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Abstract

Boolean-valued models of set theory were introduced by Scott and Solovay in
1965 (and independently by Vopěnka in the same year), offering a natural and rich
alternative for describing forcing. The original method was adapted by Takeuti,
Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe
and Tarafder proposed a class of algebras based on a certain kind of implication
which satisfy several axioms of ZF. From this class, they found a specific three-
valued model called PS3 which satisfies all the axioms of ZF, and can be expanded
with a paraconsistent negation *, thus obtaining a paraconsistent model of ZF. We
observe here that (PS3,*) coincides (up to language) with da Costa and D’Ottaviano
logic J3, a three-valued paraconsistent logic that have been proposed independently
in the literature by several authors and with different motivations: for instance, it
was reintroduced as CLuNs, LFI1 and MPT, among others.

We propose in this paper a family of algebraic models of ZFC based on a para-
consistent three-valued logic called LPT0, another linguistic variant of J3 and so
of (PS3,*) introduced by us in 2016. The semantics of LPT0, as well as of its first-
order version QLPT0, is given by twist structures defined over arbitrary complete
Boolean agebras. From this, it is possible to adapt the standard Boolean-valued
models of (classical) ZFC to an expansion of ZFC by adding a paraconsistent
negation. This paraconsistent set theory is based on QLPT0, hence it is a para-
consistent expansion of ZFC characterized by a class of twist-valued models.

We argue that the implication operator of LPT0 considered in this paper is, in
a sense, more suitable for a paraconsistent set theory than the implication of PS3:
indeed, our implication allows for genuinely inconsistent sets (in a precise sense,
[[(w ≈ w)]] = 1

2
for some w). It is to be remarked that our implication does not fall

under the definition of the so-called ‘reasonable implication algebras’ of Löwe and
Tarafder. This suggests that ‘reasonable implication algebras’ are just one way to
define a paraconsistent set theory, perhaps not the most appropriate.

Our twist-valued models for LPT0 can be easily adapted to provide twist-valued
models for (PS3,*); in this way twist-valued models generalize Löwe and Tarafder’s
three-valued ZF model, showing that all of them (including (PS3,*)) are, in fact,
models of ZFC (not only of ZF). This offers more options for investigating inde-
pendence results in paraconsistent set theory.
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1 On models of set theory: Gödel shrinks, Cohen

expands

The interest for – and the overall knowledge about – models for set theory changed
dramatically after the famous invention (or discovery) of Paul Cohen’s methods of forcing.
Cohen was able to show that the notion of cardinal number is elastic and relative, in
contrast with the methods of “inner models” that Gödel used. Gödel has shown that,
by shrinking the totality of sets in a model, they would turn to be ‘well-behaved’. As a
consequence, the constructible sets could not be used to prove the relative consistency of
the negation of the Axiom of Choice (AC) or of the Continuum Hypothesis (CH). Paul
J. Cohen, on the contrary, had the idea of reverting the paradigm, and instead of cutting
down the sets within models, found a way to expand a countable standard model into a
standard model in which CH or AC can be false, doing this in a minimalist but controlled
fashion. Cohen elements are ‘bad-behaved’, but finely guided so as to make ‘logical space’
for the independence of AC and CH,

As Dana Scott puts in the forward of Bell’s book [1], “Cohen’s achievement lies in
being able to expand models (countable, standard models) by adding new sets in a very
economical fashion: they more or less have only the properties they are forced to have by
the axioms (or by the truths of the given model).” Cohen’s methods, however, are not
easy, being regarded by some researchers as somewhat lengthy and tedious – but were the
only tool available until the Boolean-valued models of set theory put forward by Scott
and Solovay (and independently by Vopěnka) in 1965 offered a more natural and rich
alternative for describing forcing. This does not discredit the brilliant idea of Cohen, who
did not have the machinery of Boolean-valued models available at his time.

What is a Boolean-valued model? The intuitive idea is to pick a suitable Boolean
algebra A, and define the set of all A-valued sets in M, generalizing the familiar {0, 1}
valued models. Then add to the language one constant symbol for each element of the
model. After this, define a map ϕ 7→ [[ϕ]]A from the sentences in S to A which obey
certain equations so that it should assign 1 to all the axioms of ZFC.

The resulting structure MA will not be a standard model of ZFC, because it will
consist of “relaxed sets” somehow similar to fuzzy sets, and not sets properly. If we
take an arbitrary sentence about sets (for instance, “does Y is a member of X” ?) and
ask whether it holds in MA, then the answer may be neither plain “yes” nor “no”, but
some element of the Boolean algebra A meaning the “degree” to which Y is a member of
X . However, MA will satisfy ZFC, and to turn MA into an actual model of ZFC with
certain desired properties it is sufficient to take a suitable quotient of MB that eliminates
the elements of fuzziness.

Boolean-valued models not only avoid tedious details of Cohen’s original construction,
but permit a great generalization by varying on any Boolean algebra.

2 Losing unnecessary weight: the role of alternative

set theories

It is a well-known historical fact that the discovery of the paradoxes in set theory and in
the foundations of mathematics was the fuse that fired the revolution in contemporary set
theory around its efforts to attempt to rescue Cantor’s naive theory from triviality. The
usual culprit was the Principle of (unrestricted) Abstraction, also known as the Principle of
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Comprehension. Unrestricted abstraction allows sets to be defined by arbitrary conditions,
and this freedom combined with the axiom of extensionality, leads to a contradiction,
which by its turn leads to triviality in the sense that “everything goes”, when the laws of
the underlying logic obey the standard principles that comprise the so-called “classical”
logic.

But there is a way out from this maze. Paraconsistent set theory is the theoretical
move to maintain the freedom of defining sets, while stripping the theory of unnecessary
principles so as to avoid triviality, a disastrous consequences of contradictions involving
sets in ZF.

This philosophical maneuver is in frank opposition to traditional strategies, which
deprive the freedom of set theory so appreciated by Cantor, by maintaining the underlying
logic and weakening the Principle of Abstraction,

An analogy may be instructive. The basic goal of reverse mathematics is to study the
relative logical strengths of theorems from ordinary non-set theoretic mathematics. To
this end, one tries to find the minimal natural axiom system A that is capable of proving
a theorem T .

In a perhaps vague, but illuminating analogy, paraconsistent logic tries to find the
minimal natural principles that are capable of permitting us to reason in generic circum-
stances, even in the undesired circumstances of contradictions.

This does not mean that contradictions are necessarily real: [4] gives a formal sys-
tem and a corresponding intended interpretation, according to which true contradictions
are not tolerated. Contradictions are, instead, epistemically understood as conflicting
evidence. There are indeed many cases of contradictions in reasoning, but the classical
principle Ex Contradictione Quodlibet, or Principle of Explosion, is neither used in math-
ematics in general; it is not, therefore, a characteristic of good reasoning, and has to be
abandoned.

Some people may be mislead by thinking that Reductio ad Absurdum, which is a useful
and robust rule of inference, would be lost by abandoning the Principle of Explosion.
This is not so: even if discarding such a principle, proofs by Reductio ad Absurdum
get unaffected, as long as one can define a strong negation. This is achieved in many
paraconsistent logics, in particular in all the logics of the family of the Logics of Formal
Inconsistency (LFIs), see [9, 8, 7]. Reasoning does not necessarily require the full power
of Ex Contradictione Quodlibet, because contradictions reached in a Reductio proof are
not really used to cause any deductive explosion; what is used is the manipulation of
negation.

3 Expanding Cohen’s expansion: twist-valued

models

Boolean-valued models were adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-
valued models of set theory, with applications to quantum set theory and fuzzy set theory
(see [21, 23, 24, 19, 20]). The guidelines of these constructions were taken by Löwe
and Tarafder in [18] in order to obtain a three-valued model (in the form of a lattice-
valued model) for a paraconsistent set theory based on ZF. They propose a class of
algebras based on a certain kind of implication, called reasonable implication algebras (see
Section 9) which satisfy several axioms of ZF. From this class, they found an especific
three-valued model which satisfies all the axioms of ZF, and it can be expanded to an
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algebra (PS3, *) with a paraconsistent negation *, obtaining so a paraconsistent model of
ZF. As we discuss in Section 9, the logic (PS3, *) is the same as the logic MPT introduced
in [13], and coincides up to language with the logic LPT0 adopted in the present paper.
Here, we will introduce the notion of twist-valued models for a paraconsistent set theory
ZFLPT0 based on QLPT0, a first-order version of LPT0. Our models, defined for any
complete Boolean algebra A, constitute a generalization of the Boolean-valued models for
set theory, at the same time generalizing Löwe and Tarafder’s three-valued model. Indeed,
in Section 9 the model of ZF based on (PS3, *) will be generalized to twist-valued models
over an arbitrary complete Boolean algebra, obtaining so a class of models of ZFC. The
structure over (PS3, *) will constitute a particular case, by considering the two-element
complete Boolean algebra. As a consequence of this, it follows that Löwe and Tarafder’s
three-valued structure is, indeed, a model of ZFC.

Twist-structure semantics have been independently proposed by M. Fidel [15] and
D. Vakarelov [25], in order to semantically characterize the well-known Nelson logic. A
twist structure consists of operations defined on the cartesian product of the universe of
a lattice, L× L so that the negative and positive algebraic characteristics can be treated
separately. In terms of logic, a pair (a, b) in L×L is such that a represents a truth-value
for a formula ϕ while b corresponds to a truth-value for the negation of ϕ. That is, a is
a positive value for ϕ while b is a negative value for it, thus justifying the name ‘twist
structures’ given for this kind of algebras. This strategy is especially useful for obtaining
semantical characterizations for non-standard logics. As a limiting case, a Boolean algebra
turns out being a particular case of twist structures when there is no need to give separate
attention to negative and positive algebraic characteristics, since the latter are uniquely
obtained from the former by the dualizing Boolean complement ∼. In this case, every
pair (a, b) is of the form (a,∼a), hence the second coordinate is redundant. Our proposal
is based on models for ZF based on twist structures, thus the sentences of the language of
ZF will be interpreted as pairs (a, b) in a suitable twist structure, such that the supremum
a∨b is always 1, but the infimum a∧b is not necessarily equal to 0. This corresponds to the
validity of the third-excluded middle for the non-classical negation of the underlying logic,
while the explosion law ϕ∧¬ϕ → ψ is not valid in general in the underlying paraconsistent
logic LPT0. A somewhat related approach was proposed by Libert in [16]: he proposes
models for a naive set theory in which the truth-values are pairs of sets (A,B) of a universe
U such that A ∪ B = U where A and B represent, respectively, the extension and the
anti-extension of a set a. However, besides this similarity, our approach is quite different:
we are interesting in giving paraconsistent models for ZFC and not in new models for
Naive set theory.

