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Abstract 

Multiple cortical regions are crucial for perceiving the visual world, yet the processes 

shaping representations in these regions are unclear. To address this issue, we must elucidate 

how perceptual features shape representations of the environment. Here, we explore how the 

weighting of different visual features affects neural representations of objects and scenes, 

focusing on the scene-selective parahippocampal place area (PPA), but additionally including the 

retrosplenial complex (RSC), occipital place area (OPA), lateral occipital (LO) area, fusiform 

face area (FFA) and occipital face area (OFA). Across three experiments, we examined 

functional magnetic resonance imaging (fMRI) activity while human observers viewed scenes 

and objects that varied in geometry (shape/layout) and surface properties (texture/material). 

Interestingly, we found equal sensitivity in the PPA for these properties within a scene, revealing 

that spatial-selectivity alone does not drive activation within this cortical region. We also 

observed sensitivity to object texture in PPA, but not to the same degree as scene texture, and 

representations in PPA varied when objects were placed within scenes. We conclude that PPA 

may process surface properties in a domain-specific manner, and that the processing of scene 

texture and geometry is equally-weighted in PPA and may be mediated by similar underlying 

neuronal mechanisms. 

 

Keywords: structure, layout, texture, visual features, ventral visual, context, fMRI 
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Introduction 

In only the briefest of moments, the human visual system is able to draw on a broad array 

of cues to efficiently identify and navigate complex environments. A fundamental question of 

visual perception has been how the brain represents scene information to perform this feat. Since 

its initial description, the parahippocampal place area (PPA) (Epstein and Kanwisher, 1998) has 

become a critical region for understanding the neural mechanisms underlying this ability, yet 

diverse claims to its function have produced ongoing debate. Emerging with the initial 

description of PPA, the influential spatial layout hypothesis posits this region represents the 

geometric structure of a scene as defined by its background elements. Evidence has since 

produced support for this hypothesis through the encoding of spatial features within a scene, 

such as structural geometry or layout (Epstein et al., 2003), spatial boundary (Park et al., 2011), 

and spatial depth (Kravitz et al., 2011). Conversely, a growing body of work suggests PPA plays 

a broader role in scene recognition, extending beyond the confines of the spatial layout 

hypothesis to include the processing of high-level conceptual scene categories (Walther et al., 

2009; Walther et al., 2011; Dilks et al., 2011), non-spatial contextual associations of objects (Bar 

et al., 2008; Aminoff et al., 2007) and events (Diana, 2016), and the surface texture and material 

properties of isolated objects (Peuskens et al., 2004; Cant and Goodale, 2007; 2011). Evidence 

further suggests this region connects goal-states and context to construct a flexible neural 

representation of the environment by integrating multiple visual features diagnostic of scene 

identity (Lowe et al., 2016). Nevertheless, disentangling and directly comparing the unique 

contributions of individual visual elements to scene representation has been a central challenge, 
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and previous research has yet to elucidate the relative importance of individual visual features in 

shaping underlying neural responses, thus leaving these questions unanswered. 

Akin to structural features, surface properties are ubiquitous within a scene, and inform 

our general perception and recognition of the world around us. For instance, Steeves and 

colleagues (2004) have shown that a patient with profound visual form agnosia (impairments in 

processing structure) was able to use visual texture and colour information for accurate scene 

recognition, suggesting these visual features play an important role in the formation of scene 

identity. In object perception, surface characteristics such as texture may facilitate visual search 

by defining edges (Biederman and Ju, 1988). Moreover, texture is instrumental in providing 

visual cues which aid in identification and action planning necessary for interacting with objects 

(Buckingham et al., 2009; Gallivan et al., 2014), and may form a contextual bridge linking an 

object to its surrounding environment (Lowe et al., 2015). Research has further highlighted the 

importance of surface properties in the perception of natural scenes, where this feature may be 

particularly important for the formation of scene identity (Lowe et al., 2016). 

In light of the importance of both geometry and surface properties in object and scene 

perception, the present study aims to directly explore the relative contributions of these features 

across scene- and object-selective visual cortex in order to ascertain the importance of both 

geometry and surface properties in shaping representations of our visual world. To accomplish 

this, we use a novel set of images specifically designed to explore the relative weighting (i.e., 

levels of univariate activation) of geometry and surface properties in object and scene perception, 

and then compare neural representations of these features across objects and scenes. We first test 

the hypothesis that PPA will show equal weighting (i.e., equivalent levels of activation) to the 

processing of the geometry and surface properties of a scene, but greater sensitivity to the surface 
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properties of an object over its shape (Cant & Goodale, 2007; 2011), when scenes and objects are 

presented in isolation (Experiment 1). Building on previous behavioural research (Lowe et al., 

2015), we next explore object-scene interactions and test the hypothesis that interactions between 

an object and its background context will modulate the neural relationship of shared visual 

features (Experiment 2). In this experiment, we combine object and scene images from the 

previous experiment to form a new set of scenes. Across the first two experiments, we use 

multivoxel pattern analyses (MVPA) to examine if the processing of scene geometry and surface 

properties in PPA are mediated by shared or distinct neuronal mechanisms, and also predict that 

the processing of these visual features in PPA is domain specific to scenes, and thus PPA would 

show greater activation when processing the surface properties of scenes compared with objects.  

Finally, we use the fMR-adaptation approach to obtain a sensitive measure of the relative 

weighting of geometry and surface properties solely within scene perception in PPA (Experiment 

3).  Here, we predict equivalent releases from adaptation for variations in scene geometry or 

surface properties and an interaction (i.e., non-additivity) between the processing of these 

features, which would imply that their representations are not independent. In addition to 

examining the PPA, in all experiments we explore how geometry and surface properties 

contribute to neural representations in regions sensitive to processing scenes (RSC, OPA), 

objects (LO), and faces (FFA, OFA).  

Materials and Methods 

Observers 

Thirty-six paid observers with normal or corrected-to-normal visual acuity were recruited 

from the University of Toronto community, consisting of ten paid observers (6 male; mean age 
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26.2 ± 4.92) in Experiment 1, twelve paid observers (6 male; mean age 25.83 years ± 3.61) in 

Experiment 2, and fourteen paid observers (6 male; mean age 24.21 ± 3.26) in Experiment 3.  All 

Observers gave informed consent in accordance with the University of Toronto Ethics Review 

Board. One observer in Experiment 3 was removed prior to analyses due to excessive head 

motion (i.e., rotation and or translation in excess of 3 mm or 3°, respectively) which could not be 

motion-corrected within acceptable limits. 

Stimuli and Procedure 

E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA; Experiment 1; Experiment 2) 

and Matlab (MathWorks, Natick, MA; Experiment 3) were used to control stimulus presentation 

and collect behavioural responses. Images for all three experiments were rear-projected onto a 

screen in the MRI scanner (subtending 17.1° x 12.8 of visual angle), and observers viewed 

stimuli through a mirror mounted to the head coil directly above the eyes. In Experiment 1, 

stimuli were 512 unique full-colour 3-dimensional indoor scenes and objects rendered using 

Blender 2.0 software (Stichting Blender Foundation, Amsterdam; Fig. 1A) and created by 

varying a counterbalanced combination of scene-shape (circular; square), scene-texture (wood; 

brick), object-shape (circular; square), and object-texture (wood; brick). Textures were 

heterogeneous within a category (i.e., wood and brick), such that each category contained 

multiple exemplars of the same type of texture, as would be experienced in real-world 

environments (see Fig. 1A). One exemplar was used for each type of shape (i.e., circular and 

square; but see Experiment 3 for results when the number of texture and shape exemplars were 

matched). A blocked fMRI experimental paradigm was used wherein 24 images were presented 

in blocks of 20-s each. Each block was preceded by a 12-s fixation period and a 4-s written 
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instruction to attend to changes in either the texture or shape of the scene or object in the ensuing 

block.  

In each trial (12 per block, lasting 1666 ms each), two images were presented for 300 ms 

(separated by a 200-ms blank interval), and the task of the observers was to decide if the attended 

feature (shape or texture) of the stimulus (scene or object) was the same or different across the 

two images, responding during a 1166-ms period following the onset of the second image (via a 

response pad placed in the observer’s right hand). Each block contained an equal number of 

“same” and “different” trials. Observers were instructed to maintain central fixation and respond 

as quickly and as accurately as possible. Images in each condition were presented randomly 

within each block. Each observer took part in 5 runs (7 min 24 s each), and each run contained a 

unique and counterbalanced order of 12 stimulus blocks (i.e., three of each condition: scene-

shape; scene-texture; object-shape; object-texture). Run order was randomized across observers 

and each condition (i.e., what was attended, shape or texture) was held constant per block. For 

Experiment 2, the procedure was identical, but the stimuli were combined to create new images 

containing both scenes and objects (Fig. 1B), with an object presented in the center of each 

scene.  

