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Abstract—In this paper, we study the problem of designing
adaptive Medium Access Control (MAC) solutions for wireless
sensor networks (WSNs) under the Irregular Repetition Slotted
ALOHA (IRSA) protocol. In particular, we optimize the degree
distribution employed by IRSA for finite frame sizes. Motivated
by characteristics of WSNs, such as the restricted computational
resources and partial observability, we model the design of IRSA
as a Decentralized Partially Observable Markov Decision Process
(Dec-POMDP). We have theoretically analyzed our solution in
terms of optimality of the learned IRSA design and derived
guarantees for finding near-optimal policies. These guarantees
are generic and can be applied in resource allocation problems
that exhibit the waterfall effect, which in our setting manifests
itself as a severe degradation in the overall throughput of
the network above a particular channel load. Furthermore, we
combat the inherent non-stationarity of the learning environment
in WSNs by advancing classical Q-learning through the use of
virtual experience (VE), a technique that enables the update
of multiple state-action pairs per learning iteration and, thus,
accelerates convergence. Our simulations confirm the superiority
of our learning-based MAC solution compared to traditional
IRSA and provide insights into the effect of WSN characteristics
on the quality of learned policies.

Index Terms—Medium Access Control, Q-learning, Irregular
Repetition Slotted ALOHA, wireless sensor networks, POMDP,
Independent learning

I. INTRODUCTION

Wireless sensor networks (WSNs) have drawn the attention
of the research community due to their wide applicability and
the challenges inherent in their optimization. Characteristics
such as uncertain and changing channel conditions render
static, pre-designed solutions inefficient, while restrictions
such as the limited computational power, battery capacity and
transmission range of sensors impose limits to the performance
of potential solutions. In order to render WSNs adaptive,
reinforcement learning is often employed [1] and preferred
to supervised learning, as generating labeled data for WSNs
is expensive and a priori simulating all possible conditions
the network may operate in is not feasible. The challenges
that the aforementioned traits impose to learning, such as
partial observability, decentralization and non-stationarity, ren-
der traditional learning solutions inappropriate due to their
prohibitive time and computational complexity, as well as the
lack of formal convergence guarantees.
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Medium Access Control (MAC) orchestrates the access
of devices to the common communication channel with the
objective of maximizing its throughput. In our work, we study
MAC design under the Irregular Repetition Slotted ALOHA
(IRSA) protocol [2], a state-of-the-art probabilistic protocol
that employs successive interference cancellation (SIC) to
resolve collisions. IRSA is ruled by the employed degree
distribution, a probability distribution that describes how many
replicas of the packets available to each sensor should be trans-
mitted in each frame. The work in [2] proves that IRSA can
approach optimal throughput in asymptotic settings. However,
the assumption of frames of infinite length is not accurate in
practical implementations, where the length of the frame size
is directly associated with delays in the transmission of packets
and, therefore, is often restricted to small values.

To design adaptive MAC protocols appropriate for WSNs,
we first formulate MAC design as a multi-agent system, where
agents learn how to transmit their packets by interacting with
their environment in the framework of decentralized Partially
Observable Markov Decision Processes (Dec-POMDPs) [3] 1.
Specifically, we assume that each sensor is an agent aiming
at maximizing the throughput of the sensor network. Agents
in our formulation perform actions that correspond to the
coefficients of the degree distribution, with the objective of
maximizing the common channel throughput, while rewards
are associated with the success of transmission. We also
consider partial observability in our definition of states, as
sensors can observe only information that is local to them and
is possibly inaccurate due to the limited capabilities of sensors.

The reinforcement learning algorithm employed in our
solution is Q-learning [5], which has been extensively used
for rendering WSNs adaptive [1], as it achieves a fine balance
between low complexity and satisfactory performance. Q-
learning does not require a model of the environment, a
particularly advantageous trait for WSNs, where a model
of the environment is often absent. Although model-based
reinforcement learning [5] can be used to derive such a
model, it significantly increases the time and computational
complexity of the learning algorithm, while the inherent non-
stationarity suggests that re-modeling will often be required.
Another advantage of Q-learning is that it can be applied both
in an offline and online manner, in contrast to Monte Carlo
algorithms [5] that can only be applied offline. Finally, Q-
learning was selected as it is an off-policy learning algorithm
and, thus, convergence in stationary environments is guaran-
teed irrespectively of the policy being followed, in contrast to
on-policy algorithms, such as SARSA [5], where convergence

1Part of this work was presented at PIMRC 2018 [4].
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analysis is much more complex.
Ensuring realistic complexity is essential when designing

solutions for WSNs. The large number of sensors and partial
observability may lead to an explosion in the complexity of
learning, which we remedy by employing two techniques:
(i) adopting finite histories of observations to approximate
the continuous beliefs of Belief MDPs, which significantly
reduces the size of the state space and, as we prove in Section
VII-A, can still lead to policies with near-optimal performance,
and (ii) assuming that each sensor learns independently from
other sensors, by updating its local Q-function based on its
individual observations and actions. Although naı̈vely ignoring
agents’ interactions, this technique has been found to converge
when coupled with exploitive exploration strategies in [6] and
exhibits low complexity.

Furthermore, we investigate the effect that partial observ-
ability and decentralization have on the quality of the so-
lution and prove the existence of near-optimal solutions for
a POMDP employing a finite history of past observations.
This result is novel and can be employed for characterizing
the optimality of learning solutions for resource allocation
problems that exhibit the waterfall effect. Our analysis is
based on a work that corresponds to a centralized setting
[7], we therefore investigate how decentralization and the
assumption of independent learning affect the quality of the
learned policies based on observations derived in [6] and our
analysis of the equilibrium points of our setting.

Apart from the quality of the solution, speed is also an
important criterion when evaluating a technique. In Q-learning,
convergence to a stationary policy is guaranteed at the end
of an episode, which refers to the period of interaction
of an agent with its environment until a terminal state is
reached, provided that the environment is stationary. However,
in WSNs, the time-varying nature of the network and channel
conditions renders the learning environment non-stationary,
which effectively means that the optimal policy can change
during the course of an episode. Thus, Q-learning will exhibit
sub-optimal performance, if the environment changes at a
rate quicker than its convergence rate. To address this issue,
our solution equips Q-learning with the concept of virtual
experience (VE) [8], where an agent updates multiple state-
actions pairs at each Q-learning iteration by “imagining” state
visits. These visits correspond to state-action pairs termed
virtual, whose defining property is that they are equivalent in
front of the unknown environment dynamics. Our theoretical
analysis formulates the effect that virtual experience has on
the convergence rate of Q-learning, which we also empirically
measure in our simulations.

Our main contributions consist in:
• empowering IRSA with optimized degree distributions

for small frame sizes so that throughput is significantly
improved for high channel loads. We examine the perfor-
mance of the proposed scheme in simulations of various
settings and compare the derived distributions with those
used by classical IRSA;

• the novel definition of IRSA design as a Dec-POMDP
that adapts to varying communication conditions;

• the formulation of a fast Q-learning variant that utilizes

finite and locally available information. Our learning
algorithm comes with an analysis on the optimality of
the MAC solution. We also characterize its complexity;

• a novel theoretical study of the effect of virtual experience
on the convergence properties of Q-learning, as well as its
impact on the convergence rate as empirically evaluated
in our setting;

• the investigation of the impact of the waterfall effect on
the behavior of agents and the ability of our proposed
algorithm to alleviate it.

