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Abstract

In this paper, we focus on forecasting heterogeneous panels in presence of cross-sectional depen-

dence in terms of both spatial error dependence and common factors. We propose two main

approaches to estimate the factor structure, one using the residuals (“Residuals Based Approach”,

RBA) while the second using a panel of some variables (“Auxiliary Variables Approach”, AVA)

to extract the factors. Small sample properties of the methods proposed is investigated through

Monte Carlo simulation exercises and used in an application to predict house price inflation in

OECD countries.

Keywords: Cross-Sectional dependence, Common factors, Spatial dependence, House price

inflation, Inflation forecasting, Macroeconomic forecasting

1. Introduction

1.1. Overview and main contributions

The presence of both a cross-sectional and a time-series dimension makes the identification

of optimal forecasts methods for panel data a particular challenging task and the literature on

the issue is relatively scarce. A crucial role is played by the way in which we deal with cross-

section dependence (CD), a natural feature of a panel of units. One strand of the literature focuses

on the best linear unbiased predictor in spatial models: see amongst others Baltagi & Li (2004,

2006), Baltagi, Bresson & Pirotte (2012), Baltagi, Fingleton & Pirotte (2014). Another strand of

the literature focuseson forecasting with panel data with common factors in the error terms, for

instance, Hjalmarsson (2010), Karabiyik, Westerlund & Narayan (2016), Trapani & Urga (2009)
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which treat the common factors as nuisance parameters and make no attempt to use them to

improve forecasts of a given panel unit.

In this paper, we consider the case of forecasting using a heterogeneous panel model which

contains both unobserved common factors and spatial error dependence. We compare forecasting

methods using global information to predict unit specific outcomes by means of a small number of

common factors extracted from a large number of panel units.

We propose two alternative approaches. The first approach makes use of estimates of the

common factors in the predictive model by applying principal components (PC) analysis on the

residuals from a first stage consistent estimation of the model parameters. The unobserved nature

of the common factors requires forecasting the future values of the estimated factors and then

computing the predictions on the variable of interest. In the second approach, closely related to

the diffusion index forecasting methodology of Stock & Watson (1998, 2002), the common factors

are estimated from a number of auxiliary variables. In particular, in this paper common factors are

potentially estimated from the realizations of the same variable for different panel units whereas

in previous studies the factors come from a large number of indicators for the same panel unit.

This second approach that we propose is similar to the one in Engel, Mark & West (2015). The

authors show that even if the univariate exchange rate series contain little or no serial correlation,

global information, estimated by means of common factors in a panel of exchange rates, can help

predicting future exchange rates. Using simulated and real data, we compare forecasts generated

by these two approaches with the forecasts using only unit-specific information.

In this paper, we also reconsider the question of pooling time series in the presence of CD.

Pooling in heterogeneous panels can produce misleading results on the magnitude of the average

effects and inference based on them (Baltagi, Bresson & Pirotte, 2008; Pesaran & Smith, 1995).

However, when the estimates of the individual parameters contain too much noise, pooling can

provide better out-of-sample forecasts (Mark & Sul, 2011). We investigate the role of CD on the

optimal prediction strategy.

The final aim is to compare estimators recently proposed in the literature for panels containing

unobserved common factors. We use methods by Pesaran (2006), Bai (2009), Song (2013) and

related estimators for the slope parameters and compare their small sample performance in terms

of prediction accuracy.
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1.2. Related literature

Our paper is related to three different strands of the literature on forecasting with panel data.

First, it is related to the large body of literature on the comparison of the pooled and heteroge-

neous estimators of the slope parameters in terms of forecasting accuracy, as recently revisited by

Pesaran & Zhou (2018), Wang, Zhang & Paap (2018). A large number of papers compares the

performance of alternative estimators in terms of their predictive ability. For instance, the main

finding in Garcia-Ferrer, Highfield, Palm & Zellner (1987), Baltagi & Griffin (1997), Baltagi, Grif-

fin & Xiong (2000), Baltagi, Bresson, Griffin & Pirotte (2003), Baltagi, Bresson & Pirotte (2004),

Trapani & Urga (2009) the superiority of homogeneous estimators. However, Hoogstrate, Palm

& Pfann (2000) point out that the superiority of the pooled estimators is a result of the sample

size such that as the number of time series observations increases heterogeneous estimators become

advantageous. Mark & Sul (2012) show that the potential gain from pooling is determined by

the degree of heterogeneity and the empirical application on the exchange rate forecasts confirms

this theoretical results. Thus, our paper is directly linked to this literature as we compare the

forecasting performance of recently proposed pooled and heterogeneous estimators.

Second, there is an important number of studies which evaluates the effect of CD on the forecast

performance. The contributions studying the effect of CD on forecasting with panel data can be

divided into two main groups, with the first focusing one studying spatial dependence and the

second emphasizing the role of using common factors. Among others, Baltagi & Li (2004, 2006),

Baltagi et al. (2012, 2014) study the optimal predictors in different types of random effects panel

models with spatial interactions. These studies underline the possibility of improving the unit

specific forecasts using information from other units in the panel. For instance, in the case of error

spatial dependence Baltagi & Li (2004) shows that a weighted sum of the residuals from all units in

the panel data set contributes to the optimal prediction of each single unit. Our paper is linked to

this literature as we study the impact of spatial dependence on forecasting in panel data. However,

it worth noting that we assume that the time invariant effects are fixed parameters.

Third, this paper is also related to the time series literature on the diffusion index forecasts as it

benefits from these studies in terms of forecasting using common factors. In spatial panels a weight

matrix has to be specified to realize the forecasts. Another possibility to exploit the panel-wide

information to improve the unit specific outcomes is to use common factors. Using data on the
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Canadian regional growth rates, Kopoin, Moran & Paré (2013) showed that the forecasts which use

national and international information are significantly better than those which use only regional

information. Engel et al. (2015) used data from several OECD countries to improve the forecasts

of exchange rates of individual countries. Their approach is similar to that of Stock & Watson

(1999). The difference is that in Stock & Watson (1999) the common factors are estimated from a

large number of predictors, whereas Engel et al. (2015) estimate the common factors from a large

number of countries. The latter paper is very close to ours contribution in terms of using statistical

methods to estimate factors common to countries to forecast individual outcomes, while instead

we study the possibility of extracting information from different variables on each panel unit.

1.3. Organization

The remainder of the paper is organised as follows. In Section 2, we introduce the panel

predictive model, the two approaches of forecasting with unobserved common factors, and we

also briefly describe estimation methods implement. In Section 3, we evaluate the small sample

properties of the forecast methods and estimators via an extensive Monte Carlo analysis. Section

4 contains an empirical exercise to illustrate the forecast performance of these methods using data

on house price inflation in OECD countries. Section 5 concludes.

2. Panel forecasting model and methods of forecasting

2.1. The forecasting model

We consider stationary predictive panel data model with CD in the disturbances. The h-steps

ahead variable yi,t+h, h ≥ 0, i = 1, 2, . . . , n, t = 1, 2, . . . , T , is given by

yi,t+h = αi + β′ixit + γy′i fyt + ui,t+h, (1)

ui,t+h =

n∑
j=1

rijεj,t+h, (2)

where xit = (xi1t, xi2t, . . . , xikxt)
′ is a (kx × 1) vector of observed individual-specific regressors

which can include predetermined variables, βi = (βi1, βi2, . . . , βikx)′ represents the corresponding

(kx×1) slope parameters, rij are unknown spatial weights, εit is an error term which is uncorrelated

over time and individuals. fyt is a vector of unobservable common factors of size my, γ
y
i are the
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associated (my×1) factor loadings. αi are the unit specific time-invariant effects. Unless otherwise

specified, βi, γ
y
i and αi are assumed to be fixed parameters.

The model in (2) contains as special cases all commonly used spatial processes like spatial

autoregression (SAR), spatial moving average (SMA), spatial error components (SEC) and their

higher order versions. Moreover, it can be rewritten in the form of a factor model of n factors

and without an idiosyncratic component as ui,t+h = r′i.ε.,t+h, where ri. = (ri1, ri2, . . . , rin)′ and

ε.,t+h = (ε1,t+h, ε2,t+h, . . . , εn,t+h)′. To distinguish between the two components of the model

defining the cross-sectional interactions it requires some restrictions on the spatial weights rij , i, j =

1, 2, . . . , n. The standard assumption in the spatial econometrics literature is that the n×n matrix

R = [rij ] has bounded row and column norms for all n. In this case, (2) carries weak CD (WCD).

Furthermore, the existence of my distinct common factors requires that plim
T→∞

1
T

∑T
t=1 fyt fy′t = Σfy

and plim
n→∞

1
nΓ′Γ = ΣΓ are both my ×my positive definite matrices, where Γ = (γ1,γ2, . . . ,γn)′. In

this case, the my common factors are called “strong common factors” (Chudik, Pesaran & Tosetti,

2011). Hence, the model contains strong CD (SCD) as well as WCD.

