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Abstract

Epigenetic clocks comprise a set of CpG sites whose
DNA methylation levels measure subject age. These
clocks are acknowledged as a highly accurate
molecular correlate of chronological age in humans
and other vertebrates. Also, extensive research is
aimed at their potential to quantify biological aging
rates and test longevity or rejuvenating interventions.
Here, we discuss key challenges to understand clock
mechanisms and biomarker utility. This requires
dissecting the drivers and regulators of age-related
changes in single-cell, tissue- and disease-specific
models, as well as exploring other epigenomic marks,
longitudinal and diverse population studies, and non-
human models. We also highlight important ethical
issues in forensic age determination and predicting
the trajectory of biological aging in an individual.

Introduction
A key question in biology is to understand why and how
we age. Alongside this, the unprecedented gain in the
average lifespan in humans, since the mid-twentieth cen-
tury, has dramatically increased both the number of
older people and their proportion in the population.
This demographic phenomenon is changing our societal
make-up, from only ~130 million being 65 years or older
(~5% of the world population) in 1950, to a predicted
~1.6 billion people (~17%) by 2050 [1]. However, the
success in reducing mortality has not been matched with
a reduction in chronic disease [2]. This leads to the un-
desirable outcome of many years of this prolonged life-
span being spent in ill health, with an associated massive
health care burden. Increasing the productivity and re-
ducing the disease affliction in these extended years7
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would be clearly beneficial for both the individual and
society [2, 3]. This aim of maximizing the “healthspan”
[2] makes obtaining accurate measures of aging-related
pathology essential, to gauge its speed, decipher the
changes that occur, and potentially unlock how aging acts
as a disease risk factor [4]. There is considerable popula-
tion variation in the rate at which people visibly age [5] as
well as become impaired by age-related frailty and disease
[2]. Measurement of this relative “biological” aging [2]
may allow pre-emptive targeted health-promoting inter-
ventions, perhaps in a personalized and disease-specific
fashion. It would also aid in testing interventions that at-
tempt to modulate the aging process [6].
The cellular and molecular hallmarks of aging include

changes associated with cell senescence, dysregulated nutri-
ent sensing, and stem cell exhaustion, among others [6].
Therefore, many biological measures, such as p16ink4a tissue
levels, circulating CRP, creatinine, and fasting glucose, as
well as telomere length all correlate with aging [6–8]. In
this decade, we have discovered the remarkable power of
epigenetic changes to estimate an individual’s age [9, 10].
Epigenetics encapsulates the chemical modifications and
packaging of the genome that influence or indicate its activ-
ity [11], with strict definitions requiring inheritance through
mitotic cell division [12]. Observations of age impacting on
this mechanism have been reported for more than 50 years
[13–16] and suggested a role in age-related disease [17].
However, the association between epigenetic modifications
and age became most starkly apparent with the arrival of
the first high-throughput arrays measuring DNA methyla-
tion [18–20]. These high-resolution data enabled the con-
struction of extremely accurate age estimators, termed
“Epigenetic” or “DNA methylation clocks” [21–25]. Subse-
quently, these clocks were reported to capture aspects of
biological aging and its associated morbidity and mortality
[26–29]. DNA methylation (5′methylcytosine, 5mC) is the
most common DNA modification and predominantly oc-
curs at cytosines in a CpG dinucleotide context in differ-
entiated mammalian cells. The stability of 5mC in
biological samples, even from long-term stored DNA,
brings large-scale data availability, for use in subsequent
high-throughput analysis.
In this paper, we discuss the scientific challenges that

the fascinating discovery of “DNA methylation clocks”
has brought into focus. We provide recommendations
and suggest future experiments required to dissect the
strengths and weaknesses of this important biomarker,
in order to probe its biological significance, cellular me-
chanics, and epidemiological potential. We do not re-
view in depth the background history and current state
of the clocks themselves; we refer readers to recent ex-
cellent reviews for this information [9, 10]. Instead, the
purpose is forward-focused, i.e., to define the current is-
sues, to suggest what will aid unlocking future potential,

and to further explore and define any functionality, with
the hopeful long-term benefit of increasing the
“healthspan.”
Here, we define a “DNA methylation clock” as an esti-

mator built from epigenetic DNA methylation marks that
are strongly correlated (r ≥ 0.8 [9]) with chronological age
or time, which can accurately quantify an age-related
phenotype or outcome, or both. These DNA methylation
clocks are generally built with a supervised machine learn-
ing method, such as a penalized regression (e.g., lasso or
elastic net) trained against chronological age to identify an
informative and sparse predictive set of CpGs [9, 10]. The
residual, or error from chronological age, is used as a
marker for biological age of an individual [9, 10]. The age-
related phenotype or outcome may be disease, mortality,
clinical measures of “frailty,” or cellular phenotypes, in-
cluding the mitotic age (the total number of lifetime cell
divisions of a tissue [30, 31]).
It is evident, even from our initial observations so far,

that the aging-related epigenetic modifications captured
by DNA methylation clocks are pervasive and indicative
of genomic, cell biology, and tissue changes occurring
over the life-course. These molecular alterations may
bring a high-resolution and precise understanding of
age-related pathology and physiology.

Challenge 1
Delineation of the chronological and biological
components of DNA methylation clocks
Current knowledge
DNA methylation-derived epigenetic clocks are currently
better in estimating actual chronological age than tran-
scriptomic and proteomic data, or telomere length [7].
However, it was recognized that some variability in these
initial clocks’ age estimation existed, which was identified
to be a measure capturing individual variation in bio-
logical age. Age acceleration, defined as the difference be-
tween this epigenetically measured age and the actual
chronological age, was associated with mortality [26] and
other age-related phenotypes or diseases [32–39].
Of the first-reported clocks, the Hannum et al. clock

was trained and tested on blood-derived DNA [23]. It
comprises 71 CpG selected from the Illumina 450k array
that strongly capture changes in chronological age, which
is partly driven by age-related shifts in blood cell compos-
ition [23]. The Horvath clock was constructed across mul-
tiple tissues, including the blood data from Hannum et al.,
as a potential “pan-tissue” master clock of chronological
age, and focused on capturing shared changes, independ-
ent of tissue type [24]. It included 353 CpGs that were
present on the earlier generation Illumina 27k array.
These differences in training sets led to some conflicting
findings between reported associations [7, 29, 40].
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Aging leads to epigenetic alterations, including changes
in DNA methylation, through both multiple distinct and
intersecting age-related mechanisms [6, 41]. Many DNA
methylation aging clocks have now been derived, and due
to their individual strengths and weaknesses, explicit refer-
ence must be made to the specific clock employed (see
further in “Challenge 2”). Captured age-related epigenetic
variation can be firstly split into intrinsic, or intra-cellular,
and extrinsic, or broadly within-tissue and external, as-
pects of the aging process [27]. The former is a surrogate
readout of multiple cellular and genomic processes, in-
cluding possible deterioration of mechanisms involved in
maintaining the epigenome, while the latter includes age-
related cell proportion changes within a tissue. While
these first clocks are markers capturing these effects to a
greater or lesser extent [42], both can predict all-cause
mortality at a population, but not individual level, even
after correcting for known risk factors [27]. To investigate
biological age more directly, clocks have also been trained
on age-related and disease phenotypes in combination
with chronological age, such as the “PhenoAge” DNA
methylation clock that incorporates nine age-related bio-
chemical measures [43]. Cigarette smoking, a significant
disease-related factor, is observed to strongly drive
mortality-associated predictive DNA methylation changes
[44]. However, these tobacco-related methylation changes
do not influence the Horvath or Hannum et al. clocks, but
are captured in “PhenoAge” [9]. Of note, a very recently
constructed mortality predictive DNA methylation clock,
termed “GrimAge,” directly incorporates smoking-related
changes through an estimate of “pack-years” smoking.
This clock also includes certain plasma protein levels esti-
mated by DNA methylation, and this leads to an even
stronger prediction of both lifespan and healthspan [45].