In Experiment 3, 100 unique grayscale 3-dimensional indoor scenes were generated using 

Blender 2.0 software (Stichting Blender Foundation, Amsterdam; Fig 1C; Supplementary 

Materials Fig. S1). Stimuli were fully counterbalanced with 10 unique scene shapes, and 10 

unique scene textures (i.e., variation in scene shape and scene texture were matched). 

Differences in low-level image features (luminance, contrast, and hue) were controlled using the 

SHINE toolbox (Willenbocket et al., 2010). A fast, event-related fMR-adaptation design was 

used, wherein 75 trials (6 s each) were presented in each run (7 min 42 s each), with a total of 5 
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runs per observer. Observers were asked to respond whether two consecutively displayed images 

were, as a whole, the “same” or different”, without attending to any particular stimulus 

dimension. Conditions examined included a “no-change” condition where neither feature 

changed (baseline), a “both-change” condition where both features changed, and two conditions 

where either feature could change independently of the other (“same-shape-different-texture”; 

“different-shape-same-texture”). In each trial, following an initial fixation of 1-s, two images 

were displayed (300 ms each) and were separated by an interstimulus interval of 800 ms. 

Following these images, observers responded during a 3600 ms response window (via a response 

pad placed in the observer’s right hand). Trial order was counterbalanced across five unique 

runs, and the order of these runs was counterbalanced across participants.  

Localizer Scan 

For Experiments 1 and 2, stimuli used to localize object-, scene-, and face-sensitive areas 

of cortex were photographs of various scenes, faces, common objects, and tile-scrambled images. 

Stimuli were presented in 16-s blocks of 32 images at a resolution of 375 x 375 pixels (7.8° x 

7.8°), and were displayed for 400 ms each, with an interstimulus interval of 50 ms. Observers 

fixated on a centrally-presented black fixation cross, and were instructed to respond with a 

button press when the fixation cross changed from black to red (randomly occurring once or 

twice per stimulus block). There were 4 blocks for each stimulus category within a run, and there 

were two unique run orders. Sixteen-second long fixation periods were presented after each 

stimulus block. Each observer took part in three localizer runs (6-min 40-sec each). For 

Experiment 3, stimuli used to localize object and scene-sensitive areas of cortex consisted of 

photographs of various scenes, faces, common objects, and phase-scrambled versions of the 

common objects. A single run consisted of presenting 4 blocks each of scenes, faces, intact 
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objects, and phase-scrambled objects. Each stimulus block was 16-s long and contained 20 

different images, each lasting 750 ms and followed by a 50 ms blank period. No images were 

repeated within or across blocks in a given run. To ensure attention to the displays, observers 

fixated at the center and detected a slight spatial jitter, occurring randomly in 1 out of every 10 

images. Besides the stimulus blocks, there were also 8-s fixation blocks presented at the 

beginning, middle, and end of each run. Following Epstein and Kanwisher (1998), we used 2 

unique and balanced run orders. Each run lasted 4 min and 40 s. All observers took part in 3 runs 

of this localizer.  

MRI Acquisition 

Scanning was performed at the Center for Addiction and Mental Health using a 3T GE 

Discovery MR750 whole-body MRI scanner equipped with an 8-channel head coil. T1-weighted 

anatomical images were acquired using a 3D SAG T1 BRAVO spiral pulse sequence [repetition 

time (TR), 6736 ms; echo time (TE), 3 ms; inversion time, 650 ms; flip angle 8°, 256 x 256 

matrix size, 200 slices, 1 mm isovoxel]. For the functional runs, T2*-weighted images sensitive 

to blood oxygenation level-dependent (BOLD) contrasts were acquired using a spiral pulse 

sequence (64 x 64 matrix size; field of view 22 cm; TR 2000 ms; TE 30 ms; flip angle 60°; 200 

volumes for the localizer runs in Experiments 1 and 2 and 140 volumes for the localizer runs in 

Experiment 3, 134 volumes for the main experimental runs in Experiments 1 and 2 and 231 

volumes for the adaptation runs in Experiment 3). Thirty-one slices (3.4 mm x 3.4 mm x 5 mm, 

no gap) parallel to the anterior and posterior commissure line were collected in all functional 

runs. 

Univariate Data Analysis 
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fMRI data were processed and analyzed using BrainVoyager QX 2.8 (Brain Innovation, 

Maastricht, the Netherlands). Data preprocessing included slice acquisition time correction, 3D 

motion correction, temporal filtering (linear trend removal and high-pass filtering set at 3 

cycles/run), and Talairach space transformation (Talairach and Tournoux, 1988). Data from the 

functional localizer was analyzed using a general linear model (GLM), accounting for 

hemodynamic response lag (Friston et al., 1994). Regions of interest (ROIs) can be seen in 

Figure 2. The PPA ROI was defined as a region in the collateral sulcus and parahippocampal 

gyrus (see Epstein and Kanwisher, 1998) whose activation was higher for scenes than for faces 

and objects (false discovery rate, q < 0.05; this threshold applies to all functional regions 

localized in individual observers; identified in all observers in all Experiments). In addition, the 

RSC (see Epstein and Higgins, 2005) and OPA (also known as transverse occipital sulcus; see 

Dilks et al., 2013) ROIs were functionally defined as regions in restrosplenial cortex–posterior 

cingulate–medial parietal cortex and transverse occipital cortex, respectively, whose activations 

were higher for scenes than for faces and objects (identified in eleven, and nine, observers, 

respectively, in Experiment 1, 7 and 9 observers in Experiment 2, and 12 and 13 observers in 

Experiment 3). In accordance with Grill-Spector et al. (2000), LO, a sub-division of the lateral 

occipital complex (LOC), was defined as a region in the lateral occipital cortex near the posterior 

inferotemporal sulcus, with activation higher for objects than for scrambled objects (identified in 

all observers in all experiments). The fusiform face area (FFA) was selected as a control region 

(as our stimuli did not contain any faces) and following Kanwisher et al. (1997), this area was 

defined as a region in the extrastriate cortex whose activations were higher for faces than scenes 

or objects (identified in 11 observers in Experiment 1, all observers in Experiment 2, and 12 

observers in Experiment 3). As an additional control region, the occipital face area (OFA) was 
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defined as a region in the inferior occipital gyrus (Gauthier et al., 2000) whose activations were 

higher for faces than scenes or objects (identified in 9 observers in Experiment 1, 11 observers in 

Experiment 2, and 11 observers in Experiment 3).  

Following the standard ROI-based analysis approach (Saxe et al., 2006), we overlaid the 

ROIs onto the data from our main experiment and extracted time courses from each observer. 

Peak responses for each condition were obtained by collapsing the time courses for all of the 

conditions and then identifying the time point of greatest signal amplitude in the average 

response (Xu and Chun, 1997; Xu, 2010; Cant and Xu, 2012). This was done separately for each 

observer in each ROI, and the resultant peak responses were then averaged across all observers. 

The average levels of peak activation (measured in percent BOLD signal change from baseline 

fixation) for each condition across observers were subjected to a 2 (Experiment 1 and 2: 

Stimulus: object vs. scene; Experiment 3: Texture: same vs. different) x 2 (Experiment 1 and 2: 

Feature: texture vs. shape; Experiment 3: Shape: same vs different) repeated-measures ANOVA 

(SPSS, Chicago, IL, USA) for each ROI (PPA, RSC, OPA, LO, FFA, OFA). Planned pairwise 

comparisons (Bonferroni-corrected for multiple comparisons) were then conducted to compare 

the processing of texture and shape for both objects and scenes in each ROI in Experiments 1 

and 2, and to compare same versus different conditions for scene texture and scene shape in 

Experiment 3. Left and right hemispheres were combined for each ROI in all analyses (see 

Supplementary Materials). 

