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ABSTRACT

Adverse drug reactions constitute a major cause of patient morbidity and mortality, and 
are important factors in drug attrition within the pharmaceutical industry. Some adverse 
drug reactions are inextricably linked to the process of drug metabolism, through the 
generation of chemically reactive intermediates. The hepatotoxicity associated with 
overdose of paracetamol is a pertinent example of an adverse drug reaction that is linked 
to the generation of an electrophilic metabolite, N-acetyl-p-benzoquinoneimine 
(NAPQI). This molecule binds covalently to specific hepatic proteins and inhibits their 
function, contributing to liver failure. Mammalian cells have evolved a multi-faceted, 
highly regulated defence system, which affords protection against chemical and 
oxidative stress. By far the most important regulator of inducible cell defence is the 
transcription factor Nrf2, which controls the expression of numerous genes involved in 
the detoxification of electrophiles and reactive oxygen species, the maintenance of 
cellular redox balance, and the degradation of damaged/misfolded proteins. In the 
absence of cellular stress, Nrf2 is restrained in the cytosol and repressed by the cysteine- 
rich protein Keapl. The main aims of the studies presented in this thesis were to further 
our understanding of the means by which the Nrf2 pathway is regulated, and to explore 
its role in the protection against drug-induced liver injury (DILI).

Previous work in this laboratory has demonstrated that the Nrf2 pathway is activated in 
mouse liver following administration of hepatotoxic and non-hepatotoxic doses of 
paracetamol. It has been proposed that the molecular trigger for activation of Nrf2 by 
electrophiles is the modification of cysteine residues within Keapl, which inhibits the 
repressive activity of Keapl towards Nrf2. In order to test the hypothesis that the 
modification of Keapl by NAPQI may play a role in the activation of Nrf2 observed in 
mouse liver following administration of paracetamol, a series of experiments were 
performed using the mouse hepatoma cell line Hepa-lclc7. RNA interference (RNAi), 
directed against Nrf2 and Keapl, was used to validate Hepa-lclc7 as a suitable model 
for studying the Nrf2 pathway. Using immunofluorescence confocal microscopy and 
luciferase reporter transgene analysis, NAPQI was shown to directly activate the Nrf2 
pathway in Hepa-lclc7 cells. Activation of the Nrf2 pathway was shown to correlate 
with the induction of cell defence, as demonstrated by a time-dependent increase in 
levels of glutathione (GSH). By using a combination of RNAi and quantitative real-time 
PCR, the increase in GSH was shown to be caused by an Nrf2-dependent induction of 
Gclc, the Nrf2-regulated rate-limiting enzyme in the synthesis of GSH. In order to 
explore the importance of cysteine reactivity in the activation of Nrf2 by NAPQI, the 
activity of the transcription factor was assessed following exposure of Hepa-lclc7 cells 
to the model cysteine-reactive electrophiles 2,4-dinitrochlorobenzene (DNCB) and 15- 
deoxy-A-(12,14)-prostaglandin J2 (15d-PGJ2), and the lysine-reactive molecule trimellitic 
anhydride (TMA). Both DNCB and 15d-PGJ2 invoked a concentration-dependent 
increase in nuclear levels of Nrf2, as measured by Western blot. In contrast, TMA had 
no effect on the nuclear level of Nrf2, indicating that cysteine reactivity is an important 
property of Nrf2-activating molecules, and that this may underlie the ability of NAPQI 
to induce Nrf2-dependent cell defence. Although Nrf2 activation was observed
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concomitantly with the depletion of GSH for NAPQI and DNCB, this was not a 
prerequisite for activation of the transcription factor, as 15d-PGJ2 stimulated the nuclear 
accumulation of Nrf2 without having any apparent effect on cellular GSH levels.

In order to further explore the possibility that NAPQI activates the Nrf2 pathway 
through direct modification of cysteine residues in Keapl, an in vitro test system was 
developed, based on the expression and purification of recombinant Keapl protein, and 
the analysis of residue-specific modification(s) by liquid chromatography electrospray 
ionization tandem mass spectrometry (LC-ESI-MS/MS). All three Nrf2-activating 
molecules, NAPQI, DNCB and 15d-PGJ2, selectively modified cysteine residues in 
Keapl in vitro. TMA, which did not activate Nrf2, modified lysines, but not cysteines, 
within Keapl. Although no single cysteine residue was found to be preferentially 
modified by NAPQI, DNCB and 15d-PGJ2, all three molecules did modify one or more 
cysteines within the central intervening region (IVR) of Keapl. A cell-based method for 
analysing Keapl modification was then developed, so as to enable the examination of 
Keapl modification, in tandem with Nrf2 activation, within a more biologically-relevant 
cellular context. Immunoprécipitation of endogenous Keapl was attempted, however the 
levels of Keapl that were purified were too low to enable reliable LC-ESI-MS/MS 
analysis. Therefore, HEK293T cells were transfected with an expression vector for 
Keapl tagged with a V5 epitope. The ectopic expression of Keapl-V5 was shown not to 
compromise the responsiveness of the Nrf2 pathway to electrophiles. By using a 
combination of immunoaffinity purification and LC-ESI-MS/MS analysis, the residue- 
selective modification of Keapl-V5 was demonstrated following exposure of HEK293T 
cells to NAPQI, DNCB and 15d-PGJ2. No single cysteine residue was universally 
modified, although, as in the in vitro experiments, all three Nrf2-activating molecules 
modified one or more cysteines within the IVR domain of Keapl-V5.

In summary, the results presented in this thesis have demonstrated that NAPQI can 
directly activate the Nrf2-ARE cell defence pathway in mouse liver cells, and selectively 
modifies cysteines residues within Keapl, both in the recombinant protein in vitro and in 
a cell-based model. This work has also identified a potential unifying mechanism by 
which Nrf2 activation is triggered; through the direct modification of one or more 
cysteines within the IVR domain of Keapl. In future studies, it will be important to 
determine whether this mechanism applies to all Nrf2-activating molecules, and to 
explain how the modification of cysteines in Keapl is translated into the activation of 
Nrf2.
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Chapter 1

1.1 INTRODUCTION

Adverse drug reactions, i.e. any undesirable effect of a drug outside of its intended 

therapeutic action (Pirmohamed et al., 1998), constitute a major cause of patient 

morbidity and mortality, and are important factors in drug attrition within the 

pharmaceutical industry (Park et al., 2005b). It is, therefore, imperative that advances in 

our understanding of the chemical, biochemical and molecular mechanisms that underlie 

specific adverse reactions translate into the ‘designing out’ of toxicity and the 

development of safer, more effective medicines.

From a mechanistic perspective, at least, adverse drug reactions can be considered as 

pharmacological, immunological and/or chemical in nature. Although generally 

beneficial, drug metabolism, the physiological process by which a foreign chemical 

(xenobiotic) is biotransformed and eliminated from the body, can, in some cases, be 

inextricably linked to toxicity, through the generation of chemically reactive 

intermediates (for a review, see Park, 1986); the hepatotoxicity associated with overdose 

o f paracetamol being a pertinent example. Paracetamol is bioactivated to an electrophilic 

metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), which binds covalently to specific 

hepatic proteins and inhibits their function, contributing to liver failure (for a review, see 

Zhou et al., 2005).

The liver, as the major site of drug metabolism, is at relatively high risk of exposure to 

toxic species generated through metabolic bioactivation, and thus is a major target for 

tissue-specific toxicity, or drug-induced liver injury (DILI) (Park et al., 1995). However, 

as with other mammalian tissues, the liver has evolved a multi-faceted, highly regulated 

cell defence system. At the forefront of this system is a group of specialised proteins, 

known as transcription factors. Through their ability to ‘sense’ cellular stress and induce 

adaptive responses, characterised by the upregulated expression of a multitude of genes 

encoding detoxification enzymes and antioxidants (Prestera et al., 1993b; Primiano et 

al., 1997), transcription factors play a major role in governing the protection against 

drug-induced toxicity. By far the most important regulator of inducible, and perhaps
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basal, cell defence is the transcription factor Nrf2 (for a review, see Jaiswal, 2004). 

Through a pathway that also involves the thiol-rich cytosolic repressor protein Keapl, 

Nrf2 controls the expression of numerous genes involved in the detoxification of 

electrophiles and reactive oxygen species, the maintenance of cellular redox balance, 

and the degradation of damaged/misfolded proteins (Jaiswal, 2004).

An appreciation of the molecular mechanisms that underlie the adaptive response to 

cellular stress, primarily regulated by the Nrf2 pathway, is vital to gain insights into the 

signalling events that determine the progression, and outcome, of adverse drug reactions 

such as DILI. Therefore, this thesis aims to further our understanding of the means by 

which the Nrf2 pathway is regulated, and to elucidate its role in the protection against 

DILI.

1.2 ADVERSE DRUG REACTIONS

Adverse drug reactions constitute a major cause of patient morbidity and mortality (Park 

et al., 2005a). Indeed, in a recent prospective analysis of 18,820 hospital admissions 

across two Merseyside National Health Service (NHS) Trusts, during a six month period 

between 2002 and 2003, adverse drug reactions, or related incidents, accounted for 1225 

(6.5 %) admissions, with 72 % of these incidents classified as ‘avoidable’ by clinicians 

(Pirmohamed et al., 2004). Of patients admitted with an adverse reaction during this 

study, 28 (2.3 %) died as a direct result of the reaction (Pirmohamed et al., 2004). Due 

to the time and cost associated with treating patients, adverse drug reactions place an 

estimated £466 million burden on the NHS per year (Pirmohamed et al., 2004). 

Furthermore, adverse drug reactions have been responsible for the withdrawal of 4 % of 

all drugs licensed in the United Kingdom (UK) between 1974 and 1994 (Jefferys et al., 

1998). Hence, adverse drug reactions pose a significant public health problem.

From a clinical perspective, adverse drug reactions can be grouped into five main 

categories (Table 1.1), although these are not mutually exclusive, and a particular
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reaction may have characteristics of more than one subtype (Park et al., 1995). From a 

chemico-pharmacological point of view, adverse drug reactions can simply be regarded 

as on-target, i.e. those that are predictable from the known primary or secondary 

pharmacology of the drug, or off-target, i.e. those that are not predictable from a 

knowledge of the basic pharmacology of the drug, often exhibiting marked inter­

individual variability in the degree of susceptibility (Liebler et al., 2005).

Type Features Example
A Augmented; predictable from the known 

pharmacology of the drug, often represent 
an exaggeration of the pharmacological 
effect, usually dose-dependent

Hypotension with anti­
hypertensives, haemorrhage with 
anti-coagulants

B Bizarre; idiosyncratic, not predictable 
from the basic pharmacology of the drug, 
no simple dose-response relationship, 
host-dependent metabolic/immunological 
factors may contribute to, and determine, 
individual susceptibility

Hepatitis with halothane, 
hypersensitivity with anti­
convulsants

C Chemical; can be predicted or rationalised 
from the chemical structure of the drug or 
metabolite

Hepatotoxicity with paracetamol

D Delayed; occur some time, even years, 
after treatment, include teratogenic effects 
seen in children following drug intake by 
the mother during pregnancy

Foetal hydantoin syndrome with 
phenytoin, phocomelia with 
thalidomide

E End-of-treatment; occur upon drug 
withdrawal, especially when treatment is 
stopped suddenly

Withdrawal syndrome upon 
stopping paroxetine, withdrawal 
seizures upon stopping phenytoin

Table 1.1 - Clinical classification of adverse drug reactions. Features and examples of 
type A-E adverse drug reactions. Adapted from Park et al. (1998).

1.3 DRUG METABOLISM

In general terms, drug metabolism is the process by which a xenobiotic undergoes 

enzymatic conversion from a non-polar, lipophilic compound that is readily absorbed via 

the gastrointestinal tract, to a polar, hydrophilic species (Hodgson et al., 2001). 

Typically, the net result of this process is the elimination of the molecule from the body
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in urine, and thus an eventual loss of pharmacological activity. Conventionally, drug 

metabolism is divided into two phases; functionalisation (phase I) and conjugation 

(phase II) (Williams, 1959). Typically phase I and II metabolic reactions occur 

sequentially. However, phase I metabolism is not a pre-requisite for phase II 

conjugation, providing a suitable functional group is present in the parent compound 

(Timbrell, 2002).

1.3.1 Phase I metabolism

Phase I metabolic reactions generally involve oxidation, reduction, hydrolysis or 

hydration of the parent molecule, and result in the exposure or introduction of a 

functional group (Gibson et al., 2001). The majority of oxidative phase I reactions are 

catalysed by the cytochrome P450 (CYP450) monooxygenase system, which comprises 

a superfamily of enzymes located predominantly in the smooth endoplasmic reticulum 

(Timbrell, 2002). The CYP450 enzymes evolved 400-500 million years ago, to enable 

animals to detoxify foreign chemicals ingested through plant matter (Gonzalez et al., 

1994). O f the numerous sub-families, CYP1, CYP2 and CYP3 are predominantly 

involved in xenobiotic metabolism (Gibson et al., 2001). Although CYP450-catalysed 

oxidation involves a complex biochemical cycle, the overall outcome is straightforward; 

the transfer of one atom of oxygen (from molecular oxygen, O2) to the drug to form a 

hydroxyl group (-OH), with the remaining oxygen atom converted to water (H2O) 

(Gibson et al., 2001). Other enzymes that catalyse oxidative reactions include flavin- 

containing monooxygenases, alcohol dehydrogenase and monoamine oxidase, which 

metabolise nicotine, ethanol and noradrenaline, respectively (Hodgson et al., 2001). Of 

the less common non-oxidative phase I reactions, reduction, an important route of 

metabolism for azo- and nitro-compounds, epoxides and quinones, is catalysed by 

reductases (Gibson et al., 2001). Esterases and amidases catalyse the hydrolysis of esters 

and amides, respectively, and the hydration o f epoxides is catalysed by epoxide 

hydrolase (Gibson et al., 2001). Individuals that are deficient in phase I metabolising 

capacities may be susceptible to ‘on-target’ adverse drug reaction, where diminished
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clearance of the parent drug may lead to augmentation of the intended pharmacological 

effect. For example, patients carrying polymorphisms in the gene encoding CYP2C9, 

which is responsible for the phase I hydroxylation of the ^-enantiomer of the 

anticoagulant warfarin, demonstrate a reduced ability to metabolise the parent drug, and 

thus are at high risk of haemorrhage should they receive a ‘normal’ dose (Wadelius et 

al., 2007). As a result, patients with variant genotypes require a reduction in the 

prescribed dose in order to benefit from the anti-coagulant effects of warfarin without an 

increased risk of bleeding (Wadelius et al., 2007).