The rest of the paper is structured as follows. In Section
II, we provide a short review on related works. Section III
contains a discussion on how our design choices were moti-
vated by properties of Q-learning in WSNs. Section IV models
the considered WSN, highlighting underlying assumptions.
Section V presents IRSA and formulates the optimization
objective of our proposed learning algorithm. In Section VI,
we present our self-configuring MAC protocol, henceforth
referred to as RL-IRSA. In particular, we model MAC de-
sign under the Dec-POMDP framework and describe our Q-
learning variant. In Section VII, we analyze the optimality,
convergence rate and complexity of our solution. Section VIII
exhibits the simulations performed to configure and evaluate
our learning-based solution. Concluding remarks are presented
in Section IX.

II. RELATED WORK

Due to the increasing need for efficient communication
over shared channels, contention-based MAC protocols have
seen a continuous improvement in their performance. The
original Slotted ALOHA [9] is inappropriate for energy-
constrained WSNs, as throughput, measured as the probability
of successful transmission of a packet in a communication slot,
cannot exceed a value of 0.37 [2]. Two modifications signif-
icantly improved its performance: (i) transmitting a number
of predefined replicas of the original packets, introduced in
Diversity Slotted ALOHA [10], and, (ii) employing SIC, a
mechanism for resolving collisions, which was introduced in
Contention Resolution Slotted ALOHA [11]. By combining
SIC with the ability of sensors to transmit different numbers
of replicas, decided by sampling the degree distribution, IRSA
asymptotically achieves a throughput of 0.97 [2].

The performance of IRSA depends on the optimization
scheme used to derive the degree distribution, with differential
evolution traditionally preferred [2]. More recently, in [12],
the use of Multi-armed Bandits (MABs) was introduced, as a
remedy for inaccurate asymptotic analysis in non-asymptotic
settings and as an alternative to computationally expensive
finite length block analysis. This work has been proposed for
an IRSA variant that incorporates users’ prioritization [13].
The main disadvantage of MABs is that they are stateless
and, thus, cannot take into account sensors’ characteristics,
such as battery level, memory size, etc., information that can
be valuable to the decision-making process.

Learning automata (LA) is an alternative framework to
MDPs that has successfully been employed in MAC design
[14], [15]. LA have been found to converge in stationary
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environments, where other learning algorithms fail [16], but
their application in the domain of WSNs faces the same
limitations with MABs, as they are also stateless. Feedforward
structured networks of generalized learning automata [17]
overcome this problem by introducing the notion of states.
However, the quality of the offered local optima depends on
both the complexity of the problem as well as their architecture
[16], which renders them inappropriate for WSNs.

Convergence of Q-learning to optimal policies is guaranteed
in problems formulated as a Markov Decision Process [18],
but partial observability renders states non-Markovian. In this
case, the framework of Belief MDPs can be employed to learn
optimal policies [19] and, in practice, finite approximations of
beliefs, in the form of tuples of consecutive observations, are
preferred to reduce complexity [20]. In [7], the optimality of
POMDPs employing histories of observations is studied under
the framework of finite state controllers, which are finite state
machines that can be employed to convert a POMDP to a finite
state Markov chain. The analysis in [7] proves that there exists
a near-optimal policy for such a POMDP independently of the
initial distribution of beliefs.

The imperfectness of assuming independent learning in a
multi-agent setting is investigated in [6] and the conditions suf-
ficient for convergence are derived. Although well-performing
solutions are often found [6], [20], the equilibrium points
can correspond to sub-optimal solutions [6]. Game-theoretic
approaches are often employed [21], [22] to study multi-
agent learning problems, but the entailed complexity of Nash
equilibrium points in multi-state sequential problems, as well
as the assumptions of hyper-rationality and omniscience of
players are not appropriate for WSNs [23].

The convergence rate of classical Q-learning was studied in
[24] in relation to the learning rate and discount factor. In [25],
the effect of VE on the convergence rate of Q-learning was
examined. In particular, the work in [25] separated the effect of
the environment into “known” and “unknown” dynamics and
introduced the concept of VE in their attempt to extrapolate
experience of rewards to states that do not affect the unknown
dynamics and are, therefore, equivalent in the light of new
information. VE was applied to post-decision states, in contrast
to our solution applying it on actual states. A related concept
is that of experience replay [26], where agents “remember”
state visits, instead of imagining them. Experience replay
leverages past experience during the application of Q-learning,
a technique that has been proven essential for training deep
neural networks used as Q-function approximators.

III. Q-LEARNING IN WSNS: MOTIVATING REMARKS

Despite the widespread use of Q-learning in various prob-
lems related to WSNs, it exhibits traits that impose challenges
to the design of realistic, efficient and well-performing so-
lutions. Next, we explain how we address these challenges
during the design of our learning algorithm.

The time complexity of Q-learning is primarily dictated by
the size of the state-action space. WSNs’ characteristics such
as partial observability, continuous quantities, and increasing
network sizes often lead to prohibitively large state-action

TABLE I: System-related
variables

Symbol System-related
M number of sensors
N number of slots in frame
G channel load
T packet throughput
K number of transmitted packets
PLR probability loss rate
F size of packet
Su uncontrolled state
LE number of learning iterations
α learning rate
γ discount factor
w history window
L coverage time
φ exponent of learning rate
T virtual experience transformation

TABLE II: Sensor-related
variables

Symbol Sensor-related
Ct condition
l number of replicas
Ft number of arrivals in buffer
B size of sensor’s buffer
d maximum number of replicas
bt current state of buffer

Λ(x) degree distribution
S state-space
A action-space
Ω observation-space
H history-space
H̃ history-space using VE
Rt immediate reward
ρt expected reward
π(s) policy
Qπ(·) Q-function under π
V π(·) state value function under π

spaces. In tabular Q-learning, experience is stored in the
Q-table, which, due to the aforementioned traits, is often
impractical to implement. Deep reinforcement learning (DRL)
approaches can be used to approximate the Q-function [21],
[22], [27], but convergence of DRL to optimal strategies is
an open issue and training has to be performed offline and
centrally due to the computational complexity of training
deep neural networks. This, in combination with the fact
that, if the network conditions change significantly retraining
of the system is required, suggests that DRL cannot offer
computationally feasible solutions that ensure adaptivity for
sensor networks of realistic size and for changing channel
conditions. To overcome this challenge, we employ techniques
that help maintain a reasonable state-action space size without
employing function approximation. In particular, we propose
a technique to reformulate a continuous action space as a
discrete one and employ finite histories of observations to
approximate beliefs.

Q-learning is traditionally applied on the global state-action
space, which in our setting, would either require sensors to
learn jointly or assume a centralized point of control. The
former approach imposes extensive communication among
sensors, which consumes resources and can potentially affect
the operation of the network, while the latter jeopardizes it.
Furthermore, the restricted capabilities of sensors limit the
transmission range and suggest that interactions among sensors
can only be local. To this aim, we propose a decentralized
solution, while we further reduce complexity by assuming
independence in learning among sensors.

