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iDear valued ReaderThis is the User Guide of �Felix�, a simulation environment for neural networks anddynami
al systems. It is C-based and provides a simple to use graphi
al interfa
eas well as real time 
ontrol of simulation parameters. The main aim of the toolis to simplify the implementation and simulation of distributed neural networks
onsisting of either homogeneous pools or 2-dimensional layers of simple spikingneurons. Other, more general dynami
al systems 
an be implemented and visualisedas well, and several examples are provided (
oupled map latti
e, 
oupled Roessleros
illators). The simulation of 
ondu
tan
e-based neuron types is possible but onlymarginally supported.The tool 
an make use of 
ode-parallelisation on three levels: single CPU ve
-torisation using BLAS-SSE2, SMP-shared memory parallelism via OpenMP(threads), and the message passing interfa
e (MPI) for 
omputer 
lusters. HybridBLAS/OpenMP/MPI 
ode is possible, e.g., for use on SMP-
lusters. Felix 
an bedownloaded from http://www.pion.a
.uk, whi
h provides run-time libraries, thedevelopment tool, and a 
ouple of examples. Sour
e 
ode is also available and,beside on Linux single- and multi-pro
essor 
omputers, and Linux Beowulf 
lusters,
an be 
ompiled and run on Windows using the Cygwin-Linux emulator.Have funThomas Wennekers
Copyright (C) 1992-2008 Thomas.Wennekers�plymouth.a
.ukFelix is free software; you 
an redistribute it and/or modify it under the terms of theGNU General Publi
 Li
ense as published by the Free Software Foundation; eitherversion 2 of the Li
ense, or (at your option) any later version.Felix is distributed in the hope that it will be useful, but WITHOUT ANY WAR-RANTY; without even the implied warranty of MERCHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE. See the GNU General Publi
 Li
ense for moredetails.You should have re
eived a 
opy of the GNU General Publi
 Li
ense along with thisprogram; if not, write to the Free Software Foundation, In
., 59 Temple Pla
e, Suite330, Boston, MA 02111-1307 USA
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Chapter 1Introdu
tion
1.1 OverviewThis is a preliminary version of a User Guide for �Felix� - A simulation tool for neural networksand dynami
al systems. It is 
urrently being written. This introdu
tion, the qui
k-start guide inse
tion 2, se
tions 3 about the graphi
al user interfa
e and 5 about �le I/O, the des
ription of themain fun
tion libraries in se
tion 4, and the appendix about installation A are something like ina readable state. The examples (se
tion 10) and the se
tion about parallel Felix extensions 9 arestill mostly empty or bad. You would probably want to 
onsult the examples that 
ome with Felixdire
tly, if you think about using the tool and want to learn more about how to do so. Serial andparallel example programs are available.Felix is a development tool for neural network and dynami
al systems simulations. It is C-basedand provides a simple to use graphi
al interfa
e as well as a 
ore of routines needed in manyappli
ations. Routines required in spe
ial appli
ations 
an easily be added. Felix is best suited forone and two-dimensional network models, but other topologies are possible as well.1.2 The main philosophy of FelixMain philosophy of Felix is to 
onsider a neural network or more general dynami
al system as a setof variables, x, whi
h obey a 
ertain dynami
s, and a se
ond set of parameters, p, whi
h 
ontrolthis dynami
s. Canoni
al examples are di�eren
e s
hemes, x(t + 1) = f(x(t); p) or di�erentialequations, dx/dt = f(x; p), whi
h are omni-present in neural network and dynami
al systemstheory.The Felix 
ore implements and solves these dynami
al equations and the graphi
al interfa
e thenpresents the variables in various possible views like graphs and raster plots over time, images orfun
tions displayed per single time-step, or xy-plots as on an os
illos
ope.The parameters of a simulation are further displayed as a 
olle
tion of buttons and sliders inthe graphi
al user interfa
e, whereby it be
omes possible to 
hange them while the simulationis running and immediately observe the indu
ed 
hanges in the system dynami
s. Figure 1.1displays the graphi
al user interfa
e of a typi
al small Felix program (a
tually a network of so-
alled integrate-and-�re neurons). 1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A typi
al Felix simulation showing a panel with 
ontrol parameters at the bottomand windows for displaying variables of a running simulation at the top. Changing parameters isimmediately re�e
ted in the displayed variables.A se
ond design prin
iple of Felix is that it aims at either �pool� networks 
omprising (more or less)large ensembles of potentially all-to-all 
onne
ted units, or at layered one- and two-dimensionalnetworks with a neighbourhood topology. Several su
h �pools� or �layers� may be 
ombined intolarger super-networks, see Figure 1.2. The �rst type of network model appears if lo
al ensembles of
ells in the brain are 
onsidered, the se
ond if the fo
us is on the distributed pro
essing within wholebrain areas. In more general dynami
al systems the �rst alternative refers to globally 
onne
tedsystems, whereas the se
ond turns up, e.g., in partial di�erential equations and integro-di�erentialequations. The 
ore of the Felix simulation tool provides a number of often used routines toimplement and simulate neural stru
tures of the respe
tive ar
hite
ture, i.e., randomly 
onne
tedpools, asso
iative memories, or distributed systems with Gaussian or DOG (diferen
e of Gaussian)lateral 
oupling kernels.Re
ently Felix has been extended towards supporting various kinds of 
ode parallelisation. Philos-ophy here is to simplify the development of parallel 
ode for the types of networks des
ribed aboveas mu
h as possible. Using about a handful of simple 
onstru
ts it is now in fa
t possible to write
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al pool model (Wilson-Cowan Os
illator). Right: A two-layer, ex
itatory-inhibitory topographi
 neural �eld.Felix programs that 
an be 
ompiled on single CPU ma
hines, where they reveal a graphi
al userinterfa
e, but that run also on Beowulf 
omputer 
lusters. Small programs 
an therefore run ona PC or laptop, where the GUI and real-time simulation 
ontrol ni
ely support an understandingof what is going on in the simulation. The same simulation, however, 
an now be easily s
aledup and run on a mu
h larger s
ale on a 
omputer 
luster without no or only small 
hanges at thesour
e 
ode.1.3 A little Felix HistoryFelix is old. The original program was written about 1990/91 in �multiC�, a diale
t of C forthe parallel 
omputer �Wavetra
er�, whi
h (in the version we had available at that time at theUniversity of Ulm, Germany) 
onsisted of 4096 one-bit pro
essors running at 8MHz in a SIMD-ar
hite
ture (single instru
tion multiple data � ea
h pro
essor does the same on possibly di�erentdata). Ea
h pro
essor had something like 16MBit lo
al memory and the pro
essor grid was freely
on�gurable as a 1, 2 or 3-D array. The early Felix was meant to serve as a graphi
al interfa
e forthat ma
hine. The Wavetra
er was about 20 times faster than a standard Sun-Workstation 15 yearsago. When standard workstations be
ame qui
ker, and in parti
ular qui
ker than the Wavetra
er,I ported Felix to the SunOs and Solaris operating systems, and later, when I dis
overed that even
heap laptops are faster than standard Sun-workstations, I further ported it to Linux. Now, I amalmost ex
lusively using it under Linux on desktops, laptops, and 
omputer 
lusters.Be
ause Felix is old it makes use of an outdated windows toolkit 
alled XView. For a while thatwas standard for Sun X11 appli
ations with the Open-Look look and feel. However, Sun stopped



4 CHAPTER 1. INTRODUCTIONdeveloping XView further in about 1995. Meanwhile it has been repla
ed by more modern toolkitslike Motif, QT, and other pa
kages. Although I often thought I should, I never found the timeto re
ode the GUI using a modern toolkit. XView is still available and 
omes with some Linuxdistributions. It might however be that it is not installed on your ma
hine by default. I am notsure it is available in 64 bit at the moment. You don't need the graphi
s libraries if you wantto use the tool on 
omputer 
lusters. Graphi
al interfa
es don't make too mu
h sense in highperforman
e 
omputing.Some resour
es:
• Open-Look FAQ: http://www.faqs.org/faqs/open-look/01-general/
• XView FAQ: http://www.faqs.org/faqs/open-look/03-xview/
• O'Reilly provides free books about XView programming on their homepagehttp://www.oreilly.
om/openbook/openlook
• Dr Andreas Knoblau
h, a former 
ollegue at the University of Ulm (now at Honda Re-sear
h, O�enba
h, Germany) has written C++ extensions for Felix whi
h you 
an �nd here:http://www.informatik.uni-ulm.de/ni/mitarbeiter/AKnoblau
h.htmlSin
e relatively re
ently I am experimenting with parallelised Felix versions. This means Felix getsba
k to its roots, to parallel 
omputers. The 
ode 
ontained in the distributed Felix version shouldbe 
onsidered preliminary and is not well tested. However, it supports hybrid OpenMP/MPI 
ode,whi
h 
an be very useful for some types of layered network models of the brain. We are studyingsu
h models at the University of Plymouth as part of two big resear
h proje
ts: The EU-integratedFACETS proje
t (
omprising more than 100 s
ientists) and the UK-wide COLAMN proje
ts (
a10 resear
h groups).1.4 Installation NotesThroughout this Guide it will be assumed that a fun
tioning serial Felix evironment with graphi
aluser interfa
e is available. Only few se
tions in addition assume a parallel installation, in parti
ular
hapter 9. Appendix A explains, how Felix 
an be installed on serial and parallel 
omputers, and
omputer 
lusters.



Chapter 2Getting Started
This se
tion presents the main features of Felix by showing a simple example and how it is imple-mented. The example will 
onsist of a small network of leaky-integrate-and-�re neurons. It willdemonstrate how a typi
al Felix program is stru
tured, how a simulation 
an be 
ontroled by thegraphi
al user interfa
e, and how the simulated data 
an be 
onveniently written to �les on dis
.2.1 General Program Stru
tureA Felix appli
ation 
onsists of a single C-�le. Ea
h appli
ation needs to de�ne �ve subroutinesthat de�ne the GUI, the output of some data to �les, a main-initialisation routine whi
h is 
alledon
e at start up, an initialisation routine whi
h is 
alled ea
h time a simulation is reset, and astep-routine whi
h 
ontains everything to do in a single simulation step. Some or all of thesefun
tions 
an be empty. The smallest Felix program hen
e reads:// The most simple Felix program# in
lude <felix.h>NO_DISPLAYNO_OUTPUTmain_init(){}init(){}step(){}
< felix.h > is the main Felix header �le that always has to be in
luded and by itself in
ludesseveral other header-�les ne

essary for proper 
ompilation.The ma
ro NO_DISPLAY in the example a
tually expands to MakeDisplay(){}, e.g., an emptyde
laration of the graphi
al user interfa
e. Similarly, the ma
ro NO_OUTPUT likewise expands toMakeOutput(){}, an empty de
laration of output to �les. Simple examples for the GUI and �leoutput follow below. The GUI is treated in detail in 
hapter 3 and File Output in 
hapter 5.The main_init()-routine 
ontains initialisations needed only on
e during exe
ution of a simulationprogram. It is exe
uted when the program starts. It may load data from �les or settings of5
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Figure 2.1: Graphi
al user interfa
e generated by the minimal Felix program given in se
tion 2.1.parameter-values not a

essible by sliders. If the appli
ation uses dynami
ally allo
ated ve
torsor arrays, memory for these variables MUST be allo
ated in main_init(), too, in parti
ular if thevariables are supposed to be displayed in the GUI.The init()-routine in 
ontrast is invoked ea
h time a simulation is reset. The GUI provides init-and run-buttons in the main-window to do this. It typi
ally 
ontains 
ode to initialise variablesrandomly. In 
onjun
tion with an additional 
ounter variable in the 
ode that in
rements ea
htime a reset is performed the init-routine 
an also be used to s
an a parameter range systemati
allyand intialise ea
h simulation in a well de�ned state using that 
ounter.The step()-fun
tion 
ontains all things to be exe
uted in a single simulation step. There is no
onstraint about the 
ontent of this fun
tion, but in general it will 
omprise fun
tions to iteratethe dynami
s of the simulated systems and possibly also to do some data analysis. The step()-fun
tion is repeatedly 
alled if a simulation is in run-mode as long as it is not expli
itly stopped.The GUI further supports single- and multi-step modes, in whi
h 
ase the step-routine is exe
utedon
e or a �xed number of times.The above trivial Felix program 
an already be 
ompiled and exe
uted. For that, the 
ode hasto be stored in a C-�le, i.e., a �le 
alled <sim_name>.
, where <sim_name> is some basename(e.g., �empty�, be
ause all subroutines are empty fun
tions). Calling �Felix <sim_name>� (i.e.,�Felix empty�) 
ompiles the program and generates an exe
utable 
alled <sim_name> (�empty�),whi
h 
an be run from the 
ommand line. This should pop up the main-window of the simulation,whi
h should look as displayed in Figure 2.1. (Note: The Felix example dire
tory should 
ontainan �empty.
� fun
tion, as well as others.)The graphi
al user interfa
e in Figure 2.1 
ontains simulation 
ontrol elements that by defaultappear automati
ally in the GUI of ea
h simulation program. The top label bar re�e
ts the (base-)name of the 
ompiled program. The �Windows-�button in general 
omprises a list of de�nedwindows, but in our simple example this list is empty. The �Environment-�button in 
ontrast
ontains several entries (not shown) that allow to store and load parameter settings for the slidersfollowing below. The �Steps� and �Display-Steps� sliders 
ontrol the multi-step and display modeof the GUI, respe
tively. If �Display-Steps� di�ers from 1, the variable windows (none is shownsin
e they are empty, but see later) are updated only at the respe
tive interval. This is usefulto 
ompress time in the display if the simulation step-size is small; it 
an sometimes also help tospeed up simulations, be
ause updating the display needs some time. The �Steps�-slider in the GUI
ooperates with the Step-button just below it. If the simulation is in multi-step mode (Display-Steps > 1), the �Steps�-slider spe
i�es how many steps are exe
uted until the simulation stopsagain, after the �Steps�-button has been pressed. This means, the bottom-row buttons 
ontrolthe overall exe
ution of a simulation: Ea
h time the Init-button is pressed the init()-routine is
alled. �Run� also 
alls the init()-routine, but afterwards the step()-routine iteratively � this is



2.2. EXAMPLE: LEAKY-INTEGRATE-AND-FIRE NEURAL NETWORK 7the standard simulation mode. �Stop� stops a simulation, �Step� runs a 
ertain number of steps asexplained above, and �Cont� (
ontinue) enters the standard run mode again after a simulation hadbeen stopped. Finally, the footer of the GUI main window 
ontains a 
ounter of the simulationstep.2.2 Example: Leaky-integrate-and-�re Neural NetworkWe now 
onsider a more interesting example that indeed simulates something. This is a neuralnetwork 
omprising a 
ertain number (N = 100) of noisy leaky-integrate-and-�re neurons 
oupledrandomly in a network. These simple neurons are des
ribed by membrane potentials xi thatintegrate in
oming input as low-pass �lters with time-
onstant τ . If a potential 
rosses a �ringthreshold of 1 from below it is reset to zero and a spike is emitted. Spikes are represented bya se
ond array of binary variables, zi, i = 1, . . . , N . Equation (2.1) des
ribes the membranedynami
s and (2.2) the resest at threshold 
rossings:
τ
dx(t)

dt
= −x(t) + I +

J0

N

N∑
i=1

Jijzj(t) + σηj(t) (2.1)if xi(t) ≥ 1 then zi(t) = 1, and xi(t) = 0 else zi(t) = 0. (2.2)
τ(= 10) in (2.1) is the membrane time 
onstant and J0 = 1.1 sets the 
oupling strength betweenunits globally. The Jij in 
ontrast are individual 
ouplings/synapses between pairs of neurons. Inthe simulation they are independent and identi
ally distributed (i.i.d) Gaussian random numberswith mean 1 and standard deviation 0.4. The ηi(t) in (2.1) are furthermore i.i.d. temporallyGaussian white noise pro
esses with mean 0 and standard deviation 1. The fa
tor σ s
ales this�noise� inje
ted into the individual 
ells.Networks of this type have been intensively studied in Neural Network Theory.The following 
ode implements the network model:/* Example-program: inf.
 */# in
lude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time 
onstant */float I = 1.1, /* Common input to units */J0 = 1.1, /* Coupling strength */sigma = .1; /* noise level */Ve
tor x; /* potentials */Matrix J; /* 
onne
tions */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */NO_DISPLAYNO_OUTPUT



8 CHAPTER 2. GETTING STARTEDint main_init(){ /* init. random number generator and stepsize */randomize( time(NULL) );SET_STEPSIZE( .1 )/* allo
ate ve
tors and matri
es */J = Get_Matrix( N, N );x = Get_Ve
tor( N );z = Get_bVe
tor( N );v = Get_Ve
tor( N );}int init(){ int i;Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);/* init. potentials with random values between 0 and 1 */for (i=0; i<N; i++)x[i℄ = equal_noise();/* init. J with gaussian distr. random numbers */Make_Matrix( N, N, J, 1.0/N, .4/N );}int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate ( tau, x[i℄,I + J0*v[i℄ + sigma*gauss_noise() );Fire_Reset( N, x, 1.0, 0.0, z ); // firing and resetbMult( N, N, J, z, v ); // redistribution spikes}Observe the general stru
ture of the 
ode. First felix.h is in
luded and as (some) parameters of themodel are de�ned as ma
ros (this 
ould also be variables). Then arrays for the neural variables
x, J, z and an auxilliary array v are de
lared. The 
ode still does de�ne an empty GUI and dataoutput routine (NO_DISPLAY and NO_OUTPUT). After that the three obligatory fun
tionsmain_init(), init(), and step() follow.main_init() initialises the random number generator and sets the simulation time-step to 0.1.Afterwards the routine allo
ates the three ve
tors v, x, z, and the array J . Note that the z-arrayis a �bVe
tor� � a binary Ve
tor. [Many fun
tions in Felix operate either on �oating point ve
torsand matri
es or on binary ones, where binary values (0/1) are represented by the C-type �
har�.℄



2.3. ADDING A GRAPHICAL USER INTERFACE 9The init()-funtion initialises the data-arrays: v and z are 
leared, ie., set to 0; the potentials areset to equally distributed random numbers in the range [0,1[; and the 
oupling matrix J is �lledwith i.i.d. Gaussian random numbers, N(1., 0.4).Finally, the step()-routine implements the dynami
s of the network. It mainly uses fun
tions fromthe Felix libraries. The leaky integration in equation (2.1) is 
oded expli
itly using the ma
ro�leaky_integrate�, whi
h implements a simple Euler-s
heme to integrate the low-pass dynami
s.�Fire_Reset()� afterwards does the thresholding part of the leaky-integrate-and-�re dynami
s,and �bMult()� 
omputes the Matrix-Ve
tor produ
t between the 
oupling Matrix J and the binaryve
tor of spikes z. The result v is used in the leaky integration in the next step.Again, the 
ode shown 
an be 
ompiled and run using Felix, but sin
e it neither de�nes graphi
alnor �le-output, we would not be able to observe what the network is doing. The interfa
e wouldjust look as in Figure 2.1 with now ni
e windows or �le output at all. Therefore, we next add somegraphi
al output.2.3 Adding a Graphi
al User Interfa
eThe graphi
al user interfa
e serves di�erent tasks, the two most important are displaying variablesof the simluation and providing sliders to 
ontrol it (other task 
on
ern �le I/O and saving/loadingparameters). In the �rst 
ase the information �ow is from the running simulation to the GUI,whereas in the se
ond it is the other way round � the user 
hanges sliders, whi
h in turn modifysimulation parameters. The next two sub-se
tions explain how these tasks are set up.In general the fun
tion MakeDisplay() represents the main-interfa
e between the C-
ode and theXWindows-System. It 
ontains statements that de�ne how variables shall be displayed on thes
reen and, if needed, de
lares buttons (
alled swit
hes) and sliders, whi
h allow for intera
tive
ontrol of a running simulation. MakeDisplay always generates a main-window with several buttonsand sliders, whi
h are used to 
ontrol the simulator-kernel even if the MakeDisplay() fun
tion isexpli
itly de
lared empty or the ma
ros NO_DISPLAY is used (whi
h does the same), see Figure2.1.2.3.1 Displaying Views on VariablesAs outlined in se
tion 1.2 a simulation 
an be 
onsidered a dynami
al system 
omprising variablesand parameters. Variables are displayed to the user and parameters 
an be used to modify thesimulation online. The 
ode below shows how a typi
al Graphi
al User Interfa
e for the leaky-integrate-and-�re neural network program 
an be de
lared.BEGIN_DISPLAYWINDOW("time 
ourses")IMAGE( "x", AR, AC, x, VECTOR, 10, 10, 0.0, 1.0, 4)RASTER( "x", NR, AC, x, VECTOR, N, 0, 0.0, 1.0, 1)GRAPH( "x", NR, AC, x, VECTOR, N, 0, 0, 0, -.01, 1.01 )RASTER( "z", NR, AC, z, bVECTOR, N, 0, -.01, 1.01, 2)



10 CHAPTER 2. GETTING STARTEDWINDOW("
ouplings")IMAGE( "J", AR, AC, J, CONSTANT MATRIX, N, N, -4./N, 4./N, 4)END_DISPLAYThe ma
ros BEGIN_DISPLAY and END_DISPLAY en
lose the de�nition of a GUI; they expandinto a MakeDisplay(){} fun
tion body (thus, you 
an also de�ne this fun
tion dire
tly without usingthe ma
ros). Everything between the BEGIN_ and END_DISPLAY ma
ros is exe
uted when theGUI is build. In the present example two windows are de�ned with names �time 
ourses� and�
ouplings�, respe
tively. It is possible to de�ne an arbitrary number of su
h display windows.Ea
h display window 
an in turn 
omprise an arbitrary number of so-
alled �views�. A view is aview of a variable, e.g., a s
alar, ve
tor, or a matrix. Ea
h variable 
an be viewed in di�erent ways,and se
tion 3 des
ribes the possibilities in detail. Here, it may su�
e to observe that the window�
ouplings� displays the N × N 
oupling matrix J as an IMAGE, i.e., a grey-s
ale 
oded pi
turethat re�e
ts the values of the matrix entries. Be
ause J is de
lared as a CONSTANT MATRIX inthe IMAGE-de�nition, the image of J is updated only on
e, after ea
h 
all to the init()-fun
tion.This saves unne

essary updates, whi
h 
ost time.On the other hand, the window �time 
ourses� de�nes four views, three di�erent ones onto the
x-variables (potentials), and one on the spikes z. The potentials are displayed as an IMAGE ofsize 10 × 10 (just for demonstration), a RASTER whi
h displays the potentials over time as agrey-level plot, and a GRAPH, whi
h sele
ts a single potential tra
e and plots it as a fun
tionover time. The spikes are, �nally, also plottet as a RASTER, ie., the values of the whole array aredisplayed over time. More about this later, when we look at the a
tual graphi
al output (Figure2.3 for the impatient).2.3.2 Coupling of Parameters and Panel ControlsThe views on variables de�ned in the previous se
tion allow to observe in real time variables of thesimulations. However, we might also want to 
hange parameters and see where that leads to. Todo this we have to add 
ontrol elements to the main window of the GUI (e.g., 2.1). These elements
an then be 
oupled to parameters of the simulations.There are two types of 
ontrol elements available in Felix: Swit
hes and Sliders. Swit
hes arerepresented by buttons; they 
an be ON or OFF, and thereby they 
an �swit
h� 
ode exe
utionbetween alternative segments (Swit
hes are not used in this se
tion, but see se
tion 3). The se
ond
ontrol element are Sliders. These 
an take values in a whole range and 
an thereby represent
ontinuous parameters of the simulations.How does this work inpra
ti
e? Let us assume we want to 
ontrol the parameters I, J0 and σin the simulation of the leaky-integrate-and-�re network. These are the global input, the globale�e
tive 
oupling strength, and the noise level. For ea
h of these we have to de�ne a new variableof type SliderValue (the reason for this follows soon). These new variables we have to embed inthe GUI, and we 
an use them in the simulation 
ode as well. The 
ode below shows how this isa
hieved.SliderValue sI = 100;



2.3. ADDING A GRAPHICAL USER INTERFACE 11SliderValue sJ0 = 50;SliderValue ssigma = 0;BEGIN_DISPLAYSLIDER( "input", sI, 0, 200)SLIDER( "
oupling", sJ0, 0, 200)SLIDER( "noise", ssigma, 0, 100)WINDOW("time 
ourses")....END_DISPLAYsI, sJ0 and ssigma are the new variables of type SliderValue. The SLIDER()-ma
ros then addthe slider to the GUI, giving them names and 
ertain lower and upper bounds. This 
ode-snippetre�e
ts one problem with Sliders: Constrained by the XWindows/XView system they 
an onlytake integer values. In the example these ranges are {0, 1, 2, . . . , 200} for input sI and 
oupling
sJ0, and {0, 1, 2, . . . , 100} for the noise level ssigma. A

ordingly, when the variables are usedin the 
ode implementing the dynami
 equations of the simulated system they have to be s
aledappropriately. For instan
e, in the step()-routine we 
ould have 
ode likefor (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate ( tau, pot[i℄,0.01*( sI + sJ0*v1[i℄ + ssigma*gauss_noise() ) );The fa
tor 0.01 s
ales the ranges for sI , sJ0 into the intervals [0,2[ and that for ssigma into therange [0,1[. This is somewhat un
omfortable, but one gets used to it qui
kly.Finally, note that now that we have repla
ed the original variables I, J0, and σ by slider variables,we 
an delete their original de
larations in the program. They don't appear in the 
ode anymore,but instead they are 
ontroled by the graphi
al user interfa
e, see Figure 2.2.2.3.3 Running simulations using the graphi
al interfa
eFigure 2.2 displays the GUI after the 
ontrol elements have been added. The display windows wehave de�ned are still hidden. We 
an open them by right-
li
king the �Windows�-button, whi
hpops up a list of all availabe windows.Figure 2.3 shows the interfa
e after the display windows have been opened and pla
ed on thes
reen. On top of the 
ontrol panel is shown the 
oupling matrix and to the left of both thewindow �time 
ourses� 
ontaining the simulation variables.By left-
li
king the �Environment�-button this 
on�guration 
an be saved su
h that the GUI 
omesup in the same state the next time the program is started again (right 
li
king the �Environment�-button gives some more options). This automati
 loading of parameters from a default environment�le overrides any expli
it initialisations of slider variables possibly done in the sour
e 
ode.
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Figure 2.2: Graphi
al user interfa
e after adding sliders for parameters of the simulation.The Felix example dire
tory 
ontains the 
ode of a leaky-integrate-and-�re network with GUI and�le output. You might want to experiment with it, before pro
eeding to the next se
tion whi
hdes
ribes how �le output is de
lared. In parti
ular, note that the label on top of ea
h view is
li
kable and brings up 
ontrol panels for the grey-s
ales of images and rasters, or the sele
tedvariable index in graphs that display arrays.2.4 Adding Output of DataAnalogous to MakeDisplay() whi
h de�nes the graphi
al output, the fun
tion MakeOutput() de-�nes output that is supposed to go to �les. The ma
ro NO_OUTPUT 
an be used if no su
houtput is required. The ma
ros BEGIN_OUTPUT and END_OUTPUT in turn en
lose 
ode fordata output. This de�nes a fun
tion MakeOutput() whi
h is 
alled just after the initialisation,and after ea
h subsequent simulation step. It is possible to sele
t temporal sub-ranges for outputonly as well as subsets of arrays; this is explained in detail in 
hapter 3. The following 
ode showshow variables of the leaky-integrate-and-�re model 
an be saved.BEGIN_OUTPUTOUTFILE("potentials")SAVE_VARIABLE( "pot", x, VECTOR, N, 0, 0, 0, 0 )OUTFILE("spikes")SET_SAVE_FILE_FLAG( THISFILE, ASCII, ON )SAVE_VARIABLE( "out", z, bVECTOR, N, 0, 0, 0, 0 )END_OUTPUTTwo output �les are de�ned, �potentials� and �spikes�, with obvious meaning. An arbitrary number(up to operating system 
onstraints) 
an be opened, ea
h of whi
h 
an save a number of variablesper step. [Those are stored in sequential order, whi
h might 
ause problems when the data hasto be reread in data-analysis programs, be
ause of the possibly 
ompli
ated re
ord stru
ture. Itis probably more 
onvenient to store only one variable per �le as in the shown example.℄ The
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Figure 2.3: User interfa
e showing the 
ontrol panel and the two windows 
reated for displayingdynami
 variables.

Figure 2.4: Control panel of the graphi
al user interfa
e after output �les have been de
lared inthe program.variable x is stored as a ve
tor of length N to the �le �potentials�, whereas z is stored as a binaryve
tor of length N to the �le �spikes�.By default, data is saved in binary format, so that it would not be readable by humans, butsave spa
e. The default is 
hanged for the se
ond �le in the example, where a �ag is set for(human-readable) ASCII output.Figure 2.4 shows the main GUI window after �le output has been de�ned. The new button "Save isOFF" indi
ates that the ouput has not yet been a
tivated. If it is pressed, �le output starts. If it is



14 CHAPTER 2. GETTING STARTEDpressed repeatedly during a simulation, the state of the button toggles, and data generated duringthe a
tivated phases are appended to the output �les. Right-
li
king on the "Save is OFF"-buttonbrings up further options, not all of whi
h are fully implemented, nor well tested.Have a look into 
hapter 5 (or the example programs, or the sour
e 
ode of output.
/h) for possi-bilities to sele
t sub-ranges of array variables for output. This 
an be useful for large simulations,be
ause otherwise the amount of generated data 
an qui
kly be
ome tremendeous.



Chapter 3Graphi
al User Interfa
e
Chapter 2 presented a brief example of how Felix programs are stru
tured and what the mainproperties of the Graphi
al User Interfa
e are. The present 
hapter looks into the GUI in moredetail.In general ea
h Felix program has a main window with 
ontrol elements for running a simulationand manipulating its parameters in real-time. Swit
hes are binary (ON/OFF) 
ontrols that allowfor a 
onditioned exe
ution of 
ode segments. Sliders in 
ontrast 
an take values in a range ofnumbers and 
an therefore be used to set parameters of a simulation. Beside the main windowa Felix simulation in general will have one or more display windows. These 
an 
ontain graphi
sobje
ts of various types, whi
h display views on variables as, e.g., graphs, fun
tions, images,or plots. Finally ea
h Felix simulation has an �Environment� allowing the user to store and loadparameter settings in external �les. The present 
hapter will go through the mentioned 
omponentsstep by step.3.1 Creating a GUIEa
h Felix appli
ation has to de�ne whi
h obje
ts (variables, ve
tors, matri
es ...) are displayedon the s
reen and how this shall be done. For this a fun
tionvoid MakeDisplay(){...}has to be supplied whi
h 
ontains de�nitions of the graphi
s obje
ts to be displayed. The fun
tion-body of �MakeDisplay� 
an be empty, if no graphi
al output is needed. In that 
ase a basi
 mainwindow is still generated, see Figure 2.1, but no display windows. There are three Ma
ros thatsupport the de�nition of the interfa
e#define BEGIN_DISPLAY void MakeDisplay(){#define END_DISPLAY }#define NO_DISPLAY void MakeDisplay(){}Beside a number of buttons to initialialise, run, stop, and resume a simulation, the ea
h GUI bydefault 
ontains two sliders �Steps� and �Display Steps�. These 
ontrol the display and multi-step15



16 CHAPTER 3. GRAPHICAL USER INTERFACEmode of a simulation. �Display Steps� sets the interval in simuation steps at whi
h the graphi
sobje
ts in the display windows are updated. �Steps� in 
ontrast sets the number of steps thatare exe
uted in multi-step mode (i.e., after stopping an initialised simulation) when the Steps-button of the GUI is pressed. The maximum steps of both these sliders by default is 100, whi
his 
onvenient for most situation. Should it be ne
essary, the numbers 
an be 
hanged using thema
ros MAXSTEPS() and MAXDISPLAYSTEPS() in the de�nition of MakeDisplay().MAXSTEPS( steps )MAXDISPLAYSTEPS( steps )In very new versions of Felix the 
olormap for the variable views 
an be sele
ted by using thema
ro COLOR_MAP( map ) somewhere at the top of the display de
laration. Possible values for�map� are:CMAP_BW : The default gray-s
ale map; bla
k: low-values; white: high valuesCMAP_RED : Bla
k to 
rimson-red intensity 
oded (quite hellish)CMAP_GREEN : All green (looks like the aliens are around the blo
k)CMAP_BLUE : All blue (deep not light blue)CMAP_RAINBOW : Blue - green - red 
olour s
ale (quite fan
y)In the non-gray maps the lowest and highest values are bla
k and white, respe
tively. This makes
lipping at range boundaries ni
ely visible.3.2 Simulation Control Elements3.2.1 Swit
hesSwit
hes are logi
al �ags, that may be used in a simulation to intera
tively sele
t exe
ution ofdi�erent parts of the sour
e-
ode.A swit
h must be globally de
lared as a variable of type 'Swit
hValue' on the top of the appli
ation-sour
e �le.A swit
h 
an be ON or OFF:#define OFF 0#define ON 1To 
reate a button in the main-window that a�e
ts the swit
h-variable the fun
tion MakeSwit
h()or the Ma
ro SWITCH() must be 
alled in MakeDisplay() :#define SWITCH(name, var) MakeSwit
h(name, &var);



3.2. SIMULATION CONTROL ELEMENTS 17Here �name� is a string that appears on the swit
h-button in the GUI and �var� is its a

o
iatedvariable of type Swit
hValue.If a user wants to 
hange values of swit
h-variables at the sour
e-
ode level the fun
tion SetSwit
h()or the Ma
ro SET_SWITCH() MUST be used. Simply assigning a value to a swit
h-variable isnot enough, be
ause the new value will not be signalled to the XWindows-system, su
h that thestate of the swit
h would be no longer represented by its 
orresponding button.#define SET_SWITCH(var, value) SetSwit
h(&var, value);�var� is the variable to be set; possible values are ON or OFF.Example:...Swit
hValue sw = OFF; /* define the swit
h-variable */...BEGIN_DISPLAY...SWITCH( "this-or-that", sw) /* define the swit
h-button */...END_DISPLAYint void step()....if (sw) /* exe
ute 
ode depending onthe state of sw. */{ /* do this */...}else{ /* do that */....}}3.2.2 SlidersAs swit
hes sliders are used to intera
tively 
ontrol a running simulation. The di�eren
e is, thatthey are multi-valued and thus may be 
hosen to in�uen
e parameters of the model. To 
reate



18 CHAPTER 3. GRAPHICAL USER INTERFACEa slider the user has to de
lare a global variable of type 'SliderValue' (i.e., int). This variable isasso
iated with a graphi
al slider in the GUI by a 
all to the fun
tion MakeSlider() or the ma
roSlider() inside the initialization routine MakeDisplay().Sliders appear in the main-window in the order of their de
laration in MakeWindow(). The ma
roSLIDER_COLUMNS( 
olumns ) 
an be used to arrange them in more than 1 
olumn (default).#define SLIDER(name, var, min, max) MakeSlider(name, &var, min, max);�name� is a string that appears to the left of the slider. �var� is the variable of type SliderValuethat stores the 
urrent value of the slider. �min� and �max� set the range allowed for 
hanges inthe sliders value.To set or 
hange slider-values at sour
e-
ode level the fun
tion SetSlider() (or ma
roSET_SLIDER) must be used:#define SET_SLIDER(var, value) SetSlider(&var, value);�var� is the name of the slider-variable and �value� the new slider-value of type SliderValue (i.e.,int).Unfortunately, XView restri
ts sliders to integer-values. Thus, if an appli
ation 
ontains �oating-point parameters whi
h shall be modi�able from the graphi
al interfa
e, one has to s
ale the
orresponding slider-values to the appropriate range.Example :SliderValue param = 50; /* define and initialize a slider-variable */...BEGIN_DISPLAY...SLIDER( "parameter", param, 0, 100) /* generate an instan
e of aXView-slider in the main windowasso
iated with variable "param"The name of the slider is"parameter", its range [0,100℄*/...END_DISPLAYint void step(){ float float_param;



3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 19..float_param = .01*param; /* this 
asts the slider-value to float* in the range [0,1.0℄. Observe, that* only 100 different values are possible!*/..if (any_
ondition)SET_SLIDER( param, 50 ) /* this sets the slider to a well-defined* value (here 50).*/}3.2.3 TimerUsage of the Ma
ro TIMER() in the de�nition of MakeWindow() 
reates an extra slider whi
hin�uen
es the time between two su

essive simulation-steps.TIMER( max )The timer slider will have a range from 0 to max. If the value is zero the timer is o�. Otherwise ite�e
ts the times between 
alls to the step() routine in a running simulation. The value in prin
ipleis supposed to be in Millise
onds, but this shouldn't be taken too seriously.3.3 Display Windows and Views on Variables3.3.1 Display WindowsThe Ma
ro WINDOW() or fun
tion MakeWindow() 
reate a new window for graphi
al output.The string �name� appears at the top of the window and in the Window list of the main 
ontrolwindow.#define WINDOW(name) MakeWindow(name);The WINDOW-statement must be 
alled in MakeDisplay() before any other output 
an be dire
tedto the s
reen, i.e. before any graph, image, raster, or other variable views are de�ned.Several windows 
an be de�ned by repeated 
alls to WINDOW(). In this 
ase the last de
laredwindow is always the a
tive one, meaning that subsequently de
lared graphi
s obje
ts are pla
edinto that window.All window-names are 
olle
ted into the �Windows�-menue at the top left of the main 
ontrolwindow. If a window is 
losed sele
ting it from this menue will reopen it.