1.3.2 Phase II metabolism

Phase II reactions are characterised by the conjugation of a substituent polar group onto 

a functionalised molecule. Such groups include glucuronyl, sulphate, acetyl, and 

glutathione (GSH). Glucuronylation, a major route of metabolism for alcohols, phenols, 

carboxylic acids, amines and thiols, involves the transfer of uridine diphosphate 

glucuronic acid (UDPGA) to a nucleophilic group, such as hydroxyl, carboxyl (- 

COOH), amine (-NH2) or sulphydryl (-SH) (Gibson et al., 2001). Catalysed by 

glucuronosyl transferases (UGT), the glucuronylation pathway has a relatively high 

capacity, due to the high tissue abundance of the co-factor UDPGA (Gibson et al., 

2001). Sulphation, catalysed by sulphotransferases (ST), involves the transfer of 

phosphoadenosine phosphosulphate (PAPS) to nucleophilic hydroxyl and amine groups, 

particularly in phenols and alcohols (Gibson et al., 2001). Due to the relative low 

abundance of PAPS, sulphation is a low-capacity phase II pathway (Gibson et al., 2001). 

The N-acetyl transferase family catalyses acetylation, the transfer of acetyl coenzyme A 

to amine groups (Gibson et al., 2001). Acetylation is an important metabolic pathway 

for aromatic amines, sulphonamides and hydrazines (Timbrell, 2002). Conjugation with 

GSH is an important route of metabolism for a number of xenobiotics, including 

epoxides, alkenes and aromatic nitro-compounds (Timbrell, 2002). In addition to its 

physiological role in xenobiotic metabolism, GSH, as the most abundant non-protein 

thiol, present at millimolar concentrations in most cells, also acts as a major antioxidant
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(for a review, see Kaplowitz et al., 1985). The conjugation of GSH to reactive species, 

which can proceed non-enzymatically or via a glutathione S-transferase (GST) - 

catalysed reaction, is an important means of detoxifying electrophilic molecules. The 

nucleophilic cysteine thiol of GSH attacks an electrophilic moiety, forming a thioether 

bond between the two molecules (Timbrell, 2002). The resulting polar conjugate is then 

excreted in bile (Timbrell, 2002). Section 1.5.1.2 further details the role of GSH in cell 

defence.

1.3.3 The role of drug metabolism in adverse drug reactions

In general, the functionalisation of a xenobiotic, via phase I metabolic 

biotransformation, provides a handle for phase II conjugation reactions. However, this 

process may also result in bioactivation to yield an intermediate species that is more 

reactive towards cellular macromolecules and, in turn, is more toxic than the parent 

compound (Park, 1986). The propensity of a parent drug to form a reactive intermediate 

is a function of its chemistry, with structural ‘alerts’ now well defined; examples include 

epoxides, quinones, hydroxyl amines and furans (Park et al., 2005a). The balance 

between bioactivation and detoxification is a critical determinant of the risk of reactive 

intermediate-induced toxicity (Fig. 1.1).

Phase II conjugation reactions and other intrinsic bioinactivation pathways provide a 

means of detoxifying reactive phase I products. However, saturation of these 

detoxification pathways may enable the concentration of reactive intermediates, which 

consequently may interact with, and damage, critical macromolecules, such as proteins 

and nucleic acids. In this regard, the process of drug metabolism can be inextricably 

linked to certain adverse drug reactions (Park, 1986; Zhou et al., 2005). For instance, 

compounds that inhibit the CYP450-mediated bioactivation of the non-steroidal anti­

inflammatory drug (NSAID) paracetamol to its electrophilic metabolite NAPQI prevent 

its hepatotoxicity (Brady et al., 1988; Mitchell et al., 1973; Roberts et al., 1986). 

Furthermore, CYP2E1 knockout mice are protected against (Lee et al., 1996), whereas
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Drug (Cellular accumulation) Toxicity

(----------------> r \
Stable Reactive

metabolites metabolites
V J _̂___________/

Quinone
Quinoneimine
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Hydroxylamine
Furan
Thiophene

Elimination Detoxification

Figure 1.1 - The role of drug metabolism in adverse drug reactions. The metabolic 
biotransformation of drugs can, in some instances, lead to the formation of chemically 
reactive intermediates including quinones, epoxides and thiophenes. Unless detoxified, 
these intermediates may cause toxicity, often via the process of covalent binding to 
critical macromolecules, such as DNA and proteins.

induction of CYP2E1 increases susceptibility to (Burk et al., 1990; Chien et al., 1997; 

Thummel et al., 2000), paracetamol-induced liver injury. Hence, the hepatotoxicity 

associated with overdose of paracetamol is a pertinent example of a bioactivation-related 

adverse drug reaction. A more detailed discussion of paracetamol-induced 

hepatotoxicity is presented in section 1.4.1. Phase II biotransformations, although 

typically regarded as bioinactivation reactions, may themselves yield toxic intermediates 

(Zhou et al., 2005). For example, glucuronosyl transferases catalyse the conversion of 

carboxylic acid drugs, including certain NSAIDs, to electrophilic acyl glucuronides, that 

bind covalently to plasma and hepatic proteins (Ritter, 2000). Thus, drug metabolism 

can represent a double-edged sword; although generally a favourable process 

responsible for the elimination of foreign chemicals from the body, in certain 

circumstances, metabolic biotransformations may generate reactive species that pose a 

significant threat to cellular homeostasis.
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1.4 DRUG-INDUCED LIVER INJURY (DILI)

Adverse drug reactions can have many different pathological manifestations, affecting 

any part of the body. However, as the liver is quantitatively the most important site of 

drug metabolism and, thus, bioactivation, it is a major target for tissue-specific toxicity, 

or DILI (Park et al., 1995). In fact, DILI is the most common reason for the withdrawal 

o f a drug from the market following initial regulatory approval (Temple et al., 2002), 

with more than 600 drugs having been linked to hepatotoxicity (Park et al., 2005a). 

Furthermore, DILI accounts for more than half of all cases of acute liver failure (Lee, 

2003). As DILI mimics natural disease, an increased understanding of the pathogenesis 

of DILI will enable advances in both drug safety and the treatment of natural liver 

disorders, such as cirrhosis and hepatitis (Park et al., 2005a).

1.4.1 Paracetamol hepatotoxicity

Paracetamol is a commonly-used analgesic and antipyretic, the pharmacological activity 

o f which is thought to stem from the inhibition of cyclooxygenase activity and 

consequent reduction of prostaglandin synthesis (Botting, 2000a; Botting, 2000b; 

Boutaud et al., 2002; Greco et al., 2003; Hinz et al., 2008; Sciulli et al., 2003). The 

hepatotoxicity associated with overdose of paracetamol is the single biggest cause of 

acute liver failure in both the UK (Davem et al., 2006) and United States of America 

(USA) (Larson et al., 2005). Furthermore, within the field of toxicology, paracetamol- 

induced hepatotoxicity represents one of the most widely used models of DILI (for a 

review, see Newsome et al., 2000). Three major pathways determine the metabolic fate 

o f paracetamol; glucuronylation, sulphation and oxidation (Fig. 1.2). At well-tolerated 

therapeutic doses (4 g per day) (Thomas, 1993), around 55 % and 30 % of renally- 

excreted metabolites are non-toxic glucuronide and sulphate conjugates, respectively 

(Howie et al., 1977; Tone et al., 1990). A small proportion (5-10 %) of a therapeutic 

dose of paracetamol is bioactivated, mainly via CYP2E1, and less so CYP3A4 and 

CYP1A2, -mediated oxidations, to yield the electrophilic metabolite NAPQI (Dahlin et

11



Chapter 1

al., 1984; Manyike et al., 2000; Raucy et al., 1989; Thummel et al., 1993). The exact 

chemistry that underlies the oxidation of paracetamol to NAPQI has yet to be fully 

elucidated. NAPQI is quenched via spontaneous or GST-mediated conjugation with 

GSH and excreted in urine as a cysteine conjugate and mercapturic acid breakdown 

products (Coles et al., 1988; Howie et al., 1977; Prescott, 1980).

Paracetamol N-acetyl-p-benzoquinoneimine (NAPQI)

OH O

Elimination Stress

Figure 1.2 - Metabolic fate of paracetamol. The majority of a therapeutic dose of 
paracetamol is eliminated via the formation of glucuronide and sulphate conjugates, 
reactions catalysed by uridine diphosphate glucuronosyl transferases (UGT) and 
sulphotransferases (ST), respectively. A small proportion of a paracetamol dose is 
bioactivated, via CYP2E1, 1A2 and 3A4 -catalysed oxidations, to the electrophilic 
metabolite N-acetyl-p-benzoquinoneimine (NAPQI). At therapeutic doses, NAPQI is 
efficiently detoxified through glutathione S-transferase (GST) -catalysed conjugation 
with glutathione (GSH). Following an overdose, the saturation of conjugation pathways 
enables the accumulation of NAPQI and subsequent depletion of GSH stores. This 
facilitates the covalent binding of NAPQI to critical macromolecules, a process that is 
thought to contribute to the hepatocellular necrosis typically observed following 
paracetamol overdose. Adapted from Zhou et al. (2005).
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Following paracetamol overdose, or the induction of specific CYP450 isoenzymes, the 

relatively low-capacity sulphation pathway becomes saturated, such that a greater 

fraction of the dose undergoes glucuronylation and oxidation, the latter resulting in the 

accumulation of NAPQI (Bessems et al., 2001). Indeed, the different sensitivities of 

laboratory animal species to paracetamol-induced hepatotoxicity (generally, mice and 

hamsters are more sensitive than rats, rabbits and guinea pigs) are thought to be 

determined by the differential rates of bioactivation and detoxification (Gregus et al., 

1988; Ioannides et al., 1983; Tee et al., 1987). Under conditions of NAPQI 

accumulation, cellular GSH stores become depleted due to a shift in the balance between 

NAPQI formation and GSH synthesis (Potter et al., 1974), and this is an obligatory step 

for paracetamol-induced hepatotoxicity (Davis et al., 1974). As such, rapid therapeutic 

intervention with N-acetyl-L-cysteine, which replenishes GSH stores (Hazelton et al., 

1986), is the current treatment of choice for patients who present following an 

intentional or accidental paracetamol overdose (Smilkstein et al., 1991).

The depletion of hepatic GSH enables NAPQI to covalently modify and inhibit at least 

17 enzymes in various hepatocellular compartments in rodents (for a review, see Park et 

al., 2005a), including y-glutamylcysteine ligase, catalytic subunit (Gclc) (Kitteringham 

et al., 2000), glyceraldehyde-3-phosphate dehydrogenase (Dietze et al., 1997), aldehyde 

dehydrogenase (Landin et al., 1996) and Ca2+/Mg2+ ATPase (Tsokos-Kuhn et al., 1988). 

Covalent modification of these proteins, and the oxidation of protein sulphydryls (Birge 

et al., 1988; Tirmenstein et al., 1990), by NAPQI has been hypothesised to contribute to 

mitochondrial dysfunction and the disruption of intracellular calcium homeostasis (for a 

review, see Jaeschke et al., 2003) and, as such, is thought to be a critical step in the 

development of the centrilobular hepatic necrosis typically observed following 

paracetamol overdose (McJunkin et al., 1976; Mitchell et al., 1973). The centrilobular 

region is a primary target for paracetamol-induced toxicity due to the relatively high 

zonal expression of bioactivating CYP450s {Oinonen, 1998 #727}. The importance of 

mitochondrial protein binding in the toxicity of paracetamol is demonstrated by the 

observation that, despite both paracetamol and its non-toxic regioisomer 3- 

hydroxyacetanilide showing a similar overall degree of covalent binding, the reactive
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metabolite of paracetamol binds to substantially more mitochondrial proteins than the 

metabolite of 3-hydroxyacetanilide (Myers et a l, 1995; Qiu et al., 2001; Tirmenstein et 

a l, 1989). Therefore, it is likely that the extent of modification to specific 

macromolecules, and not covalent binding per se, is the major factor underlying 

paracetamol-induced hepatotoxicity. Furthermore, the early signs of paracetamol- 

induced hepatocellular damage, both in vivo and in vitro, can be reversed by the 

reducing agent dithiothreitol (Albano et a l, 1985; Rafeiro et a l, 1994; Tee et a l, 1986), 

implying that the reversible oxidation of thiols to disulphides is also an important step in 

the progression of paracetamol-induced toxicity. The identification of critical protein 

targets for specific hepatotoxins, and the molecular mechanisms that underlie DILI, 

therefore, are major goals of current toxicological research.

1.4.2 Other drugs associated with hepatotoxicity

Other drugs associated with DILI, via discrete mechanisms, include; isoniazid, the first- 

line treatment for tuberculosis (Yew et al., 2006); troglitazone (Chojkier, 2005), an anti­

diabetic withdrawn from the marketplace in 2000; nevirapine and efavirenz (Rivero et 

a l, 2007), non-nucleoside reverse transcriptase inhibitors commonly used in 

combination regimens for the treatment of patients with human immunodeficiency virus 

(HIV); the anesthetic halothane (Kenna, 1997); and the NSAID diclofenac (Boelsterli, 

2003). Hence, DILI is associated with multiple dmgs and represents a significant health 

concern, both for patients and the pharmaceutical industry.