Due to the absence of a model of the environment, Q-
learning requires extensive interaction with it. This leads to
slow convergence to the optimal solution, thus sensors will
need to consume significant resources prior to finding an opti-
mal transmission strategy. Also, low throughput is anticipated
at the beginning of the episode, when the learned policy is
still far from the optimal one. To avoid these shortcomings
in our solution, we accelerate the convergence rate of Q-
learning through the use of virtual experience, and thus find
well-performing policies within reasonable training times.

IV. NETWORK AND SENSOR MODELING

This section presents our assumptions made regarding the
physical layer. Tables I and II summarize the notation used
for system-related and node-related variables, respectively.
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Fig. 1: (a) A sensor network where sensors transmit wirelessly to a common access medium (b) Transmission under the
standard Slotted ALOHA and IRSA protocols. (c) Bipartite graph describing IRSA.

A. Physical layer

We consider frequency non-selective channels, characterized
at the beginning of each time frame by the traffic Gt, which
represents the average number of attempted packet transmis-
sions by all sensors per time slot, with t indicating the time
index at the beginning of a frame. We assume that traffic can
be estimated perfectly in light of the number of sensors and
frame size, and that it remains constant during a frame, similar
to the works in [28], [29].

Following the work in [25], we assume that the packet
throughput Tt and number of transmitted packets Kt can be
expressed as:

Tt = T (Gt−1,Kt−1, PLRt−1) (1)
Kt = K(Gt, Tt, Ct, PLRt) (2)

where PLRt is the packet loss rate and Ct denotes a sensor’s
condition. The latter can include any information that could
potentially affect the behavior of sensors, such as the buffer
state and battery level. For the sake of simplicity, we consider
only the buffer state (number of packets in the buffer) of
sensors. However, the proposed framework is generic, and,
depending on the application of interest, can incorporate
additional characteristics to Ct. From (1), we can also see that
Tt is a non-deterministic function of its arguments, as sensors
randomly select the slots to transmit in. Note that the proposed
framework is oblivious to the underlying modulation, coding
schemes and channel noise.

B. Buffer and traffic model

We assume that the transmission buffer of a sensor is
modeled as a first-in first-out queue. At the beginning of a
frame, a source injects Ft packets into a finite-length buffer of
capacity B. Therefore, the buffer state bit ∈ B = {0, 1, ..., B}
of a sensor i evolves recursively as follows:

bi0 = biinit

bit+1 = min{bit − T it (PLRt,Kt, Gt) + F it , B}
(3)

where biinit denotes the initial buffer state and
T it (PLRt,Kt, Gt) is the packet goodput, representing
the number of successfully and error-free transmitted packets
in a frame for sensor i, i.e., packets that were: (i) successfully
transmitted (no collisions occurred or the occurred collisions
were resolved through SIC), and (ii) not corrupted by
channel noise. This follows the convention in [25] and,
in our framework, coincides with throughput. We consider

that the packets arriving after the beginning of frame t
cannot be transmitted until frame t+ 1. Also, packets whose
transmission fails stay in the buffer for future retransmission.

V. PROBLEM FORMULATION

A. IRSA

Let us consider a network of M sensors collecting mea-
surements from their environment and transmitting them to
a core network for further process, as shown in Fig. 1a.
The main bottleneck of the operation of the network is the
transmission of the packets sensors possess through a common
communication channel, as it is also used by neighboring
sensors. Abiding to Slotted ALOHA and its variants, in our
work time is divided into frames of fixed duration, each one
consisting of N time slots. At the beginning of each frame
each sensor randomly chooses one of the N available slots
to transmit its packet. The channel traffic can be calculated
as G = M/N . IRSA aims at maximizing the normalized
throughput T , defined as the probability of successful packet
transmission per slot. Note that this definition is transparent to
the size of the transmitted packets and slot duration, but can
easily be converted to the commonly employed measurement
unit of bits/s as Tpt/st, where pt denotes the size of a packet
in bits and st the duration of a slot in secs.

In IRSA, a sensor has the capability of transmitting a
variable number of replicas of the original message in the
available time slots, decided by randomly sampling the node
perspective degree distribution. The latter is a polynomial
probability distribution describing the probability Λl that a
sensor transmits l replicas of its message at a particular time
frame, which is expressed as 2:

Λ(x) ,
d∑
l=1

Λlx
l, x ∈ [0, 1] (4)

where d is the maximum number of replicas a sensor node is
allowed to send. Packet replicas under IRSA are indicated in
Fig. 1b with red, dashed outlines. If one of the replicas is trans-
mitted in a collision-free slot, then the packet is successfully
transmitted. If however two replicas collide, as highlighted
in Fig. 1b, they might still be recovered by removing the
interference of a replica that has previously been successfully

2When defining degree distributions, we denote the degree of a coefficient
as a subscript, while a superscript corresponds to raising to a power. Also, in
the rest of the paper, indexes appearing as subscripts (superscripts) refer to
the time (sensor) index.
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received. This leads to substantial improvements in the net-
work’s throughput. Fig. 1b illustrates SIC by indicating with
a blue, dashed line that the interference of a replica can be
removed due to a replica of the same packet having been
successfully received in another slot.

The packet transmissions depicted in Fig. 1b can be mapped
to a bipartite graph consisting of variable nodes, representing
sensors, and check nodes representing time slots. Accordingly,
SIC is implemented as message-passing on this graph [2].
IRSA can also be characterized by the coefficients λl, which
denote the probability of an edge being adjacent to a variable
node of degree Λl. These coefficients can be used to form the
following edge perspective degree distribution:

λ(x) ,
d∑
l=2

λlx
l−1, x ∈ [0, 1] (5)

The two degree distributions presented in (4) and (5) are
related with the formula: λ(x) = Λ′(x)/Λ′(1), where Λ′(x)
represents the derivative of the node perspective degree dis-
tribution. As our work is concerned with the optimization
of Λ(x), we henceforth refer to the node perspective degree
distribution simply as degree distribution.

B. Optimization objective

The design of IRSA aims at selecting the values Λl in
(4) so that the overall network throughput T is maximized.
The dependence of throughput on the probability distribution
chosen permits us to express T in terms of Λ(x). This
dependence becomes obvious if one considers the waterfall
effect in IRSA [2], that indicates the existence of a threshold
value G∗ for the channel load G, above which transmission
will fail with a probability bounded away from 0. It is observed
in [2] that, in asymptotic settings (N →∞), the value of this
threshold depends on the degree distribution, namely:

G∗ <
1

λ2Λ′(1)
(6)

Formally, our optimization objective can be cast as:

Find: (Λ∗(x)) : arg max
Λ(x)

T (Λ(x))

subject to
d∑
l=1

Λl = 1.
(7)

IRSA is optimized in an asymptotic setting by iteratively
alternating between choosing values for Λl and evaluating
them using (6), in order to acquire a higher threshold G∗. The
optimization of Λ(x) is complex, and is performed offline.
As the frame size N grows, the maximum allowable number
of replicas d should also grow, and thus the number of Λl
coefficients in Λ(x) increases, making optimization harder.
Differential evolution is usually employed to search through
the degree distribution space [2], [13] due to its ability to
efficiently optimize in large search spaces. However, the calcu-
lated degree distributions are sub-optimal for non-asymptotic
cases, which are of interest here. We present our proposed
framework to solve (7) in Section VI.