2.2. Forecasting approaches

We are interested in post-sample forecasting as defined in Granger & Huang (1997, p.3). As-

suming that the expectation of ui,t+h conditional on past information is zero for all panel units,

i.e. E(ui,t+h|yit,xit, fyt , yi,t−1,xi,t−1, f
y
t−1, . . . ) = 0 for any h > 0 and for every i = 1, 2, . . . , n, the

optimal predictor of the variable of interest in period T + h given the information in T is

yi,T+h|T = αi + β′ixiT + γy′i fyT . (3)

In the case of slope homogeneity βi = β but throughout the section we will use the heterogeneous

notation for simplicity. This predictor is unfeasible as it contains the unknown coefficients and the

unobserved common factors. Replacing these unknown quantities by their estimates, the feasible

predictor is given by

ŷi,T+h|T = α̂i + β̂
′
ixiT + γ̂y′i f̂

y

T . (4)

The main issue is that the unobservable common factors have to be estimated from the data. One

possibility is to estimate the parameters βi and αi using the estimators robust to unobserved

common factors and collecting the residuals

êit = yit − α̂i − β̂
′
ixi,t−h, t = h+ 1, . . . , T, (5)
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where β̂i is a consistent estimate of βi and

α̂i =
1

T − h

T∑
t=h+1

(
yit − β̂

′
ixi,t−h

)
. (6)

Given that the estimates α̂i and β̂i are consistent, these residuals consistently estimate eit =

γy′i fyt−h + uit for the sample i = 1, . . . , n, t = h + 1, . . . , T . Hence, it is possible to apply PC

on these residuals to estimate the common factors fyt−h in t = h + 1, . . . , T . Let us denote these

estimates as f̂
y

t . Notice that the last possible estimates are in period T−h. However, the prediction

in (3) requires the estimates of the unobserved common factors in period T , i.e. f̂
y

T . Therefore,

the factors need to be forecast from their estimates to make the prediction feasible. For simplicity

let us assume that each common factor follow an AR(1) model. Then, such a forecast is

f̃
y
T = Π̂

′
f̂
y

T−h, Π̂ =
(
f̂
y′
−2hf̂

y

−2h

)−1
f̂
y′
−2hf̂

y

−h, (7)

where f̂−2h = (f̂ ′1, f̂
′
2, . . . , f̂

′
i,T−2h)′, f̂−h = (f̂ ′h+1, f̂

′
2, . . . , f̂

′
i,T−h)′. Then the prediction can be com-

puted as

ŷRi,T+h|T = α̂i + β̂
′
ixiT + γ̂y′i f̃

y
T . (8)

We call this the Residual Based Approach (RBA).

An alternative approach is to estimate the factors from the explanatory variables xit by PC,

supposing that they have a factor representation as xit = axi + Γx′i fxt + vit where fxt is a vector of

common factors of size mx, Γxi are their loadings, axi are the fixed effects and vit is a vector error

term which can be autocorrelated and can contain WCD. If fyt ⊆ fxt this method can be used by

estimating fxt from xit for i = 1, . . . , n, t = 1, . . . , T , and plugging them in the predictive model

(3). However, the condition fyt ⊆ fxt may not be always reasonable in practice. When this is not

satisfied we can assume that some auxiliary variables wit are observable which satisfy

wit = awi + Γw′i fwt + ςit, t = 1, . . . , T, (9)

such that fyt ⊆ fwt , where wit = (wi1t, wi2t, . . . , wikwt)
′ is a (kw × 1) vector of auxiliary observed

individual-specific variables, awi are the fixed effects, Γwi is the (mw×kw) matrix of factor loadings

associated with the (mw × 1) unobservable common factors fwt . Note that wit can contain xit as

its components. Then the prediction methodology, which we call Auxiliary Variables Approach

(AVA), is based on the following four steps:
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Step 1: Use any estimator which controls for unobserved common factors as described in the

next subsection and compute the residuals in (5). In a pooling case, β̂i should be replaced by the

appropriate pooled estimator.

Step 2: Use principal components methods in the spirit of Bai (2003) to extract mw common

factors fwt from observed variables wit, t = 1, . . . , T .

Step 3: Estimate the factor loadings γ̂wi by OLS on the regression

êit = γw′i f̂wt−h + νit, t = h+ 1, . . . , T. (10)

Step 4: Compute the prediction ŷAi,T+h|T using

ŷAi,T+h|T = α̂i + β̂
′
ixiT + γ̂w′i f̂wT . (11)

Remark 1. Both approaches require information on the number of common factors contained

in the respective variables. In the RBA my (the number of factors in the process eit) and in the

AVA mw (the number of factors in the auxiliary variables wit) need to be known. These can be

consistently estimated using the methods proposed Bai & Ng (2002).

Remark 2. The AVA approach can be further improved by slightly modifying the fourth step.

In the case that mw > my, i.e. the number of common factors in wit is strictly greater than that

of the ones in eit, the regression in Step 3 uses redundant common factors. To choose the correct

number of factors in this step once more the information criteria of Bai & Ng (2002) can be used

after suitable modifications on the number of parameters estimated.

Remark 3. It is not sure that the order of importance of common factors in the wit equation will

be the same as in the order of common factors in terms of their predictive ability on the dependent

variable. For instance, in a macroeconomic study there can be regional factors which are most

important for the countries in these regions. PC approach described here will order the common

factors in terms of their global importance which may not be the valid ordering for all regions. In

this case machine learning methods can be used to select the most important common factors for

each panel unit in the same spirit as Bai & Ng (2008, 2009).

Remark 4. In the RBA, the factors are required to carry serial correlation. Given that this is

so, similar to the second remark, in the RBA the prediction of the common factors given in (7)

requires choosing the optimal model for the unobserved common factors. Since the PC estimates

of the common factors are orthogonal by construction, any univariate time series model can be
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used on each estimate for prediction. As in the Monte Carlo simulations below the common factors

are generated as an AR(1), we use this single lag prediction.

Remark 5. The AVA approach may seem restrictive as it requires additional observable variables

to estimate the common factors. However, it is reasonable to assume that the forecaster has access

to many variables which are potentially correlated with the common factors of interest. This is the

assumption behind the diffusion index methodology of forecasting which proved useful ever since

the seminal work of Stock & Watson (1998). In fact, it can be the case that the forecaster has

access to an information set which is too large such that it is hard to extract the useful information

to perform forecasts.1 In this case, the variables to include in wit can be chosen using the penalized

regression methods as in Bai & Ng (2008, 2009).

If additional variables do not exist, the observed variables xit can be still used to estimate the

common factors given that they are correlated linearly with the unobserved common factors fyt .

When these variables include all common factors in the DGP for the dependent variable, there is

no need to use additional observables. This is a testable hypothesis. In this case we suggest a two

step methodology which can be applied as follows: Notice that the residuals in Step 1 of the AVA

contain all unobserved common factors in the vector fyt . In an additional step, the forecaster can

extract common factors only from xit and run the regression of êit on these factors. If the residuals

from this regression fail to reject the WCD hypothesis using the test of Pesaran (2015), Step 4 is

applied with these factors.2 If the WCD hypothesis is rejected, we suggest to apply PCA to the

residuals from the regression of êit on the common factors extracted from xit and forecast them to

apply the RBA. This gives a hybrid solution between the two approaches.

2.3. Methods of estimation

The two approaches of forecasting with unobserved common factors described above require

the estimation of the slope parameters. In what follows, we only briefly describe the estimation

procedures. The details of the relevant estimation methods are reported in the Supplementary

1Boivin & Ng (2006) show that for forecasting purposes less data can be better than larger but noisy data.
2Juodis & Reese (2018) show that the pre-removal of unobserved common factors by means of subtracting cross-

sectional averages causes an incidental parameters problem in testing for WCD. As a result, the WCD test proposed

by Pesaran (2015) no longer has the standard normal asymptotic distribution. However, De Hoyos & Sarafidis (2006)

show that Frees (1995, 2004) and Breusch & Pagan (1980) tests can be used to test for general CD.
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Material. The estimators of the individual slope coefficients that we consider take the form

β̂M,i =
(
X′i.,−hMHXi.,−h

)−1
X′i.,−hMHyi., (12)

and the pooled estimators of the average slope parameters have the form

β̂M,P =

(
n∑
i=1

X′i.,−hMHXi.,−h

)−1 n∑
i=1

X′i.,−hMHyi., (13)

where Xi.,−h = (x′i1,x
′
i2, . . . ,x

′
i,T−h)′, yi. = (yi,h+1, yi2, . . . , yiT )′, MH = IT−h −H(H′H)−H′ and

− denotes Moore-Penrose inverse. The estimators we consider differ in the way they deal with the

common factors, hence, the matrix H defines these different estimators.

The first class of the estimators is of CCE -type proposed by Pesaran (2006). These estimators

use cross-sectional averages of the dependent variable and the explanatory variables as proxies for

the common factors. For these estimators we set H = (eT−h, Z̄) where eT−h is a vector of ones of

length T − h, Z̄ = (z̄′.1, z̄
′
.2, . . . , z̄

′
.,T−h)′, z̄′.t = n−1

∑n
i=1 z′it and zit = (yit,x

′
i,t−h)′, t = h+ 1, . . . , T .

We call these estimators Ind. CCE and CCEP. A slightly modified versions of these estimators

use the cross-sectional averages of only the exogenous variables, hence, H = (eT−h,W̄) where W̄

is the matrix of observations on cross-sectional averages of some exogenous variables which can

include the explanatory variables themselves. These are named as Ind. CCEX and CCEPX.

The second class of estimators includes the ones which use PC methods to estimate the common

factors. First one is the iterative principal components estimator proposed by Bai (2009) which

we call IPCP. The procedure starts with an initial estimation of the slope parameters β and the

individual specific effects αi. Let us denote these initial estimates β̂(0) and α̂
(0)
i . Next, the common

factor estimates are computed from the residuals êit = yit − α̂(0)
i − β̂(0)′xi,t−h using PC. Factor

estimates update parameter estimates iteratively until numerical convergence is achieved. We can

express this estimator by setting H = (eT−h, F̂
u
I ) where F̂u

I is the matrix of observations on the

common factor estimates after the numerical convergence is achieved for the slope parameters. The

heterogeneous counterpart of this estimator was first used by Song (2013) and is called Ind. IPC.

Another consistent estimator can be obtained by setting H = (eT−h, F̂
x) where F̂x is the matrix of

observations on the common factor estimates obtained by PC on the explanatory variables. These

estimators are called Ind. PCX and PCPX. These are also used as initial values for the iterative

PC estimators. Although consistent, these estimators do not wipe out all common factors in (1)

if the condition fyt ⊆ fxt is not satisfied. An alternative is to set H = (eT−h, F̂
x, F̂u) where F̂u is
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the matrix of observations on the common factor estimates obtained by PC on the residuals in (1)

which are computed using the estimators Ind. PCX or PCPX. We call these two-stage estimators

Ind. PCX2S and PCPX2S.