Multivoxel Pattern Analysis (MVPA) 

Support Vector Machine Classifiers. Pattern classification was performed in Experiments 1 and 2 

with a combination of in-house software (using Matlab) and the Princeton MVPA Toolbox for 

Matlab (http://code.google.com/p/princeton-mvpa-toolbox/) using a Support Vector Machines 

http://code.google.com/p/princeton-mvpa-toolbox/
http://code.google.com/p/princeton-mvpa-toolbox/
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(SVM) classifier (libSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/). The SVM model used a 

linear kernel function and a constant cost parameter, C=1, to compute a hyperplane that best 

separated the block/condition responses. To test the accuracy of the SVM classifiers we used a 

“leave-one-run-out” N-fold cross-validation, in which a single fMRI run was reserved for 

classifier testing. We performed this N-1 cross-validation procedure until all runs were 

separately tested, and then averaged across N-iterations in order to produce a representative 

classification accuracy measure for each participant, ROI, and pattern discrimination (Duda et 

al., 1995). 

Multiclass and Pairwise Discriminations. SVMs are designed for classifying differences 

between two stimuli and LibSVM (the SVM package implemented here) uses the so-called ‘one-

against-one method’ for classification (Hsu and Lin, 2002). With the SVMs we performed two 

complementary types of classification analyses; one in which the multiple pairwise results were 

combined in order to produce multiclass discriminations (distinguishing among all 4 of our 

condition types) and another in which the individual pairwise discriminations were examined and 

tested separately. 

The multiclass discrimination approach allowed for an examination of the distribution of 

the classifier guesses through visualization of the resulting ‘confusion matrix’. In a confusion 

matrix, each row (i) represents the instances of the actual condition and each column (j) 

represents the predicted condition. Their intersection (i, j) represents the (normalized) number of 

times a given condition i is predicted by the classifier to be condition j. Thus the confusion 

matrix provides a direct visualization of the extent to which a decoding algorithm confuses (or 

correctly identifies) the different classes. All correct classifications are located in the diagonal of 

the matrix (with classification errors represented by non-zero values outside of the diagonal) and 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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average decoding performance is defined as the mean across the diagonal. The values in each 

row sum to 1 (i.e., 100% classification). If decoding is at chance levels, then classification 

performance will be at 1/4 = 25%. For all multiclass discriminations, we statistically assessed 

decoding significance across participants (for each ROI and condition epoch) using one-tailed t-

tests versus 25% chance decoding. For pairwise discriminations, we statistically assessed 

decoding significance across participants using one-tailed t-tests versus 50% chance decoding. 

Importantly, an FDR correction of q  0.05 was applied to the pairwise comparisons based on the 

number of comparisons examined per ROIs, and for the multiclass discriminations based on the 

number of ROIs examined (Benjamini and Hochberg, 1995). 

Inputs to the SVM Classifier. BOLD percent signal change values for each ROI provided inputs 

to the SVM classifier. The percent signal change response was computed from the time-course 

activity for the task-evoked responses with respect to the time-course of a run-based averaged 

baseline fixation value, for all voxels in the ROI. The baseline fixation window was defined as a 

time point prior to the 4-sec instruction period before each stimulus block (6 sec prior to block 

onset, averaged across all blocks within an experimental run). For the block-evoked activity we 

extracted, for each condition, the average of imaging volumes 3-10 (i.e., 6-20 sec), which are 

time points encompassing the first peak of the hemodynamic response until the end of the 

experimental block. This windowed-average percent signal change classification approach 

corresponds with that used in recent work using the same technique (Gallivan et al., 2013; 

Gallivan et al., 2014; Lowe et al., 2016). Following the extraction of each block’s activity, these 

values were rescaled between -1 and +1 for each voxel pattern within an ROI (Misaki et al., 

2010). 
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Behavioural data analysis 

Behavioural performance measures of accuracy and reaction time were recorded using E-

Prime 2.0 software (Experiments 1 and 2) and Matlab (Experiment 3), and analyzed with SPSS, 

by performing a 2 (stimulus: object vs. scene) x 2 (feature: texture vs. layout) repeated-measures 

ANOVA for Experiments 1 and 2, and a 2 (texture: same vs. different) by 2 (shape: same vs. 

different) repeated-measures ANOVA for Experiment 3, with subsequent pairwise comparisons 

(all two-tailed and Bonferroni corrected) conducted based on a priori theoretical motivation (i.e., 

examining differences between shape and texture processing for objects and scenes separately in 

Experiments 1 and 2, and examining potential releases from adaptation when scene texture 

varied but scene shape was held constant, and when scene shape varied but scene texture was 

held constant, in Experiment 3). See supplementary material for results of the behavioural 

analyses for all three experiments. 

Experiment 1: Feature processing in objects and scenes separately 

In Experiment 1, observers viewed either indoor scenes or objects, separately (Fig. 1A). 

Each scene and object could change along two dimensions: shape (circular; square) and texture 

(wood; brick). Given previous findings highlighting the influence of both surface properties 

(Lowe et al., 2016) and spatial layout (Epstein and Kanwisher, 1998) on activity in scene-

selective cortex, we hypothesize similar univariate neural activity between scene-texture and 

scene-shape conditions in PPA (i.e., equal weighting). We further predict, based on previous 

results, increased univariate activity when attending to object-texture compared with object-

shape in PPA (Cant and Goodale, 2007; 2011), and vice versa in the object-selective LO, which 
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has been shown to represent higher level object-shape information (Kourtzi and Kanwisher, 

2001). To test the hypothesis that PPA processes surface properties in a domain specific manner, 

we examine neural representations of this visual feature across object and scene perception, 

predicting that PPA will show increased activity to the surface properties of a scene over an 

object. Moreover, to test the prediction that geometry and surface properties are processed 

similarly within scene perception (i.e., are potentially mediated by shared neuronal mechanisms), 

and distinctly within object perception, we use multivariate techniques to explore whether these 

features can be discriminated from one another in both objects and scenes. As the stimuli used 

here were not tailored to the known functional properties of FFA (Kanwisher et al., 1997) and 

OFA (Gauthier et al., 2000), these regions were used as controls (see Fig. 2 for all ROIs). 

 

 

 

 

 

 

 

 

 

 

Figure 1. Experimental Stimuli. (A) Examples of stimuli used in Experiment 1. Scenes and objects are defined by 

their shape (circular vs. square) and texture (wood vs. brick). Observers attended to the shape or texture of the object or 

scene, either of which could change while the other was held constant. (B) Examples of stimuli used in Experiment 2. 

The stimuli and procedure were identical to Experiment 1, with the exception that objects were placed within scenes. 

(C) Examples of the stimuli used in Experiment 3. Scenes could vary across 10 different shapes, and 10 different 
textures. In Experiment 3, observers attended only to overall changes across images, and did not attend directly to any 

one particular feature. For additional examples of the stimuli used in Experiment 3, see Supplementary Materials Fig. 

S1. 
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Results and Discussion 

We first examined the univariate response amplitudes (percent signal change compared to 

fixation) of ROIs for each condition (scene-shape; scene-texture; object-shape; object-texture) 

using 2 x 2 repeated-measures ANOVAs with stimulus (object; scene) and feature (texture; 

shape) as factors (Fig. 3; collapsing left and right hemispheres for each region; this applies to all 

Experiments), and conducted simple main effects analyses to examine interactions between 

stimulus category and feature in each region. We found a significant main effect of stimulus for 

all regions except FFA (PPA: F1,9 = 143.98, p < 0.001; RSC: F1,6 = 381.14, p < 0.001; OPA: F1,8 

= 101.42, p < 0.001; LO: F1,9 = 22.08 p = 0.001; FFA: F1,9 = 0.36 p = 0.566; OFA: F1,9 = 16.17 p 

= 0.003), and a main effect of feature for PPA (F1,9 = 24.76, p = 0.001), LO (F1,9 = 11.00, p = 

0.009), and OFA (F1,9 = 6.99 p = 0.027), but not for the remaining regions (all Fs < 4.59; all ps ≥ 

0.061). We observed significant stimulus-by-feature interactions in all scene-selective regions 

(PPA: F1,9 = 35.03, p < 0.001; RSC: F1,6 = 9.12, p = 0.023; OPA: F1,8 = 20.63, p = 0.002), but not 

in object-selective cortex (LO: F1,9 = 0.06, p = 0.811) or face-selective cortex (FFA: F1,9 = 0.89 p 

= 0.369; OFA: F1,9 = 0.28 p = 0.609).  

Figure 2. Regions of interest. Functionally defined ROIs are shown on the brains of two representative observers. 