VI. RL-IRSA: AN ADAPTIVE MAC PROTOCOL

The discussion will proceed with the formulation of a
solution that employs reinforcement learning for the problem
of IRSA design, as described in Section V.

A. Modeling as MDP

Recall from (1) and (2) that there are two parameters
affecting the environment’s state: the current channel load G
and a sensor’s condition Ct. We first assume that the sensor
network is a single agent that interacts with its environment,
which includes the channel and itself. This concept is depicted
in Fig. 2a. We model the problem as an MDP with state:

S = ×1≤i≤MS
i × Su (8)

where S ∈ S is the state of the agent, S is the set of all states,
Si represents the state of sensor i and Su stands for the part
of the environment that is uncontrolled by the sensors and, in
our formulation, corresponds to G.

The transition probabilities of this MDP can be cast as:

P (Sut+1 | Sut ,×1≤i≤NS
i
t ,K) = P (Sut+1 | Sut ) (9)

P (Sit+1 | Sut ,×1≤i≤NS
i
t ,Kt, F

i
t ) ∝ −T it (K,G) + F it (10)

where T it (·) is the individual packet goodput of sensor i, i.e.,
the number of successfully transmitted packets for agent i, that
depends on the current values Kt and Gt. Note that we did
not provide a strict definition for the transition probabilitity
of the state, but defined it to be proportional to the number
of messages that will be added to the buffer before the
next frame. This is because the state transition can vary for
different applications (e.g. sensors dropping packets to avoid
congestion or packets being stochastically corrupted by noise
at the receiver). In our simulations, we assume that all packets
are successfully added to the buffer, unless there is an overflow,
in which case they are dropped.

From (9) we observe that the transitions of the uncontrol-
lable state Su are independent of the transmission strategy
and the states of individual sensors. In particular, we assume
that the channel probabilistically switches states based on the
arrival and departure of sensors in the network. Further, from
(10), we observe that individual transitions in the state of sen-
sor depend on the states and actions of other sensors, channel
load, noise conditions and packet throughput. Therefore, state
transition independence for sensors does not hold.

The action A ∈ A of the agent, with A being the action
space, consists of the joint actions of all sensors in the network.
These actions represent the values of the coefficients Λl of the
degree distribution in (4), that is:

A = Ai × · · · ×AM , with Ai = {Λi1, · · · ,Λid} (11)

where Λil denotes the coefficient Λl of the degree distribution,
as were presented in (4), of sensor i. Recall that d is the
maximum number of replicas a sensor is allowed to send.

The above MDP formulation, although genuinely modeling
the IRSA optimization problem, leads to a continuous action
space, that scales exponentially with the number of sensors.
This renders learning of the optimal action intractable for
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large-sized problems. To circumvent this drawback, we rede-
fine the actions as the number of replicas to send:

A = Ai × · · · ×AM , with Ai = l and l ∈ {1, · · · , d} (12)

During the learning phase the agent finds a deterministic policy
π(a|s), with s ∈ S and a ∈ A, by choosing the optimal Ai

for each sensor, except for exploratory moves where a random
action is performed. After learning has completed, the prob-
ability distribution Λ(x) is computed using the information
of visited state-action pairs. Therefore, upon implementation
of our protocol the policy is probabilistic with π(a|s) = Λa,
where Λa is a coefficient in Λ(x). This technique allows us
to leverage the benefits of maintaining a small action space,
while using a stochastic policy.

The choice of the reward function is guided by our aim
to design self-interested agents, attempting to improve the
overall packet throughput while lacking access to a global
performance measure, i.e., the channel throughput. We, thus,
define the immediate reward Rt as the negation of the number
of packets in the buffer of the sensor in the current time index.
This reward makes sensors eager to transmit when their buffers
are full, instead of making the decisions purely based on the
outcome of the current transmission.

Clearly, the information included in the definition of states
cannot be available to all sensors, as this would impose huge
communication load. To alleviate this drawback of MDPs,
in the next subsection we advance our modeling, based on
partially-observable MDPs.

B. Dealing with partial observability

POMDPs [19] remedy the inability of an MDP to observe its
state by introducing observations, which contain information
that is relevant but insufficient to describe the actual state on
their own. In our case, the network and sensors cannot observe
Su = G, as this requires a global view of the environment. We,
therefore, constrain observability to information only locally
available to sensors. Following our description in Section IV
regarding a sensor’s condition C, we assume that the only
state-related information a sensor has access to is the number
of messages stored in its buffer, that is:

Ω = Ω1 × · · · × ΩM , with Ωi = bi (13)

POMDPs can be optimally solved using the framework of
Belief MDPs [19], but this renders learning intractable, as it
is performed in continuous state spaces. Instead of beliefs, we
adopt a fixed history window w and approximate beliefs with
a finite-history of observations, which we define as:

Ht = {Ωt−w+1, · · · ,Ωt−1,Ωt} (14)

We have neglected the distributed nature of the problem
in order to focus on the decision process formulation. Next,
we proceed by reformulating it under the Dec-POMDP frame-
work. [3].

C. Dec-POMDP Formulation

Decentralized Partially-observable MDPs offer a powerful
framework for designing solutions that take into account
partial observability and operate in a distributive way. The
uncontrolled state of the environment includes information
about the number of agents and the number of slots per time
frame, both expressed through G. Fig. 2b depicts the sensor
network as a Dec-POMDP.

Definition 1. (Dec-POMDP) A decentralized partially ob-
servable Markov decision process is defined as a tuple
〈M,S ,A, T,R,Ω, O,w, I〉, where M is the set of agents,
S is the finite set of states, A is the finite set of joint actions,
T is the transition probability function, R is the immediate
reward function, Ω is the finite set of joint observations, O is
the observation probability function, w is the history window
and I is the initial state distribution of beliefs at time t = 0.

Definition 1 extends the single-agent POMDP model by
considering joint actions and observations. In our case Ai ∈
{1, 2, · · · , d} , Ωi ∈ {0, 1, ..., B} and Ri is the individual
reward agent i observes, as described in Section VI-A. Thus,
our algorithm does not need a common reward function R,
but agents individually measure their rewards based on their
observations. Note that the state space of the Dec-POMDP
coincides with the state space of the POMDP, defined in (8). In
regard to beliefs, we initialize them, without loss of generality,
by sampling a uniform distribution taking values in the range
[0, 1, · · · , B]. As we prove in Section VII-A, the existence of
an ε-optimal solution is independent of this initialization.

D. Learning in a Dec-POMDP framework

In reinforcement learning we quantify how good a particular
state is by estimating a value function. We define the value
function under a policy π(a|s) as the expected discounted
reward starting from state s and then following that policy:

Vπ(s) = Eπ[ρt|St = s] = Eπ

[ ∞∑
k=0

γtRt+k+1|St = s

]
(15)

where ρt is the expected reward, and Rt is the immediate
reward at time slot t. The parameter 0 ≤ γ < 1 is the discount
factor that controls the effect of future rewards in the current
state; a value of γ closer to zero makes the agent myopic,
while when γ is close to 1 the agent is farsighted. Specifically
in Q-learning, instead of the value function Vπ(s), the Q(s, a)
function, often termed as Q-function, is employed. The Q-
function is defined as the expected discounted reward starting
from s, taking the action a, and thereafter following policy π.