Under general conditions, all these estimators are consistent for the individual parameters or

their expected values as long as both dimensions of the panel get large and when the regressors are

strictly exogeneous. Pesaran & Tosetti (2011) show that the CCE estimators are consistent under

the assumption on the boundedness of the row and column sums of the matrix R. The PC estima-

tors require slightly stronger assumptions on the degree of the heteroskedasticity and dependence

in either panel dimensions. The details of these are given in the Supplementary Material. CCE

estimators also require a rank condition which we assume to hold.3

When the right hand side variables contain weakly exogeneous variables like predetermined

variables, pooled estimators turn inconsistent for the average effect when the true model is het-

erogeneous (Pesaran & Smith, 1995) even when there are no unobserved common factors. For

the CCE estimators to remain consistent in the existence of weakly exogeneous regressors, lags of

cross-sectional averages have to be included in the estimation of individual equations. They also

require the number of cross-sectional averages to be at least as large as the number of unobserved

common factors (Chudik & Pesaran, 2015). As our main aim is to compare forecast performance,

in our simulations we rely on strictly exogeneous regressors noting that otherwise pooled estimators

are already outperformed by individual estimates. This is confirmed by simulations considering a

dynamic model for which the results are reported in the Supplementary Material. In the application

below, we use specifications with predetermined variables, paying attention to the requirements

mentioned above. Namely, for to compute the estimates using Ind. CCE and CCEP, we add

sufficient number of lags of cross-sectional averages as in (Chudik & Pesaran, 2015).

3. Monte Carlo study

3.1. Design of the experiments

The dependent and the explanatory variables are generated as follows:

yi,t+h = αi + βi1xi1t + βi2xi2t + γi1f1t + γi2f2t + ui,t+h, (14)

xijt = aij + γij1f1t + γij3f3t + vijt, j = 1, 2, (15)

3See Karabiyik, Reese & Westerlund (2017) for a discussion on this topic.
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where i = 1, 2, . . . , n, t = 1, 2, . . . , T , xijt, j = 1, 2, are the observed explanatory variables, fjt, j =

1, 2, 3, are the unobserved common factors with loadings γijk, αi and aij are the fixed effects, and

βij are the slope coefficients. The error term of the dependent variable carries spatial dependence

and it is generated as a SAR using

uit = ρi

n∑
j=1

wijujt + εit, where εit ∼ N (0, σ2
i ), σ2

i ∼ IIDU(0.5, 1.5), (16)

where wij is the element of the spatial weight matrix Wn in row i and column j. An SMA is also

considered as a generating process but the results are similar and they are not reported here. A

rook-type spatial weight matrix is used. We consider two different cases for ρi. These two cases are

based on Baltagi & Pirotte (2010), with the main difference being heterogeneity of the parameters

in the (first order) SAR (or SMA) models, where ρi = ρ = (0.2, 0.8) which corresponds to low and

high spatial dependence, respectively. Similarly, we generate the heterogeneous coefficients using

ρi = ρ+ eρi , with ρ = {0.2, 0.8}, eρi ∼ U(−0.1, 0.1). (17)

The unobserved common factors are generated as follows

fjt = ρfjfj,t−1 + vfjt, vfjt ∼ N (0, 1− ρ2
fj), ρfj = 0.5, fj0 = 0, j = 1, 2, 3. (18)

The disturbances associated to the explanatory variables are generated by a stationary AR(1)

process which is given by

vijt = ρvijvij,t−1 + εijt, εijt ∼ N (0, 1− ρ2
vij ), ρvij ∼ IIDU(0.05, 0.95), (19)

assuming that vij0 = 0, j = 1, 2. The first 10 observations are discarded to minimize the im-

pact of initial values. The slope coefficients βij are generated under two different assumptions

corresponding to high and low heterogeneity. They are given by

βij = βj + ηij , βj = 1, ηij ∼ IIDN (0, σ2
ηj ), (20)

where σ2
ηj = 0.15 and σ2

ηj = 0.3, j = 1, 2, correspond to low and high heterogeneity, respectively.

These heterogeneity levels in both cases are higher compared to those of Pesaran (2006), Pesaran

& Tosetti (2011). The individual effects are generated as

αi1 ∼ IIDN (1, 1), aij ∼ IIDN (0.5, 0.5), j = 1, 2 (21)
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and they are fixed for each replication. The loadings of the unobserved common factors in the

equations for the explanatory variables are generated as γi11 γi13

γi21 γi23

 ∼
 IIDN (0.5, 0.5) IIDN (0, 0.5)

IIDN (0, 0.5) IIDN (0.5, 0.5)

 . (22)

To produce forecasts using the AVA an additional variable xi3t is generated as

xi3t = ai3 + γi31f1t + γi32f2t + vi3t, (23)

where the factor loadings are given by

ai3 ∼ IIDN (1.5, 1.02), γi32,∼ IIDN (1, 0.1). (24)

The other terms in (23) are defined in the same way as those contained in explanatory variable

DGPs (15).

Contrary to the case of the factor loadings in the process generating the explanatory variables

xijt from different distributions, in this paper we follow Trapani & Urga (2009) and Phillips & Sul

(2003) and draw loadings to generate low and high CD. This is controlled as follows

γi1, γi2 ∼


IIDN (1, 0.1) for Low CD,

IIDN (2, 0.4) for High CD.

(25)

The chosen parameters in (25) induce average correlation coefficients among panel units of 0.5 and

0.8, respectively. The full set of experiments is summarized in Table 1.

Table 1: Summary of Experiments

Cases Description Parametrization

- Case 1 Low Spatial & Low Factor Dependence ρ = 0.2, γi1, γi2 ∼ IIDN (1, 0.1)

- Case 2 Low Spatial & High Factor Dependence ρ = 0.2, γi1, γi2 ∼ IIDN (2, 0.4)

- Case 3 High Spatial & Low Factor Dependence ρ = 0.8, γi1, γi2 ∼ IIDN (1, 0.1)

- Case 4 High Spatial & High Factor Dependence ρ = 0.8, γi1, γi2 ∼ IIDN (2, 0.4)

We consider (n, T ) = {20, 30, 50, 100}. For each experiment, 2,000 replications are performed.

The results for the individual estimators CCE, CCEX, IPC, PCX, PCX2S and their pooled coun-

terparts are reported. For PC estimators, we assume that the number of unobservable common

factors are known.
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The forecasts are computed for the ith individual at future period T + h, with h = 1 to

compare the performance of two forecast approaches and estimator performance. We also tried

h = 5, 10 using the AVA to compare the individual and pooled estimators and the results are

available upon request. We use root mean squared error (RMSE) to measure the predictive accuracy

defined as RMSEi =
√

1
h

∑h
τ=1 (ŷi,T+τ − yi,T+τ )2 and to obtain a single measure, the average of the

statistic across units is computed. The results are reported relative to the OLS benchmark which

is computed using unit specific OLS estimates. Hence, they show the gain in forecast accuracy

from using estimated common factors.

3.2. Simulation results

The results on the prediction performance of different estimators with the RBA and the AVA

for the case of low heterogeneity are reported in Tables 2-5 whereas the results on the case of high

heterogeneity are given in Tables 6-9.

Table 2 is concerned with the case of low spatial dependence and low factor dependence (Case

1 ), the forecast performance of any estimator is superior using the AVA compared to the RBA.

When n, T = 20, for any given estimator the relative RMSE of the forecasts using the RBA is 1.4.

As either T or n or both increases this ratio also increases and exceeds 1.5 when n, T = 100.

In the case of CCE estimators, it is seen that the individual estimators outperform the pooled

estimators even in smallest samples. For instance, with AVA, the relative RMSE of Ind. CCE

(0.723) is slightly better than its pooled counterpart (0.746) when n, T = 20 which gives a relative

RMSE of 0.97. When T increases to 100 for the same n this ratio is 0.92 which shows that the

relative performance of the individual estimator increases. This result is similar for other estimators

except Ind. PCX and and its pooled version. When T = 20, for any n the pooled estimator

ourperforms the individual estimator. This can be explained by the fact that these estimators do

not control for all unobserved common factors in the DGP of the dependent variable, hence the

individual estimators are affected more by the lower signal to noise ratio compared to pooled ones.

However, as T increases, again the individual estimator is preferred.

Finally, a comparison of the best performing CCE and PC estimators shows that the CCE

performs better in the case of small T and small n but PC improves and has a better performance

when n gets large. For instance, with AVA, when n, T = 20, Ind. CCE and Ind. IPC have relative

RMSEs equal to 0.723 and 0.733, respectively. When n = 100 for the same time dimension, these

13



Table 2: Relative RMSE – Low Heterogeneity, Case 1 : Low Spatial Dependence & Low Factor Dependence

Individual Pooled

@
@
@
@@

n

T
Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach

20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Ind. CCE CCEP

20 0.992 0.984 0.979 0.976 0.723 0.687 0.673 0.661 20 1.022 1.048 1.061 1.067 0.746 0.730 0.726 0.719

30 1.007 0.982 0.962 0.964 0.731 0.674 0.636 0.636 30 1.038 1.049 1.060 1.064 0.749 0.720 0.707 0.708

50 0.998 0.990 0.966 0.973 0.709 0.687 0.653 0.635 50 1.031 1.051 1.053 1.075 0.732 0.731 0.713 0.706

100 1.004 0.987 0.974 0.955 0.686 0.668 0.644 0.636 100 1.030 1.051 1.066 1.061 0.710 0.715 0.711 0.711

Ind. CCEX CCEPX

20 0.996 0.987 0.980 0.977 0.726 0.689 0.674 0.661 20 1.023 1.048 1.061 1.067 0.746 0.730 0.726 0.719

30 1.012 0.986 0.963 0.965 0.734 0.676 0.637 0.636 30 1.038 1.049 1.060 1.064 0.749 0.720 0.707 0.708

50 1.001 0.992 0.967 0.973 0.711 0.687 0.654 0.635 50 1.031 1.051 1.053 1.075 0.732 0.731 0.713 0.706

