de�ned non-linearities
an, e.g., be used. The fun
tion is, e.g., useful to
omputethe outputs of graded response neurons given their potentials and rate-fun
tion.Ve
tor_Apply_Arg and Matrix_Apply_Arg apply a user de�ned fun
tion �fun
� with more thana single argument to all elements in the supplied array. �fun
� takes a void pointer to a ve
tor (orstru
t) of arguments and must return a single �oating point value.Results of the above fun
tions are return in �out� whi
h
an be the same as the input array.Setting / Changing whole Ve
tors and Matri
esvoid Set_Fun
_Ve
tor(int n, Ve
tor v,BaseType (*fun
)(BaseType),int shift, BaseType height, BaseType s
ale)

4.3. MATRIX AND VECTOR OPERATIONS 35This fun
tion
hanges the ve
tor �v� a

ording to v[i]+ = height ∗ func((i− shift)/scale), where�fun
� is a s
alar fun
tion. Note that the fun
tion is additive. It
an be used to genrate shiftedversions of ve
tors with
ertain pro�les as hey appear as input stimuli in some neural networks.void Make_Fun
_Band_Matrix(int n, Matrix J,BaseType (*fun
)(BaseType),BaseType height, BaseType s
ale)This generates band-matri
es with (row-)pro�les given by a fun
tion �fun
�. The fun
tion is ad-ditive. �height� and �s
ale� set the amplitude and width of the pro�le (e.g., if fun
 is a Gaussian,s
ale would be the standard deviation)void Make_Fun
_Band_Matrix_Cy
li
(int n, Matrix J,BaseType (*fun
)(BaseType),BaseType height, BaseType s
ale)As the previous one this fun
tion generates band-matri
es with (row-)pro�les given by a fun
tion�fun
�, but wraps
y
li
ally. The fun
tion is additive.void Dilute_Matrix(int z, int s, Matrix m, BaseType p)This fun
tion randomly sets entries in the matrix �m� to zero with probability �p�. A Ve
tor
anbe diluted by setting one of the size arguments to 1 and the other to the true lebgth of the Ve
tor.4.3.7 �Neural� Operations for Ve
tors and Matri
es�Sigmoid� output fun
tions.Ve
tor Fv(int n, Ve
tor ve
tor, BaseType (*fun
)(),BaseType fa
tor, BaseType threshold, BaseType width,Ve
tor out)Apply the fun
tion fun
() to all �n� elements of �ve
tor�. fun
()
an be one of the s
alar fun
tionsde�ned earlier in this se
tion, or a user-de�ned one. Result are stored in the ve
tor �out� (notne

essarily di�erent from �ve
tor�). �fa
tor� and �width� may be used to s
ale the variable-valuesto the nonlinear range of fun
(); �threshold� sets an o�set-value:out[i℄ = fa
tor*fun
((ve
tor[i℄-threshold)/width);The fun
tion returns �out�. If out equals NULL (or 0) on entry, an output array is allo
atedinternally and returned by the fun
tion. The user has to free() the respe
tive spa
e, if it is nolonger needed.

36 CHAPTER 4. LIBRARIES�Poisson� Pro
essesbVe
tor ProbFire(int n, Ve
tor v, bVe
tor out)Computes a n-dimensional binary random-ve
tor from v, su
h that prob[o[i] = 1] = v[i] and
prob[0[i] = 0] = 1 − v[i]. It is not
he
ked whether v[i℄ falls into the range [0,1℄. The fun
tionreturns �out�. If out equals NULL (or 0) on entry, an output array is allo
ated internally andreturned by the fun
tion. The user has to free() the respe
tive spa
e, if it is no longer needed.Threshold Neurons.bVe
tor Fire(int n, Ve
tor ve
tor, BaseType theta, bVe
tor out)For all n elements of �ve
tor�
ompare vector[i] with a threshold �theta�: set out[i] to 1 if it is largerand to 0 otherwise. The fun
tion returns �out�. If out equals NULL (or 0) on entry, an outputarray is allo
ated internally and returned by the fun
tion. The user has to free() the respe
tivespa
e, if it is no longer needed.Fire-and-Reset Neurons.bVe
tor Fire_Reset(int n, Ve
to ve
tor, BaseType theta,BaseType reset, bVe
tor out)Same as Fire() but if out[i] is set to 1 then v[i] is reset to the value �reset�. This fun
tion may beused to implement the �integrate and �re neuron model� (
f, example program inf.
). If out equalsNULL (or 0) on entry, an output array is allo
ated internally and returned by the fun
tion. Theuser has to free() the respe
tive spa
e, if it is no longer needed.4.4 StimuliFelix provides a number of �
lassi
al� stimulus fun
tions like steps, ramps, re
tangular, triangle-,and dira
-fun
tions in the temporal domain as well as plane waves, dis
s, bars and Gabor pat
hesin the spatial domain. Many spatio-temporal stimuli
an be
ombined from these options.An example program "stimuli.
" should be
ontained in the
ode-dire
tory of this user guide.4.4.1 Temporal Stimulus Fun
tionsThese fun
tion generate tims fun
tions of a number fo
ommon forms.float TSine(float t, float T, float t0);float TRe
t(float t, float T, float t0);float TTriangle(float t, float T, float t0);

4.4. STIMULI 37float TSkewRe
t(float t, float T, float t0, float duty);float TSkewTriangle(float t, float T, float t0, float duty);float TSkewSine(float t, float T, float t0, float duty);float TPulse(float t, float t0); // 1 for 1 time-binfloat TDira
Pulse(float t, float t0); // mass 1 for 1 binfloat TStep(float t, float t0);float TRamp(float t, float t0, float slope);float TInterval(float t, float t0, float t1);float TGaussian(float t, float t0, float s
ale);Argument t in these fun
tions is the simulation time (usually SIM_TIME), T are period durations,
t0, t1 are o�sets, temporal shifts or times at with events happen. For instan
e, in TTriangle, t0 isan o�set, whereas in TInterval t1 is the time the stimulus swit
hes on, and t2 the time it swit
heso� again.Most of these fun
tions are s
aled to a range [0,1℄ (in
luding TSine for
onsisten
y).The skew fun
tions use di�erent ON/OFF times for the re
tangular fun
tion and rise/fall-timesfor the triangle and sine, respe
tively. "duty" is a number between 0 and 1 that determines theON/OFF fra
tion.TDira
Pulse s
ales the return value by the inverse internal simulation time step (step_size) inorder to obtain Dira
-pulses normalised to a mass of 1. TPulse returns a pulse of amplitude 1.TRamp is the semi-linear fun
tion whi
h is zero until t0 and in
reases with rate slope afterwards.TGaussian is a temporal gaussian with maximum at t0. It
an be used to simulate a smoothlyrising and then de
aying stimulus. The duration of the stimulus
an be inf
luen
e by the fa
tormultipli
ative scale.4.4.2 Spatial Stimulus Fun
tionsThe following fun
tions return
ommon two-dimensional stimuli like bars and gratings. They areadditive in order to allow for
ombinations. Therefore the user has to
lear arrays expli
itly asne
essary.In the following routines m is a matrix for the 2D-stimulus, w and h are its width and height,respe
tively. x0 and y0 are
entre lo
ations of stimuli. Be
ause the fun
tions are additive,
om-plex stimuli
an be
onstru
ted by
entering several sub-stimuli at di�erent lo
ations. Argument
amplitude is the amplitude of a
omponent. It is possible to insert the temporal stimuli of theprevious se
tion here in order to obtain spatio-temporal stimuli.SWholeField(Matrix m, int w, int h, float amplitude);SRe
t(Matrix m, int w, int h, float x0, float y0,float w0, float h0, float phi, float amplitude);

38 CHAPTER 4. LIBRARIESSProfile(Matrix m, int w, int h, float x0, float y0,float w0, float h0, float phi, float amplitude,float s
ale, float (*fun
)(float));SDis
(Matrix m, int w, int h, float x0, float y0,float d, float amplitude);SCir
ularFun
tion(Matrix m, int w, int h, float x0, float y0,float amplitude, float s
ale, float (*fun
)(float));SPlaneWave(Matrix m, int w, int h, float amplitude,float k0, float phik, // wave ve
tor, amplitude and anglefloat psi); // phaseSGabor(Matrix m, int w, int h, float x0, float y0, float amplitude,float sig0, float sig1, // prin
ipal and se
ond sigmafloat k0, float phik, // wave ve
tor, amplitude and anglefloat phi, float psi); // angle(k,sig0) and temporal phaseSCenterSurroundGrating(Matrix m, int w, int h, float x0, float y0,float r0, float a0, float k0, float phi0, float psi0,float r1, float a1, float k1, float phi1, float psi1);SWholeField adds a homogeneous o�set to the whole �eld.SRe
t adds a re
tangle at orientation phi,
entre lo
ation x0, y0, width w0 and height h0. (Thequality of the re
tangle is not good. Use the next fun
tion for stimuli with less dis
retisationartefa
ts.)SProfile as SRe
t adds a re
tangle to the stimulus array but with a
ertain pro�le along the y-axis(if phi=0) spe
i�ed by the fun
tion func. scale s
ales the argument of that fun
tion, that is, itsets its length-s
ale. Note that the fun
tion takes a �oat-argument and returns �oat. If standardfun
tions like sin,
os, et
 from math.h are desired they have to be wrapped, be
ause they takedouble-arguments (More
on
retely: de�ne a fun
tion float myfun
(float x){...} that just
alls the fun
tion wanted and provide the new fun
tion �myfun
� as an argument to SProfile).SDis
 adds a dis
 of diameter d. (The quality of the dis
 is bad, espe
ially for small dis
s. Thenext fun
tion might be useful to get more appropriate results.)SCir
ularFun
tion adds a
ir
ular stimulus with radial pro�le func. scale s
ales the argumentof the pro�le fun
tion multipli
atively.SPlaneWave adds a plane wave with wave number k0 and phase shift psi. The angle phik de�nesthe dire
tion of the wave.SGabor adds a Gabor-pat
h. The meaning of the arguments are given in the de�nition above.(The angle phi is the angle between the wave-ve
tor and the �rst prin
iple axis of the envelopegaussian. If the gaussian is
ir
ular symmetri
 this angle is arbitrary.)SCenterSurroundGrating is a stimulus
onsisting of a sine-grating with parameters
a0, k0, phi0, psi0 in an inner
ir
le of size r0, and a se
ond grating with parameters a1, k1, phi1, psi1

4.4. STIMULI 39in the annulus from r0 to r1. a0, a1 are the amplitudes, k0, k1 the wave numbers, phi0, phi1 thewave dire
tions, and psi0, psi1 the phases of the gratings.Note 1: Most of these fun
tions are not very qui
k and
ould be optimised. If only stati
 stimuliare needed, it is probably a good
hoi
e to
ompute them only on
e in main_init or init.4.4.3 Dynami
 StimuliIf moving graitings or gabor pat
hes at a �xed lo
ation but with moving sinusoidal modulation areneeded, it usually su�
es to re
ompute SPlaneWave or SGabor per simulation step with sinusoidallymodulated phases psi. In SCenterSurroundGrating, both the inner and outer grating
an be mademoving this way. The example program "stimuli.
"
ontained in the
ode-dire
tory of this userguide shows some examples.There are also some ma
ros and fun
tions that allow to move stimulus
entres dynami
ally invarious ways. These fun
tions assume that a
entre has a lo
ation and velo
ity given by 4 �oatingpoint numbers cx, cy, vx, vy. The following ma
ros and fun
tions
an be used to update thesevariables whi
h in turn
an be used as lo
ation variables (x0, y0) in argument lists of the stimulus
onstru
tion fun
tions in the previous subse
tion:advan
e_
entre(x,y,vx,vy)jitter_
entre_lo
ation(x,y,s)jitter_
entre_velo
ity(vx,vy,s)
entre_is_in_
ir
le(x, y, x0, y0, r)
entre_is_in_re
t(x,y,l,r,b,t)void jitter_
entre_dire
tion(float *vx, float *vy, float s);void boun
e_
entre_velo
ity(float *vx, float *vy, float nx, float ny);The �rst 5 fun
tions are a
tually ma
ros (de�ned in stimulus.h); the last two are true fun
tions(de�ned in stimulus.
).advan
e_
entre updates the lo
ation of a
entre given its velo
ity and the
urrent step_sizejitter_
entre_lo
ation, jitter_
entre_velo
ity, and jitter_
entre_dire
tion add gaus-sian white noise of standard deviation s to the lo
ation or velo
ity variables, wherejitter_
entre_dire
tion renormalises the velo
ity afterwards (the normalisation algorithm issub-optimal; small numeri
 errors
an a

umulate).
entre_is_in_
ir
le and
entre_is_in_re
t are ma
ros that return 1 if a
entre is inside agiven
ir
le at lo
ation x0, y0 of radius r or a re
tangle bounded by l, r, b, t (left, right, bottom,top) respe
tively; otherwise they return 0.boun
e_
entre_velo
ity(float *vx, float *vy, float nx, float ny) re�e
ts the
entrevelo
ity given a surfa
e normal of (nx, ny). It is not
he
ked whether the normal is truly nor-malised to 1.The example program �dynami
_stimuli.
�
ontained in the
ode-dire
tory of this user guide showsseveral examples, i.e., either a disk or oriented bar that 1) boun
es ba
k and forth, 2) moves

40 CHAPTER 4. LIBRARIESthrough the input area along random pathways, 3) boun
es through the input area re�e
ted atthe boundaries, 4) performs a random walk, or 5) performs a 2-dimensional Ornstein-Uhlenbe
kpro
ess around the
enter of the input area.4.5 Field Models, Spatial ConvolutionsField models are two-dimensional, topographi
ally arranged neural networks, whi
h are typi
allyonly
onne
ted within
ertain neighbourhoods, see Figure 1.2.Although Felix supports one-dimensional and two-dimensional �elds, only two-dimensional onesare des
ribed in this do
ument.4.5.1 Kernels or FiltersAs stated,
ells in neural �elds are
onne
ted only lo
ally. Felix assumes re
tangular
onne
tivityregions, whi
h are
alled Kernels, or Filters, or re
eptive Fields. The pre
ise name
hosen dependson the
ontext and on the s
ienti�

ommunity (�kernels� appear in integro-di�erential equationsin Mathemati
s, ��lters� in image pro
essing algorithms in
omputer s
ien
e, and �re
eptive �elds�in neural networks � all three
on
epts are �very
losely related� (to speak
autiously)./* two-dimensional Kernels/Filters */typedef BaseType * Kernel;typedef BaseType * UniKernel;typedef bBaseType * bKernel;typedef bBaseType * UnibKernel;The di�eren
e between Kernels and UniKernels is that in some neural �elds all units have thesame ��lters� (think, e.g., of a layer of
ells dete
ting orientation at a �xed orientation), whereasin others ea
h
ell has its own �re
eptive �eld� (e.g., in a full orientation tuning map). In the�rst
ase one would story only a single
opy of the kernel (UniKernel/UnibKernel), whereas in these
ond
ase a �eld of kernels is required (Kernel/bKernel)4.5.2 Correlation and Convolution Fun
tionsAgain somewhat depending on s
ienti�

ommunity, operations envolving kernels in �eld equationsare written as �
onvolutions� ∫
k(x − x′)f(x′)dx′ or �
orrelations� ∫

k(x + x′)f(x′)dx′. The maindi�eren
e is just mirroring the respe
tive kernel (here shift-invariant UniKernels). Felix implementsboth options. In neural �eld appli
ations one would (probably) prefer
orrelations be
ause theymeasure the similarity (
orrelation) of the (input) f with the kernel lo
al at lo
ation x.There are a pretty large number of
orrelation and
onvolution fun
tions in Felix, whi
h di�er inthe types of arguments, and how they deal with the boundaries of a �eld.

4.5. FIELD MODELS, SPATIAL CONVOLUTIONS 41They all take a input �eld �in� of size x×y and a kernel (Uni or Multi) of size kx×ky; they allreturn a �eld �out� of size x×y.If the lo
al operations are
orrelations the base name of the fun
tion is �Correlate�, and it is�Convolute� for
onvolutions.If the input �eld is of binary type (e.g., a �eld of 0/1 spikes) a �b� is added in front of the basename.If ea
h lo
al
onvolution/
orrelation uses the same UniKernel, �Uni� is appended after the basename. Otherwise, a �eld of kernels is expe
ted, su
h that ea
h lo
al unit has its own �lter /re
eptive �eld.If the
onvolution /
orrelation wraps around at the boundaries, ie., the �eld is a
tually a two-dimensional torus, �
y
li
� is appended to the name of the fun
tion.Here is the full list of possibilities.Matrix Correlate_2d (Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Correlate_2d_
y
li
 (Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bCorrelate_2d (bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bCorrelate_2d_
y
li
 (bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Convolute_2d (Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Convolute_2d_
y
li
 (Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bConvolute_2d (bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bConvolute_2d_
y
li
(bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Correlate_2d_Uni (Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Correlate_2d_Uni_
y
li
 (Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bCorrelate_2d_Uni (bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bCorrelate_2d_Uni_
y
li
(bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Convolute_2d_Uni (Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Convolute_2d_Uni_
y
li
(Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bConvolute_2d_Uni (bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)

42 CHAPTER 4. LIBRARIESMatrix bConvolute_2d_Uni_
y
li
 (bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)All these fun
tions return �out�, whi
h must provide spa
e for the results when a fun
tion is
alled.Note that the
y
li
 fun
tions are more time-
onsuming than the non-
y
li
 ones, and that UniKer-nels need less memory.Later in this se
tion another family of fun
tions is introdu
ed that extends the
onvolu-tion/
orrelation fun
tions to in
lude lateral propagation delays, see se
tion 4.6.4.5.3 Orientation Tuning MapsThe following are a few fun
tions that initialise single UniKernels or arrays of them (Kernels).They
an be used to implement orientation tuning maps, but are rudimentary.Set_Cir
_Fun
_Uni_Kernel(UniKernel kern, int kx, int ky,BaseType (*fun
)(BaseType),BaseType height, BaseType width, BaseType offset)Given a one-dimensional pro�le fun
tion �fun
� set a 2d-UniKernel �kern� to a
ir
ular symmetri
pro�le. Kernel-dimensions are kx and ky. �height, width, and o�set� set the amplitude and spatials
ale, and an additive o�set of the kernel, respe
tively. The fun
tion is additive.void Gabor_Uni_Kernel (UniKernel kern, int dimx, int dimy,BaseType height, BaseType sigma1, BaseType sigma2,BaseType kw, BaseType phikw, BaseType phisigmakw,BaseType phi0)This fun
tion sets an UniKernel to have a Gabor-type re
eptive �eld, i.e., a 2d-sinusoidal wavemodulated a by a spatial Gaussian fun
tion. �dimx� and �dimy� are the dimensions of the kernel.�height sets its amplitude. �sigma1� and �sigma2� are the standard deviations of the Gaussianalong the �rst and se
ond prin
ipal axes. �kw� is the wave-number. phikw is the orientation ofthe wave ve
tor and phisigmakw the angle between the dire
tion of the wave ve
tor and the �rstprin
ipal axes of the Gaussian (usually believed to be 0 in
orti
al simple
ells, but need not).�phi0� is the spatial phase of the sinusoidal. The fun
tion is additive.void Set_Phi_Fun
_Kernel (Kernel kern, int x, int y, int kx, int ky,BaseType (*fun
)(BaseType),Matrix phi,BaseType height, BaseType width, BaseType offset)This fun
tion takes a matrix of orientations, �phi� and generates a two-dimensional �eld of sizex×y of two-dimensional kernels �kern� of size kx×ky. Ea
h kernel has an orientation-tuned pro�legiven by the s
alar fun
tion �fun
� in a dire
tion
orresponding with the phi-value at the respe
tivelo
ation in �phi�. (Thus, these pro�les
an be plane waves, but
an not in addition be Gaussianmodulated as for Gabor wavelets. There is
urrently no dedi
ated fun
tion to set �elds of Gaborwavelets at on
e.) �Height, width, and o�set� have the same meaning as in the previous fun
tions.The fun
tion is additive.

4.6. DELAYS 434.5.4 Layers and SpikeLayersIn order to make life easier in some appli
ations, two types of �elds have been de�ned withintrinsi
ally stored sizes, Layers and SpikeLayers. These just rede�ne the more general stru
turesdes
ribed above, but use intrinsi
 variables xsize and ysize for their size.#define SPIKE_LAYER ARRAY_CHAR_TYPE // same as bMatrix#define LAYER ARRAY_FLOAT_TYPE // same as Matrix# define DEFAULTXSIZE 64# define DEFAULTYSIZE 64# define X_SIZE(_x) xsize = _x;# define Y_SIZE(_y) ysize = _y;extern int xsize, ysize;Layers rede�ne Matrix and SpikeLayers bMatrix. Similarly Fields rede�ne Kernels and UniFieldsUniKernels. Default dimensions are 64×64, whi
h
an be
hanged using the ma
ros X_SIZEand Y_SIZE above (in the fun
tion main_init()). Thereby, expli
it size arguments
an be oftenavoided:Get_Layer() // returns a Matrix of xsize * ysizeGet_SpikeLayer() // returns a bMatrix of xsize * ysizeGet_Field(z,s) // returns a field of xsize*ysize of kernels of size z*sGet_UniField(z,s) // returns a single kernels of size z*sFree_Layer(l)Free_SpikeLayer(l)Free_Field(l)Free_UniField(l)Clear_Layer(l)Clear_SpikeLayer(l)Clear_Field(z,s,l)Clear_UniField(z,s,l)Fold_Spikes_Uni(inp, kern, kx, ky, out)same as: bCorrelate_2d_Uni(inp, kern, xsize, ysize, kx, ky, out)Fold_Spikes(in, kern, kx, ky, out)same as: bCorrelate_2d(in, kern, xsize, ysize, kx, ky, out)4.6 DelaysDelaylines are
y
li
 bu�ers that
an store values of ve
tors and arrays of variables from previoussteps. The user does not need to mess with the intrinsi
 data-stru
tures of
y
li
 bu�ers. A number

44 CHAPTER 4. LIBRARIESof low-level a

ess routines are provided as well as routines
ommonly en
ountered in dealing withdelays in pool- and �eld-models.4.6.1 Containers for Delay VariablesThe following are types of
ontainer variables that
an store di�erent Felix typesVe
tor_DLMatrix_DLbVe
tor_DL;bMatrix_DL;intVe
tor_DL;intMatrix_DL;Allo
ating Delay Lines Use one of the following to allo
ate a delayline of a parti
ular type.n, r,
 are the number of elements, rows,
olumns, and l is the memory-length, ie, the maximumnumber of simulation steps that are stored.Get_Ve
tor_DL(_n, _l)Get_Matrix_DL(_r, _
, _l)Get_bVe
tor_DL(_n, _l)Get_bMatrix_DL(_r, _
, _l)Get_intVe
tor_DL(_n, _l)Get_intMatrix_DL(_r, _
, _l)Freeing Delaylines. Delaylines should be freed if no longer used by
alling one ofFree_DL(_d)Free_Ve
tor_DL(_d)Free_Matrix_DL(_d)Free_intVe
tor_DL(_d)Free_intMatrix_DL(_d)Free_bVe
tor_DL(_d)Free_bMatrix_DL(_d)Note:
alling just free(dl); is not enough. You need to use the above ma
ros. It
an be justFree_DL(_d), however, to whi
h all the other ma
ros expand.Resetting Delaylines. The following ma
ros reset a delayline to a well-de�ned state; they donot
lear the data bu�ers as su
h.Clear_DL(_d)Clear_Ve
tor_DL(_d)

4.6. DELAYS 45Clear_Matrix_DL(_d)Clear_intVe
tor_DL(_d)Clear_intMatrix_DL(_d)Clear_bVe
tor_DL(_d)Clear_bMatrix_DL(_d)Clear_bitVe
tor_DL(_d)Clear_bitMatrix_DL(_d)Setting Delaylines. The initial values of a delayline
an be de�ned by a fun
tion �fun
� ofparameters �P�. This has to de�ne values for ea
h ve
tor or matrix element and delay in thedelayline. The
alls below use the fun
tion to initialise a delayline.void Set_Ve
tor_DL(size_t n, size_t del, Delayline dl, float *P,BaseType (*fun
)(size_t x, size_t d, float *P));void Set_Matrix_DL(size_t rows, size_t
ols, size_t del, Delayline dl, float *P,BaseType (*fun
)(size_t x, size_t y, size_t d, float *P));void Set_bVe
tor_DL(size_t n, size_t del, Delayline dl,float *P,bBaseType (*fun
)(size_t x, size_t d, float *P));void Set_bMatrix_DL(size_t rows, size_t
ols, size_t del, Delayline dl,float *P,bBaseType (*fun
)(size_t x, size_t y, size_t d, float *P));void Set_intVe
tor_DL(size_t n, size_t del, Delayline dl,float *P,int (*fun
)(size_t x, size_t d, float *P));void Set_intMatrix_DL(size_t rows, size_t
ols, size_t del, Delayline dl,float *P,int (*fun
)(size_t x, size_t y, size_t d, float *P));4.6.2 A

essing ContainersThe following ma
ros sele
t delayed data-
ontainers in a delayline �dl�. It might be ne
essary to
ast types in an appli
ation
urrent(dl): returns a pointer to the
ontainer for the
urrent time-sli
elast(dl): returns a pointer to the
ontainer for the previous time-sli
en_last(dl, n): returns a pointer to the
ontainer for the time-sli
e from �n� sli
es ago (it is not
he
ked whether n is in proper bounds, ie < memory length.oldest(dl): returns a pointer to the
ontainer for the oldest time-sli
e (a

ording to the memorylength of the delay linenext(dl): returns a pointer to the
ontainer for the next time-sli
eStep_DL(_d)The ma
ro Step_DL advan
es a delay line by one step (time-sli
e). It must be invoked after theupdating of delayline data in the top-level step()-routine. It is assumed that step() stores newly

46 CHAPTER 4. LIBRARIES
omputed data in next(dl) (say, x(t+h) for disretised di�erential equations or x(t+1) for iterativemaps). The routine in
rements the DL's
urrent indexes and pointers; i.e re
ently
omputed datain �next� be
ome �
urrent�.4.6.3 Arbitrary Delays for PoolsCommuni
ation between two units in a network might take a
ertain time. In that
ase the
onne
tion is not only
hara
terised by a number (synapti
 strength), but in addition by a delayvalue. The subsequent two fun
tions take delayed �oat or binary data �in� and multiply them bya
oupling matrix �J�, su
h that ea
h individual
onne
tion has a delay as spe
i�ed by the matrix�delays� (in simulation steps). The results are stored in the Matrix �out�.void Mult_delayed_DL(int n,Matrix J, int *delays,Ve
tor_DL in, Ve
tor out);void bMult_delayed_DL(int n,Matrix J, int *delays,bVe
tor_DL in, Ve
tor out);Note: Delays are not
he
ked for falling into range boundaries.4.6.4 Convolution Fun
tions with Distan
e-dependent DelaysIn two-dimensional �elds with lo
al
onne
tivities delays
an be distan
e dependent a

ording tosome �axonal� propagation speed and possibly a �xed �synapti
 transmittion� delay, too. Thefollowing fun
tions generalise the
onvolution/
orrelation fun
tions from se
tion 4.5.2 to this
ase.Naming
onventions are the same as there, but _delayed is appended to the fun
tion names inthe
ase of �nite lateral propagation. The input, of
ourse, now must be a delay line of a
tivities.Arguments �d� and �v� in the fun
tions below are a �xed delay o�set (synapti
 delay) and the(axonal) propagation speed (in units / time step), respe
tively.Matrix Convolute_2d_Uni_delayed(Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Convolute_2d_Uni_
y
li
_delayed(Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bConvolute_2d_Uni_delayed(bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bConvolute_2d_Uni_
y
li
_delayed(bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Convolute_2d_delayed(Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Convolute_2d_
y
li
_delayed(Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bConvolute_2d_delayed(bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);

4.7. RANDOM NUMBERS 47Matrix bConvolute_2d_
y
li
_delayed(bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_Uni_delayed(Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_Uni_
y
li
_delayed(Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_Uni_delayed(bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_Uni_
y
li
_delayed(bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_delayed(Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_
y
li
_delayed(Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_delayed(bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_
y
li
_delayed(bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Note: It is not
he
ked whether delays fall into proper bounds (must be smaller than the length ofthe delaylines). The possible axonal speed �v� and �xed additive delay �d� a thereby
onstrained.Note further that theses fun
tions are less e�
ient than their non-delayed
ounterparts. Cy
li
boundaries
ause an extra slow-down.4.7 Random NumbersFelix has an internal random number generatorBased on 4-state Mersenne twister ? x-
he
k gslThe Felix-intrinsi
 random number generator should be threadsave if OpenMP or MPI, or mixesthereof are used. However, be
ause the parallel Felix extensions are quite re
ent, I haven't
he
kedthat intensively. (The binomial random number generator is known not to be threadsafe for
n >= 25 and n ∗ p > 1.)Note also, that the initialisation in
ase of MPI/OpenMP parallel
ode is very simple. In order tohave ea
h thread generate a di�erent sequen
e of random numbers, all threads
ontributing to atask are enumerated and the respe
tive thread-numbers are just added to the seed provided to therandomize() fun
tion. This
an lead to
orrelations in the numbers generated in di�erent threads.I have no experien
e yet, how serious the e�e
t
an be. Send reports if you run into trouble
ausedby this overly simple pro
edure. (I'd then try using /dev/random whi
h, however, is not veryportable and has other disadvantageous).void randomize(int seed) initialises the Felix intrinsi
 random number generator with �seed�.long rand_long(void) returns pseudo-random long integers in the range from 0 to 232 − 1 =

48 CHAPTER 4. LIBRARIES
4294967295.float equal_noise(void) returns equally distributed random numbers in the range [0, 1.0[.unsigned bool_noise(float p) returns one with probability p and zero with probability 1−p.float gauss_noise(void) returns gaussian distributed random numbers with mean zero andstandard-deviation 1.float lorentz_noise(void) returns lorentz- (or
au
hy-)distributed random numbers withmean 0 and standard-deviation 1.float binomial_noise(float p, int n) returns binomially distributed random numbers
B(k; p, n) (as �oat values). [This generator is not threadsafe for n >= 25 and np > 1. It ismainly intended for implementations of synapti
 failure, where n seems to be seldomly above 15for
orti
al neuron types.℄Whereas, the previous funtions are all built on the same Felix-intrinsi
 random number generator,the follwing fun
tion (from Press et al) uses its own me
hanism to generate random bits.unsigned int irbit(unsigned int * iseed) generates a sequen
e of random bits, i.e., zerosand ones with equal probability. Iseed is some seed value. The sequen
es are not �very� random.4.8 Sparse Ve
tors and Matri
es4.8.1 Sparse Ve
tors, semi-sparse Matri
esNOTE: Fun
tions in this se
tion might be subje
t to later
hanges as pra
ti
ality
onsiderationswill indi
ateCode for �sparse� ve
tors and matri
es is
urrently being developed. Those appear to be usefulin very large simulations where
ells are only
onne
ted with a fra
tion of other
ells. There issupport for sparse �oating point, binary (
har), and integer ve
tors and matri
es. The de�nitionsfor the �oating point types are:typedef stru
t{ int n, // a
tual valid entriesnmax; // max entris befor reallo
ationint *i; // indexesfloat *v; // values} sVe
tor_t;typedef sVe
tor_t *sVe
tor;typedef stru
t{ int m; // number of
olumnssVe
tor *w; // array of
olumn ve
tors

4.8. SPARSE VECTORS AND MATRICES 49} sMatrix_t;typedef sMatrix_t *sMatrix;Binary and integer types have an additional `b' or `i' in their names, sbVe
tor, siMatrix. Thesestru
tures are a
tually �semi�-sparse only. sVe
tors are sparse, but sMatri
es are sparse only intheir rows; the array of
olumns is
omplete and not sparse. Ea
h su
h sVe
tor
ontains the sparserow-entries of that
olumn. This re�e
ts the fa
t that ea
h neuron in a network proje
ts to atleast some other neurons. Similarly, ea
h spike is distributed to at least some other
ells.4.8.2 Allo
ating, Loading, and Saving Sparse ArraysThe following fun
tions
orrspond with those for the standard Ve
tor/Matrix types. Not all ofthese fun
tions are fully implemented at the moment, in espe
ially, none of the FILE I/O fun
tionswould work. The latter just print an error message at run-time, when
alled.sVe
tor Get_sVe
tor(int size)void Free_sVe
tor(sVe
tor v)void Clear_sVe
tor(sVe
tor v)void Empty_sVe
tor(sVe
tor v)void Show_sVe
tor(sVe
tor v)void Add_sVe
tor_Entry(sVe
tor, int i, float val)float sVe
tor_Elem(sVe
tor v, int i) // returns value v[i℄ or zerovoid Write_sVe
tor(sVe
tor v, FILE*f)void Read_sVe
tor(sVe
tor v, FILE*f)void Save_sVe
tor(sVe
tor v, FILE*f)void Load_sVe
tor(sVe
tor v, FILE*f)sMatrix Get_sMatrix(int
olumns, int rows) // order mattersvoid Free_sMatrix(sMatrix w)void Clear_sMatrix(sMatrix w)void Empty_sMatrix(sMatrix w)void Show_sMatrix(sMatrix w)void Add_sMatrix_Entry(sMatrix w, int r, int
, float val)float sMatrix_Elem(sMatrix w, int r, int
)void Write_sMatrix(sMatrix w, FILE*f)void Read_sMatrix(sMatrix w, FILE*f)void Save_sMatrix(sMatrix w, FILE*f)void Load_sMatrix(sMatrix w, FILE*f)The same fun
tions exist for binary and integer data types with an additional `b' or `i' in the names.Most of the fun
tion names should be self-explanatory. The di�eren
e between Empty_sVe
tor()and Clear_sVe
tor() ist that the �rst fun
tion just sets the number of a
tive entries in thesVe
tor to zero, whereas the 2
d fun
tion sets all a
tive synapse to 0. The same holds for thesMatrix-equivalents.