The aim is to find the optimal policy, i.e. the policy that
maximizes the expected reward for all states, defined as:

π∗(s) = arg max
a∈A

(
Q∗(s, a)

)
, with s ∈ S (16)

where Q∗(s, a) denotes the optimal Q-function. Q-learning
in a Dec-POMDP can be described by the following update
mechanism:

Q(Ht, At) = (1−α)Q(Ht, At) +α[Rt + γ max
a

Q(Ht+1, a)]

(17)
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Fig. 2: Flow diagram of a WSN consisting of two sensors that
transmit their chosen number of replicas a1, a2 to the common
channel, which responds with a common reward r when the
problem is formulated as an (a) MDP and (b) Dec-POMDP.

This update mechanism expresses the independence in
learning, as it is employed by each agent for its individual
actions and histories of observations.

E. Virtual experience

Q-learning proves to be inefficient for real-time applications,
as extensive interaction with the environment is required in
order to converge to Q∗(s, a). To improve the convergence
rate of standard Q-learning, we employ virtual experience [25],
[30], where an agent updates multiple state-action pairs at each
Q-learning iteration by “imagining” state visits.

The intuition behind VE is that an agent can update not only
the state-action pairs that it has visited, but also pairs that are
equivalent in terms of the unknown environment dynamics.
In our case, the unknown environment dynamics include the
arrival and collision model, take place after the selection of
the number of replicas, and determine the reward the agent
experiences, as well as the next observation ω ∈ Ω. As defined
in (14), an agent’s history of observations is a tuple of past
buffer states. Based on this information, an agent chooses
the preferred number of replicas to send. Although agent’s i
observation vector hit is essential for determining the optimal
action, we should point out that the unknown dynamics do not
directly depend on hit. In particular, if the observation tuple
is hit = {bit−w+1, · · · , bit−1, b

i
t}, then the unknown dynamics

h̃

h1

h2

h3

h′T
a

Q∗(h, a) Q∗(h̃, a) Q∗(h′, a)

Frame t Frame t+ 1

Fig. 3: Virtual experience: h1, h2 and h3 are states of the Dec-
POMDP that are mapped to the same virtual state h̃ through
the transformation T . After action a is performed and the next
h′ is observed, the Q-table is updated for all states.

view states of the following form as equivalent:

Hi′

t = {bi
′

t−w+1, · · · , bi
′

t−1, b
i′

t }
= {bi

′

t−w+1, · · · , bi
′

t−2 − δbit−1, b
i′

t−1 − δbit},
with δbit = bit−1 − bit (18)

Note that we have substituted observations with buffer states
from the original definition of the observation tuple in (14),
as these are equivalent in our current formulation.

The reason for the above formulation is that collisions
should intuitively depend on the number of transmitted pack-
ets, as they determine the channel congestion. The value of
the buffer state is useful in shaping the eagerness of agents to
transmit packets. Formally and according to [8], a pair (s̃, ã)
is equivalent to a pair (s, a) if p(s′|s, a) = p(s′|s̃, ã), ∀s′ ∈ S
and the reward R(s̃, ã) can be derived from R(s, a). VE
can be viewed as applying the following transformation on
visited states, and then updating all states that have the same
representation:

Ht = {bt−w+1, · · · , bt−2 − δbt−1, bt−1 − δbt} (19)
T−→ H̃t = {δbt−w+2, · · · , δbt} (20)

We term h̃ ∈ H̃ a virtual state, as it is neither visited,
nor directly used in the Q-learning update, but serves as an
intermediate state in order to acknowledge states equivalent
towards the unknown environment dynamics. We illustrate this
concept in Fig. 3.

Following the above observation for each move of an agent
a batch update on all pairs (sj , aj) with T (sj) = h̃ and
aj = a will be performed. Note that we cannot extrapolate
experience to states with different actions, as the collision
dynamics depend on the performed action.

VII. RL-IRSA: THEORETICAL ANALYSIS

In this section, we theoretically analyze three important
properties of the proposed learning algorithm: (i) the quality
of the solution (ii) the rate of convergence and (iii) the
computational complexity.
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A. Optimality analysis

Our analysis begins by studying the waterfall effect and its
relation to the optimal performance of IRSA. First, we asso-
ciate this performance with the cost of a POMDP employed
to optimize the degree distribution of IRSA. We then leverage
our observations to justify that, a known result about the near-
optimality of POMDPs with finite history approximations [7],
is applicable in our setting. As this result is for a single
agent, and thus corresponds to a centralized approach, we
investigate the impact that replacing a centralized POMDP
agent with independent learners has on the Q-learning solution,
using observations derived in [6] and our own analysis of the
equilibrium points of the problem under study.

In [2], the theoretical analysis of SIC in asymptotic settings
reveals that the performance of IRSA is governed by the
following waterfall effect: there is a sub-space in the space of
all valid degree distributions, called a stability region, where
SIC can successfully resolve all collisions with a probability
close to 1. This leads to near-optimal channel throughput in
the stability region. Outside of this region, this probability is
bounded away from 0. The degree distribution can be used
to calculate an upper bound on the channel load G∗, which
signifies the limits of the stability region. The aforementioned
observations can be consolidated as:

Observation 1. ([2]) In asymptotic settings (N → ∞), the
probability of IRSA having optimal throughput is close to 1
if G∗ ≤ 1

λ2Λ′(1) . Otherwise, this probability is bounded away
from 0.

Furthermore, we know that the optimal solution of IRSA
in our setting corresponds to the case where all sensors
successfully transmit one packet in each frame, i.e. T ∗ = G.
If we, thus, define the cost as Jπ(β) = G− Tπ(β), where π
denotes the learned policy, which corresponds to the optimized
degree distribution and, β is the underlying belief state of the
finite-history POMDP, we can easily conclude that the optimal
cost for IRSA is constant and does not depend on properties
of the Dec-POMDP. We thus derive the following observation:

Observation 2. The optimal cost, J∗(β), that can be achieved
for IRSA is constant and equal to 0.

In [7], the optimality of POMDPs with finite histories
of observations was studied and the following theorem was
derived:

Theorem 3. (Proposition 2.2 in [7]) If the optimal cost, J∗(·),
is a constant function, then, for any ε > 0, there exists an
integer w, which corresponds to the history window of the
POMDP, and an ε-optimal policy π∗ ∈ Π such that π∗ at each
state depends only on the history of the most recent w stages.

We exploit observations 1 and 2 and Theorem 3 to derive
the main result of our optimality analysis:

Theorem 4. When the degree distribution of IRSA is opti-
mized using a POMDP with a finite history window w, then,
for any ε, there exists an ε-optimal solution. Furthermore, this
solution lies in the stability region of IRSA and, therefore,
throughput is optimal with a probability close to 1.

Proof. The first part of Theorem 4 is a direct result of Theorem
3, which in its turn is valid for the optimization of IRSA due
to Observation 2. We will prove the second part of the theorem
using a simple argument ad absurdum. Assume that there
exists no solution with a probability of optimal performance
close to 1. This would mean that all solutions found by the
POMDP are bounded away from the optimal solution. But,
according to the first part of the theorem, there exists an ε-
optimal solution for any ε > 0, where ε is a finite constant
that can be arbitrarily close to 0. Thus, we conclude that there
exist solutions with a probability of optimal performance close
to 1, with closeness to the optimal solution indicated by the
parameter ε.