100 1.005 0.987 0.974 0.956 0.687 0.668 0.644 0.636 100 1.030 1.051 1.066 1.061 0.710 0.715 0.711 0.711

Ind. IPC IPCP

20 0.999 0.988 0.980 0.979 0.733 0.690 0.674 0.660 20 1.023 1.049 1.062 1.068 0.748 0.731 0.727 0.720

30 1.001 0.981 0.962 0.966 0.733 0.674 0.636 0.635 30 1.038 1.050 1.061 1.065 0.750 0.721 0.708 0.708

50 0.981 0.980 0.964 0.974 0.704 0.682 0.651 0.634 50 1.031 1.051 1.053 1.075 0.733 0.731 0.714 0.707

100 0.980 0.975 0.968 0.954 0.674 0.661 0.641 0.634 100 1.030 1.051 1.066 1.061 0.710 0.715 0.711 0.711

Ind. PCX PCPX

20 1.087 1.059 1.018 1.000 0.790 0.735 0.697 0.673 20 1.026 1.051 1.064 1.069 0.749 0.731 0.727 0.719

30 1.102 1.055 1.009 0.989 0.795 0.721 0.668 0.651 30 1.039 1.050 1.062 1.066 0.751 0.722 0.708 0.708

50 1.087 1.052 1.003 0.996 0.776 0.732 0.678 0.649 50 1.032 1.052 1.053 1.075 0.733 0.731 0.714 0.706

100 1.090 1.045 1.013 0.977 0.752 0.713 0.673 0.650 100 1.031 1.051 1.066 1.061 0.710 0.715 0.711 0.711

Ind. PCX2S PCPX2S

20 1.036 1.012 0.991 0.984 0.745 0.698 0.677 0.661 20 1.026 1.051 1.064 1.069 0.747 0.729 0.727 0.719

30 1.044 1.004 0.972 0.970 0.750 0.681 0.639 0.637 30 1.039 1.050 1.062 1.066 0.750 0.721 0.707 0.708

50 1.024 1.006 0.973 0.978 0.722 0.693 0.655 0.635 50 1.032 1.052 1.053 1.075 0.733 0.731 0.713 0.706

100 1.022 0.996 0.978 0.958 0.696 0.672 0.645 0.636 100 1.031 1.051 1.066 1.061 0.710 0.715 0.711 0.711

values are 0.686 and 0.674, respectively. When n and T are both large, the two estimators have

very similar performance.

The results do not change significantly when we consider the case of low spatial dependence

and high factor dependence (Case 2 ) which are reported in Table 3. In this case the performance of

the RBA is lower compared to the AVA, with the relative RMSE being about 1.8 for any estimator

when n, T = 20. However, in this case the relative performance of RBA with respect to forecasts

without common factors is improved compared to the previous case even in smallest samples. As

in this case common factors have bigger variability in the DGP of the dependent variable the

relative performance of the pooled estimators are better compared to the previous case. However,

all estimators deal with these common factors in a successful manner. Hence, still the individual

specific estimators are superior, once more except the Ind. PCX and and its pooled version.
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Table 3: Relative RMSE – Low Heterogeneity, Case 2 : Low Spatial Dependence & High Factor Dependence

Individual Pooled

@
@
@
@@

n

T
Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach

20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Ind. CCE CCEP

20 0.925 0.933 0.938 0.941 0.496 0.467 0.455 0.445 20 0.939 0.964 0.979 0.985 0.508 0.491 0.486 0.479

30 0.943 0.932 0.918 0.928 0.495 0.448 0.416 0.417 30 0.959 0.965 0.963 0.975 0.505 0.474 0.457 0.460

50 0.931 0.937 0.926 0.942 0.471 0.454 0.426 0.412 50 0.947 0.967 0.969 0.992 0.484 0.480 0.462 0.456

100 0.938 0.941 0.933 0.915 0.447 0.432 0.414 0.408 100 0.950 0.971 0.978 0.966 0.461 0.461 0.455 0.455

Ind. CCEX CCEPX

20 0.931 0.936 0.939 0.942 0.501 0.470 0.457 0.446 20 0.939 0.964 0.979 0.985 0.508 0.491 0.486 0.479

30 0.947 0.935 0.919 0.928 0.500 0.450 0.417 0.418 30 0.959 0.965 0.963 0.975 0.505 0.474 0.457 0.460

50 0.934 0.939 0.927 0.942 0.473 0.455 0.427 0.413 50 0.947 0.967 0.969 0.992 0.484 0.480 0.462 0.456

100 0.940 0.941 0.934 0.915 0.448 0.433 0.415 0.409 100 0.951 0.971 0.978 0.966 0.461 0.461 0.455 0.455

Ind. IPC IPCP

20 0.934 0.937 0.939 0.944 0.502 0.467 0.453 0.443 20 0.939 0.965 0.980 0.985 0.509 0.491 0.486 0.479

30 0.942 0.933 0.918 0.929 0.495 0.446 0.413 0.416 30 0.958 0.965 0.964 0.975 0.506 0.475 0.457 0.460

50 0.923 0.933 0.926 0.943 0.466 0.450 0.424 0.411 50 0.947 0.967 0.969 0.992 0.484 0.481 0.462 0.456

100 0.927 0.935 0.931 0.915 0.440 0.428 0.412 0.407 100 0.951 0.971 0.978 0.966 0.461 0.461 0.455 0.455

Ind. PCX PCPX

20 1.065 1.042 0.998 0.976 0.627 0.561 0.506 0.473 20 0.944 0.969 0.982 0.987 0.515 0.494 0.488 0.480

30 1.085 1.038 0.986 0.963 0.623 0.542 0.478 0.449 30 0.961 0.967 0.966 0.976 0.509 0.477 0.458 0.461

50 1.069 1.034 0.983 0.977 0.605 0.549 0.480 0.443 50 0.948 0.969 0.969 0.992 0.486 0.482 0.463 0.456

100 1.074 1.033 0.995 0.949 0.583 0.528 0.476 0.440 100 0.951 0.971 0.978 0.966 0.463 0.461 0.455 0.455

Ind. PCX2S PCPX2S

20 0.956 0.954 0.947 0.946 0.517 0.478 0.458 0.445 20 0.944 0.969 0.982 0.987 0.509 0.491 0.486 0.479

30 0.968 0.947 0.925 0.932 0.512 0.454 0.418 0.418 30 0.961 0.967 0.966 0.976 0.506 0.474 0.457 0.460

50 0.947 0.948 0.931 0.945 0.482 0.460 0.427 0.412 50 0.948 0.969 0.969 0.992 0.484 0.480 0.462 0.456

100 0.950 0.946 0.936 0.917 0.457 0.436 0.415 0.409 100 0.951 0.971 0.978 0.966 0.461 0.461 0.455 0.455
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Table 4: Relative RMSE – Low Heterogeneity, Case 3 : High Spatial Dependence & Low Factor Dependence

Individual Pooled

@
@
@
@@

n

T
Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach

20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Ind. CCE CCEP

20 1.017 1.014 1.008 1.009 0.883 0.842 0.853 0.834 20 1.003 1.035 1.045 1.060 0.877 0.854 0.871 0.859

30 1.040 1.017 1.002 0.996 0.890 0.844 0.821 0.809 30 1.016 1.034 1.050 1.052 0.876 0.854 0.849 0.841

50 1.045 1.028 0.999 0.999 0.882 0.852 0.803 0.791 50 1.011 1.034 1.043 1.056 0.862 0.856 0.827 0.824

100 1.051 1.019 1.005 0.986 0.854 0.824 0.809 0.786 100 1.009 1.029 1.043 1.043 0.832 0.830 0.833 0.822

Ind. CCEX CCEPX

20 1.060 1.038 1.024 1.016 0.912 0.857 0.862 0.838 20 1.003 1.036 1.045 1.060 0.877 0.854 0.871 0.859

30 1.072 1.036 1.013 1.000 0.911 0.855 0.828 0.811 30 1.016 1.034 1.050 1.052 0.876 0.854 0.849 0.841

50 1.066 1.037 1.004 1.002 0.895 0.857 0.806 0.792 50 1.012 1.034 1.043 1.056 0.862 0.856 0.827 0.824

100 1.060 1.023 1.008 0.988 0.861 0.827 0.811 0.787 100 1.009 1.029 1.043 1.043 0.832 0.830 0.833 0.822

Ind. IPC IPCP

20 0.983 0.990 0.996 1.003 0.872 0.836 0.851 0.835 20 1.003 1.036 1.045 1.061 0.877 0.855 0.871 0.860

30 0.992 0.987 0.986 0.988 0.873 0.837 0.820 0.809 30 1.015 1.034 1.051 1.052 0.875 0.854 0.850 0.841

50 0.989 0.992 0.985 0.989 0.861 0.840 0.800 0.791 50 1.012 1.034 1.044 1.057 0.862 0.856 0.828 0.824

100 0.992 0.988 0.986 0.978 0.831 0.814 0.806 0.787 100 1.009 1.030 1.044 1.043 0.831 0.830 0.833 0.822

Ind. PCX PCPX

20 1.123 1.088 1.051 1.033 0.942 0.880 0.872 0.845 20 1.007 1.039 1.047 1.062 0.879 0.855 0.872 0.860

30 1.129 1.080 1.044 1.017 0.939 0.877 0.843 0.819 30 1.017 1.035 1.052 1.053 0.877 0.855 0.850 0.841

50 1.115 1.074 1.028 1.017 0.924 0.878 0.819 0.800 50 1.013 1.036 1.044 1.056 0.863 0.857 0.828 0.824

100 1.109 1.058 1.030 1.001 0.891 0.849 0.824 0.794 100 1.009 1.030 1.043 1.043 0.832 0.830 0.833 0.822

Ind. PCX2S PCPX2S

20 1.055 1.035 1.016 1.014 0.897 0.848 0.853 0.833 20 1.007 1.039 1.047 1.062 0.877 0.854 0.871 0.859

30 1.069 1.031 1.008 1.000 0.901 0.847 0.822 0.809 30 1.017 1.035 1.052 1.053 0.876 0.854 0.849 0.841

50 1.066 1.035 1.003 1.001 0.889 0.853 0.803 0.790 50 1.013 1.036 1.044 1.056 0.862 0.856 0.827 0.824

100 1.069 1.026 1.008 0.988 0.861 0.826 0.809 0.786 100 1.009 1.030 1.043 1.043 0.832 0.830 0.833 0.822

The results for the case of high spatial dependence and low factor dependence (Case 3 ) are

reported in Table 4. Once more the performance of the RBA is lower compared to the AVA but

their performances seem closer in this case with the relative RMSE being about 1.2 in smallest

samples. Here, with RBA, the relative performance of the pooled estimators is better than the

individual estimators when T is small, one exception being the Ind. IPC and IPCP estimators.