Current uncertainty
The first DNA methylation clocks devised were found to
be useful for estimating actual age, as well as capturing as-
sociations with biological aspects of aging. Data gathered
from these early clocks can still be exploited for both these
chronological and biological measures. However, now this
duality has been recognized, we can attempt to improve
our assessment of these two characteristics. Specialized
clocks are likely to be more powerful for accurate age pre-
diction or to capture specific biological aging-related func-
tional deterioration or disease-related predictions [45].
How far these two distinct uses can be separated into
discrete clocks and improved for their specific role is pres-
ently unknown. However, clearly if the DNA methylation
clock measurement of actual age was perfect, the loss of
any variability removes the window where biological aging
associations can be made [46]. Empirical calculations esti-
mate that near-perfect forensic age determination may be
possible with large enough sample size, even with current

DNA methylation array platforms (see Fig. 1a) [46], al-
though this statistically derived view that chronological
clocks can approach extreme precision is not held by all
in the field.
Each DNA methylation clock that is constructed is

unique to its method of calibration [47], indicating the
importance of tissue/s employed, number of samples,
and statistical methodology. Clearly, small sample sizes
are more susceptible to multiple aging-related con-
founders, measurement errors, and imperfect statistical
predictions. Even when clocks are directly trained on ac-
tual chronological age, the strong influence of age-
related biological processes may skew the CpGs selected
for the clock, underscoring the importance of an appro-
priate population of sample donors. Furthermore, as dis-
cussed in “Challenge 3,” Zhang et al. recently
highlighted the impact of not only sample size but also
cell type correction, in heterogeneous cell type-derived
DNA, on improving chronological age prediction [46].
For “Biological” clocks, another obvious area of uncer-

tainty is that there is not one measure or “gold standard”
of biological aging [6, 7, 41, 48]. This phenomenon en-
compasses a wide range of age-associated changes from
the merely visible to disease-risk related. To understand
how aging may be characterized by chronological and bio-
logical age-related epigenetic changes, we need more de-
tailed understanding of what mechanisms may be
underlying these observations. There is no evidence that
the Horvath or Hannum et al. clock CpGs are enriched
for functionality over and above the promoter-focused ar-
rays from which they were constructed. Furthermore, the
clocks have shown variability in their ability to capture
measures of mitotic age, such as telomere length [9, 49],
due to their differing training models. In general, epigen-
etic aging is distinct from senescence-mediated aging and
is not prevented by telomerase expression [50–52]. A re-
cent DNA methylation telomere clock identified that al-
though this clock was trained on telomere length, it more
strongly reflected cell replication and, moreover, associ-
ated with aging-related phenotypes more strongly than
telomere length itself [53].

Future experiments and recommendations
Understanding the chronological and biological drivers
of these DNA methylation clocks will require them to be
teased apart as much as possible (see Fig. 1b). The clear
separation between these two factors, down to specific
sets of CpGs, would lead to more powerful specialized
clocks and distinct mechanistic studies.
To obtain the most precise estimate of actual age and

quantification of its robustness from easily assessable
DNA requires appropriately powered large-scale DNA
methylation analyses. This is especially the case if this
measure is to be used as a legal measure of human age
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[54–57]. Testing across the range of routinely collected
DNA samples will be needed, such as those gathered from
peripheral blood or buccal swabs, but also other sources
of DNA, such as hair root, skin, and other tissues. How-
ever, this is currently only likely to be tractable in data de-
rived from peripheral blood, as these are available at large
scale. For the other tissues, the approach is likely to be in-
sufficiently powered in the intermediate future. Specific
CpGs will be selected to construct clocks for high-
precision forensic age estimation, when chronological age
is not known or disputed. They will employ those CpGs
that are the most robust and accurate for particular tissues
and their constituent cell types [58]. We will need to de-
fine the influence of genetic variation and environmental
factors on these measures. Accumulating this knowledge

of the various DNA methylation clocks will guide their fu-
ture legal or forensic application [59].
The biological aging component captured by epigenetic

age acceleration consists of a large range of drivers, in-
cluding tissue-specific, cellular aging pathology, stochastic
deterioration, and disease-related factors. As mentioned,
there is no single measure of biological age; therefore, spe-
cific components of aging biology should be focused on
and interrogated. This includes aging-related biological
pathways involving, for example, mTOR, IGF-1, and p53
[6], as well as epigenomic aspects including the polycomb
repressive complex, TET/DNMT levels, and H3K36
methylation [60, 61] (see Table 1). This refined analysis
could bring new molecular mechanistic insight to the
aging process.

a

b

c

Fig. 1 a Chronological age estimation error. With increasing training sample size, improved measurement of chronological age is expected, even
using current array data (adapted from Zhang et al. [46]). y-axis: root mean square error (RMSE) of the predicted age. b DNA methylation clocks
contain both chronological and biological information. The relative proportions of each will depend on the CpG probes employed in the
construction of the clock. Therefore, there are multiple clocks that can be deconvoluted from aging-related epigenetic changes. Moving forward,
more precise chronological (forensic age clock) and biological clocks, specific for particular diseases, informative of health or disease state need to
be defined and separated. c Epigenetic age trajectory. Epigenetic age is not linear over the life course. Chronological age in years (x-axis) and
epigenetic age in years (y-axis)
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Tissue-specific clocks have the potential to be highly
clinically useful as prognostic and diagnostic markers of
disease, as discussed in the following “Challenge 2.”
However, we should not forget about the potentially in-
triguing insights into aging biology that could be identi-
fied by modifications that occur across all tissue types in
the body, or pan-tissue changes [62]. Strong outlier can-
didates for pan-tissue changes identified to date should be
further evaluated, such as DNA hypermethylation in
ELOVL2, as well as looking for novel aging-related chroma-
tin marks. To confirm any consistency of changes across
tissue types will ultimately require large-scale and detailed
evaluation of single cell types over time. These points, along
with distinguishing the effects of cell type composition-
driven variation in DNA methylation, are discussed in more
detail in “Challenge 3” and “Challenge 5” and will all con-
tribute significantly to improved accuracy and understand-
ing of clock-related measures.

Challenge 2
Functional characterization of tissue-specific and disease-
specific clocks
Current knowledge
“Biological age” is a large umbrella term for multiple
age-related phenotypes and disease processes. Observed
disease-related DNA methylation changes will represent
the tissue specificity of the particular epigenome, indica-
tive of the mixture of cell types present, as well as the
associated organ-specific pathology. While the “sum of
parts” Horvath pan-tissue clock is extremely useful, it is
unlikely to correspond perfectly to each tissue-specific
component. Still, disease-specific aging clocks in easily
accessible tissues have high potential for clinical utility
as disease-specific monitors and disease risk calculators.
However, recognition and identification of those changes
that are in fact tissue-specific [63] may also enable im-
proved markers of both chronological and biological age.
The benefit of bespoke clocks is seen in the recent
“Skin-Blood” clock, devised due to poor performance of
the Horvath clock in estimating advanced age in
Hutchinson-Gilford progeria syndrome, potentially due
to cultured fibroblasts being incorrectly calibrated [64].
In contrast, the “Skin-Blood” clock identified age accel-
eration in this progeroid disorder with higher sensitivity
for these specific tissue types.
Cellular mechanisms, such as mitosis, will vary be-

tween tissues and cell types and contribute to changes
observed in the epigenome. The DNA methylation state
is re-established after replication, but errors occur in the
fidelity of this process [65]. Therefore, a methylation-
based clock of mitotic age will count cell-specific mitoses.
Clocks capturing this process include “epiTOC,” which as-
sesses increased DNA methylation in the promoters of Poly-
comb group target genes that are initially unmethylated in

foetal tissues [31]. Replication-associated methylation accel-
erates in cancer and in pre-cancerous tissue due to carcino-
gen exposure. Mitotic age also drives the changes observed
in the “Remethylated Window Model” with a loss of methy-
lation in specific sparsely located CpGs that reside within
partially methylated domains (PMD) [66], the megabase-
scale late-replicating, lamina-associated hypomethylated
blocks [67]. Hypomethylation accumulates with the number
of cell divisions, due to relatively slow PMD remethylation,
as well as a reduced efficiency in very low CpG density re-
gions. Cellular damage or inflammatory factors that increase
cell turnover led to increased methylation loss [66].
Senescence-related hypomethylation in these regions was
also previously proposed to be affected by mislocalization of
DNMT1 during the S phase [68]. Additionally, the influence
of H3K36me3, which recruits DNMT3B to gene bodies
[69], is an independent factor that can act to counter this
decrease in DNA methylation. Of note, loss-of-function mu-
tations in the H3K36 histone methyltransferase NSD1 also
accelerate the Horvath clock, thus implicating loss of main-
tenance of this chromatin mark in the DNA methylation
changes detected by this clock as well [70].
The developmental stage of the cell can be distinctly ob-