50 CHAPTER 4. LIBRARIESAdd_sVe
tor_Entry(sVe
tor v, int i, float f) adds an element with value �f� to an sVe
torat positions i. Add_sMatrix_Entry(sMatrix m, int i, int j, float f) does the same forposition (i,j) of an sMatrix �m�. If an sVe
tor or sMatrix has to be in
reased in size, this shouldhappen automati
ally. The �oating point fun
tions are additive � if the entry exists already, thenew value is added to the old; for integers and binary data the old value is overwritten.4.8.3 Sparse Matrix Ve
tor Multipli
ationsThe following are fun
tions that multiply a sparse sMatrix with various other stru
tures likeVe
tors, bVe
tors, sVe
tors, or integer arrays that just
ontain indexes of units supposed to bemomentarily a
tive.Ve
tor sMult, (sMatrix w, Ve
tor v, Ve
tor out));Ve
tor ssMult, (sMatrix w, sVe
tor v, Ve
tor out));Ve
tor sbMult, (sMatrix w, bVe
tor v, Ve
tor out));Ve
tor siMult, (sMatrix w, int n, int *idx, Ve
tor out));Ve
tor sMult_t, (sMatrix w, Ve
tor in, Ve
tor out));Ve
tor sbMult_t, (sMatrix w, bVe
tor in, Ve
tor out));Ve
tor sMult_t_delayed(sMatrix w, siMatrix d, Ve
tor_DL in, Ve
tor out)Ve
tor sbMult_t_delayed(sMatrix w, siMatrix d, bVe
tor_DL in, Ve
tor out)The �xMult_t()�-fun
tions do transposed multipli
ation, i.e., multipli
ation from the left; indexesin a
olumn of a matrix are then interpreted as indexes of units where the respe
tive
ells re
eiveinput from. The xMult-fun
tions in
ontrast assume that the
olumns
ontain outgoing synapsesof a
ell. It should (better) not be assume that any dimensions or arguments are
he
ked. Theextra argument in the delayed fun
tions is a sparse matrix of integer valued delays of the samesize as the weight matrix. It indi
ates whi
h entries in the delay line �in� are relevant for a spe
i�
synapse.
in 1 1

w

outFigure 4.1: S
heme of multipli
ation of a sparse matrix and a binary Ve
tor.Figure 4.1 depi
ts sparse multipli
ation of a sparse matrix and a binary Ve
tor. An outer loopwould run over the input ve
tor. Spikes (1's) in the input array
an be distributed in a feedforward

4.8. SPARSE VECTORS AND MATRICES 51way through the matrix, whi
h
ontains all target indexes and weights. The weights are addedto the respe
tive entries in the target ve
tor �out�. This, however,
an
ross thread boundaries(indi
ated by dashed verti
al lines), meaning that the same memory lo
ations are potentiallyupdated by di�erent threads. This
an not immediately be parallelised using OpenMP.
in 1 1

w

outFigure 4.2: S
heme of transposed multipli
ation of a sparse matrix and a binary Ve
tor.Transposed multipli
ation solves this problem as shown in Fig. 4.2. Here the
olumns in a sparsematrix are interpreted as
ontaining the indexes and weights of �in
oming� synapses to unitsin the target ve
tor �out�. The outer loop then
an run over the outputs, in whi
h
ase ea
hOpenMP-pro
ess would update a unique range of entries in the ve
tor �out�. Reading from thesame lo
ation in di�erent threads is not an issue. Even if running on several threads the routine
an be less e�
ient as the previous one on a single thread. This is be
ause it
annot make use ofsparseness in the input ve
tor as e�
ient as the forward multipli
ation.
1 1

w

out

in

d

Figure 4.3: S
heme of transposed multipli
ation of a sparse matrix and a binary Ve
tor withpropagation delays.Figure 4.3 displays how weights and delays intera
t in delayed sparse multipli
ation fun
tions. Thesparse delay matrix must have the same dimensions and represent the same
onne
tions as the

52 CHAPTER 4. LIBRARIESweight matrix. Whereas �w� provides the weights of synapses, the delay matrix determines whi
helement in the input delay line has to be sele
ted. OpenMP parallelisation is again easily possible(and implemented internally).4.8.4 Orientation Tuning Maps with Distan
e-dependent DelayssMatrix sCreate_Long_Range_Conne
tivities(int n, Ve
tor in, float s
ale, float p, float theta);This fun
tion takes a feature map �in� of size n and generates a sparse long range
onne
tionmatrix based on pi-
y
li
 di�eren
es in the features. Synapses are not
reated if the di�eren
es infeatures are bigger than �theta� (in [0,1[where 1 means `identi
al'). �s
ale� is an amplitude fa
torthat sets the global s
ale (applied AFTER �theta�). �p� is an additional probability for
reatingsynapses. Values in the feature map must be in the range [0...PI℄. Autapses are not generated;Note: This fun
tion
an be used for 1d and 2d-feature maps. 2d-arrays �in� are reinterpreted as one-dimensional arrays of total size �n�. In the 2d-
ase, however,
o-linearity or other �Gestaltprin
iples�(beside parallelism) are not taken into a

ount.siMatrix Make_Delays_from_Weight_Matrix(sMatrix w, int xsize, float d0, float v0);This fun
tion takes a weight matrix generated by the previous fun
tion and
omputes a delay ma-trix from it assuming a 1- or 2-dimensional network topology and distan
e dependent propagationspeeds. If xsize is 0 a one-dimensional topology is assumed, otherwise, �xsize� is the size of thex-dimension in a 2D neural �eld (the number of
olumns, ie., total number of units, in the matrixmust be a multiple of xsize in that
ase). d0 is a �xed delay and v0 the propagation delay. Unitsare in simulation time-steps and lateral units per simulation time respe
tively. The returned delayswill be integers su
h taht they
an be immediately used for indexing elements in a delay line.The weight and delay matri
es returned by the previous two fun
tions
an be used in
onjun
tionwith the sMult_t_delayed() and sbMult_t_delayed() fun
tions.4.8.5 Displaying Sparse Arrays in the GUIThe graphi
al user interfa
e of Felix
annot display sparse Ve
tors and Matrix. You need to
onvertthem befor, using, e.g.,extern Ve
tor Make_Ve
tor_From_sVe
tor(sVe
tor v, int n, Ve
tor out);extern Matrix Make_Matrix_From_sMatrix(sMatrix m, int r, int
, Matrix out);�out� must point to memory spa
e of appropriate spa
e when these fun
tions are
alled. A pointerto �out� is returned. �out�
an then be used as usual as an argument to views in the graphi
al userinterfa
e.

4.8. SPARSE VECTORS AND MATRICES 534.8.6 Example: Sparse Integrate-and-Fire NetworkHere is an example for a leaky-integrate-and-�re network with sparse
onne
tivity. Only tensynpases per neuron/
olumn are allo
ated from s
rat
h. About a tenth per
olumn are initialisedby Gaussian random numbers. Missing synapses are automati
ally allo
ated.Note that the system size is 900, be
ause for small sizes the GUI takes most of the
omputationtime (as long as display windows are open), whi
h is unwanted for proper
omparisons. In orderto keep display windows at reasonable sizes, we have restri
ted the maximal sizes in the viewde
larations./* Example-program: sinf.
 -- integrate and fire networkwith sparse
onne
tivity matrix */# in
lude <felix.h># in
lude <sparse.h># define N 900 /* number of neurons */# define tau 10. /* membrane time
onstant */Ve
tor x; /* potentials */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */sMatrix spJ; /* sparse
onne
tivity matrix <<------------- */Matrix J; /*
onne
tions for display */SliderValue sI = 100; /* Common input to units */SliderValue sJ0 = 50; /* Coupling strength */SliderValue ssigma = 0; /* noise level */BEGIN_DISPLAYSLIDER("input", sI, 0, 200)SLIDER("
oupling", sJ0, 0, 200)SLIDER("noise", ssigma, 0, 100)WINDOW("time
ourses")IMAGE("x", AR, AC, x, VECTOR, 10, 10, 0.0, 1.0, 4)RASTER("x", NR, AC, x, VECTOR, MIN(100, N), 0, 0.0, 1.0, 1)GRAPH("x", NR, AC, x, VECTOR, MIN(100, N), 0, 0, 0, -.01, 1.01)RASTER("out", NR, AC, z, bVECTOR, MIN(100, N), 0, -.01, 1.01, 2)WINDOW("
ouplings")IMAGE("J", AR, AC, J, CONSTANT MATRIX,MIN(100, N), MIN(100, N), -4./N, 4./N, 2)

54 CHAPTER 4. LIBRARIESEND_DISPLAYNO_OUTPUTint main_init(){ randomize(time(NULL));SET_STEPSIZE(.1)spJ = Get_sMatrix(N, 10); // only ten synapses per neuron// are allo
ated from s
rat
hJ = Get_Matrix(N, N);x = Get_Ve
tor(N);z = Get_bVe
tor(N);v = Get_Ve
tor(N);}int init(){ int i,j;Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);for (i=0; i<N; i++)x[i℄ = equal_noise();Empty_sMatrix(spJ); // <<-----for (i=0; i<N; i++) // <<-----for (j=0; j<N/10; j++) // only N/10 trials per
olumn // <<-----Add_sMatrix_Entry(spJ, i , (int)(N*equal_noise()) , // <<-----10.0 / N * (1. + .4*gauss_noise())); // <<-----Make_Matrix_From_sMatrix(spJ, N, N, J); // make a Matrix for the GUI}int step(){ int i;for (i=0;i<N;i++)leaky_integrate (tau, x[i℄,0.01*(sI + sJ0*v[i℄ + ssigma*gauss_noise()));Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetClear_Ve
tor(N, v); // need to
lear expli
itly // <<-----sbMult(spJ, z, v); // sparse Matrix times non-sparse bVe
tor // <<-----

4.9. DYNAMIC SYNAPSES 55}4.9 Dynami
 SynapsesIn most te
hni
al neural networks synapses are simply represented by numbers, their weights.This is enough for many algorithms in learning theory, pattern re
ognition, or asso
iative learningand retrieval. Biologi
al synapses are more
ompli
ated. They reveal dynami
 properties likefa
ilitation and depression, they fail sto
hasti
ally, and responses to stimuli do show transienttime-
ourses usually
hara
terised by so-
alled alpha-fun
tions. It is possible to implement su
hproperties in a Felix program using just the
onstru
ts des
ibed so far. This would require expli
it
ode for the desired dynami
 properties. Be
ause they are of quite some importan
e in
omputa-tional neuros
ien
e dynami
 synapses are now supported by Felix in a more systemati
 manner.There are new
lasses �SynapseVe
tors� and �SynapseMatri
es� that integrate typi
al properties ofbiologi
al synapses into the Felix
ore fun
tionality.Note: During the
ourse of developing these
omponents, the implemented fun
tional propertiesand the underlying
ode got progressively more
omplex. Usage of SynapseMatri
es is now a littlemore
ompli
ated as initially envisaged; the Felix-intrinsi

ode base is also not the most elegant.Later
hanges to this part of Felix are therefore not unlikely. For the time being, however, thesynapses
lasses should be useable.4.9.1 Types of Synapti
 Dynami
sAs explained, biologi
al synapses are more than just numbers. They reveal a pretty ri
h variety ofdynami
al penomena. The most typi
al phenomena are:Temporal response fun
tion: The response of a synapse to an in
oming spike (e.g., in termsof transmitter release or post-synapti

hanges in potentials) is a unimodal fun
tion of time,whi
h rises with a
ertain time
onstant and de
ays roughly exponentially after havingrea
hed a single maximum. In the present do
ument we
all su
h fun
tions alpha-fun
tions.They
an be des
ribed by �spike-response fun
tions� whi
h arise as responses of low-pass �l-ters to short impulses (spikes) at the input. Depending on the number of subsequent low-pass�lters the �order� of the alpha-fun
tion
an be di�erent. Common are 0, 1, and 2
d orderalpha-fun
tions,
orresponding with jumps, de
aying exponentials, and smoothly rising andfalling post-synapti
 potentials (or
urrents), respe
tively. More about this in subse
ion ??.Adaptation and Fa
ilitation: The total amplitude of synapti
 responses
an adapt on s
ales oftypi
ally several hundreds of millise
onds to the frequen
y of in
oming spike-trains. Depend-ing on whether the amplitude de
reases or is suppressed one speaks of synapti
 fa
ilitationor adaptation.Failure: Synapti
 transmitter release is not a 100 per
ent reliable, but is a sto
hasti
 pro
ess.Embedded in the presynapti
 membrane are dis
rete �vesi
les� that
ontain roughly thesame amount of neurotransmitter, the �release quantum�. If a spike arrives at a synapse a
ertain small number of vesi
les release their transmitter and
an thereby evoke
hanges onthe post-synapti
 side. The number of released vesi
les is well des
ribed by a binomially

56 CHAPTER 4. LIBRARIESdestributed random variable where the probability of release at a single release site and thenumber of su
h sites
an vary widely between synapse
lasses.Models of these three phenomena have been des
ribed in the literature. Felix implements the most
ommon of these models in a way that allows to
ombine their properties in any mixed synapsetype.Figure 4.4 displays a s
heme of the generi
 synapse model. At a synapse, spikes are �rst fed intoa failure stage a

ording to the npq-model, then into a Barak/Tsodyks-stage for fa
ilitation anddepression, �nally into a 0/1/2-order low-pass �lter that generates alpha-fun
tion-type
ondu
tan
e
hanges, g(t). Ea
h of the stages
an be by-passed (not shown).
failure adapt/facil alpha

TM−model g(t)spike

δ()t

k

q?

npq−model 0/1/2−order
low−passFigure 4.4: Three stages
ontributing to synapti
 dynami
sArrival of delta-spikes leads to generation of a binomially distributed randmon number k in the �rststage. �Something� (see below) is fed into the BT-model in turn. That model has two variables

u and x and three parameters: baseline U , and adaptation and fa
ilitation time-
onstants τAand τF . Output of the BT-model is low-pass �ltered to obtain alpha-fun
tion-type post-synpati

ondu
tan
e
hanges.The main problem when integrating the individual models o

urs between the npq-model and theBT-model: What does the npq-model feed into the BT-model? δ(t), k*δ(t), kq*δ(t), kq/n*δ(t),...?How, in turn, impa
ts the �release probability� u(t) of the BT-model on that of the npq-model, p?The following se
tions des
ribe the dynami
s of the respe
tive stages in more detail. Afterwardstheir
ombination is dealt with.4.9.2 npq-model: synapti
 failurenpq-model: A spike arriving at a synapse is assumed to release transmitter at a binomially dis-tributed number of release sites out of a number of n. Release probability for a single site is p,and release quantum is q. So, after passing this stage we know the number of released sites, ie. arandom variable,
alled k, the amount of released transmitter kq, the average npq, the fra
tion ofsites that released k/n, et
.4.9.3 BT-model: fa
ilitation and depressionThe Barak/Tsodyks-model as given in [? ℄ for a single synapse reads
du

dt
=

U − u

τf

+ U(1 − u)s(t) (4.3)
dx

dt
=

1 − x

τr

− uxs(t) (4.4)

4.9. DYNAMIC SYNAPSES 57The s(t) are sequen
es of arriving Dira
-spikes. U ≈ .05, τf , τr are parameters. The amplitude ofthe evoked event is proportional to u ∗ x. A

ording to Barak&Tsodyks
U is the �utilisation�, �analogous to release probability�
τf , τr are time-
onstants for fa
ilitation and depression
u(t) is the running value of utilisation; it is fa
ilitated by every spike; de
ays to U with time-
onstant τf

x(t) is the running fra
tion of available neurotransmitter in proportion to u; re
overs to baseline1 with time-
onstant τrIn response to a delta-spike the model reveals a typi
al amplitude of level U (up to fa
ilitation anddepression). If fa
iliation or depression are large, typi
ally at high rates, the amplitude level
ansigni�
antly deviate from U . This is, of
ourse, desired.Event-driven integration. As long as one is not interested in the pre
ise time-
ourse of u and
x it is possible to use event-based simulation for the adaptation/fa
ilitation-pro
ess, meaning thatthe variables u and x need only be updated at times where spikes arrive at a parti
ular synapse,and not in every simulation time-step.Figure 4.5 displays the time-
ourse of u and x between two spikes at times tn and tn+1. Note thatboth variables are
on�ned to the interval [0, 1], whi
h makes sense be
ause u is �utilisation/releaseprobability� and x is the �available fra
tion� of u. In fa
t, u is even always larger than U , thebaseline level of u that is asymptoti
ally rea
hed if no spikes arrive for times ≫ τF .A

ording to the �gure, the event-driven update at time t is (with t = tn+1 − tn):

u(tn+1−) = (u(tn+) − U) exp(−t/τF) + U (4.5)
u(tn+1+) = u(tn+1−) + ∆u = u(tn+1−) + U(1 − u(t?)) (4.6)
x(tn+1−) = 1 − (1 − x(tn+)) exp(−t/τF) (4.7)
x(tn+1+) = x(tn+1−) − ∆x = x(tn+1−) − x(t?)u(t?) (4.8)In (4.5) to (4.8), f(t±) = limǫ→0 f(t ± ǫ), ie, the values of the fun
tion f immediately before (t−)or after (t+) time t.Note the question marks in (4.6) and (4.8). At the time of spikes the variables u and x jumpdis
ontinuously, u(t−) 6= u(t+) and x(t−) 6= x(t+). It would appear natural to use the left-limitsright before the spike arrives, however, it seems that in some of Tsodyks' papers the right-limit isused at least for u(t?) in (4.8). This would mean that fa
iliation is pra
tially instantaneous andadaptation slighly slower so that it depends on the already fa
iliated new utilisation value. Thismight or not be so. From a modellers point of few it is a matter of
hoi
e (multiplying the numberof possible model variants by 2).4.9.4 Alpha fun
tion
ondu
tan
e
hangesThere is not mu
h to say about this third synapti
 dynami
s step. The output of the
ombinednpq-BT-model is still a series of delta-fun
tions, but of variable mass (depending on how manysites release transmitter, how high the fa
ilitation level is, et
).

58 CHAPTER 4. LIBRARIES
u

∆n

n+1

u
u

−

un+1
+

n

n+1

∆
n+1

−

+

n n+1t t

t n t n+1

x

x

x

0

1

0

1

U

x

Figure 4.5: Time-
ourse of utilisation u(t) (release prob) and running (available) fra
tion thereof,
x(t), between two spikes.In order to generate
ondu
tan
e
hanges, g(t), the output is fed into a 0/1/2-order low-pass �lter(depending on
hoi
e). The resulting alpha-fun
tions
an then be used in dynami
 equations for
ondu
tan
e based (4.9) or
urrent based (4.10) membranes.

Ci

dVi

dt
= −gL · (Vi(t) − VL) +

∑
j

gij(t) ∗ (Vi − Vrev)
ondu
tan
e-based (4.9)
Ci

dVi

dt
= −gL · (Vi(t) − VL) +

∑
j

gij(t) ∗ (V̄i − Vrev)
urrent-based (4.10)
Vrev is the reversal potential of the
lass of synapses and V̄i the mean membrane potential of neuron
i.Note: In (4.10) V̄i −Vrev is a
onstant in
ontrast to Vi −Vrev in (4.9) (see Brette et al., [? ℄). Thismeans (4.9) is more di�
ult to integrate in an event driven manner than (4.10). For some
asesthere are event-based s
hemes for (4.9) but (probably) no existing simulation tool implementsthem (depends on whether an expli
it solution of the impulse response fun
tion is available or not;
an be very tri
ky in general, see Brette 2006 [? ℄, for a
omparably �simple�
ase).

4.9. DYNAMIC SYNAPSES 594.9.5 Coupling of npq- and BT-model
p in the npq-model is
onsidered a release probability but u in the BT-model is, too. So, do theya
tually have to do something with ea
h other? In the
oupled npq-BT model we identify U , thebaseline value of u(t) in the BT-model, with p, the parameter for the release-probability in thenpq-model and to
hoose for p in an a
tual spike event the running value of u.That means, if a spike arrives, �rst a binomial random number for the releasing sites is generateda

ording to B(k; n, u(tn−)). A fa
ilitated synapse thus will have a higher running value of therelease probability u(tn−).In the BT-model, U is in turn repla
ed by p from the npq model, su
h that asymptoti
ally atlow �ring rates (
ompared to the fa
ilitation/depression time-
onstants) u approa
hes the value p(whi
h then is used e�e
tively in the npq-model). If spike-frequen
y in
reases, the e�e
tive releaseprobability (now u(t)) adapts or fa
ilitates, a

ordingly.

u(tn+1−) = (u(tn+) − p) exp(−t/τF) + p (4.11)
x(tn+1−) = 1 − (1 − x(tn+)) exp(−t/τF) (4.12)For the jumps at spike times we
hoose

u(tn+1+) = u(tn+1−) + ∆u = u(tn+1−) + cF k/n(1 − u(t−)) (4.13)
x(tn+1+) = x(tn+1−) − ∆x = x(tn+1−) − cAx(t−)k/N (4.14)Observe that we have added fa
tors 0 ≤ cA, cF ≤ 1 that
an be used to
ontrol the amount ofadaptation.fa
ilitation after ea
h spike. The original BT-model uses cA = cF = 1.Note further that E[k/n] = u(t−) in the present framework. For low �ring rates E[k/n] =

u(t−) → p = U , su
h that the updates
onverge to the BT-limits up to the sto
hasti
ity oftransmitter release. The updates with k/n repla
ed by E[k/n] = u(t−)
an be seen as some kindof �mean-�eld� model where the a
tual sto
hasti
ity in the transmitter release is repla
ed by themeans of the released transmitter.In the Barak-Tsodyks model the response to a spike is ∼ xu. The output of the
ombined modeldis
ussed here is a series of delta-fun
tions at the same times as the input spikes. Their amplitudesare x(t−)k/n, be
ause k/n is the relative number of releasing sites (note, E[k/n] = u(t−)) and
x(t−) is the fra
tion of (remaining) utilisation (fresh = 1), that is if x is smaller than 1 lesstransmitter than maximally possible is released.The parameter q from the npq-part is ignored in the present model. It would be an additionalfa
tor applied to the a
tual outputs. However, the model implementation already
ontains synapti
weights, whi
h
an in
orporate the q values. This somewhat redu
es memory spa
e-requirementsand numeri
al
omplexity. U the baseline level from the BT-model part is also ignored be
ause itis identi�ed with p.4.9.6 Type Sele
tion and Parameter Stru
turesFelix implements the three dynami
 me
hanism des
ribed above in a
ombinable man-ner in SynapseVe
tors and SynapseMatri
es. In order to spe
i�y the desired mix several

60 CHAPTER 4. LIBRARIESma
ros have been de�ne that
an be used in
onstru
tirs for synapse matri
es and ve
-tors (see, e.g., 4.9.7). SYNAPSE_TYPE_ALPHA, SYNAPSE_TYPE_ADAPTATION, andSYNAPSE_TYPE_FAILURE sele
t individual dynami
 me
hanisms, the other ma
ros de�nedbelow provide
onvenient short
uts.Synapse Types# define SYNAPSE_TYPE_ALPHA 0x01# define SYNAPSE_TYPE_ADAPTATION 0x02# define SYNAPSE_TYPE_FAILURE 0x4# define ALPHA_SYNAPSE SYNAPSE_TYPE_ALPHA# define ADAPTING_SYNAPSE (SYNAPSE_TYPE_ALPHA | SYNAPSE_TYPE_ADAPTATION)# define FAILING_ALPHA_SYNAPSE (SYNAPSE_TYPE_ALPHA | SYNAPSE_TYPE_FAILURE)# define FAILING_ADAPTING_SYNAPSE (SYNAPSE_TYPE_ALPHA |SYNAPSE_TYPE_ADAPTATION |SYNAPSE_TYPE_FAILURE)Synapse ParametersEa
h synapti
 dynami
 me
hanism
an be des
ribed by a number of parameters. Stru
tures havebeen de�ned to
olle
t these data.AlphaParameters alpha;AdaptParameters adapt;FailureParameters failure;The parameter stru
tures have to be allo
ated before use and should be freed afterwards. A givenstru
ture
an be set by the
orresponding Set_xxx_Parameters fun
tion, whereas a
opy of it isreturn by one of the Dup_xxx_Parameters fun
tions. Show_xxx_Parameters prints the valuesof a parameter stru
ture to s
reen (mainly for debugging).AlphaParameters Get_Alpha_Parameters(float taur, float tauf)AdaptParameters Get_Adapt_Parameters(float U, float tauA, float tauF,float
A, float
F)FailureParameters Get_Failure_Parameters(int n, float p, float q)Free_Alpha_Parameters(r)Free_Adapt_Parameters(r)Free_Failure_Parameters(r)AlphaParameters Set_Alpha_Parameters(AlphaParameters r,float taur, float tauf)AdaptParameters Set_Adapt_Parameters(AdaptParameters s,float U, float tauA, float tauF,float
A, float
F)

4.9. DYNAMIC SYNAPSES 61FailureParameters Set_Failure_Parameters(FailureParameters s,int n, float p, float q)AlphaParameters Dup_Alpha_Parameters(AlphaParameters r)AdaptParameters Dup_Adapt_Parameters(AdaptParameters r)FailureParameters Dup_Failure_Parameters(FailureParameters r)void Show_Alpha_Parameters(AlphaParameters r)void Show_Adapt_Parameters(AdaptParameters r)void Show_Failure_Parameters(FailureParameters r)Lo
al and Shared ParametersParameters
an be lo
al or global with respe
t to SynapseVe
tors or SynapseMatri
es. In the �rst
ase ea
h synpase may have individual values, whereas in the se
ond they are shared among all ofthem. The latter obviously requires less memory and also allows for slightly faster
ode.Whether a SynapseVe
tor or SynapseMatrix uses shared parameters depend on how it is
on-stru
ted and
annot be
hanged afterwards. If parameters for any of the three synapti
 dynami
me
hanisms are supplied during
reation of a ve
tor or matrix that parameter is global. Otherwisespe
i�
 parameter sets must be supplied when synapses are a
tually added to the matrix.4.9.7 Synapse Ve
tors and Matri
esSynapseVe
tors and SynapseMatri
es have sparse entries in very mu
h the same way as sparseVe
tors and Matri
es des
ribed in se
tion 4.8. They just add dynami
 me
hanisms intrinsi
ally.That is, Ve
tors and entries in Matrix
olums are sparse, but the number of matrix
olumns is not.Again, this is motivated by the fa
t that ea
h neuron usually does have at least a few synapses or,
onversely, ea
h spike is distributed to at least some neurons in a network.SynapseVe
torsSynpaseVe
tors are sparse ve
tors. They have to be allo
ated before usage and should be freedafterwards.SynapseVe
tor Get_SynapseVe
tor(int n, int flags,AlphaParameters alpha,AdaptParameters adapt,FailureParameters failure)void Free_SynapseVe
tor(SynapseVe
tor)In Get_SynapseVe
tor, n, is the initial size that may
hange as more synapses get added. �agsde�ne the type of the synapse, ie, whi
h dynami
 me
hanisms it
omprises. The type ma
ros fromsubse
tion 4.9.6 have to be used here. The remaining three arguments are parameter sets for ea
hof the three synpati
 dynami
 me
hanisms. If any of these is non-zero, that respe
tive parameterset is shared among all synapses in the ve
tor. Parameter sets provided later if synapses are

62 CHAPTER 4. LIBRARIESa
tually added are ignored in this
ase. Note also, that parameters (lo
al or shared) are ignored,if the respe
tive type is not spe
i�ed in the �ags-argument. See, se
tion 4.9.9 for an example.Synapses are added to a SynapseVe
tor v usingvoid Add_SynapseVe
tor_Entry(SynapseVe
tor v, int i, float weight, int delta,AlphaParameters alpha,AdaptParameters adapt,FailureParameters fail)Here, i, weight, and delta are the index, weight and time-delay (in multiples of the simulation time-step) of the addded synapse. Dupli
ate indexes overwrite previous entries. If a SynapseVe
tor haslo
al parameters for any of the di�erent dynami
 me
hanisms, these parameters must be providedas arguments at synapse
reation. If parameter values are supplied but that parameter set hasbeen made shared during Ve
tor
reation, the new values are ignored.A
ouple of fun
tions exist to manage SynapseVe
torsvoid Empty_SynapseVe
tor(SynapseVe
tor)void Show_SynapseVe
tor(SynapseVe
tor)void Show_SynapseVe
tor_Index(SynapseVe
tor sv).. more to
ome ...Empty_SynapseVe
tor dis
ards allo
ated stru
tures, ex
ept global parameters. This
an be used ifrepeated reinitialisation are desired in the top-level init()-routine, but a SynapseVe
tor is de
laredin main_init (as it would usually be the
ase).Show_SynapseVe
tor and Show_SynapseVe
tor_Index are basi
ally for debugging.SynapseMatri
esSynapseMatri
es are non-sparse arrays of SynapseVe
tors similar as for sparse Ve
tors and Matri-
es. Their fun
tionality parallels that of SynapseVe
tors. Most of the fun
tions below work in thesame way as their ve
tor
ounterparts. See previous subse
tion for further explanations.SynapseMatrix Get_SynapseMatrix(int m, int n, int flags,AlphaParameters alpha,AdaptParameters adapt,FailureParameters failure)void Free_SynapseMatrix(SynapseMatrix)void Empty_SynapseMatrix(SynapseMatrix)void Add_SynapseMatrix_Entry(SynapseMatrix, int, int,float value, int delay,AlpahParameters,