20 CHAPTER 3. GRAPHICAL USER INTERFACE3.3.2 ViewsAfter a Window has been de�ned it 
an be �lled with graphi
al views on simulation variables(images, graphs, et
). The fun
tions to 
reate the various possible views all have a similar stru
ture.Consider, e.g., 
reation of an image by using the ma
ro IMAGE():IMAGE(name, row, 
ol, var, type, dim_x, dim_y, min, max, zoom)The �rst argument is the �name� of the view. It will appear on a button on top of the view.�row� and �
ol� are two arguments to 
ontrol positioning of the view in the display window. Thisis 
overed in the next subse
tion 3.3.3.�var, type, dim_x, dim_y� then 
hara
terise what is a
tually displayed. The type of a displayedvariable �var� must be de
lared and, if it is a ve
tor or an array, also its dimensions. Possibledisplay types are des
ribed below in subse
tion 3.3.4.The last argument of a view de�nition, �zoom�, is a (small) integer number that 
ontrols how big aview appears on s
reen. Default value is 1. In that 
ase, e.g., ea
h entry of a matrix-valued variablewill be displayed by one pixel in a re
tangular image. Larger numbers for zoom 
orrespond withmore pixels and bigger images.3.3.3 Pla
ement of Views inside a WindowThere is a simple me
hanism to 
ontrol positioning of view elements.The 2
d and 3rd arguments of a view-de�nition are 
oordinates for the upper left 
orner of theview. These 
an be given dire
tly by spe
ifying raw pixel 
oordinates.Alternatively, ea
h display window 
an be 
onsidered as being partitioned into a 
oarser re
tangulargrid. Several ma
ros support pla
ing views in that 
oarse grid.R0, AR and NR 
an be used as values for the 2
d, and C0, AC, and NC as values for the thirdargument of a view de�ning fun
tion.R0 and C0 spe
ify the �rst row and 
olumn, respe
tively.AR and AC spe
ify that the view has to be pla
ed in the a
tual row or 
olumn, respe
tively.NR and NC spe
ify that the view has to be pla
ed in the next row or 
olumn, respe
tively.Example (
f., se
tion 2.3)BEGIN_DISPLAYWINDOW("time 
ourses")IMAGE( "x", AR, AC, x, VECTOR, 10, 10, 0.0, 1.0, 4)RASTER( "x", NR, AC, x, VECTOR, N, 0, 0.0, 1.0, 1)GRAPH( "x", NR, AC, x, VECTOR, N, 0, 0, 0, -.01, 1.01 )



3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 21RASTER( "z", NR, AC, z, bVECTOR, N, 0, -.01, 1.01, 2)WINDOW("
ouplings")IMAGE( "J", AR, AC, J, CONSTANT MATRIX, N, N, -4./N, 4./N, 4)END_DISPLAYThis example de�nes two windows with names �time 
ourses� and �
ouplings�. The �rst window
ontains four graphi
s views, the se
ond only 1. In both 
ases the �rst view is pla
ed at position(AR, AC), the a
tual row and a
tual 
olumn, whi
h by default after 
reating a new window withWINDOW() is equal to (R0, C0), the upper left lo
ation in the 
oarse grid. The subsequentviews in the �rst window are then pla
ed at (NR, AC), meaning the next row but a
tual 
olumn.Therefore, the four views are pla
ed in a single verti
al 
olumn. In 
ontrast, repla
ing (NR, AC)by (AR, NC) in the 
ode would pla
e the views all in a horizontal row, and (NR, NC) pla
es themalong the diagonal of the 
oarse grid (whi
h wouldn't look too ni
e).3.3.4 Types of Display VariablesFelix supports displaying of variables of three base types: 
har, int, and �oat. A fourth type,pa
ked bits, is obsolete and shouldn't be used. Displaying double, long, and unsigned variables isnot supported.Variables 
an be s
alars or ve
tors / arrays. There are several type ma
ros that 
an be used inthe view display type de�nitions:#define CHAR_TYPE 0x02#define INT_TYPE 0x04#define FLOAT_TYPE 0x08#define ARRAY_TYPE 0x20#define ARRAY_CHAR_TYPE (ARRAY_TYPE | CHAR_TYPE)#define ARRAY_INT_TYPE (ARRAY_TYPE | INT_TYPE)#define ARRAY_FLOAT_TYPE (ARRAY_TYPE | FLOAT_TYPE)The basi
 display types above are 
onveniently rede�ned in some of the Felix libraries, e.g.:ve
tor.
/h : VECTOR, MATRIX = ARRAY_FLOAT_TYPEbVECTOR, bMATRIX = ARRAY_CHAR_TYPEnn.
/h : LAYER = ARRAY_FLOAT_TYPESPIKE_LAYER = ARRAY_CHAR_TYPEIt is sometimes desired not to provide just a variable to a view, but a pointer to a variable. Thevariable the pointer referen
es 
an then 
hange dynami
ally in every display step. The POINTER-ma
ro sets the respe
tive type bit.



22 CHAPTER 3. GRAPHICAL USER INTERFACE#define POINTER 0x8000#define TO |#define CONST_BIT 0x4000#define CONSTANT CONST_BIT |A variable 
an be de
lared CONSTANT if it does not need to be updated during a runningsimulation. A CONSTANT variable is updated only after a 
all of the init()-fun
tion at thebeginning of a simulation, ie., by pressing the Init- or Run-buttons of the GUI.ExamplesBEGIN_DISPLAYWINDOW("time 
ourses")IMAGE( "v", AR, AC, v, MATRIX, 10, 10, 0.0, 1.0, 4)IMAGE( "z", AR, NC, z, CONSTANT MATRIX, 10, 10, 0.0, 1.0, 4)IMAGE( "y", AR, NC, y, POINTER TO bVECTOR, 10, 10, 0.0, 1.0, 4)IMAGE( "x", AR, NC, x, POINTER TO CONSTANT VECTOR, 10, 10, 0.0, 1.0, 4)...The �rst IMAGE de�nes a view on a MATRIX (ARRAY_FLOAT_TYPE) of size 10 × 10. Thisis how a view de�nition usually de
lares a variable type. The se
ond IMAGE also de�nes a viewon a MATRIX , but be
ause the matrix is de
lared CONSTANT the graphi
s view will only beupdated when the simulation starts. The third IMAGE refers to a binary ve
tor image (bVECTOR= ARRAY_CHAR_TYPE). However, a pointer to the variable y is de
lared so that the array ymay 
hange dynami
ally. The fourth image also de
lares the variable z a pointer, but this timea 
onstant one, so that it 
ould 
hange where it points at, but its view is refreshed only at thebeginning of a simulation. (I 
an't remember I ever used this possibility during the last 15 years).3.3.5 Image-Views

Figure 3.1: 2d grey-s
ale images of 3 arrays in a neural �eld model. Left: input; middle: potentials;right: spikes of the 
ells in the model.An image is a two-dimensional grey-s
ale plot of the 
urrent state of a two-dimensional variable.It is 
reated by 
alling the ma
ro IMAGE() inside the fun
tion MakeDisplay():



3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 23IMAGE(name, row, 
ol, var, type, dim_x, dim_y, min, max, zoom)Here �name� is a string that appears on a button above the image. �row� and �
olumn� give theposition of the image in the 
urrently a
tive window, see se
tion 3.3.3.�var� is the variable to display as an image, �dim_x� and �dim_y� its dimensions, and �type� itsdisplay type as des
ribed in se
tion 3.3.4.The �oating point variables �min� and �max� set the grey-s
ale of the image and should be set tothe expe
ted min- and max-values for the variable.The integer valued argument �zoom� sets the size of the image. Ea
h element of the variable isdisplayed as a square of size zoom×zoom.Ve
tors, i.e. one dimensional arrays, 
an be displayed as images, too, by providing appropriatedimensions in the 
all to IMAGE(). If dim_x*dim_y is bigger than the a
tual ve
tor size, thebehaviour is unde�ned and 
ore dumps 
an potentially o

ur. If it is smaller the remaining
omponents are not displayed.3.3.6 Raster Plots

Figure 3.2: Raster plot of the grey-s
ale-
oded potentials of 100 leaky-integrate-and-�re neuronsover time.A raster plot displays a ve
tor or 2d-array as a fun
tion of time. Ea
h 
omponent of the variableis shown grey-level 
oded on a seperate line.RASTER(name, row, 
ol, var, type, dim_x, dim_y, min, max, zoom)The arguments are the same as in image. If �dim_y� is not zero it is assumed that �var� is a2-dimensional array that has to be interpreted as a ve
tor of length dim_x*dim_y.�zoom� only sets the height of ea
h displayed line (in pixels). It has no in�uen
e on the number oftime-steps that �t on one line.
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Figure 3.3: Two single variable graphs over time3.3.7 Single Variable GraphsA graph displays a single s
alar variable, or a 
omponent of a 1 or 2d-array as a fun
tion of time.GRAPH(name, row, 
ol, var, type, dim_x, dim_y, x, y, min, max)All but the �x� and �y� parameters are the same as in IMAGE.In 
ase of ARRAY_TYPES (see se
tion 3.3.4) �x� and/or �y� spe
ify whi
h 
omponent of thevariable has to be displayed initially.3.3.8 xy-Plots

Figure 3.4: Example showing an x-y-plot of two variables of a Roessler os
illatorThis view obje
t displays an xy-plot of two variables. The variables may be independently 
hosenas single s
alars or 
omponents of 1 or 2d-arrays.



3.3. DISPLAY WINDOWS AND VIEWS ON VARIABLES 25PLOT(name, row, 
ol, var1, type1, dim_x1, dim_y1, x1, y1, min1, max1,var2, type2, dim_x2, dim_y2, x2, y2, min2, max2,zoom)All parameters are the same as in GRAPH, but note that one has to spe
i�y two variables withadjoined information about variable type, the subelement to sele
t from arrays, and the grey-s
alesettings.3.3.9 Arrays of ImagesThis type of view mainly aims at displaying 2-dimensional arrays of 2-dimensional images as theyarise, e.g., in neural �eld models, where ea
h lo
al unit in a 2d-�eld has an individual 2d-lateral
onne
tion kernel. 1-dimensional arrays of 2-dimensional images (e.g., a sta
k of 
orti
al layers)
an also be displayed.IMAGE_ARRAY(name,row,
ol, var,t, dim_x, dim_y, d_x, d_y, x, y, min,max,zoom)�name, row, 
ol, min, max, zoom� have the same meaning as usual (see IMAGE).�var� and �t� de�ne the variable and its display type (whi
h must be an ARRAY_TYPE (usuallyMATRIX) and 
an be a POINTER type)�dim_x� and �dim_y� de�ne the dimensions of the array of images. If �dim_y� is zero, but �dim_x�positive a one dimensional array of images is assumed.�x� and �y� spe
ify whi
h of the sub-images of the array of images is displayed initially (
an beoverridden by the Environment).�d_x� and �d_y� de�ne the size of the displayed images in x and y dire
tion. They must both bepositive.3.3.10 Fun
tions
Figure 3.5: A fun
tion viewA fun
tion view plots a one-dimensional array (VECTOR) as a fun
tion of the array index. Singlefun
tions , and one- and two-dimensional arrays of fun
tions are possible (
f., IMAGE_ARRAYS).FUNCTION(name, row, 
ol, var, type, points, dim_x, dim_y, x, y, min, max)



26 CHAPTER 3. GRAPHICAL USER INTERFACE�name, row, 
ol, var, type, min, max� are the same as in GRAPH.�points� is the number of data points in any individual array that is to be plotted as a fun
tion.�dim_x, dim_y, x, y� are used for arrays of fun
tions. If �dim_x� is bigger than 0 and �dim_y�is zero a one-dimensional array of fun
tions is assumed; if they are both bigger than 0, a two-dimensional one. �x� and �y� de�ne the initially sele
ted fun
tion to display (
an be overridden bythe Environment).
3.4 View Settings FramesEa
h graphi
al view obje
t in a window has a �settings frame� asso
iated with it that 
an be usedto 
ontrol the grey-s
ale ranges of the view and to sele
t sub-elements in 
ase of array variables forgraphs, fun
tions, or image arrays. The settings frame pops up, if the button of a view showingthe view's name is pressed.

Figure 3.6: A two-dimensional settings frameFigure 3.6 shows a two-dimensional settings frame as it 
ould o

ur for a graph of single elementof a 2d array. The frame shows the full array as a grey-s
ale image where the parti
ular elementto display is indi
ated by the red 
rosshair. The element 
an further be sele
ted by the x andy text�elds. If a variable has to be sele
ted from a one-dimensional array only, the 2D-image isrepla
ed by a slider. If the variable to display is a s
alar, no extra element sele
tors will appear inthe 
orresponding settings frames, but only the 
ontrols for setting the grey-level.The de�nitions of all views 
ontain arguments �min� and �max�. These set the initial grey-s
alefor that view. They 
an be 
hanged in the settings frame, too. If the s
ale is 
hanged, the newsettings 
an be stored to an environment �le (see se
tion 3.5).



3.5. LOADING AND SAVING GUI SETTINGS 273.5 Loading and Saving GUI SettingsThe Felix GUI for 
onvenien
e provides the possibility to load and store settings of the graphi
alinterfa
e. The �Environment�-button on the main 
ontrol window serves this task.Right-
li
king the �Environment�-button brings up a menue with four options.Save This saves the 
urrent settings in a default �leLoad This loads settings form the default �leSave as .. This pops up a window where the 
urrent settings 
an be stored in an arbitrary �leLoad ..℄ This pops up a window where settings 
an be loaded from an arbitrary �leLeft-
li
king the �Environment�-button by default saves the 
urrent settings in the default �le.The default �le is lo
ated in a sub-dire
tory �env� of the 
urrent working dire
tory, ie., the dire
torythe exe
utable is lo
ated and run in. The default �le has the same name as the exe
utable.The default �le does not exist until it is 
reated (by left-
li
king the �Environment�-button). Ifthe environment dire
tory �env� does not already exist, it is 
reated, too.If a default �le exists it is automati
ally loaded when an appli
ation starts. This overrides anyexpli
it initialisations of swit
h or slider values, image grey-s
ales, or sub-sele
tions in views that
an plot array obje
ts. O

asionally this behaviour is unwanted,. You then need to rename ordelete the default environment �le in the �env�-subdire
tory.Note: Changing the number of graphi
 obje
ts (swit
hes, sliders, windows, views) in the GUIde�nition of an appli
ation typi
ally invalidates the environment �le(s). Instead of using the �le,the appli
ation will print an error message on the s
reen. This is sometimes un
omfortable for
omplex appli
ations, be
ause all settings have to be set anew. It 
an then be easier to hand-editthe environment �les: If proper entries for the new (or deleted) obje
ts are added, the �le 
an beused again.
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Chapter 4Libraries
Felix 
omes with a number of fun
tion pa
kages / libraries suitable for tasks often en
ountered inthe modeling of neural networks and dynami
al systems. The present se
tion provides an overview.4.1 Outline: Pools and FieldsAlthough not restri
ted to them, two types of models have been in the main fo
us during thedesign of Felix - networks 
omprising homogeneuos neural pools and layered, topographi
allyordered neural �elds, 
f., Figure 1.2 in se
tion 1.2.Given a single neural pool of N neurons its dynami
s 
ould be des
ribed mathemati
ally by

τφi(t) = −φi(t) + Ii(t) +

N∑
i=1

wijf(φj(t)) + σηi(t) (4.1)Here, the 
ells are modelled by a single variable for their membrane potentials, φi, i = 1, . . . , N ,and by a graded sigmoid output or rate-fun
tion f . Single units are identi
al: they obey the samemebrane low-pass dynami
s with time-
onstant τ and have the same rate-fun
tion. They might,however, re
eive di�erent inputs Ii(t) and noise ηi(t) of strength σ, and their synapti
 weights
wij , j = 1, . . . , N will di�er. More 
ompli
ated single neuron models are of 
ourse possible. Cells,in general, also don't need to be identi
al.The dynami
s of a single neural �eld in 
ontrast 
an be written as

τφ(x, t) = −φ(x, t) + I(x, t) +

∫
w(x, x′)f(φ(x, x′, t)) + ση(x, t) (4.2)In 
ontrast to (4.1) 
ells do not just have indexes, but a 
ontinuous spatial lo
ation x (whi
h will,of 
ourse, typi
ally be dis
retised in 
omputer models). Units at one lo
ation intera
t only withneighbours nearby. This is re�e
ted by the synapti
 kernels w(x, x′) in (4.2). Beside this, themeaning of the symbols in equations (4.1) and (4.2) are the same.Both kinds of models need similar 
onstru
t to de�ne and simulate the single units they 
onsistof, e.g., the dynami
s of the membranes φ and the output type of the units. Both, (4.1) and (4.2)above use �rst order low-pass �lters and graded output by means of nonlinearities f . The maindi�eren
e 
on
erns their 
onne
tivity patterns. In pool-models all 
ells in one pool 
an potentially29
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h all 
ells in the same or another pool � matrix-ve
tor operations are most 
onvenient toimplement this kind of model, see se
tion 4.3 below. Neural �elds on the other hand revealtopographi
 neighbourhood stru
tures - Felix provides 
onstru
ts for the implementation of thiskind of �integro-di�erential equation�, too, see se
tion 4.5.Delays further play an important role in many neural models. They are supported in Felix by a
ontainer 
lass that stores model traje
tories over time and a number of fundamental routines toa

ess delyed variables in simulations. There are in parti
ular delayed 
onvolution fun
tions, thatare needed if lateral propagation speeds in a �eld model are �nite. Details 
an be found in se
tion4.6.Noise is omnipresent in neural systems and in many other physi
al systems, too. In (4.1) and(4.2) noise inputs into the system is, for instan
e, represented by the pro
esses η. These are
ommonly assumed independent and identially distributed Gaussian white noise with mean 0; σsets the standard deviation. Other 
hoi
es are Poisson pro
esses of some rate whi
h would re�e
tthe spiking nature of inputs to neurons. Felix has a built-in pseudo-random number generatordes
ribed in se
tion 4.7.Felix also has libraries with some numeri
al and image pro
essing routines. Be
ause, these are notwell developed, they will not be des
ribed in this do
ument.4.2 Some Low-level De�nitionsIf not de�ned already in system headers, the Felix headers de�ne the following ma
ros# define TRUE 1# define FALSE 0# define MIN(a, b) ((a) > (b)? (b) : (a))# define MAX(a, b) ((a) > (b)? (a) : (b))4.3 Matrix and Ve
tor OperationsThe Matrix/Ve
tor fun
tionality is a 
entral part of Felix. Two base-types for variables are ingeneral supported. Most Felix fun
tions operate on s
alars, ve
tors, or matri
es of those.BaseType : �oating point values (for histori
al reasons these are C-type ��oat�; I don't want togo into the mess if 
hanging to �double�).bBaseType: binary (0/1) values. One bit stored per memory-byte (unsigned 
har).BaseType is used for all kinds of 
ontinuous 
ell variables, whereas bBaseType is useful for therepresentation fo binary ve
tors of �spikes�.(The bitBaseType available in early versions of Felix is obsolete and shouldn't be used. It used apa
ked binary format; one bit stored per memory-bit.)Ve
tor and Matrix-types are derived from the base-types
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tor;typedef bBaseType * bVe
tor;typedef BaseType * Matrix;typedef bBaseType * bMatrix;Note: Matri
es are internally stored as linearized arrays of rows in memory (ie., not as ve
tors ofpointers to rows or 
olumns).4.3.1 Operations on S
alar VariablesBaseType leaky_integrate( float tau, BaseType v, BaseType expr )This ma
ro implements a simple Euler-S
heme for simulating leaky-integrator membranes: τ dv
dt

=
−v + expr. Integration stepsize is set with SET_STEPSIZE(dx) and should be 
hosen su
h thatdx/tau is small 
ompared to 1. The variable �step_size� 
an be used expli
itly in 
ode if required.In 
onjun
tion with the later explained �re_reset()-fun
tion, �leaky-integrate and �re neurons� arestraightforward to implement (see the example program inf.
).Several basi
 nonlinear fun
tions are available as rate-fun
tions or for other purposes. They alltake a single �oat as argument and return a single �oating point value.triangle(x) : f(x) = 1 − |x| if |x| < 1 and 0 if |x| >= 1re
tangle(x) : f(x) = 1 if |x| <= .5 and 0 if |x| > .5gaussian(x) : f(x) = exp(−4 ∗ ln(2) ∗ x ∗ x) (The fa
tor 4*ln(2) ensures f(.5) = .5)fermi(x) : f(x) = 1/(1 + exp(−4 ∗ x)) (The fa
tor 4 ensures df/dx(0) = 1.)ramp(x) : f(x) = 1 if x > 1, 0 if x < 0 and x elselin(x) : f(x) = xtlin(x) : f(x) = x if x > 0 and 0 if x <= 0tquad(x) : f(x) = x ∗ x if x > 0 and 0 if x <= 04.3.2 Memory Allo
ation RoutinesBefore use, any ve
tor or matrix-variable must be allo
ated. This is usually done in the top-levelfun
tion main_init(). It must be done there if the variable is a

essed for display in the graphi
aluser interfa
e. Use the following template for fun
tions to allo
ate ve
tors and matri
es:<var_type> var;var = Get_<var_type>( <dims> );
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<var_type> stands for �Ve
tor�, �bVe
tor�, �Matrix�, or �bMatrix�. If a Ve
tor-Type is supplied
<dims> is the requested length. In 
ase of a matrix <dims> = �rows, 
olumns�.Allo
ated memory-spa
e should be set free if no longer need. This is done by ma
ros of the typeFree_<var_type>(var);or simply by a 
all to the system-library fun
tion free( < var > ).Example:Matrix m = Get_Matrix(10, 10); /* allo
ate memory for m */......Free_Matrix( m ); /* or alternatively: free(m); */4.3.3 Cleaning Ve
tors and Matri
esAll entries of a Ve
tor or Matrix are set to zero by one of the following ma
ros:Clear_<var_type>(<dims>, <var>) .For example:Clear_bMatrix( rows, 
olumns, m );Clear_Ve
tor( length , v );4.3.4 A

ess to Elements of a Matrixelem( m, i, j, 
olumns )This is a ma
ro that gets or sets the element m[i][j] of the Matrix or bMatrix m. '
olumns' is thenumber of 
olumns of m. (If i is set to 0 the ma
ro 
an be used for Ve
torTypes, too.)For example:elem( m, 5, 6, 10) = 3.14; /* Set m[5℄[6℄ to 3.14 */x = elem( m, 5, 6, 10); /* set x to m[5℄[6℄ */If you don't use this ma
ro for matri
es you have to keep in mind that matri
es are stored seriallyin memory, i.e, elem(m, 5, 6, 10) would be equivalent to m[5 ∗ 10 + 6], but note that m[5][6] doesnot work!4.3.5 Raw I/O of Ve
tors and Matri
es to/from �lesRaw output in binary format to or from a stream is done with one of the ma
ros:



4.3. MATRIX AND VECTOR OPERATIONS 33Write_<var_type>( <dims>, <var>, stream );Read_<var_type>( <dims>, <var>, stream );These ma
ros dire
tly 
all the system-library fun
tions fread() and fwrite(), thus they return thenumber of bytes a
tually read or written. For error-indi
ations see fread() and fwrite().For ASCII-output use the fun
tionsSave_<var_type>( <dims>, <var>, stream );Load_<var_type>( <dims>, <var>, stream );Ve
tors and Matri
es are stored row by row; b-Types are stored as sequen
es of zeros and ones.Entries are separated by blanks. On error the fun
tions return -1; otherwise zero;There are fun
tions mainly for debugging purposes that print out Ve
tors and Matri
es to stdoutin the same manner as the Save-family does to �les. These areShow_<var_type>( <dims>, <var> );4.3.6 Ve
tor and Matrix OperationsS
alar Multipli
ation of two ve
tors of length n.BaseType Skalar(int n, Ve
tor v1, Ve
tor v2)BaseType bSkalar(int n, Ve
tor v1, bVe
tor v2)int bbSkalar(int n, bVe
tor v1, bVe
tor v2)Observe that the purely binary operation returns int-type.Matrix-Ve
tor Multipli
ation.Ve
tor Mult(int z, int s, Matrix matrix, Ve
tor ve
tor, Ve
tor dest)Ve
tor bMult(int z, int s, Matrix matrix, bVe
tor ve
tor, Ve
tor dest)dest = matrix * ve
tor, where �matrix� has z rows and s 
olumns, �ve
tor� has length s, and�dest� has length z. The fun
tions return �dest�. Observe that the purely binary operations returnint-type, thus a ve
tor to integers has to be supplied as 'dest' .Maximum, Minimum, and Sum over Elements.BaseType Sum(int, Ve
tor);int bSum(int, bVe
tor);BaseType Max_Elem(int, Ve
tor);BaseType Min_Elem(int, Ve
tor);
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aling The following 
ompute Ve
tor Norms. (Indu
ed) Matrix norms are notimplemented at the moment, but matri
es 
an be supplied to the fun
tions below as well.BaseType Ve
tor_Norm_1(int n, Ve
tor v);BaseType Ve
tor_Norm_2(int n, Ve
tor v);BaseType Ve
tor_Norm_sup(int n, Ve
tor v);void Norm_Ve
tor_1(int, Ve
tor v, Ve
tor out);void Norm_Ve
tor_2(int, Ve
tor v, Ve
tor out);void Norm_Ve
tor_sup(int, Ve
tor v, Ve
tor out);The �Ve
tor_Norm_� fun
tions 
ompute the 1, 2, and ∞- (or max- or sup-)norm of a ve
tor,respe
tively (ie, the sum of absolute values, square-root of squares, or the largest absolute element).The �Norm_Ve
tor_� fun
tions �rst 
ompute the norms and then s
ale the ve
tors to a norm of1. They return the result in �out� whi
h 
an be the same as �v�.The subsequent fun
tions s
ale ve
tors and matri
es or apply more general fun
tions to ea
helementVe
tor S
ale_Ve
tor(int n, Ve
tor v, BaseType offs, BaseType s
ale, Ve
tor out);Ve
tor Ve
tor_Apply(int n, Ve
tor v, BaseType (*fun
)(BaseType), Ve
tor out);Ve
tor Ve
tor_Apply_Arg(int n, Ve
tor v,BaseType (*fun
)(BaseType, void *), void *args, Ve
tor out) );Matrix S
ale_Matrix(int z, int s, Matrix m, BaseType offs, BaseType s
ale, Matrix out);Matrix Matrix_Apply(int z, int s, Matrix m, BaseType (*fun
)(BaseType), Matrix out);Matrix Matrix_Apply_Arg(int z, int z, Matrix m,BaseType (*fun
)(BaseType, void *), void *args, Matrix out);S
ale_Ve
tor and S
ale_Matrix apply an a�ne transformation to the elements of the ve
tor �v�or matrix �m�. That is, they multiply all values by �s
ale� and add an o�set �o�s�.Ve
tor_Apply and Matrix_Apply apply a user de�ned fun
tion �fun
� to all elements in the array.The user-de�ned fun
tion �fun
� takes a single �oat as input and returns a �oating point value;the previously de�ned non-linearities 
an, e.g., be used. The fun
tion is, e.g., useful to 
omputethe outputs of graded response neurons given their potentials and rate-fun
tion.Ve
tor_Apply_Arg and Matrix_Apply_Arg apply a user de�ned fun
tion �fun
� with more thana single argument to all elements in the supplied array. �fun
� takes a void pointer to a ve
tor (orstru
t) of arguments and must return a single �oating point value.Results of the above fun
tions are return in �out� whi
h 
an be the same as the input array.Setting / Changing whole Ve
tors and Matri
esvoid Set_Fun
_Ve
tor(int n, Ve
tor v,BaseType (*fun
)(BaseType),int shift, BaseType height, BaseType s
ale)
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tion 
hanges the ve
tor �v� a

ording to v[i]+ = height ∗ func((i− shift)/scale), where�fun
� is a s
alar fun
tion. Note that the fun
tion is additive. It 
an be used to genrate shiftedversions of ve
tors with 
ertain pro�les as hey appear as input stimuli in some neural networks.void Make_Fun
_Band_Matrix(int n, Matrix J,BaseType (*fun
)(BaseType),BaseType height, BaseType s
ale )This generates band-matri
es with (row-)pro�les given by a fun
tion �fun
�. The fun
tion is ad-ditive. �height� and �s
ale� set the amplitude and width of the pro�le (e.g., if fun
 is a Gaussian,s
ale would be the standard deviation)void Make_Fun
_Band_Matrix_Cy
li
(int n, Matrix J,BaseType (*fun
)(BaseType),BaseType height, BaseType s
ale)As the previous one this fun
tion generates band-matri
es with (row-)pro�les given by a fun
tion�fun
�, but wraps 
y
li
ally. The fun
tion is additive.void Dilute_Matrix(int z, int s, Matrix m, BaseType p)This fun
tion randomly sets entries in the matrix �m� to zero with probability �p�. A Ve
tor 
anbe diluted by setting one of the size arguments to 1 and the other to the true lebgth of the Ve
tor.4.3.7 �Neural� Operations for Ve
tors and Matri
es�Sigmoid� output fun
tions.Ve
tor Fv(int n, Ve
tor ve
tor, BaseType (*fun
)(),BaseType fa
tor, BaseType threshold, BaseType width,Ve
tor out)Apply the fun
tion fun
() to all �n� elements of �ve
tor�. fun
() 
an be one of the s
alar fun
tionsde�ned earlier in this se
tion, or a user-de�ned one. Result are stored in the ve
tor �out� (notne

essarily di�erent from �ve
tor�). �fa
tor� and �width� may be used to s
ale the variable-valuesto the nonlinear range of fun
(); �threshold� sets an o�set-value:out[i℄ = fa
tor*fun
( (ve
tor[i℄-threshold)/width );The fun
tion returns �out�. If out equals NULL (or 0) on entry, an output array is allo
atedinternally and returned by the fun
tion. The user has to free() the respe
tive spa
e, if it is nolonger needed.
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essesbVe
tor ProbFire( int n, Ve
tor v, bVe
tor out)Computes a n-dimensional binary random-ve
tor from v, su
h that prob[o[i] = 1] = v[i] and
prob[0[i] = 0] = 1 − v[i]. It is not 
he
ked whether v[i℄ falls into the range [0,1℄. The fun
tionreturns �out�. If out equals NULL (or 0) on entry, an output array is allo
ated internally andreturned by the fun
tion. The user has to free() the respe
tive spa
e, if it is no longer needed.Threshold Neurons.bVe
tor Fire(int n, Ve
tor ve
tor, BaseType theta, bVe
tor out)For all n elements of �ve
tor� 
ompare vector[i] with a threshold �theta�: set out[i] to 1 if it is largerand to 0 otherwise. The fun
tion returns �out�. If out equals NULL (or 0) on entry, an outputarray is allo
ated internally and returned by the fun
tion. The user has to free() the respe
tivespa
e, if it is no longer needed.Fire-and-Reset Neurons.bVe
tor Fire_Reset(int n, Ve
to ve
tor, BaseType theta,BaseType reset, bVe
tor out)Same as Fire() but if out[i] is set to 1 then v[i] is reset to the value �reset�. This fun
tion may beused to implement the �integrate and �re neuron model� (
f, example program inf.
). If out equalsNULL (or 0) on entry, an output array is allo
ated internally and returned by the fun
tion. Theuser has to free() the respe
tive spa
e, if it is no longer needed.4.4 StimuliFelix provides a number of �
lassi
al� stimulus fun
tions like steps, ramps, re
tangular, triangle-,and dira
-fun
tions in the temporal domain as well as plane waves, dis
s, bars and Gabor pat
hesin the spatial domain. Many spatio-temporal stimuli 
an be 
ombined from these options.An example program "stimuli.
" should be 
ontained in the 
ode-dire
tory of this user guide.4.4.1 Temporal Stimulus Fun
tionsThese fun
tion generate tims fun
tions of a number fo 
ommon forms.float TSine( float t, float T, float t0 );float TRe
t( float t, float T, float t0 );float TTriangle( float t, float T, float t0 );
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t( float t, float T, float t0, float duty );float TSkewTriangle( float t, float T, float t0, float duty );float TSkewSine( float t, float T, float t0, float duty );float TPulse( float t, float t0 ); // 1 for 1 time-binfloat TDira
Pulse( float t, float t0 ); // mass 1 for 1 binfloat TStep( float t, float t0 );float TRamp( float t, float t0, float slope );float TInterval( float t, float t0, float t1 );float TGaussian( float t, float t0, float s
ale );Argument t in these fun
tions is the simulation time (usually SIM_TIME), T are period durations,
t0, t1 are o�sets, temporal shifts or times at with events happen. For instan
e, in TTriangle, t0 isan o�set, whereas in TInterval t1 is the time the stimulus swit
hes on, and t2 the time it swit
heso� again.Most of these fun
tions are s
aled to a range [0,1℄ (in
luding TSine for 
onsisten
y).The skew fun
tions use di�erent ON/OFF times for the re
tangular fun
tion and rise/fall-timesfor the triangle and sine, respe
tively. "duty" is a number between 0 and 1 that determines theON/OFF fra
tion.TDira
Pulse s
ales the return value by the inverse internal simulation time step (step_size) inorder to obtain Dira
-pulses normalised to a mass of 1. TPulse returns a pulse of amplitude 1.TRamp is the semi-linear fun
tion whi
h is zero until t0 and in
reases with rate slope afterwards.TGaussian is a temporal gaussian with maximum at t0. It 
an be used to simulate a smoothlyrising and then de
aying stimulus. The duration of the stimulus 
an be inf
luen
e by the fa
tormultipli
ative scale.4.4.2 Spatial Stimulus Fun
tionsThe following fun
tions return 
ommon two-dimensional stimuli like bars and gratings. They areadditive in order to allow for 
ombinations. Therefore the user has to 
lear arrays expli
itly asne
essary.In the following routines m is a matrix for the 2D-stimulus, w and h are its width and height,respe
tively. x0 and y0 are 
entre lo
ations of stimuli. Be
ause the fun
tions are additive, 
om-plex stimuli 
an be 
onstru
ted by 
entering several sub-stimuli at di�erent lo
ations. Argument
amplitude is the amplitude of a 
omponent. It is possible to insert the temporal stimuli of theprevious se
tion here in order to obtain spatio-temporal stimuli.SWholeField( Matrix m, int w, int h, float amplitude);SRe
t( Matrix m, int w, int h, float x0, float y0,float w0, float h0, float phi, float amplitude);



38 CHAPTER 4. LIBRARIESSProfile( Matrix m, int w, int h, float x0, float y0,float w0, float h0, float phi, float amplitude,float s
ale, float (*fun
)(float));SDis
( Matrix m, int w, int h, float x0, float y0,float d, float amplitude);SCir
ularFun
tion( Matrix m, int w, int h, float x0, float y0,float amplitude, float s
ale, float (*fun
)(float) );SPlaneWave( Matrix m, int w, int h, float amplitude,float k0, float phik, // wave ve
tor, amplitude and anglefloat psi ); // phaseSGabor( Matrix m, int w, int h, float x0, float y0, float amplitude,float sig0, float sig1, // prin
ipal and se
ond sigmafloat k0, float phik, // wave ve
tor, amplitude and anglefloat phi, float psi ); // angle(k,sig0) and temporal phaseSCenterSurroundGrating( Matrix m, int w, int h, float x0, float y0,float r0, float a0, float k0, float phi0, float psi0,float r1, float a1, float k1, float phi1, float psi1 );SWholeField adds a homogeneous o�set to the whole �eld.SRe
t adds a re
tangle at orientation phi, 
entre lo
ation x0, y0, width w0 and height h0. (Thequality of the re
tangle is not good. Use the next fun
tion for stimuli with less dis
retisationartefa
ts.)SProfile as SRe
t adds a re
tangle to the stimulus array but with a 
ertain pro�le along the y-axis(if phi=0) spe
i�ed by the fun
tion func. scale s
ales the argument of that fun
tion, that is, itsets its length-s
ale. Note that the fun
tion takes a �oat-argument and returns �oat. If standardfun
tions like sin, 
os, et
 from math.h are desired they have to be wrapped, be
ause they takedouble-arguments (More 
on
retely: de�ne a fun
tion float myfun
(float x){...} that just
alls the fun
tion wanted and provide the new fun
tion �myfun
� as an argument to SProfile).SDis
 adds a dis
 of diameter d. (The quality of the dis
 is bad, espe
ially for small dis
s. Thenext fun
tion might be useful to get more appropriate results.)SCir
ularFun
tion adds a 
ir
ular stimulus with radial pro�le func. scale s
ales the argumentof the pro�le fun
tion multipli
atively.SPlaneWave adds a plane wave with wave number k0 and phase shift psi. The angle phik de�nesthe dire
tion of the wave.SGabor adds a Gabor-pat
h. The meaning of the arguments are given in the de�nition above.(The angle phi is the angle between the wave-ve
tor and the �rst prin
iple axis of the envelopegaussian. If the gaussian is 
ir
ular symmetri
 this angle is arbitrary.)SCenterSurroundGrating is a stimulus 
onsisting of a sine-grating with parameters
a0, k0, phi0, psi0 in an inner 
ir
le of size r0, and a se
ond grating with parameters a1, k1, phi1, psi1



4.4. STIMULI 39in the annulus from r0 to r1. a0, a1 are the amplitudes, k0, k1 the wave numbers, phi0, phi1 thewave dire
tions, and psi0, psi1 the phases of the gratings.Note 1: Most of these fun
tions are not very qui
k and 
ould be optimised. If only stati
 stimuliare needed, it is probably a good 
hoi
e to 
ompute them only on
e in main_init or init.4.4.3 Dynami
 StimuliIf moving graitings or gabor pat
hes at a �xed lo
ation but with moving sinusoidal modulation areneeded, it usually su�
es to re
ompute SPlaneWave or SGabor per simulation step with sinusoidallymodulated phases psi. In SCenterSurroundGrating, both the inner and outer grating 
an be mademoving this way. The example program "stimuli.
" 
ontained in the 
ode-dire
tory of this userguide shows some examples.There are also some ma
ros and fun
tions that allow to move stimulus 
entres dynami
ally invarious ways. These fun
tions assume that a 
entre has a lo
ation and velo
ity given by 4 �oatingpoint numbers cx, cy, vx, vy. The following ma
ros and fun
tions 
an be used to update thesevariables whi
h in turn 
an be used as lo
ation variables (x0, y0) in argument lists of the stimulus
onstru
tion fun
tions in the previous subse
tion:advan
e_
entre(x,y,vx,vy)jitter_
entre_lo
ation(x,y,s)jitter_
entre_velo
ity(vx,vy,s)
entre_is_in_
ir
le( x, y, x0, y0, r)
entre_is_in_re
t(x,y,l,r,b,t)void jitter_
entre_dire
tion( float *vx, float *vy, float s);void boun
e_
entre_velo
ity(float *vx, float *vy, float nx, float ny);The �rst 5 fun
tions are a
tually ma
ros (de�ned in stimulus.h); the last two are true fun
tions(de�ned in stimulus.
).advan
e_
entre updates the lo
ation of a 
entre given its velo
ity and the 
urrent step_sizejitter_
entre_lo
ation, jitter_
entre_velo
ity, and jitter_
entre_dire
tion add gaus-sian white noise of standard deviation s to the lo
ation or velo
ity variables, wherejitter_
entre_dire
tion renormalises the velo
ity afterwards (the normalisation algorithm issub-optimal; small numeri
 errors 
an a

umulate).
entre_is_in_
ir
le and 
entre_is_in_re
t are ma
ros that return 1 if a 
entre is inside agiven 
ir
le at lo
ation x0, y0 of radius r or a re
tangle bounded by l, r, b, t (left, right, bottom,top) respe
tively; otherwise they return 0.boun
e_
entre_velo
ity(float *vx, float *vy, float nx, float ny) re�e
ts the 
entrevelo
ity given a surfa
e normal of (nx, ny). It is not 
he
ked whether the normal is truly nor-malised to 1.The example program �dynami
_stimuli.
� 
ontained in the 
ode-dire
tory of this user guide showsseveral examples, i.e., either a disk or oriented bar that 1) boun
es ba
k and forth, 2) moves



40 CHAPTER 4. LIBRARIESthrough the input area along random pathways, 3) boun
es through the input area re�e
ted atthe boundaries, 4) performs a random walk, or 5) performs a 2-dimensional Ornstein-Uhlenbe
kpro
ess around the 
enter of the input area.4.5 Field Models, Spatial ConvolutionsField models are two-dimensional, topographi
ally arranged neural networks, whi
h are typi
allyonly 
onne
ted within 
ertain neighbourhoods, see Figure 1.2.Although Felix supports one-dimensional and two-dimensional �elds, only two-dimensional onesare des
ribed in this do
ument.4.5.1 Kernels or FiltersAs stated, 
ells in neural �elds are 
onne
ted only lo
ally. Felix assumes re
tangular 
onne
tivityregions, whi
h are 
alled Kernels, or Filters, or re
eptive Fields. The pre
ise name 
hosen dependson the 
ontext and on the s
ienti�
 
ommunity (�kernels� appear in integro-di�erential equationsin Mathemati
s, ��lters� in image pro
essing algorithms in 
omputer s
ien
e, and �re
eptive �elds�in neural networks � all three 
on
epts are �very 
losely related� (to speak 
autiously)./* two-dimensional Kernels/Filters */typedef BaseType * Kernel;typedef BaseType * UniKernel;typedef bBaseType * bKernel;typedef bBaseType * UnibKernel;The di�eren
e between Kernels and UniKernels is that in some neural �elds all units have thesame ��lters� (think, e.g., of a layer of 
ells dete
ting orientation at a �xed orientation), whereasin others ea
h 
ell has its own �re
eptive �eld� (e.g., in a full orientation tuning map). In the�rst 
ase one would story only a single 
opy of the kernel (UniKernel/UnibKernel), whereas in these
ond 
ase a �eld of kernels is required (Kernel/bKernel)4.5.2 Correlation and Convolution Fun
tionsAgain somewhat depending on s
ienti�
 
ommunity, operations envolving kernels in �eld equationsare written as �
onvolutions� ∫
k(x − x′)f(x′)dx′ or �
orrelations� ∫

k(x + x′)f(x′)dx′. The maindi�eren
e is just mirroring the respe
tive kernel (here shift-invariant UniKernels). Felix implementsboth options. In neural �eld appli
ations one would (probably) prefer 
orrelations be
ause theymeasure the similarity (
orrelation) of the (input) f with the kernel lo
al at lo
ation x.There are a pretty large number of 
orrelation and 
onvolution fun
tions in Felix, whi
h di�er inthe types of arguments, and how they deal with the boundaries of a �eld.