It is important to notice that there exists in the literature several approaches to para-
consistent set theory, under different perspectives. In particular, we propose in [6] a
paraconsistent set theory based on several LFIs, but that approach differs from the one
in the present paper. First, in the previous paper the systems were presented axiomat-
ically, by means of suitable modifications of ZF. Moreover, in that logics a consistency
predicate C(x) was considering, with the intuitive meaning that ‘x is a consistent set’.
On the other hand, in the present paper a model for standard ZFC will be presented
instead of a Hilbert calculus for a modified version of ZF. We will return to this point in
Section 10.

As mentioned above, twist structures over a Boolean algebra generalize Boolean alge-
bras, and are by their turn generalized by the swap structures introduced in [7, Chap-
ter 6] (a previous notion of swap structures was given in [5]). Swap structures are non-
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deterministic algebras defined over the three-fold Cartesian product A×A×A of a given
Boolean algebra so that in a triple (a, b, c) the first component a represents the truth-
value of a given formula ϕ while b and c represent, respectively, possible values for the
paraconsistent negation ¬ϕ of ϕ, and for the consistency ◦ϕ of ϕ.

Swap structures are committed to semantics with a non deterministic character, while
twist structures are used when the semantics are deterministic (or truth-functional). Def-
inition 4.6 below shows how the definition of twist structures for the three-valued logic
LFI1◦ introduced in [10, Definition 9.2] can be adapted to LPT0.

As noted in Section 7, the three-valued logic (PS3, *) used in [22] already appears in [13]
under the name MPT, and it is equivalent to LPT0 and also to LFI1◦. Variants of this
logic have been independently proposed by different authors at with different motivations
in several occasions (for instance, as the well-known da Costa and D’Ottaviano’s logic
J3). The naturalness of this logic is reflected by the fact that the three-valued algebra of
LPT0 (see Definition 4.2 below) is equivalent, up to language, to the algebra underlying
 Lukasiewicz three-valued logic  L3. The only difference is that in the former the set of
distinguished (or designated) truth values is {1, 1

2
} instead of {1}, and this is why LPT0

is paraconsistent while  L3 is paracomplete.
Twist-valued models work beautifully as enjoying many properties similar to Boolean-

valued models (when restricted to pure ZF-languages). Such similarities lead to a natural
proof that ZFC is valid w.r.t. twist-valued models, as our central Theorem 8.21 shows.
This paper deals with a paraconsistent set theory named ZFLPT0, defined by using as the
underlying logic a first-order version of LPT0, called QLPT0, proposed in [12] under
the form of QLFI1◦ (that is, by replacing the strong negation ∼ by the consistency
operator ◦).

The paraconsistent character of twist-valued models as regarding ZFLPT0 as rival
of ZFC is emphasized. Despite having some limitative results, as much as Löwe and
Tarafder’s model, ZFLPT0 has a great potential as generator of models for paraconsistent
set theory. A subtle, but critical advantage of our models is that the implication operator
of LPT0 is much more suitable for a paraconsistent set theory than the one of PS3.
Indeed, our models allow for inconsistent sets, and this is of paramount importance, as
we argue below. Moreover, as pointed out above, our models generalize the three-valued
model based on PS3, since they can be defined for any complete Boolean algebra. In
this way, we have several models at our disposal, and in principle this can be used to
investigate independence results in paraconsistency set theory.

Albeit Boolean-valued models and their generalization in the form of twist-valued
models are naturally devoted to study independence results, this paper does not tackle
this big questions yet. The paper, instead, is dedicated to clarifying such models while
establishing their basic properties.

4 The logic LPT0

In this section the logic LPT0 will be briefly discussed, including its twist structures
semantics. From now on, if Σ′ is a propositional signature then, given a denumerable
set V = {p1, p2, . . .} of propositional variables, the propositional language generated by
Σ′ from V will be denoted by LΣ′. The paraconsistent logics considered in this paper
belong to the class of logics known as logics of formal inconsistency, introduced in [9] (see
also [8, 7]).
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Definition 4.1. Let L = 〈Σ′,⊢〉 be a Tarskian, finitary and structural logic defined over
a propositional signature Σ′, which contains a negation ¬, and let ◦ be a (primitive or
defined) unary connective. The logic L is said to be a logic of formal inconsistency (LFI)
with respect to ¬ and ◦ if the following holds:

(i) ϕ,¬ϕ 0 ψ for some ϕ and ψ;

(ii) there are two formulas ϕ and ψ such that

(ii.a) ◦α, ϕ 0 ψ;

(ii.b) ◦α,¬ϕ 0 ψ;

(iii) ◦ϕ, ϕ,¬ϕ ⊢ ψ for every ϕ and ψ.

Recall the logic MPT0 presented in [7] as a linguistic variant of the logic MPT

introduced in [13].

Definition 4.2. (Modified Propositional logic of Pragmatic Truth MPT0, [7, Defini-
tion 4.4.51]) Let MPT0 = 〈M,D〉 be the three-valued logical matrix over Σ = {∧,∨,→
,∼,¬} with domain M = {1, 1

2
, 0} and set of designated values D = {1, 1

2
} such that the

operators are defined as follows:

∧ 1 1
2

0

1 1 1
2

0
1
2

1
2

1
2

0

0 0 0 0

∨ 1 1
2

0

1 1 1 1
1
2

1 1
2

1
2

0 1 1
2

0

→ 1 1
2

0

1 1 1
2

0
1
2

1 1
2

0

0 1 1 1

∼

1 0
1
2

0

0 1

¬

1 0
1
2

1
2

0 1

The logic associated to the logical matrix MPT0 is called MPT0. The three-valued
algebra underlying MPT0 will be called APT0.

Observe that x → y = ∼x ∨ y for every x, y. Recall that, by definition, the consequence
relation �MPT0 of MPT0 is given as follows: for every Γ ∪ {ϕ} ⊆ LΣ, Γ �MPT0 ϕ iff, for
every homomorphism v : LΣ →M of algebras over Σ, if v[Γ] ⊆ D then v(ϕ) ∈ D.

From [7] a sound and complete Hilbert calculus for MPT0, called LPT0, can be
defined. This calculus is an axiomatic extension of a Hilbert calculus for classical propo-
sitional logic CPL over the signature Σc = {∧,∨,→,∼}. From now on, ϕ ↔ ψ will be
an abbreviation for the formula (ϕ→ ψ) ∧ (ψ → ϕ).

Definition 4.3. (The calculus LPT0, [7, Definition 4.4.52]) The Hilbert calculus LPT0

over Σ is defined as follows:1

1To be rigorous, in [7, Theorem 4.4.56] an additional axiom schema is required: ¬∼ϕ → ϕ. However,
it is easy to prove that this axiom is derivable from the others, by using MP.
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Axiom Schemas:

(Ax1) ϕ→ (ψ → ϕ)

(Ax2) (ϕ→ (ψ → γ)) → ((ϕ→ ψ) → (ϕ→ γ))

(Ax3) ϕ→ (ψ → (ϕ ∧ ψ))

(Ax4) (ϕ ∧ ψ) → ϕ

(Ax5) (ϕ ∧ ψ) → ψ

(Ax6) ϕ→ (ϕ ∨ ψ)

(Ax7) ψ → (ϕ ∨ ψ)

(Ax8) (ϕ→ γ) → ((ψ → γ) → ((ϕ ∨ ψ) → γ))

(Ax9) ϕ ∨ (ϕ→ ψ)

(TND) ϕ ∨ ∼ϕ

(exp) ϕ→
(
∼ϕ→ ψ

)

(TND¬) ϕ ∨ ¬ϕ

(dneg) ¬¬ϕ↔ ϕ

(neg∨) ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ)

(neg∧) ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ)

(neg →) ¬(ϕ→ ψ) ↔ (ϕ ∧ ¬ψ)

Inference rule:

(MP)
ϕ ϕ→ ψ

ψ

It is worth noting that axioms (Ax1)-(Ax9), (TND) and (exp), together with (MP),
constitute an adequate Hilbert calculus for classical propositional logic CPL in the sig-
nature Σc = {∧,∨,→,∼}. Moreover, (Ax1)-(Ax9) plus (MP) is an adequate Hilbert
calculus for classical positive popositional logic CPL+ in the signature Σcp = {∧,∨,→}.

Theorem 4.4. ([7, Theorem 4.4.56]) The logic LPT0 is sound and complete w.r.t. the
matrix logic of MPT0: Γ ⊢LPT0 ϕ iff Γ �MPT0 ϕ, for every Γ ∪ {ϕ} ⊆ LΣ.

The latter result can be extended to twist-structures semantics, as shown in [10]. In-
deed, LPT0 coincides (up to signature) with LFI1◦, an LFI defined over the signature
Σ◦ = {∧,∨,→,¬, ◦} such that the consistency operator ◦ is defined as

◦

1 1
1
2

0

0 1
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In LFI1◦ the strong negation ∼ is defined as ∼ϕ =def ϕ → ⊥ϕ such that ⊥ϕ =def

(ϕ ∧ ¬ϕ) ∧ ◦ϕ. On the other hand, the consistency operator ◦ is defined in LPT0

as ◦ϕ =def ∼(ϕ ∧ ¬ϕ). The twist-structures semantics for LFI1◦ introduced in [10,
Definition 9.2] can be adapted to LPT0 as follows:

Definition 4.5. Let A = 〈A,∧,∨,→,∼, 0, 1〉 be a Boolean algebra.2 The twist domain
generated by A is the set TA = {(z1, z2) ∈ A×A : z1 ∨ z2 = 1}.

Definition 4.6. Let A be a Boolean algebra. The twist structure for LPT0 over A is the
algebra TA = 〈TA, ∧̃, ∨̃, →̃, ∼̃, ¬̃〉 over Σ such that the operations are defined as follows,
for every (z1, z2), (w1, w2) ∈ TA:

(i) (z1, z2) ∧̃ (w1, w2) = (z1 ∧ w1, z2 ∨ w2);

(ii) (z1, z2) ∨̃ (w1, w2) = (z1 ∨ w1, z2 ∧ w2);

(iii) (z1, z2) →̃ (w1, w2) = (z1 → w1, z1 ∧ w2);

(iv) ∼̃(z1, z2) = (∼z1, z1);

(v) ¬̃(z1, z2) = (z2, z1).

By recalling that the consistency operator ◦ is defined in LPT0 as ◦ϕ =def ∼(ϕ ∧ ¬ϕ),
it follows that ◦̃(z1, z2) = (∼(z1 ∧ z2), z1 ∧ z2).

3

Definition 4.7. The logical matrix associated to the twist structure TA is MT A =
〈TA, DA〉 where DA = {(z1, z2) ∈ TA : z1 = 1} = {(1, a) : a ∈ A}. The consequence
relation associated to MT A will be denoted by �TA. Let MLPT0 = {MT A : A is a
Boolean algebra} be the class of twist models for LPT0. The twist-consequence relation
for LPT0 is the consequence relation �MLPT0

associated to MLPT0, namely: Γ �MLPT0
ϕ

iff Γ �TA ϕ for every Boolean algebra A.