4.9. DYNAMIC SYNAPSES 63AdaptParameters,FailureParameters)void Show_SynapseMatrix(SynapseMatrix)void Show_SynapseMatrix_Index(SynapseMatrix sm)Matrix Make_Matrix_From_SynapseMatrix(SynapseMatrix m,int r, int
, Matrix out)Ve
tor Get_Weight_Sums(SynapseMatrix w, Ve
tor out)The fun
tion Make_Matrix_From_SynapseMatrix
onverts the sparse weights of a SynapseMatrixinto a non-sparse standard Matrix. This is ne
essary to display a weight matrix in the graphi
aluser interfa
e.Get_Weight_Sums
al
ulates a ve
tor out of the sums of the synapses in the rows of a SynapseMa-trix w.4.9.8 Synapti
 Matrix-Ve
tor Multipli
ation and UpdatesSparse Multipli
ationsThere are a number of multipli
ation fun
tions analogous to those for sparse matri
es:Ve
tor Synapse_Mult_t(SynapseMatrix w, Ve
tor in, Ve
tor out)Ve
tor Synapse_bMult_t(SynapseMatrix w, bVe
tor in, Ve
tor out)Ve
tor Synapse_Mult_t_delayed(SynapseMatrix w, Ve
tor_DL in, Ve
tor out)Ve
tor Synapse_bMult_t_delayed(SynapseMatrix w, bVe
tor_DL in, Ve
tor out)These fun
tions only use the synapti
 weights for a sparse matri
s ve
tor multipli
ation. Thedynami
 properties even if they are set are entirely ignored. They are mainly for testing. It willtypi
ally be better to use sparse matri
es if dynami
 properties are not needed, be
ause the sparsematrix fun
tions should be more e�
ient in regard of spa
e and time requirements.Dynami
 Synapse Matrix UpdatesThe following fun
tions do matrix-ve
tor multipli
ations on sparse matri
es and update the internalSynapseMatrix stru
tures per time-step.Ve
tor Synapse_bMult_Update_t_alpha(SynapseMatrix w, bVe
tor in, Ve
tor out)Ve
tor Synapse_bMult_Update_t_alpha_delayed(SynapseMatrix w, bVe
tor_DL in,Ve
tor out)Ve
tor Synapse_bMult_Update_t_failure(SynapseMatrix w, bVe
tor in, Ve
tor out)Ve
tor Synapse_bMult_Update_t_failure_delayed(SynapseMatrix w, bVe
tor_DL in,Ve
tor out)

64 CHAPTER 4. LIBRARIESVe
tor Synapse_bMult_Update_t_adaptation(SynapseMatrix w, bVe
tor in, Ve
tor out)Ve
tor Synapse_bMult_Update_t_adaptation_delayed(SynapseMatrix w, bVe
tor_DL in,Ve
tor out)Ve
tor Synapse_bMult_Update_t_adaptation(SynapseMatrix w, bVe
tor in, Ve
tor out)Ve
tor Synapse_bMult_Update_t_adaptation_delayed(SynapseMatrix w, bVe
tor_DL in,Ve
tor out)Ve
tor Synapse_bMult_Update_t(SynapseMatrix w, bVe
tor in, Ve
tor out)Ve
tor Synapse_bMult_Update_t_delayed(SynapseMatrix w, bVe
tor_DL in, Ve
tor out)
w is the SynapseMatrix under
onsideration, in a binary input ve
tor or delay line (of spikes), and
out the output (of instantaneous synapti

ondu
tan
es).The time-s
ale used for the internal update is set by the SET_STEPSIZE ma
ro, see ??. The
urrent simulation step or time is returned by SIM_STEP and SIM_TIME, respe
tively.The Synapse_bMult_Update_t_xxx_delayed - versions of the fun
tions use delays de�ned persynapse. The fun
tions without the _delayed su�x ignores delays even if they have been de�ned.Di�erent versions have been implemented for di�erent
ombinations of alpha, adaptation, andfailure. This has signi�
ant speed advantages. The Synapse_bMult_Update_t fun
tion and itsdelayed
ounterpart are wrapper that
ombine the more spe
i�
 fun
tions (see below).Synapse_bMult_Update_t_alpha only uses the alpha-part of a dynami
 synapse. If adaptationor failure parameters are de�ned at matrix
reation, they are
ompletely ignored.Synapse_bMult_Update_t_failure only uses the failure part and if given also the alpha-part of adynami
 synapse. If adaptation parameters are de�ned, they are
ompletely ignored. Parameterq is ignored in the present implementation (should be joined into the synapse weight).Synapse_bMult_Update_t_adaptation only uses the adaptation/fa
ilitation part and if givenalso the alpha-part of a dynami
 synapse. If failure parameters are de�ned, they are
ompletelyignored. This is the standard Tsodyks-Markram model as de
ribed above.Synapse_bMult_Update_t_Up
ombines the npq-model with the Barak-Tsodyks model in themanner as des
ribed above. If an alpha-part is also given it is
onsidered in this update-fun
tion,too. Parameters q and U are ignored in this model variant.The above fun
tions with the ex
eption of Synapse_bMult_Update_t_delayed andSynapse_bMult_Update_t don't use the Matrix-type �ags for de
iding whi
h dynami
 me
h-anisms are used, be
ause the kind of update is expli
itely spe
i�ed. The user has to make surethat Matri
es are
reated with types that �t the respe
tive update fun
tions. Tests are usuallynot done, whi
h
an result in
ore-dumps.The fun
tions Synapse_bMult_Update_t_delayed and Synapse_bMult_Update_t are wrappersthat
all the other fun
tions based on the Matrix-type �ags. E.g., for Synapse_bMult_Update_t(and analogously for Synapse_bMult_Update_t_delayed):
ase 0: // just multipli
ationreturn Synapse_bMult_t(w, in, out);

4.9. DYNAMIC SYNAPSES 65
ase SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_alpha(w, in, out);
ase SYNAPSE_TYPE_FAILURE:
ase SYNAPSE_TYPE_FAILURE|SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_failure(w, in, out);
ase SYNAPSE_TYPE_ADAPTATION:
ase SYNAPSE_TYPE_ADAPTATION|SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_adaptation(w, in, out);
ase SYNAPSE_TYPE_FAILURE|SYNAPSE_TYPE_ADAPTATION:
ase SYNAPSE_TYPE_FAILURE|SYNAPSE_TYPE_ADAPTATION|SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_Up(w, in, out);Note: All of the above fun
tions not only do the multiply-a

umulate to
ompute
ondu
tan
e
hanges, but also update intrinsi
 data stru
tures. Therefore, for ea
h synapse matrix they haveto be
alled exa
tly on
e in a single simulation time-step.Note 2: In prin
iple the
olumns of a SynapseMatrix
an have di�erent types, be
ause they areSynapseVe
tors. This would allow to have parameters shared
olumnwise (ie neuron-wise). TheUpdate fun
tions should take di�erent
olumn types into a

ount. However, this is a
ompletelyuntested feature. (To use it one has to use low-level ma
ros and data-stru
tures, see synapse.
/h.)4.9.9 Example: Integrate-and-Fire Network with Dynami
 SynapsesThe example below implements a network of leaky-integrate-and-�re neurons with dynami
synapses. The
ode looks very similar to earlier examples. Therefore, some parts have beenleft out. The main di�eren
es are indi
ated by arrows. Note that the synapti
 dynam-i
s as su
h is hidden from the user in the Synapse_bMult_Update_t-fun
tion � the leaky-integration in the step-fun
tion is only for the membranes. The �ags SYNAPSE_TYPE_ALPHA,SYNAPSE_TYPE_ADAPTATION, SYNAPSE_TYPE_FAILURE in the initialisation of thesynapti
 matrix
ontrol the type mix of the synapses.In this example, all synapses have identi
al parameters, be
ause these are supplied already glob-ally at initialisation of the matrix in the Get_SynapseMatrix-
all in main_init(). This
an-not be
hanged later. If some parameters need to be di�erent for di�erent synapses the re-spe
tive parameter
onstru
tor needs to be repla
ed by 0 in the Matrix de�nition. Instead, ithas to be spe
i�ed when synapses are a
tually added to the matrix in the init()-routine usingAdd_SynapseMatrix_Entry(). Note that any parameters are ignored, if the
orresponding type isnot sele
ted in the matrix de�nition. The types sele
ted in the SynapseMatrix allo
ation spe
i�ywhi
h steps in the s
heme in �gure 4.4 are exe
uted and whi
h not.Finally note, that the synapses in the example shown below have no delays; intera
tions areinstantaneous, be
ause the respe
tive delay arguments when synapses are added to the matrixsynJ in the init-fun
tion are 0. There is an example syn_inf_del in the Felix expl-dire
tory, thatshows how the program syn_inf
an be modi�ed to allow for delays.

66 CHAPTER 4. LIBRARIES/* Example-program: syn_inf.
integrate and fire network with sparse
onne
tivitymatrix of dynami
 synapses with failure, adaptation,depression, and 0/1/2-order alpha-fun
tions*/# in
lude <felix.h># define N 900 /* number of neurons */# define tau 10. /* membrane time
onstant */Ve
tor x; /* potentials */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */SynapseMatrix synJ; /* synapti

onne
tivity matrix */ <------------Matrix J; /*
onne
tions for displaying */BaseType mean;SliderValue sI = 100; /* Common input to units */SliderValue sJ0 = 50; /* Coupling strength */SliderValue ssigma = 0; /* noise level */BEGIN_DISPLAY// same as sinf.
 ; not repeated hereEND_DISPLAYNO_OUTPUTint main_init(){ randomize(time(NULL));SET_STEPSIZE(.5)// starts empty with N
olumns; all parameters global <-----------synJ = Get_SynapseMatrix(N, 0,SYNAPSE_TYPE_ALPHA| SYNAPSE_TYPE_ADAPTATION| SYNAPSE_TYPE_FAILURE,Get_Alpha_Parameters(3., 5.), // tau_r tau_fGet_Adapt_Parameters(.05, 100., 500.), // U tau_re
 tau_fa
ilGet_Failure_Parameters(5, .3, 1.)); // n p qJ = Get_Matrix(N, N);

4.9. DYNAMIC SYNAPSES 67x = Get_Ve
tor(N);v = Get_Ve
tor(N);z = Get_bVe
tor(N);}int init(){ int i,j;SynapseVe
tor sv;Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);for (i=0; i<N; i++)x[i℄ = equal_noise();Empty_SynapseMatrix(synJ); <---------------------for (i=0; i<N; i++) <---------------------for (j=0; j<(int)(0.02*N); j++)Add_SynapseMatrix_Entry(synJ, i, (int)((N-1)*equal_noise()) ,1., 0, // weight 1, delay 00, 0, 0); // no lo
al parametersMake_Matrix_From_SynapseMatrix(synJ, N, N, J); <--- for display}int step(){ int i;for (i=0;i<N;i++) //
urrent-based noisy integrate and fire neuronsleaky_integrate (tau, x[i℄,0.01*(sI + sJ0*v[i℄ + ssigma*gauss_noise()));Fire_Reset(N, x, 1.0, 0.0, z);Synapse_bMult_Update_t_Up(synJ, z, v); <---------------------mean = Sum(N, v)/N;}4.9.10 Pat
hy Conne
tivities in SynapseMatri
esIt is often desired that a Neuron re
eives input from
ells in a
ertain region, e.g., interneuronsoften sample a
tivity from
ells in their surrounding only.

68 CHAPTER 4. LIBRARIESThe following few fun
tions help setting up su
h kind of lo
al
onne
tivities. They take a Synap-seVe
tor sv whi
h is supposed to hold the synapses of a target neuron and re
eives input fromsour
e
ells around lo
ation (x0, y0) in a �eld of size n × m. Observe, that if (x0, y0) are the
oordinates of the
ell itself, inputs will be sampled from the immediate surrounding of the
ell,but (x0, y0)
an also be a lo
ation distant from the target neuron. In any
ase only synapses upto at most a distan
e dmax from (x0, y0) are
reated.In these fun
tions weights
an be distan
e dependent a

ording to a user-de�ned fun
tion (in
ludingthe Felix-intrinsi

onst_fun
). The di�erent versions of the fun
tions deal di�erently with delaysand the possibility to generate synapses will
ertain probabilities only. There
an be
onstantdelays (the same for all synapses
reated) or distan
e-dependent delays generated a

ording to auser-de�ned fun
tion. Dilution of a
onne
ivity pathway
an similarly be
ontroled by a distan
e-dependent fun
tion.void Synapse_Add_Cir
ular_Pat
h(SynapseVe
tor sv,float x0, float y0, int n, int m, float dmax,float ampl, float s
ale, float (*fun
) (float),float delay)void Synapse_Add_Cir
ular_Pat
h_Delayed(SynapseVe
tor sv,float x0, float y0, int n, int m, float dmax,float ampl, float s
ale, float (*fun
) (float),float dfa
, float (*delayfun
)(float))void Synapse_Add_Diluted_Cir
ular_Pat
h(SynapseVe
tor sv,float x0, float y0, int n, int m, float dmax,float ampl, float s
ale, float (*dilfun
) (float),float ampl2, float s
ale2, float (*fun
) (float),float delay)void Synapse_Add_Diluted_Cir
ular_Pat
h_Delayed(SynapseVe
tor sv,float x0, float y0, int n, int m, float dmax,float ampl, float s
ale, float (*dilfun
) (float),float ampl2, float s
ale2, float (*fun
) (float),float dfa
, float (*delayfun
)(float)));Synapse_Add_Cir
ular_Pat
h sets weights within a radius dmax a

ording to ampl∗func(scale∗
d); all delays are set to delay. func is a user-spe
i�ed fun
tion, e.g., gaussian or constfunc.Synapse_Add_Cir
ular_Pat
h_Delayed in
ontrast to the previous fun
tion, this one sets delaysa

ording to dfac ∗ delayfunc(d), where delayfunc is a user-supplied fun
tion (
f., the axamplein the next subse
tion).Synapse_Diluted_Add_Cir
ular_Pat
h and Synapse_Add_Diluted_Cir
ular_Pat
h_Delayedin addition to the previous two fun
tions allow to setup diluted
onne
tions. dilfunc is a distan
e-dependent fun
tion that spe
i�es the probability of a
onne
tion. The fun
tion
an be s
aled by
ampl in order to set the total probability level; the fun
tion argument
an be s
aled by scale inorder to stret
h or
ompress the range of the target fun
tion into an appropriate range.Note: All these fun
tions assume global parameters for the synapti
 dynami
s as set when therespe
tive SynapseVe
tor or SynapseMatrix is allo
ated.

4.10. SYNAPTIC PLASTICITY 69Note 2: If synapti
 dynami
s is not required and
onne
tivity is not heavily diluted the UniKernels,Kernels, and the
onvolution fun
tions des
ribed earlier might be more advantageous to implementthe intended fun
tionality. They should be faster and need less memory spa
e for non-diluted
onne
tivities. They may still be faster for moderately diluted
onne
tivities (whi
h would beimplemented using Kernels by zero-entries) be
ause of better memory alignment and less overhead.4.9.11 Example for dense lo
al
onne
tionsBelow is a brief
ode snippet showing how to set up lo
al lateral
onne
tions with distan
e-dependent delays and a de
aying
onne
tion probability. The distan
e-dependent delays are setby a user-de�ned fun
tion delay_from_distan
e(). Note that this fun
tion
ould also add somejitter to the delays as desired. The
ode leaves out the main_init() and step() whi
h
ould besimilar to the example in se
tion 4.9.9.float delay_from_distan
e(float d){ return(0.1 + 4.*d); // d0+v*d}...init(){ int i;SynapseVe
tor sv;Empty_SynapseMatrix(synJ);OMP_FOR (i=0; i<N; i++) // auto-parallelises{ SynapseVe
tor sv = SynapseMatrix_Column(synJ, i);Synapse_Add_Diluted_Cir
ular_Pat
h_Delayed(sv, i%nn, i/nn, nn, nn, 16.,.5, .2, gaussian, // dilution a

ording to gaussian1., .2,
onst_fun
, // weights will all be equal to 1..5, delay_from_distan
e); // delays a

ording to user fun
tion}...}4.10 Synapti
 Plasti
ityWeights of biologi
al synapses
an
hange in dependen
e of pre and post-synapti
 a
tivity. Thisphenomenon is
alled synapti
 plasti
ity and generally addumed to underly learning pro
essestaking pla
e on a
ognitive level.

70 CHAPTER 4. LIBRARIESA
lassi
 idea bout plasti
ity is the
o-
alled Hebbain learning rule, whi
h states that neurons that�re together should wire together, that is, strengthen their mutual synapti

onne
tions. Thismakes sense be
ause if these neurons often �re together they likely
ode for features in the worldthat belong together like parts of an obje
t. Early theories of brain fun
tion suggest that obje
trepresentations
an build up this way.Many variants and extensions of Hebbian learning rules have been devised and studied. Forinstan
e, unlearning (or synapti
 long-term depression) when neurons do not �re together, or
orrelation-based learning rules, whi
h
onsider post and pre-synapti
 deviations from mean �ringrates for learning and not the spikes or rates themselfes. More re
ently temporal learning ruleshave be
ome important as the brain seems to make use of them widely. These rules named �spiketiming-dependent plasti
ity rules� (STDP) usually enhan
e a synapse when a post-synapti
 spikeappears after a pre-synapti
 one and de
rease it in the opposite
ase. The properties of su
hlearning rules are
urrently an important resear
h topi
 in neuros
ien
e.Feix supports the implementation of some synapti
 plasti
ity me
hanisms. This however is afeature under development. Future
hanges and extensions to the fun
tionality des
ribed in thisse
tion are lilkely..The synapti
 plasti
ity fun
tionality of Felix builds upon SynapseMatri
es as des
ribed in theprevious se
tion. Plasti
ity is an additional features you
an give these matri
es.4.10.1 Plasti
ity RulesIf you want to use Felix plasti
ity fun
tions, you have to de�ne a plasti
ity rule that des
ribes howa weight is
hanged given pre- and post-synapti
 spike times. Th C fun
tion prototype of su
h anupdate rule isvoid some_synapse_training_fun
tion(int j, int i, float*w, float tpre, float tpost);As apparent from this prototype, at the moment a learning rule
an depend only on the pre- andpost-synapti
 indexes and spike-times, and the
urrent value of the synapse itself. This ex
ludessome learning rules proposed in the literature as, e.g., re
ent rules explored in resear
h that
onsidertriplets of spikes. Rules that depend on further
ell spe
i�
 variables like post-synapti
 potentialsor average �ring rates and the like (e.g., the BCM or ABS rule) may be possible as these variables
an be
omputed in a program and used in a lo
ally de�ned update fun
tion.The example "learning_rules.
" in the
ode dire
tory of this user guide provides some examples.However, these are experimental and have only used for testing. All Felix
ode developement inthe are of SynapseMatri
es and learning rules should be
onsidered in an experimental stage.The training fun
tion is
alled in a simulation ea
h time a pre- or post-synapti
 spike arrives at asynapse. These fun
tion
alls are hidden in the update fun
tions des
ribed in subse
tion 4.10.2.You set a training fun
tion (usually in main_init) usingSet_Synapse_Training_Fun
tion(fun
tion_name);Here, �fun
tion_name� is your own training fun
tion or one of the Felix intrinsi
 fun
tions.

4.10. SYNAPTIC PLASTICITY 71The training fun
tion defaults to an empty fun
tion that does nothing and is
alled�synapse_train_fun
_empty�.Note that if you don't want a synapti
 proje
tion (ie a SynapseMatrix) to learn it is probablybetter to use the update fun
tions des
ribed earlier in the previous se
tion about short-termsynapti
 dynami
s than the update fun
tions form subse
tion 4.10.2 below with empty training-rules, be
ause otherwise you slow down your simulation by running through many unne
essaryupdates. See subse
tion 4.10.5 for ben
hmarks of these two groups of update-fun
tions. (If youdon't want sunapti
 dynami
s either, it might even be better to use just sMatri
es or Matri
es.)The following
ode snippet shows how a training fun
tion for spike timing dependent plasti
ity(STDP)
ould look like. This is a
tually the training fun
tion used in the ben
hmarks reported insubse
tion 4.10.5. Note that the parameters used are not supposed to be realisti
. In parti
ularthe weight
hanges have been set to quite small values in order not to disturb the �ring rates in tehben
hmark simulations mu
h. You will probably use your own fun
tion(s) with more appropriateparameters.void synapse_train_fun
(int j, int i, float *weight, float posttime, float pretime){ float delta = posttime - pretime;float
p=.001,
m=.0003, taup=20., taum=50.;if (delta>0) // post after pre -> enhan
e*weight +=
p*exp(-delta/taup);else // pre after post -> depress (but don't make negative){ if ((*weight -=
m*exp(delta/taum)) < 0.)*weight = 0.f;}return;}At the moment synapse_train_fun
_empty and synapse_train_fun
 are the only Felix-intrinsi
training fun
tions (but see example �learning_rules.
� in the
ode dire
tory for more, experimental
ode).4.10.2 Update Fun
tionsSimilar to the update fun
tions for SynapseMatri
es with dynami
s synapses, there are a numberof fun
tions that update a SynapseMatrix and train the synapse simultaneously. These fun
tions
all the previously de�ned training fun
tion internally. There are versions for networks with andwthout delays. In the following fun
tion de
larations out and tout are the postsynapti
 spikes andlast spike-times respe
tively, and in and tin are the input spikes and spike-times. In
ase of delayedfun
tions the inputs have to be delay-lines of spikes.void Synapse_Learn_t(SynapseMatrix w, bVe
tor in, Ve
tor tin,bVe
tor out, Ve
tor tout);void Synapse_Learn_t_delayed(SynapseMatrix w, bVe
tor_DL in,

72 CHAPTER 4. LIBRARIESbVe
tor out, Ve
tor tout);The above two fun
tions leave the internal data-stru
tures of w untou
hed, but only use theweights.Ve
tor Synapse_bMult_Learn_t(SynapseMatrix w, bVe
tor in, Ve
tor tin,bVe
tor out, Ve
tor tout, Ve
tor vout);Ve
tor Synapse_bMult_Learn_t_delayed(SynapseMatrix w, bVe
tor_DL in,bVe
tor out, Ve
tor tout, Ve
tor vout);These two fun
tions also leave the internal data-stru
tures of w untou
hed. In addition to trainingthe weights they also
ompute the matrix-ve
tor multipli
ation given the weights and input spikes.Resulting
ondu
tan
es (or
urrents depending on interpretration) are return in vout.Ve
tor Synapse_bMult_Update_Learn_t_adaptation(SynapseMatrix w, bVe
tor in,bVe
tor out, Ve
tor tout, Ve
tor vout);Ve
tor Synapse_bMult_Update_Learn_t_adaptation_delayed(SynapseMatrix w,bVe
tor_DL in, bVe
tor out, Ve
tor tout, Ve
tor vout);These two fun
tions do the same as the previous two, but in addition update internal data-stru
tures of w, e.g., the alpha- and adaptation-variables.Ve
tor Synapse_bMult_Update_Learn_t_Up(SynapseMatrix w, bVe
tor in,bVe
tor out, Ve
tor tout, Ve
tor vout);Ve
tor Synapse_bMult_Update_Learn_t_Up_delayed(SynapseMatrix w,bVe
tor_DL in, bVe
tor out, Ve
tor tout, Ve
tor vout);These two fun
tions do the matrix-ve
tor multipli
ation, train the synapses, and update the fullMarkram-Tsodyks equations with synapti
 failure.4.10.3 UnlearningClassi
al asso
iative memories like the Hop�eld or Willshaw net store sets of binary patterns insynapti

onne
tivity matri
es for later retrieval from in
omplete or noisy versions of the patterns.Depending on whether both, only one, or none of the pre- and post-synapti
 a
tivity in a pattern area
tive a di�erent in
rement
an be added to a synapse when a pattern is presented. The in
rements
an be
olle
ted in a rule-table, see Fig. 4.6. These networks learn before any simulations of thenetwork dynami
s are done by presenting all pattern pairs sequentially and
hanging synapsesa

ording to the rule-table. Furthermore, the networks are usually also time-dis
rete when retrievalis
onsidered. It is therefore not entirely straight-forward to transfer lo
al rule-tables to time-
ontinuous networks with ongoing learning.

4.10. SYNAPTIC PLASTICITY 73
r11r011

post
0 r00 r10

10R

pre

Figure 4.6: A lo
al learning rule R adds in
rements Rpost,pre to a weight between synapses onlybased on the pre- and post-synapti
 a
tivity.The
ode below shows an implementation of a Hebb-like learning rule. It uses the pre- and post-synapti
 �ring times together with a syn
hronisation inteval [−tsynch, tsynch] in order to determinesyn
hrony or
ases where only the pre- or post-synapti
 neuron has �red. A

ording, weights
anpe in
reased or de
reased.It is obvious that similar rules
an be
onstru
ted that, e.g., take into a

ount an exponentialde
ay in in
rements in dependen
e of interspike intervals, thereby allowing for bigger in
rementsif spikes are
loser in time. Many other options are possible.void synapse_train_fun
_hebb(int i, int j, float *weight, float posttime, float pretime){ float delta = posttime - pretime;float tsyn
h=10., r10=-.001, r01=-.001, r11=.003;if (delta>tsyn
h) // post_not_pre -> r10*weight += r10;else if (delta<-syn
h) // pre_not_post*weight += r01;else*weight += r11; // syn
h}One problem with the
ode above is that the
ase where both neurons do not �re
annot properlybe dete
ted. There is not event, no �spike�, signaling this. Therefore, this
ase is ex
luded in the
ode snippet.Often (but not always!) it is assumed that when a synapse does not re
eive any spikes for a longtime it may �forget� the information it stores by some random perturbative pro
esses a
ting onthe weight. Su
h pro
esses have been modeled by de
aying synapses. The r00 term in a lo
allearning rule might therefore be asso
iated with synapti
 �forgetting�. This is not th emost generalassumption, but a
ommon one.Whereas the synapti
 training fun
tion is event based and only
alled if there is a pre- or post-synapti
 spike at a synapse, one might guess that the no-pre-no-post
ase
annot be simulatedevent-based be
ause it is not asso
iated with an event. This is in
orre
t. Indeed, a synapses isupdated at every pre- or post-synapti
 event, so, if the next (pre- or post-synapti
) spike arrives, itis
ertain that the synapse has not been
hanged or even used during the time sin
e the last update.We
an therefore
olle
t all the
hanges that would have happend a

ording to the r00-parts of a

74 CHAPTER 4. LIBRARIESlo
al learning rule and apply them just before the
hanges due to the new event.For this purpose Felix provides the possibility to set up �forget_fun
tions� whi
h re
eive the pre-and post-synapti
 neuron index, the
urrent weight, and the absoulte time t of the last (pre- orpost-synapti
) spike that led to any
hanges of the synapse.Set_Synapse_Forget_Fun
tion(fun
)void synapse_forget_fun
(int post, int pre, float* w, float t)synapse_forget_fun
_emptyThe fun
tion Set_Synapse_Forget_Fun
tion sets a forget-fun
tion. The default is 0 (equal tosynapse_forget_fun
_empty). Below, an example fun
tion is de�ned that forgets the values ofsynapses that are not used on a long time-s
ale of 10000.0 (usually millise
onds).void synapse_forget_fun
(int i, int j, float *w, float t){ *w *= exp((t-SIM_TIME)/10000.);}Note: Most of the update-fun
tions with training in subse
tion 4.10.2 �rst
all the forget-fun
tion,then do any adaptation, depression, failure, then determine the
urrent weight of the synapse,and only after that train the synapse using the
urrently de�ned training-fun
tion. This re�e
tsthe fa
t that the forgetting happens during the time before the
urrently in
oming spike, but theweight
hange tyi
ally needs more time than the transient post-synapti
 potential responses. (TheSynapse_bMult_Learn_t and its delayed version are slightly di�erent. Minor dis
repan
ies toresults from the other update-fun
tions are possible.)Note 2: ... last spike time problem ou
h in progress (in short: the a
tual binar spikeve
tors provided to an up-date fun
tion need to be from the
urrent step, but the last spike timesfrom the previous one in order to get the forget-fun
tions ot work properly. So,
ompute the spikes,update the synapse stru
tures, and then update the last spike time ve
tors at the end of your stepfun
tion. See examples in learning_rules)Note 3: there are 1 or 2 additional problems with the learning/forgetting I am still trying to �gureout a

eptable solutions for. Use them with
are.4.10.4 ExampleThe following
ode implements a network of roughly 4000 neurons in a square latti
e of 63 times 63units. Conne
tivity is 2%, e.g., ea
h unit has up to about 80 synapses. This results in somethingless than 320k synapses. Synapses may or may not reveal delays, failure, depression/adaptation,alpha fun
tion dynami
s, and synapti
 plasti
ity a

ording to th eSTDP-fun
tion in subse
tion4.10.1. The step-routine
ontains fun
tion
alls for a number of possible network update variants.All synapti
 parameters are global for simpli
ity (but of
ourse not their weightsm delays, andtarget indexes).# in
lude <felix.h>

4.10. SYNAPTIC PLASTICITY 75# define CONNECTIVITY .02# define nn 63# define N (nn*nn) /* number of neurons 63*63=3969 */# define tau 5. /* membrane time
onstant */# define MAX_DELAY 150 // in time steps; make sure this is big enough# define D 1 // display pixel sizeVe
tor x; /* potentials */Ve
tor tl; /* last spike times */bVe
tor_DL zsav; /* output spikes buffer */bVe
tor z; /* pointer to a
tual spikes */Ve
tor v; /* auxiliary variable */SynapseMatrix synJ; /* synapti

onne
tivity matrix */SliderValue sI = 100; /* Common input to units */SliderValue sJ0 = 50; /* Coupling strength */SliderValue ssigma = 0; /* noise level */BEGIN_DISPLAYSLIDER("input", sI, 0, 200)SLIDER("
oupling", sJ0, 0, 200)SLIDER("noise", ssigma, 0, 100)WINDOW("signals") IMAGE("x", AR, AC, x, MATRIX, nn, nn, -.1, 1.1, D)IMAGE("z", AR, NC, &z, POINTER TO bMATRIX, nn, nn, -.1, 1.1, D)END_DISPLAYNO_OUTPUTNO_FMPI_CONNECTIONSint main_init(){ OMP_THREADS(1);randomize(time(NULL));SET_STEPSIZE(.5)synJ = Get_SynapseMatrix(N, 0,SYNAPSE_TYPE_ALPHA | SYNAPSE_TYPE_ADAPTATION | SYNAPSE_TYPE_FAILURE ,Get_Alpha_Parameters(3., 5.), // tau_r tau_fGet_Adapt_Parameters(.05, 100., 700., 1., 1.), // U tauA tauF
A
F