Fig. 4 offers a visual representation of how the solution
of the IRSA optimization problem can be mapped into the
space of POMDP policies for a simplified scenario where the
degree distribution consists of two coefficients. As indicated,
the sub-space of valid degree distributions that corresponds to
the stability region of IRSA is mapped to a sphere of finite
radius ε.

Note that, in contrast to finite approximations for POMDPs
that require an explicit transition probability model to generate
beliefs [31], Theorem 3 can be used in model-free approaches.
Therefore, Q-learning can be the method of finding the near-
optimal policies, the existence of which is guaranteed by
Theorem 4.

Our analysis has so far assumed that the optimization
is performed by a single POMDP, which corresponds to a
centralized solution. However, as we explained in Section
VI-D, to avoid the complexity associated with centralized
learning approaches, we allow agents to act independently
from each other and learn the Q-values only for their own
individual actions. As was observed in [6], the existence of
multiple agents renders the environment non-stationary. This
suggests that Q-learning is not guaranteed to converge to the
optimal solution, as stationarity of the learning environment
is one of the traditional requirements for convergence [18].
In order, therefore, for our solution to be optimal, it is first
essential to guarantee that all sensors have converged in their
attempt to find an optimal policy, as this ensures that the
environment becomes stationary.

In [6], sufficient conditions for independent agents to con-
verge were derived and it was observed that a decreasing
learning rate and exploitive exploration play an important part.
However, guaranteed convergence is not adequate to prove the
optimality of independent learning, as the reached equilibrium
may correspond to sub-optimal solutions [6].

If we observe the definition of rewards in Section VI-A,
we can draw some useful conclusions related to the equilib-
rium points of our problem. While sensors are learning, and
before the optimal transmission strategy has been reached,
the rewards are constantly decreasing. This is because, as we
assumed in Section IV-A, packets arrive at a steady rate, equal
to the optimal rate of transmission. After having learned the
optimal policy and acting on it for a few iterations, a sensor
reaches an equilibrium point where its rewards are constantly
0, as any packet is successfully transmitted upon arrival. If
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Fig. 4: Visualization of the quality of the solution achieved by a POMDP for a sensor network where d, the maximum number
of replicas, equals 2. On the left, the optimal solution and the one our algorithm converges, both of which lie in the stability
region of IRSA, are depicted. On the right, we indicate the optimal cost of the POMDP as a point at 0, while the cost of our
solution is at most ε, and therefore lies in a sphere with a radius equal to ε.

learning fails to find the optimal policy, then the sensors
quickly converge to a “bad” equilibrium point, where their
buffers over-flow and the rewards converge to the negation of
the buffer capacity. Due to this structure of the problem, we
know that, if sensors converge to the first equilibrium point,
then the found solution is optimal. Otherwise, we discard the
sub-optimal solution and restart the learning episode, as we
explain in our discussion regarding Fig 8 in Section VIII.

B. Rate of convergence analysis

Although convergence of Q-learning is well-understood
[18], employing virtual experience, as described in Section
VI-E, alters the number of visited states per learning iteration.
Under the VE framework the conditions under which Q-
learning is guaranteed to converge [18], are still applicable,
bu the convergence rate of Q-learning changes. Inspired by
the work in [24], where the convergence rate of classical Q-
learning is analyzed, we study how VE affects convergence
time and derive a lower bound for it. We limit our analysis
to asynchronous learning using an exponentially decreasing
learning rate α = 1/tφ, where φ is a parameter that determines
how fast the learning rate converges to zero, as this is the
learning scheme implemented in our simulations, and extend
the results in [24] by considering multiple updates in each
learning iteration.

We first investigate how VE affects coverage time L, i.e.,
the learning iterations necessary to visit all state action pairs
at least once, and then proceed with bounding convergence
time. Our remarks are based on Lemma 33 in [24].

Lemma 5. Assume that P is the probability of visiting all
state-action pairs in a time interval k, which corresponds to a
time period of L iterations. Then, using virtual experience, the
probability of visiting all state-action pairs P in an interval k
is |H̃|P , where |H̃| denotes the size of the virtual state space.

Proof. The probability P is calculated as the percentage of
unique state-action pairs visited, i.e., P = Lu/(|S ||A|), where

Lu is the number of iterations where a pair was visited for
the first time and the denominator represents the size of the
state-action space. We assume that states are sampled with
replacement from an i.i.d. probability distribution. As we note
in Section VII-C, virtual experience increases the number of
states updated in a learning iteration by |H̃|. It follows then
that Lv

u = |H̃|Lu, where Lv
u is the number of iterations where

the visited pair was unique using virtual experience. Thus,
P v = |H̃|P .

Lemma 6. Assume that from any initial state we visit all state-
action pairs with probability |H̃|P in L steps. Then, from any
initial state, we visit all state-action pairs in L log2(δ)

log2(1−|H̃|P )

steps for a learning period of length
[

log2(δ)

log2(1−|H̃|P )

]
with

probability 1− δ.

Proof. The probability of not visiting all state-action pairs
in k consecutive intervals is (1 − |H̃|P )k. If we de-
fine k as log

1−|H̃|P (δ), then this probability equals δ and

L log
1−|H̃|P (δ) = L log2(δ)

log2(1−|H̃|P )
steps will be necessary to

visit all state-action pairs.

Based on Lemma 6 we can derive the following property
of VE:

Corollary 6.1. Virtual experience alters coverage time L by
a factor of log2(1−P )

log2(1−|H̃|P )
.

Similar to the work in [24], we thus express how the con-
vergence time of virtual experience depends on the covering
time in the following theorem:

Theorem 7. Let Qt be the Q-value computed by the asyn-
chronous Q-learning algorithm using exponentially decreasing
learning rate at time t. Then, with probability at least 1 − δ,
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we have ‖Qt −Q∗‖ ≤ ε, given that

t = Ω
((
L

log2(δ)

log2(1− |H̃|P )

)3+1/φ

+
(
L

log2(δ)

log2(1− |H̃|P )

)1/(1−φ)
)

Proof. This theorem is a direct result of Corollary 6.1 of our
work and Theorem 4 in [24], where the corresponding bound
for classical Q-learning is found to be Ω(L3+1/φ+L1/(1−φ)).

C. Computational complexity

The proposed protocol is a computationally attractive alter-
native to transmission strategies that are based on finite length
analysis [29]. In our framework, at each learning iteration
an agent has to choose its transmission strategy and then
update its local Q-table. In contrast to the work in [12], in
the proposed scheme the action space is discrete and increases
linearly with d, i.e., the maximum number of allowed replicas.
The size of the observation space, which coincides with the
size of the Q-table, is (B+1)w. Recall that B is the capacity of
sensors’ buffer and w is the history window. The observation
space scales exponentially with w and linearly with B. Finally,
the complexity associated with the number of sensors is O(1),
as sensors learn independently of each other.