Here, the best performing estimator is Ind. IPC in all samples sizes. These conclusions are equally

valid for the case of high spatial dependence and high factor dependence (Case 4 ) for which the

results are given in Table 5.

The results above are confirmed in the case of high heterogeneity reported in Tables 6-9. How-

ever, in this case even when we have spatial dependence individual estimators perform better than

their pooled counterparts. To summarize, (i) the AVA outperforms the RBA in all cases; (ii) indi-

16



Table 5: Relative RMSE – Low Heterogeneity, Case 4 : High Spatial Dependence & High Factor Dependence

Individual Pooled

@
@
@
@@

n

T
Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach

20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Ind. CCE CCEP

20 0.961 0.966 0.974 0.977 0.674 0.627 0.648 0.629 20 0.952 0.978 0.997 1.007 0.668 0.634 0.661 0.647

30 0.982 0.968 0.956 0.959 0.671 0.623 0.597 0.592 30 0.968 0.978 0.983 0.991 0.660 0.630 0.616 0.614

50 0.979 0.977 0.955 0.967 0.654 0.629 0.577 0.571 50 0.959 0.981 0.981 0.999 0.639 0.632 0.594 0.594

100 0.982 0.971 0.963 0.942 0.613 0.590 0.584 0.562 100 0.958 0.977 0.986 0.975 0.598 0.595 0.601 0.587

Ind. CCEX CCEPX

20 0.988 0.980 0.983 0.980 0.695 0.638 0.656 0.632 20 0.952 0.978 0.997 1.007 0.668 0.634 0.661 0.647

30 1.003 0.981 0.963 0.962 0.687 0.633 0.602 0.594 30 0.968 0.978 0.983 0.992 0.660 0.630 0.616 0.614

50 0.993 0.984 0.958 0.968 0.663 0.633 0.579 0.572 50 0.959 0.981 0.981 0.999 0.639 0.632 0.594 0.594

100 0.988 0.974 0.965 0.943 0.618 0.593 0.585 0.563 100 0.958 0.977 0.986 0.975 0.598 0.595 0.601 0.587

Ind. IPC IPCP

20 0.947 0.955 0.967 0.973 0.669 0.624 0.648 0.631 20 0.953 0.978 0.997 1.007 0.668 0.634 0.661 0.647

30 0.956 0.952 0.948 0.955 0.661 0.621 0.598 0.594 30 0.968 0.978 0.984 0.992 0.660 0.630 0.616 0.615

50 0.948 0.958 0.949 0.961 0.641 0.624 0.577 0.574 50 0.960 0.981 0.981 0.999 0.639 0.632 0.594 0.595

100 0.953 0.957 0.955 0.941 0.601 0.585 0.583 0.562 100 0.958 0.977 0.986 0.976 0.597 0.595 0.601 0.588

Ind. PCX PCPX

20 1.093 1.062 1.028 1.008 0.770 0.695 0.683 0.648 20 0.957 0.982 0.999 1.009 0.672 0.637 0.662 0.647

30 1.105 1.056 1.014 0.989 0.761 0.687 0.638 0.613 30 0.971 0.979 0.985 0.993 0.662 0.631 0.617 0.615

50 1.089 1.053 1.001 0.993 0.741 0.688 0.612 0.591 50 0.961 0.983 0.981 0.999 0.640 0.633 0.594 0.595

100 1.087 1.043 1.010 0.968 0.701 0.652 0.621 0.582 100 0.958 0.977 0.986 0.976 0.599 0.595 0.601 0.588

Ind. PCX2S PCPX2S

20 0.993 0.985 0.981 0.982 0.690 0.635 0.650 0.629 20 0.957 0.982 0.999 1.009 0.668 0.634 0.661 0.646

30 1.008 0.982 0.962 0.963 0.684 0.628 0.598 0.592 30 0.971 0.979 0.985 0.993 0.660 0.630 0.616 0.614

50 0.998 0.986 0.959 0.969 0.663 0.632 0.577 0.571 50 0.961 0.983 0.981 0.999 0.639 0.632 0.594 0.594

100 0.996 0.977 0.966 0.944 0.621 0.594 0.585 0.563 100 0.958 0.977 0.986 0.976 0.598 0.595 0.601 0.587

17



Table 6: Relative RMSE – High Heterogeneity, Case 1 : Low Spatial Dependence & Low Factor Dependence

Individual Pooled

@
@
@
@@

n

T
Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach

20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Ind. CCE CCEP

20 0.993 0.985 0.979 0.977 0.724 0.688 0.673 0.661 20 1.103 1.133 1.146 1.151 0.807 0.792 0.788 0.780

30 1.008 0.983 0.962 0.965 0.732 0.674 0.637 0.636 30 1.121 1.138 1.158 1.156 0.808 0.787 0.782 0.778

50 0.998 0.991 0.966 0.973 0.710 0.687 0.653 0.635 50 1.118 1.140 1.142 1.170 0.797 0.797 0.780 0.777

100 1.004 0.987 0.974 0.956 0.686 0.668 0.644 0.636 100 1.118 1.140 1.164 1.158 0.776 0.784 0.784 0.785

Ind. CCEX CCEPX

20 0.996 0.987 0.980 0.977 0.726 0.689 0.674 0.661 20 1.103 1.134 1.146 1.151 0.807 0.792 0.788 0.780

30 1.012 0.986 0.963 0.965 0.734 0.676 0.637 0.636 30 1.121 1.138 1.158 1.156 0.808 0.786 0.782 0.778

50 1.001 0.992 0.967 0.973 0.711 0.687 0.654 0.635 50 1.118 1.140 1.142 1.170 0.797 0.797 0.780 0.777

100 1.005 0.987 0.974 0.956 0.687 0.668 0.644 0.636 100 1.118 1.140 1.164 1.158 0.776 0.784 0.784 0.785

Ind. IPC IPCP

20 0.999 0.988 0.980 0.979 0.733 0.690 0.674 0.660 20 1.105 1.136 1.148 1.154 0.810 0.794 0.789 0.782

30 1.001 0.981 0.962 0.966 0.733 0.674 0.636 0.635 30 1.122 1.140 1.160 1.158 0.809 0.788 0.783 0.779

50 0.981 0.980 0.964 0.974 0.704 0.682 0.651 0.634 50 1.120 1.141 1.143 1.171 0.798 0.797 0.781 0.778

100 0.980 0.975 0.968 0.954 0.674 0.661 0.641 0.634 100 1.119 1.142 1.165 1.160 0.777 0.785 0.785 0.785

Ind. PCX PCPX

20 1.087 1.059 1.018 1.000 0.790 0.735 0.697 0.673 20 1.106 1.137 1.149 1.154 0.810 0.793 0.788 0.781

30 1.102 1.055 1.009 0.989 0.795 0.721 0.668 0.651 30 1.122 1.139 1.160 1.158 0.809 0.787 0.782 0.778

50 1.087 1.052 1.003 0.996 0.776 0.732 0.678 0.649 50 1.119 1.142 1.142 1.170 0.798 0.797 0.781 0.777

100 1.090 1.045 1.013 0.977 0.752 0.713 0.673 0.650 100 1.118 1.141 1.164 1.158 0.777 0.785 0.784 0.785

Ind. PCX2S PCPX2S

20 1.036 1.012 0.991 0.984 0.745 0.698 0.677 0.661 20 1.106 1.137 1.149 1.154 0.808 0.792 0.788 0.781

30 1.044 1.004 0.972 0.970 0.750 0.681 0.639 0.637 30 1.122 1.139 1.160 1.158 0.808 0.787 0.782 0.778

50 1.024 1.006 0.973 0.978 0.722 0.693 0.655 0.635 50 1.119 1.142 1.142 1.170 0.797 0.797 0.780 0.777

100 1.022 0.996 0.978 0.958 0.696 0.672 0.645 0.636 100 1.118 1.141 1.164 1.158 0.777 0.784 0.784 0.785

vidual estimators outperform pooled estimators, the only exception being the case of high spatial

dependence and low level of heterogeneity; (iii) PC estimators, especially the Ind. IPC of Song

(2013), is the estimator which is most robust to spatial dependence.

