
Felix - a Simulation-Tool for Neural Networks(and Dynamial Systems)USER GUIDE
Thomas WennekersCentre for Theoretial and Computational NeurosieneUniversity of PlymouthPL4 8AA Plymouth, Devon, United KingdomMay 15, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/266991203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iDear valued ReaderThis is the User Guide of �Felix�, a simulation environment for neural networks anddynamial systems. It is C-based and provides a simple to use graphial interfaeas well as real time ontrol of simulation parameters. The main aim of the toolis to simplify the implementation and simulation of distributed neural networksonsisting of either homogeneous pools or 2-dimensional layers of simple spikingneurons. Other, more general dynamial systems an be implemented and visualisedas well, and several examples are provided (oupled map lattie, oupled Roesslerosillators). The simulation of ondutane-based neuron types is possible but onlymarginally supported.The tool an make use of ode-parallelisation on three levels: single CPU ve-torisation using BLAS-SSE2, SMP-shared memory parallelism via OpenMP(threads), and the message passing interfae (MPI) for omputer lusters. HybridBLAS/OpenMP/MPI ode is possible, e.g., for use on SMP-lusters. Felix an bedownloaded from http://www.pion.a.uk, whih provides run-time libraries, thedevelopment tool, and a ouple of examples. Soure ode is also available and,beside on Linux single- and multi-proessor omputers, and Linux Beowulf lusters,an be ompiled and run on Windows using the Cygwin-Linux emulator.Have funThomas Wennekers
Copyright (C) 1992-2008 Thomas.Wennekers�plymouth.a.ukFelix is free software; you an redistribute it and/or modify it under the terms of theGNU General Publi Liense as published by the Free Software Foundation; eitherversion 2 of the Liense, or (at your option) any later version.Felix is distributed in the hope that it will be useful, but WITHOUT ANY WAR-RANTY; without even the implied warranty of MERCHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE. See the GNU General Publi Liense for moredetails.You should have reeived a opy of the GNU General Publi Liense along with thisprogram; if not, write to the Free Software Foundation, In., 59 Temple Plae, Suite330, Boston, MA 02111-1307 USA

ii

Contents
1 Introdution 11.1 Overview . 11.2 The main philosophy of Felix . 11.3 A little Felix History . 31.4 Installation Notes . 42 Getting Started 52.1 General Program Struture . 52.2 Example: Leaky-integrate-and-�re Neural Network 72.3 Adding a Graphial User Interfae . 92.3.1 Displaying Views on Variables . 92.3.2 Coupling of Parameters and Panel Controls 102.3.3 Running simulations using the graphial interfae 112.4 Adding Output of Data . 123 Graphial User Interfae 153.1 Creating a GUI . 153.2 Simulation Control Elements . 163.2.1 Swithes . 163.2.2 Sliders . 173.2.3 Timer . 193.3 Display Windows and Views on Variables . 193.3.1 Display Windows . 193.3.2 Views . 203.3.3 Plaement of Views inside a Window . 20iii

iv CONTENTS3.3.4 Types of Display Variables . 213.3.5 Image-Views . 223.3.6 Raster Plots . 233.3.7 Single Variable Graphs . 243.3.8 xy-Plots . 243.3.9 Arrays of Images . 253.3.10 Funtions . 253.4 View Settings Frames . 263.5 Loading and Saving GUI Settings . 274 Libraries 294.1 Outline: Pools and Fields . 294.2 Some Low-level De�nitions . 304.3 Matrix and Vetor Operations . 304.3.1 Operations on Salar Variables . 314.3.2 Memory Alloation Routines . 314.3.3 Cleaning Vetors and Matries . 324.3.4 Aess to Elements of a Matrix . 324.3.5 Raw I/O of Vetors and Matries to/from �les 324.3.6 Vetor and Matrix Operations . 334.3.7 �Neural� Operations for Vetors and Matries 354.4 Stimuli . 364.4.1 Temporal Stimulus Funtions . 364.4.2 Spatial Stimulus Funtions . 374.4.3 Dynami Stimuli . 394.5 Field Models, Spatial Convolutions . 404.5.1 Kernels or Filters . 404.5.2 Correlation and Convolution Funtions . 404.5.3 Orientation Tuning Maps . 424.5.4 Layers and SpikeLayers . 434.6 Delays . 434.6.1 Containers for Delay Variables . 44

CONTENTS v4.6.2 Aessing Containers . 454.6.3 Arbitrary Delays for Pools . 464.6.4 Convolution Funtions with Distane-dependent Delays 464.7 Random Numbers . 474.8 Sparse Vetors and Matries . 484.8.1 Sparse Vetors, semi-sparse Matries . 484.8.2 Alloating, Loading, and Saving Sparse Arrays 494.8.3 Sparse Matrix Vetor Multipliations . 504.8.4 Orientation Tuning Maps with Distane-dependent Delays 524.8.5 Displaying Sparse Arrays in the GUI . 524.8.6 Example: Sparse Integrate-and-Fire Network 534.9 Dynami Synapses . 554.9.1 Types of Synapti Dynamis . 554.9.2 npq-model: synapti failure . 564.9.3 BT-model: failitation and depression . 564.9.4 Alpha funtion ondutane hanges . 574.9.5 Coupling of npq- and BT-model . 594.9.6 Type Seletion and Parameter Strutures . 594.9.7 Synapse Vetors and Matries . 614.9.8 Synapti Matrix-Vetor Multipliation and Updates 634.9.9 Example: Integrate-and-Fire Network with Dynami Synapses 654.9.10 Pathy Connetivities in SynapseMatries 674.9.11 Example for dense loal onnetions . 694.10 Synapti Plastiity . 694.10.1 Plastiity Rules . 704.10.2 Update Funtions . 714.10.3 Unlearning . 724.10.4 Example . 744.10.5 Some Benhmarks . 774.11 Online Correlations . 794.12 numeris./h . 79

vi CONTENTS4.12.1 Numerial Integration . 804.12.2 Solving Matrix Equations . 804.12.3 Eigenvalues . 814.12.4 Nonlinear Least-Square Fitting . 814.12.5 Root Finding . 824.12.6 Optimization . 825 File I/O 855.1 Interfae for File Output . 855.1.1 Output Files . 865.1.2 Output Variables . 875.1.3 Temporal Seletions . 875.1.4 Spatial Seletions . 885.1.5 The Timer . 895.1.6 Examples . 895.2 Input . 905.3 Raw I/O . 916 Felix Parameter Searh & Sensitivity Module 936.1 General Usage . 936.2 Parameter San Funtions . 946.2.1 Initialisation and setup . 946.2.2 Iteration through the parameter produt spae 956.2.3 Running multiple simulations for eah parameter set 956.2.4 Changing several parameters per searh dimension 956.2.5 Support funtions to print indexes and parameters 956.3 Example: Sanning a parameter spae . 966.4 Interfaing parameter searh and �le output . 976.5 Parameter Sensitivity of Simulations . 996.5.1 Spike-train and other metris . 1006.5.2 Sensitivity Measures . 1006.5.3 Gradient Computation . 100

CONTENTS vii6.5.4 Example: Gradient omputation . 1017 The Felix MIDI Interfae 1057.1 Introdution . 1057.2 Funtions provided by mymidi.o . 1067.2.1 Compilation . 1067.2.2 Initialisation . 1077.2.3 Setting up an event loop . 1077.2.4 A �rst example . 1077.2.5 Sending note events . 1087.2.6 Threaded event reeivers . 1097.2.7 Example 2: A threaded MIDI reeiver . 1097.2.8 Simple MIDI startup . 1107.3 A Felix appliation . 1107.4 Sending Events over a loal network . 1137.4.1 Loal Network Routing � dmidid . 1137.4.2 MIDI over LAN . 1147.5 Appendies . 1157.5.1 Appendix 1 � The midi_ation_print_event funtion 1157.5.2 Appendix 2 � snd_seq_event_t and snd_seq_ev_note_t 1158 Felix Remote Control and Data Streaming over Internet 1178.0.3 Simulation Client Funtionality . 1178.0.4 Meeting points . 1188.1 Remote Connetion Funtionality . 1208.2 Example: Remote Control . 1208.3 Streaming Data . 1218.4 Example 1: Data Streaming to a Disk on the Remote Mahine 1228.5 Example 2: Data Streaming to a Remote MIDI Devie 1239 Parallel Programming with Felix 1279.1 History and Future . 1279.2 SSE, BLAS, ATLAS . 128

viii CONTENTS9.3 OpenMP . 1309.4 MPI . 1329.5 Hybrid MPI/OpenMP Code . 1339.6 Parallelising Serial Felix Code . 1349.6.1 OpenMP and p�x . 1349.6.2 MPI . 1369.6.3 Example: Two interating Neuron Pools . 13610 Example Programs 14110.1 Leaky-Integrate-and-Fire Neural Network . 14110.2 Coupled Chaoti Roessler Osillators . 14210.3 Homogeneous Fields . 146A Installation Guide 153A.1 Standard (serial) Installation . 154A.1.1 Prerequisites . 154A.1.2 Serial Felix Installation . 154A.1.3 Additional Notes . 155A.2 Installation of Parallel Felix . 155A.2.1 Prerequisites . 156A.2.2 Compilation of Parallel Felix . 157A.2.3 Additional Notes . 158A.3 Windows / Cygwin . 158

Chapter 1Introdution
1.1 OverviewThis is a preliminary version of a User Guide for �Felix� - A simulation tool for neural networksand dynamial systems. It is urrently being written. This introdution, the quik-start guide insetion 2, setions 3 about the graphial user interfae and 5 about �le I/O, the desription of themain funtion libraries in setion 4, and the appendix about installation A are something like ina readable state. The examples (setion 10) and the setion about parallel Felix extensions 9 arestill mostly empty or bad. You would probably want to onsult the examples that ome with Felixdiretly, if you think about using the tool and want to learn more about how to do so. Serial andparallel example programs are available.Felix is a development tool for neural network and dynamial systems simulations. It is C-basedand provides a simple to use graphial interfae as well as a ore of routines needed in manyappliations. Routines required in speial appliations an easily be added. Felix is best suited forone and two-dimensional network models, but other topologies are possible as well.1.2 The main philosophy of FelixMain philosophy of Felix is to onsider a neural network or more general dynamial system as a setof variables, x, whih obey a ertain dynamis, and a seond set of parameters, p, whih ontrolthis dynamis. Canonial examples are di�erene shemes, x(t + 1) = f(x(t); p) or di�erentialequations, dx/dt = f(x; p), whih are omni-present in neural network and dynamial systemstheory.The Felix ore implements and solves these dynamial equations and the graphial interfae thenpresents the variables in various possible views like graphs and raster plots over time, images orfuntions displayed per single time-step, or xy-plots as on an osillosope.The parameters of a simulation are further displayed as a olletion of buttons and sliders inthe graphial user interfae, whereby it beomes possible to hange them while the simulationis running and immediately observe the indued hanges in the system dynamis. Figure 1.1displays the graphial user interfae of a typial small Felix program (atually a network of so-alled integrate-and-�re neurons). 1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A typial Felix simulation showing a panel with ontrol parameters at the bottomand windows for displaying variables of a running simulation at the top. Changing parameters isimmediately re�eted in the displayed variables.A seond design priniple of Felix is that it aims at either �pool� networks omprising (more or less)large ensembles of potentially all-to-all onneted units, or at layered one- and two-dimensionalnetworks with a neighbourhood topology. Several suh �pools� or �layers� may be ombined intolarger super-networks, see Figure 1.2. The �rst type of network model appears if loal ensembles ofells in the brain are onsidered, the seond if the fous is on the distributed proessing within wholebrain areas. In more general dynamial systems the �rst alternative refers to globally onnetedsystems, whereas the seond turns up, e.g., in partial di�erential equations and integro-di�erentialequations. The ore of the Felix simulation tool provides a number of often used routines toimplement and simulate neural strutures of the respetive arhiteture, i.e., randomly onnetedpools, assoiative memories, or distributed systems with Gaussian or DOG (diferene of Gaussian)lateral oupling kernels.Reently Felix has been extended towards supporting various kinds of ode parallelisation. Philos-ophy here is to simplify the development of parallel ode for the types of networks desribed aboveas muh as possible. Using about a handful of simple onstruts it is now in fat possible to write

1.3. A LITTLE FELIX HISTORY 3
1

2

3
4

23x23

11x11

11x11

I

25x25

FF
E

REC

INH

11x11
FB

E−cells

I−cells

I

J J

J

Jii

ee

ie ei

I
e

i

Two−pool Model Two−Layer ModelFigure 1.2: Left: A typial pool model (Wilson-Cowan Osillator). Right: A two-layer, exitatory-inhibitory topographi neural �eld.Felix programs that an be ompiled on single CPU mahines, where they reveal a graphial userinterfae, but that run also on Beowulf omputer lusters. Small programs an therefore run ona PC or laptop, where the GUI and real-time simulation ontrol niely support an understandingof what is going on in the simulation. The same simulation, however, an now be easily saledup and run on a muh larger sale on a omputer luster without no or only small hanges at thesoure ode.1.3 A little Felix HistoryFelix is old. The original program was written about 1990/91 in �multiC�, a dialet of C forthe parallel omputer �Wavetraer�, whih (in the version we had available at that time at theUniversity of Ulm, Germany) onsisted of 4096 one-bit proessors running at 8MHz in a SIMD-arhiteture (single instrution multiple data � eah proessor does the same on possibly di�erentdata). Eah proessor had something like 16MBit loal memory and the proessor grid was freelyon�gurable as a 1, 2 or 3-D array. The early Felix was meant to serve as a graphial interfae forthat mahine. The Wavetraer was about 20 times faster than a standard Sun-Workstation 15 yearsago. When standard workstations beame quiker, and in partiular quiker than the Wavetraer,I ported Felix to the SunOs and Solaris operating systems, and later, when I disovered that evenheap laptops are faster than standard Sun-workstations, I further ported it to Linux. Now, I amalmost exlusively using it under Linux on desktops, laptops, and omputer lusters.Beause Felix is old it makes use of an outdated windows toolkit alled XView. For a while thatwas standard for Sun X11 appliations with the Open-Look look and feel. However, Sun stopped

4 CHAPTER 1. INTRODUCTIONdeveloping XView further in about 1995. Meanwhile it has been replaed by more modern toolkitslike Motif, QT, and other pakages. Although I often thought I should, I never found the timeto reode the GUI using a modern toolkit. XView is still available and omes with some Linuxdistributions. It might however be that it is not installed on your mahine by default. I am notsure it is available in 64 bit at the moment. You don't need the graphis libraries if you wantto use the tool on omputer lusters. Graphial interfaes don't make too muh sense in highperformane omputing.Some resoures:
• Open-Look FAQ: http://www.faqs.org/faqs/open-look/01-general/
• XView FAQ: http://www.faqs.org/faqs/open-look/03-xview/
• O'Reilly provides free books about XView programming on their homepagehttp://www.oreilly.om/openbook/openlook
• Dr Andreas Knoblauh, a former ollegue at the University of Ulm (now at Honda Re-searh, O�enbah, Germany) has written C++ extensions for Felix whih you an �nd here:http://www.informatik.uni-ulm.de/ni/mitarbeiter/AKnoblauh.htmlSine relatively reently I am experimenting with parallelised Felix versions. This means Felix getsbak to its roots, to parallel omputers. The ode ontained in the distributed Felix version shouldbe onsidered preliminary and is not well tested. However, it supports hybrid OpenMP/MPI ode,whih an be very useful for some types of layered network models of the brain. We are studyingsuh models at the University of Plymouth as part of two big researh projets: The EU-integratedFACETS projet (omprising more than 100 sientists) and the UK-wide COLAMN projets (a10 researh groups).1.4 Installation NotesThroughout this Guide it will be assumed that a funtioning serial Felix evironment with graphialuser interfae is available. Only few setions in addition assume a parallel installation, in partiularhapter 9. Appendix A explains, how Felix an be installed on serial and parallel omputers, andomputer lusters.

Chapter 2Getting Started
This setion presents the main features of Felix by showing a simple example and how it is imple-mented. The example will onsist of a small network of leaky-integrate-and-�re neurons. It willdemonstrate how a typial Felix program is strutured, how a simulation an be ontroled by thegraphial user interfae, and how the simulated data an be onveniently written to �les on dis.2.1 General Program StrutureA Felix appliation onsists of a single C-�le. Eah appliation needs to de�ne �ve subroutinesthat de�ne the GUI, the output of some data to �les, a main-initialisation routine whih is alledone at start up, an initialisation routine whih is alled eah time a simulation is reset, and astep-routine whih ontains everything to do in a single simulation step. Some or all of thesefuntions an be empty. The smallest Felix program hene reads:// The most simple Felix program# inlude <felix.h>NO_DISPLAYNO_OUTPUTmain_init(){}init(){}step(){}
< felix.h > is the main Felix header �le that always has to be inluded and by itself inludesseveral other header-�les neessary for proper ompilation.The maro NO_DISPLAY in the example atually expands to MakeDisplay(){}, e.g., an emptydelaration of the graphial user interfae. Similarly, the maro NO_OUTPUT likewise expands toMakeOutput(){}, an empty delaration of output to �les. Simple examples for the GUI and �leoutput follow below. The GUI is treated in detail in hapter 3 and File Output in hapter 5.The main_init()-routine ontains initialisations needed only one during exeution of a simulationprogram. It is exeuted when the program starts. It may load data from �les or settings of5

6 CHAPTER 2. GETTING STARTED
Figure 2.1: Graphial user interfae generated by the minimal Felix program given in setion 2.1.parameter-values not aessible by sliders. If the appliation uses dynamially alloated vetorsor arrays, memory for these variables MUST be alloated in main_init(), too, in partiular if thevariables are supposed to be displayed in the GUI.The init()-routine in ontrast is invoked eah time a simulation is reset. The GUI provides init-and run-buttons in the main-window to do this. It typially ontains ode to initialise variablesrandomly. In onjuntion with an additional ounter variable in the ode that inrements eahtime a reset is performed the init-routine an also be used to san a parameter range systematiallyand intialise eah simulation in a well de�ned state using that ounter.The step()-funtion ontains all things to be exeuted in a single simulation step. There is noonstraint about the ontent of this funtion, but in general it will omprise funtions to iteratethe dynamis of the simulated systems and possibly also to do some data analysis. The step()-funtion is repeatedly alled if a simulation is in run-mode as long as it is not expliitly stopped.The GUI further supports single- and multi-step modes, in whih ase the step-routine is exeutedone or a �xed number of times.The above trivial Felix program an already be ompiled and exeuted. For that, the ode hasto be stored in a C-�le, i.e., a �le alled <sim_name>., where <sim_name> is some basename(e.g., �empty�, beause all subroutines are empty funtions). Calling �Felix <sim_name>� (i.e.,�Felix empty�) ompiles the program and generates an exeutable alled <sim_name> (�empty�),whih an be run from the ommand line. This should pop up the main-window of the simulation,whih should look as displayed in Figure 2.1. (Note: The Felix example diretory should ontainan �empty.� funtion, as well as others.)The graphial user interfae in Figure 2.1 ontains simulation ontrol elements that by defaultappear automatially in the GUI of eah simulation program. The top label bar re�ets the (base-)name of the ompiled program. The �Windows-�button in general omprises a list of de�nedwindows, but in our simple example this list is empty. The �Environment-�button in ontrastontains several entries (not shown) that allow to store and load parameter settings for the slidersfollowing below. The �Steps� and �Display-Steps� sliders ontrol the multi-step and display modeof the GUI, respetively. If �Display-Steps� di�ers from 1, the variable windows (none is shownsine they are empty, but see later) are updated only at the respetive interval. This is usefulto ompress time in the display if the simulation step-size is small; it an sometimes also help tospeed up simulations, beause updating the display needs some time. The �Steps�-slider in the GUIooperates with the Step-button just below it. If the simulation is in multi-step mode (Display-Steps > 1), the �Steps�-slider spei�es how many steps are exeuted until the simulation stopsagain, after the �Steps�-button has been pressed. This means, the bottom-row buttons ontrolthe overall exeution of a simulation: Eah time the Init-button is pressed the init()-routine isalled. �Run� also alls the init()-routine, but afterwards the step()-routine iteratively � this is

2.2. EXAMPLE: LEAKY-INTEGRATE-AND-FIRE NEURAL NETWORK 7the standard simulation mode. �Stop� stops a simulation, �Step� runs a ertain number of steps asexplained above, and �Cont� (ontinue) enters the standard run mode again after a simulation hadbeen stopped. Finally, the footer of the GUI main window ontains a ounter of the simulationstep.2.2 Example: Leaky-integrate-and-�re Neural NetworkWe now onsider a more interesting example that indeed simulates something. This is a neuralnetwork omprising a ertain number (N = 100) of noisy leaky-integrate-and-�re neurons oupledrandomly in a network. These simple neurons are desribed by membrane potentials xi thatintegrate inoming input as low-pass �lters with time-onstant τ . If a potential rosses a �ringthreshold of 1 from below it is reset to zero and a spike is emitted. Spikes are represented bya seond array of binary variables, zi, i = 1, . . . , N . Equation (2.1) desribes the membranedynamis and (2.2) the resest at threshold rossings:
τ
dx(t)

dt
= −x(t) + I +

J0

N

N∑
i=1

Jijzj(t) + σηj(t) (2.1)if xi(t) ≥ 1 then zi(t) = 1, and xi(t) = 0 else zi(t) = 0. (2.2)
τ(= 10) in (2.1) is the membrane time onstant and J0 = 1.1 sets the oupling strength betweenunits globally. The Jij in ontrast are individual ouplings/synapses between pairs of neurons. Inthe simulation they are independent and identially distributed (i.i.d) Gaussian random numberswith mean 1 and standard deviation 0.4. The ηi(t) in (2.1) are furthermore i.i.d. temporallyGaussian white noise proesses with mean 0 and standard deviation 1. The fator σ sales this�noise� injeted into the individual ells.Networks of this type have been intensively studied in Neural Network Theory.The following ode implements the network model:/* Example-program: inf. */# inlude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time onstant */float I = 1.1, /* Common input to units */J0 = 1.1, /* Coupling strength */sigma = .1; /* noise level */Vetor x; /* potentials */Matrix J; /* onnetions */bVetor z; /* vetor of spikes */Vetor v; /* auxiliary variable */NO_DISPLAYNO_OUTPUT

8 CHAPTER 2. GETTING STARTEDint main_init(){ /* init. random number generator and stepsize */randomize(time(NULL));SET_STEPSIZE(.1)/* alloate vetors and matries */J = Get_Matrix(N, N);x = Get_Vetor(N);z = Get_bVetor(N);v = Get_Vetor(N);}int init(){ int i;Clear_bVetor(N,z);Clear_Vetor(N,v);/* init. potentials with random values between 0 and 1 */for (i=0; i<N; i++)x[i℄ = equal_noise();/* init. J with gaussian distr. random numbers */Make_Matrix(N, N, J, 1.0/N, .4/N);}int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, x[i℄,I + J0*v[i℄ + sigma*gauss_noise());Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetbMult(N, N, J, z, v); // redistribution spikes}Observe the general struture of the ode. First felix.h is inluded and as (some) parameters of themodel are de�ned as maros (this ould also be variables). Then arrays for the neural variables
x, J, z and an auxilliary array v are delared. The ode still does de�ne an empty GUI and dataoutput routine (NO_DISPLAY and NO_OUTPUT). After that the three obligatory funtionsmain_init(), init(), and step() follow.main_init() initialises the random number generator and sets the simulation time-step to 0.1.Afterwards the routine alloates the three vetors v, x, z, and the array J . Note that the z-arrayis a �bVetor� � a binary Vetor. [Many funtions in Felix operate either on �oating point vetorsand matries or on binary ones, where binary values (0/1) are represented by the C-type �har�.℄

2.3. ADDING A GRAPHICAL USER INTERFACE 9The init()-funtion initialises the data-arrays: v and z are leared, ie., set to 0; the potentials areset to equally distributed random numbers in the range [0,1[; and the oupling matrix J is �lledwith i.i.d. Gaussian random numbers, N(1., 0.4).Finally, the step()-routine implements the dynamis of the network. It mainly uses funtions fromthe Felix libraries. The leaky integration in equation (2.1) is oded expliitly using the maro�leaky_integrate�, whih implements a simple Euler-sheme to integrate the low-pass dynamis.�Fire_Reset()� afterwards does the thresholding part of the leaky-integrate-and-�re dynamis,and �bMult()� omputes the Matrix-Vetor produt between the oupling Matrix J and the binaryvetor of spikes z. The result v is used in the leaky integration in the next step.Again, the ode shown an be ompiled and run using Felix, but sine it neither de�nes graphialnor �le-output, we would not be able to observe what the network is doing. The interfae wouldjust look as in Figure 2.1 with now nie windows or �le output at all. Therefore, we next add somegraphial output.2.3 Adding a Graphial User InterfaeThe graphial user interfae serves di�erent tasks, the two most important are displaying variablesof the simluation and providing sliders to ontrol it (other task onern �le I/O and saving/loadingparameters). In the �rst ase the information �ow is from the running simulation to the GUI,whereas in the seond it is the other way round � the user hanges sliders, whih in turn modifysimulation parameters. The next two sub-setions explain how these tasks are set up.In general the funtion MakeDisplay() represents the main-interfae between the C-ode and theXWindows-System. It ontains statements that de�ne how variables shall be displayed on thesreen and, if needed, delares buttons (alled swithes) and sliders, whih allow for interativeontrol of a running simulation. MakeDisplay always generates a main-window with several buttonsand sliders, whih are used to ontrol the simulator-kernel even if the MakeDisplay() funtion isexpliitly delared empty or the maros NO_DISPLAY is used (whih does the same), see Figure2.1.2.3.1 Displaying Views on VariablesAs outlined in setion 1.2 a simulation an be onsidered a dynamial system omprising variablesand parameters. Variables are displayed to the user and parameters an be used to modify thesimulation online. The ode below shows how a typial Graphial User Interfae for the leaky-integrate-and-�re neural network program an be delared.BEGIN_DISPLAYWINDOW("time ourses")IMAGE("x", AR, AC, x, VECTOR, 10, 10, 0.0, 1.0, 4)RASTER("x", NR, AC, x, VECTOR, N, 0, 0.0, 1.0, 1)GRAPH("x", NR, AC, x, VECTOR, N, 0, 0, 0, -.01, 1.01)RASTER("z", NR, AC, z, bVECTOR, N, 0, -.01, 1.01, 2)

10 CHAPTER 2. GETTING STARTEDWINDOW("ouplings")IMAGE("J", AR, AC, J, CONSTANT MATRIX, N, N, -4./N, 4./N, 4)END_DISPLAYThe maros BEGIN_DISPLAY and END_DISPLAY enlose the de�nition of a GUI; they expandinto a MakeDisplay(){} funtion body (thus, you an also de�ne this funtion diretly without usingthe maros). Everything between the BEGIN_ and END_DISPLAY maros is exeuted when theGUI is build. In the present example two windows are de�ned with names �time ourses� and�ouplings�, respetively. It is possible to de�ne an arbitrary number of suh display windows.Eah display window an in turn omprise an arbitrary number of so-alled �views�. A view is aview of a variable, e.g., a salar, vetor, or a matrix. Eah variable an be viewed in di�erent ways,and setion 3 desribes the possibilities in detail. Here, it may su�e to observe that the window�ouplings� displays the N × N oupling matrix J as an IMAGE, i.e., a grey-sale oded piturethat re�ets the values of the matrix entries. Beause J is delared as a CONSTANT MATRIX inthe IMAGE-de�nition, the image of J is updated only one, after eah all to the init()-funtion.This saves unneessary updates, whih ost time.On the other hand, the window �time ourses� de�nes four views, three di�erent ones onto the
x-variables (potentials), and one on the spikes z. The potentials are displayed as an IMAGE ofsize 10 × 10 (just for demonstration), a RASTER whih displays the potentials over time as agrey-level plot, and a GRAPH, whih selets a single potential trae and plots it as a funtionover time. The spikes are, �nally, also plottet as a RASTER, ie., the values of the whole array aredisplayed over time. More about this later, when we look at the atual graphial output (Figure2.3 for the impatient).2.3.2 Coupling of Parameters and Panel ControlsThe views on variables de�ned in the previous setion allow to observe in real time variables of thesimulations. However, we might also want to hange parameters and see where that leads to. Todo this we have to add ontrol elements to the main window of the GUI (e.g., 2.1). These elementsan then be oupled to parameters of the simulations.There are two types of ontrol elements available in Felix: Swithes and Sliders. Swithes arerepresented by buttons; they an be ON or OFF, and thereby they an �swith� ode exeutionbetween alternative segments (Swithes are not used in this setion, but see setion 3). The seondontrol element are Sliders. These an take values in a whole range and an thereby representontinuous parameters of the simulations.How does this work inpratie? Let us assume we want to ontrol the parameters I, J0 and σin the simulation of the leaky-integrate-and-�re network. These are the global input, the globale�etive oupling strength, and the noise level. For eah of these we have to de�ne a new variableof type SliderValue (the reason for this follows soon). These new variables we have to embed inthe GUI, and we an use them in the simulation ode as well. The ode below shows how this isahieved.SliderValue sI = 100;

2.3. ADDING A GRAPHICAL USER INTERFACE 11SliderValue sJ0 = 50;SliderValue ssigma = 0;BEGIN_DISPLAYSLIDER("input", sI, 0, 200)SLIDER("oupling", sJ0, 0, 200)SLIDER("noise", ssigma, 0, 100)WINDOW("time ourses")....END_DISPLAYsI, sJ0 and ssigma are the new variables of type SliderValue. The SLIDER()-maros then addthe slider to the GUI, giving them names and ertain lower and upper bounds. This ode-snippetre�ets one problem with Sliders: Constrained by the XWindows/XView system they an onlytake integer values. In the example these ranges are {0, 1, 2, . . . , 200} for input sI and oupling
sJ0, and {0, 1, 2, . . . , 100} for the noise level ssigma. Aordingly, when the variables are usedin the ode implementing the dynami equations of the simulated system they have to be saledappropriately. For instane, in the step()-routine we ould have ode likefor (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, pot[i℄,0.01*(sI + sJ0*v1[i℄ + ssigma*gauss_noise()));The fator 0.01 sales the ranges for sI , sJ0 into the intervals [0,2[and that for ssigma into therange [0,1[. This is somewhat unomfortable, but one gets used to it quikly.Finally, note that now that we have replaed the original variables I, J0, and σ by slider variables,we an delete their original delarations in the program. They don't appear in the ode anymore,but instead they are ontroled by the graphial user interfae, see Figure 2.2.2.3.3 Running simulations using the graphial interfaeFigure 2.2 displays the GUI after the ontrol elements have been added. The display windows wehave de�ned are still hidden. We an open them by right-liking the �Windows�-button, whihpops up a list of all availabe windows.Figure 2.3 shows the interfae after the display windows have been opened and plaed on thesreen. On top of the ontrol panel is shown the oupling matrix and to the left of both thewindow �time ourses� ontaining the simulation variables.By left-liking the �Environment�-button this on�guration an be saved suh that the GUI omesup in the same state the next time the program is started again (right liking the �Environment�-button gives some more options). This automati loading of parameters from a default environment�le overrides any expliit initialisations of slider variables possibly done in the soure ode.

12 CHAPTER 2. GETTING STARTED

Figure 2.2: Graphial user interfae after adding sliders for parameters of the simulation.The Felix example diretory ontains the ode of a leaky-integrate-and-�re network with GUI and�le output. You might want to experiment with it, before proeeding to the next setion whihdesribes how �le output is delared. In partiular, note that the label on top of eah view islikable and brings up ontrol panels for the grey-sales of images and rasters, or the seletedvariable index in graphs that display arrays.2.4 Adding Output of DataAnalogous to MakeDisplay() whih de�nes the graphial output, the funtion MakeOutput() de-�nes output that is supposed to go to �les. The maro NO_OUTPUT an be used if no suhoutput is required. The maros BEGIN_OUTPUT and END_OUTPUT in turn enlose ode fordata output. This de�nes a funtion MakeOutput() whih is alled just after the initialisation,and after eah subsequent simulation step. It is possible to selet temporal sub-ranges for outputonly as well as subsets of arrays; this is explained in detail in hapter 3. The following ode showshow variables of the leaky-integrate-and-�re model an be saved.BEGIN_OUTPUTOUTFILE("potentials")SAVE_VARIABLE("pot", x, VECTOR, N, 0, 0, 0, 0)OUTFILE("spikes")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SAVE_VARIABLE("out", z, bVECTOR, N, 0, 0, 0, 0)END_OUTPUTTwo output �les are de�ned, �potentials� and �spikes�, with obvious meaning. An arbitrary number(up to operating system onstraints) an be opened, eah of whih an save a number of variablesper step. [Those are stored in sequential order, whih might ause problems when the data hasto be reread in data-analysis programs, beause of the possibly ompliated reord struture. Itis probably more onvenient to store only one variable per �le as in the shown example.℄ The

2.4. ADDING OUTPUT OF DATA 13

Figure 2.3: User interfae showing the ontrol panel and the two windows reated for displayingdynami variables.

Figure 2.4: Control panel of the graphial user interfae after output �les have been delared inthe program.variable x is stored as a vetor of length N to the �le �potentials�, whereas z is stored as a binaryvetor of length N to the �le �spikes�.By default, data is saved in binary format, so that it would not be readable by humans, butsave spae. The default is hanged for the seond �le in the example, where a �ag is set for(human-readable) ASCII output.Figure 2.4 shows the main GUI window after �le output has been de�ned. The new button "Save isOFF" indiates that the ouput has not yet been ativated. If it is pressed, �le output starts. If it is

14 CHAPTER 2. GETTING STARTEDpressed repeatedly during a simulation, the state of the button toggles, and data generated duringthe ativated phases are appended to the output �les. Right-liking on the "Save is OFF"-buttonbrings up further options, not all of whih are fully implemented, nor well tested.Have a look into hapter 5 (or the example programs, or the soure ode of output./h) for possi-bilities to selet sub-ranges of array variables for output. This an be useful for large simulations,beause otherwise the amount of generated data an quikly beome tremendeous.