Equipping Q-learning with virtual experience increases
computational complexity, as instead of updating one entry
of the Q-table in each learning iteration, all (h, a) pairs with
the same virtual state h̃ are updated. This complexity increase
is equal to the number of those pairs, which we denote by |H̃|
and can be bounded as:

0 ≤ |H̃| ≤ min{B + 1−Bmin, Bmax} where

(21)

Bmin = arg min
b
{b−

τ∑
t=w−1

δbt ≥ 0} and

(22)

Bmax = arg max
b
{b−

τ∑
t=w−1

δbt ≤ B} ∀τ ∈ [0, w − 2)

(23)

where Bmin and Bmax are used to avoid considering virtual
states with numbers of packets in their buffers that are either
negative or exceed the maximum capacity B.

VIII. SIMULATIONS

This section begins with a performance comparison of the
proposed RL-IRSA protocol and classical IRSA, which does
not employ learning and is optimized in [2] using differential
evolution. It subsequently studies the effect of different learn-
ing schemes on the performance of independent learning with
the two-fold goal of drawing conclusions about the behavior
of agents and providing a guideline for configuring system
parameters to determine the optimal transmission strategy. Fi-
nally, we evaluate the proposed scheme advanced with virtual

TABLE III: Simulation setup
Simulation parameters value

N , frame size 10
G, channel load [0.1, 0.2, · · · , 1.0]

LT number of transmission trials 1000
LE , number of learning iterations 1500

NE , number of independent simulations 20
clevel, confidence level 97.5%

ε, exploration 0.05
α, learning rate 1

(1+i)0.9

γ, discount factor 0.98

TABLE IV: Degree distributions of classical IRSA and
our proposed solution for different frame sizes

Method Λ(x)
IRSA 0.25x2 + 0.60x3 + 0.15x8

RL-IRSA10
0.4354x2 + 0.2445x3 + 0.173x4 + 0.0855x5+

0.0437x6 + 0.001x7 + 0.008x8

RL-IRSA50
0.0556x1 + 0.0278x2 + 0.2732x3 + 0.1654x4+
0.1027x5 + 0.1178x6 + 0.0878x7 + 0.0902x8

RL-IRSA200
0.0402x1 + 0.0754x2 + 0.3036x3 + 0.1607x4+
0.1131x5 + 0.1548x6 + 0.0952x7 + 0.0476x8

experience to show the reduced convergence time. Unless
stated otherwise, the simulation parameters are as indicated
in Table III. Note that a simulation includes learning of a
degree distribution for LE number of learning iterations and
its evaluation for LT transmission trials.

A. Protocol Comparison

In Fig. 5, a statistical analysis on the performance of the
two protocols under consideration is performed. From this
figure, it is obvious that RL-IRSA is superior to classical
IRSA for the whole channel load range, with the difference gap
becoming wider for channel loads above 0.6. We also observe
that performance has higher variations in high channel loads.
Fig. 6 illustrates convergence time for independent learning
in different channel loads. From this figure, we can see that
convergence is guaranteed and is fast for low channel loads.
For G = 0.2 only four learning iterations are necessary, while
for G = 0.4 seven iterations are needed. In the case of high
channel loads RL-IRSA fails to transmit messages faster than
their arrival rate, the sensors’ buffers thus quickly overflow
and the values of the rewards saturate to −B. For maximum
channel load (G = 1), the saturation occurs very soon at the
course of the episode (7 iterations), while for G = 0.8 17
learning iterations take place before all buffers overflow and,
even after this time point, some sensors manage to empty their
buffers. The highest channel load for which convergence is
achieved is G = 0.6, which is expected if we consider the
fact that packets are arriving randomly with probability 0.5
at each iteration. Thus, a throughput above 0.5 is required on
average to avoid saturation. Based on these observations, we
design a mechanism for agents to avoid sub-optimal solutions:
if the rewards deteriorate for three consecutive iterations, we
classify the episode as “bad”, discard the learned policy, and
reset the POMDP to an arbitrary state.

To draw further insights into how our solution differs from
an asymptotic optimization, we present in Table IV the IRSA
degree distributions, as optimized in [2] and our learned degree
distributions for different frame sizes. In contrast to the work
in [2], where the majority of the coefficients was a priori set
to 0 to reduce the complexity of optimization, our learned
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Fig. 5: Achieved throughput comparison of IRSA and
RL-IRSA on a toy network for varying channel loads.
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Fig. 6: Average rewards of RL-IRSA IRSA for different
channel loads G and the 25th episode of its learning time
in a run of 50 episodes.

Λ(x) are more dense. We also observe that, as the frame size
N increases, higher degrees become more prevalent, while
degrees are left-concentrated for small frame sizes. To explain
this tendency, we can borrowing theoretical and empirical
insights from the design of random error-correction channel
codes [32]. This is due to the similarity between SIC and
decoding on graphs, first observed in [2]. In particular, the
analysis in [32] proves that higher degrees lead to better
probability of successful decoding, while observing that the
simulated performance of the codes in finite settings deviates
from the asymptotic analysis, with the gap becoming more
evident as the maximum degree increases. Note that the max-
imum simulated frame size in IRSA does not usually exceed
200, while simulations in [32] were done for codewords of
length orders of magnitude larger. It is thus natural to restrict
the maximum degree to 8 in our simulations.

Fig. 7 illustrates how the throughput achieved by RL-
IRSA and classical IRSA changes with frame size and
G ∈ {0.6, 0.8, 1}. Note that these results can be easily
translated into throughput variation with respect to the num-
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Fig. 7: Achieved throughput comparison of IRSA and
Dec-IRSA for varying frame sizes N and number of
sensors M
with channel traffic G ∈ {0.6, 0.8, 1}.
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Fig. 8: Comparison of achieved throughput for different
buffer sizes of sensors.

ber of sensors, as, for a constant channel load, the number
of sensors increases with the frame size according to the
formula M = G · N . Thus, the results in Fig. 7 cor-
respond to M ∈ {6, 12, 30, 60, 120} sensors (G = 0.6),
M ∈ {8, 16, 40, 80, 160} sensors (G = 0.8) and M ∈
{10, 20, 50, 100, 200} sensors (G = 1). As regards scalability
of RL-IRSA, it appears robust and its performance increases
with larger frame sizes. This can be attributed to the fact
that learning is more meaningful in more complex networks,
where collisions occur more often, thus, learning to avoid other
agents has a more profound impact on the overall throughput.
Classical IRSA also improves its performance for increased
frame sizes, as it provingly works better in asymptotic settings.
This is attributed to the fact that the probability distribution
Λ(x) is computed using asymptotic analysis and is therefore
closer to optimal for frames whose size exceeds 200 slots.
Nevertheless, the performance gap between these two methods
remains high in heavy channel loads (G = 1), due to the
waterfall effect of classical IRSA. To conclude scalability
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analysis, the slight superiority of standard IRSA manifested
for low G in asymptotic settings is irrelevant to practical
scenarios, as the assumption of very large frame size N leads
to inefficient implementations, as was discussed in Section I.