76 CHAPTER 4. LIBRARIESGet_Failure_Parameters(5, .1, 1.)); // n p qx = Get_Ve
tor(N);tl = Get_Ve
tor(N);v = Get_Ve
tor(N);Set_Synapse_Forget_Fun
tion(0); <------------ no "forgetting"Set_Synapse_Training_Fun
tion(synapse_train_fun
); <-------------------zsav = Get_bVe
tor_DL(N, MAX_DELAY);z =
urrent(zsav);}int init(){ int i;SynapseVe
tor sv;Clear_DL(zsav);z =
urrent(zsav);Clear_Ve
tor(N,v); for (i=0; i<N; i++){ x[i℄ = equal_noise();tl[i℄ = -1000.f;}Empty_SynapseMatrix(synJ);OMP_FOR (i=0; i<N; i++) //
olumns{ int j, k;SynapseVe
tor sv = SynapseMatrix_Column(synJ, i);for (j=0; j<(int)(CONNECTIVITY*N); j++){ k = (int)((N)*equal_noise()); // random sour
e unitAdd_SynapseVe
tor_Entry(sv, k,1./(CONNECTIVITY*N), // synapse weight(int)delay_from_indexes(i, k, nn, 0., 2.), // dist. dep. delays0, 0, 0); // no lo
al synapti
 parameters}}}int step(){ int i;Step_DL(zsav);

4.10. SYNAPTIC PLASTICITY 77z =
urrent(zsav);OMP_FOR (i=0;i<N;i++)leaky_integrate (tau, x[i℄, 0.01*(sI + sJ0*v[i℄ + ssigma*gauss_noise()));Fire_Reset(N, x, 1.0, 0.0, z);// Synapse_bMult_t(synJ, z, v);// Synapse_Learn_t(synJ, z, tl, z, tl);// Synapse_bMult_Learn_t(synJ, z, tl, z, tl, v);// Synapse_bMult_t_delayed(synJ, zsav, v);// Synapse_Learn_t_delayed(synJ, zsav, z, tl);// Synapse_bMult_Learn_t_delayed(synJ, zsav, z, tl, v);// Synapse_bMult_Update_t_adaptation(synJ, z, v);// Synapse_bMult_Update_Learn_t_adaptation(synJ, z, z, tl, v);// Synapse_bMult_Update_t_adaptation_delayed(synJ, zsav, v);// Synapse_bMult_Update_Learn_t_adaptation_delayed(synJ, zsav, z, tl, v);// Synapse_bMult_Update_t_Up(synJ, z, v);// Synapse_bMult_Update_Learn_t_Up(synJ, z, z, tl, v);// Synapse_bMult_Update_t_Up_delayed(synJ, zsav, v);// Synapse_bMult_Update_Learn_t_Up_delayed(synJ, zsav, z, tl, v);for(i=0;i<N;i++) // update last spike times; not worth parallelising thisif (z[i℄)tl[i ℄ = SIM_TIME;}The above step-routine
ontains a number of
ommented out model variants. If none is sele
tedthe network
onsists of just
a 4000 un
onne
ted leaky-integrate-and-�re neurons with gaussiannoise input. Usually only one of the update fun
tions will be a
tive, with the ex
eption ofSynapse_bMult_t and Synapse_Learn_t (as well as their delayed
ounterparts). These fun
-tions
omplement ea
h other. One updates the internal data stru
tures for the synapti
 dynami
s,the other one does the synapti
 plasti
ity. Note that Synapse_bMult_Learn_t (as its delayed ver-sion) integrate these two steps into a single more e�
ient fun
tion. It might however o

asionallybe useful to have the individual routines, too.The sour
e
ode of this example should be in do
u/
ode/learn.
 relative to the Felix main dire
tory.4.10.5 Some Ben
hmarksNote: After doing the ben
hmarks reported here, some
hanges in the
ode have been done whi
hslow down speed of some fun
tions by up to about 20 %. You should also expe
t performan
e todepend to some degree on your parti
ular
ompiler settings (ie, optimisation �ags).This subse
tion presents some ben
hmarking results for the training and updating fun
tions de�nedabove. The program used for these ben
hmarks is the one from the previous subse
tion with nn =63, i.e., a total number of neurons of nn∗nn = 3969. For an input of 1.01 and noise zero the �ringrate of the un
oupled
ells is
a 48Hz. Ben
hmarks are done with very small noise amplitudes,
oupling strengths, and learning rates su
h that this baseline �ring rate is not perturbed mu
h but

78 CHAPTER 4. LIBRARIESthe respe
tive parts of the
ode are exe
uted as desired. We simulated 1s real-time and the resultsshown below do
ontain the network setup phase and the a
tual simulation; or nn = 63 the setupphase however was short.Ben
hmarks were run on a Laptop with Intel Pentium M pro
essor 1.73GHz and a
a
he size of2048 KB. The Felix version used was
ompiled with a
ustom-
ompiled pre-release of g

 4.2 andrun on one thread.Dynami
 parameters where the same for all synapses. If individual parameters are needed thiswould slow down the simulation. We have not run ben
hmarks for this situation.Memory used for nn = 63 and a
onne
tivity of 2% was 16MB most of whi
h for the synapseintrinsi
 variables. nn = 63
orresponds with about 4k neurons in total. Given a
onne
tivity of2% ea
h neuron had (up to) 80 synapses resulting in about 320k synapses in total. Ea
h synapseneeds about 32 bytes of memory for weights, delays, synapse indexes, last spike times, and thedynami
 variables. The storage required for the synapses is therefore about 320k * 32 = 10.5MB.(A 100*100 network with 2%
onne
tivity in
ontrast has 2M synapses and needs about 80MB onmy Laptop. So, memory
onsumption is signi�
ant. Exe
ution speed s
ales roughly with numberof synapses.)So, these are the numbers (in se
onds). The alternatives
orrespond with those in the program
ode in subse
tion 4.10.4.0.8 leaky integration only2.5 leaky integration + gaussian noise1.3 leaky integration + firing&resetthe following are all with leaky-integration, firing, and reset5.5 Synapse_bMult_t, no input noise13 Synapse_bMult_t + Synapse_Learn_t, no input noise15.5 Synapse_bMult_t + Synapse_Learn_t, gaussian input noise10.5 Synapse_bMult_Learn_t, no input noise11. Synapse_bMult_t_delayed, no input noise26. Synapse_bMult_t_delayed + Synapse_Learn_t_delayed, no input noise20. Synapse_bMult_t_delayed + Synapse_Learn_t_delayed, gaussian input noise22. Synapse_bMult_Learn_t_delayed, no input noiseThese values show that
omputing the single unit dynami
s (leaky-integration, noise, �ring&reset)is pretty mu
h negle
table, and that the delayed fun
tions are typi
ally half as fast as the non-delayed ones, whi
h is probably mainly due to unaligned memory a

ess. Observe the speed bene�twhen the integrated update-learn fun
tions are used. Gaussian input noise
onsistently
osts about1.5-3 se
onds.Here are numbers for the other update fun
tions (all with leaky-integration, noise, �ring&reset)18.5 Synapse_bMult_Update_t_adaptation24.5 Synapse_bMult_Update_Learn_t_adaptation22.5 Synapse_bMult_Update_t_adaptation_delayed30. Synapse_bMult_Update_Learn_t_adaptation_delayed

4.11. ONLINE CORRELATIONS 7920.5 Synapse_bMult_Update_t_Up27. Synapse_bMult_Update_Learn_t_Up22.5 Synapse_bMult_Update_t_Up_delayed33.5 Synapse_bMult_Update_Learn_t_Up_delayedDelays
ost about 4-7s as
ompared to non-delayed versions. Learning
osts about 6-8s as
omparedto non-learning versions.We have done preliminary test on the
omputer
luster. Networks were run on single
omputenodes on either one 1 or 4 CPUs. For Synapse_bMult_Update_Learn_t_Up_delayed run-timeswere nn=63 100 2001 thread: 40.7s 163s 61m8s4 threads: 25.8s 63s 20mFor some reason still to be �gured out simulation times are surprisingly bad on the
luster as
ompared to the Laptop. Although the CPUs on the
luster nodes have 2GHz
y
le frequen
y(AMD Opterons) as
ompared to the 1.8 of the Laptop (Intel Pentium M) run-times on a singleCPU are slower. The speedup on 4 CPUs is also rather low (< 50%) but gets better for largernetworks. The issue will be investigated further.Memory
onsumption for the 200*200 network was 1.165GB on the
luster. That is 28.3% of theavailable 4GB. Memory
onsumption on the laptop were 16MB and 80MB for nn=63 and 100,respe
tively. units synpase/unit total synapses63*63 ~ 4.000 * 0.02 = 80 * 4.000 = 320.000100*100 = 10.000 * 0.02 = 200 * 4.000 = 2.000.000200*200 = 40.000 * 0.02 = 800 * 4.000 = 32.000.000Note that ea
h synapse stores 7 integer/�oating point numbers as intrinsi
 variables, synapseindexes, delays and weights resulting in 28Bytes if these numbers need 4 Bytes ea
h. Givaen anetwork fo 200*200 units this results in 28B*32MB = 896MB for the synapses alone. This stillassumes that all synapses shae their parameters, otherwise the lo
al parameters (between 3 and13 per synapse) have to be taken into a

ount, too.Non-dynami
 synapse implemented by sparse sMatri
es in
ontrast need only values for weights,indexes, and (possibly) delays resulting in 8 or 12 Bytes per synapse only. This allows for biggernetworks. However, there are no training fun
tions for sparse sMatri
es yet.4.11 Online CorrelationsThe
omputation of spike-triggered averages (STAs) and
orrelations is a
ommon data-analysismethod in neuros
ien
e. Felix provides a
ouple of fun
tions that
ompute STAs,
ross- andauto-
orrelation fun
tions online.

80 CHAPTER 4. LIBRARIESThese fun
tions use delay-lines to store previous data. The length of the delay-lines must be at leastas big as the time window for the
orrelation fun
tions to
ompute. The fun
tions
an
omputeseveral STAs of
orrelations fun
tions at on
e. They expe
t ve
tors of data in the delay-lines andarrays of indexes that de�ne whi
h signal tra
es to use. The spike triggered averages in additionexpe
t a ve
tor of spikes for the triggers and an index array that spe
i�es whi
h triggers to use.The fun
tions return arrays of STAs, CCFs or ACFs for all pairs of indexes.The spiked-triggered averaging fun
tions arefloat*online_STA(int n1, bVe
tor v, // ve
tor of triggersint m1, int*indx1, // index of triggers usedVe
tor_DL dl, // data to averageint m2, int*indx2, // index of datal
hannels usedint tau, // max timestep used for STAint flag, // 0=one-sided; 1=two-sided STAVe
tor out) // results; m1*m2 array of STAsint*online_bSTA(int n1, bVe
tor v, // ve
tor of triggersint m1, int*indx1, // index of triggers usedbVe
tor_DL dl, // data to averageint m2, int*indx2, // index of datal
hannels usedint tau, // max timestep used for STAint flag, // 0=one-sided; 1=two-sided STAint *out) // results; m1*m2 array of STAsThe di�eren
e between both fun
tions is that the �rst one averages �oating point data, whereasthe se
ond uses
hars - this
an be binary 0/1 data but non-binary data is possible as well as longas they �t into
hars. The se
ond fun
tion uses integer arithmeti
s and therefore returns the STAsas integer arrays.The fun
tions
ompute m1 ∗ m2 STAs at on
e. v is a ve
tor of length n1; e.g., a ve
tor of 0/1spikes; these provide the �triggers� for the spike-triggered averaging. indx1 is an index ve
tor oflength m1; it sele
ts relevant tra
es in v; other tra
es are ignored. dl is a delay-line of the datato average. The lengths of the ve
tors stored in the delayline needs to be bigger than any indexappearing in indx1 and the number of stored ve
tors must be bigger than tau + 1 (2tau+1 if
flag=1???), see below. indx2 is an index ve
tor of length m2; it sele
ts relevant tra
es in dl, othertra
es are ignored. The fun
tion
omputes the STAs for all sele
ted triggers and data tra
es aton
e over a range de�ned by tau (in simulation steps, ie the temporal resolution of the data array).If flag is non-zero, the average is
omputed over 2 ∗ tau + 1 steps symmetri
 in time around the
urrent step, otherwise over tau + 1 previous steps. out is an array for the results or NULL. IfNULL is provided an array of appropriate size is allo
ated. The address of out will be returnedby the fun
tionThere are also
ross- and auto-
orrelation fun
tions. They use only a single delay-line and oneindex only. CCFs (ACFs) between (of) all selete
ed tra
es are
omputed.float* online_CCF(Ve
tor_DL dl, // data to
orrelateint m, int*indx, // index of datal
hannels usedint tau, // max timestep used for CCFint flag, // 0=one-sided; 1=two-sided CCF

4.12. NUMERICS.C/H 81float*out) // results; m1*m2 array of CCFsint* online_CCH(bVe
tor_DL dl, // data to
orrelateint m, int*indx, // index of datal
hannels usedint tau, // max timestep used for CCHint flag, // 0=one-sided; 1=two-sided CCHint *out) // results; m1*m2 array of CCHsfloat* online_ACF(Ve
tor_DL dl, // data to
orrelateint m, int*indx, // index of datal
hannels usedint tau, // max timestep used for ACFint flag, // 0=one-sided; 1=two-sided ACFfloat *out) // results; m1*m2 array of ACFsint* online_ACH(bVe
tor_DL dl, // data to
orrelateint m, int*indx, // index of datal
hannels usedint tau, // max timestep used for ACFint flag, // 0=one-sided; 1=two-sided ACFint *out) // results; m1*m2 array of ACFsThe �le tsta

h.
 provides an example for the usage of some of the
orrelation fun
tions.4.12 numeri
s.
/hThis module
ontains a number of numeri
al support routines most of whi
h have been adaptedfrom example
ode
oming with the ex
ellent book by Press et al. [? ℄. Fun
tions have beenadded as they be
ame desired in the
ourse of the author's resear
h. In no way do they representa
omprehensive
olle
tion of numeri
al mathemati
s routines.For detailed des
riptions of the fun
tions listed below have a look into Press et al.'s book.4.12.1 Numeri
al IntegrationRunke-Kutta of 4th order; and drivers with and without step-size
ontrol. See Press et al [? ℄ fordetails.void rk4(float*y, float*dydx, int n, float x, float h, float*yout,void (*derivs)(float, float *, float *))int rkdumb(float*vstart, int nvar, float x1, float x2, int nstep,void (*derivs)(float,float *,float *));int rkq
(float*y, float*dydx, int n, float*x, float htry,float eps, float*ys
al, float*hdid, float*hnext,void (*derivs)(float,float *,float *));

82 CHAPTER 4. LIBRARIESint odeint(float*ystart, int nvar, float x1, float x2,float eps, float h1, float hmin, int*nok, int*nbad,void (*derivs)(float, float*, float*),int (*rkq
)(float*,float*,int,float*,float,float,float*,float*,float*,void (*derivs)(float,float *,float *)));rk4
omputes a single Runge-Kutta step given a fun
tion derivs for the right hand-side of thediferential equation to integrate, derivs(t, y, dydt).rkdumb is a Runge-Kutta driver without step size
ontrol that does nsteps integration steps fromx1 to x2 with initial values vstart.rkq
 is a Runge-Kutta driver with step size
ontrol. It does one step trying step size htry atan a

ura
y of eps. ys
al provides relative weights of the s
ales of the variables. On exit hdid
ontains the possibly adapted step-size taken, and hnext suggest the next step size. x and y areupdated to their new values.odeint integrates a di�erential equation from x1 to x2 given ystart as initial values. h1 is theinitial step size and hmin a minimum steps size. eps spe
i�es the a

ura
ies of integration. nokand nbad
ontain the nuber of good and re
omputed steps (with new step size) on exit.4.12.2 Solving Matrix Equationsfloat Solve_Ax_b(int n, Matrix A, Ve
tor b); /* b
ontains x on exit */This fun
tion uses LR-de
omposition, forward- and ba
k-substitution. The fun
tion is destru
tive- a and b are overwritten. On exit b
ontains the result of Ax=b. A must be non-singular.int gaussj(Matrix A, int n, Matrix B, int m)Solves Ax = b using Gauss-Jordan elimination with pivoting. A is an n n × n matrix, B an n × mmatrix
onsisting of m right hand side ve
tors. On output, A is repla
ed by its inverse and B bythe solution ve
tors. m
an be zero, in whi
h
ase B remains un
hanged, and A is inverted. Thisfun
tion is not from Press et al. but rather from some original publi
ation.4.12.3 Eigenvaluesint Eigen_Values(int n, Matrix A, Ve
tor wr, Ve
tor wi)Computes the eigenvalues of a real n×n matrix. Returns the real and imaginar parts in the arrayswr and wi, respe
tively. Uses balan
ing and Hessenberg form.

4.12. NUMERICS.C/H 834.12.4 Nonlinear Least-Square Fittingvoid mrqmin(float*x, float*y, float*sig, int ndata,float *a, int ma, int*lista,int mfit, float*
ovar, float*alpha,float*
hisq, float*alamda,void (*fun
s)(float,float *,float *,float *,int))Levenberg-Marquart method attempting to redu
e the value
hi-square of a �t between a set ofpoints x[0..ndata-1℄, y[0..ndata-1℄ with individual standard deviations sig[0..ndata-1℄ anda nonlinear fun
tion depending on
oe�
ients a[0..ma-1℄. The array list[0..ma-1℄ numbersthe parameters su
h that the �rst mfit
orrespond to values a
tually being adjusted. the remainingparameters are held �xed at their input values.The program returns
urrent best �t values for the ma �t parameters, and
hi-square. The [0..mfit-1℄[0..mfit-1℄ elements of the array
ovar[0..ma-1℄[0..ma-1℄,alpha[0..ma-1℄[0..ma-1℄ are used as working spa
e during most iterations.Supply a routine fun
s(x, a, yfit, dyda, ma) that evaluates the �tting fun
tion yfit, andits derivatives dyda[0..ma-1℄ with respe
t to the �tting parameters a at x. On the �rst
allprovide an initial guess for the parameters a, and set alamda<0 for initialization (whi
h then setsalamda=.001). If a step su

eeds
hisq be
omes smaller and alamda de
reases by a fa
tor of 10. Ifa step fails alamda grows by a fa
tor of 10. You must
all this routine repeatedly until
onvergen
eis a
hieved. Then make one �nal
all with alamda=0., so that
ovar returns the
ovarian
e matrix,and alpha the
urvature matrix (and some allo
ated memory is freed).void mrqdriver(float*x, float*y, float*sig, int ndata,float*a, int ma, float*
ovar, float*alpha, float
hisq,void (*fun
s)(float,float *,float *,float *,int))A driver for mrqmin() that assumes that all ma parameters a of fun
s are �tted. On init
hisqdetermines the
hi square value whi
h should be rea
hed. The fun
tion exits if either the a
tual
hi value falls below this initial
hisq or if MRQ_MAXITER=15 iterations are performed. On exit
hisq
ontains the �nal
hi square value.4.12.5 Root Findingfloat rtbis(float (*fun
)(float), float x1, float x2, float xa

)Root �nding by bise
tioning, �nds a root of fun
 in the interval [x1,x2℄ with a

ura
y xa

; onentry fun
(x1)*fun
(x2) must be lower than 0.NDiff(int n, float*y, void (*fun
)(int n, float*y, float*dy), float*dfy)Compute partial derivatives dfy of fun
tion fun
 past y. y and f must be n-dimensional; dfy an
n × n matrix

84 CHAPTER 4. LIBRARIESint Solve_Fx(int n, float*y,void (*fun
)(/* n, y, f(y) */) ,void (*derivs)(/* n, y, dfdy(y) */))/* if derivs==NULL: use numeri
al differentiation */Solve a set of n nonlinear equations fun
(y) == 0, where y is n-dimensional, too. If available,derivs() should
ompute the matrix of partial derivatives. If derivs si NULL, derivatives are
omputed numeri
ally. The fun
tion returns 0 on su

ess; -1, if the matrix of derivatives getssingular, i.e., �xed point iteration is no longer possible, and -2 if the maximum number of iterationsis rea
hed. In
ase of su

ess, y returns the solution ve
tor.4.12.6 Optimizationvoid mnbrak(float*ax, float*bx, float*
x,float*fa, float*fb, float*f
,float (*fun
)(float))Given a fun
tion fun
, and given distin
t initial points ax and bx, this routine sear
hes in thedownhill dire
tion (de�ned by the fun
tion as evaluated at the initial points) and returns newpoints ax, bx,
x, whi
h bra
ket a minimum of the fun
tion. Also returned are the fun
tion valuesat the three points, fa, fb, and f
.float brent(float ax, float bx, float
x,float (*f)(float), float tol, float*xmin)Given a fun
tion f and given a bra
keting triplet of abs
issas ax, bx, and
x (su
h that bx isbetween ax and
x, and f(bx) is less than both f(ax) and f(
x)), this routine isolates the minimumto a fra
tional pre
ision of about tol using Brent's method. The abs
issa of the minimum isreturned as xmin, and the fun
tion value as brent, the returned fun
tion value.Here is an example of how to use mbrak and brent:float ax, bx,
x, fa, fb, f
, tol, xmin;ax = .2; bx = .1;mnbrak(&ax, &bx, &
x, &fa, &fb, &f
, sinf);printf("x^2 :: ax = %f bx = %f
x = %f fa = %f fb = %f f
 = %f\n",ax, bx,
x, fa, fb, f
);tol=0.001;fb = brent(ax, bx,
x, sinf, tol, &xmin);printf("x^2 :: xmin = %f fmin = %f tol = %f\n", xmin, fb, tol);If the derivative of the fun
tion to minimize
an be
omputed the following modi�
ation of brentis advantageous:float dbrent(float ax, float bx, float
x,float (*f)(float), float (*df)(float),float tol, float *xmin)

4.12. NUMERICS.C/H 85Given a fun
tion f and it's derivative fun
tion df, and given a bra
keting triplet of abs
issas thisroutine isolates the minimum to a fra
tional pre
ision of about tol using a modi�
ation of Brent'smethod that uses derivatives. The abs
issa of the minimum is returned as xmin and the minimumvalue as dbret, the returned fun
tion value.The following fun
ting searh
es for a minimum of an n-dimensional fun
tion if derivatives are notavailable.void powell(float*p, float*xi, int n, float ftol,int *iter, float *fret, float (*fun
)(float *))Minimization of a fun
tion fun
 of n variables. Input
onsists of an initial starting point p, andinitial matrix xi[℄[℄ whose
olumns
ontain the initial set of dire
tions (usually the n unit ve
tors),and ftol, the fra
tional toleran
e in the fun
tion value su
h that failure to de
rease by more thanthis amount on one iteration signals doneness. On output, p is set to the best point found, xi isthe then-
urrent dire
tion set, fret is the returned fun
tion value at p, and iter is the numberof itertions taken. The routine linmin is used.Here is an example of hwo to use powellfloat xsquare2(float *x){ return x[0℄*x[0℄ + x[1℄*x[1℄;}...float p[2℄={1.,1.}, xi[4℄={ 0., 1., 1., 0.}, fret=0;int iter=0;powell(p, xi, 2, 0.001, &iter, &fret, xsquare2);printf("(x,y) = (%f, %f); f = %f; iter = %d\n", p[0℄, p[1℄, fret, iter);If derivatives of the fun
tion to minimize are available use the following fun
tion for the minimiza-tion.void frprmn(float*p, int n, float ftol, int*iter,float*fret, float (*fun
)(float *),void (*dfun
)(float *, float *))Given a starting point p, Flet
her-Reeves-Polak-Ribiere minimization on a fun
tion fun
, using itsgradient as
al
ulated by routine dfun
 is performed. The
onvergen
e toleran
e on the fun
tionvalue is input as ftol. Returned quantities are p (the lo
ation of the minimum), iter (the numberof iterations that were performed), and fret (the minimum value of the fun
tion).

86 CHAPTER 4. LIBRARIES

Chapter 5File I/O
The very basi
s of the �le output fun
tionality of Felix have been des
ribed in the qui
k-start
hapter 2. We now look a little deeper into the possibilities.Felix was used over the years mainly to either study autonomous dynami
al systems and neuralnetworks, or systems where stimuli
ould be
omputed as part of the simulation (e.g., simplebars and graitings). So far, there has never been mu
h need for advan
ed �le-input features and,therefore, Felix provides only some support for output of data to �les. However, you
an alwaysuse the standard C methods to load and store data from �les (FILE obje
ts, raw and formattedI/O, et
).Even the �le-output properties that are supported are not fully developed. Some fa
ilities, whi
hI imagined would be ni
e to have years ago, heve a
tually never been implemented, others never
ompleted. What I des
ribe below are features that I use often or have at least used o

asionally.5.1 Interfa
e for File OutputThe philosphy of the �le-output interfa
e is similar to that of the graphi
al display: One has tode�ne a top-level fun
tion �MakeOutFiles()�, whi
h
ontains spe
i�
ations of �OUTFILEs� (analogto �WINDOWs�), whi
h in turn
an
omprise a variable number of �SAVE_VARIABLEs� (analogto �views on data� or graphi
s obje
ts in the GUI).The top-level MakeOutFiles()-routine
an be either expli
itely de�nd or
onstru
ted by using thema
ros#define BEGIN_OUTPUT void MakeOutFiles(){#define END_OUTPUT }#define NO_OUTPUT void MakeOutFiles(){}Note that NO_OUTPUT expands into an empty fun
tion body. In that
ase no output will bewritten to external �les through the interfa
e me
hanisms (but possibly through raw I/O, seese
tion 5.3).If output �les are de
lared, a button will appear in the graphi
al user interfa
e, see, Figure 2.4,that a
tually swit
hes the output on or o� during a simulation. The button label re�e
ts the87

88 CHAPTER 5. FILE I/O
urrent state. If the button is right-
li
ked some further
ontrol elements appear, whi
h show the�les de�ned, whi
h variables they
ontain, and some elements that allow to
hange several �lesetting intera
tively. Be aware that not all of the fun
tionality is fully implemented.Beside using the GUI-Save-button, it is also possible to swit
h �le I/O on or o� from the sour
e
ode by using the ma
rosSAVE_ONSAVE_OFFAnother ma
ro that often is useful in�uen
es the format of ASCII output. The ma
roSET_ITEM_SEPARATOR(sep)takes a string and inserts it between subsequent entries in the output. The ma
ro should be pla
edright after the head of the the MakeOutFiles()-fun
tion. Default for the item separator is a singleblank (" "), but this
an
ause problems with very long linelengths in �les that have to be readfrom another program. Some tools for postpro
essing (e.g., gnuplot) also expe
t only a single entryper line (by default in some modes), in whi
h
ase the item separator
an be set to newline ("\n").5.1.1 Output FilesInside the fun
tion MakeOutFiles() one or more output �les have to be de�ned using the ma
roOUTFILE(name)where �name� is the name of the �le. If the �le does not exist and data is written, it will be
reated,otherwise the old �le will be overwritten.The ma
ro OUTFILE returns a �le handle of type int. It is not often ne
essary to save the handle,but some of the later fun
tions make use of it.Output �les are de
lared in serial order (as WINDOWs in the GUI). Instead of the �le handle one
an also use the ma
ro THISFILE, whi
h expands to the
urrently a
tive �le (ie the most re
entlyde
lared one).The �le handles are only ne
essary if an appli
ation needs to set �le-properties expli
itly. Thema
rosFILE_ACTIVE(fileno)FILE_INACTIVE(fileno)anywhere in the
ode
an, for instan
e, swit
h �le-output to a parti
ular �le on or o�. (This, how-ever is further
ontroled by the global SAVE_ON/SAVE_OFF swit
h. As long as that �master�swit
h is o�, nothing will be saved.)Other �le properties are �le format (raw (default) or ASCII)) and the behaviour in
ase the �le isswit
hed on and o� more than on
e in a simulation (data
an be overwritten or appended). These�ags are set using

5.1. INTERFACE FOR FILE OUTPUT 89SET_SAVE_FILE_FLAG(fileno, flag, val)where �leno is the �le-handle (or �THISFILE�), �ag is �ASCII� for de
laration of the output modeand "APPEND" for the reset mode. Possible values for �val� in both
ases are ON and OFF, i.e.SET_SAVE_FILE_FLAG(THISFILE,ASCII,ON) would swit
h ASCII output on for thelast re
entlyde
alred �le in the MakeOutput()-fun
tion. (Note that it does not make sense to swit
h betweenboth modes during one simulation. The �les would then at least be relatively di�
ult to read;depending on the platform/C-implementation results
an even be unde�ned).The �le �ags should be set right after the de
laration of an output �le, ie, before any outputvariables.If ASCII mode is on, an empty line will be saved after ea
h ve
tor or row of a matrix, and anextra newline after ea
h
omplete matrix. The
urrent step will also be saved on an individualline starting with the double-
ross # befor all other data in that step. No su
h extras are savedin raw mode, just pure binary data.5.1.2 Output VariablesEa
h output �le
an
ontain a number of output variables de
lared by the ma
roSAVE_VARIABLE(name, var, type, dim_x, dim_y, flags, when, whi
h)Meaning of the argments is very similar to the various graphi
al views on data (see, se
tion 3.3.2).�name� is a string for the name the entry appears under in the graphi
al user interfa
e.�var�, �type�, �dim_x�, and �dim_y� are the variable to store, its type, and dimensions. The typesand spe
i�
ation of dimensions are the same as for graphi
s obje
ts in display windows (MATRIX,VECTOR, et
.), see se
tion 3.3.4. POINTER types are possible.��ags� are output variable-spe
i�
 �ags that are mainly used to spe
ify whi
h data entries arestored when. Default is that ea
h value is stored in ea
h step (as long as the gobal save swit
hand the respe
tive �le-swit
h are ON)�when� and �whi
h� are further used to de
lare spatial and temporal sele
tions of data to store indetail. This is useful in large simulations where output �les
an easily be
ome very large. Theoptions for sub-sele
tions are explained in the subsequent two se
tions.5.1.3 Temporal Sele
tionsBy default (and only if the save-button is a
tivated) data is saved after a
all to the top-level init()-fun
tion (to save �initial values�) and after every simulation step. This
an be modi�ed individuallyfor ea
h SAVE_VARIABLE using the ��ags and when� arguments in their de
laration.A CONSTANT variable that doesn't
hange during a simulation
an be de
lared by an ONINIT�ag. Su
h a variable is then only saved after
alls to init(), be
ause there is where it would naturallybe initialised. Possible �ags are:

90 CHAPTER 5. FILE I/OONINITSKIPRANGESELECTThe last three �ags
orrespond with three fun
tions as arguments to the �when�-argument of theSAVE_VARIABLE de
laration:TSkip(skip) : Only every �skip� step is storedTRange(start, stop, skip) : Data is stored at regular intervals starting at time step �start�,storing every �skip� steps, up to a maximum step of �stop�TSele
t(n, vals) : �vals� is an integer array of size �n� that de�nes points in time when thedata has to be saved.A few examples are shown in subse
tion 5.1.6.5.1.4 Spatial Sele
tionsAs in the temporal domain, sele
tions
an also be made spatially, more pre
isely, in one- ortwo-dimenional arrays. By default, all entries in an array-variable (MATRIX, VECTOR, et
.)are stored, if the temporal sele
tion permits it. Alternative options are GRID, IRR_GRID, orPOINTS, whi
h refer to regular grids, irregular grids, and sets of individual points/
oordinates,respe
tively.As for the temporal sele
tions the spatial sele
tion (if it is not ALL) has to be noti�ed in the�ag-argument of a SAVE_VARIABLE (see above) using one ofGRIDIRR_GRIDPOINTSThe pre
ise sele
tion has then to be spe
i�ed as the �nal �whi
h�-argument of a SAVE_VARIABLEde
laration using one of the
orresponding fun
tionsGrid(start, stop, skip, start2, stop2, skip2) : This
an be used for regular subgrids. �start,stop, and skip� are the �rst and maximal index of stored elements in the �rst dimension (x)and �skip� is the regular interval between indexes. The same meaning applies to �start2,stop2, and skip2� in the se
ond dimension (y). For one-dimensional arrays start2, stop2, andskip2 should be zero.Irregular(nx, values_x, ny, values_y) : This de�nes an irregular grid, where the integer ar-ray �values_x�
ontains �nx�
oordinates in the �rst dimension and likewise for �ny, values_y�.Data is saved for matrix entries at all pairs of x and y values. For one-dimensional arraysthe ny and y-values should be zero.