4.5. FIELD MODELS, SPATIAL CONVOLUTIONS 41They all take a input �eld �in� of size x×y and a kernel (Uni or Multi) of size kx×ky; they allreturn a �eld �out� of size x×y.If the lo
al operations are 
orrelations the base name of the fun
tion is �Correlate�, and it is�Convolute� for 
onvolutions.If the input �eld is of binary type (e.g., a �eld of 0/1 spikes) a �b� is added in front of the basename.If ea
h lo
al 
onvolution/
orrelation uses the same UniKernel, �Uni� is appended after the basename. Otherwise, a �eld of kernels is expe
ted, su
h that ea
h lo
al unit has its own �lter /re
eptive �eld.If the 
onvolution / 
orrelation wraps around at the boundaries, ie., the �eld is a
tually a two-dimensional torus, �
y
li
� is appended to the name of the fun
tion.Here is the full list of possibilities.Matrix Correlate_2d ( Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out )Matrix Correlate_2d_
y
li
 ( Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out )Matrix bCorrelate_2d ( bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out )Matrix bCorrelate_2d_
y
li
 ( bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out )Matrix Convolute_2d ( Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out )Matrix Convolute_2d_
y
li
 ( Matrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out )Matrix bConvolute_2d ( bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out )Matrix bConvolute_2d_
y
li
( bMatrix in, Kernel kern, int x, int y,int kx, int ky, Matrix out )Matrix Correlate_2d_Uni ( Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out )Matrix Correlate_2d_Uni_
y
li
 ( Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out )Matrix bCorrelate_2d_Uni ( bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out )Matrix bCorrelate_2d_Uni_
y
li
( bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out )Matrix Convolute_2d_Uni ( Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out )Matrix Convolute_2d_Uni_
y
li
( Matrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out )Matrix bConvolute_2d_Uni ( bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out )



42 CHAPTER 4. LIBRARIESMatrix bConvolute_2d_Uni_
y
li
 ( bMatrix in, UniKernel kern, int x, int y,int kx, int ky, Matrix out )All these fun
tions return �out�, whi
h must provide spa
e for the results when a fun
tion is 
alled.Note that the 
y
li
 fun
tions are more time-
onsuming than the non-
y
li
 ones, and that UniKer-nels need less memory.Later in this se
tion another family of fun
tions is introdu
ed that extends the 
onvolu-tion/
orrelation fun
tions to in
lude lateral propagation delays, see se
tion 4.6.4.5.3 Orientation Tuning MapsThe following are a few fun
tions that initialise single UniKernels or arrays of them (Kernels).They 
an be used to implement orientation tuning maps, but are rudimentary.Set_Cir
_Fun
_Uni_Kernel(UniKernel kern, int kx, int ky,BaseType (*fun
)(BaseType),BaseType height, BaseType width, BaseType offset)Given a one-dimensional pro�le fun
tion �fun
� set a 2d-UniKernel �kern� to a 
ir
ular symmetri
pro�le. Kernel-dimensions are kx and ky. �height, width, and o�set� set the amplitude and spatials
ale, and an additive o�set of the kernel, respe
tively. The fun
tion is additive.void Gabor_Uni_Kernel ( UniKernel kern, int dimx, int dimy,BaseType height, BaseType sigma1, BaseType sigma2,BaseType kw, BaseType phikw, BaseType phisigmakw,BaseType phi0 )This fun
tion sets an UniKernel to have a Gabor-type re
eptive �eld, i.e., a 2d-sinusoidal wavemodulated a by a spatial Gaussian fun
tion. �dimx� and �dimy� are the dimensions of the kernel.�height sets its amplitude. �sigma1� and �sigma2� are the standard deviations of the Gaussianalong the �rst and se
ond prin
ipal axes. �kw� is the wave-number. phikw is the orientation ofthe wave ve
tor and phisigmakw the angle between the dire
tion of the wave ve
tor and the �rstprin
ipal axes of the Gaussian (usually believed to be 0 in 
orti
al simple 
ells, but need not).�phi0� is the spatial phase of the sinusoidal. The fun
tion is additive.void Set_Phi_Fun
_Kernel ( Kernel kern, int x, int y, int kx, int ky,BaseType (*fun
)(BaseType),Matrix phi,BaseType height, BaseType width, BaseType offset)This fun
tion takes a matrix of orientations, �phi� and generates a two-dimensional �eld of sizex×y of two-dimensional kernels �kern� of size kx×ky. Ea
h kernel has an orientation-tuned pro�legiven by the s
alar fun
tion �fun
� in a dire
tion 
orresponding with the phi-value at the respe
tivelo
ation in �phi�. (Thus, these pro�les 
an be plane waves, but 
an not in addition be Gaussianmodulated as for Gabor wavelets. There is 
urrently no dedi
ated fun
tion to set �elds of Gaborwavelets at on
e.) �Height, width, and o�set� have the same meaning as in the previous fun
tions.The fun
tion is additive.



4.6. DELAYS 434.5.4 Layers and SpikeLayersIn order to make life easier in some appli
ations, two types of �elds have been de�ned withintrinsi
ally stored sizes, Layers and SpikeLayers. These just rede�ne the more general stru
turesdes
ribed above, but use intrinsi
 variables xsize and ysize for their size.#define SPIKE_LAYER ARRAY_CHAR_TYPE // same as bMatrix#define LAYER ARRAY_FLOAT_TYPE // same as Matrix# define DEFAULTXSIZE 64# define DEFAULTYSIZE 64# define X_SIZE(_x) xsize = _x;# define Y_SIZE(_y) ysize = _y;extern int xsize, ysize;Layers rede�ne Matrix and SpikeLayers bMatrix. Similarly Fields rede�ne Kernels and UniFieldsUniKernels. Default dimensions are 64×64, whi
h 
an be 
hanged using the ma
ros X_SIZEand Y_SIZE above (in the fun
tion main_init()). Thereby, expli
it size arguments 
an be oftenavoided:Get_Layer() // returns a Matrix of xsize * ysizeGet_SpikeLayer() // returns a bMatrix of xsize * ysizeGet_Field(z,s) // returns a field of xsize*ysize of kernels of size z*sGet_UniField(z,s) // returns a single kernels of size z*sFree_Layer(l)Free_SpikeLayer(l)Free_Field(l)Free_UniField(l)Clear_Layer(l)Clear_SpikeLayer(l)Clear_Field(z,s,l)Clear_UniField(z,s,l)Fold_Spikes_Uni(inp, kern, kx, ky, out)same as: bCorrelate_2d_Uni(inp, kern, xsize, ysize, kx, ky, out)Fold_Spikes( in, kern, kx, ky, out)same as: bCorrelate_2d( in, kern, xsize, ysize, kx, ky, out)4.6 DelaysDelaylines are 
y
li
 bu�ers that 
an store values of ve
tors and arrays of variables from previoussteps. The user does not need to mess with the intrinsi
 data-stru
tures of 
y
li
 bu�ers. A number



44 CHAPTER 4. LIBRARIESof low-level a

ess routines are provided as well as routines 
ommonly en
ountered in dealing withdelays in pool- and �eld-models.4.6.1 Containers for Delay VariablesThe following are types of 
ontainer variables that 
an store di�erent Felix typesVe
tor_DLMatrix_DLbVe
tor_DL;bMatrix_DL;intVe
tor_DL;intMatrix_DL;Allo
ating Delay Lines Use one of the following to allo
ate a delayline of a parti
ular type.n, r, 
 are the number of elements, rows, 
olumns, and l is the memory-length, ie, the maximumnumber of simulation steps that are stored.Get_Ve
tor_DL( _n, _l )Get_Matrix_DL( _r, _
, _l )Get_bVe
tor_DL( _n, _l )Get_bMatrix_DL( _r, _
, _l )Get_intVe
tor_DL( _n, _l )Get_intMatrix_DL( _r, _
, _l )Freeing Delaylines. Delaylines should be freed if no longer used by 
alling one ofFree_DL( _d )Free_Ve
tor_DL( _d )Free_Matrix_DL( _d )Free_intVe
tor_DL( _d )Free_intMatrix_DL( _d )Free_bVe
tor_DL( _d )Free_bMatrix_DL( _d )Note: 
alling just free(dl); is not enough. You need to use the above ma
ros. It 
an be justFree_DL( _d ), however, to whi
h all the other ma
ros expand.Resetting Delaylines. The following ma
ros reset a delayline to a well-de�ned state; they donot 
lear the data bu�ers as su
h.Clear_DL( _d )Clear_Ve
tor_DL( _d )



4.6. DELAYS 45Clear_Matrix_DL( _d )Clear_intVe
tor_DL( _d )Clear_intMatrix_DL( _d )Clear_bVe
tor_DL( _d )Clear_bMatrix_DL( _d )Clear_bitVe
tor_DL( _d )Clear_bitMatrix_DL( _d )Setting Delaylines. The initial values of a delayline 
an be de�ned by a fun
tion �fun
� ofparameters �P�. This has to de�ne values for ea
h ve
tor or matrix element and delay in thedelayline. The 
alls below use the fun
tion to initialise a delayline.void Set_Ve
tor_DL( size_t n, size_t del, Delayline dl, float *P,BaseType (*fun
)(size_t x, size_t d, float *P) );void Set_Matrix_DL( size_t rows, size_t 
ols, size_t del, Delayline dl, float *P,BaseType (*fun
)(size_t x, size_t y, size_t d, float *P) );void Set_bVe
tor_DL( size_t n, size_t del, Delayline dl,float *P,bBaseType (*fun
)(size_t x, size_t d, float *P) );void Set_bMatrix_DL( size_t rows, size_t 
ols, size_t del, Delayline dl,float *P,bBaseType (*fun
)(size_t x, size_t y, size_t d, float *P) );void Set_intVe
tor_DL( size_t n, size_t del, Delayline dl,float *P,int (*fun
)(size_t x, size_t d, float *P) );void Set_intMatrix_DL( size_t rows, size_t 
ols, size_t del, Delayline dl,float *P,int (*fun
)(size_t x, size_t y, size_t d, float *P) );4.6.2 A

essing ContainersThe following ma
ros sele
t delayed data-
ontainers in a delayline �dl�. It might be ne
essary to
ast types in an appli
ation
urrent(dl): returns a pointer to the 
ontainer for the 
urrent time-sli
elast(dl): returns a pointer to the 
ontainer for the previous time-sli
en_last(dl, n): returns a pointer to the 
ontainer for the time-sli
e from �n� sli
es ago (it is not
he
ked whether n is in proper bounds, ie < memory length.oldest(dl): returns a pointer to the 
ontainer for the oldest time-sli
e (a

ording to the memorylength of the delay linenext(dl): returns a pointer to the 
ontainer for the next time-sli
eStep_DL(_d)The ma
ro Step_DL advan
es a delay line by one step (time-sli
e). It must be invoked after theupdating of delayline data in the top-level step()-routine. It is assumed that step() stores newly
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omputed data in next(dl) (say, x(t+h) for disretised di�erential equations or x(t+1) for iterativemaps). The routine in
rements the DL's 
urrent indexes and pointers; i.e re
ently 
omputed datain �next� be
ome �
urrent�.4.6.3 Arbitrary Delays for PoolsCommuni
ation between two units in a network might take a 
ertain time. In that 
ase the
onne
tion is not only 
hara
terised by a number (synapti
 strength), but in addition by a delayvalue. The subsequent two fun
tions take delayed �oat or binary data �in� and multiply them bya 
oupling matrix �J�, su
h that ea
h individual 
onne
tion has a delay as spe
i�ed by the matrix�delays� (in simulation steps). The results are stored in the Matrix �out�.void Mult_delayed_DL( int n,Matrix J, int *delays,Ve
tor_DL in, Ve
tor out);void bMult_delayed_DL( int n,Matrix J, int *delays,bVe
tor_DL in, Ve
tor out);Note: Delays are not 
he
ked for falling into range boundaries.4.6.4 Convolution Fun
tions with Distan
e-dependent DelaysIn two-dimensional �elds with lo
al 
onne
tivities delays 
an be distan
e dependent a

ording tosome �axonal� propagation speed and possibly a �xed �synapti
 transmittion� delay, too. Thefollowing fun
tions generalise the 
onvolution/
orrelation fun
tions from se
tion 4.5.2 to this 
ase.Naming 
onventions are the same as there, but _delayed is appended to the fun
tion names inthe 
ase of �nite lateral propagation. The input, of 
ourse, now must be a delay line of a
tivities.Arguments �d� and �v� in the fun
tions below are a �xed delay o�set (synapti
 delay) and the(axonal) propagation speed (in units / time step), respe
tively.Matrix Convolute_2d_Uni_delayed( Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Convolute_2d_Uni_
y
li
_delayed( Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bConvolute_2d_Uni_delayed( bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bConvolute_2d_Uni_
y
li
_delayed( bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Convolute_2d_delayed( Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Convolute_2d_
y
li
_delayed( Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bConvolute_2d_delayed( bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);



4.7. RANDOM NUMBERS 47Matrix bConvolute_2d_
y
li
_delayed( bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_Uni_delayed( Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_Uni_
y
li
_delayed( Matrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_Uni_delayed( bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_Uni_
y
li
_delayed( bMatrix_DL in, UniKernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_delayed( Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix Correlate_2d_
y
li
_delayed( Matrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_delayed( bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Matrix bCorrelate_2d_
y
li
_delayed( bMatrix_DL in, Kernel kern, int x, int y,int kx, int ky, float d, float v, Matrix out);Note: It is not 
he
ked whether delays fall into proper bounds (must be smaller than the length ofthe delaylines). The possible axonal speed �v� and �xed additive delay �d� a thereby 
onstrained.Note further that theses fun
tions are less e�
ient than their non-delayed 
ounterparts. Cy
li
boundaries 
ause an extra slow-down.4.7 Random NumbersFelix has an internal random number generatorBased on 4-state Mersenne twister ? x-
he
k gsl ....The Felix-intrinsi
 random number generator should be threadsave if OpenMP or MPI, or mixesthereof are used. However, be
ause the parallel Felix extensions are quite re
ent, I haven't 
he
kedthat intensively. (The binomial random number generator is known not to be threadsafe for
n >= 25 and n ∗ p > 1.)Note also, that the initialisation in 
ase of MPI/OpenMP parallel 
ode is very simple. In order tohave ea
h thread generate a di�erent sequen
e of random numbers, all threads 
ontributing to atask are enumerated and the respe
tive thread-numbers are just added to the seed provided to therandomize() fun
tion. This 
an lead to 
orrelations in the numbers generated in di�erent threads.I have no experien
e yet, how serious the e�e
t 
an be. Send reports if you run into trouble 
ausedby this overly simple pro
edure. (I'd then try using /dev/random whi
h, however, is not veryportable and has other disadvantageous).void randomize( int seed ) initialises the Felix intrinsi
 random number generator with �seed�.long rand_long( void ) returns pseudo-random long integers in the range from 0 to 232 − 1 =
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4294967295.float equal_noise( void ) returns equally distributed random numbers in the range [0, 1.0[.unsigned bool_noise( float p ) returns one with probability p and zero with probability 1−p.float gauss_noise( void ) returns gaussian distributed random numbers with mean zero andstandard-deviation 1.float lorentz_noise( void ) returns lorentz- (or 
au
hy-)distributed random numbers withmean 0 and standard-deviation 1.float binomial_noise( float p, int n ) returns binomially distributed random numbers
B(k; p, n) (as �oat values). [This generator is not threadsafe for n >= 25 and np > 1. It ismainly intended for implementations of synapti
 failure, where n seems to be seldomly above 15for 
orti
al neuron types.℄Whereas, the previous funtions are all built on the same Felix-intrinsi
 random number generator,the follwing fun
tion (from Press et al) uses its own me
hanism to generate random bits.unsigned int irbit( unsigned int * iseed ) generates a sequen
e of random bits, i.e., zerosand ones with equal probability. Iseed is some seed value. The sequen
es are not �very� random.4.8 Sparse Ve
tors and Matri
es4.8.1 Sparse Ve
tors, semi-sparse Matri
esNOTE: Fun
tions in this se
tion might be subje
t to later 
hanges as pra
ti
ality 
onsiderationswill indi
ate ....Code for �sparse� ve
tors and matri
es is 
urrently being developed. Those appear to be usefulin very large simulations where 
ells are only 
onne
ted with a fra
tion of other 
ells. There issupport for sparse �oating point, binary (
har), and integer ve
tors and matri
es. The de�nitionsfor the �oating point types are:typedef stru
t{ int n, // a
tual valid entriesnmax; // max entris befor reallo
ationint *i; // indexesfloat *v; // values} sVe
tor_t;typedef sVe
tor_t *sVe
tor;typedef stru
t{ int m; // number of 
olumnssVe
tor *w; // array of 
olumn ve
tors



4.8. SPARSE VECTORS AND MATRICES 49} sMatrix_t;typedef sMatrix_t *sMatrix;Binary and integer types have an additional `b' or `i' in their names, sbVe
tor, siMatrix. Thesestru
tures are a
tually �semi�-sparse only. sVe
tors are sparse, but sMatri
es are sparse only intheir rows; the array of 
olumns is 
omplete and not sparse. Ea
h su
h sVe
tor 
ontains the sparserow-entries of that 
olumn. This re�e
ts the fa
t that ea
h neuron in a network proje
ts to atleast some other neurons. Similarly, ea
h spike is distributed to at least some other 
ells.4.8.2 Allo
ating, Loading, and Saving Sparse ArraysThe following fun
tions 
orrspond with those for the standard Ve
tor/Matrix types. Not all ofthese fun
tions are fully implemented at the moment, in espe
ially, none of the FILE I/O fun
tionswould work. The latter just print an error message at run-time, when 
alled.sVe
tor Get_sVe
tor( int size )void Free_sVe
tor( sVe
tor v )void Clear_sVe
tor( sVe
tor v )void Empty_sVe
tor( sVe
tor v )void Show_sVe
tor( sVe
tor v )void Add_sVe
tor_Entry( sVe
tor, int i, float val )float sVe
tor_Elem( sVe
tor v, int i) // returns value v[i℄ or zerovoid Write_sVe
tor( sVe
tor v, FILE*f )void Read_sVe
tor( sVe
tor v, FILE*f )void Save_sVe
tor( sVe
tor v, FILE*f )void Load_sVe
tor( sVe
tor v, FILE*f )sMatrix Get_sMatrix( int 
olumns, int rows) // order mattersvoid Free_sMatrix( sMatrix w)void Clear_sMatrix( sMatrix w)void Empty_sMatrix( sMatrix w)void Show_sMatrix( sMatrix w)void Add_sMatrix_Entry( sMatrix w, int r, int 
, float val )float sMatrix_Elem( sMatrix w, int r, int 
 )void Write_sMatrix( sMatrix w, FILE*f )void Read_sMatrix( sMatrix w, FILE*f )void Save_sMatrix( sMatrix w, FILE*f )void Load_sMatrix( sMatrix w, FILE*f )The same fun
tions exist for binary and integer data types with an additional `b' or `i' in the names.Most of the fun
tion names should be self-explanatory. The di�eren
e between Empty_sVe
tor()and Clear_sVe
tor() ist that the �rst fun
tion just sets the number of a
tive entries in thesVe
tor to zero, whereas the 2
d fun
tion sets all a
tive synapse to 0. The same holds for thesMatrix-equivalents.
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tor_Entry( sVe
tor v, int i, float f) adds an element with value �f� to an sVe
torat positions i. Add_sMatrix_Entry( sMatrix m, int i, int j, float f) does the same forposition (i,j) of an sMatrix �m�. If an sVe
tor or sMatrix has to be in
reased in size, this shouldhappen automati
ally. The �oating point fun
tions are additive � if the entry exists already, thenew value is added to the old; for integers and binary data the old value is overwritten.4.8.3 Sparse Matrix Ve
tor Multipli
ationsThe following are fun
tions that multiply a sparse sMatrix with various other stru
tures likeVe
tors, bVe
tors, sVe
tors, or integer arrays that just 
ontain indexes of units supposed to bemomentarily a
tive.Ve
tor sMult, ( sMatrix w, Ve
tor v, Ve
tor out) );Ve
tor ssMult, ( sMatrix w, sVe
tor v, Ve
tor out ) );Ve
tor sbMult, ( sMatrix w, bVe
tor v, Ve
tor out ) );Ve
tor siMult, ( sMatrix w, int n, int *idx, Ve
tor out ) );Ve
tor sMult_t, ( sMatrix w, Ve
tor in, Ve
tor out) );Ve
tor sbMult_t, ( sMatrix w, bVe
tor in, Ve
tor out) );Ve
tor sMult_t_delayed( sMatrix w, siMatrix d, Ve
tor_DL in, Ve
tor out )Ve
tor sbMult_t_delayed( sMatrix w, siMatrix d, bVe
tor_DL in, Ve
tor out )The �xMult_t()�-fun
tions do transposed multipli
ation, i.e., multipli
ation from the left; indexesin a 
olumn of a matrix are then interpreted as indexes of units where the respe
tive 
ells re
eiveinput from. The xMult-fun
tions in 
ontrast assume that the 
olumns 
ontain outgoing synapsesof a 
ell. It should (better) not be assume that any dimensions or arguments are 
he
ked. Theextra argument in the delayed fun
tions is a sparse matrix of integer valued delays of the samesize as the weight matrix. It indi
ates whi
h entries in the delay line �in� are relevant for a spe
i�
synapse.
in 1 1

w

outFigure 4.1: S
heme of multipli
ation of a sparse matrix and a binary Ve
tor.Figure 4.1 depi
ts sparse multipli
ation of a sparse matrix and a binary Ve
tor. An outer loopwould run over the input ve
tor. Spikes (1's) in the input array 
an be distributed in a feedforward
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h 
ontains all target indexes and weights. The weights are addedto the respe
tive entries in the target ve
tor �out�. This, however, 
an 
ross thread boundaries(indi
ated by dashed verti
al lines), meaning that the same memory lo
ations are potentiallyupdated by di�erent threads. This 
an not immediately be parallelised using OpenMP.
in 1 1

w

outFigure 4.2: S
heme of transposed multipli
ation of a sparse matrix and a binary Ve
tor.Transposed multipli
ation solves this problem as shown in Fig. 4.2. Here the 
olumns in a sparsematrix are interpreted as 
ontaining the indexes and weights of �in
oming� synapses to unitsin the target ve
tor �out�. The outer loop then 
an run over the outputs, in whi
h 
ase ea
hOpenMP-pro
ess would update a unique range of entries in the ve
tor �out�. Reading from thesame lo
ation in di�erent threads is not an issue. Even if running on several threads the routine
an be less e�
ient as the previous one on a single thread. This is be
ause it 
annot make use ofsparseness in the input ve
tor as e�
ient as the forward multipli
ation.
1 1

w

out

in

d

Figure 4.3: S
heme of transposed multipli
ation of a sparse matrix and a binary Ve
tor withpropagation delays.Figure 4.3 displays how weights and delays intera
t in delayed sparse multipli
ation fun
tions. Thesparse delay matrix must have the same dimensions and represent the same 
onne
tions as the



52 CHAPTER 4. LIBRARIESweight matrix. Whereas �w� provides the weights of synapses, the delay matrix determines whi
helement in the input delay line has to be sele
ted. OpenMP parallelisation is again easily possible(and implemented internally).4.8.4 Orientation Tuning Maps with Distan
e-dependent DelayssMatrix sCreate_Long_Range_Conne
tivities(int n, Ve
tor in, float s
ale, float p, float theta );This fun
tion takes a feature map �in� of size n and generates a sparse long range 
onne
tionmatrix based on pi-
y
li
 di�eren
es in the features. Synapses are not 
reated if the di�eren
es infeatures are bigger than �theta� (in [0,1[ where 1 means `identi
al'). �s
ale� is an amplitude fa
torthat sets the global s
ale (applied AFTER �theta�). �p� is an additional probability for 
reatingsynapses. Values in the feature map must be in the range [0...PI℄. Autapses are not generated;Note: This fun
tion 
an be used for 1d and 2d-feature maps. 2d-arrays �in� are reinterpreted as one-dimensional arrays of total size �n�. In the 2d-
ase, however, 
o-linearity or other �Gestaltprin
iples�(beside parallelism) are not taken into a

ount.siMatrix Make_Delays_from_Weight_Matrix( sMatrix w, int xsize, float d0, float v0 );This fun
tion takes a weight matrix generated by the previous fun
tion and 
omputes a delay ma-trix from it assuming a 1- or 2-dimensional network topology and distan
e dependent propagationspeeds. If xsize is 0 a one-dimensional topology is assumed, otherwise, �xsize� is the size of thex-dimension in a 2D neural �eld (the number of 
olumns, ie., total number of units, in the matrixmust be a multiple of xsize in that 
ase). d0 is a �xed delay and v0 the propagation delay. Unitsare in simulation time-steps and lateral units per simulation time respe
tively. The returned delayswill be integers su
h taht they 
an be immediately used for indexing elements in a delay line.The weight and delay matri
es returned by the previous two fun
tions 
an be used in 
onjun
tionwith the sMult_t_delayed() and sbMult_t_delayed() fun
tions.4.8.5 Displaying Sparse Arrays in the GUIThe graphi
al user interfa
e of Felix 
annot display sparse Ve
tors and Matrix. You need to 
onvertthem befor, using, e.g.,extern Ve
tor Make_Ve
tor_From_sVe
tor( sVe
tor v, int n, Ve
tor out );extern Matrix Make_Matrix_From_sMatrix( sMatrix m, int r, int 
, Matrix out );�out� must point to memory spa
e of appropriate spa
e when these fun
tions are 
alled. A pointerto �out� is returned. �out� 
an then be used as usual as an argument to views in the graphi
al userinterfa
e.



4.8. SPARSE VECTORS AND MATRICES 534.8.6 Example: Sparse Integrate-and-Fire NetworkHere is an example for a leaky-integrate-and-�re network with sparse 
onne
tivity. Only tensynpases per neuron/
olumn are allo
ated from s
rat
h. About a tenth per 
olumn are initialisedby Gaussian random numbers. Missing synapses are automati
ally allo
ated.Note that the system size is 900, be
ause for small sizes the GUI takes most of the 
omputationtime (as long as display windows are open), whi
h is unwanted for proper 
omparisons. In orderto keep display windows at reasonable sizes, we have restri
ted the maximal sizes in the viewde
larations./* Example-program: sinf.
 -- integrate and fire networkwith sparse 
onne
tivity matrix */# in
lude <felix.h># in
lude <sparse.h># define N 900 /* number of neurons */# define tau 10. /* membrane time 
onstant */Ve
tor x; /* potentials */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */sMatrix spJ; /* sparse 
onne
tivity matrix <<------------- */Matrix J; /* 
onne
tions for display */SliderValue sI = 100; /* Common input to units */SliderValue sJ0 = 50; /* Coupling strength */SliderValue ssigma = 0; /* noise level */BEGIN_DISPLAYSLIDER( "input", sI, 0, 200)SLIDER( "
oupling", sJ0, 0, 200)SLIDER( "noise", ssigma, 0, 100)WINDOW("time 
ourses")IMAGE( "x", AR, AC, x, VECTOR, 10, 10, 0.0, 1.0, 4)RASTER( "x", NR, AC, x, VECTOR, MIN(100, N), 0, 0.0, 1.0, 1)GRAPH( "x", NR, AC, x, VECTOR, MIN(100, N), 0, 0, 0, -.01, 1.01 )RASTER( "out", NR, AC, z, bVECTOR, MIN(100, N), 0, -.01, 1.01, 2)WINDOW("
ouplings")IMAGE( "J", AR, AC, J, CONSTANT MATRIX,MIN( 100, N), MIN(100, N), -4./N, 4./N, 2)



54 CHAPTER 4. LIBRARIESEND_DISPLAYNO_OUTPUTint main_init(){ randomize( time(NULL) );SET_STEPSIZE( .1 )spJ = Get_sMatrix( N, 10 ); // only ten synapses per neuron// are allo
ated from s
rat
hJ = Get_Matrix( N, N );x = Get_Ve
tor( N );z = Get_bVe
tor( N );v = Get_Ve
tor( N );}int init(){ int i,j;Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);for (i=0; i<N; i++)x[i℄ = equal_noise();Empty_sMatrix(spJ); // <<-----for (i=0; i<N; i++) // <<-----for (j=0; j<N/10; j++) // only N/10 trials per 
olumn // <<-----Add_sMatrix_Entry( spJ, i , (int)(N*equal_noise()) , // <<-----10.0 / N * ( 1. + .4*gauss_noise() ) ); // <<-----Make_Matrix_From_sMatrix( spJ, N, N, J ); // make a Matrix for the GUI}int step(){ int i;for (i=0;i<N;i++)leaky_integrate ( tau, x[i℄,0.01*( sI + sJ0*v[i℄ + ssigma*gauss_noise() ) );Fire_Reset( N, x, 1.0, 0.0, z ); // firing and resetClear_Ve
tor( N, v ); // need to 
lear expli
itly // <<-----sbMult( spJ, z, v ); // sparse Matrix times non-sparse bVe
tor // <<-----
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 SynapsesIn most te
hni
al neural networks synapses are simply represented by numbers, their weights.This is enough for many algorithms in learning theory, pattern re
ognition, or asso
iative learningand retrieval. Biologi
al synapses are more 
ompli
ated. They reveal dynami
 properties likefa
ilitation and depression, they fail sto
hasti
ally, and responses to stimuli do show transienttime-
ourses usually 
hara
terised by so-
alled alpha-fun
tions. It is possible to implement su
hproperties in a Felix program using just the 
onstru
ts des
ibed so far. This would require expli
it
ode for the desired dynami
 properties. Be
ause they are of quite some importan
e in 
omputa-tional neuros
ien
e dynami
 synapses are now supported by Felix in a more systemati
 manner.There are new 
lasses �SynapseVe
tors� and �SynapseMatri
es� that integrate typi
al properties ofbiologi
al synapses into the Felix 
ore fun
tionality.Note: During the 
ourse of developing these 
omponents, the implemented fun
tional propertiesand the underlying 
ode got progressively more 
omplex. Usage of SynapseMatri
es is now a littlemore 
ompli
ated as initially envisaged; the Felix-intrinsi
 
ode base is also not the most elegant.Later 
hanges to this part of Felix are therefore not unlikely. For the time being, however, thesynapses 
lasses should be useable.4.9.1 Types of Synapti
 Dynami
sAs explained, biologi
al synapses are more than just numbers. They reveal a pretty ri
h variety ofdynami
al penomena. The most typi
al phenomena are:Temporal response fun
tion: The response of a synapse to an in
oming spike (e.g., in termsof transmitter release or post-synapti
 
hanges in potentials) is a unimodal fun
tion of time,whi
h rises with a 
ertain time 
onstant and de
ays roughly exponentially after havingrea
hed a single maximum. In the present do
ument we 
all su
h fun
tions alpha-fun
tions.They 
an be des
ribed by �spike-response fun
tions� whi
h arise as responses of low-pass �l-ters to short impulses (spikes) at the input. Depending on the number of subsequent low-pass�lters the �order� of the alpha-fun
tion 
an be di�erent. Common are 0, 1, and 2
d orderalpha-fun
tions, 
orresponding with jumps, de
aying exponentials, and smoothly rising andfalling post-synapti
 potentials (or 
urrents), respe
tively. More about this in subse
ion ??.Adaptation and Fa
ilitation: The total amplitude of synapti
 responses 
an adapt on s
ales oftypi
ally several hundreds of millise
onds to the frequen
y of in
oming spike-trains. Depend-ing on whether the amplitude de
reases or is suppressed one speaks of synapti
 fa
ilitationor adaptation.Failure: Synapti
 transmitter release is not a 100 per
ent reliable, but is a sto
hasti
 pro
ess.Embedded in the presynapti
 membrane are dis
rete �vesi
les� that 
ontain roughly thesame amount of neurotransmitter, the �release quantum�. If a spike arrives at a synapse a
ertain small number of vesi
les release their transmitter and 
an thereby evoke 
hanges onthe post-synapti
 side. The number of released vesi
les is well des
ribed by a binomially



56 CHAPTER 4. LIBRARIESdestributed random variable where the probability of release at a single release site and thenumber of su
h sites 
an vary widely between synapse 
lasses.Models of these three phenomena have been des
ribed in the literature. Felix implements the most
ommon of these models in a way that allows to 
ombine their properties in any mixed synapsetype.Figure 4.4 displays a s
heme of the generi
 synapse model. At a synapse, spikes are �rst fed intoa failure stage a

ording to the npq-model, then into a Barak/Tsodyks-stage for fa
ilitation anddepression, �nally into a 0/1/2-order low-pass �lter that generates alpha-fun
tion-type 
ondu
tan
e
hanges, g(t). Ea
h of the stages 
an be by-passed (not shown).
failure adapt/facil alpha

TM−model g(t)spike

δ( )t

k

q?

npq−model 0/1/2−order
low−passFigure 4.4: Three stages 
ontributing to synapti
 dynami
sArrival of delta-spikes leads to generation of a binomially distributed randmon number k in the �rststage. �Something� (see below) is fed into the BT-model in turn. That model has two variables

u and x and three parameters: baseline U , and adaptation and fa
ilitation time-
onstants τAand τF . Output of the BT-model is low-pass �ltered to obtain alpha-fun
tion-type post-synpati

ondu
tan
e 
hanges.The main problem when integrating the individual models o

urs between the npq-model and theBT-model: What does the npq-model feed into the BT-model? δ(t), k*δ(t), kq*δ(t), kq/n*δ(t),...?How, in turn, impa
ts the �release probability� u(t) of the BT-model on that of the npq-model, p?The following se
tions des
ribe the dynami
s of the respe
tive stages in more detail. Afterwardstheir 
ombination is dealt with.4.9.2 npq-model: synapti
 failurenpq-model: A spike arriving at a synapse is assumed to release transmitter at a binomially dis-tributed number of release sites out of a number of n. Release probability for a single site is p,and release quantum is q. So, after passing this stage we know the number of released sites, ie. arandom variable, 
alled k, the amount of released transmitter kq, the average npq, the fra
tion ofsites that released k/n, et
.4.9.3 BT-model: fa
ilitation and depressionThe Barak/Tsodyks-model as given in [? ℄ for a single synapse reads
du

dt
=

U − u

τf

+ U(1 − u)s(t) (4.3)
dx

dt
=

1 − x

τr

− uxs(t) (4.4)



4.9. DYNAMIC SYNAPSES 57The s(t) are sequen
es of arriving Dira
-spikes. U ≈ .05, τf , τr are parameters. The amplitude ofthe evoked event is proportional to u ∗ x. A

ording to Barak&Tsodyks
U is the �utilisation�, �analogous to release probability�
τf , τr are time-
onstants for fa
ilitation and depression
u(t) is the running value of utilisation; it is fa
ilitated by every spike; de
ays to U with time-
onstant τf

x(t) is the running fra
tion of available neurotransmitter in proportion to u; re
overs to baseline1 with time-
onstant τrIn response to a delta-spike the model reveals a typi
al amplitude of level U (up to fa
ilitation anddepression). If fa
iliation or depression are large, typi
ally at high rates, the amplitude level 
ansigni�
antly deviate from U . This is, of 
ourse, desired.Event-driven integration. As long as one is not interested in the pre
ise time-
ourse of u and
x it is possible to use event-based simulation for the adaptation/fa
ilitation-pro
ess, meaning thatthe variables u and x need only be updated at times where spikes arrive at a parti
ular synapse,and not in every simulation time-step.Figure 4.5 displays the time-
ourse of u and x between two spikes at times tn and tn+1. Note thatboth variables are 
on�ned to the interval [0, 1], whi
h makes sense be
ause u is �utilisation/releaseprobability� and x is the �available fra
tion� of u. In fa
t, u is even always larger than U , thebaseline level of u that is asymptoti
ally rea
hed if no spikes arrive for times ≫ τF .A

ording to the �gure, the event-driven update at time t is (with t = tn+1 − tn):

u(tn+1−) = (u(tn+) − U) exp(−t/τF ) + U (4.5)
u(tn+1+) = u(tn+1−) + ∆u = u(tn+1−) + U(1 − u(t?)) (4.6)
x(tn+1−) = 1 − (1 − x(tn+)) exp(−t/τF ) (4.7)
x(tn+1+) = x(tn+1−) − ∆x = x(tn+1−) − x(t?)u(t?) (4.8)In (4.5) to (4.8), f(t±) = limǫ→0 f(t ± ǫ), ie, the values of the fun
tion f immediately before (t−)or after (t+) time t.Note the question marks in (4.6) and (4.8). At the time of spikes the variables u and x jumpdis
ontinuously, u(t−) 6= u(t+) and x(t−) 6= x(t+). It would appear natural to use the left-limitsright before the spike arrives, however, it seems that in some of Tsodyks' papers the right-limit isused at least for u(t?) in (4.8). This would mean that fa
iliation is pra
tially instantaneous andadaptation slighly slower so that it depends on the already fa
iliated new utilisation value. Thismight or not be so. From a modellers point of few it is a matter of 
hoi
e (multiplying the numberof possible model variants by 2).4.9.4 Alpha fun
tion 
ondu
tan
e 
hangesThere is not mu
h to say about this third synapti
 dynami
s step. The output of the 
ombinednpq-BT-model is still a series of delta-fun
tions, but of variable mass (depending on how manysites release transmitter, how high the fa
ilitation level is, et
).
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Figure 4.5: Time-
ourse of utilisation u(t) (release prob) and running (available) fra
tion thereof,
x(t), between two spikes.In order to generate 
ondu
tan
e 
hanges, g(t), the output is fed into a 0/1/2-order low-pass �lter(depending on 
hoi
e). The resulting alpha-fun
tions 
an then be used in dynami
 equations for
ondu
tan
e based (4.9) or 
urrent based (4.10) membranes.

Ci

dVi

dt
= −gL · (Vi(t) − VL) +

∑
j

gij(t) ∗ (Vi − Vrev) 
ondu
tan
e-based (4.9)
Ci

dVi

dt
= −gL · (Vi(t) − VL) +

∑
j

gij(t) ∗ (V̄i − Vrev) 
urrent-based (4.10)
Vrev is the reversal potential of the 
lass of synapses and V̄i the mean membrane potential of neuron
i.Note: In (4.10) V̄i −Vrev is a 
onstant in 
ontrast to Vi −Vrev in (4.9) (see Brette et al., [? ℄). Thismeans (4.9) is more di�
ult to integrate in an event driven manner than (4.10). For some 
asesthere are event-based s
hemes for (4.9) but (probably) no existing simulation tool implementsthem (depends on whether an expli
it solution of the impulse response fun
tion is available or not;
an be very tri
ky in general, see Brette 2006 [? ℄, for a 
omparably �simple� 
ase).