Talairach coordinates for peak voxels of each ROI in observer one (PPA – FFA) and two (OFA) are as follows: 

LPPA, -29, -34, -10; RPPA, 27, -34, -5; LRSC, -15, -56, 14; RRSC, 14, -59, 17; LOPA, -41, -72, 14, ROPA, 32, -80, 
19; LLO, -45, -80, 0; RLO, 39, -71, 5; LFFA, -43, -36, -17; RFFA, 41, -47, -13; LOFA, -36, -79, 4; ROFA, 43, -75, -

3.           
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These findings confirm a dissociation between object and scene processing across scene-

selective and object-selective areas of cortex. In line with our predictions, subsequent planned 

pairwise comparisons (two-tailed and Bonferroni-corrected; this applies to all Experiments) 

revealed no significant differences between scene-shape and scene-texture processing in PPA (t9 

= 0.17, p = 0.866). Similarly, this was also observed in RSC (t6 = 1.75, p = 0.131), yet higher 

BOLD response for scene-shape over scene-texture was observed in OPA (t8 = 3.09, p = 0.015). 

Moreover, consistent with our predictions, analysis of object-processing revealed significantly 

higher activation for object-texture over object-shape in PPA (t9 = 12.61, p < 0.001) but not RSC 

(t6 = 1.60, p = 0.170), replicating previous findings (Cant and Goodale, 2007; 2011). We further 

observed higher activation for object-shape over object-texture in LO (t9 = 2.30, p = 0.047), as 

expected. Finally, higher activation for object-texture over object-shape was also found in OPA 

(t8 = 3.15, p = 0.014). This latter result was unexpected given the sensitivity of OPA to scenes, 

yet we speculate this finding may speak to the involvement of OPA in the processing of local 

elements, which may contain cues for scene recognition and navigation (Kamps et al., 2016). 

 

 

 

 

 

 

 

Figure 3. Univariate response amplitudes for Experiment 1. BOLD signal activation for all conditions 

(attend scene shape; attend scene texture; attend object shape; attend object texture) in each ROI. Data are 

represented as mean ± SEM. 
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Interactions across ROIs were investigated using a 2 (region) by 2 (stimulus) by 2 

(feature) repeated-measures ANOVA. This analysis revealed significant region-by-stimulus 

interactions for PPA with RSC (F1,6 = 45.43, p = 0.001), LO (F1,9 = 142.00, p < 0.001), FFA (F1,9 

= 117.08, p < 0.001), and OFA (F1,9 = 134.46 p < 0.001); for RSC with OPA (F1,5 = 14.68, p = 

0.012), LO (F1,9 = 98.15, p < 0.001), FFA (F1,6 = 160.90, p < 0.001), and OFA (F1,6 = 208.34 p < 

0.001); for OPA with LO (F1,8 = 118.29, p < 0.001), FFA (F1,8 = 76.99, p < 0.001) and OFA (F1,8 

= 122.78 p < 0.001); for LO with FFA (F1,8 = 19.93, p = 0.002), and for FFA with OFA (F1,9 = 

27.81 p = 0.001). Significant region-by-feature interactions were found for PPA with RSC (F1,6 = 

6.13, p = 0.048), OPA (F1,8 = 5.51, p = 0.047), and LO (F1,9 = 40.08, p < 0.001); for RSC with 

OFA (F1,6 = 6.11 p = 0.048), for OPA with LO (F1,8 = 17.77, p = 0.003); and for LO with FFA 

(F1,9 = 50.70, p < 0.001) and OFA (F1,9 = 21.67 p = 0.001). A significant three-way interaction 

was found for PPA with LO (F1,9 = 7.51, p = 0.023), FFA (F1,9 = 6.09, p = 0.036), and OFA (F1,9 

= 12.34 p = 0.007), and for OPA with OFA (F1,8 = 5.52 p = 0.047) These results are consistent 

with previous work demonstrating a functional dissociation between processing within scene-

selective, object-selective, and face-selective cortex, but also within the scene-processing 

network itself (Cant & Goodale, 2007, 2011; Cant & Xu, 2012, 2015, 2016; Lowe et al., 2016). 

Since a null result in a univariate analysis does not necessarily imply that a given region 

cannot distinguish between two properties, we conducted multivariate analyses to examine 

whether each of our ROIs could discriminate between stimulus category and feature. The aims of 

these analyses were twofold. Firstly, we investigated the extent to which each ROI could 

successfully discriminate generally across all conditions (object shape, object texture, scene 

shape, scene texture), and secondly, we conducted a number of pairwise comparisons in order to 

directly explore whether these regions could successfully discriminate between the geometry and 
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surface properties of objects and scenes. We first extracted multivoxel fMRI activity and used 

linear SVM classifiers in each region to create confusion matrices representing the distribution of 

classifications (and misclassifications) across conditions (Fig. 4A). These matrices demonstrate 

misclassifications in scene- and object-cortex are largely contained within the same stimulus 

category (e.g., scene-texture is more likely to be misclassified as scene-shape than object-

texture). We then examined the extent to which each of our conditions could be decoded above 

chance (25%). These multiclass discriminations revealed classification accuracies that were 

significantly above chance for all ROIs (all ts ≥ 3.21; all ps ≤ 0.005; all qs ≤ 0.005), indicating 

that each region classifies conditions with above-chance accuracy (Fig. 4B). To investigate these 

findings in greater detail, we performed subsequent analyses using planned pairwise-

comparisons corrected for multiple comparisons using the FDR procedure (q; based on the 

number of comparisons per ROI) to examine whether shape and texture could be decoded at 

greater-than-chance accuracy (50%) when attending to either objects or scenes, separately (Fig. 

4C).  

 

 

 

 

 

 

 

Figure 4. (Above) Confusion matrices for Experiment 1. (A) Confusion matrices (chance = 0.25) for Experiment 1 

generated from multiclass discriminations showing the distribution of classification errors across all four conditions 

(SS = Scene Shape; ST = Scene Texture; OS = Object Shape; OT = Object Texture) for each ROI. The average 

classifier response proportions across participants are shown. When decoding is perfect, the confusion matrix will 

have a diagonal containing values of 1 and the rest of the matrix will be 0. Note that the average decoding 

performance (shown in Fig. 4B) is defined as the mean across the diagonal. To highlight differences in decoder 

performance, the matrices have been rescaled (rather than being scaled from 0-1) (Below) Multivariate results for 

Experiment 1. (B) Overall classification accuracy (chance = 25%; dashed line) of all four conditions for each ROI. 

(C) Decoding accuracy (chance = 50%; dashed line) for scene feature discriminations (shape vs. texture), object 

feature discriminations (shape vs. texture), shape category discriminations (scene vs. object) and texture category 

discriminations (scene vs. object) for each ROI. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 

0.001, all p-values shown have been FDR-corrected 

. 
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Findings revealed no significant decoding of scene-shape versus scene-texture in both 

PPA and RSC (both ts ≤ 0.58; both ps ≥ 0.29), replicating previous findings using real-world 

scene stimuli (Lowe et al., 2016), and thus provides additional evidence that scene-texture and 

scene-shape may be processed similarly in these regions. In contrast, we found significant 

decoding of scene-shape versus scene-texture in OPA (t8 = 2.56, p = 0.017, q = 0.017). 

Significant discrimination of these features was not observed in LO (t9 = 1.16, p = 0.139), nor in 

FFA (t9 = 1.32, p = 0.110), but it was found in OFA (t9 = 3.44, p = 0.004, q = 0.005). Continuing 

our analysis, we found significantly above-chance classification accuracy for object-shape versus 

object-texture in PPA (t9 = 2.83, p = 0.010, q = 0.013), providing mounting evidence consistent 

with previous univariate findings that the processing of these object features is dissociated in 

PPA (Cant and Goodale, 2007; 2011). Significant decoding of these object features was found in 

OPA (t8 = 3.97, p = 0.002, q = 0.010), but only marginally significant decoding of these features 

was found in LO (t9 = 1.76, p = 0.056), and no significant decoding was observed in RSC (t6 = 

1.46, p = 0.098). We found significant decoding in both FFA (t9 = 2.21, p = 0.027, q = 0.045) 

and OFA (t9 = 2.35, p = 0.022, q = 0.022) across these conditions. Finally, to ensure a null 

finding in one of our main ROIs (e.g., PPA) could not be attributed to a problem with the 

classification procedure itself, we conducted control pairwise comparisons in which we expected 

to find significantly above-chance classification. Specifically, we examined the classification of 

scenes versus objects when holding stimulus feature constant, and found significant decoding of 

scene-shape versus object-shape for all regions (all ts ≥ 5.25; all ps ≤ 0.001; all qs ≤ 0.001), as 
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well as significant decoding of scene-texture versus object-texture for all regions (all ts ≥ 2.82; 

all ps ≤ 0.01; all qs ≤ 0.01).  