Remark 4.8. In [10, Theorem 9.6] it was shown that LPT0 is sound and complete w.r.t.
twist structures semantics, namely: Γ ⊢LPT0 ϕ iff Γ �MLPT0

ϕ, for every set of formulas
Γ ∪ {ϕ}. On the other hand, if A2 is the two-element Boolean algebra with domain
{0, 1} then TA2

consists of three elements: (1, 0), (1, 1) and (0, 1). By identifying these
elements with 1, 1

2
and 0, respectively, then TA2

coincides with the three-valued algebra
APT0 underlying the matrix MPT0 (recall Definition 4.2). Moreover, MT A2

coincides
with MPT0. Taking into consideration Theorem 4.4, this situation is analogous to the
semantical characterization of CPL w.r.t. Boolean algebras: it is enough to consider the
two-element Boolean algebra A2.

2In this paper the symbol ∼ will be used for denoting the strong negation of LPT0 as well as for
denoting the classical negation and its semantical interpretation (the Boolean complement in a Boolean
algebra). The context will avoid possible confusions

3This is why in [10, Definition 9.2] clause (v) was replaced by this clause defining ◦̃.
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5 The logic QLPT0

A first-order version of LPT0, called QLPT0, was proposed in [12] under the equivalent
(up to language) form of QLFI1◦.

4 For convenience, we reproduce here the main features
of QLPT0.

Definition 5.1. Let V ar = {v1, v2, . . .} be a denumerable set of individual variables. A
first-order signature Θ for QLPT0 is given as follows:

- a set C of individual constants;

- for each n ≥ 1, a set Fn of function symbols of arity n,

- for each n ≥ 1, a nonempty set Pn of predicate symbols of arity n.

The sets of terms and formulas generated by a signature Θ will be denoted by Ter(Θ)
and For(Θ), respectively. The set of closed formulas (or sentences) and the set of closed
terms (terms without variables) over Θ will be denoted by Sen(Θ) and CTer(Θ), respec-
tively. The formula obtained from a given formula ϕ by substituting every free occurrence
of a variable x by a term t will be denoted by ϕ[x/t].

Definition 5.2. Let Θ be a first-order signature. The logic QLPT0 is obtained from
LPT0 by adding the following axioms and rules:

Axioms Schemas:

(Ax∃) ϕ[x/t] → ∃xϕ, if t is a term free for x in ϕ

(Ax∀) ∀xϕ→ ϕ[x/t], if t is a term free for x in ϕ

(Ax¬∃) ¬∃xϕ ↔ ∀x¬ϕ

(Ax¬∀) ¬∀xϕ ↔ ∃x¬ϕ

Inference rules:

(∃-In)
ϕ→ ψ

∃xϕ→ ψ
, where x does not occur free in ψ

(∀-In)
ϕ→ ψ

ϕ→ ∀xψ
, where x does not occur free in ϕ

The consequence relation of QLPT0 will be denoted by ⊢QLPT0.

6 Twist structures semantics for QLPT0

In [12] a semantics of first-order structures based on twist structures for LFI1◦ was
proposed for QLFI1◦. That semantics will be briefly recalled here, adapted to QLPT0.
From now on, only complete Bolean algebras will be considered.

4That is, by taking ◦ instead of ∼ as a primitive connective.
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Definition 6.1. let A be a complete Boolean algebra. Let MT A be the logical matrix
associated to a twist structure TA for LPT0, and let Θ be a first-order signature (see
Definition 5.1). A (first-order) structure over MT A and Θ (or a QLPT0-structure over
Θ) is pair A = 〈U, IA〉 such that U is a nonempty set (the domain or universe of the
structure) and IA is an interpretation function which assigns:

- an element IA(c) of U to each individual constant c ∈ C;

- a function IA(f) : Un → U to each function symbol f of arity n;

- a function IA(P ) : Un → TA to each predicate symbol P of arity n.

Notation 6.2. From now on, we will write cA, fA and PA instead of IA(c), IA(f) and
IA(P ) to denote the interpretation of an individual constant symbol c, a function symbol
f and a predicate symbol P , respectively.

Definition 6.3. Given a structure A over MT A and Θ, an assignment over A is any
function µ : V ar → U .

Definition 6.4. Given a structure A over MT A and Θ, and given an assignment µ :
V ar → U we define recursively, for each term t, an element [[t]]Aµ in U as follows:

- [[c]]Aµ = cA if c is an individual constant;

- [[x]]Aµ = µ(x) if x is a variable;

- [[f(t1, . . . , tn)]]Aµ = fA([[t1]]
A

µ , . . . , [[tn]]Aµ) if f is a function symbol of arity n and
t1, . . . , tn are terms.

Definition 6.5. Let A be a structure over MT A and Θ. The diagram language of A is
the set of formulas For(ΘU), where ΘU is the signature obtained from Θ by adding, for
each element a ∈ U , a new individual constant ā .

Definition 6.6. The structure Â = 〈U, I
Â
〉 over ΘU is the structure A over Θ extended

by I
Â
(ā) = a for every a ∈ A.

It is worth noting that sÂ = sA whenever s is a symbol (individual constant, function
symbol or predicate symbol) of Θ.

Notation 6.7. The set of sentences or closed formulas (that is, formulas without free
variables) of the diagram language For(ΘU) is denoted by Sen(ΘU), and the set of terms
and of closed terms over ΘU will be denoted by Ter(ΘU) and CTer(ΘU), respectively. If
t is a closed term we can write [[t]]A instead of [[t]]Aµ , for any assignment µ, since it does
not depend on µ.

Notation 6.8. From now on, if z ∈ TA then (z)1 and (z)2 (or simply z1 and z2) will
denote the first and second coordinates of z, respectively.

Definition 6.9 (QLPT0 interpretation maps). Let A be a complete Boolean algebra,
and let A be a structure over MT A and Θ. The interpretation map for QLPT0 over
A and MT A is a function [[·]]A : Sen(ΘU) → TA satisfying the following clauses (using
Notation 6.8 in clauses (iv) and (v)):

(i) [[P (t1, . . . , tn)]]A = PA([[t1]]
Â, . . . , [[tn]]Â), if P (t1, . . . , tn) is atomic;
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(ii) [[#ϕ]]A = #̃[[ϕ]]A, for every # ∈ {¬,∼};

(iii) [[ϕ#ψ]]A = [[ϕ]]A #̃ [[ψ]]A, for every # ∈ {∧,∨,→};

(iv) [[∀xϕ]]A =
(∧

a∈U([[ϕ[x/ā]]]A)1,
∨
a∈U([[ϕ[x/ā]]]A)2

)
.

(v) [[∃xϕ]]A =
(∨

a∈U([[ϕ[x/ā]]]A)1,
∧
a∈U([[ϕ[x/ā]]]A)2

)
.

Remark 6.10. A partial order can be naturally introduced in TA as follows: z ≤ w iff
z1 ≤ w1 and z2 ≥ w2. It is easy to see that, with this order, TA is a complete lattice (since
A is a complete Boolean algebra), in which

∧
i∈I zi =

(∧
i∈I(zi)1,

∨
i∈I(zi)2

)
, and

∨
i∈I zi =

(∨
i∈I(zi)1,

∧
i∈I(zi)2

)
.

Note that 1 =def (1, 0) and 0 =def (0, 1) are the top and bottom elements of TA, respec-
tively. These considerations justify the definition of the interpretation of the quantifiers
given in Definition 6.9(iv) and (v).

Recall the notation stated in Definition 6.5. The interpretation map can be extended to
arbitrary formulas as follows:

Definition 6.11. Let A be a complete Boolean algebra, and let A be a structure over
MT A and Θ. Given an assignment µ over A, the extended interpretation map [[·]]Aµ :

For(ΘU) → TA is given by [[ϕ]]Aµ = [[ϕ[x1/µ(x1), . . . , xn/µ(xn)]]]A, provided that the free
variables of ϕ occur in {x1, . . . , xn}.

Definition 6.12. Let A be a complete Boolean algebra, and let A be a structure over
MT A and Θ. Given a set of formulas Γ ∪ {ϕ} ⊆ For(ΘU), ϕ is said to be a semantical
consequence of Γ w.r.t. (A,MT A), denoted by Γ |=(A,MT A) ϕ, if the following holds: if
[[γ]]Aµ ∈ D, for every formula γ ∈ Γ and every assignment µ, then [[ϕ]]Aµ ∈ D, for every
assignment µ.

Definition 6.13 (Semantical consequence relation in QLPT0 w.r.t. twist structures).
Let Γ∪{ϕ} ⊆ For(Θ) be a set of formulas. Then ϕ is said to be a semantical consequence
of Γ in QLPT0 w.r.t. first-order twist structures, denoted by Γ |=QLPT0 ϕ, if Γ |=(A,MT A)

ϕ for every pair (A,MT A).

Theorem 6.14 (Adequacy of QLPT0 w.r.t. first-order twist structures ([12])). For
every set Γ ∪ {ϕ} ⊆ For(Θ): Γ ⊢QLPT0 ϕ if and only if Γ |=QLPT0 ϕ.

5

In Remark 4.8 was observed that TA2
, the twist structure for LPT0 defined over the two-

element Boolean algebra A2, coincides (up to names) with the three-valued algebra APT0

underlying the matrix MPT0 and, moreover, MT A2
coincides with the three-valued char-

acteristic matrix MPT0 of LPT0. In [12] it was proven that QLPT0 can be characterized
by first-order structures defined over MPT0.

6

5As observed above, in [12] the logic QLFI1◦ was analyzed instead of QLPT0. However, both logics
are equivalent, the only difference being the use of ◦ instead of ∼ as primitive connective. The adaptation
of the adequacy result for QLFI1◦ given in [12] to the logic QLPT0 is straightforward.

6Once again, it is worth observing that the result obtained in [12] concerns the logic QLFI1◦ instead
of QLPT0.
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Theorem 6.15 (Adequacy of QLPT0 w.r.t. first-order structures over MPT0 ([12])).
For every set Γ ∪ {ϕ} ⊆ For(Θ): Γ ⊢QLPT0 ϕ iff Γ |=(A,MPT0) ϕ for every structure A

over Θ and MPT0.

Remark 6.16. It is worth observing that Theorem 6.15 constitutes a variant of the
adequacy theorem of first-order J3 w.r.t. first-order structures given in [14]. Indeed,
both logics are the same (up to language), and the semantic structures are the same, up
to presentation.