4.9. DYNAMIC SYNAPSES 594.9.5 Coupling of npq- and BT-model
p in the npq-model is 
onsidered a release probability but u in the BT-model is, too. So, do theya
tually have to do something with ea
h other? In the 
oupled npq-BT model we identify U , thebaseline value of u(t) in the BT-model, with p, the parameter for the release-probability in thenpq-model and to 
hoose for p in an a
tual spike event the running value of u.That means, if a spike arrives, �rst a binomial random number for the releasing sites is generateda

ording to B(k; n, u(tn−)). A fa
ilitated synapse thus will have a higher running value of therelease probability u(tn−).In the BT-model, U is in turn repla
ed by p from the npq model, su
h that asymptoti
ally atlow �ring rates (
ompared to the fa
ilitation/depression time-
onstants) u approa
hes the value p(whi
h then is used e�e
tively in the npq-model). If spike-frequen
y in
reases, the e�e
tive releaseprobability (now u(t)) adapts or fa
ilitates, a

ordingly.

u(tn+1−) = (u(tn+) − p) exp(−t/τF ) + p (4.11)
x(tn+1−) = 1 − (1 − x(tn+)) exp(−t/τF ) (4.12)For the jumps at spike times we 
hoose

u(tn+1+) = u(tn+1−) + ∆u = u(tn+1−) + cF k/n(1 − u(t−)) (4.13)
x(tn+1+) = x(tn+1−) − ∆x = x(tn+1−) − cAx(t−)k/N (4.14)Observe that we have added fa
tors 0 ≤ cA, cF ≤ 1 that 
an be used to 
ontrol the amount ofadaptation.fa
ilitation after ea
h spike. The original BT-model uses cA = cF = 1.Note further that E[k/n] = u(t−) in the present framework. For low �ring rates E[k/n] =

u(t−) → p = U , su
h that the updates 
onverge to the BT-limits up to the sto
hasti
ity oftransmitter release. The updates with k/n repla
ed by E[k/n] = u(t−) 
an be seen as some kindof �mean-�eld� model where the a
tual sto
hasti
ity in the transmitter release is repla
ed by themeans of the released transmitter.In the Barak-Tsodyks model the response to a spike is ∼ xu. The output of the 
ombined modeldis
ussed here is a series of delta-fun
tions at the same times as the input spikes. Their amplitudesare x(t−)k/n, be
ause k/n is the relative number of releasing sites (note, E[k/n] = u(t−)) and
x(t−) is the fra
tion of (remaining) utilisation (fresh = 1), that is if x is smaller than 1 lesstransmitter than maximally possible is released.The parameter q from the npq-part is ignored in the present model. It would be an additionalfa
tor applied to the a
tual outputs. However, the model implementation already 
ontains synapti
weights, whi
h 
an in
orporate the q values. This somewhat redu
es memory spa
e-requirementsand numeri
al 
omplexity. U the baseline level from the BT-model part is also ignored be
ause itis identi�ed with p.4.9.6 Type Sele
tion and Parameter Stru
turesFelix implements the three dynami
 me
hanism des
ribed above in a 
ombinable man-ner in SynapseVe
tors and SynapseMatri
es. In order to spe
i�y the desired mix several
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ros have been de�ne that 
an be used in 
onstru
tirs for synapse matri
es and ve
-tors (see, e.g., 4.9.7). SYNAPSE_TYPE_ALPHA, SYNAPSE_TYPE_ADAPTATION, andSYNAPSE_TYPE_FAILURE sele
t individual dynami
 me
hanisms, the other ma
ros de�nedbelow provide 
onvenient short
uts.Synapse Types# define SYNAPSE_TYPE_ALPHA 0x01# define SYNAPSE_TYPE_ADAPTATION 0x02# define SYNAPSE_TYPE_FAILURE 0x4# define ALPHA_SYNAPSE SYNAPSE_TYPE_ALPHA# define ADAPTING_SYNAPSE (SYNAPSE_TYPE_ALPHA | SYNAPSE_TYPE_ADAPTATION)# define FAILING_ALPHA_SYNAPSE (SYNAPSE_TYPE_ALPHA | SYNAPSE_TYPE_FAILURE )# define FAILING_ADAPTING_SYNAPSE (SYNAPSE_TYPE_ALPHA |SYNAPSE_TYPE_ADAPTATION |SYNAPSE_TYPE_FAILURE )Synapse ParametersEa
h synapti
 dynami
 me
hanism 
an be des
ribed by a number of parameters. Stru
tures havebeen de�ned to 
olle
t these data.AlphaParameters alpha;AdaptParameters adapt;FailureParameters failure;The parameter stru
tures have to be allo
ated before use and should be freed afterwards. A givenstru
ture 
an be set by the 
orresponding Set_xxx_Parameters fun
tion, whereas a 
opy of it isreturn by one of the Dup_xxx_Parameters fun
tions. Show_xxx_Parameters prints the valuesof a parameter stru
ture to s
reen (mainly for debugging).AlphaParameters Get_Alpha_Parameters( float taur, float tauf )AdaptParameters Get_Adapt_Parameters( float U, float tauA, float tauF,float 
A, float 
F )FailureParameters Get_Failure_Parameters( int n, float p, float q )Free_Alpha_Parameters( r )Free_Adapt_Parameters( r )Free_Failure_Parameters( r )AlphaParameters Set_Alpha_Parameters( AlphaParameters r,float taur, float tauf )AdaptParameters Set_Adapt_Parameters( AdaptParameters s,float U, float tauA, float tauF,float 
A, float 
F )



4.9. DYNAMIC SYNAPSES 61FailureParameters Set_Failure_Parameters( FailureParameters s,int n, float p, float q )AlphaParameters Dup_Alpha_Parameters( AlphaParameters r )AdaptParameters Dup_Adapt_Parameters( AdaptParameters r )FailureParameters Dup_Failure_Parameters( FailureParameters r )void Show_Alpha_Parameters(AlphaParameters r )void Show_Adapt_Parameters(AdaptParameters r )void Show_Failure_Parameters(FailureParameters r )Lo
al and Shared ParametersParameters 
an be lo
al or global with respe
t to SynapseVe
tors or SynapseMatri
es. In the �rst
ase ea
h synpase may have individual values, whereas in the se
ond they are shared among all ofthem. The latter obviously requires less memory and also allows for slightly faster 
ode.Whether a SynapseVe
tor or SynapseMatrix uses shared parameters depend on how it is 
on-stru
ted and 
annot be 
hanged afterwards. If parameters for any of the three synapti
 dynami
me
hanisms are supplied during 
reation of a ve
tor or matrix that parameter is global. Otherwisespe
i�
 parameter sets must be supplied when synapses are a
tually added to the matrix.4.9.7 Synapse Ve
tors and Matri
esSynapseVe
tors and SynapseMatri
es have sparse entries in very mu
h the same way as sparseVe
tors and Matri
es des
ribed in se
tion 4.8. They just add dynami
 me
hanisms intrinsi
ally.That is, Ve
tors and entries in Matrix 
olums are sparse, but the number of matrix 
olumns is not.Again, this is motivated by the fa
t that ea
h neuron usually does have at least a few synapses or,
onversely, ea
h spike is distributed to at least some neurons in a network.SynapseVe
torsSynpaseVe
tors are sparse ve
tors. They have to be allo
ated before usage and should be freedafterwards.SynapseVe
tor Get_SynapseVe
tor( int n, int flags,AlphaParameters alpha,AdaptParameters adapt,FailureParameters failure )void Free_SynapseVe
tor( SynapseVe
tor )In Get_SynapseVe
tor, n, is the initial size that may 
hange as more synapses get added. �agsde�ne the type of the synapse, ie, whi
h dynami
 me
hanisms it 
omprises. The type ma
ros fromsubse
tion 4.9.6 have to be used here. The remaining three arguments are parameter sets for ea
hof the three synpati
 dynami
 me
hanisms. If any of these is non-zero, that respe
tive parameterset is shared among all synapses in the ve
tor. Parameter sets provided later if synapses are
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tually added are ignored in this 
ase. Note also, that parameters (lo
al or shared) are ignored,if the respe
tive type is not spe
i�ed in the �ags-argument. See, se
tion 4.9.9 for an example.Synapses are added to a SynapseVe
tor v usingvoid Add_SynapseVe
tor_Entry( SynapseVe
tor v, int i, float weight, int delta,AlphaParameters alpha,AdaptParameters adapt,FailureParameters fail)Here, i, weight, and delta are the index, weight and time-delay (in multiples of the simulation time-step) of the addded synapse. Dupli
ate indexes overwrite previous entries. If a SynapseVe
tor haslo
al parameters for any of the di�erent dynami
 me
hanisms, these parameters must be providedas arguments at synapse 
reation. If parameter values are supplied but that parameter set hasbeen made shared during Ve
tor 
reation, the new values are ignored.A 
ouple of fun
tions exist to manage SynapseVe
torsvoid Empty_SynapseVe
tor( SynapseVe
tor )void Show_SynapseVe
tor( SynapseVe
tor )void Show_SynapseVe
tor_Index( SynapseVe
tor sv ).. more to 
ome ...Empty_SynapseVe
tor dis
ards allo
ated stru
tures, ex
ept global parameters. This 
an be used ifrepeated reinitialisation are desired in the top-level init()-routine, but a SynapseVe
tor is de
laredin main_init (as it would usually be the 
ase).Show_SynapseVe
tor and Show_SynapseVe
tor_Index are basi
ally for debugging.SynapseMatri
esSynapseMatri
es are non-sparse arrays of SynapseVe
tors similar as for sparse Ve
tors and Matri-
es. Their fun
tionality parallels that of SynapseVe
tors. Most of the fun
tions below work in thesame way as their ve
tor 
ounterparts. See previous subse
tion for further explanations.SynapseMatrix Get_SynapseMatrix( int m, int n, int flags,AlphaParameters alpha,AdaptParameters adapt,FailureParameters failure )void Free_SynapseMatrix( SynapseMatrix )void Empty_SynapseMatrix( SynapseMatrix )void Add_SynapseMatrix_Entry( SynapseMatrix, int, int,float value, int delay,AlpahParameters,



4.9. DYNAMIC SYNAPSES 63AdaptParameters,FailureParameters )void Show_SynapseMatrix( SynapseMatrix )void Show_SynapseMatrix_Index( SynapseMatrix sm )Matrix Make_Matrix_From_SynapseMatrix( SynapseMatrix m,int r, int 
, Matrix out )Ve
tor Get_Weight_Sums( SynapseMatrix w, Ve
tor out )The fun
tion Make_Matrix_From_SynapseMatrix 
onverts the sparse weights of a SynapseMatrixinto a non-sparse standard Matrix. This is ne
essary to display a weight matrix in the graphi
aluser interfa
e.Get_Weight_Sums 
al
ulates a ve
tor out of the sums of the synapses in the rows of a SynapseMa-trix w.4.9.8 Synapti
 Matrix-Ve
tor Multipli
ation and UpdatesSparse Multipli
ationsThere are a number of multipli
ation fun
tions analogous to those for sparse matri
es:Ve
tor Synapse_Mult_t( SynapseMatrix w, Ve
tor in, Ve
tor out )Ve
tor Synapse_bMult_t( SynapseMatrix w, bVe
tor in, Ve
tor out )Ve
tor Synapse_Mult_t_delayed( SynapseMatrix w, Ve
tor_DL in, Ve
tor out )Ve
tor Synapse_bMult_t_delayed( SynapseMatrix w, bVe
tor_DL in, Ve
tor out )These fun
tions only use the synapti
 weights for a sparse matri
s ve
tor multipli
ation. Thedynami
 properties even if they are set are entirely ignored. They are mainly for testing. It willtypi
ally be better to use sparse matri
es if dynami
 properties are not needed, be
ause the sparsematrix fun
tions should be more e�
ient in regard of spa
e and time requirements.Dynami
 Synapse Matrix UpdatesThe following fun
tions do matrix-ve
tor multipli
ations on sparse matri
es and update the internalSynapseMatrix stru
tures per time-step.Ve
tor Synapse_bMult_Update_t_alpha( SynapseMatrix w, bVe
tor in, Ve
tor out )Ve
tor Synapse_bMult_Update_t_alpha_delayed( SynapseMatrix w, bVe
tor_DL in,Ve
tor out )Ve
tor Synapse_bMult_Update_t_failure( SynapseMatrix w, bVe
tor in, Ve
tor out )Ve
tor Synapse_bMult_Update_t_failure_delayed( SynapseMatrix w, bVe
tor_DL in,Ve
tor out )
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tor Synapse_bMult_Update_t_adaptation( SynapseMatrix w, bVe
tor in, Ve
tor out )Ve
tor Synapse_bMult_Update_t_adaptation_delayed( SynapseMatrix w, bVe
tor_DL in,Ve
tor out )Ve
tor Synapse_bMult_Update_t_adaptation( SynapseMatrix w, bVe
tor in, Ve
tor out )Ve
tor Synapse_bMult_Update_t_adaptation_delayed( SynapseMatrix w, bVe
tor_DL in,Ve
tor out )Ve
tor Synapse_bMult_Update_t( SynapseMatrix w, bVe
tor in, Ve
tor out )Ve
tor Synapse_bMult_Update_t_delayed( SynapseMatrix w, bVe
tor_DL in, Ve
tor out )
w is the SynapseMatrix under 
onsideration, in a binary input ve
tor or delay line (of spikes), and
out the output (of instantaneous synapti
 
ondu
tan
es).The time-s
ale used for the internal update is set by the SET_STEPSIZE ma
ro, see ??. The
urrent simulation step or time is returned by SIM_STEP and SIM_TIME, respe
tively.The Synapse_bMult_Update_t_xxx_delayed - versions of the fun
tions use delays de�ned persynapse. The fun
tions without the _delayed su�x ignores delays even if they have been de�ned.Di�erent versions have been implemented for di�erent 
ombinations of alpha, adaptation, andfailure. This has signi�
ant speed advantages. The Synapse_bMult_Update_t fun
tion and itsdelayed 
ounterpart are wrapper that 
ombine the more spe
i�
 fun
tions (see below).Synapse_bMult_Update_t_alpha only uses the alpha-part of a dynami
 synapse. If adaptationor failure parameters are de�ned at matrix 
reation, they are 
ompletely ignored.Synapse_bMult_Update_t_failure only uses the failure part and if given also the alpha-part of adynami
 synapse. If adaptation parameters are de�ned, they are 
ompletely ignored. Parameterq is ignored in the present implementation (should be joined into the synapse weight).Synapse_bMult_Update_t_adaptation only uses the adaptation/fa
ilitation part and if givenalso the alpha-part of a dynami
 synapse. If failure parameters are de�ned, they are 
ompletelyignored. This is the standard Tsodyks-Markram model as de
ribed above.Synapse_bMult_Update_t_Up 
ombines the npq-model with the Barak-Tsodyks model in themanner as des
ribed above. If an alpha-part is also given it is 
onsidered in this update-fun
tion,too. Parameters q and U are ignored in this model variant.The above fun
tions with the ex
eption of Synapse_bMult_Update_t_delayed andSynapse_bMult_Update_t don't use the Matrix-type �ags for de
iding whi
h dynami
 me
h-anisms are used, be
ause the kind of update is expli
itely spe
i�ed. The user has to make surethat Matri
es are 
reated with types that �t the respe
tive update fun
tions. Tests are usuallynot done, whi
h 
an result in 
ore-dumps.The fun
tions Synapse_bMult_Update_t_delayed and Synapse_bMult_Update_t are wrappersthat 
all the other fun
tions based on the Matrix-type �ags. E.g., for Synapse_bMult_Update_t(and analogously for Synapse_bMult_Update_t_delayed):
ase 0: // just multipli
ationreturn Synapse_bMult_t( w, in, out );
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ase SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_alpha( w, in, out );
ase SYNAPSE_TYPE_FAILURE:
ase SYNAPSE_TYPE_FAILURE|SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_failure( w, in, out );
ase SYNAPSE_TYPE_ADAPTATION:
ase SYNAPSE_TYPE_ADAPTATION|SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_adaptation( w, in, out );
ase SYNAPSE_TYPE_FAILURE|SYNAPSE_TYPE_ADAPTATION:
ase SYNAPSE_TYPE_FAILURE|SYNAPSE_TYPE_ADAPTATION|SYNAPSE_TYPE_ALPHA:return Synapse_bMult_Update_t_Up( w, in, out );Note: All of the above fun
tions not only do the multiply-a

umulate to 
ompute 
ondu
tan
e
hanges, but also update intrinsi
 data stru
tures. Therefore, for ea
h synapse matrix they haveto be 
alled exa
tly on
e in a single simulation time-step.Note 2: In prin
iple the 
olumns of a SynapseMatrix 
an have di�erent types, be
ause they areSynapseVe
tors. This would allow to have parameters shared 
olumnwise (ie neuron-wise). TheUpdate fun
tions should take di�erent 
olumn types into a

ount. However, this is a 
ompletelyuntested feature. (To use it one has to use low-level ma
ros and data-stru
tures, see synapse.
/h.)4.9.9 Example: Integrate-and-Fire Network with Dynami
 SynapsesThe example below implements a network of leaky-integrate-and-�re neurons with dynami
synapses. The 
ode looks very similar to earlier examples. Therefore, some parts have beenleft out. The main di�eren
es are indi
ated by arrows. Note that the synapti
 dynam-i
s as su
h is hidden from the user in the Synapse_bMult_Update_t-fun
tion � the leaky-integration in the step-fun
tion is only for the membranes. The �ags SYNAPSE_TYPE_ALPHA,SYNAPSE_TYPE_ADAPTATION, SYNAPSE_TYPE_FAILURE in the initialisation of thesynapti
 matrix 
ontrol the type mix of the synapses.In this example, all synapses have identi
al parameters, be
ause these are supplied already glob-ally at initialisation of the matrix in the Get_SynapseMatrix-
all in main_init(). This 
an-not be 
hanged later. If some parameters need to be di�erent for di�erent synapses the re-spe
tive parameter 
onstru
tor needs to be repla
ed by 0 in the Matrix de�nition. Instead, ithas to be spe
i�ed when synapses are a
tually added to the matrix in the init()-routine usingAdd_SynapseMatrix_Entry(). Note that any parameters are ignored, if the 
orresponding type isnot sele
ted in the matrix de�nition. The types sele
ted in the SynapseMatrix allo
ation spe
i�ywhi
h steps in the s
heme in �gure 4.4 are exe
uted and whi
h not.Finally note, that the synapses in the example shown below have no delays; intera
tions areinstantaneous, be
ause the respe
tive delay arguments when synapses are added to the matrixsynJ in the init-fun
tion are 0. There is an example syn_inf_del in the Felix expl-dire
tory, thatshows how the program syn_inf 
an be modi�ed to allow for delays.



66 CHAPTER 4. LIBRARIES/* Example-program: syn_inf.
integrate and fire network with sparse 
onne
tivitymatrix of dynami
 synapses with failure, adaptation,depression, and 0/1/2-order alpha-fun
tions*/# in
lude <felix.h># define N 900 /* number of neurons */# define tau 10. /* membrane time 
onstant */Ve
tor x; /* potentials */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */SynapseMatrix synJ; /* synapti
 
onne
tivity matrix */ <------------Matrix J; /* 
onne
tions for displaying */BaseType mean;SliderValue sI = 100; /* Common input to units */SliderValue sJ0 = 50; /* Coupling strength */SliderValue ssigma = 0; /* noise level */BEGIN_DISPLAY// same as sinf.
 ; not repeated hereEND_DISPLAYNO_OUTPUTint main_init(){ randomize( time(NULL) );SET_STEPSIZE( .5 )// starts empty with N 
olumns; all parameters global <-----------synJ = Get_SynapseMatrix( N, 0,SYNAPSE_TYPE_ALPHA| SYNAPSE_TYPE_ADAPTATION| SYNAPSE_TYPE_FAILURE,Get_Alpha_Parameters( 3., 5. ), // tau_r tau_fGet_Adapt_Parameters( .05, 100., 500. ), // U tau_re
 tau_fa
ilGet_Failure_Parameters( 5, .3, 1. ) ); // n p qJ = Get_Matrix( N, N );
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tor( N );v = Get_Ve
tor( N );z = Get_bVe
tor( N );}int init(){ int i,j;SynapseVe
tor sv;Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);for (i=0; i<N; i++)x[i℄ = equal_noise();Empty_SynapseMatrix(synJ); <---------------------for (i=0; i<N; i++) <---------------------for (j=0; j<(int)(0.02*N); j++)Add_SynapseMatrix_Entry( synJ, i, (int)((N-1)*equal_noise()) ,1., 0, // weight 1, delay 00, 0, 0 ); // no lo
al parametersMake_Matrix_From_SynapseMatrix( synJ, N, N, J ); <--- for display}int step(){ int i;for (i=0;i<N;i++) // 
urrent-based noisy integrate and fire neuronsleaky_integrate ( tau, x[i℄,0.01*( sI + sJ0*v[i℄ + ssigma*gauss_noise() ) );Fire_Reset( N, x, 1.0, 0.0, z );Synapse_bMult_Update_t_Up( synJ, z, v ); <---------------------mean = Sum( N, v )/N;}4.9.10 Pat
hy Conne
tivities in SynapseMatri
esIt is often desired that a Neuron re
eives input from 
ells in a 
ertain region, e.g., interneuronsoften sample a
tivity from 
ells in their surrounding only.
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tions help setting up su
h kind of lo
al 
onne
tivities. They take a Synap-seVe
tor sv whi
h is supposed to hold the synapses of a target neuron and re
eives input fromsour
e 
ells around lo
ation (x0, y0) in a �eld of size n × m. Observe, that if (x0, y0) are the
oordinates of the 
ell itself, inputs will be sampled from the immediate surrounding of the 
ell,but (x0, y0) 
an also be a lo
ation distant from the target neuron. In any 
ase only synapses upto at most a distan
e dmax from (x0, y0) are 
reated.In these fun
tions weights 
an be distan
e dependent a

ording to a user-de�ned fun
tion (in
ludingthe Felix-intrinsi
 
onst_fun
). The di�erent versions of the fun
tions deal di�erently with delaysand the possibility to generate synapses will 
ertain probabilities only. There 
an be 
onstantdelays (the same for all synapses 
reated) or distan
e-dependent delays generated a

ording to auser-de�ned fun
tion. Dilution of a 
onne
ivity pathway 
an similarly be 
ontroled by a distan
e-dependent fun
tion.void Synapse_Add_Cir
ular_Pat
h( SynapseVe
tor sv,float x0, float y0, int n, int m, float dmax,float ampl, float s
ale, float (*fun
) (float),float delay )void Synapse_Add_Cir
ular_Pat
h_Delayed( SynapseVe
tor sv,float x0, float y0, int n, int m, float dmax,float ampl, float s
ale, float (*fun
) (float),float dfa
, float (*delayfun
)(float) )void Synapse_Add_Diluted_Cir
ular_Pat
h( SynapseVe
tor sv,float x0, float y0, int n, int m, float dmax,float ampl, float s
ale, float (*dilfun
) (float),float ampl2, float s
ale2, float (*fun
) (float),float delay )void Synapse_Add_Diluted_Cir
ular_Pat
h_Delayed( SynapseVe
tor sv,float x0, float y0, int n, int m, float dmax,float ampl, float s
ale, float (*dilfun
) (float),float ampl2, float s
ale2, float (*fun
) (float),float dfa
, float (*delayfun
)(float) ) );Synapse_Add_Cir
ular_Pat
h sets weights within a radius dmax a

ording to ampl∗func(scale∗
d); all delays are set to delay. func is a user-spe
i�ed fun
tion, e.g., gaussian or constfunc.Synapse_Add_Cir
ular_Pat
h_Delayed in 
ontrast to the previous fun
tion, this one sets delaysa

ording to dfac ∗ delayfunc(d), where delayfunc is a user-supplied fun
tion (
f., the axamplein the next subse
tion).Synapse_Diluted_Add_Cir
ular_Pat
h and Synapse_Add_Diluted_Cir
ular_Pat
h_Delayedin addition to the previous two fun
tions allow to setup diluted 
onne
tions. dilfunc is a distan
e-dependent fun
tion that spe
i�es the probability of a 
onne
tion. The fun
tion 
an be s
aled by
ampl in order to set the total probability level; the fun
tion argument 
an be s
aled by scale inorder to stret
h or 
ompress the range of the target fun
tion into an appropriate range.Note: All these fun
tions assume global parameters for the synapti
 dynami
s as set when therespe
tive SynapseVe
tor or SynapseMatrix is allo
ated.
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 dynami
s is not required and 
onne
tivity is not heavily diluted the UniKernels,Kernels, and the 
onvolution fun
tions des
ribed earlier might be more advantageous to implementthe intended fun
tionality. They should be faster and need less memory spa
e for non-diluted
onne
tivities. They may still be faster for moderately diluted 
onne
tivities (whi
h would beimplemented using Kernels by zero-entries) be
ause of better memory alignment and less overhead.4.9.11 Example for dense lo
al 
onne
tionsBelow is a brief 
ode snippet showing how to set up lo
al lateral 
onne
tions with distan
e-dependent delays and a de
aying 
onne
tion probability. The distan
e-dependent delays are setby a user-de�ned fun
tion delay_from_distan
e(). Note that this fun
tion 
ould also add somejitter to the delays as desired. The 
ode leaves out the main_init() and step() whi
h 
ould besimilar to the example in se
tion 4.9.9.float delay_from_distan
e( float d ){ return( 0.1 + 4.*d ); // d0+v*d}...init(){ int i;SynapseVe
tor sv;Empty_SynapseMatrix(synJ);OMP_FOR (i=0; i<N; i++) // auto-parallelises{ SynapseVe
tor sv = SynapseMatrix_Column( synJ, i );Synapse_Add_Diluted_Cir
ular_Pat
h_Delayed( sv, i%nn, i/nn, nn, nn, 16.,.5, .2, gaussian, // dilution a

ording to gaussian1., .2, 
onst_fun
, // weights will all be equal to 1..5, delay_from_distan
e ); // delays a

ording to user fun
tion}...}4.10 Synapti
 Plasti
ityWeights of biologi
al synapses 
an 
hange in dependen
e of pre and post-synapti
 a
tivity. Thisphenomenon is 
alled synapti
 plasti
ity and generally addumed to underly learning pro
essestaking pla
e on a 
ognitive level.
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lassi
 idea bout plasti
ity is the 
o-
alled Hebbain learning rule, whi
h states that neurons that�re together should wire together, that is, strengthen their mutual synapti
 
onne
tions. Thismakes sense be
ause if these neurons often �re together they likely 
ode for features in the worldthat belong together like parts of an obje
t. Early theories of brain fun
tion suggest that obje
trepresentations 
an build up this way.Many variants and extensions of Hebbian learning rules have been devised and studied. Forinstan
e, unlearning (or synapti
 long-term depression) when neurons do not �re together, or
orrelation-based learning rules, whi
h 
onsider post and pre-synapti
 deviations from mean �ringrates for learning and not the spikes or rates themselfes. More re
ently temporal learning ruleshave be
ome important as the brain seems to make use of them widely. These rules named �spiketiming-dependent plasti
ity rules� (STDP) usually enhan
e a synapse when a post-synapti
 spikeappears after a pre-synapti
 one and de
rease it in the opposite 
ase. The properties of su
hlearning rules are 
urrently an important resear
h topi
 in neuros
ien
e.Feix supports the implementation of some synapti
 plasti
ity me
hanisms. This however is afeature under development. Future 
hanges and extensions to the fun
tionality des
ribed in thisse
tion are lilkely..The synapti
 plasti
ity fun
tionality of Felix builds upon SynapseMatri
es as des
ribed in theprevious se
tion. Plasti
ity is an additional features you 
an give these matri
es.4.10.1 Plasti
ity RulesIf you want to use Felix plasti
ity fun
tions, you have to de�ne a plasti
ity rule that des
ribes howa weight is 
hanged given pre- and post-synapti
 spike times. Th C fun
tion prototype of su
h anupdate rule isvoid some_synapse_training_fun
tion( int j, int i, float*w, float tpre, float tpost );As apparent from this prototype, at the moment a learning rule 
an depend only on the pre- andpost-synapti
 indexes and spike-times, and the 
urrent value of the synapse itself. This ex
ludessome learning rules proposed in the literature as, e.g., re
ent rules explored in resear
h that 
onsidertriplets of spikes. Rules that depend on further 
ell spe
i�
 variables like post-synapti
 potentialsor average �ring rates and the like (e.g., the BCM or ABS rule) may be possible as these variables
an be 
omputed in a program and used in a lo
ally de�ned update fun
tion.The example "learning_rules.
" in the 
ode dire
tory of this user guide provides some examples.However, these are experimental and have only used for testing. All Felix 
ode developement inthe are of SynapseMatri
es and learning rules should be 
onsidered in an experimental stage.The training fun
tion is 
alled in a simulation ea
h time a pre- or post-synapti
 spike arrives at asynapse. These fun
tion 
alls are hidden in the update fun
tions des
ribed in subse
tion 4.10.2.You set a training fun
tion (usually in main_init) usingSet_Synapse_Training_Fun
tion( fun
tion_name );Here, �fun
tion_name� is your own training fun
tion or one of the Felix intrinsi
 fun
tions.
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tion defaults to an empty fun
tion that does nothing and is 
alled�synapse_train_fun
_empty�.Note that if you don't want a synapti
 proje
tion (ie a SynapseMatrix) to learn it is probablybetter to use the update fun
tions des
ribed earlier in the previous se
tion about short-termsynapti
 dynami
s than the update fun
tions form subse
tion 4.10.2 below with empty training-rules, be
ause otherwise you slow down your simulation by running through many unne
essaryupdates. See subse
tion 4.10.5 for ben
hmarks of these two groups of update-fun
tions. (If youdon't want sunapti
 dynami
s either, it might even be better to use just sMatri
es or Matri
es.)The following 
ode snippet shows how a training fun
tion for spike timing dependent plasti
ity(STDP) 
ould look like. This is a
tually the training fun
tion used in the ben
hmarks reported insubse
tion 4.10.5. Note that the parameters used are not supposed to be realisti
. In parti
ularthe weight 
hanges have been set to quite small values in order not to disturb the �ring rates in tehben
hmark simulations mu
h. You will probably use your own fun
tion(s) with more appropriateparameters.void synapse_train_fun
( int j, int i, float *weight, float posttime, float pretime ){ float delta = posttime - pretime;float 
p=.001, 
m=.0003, taup=20., taum=50.;if (delta>0) // post after pre -> enhan
e*weight += 
p*exp(-delta/taup);else // pre after post -> depress (but don't make negative){ if ( (*weight -= 
m*exp(delta/taum)) < 0. )*weight = 0.f;}return;}At the moment synapse_train_fun
_empty and synapse_train_fun
 are the only Felix-intrinsi
training fun
tions (but see example �learning_rules.
� in the 
ode dire
tory for more, experimental
ode).4.10.2 Update Fun
tionsSimilar to the update fun
tions for SynapseMatri
es with dynami
s synapses, there are a numberof fun
tions that update a SynapseMatrix and train the synapse simultaneously. These fun
tions
all the previously de�ned training fun
tion internally. There are versions for networks with andwthout delays. In the following fun
tion de
larations out and tout are the postsynapti
 spikes andlast spike-times respe
tively, and in and tin are the input spikes and spike-times. In 
ase of delayedfun
tions the inputs have to be delay-lines of spikes.void Synapse_Learn_t( SynapseMatrix w, bVe
tor in, Ve
tor tin,bVe
tor out, Ve
tor tout);void Synapse_Learn_t_delayed( SynapseMatrix w, bVe
tor_DL in,
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tor out, Ve
tor tout );The above two fun
tions leave the internal data-stru
tures of w untou
hed, but only use theweights.Ve
tor Synapse_bMult_Learn_t( SynapseMatrix w, bVe
tor in, Ve
tor tin,bVe
tor out, Ve
tor tout, Ve
tor vout );Ve
tor Synapse_bMult_Learn_t_delayed( SynapseMatrix w, bVe
tor_DL in,bVe
tor out, Ve
tor tout, Ve
tor vout );These two fun
tions also leave the internal data-stru
tures of w untou
hed. In addition to trainingthe weights they also 
ompute the matrix-ve
tor multipli
ation given the weights and input spikes.Resulting 
ondu
tan
es (or 
urrents depending on interpretration) are return in vout.Ve
tor Synapse_bMult_Update_Learn_t_adaptation( SynapseMatrix w, bVe
tor in,bVe
tor out, Ve
tor tout, Ve
tor vout );Ve
tor Synapse_bMult_Update_Learn_t_adaptation_delayed( SynapseMatrix w,bVe
tor_DL in, bVe
tor out, Ve
tor tout, Ve
tor vout );These two fun
tions do the same as the previous two, but in addition update internal data-stru
tures of w, e.g., the alpha- and adaptation-variables.Ve
tor Synapse_bMult_Update_Learn_t_Up( SynapseMatrix w, bVe
tor in,bVe
tor out, Ve
tor tout, Ve
tor vout );Ve
tor Synapse_bMult_Update_Learn_t_Up_delayed( SynapseMatrix w,bVe
tor_DL in, bVe
tor out, Ve
tor tout, Ve
tor vout );These two fun
tions do the matrix-ve
tor multipli
ation, train the synapses, and update the fullMarkram-Tsodyks equations with synapti
 failure.4.10.3 UnlearningClassi
al asso
iative memories like the Hop�eld or Willshaw net store sets of binary patterns insynapti
 
onne
tivity matri
es for later retrieval from in
omplete or noisy versions of the patterns.Depending on whether both, only one, or none of the pre- and post-synapti
 a
tivity in a pattern area
tive a di�erent in
rement 
an be added to a synapse when a pattern is presented. The in
rements
an be 
olle
ted in a rule-table, see Fig. 4.6. These networks learn before any simulations of thenetwork dynami
s are done by presenting all pattern pairs sequentially and 
hanging synapsesa

ording to the rule-table. Furthermore, the networks are usually also time-dis
rete when retrievalis 
onsidered. It is therefore not entirely straight-forward to transfer lo
al rule-tables to time-
ontinuous networks with ongoing learning.
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Figure 4.6: A lo
al learning rule R adds in
rements Rpost,pre to a weight between synapses onlybased on the pre- and post-synapti
 a
tivity.The 
ode below shows an implementation of a Hebb-like learning rule. It uses the pre- and post-synapti
 �ring times together with a syn
hronisation inteval [−tsynch, tsynch] in order to determinesyn
hrony or 
ases where only the pre- or post-synapti
 neuron has �red. A

ording, weights 
anpe in
reased or de
reased.It is obvious that similar rules 
an be 
onstru
ted that, e.g., take into a

ount an exponentialde
ay in in
rements in dependen
e of interspike intervals, thereby allowing for bigger in
rementsif spikes are 
loser in time. Many other options are possible.void synapse_train_fun
_hebb( int i, int j, float *weight, float posttime, float pretime ){ float delta = posttime - pretime;float tsyn
h=10., r10=-.001, r01=-.001, r11=.003;if (delta>tsyn
h) // post_not_pre -> r10*weight += r10;else if (delta<-syn
h) // pre_not_post*weight += r01;else*weight += r11; // syn
h}One problem with the 
ode above is that the 
ase where both neurons do not �re 
annot properlybe dete
ted. There is not event, no �spike�, signaling this. Therefore, this 
ase is ex
luded in the
ode snippet.Often (but not always!) it is assumed that when a synapse does not re
eive any spikes for a longtime it may �forget� the information it stores by some random perturbative pro
esses a
ting onthe weight. Su
h pro
esses have been modeled by de
aying synapses. The r00 term in a lo
allearning rule might therefore be asso
iated with synapti
 �forgetting�. This is not th emost generalassumption, but a 
ommon one.Whereas the synapti
 training fun
tion is event based and only 
alled if there is a pre- or post-synapti
 spike at a synapse, one might guess that the no-pre-no-post 
ase 
annot be simulatedevent-based be
ause it is not asso
iated with an event. This is in
orre
t. Indeed, a synapses isupdated at every pre- or post-synapti
 event, so, if the next (pre- or post-synapti
) spike arrives, itis 
ertain that the synapse has not been 
hanged or even used during the time sin
e the last update.We 
an therefore 
olle
t all the 
hanges that would have happend a

ording to the r00-parts of a
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al learning rule and apply them just before the 
hanges due to the new event.For this purpose Felix provides the possibility to set up �forget_fun
tions� whi
h re
eive the pre-and post-synapti
 neuron index, the 
urrent weight, and the absoulte time t of the last (pre- orpost-synapti
) spike that led to any 
hanges of the synapse.Set_Synapse_Forget_Fun
tion( fun
 )void synapse_forget_fun
( int post, int pre, float* w, float t )synapse_forget_fun
_emptyThe fun
tion Set_Synapse_Forget_Fun
tion sets a forget-fun
tion. The default is 0 (equal tosynapse_forget_fun
_empty). Below, an example fun
tion is de�ned that forgets the values ofsynapses that are not used on a long time-s
ale of 10000.0 (usually millise
onds).void synapse_forget_fun
( int i, int j, float *w, float t){ *w *= exp( (t-SIM_TIME)/10000. );}Note: Most of the update-fun
tions with training in subse
tion 4.10.2 �rst 
all the forget-fun
tion,then do any adaptation, depression, failure, then determine the 
urrent weight of the synapse,and only after that train the synapse using the 
urrently de�ned training-fun
tion. This re�e
tsthe fa
t that the forgetting happens during the time before the 
urrently in
oming spike, but theweight 
hange tyi
ally needs more time than the transient post-synapti
 potential responses. (TheSynapse_bMult_Learn_t and its delayed version are slightly di�erent. Minor dis
repan
ies toresults from the other update-fun
tions are possible.)Note 2: ... last spike time problem ..... ou
h .... in progress .... (in short: the a
tual binar spikeve
tors provided to an up-date fun
tion need to be from the 
urrent step, but the last spike timesfrom the previous one in order to get the forget-fun
tions ot work properly. So, 
ompute the spikes,update the synapse stru
tures, and then update the last spike time ve
tors at the end of your stepfun
tion. See examples in learning_rules .... )Note 3: there are 1 or 2 additional problems with the learning/forgetting I am still trying to �gureout a

eptable solutions for. Use them with 
are.4.10.4 ExampleThe following 
ode implements a network of roughly 4000 neurons in a square latti
e of 63 times 63units. Conne
tivity is 2%, e.g., ea
h unit has up to about 80 synapses. This results in somethingless than 320k synapses. Synapses may or may not reveal delays, failure, depression/adaptation,alpha fun
tion dynami
s, and synapti
 plasti
ity a

ording to th eSTDP-fun
tion in subse
tion4.10.1. The step-routine 
ontains fun
tion 
alls for a number of possible network update variants.All synapti
 parameters are global for simpli
ity (but of 
ourse not their weightsm delays, andtarget indexes).# in
lude <felix.h>