1.5 MECHANISMS OF DEFENCE AGAINST DILI

Although the liver is a rich source of enzymes capable of bioactivating xenobiotics, and 

thus is at high risk of reactive intermediate-induced toxicity, it also possesses many 

bioinactivation pathways that are, in general, tightly coupled to bioactivation, and hence 

provide an intrinsic means of detoxifying reactive species. Such protective pathways

14



Chapter 1

take various forms, and can be grouped into three ‘tiers’ of cell defence (Fig. 1.3); a) 

constitutive, relatively low levels of detoxification enzymes and antioxidants, b) the 

enhancement of these basal defences through transcription factor-mediated, upregulated 

expression of cytoprotective genes, and c) orchestrated cell suicide, in a final attempt to 

prevent the spread of damage to neighbouring cells.

High
GSH/GSSG

Ratio

Low
GSH/GSSG

Ratio

Response pathway: Normal Antioxidant
defence

Apoptosis

Signalling pathway:

Outcome:

Nrf2-ARE

Induction of 
detoxification 

enzymes

Mitochondrial
permeability

Caspases

Cell death

Figure 1.3 - The three major tiers of cell defence. Cells are equipped with three major 
‘tiers’ of defence, the relative contributions of which are primarily determined by the 
levels of chemical/oxidative stress within a given cell. The first tier encompasses 
constitutive levels of non-protein antioxidants and detoxification enzymes. Transcription 
factors regulate the transition to the second tier of defence; the upregulated expression of 
detoxification enzymes. Should these initial attempts to defend the cell prove futile, 
programmed cell death (apoptosis) may ensue, in order to limit the spread of damage to 
neighbouring cells. The major features of the three tiers are discussed in section 1.5. 
Adapted from Nel et al. (2006).
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1.5.1 Tiers of cell defence -  Basal antioxidants and detoxification enzymes

The first defensive barrier comprises constitutive levels of antioxidant compounds and 

enzymes capable of detoxifying a broad range of reactive species, particularly 

electrophiles and free radicals, the latter generated through various aerobic metabolic 

transformations (Yu, 1994).

1.5.1.1 Non-protein antioxidants

a-Tocopherol (vitamin E; Fig. 1.4) is a potent, lipid-soluble antioxidant, that has a 

primary role in breaking chain reactions involving oxygen and lipid peroxyl free radicals 

(Yu, 1994). Ascorbic acid (vitamin C; Fig. 1.4) is a hydrophilic antioxidant that directly 

scavenges reactive oxygen species (ROS), byproducts of mitochondrial aerobic 

respiration (Yu, 1994). In addition, ascorbic acid has the capacity to recycle oxidised a- 

tocopherol, restoring its antioxidant properties following radical scavenging (Yu, 1994). 

Other radical-trapping antioxidants include P-carotene (Fig. 1.4), a metabolic precursor 

of retinol (vitamin A), and bilirubin (Fig. 1.4), a breakdown product of heme catabolism 

(Yu, 1994). In general, the scavenging actions of the above-mentioned antioxidants are 

‘suicidal’ in nature; by donating an electron to a radical, and thus generating a non­

radical species, the antioxidant is inactivated, but, in doing so, provides an alternative to 

critical macromolecules as targets for reactive species (Davies, 2000).

Figure 1.4 - Chemical structures of the major non-protein antioxidants.
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1.5.1.2 Glutathione

GSH is the most abundant non-protein thiol, and is at the forefront of cell defence, 

providing a redox buffer for chemical and oxidative stress (DeLeve et al., 1991). The 

two-step synthesis of GSH involves; a) the rate-limiting conjugation of L-glutamate and 

cysteine, via y-glutamylcysteine ligase (GCL), to yield y-glutamylcysteine, and b) the 

conjugation of glycine to y-glutamylcysteine, via glutathione synthetase (GS), to yield y- 

glutamylcysteinylglycine (GSH) (Kaplowitz et al., 1985). The cysteine thiol of GSH 

endows it with a powerful nucleophilic group that facilitates the major functions of 

GSH, namely the conjugation of electrophiles, detoxification of ROS and thiol- 

disulphide exchange (DeLeve et al., 1991). The reaction of GSH with electrophilic 

species to yield thioether conjugates may proceed spontaneously, particularly with 

highly reactive ‘soft’ electrophiles, or enzymatically, the latter being catalysed by the 

GST family (DeLeve et al., 1991). GSH conjugates are cleaved by y- 

glutamyltranspeptidase, which removes the y-glutamyl moiety (DeLeve et al., 1991). 

The remaining cysteinyl-glycine conjugate is then cleaved by dipeptidase, yielding a 

cysteinyl conjugate, which in turn is acetylated to form a mercapturic acid (DeLeve et 

al., 1991). Ultimately, the various breakdown products of GSH-conjugate metabolism 

are recycled or excreted (DeLeve et al., 1991).

In contrast to its role in the detoxification of electrophiles, the antioxidant capacity of 

GSH does not stem from its ability to react with ROS directly, but from its function as a 

substrate for GSH peroxidases (GPX), which catalyse the reduction of hydrogen 

peroxide (H20 2) and lipid hydroperoxides (DeLeve et al., 1991). These reactions yield 

GSH disulphide (GSSG), which is reduced back to GSH via a nicotinamide adenine 

dinucleotide phosphate (NADPH) -dependent, GSH reductase-mediated reaction, a cycle 

that serves to maintain essential redox balance (DeLeve et al., 1991). Due to the 

relatively high acid dissociation constant (pKa 9.2) of GSH (Jung et al., 1972) and its 

cellular abundance, factors that disfavour disulphide formation, GSSG is normally 

maintained at less than 1 % of total cellular glutathione, though under conditions of 

oxidative stress, when GSSG levels may increase, GSSG can be actively transported out
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of cells, in order to protect against redox imbalance (DeLeve et ah, 1991). GSH also 

serves an important function in thiol-disulphide exchange reactions, whereby the 

favourable redox state of a given cysteine residue is maintained through bidirectional 

reaction with GSH, mediated by thiol-transferases (DeLeve et al., 1991). The 

preservation of cysteine redox state is particularly important for the function of certain 

enzymes whose catalytic activity is dependent upon the integrity of a sulphydryl or 

disulphide moiety. Examples of such enzymes include protein tyrosine phosphatases, 

and the peroxiredoxin (PRX) and thioredoxin (TRX) protein families (Dickinson et al., 

2002). The PRX and TRX families, in their own right, serve as important antioxidant 

defence proteins, as discussed in section 1.5.1.3.

1.5.1.3 Detoxification enzymes

The superoxide dismutase (SOD) family, members of which utilise the transition metals 

copper and zinc (Cu,Zn-SOD) or manganese (Mn-SOD) at their active sites, catalyse the 

dismutation of two superoxide anion radicals (0 2 ') to H20 2 and 0 2 (Nordberg et al., 

2001). The cytotoxic product of this reaction, H20 2, is detoxified via reduction to H20  

and 0 2 by GPX, catalase, and/or PRX (Nordberg et al., 2001). The heme-containing 

catalase family constitutes an important antioxidant defence found predominantly within 

peroxisomes, organelles involved in the oxidative metabolism of fatty acids (Nordberg 

et al., 2001). Catalases also function to detoxify phenols and alcohols, via a coupled 

reaction with H20 2 (Nordberg et al., 2001). Within the PRX family of peroxidases, a 

conserved cysteine residue is utilised to enable the reduction of H20 2 and other 

peroxides (Ishii et al., 2007; Wood et al., 2003). In members of the PRX family that 

contain two thiols (2-Cys), the resulting cysteine sulphenic acid (-SOH) reacts with a 

second ‘resolving’ cysteine, either in the second subunit of a homodimer, or within the 

same subunit in monomeric atypical 2-Cys enzymes, resulting in the formation of an 

intermolecular/intersubunit disulphide bond, respectively, rendering PRX inactive (Ishii 

et al., 2007; Wood et al., 2003). PRX function is reestablished through reduction of this 

disulphide by thiol-containing electron donors, including GSH and the TRX family
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(Ishii et a l, 2007; Wood et al., 2003). Oxidised TRX is reactivated by TRX reductase 

(TRX-R) (Ishii et a l, 2007; Wood et a l, 2003). Hence, numerous inter-related and 

highly regulated processes enable the maintenance of steady-state levels of chemical and 

protein -based antioxidants, providing the cell with a degree of basal protection against 

low-level chemical/oxidative stressors.

1.5.2 Tiers of cell defence -  Upregulation of antioxidants and detoxification 

enzymes

The second tier of cell defence involves the induction of cytoprotective genes, an 

adaptive response that increases the cell’s capacity to nullify reactive species, through 

the increased expression of enzymes that catalyse detoxification reactions or the 

synthesis of antioxidants (Presterà et a l, 1993b; Primiano et a l, 1997). The induction of 

cell defence genes is mediated by certain transcription factors, proteins that recognise 

specific deoxyribonucleic acid (DNA) sequences, bind to these sequences, and recruit 

the co-activators and ribonucleic acid (RNA) polymerase required to enable 

transcription and translation of target genes (Latchman, 1997). At the forefront of the 

adaptive response to cellular stress are the transcription factors nuclear factor-erythroid 2 

(NF-E2) -related factor 2 (Nrf2), nuclear factor kB (NF-kB), activator protein 1 (AP-1), 

hypoxia-inducible factor 1 (HIF-1) and members of the heat-shock factor (HSF) family. 

A detailed evaluation of the role of transcription factors in the adaptive response to 

cellular stress is presented in section 1.7.

1.5.3 Tiers of cell defence -  Programmed cell death (apoptosis)

Should initial efforts to detoxify and eliminate a cellular stressor prove futile, a last-ditch 

attempt is made to halt the spread of damage to neighbouring cells, through programmed 

cell death (apoptosis). Membrane blebbing, cell shrinkage, chromatin condensation and 

DNA fragmentation are the hallmarks of apoptotic cell death (Robertson et al., 2000).
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These orchestrated events culminate in the cell being engulfed by macrophages, thus 

preventing the insult from spreading to neighboring cells (Robertson et al., 2000). In this 

regard, apoptosis is distinct from necrosis, which can be regarded simply as a failure of 

cellular homeostasis, resulting from a sudden, lethal insult (Raffray et al., 1997). 

Necrosis promotes an inflammatory response via the uncontrollable release of cellular 

contents into the local environment, leading to the damage of nearby cells (Robertson et 

al., 2000). Although there appears to be a degree of overlap between the biochemical 

signaling mechanisms that regulate the apoptotic and necrotic pathways {for a review, 

see \Nicotera, 2004 #722}, various factors determine the balance between the two types 

o f cell death, including the nature of the toxic insult, the dose and/or time of exposure to 

the insult, and the relative thresholds for apoptosis and necrosis within a given cell type 

(Raffray et al., 1997).

1.5.3.1 Regulation of apoptosis

Apoptosis may be triggered via two distinct pathways, prompted by extrinsic or intrinsic 

signals, and involves the sequential activation of caspases, a family of cysteine proteases 

that act as both initiators and effectors of cell death (Thomberry et al., 1998). In the 

extrinsic pathway, cell surface transmembrane death receptors, such as Fas and tumour 

necrosis factor receptor (TNF-R), recognise specific extracellular ligands, such as Fas 

ligand (FasL) or TNF-a, respectively, an event that induces receptor trimerisation 

(Budihardjo et al., 1999). The subsequent formation of a death-inducing signalling 

complex between clustered receptors, intracellular ‘death-domain’ -containing proteins 

and procaspase-8 triggers the activation of downstream effector caspases (Budihardjo et 

al., 1999). Perhaps more relevant to xenobiotic-induced chemical/oxidative stress, the 

intrinsic apoptotic pathway is triggered via an increase in mitochondrial membrane 

permeability, though a consensus has yet to be reached on the molecular events that 

cause such permeation (Blank et al., 2007). A variety of intracellular stress signals can 

stimulate the intrinsic pathway, including DNA and cytoskeletal damage, oxidative and 

endoplasmic reticulum stress, and the misfolding of proteins (Blank et al., 2007;
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Chandra et al., 2000). These and other stress signals promote the leakage of proteins, 

normally resident within the mitochondrial inter-membrane space, into the cytosol 

(Hengartner, 2000). Amongst the proteins released, cytochrome c, a component of the 

electron transport chain, associates with apoptotic protease activating factor 1 (APAF-1) 

to form the ‘apoptosome’ complex, which then binds to, and activates, procaspase-9 

(Riedl et al., 2007). As with activation of procaspase-8 in the extrinsic pathway, 

activation of procaspase-9 triggers downstream effector caspases, particularly caspases - 

3 and -7 (Blank et al., 2007). Notable caspase substrates include cytoskeletal proteins 

such as actin (Mashima et al., 1999) and lamin A (Rao et al., 1996), degradation of 

which causes loss o f membrane integrity, the inhibitor of caspase-activated DNAse 

(ICAD) (Enari et al., 1998), inactivation of which promotes DNA fragmentation, the 

DNA repair enzyme poly (adenosine diphosphate-ribose) polymerase (PARP) (Lazebnik 

et al., 1994), and components of various cell division/survival signalling cascades 

(Blank et al., 2007). Apoptosis is partly regulated by the cellular redox balance, and thus 

is sensitive to oxidative stress (Chandra et al., 2000; Davis et al., 2001), which in turn is 

both a trigger and a target for the basal and inducible defence machinery discussed 

above. Hence, cells employ an integrated three-pronged defence strategy to coordinate 

protection against cytotoxic reactive species and other stressors.