Experiment 2: Feature processing in scenes containing an object 

Experiment 1 provides strong evidence that feature processing of a scene extends beyond 

spatial features to include surface properties such as texture, and that these features elicit similar 

neural activity in PPA. In other words, the processing of scene texture and scene shape may be 

weighted equally in PPA. Scenes rarely exist independently of objects, however, and previous 

research has indicated object-processing may have an interactive relationship with scene-

processing (Joubert et al., 2007; Mullin et al., 2013) and that geometry and surface properties 

may influence this relationship (Lowe et al., 2015). To examine this interaction (i.e., the presence 

of a surrounding scene influencing object representation, and vice versa), we expanded upon the 

findings of Experiment 1 by examining the processing of shape and texture while observers 

viewed new images depicting an object placed within a scene (Fig. 1B). This allowed us to 

attempt to replicate the findings from Experiment 1, but importantly, to test the prediction that 

shared visual object and scene features are not processed independently, but interact across 

stimulus categories.  Specifically, since the surface properties of a scene can exhibit global 

precedence over the surface properties (but not the geometry) of an object within that scene 

(Lowe et al., 2015), we might observe decreased sensitivity to object surface properties relative 

to the processing of object geometry in PPA (e.g., equivalent activation for object texture and 

shape, or less activation for object texture). This would differ from the results in Experiment 1, 

in which objects were not presented within scenes. 

Results and Discussion  
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Consistent with Experiment 1, we examined univariate response amplitudes in each 

region by conducting a 2 x 2 repeated-measures ANOVA with stimulus (object; scene) and 

feature (texture; shape) as factors (Fig. 5), and found significant main effects of stimulus for all 

regions except one of our control regions, FFA (PPA: F1,11 = 88.40, p < 0.001; RSC: F1,10 = 

16.74, p = 0.002; OPA: F1,10 = 110.83, p < 0.001; LO: F1,11 = 11.62 p = 0.006; FFA: F1,10 = 2.20 

p = 0.169; OFA: F1,10 = 70.96 p < 0.001), but only a main effect of feature for LO (PPA: F1,11 = 

2.25, p = 0.162; RSC: F1,10 = 0.004, p = 0.952; OPA: F1,10 = 0.334, p = 0.576; LO: F1,11 = 12.53, 

p = 0.005; FFA: F1,10 = 3.361 p = 0.097; OFA: F1,10 = 0.15 p = 0.711). Interestingly, the stimulus-

by-feature interaction was non-significant in all regions (all Fs < 3.43; all ps ≥ 0.094), which 

differs from the results of Experiment 1, where scenes and objects were presented separately. 

Subsequent pairwise comparisons found that activation levels for scene-shape and scene-texture 

did not differ in any scene selective region (PPA: t11 = 0.35, p = 0.734; RSC: t10 = 0.19, p = 

0.855; OPA: t10 = 1.00, p = 0.341), and neither did activation for object-shape and object-texture 

in PPA (t11 = 1.69, p = 0.118). In contrast, levels of activity for these features were dissimilar in 

LO, with significantly higher activity observed when attending to object-shape compared with 

object-texture (t11 = 2.53, p = 0.028), as predicted. In line with our predictions and consistent 

with the results of Experiment 1, these findings reveal that PPA exhibits similar BOLD 

responses across scene features. In contrast to the results of Experiment 1, however, we observed 

equal sensitivity to the processing of object-texture and object-shape in PPA, which is consistent 

with our prediction regarding object-scene interactions.  
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To explore these interactions more directly, we conducted a 2 (stimulus: object vs. scene) 

by 2 (feature: shape vs. texture) by 2 (Experiment: Experiment 1 vs. Experiment 2) mixed-design 

ANOVA for PPA across Experiments 1 and 2. Significant main effects of Experiment (F1,20 = 

5.19, p < 0.034) and stimulus were observed (F1,20 = 246.85, p < 0.001), along with a significant 

stimulus-by-Experiment interaction (F1,20 = 52.05, p < 0.001). Moreover, a significant main 

effect of feature was found (F1,20 = 16.41, p = 0.001), but the feature-by-Experiment interaction 

was not significant (F1,20 = 3.02, p = 0.098). A significant stimulus-by-feature interaction was 

found (F1,9 = 18.12, p < 0.001), and importantly, a significant three-way interaction was also 

observed (F1,20 = 5.89, p = 0.025), warranting further analyses. Subsequent pairwise comparisons 

revealed no significant differences between the representation of either the geometry (t20 = 0.43, 

p = 0.671) or surface properties (t20 = 0.51, p = 0.611) of a scene across experiments. In contrast, 

we found a significant difference between the representation of the geometry (t20 = 4.98, p < 

0.001) and surface properties (t20 = 4.13, p = 0.001) of an object across experiments. Not 

surprisingly, higher response amplitudes in PPA for both of these object features was observed 

when the object was placed within a scene. But importantly, these results demonstrate that the 

Figure 5. Univariate response amplitudes for Experiment 2. BOLD signal activation for all conditions (attend 

scene shape; attend scene texture; attend object shape; attend object texture) in each ROI. Data are represented as 

mean ± SEM. 
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representation in PPA changes when objects are placed within the context of a scene 

(specifically, the representation of object, but not scene, features changes).  

Significant region-by-stimulus interactions were found for PPA with OPA (F1,10 = 

17.293, p = 0.002), LO (F1,11 = 67.07, p < 0.001), FFA (F1,10 = 126.45, p < 0.001), and OFA 

(F1,10 = 242.61 p < 0.001); for RSC with OPA (F1,9 = 21.25, p = 0.001), LO (F1,10 = 35.46, p < 

0.001), FFA (F1,10 = 20.52, p = 0.001), and OFA (F1,9 = 58.17 p < 0.001); for OPA with LO (F1,10 

= 61.81, p < 0.001), FFA (F1,9 = 74.95, p < 0.001), and OFA (F1,9 = 170.46 p < 0.001), and for 

FFA with OFA (F1,9 = 95.96 p < 0.001). Significant region-by-feature interactions were found 

for PPA with LO (F1,11 = 35.60, p < 0.001), for RSC with LO (F1,10 = 10.60, p = 0.009), for OPA 

with LO (F1,10 = 15.42, p = 0.003), and for LO with FFA (F1,10 = 25.89, p < 0.001). A significant 

three-way interaction was found for RSC with OPA (F1,9 = 12.24, p = 0.007) and OPA with LO 

(F1,10 = 7.69, p = 0.020) and OFA (F1,9 = 19.00 p = 0.002). Taken together, the results from 

Experiments 1 and 2 demonstrate that scene-, object-, and face-sensitive regions of cortex 

process the same visual input in appreciably different ways, and speak to varying levels of 

functional specificity within ventral visual cortex (Cant & Goodale, 2007, 2011; Cant & Xu, 

2012, 2015; Lowe et al., 2016). 

To further explore the processing of geometry and surface properties across ventral-

visual cortex, we conducted a number of multivariate analyses consistent with Experiment 1. 

After creating confusion matrices (Fig. 6A), multiclass discriminations revealed classification 

accuracies that were significantly above chance (25%) for all ROIs (all ts ≥ 4.70; all ps ≤ 0.001, 

all qs ≤ 0.001), indicating that each region classifies conditions with above-chance accuracy 

(Fig. 6B). To investigate these findings in greater detail, we performed subsequent analyses 

using planned pairwise-comparisons to examine whether shape and texture could be decoded at 
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greater-than-chance accuracy (50%) when attending both objects and scenes, separately (Fig. 

6C). Critically, and consistent with the results of Experiment 1, we found no evidence for 

significant discrimination of scene-shape and scene-texture conditions in both PPA and RSC 

(both ts ≤ 1.05; both ps ≥ 0.159), suggesting these features are processed similarly within these 

regions. In contrast, we found significant decoding of scene-shape versus scene-texture in OPA 

(t10 = 2.09, p = 0.031, q = 0.031), and observed similar results in LO (t11 = 2.15, p = 0.027, q = 

0.027). We further found no difference across these conditions in one control region, FFA (t10 = 

0.88, p = 0.201), but did find a difference in OFA (t10 = 3.08, p = 0.006, q = 0.008).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (Above) Confusion matrices for Experiment 2. (A) Confusion matrices (chance = 0.25) for 

Experiment 2 generated from multiclass discriminations showing the distribution of classification errors across all 

four conditions (SS = Scene Shape; ST = Scene Texture; OS = Object Shape; OT = Object Texture) for each ROI. 