Chapter 3Graphial User Interfae
Chapter 2 presented a brief example of how Felix programs are strutured and what the mainproperties of the Graphial User Interfae are. The present hapter looks into the GUI in moredetail.In general eah Felix program has a main window with ontrol elements for running a simulationand manipulating its parameters in real-time. Swithes are binary (ON/OFF) ontrols that allowfor a onditioned exeution of ode segments. Sliders in ontrast an take values in a range ofnumbers and an therefore be used to set parameters of a simulation. Beside the main windowa Felix simulation in general will have one or more display windows. These an ontain graphisobjets of various types, whih display views on variables as, e.g., graphs, funtions, images,or plots. Finally eah Felix simulation has an �Environment� allowing the user to store and loadparameter settings in external �les. The present hapter will go through the mentioned omponentsstep by step.3.1 Creating a GUIEah Felix appliation has to de�ne whih objets (variables, vetors, matries ...) are displayedon the sreen and how this shall be done. For this a funtionvoid MakeDisplay(){...}has to be supplied whih ontains de�nitions of the graphis objets to be displayed. The funtion-body of �MakeDisplay� an be empty, if no graphial output is needed. In that ase a basi mainwindow is still generated, see Figure 2.1, but no display windows. There are three Maros thatsupport the de�nition of the interfae#define BEGIN_DISPLAY void MakeDisplay(){#define END_DISPLAY }#define NO_DISPLAY void MakeDisplay(){}Beside a number of buttons to initialialise, run, stop, and resume a simulation, the eah GUI bydefault ontains two sliders �Steps� and �Display Steps�. These ontrol the display and multi-step15

16 CHAPTER 3. GRAPHICAL USER INTERFACEmode of a simulation. �Display Steps� sets the interval in simuation steps at whih the graphisobjets in the display windows are updated. �Steps� in ontrast sets the number of steps thatare exeuted in multi-step mode (i.e., after stopping an initialised simulation) when the Steps-button of the GUI is pressed. The maximum steps of both these sliders by default is 100, whihis onvenient for most situation. Should it be neessary, the numbers an be hanged using themaros MAXSTEPS() and MAXDISPLAYSTEPS() in the de�nition of MakeDisplay().MAXSTEPS(steps)MAXDISPLAYSTEPS(steps)In very new versions of Felix the olormap for the variable views an be seleted by using themaro COLOR_MAP(map) somewhere at the top of the display delaration. Possible values for�map� are:CMAP_BW : The default gray-sale map; blak: low-values; white: high valuesCMAP_RED : Blak to rimson-red intensity oded (quite hellish)CMAP_GREEN : All green (looks like the aliens are around the blok)CMAP_BLUE : All blue (deep not light blue)CMAP_RAINBOW : Blue - green - red olour sale (quite fany)In the non-gray maps the lowest and highest values are blak and white, respetively. This makeslipping at range boundaries niely visible.3.2 Simulation Control Elements3.2.1 SwithesSwithes are logial �ags, that may be used in a simulation to interatively selet exeution ofdi�erent parts of the soure-ode.A swith must be globally delared as a variable of type 'SwithValue' on the top of the appliation-soure �le.A swith an be ON or OFF:#define OFF 0#define ON 1To reate a button in the main-window that a�ets the swith-variable the funtion MakeSwith()or the Maro SWITCH() must be alled in MakeDisplay() :#define SWITCH(name, var) MakeSwith(name, &var);

3.2. SIMULATION CONTROL ELEMENTS 17Here �name� is a string that appears on the swith-button in the GUI and �var� is its aoiatedvariable of type SwithValue.If a user wants to hange values of swith-variables at the soure-ode level the funtion SetSwith()or the Maro SET_SWITCH() MUST be used. Simply assigning a value to a swith-variable isnot enough, beause the new value will not be signalled to the XWindows-system, suh that thestate of the swith would be no longer represented by its orresponding button.#define SET_SWITCH(var, value) SetSwith(&var, value);�var� is the variable to be set; possible values are ON or OFF.Example:...SwithValue sw = OFF; /* define the swith-variable */...BEGIN_DISPLAY...SWITCH("this-or-that", sw) /* define the swith-button */...END_DISPLAYint void step()....if (sw) /* exeute ode depending onthe state of sw. */{ /* do this */...}else{ /* do that */....}}3.2.2 SlidersAs swithes sliders are used to interatively ontrol a running simulation. The di�erene is, thatthey are multi-valued and thus may be hosen to in�uene parameters of the model. To reate

18 CHAPTER 3. GRAPHICAL USER INTERFACEa slider the user has to delare a global variable of type 'SliderValue' (i.e., int). This variable isassoiated with a graphial slider in the GUI by a all to the funtion MakeSlider() or the maroSlider() inside the initialization routine MakeDisplay().Sliders appear in the main-window in the order of their delaration in MakeWindow(). The maroSLIDER_COLUMNS(olumns) an be used to arrange them in more than 1 olumn (default).#define SLIDER(name, var, min, max) MakeSlider(name, &var, min, max);�name� is a string that appears to the left of the slider. �var� is the variable of type SliderValuethat stores the urrent value of the slider. �min� and �max� set the range allowed for hanges inthe sliders value.To set or hange slider-values at soure-ode level the funtion SetSlider() (or maroSET_SLIDER) must be used:#define SET_SLIDER(var, value) SetSlider(&var, value);�var� is the name of the slider-variable and �value� the new slider-value of type SliderValue (i.e.,int).Unfortunately, XView restrits sliders to integer-values. Thus, if an appliation ontains �oating-point parameters whih shall be modi�able from the graphial interfae, one has to sale theorresponding slider-values to the appropriate range.Example :SliderValue param = 50; /* define and initialize a slider-variable */...BEGIN_DISPLAY...SLIDER("parameter", param, 0, 100) /* generate an instane of aXView-slider in the main windowassoiated with variable "param"The name of the slider is"parameter", its range [0,100℄*/...END_DISPLAYint void step(){ float float_param;

3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 19..float_param = .01*param; /* this asts the slider-value to float* in the range [0,1.0℄. Observe, that* only 100 different values are possible!*/..if (any_ondition)SET_SLIDER(param, 50) /* this sets the slider to a well-defined* value (here 50).*/}3.2.3 TimerUsage of the Maro TIMER() in the de�nition of MakeWindow() reates an extra slider whihin�uenes the time between two suessive simulation-steps.TIMER(max)The timer slider will have a range from 0 to max. If the value is zero the timer is o�. Otherwise ite�ets the times between alls to the step() routine in a running simulation. The value in prinipleis supposed to be in Milliseonds, but this shouldn't be taken too seriously.3.3 Display Windows and Views on Variables3.3.1 Display WindowsThe Maro WINDOW() or funtion MakeWindow() reate a new window for graphial output.The string �name� appears at the top of the window and in the Window list of the main ontrolwindow.#define WINDOW(name) MakeWindow(name);The WINDOW-statement must be alled in MakeDisplay() before any other output an be diretedto the sreen, i.e. before any graph, image, raster, or other variable views are de�ned.Several windows an be de�ned by repeated alls to WINDOW(). In this ase the last delaredwindow is always the ative one, meaning that subsequently delared graphis objets are plaedinto that window.All window-names are olleted into the �Windows�-menue at the top left of the main ontrolwindow. If a window is losed seleting it from this menue will reopen it.

20 CHAPTER 3. GRAPHICAL USER INTERFACE3.3.2 ViewsAfter a Window has been de�ned it an be �lled with graphial views on simulation variables(images, graphs, et). The funtions to reate the various possible views all have a similar struture.Consider, e.g., reation of an image by using the maro IMAGE():IMAGE(name, row, ol, var, type, dim_x, dim_y, min, max, zoom)The �rst argument is the �name� of the view. It will appear on a button on top of the view.�row� and �ol� are two arguments to ontrol positioning of the view in the display window. Thisis overed in the next subsetion 3.3.3.�var, type, dim_x, dim_y� then haraterise what is atually displayed. The type of a displayedvariable �var� must be delared and, if it is a vetor or an array, also its dimensions. Possibledisplay types are desribed below in subsetion 3.3.4.The last argument of a view de�nition, �zoom�, is a (small) integer number that ontrols how big aview appears on sreen. Default value is 1. In that ase, e.g., eah entry of a matrix-valued variablewill be displayed by one pixel in a retangular image. Larger numbers for zoom orrespond withmore pixels and bigger images.3.3.3 Plaement of Views inside a WindowThere is a simple mehanism to ontrol positioning of view elements.The 2d and 3rd arguments of a view-de�nition are oordinates for the upper left orner of theview. These an be given diretly by speifying raw pixel oordinates.Alternatively, eah display window an be onsidered as being partitioned into a oarser retangulargrid. Several maros support plaing views in that oarse grid.R0, AR and NR an be used as values for the 2d, and C0, AC, and NC as values for the thirdargument of a view de�ning funtion.R0 and C0 speify the �rst row and olumn, respetively.AR and AC speify that the view has to be plaed in the atual row or olumn, respetively.NR and NC speify that the view has to be plaed in the next row or olumn, respetively.Example (f., setion 2.3)BEGIN_DISPLAYWINDOW("time ourses")IMAGE("x", AR, AC, x, VECTOR, 10, 10, 0.0, 1.0, 4)RASTER("x", NR, AC, x, VECTOR, N, 0, 0.0, 1.0, 1)GRAPH("x", NR, AC, x, VECTOR, N, 0, 0, 0, -.01, 1.01)

3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 21RASTER("z", NR, AC, z, bVECTOR, N, 0, -.01, 1.01, 2)WINDOW("ouplings")IMAGE("J", AR, AC, J, CONSTANT MATRIX, N, N, -4./N, 4./N, 4)END_DISPLAYThis example de�nes two windows with names �time ourses� and �ouplings�. The �rst windowontains four graphis views, the seond only 1. In both ases the �rst view is plaed at position(AR, AC), the atual row and atual olumn, whih by default after reating a new window withWINDOW() is equal to (R0, C0), the upper left loation in the oarse grid. The subsequentviews in the �rst window are then plaed at (NR, AC), meaning the next row but atual olumn.Therefore, the four views are plaed in a single vertial olumn. In ontrast, replaing (NR, AC)by (AR, NC) in the ode would plae the views all in a horizontal row, and (NR, NC) plaes themalong the diagonal of the oarse grid (whih wouldn't look too nie).3.3.4 Types of Display VariablesFelix supports displaying of variables of three base types: har, int, and �oat. A fourth type,paked bits, is obsolete and shouldn't be used. Displaying double, long, and unsigned variables isnot supported.Variables an be salars or vetors / arrays. There are several type maros that an be used inthe view display type de�nitions:#define CHAR_TYPE 0x02#define INT_TYPE 0x04#define FLOAT_TYPE 0x08#define ARRAY_TYPE 0x20#define ARRAY_CHAR_TYPE (ARRAY_TYPE | CHAR_TYPE)#define ARRAY_INT_TYPE (ARRAY_TYPE | INT_TYPE)#define ARRAY_FLOAT_TYPE (ARRAY_TYPE | FLOAT_TYPE)The basi display types above are onveniently rede�ned in some of the Felix libraries, e.g.:vetor./h : VECTOR, MATRIX = ARRAY_FLOAT_TYPEbVECTOR, bMATRIX = ARRAY_CHAR_TYPEnn./h : LAYER = ARRAY_FLOAT_TYPESPIKE_LAYER = ARRAY_CHAR_TYPEIt is sometimes desired not to provide just a variable to a view, but a pointer to a variable. Thevariable the pointer referenes an then hange dynamially in every display step. The POINTER-maro sets the respetive type bit.

22 CHAPTER 3. GRAPHICAL USER INTERFACE#define POINTER 0x8000#define TO |#define CONST_BIT 0x4000#define CONSTANT CONST_BIT |A variable an be delared CONSTANT if it does not need to be updated during a runningsimulation. A CONSTANT variable is updated only after a all of the init()-funtion at thebeginning of a simulation, ie., by pressing the Init- or Run-buttons of the GUI.ExamplesBEGIN_DISPLAYWINDOW("time ourses")IMAGE("v", AR, AC, v, MATRIX, 10, 10, 0.0, 1.0, 4)IMAGE("z", AR, NC, z, CONSTANT MATRIX, 10, 10, 0.0, 1.0, 4)IMAGE("y", AR, NC, y, POINTER TO bVECTOR, 10, 10, 0.0, 1.0, 4)IMAGE("x", AR, NC, x, POINTER TO CONSTANT VECTOR, 10, 10, 0.0, 1.0, 4)...The �rst IMAGE de�nes a view on a MATRIX (ARRAY_FLOAT_TYPE) of size 10 × 10. Thisis how a view de�nition usually delares a variable type. The seond IMAGE also de�nes a viewon a MATRIX , but beause the matrix is delared CONSTANT the graphis view will only beupdated when the simulation starts. The third IMAGE refers to a binary vetor image (bVECTOR= ARRAY_CHAR_TYPE). However, a pointer to the variable y is delared so that the array ymay hange dynamially. The fourth image also delares the variable z a pointer, but this timea onstant one, so that it ould hange where it points at, but its view is refreshed only at thebeginning of a simulation. (I an't remember I ever used this possibility during the last 15 years).3.3.5 Image-Views

Figure 3.1: 2d grey-sale images of 3 arrays in a neural �eld model. Left: input; middle: potentials;right: spikes of the ells in the model.An image is a two-dimensional grey-sale plot of the urrent state of a two-dimensional variable.It is reated by alling the maro IMAGE() inside the funtion MakeDisplay():

3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 23IMAGE(name, row, ol, var, type, dim_x, dim_y, min, max, zoom)Here �name� is a string that appears on a button above the image. �row� and �olumn� give theposition of the image in the urrently ative window, see setion 3.3.3.�var� is the variable to display as an image, �dim_x� and �dim_y� its dimensions, and �type� itsdisplay type as desribed in setion 3.3.4.The �oating point variables �min� and �max� set the grey-sale of the image and should be set tothe expeted min- and max-values for the variable.The integer valued argument �zoom� sets the size of the image. Eah element of the variable isdisplayed as a square of size zoom×zoom.Vetors, i.e. one dimensional arrays, an be displayed as images, too, by providing appropriatedimensions in the all to IMAGE(). If dim_x*dim_y is bigger than the atual vetor size, thebehaviour is unde�ned and ore dumps an potentially our. If it is smaller the remainingomponents are not displayed.3.3.6 Raster Plots

Figure 3.2: Raster plot of the grey-sale-oded potentials of 100 leaky-integrate-and-�re neuronsover time.A raster plot displays a vetor or 2d-array as a funtion of time. Eah omponent of the variableis shown grey-level oded on a seperate line.RASTER(name, row, ol, var, type, dim_x, dim_y, min, max, zoom)The arguments are the same as in image. If �dim_y� is not zero it is assumed that �var� is a2-dimensional array that has to be interpreted as a vetor of length dim_x*dim_y.�zoom� only sets the height of eah displayed line (in pixels). It has no in�uene on the number oftime-steps that �t on one line.

24 CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.3: Two single variable graphs over time3.3.7 Single Variable GraphsA graph displays a single salar variable, or a omponent of a 1 or 2d-array as a funtion of time.GRAPH(name, row, ol, var, type, dim_x, dim_y, x, y, min, max)All but the �x� and �y� parameters are the same as in IMAGE.In ase of ARRAY_TYPES (see setion 3.3.4) �x� and/or �y� speify whih omponent of thevariable has to be displayed initially.3.3.8 xy-Plots

Figure 3.4: Example showing an x-y-plot of two variables of a Roessler osillatorThis view objet displays an xy-plot of two variables. The variables may be independently hosenas single salars or omponents of 1 or 2d-arrays.

3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 25PLOT(name, row, ol, var1, type1, dim_x1, dim_y1, x1, y1, min1, max1,var2, type2, dim_x2, dim_y2, x2, y2, min2, max2,zoom)All parameters are the same as in GRAPH, but note that one has to spei�y two variables withadjoined information about variable type, the subelement to selet from arrays, and the grey-salesettings.3.3.9 Arrays of ImagesThis type of view mainly aims at displaying 2-dimensional arrays of 2-dimensional images as theyarise, e.g., in neural �eld models, where eah loal unit in a 2d-�eld has an individual 2d-lateralonnetion kernel. 1-dimensional arrays of 2-dimensional images (e.g., a stak of ortial layers)an also be displayed.IMAGE_ARRAY(name,row,ol, var,t, dim_x, dim_y, d_x, d_y, x, y, min,max,zoom)�name, row, ol, min, max, zoom� have the same meaning as usual (see IMAGE).�var� and �t� de�ne the variable and its display type (whih must be an ARRAY_TYPE (usuallyMATRIX) and an be a POINTER type)�dim_x� and �dim_y� de�ne the dimensions of the array of images. If �dim_y� is zero, but �dim_x�positive a one dimensional array of images is assumed.�x� and �y� speify whih of the sub-images of the array of images is displayed initially (an beoverridden by the Environment).�d_x� and �d_y� de�ne the size of the displayed images in x and y diretion. They must both bepositive.3.3.10 Funtions
Figure 3.5: A funtion viewA funtion view plots a one-dimensional array (VECTOR) as a funtion of the array index. Singlefuntions , and one- and two-dimensional arrays of funtions are possible (f., IMAGE_ARRAYS).FUNCTION(name, row, ol, var, type, points, dim_x, dim_y, x, y, min, max)

26 CHAPTER 3. GRAPHICAL USER INTERFACE�name, row, ol, var, type, min, max� are the same as in GRAPH.�points� is the number of data points in any individual array that is to be plotted as a funtion.�dim_x, dim_y, x, y� are used for arrays of funtions. If �dim_x� is bigger than 0 and �dim_y�is zero a one-dimensional array of funtions is assumed; if they are both bigger than 0, a two-dimensional one. �x� and �y� de�ne the initially seleted funtion to display (an be overridden bythe Environment).
3.4 View Settings FramesEah graphial view objet in a window has a �settings frame� assoiated with it that an be usedto ontrol the grey-sale ranges of the view and to selet sub-elements in ase of array variables forgraphs, funtions, or image arrays. The settings frame pops up, if the button of a view showingthe view's name is pressed.

Figure 3.6: A two-dimensional settings frameFigure 3.6 shows a two-dimensional settings frame as it ould our for a graph of single elementof a 2d array. The frame shows the full array as a grey-sale image where the partiular elementto display is indiated by the red rosshair. The element an further be seleted by the x andy text�elds. If a variable has to be seleted from a one-dimensional array only, the 2D-image isreplaed by a slider. If the variable to display is a salar, no extra element seletors will appear inthe orresponding settings frames, but only the ontrols for setting the grey-level.The de�nitions of all views ontain arguments �min� and �max�. These set the initial grey-salefor that view. They an be hanged in the settings frame, too. If the sale is hanged, the newsettings an be stored to an environment �le (see setion 3.5).

3.5. LOADING AND SAVING GUI SETTINGS 273.5 Loading and Saving GUI SettingsThe Felix GUI for onveniene provides the possibility to load and store settings of the graphialinterfae. The �Environment�-button on the main ontrol window serves this task.Right-liking the �Environment�-button brings up a menue with four options.Save This saves the urrent settings in a default �leLoad This loads settings form the default �leSave as .. This pops up a window where the urrent settings an be stored in an arbitrary �leLoad ..℄ This pops up a window where settings an be loaded from an arbitrary �leLeft-liking the �Environment�-button by default saves the urrent settings in the default �le.The default �le is loated in a sub-diretory �env� of the urrent working diretory, ie., the diretorythe exeutable is loated and run in. The default �le has the same name as the exeutable.The default �le does not exist until it is reated (by left-liking the �Environment�-button). Ifthe environment diretory �env� does not already exist, it is reated, too.If a default �le exists it is automatially loaded when an appliation starts. This overrides anyexpliit initialisations of swith or slider values, image grey-sales, or sub-seletions in views thatan plot array objets. Oasionally this behaviour is unwanted,. You then need to rename ordelete the default environment �le in the �env�-subdiretory.Note: Changing the number of graphi objets (swithes, sliders, windows, views) in the GUIde�nition of an appliation typially invalidates the environment �le(s). Instead of using the �le,the appliation will print an error message on the sreen. This is sometimes unomfortable foromplex appliations, beause all settings have to be set anew. It an then be easier to hand-editthe environment �les: If proper entries for the new (or deleted) objets are added, the �le an beused again.

28 CHAPTER 3. GRAPHICAL USER INTERFACE

Chapter 4Libraries
Felix omes with a number of funtion pakages / libraries suitable for tasks often enountered inthe modeling of neural networks and dynamial systems. The present setion provides an overview.4.1 Outline: Pools and FieldsAlthough not restrited to them, two types of models have been in the main fous during thedesign of Felix - networks omprising homogeneuos neural pools and layered, topographiallyordered neural �elds, f., Figure 1.2 in setion 1.2.Given a single neural pool of N neurons its dynamis ould be desribed mathematially by

τφi(t) = −φi(t) + Ii(t) +

N∑
i=1

wijf(φj(t)) + σηi(t) (4.1)Here, the ells are modelled by a single variable for their membrane potentials, φi, i = 1, . . . , N ,and by a graded sigmoid output or rate-funtion f . Single units are idential: they obey the samemebrane low-pass dynamis with time-onstant τ and have the same rate-funtion. They might,however, reeive di�erent inputs Ii(t) and noise ηi(t) of strength σ, and their synapti weights
wij , j = 1, . . . , N will di�er. More ompliated single neuron models are of ourse possible. Cells,in general, also don't need to be idential.The dynamis of a single neural �eld in ontrast an be written as

τφ(x, t) = −φ(x, t) + I(x, t) +

∫
w(x, x′)f(φ(x, x′, t)) + ση(x, t) (4.2)In ontrast to (4.1) ells do not just have indexes, but a ontinuous spatial loation x (whih will,of ourse, typially be disretised in omputer models). Units at one loation interat only withneighbours nearby. This is re�eted by the synapti kernels w(x, x′) in (4.2). Beside this, themeaning of the symbols in equations (4.1) and (4.2) are the same.Both kinds of models need similar onstrut to de�ne and simulate the single units they onsistof, e.g., the dynamis of the membranes φ and the output type of the units. Both, (4.1) and (4.2)above use �rst order low-pass �lters and graded output by means of nonlinearities f . The maindi�erene onerns their onnetivity patterns. In pool-models all ells in one pool an potentially29

30 CHAPTER 4. LIBRARIESreah all ells in the same or another pool � matrix-vetor operations are most onvenient toimplement this kind of model, see setion 4.3 below. Neural �elds on the other hand revealtopographi neighbourhood strutures - Felix provides onstruts for the implementation of thiskind of �integro-di�erential equation�, too, see setion 4.5.Delays further play an important role in many neural models. They are supported in Felix by aontainer lass that stores model trajetories over time and a number of fundamental routines toaess delyed variables in simulations. There are in partiular delayed onvolution funtions, thatare needed if lateral propagation speeds in a �eld model are �nite. Details an be found in setion4.6.Noise is omnipresent in neural systems and in many other physial systems, too. In (4.1) and(4.2) noise inputs into the system is, for instane, represented by the proesses η. These areommonly assumed independent and identially distributed Gaussian white noise with mean 0; σsets the standard deviation. Other hoies are Poisson proesses of some rate whih would re�etthe spiking nature of inputs to neurons. Felix has a built-in pseudo-random number generatordesribed in setion 4.7.Felix also has libraries with some numerial and image proessing routines. Beause, these are notwell developed, they will not be desribed in this doument.4.2 Some Low-level De�nitionsIf not de�ned already in system headers, the Felix headers de�ne the following maros# define TRUE 1# define FALSE 0# define MIN(a, b) ((a) > (b)? (b) : (a))# define MAX(a, b) ((a) > (b)? (a) : (b))4.3 Matrix and Vetor OperationsThe Matrix/Vetor funtionality is a entral part of Felix. Two base-types for variables are ingeneral supported. Most Felix funtions operate on salars, vetors, or matries of those.BaseType : �oating point values (for historial reasons these are C-type ��oat�; I don't want togo into the mess if hanging to �double�).bBaseType: binary (0/1) values. One bit stored per memory-byte (unsigned har).BaseType is used for all kinds of ontinuous ell variables, whereas bBaseType is useful for therepresentation fo binary vetors of �spikes�.(The bitBaseType available in early versions of Felix is obsolete and shouldn't be used. It used apaked binary format; one bit stored per memory-bit.)Vetor and Matrix-types are derived from the base-types

4.3. MATRIX AND VECTOR OPERATIONS 31typedef BaseType * Vetor;typedef bBaseType * bVetor;typedef BaseType * Matrix;typedef bBaseType * bMatrix;Note: Matries are internally stored as linearized arrays of rows in memory (ie., not as vetors ofpointers to rows or olumns).4.3.1 Operations on Salar VariablesBaseType leaky_integrate(float tau, BaseType v, BaseType expr)This maro implements a simple Euler-Sheme for simulating leaky-integrator membranes: τ dv
dt

=
−v + expr. Integration stepsize is set with SET_STEPSIZE(dx) and should be hosen suh thatdx/tau is small ompared to 1. The variable �step_size� an be used expliitly in ode if required.In onjuntion with the later explained �re_reset()-funtion, �leaky-integrate and �re neurons� arestraightforward to implement (see the example program inf.).Several basi nonlinear funtions are available as rate-funtions or for other purposes. They alltake a single �oat as argument and return a single �oating point value.triangle(x) : f(x) = 1 − |x| if |x| < 1 and 0 if |x| >= 1retangle(x) : f(x) = 1 if |x| <= .5 and 0 if |x| > .5gaussian(x) : f(x) = exp(−4 ∗ ln(2) ∗ x ∗ x) (The fator 4*ln(2) ensures f(.5) = .5)fermi(x) : f(x) = 1/(1 + exp(−4 ∗ x)) (The fator 4 ensures df/dx(0) = 1.)ramp(x) : f(x) = 1 if x > 1, 0 if x < 0 and x elselin(x) : f(x) = xtlin(x) : f(x) = x if x > 0 and 0 if x <= 0tquad(x) : f(x) = x ∗ x if x > 0 and 0 if x <= 04.3.2 Memory Alloation RoutinesBefore use, any vetor or matrix-variable must be alloated. This is usually done in the top-levelfuntion main_init(). It must be done there if the variable is aessed for display in the graphialuser interfae. Use the following template for funtions to alloate vetors and matries:<var_type> var;var = Get_<var_type>(<dims>);

32 CHAPTER 4. LIBRARIES
<var_type> stands for �Vetor�, �bVetor�, �Matrix�, or �bMatrix�. If a Vetor-Type is supplied
<dims> is the requested length. In ase of a matrix <dims> = �rows, olumns�.Alloated memory-spae should be set free if no longer need. This is done by maros of the typeFree_<var_type>(var);or simply by a all to the system-library funtion free(< var >).Example:Matrix m = Get_Matrix(10, 10); /* alloate memory for m */......Free_Matrix(m); /* or alternatively: free(m); */4.3.3 Cleaning Vetors and MatriesAll entries of a Vetor or Matrix are set to zero by one of the following maros:Clear_<var_type>(<dims>, <var>) .For example:Clear_bMatrix(rows, olumns, m);Clear_Vetor(length , v);4.3.4 Aess to Elements of a Matrixelem(m, i, j, olumns)This is a maro that gets or sets the element m[i][j] of the Matrix or bMatrix m. 'olumns' is thenumber of olumns of m. (If i is set to 0 the maro an be used for VetorTypes, too.)For example:elem(m, 5, 6, 10) = 3.14; /* Set m[5℄[6℄ to 3.14 */x = elem(m, 5, 6, 10); /* set x to m[5℄[6℄ */If you don't use this maro for matries you have to keep in mind that matries are stored seriallyin memory, i.e, elem(m, 5, 6, 10) would be equivalent to m[5 ∗ 10 + 6], but note that m[5][6] doesnot work!4.3.5 Raw I/O of Vetors and Matries to/from �lesRaw output in binary format to or from a stream is done with one of the maros:

4.3. MATRIX AND VECTOR OPERATIONS 33Write_<var_type>(<dims>, <var>, stream);Read_<var_type>(<dims>, <var>, stream);These maros diretly all the system-library funtions fread() and fwrite(), thus they return thenumber of bytes atually read or written. For error-indiations see fread() and fwrite().For ASCII-output use the funtionsSave_<var_type>(<dims>, <var>, stream);Load_<var_type>(<dims>, <var>, stream);Vetors and Matries are stored row by row; b-Types are stored as sequenes of zeros and ones.Entries are separated by blanks. On error the funtions return -1; otherwise zero;There are funtions mainly for debugging purposes that print out Vetors and Matries to stdoutin the same manner as the Save-family does to �les. These areShow_<var_type>(<dims>, <var>);4.3.6 Vetor and Matrix OperationsSalar Multipliation of two vetors of length n.BaseType Skalar(int n, Vetor v1, Vetor v2)BaseType bSkalar(int n, Vetor v1, bVetor v2)int bbSkalar(int n, bVetor v1, bVetor v2)Observe that the purely binary operation returns int-type.Matrix-Vetor Multipliation.Vetor Mult(int z, int s, Matrix matrix, Vetor vetor, Vetor dest)Vetor bMult(int z, int s, Matrix matrix, bVetor vetor, Vetor dest)dest = matrix * vetor, where �matrix� has z rows and s olumns, �vetor� has length s, and�dest� has length z. The funtions return �dest�. Observe that the purely binary operations returnint-type, thus a vetor to integers has to be supplied as 'dest' .Maximum, Minimum, and Sum over Elements.BaseType Sum(int, Vetor);int bSum(int, bVetor);BaseType Max_Elem(int, Vetor);BaseType Min_Elem(int, Vetor);

34 CHAPTER 4. LIBRARIESNorms and Saling The following ompute Vetor Norms. (Indued) Matrix norms are notimplemented at the moment, but matries an be supplied to the funtions below as well.BaseType Vetor_Norm_1(int n, Vetor v);BaseType Vetor_Norm_2(int n, Vetor v);BaseType Vetor_Norm_sup(int n, Vetor v);void Norm_Vetor_1(int, Vetor v, Vetor out);void Norm_Vetor_2(int, Vetor v, Vetor out);void Norm_Vetor_sup(int, Vetor v, Vetor out);The �Vetor_Norm_� funtions ompute the 1, 2, and ∞- (or max- or sup-)norm of a vetor,respetively (ie, the sum of absolute values, square-root of squares, or the largest absolute element).The �Norm_Vetor_� funtions �rst ompute the norms and then sale the vetors to a norm of1. They return the result in �out� whih an be the same as �v�.The subsequent funtions sale vetors and matries or apply more general funtions to eahelementVetor Sale_Vetor(int n, Vetor v, BaseType offs, BaseType sale, Vetor out);Vetor Vetor_Apply(int n, Vetor v, BaseType (*fun)(BaseType), Vetor out);Vetor Vetor_Apply_Arg(int n, Vetor v,BaseType (*fun)(BaseType, void *), void *args, Vetor out));Matrix Sale_Matrix(int z, int s, Matrix m, BaseType offs, BaseType sale, Matrix out);Matrix Matrix_Apply(int z, int s, Matrix m, BaseType (*fun)(BaseType), Matrix out);Matrix Matrix_Apply_Arg(int z, int z, Matrix m,BaseType (*fun)(BaseType, void *), void *args, Matrix out);Sale_Vetor and Sale_Matrix apply an a�ne transformation to the elements of the vetor �v�or matrix �m�. That is, they multiply all values by �sale� and add an o�set �o�s�.Vetor_Apply and Matrix_Apply apply a user de�ned funtion �fun� to all elements in the array.The user-de�ned funtion �fun� takes a single �oat as input and returns a �oating point value;the previously de�ned non-linearities an, e.g., be used. The funtion is, e.g., useful to omputethe outputs of graded response neurons given their potentials and rate-funtion.Vetor_Apply_Arg and Matrix_Apply_Arg apply a user de�ned funtion �fun� with more thana single argument to all elements in the supplied array. �fun� takes a void pointer to a vetor (orstrut) of arguments and must return a single �oating point value.Results of the above funtions are return in �out� whih an be the same as the input array.Setting / Changing whole Vetors and Matriesvoid Set_Fun_Vetor(int n, Vetor v,BaseType (*fun)(BaseType),int shift, BaseType height, BaseType sale)

4.3. MATRIX AND VECTOR OPERATIONS 35This funtion hanges the vetor �v� aording to v[i]+ = height ∗ func((i− shift)/scale), where�fun� is a salar funtion. Note that the funtion is additive. It an be used to genrate shiftedversions of vetors with ertain pro�les as hey appear as input stimuli in some neural networks.void Make_Fun_Band_Matrix(int n, Matrix J,BaseType (*fun)(BaseType),BaseType height, BaseType sale)This generates band-matries with (row-)pro�les given by a funtion �fun�. The funtion is ad-ditive. �height� and �sale� set the amplitude and width of the pro�le (e.g., if fun is a Gaussian,sale would be the standard deviation)void Make_Fun_Band_Matrix_Cyli(int n, Matrix J,BaseType (*fun)(BaseType),BaseType height, BaseType sale)As the previous one this funtion generates band-matries with (row-)pro�les given by a funtion�fun�, but wraps ylially. The funtion is additive.void Dilute_Matrix(int z, int s, Matrix m, BaseType p)This funtion randomly sets entries in the matrix �m� to zero with probability �p�. A Vetor anbe diluted by setting one of the size arguments to 1 and the other to the true lebgth of the Vetor.4.3.7 �Neural� Operations for Vetors and Matries�Sigmoid� output funtions.Vetor Fv(int n, Vetor vetor, BaseType (*fun)(),BaseType fator, BaseType threshold, BaseType width,Vetor out)Apply the funtion fun() to all �n� elements of �vetor�. fun() an be one of the salar funtionsde�ned earlier in this setion, or a user-de�ned one. Result are stored in the vetor �out� (notneessarily di�erent from �vetor�). �fator� and �width� may be used to sale the variable-valuesto the nonlinear range of fun(); �threshold� sets an o�set-value:out[i℄ = fator*fun((vetor[i℄-threshold)/width);The funtion returns �out�. If out equals NULL (or 0) on entry, an output array is alloatedinternally and returned by the funtion. The user has to free() the respetive spae, if it is nolonger needed.