served in clock measures. Additionally, it has been shown
that partial and full reprogramming with Yamanaka factors
induces a steady decline and a complete resetting of the
epigenetic age, respectively [24, 71, 72]. Of note, highly spe-
cific CpG methylation changes are observed with replicative
senescence and aging in human mesenchymal stem cells
[73]. In analogy to the age-associated DNA methylation
patterns, the epigenetic modifications during replicative
senescence are also reset during reprogramming into in-
duced pluripotent stem cells [74]. In regard to the cellular
niche, human hematopoietic cells do not exhibit epigenetic
age acceleration upon transplantation into a faster aging
species, the mouse [75]. Similarly, the DNA methylation
age measurement from hematopoietic stem cell transfusion
matches the age of the donor and not that of an older re-
cipient [76, 77]. In other words, at the resolution of these
data, the stem cell niche does not affect the epigenetic age.
Clock-like epigenetic alterations can have disease

monitoring utility, even if they are not functional and
are only passive changes reflective of underlying biology.
However, interesting paradigms exist that may be indica-
tive of broader and more widely applicable pathological
mechanisms that connect epigenetic aging and disease.
These include examples such as age-related promoter
hypermethylation with HAND2 and endometrial cancer
[78], as well as Polycomb group target promoters and
cancer [18]. Also, the stochastic process of epigenetic
drift, which itself actually begins from early age [79, 80],
may also play a disease-related role [81]. Age-related
DNA methylation modifications disrupt DNA binding
patterns of transcription factors (TFs) which regulate the
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activity of many genes, although currently without
strong evidence of expression disruption [82]. Changes
with aging have been observed in both the binding sites of
the transcriptional repressor REST [83] and insulator CTCF
[84]. However, instead of targeting housekeeping or essen-
tial genes, epigenetic drift changes tend to occur in the per-
iphery of the protein-protein interactive network [85].

Current uncertainty
There is uncertainty around how the DNA methylation
changes observed in clocks can accrue without replication,
i.e., due to processes not related to cell replication (see
Table 1). Most tissues are comprised of non- or slowly
dividing cells, and different division rates occur in differ-
ent tissues. Aging-related aberration of the epigenetic ma-
chinery is implicated in DNA methylation change over
time. However, understanding this will require more de-
tailed characterization of the levels of instability aside
from DNA replication, and the extent to which this
process is cell-, genetic-sequence-, or cis regulatory
element-specific. Cumulative changes, as well as poten-
tially stochastic factors, most likely influence mitotic rate
and fidelity, repair, chromatin remodeling, and transcrip-
tion. These aggregating mechanisms are not exclusive to
each other and could be important in differing degrees at
different loci or in different cell types. The Horvath clock
is derived from a wide variety of tissue types and works
across most of them (including sorted neurons) even
though these cannot have the same history of cell division,
so this clock is not measuring mitosis.
Another point of ambiguity to be acknowledged on

the mechanistic side is that epigenetic interaction with
TF binding and downstream gene expression is clearly
not as simple as usually portrayed in classical models
[86]. This complex and significant interrelation between
DNA methylation and TFs in various functional ele-
ments, such as promoter CpG islands, enhancers, and
CTCF loci [87], has revealed experimental evidence sup-
porting not only a negative regulatory role but also in
some cases a positive one [88–90].
The use of elastic net regression to construct DNA

methylation clocks results in sparse but accurate estima-
tors, with utility in predicting phenotypic outcomes.
However, there is uncertainty and limitations in regard
to their mechanistic insight, which may instead require
more precise knowledge of the specific epigenomic mod-
ifiers and transcription factors involved. Age-related
hypomethylated CpG sites are observed to be strongly
enriched in enhancer-related loci, in both stem and dif-
ferentiated cells [91, 92]. Decay through reduced active
processes required for maintenance and DNMT and
TET-related methylation turnover without cell division
is however observed in exit from pluripotency [93]. It is
possible that this process may be more prevalent at the

most dynamic enhancer regions. Additionally, neuronal
cells have revealed high post-mitotic expression of
DNMTs and TETs [61, 94], and there are, furthermore,
higher levels of 5-hydroxymethylcytosine in the brain
[61].

Future experiments and recommendations
In the hunt for disease- and tissue-specific molecular
markers of biological age, future experiments will re-
quire individual tissue-, disease-, and mechanism-
specific analyses. While clinical utility may be derived
from pan-tissue “clocks,” such as the Horvath clock, be-
ing incorporated into other broad measures such as
“frailty” [95], other bespoke “clocks” may be constructed
and employed for particular diseases. By directly focus-
ing on clock-like modifications that represent disease-
related variation in specific tissues, this may bring
unique insights and pathophysiological measures. To de-
termine where surrogate tissue can be used, it will be
important to establish the level of concordance and dis-
cordance between specific tissues within and between in-
dividuals [96]. However, this is clearly difficult in more
inaccessible tissues. These refined disease-specific clocks
may bring improved level of molecular resolution, in
evaluating age-related disease progression within an in-
dividual. Furthermore, there is potential clinical utility in
using a measurement given in “years” to simply explain
to patients the concept of complex organ-specific deteri-
oration. Also, these data can be incorporated into prog-
nostic or therapeutic algorithms.
For mechanistic insight, limited CpG clocks in surro-

gate tissues are unlikely to be highly discerning. Specific
CpG tissue and disease-specific clocks will likely capture
some aspect of the underlying mechanism but may have
less traction than genome-wide or whole-genome ap-
proaches. These will have more power to give functional
understanding of the drivers of clock-identified changes.
However, these currently have their methodological limi-
tations (discussed in “Challenge 4”). For full evaluation,
this may require single-cell bisulfite sequencing (scBS-
seq) studies, nanopore sequencing analysis, and further
technological advancement to be fully realized (discussed
in “Challenge 5”). These tissue- and disease-specific
clocks in isolated cell types or cell type-aware analyses
could enable greater insights into the molecular drivers
of biological aging [97]. These processes need to be ex-
plored across all organ systems, to identify not only spe-
cific but also common mechanisms.
Computationally, biophysical models (mathematical

simulations of biological systems) need to be explored, as
machine learning methods, such as elastic net regression,
only offer limited mechanistic insight due to their black
box nature. For instance, such biophysical models are be-
ginning to emerge for modeling mitotic age [98], for
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understanding patterns of DNA methylation heterogeneity
in aging stem cell populations [99] and for understanding
the relationship between age-associated patterns of DNA
methylation and alterations in epigenomic regulators
[100]. We envisage that future studies that build and im-
prove on these models by explicitly incorporating the lat-
est insights and understanding of epigenomic regulation
may be necessary to dissect the inherent complexity of the
epigenetic aging process.
As detailed above, this functional interrogation will re-

quire the construction of bespoke tissue-specific and
disease-specific clocks. However, open-science protocols
will need to be followed to maximize their use, as well
as their further optimization and improvement. There-
fore, the field must require that all clock algorithms are
transparent and publicly available to support reproduci-
bility and accelerate progress.

Challenge 3
Integration of epigenetics into large and diverse
longitudinal population studies
Current knowledge
Longitudinal studies following individuals over the
course of their lifetime have considerable advantages in
evaluating causal risk factors in disease development.
For DNA methylation clocks, these studies are also ex-
tremely valuable, as cross-sectional data cannot assess
the dynamics of the clock-related changes and measure-
ments over time within an individual. Thus, these ana-
lyses can evaluate the relative contributions to epigenetic
clock variation, including consistent differences from the
start of life, altered trajectories at particular life junc-
tures, such as puberty, or gradual divergence over the
entire life-course [9]. Furthermore, the predictive power
of clocks for age-related disease can be directly assessed.
The vast majority of epigenetic clock studies to date

have been conducted in adults and are cross-sectional in
design. The few initial longitudinal analyses performed
have seen little variation over epigenetic age acceleration
assessment within the same decade [49], and within
middle age, multiple clocks track closely [33]. One sub-
stantial meta-analysis of longitudinal data from Marioni
et al. in five cohorts, comprising 4075 adult participants,
identified a slower rate of increase of epigenetic age
compared to chronological age with time, with both the
Horvath and Hannum et al. clocks [101]. Also, there is a
non-linear (logarithmic) pattern in the clock during
teenage years [24, 79]. Therefore, the clock calculation
by Horvath included a log-linear transformation for data
points from younger individuals. When applied to longi-
tudinal datasets, both the Horvath and Hannum et al.
clocks show signs of an asymptote in later life, where
chronological age increases at a faster rate than epigen-
etic estimated age (see Fig. 1c). Cross-sectional studies

have also consistently shown strong biological sex differ-
ences, with men having greater positive age acceleration
than women [102].