7 Twist-valued models for set theory

As mentioned before, a three-valued model for a paraconsistent set theory based on lattice-
valued models for ZF, as a non-classical variant of the well-known Scott-Solovay-Vopěnka
Boolean-valued models for ZF, was proposed by Löwe and Tarafder in [18]. Specifically,
they introduce a three-valued logic called PS3 which can be expanded with a paraconsis-
tent negation ¬ (which they denote by ∗) and then a model for ZF is constructed over
the three-valued algebra PS3, as well as over its expansion (PS3,¬), along the same lines
as the traditional Boolean-valued models. It is known that the logic (PS3,¬), introduced
in [13] as MPT, coincides up to language with LPT0. We will return to this point in
Section 9.

In this section, a twist-valued model for a paraconsistent set theory ZFLPT0 based on
QLPT0 will be defined, for any complete Boolean algebra A. It will be shown that this
models constitute a generalization of the Boolean-valued models for set theory, as well as
of Löwe-Tarafder’s three-valued model. Our constructions, as well as the proof of their
formal properties, are entirely based on the exposition of Boolean-valued models given in
the book [1], which constitutes a fundamental reference to this subject.

Consider the first order signature ΘZF for set theory ZF which consists of two binary
predicates ǫ (for membership) and ≈ (for identity). The logic ZFLPT0 will be defined
over the first-order language L generated by ΘZF based on the signature of QLPT0, that
is: the set of connectives is Σ = {∧,∨,→,∼,¬}, together with the quantifiers ∀ and ∃
and the set V ar = {v1, v2, . . .} of individual variables. As usual, dom(f) and ran(f) will
thenote the domain and image (or rank) of a given function f .

Definition 7.1. Let A be a complete Boolean algebra, and let α be an ordinal number.
Define, by transfinite recursion on α, the following:

VTA
α = {x : x is a function and ran(x) ⊆ TA and dom(x) ⊆ V

TA
ξ for some ξ < α};

VTA = {x : x ∈ VTA
α for some α}.

The class VTA is called the twist-valued model over the complete Boolean algebra A.

Definition 7.2. Expand the language L by adding a constant ū to each element u of
VTA, obtaining a language denoted by L(TA). The fragments of L and L(TA) without
the connective ¬ will be denoted by Lp and Lp(TA), respectively. They will be called
the pure ZF-languages. Observe that L(TA) and Lp(TA) are proper classes. Finally, a
formula ϕ in Lp is called restricted if every occurrence of a quantifier in ϕ is of the form
∀x(x ∈ y → . . .) or ∃x(x ∈ y∧ . . .), or if it is proved to be equivalent in ZFC to a formula
of this kind.
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Notation 7.3. By simplicity, and as it is done with Boolean-valued models, we will
identify the element u of VTA with its name ū in L(TA), simply writting u. Moreover, if
ϕ is a formula in which x is the unique variable (possibly) occurring free, we will write
ϕ(u) instead of ϕ[x/u] or ϕ[x/ū].

Remark 7.4 (Induction principles). Recall that, from the regularity axiom of ZF, the
sets Vα = {x : x ⊆ Vξ for some ξ < α} are definable for every ordinal α. Moreover, in
ZF every set x belongs to some Vα. This induces a function rank(x) =def least α such
that x ∈ Vα. Since rank(x) < rank(y) is well-founded, it induces a principle of induction
on rank:

Let Ψ be a property over sets. Assume, for every set x, the following: if Ψ(y)
holds for every y such that rank(y) < rank(x) then Ψ(x) holds. Hence, Ψ(x)
holds for every x.

From this, the following Induction Principle (IP) holds in VTA (similar to the one for
Boolean-valued models):

Let Ψ be a property over individuals in VTA. Assume, for every x ∈ VTA, the
following: if Ψ(y) holds for every y ∈ dom(x) then Ψ(x) holds. Hence, Ψ(x)
holds for every x ∈ VTA.

Both induction principles are fundamental tools in order to prove properties in VTA.

Definition 7.5. Define by induction on the complexity in L(TA) a mapping [[·]]V
TA (or

simply [[·]]) assigning to each closed formula in L(TA) a value in TA as follows:

[[u ǫ v]] =
∨

x∈dom(v)

(v(x) ∧̃ [[x ≈ u]])

=
( ∨

x∈dom(v)

((v(x))1 ∧ [[x ≈ u]]1),
∧

x∈dom(v)

((v(x))2 ∨ [[x ≈ u]]2)
)

[[u ≈ v]] =
∧

x∈dom(u)

(u(x) →̃ [[x ǫ v]]) ∧̃
∧

x∈dom(v)

(v(x) →̃ [[x ǫ u]])

=
( ∧

x∈dom(u)

((u(x))1 → [[x ǫ v]]1),
∨

x∈dom(u)

((u(x))1 ∧ [[x ǫ v]]2)
)

∧̃
( ∧

x∈dom(v)

((v(x))1 → [[x ǫ u]]1),
∨

x∈dom(v)

((v(x))1 ∧ [[x ǫ u]]2)
)

[[φ#ψ]] = [[φ]]#̃[[ψ]] for # ∈ {∧,∨,→}

[[#ψ]] = #̃[[ψ]] for # ∈ {∼,¬}

[[∀xϕ(x)]] =
∧

u∈VTA

[[ϕ(u)]] =
( ∧

u∈VTA

[[ϕ(u)]]1,
∨

u∈VTA

[[ϕ(u)]]2
)

[[∃xϕ(x)]] =
∨

u∈VTA

[[ϕ(u)]] =
( ∨

u∈VTA

[[ϕ(u)]]1,
∧

u∈VTA

[[ϕ(u)]]2
)
.

[[ϕ]]V
TA is called the twist truth-value of the sentence ϕ ∈ L(TA) in the twist-valued model

VTA over the complete Boolean algebra A.
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Remark 7.6. Observe that VTA can be seen as a structure for QLPT0 over MT A and
ΘZF in a wide sense, given that its domain is a proper class. Under this identification, the
twist truth-value [[ϕ]]V

TA of the sentence ϕ in VTA is exactly the value assigned to ϕ by
the interpretation map for QLPT0 over VTA and MT A (recall Definition 6.9). In this
case we assume that the mappings (· ǫ ·)V

TA and (· ≈ ·)V
TA are as in Definition 7.5.

Recall the notion of semantical consequence relation in QLPT0 (see Definitions 6.12
and 6.13). This motivates the following:

Definition 7.7. A sentence ϕ in L(TA) is said to be valid in VTA, which is denoted by
VTA |= ϕ, if [[ϕ]]V

TA ∈ DA.

The semantical notions introduced above can easily be generalized to formulas with free
variables. Recall from Notation 7.3 that u is identified with u in VTA. Then:

Definition 7.8. Let ϕ be a formula in L whose free variables occur in {x1, . . . , xn}. Given
a twist-valued model VTA and an assignment µ : V ar → VTA, the twist truth-value of
ϕ in VTA and µ is defined as follows: [[ϕ]]V

TA

µ =def [[ϕ[x1/µ(x1), . . . , xn/µ(xn)]]]V
TA . The

formula ϕ is valid in VTA if [[ϕ]]V
TA

µ ∈ DA for every µ.

Definition 7.9. ZFLPT0 is the logic of the class of twist-valued models, seen as QLPT0-
structures over the signature ΘZF. That is, ZFLPT0 is the set of formulas of L which are
valid in every twist-valued model VTA.

8 Boolean-valued models versus twist-valued models

In this section, the relationship between twist-valued models and Boolean-valued models
will be briefly analized. It will be shown that these models enjoy similar properties than
the Boolean-valued models (when restricted to pure ZF-languages). These similarities
will be fundamental in order to prove that ZFC is valid w.r.t. twist-valued models (see
Theorem 8.21 below).

The following basic results for twist-valued models are analogous to the corresponding
ones for Boolean-valued models obtained in [1, Theorem 1.17]. All these results will be
proven by using the Induction Principle (IP) (recall Remark 7.4). From now on we assume
that the reader is familiar with the book [1].

Lemma 8.1. Let A be a complete Boolean algebra, and let u ∈ VTA. Then [[u ∈ u]]1 = 0.

Proof. Assume the inductive hypothesis [[y ∈ y]]1 = 0 for every y ∈ dom(u). Note that

[[u ǫ u]]1 =
∨

y∈dom(u)

((u(y))1 ∧ [[y ≈ u]]1).

Let y ∈ dom(u). Then

(u(y))1 ∧ [[y ≈ u]]1 ≤ (u(y))1 ∧
∧

x∈dom(u)

((u(x))1 → [[x ǫ y]]1)

≤ (u(y))1 ∧ ((u(y))1 → [[y ǫ y]]1)

≤ [[y ǫ y]]1 = 0.

Then u(y)1 ∧ [[y ≈ u]]1 = 0 for every y ∈ dom(u), hence [[u ∈ u]]1 = 0.
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Theorem 8.2. Let A be a complete Boolean algebra, and let u, v, w ∈ VTA. Then:

(i) [[u ≈ u]]1 = 1.

(ii) u(x)1 ≤ [[x ǫ u]]1, for every x ∈ dom(u).

(iii) [[u ≈ v]]1 = [[v ≈ u]]1.

(iv) [[u ≈ v]]1 ∧ [[v ≈ w]]1 ≤ [[u ≈ w]]1.

(v) [[u ≈ v]]1 ∧ [[u ǫw]]1 ≤ [[v ǫw]]1.

(vi) [[v ≈ w]]1 ∧ [[u ǫ v]]1 ≤ [[u ǫw]]1.

(vii) [[u ≈ v]]1 ∧ [[ϕ(u)]]1 ≤ [[ϕ(v)]]1 for every formula ϕ(x) in Lp(TA).

Proof. The proof of items (i)-(vi) is analogous to the proof of the corresponding items
found in [1, Theorem 1.17]. The proof of item (vii) is easily done by induction on the
complexity of ϕ(x) by observing that: the proof when ϕ is atomic uses Lemma 8.1, for
ϕ = (x ǫ x), and items (i)-(vi) for the other cases. For complex formulas the result follows
easily by induction hypothesis.

Lemma 8.3. Let A be a complete Boolean algebra. Then, for every formula ϕ(x) in
Lp(TA) and every u ∈ VTA: [[∃y((u ≈ y) ∧ ϕ(y))]]1 = [[ϕ(u)]]1.

Proof. It follows from Theorem 8.2 items (i), (iii) and (viii). Indeed,

[[∃y((u ≈ y) ∧ ϕ(y))]]1 =
∨

x∈dom(u)

([[u ≈ y]]1 ∧ [[ϕ(y)]]1)

≤ [[ϕ(u)]]1 = [[u ≈ u]]1 ∧ [[ϕ(u)]]1

≤ [[∃y((u ≈ y) ∧ ϕ(y))]]1.

Notation 8.4. The following notation from [1] will be adopted from now on:

∃x ǫ u ϕ(x) =def ∃x(x ǫ u ∧ ϕ(x));

∀x ǫ u ϕ(x) =def ∀x(x ǫ u → ϕ(x)).