4.10. SYNAPTIC PLASTICITY 75# define CONNECTIVITY .02# define nn 63# define N (nn*nn) /* number of neurons 63*63=3969 */# define tau 5. /* membrane time 
onstant */# define MAX_DELAY 150 // in time steps; make sure this is big enough# define D 1 // display pixel sizeVe
tor x; /* potentials */Ve
tor tl; /* last spike times */bVe
tor_DL zsav; /* output spikes buffer */bVe
tor z; /* pointer to a
tual spikes */Ve
tor v; /* auxiliary variable */SynapseMatrix synJ; /* synapti
 
onne
tivity matrix */SliderValue sI = 100; /* Common input to units */SliderValue sJ0 = 50; /* Coupling strength */SliderValue ssigma = 0; /* noise level */BEGIN_DISPLAYSLIDER( "input", sI, 0, 200)SLIDER( "
oupling", sJ0, 0, 200)SLIDER( "noise", ssigma, 0, 100)WINDOW("signals") IMAGE( "x", AR, AC, x, MATRIX, nn, nn, -.1, 1.1, D)IMAGE( "z", AR, NC, &z, POINTER TO bMATRIX, nn, nn, -.1, 1.1, D)END_DISPLAYNO_OUTPUTNO_FMPI_CONNECTIONSint main_init(){ OMP_THREADS( 1 );randomize( time(NULL) );SET_STEPSIZE( .5 )synJ = Get_SynapseMatrix( N, 0,SYNAPSE_TYPE_ALPHA | SYNAPSE_TYPE_ADAPTATION | SYNAPSE_TYPE_FAILURE ,Get_Alpha_Parameters( 3., 5. ), // tau_r tau_fGet_Adapt_Parameters( .05, 100., 700., 1., 1. ), // U tauA tauF 
A 
F



76 CHAPTER 4. LIBRARIESGet_Failure_Parameters( 5, .1, 1. ) ); // n p qx = Get_Ve
tor( N );tl = Get_Ve
tor( N );v = Get_Ve
tor( N );Set_Synapse_Forget_Fun
tion(0); <------------ no "forgetting"Set_Synapse_Training_Fun
tion( synapse_train_fun
 ); <-------------------zsav = Get_bVe
tor_DL( N, MAX_DELAY );z = 
urrent( zsav );}int init(){ int i;SynapseVe
tor sv;Clear_DL( zsav );z = 
urrent( zsav );Clear_Ve
tor(N,v); for (i=0; i<N; i++){ x[i℄ = equal_noise();tl[i℄ = -1000.f;}Empty_SynapseMatrix(synJ);OMP_FOR (i=0; i<N; i++) // 
olumns{ int j, k;SynapseVe
tor sv = SynapseMatrix_Column( synJ, i );for (j=0; j<(int)(CONNECTIVITY*N); j++){ k = (int)((N)*equal_noise()); // random sour
e unitAdd_SynapseVe
tor_Entry( sv, k,1./(CONNECTIVITY*N), // synapse weight(int)delay_from_indexes( i, k, nn, 0., 2.), // dist. dep. delays0, 0, 0 ); // no lo
al synapti
 parameters}}}int step(){ int i;Step_DL( zsav );



4.10. SYNAPTIC PLASTICITY 77z = 
urrent( zsav );OMP_FOR (i=0;i<N;i++)leaky_integrate ( tau, x[i℄, 0.01*( sI + sJ0*v[i℄ + ssigma*gauss_noise() ) );Fire_Reset( N, x, 1.0, 0.0, z );// Synapse_bMult_t( synJ, z, v );// Synapse_Learn_t( synJ, z, tl, z, tl );// Synapse_bMult_Learn_t( synJ, z, tl, z, tl, v );// Synapse_bMult_t_delayed( synJ, zsav, v );// Synapse_Learn_t_delayed( synJ, zsav, z, tl );// Synapse_bMult_Learn_t_delayed( synJ, zsav, z, tl, v );// Synapse_bMult_Update_t_adaptation( synJ, z, v );// Synapse_bMult_Update_Learn_t_adaptation( synJ, z, z, tl, v );// Synapse_bMult_Update_t_adaptation_delayed( synJ, zsav, v );// Synapse_bMult_Update_Learn_t_adaptation_delayed( synJ, zsav, z, tl, v );// Synapse_bMult_Update_t_Up( synJ, z, v );// Synapse_bMult_Update_Learn_t_Up( synJ, z, z, tl, v );// Synapse_bMult_Update_t_Up_delayed( synJ, zsav, v );// Synapse_bMult_Update_Learn_t_Up_delayed( synJ, zsav, z, tl, v );for(i=0;i<N;i++) // update last spike times; not worth parallelising thisif (z[i℄)tl[ i ℄ = SIM_TIME;}The above step-routine 
ontains a number of 
ommented out model variants. If none is sele
tedthe network 
onsists of just 
a 4000 un
onne
ted leaky-integrate-and-�re neurons with gaussiannoise input. Usually only one of the update fun
tions will be a
tive, with the ex
eption ofSynapse_bMult_t and Synapse_Learn_t (as well as their delayed 
ounterparts). These fun
-tions 
omplement ea
h other. One updates the internal data stru
tures for the synapti
 dynami
s,the other one does the synapti
 plasti
ity. Note that Synapse_bMult_Learn_t (as its delayed ver-sion) integrate these two steps into a single more e�
ient fun
tion. It might however o

asionallybe useful to have the individual routines, too.The sour
e 
ode of this example should be in do
u/
ode/learn.
 relative to the Felix main dire
tory.4.10.5 Some Ben
hmarksNote: After doing the ben
hmarks reported here, some 
hanges in the 
ode have been done whi
hslow down speed of some fun
tions by up to about 20 %. You should also expe
t performan
e todepend to some degree on your parti
ular 
ompiler settings (ie, optimisation �ags).This subse
tion presents some ben
hmarking results for the training and updating fun
tions de�nedabove. The program used for these ben
hmarks is the one from the previous subse
tion with nn =63, i.e., a total number of neurons of nn∗nn = 3969. For an input of 1.01 and noise zero the �ringrate of the un
oupled 
ells is 
a 48Hz. Ben
hmarks are done with very small noise amplitudes,
oupling strengths, and learning rates su
h that this baseline �ring rate is not perturbed mu
h but



78 CHAPTER 4. LIBRARIESthe respe
tive parts of the 
ode are exe
uted as desired. We simulated 1s real-time and the resultsshown below do 
ontain the network setup phase and the a
tual simulation; or nn = 63 the setupphase however was short.Ben
hmarks were run on a Laptop with Intel Pentium M pro
essor 1.73GHz and a 
a
he size of2048 KB. The Felix version used was 
ompiled with a 
ustom-
ompiled pre-release of g

 4.2 andrun on one thread.Dynami
 parameters where the same for all synapses. If individual parameters are needed thiswould slow down the simulation. We have not run ben
hmarks for this situation.Memory used for nn = 63 and a 
onne
tivity of 2% was 16MB most of whi
h for the synapseintrinsi
 variables. nn = 63 
orresponds with about 4k neurons in total. Given a 
onne
tivity of2% ea
h neuron had (up to) 80 synapses resulting in about 320k synapses in total. Ea
h synapseneeds about 32 bytes of memory for weights, delays, synapse indexes, last spike times, and thedynami
 variables. The storage required for the synapses is therefore about 320k * 32 = 10.5MB.(A 100*100 network with 2% 
onne
tivity in 
ontrast has 2M synapses and needs about 80MB onmy Laptop. So, memory 
onsumption is signi�
ant. Exe
ution speed s
ales roughly with numberof synapses.)So, these are the numbers (in se
onds). The alternatives 
orrespond with those in the program
ode in subse
tion 4.10.4.0.8 leaky integration only2.5 leaky integration + gaussian noise1.3 leaky integration + firing&resetthe following are all with leaky-integration, firing, and reset5.5 Synapse_bMult_t, no input noise13 Synapse_bMult_t + Synapse_Learn_t, no input noise15.5 Synapse_bMult_t + Synapse_Learn_t, gaussian input noise10.5 Synapse_bMult_Learn_t, no input noise11. Synapse_bMult_t_delayed, no input noise26. Synapse_bMult_t_delayed + Synapse_Learn_t_delayed, no input noise20. Synapse_bMult_t_delayed + Synapse_Learn_t_delayed, gaussian input noise22. Synapse_bMult_Learn_t_delayed, no input noiseThese values show that 
omputing the single unit dynami
s (leaky-integration, noise, �ring&reset)is pretty mu
h negle
table, and that the delayed fun
tions are typi
ally half as fast as the non-delayed ones, whi
h is probably mainly due to unaligned memory a

ess. Observe the speed bene�twhen the integrated update-learn fun
tions are used. Gaussian input noise 
onsistently 
osts about1.5-3 se
onds.Here are numbers for the other update fun
tions (all with leaky-integration, noise, �ring&reset)18.5 Synapse_bMult_Update_t_adaptation24.5 Synapse_bMult_Update_Learn_t_adaptation22.5 Synapse_bMult_Update_t_adaptation_delayed30. Synapse_bMult_Update_Learn_t_adaptation_delayed



4.11. ONLINE CORRELATIONS 7920.5 Synapse_bMult_Update_t_Up27. Synapse_bMult_Update_Learn_t_Up22.5 Synapse_bMult_Update_t_Up_delayed33.5 Synapse_bMult_Update_Learn_t_Up_delayedDelays 
ost about 4-7s as 
ompared to non-delayed versions. Learning 
osts about 6-8s as 
omparedto non-learning versions.We have done preliminary test on the 
omputer 
luster. Networks were run on single 
omputenodes on either one 1 or 4 CPUs. For Synapse_bMult_Update_Learn_t_Up_delayed run-timeswere nn=63 100 2001 thread: 40.7s 163s 61m8s4 threads: 25.8s 63s 20mFor some reason still to be �gured out simulation times are surprisingly bad on the 
luster as
ompared to the Laptop. Although the CPUs on the 
luster nodes have 2GHz 
y
le frequen
y(AMD Opterons) as 
ompared to the 1.8 of the Laptop (Intel Pentium M) run-times on a singleCPU are slower. The speedup on 4 CPUs is also rather low (< 50%) but gets better for largernetworks. The issue will be investigated further.Memory 
onsumption for the 200*200 network was 1.165GB on the 
luster. That is 28.3% of theavailable 4GB. Memory 
onsumption on the laptop were 16MB and 80MB for nn=63 and 100,respe
tively. units synpase/unit total synapses63*63 ~ 4.000 * 0.02 = 80 * 4.000 = 320.000100*100 = 10.000 * 0.02 = 200 * 4.000 = 2.000.000200*200 = 40.000 * 0.02 = 800 * 4.000 = 32.000.000Note that ea
h synapse stores 7 integer/�oating point numbers as intrinsi
 variables, synapseindexes, delays and weights resulting in 28Bytes if these numbers need 4 Bytes ea
h. Givaen anetwork fo 200*200 units this results in 28B*32MB = 896MB for the synapses alone. This stillassumes that all synapses shae their parameters, otherwise the lo
al parameters (between 3 and13 per synapse) have to be taken into a

ount, too.Non-dynami
 synapse implemented by sparse sMatri
es in 
ontrast need only values for weights,indexes, and (possibly) delays resulting in 8 or 12 Bytes per synapse only. This allows for biggernetworks. However, there are no training fun
tions for sparse sMatri
es yet.4.11 Online CorrelationsThe 
omputation of spike-triggered averages (STAs) and 
orrelations is a 
ommon data-analysismethod in neuros
ien
e. Felix provides a 
ouple of fun
tions that 
ompute STAs, 
ross- andauto-
orrelation fun
tions online.



80 CHAPTER 4. LIBRARIESThese fun
tions use delay-lines to store previous data. The length of the delay-lines must be at leastas big as the time window for the 
orrelation fun
tions to 
ompute. The fun
tions 
an 
omputeseveral STAs of 
orrelations fun
tions at on
e. They expe
t ve
tors of data in the delay-lines andarrays of indexes that de�ne whi
h signal tra
es to use. The spike triggered averages in additionexpe
t a ve
tor of spikes for the triggers and an index array that spe
i�es whi
h triggers to use.The fun
tions return arrays of STAs, CCFs or ACFs for all pairs of indexes.The spiked-triggered averaging fun
tions arefloat*online_STA( int n1, bVe
tor v, // ve
tor of triggersint m1, int*indx1, // index of triggers usedVe
tor_DL dl, // data to averageint m2, int*indx2, // index of datal 
hannels usedint tau, // max timestep used for STAint flag, // 0=one-sided; 1=two-sided STAVe
tor out ) // results; m1*m2 array of STAsint*online_bSTA( int n1, bVe
tor v, // ve
tor of triggersint m1, int*indx1, // index of triggers usedbVe
tor_DL dl, // data to averageint m2, int*indx2, // index of datal 
hannels usedint tau, // max timestep used for STAint flag, // 0=one-sided; 1=two-sided STAint *out ) // results; m1*m2 array of STAsThe di�eren
e between both fun
tions is that the �rst one averages �oating point data, whereasthe se
ond uses 
hars - this 
an be binary 0/1 data but non-binary data is possible as well as longas they �t into 
hars. The se
ond fun
tion uses integer arithmeti
s and therefore returns the STAsas integer arrays.The fun
tions 
ompute m1 ∗ m2 STAs at on
e. v is a ve
tor of length n1; e.g., a ve
tor of 0/1spikes; these provide the �triggers� for the spike-triggered averaging. indx1 is an index ve
tor oflength m1; it sele
ts relevant tra
es in v; other tra
es are ignored. dl is a delay-line of the datato average. The lengths of the ve
tors stored in the delayline needs to be bigger than any indexappearing in indx1 and the number of stored ve
tors must be bigger than tau + 1 (2tau+1 if
flag=1???), see below. indx2 is an index ve
tor of length m2; it sele
ts relevant tra
es in dl, othertra
es are ignored. The fun
tion 
omputes the STAs for all sele
ted triggers and data tra
es aton
e over a range de�ned by tau (in simulation steps, ie the temporal resolution of the data array).If flag is non-zero, the average is 
omputed over 2 ∗ tau + 1 steps symmetri
 in time around the
urrent step, otherwise over tau + 1 previous steps. out is an array for the results or NULL. IfNULL is provided an array of appropriate size is allo
ated. The address of out will be returnedby the fun
tionThere are also 
ross- and auto-
orrelation fun
tions. They use only a single delay-line and oneindex only. CCFs (ACFs) between (of) all selete
ed tra
es are 
omputed.float* online_CCF( Ve
tor_DL dl, // data to 
orrelateint m, int*indx, // index of datal 
hannels usedint tau, // max timestep used for CCFint flag, // 0=one-sided; 1=two-sided CCF



4.12. NUMERICS.C/H 81float*out ) // results; m1*m2 array of CCFsint* online_CCH( bVe
tor_DL dl, // data to 
orrelateint m, int*indx, // index of datal 
hannels usedint tau, // max timestep used for CCHint flag, // 0=one-sided; 1=two-sided CCHint *out ) // results; m1*m2 array of CCHsfloat* online_ACF( Ve
tor_DL dl, // data to 
orrelateint m, int*indx, // index of datal 
hannels usedint tau, // max timestep used for ACFint flag, // 0=one-sided; 1=two-sided ACFfloat *out ) // results; m1*m2 array of ACFsint* online_ACH( bVe
tor_DL dl, // data to 
orrelateint m, int*indx, // index of datal 
hannels usedint tau, // max timestep used for ACFint flag, // 0=one-sided; 1=two-sided ACFint *out ) // results; m1*m2 array of ACFsThe �le tsta

h.
 provides an example for the usage of some of the 
orrelation fun
tions.4.12 numeri
s.
/hThis module 
ontains a number of numeri
al support routines most of whi
h have been adaptedfrom example 
ode 
oming with the ex
ellent book by Press et al. [? ℄. Fun
tions have beenadded as they be
ame desired in the 
ourse of the author's resear
h. In no way do they representa 
omprehensive 
olle
tion of numeri
al mathemati
s routines.For detailed des
riptions of the fun
tions listed below have a look into Press et al.'s book.4.12.1 Numeri
al IntegrationRunke-Kutta of 4th order; and drivers with and without step-size 
ontrol. See Press et al [? ℄ fordetails.void rk4( float*y, float*dydx, int n, float x, float h, float*yout,void (*derivs)(float, float *, float *) )int rkdumb( float*vstart, int nvar, float x1, float x2, int nstep,void (*derivs)(float,float *,float *));int rkq
( float*y, float*dydx, int n, float*x, float htry,float eps, float*ys
al, float*hdid, float*hnext,void (*derivs)(float,float *,float *) );



82 CHAPTER 4. LIBRARIESint odeint( float*ystart, int nvar, float x1, float x2,float eps, float h1, float hmin, int*nok, int*nbad,void (*derivs)(float, float*, float*),int (*rkq
)(float*,float*,int,float*,float,float,float*,float*,float*,void (*derivs)(float,float *,float *) ) );rk4 
omputes a single Runge-Kutta step given a fun
tion derivs for the right hand-side of thediferential equation to integrate, derivs(t, y, dydt).rkdumb is a Runge-Kutta driver without step size 
ontrol that does nsteps integration steps fromx1 to x2 with initial values vstart.rkq
 is a Runge-Kutta driver with step size 
ontrol. It does one step trying step size htry atan a

ura
y of eps. ys
al provides relative weights of the s
ales of the variables. On exit hdid
ontains the possibly adapted step-size taken, and hnext suggest the next step size. x and y areupdated to their new values.odeint integrates a di�erential equation from x1 to x2 given ystart as initial values. h1 is theinitial step size and hmin a minimum steps size. eps spe
i�es the a

ura
ies of integration. nokand nbad 
ontain the nuber of good and re
omputed steps (with new step size) on exit.4.12.2 Solving Matrix Equationsfloat Solve_Ax_b( int n, Matrix A, Ve
tor b ); /* b 
ontains x on exit */This fun
tion uses LR-de
omposition, forward- and ba
k-substitution. The fun
tion is destru
tive- a and b are overwritten. On exit b 
ontains the result of Ax=b. A must be non-singular.int gaussj(Matrix A, int n, Matrix B, int m)Solves Ax = b using Gauss-Jordan elimination with pivoting. A is an n n × n matrix, B an n × mmatrix 
onsisting of m right hand side ve
tors. On output, A is repla
ed by its inverse and B bythe solution ve
tors. m 
an be zero, in whi
h 
ase B remains un
hanged, and A is inverted. Thisfun
tion is not from Press et al. but rather from some original publi
ation.4.12.3 Eigenvaluesint Eigen_Values( int n, Matrix A, Ve
tor wr, Ve
tor wi)Computes the eigenvalues of a real n×n matrix. Returns the real and imaginar parts in the arrayswr and wi, respe
tively. Uses balan
ing and Hessenberg form.



4.12. NUMERICS.C/H 834.12.4 Nonlinear Least-Square Fittingvoid mrqmin(float*x, float*y, float*sig, int ndata,float *a, int ma, int*lista,int mfit, float*
ovar, float*alpha,float*
hisq, float*alamda,void (*fun
s)(float,float *,float *,float *,int) )Levenberg-Marquart method attempting to redu
e the value 
hi-square of a �t between a set ofpoints x[0..ndata-1℄, y[0..ndata-1℄ with individual standard deviations sig[0..ndata-1℄ anda nonlinear fun
tion depending on 
oe�
ients a[0..ma-1℄. The array list[0..ma-1℄ numbersthe parameters su
h that the �rst mfit 
orrespond to values a
tually being adjusted. the remainingparameters are held �xed at their input values.The program returns 
urrent best �t values for the ma �t parameters, and 
hi-square. The [0..mfit-1℄[0..mfit-1℄ elements of the array 
ovar[0..ma-1℄[0..ma-1℄,alpha[0..ma-1℄[0..ma-1℄ are used as working spa
e during most iterations.Supply a routine fun
s(x, a, yfit, dyda, ma) that evaluates the �tting fun
tion yfit, andits derivatives dyda[0..ma-1℄ with respe
t to the �tting parameters a at x. On the �rst 
allprovide an initial guess for the parameters a, and set alamda<0 for initialization (whi
h then setsalamda=.001). If a step su

eeds 
hisq be
omes smaller and alamda de
reases by a fa
tor of 10. Ifa step fails alamda grows by a fa
tor of 10. You must 
all this routine repeatedly until 
onvergen
eis a
hieved. Then make one �nal 
all with alamda=0., so that 
ovar returns the 
ovarian
e matrix,and alpha the 
urvature matrix (and some allo
ated memory is freed).void mrqdriver(float*x, float*y, float*sig, int ndata,float*a, int ma, float*
ovar, float*alpha, float 
hisq,void (*fun
s)(float,float *,float *,float *,int) )A driver for mrqmin() that assumes that all ma parameters a of fun
s are �tted. On init 
hisqdetermines the 
hi square value whi
h should be rea
hed. The fun
tion exits if either the a
tual
hi value falls below this initial 
hisq or if MRQ_MAXITER=15 iterations are performed. On exit 
hisq
ontains the �nal 
hi square value.4.12.5 Root Findingfloat rtbis( float (*fun
)(float), float x1, float x2, float xa

)Root �nding by bise
tioning, �nds a root of fun
 in the interval [x1,x2℄ with a

ura
y xa

; onentry fun
(x1)*fun
(x2) must be lower than 0.NDiff( int n, float*y, void (*fun
)(int n, float*y, float*dy), float*dfy )Compute partial derivatives dfy of fun
tion fun
 past y. y and f must be n-dimensional; dfy an
n × n matrix



84 CHAPTER 4. LIBRARIESint Solve_Fx( int n, float*y,void (*fun
)( /* n, y, f(y) */ ) ,void (*derivs)( /* n, y, dfdy(y) */ ) )/* if derivs==NULL: use numeri
al differentiation */Solve a set of n nonlinear equations fun
(y) == 0, where y is n-dimensional, too. If available,derivs() should 
ompute the matrix of partial derivatives. If derivs si NULL, derivatives are
omputed numeri
ally. The fun
tion returns 0 on su

ess; -1, if the matrix of derivatives getssingular, i.e., �xed point iteration is no longer possible, and -2 if the maximum number of iterationsis rea
hed. In 
ase of su

ess, y returns the solution ve
tor.4.12.6 Optimizationvoid mnbrak(float*ax, float*bx, float*
x,float*fa, float*fb, float*f
,float (*fun
)(float))Given a fun
tion fun
, and given distin
t initial points ax and bx, this routine sear
hes in thedownhill dire
tion (de�ned by the fun
tion as evaluated at the initial points) and returns newpoints ax, bx, 
x, whi
h bra
ket a minimum of the fun
tion. Also returned are the fun
tion valuesat the three points, fa, fb, and f
.float brent(float ax, float bx, float 
x,float (*f)(float), float tol, float*xmin)Given a fun
tion f and given a bra
keting triplet of abs
issas ax, bx, and 
x (su
h that bx isbetween ax and 
x, and f(bx) is less than both f(ax) and f(
x)), this routine isolates the minimumto a fra
tional pre
ision of about tol using Brent's method. The abs
issa of the minimum isreturned as xmin, and the fun
tion value as brent, the returned fun
tion value.Here is an example of how to use mbrak and brent:float ax, bx, 
x, fa, fb, f
, tol, xmin;ax = .2; bx = .1;mnbrak( &ax, &bx, &
x, &fa, &fb, &f
, sinf );printf("x^2 :: ax = %f bx = %f 
x = %f fa = %f fb = %f f
 = %f\n",ax, bx, 
x, fa, fb, f
 );tol=0.001;fb = brent(ax, bx, 
x, sinf, tol, &xmin);printf("x^2 :: xmin = %f fmin = %f tol = %f\n", xmin, fb, tol );If the derivative of the fun
tion to minimize 
an be 
omputed the following modi�
ation of brentis advantageous:float dbrent(float ax, float bx, float 
x,float (*f)(float), float (*df)(float),float tol, float *xmin)



4.12. NUMERICS.C/H 85Given a fun
tion f and it's derivative fun
tion df, and given a bra
keting triplet of abs
issas thisroutine isolates the minimum to a fra
tional pre
ision of about tol using a modi�
ation of Brent'smethod that uses derivatives. The abs
issa of the minimum is returned as xmin and the minimumvalue as dbret, the returned fun
tion value.The following fun
ting searh
es for a minimum of an n-dimensional fun
tion if derivatives are notavailable.void powell(float*p, float*xi, int n, float ftol,int *iter, float *fret, float (*fun
)(float *) )Minimization of a fun
tion fun
 of n variables. Input 
onsists of an initial starting point p, andinitial matrix xi[℄[℄ whose 
olumns 
ontain the initial set of dire
tions (usually the n unit ve
tors),and ftol, the fra
tional toleran
e in the fun
tion value su
h that failure to de
rease by more thanthis amount on one iteration signals doneness. On output, p is set to the best point found, xi isthe then-
urrent dire
tion set, fret is the returned fun
tion value at p, and iter is the numberof itertions taken. The routine linmin is used.Here is an example of hwo to use powellfloat xsquare2( float *x ){ return x[0℄*x[0℄ + x[1℄*x[1℄;}...float p[2℄={1.,1.}, xi[4℄={ 0., 1., 1., 0.}, fret=0;int iter=0;powell( p, xi, 2, 0.001, &iter, &fret, xsquare2 );printf("(x,y) = (%f, %f); f = %f; iter = %d\n", p[0℄, p[1℄, fret, iter );If derivatives of the fun
tion to minimize are available use the following fun
tion for the minimiza-tion.void frprmn(float*p, int n, float ftol, int*iter,float*fret, float (*fun
)(float *),void (*dfun
)(float *, float *))Given a starting point p, Flet
her-Reeves-Polak-Ribiere minimization on a fun
tion fun
, using itsgradient as 
al
ulated by routine dfun
 is performed. The 
onvergen
e toleran
e on the fun
tionvalue is input as ftol. Returned quantities are p (the lo
ation of the minimum), iter (the numberof iterations that were performed), and fret (the minimum value of the fun
tion).
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Chapter 5File I/O
The very basi
s of the �le output fun
tionality of Felix have been des
ribed in the qui
k-start
hapter 2. We now look a little deeper into the possibilities.Felix was used over the years mainly to either study autonomous dynami
al systems and neuralnetworks, or systems where stimuli 
ould be 
omputed as part of the simulation (e.g., simplebars and graitings). So far, there has never been mu
h need for advan
ed �le-input features and,therefore, Felix provides only some support for output of data to �les. However, you 
an alwaysuse the standard C methods to load and store data from �les (FILE obje
ts, raw and formattedI/O, et
).Even the �le-output properties that are supported are not fully developed. Some fa
ilities, whi
hI imagined would be ni
e to have years ago, heve a
tually never been implemented, others never
ompleted. What I des
ribe below are features that I use often or have at least used o

asionally.5.1 Interfa
e for File OutputThe philosphy of the �le-output interfa
e is similar to that of the graphi
al display: One has tode�ne a top-level fun
tion �MakeOutFiles()�, whi
h 
ontains spe
i�
ations of �OUTFILEs� (analogto �WINDOWs�), whi
h in turn 
an 
omprise a variable number of �SAVE_VARIABLEs� (analogto �views on data� or graphi
s obje
ts in the GUI).The top-level MakeOutFiles()-routine 
an be either expli
itely de�nd or 
onstru
ted by using thema
ros#define BEGIN_OUTPUT void MakeOutFiles(){#define END_OUTPUT }#define NO_OUTPUT void MakeOutFiles(){}Note that NO_OUTPUT expands into an empty fun
tion body. In that 
ase no output will bewritten to external �les through the interfa
e me
hanisms (but possibly through raw I/O, seese
tion 5.3).If output �les are de
lared, a button will appear in the graphi
al user interfa
e, see, Figure 2.4,that a
tually swit
hes the output on or o� during a simulation. The button label re�e
ts the87
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urrent state. If the button is right-
li
ked some further 
ontrol elements appear, whi
h show the�les de�ned, whi
h variables they 
ontain, and some elements that allow to 
hange several �lesetting intera
tively. Be aware that not all of the fun
tionality is fully implemented.Beside using the GUI-Save-button, it is also possible to swit
h �le I/O on or o� from the sour
e
ode by using the ma
rosSAVE_ONSAVE_OFFAnother ma
ro that often is useful in�uen
es the format of ASCII output. The ma
roSET_ITEM_SEPARATOR( sep )takes a string and inserts it between subsequent entries in the output. The ma
ro should be pla
edright after the head of the the MakeOutFiles()-fun
tion. Default for the item separator is a singleblank (" "), but this 
an 
ause problems with very long linelengths in �les that have to be readfrom another program. Some tools for postpro
essing (e.g., gnuplot) also expe
t only a single entryper line (by default in some modes), in whi
h 
ase the item separator 
an be set to newline ("\n").5.1.1 Output FilesInside the fun
tion MakeOutFiles() one or more output �les have to be de�ned using the ma
roOUTFILE(name)where �name� is the name of the �le. If the �le does not exist and data is written, it will be 
reated,otherwise the old �le will be overwritten.The ma
ro OUTFILE returns a �le handle of type int. It is not often ne
essary to save the handle,but some of the later fun
tions make use of it.Output �les are de
lared in serial order (as WINDOWs in the GUI). Instead of the �le handle one
an also use the ma
ro THISFILE, whi
h expands to the 
urrently a
tive �le (ie the most re
entlyde
lared one).The �le handles are only ne
essary if an appli
ation needs to set �le-properties expli
itly. Thema
rosFILE_ACTIVE( fileno )FILE_INACTIVE( fileno )anywhere in the 
ode 
an, for instan
e, swit
h �le-output to a parti
ular �le on or o�. (This, how-ever is further 
ontroled by the global SAVE_ON/SAVE_OFF swit
h. As long as that �master�swit
h is o�, nothing will be saved.)Other �le properties are �le format (raw (default) or ASCII)) and the behaviour in 
ase the �le isswit
hed on and o� more than on
e in a simulation (data 
an be overwritten or appended). These�ags are set using



5.1. INTERFACE FOR FILE OUTPUT 89SET_SAVE_FILE_FLAG(fileno, flag, val )where �leno is the �le-handle (or �THISFILE�), �ag is �ASCII� for de
laration of the output modeand "APPEND" for the reset mode. Possible values for �val� in both 
ases are ON and OFF, i.e.SET_SAVE_FILE_FLAG(THISFILE,ASCII,ON) would swit
h ASCII output on for thelast re
entlyde
alred �le in the MakeOutput()-fun
tion. (Note that it does not make sense to swit
h betweenboth modes during one simulation. The �les would then at least be relatively di�
ult to read;depending on the platform/C-implementation results 
an even be unde�ned).The �le �ags should be set right after the de
laration of an output �le, ie, before any outputvariables.If ASCII mode is on, an empty line will be saved after ea
h ve
tor or row of a matrix, and anextra newline after ea
h 
omplete matrix. The 
urrent step will also be saved on an individualline starting with the double-
ross # befor all other data in that step. No su
h extras are savedin raw mode, just pure binary data.5.1.2 Output VariablesEa
h output �le 
an 
ontain a number of output variables de
lared by the ma
roSAVE_VARIABLE(name, var, type, dim_x, dim_y, flags, when, whi
h)Meaning of the argments is very similar to the various graphi
al views on data (see, se
tion 3.3.2).�name� is a string for the name the entry appears under in the graphi
al user interfa
e.�var�, �type�, �dim_x�, and �dim_y� are the variable to store, its type, and dimensions. The typesand spe
i�
ation of dimensions are the same as for graphi
s obje
ts in display windows (MATRIX,VECTOR, et
.), see se
tion 3.3.4. POINTER types are possible.��ags� are output variable-spe
i�
 �ags that are mainly used to spe
ify whi
h data entries arestored when. Default is that ea
h value is stored in ea
h step (as long as the gobal save swit
hand the respe
tive �le-swit
h are ON)�when� and �whi
h� are further used to de
lare spatial and temporal sele
tions of data to store indetail. This is useful in large simulations where output �les 
an easily be
ome very large. Theoptions for sub-sele
tions are explained in the subsequent two se
tions.5.1.3 Temporal Sele
tionsBy default (and only if the save-button is a
tivated) data is saved after a 
all to the top-level init()-fun
tion (to save �initial values�) and after every simulation step. This 
an be modi�ed individuallyfor ea
h SAVE_VARIABLE using the ��ags and when� arguments in their de
laration.A CONSTANT variable that doesn't 
hange during a simulation 
an be de
lared by an ONINIT�ag. Su
h a variable is then only saved after 
alls to init(), be
ause there is where it would naturallybe initialised. Possible �ags are:



90 CHAPTER 5. FILE I/OONINITSKIPRANGESELECTThe last three �ags 
orrespond with three fun
tions as arguments to the �when�-argument of theSAVE_VARIABLE de
laration:TSkip(skip) : Only every �skip� step is storedTRange( start, stop, skip ) : Data is stored at regular intervals starting at time step �start�,storing every �skip� steps, up to a maximum step of �stop�TSele
t( n, vals ) : �vals� is an integer array of size �n� that de�nes points in time when thedata has to be saved.A few examples are shown in subse
tion 5.1.6.5.1.4 Spatial Sele
tionsAs in the temporal domain, sele
tions 
an also be made spatially, more pre
isely, in one- ortwo-dimenional arrays. By default, all entries in an array-variable (MATRIX, VECTOR, et
.)are stored, if the temporal sele
tion permits it. Alternative options are GRID, IRR_GRID, orPOINTS, whi
h refer to regular grids, irregular grids, and sets of individual points/
oordinates,respe
tively.As for the temporal sele
tions the spatial sele
tion (if it is not ALL) has to be noti�ed in the�ag-argument of a SAVE_VARIABLE (see above) using one ofGRIDIRR_GRIDPOINTSThe pre
ise sele
tion has then to be spe
i�ed as the �nal �whi
h�-argument of a SAVE_VARIABLEde
laration using one of the 
orresponding fun
tionsGrid( start, stop, skip, start2, stop2, skip2 ) : This 
an be used for regular subgrids. �start,stop, and skip� are the �rst and maximal index of stored elements in the �rst dimension (x)and �skip� is the regular interval between indexes. The same meaning applies to �start2,stop2, and skip2� in the se
ond dimension (y). For one-dimensional arrays start2, stop2, andskip2 should be zero.Irregular( nx, values_x, ny, values_y) : This de�nes an irregular grid, where the integer ar-ray �values_x� 
ontains �nx� 
oordinates in the �rst dimension and likewise for �ny, values_y�.Data is saved for matrix entries at all pairs of x and y values. For one-dimensional arraysthe ny and y-values should be zero.



5.1. INTERFACE FOR FILE OUTPUT 91Points( n, values_x, values_y) : This is the most general option be
ause it allows for arbi-trary 
oordinates in the index (integer) arrays �values_x, values_y� of size �n�. Data valuesat the respe
tive n points are saved. For one-dimensional arrays �values_y� should be zero.A few examples are shown in subse
tion 5.1.6. Index boundaries are not 
he
ked. It is theprogrammers responsibility to make sure indexes do not ex
eed array-dimensions. Order for two-dimensional Grid() and Irregular() grid data is left-right (x �rst), then top-bottom (y).5.1.5 The TimerThe timer (or Stop Wat
h) is a further fa
ility to 
ontrol when storage of data starts and ends. It
an, for instan
e, be used if you want to skip a number of steps at the beginning of a simulationbefor saving data be
ause they are transients. Another reason is to set a global skip-interval ontop of the temporal sele
tions for the individually saved variables. That 
an be desirable if theamount of data generated is very big, but storing less steps would already be su�
ient. To setupthe timer useSET_SAVE_TIMER( start, end, skip )TIMER_ONTIMER_OFFSET_SAVE_TIMER only sets the parameters of the timer, i.e., the �rst and maximal step it tries tosave anything, �start� and �end�, and the interval (in simulation steps) at whi
h data is stored,�skip�. If it is to be used, the timer has to be enabled expli
itly, either from the GUI by right-
li
king on the Save-button and sele
ting the appropropriate ti
k-box or by 
alling TIMER_ONfrom the sour
e 
ode. It furthermore only generates output if the global save swit
h is on inaddition (the master fuse for your valuable hard disk spa
e).Observe that the GUI also allows to set the parameters of the timer (�Stop Wat
h�) by hand; theydo not need to be set in the 
ode.5.1.6 Examplesint nx=3, ny=2;int xsel[3℄={1,2,5};int ysel[2℄={3,4};BEGIN_OUTPUTSET_ITEM_SEPARATOR( "\n" )// 1. exampleOUTFILE("patterns")SAVE_VARIABLE( "pats", pats, ARRAY_INT_TYPE, Nones, P, ONINIT, 0, 0)



92 CHAPTER 5. FILE I/O// 2. exampleOUTFILE("Quality")SAVE_VARIABLE( "qual", &Q, FLOAT_TYPE, 0, 0, 0, 0, 0 )// 3. exampleOUTFILE("file42")SET_SAVE_FILE_FLAG( THISFILE, ASCII, ON)SAVE_VARIABLE( "z", z, bVECTOR, N, 0, 0, 0, 0 )SAVE_VARIABLE( "phi1", pot1, MATRIX, xsize, ysize, 0,0,0 )// 4. exampleOUTFILE("phi2")SAVE_VARIABLE( "phi2", pot2, MATRIX, xsize, ysize, SKIP | GRID ,TSkip(2), Grid(38, xsize, 100, 32, ysize, 100) )// 5. exampleOUTFILE("phi3")SAVE_VARIABLE( "phi1", pot1, MATRIX, xsize, ysize, IRR_GRID0, Irregular( nx, xsel, ny ysel ) )END_OUTPUTIn the example the item separator is �rst set to \n su
h that individual entries go to separate lines.The �rst example de�nes an output �le �patterns� to whi
h an integer array �pats� of size Nones
× P is stored on
e after ea
h 
all to the top-level init() fun
tion (sele
ted by the ONINIT �ag).There are no further spatial or temporal sele
tions.The se
ond example stores a single �oating point variable �Q� in ea
h step to a �le �Quality�.The third example � in 
ontrast to all others � stores data in ASCII format be
ause the respe
tive�ag is set. Data goes to a �le ��le42�. Stored per step are a binary ve
tor �z� of size N and amatrix �pot1� of size xsize × ysize without any further spatial or temporal restri
tion.The fourth example stores a matrix �pot2� of size xsize× ysize to a �le �phi2�. Only every se
ondtime step is stored and the matrix is spatially sub-sampled on a regular grid.The last example subsamples a matrix on an irregular grid, but there is no temporal sele
tion.5.2 InputA graphi
al user interfa
e for input from �les is not available and not planned. Raw �le inputfun
tionality has to be used instead (see next se
tion).



5.3. RAW I/O 935.3 Raw I/OInstead of using the graphi
al interfa
e for I/O operations, those 
an be in
luded dire
tly in theappli
ation program using the usual C �le a

ess options (see textbooks on C-programming).
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Chapter 6Felix Parameter Sear
h & SensitivityModule
The module psear
h.
/h introdu
es some parameter sear
h or s
anning fa
ilities into Felix. For aset of parameters regular grids or irregular sets of points 
an be de�ned. The module psear
h thenprovides a multi-index that iterates through the Cartesian produ
t. It is also possible that somesear
h dire
tions update several parameters at on
e. If for ea
h parameter set several simulationruns are desired this 
an be spe
i�ed, too.(Spike train) metri
sSensitivity6.1 General UsageIt happens often that a simulation has to be exe
uted many times with di�erent parameters if aparameter spa
e has to be s
anned, or with the same parameter if data are 
olle
ted for furtherstatisti
al evaluation. The psear
h-module supports this pro
ess. It allows to de�ne various pa-rameter dimensions together with range spe
i�
ations for the values these parameters 
an take. Itthen implements a multi-index that iterates through all possible 
artesian parameter 
ombinations.A typi
al usage s
enario would be that the module is initialised in main_init() and that param-eters that have to be s
anned are not further 
hanged in init(). If 
ertain 
onditions are rea
hedin the step()-fun
tion, e.g., after a �xed number of simulation steps, the next parameter set issele
ted. Although not ne
essary in general, the init()-routine 
an afterwards be 
alled, if thatis desired to re-initialise other parameters and variables. If the module has 
y
led through allparameter 
ombinations the simulation 
an exit.main_init(){ ...psear
h_init(); // initialise internal stru
tspsear
h_add_param(...); // add a param to s
an... // ... add more as required ...} 95



96 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULE...step(){ ... DO THE WORK ....if (SIM_TIME >= 100.) // some 
riterion for finishing a single simulation{ if ( psear
h_next_param(); ) // get the next parameter setinit(); // reset other parameters / variableselseexit(); // psear
h_next_param() returns 0 if we are done}}
6.2 Parameter S
an Fun
tions6.2.1 Initialisation and setupBefore it is used the psear
h module has to be initialised by 
alling psear
h_init() inmain_init().void psear
h_init();There 
an be only one set of s
an-parameters per simulation.After initialisation the set of parameters to s
an/sear
h is empty. Add parameters by usingvoid psear
h_add_param( float*p, int type, int npoints, float*data );# define PSEARCH_RANGE 0x1# define PSEARCH_POINTS 0x2Only �oating point parameters are supported (integer-values 
an be emulated by �oats). p isthe address of the parameter to vary; we need the address su
h that we 
an 
hange its value.npoints is the number of values the variable p is supposed to take in the s
an. type 
an be eitherPSEARCH_RANGE or PSEARCH_POINTS whi
h determines the meaning of the fourth data-argument:

• PSEARCH_RANGE: This type de�nes a regular grid of points. data must be a 2-dimensionalarray where data[0℄ is an o�set and data[1℄ an in
rement. p takes values: data[0℄ +i*data[1℄, for i = 0, 1, 2 . . . npoints-1.
• PSEARCH_POINTS: This de�nes an irregular 
olle
tion of points. data 
ontains npoints �oat-ing point values the parameter p will 
y
le through.For further explanations see the example se
tion below.As parameters are added to the parameter set they are initialised to their lowest indexed value(whi
h is not ne
essary their lowest value, if the in
rement in PSEARCH_RANGE is negative or thevalues in PSEARCH_POINTS are not ordered a

ording to size).