Current uncertainty
The non-linear rate of clock ticking and what may influ-
ence this is not precisely defined. The Horvath clock is
seen to run the fastest during development, while during
adulthood, linear associations are observed with clock
years increasing at the same rate as chronological years,
on average. The biological aging marker of epigenetic
age acceleration assessed from birth shows minimal vari-
ation to adolescence and then increases with age [103]
and is hypothesized to be influenced by developmental
changes during childhood and adolescence [104].
The full extent of genetic influence on DNA methyla-

tion both within CpGs on the arrays and further beyond
in the genome is still underappreciated [86, 105–108].
How significant and through which pathways genetic in-
fluences act on clock longitudinal dynamics is uncertain,
but has begun to be explored [109], and further major
meta-analyses are in progress. Twin studies estimate that
the heritability of the epigenetic age acceleration is rela-
tively high (h2 ~ 40%) [9]. This is even higher at younger
age, implying, as we age, there is an increasingly envir-
onmental contribution to the age acceleration calcula-
tion [24]. Of note, a genome-wide association study for
the Horvath clock calculated age acceleration identified
five loci, including an intronic variant with unknown
functional implications within the telomerase reverse
transcriptase (TERT) gene [110]. It is still unclear how
much deviation of epigenetic age from chronological age
is driven by different rates in biological aging or genetic-
ally determined differences between individuals. More-
over, various threads of evidence indicate some epigenetic
loci display increased variability with age, which may po-
tentially be an important and distinct measure in captur-
ing biological age [111]. This is also observed in
longitudinal analysis, with a fraction of these age-varying
CpGs identified to be under genetic influence [109, 112].
Further areas of uncertainty arose from the longitudinal

meta-analysis of Marioni et al. [101]. Firstly, significant
differences between the Horvath and Hannum et al. clocks
were seen, as would be expected due to their differing tis-
sue training sets. However, they further proposed that
while some of the slowing of the clock rate in the elderly
may be due to survivor bias, there may also be a plateau
to epigenetic clock estimates. Intriguingly, a possible de-
cline at late age has even been postulated [113].
Recently, Zhang et al. identified that correcting for

blood cell type proportions attenuated the all-cause mor-
tality associations with both the Horvath and Hannum
et al. clocks [46]. This reduction was shown to be greater
for clocks built from smaller training sets. Furthermore,
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the association with mortality lessened, even without cell
type correction, with increased training set size. The bio-
marker power of specific clocks may be increased or de-
creased depending on the contribution of major cell
proportions to the specific disease or trait being examined
(see Table 1). Changes associated with immunological
aging [114, 115] are clearly contributing to aspects of
biological aging. However, more precision is required re-
garding how these manifest within individuals over the
life-course, as well as which specific cell types drive dis-
tinct associations.

Future experiments and recommendations
Longitudinal studies enable the description of the pheno-
typic manifestations of aging within individuals [9]. There-
fore, they are powerful for determining the predictive
ability of the DNA methylation biomarkers of disease and
outcomes in individuals. As these studies are generally de-
signed with multiple, often frequent, biospecimen collec-
tion, those including early age and young adulthood will
be able to query observed departures of predictors from
chronologic age through this developmental period. Simi-
larly, samples obtained over multiple timepoints from eld-
erly subjects could address questions about slowing in
epigenetically predicted age. The availability of multiple
sources of DNA from various tissues over time would also
facilitate robust multi-tissue age evaluations [9].
By identifying the best-designed studies, with appropri-

ate tissues, physiological, functional, and molecular bio-
markers, and disease monitoring, the relative disease
predictive power of DNA methylation can be robustly
assessed. Due to the expense, consensus on this invest-
ment will help its realization. There has been significant
success in genetic studies using the rigorously phenotyped
UK Biobank. This is not only through extremely powerful
GWAS, but also collating this information into a calcu-
lated risk for specific common diseases with genome-wide
polygenic risk scores (PRSs) [116] with potential clinical
utility [117]. Many well-known cohorts have generated
DNA methylation data [107, 118, 119], but, undoubtedly,
it would be highly desirable to assay further powerful lon-
gitudinal studies in extremely large datasets of deeply phe-
notyped individuals. Understanding the dynamics of
clock-estimated age will improve as more studies obtain
repeated measures of DNA methylation. This could in-
clude an application of latent class analysis on categories
such as early, late, or constant epigenetic age acceleration.
It would be beneficial to generate DNA methylation

data at scale on one or more cohort studies that have (a)
prospectively collected data and DNA samples, (b) deep
phenotyping of age-related traits, (c) standard biochemical
markers of aging-related decline, (d) repeated measures,
and (e) genetic data. Given the derivation of human DNA
methylation clocks from array-based data, the latest

generation DNA methylation array (EPIC 850k) would be
the pragmatic approach at the current time. However, the
field is currently in transition between a reliance of array-
based platforms that capture data on a small subset of
CpG sites and sequence-based approaches. As noted later
(in “Challenge 4”), the interrogation of a wider range of
DNA methylation sites using sequence data will ultimately
bring added insights into underlying mechanisms, but the
cost of such an approach at scale and appropriate depth is
currently prohibitive.
The interrelationship between genotype and DNA

methylome clock changes could be robustly evaluated in
any large epidemiological cohorts that are genotyped
(for some, such as UK Biobank, a significant portion is
soon to be fully sequenced). Therefore, chronological
age estimation could potentially be improved after cor-
recting for identified genetic effectors on this measure.
More nuanced haplotypic integration of epigenetic and
genetic variation will ultimately be required. It will also
be possible to study the impact of how genetic variation
can influence clocks driven by relevant causative factors,
such as inflammation and immunological aging. The re-
lationship between genotype and DNA methylation
clock calculations can be exploited to gain insights into
causal or mechanistic pathways. For example, in cohorts
where both genotype and DNA methylation data are
available, it would be feasible to apply a Mendelian
randomization approach to appraise the causal impact of
a potential determinant of clock-derived age [120, 121].
A hypothesis-free approach might include the applica-
tion of LD score regression [122], which would use all
genetic variants associated with clock age and compare
these against all available GWAS data to search for traits
that show common genetic architecture with DNA
methylation clock age. This may shed light on potential
pathways that influence aging.
There is considerable potential clinical utility in the in-

corporation of epigenetic data in disease prediction. Given
the precision with which DNA methylation clock age can
be estimated and evolving measures of biological, pheno-
type-, and disease-related age (e.g., PhenoAge [43],
GrimAge [45]), it may be a useful tool in enhancing clin-
ical prediction models of age-related disease incidence.
Studies to date have assessed the combined contribution
of genetic and epigenetic data to specific traits [123, 124]
and have demonstrated the utility of using DNA methyla-
tion as an index of specific health-related exposures, not-
ably smoking [125], to predict future disease risk [126].
This ability to use blood-derived DNA methylation as a
systemic exposure measure will continue to be refined.
Adding clock-derived measures of biological aging to such
prediction models could bring enhanced sensitivity and
specificity over and above that possible from self-reported
measures of known risk factors. For example,
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cardiovascular risk could combine genetic PRS for this
trait with GrimAge clock measures, which estimate car-
diovascular disease-related risk, such as smoking pack-
years, plasma beta-2 microglobulin, and other plasma pro-
teins, and predicts time to coronary heart disease [45].
Regarding the issue of cell type deconvolution for

clock association, this will be specific to the disease or
trait being examined. Single-cell analysis, as detailed in
“Challenge 5,” will also help pinpoint which cell type(s)
is the most important and guide the use of cell type cor-
rections in heterogeneous DNA samples for larger longi-
tudinal and epidemiological studies.
Another very important issue is that all these genetic

and epigenetic data and analyses are strongly biased to-
ward populations of European ancestry and other popula-
tions are grossly under-represented. Further large-scale
diverse longitudinal studies are imperative [127]. As men-
tioned, the extent of genetic influence is currently under-
estimated and will therefore need detailed analysis across
multiple populations (see Table 1). Additionally, the
unique advantages of monozygotic twin studies should
also be borne in mind [105, 128], and the comparison of
these non-genetically confounded studies with larger
population findings may be illuminating. Another fascinat-
ing avenue to explore that may reveal novel insights are
those contemporary populations worldwide that com-
monly exhibit extreme longevity, termed “blue zones”
[129]. These regions include Nicoya in Costa Rica, Ikaria
in Greece, a region of Sardinia in Italy, Okinawa in Japan,
and Loma Linda in the USA [2].