36 CHAPTER 4. LIBRARIES�Poisson� ProessesbVetor ProbFire(int n, Vetor v, bVetor out)Computes a n-dimensional binary random-vetor from v, suh that prob[o[i] = 1] = v[i] and
prob[0[i] = 0] = 1 − v[i]. It is not heked whether v[i℄ falls into the range [0,1℄. The funtionreturns �out�. If out equals NULL (or 0) on entry, an output array is alloated internally andreturned by the funtion. The user has to free() the respetive spae, if it is no longer needed.Threshold Neurons.bVetor Fire(int n, Vetor vetor, BaseType theta, bVetor out)For all n elements of �vetor� ompare vector[i] with a threshold �theta�: set out[i] to 1 if it is largerand to 0 otherwise. The funtion returns �out�. If out equals NULL (or 0) on entry, an outputarray is alloated internally and returned by the funtion. The user has to free() the respetivespae, if it is no longer needed.Fire-and-Reset Neurons.bVetor Fire_Reset(int n, Veto vetor, BaseType theta,BaseType reset, bVetor out)Same as Fire() but if out[i] is set to 1 then v[i] is reset to the value �reset�. This funtion may beused to implement the �integrate and �re neuron model� (f, example program inf.). If out equalsNULL (or 0) on entry, an output array is alloated internally and returned by the funtion. Theuser has to free() the respetive spae, if it is no longer needed.4.4 StimuliFelix provides a number of �lassial� stimulus funtions like steps, ramps, retangular, triangle-,and dira-funtions in the temporal domain as well as plane waves, diss, bars and Gabor pathesin the spatial domain. Many spatio-temporal stimuli an be ombined from these options.An example program "stimuli." should be ontained in the ode-diretory of this user guide.4.4.1 Temporal Stimulus FuntionsThese funtion generate tims funtions of a number fo ommon forms.float TSine(float t, float T, float t0);float TRet(float t, float T, float t0);float TTriangle(float t, float T, float t0);

4.4. STIMULI 37float TSkewRet(float t, float T, float t0, float duty);float TSkewTriangle(float t, float T, float t0, float duty);float TSkewSine(float t, float T, float t0, float duty);float TPulse(float t, float t0); // 1 for 1 time-binfloat TDiraPulse(float t, float t0); // mass 1 for 1 binfloat TStep(float t, float t0);float TRamp(float t, float t0, float slope);float TInterval(float t, float t0, float t1);float TGaussian(float t, float t0, float sale);Argument t in these funtions is the simulation time (usually SIM_TIME), T are period durations,
t0, t1 are o�sets, temporal shifts or times at with events happen. For instane, in TTriangle, t0 isan o�set, whereas in TInterval t1 is the time the stimulus swithes on, and t2 the time it switheso� again.Most of these funtions are saled to a range [0,1℄ (inluding TSine for onsisteny).The skew funtions use di�erent ON/OFF times for the retangular funtion and rise/fall-timesfor the triangle and sine, respetively. "duty" is a number between 0 and 1 that determines theON/OFF fration.TDiraPulse sales the return value by the inverse internal simulation time step (step_size) inorder to obtain Dira-pulses normalised to a mass of 1. TPulse returns a pulse of amplitude 1.TRamp is the semi-linear funtion whih is zero until t0 and inreases with rate slope afterwards.TGaussian is a temporal gaussian with maximum at t0. It an be used to simulate a smoothlyrising and then deaying stimulus. The duration of the stimulus an be influene by the fatormultipliative scale.4.4.2 Spatial Stimulus FuntionsThe following funtions return ommon two-dimensional stimuli like bars and gratings. They areadditive in order to allow for ombinations. Therefore the user has to lear arrays expliitly asneessary.In the following routines m is a matrix for the 2D-stimulus, w and h are its width and height,respetively. x0 and y0 are entre loations of stimuli. Beause the funtions are additive, om-plex stimuli an be onstruted by entering several sub-stimuli at di�erent loations. Argument
amplitude is the amplitude of a omponent. It is possible to insert the temporal stimuli of theprevious setion here in order to obtain spatio-temporal stimuli.SWholeField(Matrix m, int w, int h, float amplitude);SRet(Matrix m, int w, int h, float x0, float y0,float w0, float h0, float phi, float amplitude);

38 CHAPTER 4. LIBRARIESSProfile(Matrix m, int w, int h, float x0, float y0,float w0, float h0, float phi, float amplitude,float sale, float (*fun)(float));SDis(Matrix m, int w, int h, float x0, float y0,float d, float amplitude);SCirularFuntion(Matrix m, int w, int h, float x0, float y0,float amplitude, float sale, float (*fun)(float));SPlaneWave(Matrix m, int w, int h, float amplitude,float k0, float phik, // wave vetor, amplitude and anglefloat psi); // phaseSGabor(Matrix m, int w, int h, float x0, float y0, float amplitude,float sig0, float sig1, // prinipal and seond sigmafloat k0, float phik, // wave vetor, amplitude and anglefloat phi, float psi); // angle(k,sig0) and temporal phaseSCenterSurroundGrating(Matrix m, int w, int h, float x0, float y0,float r0, float a0, float k0, float phi0, float psi0,float r1, float a1, float k1, float phi1, float psi1);SWholeField adds a homogeneous o�set to the whole �eld.SRet adds a retangle at orientation phi, entre loation x0, y0, width w0 and height h0. (Thequality of the retangle is not good. Use the next funtion for stimuli with less disretisationartefats.)SProfile as SRet adds a retangle to the stimulus array but with a ertain pro�le along the y-axis(if phi=0) spei�ed by the funtion func. scale sales the argument of that funtion, that is, itsets its length-sale. Note that the funtion takes a �oat-argument and returns �oat. If standardfuntions like sin, os, et from math.h are desired they have to be wrapped, beause they takedouble-arguments (More onretely: de�ne a funtion float myfun(float x){...} that justalls the funtion wanted and provide the new funtion �myfun� as an argument to SProfile).SDis adds a dis of diameter d. (The quality of the dis is bad, espeially for small diss. Thenext funtion might be useful to get more appropriate results.)SCirularFuntion adds a irular stimulus with radial pro�le func. scale sales the argumentof the pro�le funtion multipliatively.SPlaneWave adds a plane wave with wave number k0 and phase shift psi. The angle phik de�nesthe diretion of the wave.SGabor adds a Gabor-path. The meaning of the arguments are given in the de�nition above.(The angle phi is the angle between the wave-vetor and the �rst priniple axis of the envelopegaussian. If the gaussian is irular symmetri this angle is arbitrary.)SCenterSurroundGrating is a stimulus onsisting of a sine-grating with parameters
a0, k0, phi0, psi0 in an inner irle of size r0, and a seond grating with parameters a1, k1, phi1, psi1

4.4. STIMULI 39in the annulus from r0 to r1. a0, a1 are the amplitudes, k0, k1 the wave numbers, phi0, phi1 thewave diretions, and psi0, psi1 the phases of the gratings.Note 1: Most of these funtions are not very quik and ould be optimised. If only stati stimuliare needed, it is probably a good hoie to ompute them only one in main_init or init.4.4.3 Dynami StimuliIf moving graitings or gabor pathes at a �xed loation but with moving sinusoidal modulation areneeded, it usually su�es to reompute SPlaneWave or SGabor per simulation step with sinusoidallymodulated phases psi. In SCenterSurroundGrating, both the inner and outer grating an be mademoving this way. The example program "stimuli." ontained in the ode-diretory of this userguide shows some examples.There are also some maros and funtions that allow to move stimulus entres dynamially invarious ways. These funtions assume that a entre has a loation and veloity given by 4 �oatingpoint numbers cx, cy, vx, vy. The following maros and funtions an be used to update thesevariables whih in turn an be used as loation variables (x0, y0) in argument lists of the stimulusonstrution funtions in the previous subsetion:advane_entre(x,y,vx,vy)jitter_entre_loation(x,y,s)jitter_entre_veloity(vx,vy,s)entre_is_in_irle(x, y, x0, y0, r)entre_is_in_ret(x,y,l,r,b,t)void jitter_entre_diretion(float *vx, float *vy, float s);void boune_entre_veloity(float *vx, float *vy, float nx, float ny);The �rst 5 funtions are atually maros (de�ned in stimulus.h); the last two are true funtions(de�ned in stimulus.).advane_entre updates the loation of a entre given its veloity and the urrent step_sizejitter_entre_loation, jitter_entre_veloity, and jitter_entre_diretion add gaus-sian white noise of standard deviation s to the loation or veloity variables, wherejitter_entre_diretion renormalises the veloity afterwards (the normalisation algorithm issub-optimal; small numeri errors an aumulate).entre_is_in_irle and entre_is_in_ret are maros that return 1 if a entre is inside agiven irle at loation x0, y0 of radius r or a retangle bounded by l, r, b, t (left, right, bottom,top) respetively; otherwise they return 0.boune_entre_veloity(float *vx, float *vy, float nx, float ny) re�ets the entreveloity given a surfae normal of (nx, ny). It is not heked whether the normal is truly nor-malised to 1.The example program �dynami_stimuli.� ontained in the ode-diretory of this user guide showsseveral examples, i.e., either a disk or oriented bar that 1) bounes bak and forth, 2) moves

40 CHAPTER 4. LIBRARIESthrough the input area along random pathways, 3) bounes through the input area re�eted atthe boundaries, 4) performs a random walk, or 5) performs a 2-dimensional Ornstein-Uhlenbekproess around the enter of the input area.4.5 Field Models, Spatial ConvolutionsField models are two-dimensional, topographially arranged neural networks, whih are typiallyonly onneted within ertain neighbourhoods, see Figure 1.2.Although Felix supports one-dimensional and two-dimensional �elds, only two-dimensional onesare desribed in this doument.4.5.1 Kernels or FiltersAs stated, ells in neural �elds are onneted only loally. Felix assumes retangular onnetivityregions, whih are alled Kernels, or Filters, or reeptive Fields. The preise name hosen dependson the ontext and on the sienti� ommunity (�kernels� appear in integro-di�erential equationsin Mathematis, ��lters� in image proessing algorithms in omputer siene, and �reeptive �elds�in neural networks � all three onepts are �very losely related� (to speak autiously)./* two-dimensional Kernels/Filters */typedef BaseType * Kernel;typedef BaseType * UniKernel;typedef bBaseType * bKernel;typedef bBaseType * UnibKernel;The di�erene between Kernels and UniKernels is that in some neural �elds all units have thesame ��lters� (think, e.g., of a layer of ells deteting orientation at a �xed orientation), whereasin others eah ell has its own �reeptive �eld� (e.g., in a full orientation tuning map). In the�rst ase one would story only a single opy of the kernel (UniKernel/UnibKernel), whereas in theseond ase a �eld of kernels is required (Kernel/bKernel)4.5.2 Correlation and Convolution FuntionsAgain somewhat depending on sienti� ommunity, operations envolving kernels in �eld equationsare written as �onvolutions� ∫
k(x − x′)f(x′)dx′ or �orrelations� ∫

k(x + x′)f(x′)dx′. The maindi�erene is just mirroring the respetive kernel (here shift-invariant UniKernels). Felix implementsboth options. In neural �eld appliations one would (probably) prefer orrelations beause theymeasure the similarity (orrelation) of the (input) f with the kernel loal at loation x.There are a pretty large number of orrelation and onvolution funtions in Felix, whih di�er inthe types of arguments, and how they deal with the boundaries of a �eld.

4.5. FIELD MODELS, SPATIAL CONVOLUTIONS 41They all take a input �eld �in� of size x×y and a kernel (Uni or Multi) of size kx×ky; they allreturn a �eld �out� of size x×y.If the loal operations are orrelations the base name of the funtion is �Correlate�, and it is�Convolute� for onvolutions.If the input �eld is of binary type (e.g., a �eld of 0/1 spikes) a �b� is added in front of the basename.If eah loal onvolution/orrelation uses the same UniKernel, �Uni� is appended after the basename. Otherwise, a �eld of kernels is expeted, suh that eah loal unit has its own �lter /reeptive �eld.If the onvolution / orrelation wraps around at the boundaries, ie., the �eld is atually a two-dimensional torus, �yli� is appended to the name of the funtion.Here is the full list of possibilities.Matrix Correlate_2d (Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Correlate_2d_yli (Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bCorrelate_2d (bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bCorrelate_2d_yli (bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Convolute_2d (Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Convolute_2d_yli (Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bConvolute_2d (bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bConvolute_2d_yli(bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Correlate_2d_Uni (Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Correlate_2d_Uni_yli (Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bCorrelate_2d_Uni (bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bCorrelate_2d_Uni_yli(bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Convolute_2d_Uni (Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix Convolute_2d_Uni_yli(Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)Matrix bConvolute_2d_Uni (bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)

42 CHAPTER 4. LIBRARIESMatrix bConvolute_2d_Uni_yli (bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out)All these funtions return �out�, whih must provide spae for the results when a funtion is alled.Note that the yli funtions are more time-onsuming than the non-yli ones, and that UniKer-nels need less memory.Later in this setion another family of funtions is introdued that extends the onvolu-tion/orrelation funtions to inlude lateral propagation delays, see setion 4.6.4.5.3 Orientation Tuning MapsThe following are a few funtions that initialise single UniKernels or arrays of them (Kernels).They an be used to implement orientation tuning maps, but are rudimentary.Set_Cir_Fun_Uni_Kernel(UniKernel kern, int kx, int ky,BaseType (*fun)(BaseType),BaseType height, BaseType width, BaseType offset)Given a one-dimensional pro�le funtion �fun� set a 2d-UniKernel �kern� to a irular symmetripro�le. Kernel-dimensions are kx and ky. �height, width, and o�set� set the amplitude and spatialsale, and an additive o�set of the kernel, respetively. The funtion is additive.void Gabor_Uni_Kernel (UniKernel kern, int dimx, int dimy,BaseType height, BaseType sigma1, BaseType sigma2,BaseType kw, BaseType phikw, BaseType phisigmakw,BaseType phi0)This funtion sets an UniKernel to have a Gabor-type reeptive �eld, i.e., a 2d-sinusoidal wavemodulated a by a spatial Gaussian funtion. �dimx� and �dimy� are the dimensions of the kernel.�height sets its amplitude. �sigma1� and �sigma2� are the standard deviations of the Gaussianalong the �rst and seond prinipal axes. �kw� is the wave-number. phikw is the orientation ofthe wave vetor and phisigmakw the angle between the diretion of the wave vetor and the �rstprinipal axes of the Gaussian (usually believed to be 0 in ortial simple ells, but need not).�phi0� is the spatial phase of the sinusoidal. The funtion is additive.void Set_Phi_Fun_Kernel (Kernel kern, int x, int y, int kx, int ky,BaseType (*fun)(BaseType),Matrix phi,BaseType height, BaseType width, BaseType offset)This funtion takes a matrix of orientations, �phi� and generates a two-dimensional �eld of sizex×y of two-dimensional kernels �kern� of size kx×ky. Eah kernel has an orientation-tuned pro�legiven by the salar funtion �fun� in a diretion orresponding with the phi-value at the respetiveloation in �phi�. (Thus, these pro�les an be plane waves, but an not in addition be Gaussianmodulated as for Gabor wavelets. There is urrently no dediated funtion to set �elds of Gaborwavelets at one.) �Height, width, and o�set� have the same meaning as in the previous funtions.The funtion is additive.

4.6. DELAYS 434.5.4 Layers and SpikeLayersIn order to make life easier in some appliations, two types of �elds have been de�ned withintrinsially stored sizes, Layers and SpikeLayers. These just rede�ne the more general struturesdesribed above, but use intrinsi variables xsize and ysize for their size.#define SPIKE_LAYER ARRAY_CHAR_TYPE // same as bMatrix#define LAYER ARRAY_FLOAT_TYPE // same as Matrix# define DEFAULTXSIZE 64# define DEFAULTYSIZE 64# define X_SIZE(_x) xsize = _x;# define Y_SIZE(_y) ysize = _y;extern int xsize, ysize;Layers rede�ne Matrix and SpikeLayers bMatrix. Similarly Fields rede�ne Kernels and UniFieldsUniKernels. Default dimensions are 64×64, whih an be hanged using the maros X_SIZEand Y_SIZE above (in the funtion main_init()). Thereby, expliit size arguments an be oftenavoided:Get_Layer() // returns a Matrix of xsize * ysizeGet_SpikeLayer() // returns a bMatrix of xsize * ysizeGet_Field(z,s) // returns a field of xsize*ysize of kernels of size z*sGet_UniField(z,s) // returns a single kernels of size z*sFree_Layer(l)Free_SpikeLayer(l)Free_Field(l)Free_UniField(l)Clear_Layer(l)Clear_SpikeLayer(l)Clear_Field(z,s,l)Clear_UniField(z,s,l)Fold_Spikes_Uni(inp, kern, kx, ky, out)same as: bCorrelate_2d_Uni(inp, kern, xsize, ysize, kx, ky, out)Fold_Spikes(in, kern, kx, ky, out)same as: bCorrelate_2d(in, kern, xsize, ysize, kx, ky, out)4.6 DelaysDelaylines are yli bu�ers that an store values of vetors and arrays of variables from previoussteps. The user does not need to mess with the intrinsi data-strutures of yli bu�ers. A number

44 CHAPTER 4. LIBRARIESof low-level aess routines are provided as well as routines ommonly enountered in dealing withdelays in pool- and �eld-models.4.6.1 Containers for Delay VariablesThe following are types of ontainer variables that an store di�erent Felix typesVetor_DLMatrix_DLbVetor_DL;bMatrix_DL;intVetor_DL;intMatrix_DL;Alloating Delay Lines Use one of the following to alloate a delayline of a partiular type.n, r, are the number of elements, rows, olumns, and l is the memory-length, ie, the maximumnumber of simulation steps that are stored.Get_Vetor_DL(_n, _l)Get_Matrix_DL(_r, _, _l)Get_bVetor_DL(_n, _l)Get_bMatrix_DL(_r, _, _l)Get_intVetor_DL(_n, _l)Get_intMatrix_DL(_r, _, _l)Freeing Delaylines. Delaylines should be freed if no longer used by alling one ofFree_DL(_d)Free_Vetor_DL(_d)Free_Matrix_DL(_d)Free_intVetor_DL(_d)Free_intMatrix_DL(_d)Free_bVetor_DL(_d)Free_bMatrix_DL(_d)Note: alling just free(dl); is not enough. You need to use the above maros. It an be justFree_DL(_d), however, to whih all the other maros expand.Resetting Delaylines. The following maros reset a delayline to a well-de�ned state; they donot lear the data bu�ers as suh.Clear_DL(_d)Clear_Vetor_DL(_d)

4.6. DELAYS 45Clear_Matrix_DL(_d)Clear_intVetor_DL(_d)Clear_intMatrix_DL(_d)Clear_bVetor_DL(_d)Clear_bMatrix_DL(_d)Clear_bitVetor_DL(_d)Clear_bitMatrix_DL(_d)Setting Delaylines. The initial values of a delayline an be de�ned by a funtion �fun� ofparameters �P�. This has to de�ne values for eah vetor or matrix element and delay in thedelayline. The alls below use the funtion to initialise a delayline.void Set_Vetor_DL(size_t n, size_t del, Delayline dl, float *P,BaseType (*fun)(size_t x, size_t d, float *P));void Set_Matrix_DL(size_t rows, size_t ols, size_t del, Delayline dl, float *P,BaseType (*fun)(size_t x, size_t y, size_t d, float *P));void Set_bVetor_DL(size_t n, size_t del, Delayline dl,float *P,bBaseType (*fun)(size_t x, size_t d, float *P));void Set_bMatrix_DL(size_t rows, size_t ols, size_t del, Delayline dl,float *P,bBaseType (*fun)(size_t x, size_t y, size_t d, float *P));void Set_intVetor_DL(size_t n, size_t del, Delayline dl,float *P,int (*fun)(size_t x, size_t d, float *P));void Set_intMatrix_DL(size_t rows, size_t ols, size_t del, Delayline dl,float *P,int (*fun)(size_t x, size_t y, size_t d, float *P));4.6.2 Aessing ContainersThe following maros selet delayed data-ontainers in a delayline �dl�. It might be neessary toast types in an appliationurrent(dl): returns a pointer to the ontainer for the urrent time-slielast(dl): returns a pointer to the ontainer for the previous time-slien_last(dl, n): returns a pointer to the ontainer for the time-slie from �n� slies ago (it is notheked whether n is in proper bounds, ie < memory length.oldest(dl): returns a pointer to the ontainer for the oldest time-slie (aording to the memorylength of the delay linenext(dl): returns a pointer to the ontainer for the next time-slieStep_DL(_d)The maro Step_DL advanes a delay line by one step (time-slie). It must be invoked after theupdating of delayline data in the top-level step()-routine. It is assumed that step() stores newly

46 CHAPTER 4. LIBRARIESomputed data in next(dl) (say, x(t+h) for disretised di�erential equations or x(t+1) for iterativemaps). The routine inrements the DL's urrent indexes and pointers; i.e reently omputed datain �next� beome �urrent�.4.6.3 Arbitrary Delays for PoolsCommuniation between two units in a network might take a ertain time. In that ase theonnetion is not only haraterised by a number (synapti strength), but in addition by a delayvalue. The subsequent two funtions take delayed �oat or binary data �in� and multiply them bya oupling matrix �J�, suh that eah individual onnetion has a delay as spei�ed by the matrix�delays� (in simulation steps). The results are stored in the Matrix �out�.void Mult_delayed_DL(int n,Matrix J, int *delays,Vetor_DL in, Vetor out);void bMult_delayed_DL(int n,Matrix J, int *delays,bVetor_DL in, Vetor out);Note: Delays are not heked for falling into range boundaries.4.6.4 Convolution Funtions with Distane-dependent DelaysIn two-dimensional �elds with loal onnetivities delays an be distane dependent aording tosome �axonal� propagation speed and possibly a �xed �synapti transmittion� delay, too. Thefollowing funtions generalise the onvolution/orrelation funtions from setion 4.5.2 to this ase.Naming onventions are the same as there, but _delayed is appended to the funtion names inthe ase of �nite lateral propagation. The input, of ourse, now must be a delay line of ativities.Arguments �d� and �v� in the funtions below are a �xed delay o�set (synapti delay) and the(axonal) propagation speed (in units / time step), respetively.Matrix Convolute_2d_Uni_delayed(Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Convolute_2d_Uni_yli_delayed(Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bConvolute_2d_Uni_delayed(bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bConvolute_2d_Uni_yli_delayed(bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Convolute_2d_delayed(Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Convolute_2d_yli_delayed(Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bConvolute_2d_delayed(bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);

4.7. RANDOM NUMBERS 47Matrix bConvolute_2d_yli_delayed(bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_Uni_delayed(Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_Uni_yli_delayed(Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_Uni_delayed(bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_Uni_yli_delayed(bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_delayed(Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_yli_delayed(Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_delayed(bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_yli_delayed(bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Note: It is not heked whether delays fall into proper bounds (must be smaller than the length ofthe delaylines). The possible axonal speed �v� and �xed additive delay �d� a thereby onstrained.Note further that theses funtions are less e�ient than their non-delayed ounterparts. Cyliboundaries ause an extra slow-down.4.7 Random NumbersFelix has an internal random number generatorBased on 4-state Mersenne twister ? x-hek gslThe Felix-intrinsi random number generator should be threadsave if OpenMP or MPI, or mixesthereof are used. However, beause the parallel Felix extensions are quite reent, I haven't hekedthat intensively. (The binomial random number generator is known not to be threadsafe for
n >= 25 and n ∗ p > 1.)Note also, that the initialisation in ase of MPI/OpenMP parallel ode is very simple. In order tohave eah thread generate a di�erent sequene of random numbers, all threads ontributing to atask are enumerated and the respetive thread-numbers are just added to the seed provided to therandomize() funtion. This an lead to orrelations in the numbers generated in di�erent threads.I have no experiene yet, how serious the e�et an be. Send reports if you run into trouble ausedby this overly simple proedure. (I'd then try using /dev/random whih, however, is not veryportable and has other disadvantageous).void randomize(int seed) initialises the Felix intrinsi random number generator with �seed�.long rand_long(void) returns pseudo-random long integers in the range from 0 to 232 − 1 =

48 CHAPTER 4. LIBRARIES
4294967295.float equal_noise(void) returns equally distributed random numbers in the range [0, 1.0[.unsigned bool_noise(float p) returns one with probability p and zero with probability 1−p.float gauss_noise(void) returns gaussian distributed random numbers with mean zero andstandard-deviation 1.float lorentz_noise(void) returns lorentz- (or auhy-)distributed random numbers withmean 0 and standard-deviation 1.float binomial_noise(float p, int n) returns binomially distributed random numbers
B(k; p, n) (as �oat values). [This generator is not threadsafe for n >= 25 and np > 1. It ismainly intended for implementations of synapti failure, where n seems to be seldomly above 15for ortial neuron types.℄Whereas, the previous funtions are all built on the same Felix-intrinsi random number generator,the follwing funtion (from Press et al) uses its own mehanism to generate random bits.unsigned int irbit(unsigned int * iseed) generates a sequene of random bits, i.e., zerosand ones with equal probability. Iseed is some seed value. The sequenes are not �very� random.4.8 Sparse Vetors and Matries4.8.1 Sparse Vetors, semi-sparse MatriesNOTE: Funtions in this setion might be subjet to later hanges as pratiality onsiderationswill indiateCode for �sparse� vetors and matries is urrently being developed. Those appear to be usefulin very large simulations where ells are only onneted with a fration of other ells. There issupport for sparse �oating point, binary (har), and integer vetors and matries. The de�nitionsfor the �oating point types are:typedef strut{ int n, // atual valid entriesnmax; // max entris befor realloationint *i; // indexesfloat *v; // values} sVetor_t;typedef sVetor_t *sVetor;typedef strut{ int m; // number of olumnssVetor *w; // array of olumn vetors

4.8. SPARSE VECTORS AND MATRICES 49} sMatrix_t;typedef sMatrix_t *sMatrix;Binary and integer types have an additional `b' or `i' in their names, sbVetor, siMatrix. Thesestrutures are atually �semi�-sparse only. sVetors are sparse, but sMatries are sparse only intheir rows; the array of olumns is omplete and not sparse. Eah suh sVetor ontains the sparserow-entries of that olumn. This re�ets the fat that eah neuron in a network projets to atleast some other neurons. Similarly, eah spike is distributed to at least some other ells.4.8.2 Alloating, Loading, and Saving Sparse ArraysThe following funtions orrspond with those for the standard Vetor/Matrix types. Not all ofthese funtions are fully implemented at the moment, in espeially, none of the FILE I/O funtionswould work. The latter just print an error message at run-time, when alled.sVetor Get_sVetor(int size)void Free_sVetor(sVetor v)void Clear_sVetor(sVetor v)void Empty_sVetor(sVetor v)void Show_sVetor(sVetor v)void Add_sVetor_Entry(sVetor, int i, float val)float sVetor_Elem(sVetor v, int i) // returns value v[i℄ or zerovoid Write_sVetor(sVetor v, FILE*f)void Read_sVetor(sVetor v, FILE*f)void Save_sVetor(sVetor v, FILE*f)void Load_sVetor(sVetor v, FILE*f)sMatrix Get_sMatrix(int olumns, int rows) // order mattersvoid Free_sMatrix(sMatrix w)void Clear_sMatrix(sMatrix w)void Empty_sMatrix(sMatrix w)void Show_sMatrix(sMatrix w)void Add_sMatrix_Entry(sMatrix w, int r, int , float val)float sMatrix_Elem(sMatrix w, int r, int)void Write_sMatrix(sMatrix w, FILE*f)void Read_sMatrix(sMatrix w, FILE*f)void Save_sMatrix(sMatrix w, FILE*f)void Load_sMatrix(sMatrix w, FILE*f)The same funtions exist for binary and integer data types with an additional `b' or `i' in the names.Most of the funtion names should be self-explanatory. The di�erene between Empty_sVetor()and Clear_sVetor() ist that the �rst funtion just sets the number of ative entries in thesVetor to zero, whereas the 2d funtion sets all ative synapse to 0. The same holds for thesMatrix-equivalents.

50 CHAPTER 4. LIBRARIESAdd_sVetor_Entry(sVetor v, int i, float f) adds an element with value �f� to an sVetorat positions i. Add_sMatrix_Entry(sMatrix m, int i, int j, float f) does the same forposition (i,j) of an sMatrix �m�. If an sVetor or sMatrix has to be inreased in size, this shouldhappen automatially. The �oating point funtions are additive � if the entry exists already, thenew value is added to the old; for integers and binary data the old value is overwritten.4.8.3 Sparse Matrix Vetor MultipliationsThe following are funtions that multiply a sparse sMatrix with various other strutures likeVetors, bVetors, sVetors, or integer arrays that just ontain indexes of units supposed to bemomentarily ative.Vetor sMult, (sMatrix w, Vetor v, Vetor out));Vetor ssMult, (sMatrix w, sVetor v, Vetor out));Vetor sbMult, (sMatrix w, bVetor v, Vetor out));Vetor siMult, (sMatrix w, int n, int *idx, Vetor out));Vetor sMult_t, (sMatrix w, Vetor in, Vetor out));Vetor sbMult_t, (sMatrix w, bVetor in, Vetor out));Vetor sMult_t_delayed(sMatrix w, siMatrix d, Vetor_DL in, Vetor out)Vetor sbMult_t_delayed(sMatrix w, siMatrix d, bVetor_DL in, Vetor out)The �xMult_t()�-funtions do transposed multipliation, i.e., multipliation from the left; indexesin a olumn of a matrix are then interpreted as indexes of units where the respetive ells reeiveinput from. The xMult-funtions in ontrast assume that the olumns ontain outgoing synapsesof a ell. It should (better) not be assume that any dimensions or arguments are heked. Theextra argument in the delayed funtions is a sparse matrix of integer valued delays of the samesize as the weight matrix. It indiates whih entries in the delay line �in� are relevant for a spei�synapse.
in 1 1

w

outFigure 4.1: Sheme of multipliation of a sparse matrix and a binary Vetor.Figure 4.1 depits sparse multipliation of a sparse matrix and a binary Vetor. An outer loopwould run over the input vetor. Spikes (1's) in the input array an be distributed in a feedforward

4.8. SPARSE VECTORS AND MATRICES 51way through the matrix, whih ontains all target indexes and weights. The weights are addedto the respetive entries in the target vetor �out�. This, however, an ross thread boundaries(indiated by dashed vertial lines), meaning that the same memory loations are potentiallyupdated by di�erent threads. This an not immediately be parallelised using OpenMP.
in 1 1

w

outFigure 4.2: Sheme of transposed multipliation of a sparse matrix and a binary Vetor.Transposed multipliation solves this problem as shown in Fig. 4.2. Here the olumns in a sparsematrix are interpreted as ontaining the indexes and weights of �inoming� synapses to unitsin the target vetor �out�. The outer loop then an run over the outputs, in whih ase eahOpenMP-proess would update a unique range of entries in the vetor �out�. Reading from thesame loation in di�erent threads is not an issue. Even if running on several threads the routinean be less e�ient as the previous one on a single thread. This is beause it annot make use ofsparseness in the input vetor as e�ient as the forward multipliation.
1 1

w

out

in

d

Figure 4.3: Sheme of transposed multipliation of a sparse matrix and a binary Vetor withpropagation delays.Figure 4.3 displays how weights and delays interat in delayed sparse multipliation funtions. Thesparse delay matrix must have the same dimensions and represent the same onnetions as the

52 CHAPTER 4. LIBRARIESweight matrix. Whereas �w� provides the weights of synapses, the delay matrix determines whihelement in the input delay line has to be seleted. OpenMP parallelisation is again easily possible(and implemented internally).4.8.4 Orientation Tuning Maps with Distane-dependent DelayssMatrix sCreate_Long_Range_Connetivities(int n, Vetor in, float sale, float p, float theta);This funtion takes a feature map �in� of size n and generates a sparse long range onnetionmatrix based on pi-yli di�erenes in the features. Synapses are not reated if the di�erenes infeatures are bigger than �theta� (in [0,1[where 1 means `idential'). �sale� is an amplitude fatorthat sets the global sale (applied AFTER �theta�). �p� is an additional probability for reatingsynapses. Values in the feature map must be in the range [0...PI℄. Autapses are not generated;Note: This funtion an be used for 1d and 2d-feature maps. 2d-arrays �in� are reinterpreted as one-dimensional arrays of total size �n�. In the 2d-ase, however, o-linearity or other �Gestaltpriniples�(beside parallelism) are not taken into aount.siMatrix Make_Delays_from_Weight_Matrix(sMatrix w, int xsize, float d0, float v0);This funtion takes a weight matrix generated by the previous funtion and omputes a delay ma-trix from it assuming a 1- or 2-dimensional network topology and distane dependent propagationspeeds. If xsize is 0 a one-dimensional topology is assumed, otherwise, �xsize� is the size of thex-dimension in a 2D neural �eld (the number of olumns, ie., total number of units, in the matrixmust be a multiple of xsize in that ase). d0 is a �xed delay and v0 the propagation delay. Unitsare in simulation time-steps and lateral units per simulation time respetively. The returned delayswill be integers suh taht they an be immediately used for indexing elements in a delay line.The weight and delay matries returned by the previous two funtions an be used in onjuntionwith the sMult_t_delayed() and sbMult_t_delayed() funtions.4.8.5 Displaying Sparse Arrays in the GUIThe graphial user interfae of Felix annot display sparse Vetors and Matrix. You need to onvertthem befor, using, e.g.,extern Vetor Make_Vetor_From_sVetor(sVetor v, int n, Vetor out);extern Matrix Make_Matrix_From_sMatrix(sMatrix m, int r, int , Matrix out);�out� must point to memory spae of appropriate spae when these funtions are alled. A pointerto �out� is returned. �out� an then be used as usual as an argument to views in the graphial userinterfae.

4.8. SPARSE VECTORS AND MATRICES 534.8.6 Example: Sparse Integrate-and-Fire NetworkHere is an example for a leaky-integrate-and-�re network with sparse onnetivity. Only tensynpases per neuron/olumn are alloated from srath. About a tenth per olumn are initialisedby Gaussian random numbers. Missing synapses are automatially alloated.Note that the system size is 900, beause for small sizes the GUI takes most of the omputationtime (as long as display windows are open), whih is unwanted for proper omparisons. In orderto keep display windows at reasonable sizes, we have restrited the maximal sizes in the viewdelarations./* Example-program: sinf. -- integrate and fire networkwith sparse onnetivity matrix */# inlude <felix.h># inlude <sparse.h># define N 900 /* number of neurons */# define tau 10. /* membrane time onstant */Vetor x; /* potentials */bVetor z; /* vetor of spikes */Vetor v; /* auxiliary variable */sMatrix spJ; /* sparse onnetivity matrix <<------------- */Matrix J; /* onnetions for display */SliderValue sI = 100; /* Common input to units */SliderValue sJ0 = 50; /* Coupling strength */SliderValue ssigma = 0; /* noise level */BEGIN_DISPLAYSLIDER("input", sI, 0, 200)SLIDER("oupling", sJ0, 0, 200)SLIDER("noise", ssigma, 0, 100)WINDOW("time ourses")IMAGE("x", AR, AC, x, VECTOR, 10, 10, 0.0, 1.0, 4)RASTER("x", NR, AC, x, VECTOR, MIN(100, N), 0, 0.0, 1.0, 1)GRAPH("x", NR, AC, x, VECTOR, MIN(100, N), 0, 0, 0, -.01, 1.01)RASTER("out", NR, AC, z, bVECTOR, MIN(100, N), 0, -.01, 1.01, 2)WINDOW("ouplings")IMAGE("J", AR, AC, J, CONSTANT MATRIX,MIN(100, N), MIN(100, N), -4./N, 4./N, 2)

54 CHAPTER 4. LIBRARIESEND_DISPLAYNO_OUTPUTint main_init(){ randomize(time(NULL));SET_STEPSIZE(.1)spJ = Get_sMatrix(N, 10); // only ten synapses per neuron// are alloated from srathJ = Get_Matrix(N, N);x = Get_Vetor(N);z = Get_bVetor(N);v = Get_Vetor(N);}int init(){ int i,j;Clear_bVetor(N,z);Clear_Vetor(N,v);for (i=0; i<N; i++)x[i℄ = equal_noise();Empty_sMatrix(spJ); // <<-----for (i=0; i<N; i++) // <<-----for (j=0; j<N/10; j++) // only N/10 trials per olumn // <<-----Add_sMatrix_Entry(spJ, i , (int)(N*equal_noise()) , // <<-----10.0 / N * (1. + .4*gauss_noise())); // <<-----Make_Matrix_From_sMatrix(spJ, N, N, J); // make a Matrix for the GUI}int step(){ int i;for (i=0;i<N;i++)leaky_integrate (tau, x[i℄,0.01*(sI + sJ0*v[i℄ + ssigma*gauss_noise()));Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetClear_Vetor(N, v); // need to lear expliitly // <<-----sbMult(spJ, z, v); // sparse Matrix times non-sparse bVetor // <<-----

4.9. DYNAMIC SYNAPSES 55}4.9 Dynami SynapsesIn most tehnial neural networks synapses are simply represented by numbers, their weights.This is enough for many algorithms in learning theory, pattern reognition, or assoiative learningand retrieval. Biologial synapses are more ompliated. They reveal dynami properties likefailitation and depression, they fail stohastially, and responses to stimuli do show transienttime-ourses usually haraterised by so-alled alpha-funtions. It is possible to implement suhproperties in a Felix program using just the onstruts desibed so far. This would require expliitode for the desired dynami properties. Beause they are of quite some importane in omputa-tional neurosiene dynami synapses are now supported by Felix in a more systemati manner.There are new lasses �SynapseVetors� and �SynapseMatries� that integrate typial properties ofbiologial synapses into the Felix ore funtionality.Note: During the ourse of developing these omponents, the implemented funtional propertiesand the underlying ode got progressively more omplex. Usage of SynapseMatries is now a littlemore ompliated as initially envisaged; the Felix-intrinsi ode base is also not the most elegant.Later hanges to this part of Felix are therefore not unlikely. For the time being, however, thesynapses lasses should be useable.4.9.1 Types of Synapti DynamisAs explained, biologial synapses are more than just numbers. They reveal a pretty rih variety ofdynamial penomena. The most typial phenomena are:Temporal response funtion: The response of a synapse to an inoming spike (e.g., in termsof transmitter release or post-synapti hanges in potentials) is a unimodal funtion of time,whih rises with a ertain time onstant and deays roughly exponentially after havingreahed a single maximum. In the present doument we all suh funtions alpha-funtions.They an be desribed by �spike-response funtions� whih arise as responses of low-pass �l-ters to short impulses (spikes) at the input. Depending on the number of subsequent low-pass�lters the �order� of the alpha-funtion an be di�erent. Common are 0, 1, and 2d orderalpha-funtions, orresponding with jumps, deaying exponentials, and smoothly rising andfalling post-synapti potentials (or urrents), respetively. More about this in subseion ??.Adaptation and Failitation: The total amplitude of synapti responses an adapt on sales oftypially several hundreds of milliseonds to the frequeny of inoming spike-trains. Depend-ing on whether the amplitude dereases or is suppressed one speaks of synapti failitationor adaptation.Failure: Synapti transmitter release is not a 100 perent reliable, but is a stohasti proess.Embedded in the presynapti membrane are disrete �vesiles� that ontain roughly thesame amount of neurotransmitter, the �release quantum�. If a spike arrives at a synapse aertain small number of vesiles release their transmitter and an thereby evoke hanges onthe post-synapti side. The number of released vesiles is well desribed by a binomially

56 CHAPTER 4. LIBRARIESdestributed random variable where the probability of release at a single release site and thenumber of suh sites an vary widely between synapse lasses.Models of these three phenomena have been desribed in the literature. Felix implements the mostommon of these models in a way that allows to ombine their properties in any mixed synapsetype.Figure 4.4 displays a sheme of the generi synapse model. At a synapse, spikes are �rst fed intoa failure stage aording to the npq-model, then into a Barak/Tsodyks-stage for failitation anddepression, �nally into a 0/1/2-order low-pass �lter that generates alpha-funtion-type ondutanehanges, g(t). Eah of the stages an be by-passed (not shown).
failure adapt/facil alpha

TM−model g(t)spike

δ()t

k

q?

npq−model 0/1/2−order
low−passFigure 4.4: Three stages ontributing to synapti dynamisArrival of delta-spikes leads to generation of a binomially distributed randmon number k in the �rststage. �Something� (see below) is fed into the BT-model in turn. That model has two variables

u and x and three parameters: baseline U , and adaptation and failitation time-onstants τAand τF . Output of the BT-model is low-pass �ltered to obtain alpha-funtion-type post-synpationdutane hanges.The main problem when integrating the individual models ours between the npq-model and theBT-model: What does the npq-model feed into the BT-model? δ(t), k*δ(t), kq*δ(t), kq/n*δ(t),...?How, in turn, impats the �release probability� u(t) of the BT-model on that of the npq-model, p?The following setions desribe the dynamis of the respetive stages in more detail. Afterwardstheir ombination is dealt with.4.9.2 npq-model: synapti failurenpq-model: A spike arriving at a synapse is assumed to release transmitter at a binomially dis-tributed number of release sites out of a number of n. Release probability for a single site is p,and release quantum is q. So, after passing this stage we know the number of released sites, ie. arandom variable, alled k, the amount of released transmitter kq, the average npq, the fration ofsites that released k/n, et.4.9.3 BT-model: failitation and depressionThe Barak/Tsodyks-model as given in [? ℄ for a single synapse reads
du

dt
=

U − u

τf

+ U(1 − u)s(t) (4.3)
dx

dt
=

1 − x

τr

− uxs(t) (4.4)

4.9. DYNAMIC SYNAPSES 57The s(t) are sequenes of arriving Dira-spikes. U ≈ .05, τf , τr are parameters. The amplitude ofthe evoked event is proportional to u ∗ x. Aording to Barak&Tsodyks
U is the �utilisation�, �analogous to release probability�
τf , τr are time-onstants for failitation and depression
u(t) is the running value of utilisation; it is failitated by every spike; deays to U with time-onstant τf

x(t) is the running fration of available neurotransmitter in proportion to u; reovers to baseline1 with time-onstant τrIn response to a delta-spike the model reveals a typial amplitude of level U (up to failitation anddepression). If failiation or depression are large, typially at high rates, the amplitude level ansigni�antly deviate from U . This is, of ourse, desired.Event-driven integration. As long as one is not interested in the preise time-ourse of u and
x it is possible to use event-based simulation for the adaptation/failitation-proess, meaning thatthe variables u and x need only be updated at times where spikes arrive at a partiular synapse,and not in every simulation time-step.Figure 4.5 displays the time-ourse of u and x between two spikes at times tn and tn+1. Note thatboth variables are on�ned to the interval [0, 1], whih makes sense beause u is �utilisation/releaseprobability� and x is the �available fration� of u. In fat, u is even always larger than U , thebaseline level of u that is asymptotially reahed if no spikes arrive for times ≫ τF .Aording to the �gure, the event-driven update at time t is (with t = tn+1 − tn):

u(tn+1−) = (u(tn+) − U) exp(−t/τF) + U (4.5)
u(tn+1+) = u(tn+1−) + ∆u = u(tn+1−) + U(1 − u(t?)) (4.6)
x(tn+1−) = 1 − (1 − x(tn+)) exp(−t/τF) (4.7)
x(tn+1+) = x(tn+1−) − ∆x = x(tn+1−) − x(t?)u(t?) (4.8)In (4.5) to (4.8), f(t±) = limǫ→0 f(t ± ǫ), ie, the values of the funtion f immediately before (t−)or after (t+) time t.Note the question marks in (4.6) and (4.8). At the time of spikes the variables u and x jumpdisontinuously, u(t−) 6= u(t+) and x(t−) 6= x(t+). It would appear natural to use the left-limitsright before the spike arrives, however, it seems that in some of Tsodyks' papers the right-limit isused at least for u(t?) in (4.8). This would mean that failiation is pratially instantaneous andadaptation slighly slower so that it depends on the already failiated new utilisation value. Thismight or not be so. From a modellers point of few it is a matter of hoie (multiplying the numberof possible model variants by 2).4.9.4 Alpha funtion ondutane hangesThere is not muh to say about this third synapti dynamis step. The output of the ombinednpq-BT-model is still a series of delta-funtions, but of variable mass (depending on how manysites release transmitter, how high the failitation level is, et).