Theorem 8.5. Let A be a complete Boolean algebra. Then, for every formula ϕ(x) in
Lp(TA) and every u ∈ VTA:

[[∃x ǫ u ϕ(x)]]1 =
∨

x∈dom(u)

((u(x))1 ∧ [[ϕ(x)]]1)

and
[[∀x ǫ u ϕ(x)]]1 =

∧

x∈dom(u)

((u(x))1 → [[ϕ(x)]]1).

Proof. The proof is similar to that for [1, Corollary 1.18], taking into account Theorem 8.2
and Lemma 8.3

Recall that a complete Boolean algebra A’ is a complete subalgebra of the complete
Boolean algebra A provided that A’ is a subalgebra of A and

∨
A′ X =

∨
A
X and

∧
A′ X =∧

A
X for every X ⊆ |A′|. Analogously, we say that a twist-structure TA′ is a complete

subalgebra of the twist-structure TA if TA′ is a subalgebra of TA and
∨

TA′
X =

∨
TA
X and∧

TA′
X =

∧
TA
X for every X ⊆ |TA′ |, recalling Remark 6.10.
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Proposition 8.6. If A’ is a complete subalgebra of A then TA′ is a complete subalgebra
of TA.

Proof. If follows from Definition 4.6 and Remark 6.10.

Theorem 8.7. Let A’ be a complete subalgebra of the complete Boolean algebra A. Then:

(i) VTA′ ⊆ VTA.

(ii) for every u, v ∈ VTA′ : [[u ǫw]]V
T
A′

= [[u ǫw]]V
TA , and [[u ≈ w]]V

T
A′

= [[u ≈ w]]V
TA .

Corollary 8.8. Suppose that A’ is a complete subalgebra of A. Then, for any re-
stricted formula ϕ(x1, . . . , xn) in Lp (recall Definition 7.2) and for every u1, . . . , un ∈ TA′:

[[ϕ(u1, . . . , un)]]V
T
A′

= [[ϕ(u1, . . . , un)]]V
TA .

Proof. The proof is analogous to that for [1, Corollary 1.21].

Remark 8.9. Recall from Remark 4.8 that TA2
, the twist structure for LPT0 defined

over the two-element Boolean algebra A2, coincides (up to names) with the three-valued
algebra APT0 underlying the matrix MPT0, where 1, 1

2
and 0 are identified with (1, 0),

(1, 1) and (0, 1), respectively. Hence, the twist-valued structure VTA2 will be denoted by
VAPT0 Since A2 is a complete subalgebra of any complete Boolean algebra A then VAPT0

is a complete subalgebra of VTA, for any TA. By Theorem 8.7, [[u ǫ v]]V
APT0 = [[u ǫ v]]V

TA

and [[u ≈ v]]V
APT0 = [[u ≈ v]]V

TA for every u, v ∈ VAPT0 and every TA. As happens
with the Boolean-valued model VA2, the twist-valued model VAPT0 is, in some sense,
isomorphic to the standard universe V, as it will be shown in Theorem 8.13 below.

Definition 8.10. Define by transfinite recursion on the well-founded relation y ∈ x the
following, for each x ∈ V: x̂ =def {〈ŷ, 1〉 : y ∈ x}.

It is clear that x̂ ∈ VAPT0 and so x̂ ∈ VTA for every TA. Hence, if ϕ(v1, . . . , vn) is a re-
stricted formula in Lp and x1, . . . , xn ∈ V then [[ϕ(x̂1, . . . , x̂n)]]V

APT0 = [[ϕ(x̂1, . . . , x̂n)]]V
TA

for every TA, by Corollary 8.8.

Lemma 8.11. Let ϕ(v1, . . . , vn) be a formula in Lp, and let x1, . . . , xn ∈ V. Then,

[[ϕ(x̂1, . . . , x̂n)]]V
APT0 ∈ {0, 1}.

Proof. The result is proven by induction on the complexity of ϕ.

Corollary 8.12. Let ϕ(v1, . . . , vn) be a restricted formula in Lp, and let x1, . . . , xn ∈ V.

Then, [[ϕ(x̂1, . . . , x̂n)]]V
TA ∈ {0, 1} for every A.

Proof. It follows by Lemma 8.11 and by Corollary 8.8.

Theorem 8.13.

(i) For every x ∈ V and u ∈ VTA: [[u ǫ x̂]] =
∨

y∈x

[[u ≈ ŷ]].

(ii) For x, y ∈ V:

x ∈ y holds in ZFC iff VTA |= (x̂ ǫ ŷ) for every A;

x = y holds in ZFC iff VTA |= (x̂ ≈ ŷ) for every A.
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(iii) The function x 7→ x̂ is one-to-one from V to VAPT0.

(iv) For every u ∈ VAPT0 there is a (unique) x ∈ V such that VTA |= (u ≈ x̂) for all A.

(v) For every formula ϕ(v1, . . . , vn) in Lp and every x1, . . . , xn ∈ V:

ϕ(x1, . . . , xn) holds in ZFC iff VAPT0 |= ϕ(x̂1, . . . , x̂n).

In addition if ϕ is restricted (recall Definition 7.2) then, for every x1, . . . , xn ∈ V:

ϕ(x1, . . . , xn) holds in ZFC iff VTA |= ϕ(x̂1, . . . , x̂n), for every A.

Proof. It follows by an easy adaptation of the proof of [1, Theorem 1.23]. The only points
to be considered are the following:

(i) Note that 1 ∧̃ a = a for every a ∈ |TA|. Then, the adaptation of the proof of this item
is immediate.

(ii) Both assertions are simultaneously proven by induction on rank(y) (see Remark 7.4),
where the induction hypothesis is: for every z with rank(z) < rank(y), x ∈ z iff VTA |=
(x̂ ǫ ẑ) for every x and A; x = z iff VTA |= (x̂ ≈ ẑ) for every x and A; and z ∈ x iff
VTA |= (ẑ ǫ x̂) for every x and A. For the first assertion, Corollary 8.12 should be used.

For the second assertion, note that 1 → a = a for every a ∈ |A|. Hence ([[x̂ ≈ ẑ]]V
TA )1 =∧

y∈x

([[ŷ ǫ ẑ]]V
TA )1 ∧

∧

y∈z

([[ŷ ǫ x̂]]V
TA )1. Use then the first assertion, induction hypothesis and

the axiom of extensionality.

(iii) It follows from (ii).

(iv) By adapting the proof of [1, Theorem 1.23(iv)], at some point of the proof the set
v = {y ∈ V : u(x) = 1 and ([[x ≈ ŷ]]V

TA )1 = 1, for some x ∈ dom(u)} of V must be
considered.

(v) In order to adapt the proof of [1, Theorem 1.23(v)] it should be noted that, if ∅ 6= X ⊆
|APT0| is such that

∨
APT0

X = 1, then 1 ∈ X . From this, the inductive step ϕ = ∃xψ can
be treated analogously to the proof of [1, Theorem 1.23(v)]. In addition, the use of the
Leibniz rule (see [1, Theorem 1.17(vii)]) at this point of the proof can be adapted here to
an application of Theorem 8.2(vii) as follows:

1 = ([[ψ(x, x̂1, . . . , x̂n]]V
APT0 )1 ∧ ([[x ≈ ŷ]]V

APT0 )1 ≤ ([[ψ(ŷ, x̂1, . . . , x̂n]]V
APT0 )1.

Hence ([[ψ(ŷ, x̂1, . . . , x̂n]]V
APT0 )1 = 1, and the rest of the proof follows from here.

Now it will be shown the Maximum Principle of Boolean-valued models (see [1, Lemma 1.27])
is also valid in twist-valued models. The adaptation to our framework of the proof of this
result found in [1] is straightfoward.

Definition 8.14. Let A be a complete Boolean algebra. Given sets E = {ai : i ∈ I} ⊆
|A| and F = {ui : i ∈ I} ⊆ VTA, the twist mixture of F with respect to E is the element
u =

∑
i∈I ai ⊙ ui of VTA defined as follows:7

dom(u) =
⋃

i∈I

dom(ui), and

7It is worth observing that the definition of the second coordinate of u(z) will be irrelevant.
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u(z) =
(∨

i∈I

(ai ∧ [[z ǫ ui]]1),∼
∨

i∈I

(ai ∧ [[z ǫ ui]]1)
)
, for every z ∈ dom(u).

Lemma 8.15 (Mixing Lemma). Let {ai : i ∈ I} ⊆ |A| and {ui : i ∈ I} ⊆ VTA,
and let u =

∑
i∈I ai ⊙ ui. Suppose that, for every i, j ∈ I, ai ∧ aj ≤ [[ui ≈ uj]]1. Then

ai ≤ [[u ≈ ui]]1 for every i ∈ I.

Proof. It can be proved by a straightforward adaptation of the proof of [1, Lemma 1.25],
taking into account Theorem 8.2 items (ii), (iii) and (vi).

The next fundamental result shows that the set of pure ZF-sentences validated by each
twist-valued structure VTA is a Henkin theory:

Lemma 8.16 (The Maximum Principle). Let A be a complete Boolean algebra. Then,
for every formula ϕ(x) in Lp(TA), there is u ∈ VTA such that

[[∃xϕ(x)]]1 = [[ϕ(u)]]1.

In particular, if VTA |= ∃xϕ(x) then VTA |= ϕ(u) for some u ∈ VTA.

Proof. The proof is obtained by a straightforward adaptation of the proof of [1, Lemma 1.27].
The collection X = {[[ϕ(u)]] : u ∈ VTA} is a set, since TA is a set. By the Axiom of Choice,
there is an ordinal α and a set {uξ : ξ < α} ⊆ VTA} such that X = {[[ϕ(uξ)]] : ξ < α},
hence [[∃xϕ(x)]]1 =

∨
ξ<α[[ϕ(uξ)]]1. For each ξ < α let aξ = [[ϕ(uξ)]]1∧∼

∨
η<ξ[[ϕ(uη)]]1, and

let u =
∑

ξ<α aξ⊙uξ. By the Mixing Lemma 8.15 and by Theorem 8.2 items (ii) and (vii)
it follows that [[∃xϕ(x)]]1 = [[ϕ(u)]]1.

Corollary 8.17. Let ϕ(x) be a formula in Lp(TA) such that VTA |= ∃xϕ(x). Then:

(i) For any v ∈ VTA there exists u ∈ VTA such that [[ϕ(u)]]1 = 1 and [[ϕ(v)]]1 = [[u ≈ v]]1.

(ii) Let ψ(x) be a formula in Lp(TA) such that VTA |= ϕ(u) implies that VTA |= ψ(u), for
every u ∈ VTA. Then VTA |= ∀x(ϕ(x) → ψ(x)).