6.2. PARAMETER SCAN FUNCTIONS 976.2.2 Iteration through the parameter produ
t spa
eTo iterate through the 
artesian produ
t of the parameter sets in the individual parameter dimen-sions use the fun
tionint psear
h_next_param();This fun
tion takes a

ount of whether a parameter has been de�ned as PSEARCH_RANGE orPSEARCH_POINTS. It sets the parameters internally to their new values. The fun
tion returns1 if there was a parameter set left, and otherwise zero. Afterwards returning 0 the beviour offurther 
alls to psear
h_next_param() is unde�ned. Indeed, a return value of zero should ingeneral trigger post-pro
essing of data and exiting of the simulation.6.2.3 Running multiple simulations for ea
h parameter setIt 
an be desired to run a simulation several times for ea
h parameter set. This 
an be rea
hed byusingextern void psear
h_set_repetitions( int k );If psear
h_set_repetitions( int k ) sets k to a value bigger than 1 (the default) the param-eters are only 
hanged every k 
alls to psear
h_next_param().6.2.4 Changing several parameters per sear
h dimensionThe me
hanism so far apply to single parameters in ea
h dimension. It is possible to de�nedimensions where more than one parameters are varied. This 
an be useful when the number ofparameters is so high that a full sear
h through the 
artesian produ
t spa
e is unfeasible or if forsome reason only values on a 
ertain set of points in the full parameter spa
e are needed, but nota 
omplete 
artesian sub-sample. The following fun
tion supports this fun
tionality.void psear
h_add_nd_param( int n, float*p, int npoints, float*data );Here, n is the number of parameters to modify and p a ve
tor of parameters of length n. npointsis the number of sample points in the n-dimensional sub-spa
e of parameters, and data is an arrayof npoints sample points of dimension n, i.e. data[i*n+j℄ is the value of parameter p[j℄ in thei-th sample point.Note that higher-dimensional parameter spa
es 
an be 
ombined with the previously explainedone-dimensional ones. This is demonstrated in the example in subse
tion ??.6.2.5 Support fun
tions to print indexes and parametersThere are a few support fun
tions that print out information about the internal state of the module:



98 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEvoid psear
h_print_data();void psear
h_print_params( FILE*file );void psear
h_print_index_string( 
har*string );psear
h_print_data() prints the internal data stru
tures to the s
reen whi
h is mainly usefulfor debigging purposes.psear
h_print_params() prints the a
tual parameter values to a stream. if file is �stdout�output goes to the s
reen, but it 
an also refer to a previously opened �le, e.g., for book-keeping.The �le must be open for writing, of 
ourse.psear
h_print_index_string( 
har*string ) formats the internal multi-index that enumer-ates the 
artesian produ
t and prints it in ASCII-format to a string (whi
h must be long enoughand is not 
he
ked). If there are 3 parameters s
anned the output 
ould be 1-3-2-0, meaning thatthe �rst parameter 
urrently takes its �rst value from the range of possibilities, the se
ond param-eter its third value, and the third parameter its se
ond value. The fourth number is the iterationfor this parti
ular parameter set (see psear
h_set_repetitions() above). This fun
tion 
an beuseful to 
onstru
t �lenames for data output.6.3 Example: S
anning a parameter spa
eThe example below (see �tst-psear
h.
� in the 
ode dire
tory) shows how to set up a parameters
an with 3 dimensions, two single parameter dimensions where one parameter (p1) is sampled ona regular grid and the other one (p2) on an irregular set of points, and a third dimension 
onsistingof a number of points (2) for two further parameters in p[2℄.# in
lude <felix.h>float p1, p2, p[2℄;float data1[2℄= { 2., .2 };float data2[3℄= {-1., 3., 7};float data[4℄ = {1., 2., 3., 4.};
har str[100℄;NO_DISPLAYNO_OUTPUTmain_init(){ psear
h_init();psear
h_set_repetitions( 2 );psear
h_add_nd_param( 2, p, 2, data );psear
h_add_param( &p1, PSEARCH_RANGE, 2, data1 );psear
h_add_param( &p2, PSEARCH_POINTS, 3, data2 );psear
h_print_data();}



6.4. INTERFACING PARAMETER SEARCH AND FILE OUTPUT 99init(){ printf("init() 
alled\n"); // noting initialised here, but 
ould be}step(){ if (SIM_STEP==1) // print the 
urrent parameter set{ // to s
reen, but only on
epsear
h_print_index_string( str );printf("%s\n", str);psear
h_print_params( stdout );printf("\n");}// do the hard work here// ........if (SIM_STEP == 4) // after me steps ...{ if (psear
h_next_param()) // ... get the next parameter setinit(); // re-init variables as desiredelseexit(0); // or exit, if all parameter sets simulatedSIM_STEP = 0; // need to reinit this;// otherwise SIM_STEP == 4 stays false forever}}6.4 Interfa
ing parameter sear
h and �le outputFelix provides me
hanisms to store simulation data to �les, see se
tion ??. File output is a
tivatedon demand when the respe
tive button in the GUI-version is pressed, and by default a
tive ina non-GUI, i.e., parallel version. However, on
e opened, output goes to only one set of �les asspe
i�ed in the Felix-�le, unless these �les are reset. This is possible by hand in the GUI. For anautomati
 parameter sear
h, however, one would usually prefer a non-intera
tive �le-reset (unlessone wants to have all output dire
ted to the same �les even for di�erent parameter sets).One solution would be to 
ode the �le output expli
itly into the Felix-appli
ation, i.e., open �lesper new parameter set and save data expli
itly.More 
onvenient is the use of the �template-feature� of the �le name generation routines (NOTE:this is a feature 
urrently undo
umented in the I/O-se
tion). By default when �les are opened,Felix takes the basename as de�ned in the OUTFILE("basename") spe
i�
ation. The template-



100 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEfeature allows to append the base-names by templates, e.g., for di�erent parameter sets.The template 
an be set by SetSaveTemplate( str ) where str is the tmplate string.To make a template a
tive, the a
tually open output �les have to be 
losed and reinitialised. Thisis done by 
alling InitOutFiles();.The fun
tion psear
h_print_index_string( str ) des
ribed in se
tion ?? sets a string to arepresentation of the the 
urrent multi-index of an iteration through a parameter set. It 
an be
onveniently used as a template.Below is an example, where the noise in an integrate and �re neural network is varied. Unne
essary
ode has been 
ut away. The 
omplete �le 
an be found in the do
umentation 
ode dire
tory(inf2s
an.
)....float psigma; // parameter for the s
anfloat offsin
[2℄={0.,.05}; // offset and in
rement (for PSEARCH_RANGE)
har str[16℄;...SliderValue ssigma = 0; // slider ssigma UNUSED here !!BEGIN_DISPLAY...END_DISPLAYBEGIN_OUTPUTSET_ITEM_SEPARATOR( "\n" ); // newlines after spikesOUTFILE("spikes")SET_SAVE_FILE_FLAG( THISFILE, ASCII, ON ) // readable formatSET_SAVE_FILE_FLAG( THISFILE, GDF, ON ) // only spike times storedSAVE_VARIABLE( "out", z, bVECTOR, N, 0, 0, 0, 0 )END_OUTPUTint main_init(){ ....psear
h_init(); <<<<< initialise the parameter s
anpsear
h_set_repetitions( 2 ); <<<<< 2 repetitions per parameter setpsear
h_add_param( &psigma, PSEARCH_RANGE, 4, offsin
 ); << 1 parameter}int init()



6.5. PARAMETER SENSITIVITY OF SIMULATIONS 101{ .... // don't 
hange psigma in init() !!! (unless you know what you do)psear
h_print_index_string( str ); <<<<<<< setup template stringSetSaveTemplate( str ); <<<<<<< and store as templateInitOutFiles(); <<<<<<< reinit the file ("spikes")}int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate ( tau, x[i℄,0.01*( sI + sJ0*v[i℄) + psigma*gauss_noise() ); <<<<<< psigma!Fire_Reset( N, x, 1.0, 0.0, z ); // firing and resetbMult( N, N, J, z, v ); // redistribution spikesif (SIM_STEP == 1000) <<<<< terminate 
urrent simulation run{ if (psear
h_next_param()) <<<<< work left ? next parameter set{ SIM_STEP = -1; <<<<< need to resetinit(); <<<<< reinit; in
luding template & files}elseexit(0); <<<<< finished ...}}NOTE: The lo
ation of the reinitalisation of SIMSTEP 
an be 
ru
ial. Done in the init() routineit 
an lead to a one-step o�set of the �rst simulation run 
ompared to the others.6.5 Parameter Sensitivity of Simulations�Sensitivity analysis� 
an provide insight into the parameter dependen
es of a simulation, ie.,whether the simulated dynami
al patterns vary mu
h if some parameters are 
hanged, whi
hparameters or parameter 
ombinations have the strongest impa
t, and whi
h are not so importantat all, be
ause a
tivation patterns hardly depend on them.This type of analysis in general needs some measure to 
ompare di�erent simulation runs. Ageneral 
lass of su
h measures with well de�ned mathemati
al properties are so-
alled �metri
s�.Those 
onsider simulated traje
tories (e.g., potential tra
es, single or multiple unit spike-trains) aspoints in an abstra
t spa
e, a so-
alled metri
 spa
e, and de�ne how to 
ompute distan
es betweenthese points. Changing one (or a set) of parameters will 
hange the simulated a
tivity and therebythe lo
ation of the point representing it in the metri
 spa
e. Parameter 
ombinations that 
hange
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ation a lot are sensitive, those that have hardly any impa
t insensitive.Note that this provides a lo
al 
hara
terisation of sensitivity only, as 
hanges are relative to some�xed set of parameters. A global analysis is usually mu
h more di�
ult to do and regularly requiresexhaustive exploration of the parameter spa
e (with the ex
eption of a few simple or fortunate
ases).Furthermore, the sensitivity properties of a simulation 
an very mu
h depend on the pre
ise metri

hosen. For example, metri
s exit that value the pre
ise lo
ation of single spikes, whereas othersonly operate on instantaneous �ring rates. For more information see the next se
tion.6.5.1 Spike-train and other metri
s... to 
ome .....6.5.2 Sensitivity MeasuresGiven a simulation program with observables x and parameters p, a default set of parameters p∗,and a metri
 d(x, y) on the observables, the sensitivity of the model with respe
t to the defaultparameters and metri
 
hosen 
an be studied.One way to determine parameter sensitivities is to 
ompute the gradient (if it exists) of the dis-tan
e from the default point with respe
t to the parameters: ∇pd(x(p), x(p∗)). The gradient ofa fun
tion of some parameters is a ve
tor in parameter spa
e, that points into the dire
tion ofthe parameter 
ombination that 
hanges the value of the fun
tion most. In our 
ase the fun
tionis the di�eren
e between the a
tivation pattern given the default parameters and those for anyother set of parameters 
lose by. Large (absolute) entries in the gradient indi
ate a strong impa
ton the simulated patterns by the respe
tive parameter. However, note that the s
ale (or units ormeasurement) of the parameters 
an vary, and that not all parameters 
an be easily 
omparedwith ea
h at all. Sometimes parameter 
hanges are therefore �normalised� by their absolute valuebefore 
omparison, but this 
an also fail, if the default value for some parameters is zero or 
loseto it.6.5.3 Gradient ComputationThe parameter sear
h module 
an be 
onveniently used to generate simulations for a subsequentgradient analysis. This requires 
omputing a
tivation patters for the default paremeter set as wellas for small 
hanges in the various parameter dire
tions. If the parameter 
hanges are �small�the perturbed patterns 
an be used to 
ompute approximations of the partial derivatives in thedire
tion of the respe
tive parameter. Let's say there are m parameters. The partial derivatives arethen the 
omponents of the full gradient: ∂d(x(p) − x(p∗))/∂pi = ∂d(x(p∗1, . . . , p
∗

i + ∆i, . . . , p
∗

m) −
x(p∗))/∂pi ≈ d(x(p∗1, . . . , p

∗

i + δi, . . . , p
∗

m) − x(p∗))/∆i, i = 1 . . .m.The following Felix fun
tion prepares m + 1 parameter ve
tors for the 
omputation of a
tivitypatterns for the default parameter set x(p∗) and small perturbations in the m parameter dimen-sions, x(p∗1, . . . , p
∗

i + δi, . . . , p
∗

m. It returns an (m + 1) × m matrix of parameter sets for use withpsear
h_add_nd_param(), the parameter spa
e s
an fun
tion that operates on higher-dimensional



6.5. PARAMETER SENSITIVITY OF SIMULATIONS 103sets of points but not their full Cartesian produ
t. The �rst parameter set in the matrix is for thedefault parameter set, the remaining ones for dire
tions i = 1 . . .m.float*setup_grad_params( int m, float*params, float eps, float*delta )
m is the number of parameters and params is the ve
tor of parameters. eps is a small numberand delta is an m-dimensional ve
tor of perturbations. If delta is non-zero, the perturbation indire
tion i is epsδi. If it is zero, all perturbations ∆i are equal to eps. If all the parameters obtainvalues on the same s
ale the use of just a single value eps for the perturbations is more 
onvenientthan de�ning a full ve
tor of perturbation ∆.After preparing the set of parameter settings in main_init() the parameter sear
h module hasto be initialised and run pre
isely in the way des
ribed in se
tion ?? for n-dimensional parametersets, psear
h_add_nd_param(). The program will then iterate through the simulations for thedefault parameter set and the m perturbed parameter sets.Data of the simulations 
an be output to �les for subsequent 
omputation of distan
es and gradi-ents. As mentioned initially the sensitivity may depend 
ru
ially on the parti
ular metri
 
hosen.It it therefore often preferable not to 
ompute in the simulation program, unless the best metri
is know in advan
e.6.5.4 Example: Gradient 
omputationThere is a program inf2grad.
 in the do
umentation's 
ode dire
tory that shows how to run simu-lations for a gradient 
omputation.# in
lude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time 
onstant */Ve
tor x; /* potentials */Matrix J; /* 
onne
tions */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */int nparams = 3;float pars[3℄ = {101., 10., 0.}, // pI, psigma, pJ0;delta[3℄= { 10., 1., 0.1};float *paramsets;float noiseseed;BEGIN_DISPLAY...END_DISPLAY



104 CHAPTER 6. FELIX PARAMETER SEARCH & SENSITIVITY MODULEBEGIN_OUTPUTSET_ITEM_SEPARATOR( "\n" );OUTFILE("spikes")SET_SAVE_FILE_FLAG( THISFILE, ASCII, ON )SET_SAVE_FILE_FLAG( THISFILE, GDF, ON )SAVE_VARIABLE( "out", z, bVECTOR, N, 0, 0, 0, 0 )END_OUTPUTint main_init(){ noiseseed = time(NULL); // <<<<<<<<<randomize( noiseseed + 123456 ); // <<<<<<<<<SET_STEPSIZE( .1 )J = Get_Matrix( N, N );x = Get_Ve
tor( N );z = Get_bVe
tor( N );v = Get_Ve
tor( N );paramsets = setup_grad_params( nparams, pars, .1, delta ); // <<<<<<<<psear
h_init(); // <<<<<<<<psear
h_add_nd_param( nparams, pars, nparams+1, paramsets ); // <<<<<<<<}int init(){ int i;
har str[16℄;// randomize( noiseseed ); // <<<<<<<<<<Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);for (i=0; i<N; i++)x[i℄ = equal_noise();Make_Matrix( N, N, J, 1.0/N, .4/N );psear
h_print_params( stdout );psear
h_print_index_string( str );SetSaveTemplate( str );InitOutFiles();}
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int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate ( tau, x[i℄,0.01*( pars[0℄ + pars[1℄*v[i℄) + pars[2℄*gauss_noise() );Fire_Reset( N, x, 1.0, 0.0, z ); // firing and resetbMult( N, N, J, z, v ); // redistribution spikesif (SIM_STEP == 1000){ if (psear
h_next_param()){ SIM_STEP = -1; // <<<<<<<<<<init();}elseexit(0);}}An important note regarding simulations with noise are at hand, 
f., the lines in the 
ode aboveindi
ated by <<<<<<. Apparently, even if parameters are identi
al, simulations with noise 
anpotentially lead to very di�erent a
tivation patterns. It 
an therefore be ne
essary to reinitialisethe random number generator ea
h time the simulation is restarted. Some lines indi
ated in themain_init() and init() routines above show how to do this. However, even with a reset of therandom number generator 
omparability is not ne
essarily guaranteed as the exe
uted 
ode 
an
ontain subtle intera
tions between parameters and the noise generation. In su
h 
ases it 
an berequired to pre
ompute random sequen
es and reuse them in the iterations through the parameterspa
e.
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Chapter 7The Felix MIDI Interfa
e
This do
ument des
ribes the use of the new Felix-MIDI-interfa
e. It is merely a 
olle
tion of notesas the interfa
e is �in progress�. A number of examples are dis
ussed. Changes in the future arelikely.7.1 Introdu
tionThe strategy used to implement MIDI fun
tionality in Felix is the following: A MIDI interfa
eshould have at least an output, i.e., readable MIDI port, whi
h sends events to some sound-generator, but preferable also an input interfa
e, i.e. a writable port, whi
h may 
onne
t it toa keyboard. Both options are provided in the preliminary implementation. If a simulation runswhi
h initialises one or both ports, they 
an be 
onne
ted to other devi
es by means of readilyavailable Linux software. If the 
omputer used has a

ess to a hardware MIDI devi
e (e.g., in thesound
ard or 
onne
ted to the usb port) this 
an be a

esses, too.In a running Felix simulation NOTE_ON and NOTE_OFF MIDI-events 
an be issued asyn-
hronously, for instan
e, by neurons that spike. The events are dire
tly s
heduled; a MIDI-queueis not used at the moment. The user has to provide 
ode that emits the events to the readableport. MIDI-
hannel, key, and velo
ity 
an be spe
i�ed.On the input side an event-re
eiver 
an be (optionally) started, whi
h is spawned in a separatethread in order not to blo
k simulations; it waits for events on the writable port. The user has totranslate the in
oming events into inputs for his/her Felix appli
ation.For testing I use a setup with a virtual keyboard (vkeybd), a software synthesiser (�qsynth� � agraphi
al frontend to �uidsynth), and the (software) swit
hboard �qja
k
tl� whi
h is a frontend to�ja
k�, a Linux audio environment. qja
k
tl is used to 
onne
t the ports of the devi
es/programsin the MIDI-environment. Note that qja
k
tl and qsynth must be run as root:1. start the Ja
k swit
hboard: �sudo qja
k
tl�2. press the �start� button in qja
k
tl - this should start the ja
k-demon whi
h serves your MIDIrequests3. start the virtual keyboard: �vkeybd� (not ne
essarily as root)107



108 CHAPTER 7. THE FELIX MIDI INTERFACE4. start the synthesiser: �sudo qsynth�5. start your Felix program6. in qja
k
tl press �
onne
t� and 
onne
t the keyboard to the writable Felix port (if present)and the Felix readable port to the synthesiser, see Figure 7.1.7. Press the run-button in Felix to start the simulation (required to s
hedule the note-events)8. For a test without Felix you 
an also 
onne
t the keyboard dire
tly to the synthesiser, inwhi
h 
ase pressing a key should result in an audible tone. If it does not, your software MIDIenvironment is not properly setup.

Figure 7.1: Felix-MIDI setup under Kubuntu. The Felix program is hidden under the visiblewindows.
7.2 Fun
tions provided by mymidi.o7.2.1 CompilationSome of the programs in this do
umentation don't need the full Felix pa
kage, but justthe mymidi.o library. If the name of su
h a program is <expl>.
 it is 
ompiled withg

 -o <expl> <expl>.
 mymidi.o -lasound -lpthread. Start the program on the 
ommandline and 
onne
t it using �qja
k
tl�.



7.2. FUNCTIONS PROVIDED BY MYMIDI.O 109A Felix program with MIDI interfa
e is 
ompiled in the usual way: Felix <expl>. Run and
onne
t the program as explained above.7.2.2 InitialisationThe following fun
tions initialise an interfa
e to the sequen
er and open readable and writableports:snd_seq_t *open_seq( snd_seq_t *seq_handle, 
har*basename );int 
reate_readable_port( snd_seq_t *seq_handle,
har*basename, 
har*ext);int 
reate_writable_port( snd_seq_t*seq_handle,
har*basename, 
har*ext);
• seq_handle is a handle to the sequen
er interfa
e
• basename is the name under whi
h the Felix appli
ation appears in the MIDI environment
• ext are extensions to the basename that might be useful to distinguish di�erent ports7.2.3 Setting up an event loopIf an appli
ation has an input port (a writable port) it 
an re
eive MIDI-events. This is typi
allydone in a loop that waits for the events and 
alls a user supplied routine for ea
h in
oming event.The following two routines implement this fun
tionality:int enter_event_loop(snd_seq_t *seq_handle,int midi_a
tion(snd_seq_t *, snd_seq_event_t *ev) );int midi_a
tion_print_event(snd_seq_t *seq_handle, snd_seq_event_t *ev);enter_event_loop implements the main loop; it requires a sequen
er handle as an argument anda se
ond fun
tion that de�nes what to do with the events.midi_a
tion_print_events is an example for an event-handling fun
tion. It prints informationabout an event to the s
reen together with some information about parameters (
hannels, keys,et
.). It does not handle all possible event types (see appendix 7.5.1). You 
an use it as a prototypefor your own event-handlers.Note that the fun
tion enter_event_loop iterates an in�nite loop until the midi_a
tion()-fun
tionreturns a negative value on some event. This means you 
an't use it dire
tly in a Felix program,be
ause you also need to step through the simulation. A solution for this problem is to run theMIDI-re
eiver in a separate thread as will be explained later. The next sub-se
tion presents anon-threaded (and non-Felix, just C) example.7.2.4 A �rst exampleThe C-
ode below opens a virtual sequen
er devi
e with in- and out-ports. It then enters a loopthat waits for in
oming events and prints them to the s
reen.
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lude <stdio.h># in
lude <stdlib.h># in
lude "mymidi.h"main(){ snd_seq_t *seq_handle;
har*basename="MIDITST";// open ALSA sequen
er devi
eseq_handle = open_seq( seq_handle, basename );// setup output port
reate_readable_port(seq_handle, basename, "rd-1");// setup input port
reate_writable_port(seq_handle, basename, "wr-1");// Setup ALSA event loopenter_event_loop( seq_handle, midi_a
tion_print_event );}Compile, run, and 
onne
t this program to the virtual keyboard (vkeybd) as explained earlier. Itshould print the pressed notes to the s
reen (onsets and o�sets). Note that the program opens anoutput port, too, whi
h however, is not further used at all.7.2.5 Sending note eventsIn a running program, events 
an be most easily s
heduled asyn
hronously meaning that they aredire
tly forwarded to the sequen
er without getting queued. The following two fun
tions sendonsets and o�sets of notes to some sequen
er interfa
e and port. The 
hannel, key and velo
ityvalues 
an also be spe
i�ed.send_noteon(snd_seq_t *seq_handle, int port, int 
h, int key, int vel);send_noteoff(snd_seq_t *seq_handle, int port, int 
h, int key, int vel);There are two further fun
tions mainly for debugging purposes in the event handler:show_note(snd_seq_ev_note_t*note);show_sequen
er_event(snd_seq_event_t *ev);The �rst of these fun
tions prints details about a Note, the se
ond about a whole event.
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eiversIn sub-se
tion 7.2.3 we set up a simple event re
eiver, but mentioned that in a Felix program weneed not only re
eive events but also drive the simulation 
ontinuously. A straightforward wayto satisfy both requirements at the same time is to split the program into two parts and exe
utethem in two so-
alled �threads�. These are light-weight pro
esses that 
an do work independently.The following fun
tion allows to spawn a thread from the main program that enters a MIDI eventloop and exe
utes the fun
tion midi_a
tion per re
eived event.int start_midi_re
eiver( snd_seq_t * seq_handle,int midi_a
tion(snd_seq_t *, snd_seq_event_t *ev) );The fun
tion listens on all writable ports that are atta
hed to the sequen
er devi
e seq_handle .The fun
tion midi_a
tion has the same prototype and behaviour as for a non-threaded event loop,see subse
tion 7.2.3 and the example in subse
tion 7.2.4. It is therefore possible to use the sameevent handler fun
tions, for instan
e the simple event printout fun
tion midi_a
tion_print_eventused in example 1 (see appendix 7.5.1 for the full 
ode of this fun
tion). Example 2 in the nextsub-se
tion follows this approa
h. All events that are not handled in the midi_a
tion fun
tionare dis
arded.7.2.7 Example 2: A threaded MIDI re
eiverThis program opens a sequen
er devi
e with a writable (input) port. It then spawns a threadthat listens for in
oming MIDI events and deals with them using the same fun
tion as used inthe event handler of the non-threaded example midi_a
tion_print_event in sub-se
tion 7.2.4; itdoes nothing but printing out some information about the in
oming events.# in
lude <stdio.h># in
lude <stdlib.h># in
lude <pthread.h># in
lude "mymidi.h"# define BASENAME "RECEIVE-EVENTS"int main (int arg
, 
har *argv[℄){ snd_seq_t *seq_handle;seq_handle = open_seq ( seq_handle, BASENAME );
reate_writable_port( seq_handle, BASENAME, "" );start_midi_re
eiver( seq_handle, midi_a
tion_print_event );while (1){ usleep( 1000 );



112 CHAPTER 7. THE FELIX MIDI INTERFACE}exit(0);}Observe that after having spawned the MIDI-re
eiver-thread the main program enters an in�niteloop. In the example it just sleeps for a short time in ea
h iteration. In a more useful appli
ationthe loop would 
ontain some 
ode to 
ompute, e.g., a neural simulation.7.2.8 Simple MIDI startupMany appli
ations 
an probably just live with a single input and a single output port. Initialisationof su
h a setup 
an be done using the following fun
tion and is demonstrated in the Felix examplein se
tion 7.3snd_seq_t * init_simple_midi( 
har*basename, int *port,int midi_a
tion(snd_seq_t *, snd_seq_event_t *) )The fun
tion expe
ts a �basename� under whi
h it appears in the MIDI environment and an eventhandler fun
tion like midi_a
tion_print_event. It returns the handle to the sequen
er and theport number for sending events to other devi
es.7.3 A Felix appli
ationExample 2 in subse
tion 7.2.7 demonstrates the basi
 way how MIDI is integrated into Felix: Are
eiver-thread has to be spawned in the maininit() fun
tion of a Felix-program that deals within
oming events if that is desired. The main program 
an then 
ontinue with the Felix simulationin the usual way, i.e., the Felix-step-routine 
an then do the main work of the simulation. Thestep-routine will typi
ally also s
hedule output-events send to a readable port, say, 
onne
ted toa synthesiser or other devi
e. Be
ause the program generates the output events itself it does notneed a thread to wait for them as well. They 
an just be issued as required.Here is an example that implements an integrate and �re neuron network (derived from the defaultFelix example �inf.
�) with in- and output. It reads events from an input port, say, 
onne
ted tothe virtual keyboard vkeybd. Be
ause vkeybd has 36 keys, 36 integrate and �ring neurons are used.ON and OFF events for 
ertain keys determine whether the respe
tive neuron re
eives and extrainput or not. The program also write output to a port. If a neuron spikes it sends a NOTEON-event followed by a NOTEOFF and a key-number 
orresponding to its index plus some o�set. Thelower half of the neurons send to a 
hannel spe
i�ed by slider �s
h1� and the upper half to �s
h2�.The o�sets 
an be independently 
hanged using the sliders �so�s1� and �so�s2� - one instrument
an this way play very low-pit
h notes and the other one high notes. The velo
ity 
an further be
hanged using slider �svel�.// midinfio.
 - integrate and fire neural network// with MIDI output and input



7.3. A FELIX APPLICATION 113# in
lude <felix.h># in
lude <mymidi.h># define BASENAME "FELIXIO"snd_seq_t *seq_handle;int port;# define N 36 // number of neurons = # keys in vkeybdVe
tor pot,v1, midin;Matrix J;bVe
tor o, o1;SliderValue snoise = 10;SliderValue sinput = 105;SliderValue smidin = 105;SliderValue sJ = 50;SliderValue s
h1 = 0;SliderValue s
h2 = 9;SliderValue svel = 100;SliderValue soffs1 = 40;SliderValue soffs2 = 40;BEGIN_DISPLAYSLIDER( "noise", snoise, 0, 100)SLIDER( "input", sinput, 0, 200)SLIDER( "midi in", smidin, 0, 200)SLIDER( "
oupling", sJ, 0, 200)SLIDER( "
h 1", s
h1, 0, 15)SLIDER( "
h 2", s
h2, 0, 15)SLIDER( "velo", svel, 0, 255)SLIDER( "offs1", soffs1, 20, 120)SLIDER( "offs2", soffs2, 20, 120)TIMER(100)WINDOW("time 
ourses")IMAGE( "pot", AR, AC, pot, VECTOR, 6, 6, 0.0, 1.0, 15)RASTER( "pot", NR, AC, pot, VECTOR, N, 0, 0.0, 1.0, 1)GRAPH( "pot", NR, AC, pot, VECTOR, N, 0, 0, 0, -.01, 1.01 )RASTER( "out", NR, AC, o, bVECTOR, N, 0, -.01, 1.01, 2)END_DISPLAYNO_OUTPUT// define what to do with in
oming events
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tion(snd_seq_t *seq_handle, snd_seq_event_t *ev){ int 

 = 48; // index of lowest key in vkeybdswit
h (ev->type){ 
ase SND_SEQ_EVENT_NOTEON:if ( (ev->data.note.note - 

 >= 0)&& (ev->data.note.note - 

 < N) )midin[ev->data.note.note - 

 ℄ = 1.;break;
ase SND_SEQ_EVENT_NOTEOFF:if ( (ev->data.note.note - 

 >= 0)&& (ev->data.note.note - 

 < N) )midin[ev->data.note.note - 

 ℄ = 0.;break;}return 0;}int main_init(){ randomize( time(NULL) );SET_STEPSIZE( .05 )J = Get_Matrix( N, N );pot = Get_Ve
tor( N );o = Get_bVe
tor( N );o1 = Get_bVe
tor( N );v1 = Get_Ve
tor( N );midin = Get_Ve
tor( N );seq_handle = init_simple_midi( BASENAME, &port, midi_a
tion );return 0;}int init(){ int i;Clear_Ve
tor(N,midin);Clear_bVe
tor(N,o);Clear_bVe
tor(N,o1);Clear_Ve
tor(N,v1);for (i=0; i<N; i++) pot[i℄ = equal_noise();Make_Matrix( N, N, J, 1./N, 4./N );return 0;}int step()



7.4. SENDING EVENTS OVER A LOCAL NETWORK 115{ int i;for (i=0;i<N;i++)leaky_integrate( 1., pot[i℄,0.01*( sinput + sJ*v1[i℄ + smidin*midin[i℄+ snoise*gauss_noise() ) );Fire_Reset( N, pot, 1.0, 0.0, o );bMult( N, N, J, o, v1 );// send left half spikes to 
hannel 0; right half to 1for(i=0; i<N; i++){ int 
h, note;if ( i < N/2 ) {
h = s
h1;note = soffs1 + i;} else {
h = s
h2;note = soffs2 + i - N/2 ; }if (o[i℄ > o1[i℄) // note onsend_noteon( seq_handle, port, 
h, note , svel );else if (o[i℄ > o1[i℄) // note offsend_noteoff( seq_handle, port, 
h, note, 0 );o1[i℄=o[i℄; // save value for next step (on/off dete
tion)}return 0;}
7.4 Sending Events over a lo
al network7.4.1 Lo
al Network Routing � dmididAlthough it is planned to extend the Linux ALSA sound pa
kages to 
onne
t devi
es not only onthe lo
al ma
hine but also over a network, this fun
tionality is not yet implemented.However, the WWW provides some links to LAN-enabled MIDI. I have experimented with �dmidid�a proto
ol and C-
ode that uses raw so
kets (see http://www.dimid.org; warning: 95% advertise-ments). Raw so
kets are quite fast be
ause they are implemented just on top of the physi
alnetwork devi
e layer. Thereby they bypass some potentially time-
onsuming TCP/IP pro
essing.The latter in
ludes any �rewall, whi
h might or might not 
ause se
urity issues. dmidid is furthergiven prioritised s
heduling for faster exe
ution (it therefore needs root rights to run: �sudo dmidid<params>�).