1.6 REDOX REGULATION OF CELL DEFENCE

As with other cellular processes, cell defence is subject to redox regulation. The 

sulphydryl group of the amino acid cysteine represents a versatile moiety that facilitates 

the regulation of protein function, via reversible and irreversible redox reactions, i.e. 

those involving the loss (oxidation) or gain (reduction) of electrons at the sulphydryl 

group (Cooper et al., 2002). The various oxidation states of cysteine sulphydryls are 

summarised in Figure 1.5. Some cysteines are stabilised in the thiolate form (-S') via 

structural interactions with basic amino acids, namely arginine, lysine or histidine 

(Snyder et al., 1981). The deprotonated thiolate is more nucleophilic, and thus reacts 

more readily with oxidants, than the protonated thiol (-SH; a), which is relatively
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unreactive (Netto et a l, 2007). Nevertheless, the thiol is capable of partaking in various 

reactions; sequential oxidations yield sulphenic acid (-SOH; b), which is generally 

unstable and reacts further to the more stable sulphinic (-SO 2H; c) and sulphonic acids 

(-SO 3H; d) (Paget et a i,  2003). Oxidation to sulphenic acid may also lead to the 

formation of a disulphide (S-S), either within a single protein (e), between separate 

proteins (f), or with a small, non-protein thiol such as GSH (S-glutathionylation) (g) 

(Paget et a l, 2003). Other important redox reactions include thiol-disulphide exchange 

reactions between a thiol and disulphide (h), and modifications by reactive nitrogen 

species such as nitric oxide, to yield S-nitrosothiol (-SNO; i), or peroxynitrite, to yield 

S-nitrothiol (-SNO2; j) (Cooper et a l, 2002).

Figure 1.5 - Schematic overview of the various cysteine oxidations states. Letters 
representing each oxidation state refer to descriptions given in the main text. Adapted 
from Paget et al. (2003).
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The oxidation state of certain cysteines is often critical to the function of a given protein 

and, as such, changes in the cellular redox environment can affect protein activity, either 

positively or negatively. A well-characterised redox-sensitive protein is the prokaryotic 

transcription factor OxyR, a major regulator of bacterial cell defence genes including 

katG (a hydrogen peroxidase), gorZ (a GSH reductase) and oxyS (a small RNA involved 

in DNA repair) (Paget et al., 2003). OxyR ‘senses’ oxidative stress through a reactive 

cysteine (Cys-199) that, in a non-oxidative environment, is stabilised in the thiolate form 

via interaction with a basic arginine residue (Choi et al., 2001). Oxidation of this 

cysteine results in a conformational change that activates OxyR, enabling the 

transcription factor to recognise specific response elements in the promoter regions of 

target genes (Paget et al., 2003). Until recently, this conformational change was thought 

to be dependent upon the formation of an intramolecular disulphide bond (Storz et al., 

1990). However, evidence has emerged to suggest that, rather than acting as a simple 

‘on/off switch, cysteine oxidation regulates OxyR in a graded manner, dependent upon 

the specific oxidation state of Cys-199, which may be modified to yield sulphenic acid, 

S-nitrosothiol or a mixed disulphide (Kim et al., 2002).

The concept that a protein’s function may be modulated through simple chemical 

changes within a single amino acid represents an important paradigm in cellular redox 

signalling. Redox-sensitive transcription factors that have major roles in regulating the 

eukaryotic cytoprotective response include Nrf2, NF-kB and AP-1. A more detailed 

discussion of the role of these transcription factors in cell defence is presented in section 

1.7.

1.7 TRANSCRIPTIONAL REGULATION OF CELL DEFENCE

As discussed in section 1.5.2, one of the major tiers of cell defence involves the 

upregulated expression of cytoprotective genes, a process mediated by certain 

transcription factors. In working to nullify electrophiles and free radicals, these 

transcription factors play a critical role in maintaining cellular homeostasis. It is
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noteworthy that the activity of these regulatory proteins themselves is particularly 

sensitive to changes in cellular redox balance. The ability of cytoprotective pathways to 

‘sense’ and respond to chemical/oxidative stress has an important influence on the 

balance between bioactivation and detoxification, which ultimately determines the fate 

of a cell exposed to a potentially toxic species.

1.7.1 Nuclear Factor kB

NF-kB is a major regulator of the innate and adaptive immune response, cell 

proliferation and apoptosis, and thus serves an important function in the response to 

cellular stress. Under basal conditions, NF-kB is localised within the cytosol as a 

dimeric complex, usually comprising p50 and p65 subunits (Hayden et al., 2004). The 

subcellular distribution of NF-kB is regulated by members of the inhibitor of kB (IkB) 

family; the association between the two molecules masks the nuclear localisation signal 

(NLS) in the NF-kB complex, thus inhibiting its nuclear translocation (Hayden et al., 

2004). Activation of NF-kB, in response to a variety of stimuli, including bacterial and 

viral infection, oxidative and endoplasmic reticulum stress, proinflammatory cytokines, 

and certain chemical agents (Pahl, 1999), involves the stimulation of a protein kinase 

cascade that promotes activation of IkB kinase (IKK), which subsequently 

phosphorylates critical serine residues within IkB, resulting in the latter’s ubiquitination 

and proteasomal degradation (Hayden et al., 2004). Consequently, the NLS of NF-kB is 

unmasked, facilitating its nuclear translocation and the transactivation of target genes, 

through binding to specific DNA sequences, known as kB elements (Hayden et al., 

2004). Notable NF-kB targets include the stress-response genes cyclooxygenase 2 

(COX2) and inducible nitric oxide synthase (iNOS), the detoxification enzymes GST 

subunit Pl-1 (GSTP1-1), GCL and SOD, and the apoptotic regulators p53, Bcl-xL and 

FasL (Pahl, 1999). Notably, exposure of mice to hepatotoxic doses of paracetamol 

causes the NF-kB -dependent upregulation of pro-inflammatory mediators, including 

interleukin-ip (IL-ip) and TNFa, and the anti-inflammatory cytokine IL-10 (Dambach 

et al., 2006), indicating the role of NF-kB in regulating the cellular stress response.
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The activity of NF-kB is subject to direct and indirect redox modulation (Kabe e t a l., 

2005; Pantano e t a l., 2006). A rise in the levels of ROS in response to various stimuli, 

including TNF-a, IL-1 and lipopolysaccharide (LPS), augments NF-kB activation 

through induction of upstream protein kinases (Pantano e t  a l., 2006). Changes in the 

cellular GSH:GSSG balance have also been associated with repression of IkB and 

activation of NF-kB (Mihm e t a l., 1995). Based on this evidence, therefore, it would 

appear that NF-kB is stimulated under oxidising conditions. However, recent reports that 

specific chemical entities can attenuate the DNA-binding activity of NF-kB, through 

chemical modification of Cys-62 within the p50 subunit (Cemuda-Morollon e t a l., 2001; 

Lee e t  a l., 2002; Mahon e t a l., 1995; Xia e t a l., 2004), appear to conflict with this view. 

Furthermore, covalent modification of IKK at Cys-179, by electrophiles including 

cyclopentenone prostaglandins (Rossi e t a l., 2000), 4-hydroxynonenal (Ji e t a l., 2001) 

and acrolein (Valacchi e t a l., 2005), inhibits its kinase activity and thus perturbs 

transactivation of target genes by NF-kB. In addition, NAPQI, the electrophilic 

metabolite of paracetamol, perturbs NF-kB activity in Hepa 1-6 mouse hepatoma cells, 

by inhibiting the degradation of IkB (Boulares e t a l., 1999).

The balance between cytoplasmic and nuclear redox events, and their effects on NF-kB 

activity, is particularly evident in the case of TRX. Over-expression of TRX, which 

localises predominantly in the cytoplasm, represses activation of NF-kB, by reversing 

oxidation events promoted by NF-kB-stimulating ROS (Meyer e t a l., 1993). However, 

in response to phorbol 12-myristate-13-acetate (PMA), TNF-a, or ionising radiation, 

TRX translocates to the nucleus, and enhances the DNA-binding activity of NF-kB, by 

maintaining Cys-62 of p50 in a reduced state (Hirota e t a l., 1999). In a further 

demonstration of its redox regulation, NF-KB-dependent gene expression is suppressed 

by the quinone derivative E3330, but this inhibitory effect does not involve changes in 

the degradation of IkB or the nuclear translocation of NF-kB (Hiramoto e t a l., 1998). 

Indeed, E3330 modifies and inhibits redox effector factor 1 (REF-1) (Hiramoto e t a l., 

1998), a nuclear protein that mediates the redox regulation of several transcription 

factors (Evans e t a l., 2000), and can reduce the oxidised Cys-62 of p50, thus restoring 

the DNA-binding activity of NF-kB (Nishi e t a l., 2002). Thus, by perturbing the activity
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of REF-1, E3330 indirectly inhibits the binding of NF-kB to DNA (Hiramoto et al., 

1998). In summary, NF-kB is a redox-sensitive transcription factor with important 

functions in the cellular stress-response, although the redox regulation of NF-kB is 

particularly dependent on its subcellular localisation, and may involve a variety of 

signalling pathways.

1.7.2 Activator Protein 1

The transcription factor AP-1 plays an important role in various cellular processes, 

including proliferation, differentiation, survival and death (Shaulian et al., 2002). AP-1 

exists as a dimer, comprising members of the Jun, Fos and/or activating transcription 

factor (ATF) protein families (Karin et al., 1997). Jun homodimers and Jun-Fos 

heterodimers, typically c-Jun and c-Fos, bind to the 12-O-tetradecanoate-13-acetate 

(TPA) -responsive element (TRE), whereas ATF homodimers and Jun-ATF 

heterodimers bind to the cyclic adenosine monophosphate (cAMP) -responsive element 

(CRE) (Karin et al., 1997). Activation of AP-1, by stimuli including cytokines, bacterial 

and viral infection, and certain cellular and chemical stresses, is mediated predominantly 

via the mitogen-activated protein kinase (MAPK) pathway (Shaulian et al., 2002). 

Activation of AP-1 involves the upregulation of immediate early genes that encode e.g. 

c-Jun and c-Fos, with subsequent dimérisation and binding to recognition elements 

resulting in the transactivation of genes including GSTs, GCL, COX2, iNOS and various 

apoptotic regulators (Karin et al., 1997). AP-1 is known to be redox-sensitive (Schenk et 

al., 1994), to such a degree that oxidation of a single cysteine residue within c-Jun and c- 

Fos can influence their DNA-binding capacities (Abate et al., 1990). Previous work has 

demonstrated a reduction in AP-1 DNA-binding following adduction of c-Jun by 

reactive chemical species (Biswal et al., 2002; Perez-Sala et al., 2003). Furthermore, in a 

similar manner to NF-kB, the DNA binding activity of AP-1 is subject to redox 

regulation by REF-1 (Xanthoudakis et al., 1992).
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1.7.3 Hypoxia-Inducible Factor 1 and Heat Shock Factors

Other transcription factors with important roles in the adaptive response to cellular stress 

include HIF-1 and members of the HSF family. Under circumstances of low cellular 

oxygen levels (hypoxia), activation of HIF-1 enables induction of genes that facilitate 

short and long-term adaptation to hypoxia, including growth factors involved in cell 

survival and proliferation, regulators of erythropoiesis and angiogenesis, and 

components of various metabolic pathways (Semenza, 2003). In response to elevated 

temperature and other stresses, the HSF family of transcription factors mediate the 

induction of heat-shock proteins (HSP), which function to solubilise denatured protein 

aggregates, facilitate the restoration of protein function, and direct irreversibly damaged 

proteins to the cellular degradation machinery (Kiang et al., 1998). In general terms, 

therefore, the heat-shock response represents a defence against protein damage (Wu, 

1995).

1.7.4 The antioxidant response pathway

Mammalian cells have evolved an inducible line of cell defence, termed the antioxidant 

response pathway, that facilitates the enhanced bioinactivation and clearance of oxidants 

and electrophilic molecules, via the transcriptional upregulation of an array of 

detoxification and antioxidant enzymes (Primiano et al., 1997). The three regulatory 

components of the antioxidant response pathway are a) the antioxidant response element 

(ARE) DNA motif, found within the promoter regions of numerous cytoprotective 

genes, b) Nrf2, the redox-sensitive transcription factor that binds to the ARE, and c) 

Keapl, the cysteine-rich cytosolic repressor of Nrf2.
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1.7.4.1 Nuclear Factor Erythroid 2 (NF-E2) -Related Factor 2 (Nrf2)

Nrf2 was first isolated during a screen for Nuclear factor erythroid 2 (NF-E2) -regulating 

proteins in a complementary DNA (cDNA) expression library derived from hemin- 

induced erythroleukemia cells (Moi e t a l., 1994). Unlike NF-E2, which regulates globin 

gene expression in developing erythroid cells (Igarashi e t  a l., 1994), Nrf2 is expressed in 

many tissues (Moi e t  a l., 1994), particularly those associated with detoxification (liver 

and kidney) and those that are exposed to the external environment (skin, lung and 

gastrointestinal tract) (Motohashi e t  a l., 2002). As with other members of the CNC 

family of transcription factors (Itoh e t a l., 1995), so named because of structural 

similarities with the D ro so p h ila  protein cap ‘n ’ collar (CNC), Nrf2 contains a C-terminal 

basic leucine zipper (bZip) structure that facilitates dimerisation and DNA binding (Moi 

e t  a l., 1994).

Through reporter transgene (Venugopal e t a l., 1996) and electrophoretic mobility shift 

assay (Nguyen e t a l., 2000) experiments, Nrf2 was shown to bind to the ARE and 

upregulate the expression of target genes. The ARE, a cA-acting DNA enhancer motif 

with a consensus sequence defined as 5'-gagTcACaGTgAGtCggCAaaatt-3' (where 

essential nucleotides are in capitals and the core is in bold) (Nioi et al., 2003),, was 

originally identified within a 41 base-pair section from the 5’-flanking region of the rat 

GSTA2 gene that was responsive to the phenolic antioxidant (3-naphthoflavone 

(Rushmore e t  a l., 1990). Although Nrf2 is by far the most potent transcriptional 

activator of the ARE amongst members of the CNC family (Kobayashi e t a l., 1999; 

Papaiahgari e t a l., 2006), Nrfl also appears to play a role, albeit limited, in the 

regulation of ARE gene expression, at least at the basal level (Kwong e t a l., 1999; 

Myhrstad e t a l., 2001; Venugopal e t a l., 1996; Xu e t  a l., 2005). Furthermore, Nrfl is 

important for embryonic development, as Nrfl knockout (Nrfl7') embryos die within 

17-18 days of gestation (Chan et a l., 1998). Evidence also exists, however, to suggest 

that Nrfl (Wang e t a l., 2007), in addition to the remaining members of the CNC family, 

Nrf3 (Sankaranarayanan e t a l., 2004), bric-a-brac/tram-track/broad complex (BTB) and 

CNC homolog 1 (BACH1) (Dhakshinamoorthy e t a l., 2005; Reichard e t  a l., 2007; Sun

28



Chapter 1

et al., 2002) and BACH2 (Muto et al., 2002), may act as negative regulators of Nrf2- 

mediated ARE gene expression, in part by competing with Nrf2 for binding to the ARE.