Proof. Is an easy adaptation of the proof of [1, Corollary 1.28], taking into account
Lemma 8.16 and Theorem 8.2 items (ii) and (vii).

The notion of core for a Boolean-valued set (see [1]) can be easily adapted to twist-valued
sets:

Definition 8.18. Let u ∈ VTA. A core for u is a set v ⊆ VTA such that: (i) [[x ǫ u]]1 = 1
for every x ∈ v; and (ii) for every y ∈ VTA such that [[y ǫ u]]1 = 1, there is a unique x ∈ v
such that [[x ≈ y]]1 = 1.

Lemma 8.19. Any u ∈ VTA has a core.

Proof. Is an easy adaptation of the proof of [1, Lemma 1.31].

Let ∅ be the empty element of VTA. As happens with Boolean-valued models, if u ∈ VTA

is such that VTA |= ∼(u ≈ ∅) then, by the Maximum Principle, any core of u is nonempty.

Corollary 8.20. Let u ∈ VTA such that VTA |= ∼(u ≈ ∅), and let v be a core for u.
Then, for any x ∈ VTA there exists y ∈ v such that [[x ≈ y]]1 = [[x ǫ u]]1.
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Proof. Is follows from Corollary 8.17.

From the results obtained above, one of the main results of the paper can be established:

Theorem 8.21. All the axioms (hence all the theorems) of ZFC, when restricted to pure
ZF-languages Lp(TA) (recall Definition 7.2), are valid in VTA, for every A.

Proof. It is a relatively easy (but arduous) adaptation of the proof of [1, Theorem 1.33],
taking into account the auxiliary results obtained within this section, which are similar
to the ones required in [1].

9 Twist-valued models for (PS3,¬)

In this section the three-valued model for set theory introduced by Löwe and Tarafder
in [18] will be extended to a class of twist-valued models.

As observed in Section 7, the three-valued logic (PS3,¬) (denoted as (PS3, ∗) in [18])
was already considered in [13] under the name MPT. Indeed, this logic has been inde-
pendenly proposed by different authors at several times, and with different motivations.8

For instance, the same logic was proposed in 1970 by da Costa and D’Ottaviano’s as J3.
It was reintroduced in 2000 by Carnielli, Marcos and de Amo as LFI1 and by Batens
and De Clerq as the propositional fragment of the first-order logic CLuNs, in 2014. As
observed by Batens, this logic was firstly proposed by Karl Scütte in 1960 under the name
Φv (see [7] for details and specific references). Each of the three-valued algebras above is
equivalent, up to language, to the three-valued algebra of  Lukasiewicz three-valued logic
 L3. Hence, these logics are equivalent to  L3 with {1, 1

2
} as designated values. Moreover,

as it was shown by Blok and Pigozzi in [2], the class of algebraic models of J3 (and so the
class of twist structures for LPT0) coincides with the agebraic models of  Lukasiewicz’s
three-valued logic  L3. More remarks about these three-valued equivalent logics can be
found in [7], Chapters 4 and 7.

As shown in [13, p. 407], the implication ⇒ given by

⇒ 1 1
2

0

1 1 1 0
1
2

1 1 0

0 1 1 1

(which is the same implication ⇒ of PS3 and the primitive implication of MPT) can be
defined in the language of LFI1 (hence in the language of LPT0) as follows: ϕ⇒ ψ =def

¬∼(ϕ→ ψ). From this, it is easy to adapt Definition 4.6 of twist-structures for LPT0 to
(PS3,¬) (see Definition 9.1 below). Hence, the logic (PS3,¬) will be considered as defined
over the signature Σ⇒ = {∧,∨,⇒,¬}. As observed in [13, pp. 395 and 407], the strong
negation ∼ can be defined as ∼ϕ =def ϕ⇒ ¬(ϕ⇒ ϕ), while ϕ→ ψ =def ∼ϕ ∨ ψ.

Definition 9.1. Let A be a complete Boolean algebra, and let TA as in Definition 4.5.
The twist structure for (PS3,¬) over A is the algebra TA∗ = 〈TA, ∧̃, ∨̃, ⇒̃, ¬̃〉 over Σ⇒

such that the operations ∧̃, ∨̃ and ¬̃ are defined as in Definition 4.6, and ⇒̃ is defined as
follows, for every (z1, z2), (w1, w2) ∈ TA:

8As mentioned in Section 3, LFI1◦ is another presentation of this logic.
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(z1, z2) ⇒̃ (w1, w2) = (z1 → w1, z1 ∧ ∼w1).

By considering (as mentioned above) ∼ and → as derived connectives in TA∗ , it is clear
that ∼̃(z1, z2) = (∼z1, z1) and (z1, z2) →̃ (w1, w2) = (z1 → w1, z1∧w2). Hence, the original
operations of Definition 4.6 can be recovered in TA∗ .

As it will be discussed below, we will adopt a technique different to the one used
in [18] in order to show the satisfaction of ZFC in the twist-valued models based on TA∗ .
However, it is interesting to observe that a nice property of (PS3,¬) is preserved by any
TA∗ . Indeed, in [18] the following notion of reasonable implication algebras was proposed
in order to provide suitable lattice-valued for ZF:

Definition 9.2. An algebra A = 〈A,∧,∨,⇒, 0, 1〉 is an reasonable implication algebra if
the reduct 〈A,∧,∨, 0, 1〉 is a complete lattice with bottom 0 and top 1, and ⇒ is a binary
operator satisfying the following, for every z, w, u ∈ A:

(P1) z ∧ w ≤ u implies that z ≤ (w ⇒ u);

(P2) z ≤ w implies that (u⇒ z) ≤ (u⇒ w);

(P3) z ≤ w implies that (w ⇒ u) ≤ (z ⇒ u).

Proposition 9.3. For every complete Boolean algebra A, the twist structure TA∗ for
(PS3,¬) is a reasonable implication algebra such that 0 = (0, 1) and 1 = (1, 0).9

Proof. Let (z1, z2), (w1, w2), (u1, u2) ∈ TA.

(P1): Assume that (z1, z2) ∧̃ (w1, w2) ≤ (u1, u2). That is, (z1 ∧ w1, z2 ∨ w2) ≤ (u1, u2).
Then z1 ∧ w1 ≤ u1 and z2 ∨ w2 ≥ u2. From z1 ∧ w1 ≤ u1 it follows that z1 ≤ w1 → u1.
Besides, since z1∨z2 = 1 then ∼z2 ≤ z1 ≤ w1 → u1. Hence z2 ≥ ∼(w1 → u1) = w1∧∼u1.
From this, (z1, z2) ≤ (w1 → u1, w1 ∧ ∼u1) = (w1, w2) ⇒̃ (u1, u2).

(P2): Assume that (z1, z2) ≤ (w1, w2). Then z1 ≤ w1, hence u1 → z1 ≤ u1 → w1 and so
u1 ∧∼z1 = ∼(u1 → z1) ≥ ∼(u1 → w1) = u1 ∧∼w1. This means that (u1, u2) ⇒̃ (z1, z2) ≤
(u1, u2) ⇒̃ (w1, w2).

(P3): It is proved analogously, but now taking into account that z1 ≤ w1 implies that
w1 → u1 ≤ z1 → u1.

Now, the three-valued model of set theory presented in [18] will be generalized to twist-
valued models over any complete Boolean algebra. The structure VTA∗ is defined as the
structure VTA given in Definition 7.1. This does not come as a surprise, given that the
domain of TA and TA∗ is the same, the set TA. However, VTA and VTA∗ are different as
first-order structures, namely, the way in which the formulas are interpreted. The only
difference, besides using different implications in the underlying logics, will be in the form
in which the predicates ǫ and ≈ are interpreted. Thus, the twist truth-value [[ϕ]]V

T
A∗

of
a sentence ϕ in VTA∗ will be defined according to the recursive clauses in Definition 7.5,
with the following difference: any occurrence of the operator →̃ must be replaced by the
operator ⇒̃ Note that the clause interpreting ∼ϕ is now derived from the others, taking
into account the observation after Definition 9.1.

9To be rigorous, the ¬-less reduct of TA∗ expanded with 0 and 1 is a reasonable implication algebra.
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In Theorem 9.4 below it is stated that every twist-valued structure VTA∗ is a model
of ZFC. This constitutes a generalization of [18, Corollary 11]. Indeed, instead of taking
just a three-valued model (generated by the two-element Boolean algebra), we obtain a
class of models, one for each complete Boolean algebra. Moreover, we also prove that
these generalized models (including, of course, the original Löwe-Tarafder model) satisfy,
in addition, the Axiom of Choice.

The proof of validity of ZF given in [18, Corollary 11] is strongly based on the partic-
ularities of the three-valued algebra of (PS3,¬).10 This forces us to adapt, to this setting,
the proof for twist-valued models over TA given in the previous sections (which, by its
turn, is adapted from the proof for Boolean-valued sets). Such adaptations from TA to
TA∗ are immediate, and all the results and definitions proposed in the previous sections
work fine for TA∗ . Hence, we obtain the second main result of the paper:

Theorem 9.4. All the axioms (hence all the theorems) of ZFC, when restricted to pure
ZF-languages Lp(TA), are valid in VTA∗ , for every A.

Remark 9.5. Oberve that, in [18, Corollary 11], it was proved that PS3 is a model of
ZF, not of ZFC. Thus, Theorem 9.4 improves the above mentioned result in two ways: it
is generalized to arbitary Boolean algebras and, in addition, it proves that the Axiom of
Choice AC is also satisfied by all that models, including the original three-valued structure
PS3.

10 ZFLPT0 as a paraconsistent set theory

After proving that the two classes of twist-valued models proposed here are models of
ZFC, in this section the paraconsistent character of both classes of models will be inves-
tigated. It will be shown that twist-valued models over TA (that is, over the logic LPT0)
are “more paraconsistent” that the ones over TA∗ (that is, defined over (PS3,¬)).

Recall from Theorem 8.2(i) that [[u ≈ u]] ∈ DA for every u in every twist-valued
model VTA. The interesting fact of ZFLPT0 is that it allows “inconsistent” sets, that is,
elements of VTA such that the value of (u 6≈ u) is also designated. Observe that 1 = (1, 0),
1
2

= (1, 1) and 0 = (0, 1) are defined in every TA. Since z ∈ DA iff z = (1, a) for some
a ∈ A it follows that 1

2
≤ z for every z ∈ DA (recalling the partial order for TA considered

in Remark 6.10).

Proposition 10.1. There exists u ∈ VTA such that [[u ≈ u]] = 1
2
.

Proof. Let w be any element of VTA, and let u = {〈w, 1
2
〉}. Since [[w ≈ w]] ∈ DA then

[[w ǫ u]] = u(w) ∧̃ [[w ≈ w]] = 1
2
∧̃ [[w ≈ w]] = 1

2
. From this, [[u ≈ u]] = u(w) →̃ [[w ǫ u]] =

1
2
→̃ 1

2
= 1

2
.