5.1. INTERFACE FOR FILE OUTPUT 91Points(n, values_x, values_y) : This is the most general option be
ause it allows for arbi-trary
oordinates in the index (integer) arrays �values_x, values_y� of size �n�. Data valuesat the respe
tive n points are saved. For one-dimensional arrays �values_y� should be zero.A few examples are shown in subse
tion 5.1.6. Index boundaries are not
he
ked. It is theprogrammers responsibility to make sure indexes do not ex
eed array-dimensions. Order for two-dimensional Grid() and Irregular() grid data is left-right (x �rst), then top-bottom (y).5.1.5 The TimerThe timer (or Stop Wat
h) is a further fa
ility to
ontrol when storage of data starts and ends. It
an, for instan
e, be used if you want to skip a number of steps at the beginning of a simulationbefor saving data be
ause they are transients. Another reason is to set a global skip-interval ontop of the temporal sele
tions for the individually saved variables. That
an be desirable if theamount of data generated is very big, but storing less steps would already be su�
ient. To setupthe timer useSET_SAVE_TIMER(start, end, skip)TIMER_ONTIMER_OFFSET_SAVE_TIMER only sets the parameters of the timer, i.e., the �rst and maximal step it tries tosave anything, �start� and �end�, and the interval (in simulation steps) at whi
h data is stored,�skip�. If it is to be used, the timer has to be enabled expli
itly, either from the GUI by right-
li
king on the Save-button and sele
ting the appropropriate ti
k-box or by
alling TIMER_ONfrom the sour
e
ode. It furthermore only generates output if the global save swit
h is on inaddition (the master fuse for your valuable hard disk spa
e).Observe that the GUI also allows to set the parameters of the timer (�Stop Wat
h�) by hand; theydo not need to be set in the
ode.5.1.6 Examplesint nx=3, ny=2;int xsel[3℄={1,2,5};int ysel[2℄={3,4};BEGIN_OUTPUTSET_ITEM_SEPARATOR("\n")// 1. exampleOUTFILE("patterns")SAVE_VARIABLE("pats", pats, ARRAY_INT_TYPE, Nones, P, ONINIT, 0, 0)

92 CHAPTER 5. FILE I/O// 2. exampleOUTFILE("Quality")SAVE_VARIABLE("qual", &Q, FLOAT_TYPE, 0, 0, 0, 0, 0)// 3. exampleOUTFILE("file42")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SAVE_VARIABLE("z", z, bVECTOR, N, 0, 0, 0, 0)SAVE_VARIABLE("phi1", pot1, MATRIX, xsize, ysize, 0,0,0)// 4. exampleOUTFILE("phi2")SAVE_VARIABLE("phi2", pot2, MATRIX, xsize, ysize, SKIP | GRID ,TSkip(2), Grid(38, xsize, 100, 32, ysize, 100))// 5. exampleOUTFILE("phi3")SAVE_VARIABLE("phi1", pot1, MATRIX, xsize, ysize, IRR_GRID0, Irregular(nx, xsel, ny ysel))END_OUTPUTIn the example the item separator is �rst set to \n su
h that individual entries go to separate lines.The �rst example de�nes an output �le �patterns� to whi
h an integer array �pats� of size Nones
× P is stored on
e after ea
h
all to the top-level init() fun
tion (sele
ted by the ONINIT �ag).There are no further spatial or temporal sele
tions.The se
ond example stores a single �oating point variable �Q� in ea
h step to a �le �Quality�.The third example � in
ontrast to all others � stores data in ASCII format be
ause the respe
tive�ag is set. Data goes to a �le ��le42�. Stored per step are a binary ve
tor �z� of size N and amatrix �pot1� of size xsize × ysize without any further spatial or temporal restri
tion.The fourth example stores a matrix �pot2� of size xsize× ysize to a �le �phi2�. Only every se
ondtime step is stored and the matrix is spatially sub-sampled on a regular grid.The last example subsamples a matrix on an irregular grid, but there is no temporal sele
tion.5.2 InputA graphi
al user interfa
e for input from �les is not available and not planned. Raw �le inputfun
tionality has to be used instead (see next se
tion).

5.3. RAW I/O 935.3 Raw I/OInstead of using the graphi
al interfa
e for I/O operations, those
an be in
luded dire
tly in theappli
ation program using the usual C �le a

ess options (see textbooks on C-programming).

94 CHAPTER 5. FILE I/O

Chapter 6Felix Parameter Sear
h & SensitivityModule
The module psear
h.
/h introdu
es some parameter sear
h or s
anning fa
ilities into Felix. For aset of parameters regular grids or irregular sets of points
an be de�ned. The module psear
h thenprovides a multi-index that iterates through the Cartesian produ
t. It is also possible that somesear
h dire
tions update several parameters at on
e. If for ea
h parameter set several simulationruns are desired this
an be spe
i�ed, too.(Spike train) metri
sSensitivity6.1 General UsageIt happens often that a simulation has to be exe
uted many times with di�erent parameters if aparameter spa
e has to be s
anned, or with the same parameter if data are
olle
ted for furtherstatisti
al evaluation. The psear
h-module supports this pro
ess. It allows to de�ne various pa-rameter dimensions together with range spe
i�
ations for the values these parameters
an take. Itthen implements a multi-index that iterates through all possible
artesian parameter
ombinations.A typi
al usage s
enario would be that the module is initialised in main_init() and that param-eters that have to be s
anned are not further
hanged in init(). If
ertain
onditions are rea
hedin the step()-fun
tion, e.g., after a �xed number of simulation steps, the next parameter set issele
ted. Although not ne
essary in general, the init()-routine
an afterwards be
alled, if thatis desired to re-initialise other parameters and variables. If the module has
y
led through allparameter
ombinations the simulation
an exit.main_init(){ ...psear
h_init(); // initialise internal stru
tspsear
h_add_param(...); // add a param to s
an... // ... add more as required ...} 95

96 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULE...step(){ ... DO THE WORKif (SIM_TIME >= 100.) // some
riterion for finishing a single simulation{ if (psear
h_next_param();) // get the next parameter setinit(); // reset other parameters / variableselseexit(); // psear
h_next_param() returns 0 if we are done}}
6.2 Parameter S
an Fun
tions6.2.1 Initialisation and setupBefore it is used the psear
h module has to be initialised by
alling psear
h_init() inmain_init().void psear
h_init();There
an be only one set of s
an-parameters per simulation.After initialisation the set of parameters to s
an/sear
h is empty. Add parameters by usingvoid psear
h_add_param(float*p, int type, int npoints, float*data);# define PSEARCH_RANGE 0x1# define PSEARCH_POINTS 0x2Only �oating point parameters are supported (integer-values
an be emulated by �oats). p isthe address of the parameter to vary; we need the address su
h that we
an
hange its value.npoints is the number of values the variable p is supposed to take in the s
an. type
an be eitherPSEARCH_RANGE or PSEARCH_POINTS whi
h determines the meaning of the fourth data-argument:

• PSEARCH_RANGE: This type de�nes a regular grid of points. data must be a 2-dimensionalarray where data[0℄ is an o�set and data[1℄ an in
rement. p takes values: data[0℄ +i*data[1℄, for i = 0, 1, 2 . . . npoints-1.
• PSEARCH_POINTS: This de�nes an irregular
olle
tion of points. data
ontains npoints �oat-ing point values the parameter p will
y
le through.For further explanations see the example se
tion below.As parameters are added to the parameter set they are initialised to their lowest indexed value(whi
h is not ne
essary their lowest value, if the in
rement in PSEARCH_RANGE is negative or thevalues in PSEARCH_POINTS are not ordered a

ording to size).

6.2. PARAMETER SCAN FUNCTIONS 976.2.2 Iteration through the parameter produ
t spa
eTo iterate through the
artesian produ
t of the parameter sets in the individual parameter dimen-sions use the fun
tionint psear
h_next_param();This fun
tion takes a

ount of whether a parameter has been de�ned as PSEARCH_RANGE orPSEARCH_POINTS. It sets the parameters internally to their new values. The fun
tion returns1 if there was a parameter set left, and otherwise zero. Afterwards returning 0 the beviour offurther
alls to psear
h_next_param() is unde�ned. Indeed, a return value of zero should ingeneral trigger post-pro
essing of data and exiting of the simulation.6.2.3 Running multiple simulations for ea
h parameter setIt
an be desired to run a simulation several times for ea
h parameter set. This
an be rea
hed byusingextern void psear
h_set_repetitions(int k);If psear
h_set_repetitions(int k) sets k to a value bigger than 1 (the default) the param-eters are only
hanged every k
alls to psear
h_next_param().6.2.4 Changing several parameters per sear
h dimensionThe me
hanism so far apply to single parameters in ea
h dimension. It is possible to de�nedimensions where more than one parameters are varied. This
an be useful when the number ofparameters is so high that a full sear
h through the
artesian produ
t spa
e is unfeasible or if forsome reason only values on a
ertain set of points in the full parameter spa
e are needed, but nota
omplete
artesian sub-sample. The following fun
tion supports this fun
tionality.void psear
h_add_nd_param(int n, float*p, int npoints, float*data);Here, n is the number of parameters to modify and p a ve
tor of parameters of length n. npointsis the number of sample points in the n-dimensional sub-spa
e of parameters, and data is an arrayof npoints sample points of dimension n, i.e. data[i*n+j℄ is the value of parameter p[j℄ in thei-th sample point.Note that higher-dimensional parameter spa
es
an be
ombined with the previously explainedone-dimensional ones. This is demonstrated in the example in subse
tion ??.6.2.5 Support fun
tions to print indexes and parametersThere are a few support fun
tions that print out information about the internal state of the module:

98 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEvoid psear
h_print_data();void psear
h_print_params(FILE*file);void psear
h_print_index_string(
har*string);psear
h_print_data() prints the internal data stru
tures to the s
reen whi
h is mainly usefulfor debigging purposes.psear
h_print_params() prints the a
tual parameter values to a stream. if file is �stdout�output goes to the s
reen, but it
an also refer to a previously opened �le, e.g., for book-keeping.The �le must be open for writing, of
ourse.psear
h_print_index_string(
har*string) formats the internal multi-index that enumer-ates the
artesian produ
t and prints it in ASCII-format to a string (whi
h must be long enoughand is not
he
ked). If there are 3 parameters s
anned the output
ould be 1-3-2-0, meaning thatthe �rst parameter
urrently takes its �rst value from the range of possibilities, the se
ond param-eter its third value, and the third parameter its se
ond value. The fourth number is the iterationfor this parti
ular parameter set (see psear
h_set_repetitions() above). This fun
tion
an beuseful to
onstru
t �lenames for data output.6.3 Example: S
anning a parameter spa
eThe example below (see �tst-psear
h.
� in the
ode dire
tory) shows how to set up a parameters
an with 3 dimensions, two single parameter dimensions where one parameter (p1) is sampled ona regular grid and the other one (p2) on an irregular set of points, and a third dimension
onsistingof a number of points (2) for two further parameters in p[2℄.# in
lude <felix.h>float p1, p2, p[2℄;float data1[2℄= { 2., .2 };float data2[3℄= {-1., 3., 7};float data[4℄ = {1., 2., 3., 4.};
har str[100℄;NO_DISPLAYNO_OUTPUTmain_init(){ psear
h_init();psear
h_set_repetitions(2);psear
h_add_nd_param(2, p, 2, data);psear
h_add_param(&p1, PSEARCH_RANGE, 2, data1);psear
h_add_param(&p2, PSEARCH_POINTS, 3, data2);psear
h_print_data();}

6.4. INTERFACING PARAMETER SEARCH AND FILE OUTPUT 99init(){ printf("init()
alled\n"); // noting initialised here, but
ould be}step(){ if (SIM_STEP==1) // print the
urrent parameter set{ // to s
reen, but only on
epsear
h_print_index_string(str);printf("%s\n", str);psear
h_print_params(stdout);printf("\n");}// do the hard work here//if (SIM_STEP == 4) // after me steps ...{ if (psear
h_next_param()) // ... get the next parameter setinit(); // re-init variables as desiredelseexit(0); // or exit, if all parameter sets simulatedSIM_STEP = 0; // need to reinit this;// otherwise SIM_STEP == 4 stays false forever}}6.4 Interfa
ing parameter sear
h and �le outputFelix provides me
hanisms to store simulation data to �les, see se
tion ??. File output is a
tivatedon demand when the respe
tive button in the GUI-version is pressed, and by default a
tive ina non-GUI, i.e., parallel version. However, on
e opened, output goes to only one set of �les asspe
i�ed in the Felix-�le, unless these �les are reset. This is possible by hand in the GUI. For anautomati
 parameter sear
h, however, one would usually prefer a non-intera
tive �le-reset (unlessone wants to have all output dire
ted to the same �les even for di�erent parameter sets).One solution would be to
ode the �le output expli
itly into the Felix-appli
ation, i.e., open �lesper new parameter set and save data expli
itly.More
onvenient is the use of the �template-feature� of the �le name generation routines (NOTE:this is a feature
urrently undo
umented in the I/O-se
tion). By default when �les are opened,Felix takes the basename as de�ned in the OUTFILE("basename") spe
i�
ation. The template-

100 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEfeature allows to append the base-names by templates, e.g., for di�erent parameter sets.The template
an be set by SetSaveTemplate(str) where str is the tmplate string.To make a template a
tive, the a
tually open output �les have to be
losed and reinitialised. Thisis done by
alling InitOutFiles();.The fun
tion psear
h_print_index_string(str) des
ribed in se
tion ?? sets a string to arepresentation of the the
urrent multi-index of an iteration through a parameter set. It
an be
onveniently used as a template.Below is an example, where the noise in an integrate and �re neural network is varied. Unne
essary
ode has been
ut away. The
omplete �le
an be found in the do
umentation
ode dire
tory(inf2s
an.
)....float psigma; // parameter for the s
anfloat offsin
[2℄={0.,.05}; // offset and in
rement (for PSEARCH_RANGE)
har str[16℄;...SliderValue ssigma = 0; // slider ssigma UNUSED here !!BEGIN_DISPLAY...END_DISPLAYBEGIN_OUTPUTSET_ITEM_SEPARATOR("\n"); // newlines after spikesOUTFILE("spikes")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON) // readable formatSET_SAVE_FILE_FLAG(THISFILE, GDF, ON) // only spike times storedSAVE_VARIABLE("out", z, bVECTOR, N, 0, 0, 0, 0)END_OUTPUTint main_init(){psear
h_init(); <<<<< initialise the parameter s
anpsear
h_set_repetitions(2); <<<<< 2 repetitions per parameter setpsear
h_add_param(&psigma, PSEARCH_RANGE, 4, offsin
); << 1 parameter}int init()

6.5. PARAMETER SENSITIVITY OF SIMULATIONS 101{ // don't
hange psigma in init() !!! (unless you know what you do)psear
h_print_index_string(str); <<<<<<< setup template stringSetSaveTemplate(str); <<<<<<< and store as templateInitOutFiles(); <<<<<<< reinit the file ("spikes")}int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, x[i℄,0.01*(sI + sJ0*v[i℄) + psigma*gauss_noise()); <<<<<< psigma!Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetbMult(N, N, J, z, v); // redistribution spikesif (SIM_STEP == 1000) <<<<< terminate
urrent simulation run{ if (psear
h_next_param()) <<<<< work left ? next parameter set{ SIM_STEP = -1; <<<<< need to resetinit(); <<<<< reinit; in
luding template & files}elseexit(0); <<<<< finished ...}}NOTE: The lo
ation of the reinitalisation of SIMSTEP
an be
ru
ial. Done in the init() routineit
an lead to a one-step o�set of the �rst simulation run
ompared to the others.6.5 Parameter Sensitivity of Simulations�Sensitivity analysis�
an provide insight into the parameter dependen
es of a simulation, ie.,whether the simulated dynami
al patterns vary mu
h if some parameters are
hanged, whi
hparameters or parameter
ombinations have the strongest impa
t, and whi
h are not so importantat all, be
ause a
tivation patterns hardly depend on them.This type of analysis in general needs some measure to
ompare di�erent simulation runs. Ageneral
lass of su
h measures with well de�ned mathemati
al properties are so-
alled �metri
s�.Those
onsider simulated traje
tories (e.g., potential tra
es, single or multiple unit spike-trains) aspoints in an abstra
t spa
e, a so-
alled metri
 spa
e, and de�ne how to
ompute distan
es betweenthese points. Changing one (or a set) of parameters will
hange the simulated a
tivity and therebythe lo
ation of the point representing it in the metri
 spa
e. Parameter
ombinations that
hange

102 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEthe lo
ation a lot are sensitive, those that have hardly any impa
t insensitive.Note that this provides a lo
al
hara
terisation of sensitivity only, as
hanges are relative to some�xed set of parameters. A global analysis is usually mu
h more di�
ult to do and regularly requiresexhaustive exploration of the parameter spa
e (with the ex
eption of a few simple or fortunate
ases).Furthermore, the sensitivity properties of a simulation
an very mu
h depend on the pre
ise metri

hosen. For example, metri
s exit that value the pre
ise lo
ation of single spikes, whereas othersonly operate on instantaneous �ring rates. For more information see the next se
tion.6.5.1 Spike-train and other metri
s... to
ome6.5.2 Sensitivity MeasuresGiven a simulation program with observables x and parameters p, a default set of parameters p∗,and a metri
 d(x, y) on the observables, the sensitivity of the model with respe
t to the defaultparameters and metri

hosen
an be studied.One way to determine parameter sensitivities is to
ompute the gradient (if it exists) of the dis-tan
e from the default point with respe
t to the parameters: ∇pd(x(p), x(p∗)). The gradient ofa fun
tion of some parameters is a ve
tor in parameter spa
e, that points into the dire
tion ofthe parameter
ombination that
hanges the value of the fun
tion most. In our
ase the fun
tionis the di�eren
e between the a
tivation pattern given the default parameters and those for anyother set of parameters
lose by. Large (absolute) entries in the gradient indi
ate a strong impa
ton the simulated patterns by the respe
tive parameter. However, note that the s
ale (or units ormeasurement) of the parameters
an vary, and that not all parameters
an be easily
omparedwith ea
h at all. Sometimes parameter
hanges are therefore �normalised� by their absolute valuebefore
omparison, but this
an also fail, if the default value for some parameters is zero or
loseto it.6.5.3 Gradient ComputationThe parameter sear
h module
an be
onveniently used to generate simulations for a subsequentgradient analysis. This requires
omputing a
tivation patters for the default paremeter set as wellas for small
hanges in the various parameter dire
tions. If the parameter
hanges are �small�the perturbed patterns
an be used to
ompute approximations of the partial derivatives in thedire
tion of the respe
tive parameter. Let's say there are m parameters. The partial derivatives arethen the
omponents of the full gradient: ∂d(x(p) − x(p∗))/∂pi = ∂d(x(p∗1, . . . , p
∗

i + ∆i, . . . , p
∗

m) −
x(p∗))/∂pi ≈ d(x(p∗1, . . . , p

∗

i + δi, . . . , p
∗

m) − x(p∗))/∆i, i = 1 . . .m.The following Felix fun
tion prepares m + 1 parameter ve
tors for the
omputation of a
tivitypatterns for the default parameter set x(p∗) and small perturbations in the m parameter dimen-sions, x(p∗1, . . . , p
∗

i + δi, . . . , p
∗

m. It returns an (m + 1) × m matrix of parameter sets for use withpsear
h_add_nd_param(), the parameter spa
e s
an fun
tion that operates on higher-dimensional

6.5. PARAMETER SENSITIVITY OF SIMULATIONS 103sets of points but not their full Cartesian produ
t. The �rst parameter set in the matrix is for thedefault parameter set, the remaining ones for dire
tions i = 1 . . .m.float*setup_grad_params(int m, float*params, float eps, float*delta)
m is the number of parameters and params is the ve
tor of parameters. eps is a small numberand delta is an m-dimensional ve
tor of perturbations. If delta is non-zero, the perturbation indire
tion i is epsδi. If it is zero, all perturbations ∆i are equal to eps. If all the parameters obtainvalues on the same s
ale the use of just a single value eps for the perturbations is more
onvenientthan de�ning a full ve
tor of perturbation ∆.After preparing the set of parameter settings in main_init() the parameter sear
h module hasto be initialised and run pre
isely in the way des
ribed in se
tion ?? for n-dimensional parametersets, psear
h_add_nd_param(). The program will then iterate through the simulations for thedefault parameter set and the m perturbed parameter sets.Data of the simulations
an be output to �les for subsequent
omputation of distan
es and gradi-ents. As mentioned initially the sensitivity may depend
ru
ially on the parti
ular metri

hosen.It it therefore often preferable not to
ompute in the simulation program, unless the best metri
is know in advan
e.6.5.4 Example: Gradient
omputationThere is a program inf2grad.
 in the do
umentation's
ode dire
tory that shows how to run simu-lations for a gradient
omputation.# in
lude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time
onstant */Ve
tor x; /* potentials */Matrix J; /*
onne
tions */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */int nparams = 3;float pars[3℄ = {101., 10., 0.}, // pI, psigma, pJ0;delta[3℄= { 10., 1., 0.1};float *paramsets;float noiseseed;BEGIN_DISPLAY...END_DISPLAY

104 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEBEGIN_OUTPUTSET_ITEM_SEPARATOR("\n");OUTFILE("spikes")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SET_SAVE_FILE_FLAG(THISFILE, GDF, ON)SAVE_VARIABLE("out", z, bVECTOR, N, 0, 0, 0, 0)END_OUTPUTint main_init(){ noiseseed = time(NULL); // <<<<<<<<<randomize(noiseseed + 123456); // <<<<<<<<<SET_STEPSIZE(.1)J = Get_Matrix(N, N);x = Get_Ve
tor(N);z = Get_bVe
tor(N);v = Get_Ve
tor(N);paramsets = setup_grad_params(nparams, pars, .1, delta); // <<<<<<<<psear
h_init(); // <<<<<<<<psear
h_add_nd_param(nparams, pars, nparams+1, paramsets); // <<<<<<<<}int init(){ int i;
har str[16℄;// randomize(noiseseed); // <<<<<<<<<<Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);for (i=0; i<N; i++)x[i℄ = equal_noise();Make_Matrix(N, N, J, 1.0/N, .4/N);psear
h_print_params(stdout);psear
h_print_index_string(str);SetSaveTemplate(str);InitOutFiles();}

6.5. PARAMETER SENSITIVITY OF SIMULATIONS 105
int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, x[i℄,0.01*(pars[0℄ + pars[1℄*v[i℄) + pars[2℄*gauss_noise());Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetbMult(N, N, J, z, v); // redistribution spikesif (SIM_STEP == 1000){ if (psear
h_next_param()){ SIM_STEP = -1; // <<<<<<<<<<init();}elseexit(0);}}An important note regarding simulations with noise are at hand,
f., the lines in the
ode aboveindi
ated by <<<<<<. Apparently, even if parameters are identi
al, simulations with noise
anpotentially lead to very di�erent a
tivation patterns. It
an therefore be ne
essary to reinitialisethe random number generator ea
h time the simulation is restarted. Some lines indi
ated in themain_init() and init() routines above show how to do this. However, even with a reset of therandom number generator
omparability is not ne
essarily guaranteed as the exe
uted
ode
an
ontain subtle intera
tions between parameters and the noise generation. In su
h
ases it
an berequired to pre
ompute random sequen
es and reuse them in the iterations through the parameterspa
e.

106 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULE

Chapter 7The Felix MIDI Interfa
e
This do
ument des
ribes the use of the new Felix-MIDI-interfa
e. It is merely a
olle
tion of notesas the interfa
e is �in progress�. A number of examples are dis
ussed. Changes in the future arelikely.7.1 Introdu
tionThe strategy used to implement MIDI fun
tionality in Felix is the following: A MIDI interfa
eshould have at least an output, i.e., readable MIDI port, whi
h sends events to some sound-generator, but preferable also an input interfa
e, i.e. a writable port, whi
h may
onne
t it toa keyboard. Both options are provided in the preliminary implementation. If a simulation runswhi
h initialises one or both ports, they
an be
onne
ted to other devi
es by means of readilyavailable Linux software. If the
omputer used has a

ess to a hardware MIDI devi
e (e.g., in thesound
ard or
onne
ted to the usb port) this
an be a

esses, too.In a running Felix simulation NOTE_ON and NOTE_OFF MIDI-events
an be issued asyn-
hronously, for instan
e, by neurons that spike. The events are dire
tly s
heduled; a MIDI-queueis not used at the moment. The user has to provide
ode that emits the events to the readableport. MIDI-
hannel, key, and velo
ity
an be spe
i�ed.On the input side an event-re
eiver
an be (optionally) started, whi
h is spawned in a separatethread in order not to blo
k simulations; it waits for events on the writable port. The user has totranslate the in
oming events into inputs for his/her Felix appli
ation.For testing I use a setup with a virtual keyboard (vkeybd), a software synthesiser (�qsynth� � agraphi
al frontend to �uidsynth), and the (software) swit
hboard �qja
k
tl� whi
h is a frontend to�ja
k�, a Linux audio environment. qja
k
tl is used to
onne
t the ports of the devi
es/programsin the MIDI-environment. Note that qja
k
tl and qsynth must be run as root:1. start the Ja
k swit
hboard: �sudo qja
k
tl�2. press the �start� button in qja
k
tl - this should start the ja
k-demon whi
h serves your MIDIrequests3. start the virtual keyboard: �vkeybd� (not ne
essarily as root)107

108 CHAPTER 7. THE FELIX MIDI INTERFACE4. start the synthesiser: �sudo qsynth�5. start your Felix program6. in qja
k
tl press �
onne
t� and
onne
t the keyboard to the writable Felix port (if present)and the Felix readable port to the synthesiser, see Figure 7.1.7. Press the run-button in Felix to start the simulation (required to s
hedule the note-events)8. For a test without Felix you
an also
onne
t the keyboard dire
tly to the synthesiser, inwhi
h
ase pressing a key should result in an audible tone. If it does not, your software MIDIenvironment is not properly setup.

Figure 7.1: Felix-MIDI setup under Kubuntu. The Felix program is hidden under the visiblewindows.
7.2 Fun
tions provided by mymidi.o7.2.1 CompilationSome of the programs in this do
umentation don't need the full Felix pa
kage, but justthe mymidi.o library. If the name of su
h a program is <expl>.
 it is
ompiled withg

 -o <expl> <expl>.
 mymidi.o -lasound -lpthread. Start the program on the
ommandline and
onne
t it using �qja
k
tl�.

7.2. FUNCTIONS PROVIDED BY MYMIDI.O 109A Felix program with MIDI interfa
e is
ompiled in the usual way: Felix <expl>. Run and
onne
t the program as explained above.7.2.2 InitialisationThe following fun
tions initialise an interfa
e to the sequen
er and open readable and writableports:snd_seq_t *open_seq(snd_seq_t *seq_handle,
har*basename);int
reate_readable_port(snd_seq_t *seq_handle,
har*basename,
har*ext);int
reate_writable_port(snd_seq_t*seq_handle,
har*basename,
har*ext);
• seq_handle is a handle to the sequen
er interfa
e
• basename is the name under whi
h the Felix appli
ation appears in the MIDI environment
• ext are extensions to the basename that might be useful to distinguish di�erent ports7.2.3 Setting up an event loopIf an appli
ation has an input port (a writable port) it
an re
eive MIDI-events. This is typi
allydone in a loop that waits for the events and
alls a user supplied routine for ea
h in
oming event.The following two routines implement this fun
tionality:int enter_event_loop(snd_seq_t *seq_handle,int midi_a
tion(snd_seq_t *, snd_seq_event_t *ev));int midi_a
tion_print_event(snd_seq_t *seq_handle, snd_seq_event_t *ev);enter_event_loop implements the main loop; it requires a sequen
er handle as an argument anda se
ond fun
tion that de�nes what to do with the events.midi_a
tion_print_events is an example for an event-handling fun
tion. It prints informationabout an event to the s
reen together with some information about parameters (
hannels, keys,et
.). It does not handle all possible event types (see appendix 7.5.1). You
an use it as a prototypefor your own event-handlers.Note that the fun
tion enter_event_loop iterates an in�nite loop until the midi_a
tion()-fun
tionreturns a negative value on some event. This means you
an't use it dire
tly in a Felix program,be
ause you also need to step through the simulation. A solution for this problem is to run theMIDI-re
eiver in a separate thread as will be explained later. The next sub-se
tion presents anon-threaded (and non-Felix, just C) example.7.2.4 A �rst exampleThe C-
ode below opens a virtual sequen
er devi
e with in- and out-ports. It then enters a loopthat waits for in
oming events and prints them to the s
reen.

110 CHAPTER 7. THE FELIX MIDI INTERFACE# in
lude <stdio.h># in
lude <stdlib.h># in
lude "mymidi.h"main(){ snd_seq_t *seq_handle;
har*basename="MIDITST";// open ALSA sequen
er devi
eseq_handle = open_seq(seq_handle, basename);// setup output port
reate_readable_port(seq_handle, basename, "rd-1");// setup input port
reate_writable_port(seq_handle, basename, "wr-1");// Setup ALSA event loopenter_event_loop(seq_handle, midi_a
tion_print_event);}Compile, run, and
onne
t this program to the virtual keyboard (vkeybd) as explained earlier. Itshould print the pressed notes to the s
reen (onsets and o�sets). Note that the program opens anoutput port, too, whi
h however, is not further used at all.7.2.5 Sending note eventsIn a running program, events
an be most easily s
heduled asyn
hronously meaning that they aredire
tly forwarded to the sequen
er without getting queued. The following two fun
tions sendonsets and o�sets of notes to some sequen
er interfa
e and port. The
hannel, key and velo
ityvalues
an also be spe
i�ed.send_noteon(snd_seq_t *seq_handle, int port, int
h, int key, int vel);send_noteoff(snd_seq_t *seq_handle, int port, int
h, int key, int vel);There are two further fun
tions mainly for debugging purposes in the event handler:show_note(snd_seq_ev_note_t*note);show_sequen
er_event(snd_seq_event_t *ev);The �rst of these fun
tions prints details about a Note, the se
ond about a whole event.