116 CHAPTER 7. THE FELIX MIDI INTERFACEThat said, the dmidid demon implements a kind of MIDI-over-ethernet router. Several demons
an be run on the various 
omputers in a lo
al network where they ea
h open one readable andone writable MIDI port for 
onne
tions. They are visible in qja
k
tl and an be 
onne
ted thereas any usual lo
al port. However, the demons in addition listen on the internet interfa
es of the
omputers for in
oming messages, and they 
an send messages themselves. Messages re
eived fora MIDI-port on the lo
al ma
hine are routed to the respe
tive devi
e.Messages are just written to the ethernet interfa
e and re
eived by any other interfa
e on thelo
al domain. The MIDI sender and re
eiver for the 
ommuni
ation are therefore in
luded inthe transmitted internet pa
kages, su
h that appli
ations 
an �lter pa
kets addressed to them.Broad
asting is also possible.The dmidid.
 program in the Felix/mymidi distribution is modi�ed from the original dmidid.
be
ause the latter didn't allow to 
onne
t via the network to the lo
al ma
hine itself. That wasneeded for testing. An additional 
ommand line argument for the ethernet devi
e to use has alsobeen added.Syntax:dmidid [-v℄ [-b℄ [-i ifa
e℄ [-t xx:xx:xx:xx℄ [-r xx:xx:xx:xx℄
• -v prints the version
• -b sets broad
ast mode (re
eive messages to �:�:�:� and myself)
• -i sets the interfa
e to use (default �eth0�)
• -t xx:xx:xx:xx is where I send to (default �:�:�:�)
• -r xx:xx:xx:xx is my re
eiver id (default �:�:�:�)E.g. dmidid -i eth1 -r 90:00:00:00 -t 90:00:00:00 starts a demon listening on eth1 (onlaptops often the wireless devi
e) with re
eiver id 90:00:00:00 and the same transmitter id, i.e., itsends to itself. If the broad
ast �ag is set when the demon is started, it also re
eives broad
astevents (to �:�:�:� by another demon).For more info see the original dmidid-pa
kage (http://www.dmidid.org).7.4.2 MIDI over LANCommuni
ation between dmidid-demons is restri
ted to the lo
al domain of the ethernet interfa
ethey are bound to; the pa
kages are not routed to other networks. An interfa
e that uses TCP/IP,i.e., the transport level, is under debelopment. It might have rather long response times and maytherefore not be well suited for real-time appli
ations, espe
ially when they are 
losed-loop.�Ping�-round-trip times to the COLAMN 
omputer 
luster are quite short (<5ms). There is anadditional step from the master to the nodes. Be
ause of the UoP �rewall settings we may evenbe for
ed to use tunnels....
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es7.5.1 Appendix 1 � The midi_a
tion_print_event fun
tionThe following 
ode shows the library fun
tion midi_a
tion_print_event whi
h prints events tothe s
reen but 
an be used as a prototype for more interesting event-handlers.int midi_a
tion_print_event(snd_seq_t *seq_handle, snd_seq_event_t *ev){ show_sequen
er_event(ev);swit
h (ev->type) {
ase SND_SEQ_EVENT_CONTROLLER:fprintf(stderr, "Control event on Channel %2d: %5d \n",ev->data.
ontrol.
hannel, ev->data.
ontrol.value);break;
ase SND_SEQ_EVENT_PITCHBEND:fprintf(stderr, "Pit
hbender event on Channel %2d: %5d \n",ev->data.
ontrol.
hannel, ev->data.
ontrol.value);break;
ase SND_SEQ_EVENT_NOTEON:fprintf(stderr, "Note On event on Channel %2d: %5d \n",ev->data.
ontrol.
hannel, ev->data.note.note);break;
ase SND_SEQ_EVENT_NOTEOFF:fprintf(stderr, "Note Off event on Channel %2d: %5d \n",ev->data.
ontrol.
hannel, ev->data.note.note);break;}return 0;}7.5.2 Appendix 2 � snd_seq_event_t and snd_seq_ev_note_t/** Sequen
er event */typedef stru
t snd_seq_event {snd_seq_event_type_t type; /**< event type */unsigned 
har flags; /**< event flags */unsigned 
har tag; /**< tag */unsigned 
har queue; /**< s
hedule queue */snd_seq_timestamp_t time; /**< s
hedule time */snd_seq_addr_t sour
e; /**< sour
e address */snd_seq_addr_t dest; /**< destination address */union {snd_seq_ev_note_t note; /**< note information */
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trl_t 
ontrol; /**< MIDI 
ontrol information */snd_seq_ev_raw8_t raw8; /**< raw8 data */snd_seq_ev_raw32_t raw32; /**< raw32 data */snd_seq_ev_ext_t ext; /**< external data */snd_seq_ev_queue_
ontrol_t queue; /**< queue 
ontrol */snd_seq_timestamp_t time; /**< timestamp */snd_seq_addr_t addr; /**< address */snd_seq_
onne
t_t 
onne
t; /**< 
onne
t information */snd_seq_result_t result; /**< operation result 
ode */snd_seq_ev_instr_begin_t instr_begin; /**< instrument */snd_seq_ev_sample_
ontrol_t sample; /**< sample 
ontrol */} data; /**< event data... */} snd_seq_event_t;/** Note event */typedef stru
t snd_seq_ev_note {unsigned 
har 
hannel; /**< 
hannel number */unsigned 
har note; /**< note */unsigned 
har velo
ity; /**< velo
ity */unsigned 
har off_velo
ity; /**< note-off velo
ity;// only for #SND_SEQ_EVENT_NOTE */unsigned int duration; /**< duration until note-off;// only for #SND_SEQ_EVENT_NOTE */} snd_seq_ev_note_t;



Chapter 8Felix Remote Control and Data Streamingover Internet
Preliminary attempts have been made to give Felix an internet interfa
e. At the moment it ispossible to 
onne
t a running simulation to a telnet 
lient providing a shell-like interfa
e thatallows to issue simple 
ontrol 
ommands like 
hanging the speed of the simulation (via a timer),reinitialising it, or printing and 
hanging the swit
h and slider values. It is also possible to openso
kets and stream data to the internet that 
ould be re
eived by another appli
ation on a di�erent
omputer.It is planned, but not yet possible, to use Felix programs as remote 
ontrolers of Felix simulations,ie., to have a Felix-style interfa
e that automati
ally sends slider and swit
h 
hanges and re
eivesoutput data whi
h it displayed immediately.Furthermore, at the moment it is only possible to remote 
ontrol Felix programs without a graphi
aluser interfa
e. There are several reasons for this: 1) I mainly want to use the fun
tionalityfor programs on a 
omputer 
luster, where programs have nio GUIs. 2) re
eiving asyn
honousmessages on so
kets 
an hangup X11 badly; I am still trying to make the respe
tive 
ode stable;3) For remotely 
ontrolling a simulation on another laptop or desktop it seems easier to just usedesktop sharing (Krfb) or remote desktop 
onne
tion fa
ilities like Krd
 or VNC.8.0.3 Simulation Client Fun
tionalityIt seems natural at �rst to give a simulation server-fun
tionality su
h that a remote 
ontrol program
an log into it in order to observe its a
tivity and potentially modify its parameters.However, on 
omputer 
lusters jobs are often distributed to the 
ompute nodes by spe
ial purposesoftware, so-
alled job queing systems. These s
hedule jobs as soon as appropriate resour
esbe
ome available. A problem on 
omputer 
lusters with su
h s
heduling queues is, that you won'tknow beforehand on whi
h nodes your pro
esses will run (Fig. 8.1 depi
ts a 
ommon situation).Therefore, it would be un
omfortable to log into a simulation by hand or automati
ally - you would�rst have to �nd out the node to 
onne
t to. There is furthermore not mu
h 
ontrol over the exa
tstartup time of a simulation, meaning that it is hard to �nd out the node to 
onne
t to, 
onne
t,and then not miss the �rst so-and-so many thousand steps, when the simulation starts runningimmediately, whi
h it should do be
ause otherwise the �ne 
omputer 
luster resour
es are wasted119



120CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNETby your program doing nothing but blo
king the respe
tive 
ompute nodes it got allo
ated.Therefore Felix simulations serves as a 
lients and not servers; they by itself 
onne
t to a remoteserver when they start up. The remote program 
an be listening on a �xed ma
hine and a wellspe
i�ed port.8.0.4 Meeting pointsTwo other problems on 
omputer 
lusters 
on
ern their internet 
onne
tivity, see Fig/ 8.1.1) The 
ompute nodes are hardly ever visible from the outside world; only the master node is.Quite 
ommonly internet pa
kets from the 
ompute nodes are not even routed towards lo
ationsoutside the lo
al network on the 
luster.2) It 
an furthermore be that your 
luster is behind a �rewall over whi
h you have little or no
ontrol. This means only a restri
ted number of ports will be available for 
onne
tions to themaster node. However, typi
ally at least the se
ure shell port (ssh, 22) will be open, be
ause usersneed it to log into the 
luster, and this port 
an be 
onsidered being safe, be
ause ssh is well testedand implements high se
urity standards.These two problems - hidden 
ompute nodes and �rewalls blo
king internet ports - 
ompli
ate
onne
ting Felix simulations on 
omputer 
lusters to remote programs.
22

12345 12345

client
meet

rank 0

rank 1

your nodes

slave 1

slave 0 

slave 3

slave 2

22

masterremote

Figure 8.1: Typi
al remote 
ontrol situation through a �rewall. The job queue on the masters
hedules your job to random slave nodes. Rank 0 is assumed to 
onne
t to the meeting pointwhi
h is listening on the master at port 12345 (on the internal and external interfa
es!)). The 
lienton the remote ma
hine further makes a 
onne
tion to lo
al port 12345 and from there through atunnel via ssh ports 22 adn the internet to port 12345 on the master. The tunnel 
an pass the�rewall be
ause ssh is ne
essary for the users to log into the 
luster. This way a bidire
tional
ommuni
ation line is setup.As a solution to problem 1) we have implemented a simple �internet software router� that providesa �meeting point� where two pro
esses 
an 
onne
t to and any tra�
 is bidire
tionally routed.Su
h a meeting point would run on the master node of the 
omputer 
luster. A Felix simulation



121that starts on a 
ompute node 
an 
onne
t to the router be
ause the master is on the lo
al networkof the 
ompute node and has LAN-
onne
tivity to the 
lient. If there is no �rewall (bad idea!) orthe �rewall has a hole pun
hed at the port the meeting point is listenting on (also bad!), then aremote program 
an 
onne
t to the meeting point dire
tly and 
ommuni
ate with the 
onne
tedsimulation. (In fa
t, the implemented meeting point software also allows re
onne
tions. If onlyone side of the meeting point is 
onne
ted everything that is sent to it will be silently dumped.The same or di�erent 
lients 
an 
onne
t an arbitrary number of times during the runtime of asimulation.)The above strategy is not very safe, be
ause everybody 
an 
onne
t to your meeting point if itis publi
ly visible to the internet; there is no password prote
tion; and the implementation of themeeting point might not even be se
ure, potentially giving 
ra
kers ways to break into your masternode.It is therefore better to 
onne
t to the meeting point via a se
ure internet tunnel. This is also asolution for restri
tive �rewalls, the se
ond problem mentioned above and with respe
t to 
onne
-tions from the internet it is as safe as the ssh-proto
oll is. Lu
ky enough it is not di�
ult to setupa tunnel; all that is needed is an open se
ure shell port (22, and of 
ourse a running sshd server
onne
ted to it).However, just to mention it, from the se
urity point of view, using a tunnel to 
onne
t to a meetingpoint on the master still leaves the possibility, that some other users of the 
luster 
onne
ts toyour simulation. There is 
urrently no way to prohibit this, but it might be that a future versionof the meeting point program will have some password prote
tion.The meeting point program (meet) should be in the �tools�-dire
tory of the Felix pa
kage.The remote 
lient to 
onne
t to the meeting point 
an be just the standard program �telnet�(be
ause we 
onne
t through a tunnel the use of telnet is safe).To 
onne
t a Felix simulation and a remote program follow these steps:1. Start the meeting point on the master node: meet <port> where <port> is the port numberto listen on. In the sequel we assume it is port 12345.2. Compile your Felix program su
h that it 
onne
ts to the meeting point when started. Onlyone 
onne
tion should be made, ie. by rank 0 in an MPI appli
ation. You tell the Felix-kernelyou want a remote 
onne
tion by adding a statement REMOTE( host, port ) somewhere inmain_init().3. Setup a se
ure shell tunnel from the remote 
omputer to the port 12345 on the master node.If <a

ount> is your a
ount name on the master, and xxx.xxx.xxx.xxx is the publi
 IPaddress of the master, 
all on the remote ma
hine:ssh -N -L 12345:lo
alhost:12345 <a

ount>�xxx.xxx.xxx.xxx4. Start the 
lient on the remote ma
hine; e.g. telnet lo
alhost 123455. Start the job on the master



122CHAPTER 8. FELIX REMOTE CONTROL AND DATA STREAMING OVER INTERNET8.1 Remote Conne
tion Fun
tionalityA remote 
onne
tion to a Felix program provides a simple shell that allows to issue 
ommands(followed by <enter>) that e�e
t a running simulation.A 
onne
tion is made to a meeting point using telnet: telnet host port.In telnet the following 
ommands 
an be send to a simulation that is 
onne
ted on the se
ond portof the meeting point (if none is 
onne
ted they are silently dis
arded):'1' or 'n' or 'r+': do a single step'n <steps>' : do <steps> steps, ie 
all steps() <steps> times'b' : break/interrupt a simulation'
' : 
ontinue an interrupted simulation'i' : 
all the Felix-'init'-fun
tion'r' : 
all the Felix-'init'-fun
tion and then 'step' 
ontinuously'q' : quit the simulation'B s v' : set a swit
h (button) 's' to value 'v' (0=FALSE; !0=TRUE)'S s v' : set a slider 's' to value 'v' (v integer)'O' : toggle output on/o�'D' : dump the swit
h and slider values to s
reen'T v' : set the timer to 'v' (�oat in se
onds)Currently the timer is 
alled after the exe
ution of ea
h step, ie., the timer and exe
ution time ofsingle steps add up to the total time between steps. This might 
hange in the future. Similarly,the syntax above is not yet �xed. Note also that the telnet interfa
e does not provide a prompt.Just type in 
ommands linewise. You 
an leave telnet by pressing Ctrl-℄ and then `q' at the telnetex
ape prompt. It is possible to re
onne
t to a running simulation.8.2 Example: Remote ControlThere is not mu
h need for an example. Just some notes that re-iterate things already said:
• Only Felix programs 
ompiled with the NO_GRAPHICS �ag 
an be 
ontrolled remotelyat the moment (see Make�les in the Felix dire
tories). These are programs 
ompiled withno graphi
al user interfa
e whi
h is only the default for the parallel Felix implementation,pFelix.
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• To tell a Felix program you want to 
ontrol it remotely 
all it as program host port, where�program� is the program name and�host� and �port� are the hostname and listening port ofthe meeting point, respe
tively. host would be �lo
alhost� if one 
onne
ts through a tunnelotherwise the hostname of the ma
hine the meeting point is running on.
• The meeting point must already be up, before the simulation starts
• You might also already want to be 
onne
ted by telnet to the meeting point before you satrtthe simulation. This, however, is not entirely ne
essary. You 
an 
onne
t and re
onne
t asoften as you like.8.3 Streaming DataNote that the te
hniques des
ribed in this se
tion are ver experimental. You 
an hang yoursimulations and perhaps even you 
omputer.... BE WARNEDMany appli
ations might need fa
ilities to a
tually stream data in and out of the simulation pertime step. At the moment it is only possible to write simulation data to disk, but not to re
eiveit (more pre
isely, it is possible, but not re
ommended .... see the note at the beginning of thisse
tion).To write(/send) data you have to open a so
ket that 
onne
ts your Felix program to a server thatis listening for in
oming 
onne
tions, 
an re
eive your data, and knows how to pro
ess it.You probably would have to setup a se
ond meeting point (on a di�erent port) for the 
ommuni-
ation in order to get the data out of a 
omputer 
luster. If you don't need the remote simulation
ontrol des
ribed in the previous se
tions one meeting point would be enough.Note that a simulation on a 
omputer 
luster 
an generate a huge amount of data in virtually notime. It is in general re
ommended to keep the 
ommuni
ated amount of data as low as possible.Think twi
e before you send anything ....To 
onne
t a simulation to a remote appli
ation or a meeting point on the 
uster use:so
k = 
onne
t_t
p_
lient( hostname, port )To write data to the so
ket usewrite_buffer( so
ket, buffer, size ) orwhere so
ket is the so
ket returned by the 
all, bu�er is a bu�er to send, e.g. a ve
tor or matrix,and size is the size of the obje
t to send in bytes. A variant of the 
all allows to set additional�ags that 
ontrol some low-level options of the transmissionwrite_buffer( so
ket, buffer, size, flag )Flags 
an be. e.g., MSG_MORE to tell the system there is more data to 
ome and optimisetransmitted pa
kage sizes, or MSG_DONTWAIT to tell it to send the data immediately. Several�ags 
an be ORed together ... see �man so
ket� or �man send� if these man pages are installed onyour ma
hine. Otherwise sear
h for introdu
tions into so
ket programming on the internet.In prin
iple you 
an also read data using:
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ket, buffer, size )where size is the size of the data bu�er buffer provided. However, you need to keep 
are ofsyn
hronisation between the simulation program and the program re
eiving the data, otherwiseyou might easily run into deadlo
k 
onditions.8.4 Example 1: Data Streaming to a Disk on the RemoteMa
hineThis example shows a simple re
eiver of data sent via a meeting point. It writes all in
oming datainto a �le. It is not a Felix program but just links against the mylan.o-module of the Felix-kernel.The sender likewise does not need to be a Felix program.1. Compile the 
ode with something like g

 -o r
vr r
vr.
 mylan.o. Of 
ourse the mylanheader and obje
t �les need to be a

essible.2. Run the program with r
vr host port file where host and port spe
ify a meeting waitingfor 
onne
tions, and �le is the �le to store arriveing data in.3. Conne
t a sender to the se
on port of the meeting point, e.g., telnet or a Felix program thatopens a so
ket in main_init and writes data in step as outlined in the previous se
tion.# in
lude <stdio.h># in
lude "mylan.h"int main(int arg
, 
har *argv[℄){ int res;
har buffer[256℄;int so
k = 
onne
t_t
p_
lient( argv[1℄, atoi(argv[2℄) );FILE *fp = fopen(argv[3℄, "w");for(;;){ if ((res = re
v(so
k, buffer, 256, 0)) > 0 ){ fwrite( buffer, 1, res, fp);fflush( fp );}else // error or 
onne
tion 
losedbreak;}f
lose(fp);
lose(so
k);}



8.5. EXAMPLE 2: DATA STREAMING TO A REMOTE MIDI DEVICE 125Note, that if the sender terminates the above program will not also die, be
ause it is 
onne
ted tothe meeting point and not dire
tly to the sender. The meeting point doesn't report if the otherport 
onne
ts or dis
onne
ts, neither does it 
lose a 
onne
tion by itself (unless in error 
onditions).There
eiver program therefore has to be killed expli
itely with Ctl-C. The latter 
an lead to dataloss if the �le-bu�er is not �ushed. In the example we �ush it after ea
h write, but one 
ould alsosetup a handler for the kill signal or redire
t the system _exit routine in order to �ush bu�ers onexit.8.5 Example 2: Data Streaming to a Remote MIDI Devi
eThis se
tion shows an example that re
eives streamed data from a simulation and transforms theminto sound events send to a MIDI port. It 
ombines the mymidi and mylan modules. It has to be
ompiled as g

 -g -o r
vmid r
vmid.
 mylan.o mymidi.o -lasoundThe 
ode below re
eives streamed data, ie., binary ve
tors of length 36 per step. A 1 on oneof the 36 input lines means that a note is played. The lower 18 lines are mapped to one MIDI
hannel and the upper 18 to another one. Channels 5 and 9 are (usually) an ele
tri
 piano and aper
ussion/drum set.# in
lude <stdio.h># in
lude "mylan.h"# in
lude "mymidi.h"int main(int arg
, 
har *argv[℄){ int res, i, so
k, midiport;snd_seq_t *seq_handle;
har buf[256℄, buf1[256℄;seq_handle = open_seq ( seq_handle, argv[0℄ );midiport = 
reate_readable_port( seq_handle, argv[0℄, "out" );so
k = 
onne
t_t
p_
lient( argv[1℄, atoi(argv[2℄) );while (1){ if ((res = re
v(so
k, buf, sizeof(buf), 0)) > 0 ) // blo
ks!{ for(i=0; i<36; i++){ int 
h, note;if ( i < 36/2 ) {
h = 5; note = 40 + i; // lower N/2 units} else {
h = 9; note = 40 + i - 36/2 ; } // upper N/2 unitsif (buf[i℄ > buf1[i℄) // note on
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h, note, 127 );else if (buf1[i℄ > buf[i℄) // note offsend_noteoff( seq_handle, midiport, 
h, note, 0 );buf1[i℄=buf[i℄; // save value for next step (on/off dete
tion)}}else // error or 
onne
tion 
losedbreak;}
lose(so
k);}Setup is little tri
ky, be
ause two meeting points are required, one for the 
ontrol 
onne
tion andone for the data stream. In addition if you want to make the generated MIDI events audible youhave to 
onne
t the midiport to a synthesizer. Se
tion ?? des
ribes how to do that. The r
vmidprogram will just appear in the qja
k
tl tool as an additional readable port that 
an be 
onne
tedto just any writable port that is available, e.g., qsynth.1. Start qja
k
tl and qsynth2. Start two meeting points on di�erent ports, e.g., 12345 and 123463. Conne
t via telnet to the �rst meeting point4. Start the r
vmidi program su
h that it 
onne
ts to the se
ond meeting point:r
vmidid lo
alhost 12346 (You have to use the proper host and port!)5. Start the laninfo program des
ribed below su
h that it opens a 
ontrol 
onne
tion to the�rst meeting point laninfio lo
alost 12345; the data streaming 
onne
tion is made inthe main_init routine of the program.6. Conne
t the laninfo MIDI port to qsynth in the qja
k
tl tool7. Set a proper time-step in telnet (T .1) and run the simulation (r)I am aware that this is a pretty tedious pro
edure, but the 
ode is 
urrently just experimental;thinsg might get simpler in the future. Also, note that qja
k
tl, qsynth, and the meeting pointsneed to be set up only on
e. However, ea
h time the r
vmidi program is restarted it needs to bere
onne
ted in qja
k
tl. The simulation program (here laninfo) automati
ally re
onne
ts to themeeting points if it is restarted, but keep 
are of providing the proper hosts and ports: The 
ontrolport needs to be 
onne
ted to the telnet 
lient, and the data port to r
vmid.Here are 
ode snippets how a simulation program would send data to the re
eiver program. It isassumed that the program uses a binary ve
tor �spikes� of size N, whi
h is send after 
omputationa simulation step. In order to 
ooperate properly with r
vmid N must be 36. There should bea program laninfo somewhere in the example dire
tories that implements an integrate and �reneuron network whi
h streams spikes into the ethernet as shown below.



8.5. EXAMPLE 2: DATA STREAMING TO A REMOTE MIDI DEVICE 127int main_init(){ ... init stuff ...so
k = 
onne
t_t
p_
lient( "lo
alhost", 12346 );}int step(){ ... do a simulation step ....write_buffer_1( so
k, (
har*)spikes, N, MSG_DONTWAIT );}Warning: If you try to write Felix programs with graphi
al user interfa
e that re
eive data in theirstep-routine (or anywhere else) you 
an badly hang up the X11 server.
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Chapter 9Parallel Programming with Felix
NOTE: This 
hapter is quite preliminaryThe present 
hapter des
ribes re
ently developed parallel 
omputing extensions to Felix. They areunder development and many of them barely tested. Use at your own risk and don't expe
t toomu
h!Felix supports three types or parallelism: SSE-extensions, OpenMP for symmetri
 multi pro
essors,and the message passing interfa
e (MPI). The underlying 
on
epts of these three te
hnologies willbe des
ribed in the subsequent 
hapters 9.2 to 9.4 individually. However, it is possible to 
ombineall three frameworks in a single program. This makes sense in espe
ially on 
omputer 
lusterswhere ea
h single node has several pro
essor 
ores (see se
tion 9.5). Su
h 
lusters will likely bethe standard in future 
omputer 
lusters.Felix programs 
an be developed to run on serial or parallel target ar
hite
tures. In general,at least some e�ort is ne
essary to parallelise a given serial 
ode. However, it is at least inprin
iple possible to write Felix programs that 
an be 
ompiled and run on both, parallel andserial 
omputers. Se
tion 9.6 gives advise on how to write Felix programs of this kind.9.1 History and FutureThe very �rst Felix version was mainly intended to provide a graphi
al user interfa
e for a parallel
omputer we had at the University of Ulm/Germany in the early 90th of the previous 
entury(yes, I am almost a hundred years old!). This was a so-
alled �WaveTra
er� 
omprising 4096 singlebit pro
essors running at an amazing 8MHz 
y
le-frequen
y. The pro
essors 
ould be arrangedto form 1, 2, or 3-dimensional virtual arrays aiming primarily at simulations of wave equationsand partial di�erential equations; the simulation of neural �eld models was possible as well. Theprogramming made used of an ingenious C-diale
t 
alled �Multi-C�, whi
h I still believe was abrilliant development: It was C, enri
hed by a handful of parallel 
onstru
ts for parallel data-typesand data-transfer between nodes. Unfortunately the 
ompany WaveTra
er died after a while andas it seems none of the other parallel hard- or software developers took over the 
on
eptual ideasthe WaveTra
er system in
orporated.When single-CPU 
omputers got faster than the WaveTra
er, whi
h happended surprisinglyqui
kly, Felix was ported to standard ar
hite
tures, �rst Sun-Workstations under Sun-OS and129



130 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXearly Solaris versions, later Linux PCs (and even later Cygwin ... ).More re
ently, 
omputer 
lusters got 
heap enough to be
ome available for a
ademi
 resear
h. This
aused Felix to be (ba
k-)adapted to parallel environments again. The parallel Felix extensionstherefore are very new, meaning that they are neither 
omplete, nor very well developed, nor testedto a degree they should. So, be warned! In fa
t, they are under development and get extended asI �nd it useful for my resear
h.Felix supports three types of parallelism whi
h intentionally should be freely 
ombinable in appli-
ations. These te
hnologies are abbreviated as SSE, OpenMP, and MPI � the �rst is a hardwarete
hnology for 
ode-ve
torisation, that latter two software-standards for the programming of sym-metri
 multi-pro
essor 
omputers (SMP) and 
omputer grids and 
lusters, respe
tively. None ofthem requires that you a
tually have a spe
ial parallel 
omputer. You 
an install the ne
essarysoftware on any Linux-box. This would allow you to develop parallel software on a Laptop or work-station, befor going big on a 
luster. In fa
t, even better, every modern Intel or AMD pro
essorsupports SSE intrinsi
ally, and the dual-
ore pro
essor 
omputers that 
urrently start 
onqueringthe market have two physi
al pro
essing units (SMP) per CPU-
hip; they 
an naturally be pro-grammed using OpenMP (or MPI) if full use of the two pro
essor 
ores has to be made. Imaginethat two 
ores per CPU are just the beginning: Intel has already presented its �rst 80-
ore waferprototype and others will follow; 4 or 8 
ore CPUs will probably be available 
ommer
ially in justa very few years.9.2 SSE, BLAS, ATLASSSE is a hardware te
hnology supported by ea
h mordern AMD or Intel CPU. It was originallyinvented by Intel to speed up graphi
s and audio appli
ations, ie., 
omputer games, video, and allthat kind of appli
ations 
ompanies really 
an make money with.SSE is indeed something like a 
o-pro
essor in every single modern Intel or AMD CPU (I amnot sure about MACs; but they swit
h to Intel CPUs as it seems). Ea
h su
h pro
essor has amain 
entral pro
essing unit whi
h supports a 
ertain instru
tion set and is most a
tive duringthe exe
ution of any standard program. Virtually all modern CPUs in addition have a math
o-pro
essor whi
h 
an be used for speeding up 
omputations of various mathemati
al fun
tionslike abs, sin, exp, and so on. Less well known is that sin
e the Intel 386??? family or AMD??? ea
h pro
essor has a further pro
essing unit independent of the main arithmeti
-logi
al-unitand math-
o-pro
essor that is useful for some kinds of parallel 
omputations appearing often ingraphi
s and audio pro
essing. This hardware pie
e on modern 
hips is programmed by using theso-
alled SSE-extensions to the low-level assembler instru
tion set for that CPU.The SSE standard basi
ally provides a spe
ial register set on the CPU and a

ompanied assemblerinstru
tions whi
h support some kind of math (but not a whole lot) supposed to be useful forgraphi
s and audio appli
ations. These register (by default 8 of them) are (at least on a 32 bitar
hite
ture) 128 bit wide, but the 128 bit 
an be divided into data-
hunks of various size, ie.,singned and unsigned integers of 8, 16, or 32 bit size, but also �oating points of size 4 or 8 bytes(32 or 64 bits). A

ordingly, these spe
ial units on any modern Intel or AMD CPU (yes, I amprobably speaking about your 
omputer) are able to pro
ess up to 16 8-bit integers, or 8 16-bitintegers, or 4 32-bit �oating points, or 2 64-bit �oating points (doubles) at on
e. This supportsa kind of �ve
torisation�, operations 
an be done in parallel on several numbers (ie., a �ve
tor�)at on
e. In prin
iple every software 
ould make use of this ve
torisation, and indeed, 
ommer
ial
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ompilers as well as newer versions of the gnu 
ompilers are potentially able to 
ompile 
ode writtenin a higher programming language to make e�
ient use of the SSE extensions. (A full des
riptionof the SSE standard 
an be found in the respe
tive do
uments available from Intels web-pages.)Now, the �BLAS� is the so-
alled �Basi
 Linear Algebra Subroutines�-pa
kage whi
h is available forLinux (MAC and Windows quite surely, too). It is a highly optimised pa
kage of linear algebra rou-tines su
h as s
alar, matrix-ve
tor, and matrix-matrix multipli
ations. Some 
ommer
ial produ
tslike Matab make use of the BLAS, whi
h make their Matrix/Ve
tor routines very e�
ient.A standard Linux distribution does not usually have by default an optimised BLAS, be
ause thatlibrary needs to be adapted to the pre
ise target ar
hite
ture. Most default Linux systems justhave a default library (
ompiled for i368) that 
an be used by all pre-
ompiled programs on 99.9%of all PC ar
hite
tures that need the library. However, you 
an update your BLAS to speed upsu
h programs. Most of the improved BLAS versions do make use of the SSE extensions.Two BLAS implementations are kind of standard at the moment: ATLAS- and Goto-BLAS.ATLAS is an �automati
ally tuned linear algrebra system� that provides a BLAS and some routineson top of that (a subset of �LAPACK�, a well-known �Linear Algebra Pa
kage� for solving linearequations, �nding eigen-ve
tors, et
.). During 
ompilation of ATLAS-BLAS, out of a large number(sometimes several hundreds and more) of possible implementations for a parti
ular task likematrix-ve
tor multipli
ation the best performing routines for the target ar
hite
ture are 
hosenand put into the library. These top-performing routines 
an make use of the SSE CPU extensionsand therefore the BLAS is mentioned under �parallel� Felix extensions.GotoBLAS is a se
ond BLAS implementation originally developed by Kazushige Goto. It is avail-able (ie optimised) for a variety of target ar
hite
tures and generally said to be the fastest BLASimplementation available. It does use hand-optimised (SSE-)assembler 
ode.
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-goto� and �


�atlas� have been runon two pro
essor dual 
ore AMD 27?? nodes (4*2GHz; 4*1MB 
a
he???); the other 
urves are fora single CPU Centrino Laptop (1.73GHz, 2MB 
a
he). �hand� and �handO2 denote naive 
ode(straight for-loops) either 
ompiled without or with O2 optimisation using g

 4.0.2. �blas� usesthe default BLAS library on the Laptop, whi
h performs worse than no optimisation at all in mostof the studied range. �atlas� and �goto� indi
ate ATLAS and Goto-BLAS versions on the respe
tivesystems. Observe the quite impressive performan
e gain for optimised 
ode, and that, of 
ourse,the numbers for the Centrino-Laptop and 4-
ore high-performan
e 
ompute node are not dire
tly
omparable. Interestinly enough for small system size the single-CPU Laptop is faster than the4-
ore AMD node.Note: You don't need any BLAS library if you want to use Felix. It just 
an make some routinesfaster. At the moment the numbers of routines that potentially use BLAS-
alls is a
tually morerestri
ted than it 
ould be. However, the �oating point s
alar-produ
ts, and matrix-ve
tor produ
tsdo use a BLAS library if this has been spe
i�ed during 
ompile time of the Felix libraries.In order to let the Felix 
ore use BLAS-routines whereever this is implemented to date it su�
es tospe
ify the -DWITH_BLAS �ag during 
ompile time. BLAS should not spawn threads (Goto-Blas
an do this. It 
an be avoided using environment variables. See the repse
tive BLAS do
uments.)9.3 OpenMPSymmetri
 multi-pro
essor 
omputers (SMP) are systems that 
omprise a number or 
entral pro-
essing units but share a 
ommon memory pool. Ea
h pro
essor 
an a

ess the memory througha fast bus making memory a

ess and data ex
hange potentially very fast.Only sin
e relatively re
ently SMP 
omputers have been developed for the general market at



9.3. OPENMP 133reasonable pri
es. Meanwhile, however, dual- and quad-pro
essor 
omputers are available at quitelow pri
es and dual-
ore pro
essors indi
ate a new trend that even aims at putting two (or more)pro
essing units on the same 
hip. There are already many dual-
ore ma
hines available, in
ludingLaptops. These all are SMP 
omputers. Linux should support them automati
ally if you installan SMP-kernel.OpenMP is an industry standard that supports programming SMP 
omputers. It is not the mostgeneral approa
h for parallel programming (
f., e.g., 
on
epts like Posix threads, PVM, or MPI),but for some kinds of appli
ations it is very simple to use and 
an provide good speed ups. Thisin
ludes neural network appli
ations.The most typi
al example for OpenMP-parallisation is �outer-loop�-parallelisation. It often ispossible in numeri
al 
ode where the same operations have to be performed on a large number ofunits. This is typi
ally done in a big �outer� loop over the elements. OpenMP provides simple
onstru
ts to 
ut su
h loops into pie
es of roughly the same size and distribute them over theavailabe pro
essors. In prin
iple as single additional statement on top of an existing for-loop 
anbe enough to parallelise it, e.g., a statement likefor (i=0; i<N; i++)x[i℄ = fun
(i);
ould result in# pragma omp for private(i)for (i=0; i<N; i++)x[i℄ = fun
(i);This se
ond version is automati
ally 
ompiled into 
ode distributed over the available pro
essors.The variable i is de
lared private, be
ause ea
h pro
ess will need an independent 
opy of it. Thereare other 
onstru
ts available for more general programming 
onstru
ts than for-loops. There arealso serious 
onstraints that have to be taken into a
ount when parallelising 
ode � for short, notwo pro
esses should ever try to potentially update the same variable at the same time (for thatreason i has to be de
lared private in the pragma-statement; of 
ourse the fun
tion �fun
()� also issupposed to not assign values to variables possibly overlapping between pro
esses. If this happens(a so-
alled �ra
e-
ondition�) the results of the 
omputation are unde�ned. There are many 
ases,however, where assignments of variables are 
onstraint to 
ontiguous regions, e.g., in the range ofa for-loop. In that 
ase OpenMP-parallelisation is in general save to use. For further details, wehave to refer the reader to the OpenMP spe
i�
ation, handbooks, and tutorials available in theWeb.A large number of fun
tions in the Felix 
ore automati
ally make use of OpenMP parallelisation ifthis is spe
i�ed during 
ompile time. It is also possible to use OpenMP ma
ros in the user de�nedtop-level init() and step() fun
tions. It should, however, be avoided to 
all already parallelised Felixroutines in parallelised regions in the top-level fun
tions. Although the results would (probably) bewell-de�ned (up to possible ra
e-
onditions), the 
ode would spread an unne
essary large numberof threads. Spreading threads for parallel 
omputation always needs some overhead. It is thereforeusually not advisable to parallelise very simple loops or to spawn more threads than pro
essorsare available.
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e�, is an industry standard for 
ommuni
ation between pro-
esses. These pro
esses 
an run on the same or di�erent 
omputers, no matter where they arelo
ated (physi
al lo
ation only impa
ts the 
ommuni
ation speed). Thus, MPI is useful for 
om-puter 
lusters and grids.Simple MPI programs make use of a handful of statements only, although the full MPI standardde�nes over 120 di�erent fun
tions. These most simple 
ommands just set up a logi
al network,and send and re
eive messages between nodes. For MPI-details in programming and usage we referthe reader to the many tutorials about MPI programming available on the Web. The followingassumes basi
 knowledge about MPI programming.Felix provides very simple 
onstru
ts that don't do more than ex
hanging pa
kages of various typesof variables between pro
esses.The general philosophy is to run a number of 
opies of the same program on a number of availablenodes (e.g., with mpirun -np 3 programname in the usual way to run MPI programs). Ea
h 
opyhas asso
iated with it a number �myrank� that identi�es it uniquely. Inside ea
h running pro
ess
ode 
an therefore be exe
uted 
onditionally depending on the rank of the pro
ess. After ea
hsimulation step, variables that are 
omputed inside one pro
ess, but required in the next in anotherpro
ess have then to be 
ommuni
ated using MPI.For that purpose every MPI-parallel Felix programm has to de�ne a top-level routine �fmpi-
onne
tions()� that spe
i�es whi
h data has to be 
ommuni
ated. For ea
h variable to be trans-mitted between two nodes a 
onne
tion has to be setup usingvoid fmpi_
onne
t( int node1, long var1,int type, int size,int node2, long var2 );or the equivalent ma
ro CONNECT (see example below).�node1, var1� spe
ify the sour
e variable (typi
ally an array of type CHAR, INT, or FLOAT, but
an be a pointer to su
h an array, too, see below)�node2, var2� is the target variable (must be an array, no POINTER type)�size� is the number of elements in the array that have to be transmitted�type� is the type of the data. The data basetype must be one of CHAR_TYPE, FLOAT_TYPE,or INT_TYPE. Note that Felix Ve
tors and Matri
es are FLOAT_TYPE and bVe
torsCHAR_TYPE, su
h that it is admissable to spe
ify the type as, e.g., bVECTOR or MATRIX.The basetype of the target variable must mat
h that of the sour
e. However, the sour
e 
an inaddition be a pointer type (similar as for display variables).All 
onne
tions have to be de�ned in a top-level fun
tion fmpi_
onne
tions(), e.g., like this:void fmpi_
onne
tions(){ CONNECT( 0, var1, VECTOR, N, 1, var2 );CONNECT( 1, z1, POINTER TO bVECTOR, N, 2, z1 );
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onne
ts the �oat ve
tor var1 of size N on pro
essor 0 to var2 on pro
essor 2.The se
ond statement uses a POINTER variable, whi
h gets dereferen
ed just befor transmissionto a bVe
tor of size N whi
h is then transferred from pro
essor 1 to variable z1 on pro
essor 2.It is possible that sour
e and destination are the same variables, but note that they will residenonetheless on di�erent ma
hines.Furthermore, if the same 
ode is 
ompiled using serial Felix, the CONNECT ma
ro translates toempty 
ode (but not the fun
tion, so use the ma
ro!). Thereby, the 
ode is dis
arded; nothingneeds to be 
ommuni
ated if the program runs on a single pro
essor. This supports writing 
odethat 
an be 
ompiled on serial and parallel ma
hines without 
hanging a singe line. Of 
ourse,using this feature needs a 
areful design of the 
ode in order to have the serial and parallel
odes 
onsistent. There is typi
ally at least a one-simulation-step delay introdu
ed, be
ause inthe parallel versions 
ommuni
ation o

urs only after ea
h simulation step, whereas in a serialprogram updated variables are immediately available.9.5 Hybrid MPI/OpenMP CodeMPI and OpenMP 
an be 
ombined in the same program.The 
ommon free MPI versions (MPICH and LAM) are not threadsafe (most 
ommer
ial imple-mentations are). This means, if you use MPI within OpenMP parallelised regions the results areunde�ned.Nonetheless, writing hybrid MPI/OpenMP-programs is possible, if 
are is taken of 
alling MPI-
onstru
ts only in OpenMP serial parts of the 
ode. In that 
ase only a single thread is doing theMPI-
ommuni
ation, whi
h is safe.Hybrid parallelism is possible in Felix. For that a number of MPI-pro
esses are spawned that
ommuni
ate as explained in se
tion 9.4, but ea
h of these pro
esses in turn 
an spawn their ownOpenMP threads. This is useful on SMP 
lusters with several CPUs per node. Communi
ationbetween nodes 
an that way be done using MPI, but on the same node using threads and sharedmemory. Be
ause 
ommuni
ation via shared memory is usually faster than via a network thisshould result in speed bene�ts.The following 
ode is NOT Felix but just a simple C-example that demonstrates the prin
iple.// ompi.
 -- simple test program for hybrid MPI/OpenMP paralellism# in
lude <stdio.h># in
lude <omp.h> // in
lude OpenMP header# in
lude <mpi.h> // in
lude MPI header# define NUMTHREADS 3 // set number of OpenMP threads heremain( int arg
, 
har *argv[℄ ){ int numtasks, rank;



136 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXMPI_Init( &arg
, &argv );MPI_Comm_size(MPI_COMM_WORLD, &numtasks );MPI_Comm_rank(MPI_COMM_WORLD, &rank );omp_set_num_threads(NUMTHREADS);# pragma omp parallel{ printf("MPI rank %d OMP thread %d\n", rank, omp_get_thread_num());} MPI_Finalize();}The 
ode needs to be 
ompiled with an OpenMP-
apable 
ompiler (Intel, g

 4.2 or higher) andlinked against the proper MPI-libs (see also se
tion A for further low-level info). It 
an then berun using, e.g., mpirun -np 2 ompi if �ompi� is the name of the exe
utable. The number of MPIpro
esses in the example would be 2 (spe
i�ed by �-np 2� in the mpirun 
all), ea
h of whi
h spawnsNUMTHREADS OpenMP threads. Ea
h thread prints its MPI rank and thread number and exits.Note that instead of setting the number of OpenMP threads expli
itly one 
ould also use theenvironment variable OMP_NUM_THREADS. This is quite usual and avoids having to re
ompilethe 
ode for di�erent thread numbers. However, even if OMP_NUM_THREADS is set in your.bashr
, it is not ne
essarily exported to all target ma
hines on all systems.9.6 Parallelising Serial Felix CodeSerial 
ode is 
ompiled using the standard �Felix�-s
ript, whi
h links against libf (
ore routines)and libxf (XView extensions). For parallel 
ode use the �pFelix�-s
ript. This links against libpf.Although libf and libxf are for serial 
ode they 
an possibly make use of BLAS or OpenMPdepending on how they have been 
ompiled.The parallel Felix lib �libpf� must be used for MPI and hybrid MPI/OpenMP.9.6.1 OpenMP and p�xTo make life easier a 
ouple of ma
ros have been de
lared for writing parallelised 
ode. If you usethem you 
an even write programs that 
an be 
ompiled and run with and without OpenMP.# ifdef WITH_OMP# define OMP_THREADS(_n) omp_set_num_threads(_n);# define OMP_FOR(_x) ... // this shouldn't o

ur be
ause preFelix removes OMP_FORs# define OMP_ONLY(_x) _x# else# define OMP_THREADS(_n)# define OMP_FOR(_x) for(_x)



9.6. PARALLELISING SERIAL FELIX CODE 137# define OMP_ONLY(_x)# endifObserve that depending on whether the �ag WITH_OMP is a
tive during 
ompile time (usuallyset in the Make�le) the ma
ros expand into di�erent 
ode. If the Felix-s
ript is used for 
ompilationWITH_OMP will (usually) not be de�ned, but for the pFelix s
ript it will.Note that these settings only apply to your sour
e 
ode. Whether OpenMP is used in �libf�, theFelix 
ore library, depends on the value of OpenMP at 
ompile time of the libraries, ie. in theMake�le in the Felix sour
e dire
tory. In the standard installation, libf would not 
ontain OpenMPparallelised 
ode.There are several problems with the OMP_FOR ma
ro: A
tually this must have the formOMP_FOR( <var> = <
ode> )< single statement or 
ode-blo
k en
losed by {}>It should expand into#pragma omp parallel for default(shared) private( <var> )for( <var> = <
ode> )<single statement or 
ode-blo
k en
losed by {}>The 
ode segments not expli
itely spe
i�ed, of 
ourse, must translate into valid C-
ode.The �rst problem now is that the #pragma phrase 
annot be inserted by the prepro
essor (at leastI don't kow how to do it with ma
ros). Instead a very simple prepro
essor 
all �p�x� is used. Thisdoes nothing but sear
hing a �le for the string OMP_FOR and repla
ing the string in the senseabove. �p�x� is 
alled, when the Felix- or pFelix-s
ripts are exe
uted. It generates a temporary�le, whi
h is then 
ompiled into an exe
utable.The se
ond problem with OMP_FOR is that the user has to make sure that the sour
e-
ode doesnot 
ontain assignments to memory lo
ations whi
h are potentially exe
uted simultaneously indi�erent threads. The values of su
h variables are unde�ned, but there will be no expli
it warningor error message. Su
h variables in general need to be de
lared �private� in the repre
tive en
losingOpenMP-pragma or prote
ted by other means (see OpenMP handbooks and tutorials). The onlyvariable that is expli
itly de
lared private if the OMP_FOR ma
ro is used, is the run-index of thefor-loop. This su�
es in many situations I have experien
ed over the years. However, if you have
ode where some threads would potentially write/
hange the same shared memory lo
ations, you
an not use OMP_FOR, but have to use the original OpenMP pragmas.Example: The following 
ode is buggyint i, j;Matrix x; // size nx * ny; allo
ated elsewhere...OMP_FOR(i=0; i<nx; i++)for (j=0; j<ny; j++)x[i*nx+j℄ = ... something ... ;



138 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXThe mistake is that j is a shared variable (by default). If several threads exe
ute the outer for-loop, they all use the same 
opy of j (in shared memory), whi
h they update asyn
hronously. Thissituation o

urs often in simulations of two-dimensional �eld model. A simple 
ure isint i;Matrix x; // size nx * ny; allo
ated elsewhere...OMP_FOR(i=0; i<nx; i++){ int j;for (j=0; j<ny; j++)x[i*ny+j℄ = ... something ... ;}Here the variable j is lo
al to ea
h thread and 
an only be 
hanged by the respe
tive thread. xis also a shared variable whi
h gets values assigned, but note that the entries in that matrix aredisjoint between threads, be
ause di�erent threads operate on di�erent sli
es of the matrix.9.6.2 MPIA number of ma
ros support writing MP-
ode.# ifdef WITH_MPI# define RANK(_x) if(myrank==(_x))# define COND(_x) if(_x)# define MPI_ONLY(_x) _x# else# define RANK(_x) // if(myrank==(_x))# define COND(_x) // if(_x)# define CONNECT(_x1,_x2,_x3,_x4,_x5,_x6)# define MPI_ONLY(_x)# endifextern int myrank;Observe that these ma
ros expand to empty 
ode when 
ompiled serially (ie, if the 
ompiler �agWITH_MPI is not set (usually in the Make�le, see ??))RANK and COND support 
onditional exe
ution of 
ode in 
onjun
tion with the global variable�myrank� whi
h holds the unique MPI-rank of ea
h pro
ess.MPI_ONLY() 
an be used to en
lose 
ode that has to be exe
uted only in an MPI environment(see example below.)9.6.3 Example: Two intera
ting Neuron PoolsThe 
ode in this subse
tion simulates two pools of leaky-integrate-and-�re neurons, whi
h intera
tmutually. It dupli
ates the variables and 
ode from the previously used inf.
 example program,but adds some 
ode for the intera
tion and its 
ontrol slider in the GUI.