4. An application to house price inflation in OECD countries

In this section, we report an illustrative example using the two forecasting approaches and

several panel data estimators with the main aim of undertaking short-run forecasts of the house

price inflation in the OECD countries.
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Table 7: Relative RMSE – High Heterogeneity, Case 2 : Low Spatial Dependence & High Factor Dependence

Individual Pooled

@
@
@
@@

n

T
Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach

20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Ind. CCE CCEP

20 0.926 0.933 0.938 0.941 0.497 0.467 0.455 0.445 20 0.979 1.006 1.022 1.026 0.545 0.528 0.523 0.516

30 0.943 0.932 0.918 0.928 0.496 0.448 0.416 0.417 30 1.000 1.007 1.010 1.020 0.541 0.514 0.501 0.502

50 0.931 0.938 0.926 0.942 0.471 0.455 0.426 0.412 50 0.990 1.011 1.012 1.038 0.523 0.521 0.503 0.499

100 0.938 0.941 0.933 0.915 0.447 0.432 0.414 0.408 100 0.992 1.015 1.026 1.014 0.501 0.503 0.501 0.501

Ind. CCEX CCEPX

20 0.931 0.936 0.939 0.942 0.501 0.470 0.457 0.446 20 0.979 1.006 1.022 1.026 0.545 0.528 0.523 0.516

30 0.947 0.935 0.919 0.928 0.500 0.450 0.417 0.418 30 1.000 1.007 1.010 1.020 0.541 0.514 0.501 0.502

50 0.934 0.939 0.927 0.942 0.473 0.455 0.427 0.413 50 0.990 1.011 1.012 1.038 0.523 0.521 0.503 0.499

100 0.940 0.941 0.934 0.915 0.448 0.433 0.415 0.409 100 0.992 1.015 1.026 1.014 0.501 0.503 0.501 0.501

Ind. IPC IPCP

20 0.934 0.937 0.939 0.944 0.502 0.467 0.453 0.443 20 0.979 1.007 1.022 1.027 0.546 0.529 0.524 0.517

30 0.942 0.933 0.918 0.929 0.495 0.446 0.413 0.416 30 1.000 1.008 1.011 1.020 0.542 0.515 0.502 0.503

50 0.923 0.933 0.926 0.943 0.466 0.450 0.424 0.411 50 0.991 1.010 1.013 1.038 0.523 0.521 0.504 0.500

100 0.927 0.935 0.931 0.915 0.440 0.428 0.412 0.407 100 0.993 1.015 1.026 1.015 0.501 0.504 0.501 0.501

Ind. PCX PCPX

20 1.065 1.042 0.998 0.976 0.627 0.561 0.506 0.473 20 0.983 1.011 1.025 1.028 0.550 0.531 0.525 0.517

30 1.085 1.038 0.986 0.963 0.623 0.542 0.478 0.449 30 1.002 1.009 1.013 1.021 0.544 0.516 0.502 0.503

50 1.069 1.034 0.983 0.977 0.605 0.549 0.480 0.443 50 0.992 1.013 1.013 1.039 0.525 0.522 0.504 0.500

100 1.074 1.033 0.995 0.949 0.583 0.528 0.476 0.440 100 0.993 1.015 1.026 1.015 0.502 0.504 0.501 0.501

Ind. PCX2S PCPX2S

20 0.956 0.954 0.947 0.946 0.517 0.478 0.458 0.445 20 0.983 1.011 1.025 1.028 0.545 0.528 0.523 0.516

30 0.968 0.947 0.925 0.932 0.512 0.454 0.418 0.418 30 1.002 1.009 1.013 1.021 0.541 0.514 0.501 0.502

50 0.947 0.948 0.931 0.945 0.482 0.460 0.427 0.412 50 0.992 1.013 1.013 1.039 0.523 0.521 0.503 0.499

100 0.950 0.946 0.936 0.917 0.457 0.436 0.415 0.409 100 0.993 1.015 1.026 1.015 0.501 0.503 0.501 0.501

19



Table 8: Relative RMSE – High Heterogeneity, Case 3 : High Spatial Dependence & Low Factor Dependence

Individual Pooled

@
@
@
@@

n

T
Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach

20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Ind. CCE CCEP

20 1.018 1.015 1.008 1.009 0.884 0.843 0.853 0.834 20 1.051 1.089 1.096 1.111 0.907 0.888 0.900 0.890

30 1.040 1.017 1.002 0.996 0.890 0.844 0.822 0.809 30 1.067 1.089 1.110 1.109 0.906 0.889 0.889 0.878

50 1.045 1.028 0.999 0.999 0.882 0.852 0.803 0.791 50 1.066 1.090 1.102 1.115 0.896 0.891 0.866 0.863

100 1.051 1.019 1.005 0.986 0.854 0.824 0.809 0.786 100 1.065 1.087 1.103 1.105 0.868 0.870 0.873 0.863

Ind. CCEX CCEPX

20 1.060 1.038 1.024 1.016 0.912 0.857 0.862 0.838 20 1.051 1.089 1.096 1.111 0.907 0.888 0.901 0.890

30 1.072 1.036 1.013 1.000 0.911 0.855 0.828 0.811 30 1.067 1.089 1.110 1.109 0.906 0.888 0.889 0.878

50 1.066 1.037 1.004 1.002 0.895 0.857 0.806 0.792 50 1.066 1.090 1.101 1.115 0.896 0.891 0.866 0.863

100 1.060 1.023 1.008 0.988 0.861 0.827 0.811 0.787 100 1.065 1.087 1.103 1.105 0.868 0.870 0.873 0.863

Ind. IPC IPCP

20 0.983 0.990 0.996 1.003 0.872 0.836 0.851 0.835 20 1.052 1.091 1.097 1.113 0.908 0.889 0.901 0.891

30 0.992 0.987 0.986 0.988 0.873 0.837 0.820 0.809 30 1.067 1.090 1.111 1.110 0.906 0.889 0.890 0.879

50 0.989 0.992 0.985 0.989 0.861 0.840 0.800 0.791 50 1.067 1.090 1.103 1.116 0.897 0.892 0.866 0.864

100 0.992 0.988 0.986 0.978 0.831 0.814 0.806 0.787 100 1.066 1.088 1.104 1.106 0.868 0.870 0.873 0.864

Ind. PCX PCPX

20 1.123 1.088 1.051 1.033 0.942 0.880 0.872 0.845 20 1.056 1.092 1.098 1.113 0.909 0.889 0.901 0.890

30 1.129 1.080 1.044 1.017 0.939 0.877 0.843 0.819 30 1.068 1.090 1.112 1.110 0.907 0.889 0.889 0.878

50 1.115 1.074 1.028 1.017 0.924 0.878 0.819 0.800 50 1.067 1.091 1.102 1.115 0.897 0.892 0.866 0.863

100 1.109 1.058 1.030 1.001 0.891 0.849 0.824 0.794 100 1.065 1.088 1.104 1.105 0.869 0.870 0.873 0.864

Ind. PCX2S PCPX2S

20 1.055 1.035 1.016 1.014 0.897 0.848 0.853 0.833 20 1.056 1.092 1.098 1.113 0.907 0.887 0.900 0.890

30 1.069 1.031 1.008 1.000 0.901 0.847 0.822 0.809 30 1.068 1.090 1.112 1.110 0.906 0.888 0.889 0.878

50 1.066 1.035 1.003 1.001 0.889 0.853 0.803 0.790 50 1.067 1.091 1.102 1.115 0.896 0.891 0.866 0.863

100 1.069 1.026 1.008 0.988 0.861 0.826 0.809 0.786 100 1.065 1.088 1.104 1.105 0.868 0.870 0.873 0.863
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Table 9: Relative RMSE – High Heterogeneity, Case 4 : High Spatial Dependence & High Factor Dependence

Individual Pooled

@
@
@
@@

n

T
Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach

20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Ind. CCE CCEP

20 0.962 0.966 0.974 0.977 0.674 0.627 0.649 0.629 20 0.982 1.009 1.029 1.038 0.689 0.658 0.683 0.669

30 0.982 0.968 0.956 0.959 0.671 0.624 0.597 0.592 30 1.000 1.011 1.018 1.025 0.682 0.654 0.644 0.641

50 0.979 0.977 0.955 0.967 0.654 0.629 0.577 0.571 50 0.992 1.013 1.015 1.034 0.663 0.657 0.621 0.622

100 0.982 0.971 0.963 0.942 0.613 0.590 0.584 0.562 100 0.990 1.011 1.022 1.013 0.623 0.622 0.629 0.617

Ind. CCEX CCEPX

20 0.988 0.980 0.983 0.980 0.695 0.638 0.656 0.632 20 0.982 1.009 1.029 1.038 0.689 0.658 0.683 0.669

30 1.003 0.981 0.963 0.962 0.687 0.633 0.602 0.594 30 1.000 1.011 1.018 1.025 0.682 0.654 0.644 0.641

50 0.993 0.984 0.958 0.968 0.663 0.633 0.579 0.572 50 0.992 1.013 1.014 1.034 0.663 0.657 0.621 0.622

100 0.988 0.974 0.965 0.943 0.618 0.593 0.585 0.563 100 0.990 1.011 1.022 1.013 0.623 0.622 0.629 0.617

Ind. IPC IPCP

20 0.947 0.955 0.967 0.973 0.669 0.624 0.648 0.631 20 0.982 1.010 1.029 1.038 0.690 0.658 0.683 0.670

30 0.956 0.952 0.948 0.955 0.661 0.621 0.598 0.594 30 1.000 1.011 1.019 1.025 0.682 0.655 0.644 0.641

50 0.948 0.958 0.949 0.961 0.641 0.624 0.577 0.574 50 0.992 1.013 1.015 1.034 0.663 0.657 0.621 0.623

100 0.953 0.957 0.955 0.941 0.601 0.585 0.583 0.562 100 0.990 1.011 1.022 1.013 0.623 0.623 0.629 0.617

Ind. PCX PCPX

20 1.093 1.062 1.028 1.008 0.770 0.695 0.683 0.648 20 0.986 1.013 1.031 1.040 0.694 0.660 0.684 0.670

30 1.105 1.056 1.014 0.989 0.761 0.687 0.638 0.613 30 1.002 1.012 1.020 1.026 0.684 0.656 0.645 0.641

50 1.089 1.053 1.001 0.993 0.741 0.688 0.612 0.591 50 0.993 1.015 1.015 1.034 0.664 0.658 0.621 0.622

100 1.087 1.043 1.010 0.968 0.701 0.652 0.621 0.582 100 0.990 1.011 1.022 1.013 0.624 0.623 0.629 0.617

Ind. PCX2S PCPX2S

20 0.993 0.985 0.981 0.982 0.690 0.635 0.650 0.629 20 0.986 1.013 1.031 1.040 0.690 0.657 0.683 0.669

30 1.008 0.982 0.962 0.963 0.684 0.628 0.598 0.592 30 1.002 1.012 1.020 1.026 0.682 0.654 0.644 0.641

50 0.998 0.986 0.959 0.969 0.663 0.632 0.577 0.571 50 0.993 1.015 1.015 1.034 0.663 0.657 0.621 0.622

100 0.996 0.977 0.966 0.944 0.621 0.594 0.585 0.563 100 0.990 1.011 1.022 1.013 0.623 0.622 0.629 0.617
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4.1. Empirical setup and data

To forecast the house price inflation we use the model specifications in Holly, Pesaran & Ya-

magata (2010) and Caldera & Johansson (2013). Authors model the long run movements in the

house price index in the US using state level data and in OECD countries using country level data,

respectively, by household disposable income, population growth and a proxy for cost of borrowing.