7.2. FUNCTIONS PROVIDED BY MYMIDI.O 1117.2.6 Threaded event re
eiversIn sub-se
tion 7.2.3 we set up a simple event re
eiver, but mentioned that in a Felix program weneed not only re
eive events but also drive the simulation
ontinuously. A straightforward wayto satisfy both requirements at the same time is to split the program into two parts and exe
utethem in two so-
alled �threads�. These are light-weight pro
esses that
an do work independently.The following fun
tion allows to spawn a thread from the main program that enters a MIDI eventloop and exe
utes the fun
tion midi_a
tion per re
eived event.int start_midi_re
eiver(snd_seq_t * seq_handle,int midi_a
tion(snd_seq_t *, snd_seq_event_t *ev));The fun
tion listens on all writable ports that are atta
hed to the sequen
er devi
e seq_handle .The fun
tion midi_a
tion has the same prototype and behaviour as for a non-threaded event loop,see subse
tion 7.2.3 and the example in subse
tion 7.2.4. It is therefore possible to use the sameevent handler fun
tions, for instan
e the simple event printout fun
tion midi_a
tion_print_eventused in example 1 (see appendix 7.5.1 for the full
ode of this fun
tion). Example 2 in the nextsub-se
tion follows this approa
h. All events that are not handled in the midi_a
tion fun
tionare dis
arded.7.2.7 Example 2: A threaded MIDI re
eiverThis program opens a sequen
er devi
e with a writable (input) port. It then spawns a threadthat listens for in
oming MIDI events and deals with them using the same fun
tion as used inthe event handler of the non-threaded example midi_a
tion_print_event in sub-se
tion 7.2.4; itdoes nothing but printing out some information about the in
oming events.# in
lude <stdio.h># in
lude <stdlib.h># in
lude <pthread.h># in
lude "mymidi.h"# define BASENAME "RECEIVE-EVENTS"int main (int arg
,
har *argv[℄){ snd_seq_t *seq_handle;seq_handle = open_seq (seq_handle, BASENAME);
reate_writable_port(seq_handle, BASENAME, "");start_midi_re
eiver(seq_handle, midi_a
tion_print_event);while (1){ usleep(1000);

112 CHAPTER 7. THE FELIX MIDI INTERFACE}exit(0);}Observe that after having spawned the MIDI-re
eiver-thread the main program enters an in�niteloop. In the example it just sleeps for a short time in ea
h iteration. In a more useful appli
ationthe loop would
ontain some
ode to
ompute, e.g., a neural simulation.7.2.8 Simple MIDI startupMany appli
ations
an probably just live with a single input and a single output port. Initialisationof su
h a setup
an be done using the following fun
tion and is demonstrated in the Felix examplein se
tion 7.3snd_seq_t * init_simple_midi(
har*basename, int *port,int midi_a
tion(snd_seq_t *, snd_seq_event_t *))The fun
tion expe
ts a �basename� under whi
h it appears in the MIDI environment and an eventhandler fun
tion like midi_a
tion_print_event. It returns the handle to the sequen
er and theport number for sending events to other devi
es.7.3 A Felix appli
ationExample 2 in subse
tion 7.2.7 demonstrates the basi
 way how MIDI is integrated into Felix: Are
eiver-thread has to be spawned in the maininit() fun
tion of a Felix-program that deals within
oming events if that is desired. The main program
an then
ontinue with the Felix simulationin the usual way, i.e., the Felix-step-routine
an then do the main work of the simulation. Thestep-routine will typi
ally also s
hedule output-events send to a readable port, say,
onne
ted toa synthesiser or other devi
e. Be
ause the program generates the output events itself it does notneed a thread to wait for them as well. They
an just be issued as required.Here is an example that implements an integrate and �re neuron network (derived from the defaultFelix example �inf.
�) with in- and output. It reads events from an input port, say,
onne
ted tothe virtual keyboard vkeybd. Be
ause vkeybd has 36 keys, 36 integrate and �ring neurons are used.ON and OFF events for
ertain keys determine whether the respe
tive neuron re
eives and extrainput or not. The program also write output to a port. If a neuron spikes it sends a NOTEON-event followed by a NOTEOFF and a key-number
orresponding to its index plus some o�set. Thelower half of the neurons send to a
hannel spe
i�ed by slider �s
h1� and the upper half to �s
h2�.The o�sets
an be independently
hanged using the sliders �so�s1� and �so�s2� - one instrument
an this way play very low-pit
h notes and the other one high notes. The velo
ity
an further be
hanged using slider �svel�.// midinfio.
 - integrate and fire neural network// with MIDI output and input

7.3. A FELIX APPLICATION 113# in
lude <felix.h># in
lude <mymidi.h># define BASENAME "FELIXIO"snd_seq_t *seq_handle;int port;# define N 36 // number of neurons = # keys in vkeybdVe
tor pot,v1, midin;Matrix J;bVe
tor o, o1;SliderValue snoise = 10;SliderValue sinput = 105;SliderValue smidin = 105;SliderValue sJ = 50;SliderValue s
h1 = 0;SliderValue s
h2 = 9;SliderValue svel = 100;SliderValue soffs1 = 40;SliderValue soffs2 = 40;BEGIN_DISPLAYSLIDER("noise", snoise, 0, 100)SLIDER("input", sinput, 0, 200)SLIDER("midi in", smidin, 0, 200)SLIDER("
oupling", sJ, 0, 200)SLIDER("
h 1", s
h1, 0, 15)SLIDER("
h 2", s
h2, 0, 15)SLIDER("velo", svel, 0, 255)SLIDER("offs1", soffs1, 20, 120)SLIDER("offs2", soffs2, 20, 120)TIMER(100)WINDOW("time
ourses")IMAGE("pot", AR, AC, pot, VECTOR, 6, 6, 0.0, 1.0, 15)RASTER("pot", NR, AC, pot, VECTOR, N, 0, 0.0, 1.0, 1)GRAPH("pot", NR, AC, pot, VECTOR, N, 0, 0, 0, -.01, 1.01)RASTER("out", NR, AC, o, bVECTOR, N, 0, -.01, 1.01, 2)END_DISPLAYNO_OUTPUT// define what to do with in
oming events

114 CHAPTER 7. THE FELIX MIDI INTERFACEint midi_a
tion(snd_seq_t *seq_handle, snd_seq_event_t *ev){ int

 = 48; // index of lowest key in vkeybdswit
h (ev->type){
ase SND_SEQ_EVENT_NOTEON:if ((ev->data.note.note -

 >= 0)&& (ev->data.note.note -

 < N))midin[ev->data.note.note -

 ℄ = 1.;break;
ase SND_SEQ_EVENT_NOTEOFF:if ((ev->data.note.note -

 >= 0)&& (ev->data.note.note -

 < N))midin[ev->data.note.note -

 ℄ = 0.;break;}return 0;}int main_init(){ randomize(time(NULL));SET_STEPSIZE(.05)J = Get_Matrix(N, N);pot = Get_Ve
tor(N);o = Get_bVe
tor(N);o1 = Get_bVe
tor(N);v1 = Get_Ve
tor(N);midin = Get_Ve
tor(N);seq_handle = init_simple_midi(BASENAME, &port, midi_a
tion);return 0;}int init(){ int i;Clear_Ve
tor(N,midin);Clear_bVe
tor(N,o);Clear_bVe
tor(N,o1);Clear_Ve
tor(N,v1);for (i=0; i<N; i++) pot[i℄ = equal_noise();Make_Matrix(N, N, J, 1./N, 4./N);return 0;}int step()

7.4. SENDING EVENTS OVER A LOCAL NETWORK 115{ int i;for (i=0;i<N;i++)leaky_integrate(1., pot[i℄,0.01*(sinput + sJ*v1[i℄ + smidin*midin[i℄+ snoise*gauss_noise()));Fire_Reset(N, pot, 1.0, 0.0, o);bMult(N, N, J, o, v1);// send left half spikes to
hannel 0; right half to 1for(i=0; i<N; i++){ int
h, note;if (i < N/2) {
h = s
h1;note = soffs1 + i;} else {
h = s
h2;note = soffs2 + i - N/2 ; }if (o[i℄ > o1[i℄) // note onsend_noteon(seq_handle, port,
h, note , svel);else if (o[i℄ > o1[i℄) // note offsend_noteoff(seq_handle, port,
h, note, 0);o1[i℄=o[i℄; // save value for next step (on/off dete
tion)}return 0;}
7.4 Sending Events over a lo
al network7.4.1 Lo
al Network Routing � dmididAlthough it is planned to extend the Linux ALSA sound pa
kages to
onne
t devi
es not only onthe lo
al ma
hine but also over a network, this fun
tionality is not yet implemented.However, the WWW provides some links to LAN-enabled MIDI. I have experimented with �dmidid�a proto
ol and C-
ode that uses raw so
kets (see http://www.dimid.org; warning: 95% advertise-ments). Raw so
kets are quite fast be
ause they are implemented just on top of the physi
alnetwork devi
e layer. Thereby they bypass some potentially time-
onsuming TCP/IP pro
essing.The latter in
ludes any �rewall, whi
h might or might not
ause se
urity issues. dmidid is furthergiven prioritised s
heduling for faster exe
ution (it therefore needs root rights to run: �sudo dmidid<params>�).

116 CHAPTER 7. THE FELIX MIDI INTERFACEThat said, the dmidid demon implements a kind of MIDI-over-ethernet router. Several demons
an be run on the various
omputers in a lo
al network where they ea
h open one readable andone writable MIDI port for
onne
tions. They are visible in qja
k
tl and an be
onne
ted thereas any usual lo
al port. However, the demons in addition listen on the internet interfa
es of the
omputers for in
oming messages, and they
an send messages themselves. Messages re
eived fora MIDI-port on the lo
al ma
hine are routed to the respe
tive devi
e.Messages are just written to the ethernet interfa
e and re
eived by any other interfa
e on thelo
al domain. The MIDI sender and re
eiver for the
ommuni
ation are therefore in
luded inthe transmitted internet pa
kages, su
h that appli
ations
an �lter pa
kets addressed to them.Broad
asting is also possible.The dmidid.
 program in the Felix/mymidi distribution is modi�ed from the original dmidid.
be
ause the latter didn't allow to
onne
t via the network to the lo
al ma
hine itself. That wasneeded for testing. An additional
ommand line argument for the ethernet devi
e to use has alsobeen added.Syntax:dmidid [-v℄ [-b℄ [-i ifa
e℄ [-t xx:xx:xx:xx℄ [-r xx:xx:xx:xx℄
• -v prints the version
• -b sets broad
ast mode (re
eive messages to �:�:�:� and myself)
• -i sets the interfa
e to use (default �eth0�)
• -t xx:xx:xx:xx is where I send to (default �:�:�:�)
• -r xx:xx:xx:xx is my re
eiver id (default �:�:�:�)E.g. dmidid -i eth1 -r 90:00:00:00 -t 90:00:00:00 starts a demon listening on eth1 (onlaptops often the wireless devi
e) with re
eiver id 90:00:00:00 and the same transmitter id, i.e., itsends to itself. If the broad
ast �ag is set when the demon is started, it also re
eives broad
astevents (to �:�:�:� by another demon).For more info see the original dmidid-pa
kage (http://www.dmidid.org).7.4.2 MIDI over LANCommuni
ation between dmidid-demons is restri
ted to the lo
al domain of the ethernet interfa
ethey are bound to; the pa
kages are not routed to other networks. An interfa
e that uses TCP/IP,i.e., the transport level, is under debelopment. It might have rather long response times and maytherefore not be well suited for real-time appli
ations, espe
ially when they are
losed-loop.�Ping�-round-trip times to the COLAMN
omputer
luster are quite short (<5ms). There is anadditional step from the master to the nodes. Be
ause of the UoP �rewall settings we may evenbe for
ed to use tunnels....

7.5. APPENDICES 1177.5 Appendi
es7.5.1 Appendix 1 � The midi_a
tion_print_event fun
tionThe following
ode shows the library fun
tion midi_a
tion_print_event whi
h prints events tothe s
reen but
an be used as a prototype for more interesting event-handlers.int midi_a
tion_print_event(snd_seq_t *seq_handle, snd_seq_event_t *ev){ show_sequen
er_event(ev);swit
h (ev->type) {
ase SND_SEQ_EVENT_CONTROLLER:fprintf(stderr, "Control event on Channel %2d: %5d \n",ev->data.
ontrol.
hannel, ev->data.
ontrol.value);break;
ase SND_SEQ_EVENT_PITCHBEND:fprintf(stderr, "Pit
hbender event on Channel %2d: %5d \n",ev->data.
ontrol.
hannel, ev->data.
ontrol.value);break;
ase SND_SEQ_EVENT_NOTEON:fprintf(stderr, "Note On event on Channel %2d: %5d \n",ev->data.
ontrol.
hannel, ev->data.note.note);break;
ase SND_SEQ_EVENT_NOTEOFF:fprintf(stderr, "Note Off event on Channel %2d: %5d \n",ev->data.
ontrol.
hannel, ev->data.note.note);break;}return 0;}7.5.2 Appendix 2 � snd_seq_event_t and snd_seq_ev_note_t/** Sequen
er event */typedef stru
t snd_seq_event {snd_seq_event_type_t type; /**< event type */unsigned
har flags; /**< event flags */unsigned
har tag; /**< tag */unsigned
har queue; /**< s
hedule queue */snd_seq_timestamp_t time; /**< s
hedule time */snd_seq_addr_t sour
e; /**< sour
e address */snd_seq_addr_t dest; /**< destination address */union {snd_seq_ev_note_t note; /**< note information */

118 CHAPTER 7. THE FELIX MIDI INTERFACEsnd_seq_ev_
trl_t
ontrol; /**< MIDI
ontrol information */snd_seq_ev_raw8_t raw8; /**< raw8 data */snd_seq_ev_raw32_t raw32; /**< raw32 data */snd_seq_ev_ext_t ext; /**< external data */snd_seq_ev_queue_
ontrol_t queue; /**< queue
ontrol */snd_seq_timestamp_t time; /**< timestamp */snd_seq_addr_t addr; /**< address */snd_seq_
onne
t_t
onne
t; /**<
onne
t information */snd_seq_result_t result; /**< operation result
ode */snd_seq_ev_instr_begin_t instr_begin; /**< instrument */snd_seq_ev_sample_
ontrol_t sample; /**< sample
ontrol */} data; /**< event data... */} snd_seq_event_t;/** Note event */typedef stru
t snd_seq_ev_note {unsigned
har
hannel; /**<
hannel number */unsigned
har note; /**< note */unsigned
har velo
ity; /**< velo
ity */unsigned
har off_velo
ity; /**< note-off velo
ity;// only for #SND_SEQ_EVENT_NOTE */unsigned int duration; /**< duration until note-off;// only for #SND_SEQ_EVENT_NOTE */} snd_seq_ev_note_t;

Chapter 8Felix Remote Control and Data Streamingover Internet
Preliminary attempts have been made to give Felix an internet interfa
e. At the moment it ispossible to
onne
t a running simulation to a telnet
lient providing a shell-like interfa
e thatallows to issue simple
ontrol
ommands like
hanging the speed of the simulation (via a timer),reinitialising it, or printing and
hanging the swit
h and slider values. It is also possible to openso
kets and stream data to the internet that
ould be re
eived by another appli
ation on a di�erent
omputer.It is planned, but not yet possible, to use Felix programs as remote
ontrolers of Felix simulations,ie., to have a Felix-style interfa
e that automati
ally sends slider and swit
h
hanges and re
eivesoutput data whi
h it displayed immediately.Furthermore, at the moment it is only possible to remote
ontrol Felix programs without a graphi
aluser interfa
e. There are several reasons for this: 1) I mainly want to use the fun
tionalityfor programs on a
omputer
luster, where programs have nio GUIs. 2) re
eiving asyn
honousmessages on so
kets
an hangup X11 badly; I am still trying to make the respe
tive
ode stable;3) For remotely
ontrolling a simulation on another laptop or desktop it seems easier to just usedesktop sharing (Krfb) or remote desktop
onne
tion fa
ilities like Krd
 or VNC.8.0.3 Simulation Client Fun
tionalityIt seems natural at �rst to give a simulation server-fun
tionality su
h that a remote
ontrol program
an log into it in order to observe its a
tivity and potentially modify its parameters.However, on
omputer
lusters jobs are often distributed to the
ompute nodes by spe
ial purposesoftware, so-
alled job queing systems. These s
hedule jobs as soon as appropriate resour
esbe
ome available. A problem on
omputer
lusters with su
h s
heduling queues is, that you won'tknow beforehand on whi
h nodes your pro
esses will run (Fig. 8.1 depi
ts a
ommon situation).Therefore, it would be un
omfortable to log into a simulation by hand or automati
ally - you would�rst have to �nd out the node to
onne
t to. There is furthermore not mu
h
ontrol over the exa
tstartup time of a simulation, meaning that it is hard to �nd out the node to
onne
t to,
onne
t,and then not miss the �rst so-and-so many thousand steps, when the simulation starts runningimmediately, whi
h it should do be
ause otherwise the �ne
omputer
luster resour
es are wasted119

120CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNETby your program doing nothing but blo
king the respe
tive
ompute nodes it got allo
ated.Therefore Felix simulations serves as a
lients and not servers; they by itself
onne
t to a remoteserver when they start up. The remote program
an be listening on a �xed ma
hine and a wellspe
i�ed port.8.0.4 Meeting pointsTwo other problems on
omputer
lusters
on
ern their internet
onne
tivity, see Fig/ 8.1.1) The
ompute nodes are hardly ever visible from the outside world; only the master node is.Quite
ommonly internet pa
kets from the
ompute nodes are not even routed towards lo
ationsoutside the lo
al network on the
luster.2) It
an furthermore be that your
luster is behind a �rewall over whi
h you have little or no
ontrol. This means only a restri
ted number of ports will be available for
onne
tions to themaster node. However, typi
ally at least the se
ure shell port (ssh, 22) will be open, be
ause usersneed it to log into the
luster, and this port
an be
onsidered being safe, be
ause ssh is well testedand implements high se
urity standards.These two problems - hidden
ompute nodes and �rewalls blo
king internet ports -
ompli
ate
onne
ting Felix simulations on
omputer
lusters to remote programs.
22

12345 12345

client
meet

rank 0

rank 1

your nodes

slave 1

slave 0

slave 3

slave 2

22

masterremote

Figure 8.1: Typi
al remote
ontrol situation through a �rewall. The job queue on the masters
hedules your job to random slave nodes. Rank 0 is assumed to
onne
t to the meeting pointwhi
h is listening on the master at port 12345 (on the internal and external interfa
es!)). The
lienton the remote ma
hine further makes a
onne
tion to lo
al port 12345 and from there through atunnel via ssh ports 22 adn the internet to port 12345 on the master. The tunnel
an pass the�rewall be
ause ssh is ne
essary for the users to log into the
luster. This way a bidire
tional
ommuni
ation line is setup.As a solution to problem 1) we have implemented a simple �internet software router� that providesa �meeting point� where two pro
esses
an
onne
t to and any tra�
 is bidire
tionally routed.Su
h a meeting point would run on the master node of the
omputer
luster. A Felix simulation

121that starts on a
ompute node
an
onne
t to the router be
ause the master is on the lo
al networkof the
ompute node and has LAN-
onne
tivity to the
lient. If there is no �rewall (bad idea!) orthe �rewall has a hole pun
hed at the port the meeting point is listenting on (also bad!), then aremote program
an
onne
t to the meeting point dire
tly and
ommuni
ate with the
onne
tedsimulation. (In fa
t, the implemented meeting point software also allows re
onne
tions. If onlyone side of the meeting point is
onne
ted everything that is sent to it will be silently dumped.The same or di�erent
lients
an
onne
t an arbitrary number of times during the runtime of asimulation.)The above strategy is not very safe, be
ause everybody
an
onne
t to your meeting point if itis publi
ly visible to the internet; there is no password prote
tion; and the implementation of themeeting point might not even be se
ure, potentially giving
ra
kers ways to break into your masternode.It is therefore better to
onne
t to the meeting point via a se
ure internet tunnel. This is also asolution for restri
tive �rewalls, the se
ond problem mentioned above and with respe
t to
onne
-tions from the internet it is as safe as the ssh-proto
oll is. Lu
ky enough it is not di�
ult to setupa tunnel; all that is needed is an open se
ure shell port (22, and of
ourse a running sshd server
onne
ted to it).However, just to mention it, from the se
urity point of view, using a tunnel to
onne
t to a meetingpoint on the master still leaves the possibility, that some other users of the
luster
onne
ts toyour simulation. There is
urrently no way to prohibit this, but it might be that a future versionof the meeting point program will have some password prote
tion.The meeting point program (meet) should be in the �tools�-dire
tory of the Felix pa
kage.The remote
lient to
onne
t to the meeting point
an be just the standard program �telnet�(be
ause we
onne
t through a tunnel the use of telnet is safe).To
onne
t a Felix simulation and a remote program follow these steps:1. Start the meeting point on the master node: meet <port> where <port> is the port numberto listen on. In the sequel we assume it is port 12345.2. Compile your Felix program su
h that it
onne
ts to the meeting point when started. Onlyone
onne
tion should be made, ie. by rank 0 in an MPI appli
ation. You tell the Felix-kernelyou want a remote
onne
tion by adding a statement REMOTE(host, port) somewhere inmain_init().3. Setup a se
ure shell tunnel from the remote
omputer to the port 12345 on the master node.If <a

ount> is your a
ount name on the master, and xxx.xxx.xxx.xxx is the publi
 IPaddress of the master,
all on the remote ma
hine:ssh -N -L 12345:lo
alhost:12345 <a

ount>�xxx.xxx.xxx.xxx4. Start the
lient on the remote ma
hine; e.g. telnet lo
alhost 123455. Start the job on the master

122CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNET8.1 Remote Conne
tion Fun
tionalityA remote
onne
tion to a Felix program provides a simple shell that allows to issue
ommands(followed by <enter>) that e�e
t a running simulation.A
onne
tion is made to a meeting point using telnet: telnet host port.In telnet the following
ommands
an be send to a simulation that is
onne
ted on the se
ond portof the meeting point (if none is
onne
ted they are silently dis
arded):'1' or 'n' or 'r+': do a single step'n <steps>' : do <steps> steps, ie
all steps() <steps> times'b' : break/interrupt a simulation'
' :
ontinue an interrupted simulation'i' :
all the Felix-'init'-fun
tion'r' :
all the Felix-'init'-fun
tion and then 'step'
ontinuously'q' : quit the simulation'B s v' : set a swit
h (button) 's' to value 'v' (0=FALSE; !0=TRUE)'S s v' : set a slider 's' to value 'v' (v integer)'O' : toggle output on/o�'D' : dump the swit
h and slider values to s
reen'T v' : set the timer to 'v' (�oat in se
onds)Currently the timer is
alled after the exe
ution of ea
h step, ie., the timer and exe
ution time ofsingle steps add up to the total time between steps. This might
hange in the future. Similarly,the syntax above is not yet �xed. Note also that the telnet interfa
e does not provide a prompt.Just type in
ommands linewise. You
an leave telnet by pressing Ctrl-℄ and then `q' at the telnetex
ape prompt. It is possible to re
onne
t to a running simulation.8.2 Example: Remote ControlThere is not mu
h need for an example. Just some notes that re-iterate things already said:
• Only Felix programs
ompiled with the NO_GRAPHICS �ag
an be
ontrolled remotelyat the moment (see Make�les in the Felix dire
tories). These are programs
ompiled withno graphi
al user interfa
e whi
h is only the default for the parallel Felix implementation,pFelix.

8.3. STREAMING DATA 123
• To tell a Felix program you want to
ontrol it remotely
all it as program host port, where�program� is the program name and�host� and �port� are the hostname and listening port ofthe meeting point, respe
tively. host would be �lo
alhost� if one
onne
ts through a tunnelotherwise the hostname of the ma
hine the meeting point is running on.
• The meeting point must already be up, before the simulation starts
• You might also already want to be
onne
ted by telnet to the meeting point before you satrtthe simulation. This, however, is not entirely ne
essary. You
an
onne
t and re
onne
t asoften as you like.8.3 Streaming DataNote that the te
hniques des
ribed in this se
tion are ver experimental. You
an hang yoursimulations and perhaps even you
omputer.... BE WARNEDMany appli
ations might need fa
ilities to a
tually stream data in and out of the simulation pertime step. At the moment it is only possible to write simulation data to disk, but not to re
eiveit (more pre
isely, it is possible, but not re
ommended see the note at the beginning of thisse
tion).To write(/send) data you have to open a so
ket that
onne
ts your Felix program to a server thatis listening for in
oming
onne
tions,
an re
eive your data, and knows how to pro
ess it.You probably would have to setup a se
ond meeting point (on a di�erent port) for the
ommuni-
ation in order to get the data out of a
omputer
luster. If you don't need the remote simulation
ontrol des
ribed in the previous se
tions one meeting point would be enough.Note that a simulation on a
omputer
luster
an generate a huge amount of data in virtually notime. It is in general re
ommended to keep the
ommuni
ated amount of data as low as possible.Think twi
e before you send anythingTo
onne
t a simulation to a remote appli
ation or a meeting point on the
uster use:so
k =
onne
t_t
p_
lient(hostname, port)To write data to the so
ket usewrite_buffer(so
ket, buffer, size) orwhere so
ket is the so
ket returned by the
all, bu�er is a bu�er to send, e.g. a ve
tor or matrix,and size is the size of the obje
t to send in bytes. A variant of the
all allows to set additional�ags that
ontrol some low-level options of the transmissionwrite_buffer(so
ket, buffer, size, flag)Flags
an be. e.g., MSG_MORE to tell the system there is more data to
ome and optimisetransmitted pa
kage sizes, or MSG_DONTWAIT to tell it to send the data immediately. Several�ags
an be ORed together ... see �man so
ket� or �man send� if these man pages are installed onyour ma
hine. Otherwise sear
h for introdu
tions into so
ket programming on the internet.In prin
iple you
an also read data using:

124CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNETread_buffer(so
ket, buffer, size)where size is the size of the data bu�er buffer provided. However, you need to keep
are ofsyn
hronisation between the simulation program and the program re
eiving the data, otherwiseyou might easily run into deadlo
k
onditions.8.4 Example 1: Data Streaming to a Disk on the RemoteMa
hineThis example shows a simple re
eiver of data sent via a meeting point. It writes all in
oming datainto a �le. It is not a Felix program but just links against the mylan.o-module of the Felix-kernel.The sender likewise does not need to be a Felix program.1. Compile the
ode with something like g

 -o r
vr r
vr.
 mylan.o. Of
ourse the mylanheader and obje
t �les need to be a

essible.2. Run the program with r
vr host port file where host and port spe
ify a meeting waitingfor
onne
tions, and �le is the �le to store arriveing data in.3. Conne
t a sender to the se
on port of the meeting point, e.g., telnet or a Felix program thatopens a so
ket in main_init and writes data in step as outlined in the previous se
tion.# in
lude <stdio.h># in
lude "mylan.h"int main(int arg
,
har *argv[℄){ int res;
har buffer[256℄;int so
k =
onne
t_t
p_
lient(argv[1℄, atoi(argv[2℄));FILE *fp = fopen(argv[3℄, "w");for(;;){ if ((res = re
v(so
k, buffer, 256, 0)) > 0){ fwrite(buffer, 1, res, fp);fflush(fp);}else // error or
onne
tion
losedbreak;}f
lose(fp);
lose(so
k);}

8.5. EXAMPLE 2: DATA STREAMING TO A REMOTE MIDI DEVICE 125Note, that if the sender terminates the above program will not also die, be
ause it is
onne
ted tothe meeting point and not dire
tly to the sender. The meeting point doesn't report if the otherport
onne
ts or dis
onne
ts, neither does it
lose a
onne
tion by itself (unless in error
onditions).There
eiver program therefore has to be killed expli
itely with Ctl-C. The latter
an lead to dataloss if the �le-bu�er is not �ushed. In the example we �ush it after ea
h write, but one
ould alsosetup a handler for the kill signal or redire
t the system _exit routine in order to �ush bu�ers onexit.8.5 Example 2: Data Streaming to a Remote MIDI Devi
eThis se
tion shows an example that re
eives streamed data from a simulation and transforms theminto sound events send to a MIDI port. It
ombines the mymidi and mylan modules. It has to be
ompiled as g

 -g -o r
vmid r
vmid.
 mylan.o mymidi.o -lasoundThe
ode below re
eives streamed data, ie., binary ve
tors of length 36 per step. A 1 on oneof the 36 input lines means that a note is played. The lower 18 lines are mapped to one MIDI
hannel and the upper 18 to another one. Channels 5 and 9 are (usually) an ele
tri
 piano and aper
ussion/drum set.# in
lude <stdio.h># in
lude "mylan.h"# in
lude "mymidi.h"int main(int arg
,
har *argv[℄){ int res, i, so
k, midiport;snd_seq_t *seq_handle;
har buf[256℄, buf1[256℄;seq_handle = open_seq (seq_handle, argv[0℄);midiport =
reate_readable_port(seq_handle, argv[0℄, "out");so
k =
onne
t_t
p_
lient(argv[1℄, atoi(argv[2℄));while (1){ if ((res = re
v(so
k, buf, sizeof(buf), 0)) > 0) // blo
ks!{ for(i=0; i<36; i++){ int
h, note;if (i < 36/2) {
h = 5; note = 40 + i; // lower N/2 units} else {
h = 9; note = 40 + i - 36/2 ; } // upper N/2 unitsif (buf[i℄ > buf1[i℄) // note on

126CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNETsend_noteon(seq_handle, midiport,
h, note, 127);else if (buf1[i℄ > buf[i℄) // note offsend_noteoff(seq_handle, midiport,
h, note, 0);buf1[i℄=buf[i℄; // save value for next step (on/off dete
tion)}}else // error or
onne
tion
losedbreak;}
lose(so
k);}Setup is little tri
ky, be
ause two meeting points are required, one for the
ontrol
onne
tion andone for the data stream. In addition if you want to make the generated MIDI events audible youhave to
onne
t the midiport to a synthesizer. Se
tion ?? des
ribes how to do that. The r
vmidprogram will just appear in the qja
k
tl tool as an additional readable port that
an be
onne
tedto just any writable port that is available, e.g., qsynth.1. Start qja
k
tl and qsynth2. Start two meeting points on di�erent ports, e.g., 12345 and 123463. Conne
t via telnet to the �rst meeting point4. Start the r
vmidi program su
h that it
onne
ts to the se
ond meeting point:r
vmidid lo
alhost 12346 (You have to use the proper host and port!)5. Start the laninfo program des
ribed below su
h that it opens a
ontrol
onne
tion to the�rst meeting point laninfio lo
alost 12345; the data streaming
onne
tion is made inthe main_init routine of the program.6. Conne
t the laninfo MIDI port to qsynth in the qja
k
tl tool7. Set a proper time-step in telnet (T .1) and run the simulation (r)I am aware that this is a pretty tedious pro
edure, but the
ode is
urrently just experimental;thinsg might get simpler in the future. Also, note that qja
k
tl, qsynth, and the meeting pointsneed to be set up only on
e. However, ea
h time the r
vmidi program is restarted it needs to bere
onne
ted in qja
k
tl. The simulation program (here laninfo) automati
ally re
onne
ts to themeeting points if it is restarted, but keep
are of providing the proper hosts and ports: The
ontrolport needs to be
onne
ted to the telnet
lient, and the data port to r
vmid.Here are
ode snippets how a simulation program would send data to the re
eiver program. It isassumed that the program uses a binary ve
tor �spikes� of size N, whi
h is send after
omputationa simulation step. In order to
ooperate properly with r
vmid N must be 36. There should bea program laninfo somewhere in the example dire
tories that implements an integrate and �reneuron network whi
h streams spikes into the ethernet as shown below.