9.6. PARALLELISING SERIAL FELIX CODE 139The program is shown be
ause it demonstrates how to write 
ode using the ma
ros explained inthe previous se
tion 9.6.2 that 
an either be 
ompiled serially with GUI, but for parallel exe
utionusing MPI (or MPI/OpenMP) as well. The advantage would be that one 
an 
onveniently test asmall version of the program with GUI, but run s
aled-up large versions on a parallel 
omputerwithout 
hanging a single line of 
ode. Both versions 
ould even use the same environment �lesfor parameter settings.The idea is to 
ut the serial 
ode into pie
es that 
an be distributed a
ross a number of MPIpro
esses. The RANK() or COND()-ma
ros are then used to sele
t the respe
tive 
ode bits forexe
ution in the individual pro
esses. In order to set up the model properly one has to ex
hangedata 
omputed in one thread but needed in others, too. This is done by 
alls to the 
onne
t()-fun
tion in a top-level routine fmpi_
onne
tions(), see se
tion 9.4.The RANK, COND, and CONNECT-ma
ros expand (basi
ally) into empty 
ode if the so preparedprogram is 
ompiled serially. Using the ma
ros appropriately, possibly in 
onju
tion with the otherma
ros in se
tions 9.4 and 9.3, 
an result in 
ode that 
an be 
ompiled serially and for parallelexe
ution.Here is one su
h magi
 
odes (some parts have been 
ut out (mainly things related to display andoutput); the full sour
e 
ode should be in the Felix expl/parallel dire
tory):// infpairmpi.
# in
lude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time 
onst. */Ve
tor pot1, pot2; /* potentials */Matrix J1, J2; /* 
onne
tions */bVe
tor o1, o2; /* ve
tor of spikes */Ve
tor v1, v2; /* for help */int stp=0;...BEGIN_DISPLAY....BEGIN_OUTPUT....void fmpi_
onne
tions(){ CONNECT( 0, o1, bVECTOR, N, 1, o1 );CONNECT( 1, o2, bVECTOR, N, 0, o2 );}int main_init(){



140 CHAPTER 9. PARALLEL PROGRAMMING WITH FELIXrandomize( time(NULL) + 100*myrank ); // not sure this safe ???????????????SET_STEPSIZE( .5 )RANK(0){ J1 = Get_Matrix( N, N );pot1 = Get_Ve
tor( N );v1 = Get_Ve
tor( N );}o1 = Get_bVe
tor( N );RANK(1){ J2 = Get_Matrix( N, N );pot2 = Get_Ve
tor( N );v2 = Get_Ve
tor( N );}o2 = Get_bVe
tor( N );}int init(){ int i;RANK(0){ Clear_bVe
tor(N,o1);Clear_Ve
tor(N,v1);for (i=0; i<N; i++)pot1[i℄ = equal_noise(); // random initialisationMake_Matrix( N, N, J1, 1./N , .4/N );}RANK(1){ Clear_bVe
tor(N,o2);Clear_Ve
tor(N,v2);for (i=0; i<N; i++)pot2[i℄ = 0; // no random initialisation !Make_Matrix( N, N, J2, 1./N , .4/N );}stp=0;}int step(){ int i;RANK(0){



9.6. PARALLELISING SERIAL FELIX CODE 141for (i=0;i<N;i++)leaky_integrate ( tau, pot1[i℄,0.01*( sinput + sJ*v1[i℄ + sJ
*o2[i℄+ snoise*gauss_noise()) );Fire_Reset( N, pot1, 1.0, 0.0, o1 );bMult( N, N, J1, o1, v1 );}RANK(1){ for (i=0;i<N;i++)leaky_integrate ( tau, pot2[i℄,0.01*( sinput + sJ*v2[i℄ + sJ
*o1[i℄+ snoise*gauss_noise()) );Fire_Reset( N, pot2, 1.0, 0.0, o2 );bMult( N, N, J2, o2, v2 );}stp++;MPI_ONLY( // this ensures we don't run forever on the 
lusterif (stp >= 500){ MPI_Finalize();exit(0);})}More explanations????????The serial version of the 
ode is 
ompiled with �Felix infpairmpi� and run with "infpairmpi" fromthe 
ommand line as usual. The GUI should pop up as for standard serial Felix appli
ations. Ifdata storage is swit
hed on, data of the �rst pool is written to �le "pot1". Data of the se
ond poolis not stored. The simulation runs until it is killed in the GUI.The parallel version is 
ompiled with "pFelix infpairmpi" and, e.g., run with "mpirun -np 2 inf-pairmpi" (It might be that you have to use other ways to run programs on your parallel 
omputer,e.g., if the system adminstrator requires using a job s
heduler). The parallel exe
utable will notpop up a GUI. Data of the �rst pool will be written to "pot1-0" (by the �rst pro
ess); data of these
ond pool will not be saved, be
ause no output �les have been de
lared for the se
ond pro
ess.The simulation exits after a 
ertain number of steps (500).
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Chapter 10Example Programs
10.1 Leaky-Integrate-and-Fire Neural Network/* Example-program: inf.
 */# in
lude <felix.h># define N 100 /* number of neurons */# define tau 10. /* membrane time 
onstant */float I = 1.1, /* Common input to units */J0 = 1.1, /* Coupling strength */sigma = .1; /* noise level */Ve
tor x; /* potentials */Matrix J; /* 
onne
tions */bVe
tor z; /* ve
tor of spikes */Ve
tor v; /* auxiliary variable */NO_DISPLAYNO_OUTPUTint main_init(){ /* init. random number generator and stepsize */randomize( time(NULL) );SET_STEPSIZE( .1 )/* allo
ate ve
tors and matri
es */J = Get_Matrix( N, N );x = Get_Ve
tor( N );z = Get_bVe
tor( N );v = Get_Ve
tor( N ); 143



144 CHAPTER 10. EXAMPLE PROGRAMS}int init(){ int i;Clear_bVe
tor(N,z);Clear_Ve
tor(N,v);/* init. potentials with random values between 0 and 1 */for (i=0; i<N; i++)x[i℄ = equal_noise();/* init. J with gaussian distr. random numbers */Make_Matrix( N, N, J, 1.0/N, .4/N );}int step(){ int i;for (i=0;i<N;i++) // leaky integration for all neuronsleaky_integrate ( tau, x[i℄,I + J0*v[i℄ + sigma*gauss_noise() );Fire_Reset( N, x, 1.0, 0.0, z ); // firing and resetbMult( N, N, J, z, v ); // redistribution of spikes}10.2 Coupled Chaoti
 Roessler Os
illatorsIntegrates di�erential equations with Runge-KuttaUses xy-plots/** roessler.
 -- 
oupled 
haoti
 Roessler os
illators* or asymmetri
 damped harmoni
 os
illators*/#in
lude "felix.h"# define STEPSIZE .01float t;# define N 64 /* number of units */# define n 3 /* order of diff.system */



10.2. COUPLED CHAOTIC ROESSLER OSCILLATORS 145Ve
tor x; /* x1 ... xN, y1 .... yN, z1 .... zN */Ve
tor dxdt; /* derivatives */Ve
tor domega; /* used to give os
illators a gradient in properties */Matrix J; /* 
onne
tions (if not meanfield 
ouplings) *//* diffusive or random .... */Ve
tor 
fields; /* 
oupling fields; either meanfield or diffusiveor random 
onne
tivity */float xx1, yy1;Swit
hValue sos
 = OFF; /* Roessler or damped harmoni
 os
illators */Swit
hValue smean = ON; /* mean field 
oupling */Swit
hValue sdiffusive = OFF; /* diffusive 
oupling */Swit
hValue swrand = OFF; /* random 
onne
tions */SliderValue somega = 1000;SliderValue sdelomega = 100;SliderValue sepsilon = 100;SliderValue sa = 150;BEGIN_DISPLAYSWITCH( "os
i type", sos
 )SWITCH( "mean", smean )SWITCH( "diffusive", sdiffusive )SWITCH( "random", swrand )SLIDER( "mean omega", somega, 500, 1500)SLIDER( "delta omega", sdelomega, 0, 500)SLIDER( "
oupling strength", sepsilon, 0, 500)SLIDER( "a", sa, 0, 500)WINDOW("signals")RASTER( "x", AR, AC, x, VECTOR, N, 0, 0.0, 1.0, 2)WINDOW("MF-xy-plot")PLOT("x-y", AR, AC, &xx1, VECTOR, 1, 0, 0, 0, -20., 20.,&yy1, VECTOR, 1, 0, 0, 0, -20., 20., 2 );WINDOW("xy-plot")PLOT("x-y", AR, AC, x, VECTOR, N, n, 0, 0, -20., 20.,x, VECTOR, N, n, 0, 1, -20., 20., 2 );WINDOW("x(t)")GRAPH( "x1", AR, AC, x, VECTOR, N, 0, 0, 0, -20, 20 )GRAPH( "x2", AR, NC, x, VECTOR, N, 0, 1, 0, -20, 20 )



146 CHAPTER 10. EXAMPLE PROGRAMSGRAPH( "y1", NR, C0, &x[N℄, VECTOR, N, 0, 0, 0, -20, 20 )GRAPH( "y2", AR, NC, &x[N℄, VECTOR, N, 0, 1, 0, -20, 20 )GRAPH( "z1", NR, C0, &x[2*N℄, VECTOR, N, 0, 0, 0, 0., 20 )GRAPH( "z2", AR, NC, &x[2*N℄, VECTOR, N, 0, 1, 0, 0., 20 )WINDOW("MF")GRAPH( "x1", AR, AC, &xx1, VECTOR, 1, 0, 0, 0, -20., 20.)GRAPH( "x2", AR, NC, &yy1, VECTOR, 1, 0, 0, 0, -20., 20.)END_DISPLAYNO_OUTPUTint main_init(){ SET_STEPSIZE( STEPSIZE )randomize( time(NULL) );J = Get_Matrix(N,N);x = Get_Ve
tor(N*n);dxdt= Get_Ve
tor(N*n);domega = Get_Ve
tor(N);
fields = Get_Ve
tor(N);}int init(){ int i;Clear_Ve
tor(N, domega);Clear_Ve
tor(N, 
fields);Clear_Ve
tor(N*n, x);Clear_Ve
tor(N*n, dxdt);t = 0.0;for (i=0 ; i<N; i++){ domega[i℄ = -.5+(1.*i)/N;
fields[i℄ = 0.0;x[i℄ = 4.;x[N+i℄ = 4;}Clear_Matrix( N,N, J);Make_Matrix( N, N, J, 1, 1);}



10.2. COUPLED CHAOTIC ROESSLER OSCILLATORS 147void derivs(x,y,dfdx)float x;float *y;float *dfdx;{ int i,j;float omeg,a;a = .001*sa;for (i=0;i<N;i++){ if (sos
) /* original roessler */{ omeg = .001*(somega + sdelomega*domega[i℄);dfdx[i℄ = -omeg*y[N+i℄ - y[2*N+i℄ + 
fields[i℄;dfdx[N+i℄ = omeg*y[i℄ + a*y[N+i℄;dfdx[2*N+i℄ = .4+y[2*N+i℄*(y[i℄-8.5);}else /* antisymm. undamped harm.os
. */{ omeg = .001*(somega + sdelomega*domega[i℄);dfdx[i℄ = a*y[i℄ -omeg*y[N+i℄ - y[2*N+i℄ + 
fields[i℄;dfdx[N+i℄ = omeg*y[i℄ + a*y[N+i℄;dfdx[2*N+i℄ = .4+y[2*N+i℄*(y[i℄-8.5);}}}int step(){ int i;float mf,epsfa
;stati
 float tlast=-1,phi1;rk4(x, dxdt, N*n, t, step_size, x, derivs);epsfa
 = .001*sepsilon;if(swrand) /* different amplitude s
aling in alternatives ... */{ Mult( N, N, J, x, 
fields ); /* good lu
k; first 
omponents ofsystems are first N vals of x */epsfa
 /= N;}else if(sdiffusive) /* open boundaries */{ 
fields[0℄ = x[1℄-x[0℄;



148 CHAPTER 10. EXAMPLE PROGRAMSfor(i=1;i<N-1;i++)
fields[i℄ = x[i+1℄+x[i-1℄-2*x[i℄;
fields[N-1℄ = x[N-2℄-x[N-1℄;}else if (smean) /* mean field */{ mf = Sum(N, x)/(float)N;for(i=0;i<N;i++)
fields[i℄ = mf;}else{ for(i=0;i<N;i++)
fields[i℄ = 0.;}for(i=0;i<N;i++) /* s
ale with 
oupling strength */
fields[i℄ *= epsfa
;xx1 = Sum( N, x)/N;yy1 = Sum( N, &x[N℄)/N;t+=step_size;}10.3 Homogeneous Fields/* ei-field.
 -- two-dimensional ex
itatory/inhibitory neural field model* probabilisti
 spiking neurons* stimulus is a single long moving bar or two bars moving* in parallel or antiparallel*/# in
lude <felix.h># define tau1 3.# define tau2 5.0long stp = 0;float sim_time, noise_fa
;Layer input,pot1, pot2,f1, f2;SpikeLayer out1, out2;# define L_SIZE11 8.0 /* FWHM in 
olumns (float) */# define M_SIZE11 8 /* Kernel dimension (int) */



10.3. HOMOGENEOUS FIELDS 149# define FM_SIZE11 (2*M_SIZE11+1)# define L_SIZE12 8.0 /* FWHM in 
olumns (float) */# define M_SIZE12 4 /* Kernel dimension (int) */# define FM_SIZE12 (2*M_SIZE12+1)# define L_SIZE21 8.0 /* FWHM in 
olumns (float) */# define M_SIZE21 4 /* Kernel dimension (int) */# define FM_SIZE21 (2*M_SIZE21+1)UniKernel kernel11,kernel12,kernel21;Layer link11,link12,link21;# define barlength 25# define barskip 0 /* 5 */# define barsigma 7# define BARINITOFFS 14.double yy1, yy2;int bardire
tion = 1;Swit
hValue santi = OFF;Swit
hValue s
ent = OFF;SliderValue sI1 = 85;SliderValue sI2 = 85;SliderValue sI = 85;SliderValue snoise = 20;SliderValue sJ11 = 100;SliderValue sJ12 = 40;SliderValue sJ21 = 600;SliderValue sspeed = 0;BEGIN_DISPLAYSWITCH( "anti", santi)SWITCH( "
enter", s
ent )SLIDER( "Signal Input", sI, 0, 1000 )SLIDER( "E ", sI1, -200, 200 )SLIDER( "I ", sI2, -200, 200 )SLIDER( "noise", snoise, 0, 1000 )SLIDER( "J11", sJ11, 0, 500)SLIDER( "J12", sJ12, 0, 300)SLIDER( "J21", sJ21, 0, 1000)



150 CHAPTER 10. EXAMPLE PROGRAMSSLIDER( "speed", sspeed, 0, 1000);WINDOW("Ex
itation")IMAGE( " input ", AR, AC, input, LAYER, xsize, ysize, 0.0, 2.1, 1)IMAGE( " pot1 ", AR, NC, pot1, LAYER, xsize, ysize, -.5, 1.0, 1)IMAGE( " out1 ", NR, C0, out1, SPIKE_LAYER, xsize, ysize, 0.0, 1.0, 1)WINDOW("Inhibition")IMAGE( " input ", AR, AC, input, LAYER, xsize, ysize, 0.0, 2.1, 1)IMAGE( " pot2 ", AR, NC, pot2, LAYER, xsize, ysize, -.5, 1.0, 1)IMAGE( " out2 ", NR, C0, out2, SPIKE_LAYER, xsize, ysize, 0.0, 1.0, 1)WINDOW("Kernels")IMAGE( " k11", AR, AC, kernel11, CONSTANT LAYER,FM_SIZE11, FM_SIZE11, 0.0, 1., 5)IMAGE( " k12", NR, AC, kernel12, CONSTANT LAYER,FM_SIZE12, FM_SIZE12, 0.0, 1., 5)IMAGE( " k21", NR, AC, kernel21, CONSTANT LAYER,FM_SIZE21, FM_SIZE21, 0.0, 1., 5)END_DISPLAYBEGIN_OUTPUTOUTFILE("phi1")SET_SAVE_FILE_FLAG( THISFILE, ASCII, ON)SAVE_VARIABLE( "phi1 (pot1)", pot1, MATRIX, xsize, ysize, SKIP | GRID ,TSkip(2), Grid(26, xsize, 100, 32, ysize, 100) )OUTFILE("phi2")SET_SAVE_FILE_FLAG( THISFILE, ASCII, ON)SAVE_VARIABLE( "phi2 (pot2)", pot2, MATRIX, xsize, ysize, SKIP | GRID ,TSkip(2), Grid(38, xsize, 100, 32, ysize, 100) )END_OUTPUTstati
 void init_bars(
enterflag)int 
enterflag;{ if (
enterflag) /* 
enter */{ yy1 = yy2 = ysize/2;}else{



10.3. HOMOGENEOUS FIELDS 151yy1 = BARINITOFFS;if (santi)yy2 = ysize-BARINITOFFS;elseyy2 = BARINITOFFS;bardire
tion = 1;}}stati
 void move_bars(){ if (s
ent){ init_bars(1);return;}if (yy1 > ysize-BARINITOFFS ||yy1 < BARINITOFFS)bardire
tion *= -1;yy1 += .001*bardire
tion*sspeed;if (santi)yy2 -= .001*bardire
tion*sspeed;elseyy2 += .001*bardire
tion*sspeed;}stati
 void smooth_bars( out )Matrix out;{ int i, j, s1, s2, s3, s4;stati
 double fa
=0;double h;if (fa
==0) fa
 = -.5/(float)(barsigma*barsigma);s2 = (xsize - barskip)/2;s1 = s2-barlength;s3 = (xsize + barskip)/2;s4 = s3 + barlength;for (j = 0; j<ysize; j++){ h = elem( out, j, s1, xsize) = triangle( fa
 * (yy1-j)*(yy1-j));for (i=s1+1; i<s2; i++)elem( out, j, i, xsize) = h;h = elem( out, j, s3, xsize) = triangle( fa
 * (yy2-j)*(yy2-j));for (i=s3+1; i<s4; i++)



152 CHAPTER 10. EXAMPLE PROGRAMSelem( out, j, i, xsize) = h;}}int main_init(){ int i;randomize( time(NULL) );input = Get_Layer();pot1 = Get_Layer();f1 = Get_Layer();out1 = Get_SpikeLayer();pot2 = Get_Layer();f2 = Get_Layer();out2 = Get_SpikeLayer();link11 = Get_Layer();link12 = Get_Layer();link21 = Get_Layer();kernel11 = Get_UniKernel( FM_SIZE11, FM_SIZE11 );kernel12 = Get_UniKernel( FM_SIZE12, FM_SIZE12 );kernel21 = Get_UniKernel( FM_SIZE21, FM_SIZE21 );Set_Cir
_Fun
_Uni_Kernel( kernel11, FM_SIZE11, FM_SIZE11, gaussian,1., L_SIZE11, 0. );Set_Cir
_Fun
_Uni_Kernel( kernel12, FM_SIZE12, FM_SIZE12, gaussian,1., L_SIZE12, 0. );Set_Cir
_Fun
_Uni_Kernel( kernel21, FM_SIZE21, FM_SIZE21, gaussian,1., L_SIZE21, 0. );SET_STEPSIZE(0.5);noise_fa
 = sqrt(24.0/step_size);}int init( ){ int i,j;stp = 0;Clear_Layer(input);init_bars( s
ent );smooth_bars( input );Clear_Layer(pot1);



10.3. HOMOGENEOUS FIELDS 153Clear_SpikeLayer(out1);Clear_Layer(pot2);Clear_SpikeLayer(out2);}int step(){ int i,j,k;if (stp >= 36050)exit (0);/********************//* 
ompute stimulus *//********************/move_bars();smooth_bars( input );/********************//* 
ompute dynami
s *//********************//* ex
it. units */for (i=0; i<ysize; i++){ for (j=0; j<xsize; j++){ leaky_integrate( tau1, elem( pot1, i, j, xsize) ,0.001*(sI1 + sI*gauss_noise()*elem( input , i, j, xsize)+ sJ11*elem( link11,i,j, xsize)- sJ12*elem( link12,i,j, xsize)+ (snoise*noise_fa
)*(equal_noise() - 0.5) ) ) ;elem( f1, i, j, xsize) = RAMP( elem( pot1, i, j, xsize) );elem( out1, i, j, xsize) = PROB_FIRE( elem( f1, i, j, xsize) );} /* END j */for (j=0; j<xsize; j++){ leaky_integrate( tau2, elem( pot2, i, j, xsize) ,0.001*( sI2 + sJ21*elem( link21,i,j, xsize)+ (snoise*noise_fa
)*(equal_noise() - 0.5) ) ) ;elem( f2, i, j, xsize) = RAMP( elem( pot2, i, j, xsize) );elem( out2, i, j, xsize) = PROB_FIRE( elem( f2, i, j, xsize) );} /* END j */} /* END i */bConvolute_2d_Uni( out1, kernel11, xsize, ysize, FM_SIZE11, FM_SIZE11, link11);



154 CHAPTER 10. EXAMPLE PROGRAMSbConvolute_2d_Uni( out1, kernel21, xsize, ysize, FM_SIZE21, FM_SIZE21, link21);bConvolute_2d_Uni( out2, kernel12, xsize, ysize, FM_SIZE12, FM_SIZE12, link12);stp++;} /* END of step() */



Appendix AInstallation Guide
This appendix des
ribes how to install the Felix simulation tool on serial and parallel 
omputers.La
king free time I never implemented proper auto
on�guration fa
ilities. Therefore installationis quite low-level. However, a number of people have been able to install Felix on serial Linuxboxes following the instru
tions below. Windows/Cygwin installations as well as installation ofthe parallel Felix extension 
an be a little more tri
ky.The �rst part of this appendix des
ribes the installation of the serial Felix version. This by default
omprises the graphi
al user interfa
e. Compiling Felix for parallelised 
ode is des
ribed in the2
d se
tion. If you plan to use MPI, the GUI will not be available. The graphi
s works, however,with the SSE-BLAS and OpenMP 
ode.The following assumes that $FELIXDIR is the top-level dire
tory of your Felix installation.There should be a number of subdire
tories (after unpa
king)$FELIXDIR/sr
 : Sour
e 
ode of Felix kernel routines and libraries$FELIXDIR/xview : Sor
e 
ode of X11 extensions used for the Felix-GUI$FELIXDIR/lib : Felix libraries (
reated during 
ompilation)$FELIXDIR/expl : A number of example appli
ations$FELIXDIR/tools : A number of tools to transform Felix data �les (e.g., for 
reating rasterplots and gifs)To 
ompile the Felix 
ore only the 
ode in $FELIXDIR/sr
 is needed. If you want the GUI you needin addition the 
ode in $FELIXDIR/xview. These dire
tories 
omprise several relevant Make�les$FELIXDIR/sr
/Make�le : main sour
e 
ode (
ompilation of serial lib libf)$FELIXDIR/xview/Make�le : graphi
s extensions for X11 (
ompilation of serial lib libxf)$FELIXDIR/Make�le : master Make�le to 
ompile a serial appli
ation (envoked by the "Felix"
ommand)$FELIXDIR/sr
/Make�le.parallel : main sour
e 
ode (
ompilation of parallel lib libpf)155



156 APPENDIX A. INSTALLATION GUIDE$FELIXDIR/Make�le.parallel : master Make�le to 
ompile a parallel appli
ation (envokedby the "pFelix" 
ommand)The �rst three Make�les are required for 
ompiling the serial libraries and 
ode; the se
ond twofor parallel libs and 
ode.A.1 Standard (serial) InstallationA.1.1 PrerequisitesThe Graphi
al user interfa
e is built on X11 and a pretty old Widget tool 
alled XView. XView isused for histori
al reasons. It was originally developed by Sun Mi
rosystems who 
eased supportingit in about 1995, when Motif be
ame more dominant. It is still possible to get XView sour
es andbinaries, but this gets more and more di�
iult (in parti
ular I don't know of any 64 bit pa
kages).Compilation of Felix presupposes an installed X11R6 pa
kage assumed to be in the standardlo
ation: /usr/X11R6 . X11R6 is by default 
ontained in virtually all Linux installations. If thisis the wrong path it has to be 
orre
ted in the Make�les, i.e., those in ../sr
, ../xview and thetop-level make�le.The Felix GUI further requires installed XView libraries libolgx and libxview, e.g., in/user/openwin/libFelix further requires the XView development kit for in
lude �les, e.g., in /usr/openwin/in
ludeIt is possible to set an environment variable OPENWINHOME pointing at the lo
ation of theXView libs and in
lude �les during 
ompilation.Redhat/SuSe/Cygwin users: An XView rpm 
an be downloaded herehttp://www.physionet.org/physiotools/xview/Ubuntu/Kubuntu/Debian users: The XView pa
kages are in some (K)ubuntu repositories.A.1.2 Serial Felix Installation1. Create the Felix top-level dire
tory ($FELIXDIR) where you want it.Default would be something like $HOME/felix.2. Goto the target dire
tory $FELIXDIR and unpa
k and untar sim.tar.gz in it by 
alling �tar-xzf sim.tar.gz�3. Set environment variables for your shell. For the bash-shell (default in many Linuxes), addthe following in $HOME/.bashr
 :export OPENWINHOME="/usr/openwin"export FELIXDIR="\$HOME/felix"export LD_LIBRARY_PATH="\$FELIXDIR/lib:/usr/X11R6/lib:\$LD_LIBRARY_PATH"alias Felix="\$FELIXDIR/Felix"



A.2. INSTALLATION OF PARALLEL FELIX 157The pre
ise lo
ations of the dire
tories in the above exports possibly need to be adapted toyour own �le hierar
hy. It might also be that /usr/X11R6/lib is already in your path or thatthe libs it 
ontains are a

essible by other means (in that 
ase you 
an omitt it in the exportabove).Beside that make sure "." (
urrent dire
tory) is in PATH (type e
ho $PATH in a shell andlook for it). If it is not there you will have to type ./<progname> to run programs. Just<progname> would fail with �permission denied� or �program not found� or a similar errormessage.4. Dont forget to exe
ute �sour
e .bashr
� in your running (bash-)shell after setting the envi-ronment variables. Alternatively, you 
an start a new shell so that the environment variablesget set 
orre
tly.5. Run �make install� in $FELIXDIR .If everything goes well this should 
ompile the sour
e 
ode in $FELIXDIR/sr
 and $FE-LIXDIR/xview, 
reate the respe
tive Felix 
ore and GUI libraries, and move them to $FE-LIXDIR/lib.If this step is su

essfull you will have the (serial) Felix libraries libxf and libf in $FELIXDIR.Otherwise something went wrong.6. Test a Felix example in $FELIXDIR/expl, e.g., inf.
 :(a) 
hange to the dire
tory $FELIXDIR/expl(b) run �Felix inf� : the program �inf� should be 
ompiled(
) run �inf� : �inf� should run and the graphi
al interfa
e pop upIf the test runs su

essful, you are ready to use the serial Felix version. Che
k out theexamples in $FELIXDIR/expl .A.1.3 Additional Notes1. If you try to 
ompile a felix program and get an error message that panel.h, frame.h or soare not found, then you don't have XView installed properly or haven't set the proper pathsin the Make�les.A.2 Installation of Parallel FelixThe parallel Felix extensions are experimental 
ode. Whereas mu
h of the serial 
ode (but not all)has been used for resear
h for already many years, the parallel 
ode is mu
h more re
ent. I 
an'tgive mu
h advise on it, it is in a pretty 
haoti
 state, and it probably 
ontains bugs .... feel freeto improve it. Send pat
hes or error warnings ...Felix implements 3 levels of parallelism, whi
h 
an at least intentionally be used simultaneously inany mix (this is mostly untested):



158 APPENDIX A. INSTALLATION GUIDEBLAS : Given proper BLAS/ATLAS libraries you might be able to use the SSE extensions ofIntel and AMD CPUs. Note that you 
an use BLAS routines even if you do not have a multipro
essor system. BLAS routines support highly optimised Matrix/Ve
tor Math. SomeBLAS versions support automati
 threading if you are on a multipro
essor SMP ma
hine(e.g. gotoBLAS and, I believe, Intel MKL BLAS too). This, however, might interfere withlevel 2 OpenMP parallelism. If you are not 
areful, ea
h OpenMP thread might spawn anumber of BLAS threads. The BLAS libs usually support environment variables or othermeans to 
ontrol the number of spawned threads.OpenMP : OpenMP is a simple framework to parallelise outer loops on SMP multipro
essorma
hines. It automati
ally spawns threads that distribute separate parts of the loop overthe available pro
essors. Although simple to use OpenMP is suboptimal in various respe
tsas 
ompared to hand-
oded threaded 
ode. However, I have seen ni
e speed-ups for someof appli
ations. g

 will support OpenMP from version 4.2 upward; the Intel 
ompiler alsoimplements the OpenMP standard. Sin
e g

 isn't o�
ially out yet, I use ha
ks to 
ompile theOpenMP-parallel Felix 
ode with i

, the Intel 
ompiler. That makes some of the Make�leslook pretty nasty... (I have also 
ompiled a pre-released g

-4.2 snapshot. Seems to work,too.)MPI : MPI is a message passing standard for multi pro
essor systems in
luding Symmetri
 MulitPro
essors (SMPs) and Beowulf 
omputer 
lusters. Felix uses very few very simple 
onstru
tsto transport data between several 
o-operating pro
esses in distributed Felix programs (seefmpi.
/h). In prin
iple these are ve
tors/matri
es transported between variables lo
al toea
h pro
ess. Ea
h pro
ess is running the same program but has a 
ertain �rank� whi
h 
anbe used in the 
ode to make parts of it sele
tively exe
utable on some pro
esses only. Che
kthe paralle examples in $FELIXDIR/expl for more details.The parallel version has its own Make�les $FELIXDIR/sr
/Make�le.parallel and $FE-LIXDIR/Make�le.parallel whi
h 
ompile Felix versions without graphi
al interfa
es. They 
ontain�ags for a
tivating the di�erent options.You might also want to use these �ags in the serial Make�les. In that 
ase you need to adapt the
ompiler settings and if you 
hoose to a
tivate MPI, you have to swit
h the graphi
al user interfa
eo�. BLAS and OpenMP parallelism, however, is 
omaptible with the GUI.A.2.1 PrerequisitesYou do not need a parallel 
omputer to experiment with the parallel extensions. Ea
h modernIntel or AMD CPU supports the SSE2 ve
torisation whi
h you may use in your BLAS version.You 
an also install and use MPI and OpenMP 
ompilers/
ode on a serial ma
hine. This way you
an write and test 
ode on, e.g., your laptop, before going on a bigger ma
hine.BLAS : A proper BLAS implementation, ie. ATLAS or gotoBLAS. The default BLAS that
omes with many Linux versions is probably not speed-optimised (meaning that you 
anloose tremendous speed bene�ts for some matrix/matrix and matrix/ve
tor operations. [Atthe moment BLAS is only used for some Felix fun
tions � don't expe
t too mu
h.℄OpenMP : As long as g

 4.2 isn't available, you need another OpenMP 
apable 
ompiler. Thereare some open sour
e versions (I have used OmniMP, but wasn't happy with its optimisation
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apabilities). I now use the Intel 
ompiler, whi
h has a free li
en
e for single a
ademi
 users.Thanks to Intel for that! You 
an also 
ompile a prerelease of g

 4.2 (or higher). This hasthe OpenMP standard built in. You need to adapt the Make�les in that 
ase.MPI : The Felix MPI version works only without the graphi
al interfa
e. It was developed for a
omputer 
luster on whi
h graphi
al interfa
es make little sense. You 
an potentially 
ompilewith GUI in whi
h 
ase I would suspe
t ea
h MPI pro
ess tries to open its own GUI. I nevertested this.You need g

 or i

 or another C 
ompiler and an MPI library. I use mostly MPICH(1) but atleast previous parallel Felix versions worked also with LAM. I haven't 
he
ked MPICH(2) sofar, but there is little reason why it should not work (one hears 
ommuni
ation is 
onsiderablyfaster than MPICH(1)).Note that Intel provides its own MPI libs, but I don't have them. Might be a useful in-vestigation: Although I use i

, I link against the mpi
h libraries. That requires ratherun
omfortable 
ompiler settings (see Make�le.parallel).One 
an run into problems with the MPI runtime environment not �nding dynami
 libraries.I therefore link part of the libs stati
ally. That makes programs bigger. Alterantively, thereare also linker swit
hes to tell exe
utables where to �nd the libs.I use i

 be
ause to 
ombine MPI with OpenMP one (obviously) needs an OpenMP 
apable
ompiler. Using Intel to date is the only (more or less) tested 
ase (I have also testet a pre-release of g

-4.2 very brie�y; seems to work in prin
iple). The Make�le.parallel is for i

, sohave a look into it. You will see that I don't use the usual MPI 
ompiler wrapper s
ript, mpi

,but supply in
lude and library dire
tories et
 dire
tly to i

. You 
an probably avoid this,if you 
ompile your own MPICH (or LAM?) using i

 and use the mpi

 version generatedthis way. I DO, however, use the �mpirun�-s
ript of the MPICH standard installation.A.2.2 Compilation of Parallel FelixCompilation of parallel Felix follows the same steps as for the serial version. The instru
tionsbelow 
ompile a parallel library libpf, whi
h 
an 
oexist with the serial libraries as 
ompiled in the�rst se
tion of this appendix (libf and libxf). You only have to use the s
ript pFelix to 
ompile aparallel appli
ation 
ode against the right parallel libs.To 
ompile a parallel version of Felix without graphi
al user interfa
e follow these instru
tions:1. Beside the environment variables for the serial version you need to add another one for theparallel Felix s
ript. In your .bashr
 addalias pFelix="$FELIXDIR/pFelix"2. Enable the desired �ags in the parallel Make�le in the sr
 and/or main dire
tories:BLAS : Just enable -DWITH_BLAS in sr
/Make�le.parallel. [BLAS should work with andwithout graphi
al user interfa
e, so that you 
ould also use the serial Make�le if youwant the GUI (doesn't work, though, if -DWITH_MPI is also set)℄.I did o

assionally have some problems with linking against the right libs. You mighthave to adapt the Make�les to get BLAS working



160 APPENDIX A. INSTALLATION GUIDEOpenMP : To use OpenMP swit
h -DWITH_OMP on in the Make�le and adapt it touse your OpenMP 
apable 
ompiler (and linker, and ar
hiver). The graphi
al interfa
eshould work with OpenMP, so that you 
an use the serial Make�les, if you want graphi
aloutput.MPI : To use MPI a
tivate -DWITH_MPI and -DNO_GRAPHICS in the Make�le.3. Adapt 
ompiler, linker, ar
hiver and �ags, paths and libs in the Make�les as ne
essary.4. Delete any old obje
t �les present from 
ompiling serial libs earlier by evoking �make 
lean�from a shell5. Compile the parallel libs with �make -f Make�le.parallel par� in the sr
-dire
tory.This should produ
e a library libpf.a in the lib-dire
tory6. You link against the parallel library libpf.a automati
ally if you use the �pFelix� s
ript for
ompilation of your appli
ation 
ode. This requires proper settings in the top-level Make-�le.parallel.7. Test an example from $FELIXDIR/expl/parallel, i.e., 
ompile it using �pFelix prog� and runthe generated exe
utable using, e.g., mpirun -np 2 prog, where �prog� is the base programname (i.e., infmpi).Note that serial programs and parallel 
ode that uses MPI are not (in general) 
ompatible. Youneed, e.g., to de
lare in the parallel 
ode, whi
h bu�ers are transported between pro
esses. I willdes
ribe elsewhere how you 
an write appli
ations that 
an be 
ompiled parallel and serial (withGUI), and use even the same environment �les.A.2.3 Additional Notes1. There is a 
ompiler �ag -DTIMING in the sour
e Make�le. If this is swit
hed on during
ompilation, timing information for the main parts of a Felix programm will be printed forea
h individual pro
ess.2. If ne
essary, you 
an link Intel libs stati
ally using -i-stati
 �ag of i

; this a
ts more spe
i�
than -stati
 whi
h links everything stati
ally3. You 
an tell a binary where to expe
t a library, e.g., mpiCC -Wl,-rpath=$INTEL/

/9.0.030/lib/ -o mpitest mpitest.CA.3 Windows / CygwinThe serial Felix versions runs properly under Cygwin and the Windows operating system. It is
onsiderably slower than under Linux, but still usable for, e.g., presentations.An XView rpm 
an be downloaded here (together with instru
tions of how to install Cygwin andXView): http://www.physionet.org/physiotools/xview/There is no obvious reason why the parallel Felix extensions should not work given the right tools(MPI, OpenMPI, BLAS). However, it has never be tried to 
ompile parallel Felix on a Windowsbox.