B. Effect of state space size
The size of the state space depends on the history window,

as well as the maximum value of observations, which equals
B+ 1. Increasing B has a two-fold effect. Firstly, it increases
the size of the state space, thus urging for longer exploration.
Secondly, it dilates the range of rewards, which makes agents
more eager to transmit. Assuming buffer sizes of constant
size, constrained by sensors’ characteristics, one anticipates
to improve performance of learning by increasing the history
window, as that will lead to better approximation of the
underlying beliefs. Nevertheless, letting memory constraints
aside, this will result in an exponential increase of the state-
action space, leading either to intractable problems or high
time complexity. Thus, it is crucial to determine the minimum
amount of information necessary for agents to derive efficient
policies. Note that, for the sake of a fair comparison, learning
iterations were also increased to 3000 for increased history
window and buffer size. Fig. 8 demonstrates that using a value
of B = 1, i.e., only one packet is kept in the buffer, leads to
lower throughput for channel loads above 0.6, as agents are not
made eager enough to transmit. On the other hand, increased
buffer size improves the perceived throughput for loads above
0.8, but it slightly degrades it for the rest.

Regarding the history window w, Fig. 9 reveals that the
effect of increased world size is more profound. This is
due to size scaling exponentially with w, in contrast to its
linear scaling with B. We observe that by decreasing the
window to w = 2, a severe degradation in performance is ob-
served, suggesting that the information provided to the agents
through the observation tuples is not substantial. Increasing
the learning iterations for w = 8 has a counterintuitive effect,
as performance is degraded, whereas we would expect that
an increased world size would benefit from larger training
times. This expectation is based on the fact that increasing
the dimensionality of the state space will require more state-
action pairs to be visited, and, thus, a higher number of
learning iterations to explore the state-action space and find
a well performing solution will be required, a problem often
termed as curse of dimensionality. In this case however, 800
learning iterations perform optimally for w = 4, so we can
assume that equipping agents with larger memory leads to
learning better policies, thus less iterations are required. If we
continue to train after this optimal point, performance degrades
due to over-training, a phenomenon that generally refers to
learning a behavior that performs well during training, but not
during the evaluation of the policy. In particular, after a good
policy has been learned, the distribution of visited states is
no longer representative of the original problem. We conclude
that, considering the current parameterization, w = 4 is the
best performing choice. Note that the optimal value for w is
dictated by the learning dynamics (α, γ and ε) and is the one
that defines a state-space of size appropriate for a satisfactory
exploration/exploitation balance.
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Fig. 9: Comparison of achieved throughput for different
history windows.
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Fig. 10: Comparison of throughput of RL-IRSA with and
without VE for different number of learning iterations and
G = 0.7.

C. Virtual experience

Virtual experience was introduced in our solution to reduce
convergence time, which we, similarly to the work in [25],
measure here using the ε-convergence time, i.e., the number of
iterations required to learn an ε-optimal policy. Fig. 10 shows
how throughput changes with learning iterations and reveals
that, using VE, the optimal number of iterations was reduced
from 1500 to 500. Note that the degradation in performance
with increasing learning iterations, manifested at around 1500
iterations for RL-IRSA and 500 using VE, is due to over-
training. Fig. 10 is also useful for understanding the com-
plexity of our learning solution. Although finding the optimal
policy requires around 700 iterations (using VE), satisfactory
performance is achieved very early during the course of the
episode. From Fig. 10, it is clear that even at 100 iterations, the
algorithm is not very far from the optimum, while performance
improves rapidly. Therefore, we can conclude that this solution
will give good results even if the problem changes often,
i.e. every 100-200 iterations. To gain some intuition on how
simulation time maps to real time, we note that an iteration
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Fig. 11: Statistical comparison of ε-convergence times for
simple RL-IRSA and RL-IRSA using virtual experience,
with ε = 0.5.
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Fig. 12: Performance comparison of classical IRSA, a
random strategy, RL-IRSA optimized for low G and RL-
IRSA optimized for high values of G.

in our simulations required 3 milliseconds using an Intel(R)
Core(TM) i5-7500 CPU @ 3.40GHz processor. As the code
was not optimized in terms of time complexity, we expect even
smaller time requirements from software solutions specialized
for a specific hardware architecture.

Fig. 11 performs a statistical analysis on ε-convergence time
for different channel loads using a 95% confidence level on
40 independent simulations and ε = 0.5. We observe that
convergence is fast for low loads regardless of the use of
VE. For G ≥ 0.6, however, we observe that VE exhibits
an improvement of around 80%, which can be attributed to
increasing the number of batch updates by a factor of |H̃|.
Also, RL-IRSA without VE usually fails to converge for
high channel loads (i.e. convergence has not been achieved
within the budget of 15000 iterations), although throughput
remains close to optimal. This observation suggests that, in this
case, there are different policies that lead to optimal behavior,
so RL-IRSA without VE is less biased to the optimal one.
From Fig. 11 we can also observe that the confidence interval

observed for RL-IRSA without VE for channel load G = 0.6
is large. This load value is a transitional case, as for some
simulations Q-learning converged, similarly to G < 0.6, while
for others convergence was not achieved by the end of the
episode, similarly to G > 0.6. This is because, as we can see
in Fig. 5, the learned transmission strategies up to channel
load G = 0.5 are optimal, i.e. T = G, while T < G for
G >= 0.6, which suggests that a unique optimal policy has
not been found.

D. Waterfall effect

As explained in Section VII-A, the performance of IRSA
has been proven to be governed by a stability condition
[2], which leads to a waterfall effect in the performance of
SIC. From a learning perspective, this profoundly changes
the nature of the problem and, thus, the learning objective.
As described in Section VI-C, the problem is one of agents
competing for a pool of common resources. In the realm of low
channel loads (G < G∗), where resources are abundant, agents
must learn to coordinate their actions, as there is a number of
replicas to transmit that optimizes packet throughput. Observe
that, for low channel loads (G ≤ 0.5), even a random strategy,
implemented by sampling the number of replicas l uniformly
from {1, · · · , d}, is appropriate, as illustrated in Fig. 12, so
learning is of no practical interest. In the realm of high channel
loads (G ≥ G∗), however, we can acknowledge the task
as a Dispersion game [33], where agents need to cooperate
in order to avoid congesting the channel by exploiting it
in different time frames. Different problem nature urges for
different learning behavior, thus we expect that parameter-
ization of learning should vary with G. Fig. 12 illustrates
the performance of three different parameterizations, each one
optimal for a different range of values for G. Note that G∗

and Glow stand for the threshold load value below which the
probability of unsuccessful transmission is negligible and a
random strategy is optimal, respectively. We observe that by
optimizing the parameters for a particular range of G values,
we obtain significant gains in the region of interest (G > 0.6).

IX. CONCLUSIONS

We have examined the problem of IRSA design for finite
frame sizes from a reinforcement learning perspective and
proved that learning degree distributions can be beneficial even
under the assumption of sensors’ independence in learning.
The theoretical analysis proves that our learning algorithm
finds a near-optimal solution for the problem of IRSA de-
sign. Our simulations suggest that the waterfall effect of the
problem, common in optimization problems where agents
compete for common resources, leads to different learning
dynamics, and thus, demands adaptive solutions. Our method’s
superiority is particularly manifested in high channel loads and
small frame sizes, where the degree distributions of classical
IRSA are inappropriate. Our simulations indicate that making
learning tractable for online application scenarios requires
achieving fast convergence. We observed that even when main-
taining a small observation space, by restricting the history
window to 2, the performance remains satisfactory. Finally, the
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results show that we significantly reduced convergence time by
introducing virtual experience into Q-learning. We believe that,
in addition, employing transfer learning techniques to quickly
adapt to changing conditions within an episode is essential for
addressing the non-stationarity inherent in WSNs.
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