Challenge 4
Genome-wide analyses of aging and exploration of
additional epigenomic marks
Current knowledge
The initial DNA methylation clocks in humans were de-
rived from the Illumina 27k or 450k DNA methylation
arrays available at the time [21, 23–25]. Even the latest
generation EPIC 850k only assesses ~850,000 sites,
which is ~3% of all the CpG sites in the human genome.
However, as aging changes are pervasive throughout the
DNA methylome, these arrays easily capture age-related
variation [23]. Only a small number of CpG sites are re-
quired in the clocks (i.e., Horvath: 353, Hannum et al.:
71, PhenoAge: 513, epiTOC: 385). The distribution of
these selected CpGs, compared to genomic functional
regions, can be seen in Fig. 2a–e and is clearly enriched
for active loci (such as transcription start site/promoter
regions) due to the available CpGs for selection present
on the arrays. Within the DNA methylome itself, the like-
lihood of methylation variability at an individual CpG is
associated with its surrounding CpG density [134], with
intermediate density regions showing the most change-
ability through development, across tissue types, and in

cancer [135, 136]. The proportion of variable sites (methy-
lation change ~≥0.3) in normal conditions is estimated at
15–21% [137, 138] (see Fig. 2f and g for transcript as well
as CpG island and shore distribution of clock probes,
respectively).
The association between other DNA modifications and

age in humans remains underexplored. Aging-related
changes have been seen with hydroxymethylation (5hmC),
even in blood, where this modification is infrequent [139].
More detailed analysis is required to assess whether this ap-
proaches the correlation identified for 5mC. Extensive
chromatin changes with age are observed in model organ-
isms (yeast, worms, flies, and mice) [140]. The co-ordinated
nature of the epigenomic machinery through both chroma-
tin modifications and DNA methylation [141, 142], as well
as experimental evidence from chromatin regulators, such
as DOTL1 [143], implies that aging chromatin clocks could
also exist, although without the ease of assay and highly
quantitative measurements that DNA modifications enable.
Broad chromatin aging-related changes include loss of
H3K9me3 within heterochromatin and redistribution of
H3K4me3 and H3K27me3 in euchromatin [60]. Addition-
ally, aging in a mouse brain leads to altered hippocampal
chromatin plasticity with deregulation of histone H4 lysine
12 (H4K12) acetylation [144], as well as histone variant
H2A.Z accumulation [145]. In human prefrontal cortices,
aging-related changes were found in H3K9 acetylation
(H3K9ac) associated with Alzheimer’s-related tau protein
burden [146].

Current uncertainty
In regard to the DNA methylome, few sequencing-based
studies have investigated regions beyond the limited
CpGs profiled using array-based techniques [147–149].
The question is how much more information can we ob-
tain by examining additional sites in the epigenome,
what additional value this will bring, and where should
we look? Sequencing-based studies will easily observe
aging changes, but are expensive to perform, especially
with whole-genome base-resolution techniques, and suf-
fer from inconsistent regional coverage, making use of
common clocks problematic. Furthermore, higher levels
of coverage (~100X) than typically employed (5–30X)
are actually required to call high-confidence differen-
tially methylated positions (DMPs) [150]. Of note, Hor-
vath’s pan-tissue clock exploits the 27k array and is
highly accurate in predicting chronological age even
without including the ELOVL2 CpGs covered with the
450k array, which display age associations that are much
stronger, and consistent across tissues, than any other
CpG currently identified [46].
An additional question is whether we can glean new

information about biological aging and not just a more
accurate chronological clock. Repetitive elements, such
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Fig. 2 (See legend on next page.)
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as SINE (predominately Alu elements in humans),
LINEs, and LTRs, of the genome could be responsive to
environmental factors such as diet and stress, and as
such are intriguing targets for further exploration [151].
Repetitive regions possess latent functionality [152, 153],
however are robustly epigenetically repressed by DNA
methylation [151, 154, 155]. Their hypomethylation with
age could, therefore, be a significant underexplored
pathogenic mechanism in non-malignant age-related
disease. An early whole-genome bisulfite sequencing
(WGBS) neonate versus centenarian comparison identi-
fied ~87% of the differentially methylated regions
(DMRs) to be losing methylation with age [147]. Al-
though changes in cell composition were not accounted
for, it was still interesting to note that strong enrichment
occurred in repetitive sequence, with ~18% of the age
DMRs in Alu elements. The impact of this deterioration
of their epigenetic state with age is however uncertain,
and, furthermore, these repetitive elements are largely
not represented on arrays for technical reasons. For ex-
ample, only ~2.7% of the 450k array probes overlap Alu
elements, and this small fraction is ~4x more likely to be
from the recognized set of technically poor functioning
probes [156]. Also, further unknown age-related path-
ology may exist with other repeat families, including the
LTR12C subfamily of LTR repeats that possesses signifi-
cant enhancer evidence in multiple tissues in humans
[157]. While earlier targeted work was not strongly sup-
portive of age-related promoter hypermethylation being
due to adjacent or overlapping repeats [158–160], latent
enhancer hypomethylation with age is another possibility
[92]. Hypotheses proposed for the mechanism involved
in DNA methylation loss within these loci include in-
adequate DNA methylation maintenance influenced by a
lack of dietary substrates, such as those for S-adenosyl-
methionine (SAM) [81], or TET-mediated active DNA
demethylation [161]. Interestingly, an assessment of the
human DNA methylation clocks found that CpGs redu-
cing in their methylation level with age, rather than

those gaining methylation, were the most indicative of
biological aging through their association with life ex-
pectancy [162].
A further key question is how interconnected across

the entire genome are all these age-associated epigenetic
changes and whether there are specific altered “hubs”
which drive concerted changes at both the DNA and the
histone modification level. If epigenetic drift could affect
activity of one of these hubs, and likelihood of this hap-
pening may well increase with age, then drift could have
a functional impact. The endpoint gain or loss of defined
functional units, such as a specific enhancer, proposes
that aging chromatin clocks could be more informative
or sensitive. Furthermore, these epigenomic changes
would be tractable for exploration in those model
organisms that lack DNA methylation (e.g., yeast and
C. elegans).