58 CHAPTER 4. LIBRARIES
u

∆n

n+1

u
u

−

un+1
+

n

n+1

∆
n+1

−

+

n n+1t t

t n t n+1

x

x

x

0

1

0

1

U

x

Figure 4.5: Time-ourse of utilisation u(t) (release prob) and running (available) fration thereof,
x(t), between two spikes.In order to generate ondutane hanges, g(t), the output is fed into a 0/1/2-order low-pass �lter(depending on hoie). The resulting alpha-funtions an then be used in dynami equations forondutane based (4.9) or urrent based (4.10) membranes.

Ci

dVi

dt
= −gL · (Vi(t) − VL) +

∑
j

gij(t) ∗ (Vi − Vrev) ondutane-based (4.9)
Ci

dVi

dt
= −gL · (Vi(t) − VL) +

∑
j

gij(t) ∗ (V̄i − Vrev) urrent-based (4.10)
Vrev is the reversal potential of the lass of synapses and V̄i the mean membrane potential of neuron
i.Note: In (4.10) V̄i −Vrev is a onstant in ontrast to Vi −Vrev in (4.9) (see Brette et al., [? ℄). Thismeans (4.9) is more di�ult to integrate in an event driven manner than (4.10). For some asesthere are event-based shemes for (4.9) but (probably) no existing simulation tool implementsthem (depends on whether an expliit solution of the impulse response funtion is available or not;an be very triky in general, see Brette 2006 [? ℄, for a omparably �simple� ase).

4.9. DYNAMIC SYNAPSES 594.9.5 Coupling of npq- and BT-model
p in the npq-model is onsidered a release probability but u in the BT-model is, too. So, do theyatually have to do something with eah other? In the oupled npq-BT model we identify U , thebaseline value of u(t) in the BT-model, with p, the parameter for the release-probability in thenpq-model and to hoose for p in an atual spike event the running value of u.That means, if a spike arrives, �rst a binomial random number for the releasing sites is generatedaording to B(k; n, u(tn−)). A failitated synapse thus will have a higher running value of therelease probability u(tn−).In the BT-model, U is in turn replaed by p from the npq model, suh that asymptotially atlow �ring rates (ompared to the failitation/depression time-onstants) u approahes the value p(whih then is used e�etively in the npq-model). If spike-frequeny inreases, the e�etive releaseprobability (now u(t)) adapts or failitates, aordingly.

u(tn+1−) = (u(tn+) − p) exp(−t/τF) + p (4.11)
x(tn+1−) = 1 − (1 − x(tn+)) exp(−t/τF) (4.12)For the jumps at spike times we hoose

u(tn+1+) = u(tn+1−) + ∆u = u(tn+1−) + cF k/n(1 − u(t−)) (4.13)
x(tn+1+) = x(tn+1−) − ∆x = x(tn+1−) − cAx(t−)k/N (4.14)Observe that we have added fators 0 ≤ cA, cF ≤ 1 that an be used to ontrol the amount ofadaptation.failitation after eah spike. The original BT-model uses cA = cF = 1.Note further that E[k/n] = u(t−) in the present framework. For low �ring rates E[k/n] =

u(t−) → p = U , suh that the updates onverge to the BT-limits up to the stohastiity oftransmitter release. The updates with k/n replaed by E[k/n] = u(t−) an be seen as some kindof �mean-�eld� model where the atual stohastiity in the transmitter release is replaed by themeans of the released transmitter.In the Barak-Tsodyks model the response to a spike is ∼ xu. The output of the ombined modeldisussed here is a series of delta-funtions at the same times as the input spikes. Their amplitudesare x(t−)k/n, beause k/n is the relative number of releasing sites (note, E[k/n] = u(t−)) and
x(t−) is the fration of (remaining) utilisation (fresh = 1), that is if x is smaller than 1 lesstransmitter than maximally possible is released.The parameter q from the npq-part is ignored in the present model. It would be an additionalfator applied to the atual outputs. However, the model implementation already ontains synaptiweights, whih an inorporate the q values. This somewhat redues memory spae-requirementsand numerial omplexity. U the baseline level from the BT-model part is also ignored beause itis identi�ed with p.4.9.6 Type Seletion and Parameter StruturesFelix implements the three dynami mehanism desribed above in a ombinable man-ner in SynapseVetors and SynapseMatries. In order to spei�y the desired mix several

60 CHAPTER 4. LIBRARIESmaros have been de�ne that an be used in onstrutirs for synapse matries and ve-tors (see, e.g., 4.9.7). SYNAPSE_TYPE_ALPHA, SYNAPSE_TYPE_ADAPTATION, andSYNAPSE_TYPE_FAILURE selet individual dynami mehanisms, the other maros de�nedbelow provide onvenient shortuts.Synapse Types# define SYNAPSE_TYPE_ALPHA 0x01# define SYNAPSE_TYPE_ADAPTATION 0x02# define SYNAPSE_TYPE_FAILURE 0x4# define ALPHA_SYNAPSE SYNAPSE_TYPE_ALPHA# define ADAPTING_SYNAPSE (SYNAPSE_TYPE_ALPHA | SYNAPSE_TYPE_ADAPTATION)# define FAILING_ALPHA_SYNAPSE (SYNAPSE_TYPE_ALPHA | SYNAPSE_TYPE_FAILURE)# define FAILING_ADAPTING_SYNAPSE (SYNAPSE_TYPE_ALPHA |SYNAPSE_TYPE_ADAPTATION |SYNAPSE_TYPE_FAILURE)Synapse ParametersEah synapti dynami mehanism an be desribed by a number of parameters. Strutures havebeen de�ned to ollet these data.AlphaParameters alpha;AdaptParameters adapt;FailureParameters failure;The parameter strutures have to be alloated before use and should be freed afterwards. A givenstruture an be set by the orresponding Set_xxx_Parameters funtion, whereas a opy of it isreturn by one of the Dup_xxx_Parameters funtions. Show_xxx_Parameters prints the valuesof a parameter struture to sreen (mainly for debugging).AlphaParameters Get_Alpha_Parameters(float taur, float tauf)AdaptParameters Get_Adapt_Parameters(float U, float tauA, float tauF,float A, float F)FailureParameters Get_Failure_Parameters(int n, float p, float q)Free_Alpha_Parameters(r)Free_Adapt_Parameters(r)Free_Failure_Parameters(r)AlphaParameters Set_Alpha_Parameters(AlphaParameters r,float taur, float tauf)AdaptParameters Set_Adapt_Parameters(AdaptParameters s,float U, float tauA, float tauF,float A, float F)

4.9. DYNAMIC SYNAPSES 61FailureParameters Set_Failure_Parameters(FailureParameters s,int n, float p, float q)AlphaParameters Dup_Alpha_Parameters(AlphaParameters r)AdaptParameters Dup_Adapt_Parameters(AdaptParameters r)FailureParameters Dup_Failure_Parameters(FailureParameters r)void Show_Alpha_Parameters(AlphaParameters r)void Show_Adapt_Parameters(AdaptParameters r)void Show_Failure_Parameters(FailureParameters r)Loal and Shared ParametersParameters an be loal or global with respet to SynapseVetors or SynapseMatries. In the �rstase eah synpase may have individual values, whereas in the seond they are shared among all ofthem. The latter obviously requires less memory and also allows for slightly faster ode.Whether a SynapseVetor or SynapseMatrix uses shared parameters depend on how it is on-struted and annot be hanged afterwards. If parameters for any of the three synapti dynamimehanisms are supplied during reation of a vetor or matrix that parameter is global. Otherwisespei� parameter sets must be supplied when synapses are atually added to the matrix.4.9.7 Synapse Vetors and MatriesSynapseVetors and SynapseMatries have sparse entries in very muh the same way as sparseVetors and Matries desribed in setion 4.8. They just add dynami mehanisms intrinsially.That is, Vetors and entries in Matrix olums are sparse, but the number of matrix olumns is not.Again, this is motivated by the fat that eah neuron usually does have at least a few synapses or,onversely, eah spike is distributed to at least some neurons in a network.SynapseVetorsSynpaseVetors are sparse vetors. They have to be alloated before usage and should be freedafterwards.SynapseVetor Get_SynapseVetor(int n, int flags,AlphaParameters alpha,AdaptParameters adapt,FailureParameters failure)void Free_SynapseVetor(SynapseVetor)In Get_SynapseVetor, n, is the initial size that may hange as more synapses get added. �agsde�ne the type of the synapse, ie, whih dynami mehanisms it omprises. The type maros fromsubsetion 4.9.6 have to be used here. The remaining three arguments are parameter sets for eahof the three synpati dynami mehanisms. If any of these is non-zero, that respetive parameterset is shared among all synapses in the vetor. Parameter sets provided later if synapses are

62 CHAPTER 4. LIBRARIESatually added are ignored in this ase. Note also, that parameters (loal or shared) are ignored,if the respetive type is not spei�ed in the �ags-argument. See, setion 4.9.9 for an example.Synapses are added to a SynapseVetor v usingvoid Add_SynapseVetor_Entry(SynapseVetor v, int i, float weight, int delta,AlphaParameters alpha,AdaptParameters adapt,FailureParameters fail)Here, i, weight, and delta are the index, weight and time-delay (in multiples of the simulation time-step) of the addded synapse. Dupliate indexes overwrite previous entries. If a SynapseVetor hasloal parameters for any of the di�erent dynami mehanisms, these parameters must be providedas arguments at synapse reation. If parameter values are supplied but that parameter set hasbeen made shared during Vetor reation, the new values are ignored.A ouple of funtions exist to manage SynapseVetorsvoid Empty_SynapseVetor(SynapseVetor)void Show_SynapseVetor(SynapseVetor)void Show_SynapseVetor_Index(SynapseVetor sv).. more to ome ...Empty_SynapseVetor disards alloated strutures, exept global parameters. This an be used ifrepeated reinitialisation are desired in the top-level init()-routine, but a SynapseVetor is delaredin main_init (as it would usually be the ase).Show_SynapseVetor and Show_SynapseVetor_Index are basially for debugging.SynapseMatriesSynapseMatries are non-sparse arrays of SynapseVetors similar as for sparse Vetors and Matri-es. Their funtionality parallels that of SynapseVetors. Most of the funtions below work in thesame way as their vetor ounterparts. See previous subsetion for further explanations.SynapseMatrix Get_SynapseMatrix(int m, int n, int flags,AlphaParameters alpha,AdaptParameters adapt,FailureParameters failure)void Free_SynapseMatrix(SynapseMatrix)void Empty_SynapseMatrix(SynapseMatrix)void Add_SynapseMatrix_Entry(SynapseMatrix, int, int,float value, int delay,AlpahParameters,

4.9. DYNAMIC SYNAPSES 63AdaptParameters,FailureParameters)void Show_SynapseMatrix(SynapseMatrix)void Show_SynapseMatrix_Index(SynapseMatrix sm)Matrix Make_Matrix_From_SynapseMatrix(SynapseMatrix m,int r, int , Matrix out)Vetor Get_Weight_Sums(SynapseMatrix w, Vetor out)The funtion Make_Matrix_From_SynapseMatrix onverts the sparse weights of a SynapseMatrixinto a non-sparse standard Matrix. This is neessary to display a weight matrix in the graphialuser interfae.Get_Weight_Sums alulates a vetor out of the sums of the synapses in the rows of a SynapseMa-trix w.4.9.8 Synapti Matrix-Vetor Multipliation and UpdatesSparse MultipliationsThere are a number of multipliation funtions analogous to those for sparse matries:Vetor Synapse_Mult_t(SynapseMatrix w, Vetor in, Vetor out)Vetor Synapse_bMult_t(SynapseMatrix w, bVetor in, Vetor out)Vetor Synapse_Mult_t_delayed(SynapseMatrix w, Vetor_DL in, Vetor out)Vetor Synapse_bMult_t_delayed(SynapseMatrix w, bVetor_DL in, Vetor out)These funtions only use the synapti weights for a sparse matris vetor multipliation. Thedynami properties even if they are set are entirely ignored. They are mainly for testing. It willtypially be better to use sparse matries if dynami properties are not needed, beause the sparsematrix funtions should be more e�ient in regard of spae and time requirements.Dynami Synapse Matrix UpdatesThe following funtions do matrix-vetor multipliations on sparse matries and update the internalSynapseMatrix strutures per time-step.Vetor Synapse_bMult_Update_t_alpha(SynapseMatrix w, bVetor in, Vetor out)Vetor Synapse_bMult_Update_t_alpha_delayed(SynapseMatrix w, bVetor_DL in,Vetor out)Vetor Synapse_bMult_Update_t_failure(SynapseMatrix w, bVetor in, Vetor out)Vetor Synapse_bMult_Update_t_failure_delayed(SynapseMatrix w, bVetor_DL in,Vetor out)

64 CHAPTER 4. LIBRARIESVetor Synapse_bMult_Update_t_adaptation(SynapseMatrix w, bVetor in, Vetor out)Vetor Synapse_bMult_Update_t_adaptation_delayed(SynapseMatrix w, bVetor_DL in,Vetor out)Vetor Synapse_bMult_Update_t_adaptation(SynapseMatrix w, bVetor in, Vetor out)Vetor Synapse_bMult_Update_t_adaptation_delayed(SynapseMatrix w, bVetor_DL in,Vetor out)Vetor Synapse_bMult_Update_t(SynapseMatrix w, bVetor in, Vetor out)Vetor Synapse_bMult_Update_t_delayed(SynapseMatrix w, bVetor_DL in, Vetor out)
w is the SynapseMatrix under onsideration, in a binary input vetor or delay line (of spikes), and
out the output (of instantaneous synapti ondutanes).The time-sale used for the internal update is set by the SET_STEPSIZE maro, see ??. Theurrent simulation step or time is returned by SIM_STEP and SIM_TIME, respetively.The Synapse_bMult_Update_t_xxx_delayed - versions of the funtions use delays de�ned persynapse. The funtions without the _delayed su�x ignores delays even if they have been de�ned.Di�erent versions have been implemented for di�erent ombinations of alpha, adaptation, andfailure. This has signi�ant speed advantages. The Synapse_bMult_Update_t funtion and itsdelayed ounterpart are wrapper that ombine the more spei� funtions (see below).Synapse_bMult_Update_t_alpha only uses the alpha-part of a dynami synapse. If adaptationor failure parameters are de�ned at matrix reation, they are ompletely ignored.Synapse_bMult_Update_t_failure only uses the failure part and if given also the alpha-part of adynami synapse. If adaptation parameters are de�ned, they are ompletely ignored. Parameterq is ignored in the present implementation (should be joined into the synapse weight).Synapse_bMult_Update_t_adaptation only uses the adaptation/failitation part and if givenalso the alpha-part of a dynami synapse. If failure parameters are de�ned, they are ompletelyignored. This is the standard Tsodyks-Markram model as deribed above.Synapse_bMult_Update_t_Up ombines the npq-model with the Barak-Tsodyks model in themanner as desribed above. If an alpha-part is also given it is onsidered in this update-funtion,too. Parameters q and U are ignored in this model variant.The above funtions with the exeption of Synapse_bMult_Update_t_delayed andSynapse_bMult_Update_t don't use the Matrix-type �ags for deiding whih dynami meh-anisms are used, beause the kind of update is expliitely spei�ed. The user has to make surethat Matries are reated with types that �t the respetive update funtions. Tests are usuallynot done, whih an result in ore-dumps.The funtions Synapse_bMult_Update_t_delayed and Synapse_bMult_Update_t are wrappersthat all the other funtions based on the Matrix-type �ags. E.g., for Synapse_bMult_Update_t(and analogously for Synapse_bMult_Update_t_delayed):ase 0: // just multipliationreturn Synapse_bMult_t(w, in, out);

4.9. DYNAMIC SYNAPSES 65ase SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_alpha(w, in, out);ase SYNAPSE_TYPE_FAILURE:ase SYNAPSE_TYPE_FAILURE|SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_failure(w, in, out);ase SYNAPSE_TYPE_ADAPTATION:ase SYNAPSE_TYPE_ADAPTATION|SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_adaptation(w, in, out);ase SYNAPSE_TYPE_FAILURE|SYNAPSE_TYPE_ADAPTATION:ase SYNAPSE_TYPE_FAILURE|SYNAPSE_TYPE_ADAPTATION|SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_Up(w, in, out);Note: All of the above funtions not only do the multiply-aumulate to ompute ondutanehanges, but also update intrinsi data strutures. Therefore, for eah synapse matrix they haveto be alled exatly one in a single simulation time-step.Note 2: In priniple the olumns of a SynapseMatrix an have di�erent types, beause they areSynapseVetors. This would allow to have parameters shared olumnwise (ie neuron-wise). TheUpdate funtions should take di�erent olumn types into aount. However, this is a ompletelyuntested feature. (To use it one has to use low-level maros and data-strutures, see synapse./h.)4.9.9 Example: Integrate-and-Fire Network with Dynami SynapsesThe example below implements a network of leaky-integrate-and-�re neurons with dynamisynapses. The ode looks very similar to earlier examples. Therefore, some parts have beenleft out. The main di�erenes are indiated by arrows. Note that the synapti dynam-is as suh is hidden from the user in the Synapse_bMult_Update_t-funtion � the leaky-integration in the step-funtion is only for the membranes. The �ags SYNAPSE_TYPE_ALPHA,SYNAPSE_TYPE_ADAPTATION, SYNAPSE_TYPE_FAILURE in the initialisation of thesynapti matrix ontrol the type mix of the synapses.In this example, all synapses have idential parameters, beause these are supplied already glob-ally at initialisation of the matrix in the Get_SynapseMatrix-all in main_init(). This an-not be hanged later. If some parameters need to be di�erent for di�erent synapses the re-spetive parameter onstrutor needs to be replaed by 0 in the Matrix de�nition. Instead, ithas to be spei�ed when synapses are atually added to the matrix in the init()-routine usingAdd_SynapseMatrix_Entry(). Note that any parameters are ignored, if the orresponding type isnot seleted in the matrix de�nition. The types seleted in the SynapseMatrix alloation spei�ywhih steps in the sheme in �gure 4.4 are exeuted and whih not.Finally note, that the synapses in the example shown below have no delays; interations areinstantaneous, beause the respetive delay arguments when synapses are added to the matrixsynJ in the init-funtion are 0. There is an example syn_inf_del in the Felix expl-diretory, thatshows how the program syn_inf an be modi�ed to allow for delays.

66 CHAPTER 4. LIBRARIES/* Example-program: syn_inf.integrate and fire network with sparse onnetivitymatrix of dynami synapses with failure, adaptation,depression, and 0/1/2-order alpha-funtions*/# inlude <felix.h># define N 900 /* number of neurons */# define tau 10. /* membrane time onstant */Vetor x; /* potentials */bVetor z; /* vetor of spikes */Vetor v; /* auxiliary variable */SynapseMatrix synJ; /* synapti onnetivity matrix */ <------------Matrix J; /* onnetions for displaying */BaseType mean;SliderValue sI = 100; /* Common input to units */SliderValue sJ0 = 50; /* Coupling strength */SliderValue ssigma = 0; /* noise level */BEGIN_DISPLAY// same as sinf. ; not repeated hereEND_DISPLAYNO_OUTPUTint main_init(){ randomize(time(NULL));SET_STEPSIZE(.5)// starts empty with N olumns; all parameters global <-----------synJ = Get_SynapseMatrix(N, 0,SYNAPSE_TYPE_ALPHA| SYNAPSE_TYPE_ADAPTATION| SYNAPSE_TYPE_FAILURE,Get_Alpha_Parameters(3., 5.), // tau_r tau_fGet_Adapt_Parameters(.05, 100., 500.), // U tau_re tau_failGet_Failure_Parameters(5, .3, 1.)); // n p qJ = Get_Matrix(N, N);

4.9. DYNAMIC SYNAPSES 67x = Get_Vetor(N);v = Get_Vetor(N);z = Get_bVetor(N);}int init(){ int i,j;SynapseVetor sv;Clear_bVetor(N,z);Clear_Vetor(N,v);for (i=0; i<N; i++)x[i℄ = equal_noise();Empty_SynapseMatrix(synJ); <---------------------for (i=0; i<N; i++) <---------------------for (j=0; j<(int)(0.02*N); j++)Add_SynapseMatrix_Entry(synJ, i, (int)((N-1)*equal_noise()) ,1., 0, // weight 1, delay 00, 0, 0); // no loal parametersMake_Matrix_From_SynapseMatrix(synJ, N, N, J); <--- for display}int step(){ int i;for (i=0;i<N;i++) // urrent-based noisy integrate and fire neuronsleaky_integrate (tau, x[i℄,0.01*(sI + sJ0*v[i℄ + ssigma*gauss_noise()));Fire_Reset(N, x, 1.0, 0.0, z);Synapse_bMult_Update_t_Up(synJ, z, v); <---------------------mean = Sum(N, v)/N;}4.9.10 Pathy Connetivities in SynapseMatriesIt is often desired that a Neuron reeives input from ells in a ertain region, e.g., interneuronsoften sample ativity from ells in their surrounding only.

68 CHAPTER 4. LIBRARIESThe following few funtions help setting up suh kind of loal onnetivities. They take a Synap-seVetor sv whih is supposed to hold the synapses of a target neuron and reeives input fromsoure ells around loation (x0, y0) in a �eld of size n × m. Observe, that if (x0, y0) are theoordinates of the ell itself, inputs will be sampled from the immediate surrounding of the ell,but (x0, y0) an also be a loation distant from the target neuron. In any ase only synapses upto at most a distane dmax from (x0, y0) are reated.In these funtions weights an be distane dependent aording to a user-de�ned funtion (inludingthe Felix-intrinsi onst_fun). The di�erent versions of the funtions deal di�erently with delaysand the possibility to generate synapses will ertain probabilities only. There an be onstantdelays (the same for all synapses reated) or distane-dependent delays generated aording to auser-de�ned funtion. Dilution of a onneivity pathway an similarly be ontroled by a distane-dependent funtion.void Synapse_Add_Cirular_Path(SynapseVetor sv,float x0, float y0, int n, int m, float dmax,float ampl, float sale, float (*fun) (float),float delay)void Synapse_Add_Cirular_Path_Delayed(SynapseVetor sv,float x0, float y0, int n, int m, float dmax,float ampl, float sale, float (*fun) (float),float dfa, float (*delayfun)(float))void Synapse_Add_Diluted_Cirular_Path(SynapseVetor sv,float x0, float y0, int n, int m, float dmax,float ampl, float sale, float (*dilfun) (float),float ampl2, float sale2, float (*fun) (float),float delay)void Synapse_Add_Diluted_Cirular_Path_Delayed(SynapseVetor sv,float x0, float y0, int n, int m, float dmax,float ampl, float sale, float (*dilfun) (float),float ampl2, float sale2, float (*fun) (float),float dfa, float (*delayfun)(float)));Synapse_Add_Cirular_Path sets weights within a radius dmax aording to ampl∗func(scale∗
d); all delays are set to delay. func is a user-spei�ed funtion, e.g., gaussian or constfunc.Synapse_Add_Cirular_Path_Delayed in ontrast to the previous funtion, this one sets delaysaording to dfac ∗ delayfunc(d), where delayfunc is a user-supplied funtion (f., the axamplein the next subsetion).Synapse_Diluted_Add_Cirular_Path and Synapse_Add_Diluted_Cirular_Path_Delayedin addition to the previous two funtions allow to setup diluted onnetions. dilfunc is a distane-dependent funtion that spei�es the probability of a onnetion. The funtion an be saled by
ampl in order to set the total probability level; the funtion argument an be saled by scale inorder to streth or ompress the range of the target funtion into an appropriate range.Note: All these funtions assume global parameters for the synapti dynamis as set when therespetive SynapseVetor or SynapseMatrix is alloated.

4.10. SYNAPTIC PLASTICITY 69Note 2: If synapti dynamis is not required and onnetivity is not heavily diluted the UniKernels,Kernels, and the onvolution funtions desribed earlier might be more advantageous to implementthe intended funtionality. They should be faster and need less memory spae for non-dilutedonnetivities. They may still be faster for moderately diluted onnetivities (whih would beimplemented using Kernels by zero-entries) beause of better memory alignment and less overhead.4.9.11 Example for dense loal onnetionsBelow is a brief ode snippet showing how to set up loal lateral onnetions with distane-dependent delays and a deaying onnetion probability. The distane-dependent delays are setby a user-de�ned funtion delay_from_distane(). Note that this funtion ould also add somejitter to the delays as desired. The ode leaves out the main_init() and step() whih ould besimilar to the example in setion 4.9.9.float delay_from_distane(float d){ return(0.1 + 4.*d); // d0+v*d}...init(){ int i;SynapseVetor sv;Empty_SynapseMatrix(synJ);OMP_FOR (i=0; i<N; i++) // auto-parallelises{ SynapseVetor sv = SynapseMatrix_Column(synJ, i);Synapse_Add_Diluted_Cirular_Path_Delayed(sv, i%nn, i/nn, nn, nn, 16.,.5, .2, gaussian, // dilution aording to gaussian1., .2, onst_fun, // weights will all be equal to 1..5, delay_from_distane); // delays aording to user funtion}...}4.10 Synapti PlastiityWeights of biologial synapses an hange in dependene of pre and post-synapti ativity. Thisphenomenon is alled synapti plastiity and generally addumed to underly learning proessestaking plae on a ognitive level.

70 CHAPTER 4. LIBRARIESA lassi idea bout plastiity is the o-alled Hebbain learning rule, whih states that neurons that�re together should wire together, that is, strengthen their mutual synapti onnetions. Thismakes sense beause if these neurons often �re together they likely ode for features in the worldthat belong together like parts of an objet. Early theories of brain funtion suggest that objetrepresentations an build up this way.Many variants and extensions of Hebbian learning rules have been devised and studied. Forinstane, unlearning (or synapti long-term depression) when neurons do not �re together, ororrelation-based learning rules, whih onsider post and pre-synapti deviations from mean �ringrates for learning and not the spikes or rates themselfes. More reently temporal learning ruleshave beome important as the brain seems to make use of them widely. These rules named �spiketiming-dependent plastiity rules� (STDP) usually enhane a synapse when a post-synapti spikeappears after a pre-synapti one and derease it in the opposite ase. The properties of suhlearning rules are urrently an important researh topi in neurosiene.Feix supports the implementation of some synapti plastiity mehanisms. This however is afeature under development. Future hanges and extensions to the funtionality desribed in thissetion are lilkely..The synapti plastiity funtionality of Felix builds upon SynapseMatries as desribed in theprevious setion. Plastiity is an additional features you an give these matries.4.10.1 Plastiity RulesIf you want to use Felix plastiity funtions, you have to de�ne a plastiity rule that desribes howa weight is hanged given pre- and post-synapti spike times. Th C funtion prototype of suh anupdate rule isvoid some_synapse_training_funtion(int j, int i, float*w, float tpre, float tpost);As apparent from this prototype, at the moment a learning rule an depend only on the pre- andpost-synapti indexes and spike-times, and the urrent value of the synapse itself. This exludessome learning rules proposed in the literature as, e.g., reent rules explored in researh that onsidertriplets of spikes. Rules that depend on further ell spei� variables like post-synapti potentialsor average �ring rates and the like (e.g., the BCM or ABS rule) may be possible as these variablesan be omputed in a program and used in a loally de�ned update funtion.The example "learning_rules." in the ode diretory of this user guide provides some examples.However, these are experimental and have only used for testing. All Felix ode developement inthe are of SynapseMatries and learning rules should be onsidered in an experimental stage.The training funtion is alled in a simulation eah time a pre- or post-synapti spike arrives at asynapse. These funtion alls are hidden in the update funtions desribed in subsetion 4.10.2.You set a training funtion (usually in main_init) usingSet_Synapse_Training_Funtion(funtion_name);Here, �funtion_name� is your own training funtion or one of the Felix intrinsi funtions.

4.10. SYNAPTIC PLASTICITY 71The training funtion defaults to an empty funtion that does nothing and is alled�synapse_train_fun_empty�.Note that if you don't want a synapti projetion (ie a SynapseMatrix) to learn it is probablybetter to use the update funtions desribed earlier in the previous setion about short-termsynapti dynamis than the update funtions form subsetion 4.10.2 below with empty training-rules, beause otherwise you slow down your simulation by running through many unneessaryupdates. See subsetion 4.10.5 for benhmarks of these two groups of update-funtions. (If youdon't want sunapti dynamis either, it might even be better to use just sMatries or Matries.)The following ode snippet shows how a training funtion for spike timing dependent plastiity(STDP) ould look like. This is atually the training funtion used in the benhmarks reported insubsetion 4.10.5. Note that the parameters used are not supposed to be realisti. In partiularthe weight hanges have been set to quite small values in order not to disturb the �ring rates in tehbenhmark simulations muh. You will probably use your own funtion(s) with more appropriateparameters.void synapse_train_fun(int j, int i, float *weight, float posttime, float pretime){ float delta = posttime - pretime;float p=.001, m=.0003, taup=20., taum=50.;if (delta>0) // post after pre -> enhane*weight += p*exp(-delta/taup);else // pre after post -> depress (but don't make negative){ if ((*weight -= m*exp(delta/taum)) < 0.)*weight = 0.f;}return;}At the moment synapse_train_fun_empty and synapse_train_fun are the only Felix-intrinsitraining funtions (but see example �learning_rules.� in the ode diretory for more, experimentalode).4.10.2 Update FuntionsSimilar to the update funtions for SynapseMatries with dynamis synapses, there are a numberof funtions that update a SynapseMatrix and train the synapse simultaneously. These funtionsall the previously de�ned training funtion internally. There are versions for networks with andwthout delays. In the following funtion delarations out and tout are the postsynapti spikes andlast spike-times respetively, and in and tin are the input spikes and spike-times. In ase of delayedfuntions the inputs have to be delay-lines of spikes.void Synapse_Learn_t(SynapseMatrix w, bVetor in, Vetor tin,bVetor out, Vetor tout);void Synapse_Learn_t_delayed(SynapseMatrix w, bVetor_DL in,

72 CHAPTER 4. LIBRARIESbVetor out, Vetor tout);The above two funtions leave the internal data-strutures of w untouhed, but only use theweights.Vetor Synapse_bMult_Learn_t(SynapseMatrix w, bVetor in, Vetor tin,bVetor out, Vetor tout, Vetor vout);Vetor Synapse_bMult_Learn_t_delayed(SynapseMatrix w, bVetor_DL in,bVetor out, Vetor tout, Vetor vout);These two funtions also leave the internal data-strutures of w untouhed. In addition to trainingthe weights they also ompute the matrix-vetor multipliation given the weights and input spikes.Resulting ondutanes (or urrents depending on interpretration) are return in vout.Vetor Synapse_bMult_Update_Learn_t_adaptation(SynapseMatrix w, bVetor in,bVetor out, Vetor tout, Vetor vout);Vetor Synapse_bMult_Update_Learn_t_adaptation_delayed(SynapseMatrix w,bVetor_DL in, bVetor out, Vetor tout, Vetor vout);These two funtions do the same as the previous two, but in addition update internal data-strutures of w, e.g., the alpha- and adaptation-variables.Vetor Synapse_bMult_Update_Learn_t_Up(SynapseMatrix w, bVetor in,bVetor out, Vetor tout, Vetor vout);Vetor Synapse_bMult_Update_Learn_t_Up_delayed(SynapseMatrix w,bVetor_DL in, bVetor out, Vetor tout, Vetor vout);These two funtions do the matrix-vetor multipliation, train the synapses, and update the fullMarkram-Tsodyks equations with synapti failure.4.10.3 UnlearningClassial assoiative memories like the Hop�eld or Willshaw net store sets of binary patterns insynapti onnetivity matries for later retrieval from inomplete or noisy versions of the patterns.Depending on whether both, only one, or none of the pre- and post-synapti ativity in a pattern areative a di�erent inrement an be added to a synapse when a pattern is presented. The inrementsan be olleted in a rule-table, see Fig. 4.6. These networks learn before any simulations of thenetwork dynamis are done by presenting all pattern pairs sequentially and hanging synapsesaording to the rule-table. Furthermore, the networks are usually also time-disrete when retrievalis onsidered. It is therefore not entirely straight-forward to transfer loal rule-tables to time-ontinuous networks with ongoing learning.