Nrf2 only binds with high affinity to the ARE as a heterodimer with small Maf proteins 

(Itoh et al., 1997). Members of the small Maf family, comprising MafF, MafK and 

MafG, possess a bZip domain, facilitating their dimerisation with other bZip proteins 

(Kataoka et al., 1993). However, small Maf proteins lack transactivation domains, and 

thus the ability of the Nrf2-Maf heterodimer to promote transcription is reliant on the 

transactivation faculty o f Nrf2 (Motohashi et al., 2002). Indeed, over-expression of 

small Maf proteins represses Nrf2-mediated transactivation of cell defence genes 

(Dhakshinamoorthy et al., 2002; Dhakshinamoorthy et al., 2000; Nguyen et al., 2000), 

through binding of small Maf homodimers, which lack intrinsic transcriptional activity, 

to the ARE (Dhakshinamoorthy et al., 2000).

Structural comparison of the chicken homologue of Nrf2 (erythroid cell-derived protein 

with CNC homology; ECH) (Itoh et al. 1995) with the human and mouse proteins 

enabled the identification of six highly-conserved regions, termed Nrf2-ECH homology 

(Neh) domains (Itoh et al., 1997) (Fig. 1.6 and Table 1.2). The binding of Nrf2 to the 

ARE, which involves a highly conserved cysteine residue (Cys-506) within the Nehl 

domain of the transcription factor (Bloom et al., 2002), stimulates transcription of 

downstream genes, in part, by recruiting transcriptional co-activators (Lin et al., 2006), 

particularly cAMP responsive element binding protein (CREB) -binding protein (CBP) 

through its Neh4 and Neh5 domains (Katoh et al., 2001; Zhu et al., 2001). CBP 

promotes transcription via a) its intrinsic histone acetyltransferase (HAT) activity, b) 

interaction with other proteins possessing HAT activity, and c) bridging to components 

of the general transcriptional machinery (Bannister et al., 1996; Kalkhoven, 2004). 

Histones form the core of nucleosomes, around which DNA is wound into a condensed 

structure that represses transcription, but that can be unfolded to increase accessibility to 

general transcription factors and RNA polymerase II, and thus promote gene 

transcription (Grunstein, 1990; Kuo et al., 1998).
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Figure 1.6 - Nrf2 functional domains. Schematic overview of the six Neh functional 
domains in Nrf2, drawn to scale, with each domain labelled. The line at the top of the 
panel indicates 100 amino acid sections of the protein. See Table 1.2 for functional 
characteristics of each domain.

Domain Location (in 
mouse protein)

Function(s) and Features Reference(s)

Neh2 1-96 Contains DLG and ETGE motifs 
(points of interaction with Keapl) 
Contains lysine-rich region (target for 
ubiquitination)
Contains DIDLID element (regulation 
of Nrf2 turnover under homeostatic 
conditions)

Itoh e ta l .  (1999)
Katoh e t al. (2005) 
McMahon e t  al. (2004) 
McMahon e t  al. (2006) 
Tong e t  al. (2006a)

Neh4 111-141 Transactivation
Interaction with co-activator CBP

Katoh e t al. (2001)

Neh5 172-201 Transactivation
Interaction with co-activator CBP 
Contains nuclear export signal (#175- 
186)

Katoh e t al. (2001) 
Li e t al. (2006) 
Zhang e t al. (2007b)

Neh6 330-380 Regulation of Nrf2 turnover under 
stressed conditions

McMahon e t al. (2004)

Nehl 427-560 Contains CNC and bZip regions 
ARE binding
Dimerisation with other bZip 
proteins (small Mafs)
Contains nuclear localisation (#494- 
511) and export (#545-554) signals

Bloom e t al. (2002) 
Itoh e ta l .  (1999) 
Jain e t al. (2005)

Neh3 561-597 Transactivation
Interaction with putative co-activator 
proteins

Nioi e t  al. (2005)

Table 1.2 - Nrf2 functional domains.
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Hence, the interaction with transcriptional co-activators such as CBP enables Nrf2 to 

regulate the basal and inducible expression of numerous cytoprotective genes, as 

summarised in Table 1.3. Therefore, activation of Nrf2 promotes cell survival through 

the detoxification and/or elimination of chemical/oxidative stressors (Fig. 1.7).

Protein Function Reference(s)
Aldo-keto 
reductases (AKR)

Reduce aldehydes and ketones to yield 
primary and secondary alcohols

Lou e t al. (2006) 
Nishinaka e t  al. (2005)

Glutamate cysteine 
ligase, catalytic 
subunit (GCLC)

Catalyses the conjugation of cysteine with 
L-glutamate, to form y-glutamylcysteine

Chan e t  al. (2000b) 
Jeyapaul e t al. (2000) 
{Wild, 1999 #8 }

Glutamate cysteine 
ligase, regulatory 
subunit (GCLM)

Lowers the Km of GCLC for glutamate and 
raises the Kj for GSH

Moinova e t al. (1999) 
W ild e /al. (1999) 
Chan e t al. (2000b)

Glutathione 
peroxidases (GPX)

Catalyse the reduction of H2O2 and other 
peroxides, using GSH as a substrate

Banning e t al. (2005) 
Singh e t al. (2006b)

Glutathione 
reductase (GSR)

Catalyses the reduction of oxidized 
glutathione (GSSG) to GSH

Thimmulappa e t al. (2002)

Glutathione 
synthetase (GS)

Catalyses the conjugation of glycine with 
y-glutamylcysteine

Lee e t  al. (2005)

Glutathione
S-transferases
(GST)

Reduces pK a of GSH, catalysing its 
conjugation to electrophiles

Chanas e t  al. (2002) 
Hayes e t  al. (2000) 
McMahon e t al. (2001)

Heme-oxygenase 1 
(HO-1)

Catabolises heme to yield biliverdin, 
carbon monoxide and free iron

Alam e t al. (1999); 
Ishii e t al. (2 0 0 0 )

Microsomal 
epoxide hydrolase 
(MEH)

Hydrates simple epoxides and arene oxides 
to more polar vicinal diols and tran s-  
dihydrodiols

Ramos-Gomez e t al. 
(2001); Slitt é ta l .  (2006); 
Thimmulappa e t al. (2002)

NAD(P)H:quinone
oxidoreductases
(NQO)

Catalyse two-electron reduction and 
detoxification of quinones

Venugopal e t al. (1996) 
Wang e t al. (2006)

Peroxiredoxin 1 
(Prxl)

Reduces H2O2, peroxynitrite and other 
organic hydroperoxides

Kim e t al. (2007)

Superoxide 
dismutases (SOD)

Catalyse the dismutation of superoxide 
radicals to O2 and H20 2

Park e t al. (2002)

Thioredoxins
(TRX)

Catalyse the reversible reduction of 
disulfides to sulphydryls

Kim e t  al. (2001) 
Kim e t  al. (2003)

UDP-
Glucuronosyltransf- 
erases (UGT)

Catalyse conjugation of UDPGA to 
lipophilic substrates

Shelby e t  al. (2006) 
Yueh e t al. (2007)

Table 1.3 - Cell defence proteins encoded by Nrf2-regulated genes.
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Fig. 1.7 - The inhibitory effects of Nrf2 activation on the progression of cellular 
injury. Through regulating the expression of genes encoding proteins that serve to 
detoxify reactive chemical species and maintain redox homeostasis, Nrf2 protects 
against the potential deleterious effects of chemically reactive intermediates and reactive 
oxygen species, and thus promotes cell survival. Adapted from Osbum e t al. (2007).

1.7.4.1.1 Insights into Nrf2 function from transgenic knockout mice

Although N rf2  knockout (N rf2"/") animals exhibit no significant developmental 

phenotype (Chan e t a l., 1996), they do develop vacuolar leukoencephalopathy (the 

abnormal development of cavities in the brain and deterioration of the myelin sheaths 

that cover neurons) (Hubbs e t  a l., 2007) and lupus-like autoimmune symptoms, 

including multiorgan inflammation, oxidative lesions, deposition of immunoglobulin 

complexes in blood vessels, and nephritis (Vargas e t  a l., 2006; Yoh e t a l., 2001). Two 

notable characteristics demonstrate the severely compromised defence systems in N rf2  

knockout mice; a) lower basal and/or inducible expression of detoxification/antioxidant 

genes in a variety of tissues, including liver (Chan e t a l., 2000; Chanas e t  a l., 2002; Iida 

e t  a l., 2004; Itoh e t a l., 1997; Kwak e t a l., 2001; Ramos-Gomez e t  a l., 2001), lung (Chan 

e t  a l., 1999; Cho e t a l., 2002; Ishii e t  a l., 2005; Rangasamy e t a l., 2005), gastrointestinal 

tract (Itoh e t a l., 1997; Khor e t a l., 2006; McMahon e t a l., 2001; Ramos-Gomez e t  a l., 

2001), brain (Kraft e t a l., 2006; Lee e t  a l., 2003; Shih e t  a l., 2005), skin (Xu e t  a l., 2006) 

and bladder (Iida e t a l., 2004), and b) enhanced susceptibility to the toxicities associated 

with various xenobiotics and environmental stresses (for a review, see Copple e t  a l.,
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2008). Furthermore, the chemopreventative actions of oltipraz (Iida e t a l., 2004; Ramos- 

Gomez e t  a l., 2003; Ramos-Gomez e t a l., 2001) and sulforaphane (Xu e t a l., 2006) are 

abolished in N r/2 '1' mice. Taken together, these findings demonstrate the importance of 

Nrf2 for cellular defence.

1.7.4.2 Kelch-like ECH-associated Protein 1 (Keapl)

In the absence of cellular stress, Nrf2 is tethered within the cytosol by an inhibitory 

partner, which binds to Nrf2 via the Neh2 domain of the transcription factor (Itoh e t a l., 

1999). Due to similarities with sequence motifs found in the D ro so p h ila  cytoskeleton- 

binding protein Kelch (Xue e t a l., 1993), the repressor of Nrf2 was named Kelch-like 

ECH-associated protein 1 (Keapl). Keapl resides within the cytosol of mammalian 

cells, where it interacts with the actin cytoskeleton (Kang e t a l., 2004) and, in the 

absence of chemical/oxidative stress, associates with Nrf2 (Dhakshinamoorthy e t  a l., 

2001; Itoh e t a l., 1999). Over-expression of Keapl reduces Nrf2-mediated 

transactivation of ARE-regulated genes (Dhakshinamoorthy e t  a l., 2001; Itoh e t a l., 

1999; Wakabayashi e t a l., 2004). Exposure to chemical/oxidative stress enables Nrf2 to 

evade Keapl-mediated repression, accumulate within the nucleus via a NLS located 

within the Nehl domain (Jain e t a l., 2005) and transactivate ARE target genes 

(Dhakshinamoorthy e t  a l., 2001; Itoh e t a l., 1999). A detailed discussion of the 

molecular mechanisms thought to underlie the liberation of Nrf2 from Keapl-mediated 

repression is presented in section 1.7.4.6 . The features of the three major functional 

domains of Keapl are summarised in Figure 1.8 and Table 1.4.
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Figure 1.8 - Keapl functional domains. Schematic overview of the three major 
functional domains in Keapl, drawn to scale, with each domain labelled. BTB, bric-a- 
brac/tram-track/broad complex; IVR, intervening region; DGR, double glycine repeat. 
The line at the top of the panel indicates 50 amino acid sections of the protein. The 
position of each cysteine in the mouse Keapl protein is indicated. See Table 1.4 for 
functional characteristics of each domain.

Domain Location Function(s) and 
Comments

Reference(s)

BTB 67-178 Bric-a-brac/tram- 
track/broad complex 
Heterodimerisation 
Interaction with CUL3

Zipper et al. (2002)

IVR 179-321 Intervening region 
Cysteine-rich (6.3 % of 
amino acids)

DGR 322-608 Double-glycine (kelch) 
repeat
Interaction with Nrf2 
Interaction with actin 
cytoskeleton

Dhakshinamoorthy et al. (2001) 
Itoh et al. (1999)
Kang et al. (2004)
Li et al. (2004)
McMahon et al. (2006)
Tong et al. (2006a)

Table 1.4 - Keapl functional domains.
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1.7.4.2.1 Insights into Keapl function from transgenic knockout mice

Attempts to investigate the role of Keapl in regulating Nrf2-mediated cell defence in 

vivo were initially hindered due to the retarded growth and death of Keapl knockout 

(K ea p l/ ) mice within 2 1  days of birth, due in part to malnutrition resulting from 

hyperkeratotic lesions in the eosophagus and forestomach, which obstruct the upper 

digestive tract (Wakabayashi et al., 2003). Co-knockout of Nrf2 (Keapl','::Nrf2'1') 

rescued this phenotype, indicating that Nrf2 is the central downstream target of Keapl in 

vivo (Wakabayashi et al., 2003). Recently, however, hepatocyte-specific knockout of 

Keapl has been achieved using the Cre-loxP system, which facilitates tissue-specific 

gene knockout (Okawa et al., 2006). Briefly, an Alb-Cre mouse, expressing a Cre 

recombinase transgene under the control of the liver-specific albumin promoter, is 

crossed with a Keapl-loxP mouse, in which exons 4-6 of the Keapl gene are flanked by 

loxP sites. In the double-transgenic Alb-Cre::Keapl-loxP mouse, Cre catalyses 

recombination between target loxP sites, resulting in excision of the flanked segment 

(exons 4-6) within Keapl and thus translation of a truncated form of the protein, lacking 

the double glycine repeat (DGR) domain that interacts with Nrf2 (Nagy, 2000; Okawa et 

al., 2006). Without the growth retardation and malnutrition observed in Keapl'1' 

animals, hepatocyte-specific knockout of Keapl results in an increase in basal 

expression of numerous ARE-driven genes in the liver, including Nqol, Gclc, Gpx and 

carbonyl reductase (Okawa et al., 2006). Moreover, Alb-Cre::Keapl-loxP mice are 

highly resistant to doses of paracetamol that are hepatotoxic and lethal in wild-type mice 

(Okawa et al., 2006). Therefore, Keapl is a major regulator of cell defence, due to its 

repressive influence over Nrf2.