Future experiments and recommendations
There are several considerations for the next wave of
studies into the biology of aging. First, analyzing a large
number of samples is key (see “Challenge 3”), ideally in
the 1000s. Over the course of the next few years, it is
unlikely that any technology will be able to do this af-
fordably at base resolution other than the current gener-
ation of Illumina EPIC 850k DNA methylation arrays.
Therefore, at this point in time, large-scale population-
based studies of the aging epigenome will continue with
this robust array. Many of the additional sites on the
platform may not provide any further independent infor-
mation, although with the caveat that increased enhan-
cer loci have been explicitly targeted on this array. This
increased focus on enhancer CpGs potentially gives this
array improved power to identify tissue-specific and
disease-specific loci. Another possibility is a two-stage
study design with the first step involving adequately
powered WGBS to gain greater coverage to identify age-
variable DNA methylation sites and regions, then

(See figure on previous page.)
Fig. 2 All clock probes are strongly biased to reside within active functional loci. This is due to their construction from promoter-focused arrays.
Overlap of CpGs from four DNA methylation clocks with the six Core Encode Combined Chromatin Segmentation tracks [130] from ENCODE
Analysis Data at UCSC. a Horvath clock [24]. b Hannum et al. clock [23]. c PhenoAge clock [43]. d epiTOC clock [31]. Location is assessed for
overlap with the seven functional categories: PF (promoter flanking—light red), TSS (transcription start site and promoter region—red), CTCF
(blue), WE (weak enhancer—yellow), E (enhancer—gold), T (transcribed region—green), and R (repressed—grey), from any of the six Core
Encode cell types (Gm12878, H1hesc, Helas3, Hepg2, Huvec, K562). This percentage overlap is shown on the y-axis and is compared with the
percentage overlap for all ~28 × 106 CpGs in the human genome on the x-axis. Calculated via bedtools [131]. The size of the circle is proportional
to the entire genome space for each functional category (~10(genome size proportion)). e-h Direct overlap comparison for four DNA methylation
clocks (Horvath clock, Hannum et al. clock, PhenoAge clock, epiTOC clock) as well as Illumina array CpGs (27k, 450k, EPIC) and all genomic CpGs
(far right bar) with: e the Combined Segmentation track for blood-derived tissue (GM12878) [130]. Functional segments are delineated as PF
(promoter flanking), TSS (transcription start site and promoter region), CTCF, WE (weak enhancer), E (enhancer), T (transcribed region), and R
(repressed). NC, not covered CpGs in this Combined Segmentation overlap; f Gencode [132] Exon and Transcripts; g UCSC [133]-defined CpG
islands and shore regions (+/−2 kb); h Major repeat classes (UCSC RepeatMasker [133]), including DNA repeat elements (DNA_repeats), long
interspersed nuclear elements (LINE), low complexity repeats and other rare repeat classes, long terminal repeat elements (LTR), simple repeats
(microsatellites aka short tandem repeats), and short interspersed nuclear elements (SINE), of which ~63% are Alu elements
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designing a custom array that could be used at very low
cost on very large numbers.
While the focus so far has been on DNA methylation,

other DNA modifications, as well as known and currently
unrecognized chromatin modifications, should be
explored and may reveal exciting clock-like properties.
Suggestively, the premature autosomal recessive aging
disorder, Werner syndrome, while showing DNA methy-
lation clock age acceleration [163], also has identified
significant heterochromatin changes [164]. The optimum
analysis of chromatin modifications requires fresh
samples, but epigenome-wide association studies have
been recently performed successfully with histone acetyl-
ation derived from post-mortem specimens [165]. These
data can also be further integrated with DNA modification
changes. Larger scale mass spectrometry quantitation of
histone modifications could also be evaluated. Additional
DNA modification analysis by oxidative BS-seq via array
for 5hmC [166] should be further evaluated in aging,
although this is still currently expensive to perform in
large numbers. However, new methodologies, such as a
non-destructive DNA deaminase [167], may help to
propel these on.
Repetitive elements, where currently technically pos-

sible, may be sites for identifying aging-associated DNA
modification in order to construct novel clocks, and
these loci are clearly under-represented by arrays pres-
ently (see Fig. 2h). In this exploration, smaller scale
whole-genome sequencing DNA methylome analyses
should not be deterred. Analyzing repetitive elements by
these methods is the only realistic option, and for the
longer repeats, third-generation direct long-read sequen-
cing may be required. Although they can measure modi-
fications directly, given the sample numbers needed and
the error rate in DNA methylation measurements for
third-generation technology, such studies are 3–4 years
away. However, current second-generation techniques
may, despite technical challenges, reveal prospective loci
that can then be robustly explored and validated through
targeted amplicon BS-seq techniques via platforms such
as Fluidigm Access Array [168] or as third-generation
direct sequencing matures. Also, classic and novel chro-
matin marks should be scrutinized for unique clock-like
signatures. An important future direction for functional
exploration is to connect DNA modifications, histone
post-translational marks, and transcriptional data into a
single integrated aging model.

Challenge 5
Single-cell analysis of aging changes and disease
Current knowledge
Novel insights into aging-related biological changes will
be identified by moving beyond the misleading homo-
geneity of bulk-cell-derived data to the heterogeneity of

single-cell analysis [169]. Tissues age as both genetic and
epigenetic mosaics, changing their cellular variation.
This indicates that single-cell analysis will be necessary
to accurately understand this process. This may pinpoint
individual cell type age DMPs. Significant aging-related
cell composition changes are observed in blood, which
include a skew toward myeloid lineage-derived cells
[170], diminishing immune competence and a shift from
naive to memory T cells [171], and clonal competition
[172]. These cell mixture changes occurring with age
may be equally complex in other tissue types. In fact,
single-cell techniques have recently recognized pre-
viously unknown pathologically relevant cell types, for
example in the airway epithelium [173]. An important
example in the context of aging is sporadic senescent
cells that occur in aging tissues, with accumulating evi-
dence that these cells may be a driver in deteriorating
organ function [174].
A key question regarding the DNA methylation clock

at the single-cell level is to what extent clock site
changes are cell autonomous or conversely to what de-
gree the clock is a cell ensemble phenomenon. As most
of the age-related changes in DNA methylation are rela-
tively small, it is perhaps more likely that for most clock
(or even age-related) sites, the changes observed, even in
relatively homogeneous cell populations, are not cell au-
tonomous but rather cell population based. That is, they
are occurring only in a subset of cells in a tissue. Single-
cell data may bring answers to these questions, as well
as insight into aging mechanisms beyond the current
predictive power of DNA methylation clocks. Construc-
tion of a clock at the single-cell level is currently tech-
nically challenging primarily because of missing data in
each individual cell. Computational techniques such as
imputation may help with these absent values [175].
Nevertheless, findings from single-cell combined tran-
scriptome and DNA methylome sequencing in mouse
muscle stem cells have already shown specific context-
dependent increases of cell-to-cell heterogeneity in
methylation coupled with increased transcriptional het-
erogeneity, especially in stem cell niche genes [176].
Similarly, chromatin modification analyses in blood,
while clearly indicating immune cell types, also identify
an increase in cell-to-cell variability with age, or
“epigenomic noise,” with particular increases in both
H3K4me3 and H3K27me3 [177]. This variability is a
molecular signature of immune cell aging and may be
due to the rise of distinct clones. Twin analysis revealed
the majority of the changes (70%) were non-heritable or
environmentally driven, being in a similar range to the
~80% proposed for DNA methylation changes [107]. On
the expression side, single-cell analysis in mice also iden-
tified an increase in variability with age, with greater
cell-to-cell transcriptional volatility in CD4 T cells [178].
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Bulk analysis of isolated cell populations can still give
epigenetic insights and also hint further at what single-
cell analysis will be able to refine with even further cell
type or clonal resolution. For instance, in humans, bulk
purified CD8 T cells show decreased naive and increased
memory sub-fractions [114]. Additionally, ATAC-seq of
aging naive cells demonstrated reduced promoter acces-
sibility, especially for the DNA methylation-sensitive
transcription factor NRF1 [114]. This is indicative of the
integrated epigenomic and transcriptomic changes occur-
ring during aging. On the genetic side, deep exome sequen-
cing has identified age-related clonal hematopoiesis in blood
[179] and positively selected clones show prevalent muta-
tions in epigenome-modifying genes, DNMT3A, TET2, and
ASXL1 [179, 180]. These clones are pathogenically associ-
ated with not only hematological cancers [179, 180] but also
non-cancer disease risks such as atherosclerosis [181].