4.10. SYNAPTIC PLASTICITY 73
r11r011

post
0 r00 r10

10R

pre

Figure 4.6: A loal learning rule R adds inrements Rpost,pre to a weight between synapses onlybased on the pre- and post-synapti ativity.The ode below shows an implementation of a Hebb-like learning rule. It uses the pre- and post-synapti �ring times together with a synhronisation inteval [−tsynch, tsynch] in order to determinesynhrony or ases where only the pre- or post-synapti neuron has �red. Aording, weights anpe inreased or dereased.It is obvious that similar rules an be onstruted that, e.g., take into aount an exponentialdeay in inrements in dependene of interspike intervals, thereby allowing for bigger inrementsif spikes are loser in time. Many other options are possible.void synapse_train_fun_hebb(int i, int j, float *weight, float posttime, float pretime){ float delta = posttime - pretime;float tsynh=10., r10=-.001, r01=-.001, r11=.003;if (delta>tsynh) // post_not_pre -> r10*weight += r10;else if (delta<-synh) // pre_not_post*weight += r01;else*weight += r11; // synh}One problem with the ode above is that the ase where both neurons do not �re annot properlybe deteted. There is not event, no �spike�, signaling this. Therefore, this ase is exluded in theode snippet.Often (but not always!) it is assumed that when a synapse does not reeive any spikes for a longtime it may �forget� the information it stores by some random perturbative proesses ating onthe weight. Suh proesses have been modeled by deaying synapses. The r00 term in a loallearning rule might therefore be assoiated with synapti �forgetting�. This is not th emost generalassumption, but a ommon one.Whereas the synapti training funtion is event based and only alled if there is a pre- or post-synapti spike at a synapse, one might guess that the no-pre-no-post ase annot be simulatedevent-based beause it is not assoiated with an event. This is inorret. Indeed, a synapses isupdated at every pre- or post-synapti event, so, if the next (pre- or post-synapti) spike arrives, itis ertain that the synapse has not been hanged or even used during the time sine the last update.We an therefore ollet all the hanges that would have happend aording to the r00-parts of a

74 CHAPTER 4. LIBRARIESloal learning rule and apply them just before the hanges due to the new event.For this purpose Felix provides the possibility to set up �forget_funtions� whih reeive the pre-and post-synapti neuron index, the urrent weight, and the absoulte time t of the last (pre- orpost-synapti) spike that led to any hanges of the synapse.Set_Synapse_Forget_Funtion(fun)void synapse_forget_fun(int post, int pre, float* w, float t)synapse_forget_fun_emptyThe funtion Set_Synapse_Forget_Funtion sets a forget-funtion. The default is 0 (equal tosynapse_forget_fun_empty). Below, an example funtion is de�ned that forgets the values ofsynapses that are not used on a long time-sale of 10000.0 (usually milliseonds).void synapse_forget_fun(int i, int j, float *w, float t){ *w *= exp((t-SIM_TIME)/10000.);}Note: Most of the update-funtions with training in subsetion 4.10.2 �rst all the forget-funtion,then do any adaptation, depression, failure, then determine the urrent weight of the synapse,and only after that train the synapse using the urrently de�ned training-funtion. This re�etsthe fat that the forgetting happens during the time before the urrently inoming spike, but theweight hange tyially needs more time than the transient post-synapti potential responses. (TheSynapse_bMult_Learn_t and its delayed version are slightly di�erent. Minor disrepanies toresults from the other update-funtions are possible.)Note 2: ... last spike time problem ouh in progress (in short: the atual binar spikevetors provided to an up-date funtion need to be from the urrent step, but the last spike timesfrom the previous one in order to get the forget-funtions ot work properly. So, ompute the spikes,update the synapse strutures, and then update the last spike time vetors at the end of your stepfuntion. See examples in learning_rules)Note 3: there are 1 or 2 additional problems with the learning/forgetting I am still trying to �gureout aeptable solutions for. Use them with are.4.10.4 ExampleThe following ode implements a network of roughly 4000 neurons in a square lattie of 63 times 63units. Connetivity is 2%, e.g., eah unit has up to about 80 synapses. This results in somethingless than 320k synapses. Synapses may or may not reveal delays, failure, depression/adaptation,alpha funtion dynamis, and synapti plastiity aording to th eSTDP-funtion in subsetion4.10.1. The step-routine ontains funtion alls for a number of possible network update variants.All synapti parameters are global for simpliity (but of ourse not their weightsm delays, andtarget indexes).# inlude <felix.h>

4.10. SYNAPTIC PLASTICITY 75# define CONNECTIVITY .02# define nn 63# define N (nn*nn) /* number of neurons 63*63=3969 */# define tau 5. /* membrane time onstant */# define MAX_DELAY 150 // in time steps; make sure this is big enough# define D 1 // display pixel sizeVetor x; /* potentials */Vetor tl; /* last spike times */bVetor_DL zsav; /* output spikes buffer */bVetor z; /* pointer to atual spikes */Vetor v; /* auxiliary variable */SynapseMatrix synJ; /* synapti onnetivity matrix */SliderValue sI = 100; /* Common input to units */SliderValue sJ0 = 50; /* Coupling strength */SliderValue ssigma = 0; /* noise level */BEGIN_DISPLAYSLIDER("input", sI, 0, 200)SLIDER("oupling", sJ0, 0, 200)SLIDER("noise", ssigma, 0, 100)WINDOW("signals") IMAGE("x", AR, AC, x, MATRIX, nn, nn, -.1, 1.1, D)IMAGE("z", AR, NC, &z, POINTER TO bMATRIX, nn, nn, -.1, 1.1, D)END_DISPLAYNO_OUTPUTNO_FMPI_CONNECTIONSint main_init(){ OMP_THREADS(1);randomize(time(NULL));SET_STEPSIZE(.5)synJ = Get_SynapseMatrix(N, 0,SYNAPSE_TYPE_ALPHA | SYNAPSE_TYPE_ADAPTATION | SYNAPSE_TYPE_FAILURE ,Get_Alpha_Parameters(3., 5.), // tau_r tau_fGet_Adapt_Parameters(.05, 100., 700., 1., 1.), // U tauA tauF A F

76 CHAPTER 4. LIBRARIESGet_Failure_Parameters(5, .1, 1.)); // n p qx = Get_Vetor(N);tl = Get_Vetor(N);v = Get_Vetor(N);Set_Synapse_Forget_Funtion(0); <------------ no "forgetting"Set_Synapse_Training_Funtion(synapse_train_fun); <-------------------zsav = Get_bVetor_DL(N, MAX_DELAY);z = urrent(zsav);}int init(){ int i;SynapseVetor sv;Clear_DL(zsav);z = urrent(zsav);Clear_Vetor(N,v); for (i=0; i<N; i++){ x[i℄ = equal_noise();tl[i℄ = -1000.f;}Empty_SynapseMatrix(synJ);OMP_FOR (i=0; i<N; i++) // olumns{ int j, k;SynapseVetor sv = SynapseMatrix_Column(synJ, i);for (j=0; j<(int)(CONNECTIVITY*N); j++){ k = (int)((N)*equal_noise()); // random soure unitAdd_SynapseVetor_Entry(sv, k,1./(CONNECTIVITY*N), // synapse weight(int)delay_from_indexes(i, k, nn, 0., 2.), // dist. dep. delays0, 0, 0); // no loal synapti parameters}}}int step(){ int i;Step_DL(zsav);

4.10. SYNAPTIC PLASTICITY 77z = urrent(zsav);OMP_FOR (i=0;i<N;i++)leaky_integrate (tau, x[i℄, 0.01*(sI + sJ0*v[i℄ + ssigma*gauss_noise()));Fire_Reset(N, x, 1.0, 0.0, z);// Synapse_bMult_t(synJ, z, v);// Synapse_Learn_t(synJ, z, tl, z, tl);// Synapse_bMult_Learn_t(synJ, z, tl, z, tl, v);// Synapse_bMult_t_delayed(synJ, zsav, v);// Synapse_Learn_t_delayed(synJ, zsav, z, tl);// Synapse_bMult_Learn_t_delayed(synJ, zsav, z, tl, v);// Synapse_bMult_Update_t_adaptation(synJ, z, v);// Synapse_bMult_Update_Learn_t_adaptation(synJ, z, z, tl, v);// Synapse_bMult_Update_t_adaptation_delayed(synJ, zsav, v);// Synapse_bMult_Update_Learn_t_adaptation_delayed(synJ, zsav, z, tl, v);// Synapse_bMult_Update_t_Up(synJ, z, v);// Synapse_bMult_Update_Learn_t_Up(synJ, z, z, tl, v);// Synapse_bMult_Update_t_Up_delayed(synJ, zsav, v);// Synapse_bMult_Update_Learn_t_Up_delayed(synJ, zsav, z, tl, v);for(i=0;i<N;i++) // update last spike times; not worth parallelising thisif (z[i℄)tl[i ℄ = SIM_TIME;}The above step-routine ontains a number of ommented out model variants. If none is seletedthe network onsists of just a 4000 unonneted leaky-integrate-and-�re neurons with gaussiannoise input. Usually only one of the update funtions will be ative, with the exeption ofSynapse_bMult_t and Synapse_Learn_t (as well as their delayed ounterparts). These fun-tions omplement eah other. One updates the internal data strutures for the synapti dynamis,the other one does the synapti plastiity. Note that Synapse_bMult_Learn_t (as its delayed ver-sion) integrate these two steps into a single more e�ient funtion. It might however oasionallybe useful to have the individual routines, too.The soure ode of this example should be in dou/ode/learn. relative to the Felix main diretory.4.10.5 Some BenhmarksNote: After doing the benhmarks reported here, some hanges in the ode have been done whihslow down speed of some funtions by up to about 20 %. You should also expet performane todepend to some degree on your partiular ompiler settings (ie, optimisation �ags).This subsetion presents some benhmarking results for the training and updating funtions de�nedabove. The program used for these benhmarks is the one from the previous subsetion with nn =63, i.e., a total number of neurons of nn∗nn = 3969. For an input of 1.01 and noise zero the �ringrate of the unoupled ells is a 48Hz. Benhmarks are done with very small noise amplitudes,oupling strengths, and learning rates suh that this baseline �ring rate is not perturbed muh but

78 CHAPTER 4. LIBRARIESthe respetive parts of the ode are exeuted as desired. We simulated 1s real-time and the resultsshown below do ontain the network setup phase and the atual simulation; or nn = 63 the setupphase however was short.Benhmarks were run on a Laptop with Intel Pentium M proessor 1.73GHz and a ahe size of2048 KB. The Felix version used was ompiled with a ustom-ompiled pre-release of g 4.2 andrun on one thread.Dynami parameters where the same for all synapses. If individual parameters are needed thiswould slow down the simulation. We have not run benhmarks for this situation.Memory used for nn = 63 and a onnetivity of 2% was 16MB most of whih for the synapseintrinsi variables. nn = 63 orresponds with about 4k neurons in total. Given a onnetivity of2% eah neuron had (up to) 80 synapses resulting in about 320k synapses in total. Eah synapseneeds about 32 bytes of memory for weights, delays, synapse indexes, last spike times, and thedynami variables. The storage required for the synapses is therefore about 320k * 32 = 10.5MB.(A 100*100 network with 2% onnetivity in ontrast has 2M synapses and needs about 80MB onmy Laptop. So, memory onsumption is signi�ant. Exeution speed sales roughly with numberof synapses.)So, these are the numbers (in seonds). The alternatives orrespond with those in the programode in subsetion 4.10.4.0.8 leaky integration only2.5 leaky integration + gaussian noise1.3 leaky integration + firing&resetthe following are all with leaky-integration, firing, and reset5.5 Synapse_bMult_t, no input noise13 Synapse_bMult_t + Synapse_Learn_t, no input noise15.5 Synapse_bMult_t + Synapse_Learn_t, gaussian input noise10.5 Synapse_bMult_Learn_t, no input noise11. Synapse_bMult_t_delayed, no input noise26. Synapse_bMult_t_delayed + Synapse_Learn_t_delayed, no input noise20. Synapse_bMult_t_delayed + Synapse_Learn_t_delayed, gaussian input noise22. Synapse_bMult_Learn_t_delayed, no input noiseThese values show that omputing the single unit dynamis (leaky-integration, noise, �ring&reset)is pretty muh negletable, and that the delayed funtions are typially half as fast as the non-delayed ones, whih is probably mainly due to unaligned memory aess. Observe the speed bene�twhen the integrated update-learn funtions are used. Gaussian input noise onsistently osts about1.5-3 seonds.Here are numbers for the other update funtions (all with leaky-integration, noise, �ring&reset)18.5 Synapse_bMult_Update_t_adaptation24.5 Synapse_bMult_Update_Learn_t_adaptation22.5 Synapse_bMult_Update_t_adaptation_delayed30. Synapse_bMult_Update_Learn_t_adaptation_delayed

4.11. ONLINE CORRELATIONS 7920.5 Synapse_bMult_Update_t_Up27. Synapse_bMult_Update_Learn_t_Up22.5 Synapse_bMult_Update_t_Up_delayed33.5 Synapse_bMult_Update_Learn_t_Up_delayedDelays ost about 4-7s as ompared to non-delayed versions. Learning osts about 6-8s as omparedto non-learning versions.We have done preliminary test on the omputer luster. Networks were run on single omputenodes on either one 1 or 4 CPUs. For Synapse_bMult_Update_Learn_t_Up_delayed run-timeswere nn=63 100 2001 thread: 40.7s 163s 61m8s4 threads: 25.8s 63s 20mFor some reason still to be �gured out simulation times are surprisingly bad on the luster asompared to the Laptop. Although the CPUs on the luster nodes have 2GHz yle frequeny(AMD Opterons) as ompared to the 1.8 of the Laptop (Intel Pentium M) run-times on a singleCPU are slower. The speedup on 4 CPUs is also rather low (< 50%) but gets better for largernetworks. The issue will be investigated further.Memory onsumption for the 200*200 network was 1.165GB on the luster. That is 28.3% of theavailable 4GB. Memory onsumption on the laptop were 16MB and 80MB for nn=63 and 100,respetively. units synpase/unit total synapses63*63 ~ 4.000 * 0.02 = 80 * 4.000 = 320.000100*100 = 10.000 * 0.02 = 200 * 4.000 = 2.000.000200*200 = 40.000 * 0.02 = 800 * 4.000 = 32.000.000Note that eah synapse stores 7 integer/�oating point numbers as intrinsi variables, synapseindexes, delays and weights resulting in 28Bytes if these numbers need 4 Bytes eah. Givaen anetwork fo 200*200 units this results in 28B*32MB = 896MB for the synapses alone. This stillassumes that all synapses shae their parameters, otherwise the loal parameters (between 3 and13 per synapse) have to be taken into aount, too.Non-dynami synapse implemented by sparse sMatries in ontrast need only values for weights,indexes, and (possibly) delays resulting in 8 or 12 Bytes per synapse only. This allows for biggernetworks. However, there are no training funtions for sparse sMatries yet.4.11 Online CorrelationsThe omputation of spike-triggered averages (STAs) and orrelations is a ommon data-analysismethod in neurosiene. Felix provides a ouple of funtions that ompute STAs, ross- andauto-orrelation funtions online.

80 CHAPTER 4. LIBRARIESThese funtions use delay-lines to store previous data. The length of the delay-lines must be at leastas big as the time window for the orrelation funtions to ompute. The funtions an omputeseveral STAs of orrelations funtions at one. They expet vetors of data in the delay-lines andarrays of indexes that de�ne whih signal traes to use. The spike triggered averages in additionexpet a vetor of spikes for the triggers and an index array that spei�es whih triggers to use.The funtions return arrays of STAs, CCFs or ACFs for all pairs of indexes.The spiked-triggered averaging funtions arefloat*online_STA(int n1, bVetor v, // vetor of triggersint m1, int*indx1, // index of triggers usedVetor_DL dl, // data to averageint m2, int*indx2, // index of datal hannels usedint tau, // max timestep used for STAint flag, // 0=one-sided; 1=two-sided STAVetor out) // results; m1*m2 array of STAsint*online_bSTA(int n1, bVetor v, // vetor of triggersint m1, int*indx1, // index of triggers usedbVetor_DL dl, // data to averageint m2, int*indx2, // index of datal hannels usedint tau, // max timestep used for STAint flag, // 0=one-sided; 1=two-sided STAint *out) // results; m1*m2 array of STAsThe di�erene between both funtions is that the �rst one averages �oating point data, whereasthe seond uses hars - this an be binary 0/1 data but non-binary data is possible as well as longas they �t into hars. The seond funtion uses integer arithmetis and therefore returns the STAsas integer arrays.The funtions ompute m1 ∗ m2 STAs at one. v is a vetor of length n1; e.g., a vetor of 0/1spikes; these provide the �triggers� for the spike-triggered averaging. indx1 is an index vetor oflength m1; it selets relevant traes in v; other traes are ignored. dl is a delay-line of the datato average. The lengths of the vetors stored in the delayline needs to be bigger than any indexappearing in indx1 and the number of stored vetors must be bigger than tau + 1 (2tau+1 if
flag=1???), see below. indx2 is an index vetor of length m2; it selets relevant traes in dl, othertraes are ignored. The funtion omputes the STAs for all seleted triggers and data traes atone over a range de�ned by tau (in simulation steps, ie the temporal resolution of the data array).If flag is non-zero, the average is omputed over 2 ∗ tau + 1 steps symmetri in time around theurrent step, otherwise over tau + 1 previous steps. out is an array for the results or NULL. IfNULL is provided an array of appropriate size is alloated. The address of out will be returnedby the funtionThere are also ross- and auto-orrelation funtions. They use only a single delay-line and oneindex only. CCFs (ACFs) between (of) all seleteed traes are omputed.float* online_CCF(Vetor_DL dl, // data to orrelateint m, int*indx, // index of datal hannels usedint tau, // max timestep used for CCFint flag, // 0=one-sided; 1=two-sided CCF

4.12. NUMERICS.C/H 81float*out) // results; m1*m2 array of CCFsint* online_CCH(bVetor_DL dl, // data to orrelateint m, int*indx, // index of datal hannels usedint tau, // max timestep used for CCHint flag, // 0=one-sided; 1=two-sided CCHint *out) // results; m1*m2 array of CCHsfloat* online_ACF(Vetor_DL dl, // data to orrelateint m, int*indx, // index of datal hannels usedint tau, // max timestep used for ACFint flag, // 0=one-sided; 1=two-sided ACFfloat *out) // results; m1*m2 array of ACFsint* online_ACH(bVetor_DL dl, // data to orrelateint m, int*indx, // index of datal hannels usedint tau, // max timestep used for ACFint flag, // 0=one-sided; 1=two-sided ACFint *out) // results; m1*m2 array of ACFsThe �le tstah. provides an example for the usage of some of the orrelation funtions.4.12 numeris./hThis module ontains a number of numerial support routines most of whih have been adaptedfrom example ode oming with the exellent book by Press et al. [? ℄. Funtions have beenadded as they beame desired in the ourse of the author's researh. In no way do they representa omprehensive olletion of numerial mathematis routines.For detailed desriptions of the funtions listed below have a look into Press et al.'s book.4.12.1 Numerial IntegrationRunke-Kutta of 4th order; and drivers with and without step-size ontrol. See Press et al [? ℄ fordetails.void rk4(float*y, float*dydx, int n, float x, float h, float*yout,void (*derivs)(float, float *, float *))int rkdumb(float*vstart, int nvar, float x1, float x2, int nstep,void (*derivs)(float,float *,float *));int rkq(float*y, float*dydx, int n, float*x, float htry,float eps, float*ysal, float*hdid, float*hnext,void (*derivs)(float,float *,float *));

82 CHAPTER 4. LIBRARIESint odeint(float*ystart, int nvar, float x1, float x2,float eps, float h1, float hmin, int*nok, int*nbad,void (*derivs)(float, float*, float*),int (*rkq)(float*,float*,int,float*,float,float,float*,float*,float*,void (*derivs)(float,float *,float *)));rk4 omputes a single Runge-Kutta step given a funtion derivs for the right hand-side of thediferential equation to integrate, derivs(t, y, dydt).rkdumb is a Runge-Kutta driver without step size ontrol that does nsteps integration steps fromx1 to x2 with initial values vstart.rkq is a Runge-Kutta driver with step size ontrol. It does one step trying step size htry atan auray of eps. ysal provides relative weights of the sales of the variables. On exit hdidontains the possibly adapted step-size taken, and hnext suggest the next step size. x and y areupdated to their new values.odeint integrates a di�erential equation from x1 to x2 given ystart as initial values. h1 is theinitial step size and hmin a minimum steps size. eps spei�es the auraies of integration. nokand nbad ontain the nuber of good and reomputed steps (with new step size) on exit.4.12.2 Solving Matrix Equationsfloat Solve_Ax_b(int n, Matrix A, Vetor b); /* b ontains x on exit */This funtion uses LR-deomposition, forward- and bak-substitution. The funtion is destrutive- a and b are overwritten. On exit b ontains the result of Ax=b. A must be non-singular.int gaussj(Matrix A, int n, Matrix B, int m)Solves Ax = b using Gauss-Jordan elimination with pivoting. A is an n n × n matrix, B an n × mmatrix onsisting of m right hand side vetors. On output, A is replaed by its inverse and B bythe solution vetors. m an be zero, in whih ase B remains unhanged, and A is inverted. Thisfuntion is not from Press et al. but rather from some original publiation.4.12.3 Eigenvaluesint Eigen_Values(int n, Matrix A, Vetor wr, Vetor wi)Computes the eigenvalues of a real n×n matrix. Returns the real and imaginar parts in the arrayswr and wi, respetively. Uses balaning and Hessenberg form.

4.12. NUMERICS.C/H 834.12.4 Nonlinear Least-Square Fittingvoid mrqmin(float*x, float*y, float*sig, int ndata,float *a, int ma, int*lista,int mfit, float*ovar, float*alpha,float*hisq, float*alamda,void (*funs)(float,float *,float *,float *,int))Levenberg-Marquart method attempting to redue the value hi-square of a �t between a set ofpoints x[0..ndata-1℄, y[0..ndata-1℄ with individual standard deviations sig[0..ndata-1℄ anda nonlinear funtion depending on oe�ients a[0..ma-1℄. The array list[0..ma-1℄ numbersthe parameters suh that the �rst mfit orrespond to values atually being adjusted. the remainingparameters are held �xed at their input values.The program returns urrent best �t values for the ma �t parameters, and hi-square. The [0..mfit-1℄[0..mfit-1℄ elements of the array ovar[0..ma-1℄[0..ma-1℄,alpha[0..ma-1℄[0..ma-1℄ are used as working spae during most iterations.Supply a routine funs(x, a, yfit, dyda, ma) that evaluates the �tting funtion yfit, andits derivatives dyda[0..ma-1℄ with respet to the �tting parameters a at x. On the �rst allprovide an initial guess for the parameters a, and set alamda<0 for initialization (whih then setsalamda=.001). If a step sueeds hisq beomes smaller and alamda dereases by a fator of 10. Ifa step fails alamda grows by a fator of 10. You must all this routine repeatedly until onvergeneis ahieved. Then make one �nal all with alamda=0., so that ovar returns the ovariane matrix,and alpha the urvature matrix (and some alloated memory is freed).void mrqdriver(float*x, float*y, float*sig, int ndata,float*a, int ma, float*ovar, float*alpha, float hisq,void (*funs)(float,float *,float *,float *,int))A driver for mrqmin() that assumes that all ma parameters a of funs are �tted. On init hisqdetermines the hi square value whih should be reahed. The funtion exits if either the atualhi value falls below this initial hisq or if MRQ_MAXITER=15 iterations are performed. On exit hisqontains the �nal hi square value.4.12.5 Root Findingfloat rtbis(float (*fun)(float), float x1, float x2, float xa)Root �nding by bisetioning, �nds a root of fun in the interval [x1,x2℄ with auray xa; onentry fun(x1)*fun(x2) must be lower than 0.NDiff(int n, float*y, void (*fun)(int n, float*y, float*dy), float*dfy)Compute partial derivatives dfy of funtion fun past y. y and f must be n-dimensional; dfy an
n × n matrix

84 CHAPTER 4. LIBRARIESint Solve_Fx(int n, float*y,void (*fun)(/* n, y, f(y) */) ,void (*derivs)(/* n, y, dfdy(y) */))/* if derivs==NULL: use numerial differentiation */Solve a set of n nonlinear equations fun(y) == 0, where y is n-dimensional, too. If available,derivs() should ompute the matrix of partial derivatives. If derivs si NULL, derivatives areomputed numerially. The funtion returns 0 on suess; -1, if the matrix of derivatives getssingular, i.e., �xed point iteration is no longer possible, and -2 if the maximum number of iterationsis reahed. In ase of suess, y returns the solution vetor.4.12.6 Optimizationvoid mnbrak(float*ax, float*bx, float*x,float*fa, float*fb, float*f,float (*fun)(float))Given a funtion fun, and given distint initial points ax and bx, this routine searhes in thedownhill diretion (de�ned by the funtion as evaluated at the initial points) and returns newpoints ax, bx, x, whih braket a minimum of the funtion. Also returned are the funtion valuesat the three points, fa, fb, and f.float brent(float ax, float bx, float x,float (*f)(float), float tol, float*xmin)Given a funtion f and given a braketing triplet of absissas ax, bx, and x (suh that bx isbetween ax and x, and f(bx) is less than both f(ax) and f(x)), this routine isolates the minimumto a frational preision of about tol using Brent's method. The absissa of the minimum isreturned as xmin, and the funtion value as brent, the returned funtion value.Here is an example of how to use mbrak and brent:float ax, bx, x, fa, fb, f, tol, xmin;ax = .2; bx = .1;mnbrak(&ax, &bx, &x, &fa, &fb, &f, sinf);printf("x^2 :: ax = %f bx = %f x = %f fa = %f fb = %f f = %f\n",ax, bx, x, fa, fb, f);tol=0.001;fb = brent(ax, bx, x, sinf, tol, &xmin);printf("x^2 :: xmin = %f fmin = %f tol = %f\n", xmin, fb, tol);If the derivative of the funtion to minimize an be omputed the following modi�ation of brentis advantageous:float dbrent(float ax, float bx, float x,float (*f)(float), float (*df)(float),float tol, float *xmin)

4.12. NUMERICS.C/H 85Given a funtion f and it's derivative funtion df, and given a braketing triplet of absissas thisroutine isolates the minimum to a frational preision of about tol using a modi�ation of Brent'smethod that uses derivatives. The absissa of the minimum is returned as xmin and the minimumvalue as dbret, the returned funtion value.The following funting searhes for a minimum of an n-dimensional funtion if derivatives are notavailable.void powell(float*p, float*xi, int n, float ftol,int *iter, float *fret, float (*fun)(float *))Minimization of a funtion fun of n variables. Input onsists of an initial starting point p, andinitial matrix xi[℄[℄ whose olumns ontain the initial set of diretions (usually the n unit vetors),and ftol, the frational tolerane in the funtion value suh that failure to derease by more thanthis amount on one iteration signals doneness. On output, p is set to the best point found, xi isthe then-urrent diretion set, fret is the returned funtion value at p, and iter is the numberof itertions taken. The routine linmin is used.Here is an example of hwo to use powellfloat xsquare2(float *x){ return x[0℄*x[0℄ + x[1℄*x[1℄;}...float p[2℄={1.,1.}, xi[4℄={ 0., 1., 1., 0.}, fret=0;int iter=0;powell(p, xi, 2, 0.001, &iter, &fret, xsquare2);printf("(x,y) = (%f, %f); f = %f; iter = %d\n", p[0℄, p[1℄, fret, iter);If derivatives of the funtion to minimize are available use the following funtion for the minimiza-tion.void frprmn(float*p, int n, float ftol, int*iter,float*fret, float (*fun)(float *),void (*dfun)(float *, float *))Given a starting point p, Flether-Reeves-Polak-Ribiere minimization on a funtion fun, using itsgradient as alulated by routine dfun is performed. The onvergene tolerane on the funtionvalue is input as ftol. Returned quantities are p (the loation of the minimum), iter (the numberof iterations that were performed), and fret (the minimum value of the funtion).

86 CHAPTER 4. LIBRARIES

Chapter 5File I/O
The very basis of the �le output funtionality of Felix have been desribed in the quik-starthapter 2. We now look a little deeper into the possibilities.Felix was used over the years mainly to either study autonomous dynamial systems and neuralnetworks, or systems where stimuli ould be omputed as part of the simulation (e.g., simplebars and graitings). So far, there has never been muh need for advaned �le-input features and,therefore, Felix provides only some support for output of data to �les. However, you an alwaysuse the standard C methods to load and store data from �les (FILE objets, raw and formattedI/O, et).Even the �le-output properties that are supported are not fully developed. Some failities, whihI imagined would be nie to have years ago, heve atually never been implemented, others neverompleted. What I desribe below are features that I use often or have at least used oasionally.5.1 Interfae for File OutputThe philosphy of the �le-output interfae is similar to that of the graphial display: One has tode�ne a top-level funtion �MakeOutFiles()�, whih ontains spei�ations of �OUTFILEs� (analogto �WINDOWs�), whih in turn an omprise a variable number of �SAVE_VARIABLEs� (analogto �views on data� or graphis objets in the GUI).The top-level MakeOutFiles()-routine an be either expliitely de�nd or onstruted by using themaros#define BEGIN_OUTPUT void MakeOutFiles(){#define END_OUTPUT }#define NO_OUTPUT void MakeOutFiles(){}Note that NO_OUTPUT expands into an empty funtion body. In that ase no output will bewritten to external �les through the interfae mehanisms (but possibly through raw I/O, seesetion 5.3).If output �les are delared, a button will appear in the graphial user interfae, see, Figure 2.4,that atually swithes the output on or o� during a simulation. The button label re�ets the87

88 CHAPTER 5. FILE I/Ourrent state. If the button is right-liked some further ontrol elements appear, whih show the�les de�ned, whih variables they ontain, and some elements that allow to hange several �lesetting interatively. Be aware that not all of the funtionality is fully implemented.Beside using the GUI-Save-button, it is also possible to swith �le I/O on or o� from the soureode by using the marosSAVE_ONSAVE_OFFAnother maro that often is useful in�uenes the format of ASCII output. The maroSET_ITEM_SEPARATOR(sep)takes a string and inserts it between subsequent entries in the output. The maro should be plaedright after the head of the the MakeOutFiles()-funtion. Default for the item separator is a singleblank (" "), but this an ause problems with very long linelengths in �les that have to be readfrom another program. Some tools for postproessing (e.g., gnuplot) also expet only a single entryper line (by default in some modes), in whih ase the item separator an be set to newline ("\n").5.1.1 Output FilesInside the funtion MakeOutFiles() one or more output �les have to be de�ned using the maroOUTFILE(name)where �name� is the name of the �le. If the �le does not exist and data is written, it will be reated,otherwise the old �le will be overwritten.The maro OUTFILE returns a �le handle of type int. It is not often neessary to save the handle,but some of the later funtions make use of it.Output �les are delared in serial order (as WINDOWs in the GUI). Instead of the �le handle onean also use the maro THISFILE, whih expands to the urrently ative �le (ie the most reentlydelared one).The �le handles are only neessary if an appliation needs to set �le-properties expliitly. ThemarosFILE_ACTIVE(fileno)FILE_INACTIVE(fileno)anywhere in the ode an, for instane, swith �le-output to a partiular �le on or o�. (This, how-ever is further ontroled by the global SAVE_ON/SAVE_OFF swith. As long as that �master�swith is o�, nothing will be saved.)Other �le properties are �le format (raw (default) or ASCII)) and the behaviour in ase the �le isswithed on and o� more than one in a simulation (data an be overwritten or appended). These�ags are set using

5.1. INTERFACE FOR FILE OUTPUT 89SET_SAVE_FILE_FLAG(fileno, flag, val)where �leno is the �le-handle (or �THISFILE�), �ag is �ASCII� for delaration of the output modeand "APPEND" for the reset mode. Possible values for �val� in both ases are ON and OFF, i.e.SET_SAVE_FILE_FLAG(THISFILE,ASCII,ON) would swith ASCII output on for thelast reentlydealred �le in the MakeOutput()-funtion. (Note that it does not make sense to swith betweenboth modes during one simulation. The �les would then at least be relatively di�ult to read;depending on the platform/C-implementation results an even be unde�ned).The �le �ags should be set right after the delaration of an output �le, ie, before any outputvariables.If ASCII mode is on, an empty line will be saved after eah vetor or row of a matrix, and anextra newline after eah omplete matrix. The urrent step will also be saved on an individualline starting with the double-ross # befor all other data in that step. No suh extras are savedin raw mode, just pure binary data.5.1.2 Output VariablesEah output �le an ontain a number of output variables delared by the maroSAVE_VARIABLE(name, var, type, dim_x, dim_y, flags, when, whih)Meaning of the argments is very similar to the various graphial views on data (see, setion 3.3.2).�name� is a string for the name the entry appears under in the graphial user interfae.�var�, �type�, �dim_x�, and �dim_y� are the variable to store, its type, and dimensions. The typesand spei�ation of dimensions are the same as for graphis objets in display windows (MATRIX,VECTOR, et.), see setion 3.3.4. POINTER types are possible.��ags� are output variable-spei� �ags that are mainly used to speify whih data entries arestored when. Default is that eah value is stored in eah step (as long as the gobal save swithand the respetive �le-swith are ON)�when� and �whih� are further used to delare spatial and temporal seletions of data to store indetail. This is useful in large simulations where output �les an easily beome very large. Theoptions for sub-seletions are explained in the subsequent two setions.5.1.3 Temporal SeletionsBy default (and only if the save-button is ativated) data is saved after a all to the top-level init()-funtion (to save �initial values�) and after every simulation step. This an be modi�ed individuallyfor eah SAVE_VARIABLE using the ��ags and when� arguments in their delaration.A CONSTANT variable that doesn't hange during a simulation an be delared by an ONINIT�ag. Suh a variable is then only saved after alls to init(), beause there is where it would naturallybe initialised. Possible �ags are:

90 CHAPTER 5. FILE I/OONINITSKIPRANGESELECTThe last three �ags orrespond with three funtions as arguments to the �when�-argument of theSAVE_VARIABLE delaration:TSkip(skip) : Only every �skip� step is storedTRange(start, stop, skip) : Data is stored at regular intervals starting at time step �start�,storing every �skip� steps, up to a maximum step of �stop�TSelet(n, vals) : �vals� is an integer array of size �n� that de�nes points in time when thedata has to be saved.A few examples are shown in subsetion 5.1.6.5.1.4 Spatial SeletionsAs in the temporal domain, seletions an also be made spatially, more preisely, in one- ortwo-dimenional arrays. By default, all entries in an array-variable (MATRIX, VECTOR, et.)are stored, if the temporal seletion permits it. Alternative options are GRID, IRR_GRID, orPOINTS, whih refer to regular grids, irregular grids, and sets of individual points/oordinates,respetively.As for the temporal seletions the spatial seletion (if it is not ALL) has to be noti�ed in the�ag-argument of a SAVE_VARIABLE (see above) using one ofGRIDIRR_GRIDPOINTSThe preise seletion has then to be spei�ed as the �nal �whih�-argument of a SAVE_VARIABLEdelaration using one of the orresponding funtionsGrid(start, stop, skip, start2, stop2, skip2) : This an be used for regular subgrids. �start,stop, and skip� are the �rst and maximal index of stored elements in the �rst dimension (x)and �skip� is the regular interval between indexes. The same meaning applies to �start2,stop2, and skip2� in the seond dimension (y). For one-dimensional arrays start2, stop2, andskip2 should be zero.Irregular(nx, values_x, ny, values_y) : This de�nes an irregular grid, where the integer ar-ray �values_x� ontains �nx� oordinates in the �rst dimension and likewise for �ny, values_y�.Data is saved for matrix entries at all pairs of x and y values. For one-dimensional arraysthe ny and y-values should be zero.

5.1. INTERFACE FOR FILE OUTPUT 91Points(n, values_x, values_y) : This is the most general option beause it allows for arbi-trary oordinates in the index (integer) arrays �values_x, values_y� of size �n�. Data valuesat the respetive n points are saved. For one-dimensional arrays �values_y� should be zero.A few examples are shown in subsetion 5.1.6. Index boundaries are not heked. It is theprogrammers responsibility to make sure indexes do not exeed array-dimensions. Order for two-dimensional Grid() and Irregular() grid data is left-right (x �rst), then top-bottom (y).5.1.5 The TimerThe timer (or Stop Wath) is a further faility to ontrol when storage of data starts and ends. Itan, for instane, be used if you want to skip a number of steps at the beginning of a simulationbefor saving data beause they are transients. Another reason is to set a global skip-interval ontop of the temporal seletions for the individually saved variables. That an be desirable if theamount of data generated is very big, but storing less steps would already be su�ient. To setupthe timer useSET_SAVE_TIMER(start, end, skip)TIMER_ONTIMER_OFFSET_SAVE_TIMER only sets the parameters of the timer, i.e., the �rst and maximal step it tries tosave anything, �start� and �end�, and the interval (in simulation steps) at whih data is stored,�skip�. If it is to be used, the timer has to be enabled expliitly, either from the GUI by right-liking on the Save-button and seleting the appropropriate tik-box or by alling TIMER_ONfrom the soure ode. It furthermore only generates output if the global save swith is on inaddition (the master fuse for your valuable hard disk spae).Observe that the GUI also allows to set the parameters of the timer (�Stop Wath�) by hand; theydo not need to be set in the ode.5.1.6 Examplesint nx=3, ny=2;int xsel[3℄={1,2,5};int ysel[2℄={3,4};BEGIN_OUTPUTSET_ITEM_SEPARATOR("\n")// 1. exampleOUTFILE("patterns")SAVE_VARIABLE("pats", pats, ARRAY_INT_TYPE, Nones, P, ONINIT, 0, 0)

92 CHAPTER 5. FILE I/O// 2. exampleOUTFILE("Quality")SAVE_VARIABLE("qual", &Q, FLOAT_TYPE, 0, 0, 0, 0, 0)// 3. exampleOUTFILE("file42")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SAVE_VARIABLE("z", z, bVECTOR, N, 0, 0, 0, 0)SAVE_VARIABLE("phi1", pot1, MATRIX, xsize, ysize, 0,0,0)// 4. exampleOUTFILE("phi2")SAVE_VARIABLE("phi2", pot2, MATRIX, xsize, ysize, SKIP | GRID ,TSkip(2), Grid(38, xsize, 100, 32, ysize, 100))// 5. exampleOUTFILE("phi3")SAVE_VARIABLE("phi1", pot1, MATRIX, xsize, ysize, IRR_GRID0, Irregular(nx, xsel, ny ysel))END_OUTPUTIn the example the item separator is �rst set to \n suh that individual entries go to separate lines.The �rst example de�nes an output �le �patterns� to whih an integer array �pats� of size Nones
× P is stored one after eah all to the top-level init() funtion (seleted by the ONINIT �ag).There are no further spatial or temporal seletions.The seond example stores a single �oating point variable �Q� in eah step to a �le �Quality�.The third example � in ontrast to all others � stores data in ASCII format beause the respetive�ag is set. Data goes to a �le ��le42�. Stored per step are a binary vetor �z� of size N and amatrix �pot1� of size xsize × ysize without any further spatial or temporal restrition.The fourth example stores a matrix �pot2� of size xsize× ysize to a �le �phi2�. Only every seondtime step is stored and the matrix is spatially sub-sampled on a regular grid.The last example subsamples a matrix on an irregular grid, but there is no temporal seletion.5.2 InputA graphial user interfae for input from �les is not available and not planned. Raw �le inputfuntionality has to be used instead (see next setion).