From the last result it can be proven that ZFLPT0 is strongly paraconsistent, in the sense
that there is a contradiction which is valid in the logic:

Corollary 10.2. Let σ = ∀x(x ≈ x). Then VTA |= σ ∧ ¬σ.

10For instance, the fact that expressions like [[u ≈ v]] ⇒ [[u ǫw]] can only take either the value 0 or 1
is used several times in [18]. Observe that, in TA∗ , the value of z ⇒̃w is always of the form (a,∼a) for

some a ∈ |A|. Hence [[u ≈ v]]V
T
A∗

is always of the form (a,∼a) for some a ∈ |A|.
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Proof. Let VTA be a twist-valued model for ZFLPT0. As observed above, 1
2
≤ z for every

z ∈ DA. By Theorem 8.2(i), [[v ≈ v]] ∈ DA for every v in VTA and so 1
2
≤ [[v ≈ v]] for

every v, that is, 1
2
≤ [[∀x(x ≈ x)]], by Definition 7.5. On the other hand, [[∀x(x ≈ x)]] ≤

[[u ≈ u]] = 1
2

for u as in Proposition 10.1. This shows that [[σ]] = [[∀x(x ≈ x)]] = 1
2

and so
[[¬σ]] = ¬̃ [[σ]] = 1

2
. Hence [[σ ∧ ¬σ]] = [[σ]] ∧̃ [[¬σ]] = 1

2
, a designated value.

Since the extensionality axiom of ZF is satisfied by every twist-valued model VTA for
ZFLPT0, [[u ≈ v]] ∈ DA iff u and v have the same elements, that is: for every w in
VTA, [[w ǫ u]] ∈ DA iff [[w ǫ v]] ∈ DA. However, nothing guarantees that u and v will
have the same ‘non-elements’, namely: it could be possible that [[¬(w ǫ u)]] ∈ DA but
[[¬(w ǫ v)]] /∈ DA, for some w in VTA, even when [[u ≈ v]] ∈ DA. Given such w, consider
the property ϕ(x) := ¬(w ǫ x), meaning that “w is a non-element of x”. Then, this
situation shows that VTA 6|= ((u ≈ v)∧ϕ(u)) → ϕ(v), which constitutes a violation of the
Leibniz rule for the equality predicate ≈ in ZFLPT0.

Theorem 10.3. The formula ϕ(x) := ¬(w ǫ x) is such that the Leibniz rule fails for it in
every VTA, namely: VTA 6|= ∀x∀y((x ≈ y) ∧ ϕ(x) → ϕ(y)).

Proof. Let VTA be a twist-valued model for ZFLPT0, and let ∅ be the empty element
of VTA. Observe that w = {〈∅, 1〉}, u = {〈w, 1

2
〉} and v = {〈w, 1〉} belong to every

model VTA. Now, [[∅ ǫ w]] = w(∅) ∧̃ [[∅ ≈ ∅]] = 1 ∧̃1 = 1. From this, [[w ≈ w]] =
w(∅) →̃ [[∅ ǫ w]] = 1 →̃1 = 1 and so [[w ǫ u]] = u(w) ∧̃ [[w ≈ w]] = 1

2
∧̃1 = 1

2
. On the

other hand, [[w ǫ v]] = v(w) ∧̃ [[w ≈ w]] = 1 ∧̃1 = 1. This implies that [[u ≈ v]] =
(u(w) →̃ [[w ǫ v]]) ∧̃ (v(w) →̃ [[w ǫ u]]) = (1

2
→̃1) ∧̃ (1 →̃ 1

2
) = 1

2
.

But [[ϕ(u)]] = [[¬(w ǫ u)]] = ¬̃ [[w ǫ u]] = ¬̃ 1
2

= 1
2

and [[ϕ(v)]] = [[¬(w ǫ v)]] = ¬̃ [[w ǫ v]] =
¬̃1 = 0. Thus, [[((u ≈ v) ∧ ϕ(u)) → ϕ(v)]] = (1

2
∧̃ 1

2
) →̃0 = 0, which implies that

VTA 6|= ∀x∀y((x ≈ y) ∧ ϕ(x) → ϕ(y)).

It is important to observe that the failure of the Leiniz rule in VTA shown in Theorem 10.3
does not contradict Theorem 8.2(viii): indeed, what Theorem 8.2(viii) states is the validity
of the Leibniz rule in VTA for every formula ϕ(x) in the pure ZF-language Lp(TA). On
the other hand, the formula ϕ(x) found in Theorem 10.3 which violates the Leibniz rule in
VTA contains an occurrence of the paraconsistent negation ¬, that is, it does not belong
to Lp(TA). In that example, two sets which are equal have different ‘non-elements’, where
‘non’ refers to the paraconsistent negation ¬.

Besides the failure of the Leibniz rule for the full language, ZFLPT0 does not validate
the so-called bounded quantification properties.

Definition 10.4. For any formula ϕ and every u ∈ VTA, the universal bounded quan-
tification property UBQu

ϕ and the existential bounded quantification property EBQu
ϕ are

defined as follows:

(UBQu
ϕ) [[∀x(x ǫ u → ϕ(x))]]1 =

∧
x∈dom(u)((u(x))1 → ϕ(x))

(EBQu
ϕ) [[∃x(x ǫ u ∧ ϕ(x))]]1 =

∨
x∈dom(u)((u(x))1 ∧ [[ϕ(x)]]1)

By simplicity, formulas on the left-hand size of UBQu
ψ and EBQu

ϕ will be written as
[[∀x ǫ u ϕ(x)]]1 and [[∃x ǫ u ϕ(x)]]1, respectively.

By adapting the proof of [1, Corollary 1.18] it can be proven the following:
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Theorem 10.5. For any negation-free formula ϕ (i.e., ϕ ∈ Lp(TA)) and every u ∈ VTA,
the bounded quantification properties UBQu

ϕ and EBQu
ϕ hold in VTA.

However, for formulas containing the paraconsistent negation the latter result does
not holds in general:

Proposition 10.6. There is u ∈ VTA and formulas ϕ(x) and ψ(x) such that the bounded
quantification properties UBQu

ψ and EBQu
ϕ fail in VTA.

Proof. It is enough to prove the falure of EBQu
ϕ given that the failure of UBQu

ψ is obtained
from it by using ψ(x) := ∼ϕ(x) and the duality between infimum and supremum through
the Boolean complement ∼.

Thus, let VTA and let w = {〈∅, 1〉}, v = {〈w, 1
2
〉}, y = {〈w, 1〉} and u = {〈y, 1〉}.

Let ϕ(x) := ¬(w ǫ x). As in the proof of Theorem 10.3 it can be proven that [[v ≈ y]] =
[[ϕ(v)]] = 1

2
and [[ϕ(y)]] = 0. Hence

∨
x∈dom(u)((u(x))1 ∧ [[ϕ(x)]]1) = (u(y))1 ∧ [[ϕ(y)]]1 = 0

while [[∃x ǫ u ϕ(x)]]1 = [[∃x(x ǫ u ∧ ϕ(x))]]1 =
∨
v′∈VTA

∨
x∈dom(u)((u(x))1 ∧ [[v′ ≈ x]]1 ∧

[[ϕ(v′)]]1) =
∨
v′∈VTA

((u(y))1 ∧ [[v′ ≈ y]]1 ∧ [[ϕ(v′)]]1) ≥ (u(y))1 ∧ [[v ≈ y]]1 ∧ [[ϕ(v)]]1 = 1.
This means that [[∃x ǫ u ϕ(x)]]1 = 1 6= 0 =

∨
x∈dom(u)((u(x))1 ∧ [[ϕ(x)]]1).

It is worth noting that the limitations of ZFLPT0 pointed out above (namely, the Leibniz
rule and the bounded quantification property for formulas containing the paraconsistent
negation) are also present in Löwe-Tarafder’s model [18].

As mentioned in Section 3, in [6] was presented a family of paraconsistent set theories
based on diverse LFIs, such that the original ZF axioms were slightly modified in order
to deal with a unary predicate C(x) representing that ‘the set x is consistent’. The
consistency connective ◦ is primitive in mbC, but it is definable as ◦ϕ := ∼(ϕ ∧ ¬ϕ) in
any axiomatic extension of mbC which proves the schema (ciw): ◦ϕ ∨ (ϕ ∧ ¬ϕ) such as
LPT0. In the same way, the consistency predicate C(x) can be expressed, in extensions of
ZFmbC, in terms of a formula of ZFmbC without using the predicate C, and the same
happens with the inconsistency predicate ¬C(x). For instance, ZFmCi is based on mCi,
an extension of mbC in which ¬◦ϕ is equivalent to ϕ∧¬ϕ. Thus, ¬C(x) was defined to be
equivalent to (x ≈ x)∧¬(x ≈ x) in ZFmCi. From this, ¬C(x) is equivalent to ¬◦(x ≈ x)
in ZFmCi. Given that LPT0 is an extension of mCi, if a consistency predicate for sets
were added to the language of ZFLPT0 then it seems reasonable to require the equivalence
between ¬C(x) and ¬◦(x ≈ x) in ZFLPT0. But ◦C(x) is derivable ZFmCi, so it would
be valid in ZFLPT0 (indeed, the proof in ZFmCi of ◦C(x) given in [6, Proposition 3.10]
holds in QLPT0, assuming the axioms for C from ZFmCi). From this C(x) ↔ ◦(x ≈ x)
would be also derivable in QLPT0 and so it would be valid in ZFLPT0 expanded with a
suitable predicate C denoting ‘consistency for sets’. This motivates the following:

Definition 10.7. Define in ZFLPT0 the consistency predicate for sets, C(x), as follows:
C(x) =def ∼¬(x ≈ x).

According to the previous discussion, C(x) should be equivalent to ◦(x ≈ x) in ZFLPT0.
But ◦ϕ is equivalent to ∼(ϕ∧¬ϕ) in LPT0, and (x ≈ x) is valid in ZFLPT0, hence C(x)
should be equivalent to ∼¬(x ≈ x) in ZFLPT0, which justifies Definition 10.7.

Proposition 10.8. The consistency predicate C(x) is non-trivial: there exist v, w ∈ VTA

such that [[C(v)]] = 1 and [[C(w)]] = 0. Moreover, [[C(u)]] 6= 1
2
for every u in VTA.
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Proof. Let VTA be a twist-valued model for ZFLPT0, and consider v = {〈∅, 1〉} and
w = {〈∅, 1

2
〉} in VTA. It is easy to see that [[C(v)]] = 1 and [[C(w)]] = 0. On the other

hand, for every u in VTA it is the case that [[C(u)]] = ∼̃z for z = [[¬(u ≈ u)]]. Hence
[[C(u)]] = (∼z1, z1) 6=

1
2
, for every u.