1.7.4.3 The role of ubiquitination in the regulation of Nrf2 activity

Although the physical restriction of Nrf2 is an important aspect of its repression by 

Keapl, this cannot fully account for the relatively short-half life of the transcription 

factor (10-30 minutes) in the absence of cellular stress (Alam et al., 2003; Furukawa et
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a l., 2005; He e t  a l ,  2006; Itoh e t  a l ,  2003; McMahon e t  a l ,  2003; Stewart e t  a l ,  2003; 

Zhang e t a l ,  2003a). Notably, protéasome inhibition causes the stabilisation and nuclear 

accumulation of Nr£2, which in turn leads to an increase in ARE-driven gene 

transactivation (Alam e t a l ,  2003; Chen e t  a l ,  2005a; Furukawa e t  a l ,  2005; Itoh e t  a l ,  

2003; McMahon e t a l ,  2003; Nguyen e t a l ,  2003; Sekhar e t  a l ,  2000; Stewart e t  a l ,  

2003; Usami e t  a l ,  2005; Yamamoto e t a l ,  2007). Furthermore, ubiquitinated Nrf2 has 

been detected under such conditions (Cullinan e t a l ,  2004; Kobayashi e t  a l ,  2004; 

Nguyen e t a l ,  2003; Stewart e t a l ,  2003; Zhang e t a l ,  2003a). This evidence suggests 

that Nrf2 is rapidly degraded by the ubiquitin-proteasome pathway, thus accounting for 

its relatively short half-life and the well-known difficulties associated with its detection 

in unstressed cells/tissues.

Recent evidence has demonstrated that, similar to other BTB family proteins (Pintard e t 

a l ,  2004), Keapl functions as a substrate adaptor for a Cullin-dependent E3 ubiquitin 

ligase complex (Cullinan e t  a l ,  2004; Furukawa e t  a l ,  2005; Kobayashi e t a l ,  2004; 

Zhang e t a l ,  2004). Cullin proteins (in this case CUL3) act as molecular bridges, 

bringing together a substrate adaptor protein and substrate (in this case Keapl and Nrf2, 

respectively) and the ring-box protein ROC1/RBX1, which recruits a ubiquitin-charged 

E2 protein (Pickart, 2001). Immunoprécipitation of Keapl from established cell lines 

reveals association with CUL3 (Cullinan e t  a l ,  2004; Furukawa e t a l ,  2005; Kobayashi 

e t  a l ,  2004; Zhang e t  a l ,  2004; Zhang e t a l ,  2005) and RBX1 (Furukawa et a l ,  2005; 

Zhang e t  a l ,  2004; Zhang e t a l ,  2005), and this association appears to occur via the 

BTB domain of Keapl (Cullinan e t  a l ,  2004; Furukawa e t  a l ,  2005). Inhibition of 

CUL3 function, through expression of a dominant negative CUL3 mutant or targeted 

depletion by RNA interference (RNAi), results in a decrease in Nrf2 turnover, a 

concomitant increase in the basal levels of Nrf2 (Cullinan e t a l ,  2004; Furukawa e t  a l ,  

2005; Zhang e t  a l ,  2004), and induction of an ARE-driven reporter transgene (Cullinan 

e t  a l ,  2004). CUL3 associates with Nrf2, and promotes its ubiquitination (Cullinan e t 

a l ,  2004; Zhang e t  a l., 2004), but only through interaction with Keapl (Cullinan e t  a l ,  

2004). Despite Nrf2 containing 39 lysines, compound mutation of the seven residues 

found within the Neh2 domain effectively abrogates Keapl-directed ubiquitination of
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Nrf2 and increases its steady-state half-life threefold (Zhang et al., 2004). Reversion of 

individual mutant residues back to lysines facilitates Nrf2 ubiquitination (Zhang et al., 

2004), indicating that the targeting of this subset of lysines within the Neh2 domain is 

critical for Keapl-mediated repression ofNrf2.

1.7.4.4 The role of Keapl cysteine residues in the regulation of Nrf2 activity

The human and mouse Keapl proteins contain 27 and 25 cysteines respectively, 

representing 4.3 and 4.0 % of the 624 total amino acids. This compares to the average 

occurrence of cysteine of 2.3 % across all human and mouse proteins (Miseta et al., 

2000). In light of this high cysteine content, and given its inhibitory influence over Nrf2, 

Keapl was suggested as a putative ‘sensor’ for chemical/oxidative stress. Such a view 

was based on the following observations; a) although the array of phase II enzyme- 

inducing molecules is structurally diverse (Table 1.5), almost all are electrophilic 

(Presterà et al., 1993a; Talalay et al., 1988) and share a common capacity for 

modification of sulphydryl groups via alkylation, oxidation or reduction (Dinkova- 

Kostova et al., 2001); b) the potency of benzylidene-alkanone and -cycloalkanone 

Michael acceptors (Dinkova-Kostova et a l, 2001) and heavy metals (Presterà et al., 

1993a) as inducers of phase II enzymes is related to their reactivity towards sulphydryl 

groups; c) the potency of isothiocyanate compounds as inducers of phase II enzymes 

mirrors their non-enzymatic second-order rate constants of conjugation with GSH 

(Presterà et al., 1993a; Zhang, 2001); d) many of the cysteine residues in Keapl have 

low predicted pKa values, and thus high relative reactivities, as they are flanked by one 

or more basic amino acid (arginine, lysine, histidine; Fig. 1.9), which stabilise cysteine 

in the more nucleophilic thiolate form (-S') (Snyder et a l, 1981). Notably, both Cys-273 

and -297 are immediately preceded and followed by basic amino acids, and Cys-151, - 

257, -434 and -613 have two or more basic residues nearby in the primary structure (Fig. 

1.9). Therefore, these residues are anticipated to be highly reactive towards 

electrophiles. This body of evidence implies that Keapl functions as a ‘sensor’ for 

chemical/oxidative stress, and thus governs the adaptive cellular response to such stress.
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Category Example Reference(s)
Alkenes 4-Hydroxynonenal Chen e t al. (2005b) 

Ishii e t al. (2004) 
Zhang e t  al. (2006) 
Zhang e t  al. (2007a)

Arsenicals Arsenite / arsenate

X  ?'
f s —O- o—/|p—O'

O 0

Aono e t  al. (2003) 
Gong e t al. (2002) 
He e t al. (2006)
Pi e t  al. (2003)

Dithiolethiones Oltipraz

0

s

Petzer e t al. (2003) 
Ramos-Gomez e t al. (2001)

Enones Acrolein

„ X ^

Kwak e t  al. (2003) 
Tirumalai e t al. (2002)

Isothiocyanates Sulforaphane

l
H3Ĉ Ŝ  ^  N=C=S

Fahey e t  al. (2002) 
Jakubikova e t al. (2006) 
Shinkai e t al. (2006) 
Thimmulappa e t al. (2002)

Mercaptans / 
disulphides

Diallyl disulphide Chen e t al. (2004) 
Fisher e t  al. (2007)

Michael acceptors Diethylmaleate

f
^  V X CHi

o

Itoh e ta l .  (1999)

Diphenols / quinones tert-Butylhydroquinone Lee e t  al. (2001b) 
Li e t  al. (2005)

Reactive oxygen / 
nitrogen species

Nitric oxide

: N = 0

Buckley e t al. (2003) 
Dhakshinamoorthy e t  al. (2004) 
Liu e t  al. (2007)

Table 1.6 - Common classes of Nrf2-activating molecules.
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23 38
1 MQPEPKLSGA PRSSQFLPLW S§§PEGAGDA VMYASTEg§A EVTPSQDGNR TFSYTLEDHT

61 KQAFGVMNEL RLSQQL|DVT LQVKYEDIPA AQFMAHKWL ASSSPVFKAM FTNGLREQGM

151 171
121 EWSIEGIHP KVMERLIEFA YTASISVGEj |VL§VMNGAV MYQIDSW|a fSDFLVQQLD

226
181 PSNAIGIANF AEQIG|TELH QRAREYIYMH FGEVAKQEEF FNLSBQLAT LISRDDLNV|

241 249 257 273 288 297
241 |esevf§a| i dwv§ye§ pq| rfyvq a l l r a v|(}§altprf lqtqlqPIei lqada§c|dy

319
301 LVQIFQELTL HKPTQAVP^| APKVGRLIYT AGGYFRQSLS YLEAYNPSNG SWLRLADLQV

361 PRSGLAGfW GGLLYAVGGR NNSPDGNTDS SALD|YNPMT NQWSPgASMS VPRNRIGVGV 

434
421 IDGHIYAVGG S|G|l|SSV ERYEPERDEW HLVAPMLTRR IGVGVAVLNR LLYAVGGFDG

513 518
481 tnrlnsae|y ypernewrmi t pmntirsga gv§vl§n|xy a aggydgqdq LNSVERYDVE

541 TETWTFVAPM RHHRSALGIT VHQGKIYVLG GYDGHTFLDS VE§YDPDSDT WSEVTRMTSG 

613
601 RSGVGVAVTM EPC^QIDQQ n|t|

Fig. 1.9 - Mouse Keapl cysteine residues with low predicted pKa values. The full- 
length mouse Keapl protein sequence is shown. Cysteines are highlighted in blue. Basic 
amino acids flanking cysteine residues are highlighted in red. The residue numbers of 
cysteines flanked by basic amino acids are indicated.

1.7.4.4.1 Insights from site-directed mutagenesis studies

The extensive use of site-directed mutagenesis has served to highlight the critical roles 

of certain cysteine residues, particularly Cys-151, -273 and -288, in the function of 

Keapl (Kobayashi et al., 2006; Levonen et al., 2004; Wakabayashi et al., 2004; Zhang 

et al., 2003a). Cys-151, which resides within the BTB domain of Keapl, appears to be 

important for the loss of Nrf2 repression and ubiquitination stimulated by 

chemical/oxidative stress (Zhang et al., 2003a; Zhang et al., 2004). As such, it would 

appear that Cys-151 is not integral to the function of Keapl in the absence of 

chemical/oxidative stress, but is critical to its ability to respond to such conditions. In 

contrast, Cys-273 and -288, both located within the intervening region (IVR) of Keapl,
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are essential for the repressive activity of the protein under basal conditions (Kobayashi 

et a l., 2006; Levonen et a l., 2004; Wakabayashi et a l., 2004; Zhang et a l., 2003a). 

Although mutation of Cys-273 and/or -288 to serine or alanine does not affect the 

association between Keapl and CUL3 (Kobayashi et a l., 2004), it does render Keapl 

unable to direct ubiquitination of Nrf2, inhibit the nuclear accumulation of the 

transcription factor, or repress transactivation of an ARE-driven reporter transgene 

(Kobayashi e t a l., 2006; Levonen e t  a l., 2004; Wakabayashi e t  a l., 2004; Zhang e t  a l., 

2003a). Furthermore, the responsiveness of Nrf2 to known activating molecules is 

diminished or abolished in cells expressing Keapl Cys-273/288 mutants (Levonen e t a l., 

2004; Zhang e t  a l., 2003a). Notably, the mutation of other cysteines within the IVR, N- 

terminal and C-terminal domains has essentially no effect on Keapl function 

(Wakabayashi e t a l., 2004; Zhang e t a l., 2003a). Interestingly, phylogenetic comparison 

of 34 Keapl-like proteins reveals that residues 273 and 288 are cysteines only in the six 

homologues (human, mouse, rat, zebrafish, D ro so p h ila  and mosquito) that are regarded 

as the stress ‘sensing’ sub-family of Keapl-related proteins (Zhang e t  a l., 2003b). 

Therefore, in light of the evidence discussed, the integrities of Cys-151, -273 and -288 

are important for the function of Keapl, and these residues represent plausible targets 

for electrophilic inducers of Nrf2.

1.7.4.4.2 Evidence for the chemical modification of Keapl cysteines

Compelling evidence for the chemical modification of Keapl has been provided through 

the use of biotinylated analogues of Nrf2-activating molecules (Itoh e t a l., 2004; 

Levonen e t  a l., 2004), spectroscopic binding experiments (Dinkova-Kostova e t  a l., 

2002) and mass spectrometry (Dinkova-Kostova e t a l., 2002). Exposure of HepG2 cells 

to the Nrf2-activating NSAID indomethacin alters the thiol oxidation state of 

ectopically-expressed FLAG-tagged Keapl, as demonstrated by a change in isoelectric 

point (pi) of FLAG-Keapl subjected to isoelectric focussing, following reaction with 

iodoacetamide, which introduces a negative charge via alkylation of sulphydryl groups 

(Sekhar e t  a l., 2003). Furthermore, exposure of cells to low micromolar concentrations
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of a biotinylated form of 15-deoxy-Al2,14-prostaglandin J2 (15d-PGJ2), an endogenous 

cyclopentenone molecule with two electrophilic a,P-unsaturated carbonyl moieties, leads 

to the formation of adducts with Keapl and an associated activation of Nrf2 (Itoh et al., 

2004; Levonen et al., 2004).

In the only previous investigation to employ tandem mass spectrometry (MS/MS) as a 

tool to identify the residues in Keapl targeted by a model electrophile, the thiol-reactive 

steroid dexamethasone 21-mesylate (dex-mes) was shown to preferentially modify Cys- 

257, -273, -288 and -297, located within the IVR domain, and the C-terminal Cys-613, 

of recombinant mouse Keapl (Dinkova-Kostova et al., 2002). It is important to note that 

this study used bacterially-expressed, purified Keapl protein in which all cysteines were 

free for adduction, due to prior incubation with the reducing agent dithiothreitol (DTT). 