Taking first differences of the non-stationary variables in their model to achieve stationarity, our

most general forecasting equation is given by

∆ log pi,t+h = αi + β1i∆ log pit + β2i∆ log yit + β3i∆ log nit + β4iiit + ei,t+h, (26)

where p is the real house price index, y is the per capita household disposable income, n is the

population and i is the real long-term interest rate.

Caldera & Johansson (2013) estimate the house price equation simultaneously with a housing

investment equation which gives a supply and demand system for the housing market. In this

investment equation they have the house prices, residential construction costs and population

growth. Since housing investment has house prices as a component it can be use to estimate the

common factors in the price equation. It is also reasonable to assume that other variables in the

investment equation are correlated with these common factors. To estimate the common factors in

the AVA, we use 8 variables in total. In addition to the ones defined above, we have per capita gross

fixed capital formation in housing (inv), residential fixed capital formation deflator (cc) which is a

proxy for residential construction costs, GDP per capita (gdp), the consumer price index (cpi) and

per capita private final consumption expenditure (cons).

The data set comes from the OECD Economic Outlook at quarterly frequency. All variables

are seasonally adjusted and cover the period between 1995:1 and 2017:4 for 20 OECD countries,

hence the final dataset contains 1840 observations. The countries considered are AUS, BEL, CAN,

CHE, DEU, DNK, ESP, FIN, FRA, GBR, IRL, ITA, JPN, KOR, NLD, NOR, NZL, PRT, SWE

and USA. The panel is balanced for the house price index p. There is the presence of missing

observations for some of the variables. For CHE, inv and cc are missing for the periods between

2016:1 and 2017:4 and for CHE, JPN and NZL, y is missing between 2017:1 and 2017:4. To obtain

a balanced sample, we predicted these in-sample observations using other variables in the data

set. To predict per capita household disposable income, we regress log y on log gdp and a linear

trend for each country separately and fill the missing observations with predicted values. For per
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Table 10: Descriptive Statistics

Variable Mean Standard Deviation Minimum Maximum Unit Root Test p̄

∆ log pit 0.0062 0.0179 -0.0749 0.0710 -4.07 0.7

∆ log invit 0.0017 0.0407 -0.2762 0.2225 -6.70 1.2

∆ log yit 0.0033 0.0119 -0.1361 0.0884 -8.81 0.5

∆ log ccit 0.0065 0.0158 -0.1209 0.1334 -5.58 1.4

∆ log nit 0.0016 0.0013 -0.0021 0.0111 -1.67 1.4

∆ log gdpit 0.0040 0.0106 -0.0745 0.2017 -8.07 0.4

∆ log cpiit 0.0043 0.0046 -0.0267 0.0459 -6.34 0.5

∆ log consit 0.0038 0.0089 -0.1480 0.0552 -8.60 0.4

iit 0.0244 0.0266 -0.0805 0.2564 -11.10 1.7

Notes: For each variable xit, the unit root test statistics are computed as CIPS =

n−1
∑n

i=1 ti(n, T ) where ti(n, T ) is the t-statistic of the coefficient bi in the regression

∆xit = ai + bixi,t−1 + cix̄t−1 +
∑pi

j=0 dij∆x̄t−j +
∑pi

j=1 δij∆xi,t−j where x̄t = n−1
∑n

i=1 xit.

The lag lengths pi are selected using Akaike information criterion for each country and their

means p̄ = n−1
∑n

i=1 pi are reported. The critical values for the unit root tests are -2.11, -2.20

and -2.36 for 10%, 5% and 1%, levels respectively.

capita gross fixed capital formation in housing, the variables in the model by Caldera & Johansson

(2013) are used. Namely, log inv is regressed on log cc, log y, log n and a linear trend and missing

observations are replaced with the predicted values. Similarly, log cc is predicted by log cpi and a

linear trend. As a percentage of the total number of observations, the number missing observations

filled is 0.44% for inv and y, 0.66% for cc.

4.2. Preliminary analysis

Table 10 gives the descriptive statistics for each variable. Before proceeding with the estimation

of the regression models and calculating the accuracy of predictions based on them, we check the

time series and cross-sectional properties of the variables.

The results on the unit root tests for each variable are given in Table 10. As each variable

shows strong evidence of CD (see below), the CD-robust unit root tests developed by Pesaran
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Table 11: CD Test Results

Variable ∆ log pit ∆ log invit ∆ log yit ∆ log ccit ∆ log nit ∆ log gdpit ∆ log cpiit ∆ log consit iit

Panel a: Original Data

Breusch-Pagan LM Test 1432.85 675.84 393.12 578.66 2890.09 3001.74 3477.42 1233.97 3789.70

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Modified BP Test 63.76 24.92 10.42 19.94 138.51 144.24 168.64 53.55 184.66

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel b: Defactored Data

Breusch-Pagan LM Test 693.30 834.81 958.64 966.67 2232.18 724.09 900.90 726.16 886.10

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Modified BP Test 25.82 33.08 39.43 39.84 104.76 27.40 36.47 27.50 35.71

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: For each variable xit, the Breusch-Pagan LM Test statistics are computed as CDBP = T
∑n−1

i=1

∑n
j=i+1 κ̂

2
ij where κ̂ij is the

correlation coefficient between xit and xjt. Under the null of no CD, the asymptotic distribution of the test statistic is χ2
q with

q = n(n− 1)/2. The Modified BP Test statistics are computed as CDM = [n(n− 1)]−1/2
∑n−1

i=1

∑n
j=i+1(T κ̂2

ij − 1) which is distributed

as N(0, 1) under the null of no CD. p-values are in parentheses. The test statistics given in Panel b are computed after removing

country fixed effects and the unobserved common factors estimated using PC methods. For each variable the number of common

factors are chosen using the information criterion ICp1 of Bai & Ng (2002).

(2007) are applied to each variable in the data set. The only variable for which we cannot reject

the unit root hypothesis is population growth. In the application we use models with and without

this variable. In Table 11, CD test results are reported. Two different CD tests are applied to each

variable in the dataset. The first one is the LM test of Breusch & Pagan (1980). This is a general

cross-correlation test where the null hypothesis states that the correlation coefficients between all

pairs of units in the data set are jointly zero. Under the null hypothesis the test statistic follows

a χ2 distribution with n(n− 1)/2 degrees of freedom as T goes to infinity for fixed n. The results

show that for each variable in the data set there is strong evidence against no CD hypothesis.

The disadvantage of the Breusch & Pagan (1980) test is that as n gets larger its variance

increases, hence it is not appropriate for panels of large cross-sectional dimension. Thus, we also

report the results from a modified version of this test, the Modified BP Test which is distributed

as a standard normal for large T and n (see Pesaran, 2015, for details). The results are in line with

the previous test such that the null of no CD can be rejected for any variable in any conventional

significance level.
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Although these two tests are general CD tests, they do not detect the types of CD in the data.

To see if the results change after removing the unobserved common factors we applied the same

tests to defactored variables. We remove unobserved common factors using PC methods where the

number of common factors are chosen by the information criterion ICp1 proposed by Bai & Ng

(2002). With a few exceptions the test statistics are weaker but still the no CD hypothesis can be

rejected for each variable.

Table 12: Distance Based Spatial Dependence Tests

Variable ∆ log pit ∆ log invit ∆ log yit ∆ log ccit ∆ log nit ∆ log gdpit ∆ log cpiit ∆ log consit iit

ρ̂ 0.52 0.36 0.15 0.23 0.26 0.54 0.68 0.48 0.66

Test Statistic 183.35 11.13 83.56 106.11 8.72 189.38 240.45 173.80 229.73

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: For each demeaned variable xit, the spatial autoregressive coefficient is estimated by maximum likelihood in the

regression x.t = ρWnx.t + ε.t where x.t is the vector of observations of countries stacked for each t and Wn is the row

normalized inverse distance matrix. p-values are in parentheses.

To see if there is evidence for spatial interactions based on geographic distance, we estimate a

first order SAR model for each variable by maximum likelihood. We use a row normalized inverse

distance matrix as spatial weights.4 For the variable of interest, the house price inflation, the SAR

coefficient is estimated as 0.52 and it is highly significant. The consumer price inflation shows the

highest coefficient estimate which is equal to 0.68. All remaining coefficients also have statistically

significant SAR coefficients.

Finally we estimate a factor model for the house price inflation series to see the global common

movements embedded in it. The information criterion ICp1 of Bai & Ng (2002) indicates the

existence of 3 common factors in the panel. These common factor estimates are in Figure 1 where

we report estimates using both PC and maximum likelihood methods together with the correlation

between the two estimates.

We observe that the two methods give similar estimates of the common factors with the correla-

tion coefficient up to 0.96. The third factor has a relatively low coefficient equal to 0.82. However,

we compare the estimates of the common components using each method and found an average

correlation coefficient over countries equal to 0.98. Hence, even if there are differences in common

4The data on geographical distance come from CEPII GeoDist dataset Mayer & Zignago (2011).
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factor estimates, the loadings estimates compensate the discrepancies. As the results are simi-

lar, we focus on PC estimates and report the factor loadings estimates in Table 13 using the PC

method.