8.5. EXAMPLE 2: DATA STREAMING TO A REMOTE MIDI DEVICE 127int main_init(){ ... init stuff ...so
k =
onne
t_t
p_
lient("lo
alhost", 12346);}int step(){ ... do a simulation stepwrite_buffer_1(so
k, (
har*)spikes, N, MSG_DONTWAIT);}Warning: If you try to write Felix programs with graphi
al user interfa
e that re
eive data in theirstep-routine (or anywhere else) you
an badly hang up the X11 server.

128CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNET

Chapter 9Parallel Programming with Felix
NOTE: This
hapter is quite preliminaryThe present
hapter des
ribes re
ently developed parallel
omputing extensions to Felix. They areunder development and many of them barely tested. Use at your own risk and don't expe
t toomu
h!Felix supports three types or parallelism: SSE-extensions, OpenMP for symmetri
 multi pro
essors,and the message passing interfa
e (MPI). The underlying
on
epts of these three te
hnologies willbe des
ribed in the subsequent
hapters 9.2 to 9.4 individually. However, it is possible to
ombineall three frameworks in a single program. This makes sense in espe
ially on
omputer
lusterswhere ea
h single node has several pro
essor
ores (see se
tion 9.5). Su
h
lusters will likely bethe standard in future
omputer
lusters.Felix programs
an be developed to run on serial or parallel target ar
hite
tures. In general,at least some e�ort is ne
essary to parallelise a given serial
ode. However, it is at least inprin
iple possible to write Felix programs that
an be
ompiled and run on both, parallel andserial
omputers. Se
tion 9.6 gives advise on how to write Felix programs of this kind.9.1 History and FutureThe very �rst Felix version was mainly intended to provide a graphi
al user interfa
e for a parallel
omputer we had at the University of Ulm/Germany in the early 90th of the previous
entury(yes, I am almost a hundred years old!). This was a so-
alled �WaveTra
er�
omprising 4096 singlebit pro
essors running at an amazing 8MHz
y
le-frequen
y. The pro
essors
ould be arrangedto form 1, 2, or 3-dimensional virtual arrays aiming primarily at simulations of wave equationsand partial di�erential equations; the simulation of neural �eld models was possible as well. Theprogramming made used of an ingenious C-diale
t
alled �Multi-C�, whi
h I still believe was abrilliant development: It was C, enri
hed by a handful of parallel
onstru
ts for parallel data-typesand data-transfer between nodes. Unfortunately the
ompany WaveTra
er died after a while andas it seems none of the other parallel hard- or software developers took over the
on
eptual ideasthe WaveTra
er system in
orporated.When single-CPU
omputers got faster than the WaveTra
er, whi
h happended surprisinglyqui
kly, Felix was ported to standard ar
hite
tures, �rst Sun-Workstations under Sun-OS and129

130 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXearly Solaris versions, later Linux PCs (and even later Cygwin ...).More re
ently,
omputer
lusters got
heap enough to be
ome available for a
ademi
 resear
h. This
aused Felix to be (ba
k-)adapted to parallel environments again. The parallel Felix extensionstherefore are very new, meaning that they are neither
omplete, nor very well developed, nor testedto a degree they should. So, be warned! In fa
t, they are under development and get extended asI �nd it useful for my resear
h.Felix supports three types of parallelism whi
h intentionally should be freely
ombinable in appli-
ations. These te
hnologies are abbreviated as SSE, OpenMP, and MPI � the �rst is a hardwarete
hnology for
ode-ve
torisation, that latter two software-standards for the programming of sym-metri
 multi-pro
essor
omputers (SMP) and
omputer grids and
lusters, respe
tively. None ofthem requires that you a
tually have a spe
ial parallel
omputer. You
an install the ne
essarysoftware on any Linux-box. This would allow you to develop parallel software on a Laptop or work-station, befor going big on a
luster. In fa
t, even better, every modern Intel or AMD pro
essorsupports SSE intrinsi
ally, and the dual-
ore pro
essor
omputers that
urrently start
onqueringthe market have two physi
al pro
essing units (SMP) per CPU-
hip; they
an naturally be pro-grammed using OpenMP (or MPI) if full use of the two pro
essor
ores has to be made. Imaginethat two
ores per CPU are just the beginning: Intel has already presented its �rst 80-
ore waferprototype and others will follow; 4 or 8
ore CPUs will probably be available
ommer
ially in justa very few years.9.2 SSE, BLAS, ATLASSSE is a hardware te
hnology supported by ea
h mordern AMD or Intel CPU. It was originallyinvented by Intel to speed up graphi
s and audio appli
ations, ie.,
omputer games, video, and allthat kind of appli
ations
ompanies really
an make money with.SSE is indeed something like a
o-pro
essor in every single modern Intel or AMD CPU (I amnot sure about MACs; but they swit
h to Intel CPUs as it seems). Ea
h su
h pro
essor has amain
entral pro
essing unit whi
h supports a
ertain instru
tion set and is most a
tive duringthe exe
ution of any standard program. Virtually all modern CPUs in addition have a math
o-pro
essor whi
h
an be used for speeding up
omputations of various mathemati
al fun
tionslike abs, sin, exp, and so on. Less well known is that sin
e the Intel 386??? family or AMD??? ea
h pro
essor has a further pro
essing unit independent of the main arithmeti
-logi
al-unitand math-
o-pro
essor that is useful for some kinds of parallel
omputations appearing often ingraphi
s and audio pro
essing. This hardware pie
e on modern
hips is programmed by using theso-
alled SSE-extensions to the low-level assembler instru
tion set for that CPU.The SSE standard basi
ally provides a spe
ial register set on the CPU and a

ompanied assemblerinstru
tions whi
h support some kind of math (but not a whole lot) supposed to be useful forgraphi
s and audio appli
ations. These register (by default 8 of them) are (at least on a 32 bitar
hite
ture) 128 bit wide, but the 128 bit
an be divided into data-
hunks of various size, ie.,singned and unsigned integers of 8, 16, or 32 bit size, but also �oating points of size 4 or 8 bytes(32 or 64 bits). A

ordingly, these spe
ial units on any modern Intel or AMD CPU (yes, I amprobably speaking about your
omputer) are able to pro
ess up to 16 8-bit integers, or 8 16-bitintegers, or 4 32-bit �oating points, or 2 64-bit �oating points (doubles) at on
e. This supportsa kind of �ve
torisation�, operations
an be done in parallel on several numbers (ie., a �ve
tor�)at on
e. In prin
iple every software
ould make use of this ve
torisation, and indeed,
ommer
ial

9.2. SSE, BLAS, ATLAS 131
ompilers as well as newer versions of the gnu
ompilers are potentially able to
ompile
ode writtenin a higher programming language to make e�
ient use of the SSE extensions. (A full des
riptionof the SSE standard
an be found in the respe
tive do
uments available from Intels web-pages.)Now, the �BLAS� is the so-
alled �Basi
 Linear Algebra Subroutines�-pa
kage whi
h is available forLinux (MAC and Windows quite surely, too). It is a highly optimised pa
kage of linear algebra rou-tines su
h as s
alar, matrix-ve
tor, and matrix-matrix multipli
ations. Some
ommer
ial produ
tslike Matab make use of the BLAS, whi
h make their Matrix/Ve
tor routines very e�
ient.A standard Linux distribution does not usually have by default an optimised BLAS, be
ause thatlibrary needs to be adapted to the pre
ise target ar
hite
ture. Most default Linux systems justhave a default library (
ompiled for i368) that
an be used by all pre-
ompiled programs on 99.9%of all PC ar
hite
tures that need the library. However, you
an update your BLAS to speed upsu
h programs. Most of the improved BLAS versions do make use of the SSE extensions.Two BLAS implementations are kind of standard at the moment: ATLAS- and Goto-BLAS.ATLAS is an �automati
ally tuned linear algrebra system� that provides a BLAS and some routineson top of that (a subset of �LAPACK�, a well-known �Linear Algebra Pa
kage� for solving linearequations, �nding eigen-ve
tors, et
.). During
ompilation of ATLAS-BLAS, out of a large number(sometimes several hundreds and more) of possible implementations for a parti
ular task likematrix-ve
tor multipli
ation the best performing routines for the target ar
hite
ture are
hosenand put into the library. These top-performing routines
an make use of the SSE CPU extensionsand therefore the BLAS is mentioned under �parallel� Felix extensions.GotoBLAS is a se
ond BLAS implementation originally developed by Kazushige Goto. It is avail-able (ie optimised) for a variety of target ar
hite
tures and generally said to be the fastest BLASimplementation available. It does use hand-optimised (SSE-)assembler
ode.

 1

 10

 100

 1000

 10 100 1000 10000

xx
O

P
S

N

dgemv

"hand" u ($1):(($1*$1)/$2)
"handO2" u ($1):(($1*$1)/$2)

"blas" u ($1):(($1*$1)/$2)
"atlas" u ($1):(($1*$1)/$2)
"goto" u ($1):(($1*$1)/$2)

"ccc-atlas" u ($1):(($1*$1)/$2)
"ccc-goto" u ($1):(($1*$1)/$2)Figure 9.1: Typi
al performan
e for �oating point matrix-ve
tor multipli
ation on a Centrinolaptop and a 4-
ore AMD opteron ma
hine (CCC) of di�erent raw and BLAS enhan
ed
odes.x-axis indi
ates matrix/v
teor-size. See text for further explanations.Figures 9.1 and 9.1 show the performan
e of matrix-ve
tor and matrix-matrix multipli
ations for

132 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIX

 1

 10

 100

 1000

 10000

 10 100 1000

xx
O

P
S

N

dgemm

"hand" u ($1):(($1*$1*$1)/$2)
"handO2" u ($1):(($1*$1*$1)/$2)

"blas" u ($1):(($1*$1*$1)/$2)
"atlas" u ($1):(($1*$1*$1)/$2)
"goto" u ($1):(($1*$1*$1)/$2)

"ccc-atlas" u ($1):(($1*$1*$1)/$2)
"ccc-goto" u ($1):(($1*$1*$1)/$2)Figure 9.2: Typi
al performan
e for �oating point matrix-matrix multipli
ation on a Centrinolaptop and 4-
ore AMD opteron node (CCC) of di�erent raw and BLAS enhan
ed
odes. x-axisindi
ates matrix/v
teor-size.�oating point linear systems under di�erent
onditions. �

-goto� and �

�atlas� have been runon two pro
essor dual
ore AMD 27?? nodes (4*2GHz; 4*1MB
a
he???); the other
urves are fora single CPU Centrino Laptop (1.73GHz, 2MB
a
he). �hand� and �handO2 denote naive
ode(straight for-loops) either
ompiled without or with O2 optimisation using g

 4.0.2. �blas� usesthe default BLAS library on the Laptop, whi
h performs worse than no optimisation at all in mostof the studied range. �atlas� and �goto� indi
ate ATLAS and Goto-BLAS versions on the respe
tivesystems. Observe the quite impressive performan
e gain for optimised
ode, and that, of
ourse,the numbers for the Centrino-Laptop and 4-
ore high-performan
e
ompute node are not dire
tly
omparable. Interestinly enough for small system size the single-CPU Laptop is faster than the4-
ore AMD node.Note: You don't need any BLAS library if you want to use Felix. It just
an make some routinesfaster. At the moment the numbers of routines that potentially use BLAS-
alls is a
tually morerestri
ted than it
ould be. However, the �oating point s
alar-produ
ts, and matrix-ve
tor produ
tsdo use a BLAS library if this has been spe
i�ed during
ompile time of the Felix libraries.In order to let the Felix
ore use BLAS-routines whereever this is implemented to date it su�
es tospe
ify the -DWITH_BLAS �ag during
ompile time. BLAS should not spawn threads (Goto-Blas
an do this. It
an be avoided using environment variables. See the repse
tive BLAS do
uments.)9.3 OpenMPSymmetri
 multi-pro
essor
omputers (SMP) are systems that
omprise a number or
entral pro-
essing units but share a
ommon memory pool. Ea
h pro
essor
an a

ess the memory througha fast bus making memory a

ess and data ex
hange potentially very fast.Only sin
e relatively re
ently SMP
omputers have been developed for the general market at

9.3. OPENMP 133reasonable pri
es. Meanwhile, however, dual- and quad-pro
essor
omputers are available at quitelow pri
es and dual-
ore pro
essors indi
ate a new trend that even aims at putting two (or more)pro
essing units on the same
hip. There are already many dual-
ore ma
hines available, in
ludingLaptops. These all are SMP
omputers. Linux should support them automati
ally if you installan SMP-kernel.OpenMP is an industry standard that supports programming SMP
omputers. It is not the mostgeneral approa
h for parallel programming (
f., e.g.,
on
epts like Posix threads, PVM, or MPI),but for some kinds of appli
ations it is very simple to use and
an provide good speed ups. Thisin
ludes neural network appli
ations.The most typi
al example for OpenMP-parallisation is �outer-loop�-parallelisation. It often ispossible in numeri
al
ode where the same operations have to be performed on a large number ofunits. This is typi
ally done in a big �outer� loop over the elements. OpenMP provides simple
onstru
ts to
ut su
h loops into pie
es of roughly the same size and distribute them over theavailabe pro
essors. In prin
iple as single additional statement on top of an existing for-loop
anbe enough to parallelise it, e.g., a statement likefor (i=0; i<N; i++)x[i℄ = fun
(i);
ould result in# pragma omp for private(i)for (i=0; i<N; i++)x[i℄ = fun
(i);This se
ond version is automati
ally
ompiled into
ode distributed over the available pro
essors.The variable i is de
lared private, be
ause ea
h pro
ess will need an independent
opy of it. Thereare other
onstru
ts available for more general programming
onstru
ts than for-loops. There arealso serious
onstraints that have to be taken into a
ount when parallelising
ode � for short, notwo pro
esses should ever try to potentially update the same variable at the same time (for thatreason i has to be de
lared private in the pragma-statement; of
ourse the fun
tion �fun
()� also issupposed to not assign values to variables possibly overlapping between pro
esses. If this happens(a so-
alled �ra
e-
ondition�) the results of the
omputation are unde�ned. There are many
ases,however, where assignments of variables are
onstraint to
ontiguous regions, e.g., in the range ofa for-loop. In that
ase OpenMP-parallelisation is in general save to use. For further details, wehave to refer the reader to the OpenMP spe
i�
ation, handbooks, and tutorials available in theWeb.A large number of fun
tions in the Felix
ore automati
ally make use of OpenMP parallelisation ifthis is spe
i�ed during
ompile time. It is also possible to use OpenMP ma
ros in the user de�nedtop-level init() and step() fun
tions. It should, however, be avoided to
all already parallelised Felixroutines in parallelised regions in the top-level fun
tions. Although the results would (probably) bewell-de�ned (up to possible ra
e-
onditions), the
ode would spread an unne
essary large numberof threads. Spreading threads for parallel
omputation always needs some overhead. It is thereforeusually not advisable to parallelise very simple loops or to spawn more threads than pro
essorsare available.

134 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIX9.4 MPIMPI, the �Message Passing Interfa
e�, is an industry standard for
ommuni
ation between pro-
esses. These pro
esses
an run on the same or di�erent
omputers, no matter where they arelo
ated (physi
al lo
ation only impa
ts the
ommuni
ation speed). Thus, MPI is useful for
om-puter
lusters and grids.Simple MPI programs make use of a handful of statements only, although the full MPI standardde�nes over 120 di�erent fun
tions. These most simple
ommands just set up a logi
al network,and send and re
eive messages between nodes. For MPI-details in programming and usage we referthe reader to the many tutorials about MPI programming available on the Web. The followingassumes basi
 knowledge about MPI programming.Felix provides very simple
onstru
ts that don't do more than ex
hanging pa
kages of various typesof variables between pro
esses.The general philosophy is to run a number of
opies of the same program on a number of availablenodes (e.g., with mpirun -np 3 programname in the usual way to run MPI programs). Ea
h
opyhas asso
iated with it a number �myrank� that identi�es it uniquely. Inside ea
h running pro
ess
ode
an therefore be exe
uted
onditionally depending on the rank of the pro
ess. After ea
hsimulation step, variables that are
omputed inside one pro
ess, but required in the next in anotherpro
ess have then to be
ommuni
ated using MPI.For that purpose every MPI-parallel Felix programm has to de�ne a top-level routine �fmpi-
onne
tions()� that spe
i�es whi
h data has to be
ommuni
ated. For ea
h variable to be trans-mitted between two nodes a
onne
tion has to be setup usingvoid fmpi_
onne
t(int node1, long var1,int type, int size,int node2, long var2);or the equivalent ma
ro CONNECT (see example below).�node1, var1� spe
ify the sour
e variable (typi
ally an array of type CHAR, INT, or FLOAT, but
an be a pointer to su
h an array, too, see below)�node2, var2� is the target variable (must be an array, no POINTER type)�size� is the number of elements in the array that have to be transmitted�type� is the type of the data. The data basetype must be one of CHAR_TYPE, FLOAT_TYPE,or INT_TYPE. Note that Felix Ve
tors and Matri
es are FLOAT_TYPE and bVe
torsCHAR_TYPE, su
h that it is admissable to spe
ify the type as, e.g., bVECTOR or MATRIX.The basetype of the target variable must mat
h that of the sour
e. However, the sour
e
an inaddition be a pointer type (similar as for display variables).All
onne
tions have to be de�ned in a top-level fun
tion fmpi_
onne
tions(), e.g., like this:void fmpi_
onne
tions(){ CONNECT(0, var1, VECTOR, N, 1, var2);CONNECT(1, z1, POINTER TO bVECTOR, N, 2, z1);

9.5. HYBRID MPI/OPENMP CODE 135}The �rst statement
onne
ts the �oat ve
tor var1 of size N on pro
essor 0 to var2 on pro
essor 2.The se
ond statement uses a POINTER variable, whi
h gets dereferen
ed just befor transmissionto a bVe
tor of size N whi
h is then transferred from pro
essor 1 to variable z1 on pro
essor 2.It is possible that sour
e and destination are the same variables, but note that they will residenonetheless on di�erent ma
hines.Furthermore, if the same
ode is
ompiled using serial Felix, the CONNECT ma
ro translates toempty
ode (but not the fun
tion, so use the ma
ro!). Thereby, the
ode is dis
arded; nothingneeds to be
ommuni
ated if the program runs on a single pro
essor. This supports writing
odethat
an be
ompiled on serial and parallel ma
hines without
hanging a singe line. Of
ourse,using this feature needs a
areful design of the
ode in order to have the serial and parallel
odes
onsistent. There is typi
ally at least a one-simulation-step delay introdu
ed, be
ause inthe parallel versions
ommuni
ation o

urs only after ea
h simulation step, whereas in a serialprogram updated variables are immediately available.9.5 Hybrid MPI/OpenMP CodeMPI and OpenMP
an be
ombined in the same program.The
ommon free MPI versions (MPICH and LAM) are not threadsafe (most
ommer
ial imple-mentations are). This means, if you use MPI within OpenMP parallelised regions the results areunde�ned.Nonetheless, writing hybrid MPI/OpenMP-programs is possible, if
are is taken of
alling MPI-
onstru
ts only in OpenMP serial parts of the
ode. In that
ase only a single thread is doing theMPI-
ommuni
ation, whi
h is safe.Hybrid parallelism is possible in Felix. For that a number of MPI-pro
esses are spawned that
ommuni
ate as explained in se
tion 9.4, but ea
h of these pro
esses in turn
an spawn their ownOpenMP threads. This is useful on SMP
lusters with several CPUs per node. Communi
ationbetween nodes
an that way be done using MPI, but on the same node using threads and sharedmemory. Be
ause
ommuni
ation via shared memory is usually faster than via a network thisshould result in speed bene�ts.The following
ode is NOT Felix but just a simple C-example that demonstrates the prin
iple.// ompi.
 -- simple test program for hybrid MPI/OpenMP paralellism# in
lude <stdio.h># in
lude <omp.h> // in
lude OpenMP header# in
lude <mpi.h> // in
lude MPI header# define NUMTHREADS 3 // set number of OpenMP threads heremain(int arg
,
har *argv[℄){ int numtasks, rank;

136 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXMPI_Init(&arg
, &argv);MPI_Comm_size(MPI_COMM_WORLD, &numtasks);MPI_Comm_rank(MPI_COMM_WORLD, &rank);omp_set_num_threads(NUMTHREADS);# pragma omp parallel{ printf("MPI rank %d OMP thread %d\n", rank, omp_get_thread_num());} MPI_Finalize();}The
ode needs to be
ompiled with an OpenMP-
apable
ompiler (Intel, g

 4.2 or higher) andlinked against the proper MPI-libs (see also se
tion A for further low-level info). It
an then berun using, e.g., mpirun -np 2 ompi if �ompi� is the name of the exe
utable. The number of MPIpro
esses in the example would be 2 (spe
i�ed by �-np 2� in the mpirun
all), ea
h of whi
h spawnsNUMTHREADS OpenMP threads. Ea
h thread prints its MPI rank and thread number and exits.Note that instead of setting the number of OpenMP threads expli
itly one
ould also use theenvironment variable OMP_NUM_THREADS. This is quite usual and avoids having to re
ompilethe
ode for di�erent thread numbers. However, even if OMP_NUM_THREADS is set in your.bashr
, it is not ne
essarily exported to all target ma
hines on all systems.9.6 Parallelising Serial Felix CodeSerial
ode is
ompiled using the standard �Felix�-s
ript, whi
h links against libf (
ore routines)and libxf (XView extensions). For parallel
ode use the �pFelix�-s
ript. This links against libpf.Although libf and libxf are for serial
ode they
an possibly make use of BLAS or OpenMPdepending on how they have been
ompiled.The parallel Felix lib �libpf� must be used for MPI and hybrid MPI/OpenMP.9.6.1 OpenMP and p�xTo make life easier a
ouple of ma
ros have been de
lared for writing parallelised
ode. If you usethem you
an even write programs that
an be
ompiled and run with and without OpenMP.# ifdef WITH_OMP# define OMP_THREADS(_n) omp_set_num_threads(_n);# define OMP_FOR(_x) ... // this shouldn't o

ur be
ause preFelix removes OMP_FORs# define OMP_ONLY(_x) _x# else# define OMP_THREADS(_n)# define OMP_FOR(_x) for(_x)

9.6. PARALLELISING SERIAL FELIX CODE 137# define OMP_ONLY(_x)# endifObserve that depending on whether the �ag WITH_OMP is a
tive during
ompile time (usuallyset in the Make�le) the ma
ros expand into di�erent
ode. If the Felix-s
ript is used for
ompilationWITH_OMP will (usually) not be de�ned, but for the pFelix s
ript it will.Note that these settings only apply to your sour
e
ode. Whether OpenMP is used in �libf�, theFelix
ore library, depends on the value of OpenMP at
ompile time of the libraries, ie. in theMake�le in the Felix sour
e dire
tory. In the standard installation, libf would not
ontain OpenMPparallelised
ode.There are several problems with the OMP_FOR ma
ro: A
tually this must have the formOMP_FOR(<var> = <
ode>)< single statement or
ode-blo
k en
losed by {}>It should expand into#pragma omp parallel for default(shared) private(<var>)for(<var> = <
ode>)<single statement or
ode-blo
k en
losed by {}>The
ode segments not expli
itely spe
i�ed, of
ourse, must translate into valid C-
ode.The �rst problem now is that the #pragma phrase
annot be inserted by the prepro
essor (at leastI don't kow how to do it with ma
ros). Instead a very simple prepro
essor
all �p�x� is used. Thisdoes nothing but sear
hing a �le for the string OMP_FOR and repla
ing the string in the senseabove. �p�x� is
alled, when the Felix- or pFelix-s
ripts are exe
uted. It generates a temporary�le, whi
h is then
ompiled into an exe
utable.The se
ond problem with OMP_FOR is that the user has to make sure that the sour
e-
ode doesnot
ontain assignments to memory lo
ations whi
h are potentially exe
uted simultaneously indi�erent threads. The values of su
h variables are unde�ned, but there will be no expli
it warningor error message. Su
h variables in general need to be de
lared �private� in the repre
tive en
losingOpenMP-pragma or prote
ted by other means (see OpenMP handbooks and tutorials). The onlyvariable that is expli
itly de
lared private if the OMP_FOR ma
ro is used, is the run-index of thefor-loop. This su�
es in many situations I have experien
ed over the years. However, if you have
ode where some threads would potentially write/
hange the same shared memory lo
ations, you
an not use OMP_FOR, but have to use the original OpenMP pragmas.Example: The following
ode is buggyint i, j;Matrix x; // size nx * ny; allo
ated elsewhere...OMP_FOR(i=0; i<nx; i++)for (j=0; j<ny; j++)x[i*nx+j℄ = ... something ... ;

138 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXThe mistake is that j is a shared variable (by default). If several threads exe
ute the outer for-loop, they all use the same
opy of j (in shared memory), whi
h they update asyn
hronously. Thissituation o

urs often in simulations of two-dimensional �eld model. A simple
ure isint i;Matrix x; // size nx * ny; allo
ated elsewhere...OMP_FOR(i=0; i<nx; i++){ int j;for (j=0; j<ny; j++)x[i*ny+j℄ = ... something ... ;}Here the variable j is lo
al to ea
h thread and
an only be
hanged by the respe
tive thread. xis also a shared variable whi
h gets values assigned, but note that the entries in that matrix aredisjoint between threads, be
ause di�erent threads operate on di�erent sli
es of the matrix.9.6.2 MPIA number of ma
ros support writing MP-
ode.# ifdef WITH_MPI# define RANK(_x) if(myrank==(_x))# define COND(_x) if(_x)# define MPI_ONLY(_x) _x# else# define RANK(_x) // if(myrank==(_x))# define COND(_x) // if(_x)# define CONNECT(_x1,_x2,_x3,_x4,_x5,_x6)# define MPI_ONLY(_x)# endifextern int myrank;Observe that these ma
ros expand to empty
ode when
ompiled serially (ie, if the
ompiler �agWITH_MPI is not set (usually in the Make�le, see ??))RANK and COND support
onditional exe
ution of
ode in
onjun
tion with the global variable�myrank� whi
h holds the unique MPI-rank of ea
h pro
ess.MPI_ONLY()
an be used to en
lose
ode that has to be exe
uted only in an MPI environment(see example below.)9.6.3 Example: Two intera
ting Neuron PoolsThe
ode in this subse
tion simulates two pools of leaky-integrate-and-�re neurons, whi
h intera
tmutually. It dupli
ates the variables and
ode from the previously used inf.
 example program,but adds some
ode for the intera
tion and its
ontrol slider in the GUI.

9.6. PARALLELISING SERIAL FELIX CODE 139The program is shown be
ause it demonstrates how to write
ode using the ma
ros explained inthe previous se
tion 9.6.2 that
an either be
ompiled serially with GUI, but for parallel exe
utionusing MPI (or MPI/OpenMP) as well. The advantage would be that one
an
onveniently test asmall version of the program with GUI, but run s
aled-up large versions on a parallel
omputerwithout
hanging a single line of
ode. Both versions
ould even use the same environment �lesfor parameter settings.The idea is to
ut the serial
ode into pie
es that
an be distributed a
ross a number of MPIpro
esses. The RANK() or COND()-ma
ros are then used to sele
t the respe
tive
ode bits forexe
ution in the individual pro
esses. In order to set up the model properly one has to ex
hangedata
omputed in one thread but needed in others, too. This is done by
alls to the
onne
t()-fun
tion in a top-level routine fmpi_
onne
tions(), see se
tion 9.4.The RANK, COND, and CONNECT-ma
ros expand (basi
ally) into empty
ode if the so preparedprogram is
ompiled serially. Using the ma
ros appropriately, possibly in
onju
tion with the otherma
ros in se
tions 9.4 and 9.3,
an result in
ode that
an be
ompiled serially and for parallelexe
ution.Here is one su
h magi

odes (some parts have been
ut out (mainly things related to display andoutput); the full sour
e
ode should be in the Felix expl/parallel dire
tory):// infpairmpi.
in
lude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time
onst. */Ve
tor pot1, pot2; /* potentials */Matrix J1, J2; /*
onne
tions */bVe
tor o1, o2; /* ve
tor of spikes */Ve
tor v1, v2; /* for help */int stp=0;...BEGIN_DISPLAY....BEGIN_OUTPUT....void fmpi_
onne
tions(){ CONNECT(0, o1, bVECTOR, N, 1, o1);CONNECT(1, o2, bVECTOR, N, 0, o2);}int main_init(){

140 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXrandomize(time(NULL) + 100*myrank); // not sure this safe ???????????????SET_STEPSIZE(.5)RANK(0){ J1 = Get_Matrix(N, N);pot1 = Get_Ve
tor(N);v1 = Get_Ve
tor(N);}o1 = Get_bVe
tor(N);RANK(1){ J2 = Get_Matrix(N, N);pot2 = Get_Ve
tor(N);v2 = Get_Ve
tor(N);}o2 = Get_bVe
tor(N);}int init(){ int i;RANK(0){ Clear_bVe
tor(N,o1);Clear_Ve
tor(N,v1);for (i=0; i<N; i++)pot1[i℄ = equal_noise(); // random initialisationMake_Matrix(N, N, J1, 1./N , .4/N);}RANK(1){ Clear_bVe
tor(N,o2);Clear_Ve
tor(N,v2);for (i=0; i<N; i++)pot2[i℄ = 0; // no random initialisation !Make_Matrix(N, N, J2, 1./N , .4/N);}stp=0;}int step(){ int i;RANK(0){

9.6. PARALLELISING SERIAL FELIX CODE 141for (i=0;i<N;i++)leaky_integrate (tau, pot1[i℄,0.01*(sinput + sJ*v1[i℄ + sJ
*o2[i℄+ snoise*gauss_noise()));Fire_Reset(N, pot1, 1.0, 0.0, o1);bMult(N, N, J1, o1, v1);}RANK(1){ for (i=0;i<N;i++)leaky_integrate (tau, pot2[i℄,0.01*(sinput + sJ*v2[i℄ + sJ
*o1[i℄+ snoise*gauss_noise()));Fire_Reset(N, pot2, 1.0, 0.0, o2);bMult(N, N, J2, o2, v2);}stp++;MPI_ONLY(// this ensures we don't run forever on the
lusterif (stp >= 500){ MPI_Finalize();exit(0);})}More explanations????????The serial version of the
ode is
ompiled with �Felix infpairmpi� and run with "infpairmpi" fromthe
ommand line as usual. The GUI should pop up as for standard serial Felix appli
ations. Ifdata storage is swit
hed on, data of the �rst pool is written to �le "pot1". Data of the se
ond poolis not stored. The simulation runs until it is killed in the GUI.The parallel version is
ompiled with "pFelix infpairmpi" and, e.g., run with "mpirun -np 2 inf-pairmpi" (It might be that you have to use other ways to run programs on your parallel
omputer,e.g., if the system adminstrator requires using a job s
heduler). The parallel exe
utable will notpop up a GUI. Data of the �rst pool will be written to "pot1-0" (by the �rst pro
ess); data of these
ond pool will not be saved, be
ause no output �les have been de
lared for the se
ond pro
ess.The simulation exits after a
ertain number of steps (500).