5.3. RAW I/O 935.3 Raw I/OInstead of using the graphial interfae for I/O operations, those an be inluded diretly in theappliation program using the usual C �le aess options (see textbooks on C-programming).

94 CHAPTER 5. FILE I/O

Chapter 6Felix Parameter Searh & SensitivityModule
The module psearh./h introdues some parameter searh or sanning failities into Felix. For aset of parameters regular grids or irregular sets of points an be de�ned. The module psearh thenprovides a multi-index that iterates through the Cartesian produt. It is also possible that somesearh diretions update several parameters at one. If for eah parameter set several simulationruns are desired this an be spei�ed, too.(Spike train) metrisSensitivity6.1 General UsageIt happens often that a simulation has to be exeuted many times with di�erent parameters if aparameter spae has to be sanned, or with the same parameter if data are olleted for furtherstatistial evaluation. The psearh-module supports this proess. It allows to de�ne various pa-rameter dimensions together with range spei�ations for the values these parameters an take. Itthen implements a multi-index that iterates through all possible artesian parameter ombinations.A typial usage senario would be that the module is initialised in main_init() and that param-eters that have to be sanned are not further hanged in init(). If ertain onditions are reahedin the step()-funtion, e.g., after a �xed number of simulation steps, the next parameter set isseleted. Although not neessary in general, the init()-routine an afterwards be alled, if thatis desired to re-initialise other parameters and variables. If the module has yled through allparameter ombinations the simulation an exit.main_init(){ ...psearh_init(); // initialise internal strutspsearh_add_param(...); // add a param to san... // ... add more as required ...} 95

96 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULE...step(){ ... DO THE WORKif (SIM_TIME >= 100.) // some riterion for finishing a single simulation{ if (psearh_next_param();) // get the next parameter setinit(); // reset other parameters / variableselseexit(); // psearh_next_param() returns 0 if we are done}}
6.2 Parameter San Funtions6.2.1 Initialisation and setupBefore it is used the psearh module has to be initialised by alling psearh_init() inmain_init().void psearh_init();There an be only one set of san-parameters per simulation.After initialisation the set of parameters to san/searh is empty. Add parameters by usingvoid psearh_add_param(float*p, int type, int npoints, float*data);# define PSEARCH_RANGE 0x1# define PSEARCH_POINTS 0x2Only �oating point parameters are supported (integer-values an be emulated by �oats). p isthe address of the parameter to vary; we need the address suh that we an hange its value.npoints is the number of values the variable p is supposed to take in the san. type an be eitherPSEARCH_RANGE or PSEARCH_POINTS whih determines the meaning of the fourth data-argument:

• PSEARCH_RANGE: This type de�nes a regular grid of points. data must be a 2-dimensionalarray where data[0℄ is an o�set and data[1℄ an inrement. p takes values: data[0℄ +i*data[1℄, for i = 0, 1, 2 . . . npoints-1.
• PSEARCH_POINTS: This de�nes an irregular olletion of points. data ontains npoints �oat-ing point values the parameter p will yle through.For further explanations see the example setion below.As parameters are added to the parameter set they are initialised to their lowest indexed value(whih is not neessary their lowest value, if the inrement in PSEARCH_RANGE is negative or thevalues in PSEARCH_POINTS are not ordered aording to size).

6.2. PARAMETER SCAN FUNCTIONS 976.2.2 Iteration through the parameter produt spaeTo iterate through the artesian produt of the parameter sets in the individual parameter dimen-sions use the funtionint psearh_next_param();This funtion takes aount of whether a parameter has been de�ned as PSEARCH_RANGE orPSEARCH_POINTS. It sets the parameters internally to their new values. The funtion returns1 if there was a parameter set left, and otherwise zero. Afterwards returning 0 the beviour offurther alls to psearh_next_param() is unde�ned. Indeed, a return value of zero should ingeneral trigger post-proessing of data and exiting of the simulation.6.2.3 Running multiple simulations for eah parameter setIt an be desired to run a simulation several times for eah parameter set. This an be reahed byusingextern void psearh_set_repetitions(int k);If psearh_set_repetitions(int k) sets k to a value bigger than 1 (the default) the param-eters are only hanged every k alls to psearh_next_param().6.2.4 Changing several parameters per searh dimensionThe mehanism so far apply to single parameters in eah dimension. It is possible to de�nedimensions where more than one parameters are varied. This an be useful when the number ofparameters is so high that a full searh through the artesian produt spae is unfeasible or if forsome reason only values on a ertain set of points in the full parameter spae are needed, but nota omplete artesian sub-sample. The following funtion supports this funtionality.void psearh_add_nd_param(int n, float*p, int npoints, float*data);Here, n is the number of parameters to modify and p a vetor of parameters of length n. npointsis the number of sample points in the n-dimensional sub-spae of parameters, and data is an arrayof npoints sample points of dimension n, i.e. data[i*n+j℄ is the value of parameter p[j℄ in thei-th sample point.Note that higher-dimensional parameter spaes an be ombined with the previously explainedone-dimensional ones. This is demonstrated in the example in subsetion ??.6.2.5 Support funtions to print indexes and parametersThere are a few support funtions that print out information about the internal state of the module:

98 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEvoid psearh_print_data();void psearh_print_params(FILE*file);void psearh_print_index_string(har*string);psearh_print_data() prints the internal data strutures to the sreen whih is mainly usefulfor debigging purposes.psearh_print_params() prints the atual parameter values to a stream. if file is �stdout�output goes to the sreen, but it an also refer to a previously opened �le, e.g., for book-keeping.The �le must be open for writing, of ourse.psearh_print_index_string(har*string) formats the internal multi-index that enumer-ates the artesian produt and prints it in ASCII-format to a string (whih must be long enoughand is not heked). If there are 3 parameters sanned the output ould be 1-3-2-0, meaning thatthe �rst parameter urrently takes its �rst value from the range of possibilities, the seond param-eter its third value, and the third parameter its seond value. The fourth number is the iterationfor this partiular parameter set (see psearh_set_repetitions() above). This funtion an beuseful to onstrut �lenames for data output.6.3 Example: Sanning a parameter spaeThe example below (see �tst-psearh.� in the ode diretory) shows how to set up a parametersan with 3 dimensions, two single parameter dimensions where one parameter (p1) is sampled ona regular grid and the other one (p2) on an irregular set of points, and a third dimension onsistingof a number of points (2) for two further parameters in p[2℄.# inlude <felix.h>float p1, p2, p[2℄;float data1[2℄= { 2., .2 };float data2[3℄= {-1., 3., 7};float data[4℄ = {1., 2., 3., 4.};har str[100℄;NO_DISPLAYNO_OUTPUTmain_init(){ psearh_init();psearh_set_repetitions(2);psearh_add_nd_param(2, p, 2, data);psearh_add_param(&p1, PSEARCH_RANGE, 2, data1);psearh_add_param(&p2, PSEARCH_POINTS, 3, data2);psearh_print_data();}

6.4. INTERFACING PARAMETER SEARCH AND FILE OUTPUT 99init(){ printf("init() alled\n"); // noting initialised here, but ould be}step(){ if (SIM_STEP==1) // print the urrent parameter set{ // to sreen, but only onepsearh_print_index_string(str);printf("%s\n", str);psearh_print_params(stdout);printf("\n");}// do the hard work here//if (SIM_STEP == 4) // after me steps ...{ if (psearh_next_param()) // ... get the next parameter setinit(); // re-init variables as desiredelseexit(0); // or exit, if all parameter sets simulatedSIM_STEP = 0; // need to reinit this;// otherwise SIM_STEP == 4 stays false forever}}6.4 Interfaing parameter searh and �le outputFelix provides mehanisms to store simulation data to �les, see setion ??. File output is ativatedon demand when the respetive button in the GUI-version is pressed, and by default ative ina non-GUI, i.e., parallel version. However, one opened, output goes to only one set of �les asspei�ed in the Felix-�le, unless these �les are reset. This is possible by hand in the GUI. For anautomati parameter searh, however, one would usually prefer a non-interative �le-reset (unlessone wants to have all output direted to the same �les even for di�erent parameter sets).One solution would be to ode the �le output expliitly into the Felix-appliation, i.e., open �lesper new parameter set and save data expliitly.More onvenient is the use of the �template-feature� of the �le name generation routines (NOTE:this is a feature urrently undoumented in the I/O-setion). By default when �les are opened,Felix takes the basename as de�ned in the OUTFILE("basename") spei�ation. The template-

100 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEfeature allows to append the base-names by templates, e.g., for di�erent parameter sets.The template an be set by SetSaveTemplate(str) where str is the tmplate string.To make a template ative, the atually open output �les have to be losed and reinitialised. Thisis done by alling InitOutFiles();.The funtion psearh_print_index_string(str) desribed in setion ?? sets a string to arepresentation of the the urrent multi-index of an iteration through a parameter set. It an beonveniently used as a template.Below is an example, where the noise in an integrate and �re neural network is varied. Unneessaryode has been ut away. The omplete �le an be found in the doumentation ode diretory(inf2san.)....float psigma; // parameter for the sanfloat offsin[2℄={0.,.05}; // offset and inrement (for PSEARCH_RANGE)har str[16℄;...SliderValue ssigma = 0; // slider ssigma UNUSED here !!BEGIN_DISPLAY...END_DISPLAYBEGIN_OUTPUTSET_ITEM_SEPARATOR("\n"); // newlines after spikesOUTFILE("spikes")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON) // readable formatSET_SAVE_FILE_FLAG(THISFILE, GDF, ON) // only spike times storedSAVE_VARIABLE("out", z, bVECTOR, N, 0, 0, 0, 0)END_OUTPUTint main_init(){psearh_init(); <<<<< initialise the parameter sanpsearh_set_repetitions(2); <<<<< 2 repetitions per parameter setpsearh_add_param(&psigma, PSEARCH_RANGE, 4, offsin); << 1 parameter}int init()

6.5. PARAMETER SENSITIVITY OF SIMULATIONS 101{ // don't hange psigma in init() !!! (unless you know what you do)psearh_print_index_string(str); <<<<<<< setup template stringSetSaveTemplate(str); <<<<<<< and store as templateInitOutFiles(); <<<<<<< reinit the file ("spikes")}int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, x[i℄,0.01*(sI + sJ0*v[i℄) + psigma*gauss_noise()); <<<<<< psigma!Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetbMult(N, N, J, z, v); // redistribution spikesif (SIM_STEP == 1000) <<<<< terminate urrent simulation run{ if (psearh_next_param()) <<<<< work left ? next parameter set{ SIM_STEP = -1; <<<<< need to resetinit(); <<<<< reinit; inluding template & files}elseexit(0); <<<<< finished ...}}NOTE: The loation of the reinitalisation of SIMSTEP an be ruial. Done in the init() routineit an lead to a one-step o�set of the �rst simulation run ompared to the others.6.5 Parameter Sensitivity of Simulations�Sensitivity analysis� an provide insight into the parameter dependenes of a simulation, ie.,whether the simulated dynamial patterns vary muh if some parameters are hanged, whihparameters or parameter ombinations have the strongest impat, and whih are not so importantat all, beause ativation patterns hardly depend on them.This type of analysis in general needs some measure to ompare di�erent simulation runs. Ageneral lass of suh measures with well de�ned mathematial properties are so-alled �metris�.Those onsider simulated trajetories (e.g., potential traes, single or multiple unit spike-trains) aspoints in an abstrat spae, a so-alled metri spae, and de�ne how to ompute distanes betweenthese points. Changing one (or a set) of parameters will hange the simulated ativity and therebythe loation of the point representing it in the metri spae. Parameter ombinations that hange

102 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEthe loation a lot are sensitive, those that have hardly any impat insensitive.Note that this provides a loal haraterisation of sensitivity only, as hanges are relative to some�xed set of parameters. A global analysis is usually muh more di�ult to do and regularly requiresexhaustive exploration of the parameter spae (with the exeption of a few simple or fortunateases).Furthermore, the sensitivity properties of a simulation an very muh depend on the preise metrihosen. For example, metris exit that value the preise loation of single spikes, whereas othersonly operate on instantaneous �ring rates. For more information see the next setion.6.5.1 Spike-train and other metris... to ome6.5.2 Sensitivity MeasuresGiven a simulation program with observables x and parameters p, a default set of parameters p∗,and a metri d(x, y) on the observables, the sensitivity of the model with respet to the defaultparameters and metri hosen an be studied.One way to determine parameter sensitivities is to ompute the gradient (if it exists) of the dis-tane from the default point with respet to the parameters: ∇pd(x(p), x(p∗)). The gradient ofa funtion of some parameters is a vetor in parameter spae, that points into the diretion ofthe parameter ombination that hanges the value of the funtion most. In our ase the funtionis the di�erene between the ativation pattern given the default parameters and those for anyother set of parameters lose by. Large (absolute) entries in the gradient indiate a strong impaton the simulated patterns by the respetive parameter. However, note that the sale (or units ormeasurement) of the parameters an vary, and that not all parameters an be easily omparedwith eah at all. Sometimes parameter hanges are therefore �normalised� by their absolute valuebefore omparison, but this an also fail, if the default value for some parameters is zero or loseto it.6.5.3 Gradient ComputationThe parameter searh module an be onveniently used to generate simulations for a subsequentgradient analysis. This requires omputing ativation patters for the default paremeter set as wellas for small hanges in the various parameter diretions. If the parameter hanges are �small�the perturbed patterns an be used to ompute approximations of the partial derivatives in thediretion of the respetive parameter. Let's say there are m parameters. The partial derivatives arethen the omponents of the full gradient: ∂d(x(p) − x(p∗))/∂pi = ∂d(x(p∗1, . . . , p
∗

i + ∆i, . . . , p
∗

m) −
x(p∗))/∂pi ≈ d(x(p∗1, . . . , p

∗

i + δi, . . . , p
∗

m) − x(p∗))/∆i, i = 1 . . .m.The following Felix funtion prepares m + 1 parameter vetors for the omputation of ativitypatterns for the default parameter set x(p∗) and small perturbations in the m parameter dimen-sions, x(p∗1, . . . , p
∗

i + δi, . . . , p
∗

m. It returns an (m + 1) × m matrix of parameter sets for use withpsearh_add_nd_param(), the parameter spae san funtion that operates on higher-dimensional

6.5. PARAMETER SENSITIVITY OF SIMULATIONS 103sets of points but not their full Cartesian produt. The �rst parameter set in the matrix is for thedefault parameter set, the remaining ones for diretions i = 1 . . .m.float*setup_grad_params(int m, float*params, float eps, float*delta)
m is the number of parameters and params is the vetor of parameters. eps is a small numberand delta is an m-dimensional vetor of perturbations. If delta is non-zero, the perturbation indiretion i is epsδi. If it is zero, all perturbations ∆i are equal to eps. If all the parameters obtainvalues on the same sale the use of just a single value eps for the perturbations is more onvenientthan de�ning a full vetor of perturbation ∆.After preparing the set of parameter settings in main_init() the parameter searh module hasto be initialised and run preisely in the way desribed in setion ?? for n-dimensional parametersets, psearh_add_nd_param(). The program will then iterate through the simulations for thedefault parameter set and the m perturbed parameter sets.Data of the simulations an be output to �les for subsequent omputation of distanes and gradi-ents. As mentioned initially the sensitivity may depend ruially on the partiular metri hosen.It it therefore often preferable not to ompute in the simulation program, unless the best metriis know in advane.6.5.4 Example: Gradient omputationThere is a program inf2grad. in the doumentation's ode diretory that shows how to run simu-lations for a gradient omputation.# inlude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time onstant */Vetor x; /* potentials */Matrix J; /* onnetions */bVetor z; /* vetor of spikes */Vetor v; /* auxiliary variable */int nparams = 3;float pars[3℄ = {101., 10., 0.}, // pI, psigma, pJ0;delta[3℄= { 10., 1., 0.1};float *paramsets;float noiseseed;BEGIN_DISPLAY...END_DISPLAY

104 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEBEGIN_OUTPUTSET_ITEM_SEPARATOR("\n");OUTFILE("spikes")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SET_SAVE_FILE_FLAG(THISFILE, GDF, ON)SAVE_VARIABLE("out", z, bVECTOR, N, 0, 0, 0, 0)END_OUTPUTint main_init(){ noiseseed = time(NULL); // <<<<<<<<<randomize(noiseseed + 123456); // <<<<<<<<<SET_STEPSIZE(.1)J = Get_Matrix(N, N);x = Get_Vetor(N);z = Get_bVetor(N);v = Get_Vetor(N);paramsets = setup_grad_params(nparams, pars, .1, delta); // <<<<<<<<psearh_init(); // <<<<<<<<psearh_add_nd_param(nparams, pars, nparams+1, paramsets); // <<<<<<<<}int init(){ int i;har str[16℄;// randomize(noiseseed); // <<<<<<<<<<Clear_bVetor(N,z);Clear_Vetor(N,v);for (i=0; i<N; i++)x[i℄ = equal_noise();Make_Matrix(N, N, J, 1.0/N, .4/N);psearh_print_params(stdout);psearh_print_index_string(str);SetSaveTemplate(str);InitOutFiles();}

6.5. PARAMETER SENSITIVITY OF SIMULATIONS 105
int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, x[i℄,0.01*(pars[0℄ + pars[1℄*v[i℄) + pars[2℄*gauss_noise());Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetbMult(N, N, J, z, v); // redistribution spikesif (SIM_STEP == 1000){ if (psearh_next_param()){ SIM_STEP = -1; // <<<<<<<<<<init();}elseexit(0);}}An important note regarding simulations with noise are at hand, f., the lines in the ode aboveindiated by <<<<<<. Apparently, even if parameters are idential, simulations with noise anpotentially lead to very di�erent ativation patterns. It an therefore be neessary to reinitialisethe random number generator eah time the simulation is restarted. Some lines indiated in themain_init() and init() routines above show how to do this. However, even with a reset of therandom number generator omparability is not neessarily guaranteed as the exeuted ode anontain subtle interations between parameters and the noise generation. In suh ases it an berequired to preompute random sequenes and reuse them in the iterations through the parameterspae.

106 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULE

Chapter 7The Felix MIDI Interfae
This doument desribes the use of the new Felix-MIDI-interfae. It is merely a olletion of notesas the interfae is �in progress�. A number of examples are disussed. Changes in the future arelikely.7.1 IntrodutionThe strategy used to implement MIDI funtionality in Felix is the following: A MIDI interfaeshould have at least an output, i.e., readable MIDI port, whih sends events to some sound-generator, but preferable also an input interfae, i.e. a writable port, whih may onnet it toa keyboard. Both options are provided in the preliminary implementation. If a simulation runswhih initialises one or both ports, they an be onneted to other devies by means of readilyavailable Linux software. If the omputer used has aess to a hardware MIDI devie (e.g., in thesoundard or onneted to the usb port) this an be aesses, too.In a running Felix simulation NOTE_ON and NOTE_OFF MIDI-events an be issued asyn-hronously, for instane, by neurons that spike. The events are diretly sheduled; a MIDI-queueis not used at the moment. The user has to provide ode that emits the events to the readableport. MIDI-hannel, key, and veloity an be spei�ed.On the input side an event-reeiver an be (optionally) started, whih is spawned in a separatethread in order not to blok simulations; it waits for events on the writable port. The user has totranslate the inoming events into inputs for his/her Felix appliation.For testing I use a setup with a virtual keyboard (vkeybd), a software synthesiser (�qsynth� � agraphial frontend to �uidsynth), and the (software) swithboard �qjaktl� whih is a frontend to�jak�, a Linux audio environment. qjaktl is used to onnet the ports of the devies/programsin the MIDI-environment. Note that qjaktl and qsynth must be run as root:1. start the Jak swithboard: �sudo qjaktl�2. press the �start� button in qjaktl - this should start the jak-demon whih serves your MIDIrequests3. start the virtual keyboard: �vkeybd� (not neessarily as root)107

108 CHAPTER 7. THE FELIX MIDI INTERFACE4. start the synthesiser: �sudo qsynth�5. start your Felix program6. in qjaktl press �onnet� and onnet the keyboard to the writable Felix port (if present)and the Felix readable port to the synthesiser, see Figure 7.1.7. Press the run-button in Felix to start the simulation (required to shedule the note-events)8. For a test without Felix you an also onnet the keyboard diretly to the synthesiser, inwhih ase pressing a key should result in an audible tone. If it does not, your software MIDIenvironment is not properly setup.

Figure 7.1: Felix-MIDI setup under Kubuntu. The Felix program is hidden under the visiblewindows.
7.2 Funtions provided by mymidi.o7.2.1 CompilationSome of the programs in this doumentation don't need the full Felix pakage, but justthe mymidi.o library. If the name of suh a program is <expl>. it is ompiled withg -o <expl> <expl>. mymidi.o -lasound -lpthread. Start the program on the ommandline and onnet it using �qjaktl�.

7.2. FUNCTIONS PROVIDED BY MYMIDI.O 109A Felix program with MIDI interfae is ompiled in the usual way: Felix <expl>. Run andonnet the program as explained above.7.2.2 InitialisationThe following funtions initialise an interfae to the sequener and open readable and writableports:snd_seq_t *open_seq(snd_seq_t *seq_handle, har*basename);int reate_readable_port(snd_seq_t *seq_handle,har*basename, har*ext);int reate_writable_port(snd_seq_t*seq_handle,har*basename, har*ext);
• seq_handle is a handle to the sequener interfae
• basename is the name under whih the Felix appliation appears in the MIDI environment
• ext are extensions to the basename that might be useful to distinguish di�erent ports7.2.3 Setting up an event loopIf an appliation has an input port (a writable port) it an reeive MIDI-events. This is typiallydone in a loop that waits for the events and alls a user supplied routine for eah inoming event.The following two routines implement this funtionality:int enter_event_loop(snd_seq_t *seq_handle,int midi_ation(snd_seq_t *, snd_seq_event_t *ev));int midi_ation_print_event(snd_seq_t *seq_handle, snd_seq_event_t *ev);enter_event_loop implements the main loop; it requires a sequener handle as an argument anda seond funtion that de�nes what to do with the events.midi_ation_print_events is an example for an event-handling funtion. It prints informationabout an event to the sreen together with some information about parameters (hannels, keys,et.). It does not handle all possible event types (see appendix 7.5.1). You an use it as a prototypefor your own event-handlers.Note that the funtion enter_event_loop iterates an in�nite loop until the midi_ation()-funtionreturns a negative value on some event. This means you an't use it diretly in a Felix program,beause you also need to step through the simulation. A solution for this problem is to run theMIDI-reeiver in a separate thread as will be explained later. The next sub-setion presents anon-threaded (and non-Felix, just C) example.7.2.4 A �rst exampleThe C-ode below opens a virtual sequener devie with in- and out-ports. It then enters a loopthat waits for inoming events and prints them to the sreen.

110 CHAPTER 7. THE FELIX MIDI INTERFACE# inlude <stdio.h># inlude <stdlib.h># inlude "mymidi.h"main(){ snd_seq_t *seq_handle;har*basename="MIDITST";// open ALSA sequener devieseq_handle = open_seq(seq_handle, basename);// setup output portreate_readable_port(seq_handle, basename, "rd-1");// setup input portreate_writable_port(seq_handle, basename, "wr-1");// Setup ALSA event loopenter_event_loop(seq_handle, midi_ation_print_event);}Compile, run, and onnet this program to the virtual keyboard (vkeybd) as explained earlier. Itshould print the pressed notes to the sreen (onsets and o�sets). Note that the program opens anoutput port, too, whih however, is not further used at all.7.2.5 Sending note eventsIn a running program, events an be most easily sheduled asynhronously meaning that they arediretly forwarded to the sequener without getting queued. The following two funtions sendonsets and o�sets of notes to some sequener interfae and port. The hannel, key and veloityvalues an also be spei�ed.send_noteon(snd_seq_t *seq_handle, int port, int h, int key, int vel);send_noteoff(snd_seq_t *seq_handle, int port, int h, int key, int vel);There are two further funtions mainly for debugging purposes in the event handler:show_note(snd_seq_ev_note_t*note);show_sequener_event(snd_seq_event_t *ev);The �rst of these funtions prints details about a Note, the seond about a whole event.

7.2. FUNCTIONS PROVIDED BY MYMIDI.O 1117.2.6 Threaded event reeiversIn sub-setion 7.2.3 we set up a simple event reeiver, but mentioned that in a Felix program weneed not only reeive events but also drive the simulation ontinuously. A straightforward wayto satisfy both requirements at the same time is to split the program into two parts and exeutethem in two so-alled �threads�. These are light-weight proesses that an do work independently.The following funtion allows to spawn a thread from the main program that enters a MIDI eventloop and exeutes the funtion midi_ation per reeived event.int start_midi_reeiver(snd_seq_t * seq_handle,int midi_ation(snd_seq_t *, snd_seq_event_t *ev));The funtion listens on all writable ports that are attahed to the sequener devie seq_handle .The funtion midi_ation has the same prototype and behaviour as for a non-threaded event loop,see subsetion 7.2.3 and the example in subsetion 7.2.4. It is therefore possible to use the sameevent handler funtions, for instane the simple event printout funtion midi_ation_print_eventused in example 1 (see appendix 7.5.1 for the full ode of this funtion). Example 2 in the nextsub-setion follows this approah. All events that are not handled in the midi_ation funtionare disarded.7.2.7 Example 2: A threaded MIDI reeiverThis program opens a sequener devie with a writable (input) port. It then spawns a threadthat listens for inoming MIDI events and deals with them using the same funtion as used inthe event handler of the non-threaded example midi_ation_print_event in sub-setion 7.2.4; itdoes nothing but printing out some information about the inoming events.# inlude <stdio.h># inlude <stdlib.h># inlude <pthread.h># inlude "mymidi.h"# define BASENAME "RECEIVE-EVENTS"int main (int arg, har *argv[℄){ snd_seq_t *seq_handle;seq_handle = open_seq (seq_handle, BASENAME);reate_writable_port(seq_handle, BASENAME, "");start_midi_reeiver(seq_handle, midi_ation_print_event);while (1){ usleep(1000);

112 CHAPTER 7. THE FELIX MIDI INTERFACE}exit(0);}Observe that after having spawned the MIDI-reeiver-thread the main program enters an in�niteloop. In the example it just sleeps for a short time in eah iteration. In a more useful appliationthe loop would ontain some ode to ompute, e.g., a neural simulation.7.2.8 Simple MIDI startupMany appliations an probably just live with a single input and a single output port. Initialisationof suh a setup an be done using the following funtion and is demonstrated in the Felix examplein setion 7.3snd_seq_t * init_simple_midi(har*basename, int *port,int midi_ation(snd_seq_t *, snd_seq_event_t *))The funtion expets a �basename� under whih it appears in the MIDI environment and an eventhandler funtion like midi_ation_print_event. It returns the handle to the sequener and theport number for sending events to other devies.7.3 A Felix appliationExample 2 in subsetion 7.2.7 demonstrates the basi way how MIDI is integrated into Felix: Areeiver-thread has to be spawned in the maininit() funtion of a Felix-program that deals withinoming events if that is desired. The main program an then ontinue with the Felix simulationin the usual way, i.e., the Felix-step-routine an then do the main work of the simulation. Thestep-routine will typially also shedule output-events send to a readable port, say, onneted toa synthesiser or other devie. Beause the program generates the output events itself it does notneed a thread to wait for them as well. They an just be issued as required.Here is an example that implements an integrate and �re neuron network (derived from the defaultFelix example �inf.�) with in- and output. It reads events from an input port, say, onneted tothe virtual keyboard vkeybd. Beause vkeybd has 36 keys, 36 integrate and �ring neurons are used.ON and OFF events for ertain keys determine whether the respetive neuron reeives and extrainput or not. The program also write output to a port. If a neuron spikes it sends a NOTEON-event followed by a NOTEOFF and a key-number orresponding to its index plus some o�set. Thelower half of the neurons send to a hannel spei�ed by slider �sh1� and the upper half to �sh2�.The o�sets an be independently hanged using the sliders �so�s1� and �so�s2� - one instrumentan this way play very low-pith notes and the other one high notes. The veloity an further behanged using slider �svel�.// midinfio. - integrate and fire neural network// with MIDI output and input

7.3. A FELIX APPLICATION 113# inlude <felix.h># inlude <mymidi.h># define BASENAME "FELIXIO"snd_seq_t *seq_handle;int port;# define N 36 // number of neurons = # keys in vkeybdVetor pot,v1, midin;Matrix J;bVetor o, o1;SliderValue snoise = 10;SliderValue sinput = 105;SliderValue smidin = 105;SliderValue sJ = 50;SliderValue sh1 = 0;SliderValue sh2 = 9;SliderValue svel = 100;SliderValue soffs1 = 40;SliderValue soffs2 = 40;BEGIN_DISPLAYSLIDER("noise", snoise, 0, 100)SLIDER("input", sinput, 0, 200)SLIDER("midi in", smidin, 0, 200)SLIDER("oupling", sJ, 0, 200)SLIDER("h 1", sh1, 0, 15)SLIDER("h 2", sh2, 0, 15)SLIDER("velo", svel, 0, 255)SLIDER("offs1", soffs1, 20, 120)SLIDER("offs2", soffs2, 20, 120)TIMER(100)WINDOW("time ourses")IMAGE("pot", AR, AC, pot, VECTOR, 6, 6, 0.0, 1.0, 15)RASTER("pot", NR, AC, pot, VECTOR, N, 0, 0.0, 1.0, 1)GRAPH("pot", NR, AC, pot, VECTOR, N, 0, 0, 0, -.01, 1.01)RASTER("out", NR, AC, o, bVECTOR, N, 0, -.01, 1.01, 2)END_DISPLAYNO_OUTPUT// define what to do with inoming events

114 CHAPTER 7. THE FELIX MIDI INTERFACEint midi_ation(snd_seq_t *seq_handle, snd_seq_event_t *ev){ int = 48; // index of lowest key in vkeybdswith (ev->type){ ase SND_SEQ_EVENT_NOTEON:if ((ev->data.note.note - >= 0)&& (ev->data.note.note - < N))midin[ev->data.note.note - ℄ = 1.;break;ase SND_SEQ_EVENT_NOTEOFF:if ((ev->data.note.note - >= 0)&& (ev->data.note.note - < N))midin[ev->data.note.note - ℄ = 0.;break;}return 0;}int main_init(){ randomize(time(NULL));SET_STEPSIZE(.05)J = Get_Matrix(N, N);pot = Get_Vetor(N);o = Get_bVetor(N);o1 = Get_bVetor(N);v1 = Get_Vetor(N);midin = Get_Vetor(N);seq_handle = init_simple_midi(BASENAME, &port, midi_ation);return 0;}int init(){ int i;Clear_Vetor(N,midin);Clear_bVetor(N,o);Clear_bVetor(N,o1);Clear_Vetor(N,v1);for (i=0; i<N; i++) pot[i℄ = equal_noise();Make_Matrix(N, N, J, 1./N, 4./N);return 0;}int step()

7.4. SENDING EVENTS OVER A LOCAL NETWORK 115{ int i;for (i=0;i<N;i++)leaky_integrate(1., pot[i℄,0.01*(sinput + sJ*v1[i℄ + smidin*midin[i℄+ snoise*gauss_noise()));Fire_Reset(N, pot, 1.0, 0.0, o);bMult(N, N, J, o, v1);// send left half spikes to hannel 0; right half to 1for(i=0; i<N; i++){ int h, note;if (i < N/2) {h = sh1;note = soffs1 + i;} else {h = sh2;note = soffs2 + i - N/2 ; }if (o[i℄ > o1[i℄) // note onsend_noteon(seq_handle, port, h, note , svel);else if (o[i℄ > o1[i℄) // note offsend_noteoff(seq_handle, port, h, note, 0);o1[i℄=o[i℄; // save value for next step (on/off detetion)}return 0;}
7.4 Sending Events over a loal network7.4.1 Loal Network Routing � dmididAlthough it is planned to extend the Linux ALSA sound pakages to onnet devies not only onthe loal mahine but also over a network, this funtionality is not yet implemented.However, the WWW provides some links to LAN-enabled MIDI. I have experimented with �dmidid�a protool and C-ode that uses raw sokets (see http://www.dimid.org; warning: 95% advertise-ments). Raw sokets are quite fast beause they are implemented just on top of the physialnetwork devie layer. Thereby they bypass some potentially time-onsuming TCP/IP proessing.The latter inludes any �rewall, whih might or might not ause seurity issues. dmidid is furthergiven prioritised sheduling for faster exeution (it therefore needs root rights to run: �sudo dmidid<params>�).

116 CHAPTER 7. THE FELIX MIDI INTERFACEThat said, the dmidid demon implements a kind of MIDI-over-ethernet router. Several demonsan be run on the various omputers in a loal network where they eah open one readable andone writable MIDI port for onnetions. They are visible in qjaktl and an be onneted thereas any usual loal port. However, the demons in addition listen on the internet interfaes of theomputers for inoming messages, and they an send messages themselves. Messages reeived fora MIDI-port on the loal mahine are routed to the respetive devie.Messages are just written to the ethernet interfae and reeived by any other interfae on theloal domain. The MIDI sender and reeiver for the ommuniation are therefore inluded inthe transmitted internet pakages, suh that appliations an �lter pakets addressed to them.Broadasting is also possible.The dmidid. program in the Felix/mymidi distribution is modi�ed from the original dmidid.beause the latter didn't allow to onnet via the network to the loal mahine itself. That wasneeded for testing. An additional ommand line argument for the ethernet devie to use has alsobeen added.Syntax:dmidid [-v℄ [-b℄ [-i ifae℄ [-t xx:xx:xx:xx℄ [-r xx:xx:xx:xx℄
• -v prints the version
• -b sets broadast mode (reeive messages to �:�:�:� and myself)
• -i sets the interfae to use (default �eth0�)
• -t xx:xx:xx:xx is where I send to (default �:�:�:�)
• -r xx:xx:xx:xx is my reeiver id (default �:�:�:�)E.g. dmidid -i eth1 -r 90:00:00:00 -t 90:00:00:00 starts a demon listening on eth1 (onlaptops often the wireless devie) with reeiver id 90:00:00:00 and the same transmitter id, i.e., itsends to itself. If the broadast �ag is set when the demon is started, it also reeives broadastevents (to �:�:�:� by another demon).For more info see the original dmidid-pakage (http://www.dmidid.org).7.4.2 MIDI over LANCommuniation between dmidid-demons is restrited to the loal domain of the ethernet interfaethey are bound to; the pakages are not routed to other networks. An interfae that uses TCP/IP,i.e., the transport level, is under debelopment. It might have rather long response times and maytherefore not be well suited for real-time appliations, espeially when they are losed-loop.�Ping�-round-trip times to the COLAMN omputer luster are quite short (<5ms). There is anadditional step from the master to the nodes. Beause of the UoP �rewall settings we may evenbe fored to use tunnels....