The estimates of the first common factor shows an upward trending segment until around 2005.

As factor loadings estimates of all countries, except CHE, DEU and JPN, are positive, this factor

adds an increasing component to each countries house price inflation series. After 2005 the effect of

the global financial crisis can be seen as the common factor estimate drops sharply. This common

factor is found to be highly correlated with an AR(1) coefficient estimated as 0.89.

On the other hand, the second common factor has a downward trend until 2005 and the rest

is stable. For the countries with negative loading estimate, this factor strengthens the upward

movement until around 2005. The estimated AR(1) coefficient is smaller but still strong for this

factor, equal to 0.77.

The last common factor has a peak in the crisis period whereas for the rest of the sample it

looks stable. For countries with positive loadings, this factor compensates the drop caused by the

first common factor. It has a much smaller AR(1) coefficient which is equal to 0.58.

Table 13: House Price Inflation - Factor Loadings Estimates

Country γ̂1i γ̂2i γ̂3i Country γ̂1i γ̂2i γ̂3i

AUS 0.55 -0.16 -0.33 IRL 0.65 0.48 -0.02

BEL 0.46 -0.27 0.42 ITA 0.62 -0.40 0.44

CAN 0.36 -0.53 -0.38 JPN -0.27 -0.01 -0.66

CHE -0.19 -0.60 -0.03 KOR 0.12 -0.68 -0.20

DEU -0.12 0.03 -0.45 NLD 0.50 0.53 0.23

DNK 0.64 0.17 -0.12 NOR 0.42 0.08 -0.17

ESP 0.81 -0.06 0.21 NZL 0.53 -0.22 -0.34

FIN 0.52 0.03 -0.18 PRT 0.36 0.46 -0.12

FRA 0.69 -0.44 0.33 SWE 0.62 0.03 -0.30

GBR 0.79 0.06 -0.17 USA 0.67 0.17 -0.11

The above analysis shows very strong evidence in favor of different types of CD in the variables

in our data set. Hence, it is important to take into account the CD properties in the estimation
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Figure 1: Common Factors in House Price Inflation Series
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and forecasting.

4.3. Forecasting results

The results of the estimation of the 1-year ahead predictive models and their pseudo-out-of-

sample RMSE values are given in Table 14 and 15. We consider four different models based on

26. Model 1 uses only ∆ log yit as a regressor whereas Model 2 uses all exogeneous regressors but

ignores the lagged housing inflation. Model 3 and Model 4 augment these two models with lagged

housing inflation, respectively.

We estimate each model in the period 1995:2 and 2016:4 and the objective is to forecast the

value in 2017:4. For the heterogeneous estimators we report their mean over countries known as

mean group (MG) estimates together with their standard errors estimated using the usual non-

parametric variance formulas (see, for instance Pesaran & Smith, 1995). For the estimators which

require the information on the number of factors, i.e. the estimators using PC methods, we use

the information criterion ICp1 of Bai & Ng (2002) to estimate these numbers. For the iterative PC

estimators we set this number to one as otherwise the forecast performance of the estimator falls

dramatically. In order to see the advantage of using common factors for forecasting with panel

data, in addition to the estimators described in Section 2, we report results from 4 additional

estimators which do not into account the possible unobserved common factors contained in house

price inflation. These estimators are Ind. OLS, Ind. GLS estimator based on Swamy (1970) which

is computed using the deviations of each variable from their time average (see, for details Lee &

Griffiths, 1979), fixed effects (FE) and the usual 2-way fixed effects (2WFE ). To forecast using the

2WFE, we use the coefficient on the last time dummy as the future value.5

In the two first models under consideration lagged housing inflation is dropped from right hand

side. The results of these two models, Model 1 and Model 2, are given in Table 14. Since these are

prediction models the coefficients do not have their usual economic meaning but it can be useful

to compare the estimates from different estimators. In Model 1 for which the results are given

in Panel a, the first observation is that there are substantial differences between the coefficient

estimates which come from estimators which do not control for unobserved common factors and

the ones which do. For instance, using SW (column 2) the coefficient of lagged disposable income

5See Baltagi (2008) for alternative methods to forecast with the 2WFE estimator.
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growth is estimated as 0.23 whereas this number is 0.14 and 0.16 for CCEMG (column 3) and

IPCMG (column 5), respectively. This is in line with the results of Holly et al. (2010) who find

that the non-robust estimators tend to overestimate the impact of disposable income on house

prices. Important differences can be observed between heterogeneous and pooled estimators of the

average effects. For instance the estimator IPCP (column 12) which is the the pooled counterpart

of the IPCMG (column 5), gives 0.05 for the same effect. Similar differences are observed for the

model with additional predictors given in Panel b and the models with lagged dependent variable

given in the two panels of Table 15. In these cases most important differences are being observed

in the coefficient of the interest rate.

The pseudo-out-of-sample performance of each estimator combined with the RBA and the AVA

are given at the bottom of each panel. In Panel a of Table 14 it can be seen that the Ind. CCEX

(column 4) estimator shows the best prediction performance when combined with the AVA. The

RMSE for this strategy is computed as 1.244. The closest performance from the estimators without

unobserved common factors is seen on the Ind. OLS (column 1) which has an RMSE about 9%

higher than the best performer. The RMSE of the same estimator combined with the RBA is

about %6 higher which shows the advantage of the AVA over the RBA and overall the usage of

common factors for forecasting. The results are confirmed by introducing additional predictors in

the model. Now the best performer, Ind. CCEX has an RMSE equal to 0.928 which means more

than %30 gain in precision.

In terms of the best performing strategy, the results are unchanged in the models with lagged

dependent variables (Table 15). The overall prediction performance of the models improve dra-

matically by the introduction of lagged house price inflation. Now the lowest RMSE is equal to

0.867. The RMSE for the best performing estimator without common factors (Ind. GLS ) is about

26% higher than this value. Once more the results show the superiority of the AVA over the RBA.

To summarize, the individual estimators outperform the pooled estimators in models with or

without lagged dependent variables; the prediction strategies using unobserved common factors

increase the prediction ability significantly; the AVA has a superior performance compared to the

RBA.
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5. Conclusions

In this paper, we evaluated the performance of alternative methods of forecasting in presence

of heterogeneous panel data with cross-sectional dependence by considering both spatial depen-

dence and unobserved common factors. Alternative estimators of unit specific parameters and

their pooled counterparts are compared in Monte Carlo simulations and by pseudo-out-of-sample

forecasts using real data on house price inflation in OECD countries.

Our main results are as follows. The Auxiliary Variables Approach, which uses a number of

indicators correlated with the unobserved common factors in the DGP of the variable of interest,

outperforms the Residual Based Approach which extracts the common factors from residuals of

the model. The choice between forecasting using individual specific estimates and pooled estimates

depend on the level of heterogeneity and spatial dependence in the error terms: for a given level

of heterogeneity, higher spatial dependence increases the relative forecast performance of pooled

estimators whereas for a given degree of spatial dependence higher heterogeneity makes forecasts

using individual estimates perform better. Further, among the methods of estimating common

factors, the CCE approach of Pesaran (2006) outperforms the principal components methods of

Song (2013) in the case of individual estimates and low spatial dependence, whereas for pooled

estimates the differences are negligible. The main difference on the performance of the the two

methods occurs when we move from low to high spatial dependence, whereas moving from low to

high factor dependence does not change their comparative performance. The estimators based on

PC methods are found to be more robust to spatial dependence than CCE methods.
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Caldera, A., & Johansson, Å. (2013). The price responsiveness of housing supply in oecd countries. Journal of

Housing Economics, 22 , 231–249.

Chudik, A., & Pesaran, M. H. (2015). Common correlated effects estimation of heterogeneous dynamic panel data

models with weakly exogenous regressors. Journal of Econometrics, 188 , 393–420.

Chudik, A., Pesaran, M. H., & Tosetti, E. (2011). Weak and strong cross section dependence and estimation of large

panels. Econometrics Journal , 14 , C45–C90.

De Hoyos, R. E., & Sarafidis, V. (2006). Testing for cross-sectional dependence in panel-data models. The Stata

Journal , 6 , 482–496.

Engel, C., Mark, N. C., & West, K. D. (2015). Factor model forecasts of exchange rates. Econometric Reviews, 34 ,

32–55.

Frees, E. W. (1995). Assessing cross-sectional correlation in panel data. Journal of Econometrics, 69 , 393–414.

Frees, E. W. (2004). Longitudinal and Panel Data: Analysis and Applications in the Social Sciences. Cambridge

University Press.

Garcia-Ferrer, A., Highfield, R. A., Palm, F., & Zellner, A. (1987). Macroeconomic forecasting using pooled inter-

national data. Journal of Business & Economic Statistics, 5 , 53–67.

Granger, C. W. J., & Huang, L. L. (1997). Evaluation of panel data models: some suggestions from time series.

Discussion Paper no. 97-10, Department of Economics, University of California, San Diego.

Hjalmarsson, E. (2010). Predicting global stock returns. Journal of Financial and Quantitative Analysis, 45 , 49–80.

Holly, S., Pesaran, M. H., & Yamagata, T. (2010). A spatio-temporal model of house prices in the USA. Journal of

Econometrics, 158 , 160–173.

Hoogstrate, A. J., Palm, F. C., & Pfann, G. A. (2000). Pooling in dynamic panel-data models: An application to

forecasting gdp growth rates. Journal of Business & Economic Statistics, 18 , 274–283.

Juodis, A., & Reese, S. (2018). The incidental parameters problem in testing for remaining cross-section correlation.

arXiv preprint arXiv:1810.03715 , .

Karabiyik, H., Reese, S., & Westerlund, J. (2017). On the role of the rank condition in CCE estimation of factor-

augmented panel regressions. Journal of Econometrics, 197 , 60–64.

Karabiyik, H., Westerlund, J., & Narayan, P. (2016). On the estimation and testing of predictive panel regressions.

Journal of International Financial Markets, Institutions and Money , 45 , 115–125.
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