Finally, we can show now that twist-valued models over TA (that is, over the logic
LPT0) are “more paraconsistent” than the ones over TA∗ (that is, defined over (PS3,¬)).
Indeed, as we have seen, ZFLPT0 allow us to define in every twist-valued model VTA an
“inconsistent set”, namely u, such that (u ≈ u)∧¬(u ≈ u) holds. In fact, any u = {〈w, 1

2
〉}

is such that [[u ≈ u]] = 1
2
→̃1

2
= 1

2
. The difference, of course, rests on the nature of the

implication operator considered in each case: in (PS3,¬) the value of (u ≈ u) is always
1, since 1

2
⇒̃1

2
= 1. Hence, ¬(u ≈ u) always gets the value 0. The same holds in any

model over reasonable implicative algebras considered by Löwe and Tarafder (see [18,
Proposition 1]).

10.1 Discussion: ZFLPT0 and the failure of the Leibniz rule

At first sigth, having a (paraconsistent) set theory as ZFLPT0 in which the Leibniz rule
is not satisfied for every formula ϕ(x) that represents a property could seem to be a
bit disappointing. After all, ZF is defined as a first-order theory with equality, which
pressuposes the validity of the Leibniz rule.

The Leibniz rule states that the equality predicate preserves logical equivalence, namely:
(a ≈ b) → (ϕ(a) ↔ ϕ(b) for every formula ϕ(x) (clearly this can be generalized to for-
mulas with n ≥ 1 free variables, assuming

∧n

i=1(ai ≈ bi)). In first-order theories based
on classical logic, such as ZF, it is enough to require that this property holds for ev-
ery atomic formula, and so the general case is proven by induction on the complexity of
ϕ. Of course this proof cannot be reproduced in QLPT0, since ¬ is not congruential:
ϕ(a) ↔ ϕ(b) does not imply ¬ϕ(a) ↔ ¬ϕ(b) in general (and this is the key step in the
proof by induction). The solution is requiring the validity of the Leibniz rule for every
ϕ from the beginning, adjusting accordingly the class of interpretations for QLPT0 ex-
panded with equality (see [12]). However, the situation for ZFLPT0 is quite different:
because of the extensionality axiom, the definition of the interpretation of the equality
predicate depends strongly on the interpretation of the membership predicate. In fact,
the interpretation of both predicates is simultaneously defined by transfinite recursion,
according to Definition 7.5.

The validity of the Leibniz rule, in the case of Boolean-set models for ZFC, is proven
as a theorem. The simultaneous definition of the equality and membership predicates
is designed to fit exactly the requirements of the extensionality axiom: two individuals
(sets) are identical provided that they have the same elements. From this, it is proven
by induction of the complexity of ϕ(x) that [[u ≈ v]] ∧ [[ϕ(u)]] ≤ [[ϕ(v)]] in every Boolean-
valued model. As we have seen in Theorem 8.2(vii), the same holds in twist-valued
models w.r.t. the first coordinate, namely: [[u ≈ v]]1 ∧ [[ϕ(u)]]1 ≤ [[ϕ(v)]]1. But then,
it is required that this property just holds for ‘classical’ formulas, that is, formulas ϕ
without occurrences of the paraconsistent negation ¬. The explanation for this fact is
simple, from the technical point of view: assuming that the property above holds for ϕ
then, when considering ¬ϕ, the value of [[¬ϕ(u)]]1 is [[ϕ(u)]]2, and we don’t have enough
information about the relationship between [[ϕ(u)]]2, and [[ϕ(v)]]2. The example given in
the proof of Theorem 10.3 shows that it is impossible to satisfy the Leibniz rule in ZFLPT0
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for formulas containing the paraconsistent negation, hence this is an unsolvable problem
with the current definitions.

Within the present approach, paraconsistent situations such as the existence of ‘in-
consistent’ sets u satisfying ¬(u ≈ u) or the existence of a set being simultaneously an
element and a non-element of another set seems to be irreconcilable with the fullfill-
ment of the Leibniz rule for formulas behind the ‘classical’ language. Because of this,
the predicate ≈ in ZFLPT0 should be considered as representing ‘indiscernibility by pure
ZF-properties’, exactly as happens with Boolean-valued models for ZF. In this manner
(u ≈ v) implies that, besides having the same elements, u and v have, for instance,
the same ‘non∗-elements’, where ‘non∗’ stands for the classical negation ∼. That is,
∀w(∼(w ǫ u) ↔ ∼(w ǫ v)) is a consequence of (u ≈ v). On the other hand, as it was shown
in Theorem 10.3, (u ≈ v) does not imply (in general) that u and v have the same ‘non-
elements’, where ‘non’ stands for the paraconsistent negation ¬: ∀w(¬(w ǫ u) ↔ ¬(w ǫ v))
is not a consequence of (u ≈ v).

Instead of being regarded as discouraging, the fact that (u ≈ v) does not necessarily
imply that u and v have the same ‘non-elements’ (for ‘non’ the paraconsistent negation ¬)
can be seen as an auspicious property, because it can be a way to circumvent undesirable
consequences of ‘non-elements’, as it happens with the well-known Hempel’s Ravens Para-
dox: evidence, differently from proof, for instance, has its own idiosyncratic properties.
This point, however, will be left for further discussion.

11 Concluding remarks

In this paper, we introduce a generalization of Boolean-valued models of set theory to a
class of algebras represented as twist-structures, defining a class of models for ZFC that
we called twist-valued models. This class of algebras characterizes a three-valued paracon-
sistent logic called LPT, which was extensively studied in the literature of paraconsistent
logics under different names and signatures as, for example, as the well-known da Costa
and D’Ottaviano’s logic J3 and as the logic LFI1 (cf. [3]) . As it was shown by Blok and
Pigozzi in [2], the class of algebraic models of J3 (hence, the class of twist structures for
LPT0) coincides with the agebraic models of  Lukasiewicz three-valued logic  L3.

With small changes, in Section 9 the twist-valued models for LPT0 were adapted in
order to obtain twist-valued for (PS3,¬), the three-valued paraconsistent logic studied by
Löwe and Tarafder in [18] as a basis for paraconsistent set theory. Thus, their three-valued
algebraic model of ZF was extended to a class of twist-valued models of ZF, each of them
defined over a complete Boolean algebra. In addition, it was proved that these models
(including the three-valued model over (PS3,¬)) satisfy, in addition, the Axiom of Choice.
Moreover, it was shown that the implication operator → of LPT0 is, in a sense, more
suitable for a paraconsistent set theory than the one ⇒ of PS3: it allows inconsistent sets
(i.e., [[(w ≈ w)]] = 1

2
for some w, see Proposition 10.1). It is worth noting that → does not

characterize a ‘reasonable implication algebra’ (recall Definition 9.2): indeed, 1 ∧ 1
2
≤ 1

2

but 1 6≤ 1
2
→ 1

2
= 1

2
. This shows that reasonable implication algebras are just one way to

define a paraconsistent set theory, not the best.
Despite having the same limitative results than Löwe-Tarafder’s model (that is, the

debatable failure of Leibniz rule and the bounded quantification property for formulas
containing the paraconsistent negation, recall Section 10) we believe that ZFLPT0 has a
great potential as a paraconsistent set theory. In particular, the formal properties and
the axiomatization of ZFLPT0 deserve to be further investigated, especially towards the
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problem of the validity of independence results in paraconsistent set theory.

References

[1] J. L. Bell. Set Theory: Boolean-Valued Models and Independence Proofs, Third
edition. Volume 47 of the Oxford Logic Guides Series. Oxford University Press,
2005.

[2] W. J. Blok and D. Pigozzi. Abstract algebraic logic and the deduction theorem.
Preprint, 2001. Available at
http://www.math.iastate.edu/dpigozzi/papers/aaldedth.pdf

[3] W. Carnielli, J. Marcos, S. de Amo. Formal inconsistency and evolutionary database.
Logic and Logical Philosophy 8:115–152,2000.

[4] W. Carnielli and A. Rodrigues. An epistemic approach to paraconsistency: a logic
of evidence and truth. Synthese 196(9):3789–3813, 2019.

[5] W. Carnielli and M. E. Coniglio. Swap Structures for LFIs.
CLE e-Prints Vol. 14, number 1 (2014) (revised version)
https://www.cle.unicamp.br/eprints/index.php/CLE_e-Prints/article/view/980

[6] W. Carnielli and M. E. Coniglio. Paraconsistent set theory by predicating on consis-
tency. Journal of Logic and Computation 26(1):97–116, 2016. First published online:
09 July 2013.

[7] W. Carnielli and M. E. Coniglio. Paraconsistent Logic: Consistency, Contradiction
and Negation. Volume 40 of the Logic, Epistemology, and the Unity of Science
Series. Springer, 2016.

[8] W. A. Carnielli, M. E. Coniglio, and J. Marcos. Logics of Formal Inconsistency. In:
D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic (2nd.
edition), volume 14, pages 1–93. Springer, 2007.

[9] W. A. Carnielli and J. Marcos. A taxonomy of C-systems. In: W. A. Carnielli, M.
E. Coniglio, and I. M. L. D’Ottaviano, editors, Paraconsistency: The Logical Way
to the Inconsistent, volume 228 of Lecture Notes in Pure and Applied Mathematics,
pages 1–94. Marcel Dekker, New York, 2002.

[10] M. E. Coniglio, A. Figallo-Orellano and A. C. Golzio. Non-deterministic algebraiza-
tion of logics by swap structures. Logic Journal of the IGPL, to appear. First pub-
lished online: November 29, 2018. DOI: 10.1093/jigpal/jzy072. Preprint available
at arXiv:1708.08499 [math.LO]

[11] M. E. Coniglio, A. Figallo-Orellano and A. C. Golzio. First-order swap structures
semantics for QmbC (extended abstract). In: N. Bezhanishvili and Y. Venema,
editors, SYSMICS 2019: Syntax Meets Semantics - Book of Abstracts, pp. 62–65.
Institute for Logic, Language and Computation, University of Amsterdam, 2019.

[12] M. E. Coniglio, A. Figallo-Orellano and A. C. Golzio. Swap structures semantics
for first-order LFIs. Submitted, 2019.

26

http://www.math.iastate.edu/dpigozzi/papers/aaldedth.pdf
https://www.cle.unicamp.br/eprints/index.php/CLE_e-Prints/article/view/980


[13] M. E. Coniglio and L.H. da Cruz Silvestrini. An alternative approach for Quasi-
Truth. Logic Journal of the IGPL 22(2): 387–410, 2014.

[14] Itala M. L. D’Ottaviano. The completeness and compactness of a three-valued
first-order logic. Revista Colombiana de Matemáticas, XIX(1-2):77–94, 1985.
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