Current uncertainty
Exploring clock-related changes at the single-cell level would
determine the cell type drivers of tissue-specific clocks.
However, at this point, a significant unknown is how
discrete the epigenomic profile of distinct cell types are and
how much of a continuum between cell types exists. Also,
what changes are occurring prior to observable age-related
changes, such as up-regulation of trans-acting TFs. How do
the levels of DNMTs and TETs change, and what is their
interaction with other substrates? With the initial Horvath
clock, some organs had a larger error in estimation of
chronological age [24], initially interpreted as faster bio-
logical aging rates, though now thought possibly due to the
impact of hormones on tissues such as the breast [182].
While cell isolation techniques may enable robust and
insightful studies due to larger sample sizes, their level of
resolution may be limited by the methodologies employed
and current knowledge of cell categorization [183].
Another area of uncertainty is pan-tissue aging

changes. While there is strong indication of significant
and perhaps unique outliers that exhibit aging changes
across all tissue types [63], such as ELOVL2 [46], ana-
lysis of the large number of tissue-specific changes with
tissue-specific clocks will bring substantial insight (as
discussed in “Challenge 2”). There is evidence for a sig-
nificant level of shared age DMPs between certain tis-
sues [62], and single-cell analysis will allow for more
robust evaluation of both these observations to identify
in which individual cells these occur.
Increasing levels of somatic genetic mutation with age

are now recognized [184, 185], leading to distinct clones,
with potential pathological involvement even in non-
malignant age-related disease [186]. How this may im-
pact in a cell- and disease-specific fashion throughout
the epigenome and clock-related changes is another un-
certainty in age-related pathophysiology, particularly if a

mutational enrichment in epigenome-modifying genes is
observed, as in cancer [187].

Future experiments and recommendations
Single-cell epigenomics will facilitate much more detailed
exploration in both disease and age-related changes.
While the technology is still evolving, successful datasets
have already been produced and are able to give a level of
resolution that is beyond previous expectations, with
methods such as single-cell ATAC-seq and BS-seq [172].
This allows precise exploration of core epigenomic issues
related to cell type heterogeneity and its tissue-specific
modification with age. Single-cell analysis has the potential
to reveal stronger cell type-specific changes that are cur-
rently diluted in signal in present results (see Fig. 3). This
will include the identification of novel cell types, accumu-
lation of senescent cells, and clonal competition that will
manifest as epigenomic variation associated with age and
age-related disease. Additionally, tissue-specific versus
pan-tissue common aging findings can be further explored
[62]. Single-cell analysis can also probe and more clearly
evaluate and subcategorize phenomena observed with
bulk analyses, such as increased DNA methylation
variability with age [111].
This methodology will also allow dissection of cellular

aging changes, such as the clock-like DNA methylation
changes related to mitosis [31, 66]. Cell-specific age
DMPs may indicate the binding footprints of specific
TFs [87], enabling cell type-specific aging-related mecha-
nisms to be defined. It is likely that with improved

Fig. 3 Single-cell analysis. Distinct cell variation in aging epigenetic
clock changes may exist that would not be apparent in bulk
comparison. Black and white squares represent methylated and
unmethylated loci, respectively. Each row represents a single cell’s
epigenome (represented as haploid for simplicity) with increased
variability present in individual 2
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coverage of scBS-seq it will be possible to generate a
single-cell clock; this may also be aided by further meth-
odological or technical breakthroughs, including poten-
tially single-cell multi-omics measurements [188].
Furthermore, modulation by experimental models may
give further insight into the influence of particular sub-
strates in observed aging changes. Data quality is steadily
improving, although bulk-derived results are not obso-
lete and can complement and clarify single cell informa-
tion due to issues such as non-specific results and
reduced depth [172]. As these aging changes are so rele-
vant to the function of cells and organs, we recommend
that aging changes need to be clearly considered along,
or in conjunction with the Human Cell Atlas initiatives
where possible [189]. This will need attention in single-
cell aging-related disease studies, and further complexity
may exist through the intercellular environment via the
influence of neighboring cells on cell aging trajectories.
The technology is rapidly developing, as illustrated by

the recent sci-CAR (single-cell combinatorial indexing -
chromatin accessibility and mRNA) assay, permitting the
profiling of both chromatin accessibility and gene ex-
pression in thousands of single cells [190]. This and
other maturing methodologies [191] will undoubtedly
enable more precise understanding of age-related obser-
vations such as epigenomic drift. This should eventually
enable single-cell epigenetic clocks giving a clearer indi-
cation of the functionality of these aging-related changes
and guide further future experiments into the mechan-
ism of disease.

Challenge 6
Generation of robust non-human data of aging
Current knowledge
Much of what we know about the biology of aging
comes from studies on model organisms [6]. Taking ad-
vantage of all this knowledge, the development of DNA
methylation clocks in these experimental systems brings
with it an opportunity to advance our understanding of
the role of the epigenome in aging. The Horvath clock
initially demonstrated a strong correlation with age in
our closest relatives: the chimpanzees and bonobos [24].
However, for the common laboratory mouse strains,
only 1.6% of the EPIC array probes aligned to conserved
CpG sites [192]. Age-related changes in the DNA
methylome have been extensively analyzed in C57Bl/6
mice. Sziraki et al. described global remodeling of the
mouse DNA methylome with age, reporting numerous
global, region-specific, and site-specific features [193].
The associated genes and promoters were found to be
enriched for pathways associated with aging, suggesting
a fundamental relationship between the epigenome and
the aging process. In addition, aging was accompanied
by an increase in entropy, consistent with damage

accumulation. Interestingly, the effects of this entropy
varied for the sites that decreased, increased, and did not
change DNA methylation levels with age. Some sites
trailed behind, whereas some followed or even exceeded
the entropy trajectory and altered the developmental
DNA methylation pattern. The patterns found in certain
genomic regions were also conserved between humans
and mice, indicating common principles of functional
DNA methylome modulation between species. As this
study examined a whole range of mouse ages, it also de-
tected accelerated changes in the DNA methylome in late
life, which were not seen in studies with more limited age
ranges [159, 194, 195]. Also, calorie restriction both
shifted the overall methylation pattern and was accom-
panied by its gradual age-related remodeling. As in
humans, with age, both highly and lowly methylated sites
trended toward intermediate levels, and aging was accom-
panied by an accelerated increase in entropy [23, 41, 193].
A number of successful mouse sequencing-based DNA

methylation aging estimators have been devised, includ-
ing multi-tissue clocks [196–198], a liver clock [199],
and a blood clock [200]. Field et al. have also recently
described the clear strengths of mouse aging models
[10]. One advantage of mouse models is the possibility
of testing longevity interventions or modulators. For ex-
ample, a multi-tissue clock was accelerated by high-fat
diet [196], and the liver clock reported the effects of cal-
oric restriction, dietary rapamycin, and Prop1df/df dwarf-
ism [199]. The blood-based clock revealed the impact of
caloric restriction and dwarfism, as well as the influence
of a whole-body knockout of the growth hormone recep-
tor [200]. One of the most recent studies also carried
out a comparative analysis of these mouse clocks, noting
certain limitations between tissue and multi-tissue esti-
mators [198]. A calorie restriction intervention led to
significant changes in epigenetic age in mouse [200],
and, furthermore, a 30% restriction in rhesus macaques
led to an average DNA methylation age 7 years lower
than chronological age [194]. In addition to the notion
that the epigenetic clock sites may be variable in relation
to metabolism, an overlap of age-related cytosine modifi-
cations with sites that exert epigenetic control of
circadian machinery genes has been observed [201].
Wide-ranging mechanistic findings have also been
drawn in mice, such as a trans-species experiment with
an aneuploid mouse, which possesses a human chromo-
some 21 within its nucleus, revealing increased aging-
related DNA-methylated changes, implying these are
influenced by the cell’s nuclear environment [202].
The mouse has emerged as a significant model organ-

ism to study and quantify the epigenetic changes with
age in a mechanistic way, e.g., the effects of longevity in-
terventions on biological age were first demonstrated in
mice. There is no doubt that further improvements in
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aging clocks in this species will lead to many discoveries
both in the basis biology of aging and the discovery and
validation of interventions that extend lifespan.
Additional models beyond the mouse may also be

highly valuable, such as the naked mole rat with its
extraordinary longevity compared to similar species
[203]. Clocks have now been constructed in many ani-
mals, such as an estimator that can be used across both
domestic dogs and wolves [204]. Variation identified
within dog breeds with respect to aging is consistent
with known lifespan differences [202]. The diverse range
of wild animal clocks include, for instance, the
humpback whale [205].