The average classifier response proportions across participants are shown. When decoding is perfect, the confusion 

matrix will have a diagonal containing values of 1 and the rest of the matrix will be 0. Note that the average 

decoding performance (shown in Fig. 6c) is defined as the mean across the diagonal. To highlight differences in 

decoder performance, the matrices have been rescaled (rather than being scaled from 0-1). (Below) Multivariate 

results for Experiment 2. (B) Classification accuracy (chance = 25%; dashed line) of all four conditions for each 

ROI. (C) Decoding accuracy (chance = 50%; dashed line) for scene feature discriminations (shape vs. texture), 
object feature discriminations (shape vs. texture), shape category discriminations (scene vs. object) and texture 

category discriminations (scene vs. object) for each ROI. Data are represented as mean ± SEM. *p < 0.05, **p < 

0.01, ***p < 0.001, all p-values shown have been FDR-corrected 
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We next examined the decoding of object-shape versus object-texture, and found 

significantly above-chance classification accuracy in PPA (t11 = 4.50, p < 0.001, q = 0.001), 

despite similar univariate response amplitudes. These results confirm a dissociation of these 

object features in PPA consistent with previous findings (Cant and Goodale, 2007; 2011), and 

further highlight the advantage of an approach using both univariate and multivariate analyses: A 

null result in univariate response does not necessarily imply a null multivariate result. Thus, 

examining both enabled us to better characterize the relationship between the weighting of visual 

features and the degree to which they are represented by shared or distinct neuronal populations. 

We further observed significant decoding of these object features in OPA (t10 = 3.68, p = 0.002, 

q = 0.003) and LO (t11 = 4.10, p < 0.001, q = 0.001), but not in RSC (t10 = 1.60, p = 0.070), FFA 

(t10 = 0.64, p = 0.267), and OFA (t10 = 0.84, p = 0.210). Finally, we found significant decoding of 

scene-shape versus object-shape in all regions (all ts ≥ 3.90; all ps ≤ 0.002, all qs ≤ 0.003) except 

FFA (t11 = 1.86, p = 0.046, q = 0.093). For the decoding of scene-texture versus object-texture, 

we found significant classification in all regions (all ts ≥ 3.72; all ps ≤ 0.002, all qs ≤ 0.004). 

These latter sets of results demonstrate that any null result in decoding accuracy (e.g., scene 

shape vs. scene texture in PPA) cannot be explained by imperfections in the classification 

algorithm itself. 

Experiment 3: fMR-adaptation of scene features 

 The results of the first two experiments suggested that the processing of geometry and 

surface properties are weighted equally in scene representation, and are possibility mediated by 

shared neuronal mechanisms. To provide an additional test of this hypothesis, we utilized a fast 

event-related fMR-adaptation paradigm, which allowed us to examine the neural representation 

of one feature (e.g., scene texture), independent of changes in a second feature (e.g., scene 
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shape). If scene shape and scene texture are not weighted equally in PPA, then changing each 

feature in isolation should result in significantly different releases from adaptation (compared to 

a no feature change baseline). If these features are weighted equally, however, then we should 

observe equivalent releases from adaptation.  Based on the results from the previous 

experiments, we predict the latter scenario. Moreover, by examining potential interactions 

between scene shape and scene texture processing, we are able to assess whether these features 

are represented additively or non-additively. Given our previous results suggesting equal 

weighting of these features in PPA (mediated by potentially shared underlying neuronal 

mechanisms), we predict an interaction (i.e., non-additivity) between the processing of these 

features, which would imply that their representations are not independent in PPA.  

Furthermore, previous work has shown that goal-states and attentional task demands 

directly influence activity in ventral visual cortex (Harel et al., 2014; Lowe et al., 2016). In 

addition to this potential influence, there is strong evidence to suggest that scene perception may 

be impacted by lower-level stimulus properties such as colour (Oliva and Schyns, 2000; Steeves 

et al., 2004; Goffaux et al., 2005; Castelhano and Henderson, 2008). Together, these findings 

raise the possibility that the results of our previous experiments, which utilized full-colour 

stimuli and manipulated attention to particular stimulus features, may be partially explained by 

these factors. Thus, we controlled for these potential caveats by examining the response 

properties of ventral-stream regions when observers were not explicitly attending to a particular 

stimulus dimension, but instead were performing a more general same-different judgement (Fig. 

1C).  We focus this investigation exclusively on scenes to avoid potential modulation by 

interactions between objects and scenes (see Experiment 2). Additionally, we controlled for low-

level image properties by using grayscale scenes and then processing these images by using the 
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SHINE toolbox (Willenbockel et al., 2010), which equates low-level image attributes across 

images by normalizing luminance, contrast, and hue.  

Finally, it is possible that the equal univariate activation for scene shape and scene 

texture in PPA in Experiments 1 and 2 resulted from unmatched variation across these features. 

That is, because we used only two instances of scene shape (i.e., round vs. square), but many 

instances of scene texture (i.e., many different types of brick and wood textures), blocks where 

participants attended to scene shape would result in more adaptation (i.e., less activation) 

compared with blocks where they attended to scene texture. If the representation of these 

features is not equally weighted in PPA (i.e., attending to scene shape normally elicits greater 

activation then attending to scene texture), then over adapting scene shape compared with scene 

texture would give the appearance of equivalent univariate activation and thus equal weighting.  

To investigate this possibility, we matched the variation across scene geometry and texture by 

using ten different scene-shapes that could each be rendered in ten different scene-textures. If 

equivalent releases from adaptation are observed when changing scene shape and scene texture 

independently, then the results of Experiments 1 and 2 cannot be explained by unmatched 

variation across these features. 

Results and Discussion 

 fMR-adaptation to geometry and surface properties was analyzed using a 2 x 2 repeated-

measures ANOVA with shape (same; different) and texture (same; different) as factors (Fig. 7). 

Importantly, this design allowed us to examine the interaction between scene shape and texture 

processing, but similar results (with regard to releases from adaptation for variations in scene 

shape or scene texture) were obtained when we used a one-way repeated measures ANOVA with 

the factor condition (no change vs. same shape, different texture vs. different shape, same texture 
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vs. both change) to analyze the data. Results from the 2 x 2 analysis revealed a significant main 

effect of shape for PPA (F1,12 = 8.22, p = 0.014), RSC (F1,11 = 8.13, p = 0.016), and LO (F1,12 = 

16.59, p = 0.002), but not for OPA (F1,12 = 1.04, p = 0.328) or face-selective regions (FFA: F1,11 

= 1.28, p = 0.283; OFA: F1,10 = 0.01 p = 0.928). In addition to a main effect of shape, a main 

effect of texture was found in PPA (F1,12 = 8.21, p = 0.014), but not the remaining regions (all Fs 

< 3.90; all ps ≥ 0.074). Significant shape-by-texture interactions were found in PPA (F1,12 = 

14.55, p = 0.002), OPA (F1,12 = 16.90, p = 0.001), and FFA (F1,11 = 8.00, p = 0.016), but not the 

remaining regions (all Fs < 4.56; all ps ≥ 0.058). Next, we conducted planned pairwise 

comparisons to examine fMR-adaptation effects across conditions. Compared to the no-change 

condition, the same-shape-different-texture condition resulted in a release from adaptation for all 

regions (all ts ≥ 2.21; all ps ≤ 0.047), except OFA (t10 = 1.79, p = 0.104). Similarly, the different-

shape-same-texture condition showed a release when compared to the no-change condition in all 

regions except FFA and OFA (PPA: t12 = 5.61, p < 0.001; RSC: t11 = 2.69, p = 0.021; OPA: t12 = 

3.40, p = 0.005; LO: t12 = 4.20, p = 0.001; FFA: t11 = 1.46, p = 0.173, OFA: t10 = 1.63, p = 0.135).  

 

 

 

 

 

 

Figure 7. fMR-Adaptation response amplitudes for Experiment 3. Levels of adaptation across conditions (no 

change; same-shape-different-texture; different-shape-same-texture; both change) for each ROI. Data are 

represented as mean ± SEM. 
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 Interactions between regions were analysed using a 2 (region) by 2 (shape) by 2 (texture) 

repeated-measures ANOVA. Significant region-by-shape interactions were found for PPA with 

FFA (F1,11 = 7.16, p = 0.022), for RSC with FFA (F1,11 = 9.15, p = 0.012), for OPA with FFA 

(F1,11 = 7.01, p = 0.022) and for LO with FFA (F1,11 = 7.36, p = 0.020). Significant region-by-

texture interactions were found for PPA with RSC (F1,11 = 4.91, p = 0.049) and LO (F1,12 = 6.80, 

p = 0.023), and for RSC with FFA (F1,11 = 4.90, p = 0.049). No significant three-way interactions 

were found. 