7.5. APPENDICES 1177.5 Appendies7.5.1 Appendix 1 � The midi_ation_print_event funtionThe following ode shows the library funtion midi_ation_print_event whih prints events tothe sreen but an be used as a prototype for more interesting event-handlers.int midi_ation_print_event(snd_seq_t *seq_handle, snd_seq_event_t *ev){ show_sequener_event(ev);swith (ev->type) {ase SND_SEQ_EVENT_CONTROLLER:fprintf(stderr, "Control event on Channel %2d: %5d \n",ev->data.ontrol.hannel, ev->data.ontrol.value);break;ase SND_SEQ_EVENT_PITCHBEND:fprintf(stderr, "Pithbender event on Channel %2d: %5d \n",ev->data.ontrol.hannel, ev->data.ontrol.value);break;ase SND_SEQ_EVENT_NOTEON:fprintf(stderr, "Note On event on Channel %2d: %5d \n",ev->data.ontrol.hannel, ev->data.note.note);break;ase SND_SEQ_EVENT_NOTEOFF:fprintf(stderr, "Note Off event on Channel %2d: %5d \n",ev->data.ontrol.hannel, ev->data.note.note);break;}return 0;}7.5.2 Appendix 2 � snd_seq_event_t and snd_seq_ev_note_t/** Sequener event */typedef strut snd_seq_event {snd_seq_event_type_t type; /**< event type */unsigned har flags; /**< event flags */unsigned har tag; /**< tag */unsigned har queue; /**< shedule queue */snd_seq_timestamp_t time; /**< shedule time */snd_seq_addr_t soure; /**< soure address */snd_seq_addr_t dest; /**< destination address */union {snd_seq_ev_note_t note; /**< note information */

118 CHAPTER 7. THE FELIX MIDI INTERFACEsnd_seq_ev_trl_t ontrol; /**< MIDI ontrol information */snd_seq_ev_raw8_t raw8; /**< raw8 data */snd_seq_ev_raw32_t raw32; /**< raw32 data */snd_seq_ev_ext_t ext; /**< external data */snd_seq_ev_queue_ontrol_t queue; /**< queue ontrol */snd_seq_timestamp_t time; /**< timestamp */snd_seq_addr_t addr; /**< address */snd_seq_onnet_t onnet; /**< onnet information */snd_seq_result_t result; /**< operation result ode */snd_seq_ev_instr_begin_t instr_begin; /**< instrument */snd_seq_ev_sample_ontrol_t sample; /**< sample ontrol */} data; /**< event data... */} snd_seq_event_t;/** Note event */typedef strut snd_seq_ev_note {unsigned har hannel; /**< hannel number */unsigned har note; /**< note */unsigned har veloity; /**< veloity */unsigned har off_veloity; /**< note-off veloity;// only for #SND_SEQ_EVENT_NOTE */unsigned int duration; /**< duration until note-off;// only for #SND_SEQ_EVENT_NOTE */} snd_seq_ev_note_t;

Chapter 8Felix Remote Control and Data Streamingover Internet
Preliminary attempts have been made to give Felix an internet interfae. At the moment it ispossible to onnet a running simulation to a telnet lient providing a shell-like interfae thatallows to issue simple ontrol ommands like hanging the speed of the simulation (via a timer),reinitialising it, or printing and hanging the swith and slider values. It is also possible to opensokets and stream data to the internet that ould be reeived by another appliation on a di�erentomputer.It is planned, but not yet possible, to use Felix programs as remote ontrolers of Felix simulations,ie., to have a Felix-style interfae that automatially sends slider and swith hanges and reeivesoutput data whih it displayed immediately.Furthermore, at the moment it is only possible to remote ontrol Felix programs without a graphialuser interfae. There are several reasons for this: 1) I mainly want to use the funtionalityfor programs on a omputer luster, where programs have nio GUIs. 2) reeiving asynhonousmessages on sokets an hangup X11 badly; I am still trying to make the respetive ode stable;3) For remotely ontrolling a simulation on another laptop or desktop it seems easier to just usedesktop sharing (Krfb) or remote desktop onnetion failities like Krd or VNC.8.0.3 Simulation Client FuntionalityIt seems natural at �rst to give a simulation server-funtionality suh that a remote ontrol programan log into it in order to observe its ativity and potentially modify its parameters.However, on omputer lusters jobs are often distributed to the ompute nodes by speial purposesoftware, so-alled job queing systems. These shedule jobs as soon as appropriate resouresbeome available. A problem on omputer lusters with suh sheduling queues is, that you won'tknow beforehand on whih nodes your proesses will run (Fig. 8.1 depits a ommon situation).Therefore, it would be unomfortable to log into a simulation by hand or automatially - you would�rst have to �nd out the node to onnet to. There is furthermore not muh ontrol over the exatstartup time of a simulation, meaning that it is hard to �nd out the node to onnet to, onnet,and then not miss the �rst so-and-so many thousand steps, when the simulation starts runningimmediately, whih it should do beause otherwise the �ne omputer luster resoures are wasted119

120CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNETby your program doing nothing but bloking the respetive ompute nodes it got alloated.Therefore Felix simulations serves as a lients and not servers; they by itself onnet to a remoteserver when they start up. The remote program an be listening on a �xed mahine and a wellspei�ed port.8.0.4 Meeting pointsTwo other problems on omputer lusters onern their internet onnetivity, see Fig/ 8.1.1) The ompute nodes are hardly ever visible from the outside world; only the master node is.Quite ommonly internet pakets from the ompute nodes are not even routed towards loationsoutside the loal network on the luster.2) It an furthermore be that your luster is behind a �rewall over whih you have little or noontrol. This means only a restrited number of ports will be available for onnetions to themaster node. However, typially at least the seure shell port (ssh, 22) will be open, beause usersneed it to log into the luster, and this port an be onsidered being safe, beause ssh is well testedand implements high seurity standards.These two problems - hidden ompute nodes and �rewalls bloking internet ports - ompliateonneting Felix simulations on omputer lusters to remote programs.
22

12345 12345

client
meet

rank 0

rank 1

your nodes

slave 1

slave 0

slave 3

slave 2

22

masterremote

Figure 8.1: Typial remote ontrol situation through a �rewall. The job queue on the mastershedules your job to random slave nodes. Rank 0 is assumed to onnet to the meeting pointwhih is listening on the master at port 12345 (on the internal and external interfaes!)). The lienton the remote mahine further makes a onnetion to loal port 12345 and from there through atunnel via ssh ports 22 adn the internet to port 12345 on the master. The tunnel an pass the�rewall beause ssh is neessary for the users to log into the luster. This way a bidiretionalommuniation line is setup.As a solution to problem 1) we have implemented a simple �internet software router� that providesa �meeting point� where two proesses an onnet to and any tra� is bidiretionally routed.Suh a meeting point would run on the master node of the omputer luster. A Felix simulation

121that starts on a ompute node an onnet to the router beause the master is on the loal networkof the ompute node and has LAN-onnetivity to the lient. If there is no �rewall (bad idea!) orthe �rewall has a hole punhed at the port the meeting point is listenting on (also bad!), then aremote program an onnet to the meeting point diretly and ommuniate with the onnetedsimulation. (In fat, the implemented meeting point software also allows reonnetions. If onlyone side of the meeting point is onneted everything that is sent to it will be silently dumped.The same or di�erent lients an onnet an arbitrary number of times during the runtime of asimulation.)The above strategy is not very safe, beause everybody an onnet to your meeting point if itis publily visible to the internet; there is no password protetion; and the implementation of themeeting point might not even be seure, potentially giving rakers ways to break into your masternode.It is therefore better to onnet to the meeting point via a seure internet tunnel. This is also asolution for restritive �rewalls, the seond problem mentioned above and with respet to onne-tions from the internet it is as safe as the ssh-protooll is. Luky enough it is not di�ult to setupa tunnel; all that is needed is an open seure shell port (22, and of ourse a running sshd serveronneted to it).However, just to mention it, from the seurity point of view, using a tunnel to onnet to a meetingpoint on the master still leaves the possibility, that some other users of the luster onnets toyour simulation. There is urrently no way to prohibit this, but it might be that a future versionof the meeting point program will have some password protetion.The meeting point program (meet) should be in the �tools�-diretory of the Felix pakage.The remote lient to onnet to the meeting point an be just the standard program �telnet�(beause we onnet through a tunnel the use of telnet is safe).To onnet a Felix simulation and a remote program follow these steps:1. Start the meeting point on the master node: meet <port> where <port> is the port numberto listen on. In the sequel we assume it is port 12345.2. Compile your Felix program suh that it onnets to the meeting point when started. Onlyone onnetion should be made, ie. by rank 0 in an MPI appliation. You tell the Felix-kernelyou want a remote onnetion by adding a statement REMOTE(host, port) somewhere inmain_init().3. Setup a seure shell tunnel from the remote omputer to the port 12345 on the master node.If <aount> is your aount name on the master, and xxx.xxx.xxx.xxx is the publi IPaddress of the master, all on the remote mahine:ssh -N -L 12345:loalhost:12345 <aount>�xxx.xxx.xxx.xxx4. Start the lient on the remote mahine; e.g. telnet loalhost 123455. Start the job on the master

122CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNET8.1 Remote Connetion FuntionalityA remote onnetion to a Felix program provides a simple shell that allows to issue ommands(followed by <enter>) that e�et a running simulation.A onnetion is made to a meeting point using telnet: telnet host port.In telnet the following ommands an be send to a simulation that is onneted on the seond portof the meeting point (if none is onneted they are silently disarded):'1' or 'n' or 'r+': do a single step'n <steps>' : do <steps> steps, ie all steps() <steps> times'b' : break/interrupt a simulation'' : ontinue an interrupted simulation'i' : all the Felix-'init'-funtion'r' : all the Felix-'init'-funtion and then 'step' ontinuously'q' : quit the simulation'B s v' : set a swith (button) 's' to value 'v' (0=FALSE; !0=TRUE)'S s v' : set a slider 's' to value 'v' (v integer)'O' : toggle output on/o�'D' : dump the swith and slider values to sreen'T v' : set the timer to 'v' (�oat in seonds)Currently the timer is alled after the exeution of eah step, ie., the timer and exeution time ofsingle steps add up to the total time between steps. This might hange in the future. Similarly,the syntax above is not yet �xed. Note also that the telnet interfae does not provide a prompt.Just type in ommands linewise. You an leave telnet by pressing Ctrl-℄ and then `q' at the telnetexape prompt. It is possible to reonnet to a running simulation.8.2 Example: Remote ControlThere is not muh need for an example. Just some notes that re-iterate things already said:
• Only Felix programs ompiled with the NO_GRAPHICS �ag an be ontrolled remotelyat the moment (see Make�les in the Felix diretories). These are programs ompiled withno graphial user interfae whih is only the default for the parallel Felix implementation,pFelix.

8.3. STREAMING DATA 123
• To tell a Felix program you want to ontrol it remotely all it as program host port, where�program� is the program name and�host� and �port� are the hostname and listening port ofthe meeting point, respetively. host would be �loalhost� if one onnets through a tunnelotherwise the hostname of the mahine the meeting point is running on.
• The meeting point must already be up, before the simulation starts
• You might also already want to be onneted by telnet to the meeting point before you satrtthe simulation. This, however, is not entirely neessary. You an onnet and reonnet asoften as you like.8.3 Streaming DataNote that the tehniques desribed in this setion are ver experimental. You an hang yoursimulations and perhaps even you omputer.... BE WARNEDMany appliations might need failities to atually stream data in and out of the simulation pertime step. At the moment it is only possible to write simulation data to disk, but not to reeiveit (more preisely, it is possible, but not reommended see the note at the beginning of thissetion).To write(/send) data you have to open a soket that onnets your Felix program to a server thatis listening for inoming onnetions, an reeive your data, and knows how to proess it.You probably would have to setup a seond meeting point (on a di�erent port) for the ommuni-ation in order to get the data out of a omputer luster. If you don't need the remote simulationontrol desribed in the previous setions one meeting point would be enough.Note that a simulation on a omputer luster an generate a huge amount of data in virtually notime. It is in general reommended to keep the ommuniated amount of data as low as possible.Think twie before you send anythingTo onnet a simulation to a remote appliation or a meeting point on the uster use:sok = onnet_tp_lient(hostname, port)To write data to the soket usewrite_buffer(soket, buffer, size) orwhere soket is the soket returned by the all, bu�er is a bu�er to send, e.g. a vetor or matrix,and size is the size of the objet to send in bytes. A variant of the all allows to set additional�ags that ontrol some low-level options of the transmissionwrite_buffer(soket, buffer, size, flag)Flags an be. e.g., MSG_MORE to tell the system there is more data to ome and optimisetransmitted pakage sizes, or MSG_DONTWAIT to tell it to send the data immediately. Several�ags an be ORed together ... see �man soket� or �man send� if these man pages are installed onyour mahine. Otherwise searh for introdutions into soket programming on the internet.In priniple you an also read data using:

124CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNETread_buffer(soket, buffer, size)where size is the size of the data bu�er buffer provided. However, you need to keep are ofsynhronisation between the simulation program and the program reeiving the data, otherwiseyou might easily run into deadlok onditions.8.4 Example 1: Data Streaming to a Disk on the RemoteMahineThis example shows a simple reeiver of data sent via a meeting point. It writes all inoming datainto a �le. It is not a Felix program but just links against the mylan.o-module of the Felix-kernel.The sender likewise does not need to be a Felix program.1. Compile the ode with something like g -o rvr rvr. mylan.o. Of ourse the mylanheader and objet �les need to be aessible.2. Run the program with rvr host port file where host and port speify a meeting waitingfor onnetions, and �le is the �le to store arriveing data in.3. Connet a sender to the seon port of the meeting point, e.g., telnet or a Felix program thatopens a soket in main_init and writes data in step as outlined in the previous setion.# inlude <stdio.h># inlude "mylan.h"int main(int arg, har *argv[℄){ int res;har buffer[256℄;int sok = onnet_tp_lient(argv[1℄, atoi(argv[2℄));FILE *fp = fopen(argv[3℄, "w");for(;;){ if ((res = rev(sok, buffer, 256, 0)) > 0){ fwrite(buffer, 1, res, fp);fflush(fp);}else // error or onnetion losedbreak;}flose(fp);lose(sok);}

8.5. EXAMPLE 2: DATA STREAMING TO A REMOTE MIDI DEVICE 125Note, that if the sender terminates the above program will not also die, beause it is onneted tothe meeting point and not diretly to the sender. The meeting point doesn't report if the otherport onnets or disonnets, neither does it lose a onnetion by itself (unless in error onditions).Thereeiver program therefore has to be killed expliitely with Ctl-C. The latter an lead to dataloss if the �le-bu�er is not �ushed. In the example we �ush it after eah write, but one ould alsosetup a handler for the kill signal or rediret the system _exit routine in order to �ush bu�ers onexit.8.5 Example 2: Data Streaming to a Remote MIDI DevieThis setion shows an example that reeives streamed data from a simulation and transforms theminto sound events send to a MIDI port. It ombines the mymidi and mylan modules. It has to beompiled as g -g -o rvmid rvmid. mylan.o mymidi.o -lasoundThe ode below reeives streamed data, ie., binary vetors of length 36 per step. A 1 on oneof the 36 input lines means that a note is played. The lower 18 lines are mapped to one MIDIhannel and the upper 18 to another one. Channels 5 and 9 are (usually) an eletri piano and aperussion/drum set.# inlude <stdio.h># inlude "mylan.h"# inlude "mymidi.h"int main(int arg, har *argv[℄){ int res, i, sok, midiport;snd_seq_t *seq_handle;har buf[256℄, buf1[256℄;seq_handle = open_seq (seq_handle, argv[0℄);midiport = reate_readable_port(seq_handle, argv[0℄, "out");sok = onnet_tp_lient(argv[1℄, atoi(argv[2℄));while (1){ if ((res = rev(sok, buf, sizeof(buf), 0)) > 0) // bloks!{ for(i=0; i<36; i++){ int h, note;if (i < 36/2) {h = 5; note = 40 + i; // lower N/2 units} else {h = 9; note = 40 + i - 36/2 ; } // upper N/2 unitsif (buf[i℄ > buf1[i℄) // note on

126CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNETsend_noteon(seq_handle, midiport, h, note, 127);else if (buf1[i℄ > buf[i℄) // note offsend_noteoff(seq_handle, midiport, h, note, 0);buf1[i℄=buf[i℄; // save value for next step (on/off detetion)}}else // error or onnetion losedbreak;}lose(sok);}Setup is little triky, beause two meeting points are required, one for the ontrol onnetion andone for the data stream. In addition if you want to make the generated MIDI events audible youhave to onnet the midiport to a synthesizer. Setion ?? desribes how to do that. The rvmidprogram will just appear in the qjaktl tool as an additional readable port that an be onnetedto just any writable port that is available, e.g., qsynth.1. Start qjaktl and qsynth2. Start two meeting points on di�erent ports, e.g., 12345 and 123463. Connet via telnet to the �rst meeting point4. Start the rvmidi program suh that it onnets to the seond meeting point:rvmidid loalhost 12346 (You have to use the proper host and port!)5. Start the laninfo program desribed below suh that it opens a ontrol onnetion to the�rst meeting point laninfio loalost 12345; the data streaming onnetion is made inthe main_init routine of the program.6. Connet the laninfo MIDI port to qsynth in the qjaktl tool7. Set a proper time-step in telnet (T .1) and run the simulation (r)I am aware that this is a pretty tedious proedure, but the ode is urrently just experimental;thinsg might get simpler in the future. Also, note that qjaktl, qsynth, and the meeting pointsneed to be set up only one. However, eah time the rvmidi program is restarted it needs to bereonneted in qjaktl. The simulation program (here laninfo) automatially reonnets to themeeting points if it is restarted, but keep are of providing the proper hosts and ports: The ontrolport needs to be onneted to the telnet lient, and the data port to rvmid.Here are ode snippets how a simulation program would send data to the reeiver program. It isassumed that the program uses a binary vetor �spikes� of size N, whih is send after omputationa simulation step. In order to ooperate properly with rvmid N must be 36. There should bea program laninfo somewhere in the example diretories that implements an integrate and �reneuron network whih streams spikes into the ethernet as shown below.

8.5. EXAMPLE 2: DATA STREAMING TO A REMOTE MIDI DEVICE 127int main_init(){ ... init stuff ...sok = onnet_tp_lient("loalhost", 12346);}int step(){ ... do a simulation stepwrite_buffer_1(sok, (har*)spikes, N, MSG_DONTWAIT);}Warning: If you try to write Felix programs with graphial user interfae that reeive data in theirstep-routine (or anywhere else) you an badly hang up the X11 server.

128CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNET

Chapter 9Parallel Programming with Felix
NOTE: This hapter is quite preliminaryThe present hapter desribes reently developed parallel omputing extensions to Felix. They areunder development and many of them barely tested. Use at your own risk and don't expet toomuh!Felix supports three types or parallelism: SSE-extensions, OpenMP for symmetri multi proessors,and the message passing interfae (MPI). The underlying onepts of these three tehnologies willbe desribed in the subsequent hapters 9.2 to 9.4 individually. However, it is possible to ombineall three frameworks in a single program. This makes sense in espeially on omputer lusterswhere eah single node has several proessor ores (see setion 9.5). Suh lusters will likely bethe standard in future omputer lusters.Felix programs an be developed to run on serial or parallel target arhitetures. In general,at least some e�ort is neessary to parallelise a given serial ode. However, it is at least inpriniple possible to write Felix programs that an be ompiled and run on both, parallel andserial omputers. Setion 9.6 gives advise on how to write Felix programs of this kind.9.1 History and FutureThe very �rst Felix version was mainly intended to provide a graphial user interfae for a parallelomputer we had at the University of Ulm/Germany in the early 90th of the previous entury(yes, I am almost a hundred years old!). This was a so-alled �WaveTraer� omprising 4096 singlebit proessors running at an amazing 8MHz yle-frequeny. The proessors ould be arrangedto form 1, 2, or 3-dimensional virtual arrays aiming primarily at simulations of wave equationsand partial di�erential equations; the simulation of neural �eld models was possible as well. Theprogramming made used of an ingenious C-dialet alled �Multi-C�, whih I still believe was abrilliant development: It was C, enrihed by a handful of parallel onstruts for parallel data-typesand data-transfer between nodes. Unfortunately the ompany WaveTraer died after a while andas it seems none of the other parallel hard- or software developers took over the oneptual ideasthe WaveTraer system inorporated.When single-CPU omputers got faster than the WaveTraer, whih happended surprisinglyquikly, Felix was ported to standard arhitetures, �rst Sun-Workstations under Sun-OS and129

130 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXearly Solaris versions, later Linux PCs (and even later Cygwin ...).More reently, omputer lusters got heap enough to beome available for aademi researh. Thisaused Felix to be (bak-)adapted to parallel environments again. The parallel Felix extensionstherefore are very new, meaning that they are neither omplete, nor very well developed, nor testedto a degree they should. So, be warned! In fat, they are under development and get extended asI �nd it useful for my researh.Felix supports three types of parallelism whih intentionally should be freely ombinable in appli-ations. These tehnologies are abbreviated as SSE, OpenMP, and MPI � the �rst is a hardwaretehnology for ode-vetorisation, that latter two software-standards for the programming of sym-metri multi-proessor omputers (SMP) and omputer grids and lusters, respetively. None ofthem requires that you atually have a speial parallel omputer. You an install the neessarysoftware on any Linux-box. This would allow you to develop parallel software on a Laptop or work-station, befor going big on a luster. In fat, even better, every modern Intel or AMD proessorsupports SSE intrinsially, and the dual-ore proessor omputers that urrently start onqueringthe market have two physial proessing units (SMP) per CPU-hip; they an naturally be pro-grammed using OpenMP (or MPI) if full use of the two proessor ores has to be made. Imaginethat two ores per CPU are just the beginning: Intel has already presented its �rst 80-ore waferprototype and others will follow; 4 or 8 ore CPUs will probably be available ommerially in justa very few years.9.2 SSE, BLAS, ATLASSSE is a hardware tehnology supported by eah mordern AMD or Intel CPU. It was originallyinvented by Intel to speed up graphis and audio appliations, ie., omputer games, video, and allthat kind of appliations ompanies really an make money with.SSE is indeed something like a o-proessor in every single modern Intel or AMD CPU (I amnot sure about MACs; but they swith to Intel CPUs as it seems). Eah suh proessor has amain entral proessing unit whih supports a ertain instrution set and is most ative duringthe exeution of any standard program. Virtually all modern CPUs in addition have a matho-proessor whih an be used for speeding up omputations of various mathematial funtionslike abs, sin, exp, and so on. Less well known is that sine the Intel 386??? family or AMD??? eah proessor has a further proessing unit independent of the main arithmeti-logial-unitand math-o-proessor that is useful for some kinds of parallel omputations appearing often ingraphis and audio proessing. This hardware piee on modern hips is programmed by using theso-alled SSE-extensions to the low-level assembler instrution set for that CPU.The SSE standard basially provides a speial register set on the CPU and aompanied assemblerinstrutions whih support some kind of math (but not a whole lot) supposed to be useful forgraphis and audio appliations. These register (by default 8 of them) are (at least on a 32 bitarhiteture) 128 bit wide, but the 128 bit an be divided into data-hunks of various size, ie.,singned and unsigned integers of 8, 16, or 32 bit size, but also �oating points of size 4 or 8 bytes(32 or 64 bits). Aordingly, these speial units on any modern Intel or AMD CPU (yes, I amprobably speaking about your omputer) are able to proess up to 16 8-bit integers, or 8 16-bitintegers, or 4 32-bit �oating points, or 2 64-bit �oating points (doubles) at one. This supportsa kind of �vetorisation�, operations an be done in parallel on several numbers (ie., a �vetor�)at one. In priniple every software ould make use of this vetorisation, and indeed, ommerial

9.2. SSE, BLAS, ATLAS 131ompilers as well as newer versions of the gnu ompilers are potentially able to ompile ode writtenin a higher programming language to make e�ient use of the SSE extensions. (A full desriptionof the SSE standard an be found in the respetive douments available from Intels web-pages.)Now, the �BLAS� is the so-alled �Basi Linear Algebra Subroutines�-pakage whih is available forLinux (MAC and Windows quite surely, too). It is a highly optimised pakage of linear algebra rou-tines suh as salar, matrix-vetor, and matrix-matrix multipliations. Some ommerial produtslike Matab make use of the BLAS, whih make their Matrix/Vetor routines very e�ient.A standard Linux distribution does not usually have by default an optimised BLAS, beause thatlibrary needs to be adapted to the preise target arhiteture. Most default Linux systems justhave a default library (ompiled for i368) that an be used by all pre-ompiled programs on 99.9%of all PC arhitetures that need the library. However, you an update your BLAS to speed upsuh programs. Most of the improved BLAS versions do make use of the SSE extensions.Two BLAS implementations are kind of standard at the moment: ATLAS- and Goto-BLAS.ATLAS is an �automatially tuned linear algrebra system� that provides a BLAS and some routineson top of that (a subset of �LAPACK�, a well-known �Linear Algebra Pakage� for solving linearequations, �nding eigen-vetors, et.). During ompilation of ATLAS-BLAS, out of a large number(sometimes several hundreds and more) of possible implementations for a partiular task likematrix-vetor multipliation the best performing routines for the target arhiteture are hosenand put into the library. These top-performing routines an make use of the SSE CPU extensionsand therefore the BLAS is mentioned under �parallel� Felix extensions.GotoBLAS is a seond BLAS implementation originally developed by Kazushige Goto. It is avail-able (ie optimised) for a variety of target arhitetures and generally said to be the fastest BLASimplementation available. It does use hand-optimised (SSE-)assembler ode.

 1

 10

 100

 1000

 10 100 1000 10000

xx
O

P
S

N

dgemv

"hand" u ($1):(($1*$1)/$2)
"handO2" u ($1):(($1*$1)/$2)

"blas" u ($1):(($1*$1)/$2)
"atlas" u ($1):(($1*$1)/$2)
"goto" u ($1):(($1*$1)/$2)

"ccc-atlas" u ($1):(($1*$1)/$2)
"ccc-goto" u ($1):(($1*$1)/$2)Figure 9.1: Typial performane for �oating point matrix-vetor multipliation on a Centrinolaptop and a 4-ore AMD opteron mahine (CCC) of di�erent raw and BLAS enhaned odes.x-axis indiates matrix/vteor-size. See text for further explanations.Figures 9.1 and 9.1 show the performane of matrix-vetor and matrix-matrix multipliations for

132 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIX

 1

 10

 100

 1000

 10000

 10 100 1000

xx
O

P
S

N

dgemm

"hand" u ($1):(($1*$1*$1)/$2)
"handO2" u ($1):(($1*$1*$1)/$2)

"blas" u ($1):(($1*$1*$1)/$2)
"atlas" u ($1):(($1*$1*$1)/$2)
"goto" u ($1):(($1*$1*$1)/$2)

"ccc-atlas" u ($1):(($1*$1*$1)/$2)
"ccc-goto" u ($1):(($1*$1*$1)/$2)Figure 9.2: Typial performane for �oating point matrix-matrix multipliation on a Centrinolaptop and 4-ore AMD opteron node (CCC) of di�erent raw and BLAS enhaned odes. x-axisindiates matrix/vteor-size.�oating point linear systems under di�erent onditions. �-goto� and ��atlas� have been runon two proessor dual ore AMD 27?? nodes (4*2GHz; 4*1MB ahe???); the other urves are fora single CPU Centrino Laptop (1.73GHz, 2MB ahe). �hand� and �handO2 denote naive ode(straight for-loops) either ompiled without or with O2 optimisation using g 4.0.2. �blas� usesthe default BLAS library on the Laptop, whih performs worse than no optimisation at all in mostof the studied range. �atlas� and �goto� indiate ATLAS and Goto-BLAS versions on the respetivesystems. Observe the quite impressive performane gain for optimised ode, and that, of ourse,the numbers for the Centrino-Laptop and 4-ore high-performane ompute node are not diretlyomparable. Interestinly enough for small system size the single-CPU Laptop is faster than the4-ore AMD node.Note: You don't need any BLAS library if you want to use Felix. It just an make some routinesfaster. At the moment the numbers of routines that potentially use BLAS-alls is atually morerestrited than it ould be. However, the �oating point salar-produts, and matrix-vetor produtsdo use a BLAS library if this has been spei�ed during ompile time of the Felix libraries.In order to let the Felix ore use BLAS-routines whereever this is implemented to date it su�es tospeify the -DWITH_BLAS �ag during ompile time. BLAS should not spawn threads (Goto-Blasan do this. It an be avoided using environment variables. See the repsetive BLAS douments.)9.3 OpenMPSymmetri multi-proessor omputers (SMP) are systems that omprise a number or entral pro-essing units but share a ommon memory pool. Eah proessor an aess the memory througha fast bus making memory aess and data exhange potentially very fast.Only sine relatively reently SMP omputers have been developed for the general market at

9.3. OPENMP 133reasonable pries. Meanwhile, however, dual- and quad-proessor omputers are available at quitelow pries and dual-ore proessors indiate a new trend that even aims at putting two (or more)proessing units on the same hip. There are already many dual-ore mahines available, inludingLaptops. These all are SMP omputers. Linux should support them automatially if you installan SMP-kernel.OpenMP is an industry standard that supports programming SMP omputers. It is not the mostgeneral approah for parallel programming (f., e.g., onepts like Posix threads, PVM, or MPI),but for some kinds of appliations it is very simple to use and an provide good speed ups. Thisinludes neural network appliations.The most typial example for OpenMP-parallisation is �outer-loop�-parallelisation. It often ispossible in numerial ode where the same operations have to be performed on a large number ofunits. This is typially done in a big �outer� loop over the elements. OpenMP provides simpleonstruts to ut suh loops into piees of roughly the same size and distribute them over theavailabe proessors. In priniple as single additional statement on top of an existing for-loop anbe enough to parallelise it, e.g., a statement likefor (i=0; i<N; i++)x[i℄ = fun(i);ould result in# pragma omp for private(i)for (i=0; i<N; i++)x[i℄ = fun(i);This seond version is automatially ompiled into ode distributed over the available proessors.The variable i is delared private, beause eah proess will need an independent opy of it. Thereare other onstruts available for more general programming onstruts than for-loops. There arealso serious onstraints that have to be taken into aount when parallelising ode � for short, notwo proesses should ever try to potentially update the same variable at the same time (for thatreason i has to be delared private in the pragma-statement; of ourse the funtion �fun()� also issupposed to not assign values to variables possibly overlapping between proesses. If this happens(a so-alled �rae-ondition�) the results of the omputation are unde�ned. There are many ases,however, where assignments of variables are onstraint to ontiguous regions, e.g., in the range ofa for-loop. In that ase OpenMP-parallelisation is in general save to use. For further details, wehave to refer the reader to the OpenMP spei�ation, handbooks, and tutorials available in theWeb.A large number of funtions in the Felix ore automatially make use of OpenMP parallelisation ifthis is spei�ed during ompile time. It is also possible to use OpenMP maros in the user de�nedtop-level init() and step() funtions. It should, however, be avoided to all already parallelised Felixroutines in parallelised regions in the top-level funtions. Although the results would (probably) bewell-de�ned (up to possible rae-onditions), the ode would spread an unneessary large numberof threads. Spreading threads for parallel omputation always needs some overhead. It is thereforeusually not advisable to parallelise very simple loops or to spawn more threads than proessorsare available.

134 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIX9.4 MPIMPI, the �Message Passing Interfae�, is an industry standard for ommuniation between pro-esses. These proesses an run on the same or di�erent omputers, no matter where they areloated (physial loation only impats the ommuniation speed). Thus, MPI is useful for om-puter lusters and grids.Simple MPI programs make use of a handful of statements only, although the full MPI standardde�nes over 120 di�erent funtions. These most simple ommands just set up a logial network,and send and reeive messages between nodes. For MPI-details in programming and usage we referthe reader to the many tutorials about MPI programming available on the Web. The followingassumes basi knowledge about MPI programming.Felix provides very simple onstruts that don't do more than exhanging pakages of various typesof variables between proesses.The general philosophy is to run a number of opies of the same program on a number of availablenodes (e.g., with mpirun -np 3 programname in the usual way to run MPI programs). Eah opyhas assoiated with it a number �myrank� that identi�es it uniquely. Inside eah running proessode an therefore be exeuted onditionally depending on the rank of the proess. After eahsimulation step, variables that are omputed inside one proess, but required in the next in anotherproess have then to be ommuniated using MPI.For that purpose every MPI-parallel Felix programm has to de�ne a top-level routine �fmpi-onnetions()� that spei�es whih data has to be ommuniated. For eah variable to be trans-mitted between two nodes a onnetion has to be setup usingvoid fmpi_onnet(int node1, long var1,int type, int size,int node2, long var2);or the equivalent maro CONNECT (see example below).�node1, var1� speify the soure variable (typially an array of type CHAR, INT, or FLOAT, butan be a pointer to suh an array, too, see below)�node2, var2� is the target variable (must be an array, no POINTER type)�size� is the number of elements in the array that have to be transmitted�type� is the type of the data. The data basetype must be one of CHAR_TYPE, FLOAT_TYPE,or INT_TYPE. Note that Felix Vetors and Matries are FLOAT_TYPE and bVetorsCHAR_TYPE, suh that it is admissable to speify the type as, e.g., bVECTOR or MATRIX.The basetype of the target variable must math that of the soure. However, the soure an inaddition be a pointer type (similar as for display variables).All onnetions have to be de�ned in a top-level funtion fmpi_onnetions(), e.g., like this:void fmpi_onnetions(){ CONNECT(0, var1, VECTOR, N, 1, var2);CONNECT(1, z1, POINTER TO bVECTOR, N, 2, z1);

9.5. HYBRID MPI/OPENMP CODE 135}The �rst statement onnets the �oat vetor var1 of size N on proessor 0 to var2 on proessor 2.The seond statement uses a POINTER variable, whih gets dereferened just befor transmissionto a bVetor of size N whih is then transferred from proessor 1 to variable z1 on proessor 2.It is possible that soure and destination are the same variables, but note that they will residenonetheless on di�erent mahines.Furthermore, if the same ode is ompiled using serial Felix, the CONNECT maro translates toempty ode (but not the funtion, so use the maro!). Thereby, the ode is disarded; nothingneeds to be ommuniated if the program runs on a single proessor. This supports writing odethat an be ompiled on serial and parallel mahines without hanging a singe line. Of ourse,using this feature needs a areful design of the ode in order to have the serial and parallelodes onsistent. There is typially at least a one-simulation-step delay introdued, beause inthe parallel versions ommuniation ours only after eah simulation step, whereas in a serialprogram updated variables are immediately available.9.5 Hybrid MPI/OpenMP CodeMPI and OpenMP an be ombined in the same program.The ommon free MPI versions (MPICH and LAM) are not threadsafe (most ommerial imple-mentations are). This means, if you use MPI within OpenMP parallelised regions the results areunde�ned.Nonetheless, writing hybrid MPI/OpenMP-programs is possible, if are is taken of alling MPI-onstruts only in OpenMP serial parts of the ode. In that ase only a single thread is doing theMPI-ommuniation, whih is safe.Hybrid parallelism is possible in Felix. For that a number of MPI-proesses are spawned thatommuniate as explained in setion 9.4, but eah of these proesses in turn an spawn their ownOpenMP threads. This is useful on SMP lusters with several CPUs per node. Communiationbetween nodes an that way be done using MPI, but on the same node using threads and sharedmemory. Beause ommuniation via shared memory is usually faster than via a network thisshould result in speed bene�ts.The following ode is NOT Felix but just a simple C-example that demonstrates the priniple.// ompi. -- simple test program for hybrid MPI/OpenMP paralellism# inlude <stdio.h># inlude <omp.h> // inlude OpenMP header# inlude <mpi.h> // inlude MPI header# define NUMTHREADS 3 // set number of OpenMP threads heremain(int arg, har *argv[℄){ int numtasks, rank;

136 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXMPI_Init(&arg, &argv);MPI_Comm_size(MPI_COMM_WORLD, &numtasks);MPI_Comm_rank(MPI_COMM_WORLD, &rank);omp_set_num_threads(NUMTHREADS);# pragma omp parallel{ printf("MPI rank %d OMP thread %d\n", rank, omp_get_thread_num());} MPI_Finalize();}The ode needs to be ompiled with an OpenMP-apable ompiler (Intel, g 4.2 or higher) andlinked against the proper MPI-libs (see also setion A for further low-level info). It an then berun using, e.g., mpirun -np 2 ompi if �ompi� is the name of the exeutable. The number of MPIproesses in the example would be 2 (spei�ed by �-np 2� in the mpirun all), eah of whih spawnsNUMTHREADS OpenMP threads. Eah thread prints its MPI rank and thread number and exits.Note that instead of setting the number of OpenMP threads expliitly one ould also use theenvironment variable OMP_NUM_THREADS. This is quite usual and avoids having to reompilethe ode for di�erent thread numbers. However, even if OMP_NUM_THREADS is set in your.bashr, it is not neessarily exported to all target mahines on all systems.9.6 Parallelising Serial Felix CodeSerial ode is ompiled using the standard �Felix�-sript, whih links against libf (ore routines)and libxf (XView extensions). For parallel ode use the �pFelix�-sript. This links against libpf.Although libf and libxf are for serial ode they an possibly make use of BLAS or OpenMPdepending on how they have been ompiled.The parallel Felix lib �libpf� must be used for MPI and hybrid MPI/OpenMP.9.6.1 OpenMP and p�xTo make life easier a ouple of maros have been delared for writing parallelised ode. If you usethem you an even write programs that an be ompiled and run with and without OpenMP.# ifdef WITH_OMP# define OMP_THREADS(_n) omp_set_num_threads(_n);# define OMP_FOR(_x) ... // this shouldn't our beause preFelix removes OMP_FORs# define OMP_ONLY(_x) _x# else# define OMP_THREADS(_n)# define OMP_FOR(_x) for(_x)

9.6. PARALLELISING SERIAL FELIX CODE 137# define OMP_ONLY(_x)# endifObserve that depending on whether the �ag WITH_OMP is ative during ompile time (usuallyset in the Make�le) the maros expand into di�erent ode. If the Felix-sript is used for ompilationWITH_OMP will (usually) not be de�ned, but for the pFelix sript it will.Note that these settings only apply to your soure ode. Whether OpenMP is used in �libf�, theFelix ore library, depends on the value of OpenMP at ompile time of the libraries, ie. in theMake�le in the Felix soure diretory. In the standard installation, libf would not ontain OpenMPparallelised ode.There are several problems with the OMP_FOR maro: Atually this must have the formOMP_FOR(<var> = <ode>)< single statement or ode-blok enlosed by {}>It should expand into#pragma omp parallel for default(shared) private(<var>)for(<var> = <ode>)<single statement or ode-blok enlosed by {}>The ode segments not expliitely spei�ed, of ourse, must translate into valid C-ode.The �rst problem now is that the #pragma phrase annot be inserted by the preproessor (at leastI don't kow how to do it with maros). Instead a very simple preproessor all �p�x� is used. Thisdoes nothing but searhing a �le for the string OMP_FOR and replaing the string in the senseabove. �p�x� is alled, when the Felix- or pFelix-sripts are exeuted. It generates a temporary�le, whih is then ompiled into an exeutable.The seond problem with OMP_FOR is that the user has to make sure that the soure-ode doesnot ontain assignments to memory loations whih are potentially exeuted simultaneously indi�erent threads. The values of suh variables are unde�ned, but there will be no expliit warningor error message. Suh variables in general need to be delared �private� in the repretive enlosingOpenMP-pragma or proteted by other means (see OpenMP handbooks and tutorials). The onlyvariable that is expliitly delared private if the OMP_FOR maro is used, is the run-index of thefor-loop. This su�es in many situations I have experiened over the years. However, if you haveode where some threads would potentially write/hange the same shared memory loations, youan not use OMP_FOR, but have to use the original OpenMP pragmas.Example: The following ode is buggyint i, j;Matrix x; // size nx * ny; alloated elsewhere...OMP_FOR(i=0; i<nx; i++)for (j=0; j<ny; j++)x[i*nx+j℄ = ... something ... ;

138 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXThe mistake is that j is a shared variable (by default). If several threads exeute the outer for-loop, they all use the same opy of j (in shared memory), whih they update asynhronously. Thissituation ours often in simulations of two-dimensional �eld model. A simple ure isint i;Matrix x; // size nx * ny; alloated elsewhere...OMP_FOR(i=0; i<nx; i++){ int j;for (j=0; j<ny; j++)x[i*ny+j℄ = ... something ... ;}Here the variable j is loal to eah thread and an only be hanged by the respetive thread. xis also a shared variable whih gets values assigned, but note that the entries in that matrix aredisjoint between threads, beause di�erent threads operate on di�erent slies of the matrix.9.6.2 MPIA number of maros support writing MP-ode.# ifdef WITH_MPI# define RANK(_x) if(myrank==(_x))# define COND(_x) if(_x)# define MPI_ONLY(_x) _x# else# define RANK(_x) // if(myrank==(_x))# define COND(_x) // if(_x)# define CONNECT(_x1,_x2,_x3,_x4,_x5,_x6)# define MPI_ONLY(_x)# endifextern int myrank;Observe that these maros expand to empty ode when ompiled serially (ie, if the ompiler �agWITH_MPI is not set (usually in the Make�le, see ??))RANK and COND support onditional exeution of ode in onjuntion with the global variable�myrank� whih holds the unique MPI-rank of eah proess.MPI_ONLY() an be used to enlose ode that has to be exeuted only in an MPI environment(see example below.)9.6.3 Example: Two interating Neuron PoolsThe ode in this subsetion simulates two pools of leaky-integrate-and-�re neurons, whih interatmutually. It dupliates the variables and ode from the previously used inf. example program,but adds some ode for the interation and its ontrol slider in the GUI.