Current uncertainty
If DNA methylation clocks provide a readout of biological
age, then it will be essential to determine its modifiability,
whether or not therapeutic or lifestyle interventions will
help to reverse it and gauge any impact on long-term
health. The biological origins of the clock elicit a great
deal of debate. Exploration will require experimentally and
computationally deconvoluting the different processes of
the clock into its constituent parts, where specific model
organisms may have particular strengths. A broad variety
of factors, beyond the clear role of genetics, are proposed
in the dynamics of age-related methylation variation.
These include inflammation, cell division, metabolic ef-
fects, cellular heterogeneity, diet, and a variety of other
lifestyle factors, as well as stochastic effects. Regarding the
possible involvement of metabolism, this is tightly inter-
twined with epigenetic regulation and nutrition specific-
ally may modify DNA methylation [206], therefore
pinpointing it as a potential significant mediator [207].
Further uncertainty arises from the obstacle that aging

DNA methylation sites are only partially conserved
among different mammalian species. Also, the inconsist-
ent coverage from sequencing-based studies makes these
less transferable, even across mouse experiments within
the same tissue in the same strain. This technical issue
with the reliance on sequencing, due to the lack of avail-
able commercial DNA methylation arrays in non-human
species, reduces the utility of these published clocks.

Future experiments and recommendations
Construction of robust clocks in mammals and other
vertebrates is likely to be highly informative for under-
standing aging. Mouse models have significant advan-
tages due to their similar mammalian physiology,
genomes, and epigenomes, but with a shorter lifespan,
and ability to robustly control the animal environment.
Most importantly, in contrast to human studies, direct
genetic and pharmacological interventions can be more
quickly tested in this species, although mouse aging ex-
periments still take 3 years. So, for some questions,

researchers can keep in mind the utility of short-lived
vertebrate models with DNA methylation that are amen-
able to genetic manipulation, such as the killifish. Never-
theless, for consistent exploration of experimental clock
modulation in mice, high-quality DNA methylome
sequencing-based studies are needed. As mentioned in
“Challenge 4,” depth for high-quality DMP calling in
humans is estimated at 100X [150]. While this require-
ment will not be quite as stringent in isogenic mice,
low-coverage studies should be avoided, due to their in-
herent lack of power. Additionally, clocks constructed
with alternate statistical methods that are more resilient
to significant inherent stochastic loss of data points are
also required, as discussed by Zhang et al. [46]. Add-
itionally, human age DMP or DMR findings, in con-
served genomic loci, can be explored in the mouse for
further mechanistic insight. However, as detailed above,
this focus obviously does not preclude the value of other
aging models. Domestic animals, for example the dog,
taking advantage of its genetic architecture and known
age-related breed disease susceptibilities [208], may be
an informative model for non-invasive longitudinal mon-
itoring. Horvath is currently designing a pan-species
array, with a reduced set of common probes, to facilitate
a common clock measure across a range of organisms
[209]. The identification of the target genes of epige-
nomic regulatory elements [210], such as enhancers or
insulators modified by aging-related changes, may be
highly informative and enable subsequent functional
exploration in humans.
The use of non-invasive DNA methylation clocks in

conservation and ecology is another highly valuable as-
pect that should be taken full advantage of. This was dis-
cussed recently regarding a novel chimpanzee-specific
age estimator [211] and also relating to a range of wild
animals [212]. The knowledge of the age of individual
animals is extremely beneficial in animal conservation,
facilitating more accurate estimations of demographics
such as population age structure and reproductive suc-
cess [212]. The study of humpback whales clearly dis-
plays the utility of DNA methylation clocks, as while
they have similar lifespans to humans, these whales have
no reliable visual age indicators after 1 year of age [205].

Challenge 7
Inclusion of epigenetics within current genetic ethical and
legal frameworks
Current knowledge
Epigenetics is implicated in many facets of aging, and
DNA methylation clocks provide a molecular readout of
aspects of this underlying complexity [9]. The high cor-
relation with chronological age has led to their use in fo-
rensics [54–56], although further proposals, such as age
estimation in refugees [57], have significant ethical
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issues. As yet no policies exist governing the reporting
of epigenetic findings or biological age estimates, includ-
ing those based on DNA methylation. This current
shortfall has been recognized for some time [213, 214].
To stimulate the necessary discussions, the first pioneer-
ing epigenetic reports including age estimates have been
issued to study participants of the Personal Genome
Project UK [215]. A comprehensive framework on the
Ethical, Legal, and Social Implications (ELSI) is still
required to be developed and formulated [216, 217].
Further illustrating the future of epigenomic analysis,
distinct personal and multi-timepoint longitudinal DNA
methylome changes were recently reported in an indi-
vidual in relation to their chronic disease state [218].

Current uncertainty
Ambiguity surrounds the ethics of measuring biological
aging, or aging modification by changes to lifestyle, and
how personal responsibilities can be balanced against
the requirements of society (e.g., insurance, provision of
health care). Producing an objective and accurate surro-
gate marker for biological aging will reignite an age-old
discussion concerning how, and to what extent, individ-
uals can be held accountable for their own behavior and
the impact this has on their health.
As detailed in the preceding sections, while the DNA

methylation clocks provide novel and intriguing avenues

for the biological exploration of the aging process, there
remains a significant lack of knowledge regarding the ac-
curacy and robustness of this broad-scale age estimator
(see Table 1). This is particularly concerning when it is
now being proposed for legal age verification or life
insurance calculations. We currently do not know the
validity of the various different clock measures in an
individual, across populations, with respect to rare and
common genetic variation, across time, or under par-
ticular environmental conditions, exposures or physio-
logical changes.

Future recommendations
Safeguarding autonomous decision-making and how to
obtain adequate informed consent in advance of calcu-
lating an individual’s estimated biological age will re-
quire a complex framework, which has to be applicable
for diverse circumstances. One set of measures will be
required to cover obtaining consent from an individual
who aims to attempt to decelerate “biological” aging by
lifestyle change and wishes to use longitudinal analyses
of a DNA methylation clock as a biofeedback marker.
There will be a very different set of requirements for this
personal monitoring, compared to more controversial
societal and political issues, e.g., in the context of
discrimination [219], socioeconomic circumstances, and
migration. Using epigenetic data in an ELSI framework

Table 2 Summary of recommendations arising from the challenges of studying DNA methylation clocks in the context of aging

Challenges and recommendations

1. Delineation of the chronological and biological components of DNA methylation clocks

• Quantify the accuracy and robustness of “forensic” age estimates from different DNA sources

• Isolate pan-tissue “biological” aging changes for novel insights into aging

2. Functional characterization of tissue-specific and disease-specific clocks

• Refine tissue- and disease-specific clocks for disease-specific measures

• Deeper understanding of the pathogenesis of specific age-related diseases

• All published clock algorithms should be transparent and publicly available

3. Integration of epigenetics into large and diverse longitudinal population studies

• For predictive biomarkers of clinical utility

• Understand the cause and consequences of clock measures and any rate change on aging-related disease and longevity

4. Genome-wide analyses of aging and exploration of additional epigenomic marks

• Identity novel and potentially more sensitive chronological or disease-specific clock-like mechanisms

5. Single-cell analysis of aging changes and disease

• Explore functionality of clock-like and other aging-related epigenetic changes

• Define the components of tissue-specific changes

6. Generation of robust non-human data of aging

• Explore fundamental biology of aging using DNA methylation clocks in model organisms

• Expand and standardize the application of DNA methylation clocks to test longevity interventions in mice

7. Inclusion of epigenetics within current genetic ethical and legal frameworks

• To educate and protect the public from misinformation and misuse
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acceptable to all stakeholders will require transparent
governance based on scientific accuracy, which will
require significantly more rigorous scientific evaluation.

Conclusion
With this perspective, we have detailed seven challenges
alongside the experiments and recommendations to ex-
plore these (summarized in Table 2), which we hope will
help to further the fascinating biological discoveries that
have accompanied DNA methylation clocks. These de-
tailed strengths, weaknesses, and areas of inquiry should
stimulate new discussion and experimentation.
The power of epigenomic analysis is clearly displayed

by these precise aging-related changes. Detailed evalu-
ation of DNA methylation clocks may reveal unique in-
sights into the aging process itself, as well as act as a
biomarker of biological age and inform on age-related
common disease risk. While we have highlighted some
caveats regarding the potential misuse of clocks, more
detailed experiments should help to alleviate these. We
have only begun to reap all of the insights that study of
the epigenome will bring in deciphering physiology and
pathology, and there is much promise for both improved
human and animal health.
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