 Finally, we should note that despite controlling for multiple low-level visual properties in 

our stimulus set (e.g., color, luminance, contrast), it is likely that some low-level differences 

persist. For example, changing scene shape in our stimuli, while keeping scene texture constant, 

produced low-level changes in monocular depth cues from surface properties. Thus, neural 

responses in the different-shape-same-texture condition likely result from a combination of 

differences in scene shape and differences in low-level depth cues from texture. We observed 

equivalent releases from adaptation across all ‘change’ conditions, however, and the adaptation 

results are consistent with the results from the previous two experiments. Together, this makes it 

unlikely that differences in low-level properties alone would account for a significant proportion 

of the neural response in the different-shape-same-texture condition, especially since numerous 

studies have found robust sensitivity of the PPA to variations in scene shape (e.g., Epstein and 

Kanwisher, 1998). Nevertheless, it is possible that changes to global scene shape and layout in 

previous studies were correlated with changes to low-level monocular depth cues from surface 

properties, as they were in the different-shape-same-texture condition here. Future studies are 

thus required to better understand the perceptual and neural impact of covariations in different 

scene features. We would contend, however, that the contribution of depth-from-texture 
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information to these results is not inconsistent with our general conclusion that both geometry 

and surface properties contribute to scene representation in PPA. 

General Discussion 

Our findings indicate that the scene-selective PPA responds equally in strength to the 

surface properties and geometry of a scene, and these features could not be discriminated from 

one another. In object and scene perception, evidence revealed preferential sensitivity to an 

object’s shape within the object-selective LO, but the opposite was true for these object 

properties within the PPA when objects were presented in isolation (Experiment 1), suggesting 

that the PPA may be particularly sensitive to processing surface properties. An interaction 

between objects and scenes, however, modulated this relationship within the PPA such that the 

surface properties and geometry of objects were processed with similar sensitivity (i.e., similar 

univariate response amplitudes) when objects were presented within scenes (Experiment 2), 

despite demonstrating distinct underlying neural representations (i.e., multivariate spatial 

patterns of activation). Furthermore, varying scene geometry and surface properties 

independently of each other led to equivalent releases from adaptation in PPA (Experiment 3). 

Together with the findings that PPA can discriminate geometry and surface features of objects 

but not scenes, this evidence suggests that the processing of scene geometry and surface 

properties are weighted equally and may share similar underlying neuronal mechanisms in PPA, 

which jointly contribute to the construction of scene identity. The present findings also provide 

evidence that the processing of surface features in PPA may be mediated by domain-specific, 

rather than domain-general mechanisms, emphasizing the importance of this property for scene 

perception. Evidence across three experiments further highlights how these global scene 

properties are processed in the broader scene-processing network, albeit in ways which are 
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dissociated from each other, suggesting a complementary relationship between regions in this 

network for the purposes of perceiving and navigating the world around us.  

Neural representation of geometry and surface properties 

 While extensive evidence has supported a primary role for the PPA in the encoding of 

spatial information (Epstein and Kanwisher, 1998; Epstein et al., 2003; Kravitz et al., 2011; Park 

et al., 2011), there is considerably less research investigating the encoding of surface information 

within this region. In anticipation of the present neural findings, however, behavioural results 

have implicated surface characteristics such as colour and texture as being instrumental in 

mediating early-stage processes responsible for successful scene recognition (Schyns and Oliva, 

1994; Oliva and Schyns, 2000; Goffaux et al., 2005; Castelhano and Henderson, 2008). 

Similarly, PPA activation in an individual with profound visual form agnosia was modulated by 

the presence of appropriate scene colour (Steeves et al., 2004), and a case of topographical 

disorientation (wayfinding difficulties) related to landmark agnosia has revealed that geometry 

and surface properties may interact and jointly contribute to scene perception (Robin et al., 

2017). Converging neuroimaging results have further shown that the surface and material 

properties of objects are processed in regions overlapping with scene-selective areas of 

parahippocampal cortex in humans (Peuskens et al., 2004; Cant and Goodale, 2007; 2011), and 

evidence has demonstrated sensitivity to both object and scene material properties in nonhuman 

primate visual cortex, including areas selective to scene processing (Kornblith et al., 2013; Goda 

et al., 2014). Surface properties may play a meaningful role in humans’ ability to distinguish one 

scene from another. In the present study, by using strictly-controlled environments which allow 

for the direct comparison of visual features, we demonstrate that scene-selective cortex responds 

just as strongly to distinctive surface properties as it does to geometry. Together with previous 
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findings, these results raise a question of how multiple cues are used to construct the visual 

world around us across inherently complex and vastly different environments.  

One account to explain how multiple cues are utilized in scene perception may include 

the role of diagnostic features and goal states (Lowe et al., 2016). In fact, an existing behavioural 

scene recognition framework centers on the notion of feature diagnosticity: the idea that specific 

visual cues are used for specific types of categorizations and an interaction between task 

demands and available visual information can explain how different cues are used to recognize 

scenes (Oliva and Schyns, 1997). Thus, for a complete view of scene understanding, it is 

necessary to account for both the contributions of diverse scene properties and differing observer 

goals (Lowe et al., 2016, Malcolm et al., 2016). Altering diagnostic aspects of a scene may in 

turn alter place information responsible for perceived novelty and the subsequent encoding of a 

scene in memory, consistent with findings suggesting the PPA is involved in encoding novel 

place information in memory (Epstein et al., 1999). Surface properties may represent the unique 

identity of a scene in much the same way that geometry does, yet this representation is dependent 

on the context in which the environment is perceived. The strongest empirical support for this 

account lies in the asymmetrical response of PPA to visual features across real-world scene 

environments. Building on the observation that natural, compared with manmade, environments 

typically contain large distinctive surface areas useful for recognition (Rao and Lohse, 1993; 

Loschky et al., 2010), evidence has shown that neural activity in PPA associated with attending 

to diagnostic surface properties in real-world scenes was higher in natural than manmade 

environments, while the opposite was found for geometry (Lowe et al., 2016). Here, we would 

argue that PPA may not necessarily be responsible for the selection of diagnostic information, 

but rather responds in accordance with top-down mechanisms to facilitate scene recognition.  
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An alternative explanation for our findings may lie in the sensitivity of PPA to low-level 

visual statistical changes, including those elicited by changes in both spatial structure and surface 

properties (e.g., monocular cues to depth). This view would deem PPA an area purely devoted to 

processing the low-level visual statistics of a scene. Real-world scenes contain a high degree of 

statistical regularity (Torralba and Oliva, 2003; Oliva and Torralba, 2001) and evidence has 

demonstrated that PPA, and scene-selective cortex more generally, is sensitive to processing 

low-level image features such as high spatial frequency content (Rajimehr et al., 2011; Watson et 

al., 2016). This may help to explain how regions distributed across scene-selective cortex show 

similar response amplitudes to changing features (both spatial and non-spatial). Yet given 

findings that (1) PPA plays a more direct role in humans’ ability to categorize real-world scenes 

compared with areas of early visual cortex (Walther et al., 2011), (2) PPA exhibits higher 

activation for object-texture over object-shape and vice-versa in LO, and (3) the functional 

dissociations between PPA and control regions (FFA and OFA) observed here, we believe that 

appealing to the processing of low-level features alone is unlikely to explain the present series of 

results. 

Interactions across object and scene perception 

 An intriguing finding from the present study concerns the modulation of activity in PPA 

by the presence of an object within a scene. Specifically, attention to object texture resulted in 

greater activation in PPA compared with attention to object shape when scenes and objects were 

presented separately (Experiment 1), but this difference was weakened and was no longer 

significant when scenes and objects were presented together (Experiment 2). Previous 

behavioural research has demonstrated an interaction between the processing of shared visual 

features (i.e., geometry and surface properties) across object and scene perception (Lowe et al., 
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2015), and neuroimaging investigations have further highlighted a role for object-selective cortex 

in modulating activity within PPA (Mullin and Steeves, 2011; Rafique et al., 2015). These 

findings emphasize that feature perception in PPA is not static, but dynamic and dependent on 

the contextual relationship between the surrounding environment and the objects within it. The 

exact nature of the object-scene interaction observed in this study is unclear. Moreover, the 

general pattern of univariate results across Experiments 1 and 2 was qualitatively similar. As 

such, we hesitate to make strong conclusions regarding the nature of object-scene interactions 

from the present results. Factors such as ease of figure-ground segmentation, object size, location 

of the object within the scene, and congruent versus incongruent relationships between scene and 

object geometry or surface properties may all play a role in explaining object-scene interactions 

specifically and our results more generally. At the very least, the results of the present study 

represent a first step in establishing the finding that placing an object within a scene modulates 

object-related, but not scene-related activity in PPA. The degree to which this finding is 

explained by the various factors described above, and whether scene-related activity can be 

modulated by the presence of an object, are interesting empirical questions that deserve further 

study. 