Hence, this study actually assessed the relative reactivities of Keapl cysteines towards 

different electrophiles, and such in vitro observations cannot be directly extrapolated to a 

cellular context, particularly as it has yet to be demonstrated that, in its native 

environment, all cysteines in Keapl are free sulphydryls. Nevertheless, a Keapl protein 

in which Cys-257, -273, -288 and -297 are mutated to alanine binds dex-mes at 50 % of 

the rate of the wild-type protein in vitro (Wakabayashi et al., 2004). Hence, although the 

current body o f evidence suggests that modification of Keapl cysteines may be an 

important triggering event in the activation of Nrf2, further characterisation of the 

residue selectivities of Nrf2-activating molecules, both in vitro and in a cellular context, 

is required to fully elucidate the role of Keapl cysteine modification in the induction of 

adaptive cell defence.

1.7.4.5 The role of phosphorylation in the regulation of Nrf2 activity

Although the modification of, or at least the potential to modify, cysteine residues 

appears to be a common characteristic amongst Nrf2-activating molecules, the 

stimulation of phosphorylation signalling pathways may also underlie the ability of some 

molecules to induce Nrf2-dependent cell defence. Notably, the phosphatase inhibitor

41



Chapter 1

okadaic acid, which promotes hyperphosphorylation (Cohen e t  a l ,  1990), stimulates 

Nrf2 accumulation and ARE reporter transgene activation in HepG2 cells (Nguyen e t  

a l ,  2003). Although the majority of studies that have implicated phosphorylation as a 

regulatory influence on Nrf2 function have done so through the use of pharmacological 

inhibitors of specific protein kinases, which attenuate Nrf2 induction by known 

activating molecules, disparate studies have demonstrated direct phosphorylation of 

Nrf2 by protein kinase C (PKC) (Bloom e t a l ,  2003; Huang e t  a l ,  2002; Nguyen e t  a l ,  

2000), extracellular signal-regulated kinase 1 (ERK-1) (Papaiahgari e t a l ,  2006) and 

protein kinase R-like endoplasmic reticulum kinase (PERK) (Cullinan e t  a l ,  2003). In 

addition, several recent reports have described the phosphorylation of Nrf2, at Tyr-568, 

by the tyrosine kinase Fyn, an event that is required for the nuclear export of the 

transcription factor (Jain e t a l ,  2007; Jain e t a l ,  2006; Karman e t a l ,  2006; Salazar e t  

a l ,  2006). Chemical inhibition or RNAi depletion of Fyn, or its upstream regulator 

glycogen synthase kinase 30, appears to attenuate nuclear export of Nrf2 and augment 

ARE-driven gene transactivation (Jain e t  a l ,  2007; Jain e t a l ,  2006; Karman e t  a l ,  

2006; Salazar e t a l ,  2006). Hence, phosphorylation may be an important signalling 

event in both the activation and deactivation of Nrf2, through promotion of both nuclear 

accumulation and export, respectively.

At present, the general importance of phosphorylation in the regulation of Nrf2 activity 

is unclear. For instance, it is not known whether specific inducers stimulate specific 

kinase pathways, perhaps in a cell or species -dependent manner, or whether the 

simultaneous induction of numerous pathways is characteristic of all Nrf2-activating 

molecules. To demonstrate the ambiguity surrounding this issue, Table 1.7 provides a 

summary of protein kinases implicated in ?er/-butylhydroquinone (tBHQ) -induced Nrf2 

activation. In light of these unresolved issues, current consensus regards the 

modification of cysteine residues within Keapl as the most likely trigger for Nrf2- 

dependent cell defence.
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Cell Type Species PKC PI3K p38 ERK Reference
HepG2 Human V Huang e t  al. (2000)
IMR-32 Human V X Lee e t al. (2001a)

Neurons/glia Mouse V Johnson e t  al. (2002)
H4IIE Rat S Kang e t al. (2 0 0 2 )
HepG2 Human X V Nguyen e t  al. (2003)
HepG2 Human V X X X Bloom e t al. (2003)

Neurons/glia Mouse ✓ Kraft e t al. (2004)
Hepatic 

stellate cells Rat X Reichard e t  al. (2006)

Hepa-lclc7 Mouse s Lee-Hilz e t  al. (2006)

Table 1.7 - Summary of protein kinases implicated in Nrf2 activation by tBHQ.
PKC, protein kinase C; PI3K, phosphatidyl inositol 3-kinase; p38, p38 mitogen- 
activated protein kinase; ERK, extracellular signal-regulated kinase; ■C inhibition affects 
tBHQ-induced activation of the Nrf2-ARE pathway; * inhibition does not affect tBHQ- 
induced activation of the Nrf2-ARE pathway.

1.7.4.6 The ‘hinge and latch’ model of Nrf2 regulation by Keapl

The recently proposed ‘hinge and latch’ mechanism (Tong e t a l ,  2006b) of Nrf2 

regulation advocates the continuous degradation of Nrf2, via its association with Keapl - 

CUL3, under basal conditions. Evidence suggests that Keapl exists as a dimer in 

mammalian cells (McMahon e t a l ,  2006) and binds to Nrf2 in this form (i.e. two 

molecules of Keapl per molecule of Nrf2) (Lo e t a l ,  2006; Tong e t  a l ,  2006a; 

Wakabayashi e t  a l ,  2004; Zipper e t a l ,  2002). Binding via the high-affinity ETGE motif 

(Kobayashi e t a l., 2002), within the Neh2 domain of Nr£2, provides the ‘hinge’ through 

which the transcription factor can move in space relatively freely (McMahon e t  a l ,  

2006). Concomitant binding via the lower affinity DLG motif, also located within the 

Neh2 domain of Nrf2, provides the ‘latch’ that tightly restricts Nrf2 to enable optimal 

positioning of target lysines for conjugation with ubiquitin (McMahon e t a l ,  2006; Tong 

e t a l ,  2006a). In keeping with this, deletion of the ETGE motif attenuates the interaction 

between Nrf2 and Keapl (Furukawa e t a l ,  2005; Kobayashi e t a l ,  2004; Kobayashi e t  

a l ,  2002), resulting in the stabilisation of Nrf2 (Furukawa e t a l ,  2005; Kobayashi e t  a l ,  

2004). In contrast, deletion of the DLG motif, or mutation of residues within, has no
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effect on the association of Nrf2 and Keapl, but renders the latter unable to direct Nrf2 

for degradation (McMahon e t  a l., 2006; McMahon e t a l., 2004), also causing an increase 

in the stability of the transcription factor.

Although chemical inducers are capable of promoting the stabilisation and nuclear 

accumulation of Nrf2, evidence suggests that they do not evoke its complete dissociation 

from, nor impair its ability to associate with, Keapl (Eggler e t  a l., 2005; Kobayashi e t  

a l., 2006; Zhang e t a l., 2003a; Zhang e t a l., 2004). In fact, such Nrf2-activating 

molecules may increase the association of the transcription factor with Keapl (He e t  a l., 

2006; Hong e t  a l., 2005; Kobayashi e t  a l., 2006), most probably due to diminished 

degradation of Keapl-bound Nrf2. Notably, when d e  n ovo  protein synthesis is inhibited 

by cyclohexamide, Nrf2 does not accumulate within the nuclei of cells exposed to 

diethylmaleate (Itoh e t  a l., 2003) or tBHQ (Kobayashi e t a l., 2006). In the ‘hinge and 

latch’ model, the ubiquitination of Nrf2 is attenuated under conditions of 

chemical/oxidative stress (He e t  a l., 2006; Kobayashi e t a l., 2006; Zhang e t a l., 2004), 

and this is thought to be the result of disruption of the Nrf2-Keap 1-CUL3 complex. This 

destabilisation is postulated to occur through loss of DLG motif binding, via a local 

conformational change in the IVR domain provoked by modification of critical 

cysteines, which leads to the improper spatial positioning of target lysines (McMahon e t  

a l., 2006); further evidence for this is required, however. As a result of the 

destabilisation of the Nrf2-Keapl-CUL3 complex, the transcription factor is not directed 

for degradation, but remains associated with Keapl via the ETGE motif. This leads to 

the saturation of Keapl, such that any newly-synthesised Nrf2 can evade Keapl and 

accumulate within the nucleus, leading to the transactivation of ARE target genes (Tong 

e t  a l., 2006b). An overview of the ‘hinge and latch’ model of Nrf2 regulation is 

presented in Figure 1.10. In summary, the antioxidant response pathway, regulated by 

the transcription factor Nrf2, represents a major component of the cellular defensive 

machinery that serves to protect against chemical/oxidative stress.
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B Keapl

Figure 1.10 - Summary of the current ‘hinge and latch’ model of Nrf2 regulation.
(A) In the absence of cellular stress, the Keapl homodimer binds both the ETGE and 
DLG motifs of a single Nrf2 molecule, tightly positioning the transcription factor to 
enable the efficient transfer of ubiquitin, and thus directing Nrf2 for proteasomal 
degradation. (B) Under conditions of chemical/oxidative stress, binding through the low- 
affinity DLG ‘latch’ is perturbed, probably via a conformational change in Keapl 
brought about through modification of one or more cysteine residues, whilst binding 
through the high-affinity ETGE ‘hinge’ is maintained. Although Nrf2 still associates 
with Keapl, the transcription factor is no longer held in the correct position to facilitate 
ubiquitin transfer, and thus Nrf2 is not directed for proteasomal degradation. As a result, 
Keapl becomes saturated by Nrf2, and any newly-synthesised Nrf2 is able to 
accumulate within the nucleus and transactivate cytoprotective genes. Adapted from 
Tong et al. (2006b).
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1.7.5 The coordinated regulation of transcription factor activity

Although the transcription factors highlighted in this section regulate the activity of 

discrete pathways in their own right, there is significant overlap between certain aspects 

of these pathways, particularly the signalling mechanisms that control their activation 

and the target genes that are induced as a result of an increase in transactivation. For 

example, GCL has been reported to be regulated by Nrf2, NF-kB and AP-1 (Lu, 1999). 

As such, the relative actions of several transcription factors may have a significant 

influence on the response, and eventual fate, of a cell following exposure to a given 

stimulus. Intriguingly, a number of transcription factors involved in the adaptive 

response to cellular stress appear to share a common means of control - the targeted 

ubiquitination, and consequent proteasomal degradation, of specific regulatory 

components, which represents a molecular switch that facilitates the rapid 

activation/inactivation of cytoprotective pathways (for a review, see Tong et al., 2006b). 

For example, as discussed in section 1.7.4.3, Nrf2 is directed for proteasomal 

degradation in the absence of cellular stress, via association with its cytosolic repressor, 

Keapl. A similar mechanism inhibits the basal activity of HIF-1; the onset of hypoxia 

inhibits the 0 2 -dependent hydroxylation of HIF-1, perturbing recognition by its specific 

E3 ubiquitin ligase complex, and thus enabling an increase in its cytoprotective activity 

(Kallio et al., 1999). On the other hand, the onset of ubiquitination signals the activation 

of the NF-kB pathway; upon the receipt of appropriate stimuli, NF-kB escapes 

repression following the ubiquitination and destruction of IkB (Hayden et al., 2004). 

Hence, the transcriptional regulation of highly coordinated and, in some instances, 

overlapping signalling pathways endows cells with a multifaceted and inducible defence 

system.

1.8 THESIS AIMS

In light of the critical role played by transcription factors in the defence against toxic 

insult, an understanding of the molecular mechanisms that govern the adaptive response
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to chemical/oxidative stress is vital to gain insights into the signalling events that 

determine the progression, and outcome, of adverse drug reactions such as DILI. The 

Nrf2-ARE pathway represents the major regulator of inducible cell defence, and 

deficiencies in this pathway may have a significant impact on the pathogenesis of DILI. 

As such, this thesis aims to investigate the role o f the Nrf2-ARE pathway in DILI, by 

addressing key questions, namely; a) how important is the Nrf2-ARE pathway in the 

regulation of basal and inducible hepatic cell defence? b) is the Nrf2-ARE pathway 

activated by molecules that are known to cause DILI? c) do Nrf2 activators selectively 

modify cysteines within Keapl? d) does modification of Keapl correlate with the 

activation of Nrf2 in cells? e) is there overlap between the Keapl cysteine residues 

targeted by structurally-distinct Nrf2-activating molecules?

By increasing our appreciation of the role of the Nrf2-ARE pathway in the protection 

against DILI, it may be possible to develop a predictive toxicity screen, based on the 

activation of certain aspects of the pathway, for example, the adduction of Keapl 

cysteines. In addition, the promise of manipulating the Nrf2-ARE pathway as a 

therapeutic strategy for the prevention and/or treatment of certain diseases is highly 

dependent upon advances in our understanding of the biochemistry that underlies this 

versatile cytoprotective system. Overall, therefore, this thesis aims to broaden our 

awareness of the role of the Nrf2-ARE pathway in the protection against DILI.
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CHAPTER 2

Cell defence responses to N-acetyl-/j-benzoquinoneimine 

and structurally distinct electrophiles
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2.1 INTRODUCTION

Mammalian cells can defend themselves against chemical and oxidative stress via the 

inducible expression of detoxification enzymes and antioxidant proteins (Prestera e t a l ,  

1993b). A major regulator of this adaptive response is the transcription factor Nrf2, 

which controls the inducible expression of several cytoprotective genes (for a review, 

see Kensler e t a i ,  2007), through its action on the ARE regulatory motif (Wasserman e t  

a l ,  1997). Under non-stressed conditions, the activity of Nrf2 is repressed by Keapl 

(Itoh e t a l ,  1999), a cysteine-rich protein which acts as a substrate adaptor for CUL3- 

dependent ubiquitination of Nrf2 (Kobayashi e t a l ,  2004), thereby directing the 

transcription factor for proteasomal degradation (McMahon e t  a l ,  2003). Under 

conditions of chemical or oxidative stress, the negative regulation of Nrf2 is disrupted, 

enabling it to accumulate within the nucleus and transactivate target genes (Itoh e t  a l ,

2003) .