142 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIX

Chapter 10Example Programs
10.1 Leaky-Integrate-and-Fire Neural Network/* Example-program: inf.
 */# in
lude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time
onstant */float I = 1.1, /* Common input to units */J0 = 1.1, /* Coupling strength */sigma = .1; /* noise level */Ve
tor x; /* potentials */Matrix J; /*
onne
tions */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */NO_DISPLAYNO_OUTPUTint main_init(){ /* init. random number generator and stepsize */randomize(time(NULL));SET_STEPSIZE(.1)/* allo
ate ve
tors and matri
es */J = Get_Matrix(N, N);x = Get_Ve
tor(N);z = Get_bVe
tor(N);v = Get_Ve
tor(N); 143

144 CHAPTER 10. EXAMPLE PROGRAMS}int init(){ int i;Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);/* init. potentials with random values between 0 and 1 */for (i=0; i<N; i++)x[i℄ = equal_noise();/* init. J with gaussian distr. random numbers */Make_Matrix(N, N, J, 1.0/N, .4/N);}int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, x[i℄,I + J0*v[i℄ + sigma*gauss_noise());Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetbMult(N, N, J, z, v); // redistribution of spikes}10.2 Coupled Chaoti
 Roessler Os
illatorsIntegrates di�erential equations with Runge-KuttaUses xy-plots/** roessler.
 --
oupled
haoti
 Roessler os
illators* or asymmetri
 damped harmoni
 os
illators*/#in
lude "felix.h"# define STEPSIZE .01float t;# define N 64 /* number of units */# define n 3 /* order of diff.system */

10.2. COUPLED CHAOTIC ROESSLER OSCILLATORS 145Ve
tor x; /* x1 ... xN, y1 yN, z1 zN */Ve
tor dxdt; /* derivatives */Ve
tor domega; /* used to give os
illators a gradient in properties */Matrix J; /*
onne
tions (if not meanfield
ouplings) *//* diffusive or random */Ve
tor
fields; /*
oupling fields; either meanfield or diffusiveor random
onne
tivity */float xx1, yy1;Swit
hValue sos
 = OFF; /* Roessler or damped harmoni
 os
illators */Swit
hValue smean = ON; /* mean field
oupling */Swit
hValue sdiffusive = OFF; /* diffusive
oupling */Swit
hValue swrand = OFF; /* random
onne
tions */SliderValue somega = 1000;SliderValue sdelomega = 100;SliderValue sepsilon = 100;SliderValue sa = 150;BEGIN_DISPLAYSWITCH("os
i type", sos
)SWITCH("mean", smean)SWITCH("diffusive", sdiffusive)SWITCH("random", swrand)SLIDER("mean omega", somega, 500, 1500)SLIDER("delta omega", sdelomega, 0, 500)SLIDER("
oupling strength", sepsilon, 0, 500)SLIDER("a", sa, 0, 500)WINDOW("signals")RASTER("x", AR, AC, x, VECTOR, N, 0, 0.0, 1.0, 2)WINDOW("MF-xy-plot")PLOT("x-y", AR, AC, &xx1, VECTOR, 1, 0, 0, 0, -20., 20.,&yy1, VECTOR, 1, 0, 0, 0, -20., 20., 2);WINDOW("xy-plot")PLOT("x-y", AR, AC, x, VECTOR, N, n, 0, 0, -20., 20.,x, VECTOR, N, n, 0, 1, -20., 20., 2);WINDOW("x(t)")GRAPH("x1", AR, AC, x, VECTOR, N, 0, 0, 0, -20, 20)GRAPH("x2", AR, NC, x, VECTOR, N, 0, 1, 0, -20, 20)

146 CHAPTER 10. EXAMPLE PROGRAMSGRAPH("y1", NR, C0, &x[N℄, VECTOR, N, 0, 0, 0, -20, 20)GRAPH("y2", AR, NC, &x[N℄, VECTOR, N, 0, 1, 0, -20, 20)GRAPH("z1", NR, C0, &x[2*N℄, VECTOR, N, 0, 0, 0, 0., 20)GRAPH("z2", AR, NC, &x[2*N℄, VECTOR, N, 0, 1, 0, 0., 20)WINDOW("MF")GRAPH("x1", AR, AC, &xx1, VECTOR, 1, 0, 0, 0, -20., 20.)GRAPH("x2", AR, NC, &yy1, VECTOR, 1, 0, 0, 0, -20., 20.)END_DISPLAYNO_OUTPUTint main_init(){ SET_STEPSIZE(STEPSIZE)randomize(time(NULL));J = Get_Matrix(N,N);x = Get_Ve
tor(N*n);dxdt= Get_Ve
tor(N*n);domega = Get_Ve
tor(N);
fields = Get_Ve
tor(N);}int init(){ int i;Clear_Ve
tor(N, domega);Clear_Ve
tor(N,
fields);Clear_Ve
tor(N*n, x);Clear_Ve
tor(N*n, dxdt);t = 0.0;for (i=0 ; i<N; i++){ domega[i℄ = -.5+(1.*i)/N;
fields[i℄ = 0.0;x[i℄ = 4.;x[N+i℄ = 4;}Clear_Matrix(N,N, J);Make_Matrix(N, N, J, 1, 1);}

10.2. COUPLED CHAOTIC ROESSLER OSCILLATORS 147void derivs(x,y,dfdx)float x;float *y;float *dfdx;{ int i,j;float omeg,a;a = .001*sa;for (i=0;i<N;i++){ if (sos
) /* original roessler */{ omeg = .001*(somega + sdelomega*domega[i℄);dfdx[i℄ = -omeg*y[N+i℄ - y[2*N+i℄ +
fields[i℄;dfdx[N+i℄ = omeg*y[i℄ + a*y[N+i℄;dfdx[2*N+i℄ = .4+y[2*N+i℄*(y[i℄-8.5);}else /* antisymm. undamped harm.os
. */{ omeg = .001*(somega + sdelomega*domega[i℄);dfdx[i℄ = a*y[i℄ -omeg*y[N+i℄ - y[2*N+i℄ +
fields[i℄;dfdx[N+i℄ = omeg*y[i℄ + a*y[N+i℄;dfdx[2*N+i℄ = .4+y[2*N+i℄*(y[i℄-8.5);}}}int step(){ int i;float mf,epsfa
;stati
 float tlast=-1,phi1;rk4(x, dxdt, N*n, t, step_size, x, derivs);epsfa
 = .001*sepsilon;if(swrand) /* different amplitude s
aling in alternatives ... */{ Mult(N, N, J, x,
fields); /* good lu
k; first
omponents ofsystems are first N vals of x */epsfa
 /= N;}else if(sdiffusive) /* open boundaries */{
fields[0℄ = x[1℄-x[0℄;

148 CHAPTER 10. EXAMPLE PROGRAMSfor(i=1;i<N-1;i++)
fields[i℄ = x[i+1℄+x[i-1℄-2*x[i℄;
fields[N-1℄ = x[N-2℄-x[N-1℄;}else if (smean) /* mean field */{ mf = Sum(N, x)/(float)N;for(i=0;i<N;i++)
fields[i℄ = mf;}else{ for(i=0;i<N;i++)
fields[i℄ = 0.;}for(i=0;i<N;i++) /* s
ale with
oupling strength */
fields[i℄ *= epsfa
;xx1 = Sum(N, x)/N;yy1 = Sum(N, &x[N℄)/N;t+=step_size;}10.3 Homogeneous Fields/* ei-field.
 -- two-dimensional ex
itatory/inhibitory neural field model* probabilisti
 spiking neurons* stimulus is a single long moving bar or two bars moving* in parallel or antiparallel*/# in
lude <felix.h># define tau1 3.# define tau2 5.0long stp = 0;float sim_time, noise_fa
;Layer input,pot1, pot2,f1, f2;SpikeLayer out1, out2;# define L_SIZE11 8.0 /* FWHM in
olumns (float) */# define M_SIZE11 8 /* Kernel dimension (int) */

10.3. HOMOGENEOUS FIELDS 149# define FM_SIZE11 (2*M_SIZE11+1)# define L_SIZE12 8.0 /* FWHM in
olumns (float) */# define M_SIZE12 4 /* Kernel dimension (int) */# define FM_SIZE12 (2*M_SIZE12+1)# define L_SIZE21 8.0 /* FWHM in
olumns (float) */# define M_SIZE21 4 /* Kernel dimension (int) */# define FM_SIZE21 (2*M_SIZE21+1)UniKernel kernel11,kernel12,kernel21;Layer link11,link12,link21;# define barlength 25# define barskip 0 /* 5 */# define barsigma 7# define BARINITOFFS 14.double yy1, yy2;int bardire
tion = 1;Swit
hValue santi = OFF;Swit
hValue s
ent = OFF;SliderValue sI1 = 85;SliderValue sI2 = 85;SliderValue sI = 85;SliderValue snoise = 20;SliderValue sJ11 = 100;SliderValue sJ12 = 40;SliderValue sJ21 = 600;SliderValue sspeed = 0;BEGIN_DISPLAYSWITCH("anti", santi)SWITCH("
enter", s
ent)SLIDER("Signal Input", sI, 0, 1000)SLIDER("E ", sI1, -200, 200)SLIDER("I ", sI2, -200, 200)SLIDER("noise", snoise, 0, 1000)SLIDER("J11", sJ11, 0, 500)SLIDER("J12", sJ12, 0, 300)SLIDER("J21", sJ21, 0, 1000)

150 CHAPTER 10. EXAMPLE PROGRAMSSLIDER("speed", sspeed, 0, 1000);WINDOW("Ex
itation")IMAGE(" input ", AR, AC, input, LAYER, xsize, ysize, 0.0, 2.1, 1)IMAGE(" pot1 ", AR, NC, pot1, LAYER, xsize, ysize, -.5, 1.0, 1)IMAGE(" out1 ", NR, C0, out1, SPIKE_LAYER, xsize, ysize, 0.0, 1.0, 1)WINDOW("Inhibition")IMAGE(" input ", AR, AC, input, LAYER, xsize, ysize, 0.0, 2.1, 1)IMAGE(" pot2 ", AR, NC, pot2, LAYER, xsize, ysize, -.5, 1.0, 1)IMAGE(" out2 ", NR, C0, out2, SPIKE_LAYER, xsize, ysize, 0.0, 1.0, 1)WINDOW("Kernels")IMAGE(" k11", AR, AC, kernel11, CONSTANT LAYER,FM_SIZE11, FM_SIZE11, 0.0, 1., 5)IMAGE(" k12", NR, AC, kernel12, CONSTANT LAYER,FM_SIZE12, FM_SIZE12, 0.0, 1., 5)IMAGE(" k21", NR, AC, kernel21, CONSTANT LAYER,FM_SIZE21, FM_SIZE21, 0.0, 1., 5)END_DISPLAYBEGIN_OUTPUTOUTFILE("phi1")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SAVE_VARIABLE("phi1 (pot1)", pot1, MATRIX, xsize, ysize, SKIP | GRID ,TSkip(2), Grid(26, xsize, 100, 32, ysize, 100))OUTFILE("phi2")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SAVE_VARIABLE("phi2 (pot2)", pot2, MATRIX, xsize, ysize, SKIP | GRID ,TSkip(2), Grid(38, xsize, 100, 32, ysize, 100))END_OUTPUTstati
 void init_bars(
enterflag)int
enterflag;{ if (
enterflag) /*
enter */{ yy1 = yy2 = ysize/2;}else{

10.3. HOMOGENEOUS FIELDS 151yy1 = BARINITOFFS;if (santi)yy2 = ysize-BARINITOFFS;elseyy2 = BARINITOFFS;bardire
tion = 1;}}stati
 void move_bars(){ if (s
ent){ init_bars(1);return;}if (yy1 > ysize-BARINITOFFS ||yy1 < BARINITOFFS)bardire
tion *= -1;yy1 += .001*bardire
tion*sspeed;if (santi)yy2 -= .001*bardire
tion*sspeed;elseyy2 += .001*bardire
tion*sspeed;}stati
 void smooth_bars(out)Matrix out;{ int i, j, s1, s2, s3, s4;stati
 double fa
=0;double h;if (fa
==0) fa
 = -.5/(float)(barsigma*barsigma);s2 = (xsize - barskip)/2;s1 = s2-barlength;s3 = (xsize + barskip)/2;s4 = s3 + barlength;for (j = 0; j<ysize; j++){ h = elem(out, j, s1, xsize) = triangle(fa
 * (yy1-j)*(yy1-j));for (i=s1+1; i<s2; i++)elem(out, j, i, xsize) = h;h = elem(out, j, s3, xsize) = triangle(fa
 * (yy2-j)*(yy2-j));for (i=s3+1; i<s4; i++)

152 CHAPTER 10. EXAMPLE PROGRAMSelem(out, j, i, xsize) = h;}}int main_init(){ int i;randomize(time(NULL));input = Get_Layer();pot1 = Get_Layer();f1 = Get_Layer();out1 = Get_SpikeLayer();pot2 = Get_Layer();f2 = Get_Layer();out2 = Get_SpikeLayer();link11 = Get_Layer();link12 = Get_Layer();link21 = Get_Layer();kernel11 = Get_UniKernel(FM_SIZE11, FM_SIZE11);kernel12 = Get_UniKernel(FM_SIZE12, FM_SIZE12);kernel21 = Get_UniKernel(FM_SIZE21, FM_SIZE21);Set_Cir
_Fun
_Uni_Kernel(kernel11, FM_SIZE11, FM_SIZE11, gaussian,1., L_SIZE11, 0.);Set_Cir
_Fun
_Uni_Kernel(kernel12, FM_SIZE12, FM_SIZE12, gaussian,1., L_SIZE12, 0.);Set_Cir
_Fun
_Uni_Kernel(kernel21, FM_SIZE21, FM_SIZE21, gaussian,1., L_SIZE21, 0.);SET_STEPSIZE(0.5);noise_fa
 = sqrt(24.0/step_size);}int init(){ int i,j;stp = 0;Clear_Layer(input);init_bars(s
ent);smooth_bars(input);Clear_Layer(pot1);

10.3. HOMOGENEOUS FIELDS 153Clear_SpikeLayer(out1);Clear_Layer(pot2);Clear_SpikeLayer(out2);}int step(){ int i,j,k;if (stp >= 36050)exit (0);/********************//*
ompute stimulus *//********************/move_bars();smooth_bars(input);/********************//*
ompute dynami
s *//********************//* ex
it. units */for (i=0; i<ysize; i++){ for (j=0; j<xsize; j++){ leaky_integrate(tau1, elem(pot1, i, j, xsize) ,0.001*(sI1 + sI*gauss_noise()*elem(input , i, j, xsize)+ sJ11*elem(link11,i,j, xsize)- sJ12*elem(link12,i,j, xsize)+ (snoise*noise_fa
)*(equal_noise() - 0.5))) ;elem(f1, i, j, xsize) = RAMP(elem(pot1, i, j, xsize));elem(out1, i, j, xsize) = PROB_FIRE(elem(f1, i, j, xsize));} /* END j */for (j=0; j<xsize; j++){ leaky_integrate(tau2, elem(pot2, i, j, xsize) ,0.001*(sI2 + sJ21*elem(link21,i,j, xsize)+ (snoise*noise_fa
)*(equal_noise() - 0.5))) ;elem(f2, i, j, xsize) = RAMP(elem(pot2, i, j, xsize));elem(out2, i, j, xsize) = PROB_FIRE(elem(f2, i, j, xsize));} /* END j */} /* END i */bConvolute_2d_Uni(out1, kernel11, xsize, ysize, FM_SIZE11, FM_SIZE11, link11);

154 CHAPTER 10. EXAMPLE PROGRAMSbConvolute_2d_Uni(out1, kernel21, xsize, ysize, FM_SIZE21, FM_SIZE21, link21);bConvolute_2d_Uni(out2, kernel12, xsize, ysize, FM_SIZE12, FM_SIZE12, link12);stp++;} /* END of step() */

Appendix AInstallation Guide
This appendix des
ribes how to install the Felix simulation tool on serial and parallel
omputers.La
king free time I never implemented proper auto
on�guration fa
ilities. Therefore installationis quite low-level. However, a number of people have been able to install Felix on serial Linuxboxes following the instru
tions below. Windows/Cygwin installations as well as installation ofthe parallel Felix extension
an be a little more tri
ky.The �rst part of this appendix des
ribes the installation of the serial Felix version. This by default
omprises the graphi
al user interfa
e. Compiling Felix for parallelised
ode is des
ribed in the2
d se
tion. If you plan to use MPI, the GUI will not be available. The graphi
s works, however,with the SSE-BLAS and OpenMP
ode.The following assumes that $FELIXDIR is the top-level dire
tory of your Felix installation.There should be a number of subdire
tories (after unpa
king)$FELIXDIR/sr
 : Sour
e
ode of Felix kernel routines and libraries$FELIXDIR/xview : Sor
e
ode of X11 extensions used for the Felix-GUI$FELIXDIR/lib : Felix libraries (
reated during
ompilation)$FELIXDIR/expl : A number of example appli
ations$FELIXDIR/tools : A number of tools to transform Felix data �les (e.g., for
reating rasterplots and gifs)To
ompile the Felix
ore only the
ode in $FELIXDIR/sr
 is needed. If you want the GUI you needin addition the
ode in $FELIXDIR/xview. These dire
tories
omprise several relevant Make�les$FELIXDIR/sr
/Make�le : main sour
e
ode (
ompilation of serial lib libf)$FELIXDIR/xview/Make�le : graphi
s extensions for X11 (
ompilation of serial lib libxf)$FELIXDIR/Make�le : master Make�le to
ompile a serial appli
ation (envoked by the "Felix"
ommand)$FELIXDIR/sr
/Make�le.parallel : main sour
e
ode (
ompilation of parallel lib libpf)155

156 APPENDIX A. INSTALLATION GUIDE$FELIXDIR/Make�le.parallel : master Make�le to
ompile a parallel appli
ation (envokedby the "pFelix"
ommand)The �rst three Make�les are required for
ompiling the serial libraries and
ode; the se
ond twofor parallel libs and
ode.A.1 Standard (serial) InstallationA.1.1 PrerequisitesThe Graphi
al user interfa
e is built on X11 and a pretty old Widget tool
alled XView. XView isused for histori
al reasons. It was originally developed by Sun Mi
rosystems who
eased supportingit in about 1995, when Motif be
ame more dominant. It is still possible to get XView sour
es andbinaries, but this gets more and more di�
iult (in parti
ular I don't know of any 64 bit pa
kages).Compilation of Felix presupposes an installed X11R6 pa
kage assumed to be in the standardlo
ation: /usr/X11R6 . X11R6 is by default
ontained in virtually all Linux installations. If thisis the wrong path it has to be
orre
ted in the Make�les, i.e., those in ../sr
, ../xview and thetop-level make�le.The Felix GUI further requires installed XView libraries libolgx and libxview, e.g., in/user/openwin/libFelix further requires the XView development kit for in
lude �les, e.g., in /usr/openwin/in
ludeIt is possible to set an environment variable OPENWINHOME pointing at the lo
ation of theXView libs and in
lude �les during
ompilation.Redhat/SuSe/Cygwin users: An XView rpm
an be downloaded herehttp://www.physionet.org/physiotools/xview/Ubuntu/Kubuntu/Debian users: The XView pa
kages are in some (K)ubuntu repositories.A.1.2 Serial Felix Installation1. Create the Felix top-level dire
tory ($FELIXDIR) where you want it.Default would be something like $HOME/felix.2. Goto the target dire
tory $FELIXDIR and unpa
k and untar sim.tar.gz in it by
alling �tar-xzf sim.tar.gz�3. Set environment variables for your shell. For the bash-shell (default in many Linuxes), addthe following in $HOME/.bashr
 :export OPENWINHOME="/usr/openwin"export FELIXDIR="\$HOME/felix"export LD_LIBRARY_PATH="\$FELIXDIR/lib:/usr/X11R6/lib:\$LD_LIBRARY_PATH"alias Felix="\$FELIXDIR/Felix"

A.2. INSTALLATION OF PARALLEL FELIX 157The pre
ise lo
ations of the dire
tories in the above exports possibly need to be adapted toyour own �le hierar
hy. It might also be that /usr/X11R6/lib is already in your path or thatthe libs it
ontains are a

essible by other means (in that
ase you
an omitt it in the exportabove).Beside that make sure "." (
urrent dire
tory) is in PATH (type e
ho $PATH in a shell andlook for it). If it is not there you will have to type ./<progname> to run programs. Just<progname> would fail with �permission denied� or �program not found� or a similar errormessage.4. Dont forget to exe
ute �sour
e .bashr
� in your running (bash-)shell after setting the envi-ronment variables. Alternatively, you
an start a new shell so that the environment variablesget set
orre
tly.5. Run �make install� in $FELIXDIR .If everything goes well this should
ompile the sour
e
ode in $FELIXDIR/sr
 and $FE-LIXDIR/xview,
reate the respe
tive Felix
ore and GUI libraries, and move them to $FE-LIXDIR/lib.If this step is su

essfull you will have the (serial) Felix libraries libxf and libf in $FELIXDIR.Otherwise something went wrong.6. Test a Felix example in $FELIXDIR/expl, e.g., inf.
 :(a)
hange to the dire
tory $FELIXDIR/expl(b) run �Felix inf� : the program �inf� should be
ompiled(
) run �inf� : �inf� should run and the graphi
al interfa
e pop upIf the test runs su

essful, you are ready to use the serial Felix version. Che
k out theexamples in $FELIXDIR/expl .A.1.3 Additional Notes1. If you try to
ompile a felix program and get an error message that panel.h, frame.h or soare not found, then you don't have XView installed properly or haven't set the proper pathsin the Make�les.A.2 Installation of Parallel FelixThe parallel Felix extensions are experimental
ode. Whereas mu
h of the serial
ode (but not all)has been used for resear
h for already many years, the parallel
ode is mu
h more re
ent. I
an'tgive mu
h advise on it, it is in a pretty
haoti
 state, and it probably
ontains bugs feel freeto improve it. Send pat
hes or error warnings ...Felix implements 3 levels of parallelism, whi
h
an at least intentionally be used simultaneously inany mix (this is mostly untested):

158 APPENDIX A. INSTALLATION GUIDEBLAS : Given proper BLAS/ATLAS libraries you might be able to use the SSE extensions ofIntel and AMD CPUs. Note that you
an use BLAS routines even if you do not have a multipro
essor system. BLAS routines support highly optimised Matrix/Ve
tor Math. SomeBLAS versions support automati
 threading if you are on a multipro
essor SMP ma
hine(e.g. gotoBLAS and, I believe, Intel MKL BLAS too). This, however, might interfere withlevel 2 OpenMP parallelism. If you are not
areful, ea
h OpenMP thread might spawn anumber of BLAS threads. The BLAS libs usually support environment variables or othermeans to
ontrol the number of spawned threads.OpenMP : OpenMP is a simple framework to parallelise outer loops on SMP multipro
essorma
hines. It automati
ally spawns threads that distribute separate parts of the loop overthe available pro
essors. Although simple to use OpenMP is suboptimal in various respe
tsas
ompared to hand-
oded threaded
ode. However, I have seen ni
e speed-ups for someof appli
ations. g

 will support OpenMP from version 4.2 upward; the Intel
ompiler alsoimplements the OpenMP standard. Sin
e g

 isn't o�
ially out yet, I use ha
ks to
ompile theOpenMP-parallel Felix
ode with i

, the Intel
ompiler. That makes some of the Make�leslook pretty nasty... (I have also
ompiled a pre-released g

-4.2 snapshot. Seems to work,too.)MPI : MPI is a message passing standard for multi pro
essor systems in
luding Symmetri
 MulitPro
essors (SMPs) and Beowulf
omputer
lusters. Felix uses very few very simple
onstru
tsto transport data between several
o-operating pro
esses in distributed Felix programs (seefmpi.
/h). In prin
iple these are ve
tors/matri
es transported between variables lo
al toea
h pro
ess. Ea
h pro
ess is running the same program but has a
ertain �rank� whi
h
anbe used in the
ode to make parts of it sele
tively exe
utable on some pro
esses only. Che
kthe paralle examples in $FELIXDIR/expl for more details.The parallel version has its own Make�les $FELIXDIR/sr
/Make�le.parallel and $FE-LIXDIR/Make�le.parallel whi
h
ompile Felix versions without graphi
al interfa
es. They
ontain�ags for a
tivating the di�erent options.You might also want to use these �ags in the serial Make�les. In that
ase you need to adapt the
ompiler settings and if you
hoose to a
tivate MPI, you have to swit
h the graphi
al user interfa
eo�. BLAS and OpenMP parallelism, however, is
omaptible with the GUI.A.2.1 PrerequisitesYou do not need a parallel
omputer to experiment with the parallel extensions. Ea
h modernIntel or AMD CPU supports the SSE2 ve
torisation whi
h you may use in your BLAS version.You
an also install and use MPI and OpenMP
ompilers/
ode on a serial ma
hine. This way you
an write and test
ode on, e.g., your laptop, before going on a bigger ma
hine.BLAS : A proper BLAS implementation, ie. ATLAS or gotoBLAS. The default BLAS that
omes with many Linux versions is probably not speed-optimised (meaning that you
anloose tremendous speed bene�ts for some matrix/matrix and matrix/ve
tor operations. [Atthe moment BLAS is only used for some Felix fun
tions � don't expe
t too mu
h.℄OpenMP : As long as g

 4.2 isn't available, you need another OpenMP
apable
ompiler. Thereare some open sour
e versions (I have used OmniMP, but wasn't happy with its optimisation

A.2. INSTALLATION OF PARALLEL FELIX 159
apabilities). I now use the Intel
ompiler, whi
h has a free li
en
e for single a
ademi
 users.Thanks to Intel for that! You
an also
ompile a prerelease of g

 4.2 (or higher). This hasthe OpenMP standard built in. You need to adapt the Make�les in that
ase.MPI : The Felix MPI version works only without the graphi
al interfa
e. It was developed for a
omputer
luster on whi
h graphi
al interfa
es make little sense. You
an potentially
ompilewith GUI in whi
h
ase I would suspe
t ea
h MPI pro
ess tries to open its own GUI. I nevertested this.You need g

 or i

 or another C
ompiler and an MPI library. I use mostly MPICH(1) but atleast previous parallel Felix versions worked also with LAM. I haven't
he
ked MPICH(2) sofar, but there is little reason why it should not work (one hears
ommuni
ation is
onsiderablyfaster than MPICH(1)).Note that Intel provides its own MPI libs, but I don't have them. Might be a useful in-vestigation: Although I use i

, I link against the mpi
h libraries. That requires ratherun
omfortable
ompiler settings (see Make�le.parallel).One
an run into problems with the MPI runtime environment not �nding dynami
 libraries.I therefore link part of the libs stati
ally. That makes programs bigger. Alterantively, thereare also linker swit
hes to tell exe
utables where to �nd the libs.I use i

 be
ause to
ombine MPI with OpenMP one (obviously) needs an OpenMP
apable
ompiler. Using Intel to date is the only (more or less) tested
ase (I have also testet a pre-release of g

-4.2 very brie�y; seems to work in prin
iple). The Make�le.parallel is for i

, sohave a look into it. You will see that I don't use the usual MPI
ompiler wrapper s
ript, mpi

,but supply in
lude and library dire
tories et
 dire
tly to i

. You
an probably avoid this,if you
ompile your own MPICH (or LAM?) using i

 and use the mpi

 version generatedthis way. I DO, however, use the �mpirun�-s
ript of the MPICH standard installation.A.2.2 Compilation of Parallel FelixCompilation of parallel Felix follows the same steps as for the serial version. The instru
tionsbelow
ompile a parallel library libpf, whi
h
an
oexist with the serial libraries as
ompiled in the�rst se
tion of this appendix (libf and libxf). You only have to use the s
ript pFelix to
ompile aparallel appli
ation
ode against the right parallel libs.To
ompile a parallel version of Felix without graphi
al user interfa
e follow these instru
tions:1. Beside the environment variables for the serial version you need to add another one for theparallel Felix s
ript. In your .bashr
 addalias pFelix="$FELIXDIR/pFelix"2. Enable the desired �ags in the parallel Make�le in the sr
 and/or main dire
tories:BLAS : Just enable -DWITH_BLAS in sr
/Make�le.parallel. [BLAS should work with andwithout graphi
al user interfa
e, so that you
ould also use the serial Make�le if youwant the GUI (doesn't work, though, if -DWITH_MPI is also set)℄.I did o

assionally have some problems with linking against the right libs. You mighthave to adapt the Make�les to get BLAS working

160 APPENDIX A. INSTALLATION GUIDEOpenMP : To use OpenMP swit
h -DWITH_OMP on in the Make�le and adapt it touse your OpenMP
apable
ompiler (and linker, and ar
hiver). The graphi
al interfa
eshould work with OpenMP, so that you
an use the serial Make�les, if you want graphi
aloutput.MPI : To use MPI a
tivate -DWITH_MPI and -DNO_GRAPHICS in the Make�le.3. Adapt
ompiler, linker, ar
hiver and �ags, paths and libs in the Make�les as ne
essary.4. Delete any old obje
t �les present from
ompiling serial libs earlier by evoking �make
lean�from a shell5. Compile the parallel libs with �make -f Make�le.parallel par� in the sr
-dire
tory.This should produ
e a library libpf.a in the lib-dire
tory6. You link against the parallel library libpf.a automati
ally if you use the �pFelix� s
ript for
ompilation of your appli
ation
ode. This requires proper settings in the top-level Make-�le.parallel.7. Test an example from $FELIXDIR/expl/parallel, i.e.,
ompile it using �pFelix prog� and runthe generated exe
utable using, e.g., mpirun -np 2 prog, where �prog� is the base programname (i.e., infmpi).Note that serial programs and parallel
ode that uses MPI are not (in general)
ompatible. Youneed, e.g., to de
lare in the parallel
ode, whi
h bu�ers are transported between pro
esses. I willdes
ribe elsewhere how you
an write appli
ations that
an be
ompiled parallel and serial (withGUI), and use even the same environment �les.A.2.3 Additional Notes1. There is a
ompiler �ag -DTIMING in the sour
e Make�le. If this is swit
hed on during
ompilation, timing information for the main parts of a Felix programm will be printed forea
h individual pro
ess.2. If ne
essary, you
an link Intel libs stati
ally using -i-stati
 �ag of i

; this a
ts more spe
i�
than -stati
 whi
h links everything stati
ally3. You
an tell a binary where to expe
t a library, e.g., mpiCC -Wl,-rpath=$INTEL/

/9.0.030/lib/ -o mpitest mpitest.CA.3 Windows / CygwinThe serial Felix versions runs properly under Cygwin and the Windows operating system. It is
onsiderably slower than under Linux, but still usable for, e.g., presentations.An XView rpm
an be downloaded here (together with instru
tions of how to install Cygwin andXView): http://www.physionet.org/physiotools/xview/There is no obvious reason why the parallel Felix extensions should not work given the right tools(MPI, OpenMPI, BLAS). However, it has never be tried to
ompile parallel Felix on a Windowsbox.