Interactions between geometry and surface properties 

Visual features within our local visual environment can interact to support a common 

goal. For instance, surface properties (on both objects and scenes) may contribute to the 

perception of spatial information through cues provided from depth and contours (Torralba and 

Oliva, 2003), as well as edge information (Renninger and Malik, 2004), while geometric features 

may provide boundary information utilized in texture segmentation (Mohan and Nevatia, 1992). 

Support for the idea that geometry and surface properties are often used to accomplish a common 
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goal comes from the results of Experiment 3, where the processing of scene shape and scene 

texture was found to be non-additive. This suggests that these features are not represented 

independently in PPA. For active navigation, surface properties provide affordance-related 

information pertaining to how an observer should move through an environment, and boundaries 

provided from geometric cues are similarly critical for navigation (e.g., obstacle avoidance). 

Indeed, how could an individual efficiently navigate across a landscape without knowledge of 

the material differences between snow and ice, or sand and grass, and the most efficient path in 

space to move from one place (i.e., the origin) to another (i.e., the goal)? The results presented 

here suggest that neural representations of these features may not be spatially independent within 

the PPA, but interestingly, there is some evidence to suggest that these features may be 

temporally distinct. For instance, electrophysiological evidence has suggested differences in the 

processing of edge-based and surface information for the purposes of natural scene perception 

(Fu et al., 2016). 

Interactions between neural and behavioral results 

 We observed consistent neural evidence that the representation of scene shape and scene 

texture are weighted equally in PPA (all 3 Experiments), yet we also found evidence that 

attention to these features elicited different behavioral responses (for Experiments 1 and 2, but 

not 3; see Supplementary Materials for all behavioral results). How can these differences be 

reconciled? First, behavioral differences in scene texture discriminations in Experiments 1 and 2 

did not translate into greater activation for the scene texture condition (compared with the scene 

shape condition) in these Experiments, which suggests that the allocation of attention was not 

disproportionately unbalanced across these conditions. Indeed, if attentional demands had been 

greater in the scene texture condition, then we would have expected to find some evidence of 
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higher activation in this condition compared with the scene shape condition (i.e., Murray and 

Wojciulik, 2004), but we did not. Second, the pattern of neural results across all three 

experiments was very similar (e.g., no univariate difference in response amplitude, or 

multivariate difference in decoding accuracy, between the processing of scene shape vs. scene 

texture in PPA), despite differences in behavioral results (a difference in processing scene shape 

vs. scene texture in Experiments 1 and 2, but not 3). Third, previous research exploring the 

impact of task difficulty on neuronal representations has found evidence for a dissociation 

between manipulations of task difficulty and processing in ventral visual areas, including PPA 

(Xu et al., 2007).  

However, given that previous research has revealed that the type of behavioral task used 

can impact neuronal representations in ventral occipito-temporal cortex (Harel et al., 2014; Lowe 

et al., 2016), as well as empirical evidence that neuronal activity is causally related to 

behavioural perception (e.g., Mégevand et al., 2014), it is not prudent to completely dismiss 

potential interactions between neural and behavioral results in the present study. Of course, at 

some level of representation, neuronal processing leads to changes in behavioral responses (and 

vice versa). Given this, and the importance of having an equal allocation of attentional resources 

when comparing different types of feature-selective processing, future research should examine 

the processing of shape and texture in both object and scene perception (both separately and in 

combination) in greater detail. Together with the present results, these new studies will increase 

our understanding of relationships between neural and behavioral processing in scene- and 

object-selective cortex.  

Investigating the scene-processing network 
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Our results have also revealed functional dissociations within the scene-processing 

network, warranting consideration of these regions. Recent investigations have demonstrated the 

causal involvement of OPA in boundary perception (Julian et al., 2016), and have suggested that 

this region may be involved in representing the local elements of a scene, and first-person 

perspective for visually-guided navigation (Kamps et al., 2016). In the present study, we see 

evidence for dissociations between PPA and OPA across experiments: OPA showed greater 

sensitivity to the processing of scene geometry (Experiment 1), and was able to discriminate 

scene geometry from surface properties across the first two experiments. Together, these results 

suggest that scene geometry and texture are processed distinctly within OPA, and that this region 

may be particularly sensitive to the processing of scene geometry. The dissociable processing of 

these features with PPA may reflect the involvement of OPA in representing geometry for the 

purposes of local boundary perception, but further research is necessary to test these ideas 

directly.  

While our results indicate that RSC was more similar to PPA overall, some dissociations 

and interactions across these regions highlight their differences. For example, across 

experiments, while both regions could not discriminate scene features, an inverse relationship 

was observed in object perception wherein PPA was able to discriminate objects features, yet 

this was not the case in RSC. How these results translate to the involvement of these regions in 

scene perception, recognition, and navigation warrant further investigation. Moreover, these 

results highlight the differences across these regions in feature-processing, and provide stronger 

evidence for the role of PPA in processing surface properties: While PPA may be more sensitive 

to processing the surface properties of an object over its shape, RSC does not show this 

sensitivity, but may process these features more generally. Together, these results emphasize the 
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importance of examining these three scene-selective regions in conjunction to explore their 

contributions to visual perception.  

Investigating the face-processing network 

Our results reveal an interesting dissociation within the face-processing network: While 

FFA could not discriminate between scene features in either of our first two experiments, we 

found the opposite was true for OFA. In addition, neither of these regions showed a significant 

release from adaptation to changes in scene geometry in Experiment 3, but FFA showed a release 

from adaptation to changes in scene texture. This finding in FFA was unexpected given the 

stimuli were scenes, yet previous work has indicated that FFA may show sensitivity to both 

shape and texture/material properties (Cant and Goodale, 2007; 2011), which is consistent with 

studies that have demonstrated sensitivity to shape (Merigan, 1996) and texture (Merigan, 2000) 

in regions along the fusiform gyrus. Moreover, the sensitivity to shape observed along the 

fusiform gyrus reported previously may have fallen outside of the functional borders of FFA 

(moving in to territory occupied by LOC, specifically, the posterior fusiform gyrus) and thus we 

did not observe this result in the present study.  

With regard to OFA, this region has shown sensitivity to changes in the physical 

appearance of a face without changes in identity (Rotshtein et al., 2005), and has been proposed 

to act as the first stage of a cortical network for face processing by extracting feature and part-

based information (Pitcher et al., 2011). Together, these findings may help to explain sensitivity 

of this region to visual feature processing. When we compare LO and OFA, we see both 

similarities (e.g., greater sensitivity to objects compared with scenes) and dissimilarities (e.g., 

release from adaptation for shape in LO but not OFA). Dissociations are expected given their 

functional roles in object- and face-processing, respectively, but their similarities could be due to 
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their physical proximity within the ventral stream, and their roles in extracting local visual 

feature information. Indeed, these regions may utilize similar information (i.e., shape and 

texture) for different purposes, but future research should explore these similarities and 

dissociations in greater detail. 

Conclusions 

In summary, our findings demonstrate that PPA responds just as strongly to changes in 

the surface properties of a scene as it does to changes in spatial structure. Moreover, neural 

responses to these scene features could not be discriminated from one another in PPA, despite 

significant discrimination of these features in object perception. We further observed greater 

responses to scene-texture compared with object-texture in PPA, regardless of whether scenes 

and objects were presented separately or together. Interestingly, while PPA showed greater 

sensitivity to processing texture compared with shape in object perception when objects were 

viewed independently of scenes, an interaction across object and scene perception altered this 

relationship, wherein we observed equal sensitivity to these properties when objects were 

perceived in the context of a scene. We conclude that texture processing in PPA (and scene-

selective cortex more generally) may be mediated by domain-specific, rather than domain-

general mechanisms, and the representations of scene geometry and surface properties are 

weighted equally in PPA, with their processing potentially mediated by similar underlying 

neuronal mechanisms.  
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