9.6. PARALLELISING SERIAL FELIX CODE 139The program is shown beause it demonstrates how to write ode using the maros explained inthe previous setion 9.6.2 that an either be ompiled serially with GUI, but for parallel exeutionusing MPI (or MPI/OpenMP) as well. The advantage would be that one an onveniently test asmall version of the program with GUI, but run saled-up large versions on a parallel omputerwithout hanging a single line of ode. Both versions ould even use the same environment �lesfor parameter settings.The idea is to ut the serial ode into piees that an be distributed aross a number of MPIproesses. The RANK() or COND()-maros are then used to selet the respetive ode bits forexeution in the individual proesses. In order to set up the model properly one has to exhangedata omputed in one thread but needed in others, too. This is done by alls to the onnet()-funtion in a top-level routine fmpi_onnetions(), see setion 9.4.The RANK, COND, and CONNECT-maros expand (basially) into empty ode if the so preparedprogram is ompiled serially. Using the maros appropriately, possibly in onjution with the othermaros in setions 9.4 and 9.3, an result in ode that an be ompiled serially and for parallelexeution.Here is one suh magi odes (some parts have been ut out (mainly things related to display andoutput); the full soure ode should be in the Felix expl/parallel diretory):// infpairmpi.# inlude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time onst. */Vetor pot1, pot2; /* potentials */Matrix J1, J2; /* onnetions */bVetor o1, o2; /* vetor of spikes */Vetor v1, v2; /* for help */int stp=0;...BEGIN_DISPLAY....BEGIN_OUTPUT....void fmpi_onnetions(){ CONNECT(0, o1, bVECTOR, N, 1, o1);CONNECT(1, o2, bVECTOR, N, 0, o2);}int main_init(){

140 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXrandomize(time(NULL) + 100*myrank); // not sure this safe ???????????????SET_STEPSIZE(.5)RANK(0){ J1 = Get_Matrix(N, N);pot1 = Get_Vetor(N);v1 = Get_Vetor(N);}o1 = Get_bVetor(N);RANK(1){ J2 = Get_Matrix(N, N);pot2 = Get_Vetor(N);v2 = Get_Vetor(N);}o2 = Get_bVetor(N);}int init(){ int i;RANK(0){ Clear_bVetor(N,o1);Clear_Vetor(N,v1);for (i=0; i<N; i++)pot1[i℄ = equal_noise(); // random initialisationMake_Matrix(N, N, J1, 1./N , .4/N);}RANK(1){ Clear_bVetor(N,o2);Clear_Vetor(N,v2);for (i=0; i<N; i++)pot2[i℄ = 0; // no random initialisation !Make_Matrix(N, N, J2, 1./N , .4/N);}stp=0;}int step(){ int i;RANK(0){

9.6. PARALLELISING SERIAL FELIX CODE 141for (i=0;i<N;i++)leaky_integrate (tau, pot1[i℄,0.01*(sinput + sJ*v1[i℄ + sJ*o2[i℄+ snoise*gauss_noise()));Fire_Reset(N, pot1, 1.0, 0.0, o1);bMult(N, N, J1, o1, v1);}RANK(1){ for (i=0;i<N;i++)leaky_integrate (tau, pot2[i℄,0.01*(sinput + sJ*v2[i℄ + sJ*o1[i℄+ snoise*gauss_noise()));Fire_Reset(N, pot2, 1.0, 0.0, o2);bMult(N, N, J2, o2, v2);}stp++;MPI_ONLY(// this ensures we don't run forever on the lusterif (stp >= 500){ MPI_Finalize();exit(0);})}More explanations????????The serial version of the ode is ompiled with �Felix infpairmpi� and run with "infpairmpi" fromthe ommand line as usual. The GUI should pop up as for standard serial Felix appliations. Ifdata storage is swithed on, data of the �rst pool is written to �le "pot1". Data of the seond poolis not stored. The simulation runs until it is killed in the GUI.The parallel version is ompiled with "pFelix infpairmpi" and, e.g., run with "mpirun -np 2 inf-pairmpi" (It might be that you have to use other ways to run programs on your parallel omputer,e.g., if the system adminstrator requires using a job sheduler). The parallel exeutable will notpop up a GUI. Data of the �rst pool will be written to "pot1-0" (by the �rst proess); data of theseond pool will not be saved, beause no output �les have been delared for the seond proess.The simulation exits after a ertain number of steps (500).

142 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIX

Chapter 10Example Programs
10.1 Leaky-Integrate-and-Fire Neural Network/* Example-program: inf. */# inlude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time onstant */float I = 1.1, /* Common input to units */J0 = 1.1, /* Coupling strength */sigma = .1; /* noise level */Vetor x; /* potentials */Matrix J; /* onnetions */bVetor z; /* vetor of spikes */Vetor v; /* auxiliary variable */NO_DISPLAYNO_OUTPUTint main_init(){ /* init. random number generator and stepsize */randomize(time(NULL));SET_STEPSIZE(.1)/* alloate vetors and matries */J = Get_Matrix(N, N);x = Get_Vetor(N);z = Get_bVetor(N);v = Get_Vetor(N); 143

144 CHAPTER 10. EXAMPLE PROGRAMS}int init(){ int i;Clear_bVetor(N,z);Clear_Vetor(N,v);/* init. potentials with random values between 0 and 1 */for (i=0; i<N; i++)x[i℄ = equal_noise();/* init. J with gaussian distr. random numbers */Make_Matrix(N, N, J, 1.0/N, .4/N);}int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate (tau, x[i℄,I + J0*v[i℄ + sigma*gauss_noise());Fire_Reset(N, x, 1.0, 0.0, z); // firing and resetbMult(N, N, J, z, v); // redistribution of spikes}10.2 Coupled Chaoti Roessler OsillatorsIntegrates di�erential equations with Runge-KuttaUses xy-plots/** roessler. -- oupled haoti Roessler osillators* or asymmetri damped harmoni osillators*/#inlude "felix.h"# define STEPSIZE .01float t;# define N 64 /* number of units */# define n 3 /* order of diff.system */

10.2. COUPLED CHAOTIC ROESSLER OSCILLATORS 145Vetor x; /* x1 ... xN, y1 yN, z1 zN */Vetor dxdt; /* derivatives */Vetor domega; /* used to give osillators a gradient in properties */Matrix J; /* onnetions (if not meanfield ouplings) *//* diffusive or random */Vetor fields; /* oupling fields; either meanfield or diffusiveor random onnetivity */float xx1, yy1;SwithValue sos = OFF; /* Roessler or damped harmoni osillators */SwithValue smean = ON; /* mean field oupling */SwithValue sdiffusive = OFF; /* diffusive oupling */SwithValue swrand = OFF; /* random onnetions */SliderValue somega = 1000;SliderValue sdelomega = 100;SliderValue sepsilon = 100;SliderValue sa = 150;BEGIN_DISPLAYSWITCH("osi type", sos)SWITCH("mean", smean)SWITCH("diffusive", sdiffusive)SWITCH("random", swrand)SLIDER("mean omega", somega, 500, 1500)SLIDER("delta omega", sdelomega, 0, 500)SLIDER("oupling strength", sepsilon, 0, 500)SLIDER("a", sa, 0, 500)WINDOW("signals")RASTER("x", AR, AC, x, VECTOR, N, 0, 0.0, 1.0, 2)WINDOW("MF-xy-plot")PLOT("x-y", AR, AC, &xx1, VECTOR, 1, 0, 0, 0, -20., 20.,&yy1, VECTOR, 1, 0, 0, 0, -20., 20., 2);WINDOW("xy-plot")PLOT("x-y", AR, AC, x, VECTOR, N, n, 0, 0, -20., 20.,x, VECTOR, N, n, 0, 1, -20., 20., 2);WINDOW("x(t)")GRAPH("x1", AR, AC, x, VECTOR, N, 0, 0, 0, -20, 20)GRAPH("x2", AR, NC, x, VECTOR, N, 0, 1, 0, -20, 20)

146 CHAPTER 10. EXAMPLE PROGRAMSGRAPH("y1", NR, C0, &x[N℄, VECTOR, N, 0, 0, 0, -20, 20)GRAPH("y2", AR, NC, &x[N℄, VECTOR, N, 0, 1, 0, -20, 20)GRAPH("z1", NR, C0, &x[2*N℄, VECTOR, N, 0, 0, 0, 0., 20)GRAPH("z2", AR, NC, &x[2*N℄, VECTOR, N, 0, 1, 0, 0., 20)WINDOW("MF")GRAPH("x1", AR, AC, &xx1, VECTOR, 1, 0, 0, 0, -20., 20.)GRAPH("x2", AR, NC, &yy1, VECTOR, 1, 0, 0, 0, -20., 20.)END_DISPLAYNO_OUTPUTint main_init(){ SET_STEPSIZE(STEPSIZE)randomize(time(NULL));J = Get_Matrix(N,N);x = Get_Vetor(N*n);dxdt= Get_Vetor(N*n);domega = Get_Vetor(N);fields = Get_Vetor(N);}int init(){ int i;Clear_Vetor(N, domega);Clear_Vetor(N, fields);Clear_Vetor(N*n, x);Clear_Vetor(N*n, dxdt);t = 0.0;for (i=0 ; i<N; i++){ domega[i℄ = -.5+(1.*i)/N;fields[i℄ = 0.0;x[i℄ = 4.;x[N+i℄ = 4;}Clear_Matrix(N,N, J);Make_Matrix(N, N, J, 1, 1);}

10.2. COUPLED CHAOTIC ROESSLER OSCILLATORS 147void derivs(x,y,dfdx)float x;float *y;float *dfdx;{ int i,j;float omeg,a;a = .001*sa;for (i=0;i<N;i++){ if (sos) /* original roessler */{ omeg = .001*(somega + sdelomega*domega[i℄);dfdx[i℄ = -omeg*y[N+i℄ - y[2*N+i℄ + fields[i℄;dfdx[N+i℄ = omeg*y[i℄ + a*y[N+i℄;dfdx[2*N+i℄ = .4+y[2*N+i℄*(y[i℄-8.5);}else /* antisymm. undamped harm.os. */{ omeg = .001*(somega + sdelomega*domega[i℄);dfdx[i℄ = a*y[i℄ -omeg*y[N+i℄ - y[2*N+i℄ + fields[i℄;dfdx[N+i℄ = omeg*y[i℄ + a*y[N+i℄;dfdx[2*N+i℄ = .4+y[2*N+i℄*(y[i℄-8.5);}}}int step(){ int i;float mf,epsfa;stati float tlast=-1,phi1;rk4(x, dxdt, N*n, t, step_size, x, derivs);epsfa = .001*sepsilon;if(swrand) /* different amplitude saling in alternatives ... */{ Mult(N, N, J, x, fields); /* good luk; first omponents ofsystems are first N vals of x */epsfa /= N;}else if(sdiffusive) /* open boundaries */{ fields[0℄ = x[1℄-x[0℄;

148 CHAPTER 10. EXAMPLE PROGRAMSfor(i=1;i<N-1;i++)fields[i℄ = x[i+1℄+x[i-1℄-2*x[i℄;fields[N-1℄ = x[N-2℄-x[N-1℄;}else if (smean) /* mean field */{ mf = Sum(N, x)/(float)N;for(i=0;i<N;i++)fields[i℄ = mf;}else{ for(i=0;i<N;i++)fields[i℄ = 0.;}for(i=0;i<N;i++) /* sale with oupling strength */fields[i℄ *= epsfa;xx1 = Sum(N, x)/N;yy1 = Sum(N, &x[N℄)/N;t+=step_size;}10.3 Homogeneous Fields/* ei-field. -- two-dimensional exitatory/inhibitory neural field model* probabilisti spiking neurons* stimulus is a single long moving bar or two bars moving* in parallel or antiparallel*/# inlude <felix.h># define tau1 3.# define tau2 5.0long stp = 0;float sim_time, noise_fa;Layer input,pot1, pot2,f1, f2;SpikeLayer out1, out2;# define L_SIZE11 8.0 /* FWHM in olumns (float) */# define M_SIZE11 8 /* Kernel dimension (int) */

10.3. HOMOGENEOUS FIELDS 149# define FM_SIZE11 (2*M_SIZE11+1)# define L_SIZE12 8.0 /* FWHM in olumns (float) */# define M_SIZE12 4 /* Kernel dimension (int) */# define FM_SIZE12 (2*M_SIZE12+1)# define L_SIZE21 8.0 /* FWHM in olumns (float) */# define M_SIZE21 4 /* Kernel dimension (int) */# define FM_SIZE21 (2*M_SIZE21+1)UniKernel kernel11,kernel12,kernel21;Layer link11,link12,link21;# define barlength 25# define barskip 0 /* 5 */# define barsigma 7# define BARINITOFFS 14.double yy1, yy2;int bardiretion = 1;SwithValue santi = OFF;SwithValue sent = OFF;SliderValue sI1 = 85;SliderValue sI2 = 85;SliderValue sI = 85;SliderValue snoise = 20;SliderValue sJ11 = 100;SliderValue sJ12 = 40;SliderValue sJ21 = 600;SliderValue sspeed = 0;BEGIN_DISPLAYSWITCH("anti", santi)SWITCH("enter", sent)SLIDER("Signal Input", sI, 0, 1000)SLIDER("E ", sI1, -200, 200)SLIDER("I ", sI2, -200, 200)SLIDER("noise", snoise, 0, 1000)SLIDER("J11", sJ11, 0, 500)SLIDER("J12", sJ12, 0, 300)SLIDER("J21", sJ21, 0, 1000)

150 CHAPTER 10. EXAMPLE PROGRAMSSLIDER("speed", sspeed, 0, 1000);WINDOW("Exitation")IMAGE(" input ", AR, AC, input, LAYER, xsize, ysize, 0.0, 2.1, 1)IMAGE(" pot1 ", AR, NC, pot1, LAYER, xsize, ysize, -.5, 1.0, 1)IMAGE(" out1 ", NR, C0, out1, SPIKE_LAYER, xsize, ysize, 0.0, 1.0, 1)WINDOW("Inhibition")IMAGE(" input ", AR, AC, input, LAYER, xsize, ysize, 0.0, 2.1, 1)IMAGE(" pot2 ", AR, NC, pot2, LAYER, xsize, ysize, -.5, 1.0, 1)IMAGE(" out2 ", NR, C0, out2, SPIKE_LAYER, xsize, ysize, 0.0, 1.0, 1)WINDOW("Kernels")IMAGE(" k11", AR, AC, kernel11, CONSTANT LAYER,FM_SIZE11, FM_SIZE11, 0.0, 1., 5)IMAGE(" k12", NR, AC, kernel12, CONSTANT LAYER,FM_SIZE12, FM_SIZE12, 0.0, 1., 5)IMAGE(" k21", NR, AC, kernel21, CONSTANT LAYER,FM_SIZE21, FM_SIZE21, 0.0, 1., 5)END_DISPLAYBEGIN_OUTPUTOUTFILE("phi1")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SAVE_VARIABLE("phi1 (pot1)", pot1, MATRIX, xsize, ysize, SKIP | GRID ,TSkip(2), Grid(26, xsize, 100, 32, ysize, 100))OUTFILE("phi2")SET_SAVE_FILE_FLAG(THISFILE, ASCII, ON)SAVE_VARIABLE("phi2 (pot2)", pot2, MATRIX, xsize, ysize, SKIP | GRID ,TSkip(2), Grid(38, xsize, 100, 32, ysize, 100))END_OUTPUTstati void init_bars(enterflag)int enterflag;{ if (enterflag) /* enter */{ yy1 = yy2 = ysize/2;}else{

10.3. HOMOGENEOUS FIELDS 151yy1 = BARINITOFFS;if (santi)yy2 = ysize-BARINITOFFS;elseyy2 = BARINITOFFS;bardiretion = 1;}}stati void move_bars(){ if (sent){ init_bars(1);return;}if (yy1 > ysize-BARINITOFFS ||yy1 < BARINITOFFS)bardiretion *= -1;yy1 += .001*bardiretion*sspeed;if (santi)yy2 -= .001*bardiretion*sspeed;elseyy2 += .001*bardiretion*sspeed;}stati void smooth_bars(out)Matrix out;{ int i, j, s1, s2, s3, s4;stati double fa=0;double h;if (fa==0) fa = -.5/(float)(barsigma*barsigma);s2 = (xsize - barskip)/2;s1 = s2-barlength;s3 = (xsize + barskip)/2;s4 = s3 + barlength;for (j = 0; j<ysize; j++){ h = elem(out, j, s1, xsize) = triangle(fa * (yy1-j)*(yy1-j));for (i=s1+1; i<s2; i++)elem(out, j, i, xsize) = h;h = elem(out, j, s3, xsize) = triangle(fa * (yy2-j)*(yy2-j));for (i=s3+1; i<s4; i++)

152 CHAPTER 10. EXAMPLE PROGRAMSelem(out, j, i, xsize) = h;}}int main_init(){ int i;randomize(time(NULL));input = Get_Layer();pot1 = Get_Layer();f1 = Get_Layer();out1 = Get_SpikeLayer();pot2 = Get_Layer();f2 = Get_Layer();out2 = Get_SpikeLayer();link11 = Get_Layer();link12 = Get_Layer();link21 = Get_Layer();kernel11 = Get_UniKernel(FM_SIZE11, FM_SIZE11);kernel12 = Get_UniKernel(FM_SIZE12, FM_SIZE12);kernel21 = Get_UniKernel(FM_SIZE21, FM_SIZE21);Set_Cir_Fun_Uni_Kernel(kernel11, FM_SIZE11, FM_SIZE11, gaussian,1., L_SIZE11, 0.);Set_Cir_Fun_Uni_Kernel(kernel12, FM_SIZE12, FM_SIZE12, gaussian,1., L_SIZE12, 0.);Set_Cir_Fun_Uni_Kernel(kernel21, FM_SIZE21, FM_SIZE21, gaussian,1., L_SIZE21, 0.);SET_STEPSIZE(0.5);noise_fa = sqrt(24.0/step_size);}int init(){ int i,j;stp = 0;Clear_Layer(input);init_bars(sent);smooth_bars(input);Clear_Layer(pot1);

10.3. HOMOGENEOUS FIELDS 153Clear_SpikeLayer(out1);Clear_Layer(pot2);Clear_SpikeLayer(out2);}int step(){ int i,j,k;if (stp >= 36050)exit (0);/********************//* ompute stimulus *//********************/move_bars();smooth_bars(input);/********************//* ompute dynamis *//********************//* exit. units */for (i=0; i<ysize; i++){ for (j=0; j<xsize; j++){ leaky_integrate(tau1, elem(pot1, i, j, xsize) ,0.001*(sI1 + sI*gauss_noise()*elem(input , i, j, xsize)+ sJ11*elem(link11,i,j, xsize)- sJ12*elem(link12,i,j, xsize)+ (snoise*noise_fa)*(equal_noise() - 0.5))) ;elem(f1, i, j, xsize) = RAMP(elem(pot1, i, j, xsize));elem(out1, i, j, xsize) = PROB_FIRE(elem(f1, i, j, xsize));} /* END j */for (j=0; j<xsize; j++){ leaky_integrate(tau2, elem(pot2, i, j, xsize) ,0.001*(sI2 + sJ21*elem(link21,i,j, xsize)+ (snoise*noise_fa)*(equal_noise() - 0.5))) ;elem(f2, i, j, xsize) = RAMP(elem(pot2, i, j, xsize));elem(out2, i, j, xsize) = PROB_FIRE(elem(f2, i, j, xsize));} /* END j */} /* END i */bConvolute_2d_Uni(out1, kernel11, xsize, ysize, FM_SIZE11, FM_SIZE11, link11);

154 CHAPTER 10. EXAMPLE PROGRAMSbConvolute_2d_Uni(out1, kernel21, xsize, ysize, FM_SIZE21, FM_SIZE21, link21);bConvolute_2d_Uni(out2, kernel12, xsize, ysize, FM_SIZE12, FM_SIZE12, link12);stp++;} /* END of step() */

Appendix AInstallation Guide
This appendix desribes how to install the Felix simulation tool on serial and parallel omputers.Laking free time I never implemented proper autoon�guration failities. Therefore installationis quite low-level. However, a number of people have been able to install Felix on serial Linuxboxes following the instrutions below. Windows/Cygwin installations as well as installation ofthe parallel Felix extension an be a little more triky.The �rst part of this appendix desribes the installation of the serial Felix version. This by defaultomprises the graphial user interfae. Compiling Felix for parallelised ode is desribed in the2d setion. If you plan to use MPI, the GUI will not be available. The graphis works, however,with the SSE-BLAS and OpenMP ode.The following assumes that $FELIXDIR is the top-level diretory of your Felix installation.There should be a number of subdiretories (after unpaking)$FELIXDIR/sr : Soure ode of Felix kernel routines and libraries$FELIXDIR/xview : Sore ode of X11 extensions used for the Felix-GUI$FELIXDIR/lib : Felix libraries (reated during ompilation)$FELIXDIR/expl : A number of example appliations$FELIXDIR/tools : A number of tools to transform Felix data �les (e.g., for reating rasterplots and gifs)To ompile the Felix ore only the ode in $FELIXDIR/sr is needed. If you want the GUI you needin addition the ode in $FELIXDIR/xview. These diretories omprise several relevant Make�les$FELIXDIR/sr/Make�le : main soure ode (ompilation of serial lib libf)$FELIXDIR/xview/Make�le : graphis extensions for X11 (ompilation of serial lib libxf)$FELIXDIR/Make�le : master Make�le to ompile a serial appliation (envoked by the "Felix"ommand)$FELIXDIR/sr/Make�le.parallel : main soure ode (ompilation of parallel lib libpf)155

156 APPENDIX A. INSTALLATION GUIDE$FELIXDIR/Make�le.parallel : master Make�le to ompile a parallel appliation (envokedby the "pFelix" ommand)The �rst three Make�les are required for ompiling the serial libraries and ode; the seond twofor parallel libs and ode.A.1 Standard (serial) InstallationA.1.1 PrerequisitesThe Graphial user interfae is built on X11 and a pretty old Widget tool alled XView. XView isused for historial reasons. It was originally developed by Sun Mirosystems who eased supportingit in about 1995, when Motif beame more dominant. It is still possible to get XView soures andbinaries, but this gets more and more di�iult (in partiular I don't know of any 64 bit pakages).Compilation of Felix presupposes an installed X11R6 pakage assumed to be in the standardloation: /usr/X11R6 . X11R6 is by default ontained in virtually all Linux installations. If thisis the wrong path it has to be orreted in the Make�les, i.e., those in ../sr, ../xview and thetop-level make�le.The Felix GUI further requires installed XView libraries libolgx and libxview, e.g., in/user/openwin/libFelix further requires the XView development kit for inlude �les, e.g., in /usr/openwin/inludeIt is possible to set an environment variable OPENWINHOME pointing at the loation of theXView libs and inlude �les during ompilation.Redhat/SuSe/Cygwin users: An XView rpm an be downloaded herehttp://www.physionet.org/physiotools/xview/Ubuntu/Kubuntu/Debian users: The XView pakages are in some (K)ubuntu repositories.A.1.2 Serial Felix Installation1. Create the Felix top-level diretory ($FELIXDIR) where you want it.Default would be something like $HOME/felix.2. Goto the target diretory $FELIXDIR and unpak and untar sim.tar.gz in it by alling �tar-xzf sim.tar.gz�3. Set environment variables for your shell. For the bash-shell (default in many Linuxes), addthe following in $HOME/.bashr :export OPENWINHOME="/usr/openwin"export FELIXDIR="\$HOME/felix"export LD_LIBRARY_PATH="\$FELIXDIR/lib:/usr/X11R6/lib:\$LD_LIBRARY_PATH"alias Felix="\$FELIXDIR/Felix"

A.2. INSTALLATION OF PARALLEL FELIX 157The preise loations of the diretories in the above exports possibly need to be adapted toyour own �le hierarhy. It might also be that /usr/X11R6/lib is already in your path or thatthe libs it ontains are aessible by other means (in that ase you an omitt it in the exportabove).Beside that make sure "." (urrent diretory) is in PATH (type eho $PATH in a shell andlook for it). If it is not there you will have to type ./<progname> to run programs. Just<progname> would fail with �permission denied� or �program not found� or a similar errormessage.4. Dont forget to exeute �soure .bashr� in your running (bash-)shell after setting the envi-ronment variables. Alternatively, you an start a new shell so that the environment variablesget set orretly.5. Run �make install� in $FELIXDIR .If everything goes well this should ompile the soure ode in $FELIXDIR/sr and $FE-LIXDIR/xview, reate the respetive Felix ore and GUI libraries, and move them to $FE-LIXDIR/lib.If this step is suessfull you will have the (serial) Felix libraries libxf and libf in $FELIXDIR.Otherwise something went wrong.6. Test a Felix example in $FELIXDIR/expl, e.g., inf. :(a) hange to the diretory $FELIXDIR/expl(b) run �Felix inf� : the program �inf� should be ompiled() run �inf� : �inf� should run and the graphial interfae pop upIf the test runs suessful, you are ready to use the serial Felix version. Chek out theexamples in $FELIXDIR/expl .A.1.3 Additional Notes1. If you try to ompile a felix program and get an error message that panel.h, frame.h or soare not found, then you don't have XView installed properly or haven't set the proper pathsin the Make�les.A.2 Installation of Parallel FelixThe parallel Felix extensions are experimental ode. Whereas muh of the serial ode (but not all)has been used for researh for already many years, the parallel ode is muh more reent. I an'tgive muh advise on it, it is in a pretty haoti state, and it probably ontains bugs feel freeto improve it. Send pathes or error warnings ...Felix implements 3 levels of parallelism, whih an at least intentionally be used simultaneously inany mix (this is mostly untested):

158 APPENDIX A. INSTALLATION GUIDEBLAS : Given proper BLAS/ATLAS libraries you might be able to use the SSE extensions ofIntel and AMD CPUs. Note that you an use BLAS routines even if you do not have a multiproessor system. BLAS routines support highly optimised Matrix/Vetor Math. SomeBLAS versions support automati threading if you are on a multiproessor SMP mahine(e.g. gotoBLAS and, I believe, Intel MKL BLAS too). This, however, might interfere withlevel 2 OpenMP parallelism. If you are not areful, eah OpenMP thread might spawn anumber of BLAS threads. The BLAS libs usually support environment variables or othermeans to ontrol the number of spawned threads.OpenMP : OpenMP is a simple framework to parallelise outer loops on SMP multiproessormahines. It automatially spawns threads that distribute separate parts of the loop overthe available proessors. Although simple to use OpenMP is suboptimal in various respetsas ompared to hand-oded threaded ode. However, I have seen nie speed-ups for someof appliations. g will support OpenMP from version 4.2 upward; the Intel ompiler alsoimplements the OpenMP standard. Sine g isn't o�ially out yet, I use haks to ompile theOpenMP-parallel Felix ode with i, the Intel ompiler. That makes some of the Make�leslook pretty nasty... (I have also ompiled a pre-released g-4.2 snapshot. Seems to work,too.)MPI : MPI is a message passing standard for multi proessor systems inluding Symmetri MulitProessors (SMPs) and Beowulf omputer lusters. Felix uses very few very simple onstrutsto transport data between several o-operating proesses in distributed Felix programs (seefmpi./h). In priniple these are vetors/matries transported between variables loal toeah proess. Eah proess is running the same program but has a ertain �rank� whih anbe used in the ode to make parts of it seletively exeutable on some proesses only. Chekthe paralle examples in $FELIXDIR/expl for more details.The parallel version has its own Make�les $FELIXDIR/sr/Make�le.parallel and $FE-LIXDIR/Make�le.parallel whih ompile Felix versions without graphial interfaes. They ontain�ags for ativating the di�erent options.You might also want to use these �ags in the serial Make�les. In that ase you need to adapt theompiler settings and if you hoose to ativate MPI, you have to swith the graphial user interfaeo�. BLAS and OpenMP parallelism, however, is omaptible with the GUI.A.2.1 PrerequisitesYou do not need a parallel omputer to experiment with the parallel extensions. Eah modernIntel or AMD CPU supports the SSE2 vetorisation whih you may use in your BLAS version.You an also install and use MPI and OpenMP ompilers/ode on a serial mahine. This way youan write and test ode on, e.g., your laptop, before going on a bigger mahine.BLAS : A proper BLAS implementation, ie. ATLAS or gotoBLAS. The default BLAS thatomes with many Linux versions is probably not speed-optimised (meaning that you anloose tremendous speed bene�ts for some matrix/matrix and matrix/vetor operations. [Atthe moment BLAS is only used for some Felix funtions � don't expet too muh.℄OpenMP : As long as g 4.2 isn't available, you need another OpenMP apable ompiler. Thereare some open soure versions (I have used OmniMP, but wasn't happy with its optimisation

A.2. INSTALLATION OF PARALLEL FELIX 159apabilities). I now use the Intel ompiler, whih has a free liene for single aademi users.Thanks to Intel for that! You an also ompile a prerelease of g 4.2 (or higher). This hasthe OpenMP standard built in. You need to adapt the Make�les in that ase.MPI : The Felix MPI version works only without the graphial interfae. It was developed for aomputer luster on whih graphial interfaes make little sense. You an potentially ompilewith GUI in whih ase I would suspet eah MPI proess tries to open its own GUI. I nevertested this.You need g or i or another C ompiler and an MPI library. I use mostly MPICH(1) but atleast previous parallel Felix versions worked also with LAM. I haven't heked MPICH(2) sofar, but there is little reason why it should not work (one hears ommuniation is onsiderablyfaster than MPICH(1)).Note that Intel provides its own MPI libs, but I don't have them. Might be a useful in-vestigation: Although I use i, I link against the mpih libraries. That requires ratherunomfortable ompiler settings (see Make�le.parallel).One an run into problems with the MPI runtime environment not �nding dynami libraries.I therefore link part of the libs statially. That makes programs bigger. Alterantively, thereare also linker swithes to tell exeutables where to �nd the libs.I use i beause to ombine MPI with OpenMP one (obviously) needs an OpenMP apableompiler. Using Intel to date is the only (more or less) tested ase (I have also testet a pre-release of g-4.2 very brie�y; seems to work in priniple). The Make�le.parallel is for i, sohave a look into it. You will see that I don't use the usual MPI ompiler wrapper sript, mpi,but supply inlude and library diretories et diretly to i. You an probably avoid this,if you ompile your own MPICH (or LAM?) using i and use the mpi version generatedthis way. I DO, however, use the �mpirun�-sript of the MPICH standard installation.A.2.2 Compilation of Parallel FelixCompilation of parallel Felix follows the same steps as for the serial version. The instrutionsbelow ompile a parallel library libpf, whih an oexist with the serial libraries as ompiled in the�rst setion of this appendix (libf and libxf). You only have to use the sript pFelix to ompile aparallel appliation ode against the right parallel libs.To ompile a parallel version of Felix without graphial user interfae follow these instrutions:1. Beside the environment variables for the serial version you need to add another one for theparallel Felix sript. In your .bashr addalias pFelix="$FELIXDIR/pFelix"2. Enable the desired �ags in the parallel Make�le in the sr and/or main diretories:BLAS : Just enable -DWITH_BLAS in sr/Make�le.parallel. [BLAS should work with andwithout graphial user interfae, so that you ould also use the serial Make�le if youwant the GUI (doesn't work, though, if -DWITH_MPI is also set)℄.I did oassionally have some problems with linking against the right libs. You mighthave to adapt the Make�les to get BLAS working

160 APPENDIX A. INSTALLATION GUIDEOpenMP : To use OpenMP swith -DWITH_OMP on in the Make�le and adapt it touse your OpenMP apable ompiler (and linker, and arhiver). The graphial interfaeshould work with OpenMP, so that you an use the serial Make�les, if you want graphialoutput.MPI : To use MPI ativate -DWITH_MPI and -DNO_GRAPHICS in the Make�le.3. Adapt ompiler, linker, arhiver and �ags, paths and libs in the Make�les as neessary.4. Delete any old objet �les present from ompiling serial libs earlier by evoking �make lean�from a shell5. Compile the parallel libs with �make -f Make�le.parallel par� in the sr-diretory.This should produe a library libpf.a in the lib-diretory6. You link against the parallel library libpf.a automatially if you use the �pFelix� sript forompilation of your appliation ode. This requires proper settings in the top-level Make-�le.parallel.7. Test an example from $FELIXDIR/expl/parallel, i.e., ompile it using �pFelix prog� and runthe generated exeutable using, e.g., mpirun -np 2 prog, where �prog� is the base programname (i.e., infmpi).Note that serial programs and parallel ode that uses MPI are not (in general) ompatible. Youneed, e.g., to delare in the parallel ode, whih bu�ers are transported between proesses. I willdesribe elsewhere how you an write appliations that an be ompiled parallel and serial (withGUI), and use even the same environment �les.A.2.3 Additional Notes1. There is a ompiler �ag -DTIMING in the soure Make�le. If this is swithed on duringompilation, timing information for the main parts of a Felix programm will be printed foreah individual proess.2. If neessary, you an link Intel libs statially using -i-stati �ag of i; this ats more spei�than -stati whih links everything statially3. You an tell a binary where to expet a library, e.g., mpiCC -Wl,-rpath=$INTEL//9.0.030/lib/ -o mpitest mpitest.CA.3 Windows / CygwinThe serial Felix versions runs properly under Cygwin and the Windows operating system. It isonsiderably slower than under Linux, but still usable for, e.g., presentations.An XView rpm an be downloaded here (together with instrutions of how to install Cygwin andXView): http://www.physionet.org/physiotools/xview/There is no obvious reason why the parallel Felix extensions should not work given the right tools(MPI, OpenMPI, BLAS). However, it has never be tried to ompile parallel Felix on a Windowsbox.