Research from this laboratory has previously shown that the Nrf2-ARE pathway is 

activated in mouse liver following administration of hepatotoxic and non-hepatotoxic 

doses of paracetamol, a model metabolism-dependent hepatotoxin (Goldring e t a l ,

2004) . Paracetamol-induced hepatotoxicity, the single biggest cause of acute liver failure 

in both the UK (Davem e t  a l ,  2006) and USA (Larson e t a l ,  2005), is inextricably 

linked to the formation of a chemically reactive metabolite, NAPQI (Fig. 2.1), which 

causes chemical and oxidative stress, and inhibits the function of critical proteins within 

hepatocytes (for a review, see Park e t  a l ,  2005a). Whilst the molecular mechanisms 

underlying the activation of Nrf2 by chemical inducers are yet to be fully defined, it is 

clear that the Nrf2-ARE pathway is responsive to numerous chemicals that are all 

chemically reactive and capable of modifying sulphydryl groups (Dinkova-Kostova e t 

a l ,  2001). Given that NAPQI is known to react with cysteine thiols in v itro  and in v ivo  

(Hoffmann e t a l ,  1985a; Hoffmann e t a l ,  1985b), a plausible hypothesis to explain the 

activation of Nrf2 following paracetamol administration is that chemical modification of 

Keapl cysteines by NAPQI perturbs its ability to repress the transcription factor.
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The aims of the studies presented in this chapter were, firstly, to validate the Hepa-lclc7 

mouse liver cell line as a suitable model system for investigating the molecular 

regulation of the Nrf2-ARE pathway, using an RNAi approach to deplete cellular levels 

of Nrf2 or Keapl, and assess the effect of these changes on cell defence. Following the 

functional validation of Hepa-lclc7, this cell line was used to examine the ability of the 

synthetic metabolite NAPQI to activate Nrf2 and stimulate adaptive cell defence; the 

latter was assessed by measuring levels of Gclc messenger RNA (mRNA) and GSH 

following direct exposure to the electrophile. The chemical, biochemical, and 

toxicological aspects of Nrf2 activation by NAPQI were further explored through the 

use of a panel of structurally distinct electrophiles. Specifically, two cysteine-reactive 

molecules were employed; 2,4-dinitrochlorobenzene (DNCB; Fig. 2.1), an aromatic 

electrophile that reacts with nucleophiles via bimolecular nucleophilic substitution 

(Sn2), leading to displacement of the halogen leaving group (chlorine), and 15-deoxy-A- 

(l2 l4)-prostaglandin J2 (15d-PGJ2; Fig. 2.1), a cyclopentenone that reacts with 

nucleophiles via 1,4 addition. In order to explore the importance of cysteine reactivity 

and GSH depletion in the activation of Nrf2, these cysteine-reactive molecules were 

used in conjunction with trimellitic anhydride (TMA; Fig. 2.1), which acylates the 

amino group of lysine. As TMA lacks the cw-carbon-carbon double bond present in 

some anhydride molecules, the irreversible reaction with a sulphydryl group is not 

possible (de la Escalera et al., 1989). Therefore, TMA is non-reactive towards cysteines 

in proteins and the sulphydryl group of GSH.

Fig. 2.1 - Chemical structures of NAPQI, DNCB, 15d-PGJ2 and TMA.
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2.2 METHODS

2.2.1 Materials and reagents

Nunclon A cell culture flasks, dishes and multi-well plates, and LabTek II chamber 

slides were from Nalge-Nunc International (c/o VWR International, Lutterworth, UK). 

DMEM and trypsin/versene were from Lonza Bioscience (Wokingham, UK). The 

Wilovert D6330 light microscope was from Will-Wetzlar (Wetzlar, Germany). 15d-PGJ2 

was from Alexis Biochemicals (Lausen, Switzerland). The rabbit anti-goat HRP- 

conjugated secondary antibody was from Dako (Ely, UK). The rabbit anti-sheep HRP- 

conjugated secondary antibody was from Calbiochem (Nottingham, UK). Protein assay 

dye reagent, Precision Plus protein Kaleidoscope standards, non-fat dry milk and the 

GS-710 calibrated imaging densitometer were from Bio-Rad (Hemel Hempstead, UK). 

FBS, NuPAGE Novex 4-12 % Bis-Tris gels, NuPAGE LDS sample buffer, sample 

reducing agent and antioxidant, the XCell Surelock mini-cell, the iBlot gel transfer 

device and transfer stacks, Alexa Fluor 594, Hoechst 33258, pCMV-SPORT p- 

galactosidase, Lipofectamine 2000 and RNasezap were from Invitrogen (Paisley, UK). 

TotalLab 100 software was from Nonlinear Dynamics (Newcastle, UK). Vectashield 

was from Vector Laboratories (Peterborough, UK). The SP2 AOBS confocal 

microscope was from Leica Microsystems (Milton Keynes, UK). The pGL3B- 

\0l6/nqo5'-luc reporter plasmids and rabbit anti-mouse Nrf2 primary antibody were 

kindly donated by Prof. John Hayes (Biomedical Research Centre, University of 

Dundee, UK). The sheep anti-Gclc primary antibody was kindly donated by Dr. Leslie 

McLellan (Biomedical Research Centre, University of Dundee, UK). GeneJuice was 

from Novagen (Nottingham, UK). Reporter lysis 5X buffer, the P-galactosidase Enzyme 

Assay System, the Bright-Glo Luciferase Assay System and QuantiLum recombinant 

luciferase were from Promega (Southampton, UK). The Cytotoxicity Detection Kit was 

from Roche Diagnostics (Burgess Hill, UK). The Nrf2, Keapl and control siRNA 

duplexes were from Dharmacon (Lafayette, USA). The DU640 UV spectrophotometer 

was from Beckman Coulter (High Wycombe, UK). The TaqMan Reverse Transcription 

Kit, universal PCR master mix, and gene expression assay probes, MicroAmp optical
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96-well reaction plates, the GeneAmp 9700 PCR system and the ABI PRISM 7000 

sequence detection system were from Applied Biosystems (Warrington, UK). Absolute 

QPCR seals and the adhesive seal applicator were from ABgene (Epsom, UK). The 

FL600 fluorescence microplate reader was from BioTek Instruments (Winooski, USA). 

The MRX microplate reader was from Dynatech Laboratories (Billingshort, UK). The 

goat anti-Keapl primary antibody was from Santa Cruz Biotechnology (Heidelberg, 

Germany). Western Lightening chemiluminescence reagents were from PerkinElmer, 

Beaconsfield, UK. Hyperfilm ECL was from Amersham (Little Chalfont, UK). 

Penicillin-streptomycin solution, Trypan Blue solution, NAPQI, DNCB, TMA, DMSO, 

Hank’s balanced salt solution, BSA, spermidine, spermine, protease inhibitor cocktail, 

MOPS, the rabbit anti-actin primary antibody, the goat-anti rabbit HRP-conjugated 

secondary antibody, the Kodak BioMax MS intensifying screen, Kodak developer and 

fixer solutions, Ponceau S solution, Tween 20, PBS tablets, paraformaldehyde, DTNB, 

GSH, GSH reductase, NADPH, sulphosalicylic acid, chloroform DNase/RNase-free 

water and TRI reagent were from Sigma-Aldrich (Poole, UK). All other reagents were of 

analytical or molecular grade, and were from Sigma-Aldrich.

2.2.2 Cell culture

The mouse hepatoma cell line Hepa-lclc7, which has been employed by others in 

previous studies of the Nrf2-ARE pathway (Jowsey et al., 2003; Me Walter et al., 2004; 

Petzer et al., 2003), was maintained in conventional growth medium (Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 584 mg/L L-glutamine, 10 % 

fetal bovine serum (FBS), 100 U/mL penicillin and 100 pg/mL streptomycin). Cells 

were maintained in a humidified incubator, at 37 °C, in a 5 % carbon dioxide (C 02) 

atmosphere. Cells were grown in 75 cm2 Nunclon A culture flasks and routinely 

passaged every 3-4 days, at around 80 % confluency. Following a single wash with 

unsupplemented DMEM, cells were incubated for 1 min with 5 mL trypsin/versene at 

room temperature. Following the removal of the trypsin/versene, the cells were 

incubated for 5 min at 37 °C, sufficient time to enable the complete detachment o f cells
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from the flask surface. Detached cells were resuspended in 10 mL growth medium and 

passed three times through a 21-gauge needle, using a 10 mL syringe, to break up any 

cell clumps. For continuation, cells were re-seeded at a cells:growth medium ratio of 

1:4.

For the analysis of nuclear Nrf2 content, cells were seeded onto 56.7 cm2 Nunclon A 

culture dishes, at 5 x 106 cells/dish, in a total volume of 10 mL growth medium, and 

allowed to grow for 24 h. To ensure that an accurate number of cells were seeded, cells 

were counted using Trypan Blue solution (0.4 % w/v) and a haemocytometer. Briefly, 

cells were detached from the surface of a culture flask, as described above. A 45 pL 

aliquot of cells was combined with 5 pL Trypan Blue solution. 10 pL of this mixture 

was transferred to the edge of a haemocytometer and allowed to spread evenly across the 

surface by capillary action. Cells were visualised using the 20X objective of a Wilovert 

D6330 light microscope. Viable cells (those that did not take up the Trypan Blue dye) 

within the central 5 x 5  square (equivalent to 0 .1  mm3) were counted and the original 

cell density was calculated as follows:

Number o f  cells counted x 1.1 (to correct fo r  dilution with Trypan Blue solution) = cells
3 3

per 0.1 mm x 10,000 = cells per 1 cm = cells per 1 mL

2.2.3 Treatment of cells with electrophiles

Under sterile conditions, Hepa-lclc7 cells, seeded onto 56.7 cm2 Nunclon A culture 

dishes at 5 x 106 cells/dish the previous day, were washed once with unsupplemented 

DMEM, and then 9.95 mL unsupplemented DMEM was added to each dish. NAPQI, 

DNCB and TMA were dissolved, at 200x the required final concentration, in dimethyl 

sulphoxide (DMSO). As 15d-PGJ2 was supplied pre-dissolved in methyl acetate, the 

solvent was removed by evaporation, under a gentle stream of nitrogen gas, immediately 

prior to each treatment. The solute was then reconstituted in DMSO, at 200x the 

required final concentration. To appropriate dishes of Hepa-lclc7 cells, 50 pL DMSO
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or electrophile were added (i.e. 1:200 dilution). The overall concentration of DMSO in 

the cell culture medium was 0.5 % (volume/volume; v/v). The cells were then returned 

to a humidified incubator (37 °C, 5 % CO2) for the indicated period of time.

2.2.4 Preparation of cytosolic/nuclear fractions

Following treatment, cells were washed once with Hank’s balanced salt solution, 

removed from the surface of the culture dish by scraping and resuspended in 1 mL 

buffer A (lysis; 50 mM NaCl, 10 mM 4-(2-hydroxyethyl)-l-piperazineethanesulfonic 

acid (HEPES), 1 mM ethylenediaminetetraacetic acid (EDTA), 0.5 mM sucrose, 0.5 mM 

spermidine, 0.15 mM spermine, 10 mM P-mercaptoethanol, 0.2 % (v/v) protease 

inhibitor cocktail, 0.2 % (v/v) Triton X-100). Lysates were clarified by centrifugation at 

1150 g, 4 °C, for 5 min, and the supernatant retained as the cytosolic fraction. For the 

extraction of nuclear proteins, the pellet was washed in 0.5 mL buffer B (wash; 25 % 

(v/v) glycerol, 50 mM NaCl, 10 mM HEPES, 1 mM EDTA, 0.5 mM spermidine, 0.15 

mM spermine, 10 mM P-mercaptoethanol, 0.2 % protease inhibitor cocktail) and 

centrifuged at 1150 g, 4 °C, for 5 min. Following removal of the supernatant, the pellet 

was resuspended in 0.1 mL buffer C (extraction; 0.35 M NaCl, 25 % (v/v) glycerol, 10 

mM HEPES, 1 mM EDTA, 0.5 mM spermidine, 0.15 mM spermine, 10 mM P- 

mercaptoethanol, 0.2 % protease inhibitor cocktail) and incubated on ice for 30 min, to 

facilitate the osmotic extraction of nuclear proteins, which were isolated following a 

final centrifugation at 1150 g, 4 °C, for 5 min. All subcellular fractions were stored at - 

80 °C prior to analysis by Western blot.

2.2.5 Determination of protein content

The total protein content of subcellular fractions was determined using Protein Assay 

Dye Reagent, in accordance with the manufacturer’s instructions. Based on the method 

of Bradford (1976), this assay relies on the binding of Coomassie Brilliant Blue G-250
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dye to basic and aromatic amino acids, an event that results in a change in colour of the 

dye (red to blue), and a consequent change in absorbance maximum from 465 to 595 

nm. Hence, the increase in absorbance at 570 nm, measured using a MRX microplate 

reader, is proportional to the amount of bound dye, and thus to the amount of protein 

present. A standard curve, ranging from 0.25-5 pg bovine serum albumin (BSA), was 

used to calculate sample protein content.

2.2.6 Western blot analysis

Nuclear (5 pg) or cytosolic (15 pg) protein fractions were denatured via the addition of 5 

pL loading buffer (70 % (v/v) NuPAGE sample loading buffer, 30 % (v/v) NuPAGE 

reducing agent) and incubated at 80 °C for 5 min. Samples were loaded onto pre-cast 4- 

12 % NuPAGE Novex bis-tris polyacrylamide gels, alongside PrecisionPlus protein 

Kaleidoscope standards. Samples were resolved by electrophoresis in a XCell Surelock 

mini-cell, using a 3-(N-morpholino)propanesulphonic acid (MOPS) running buffer (50 

mM MOPS, 50 mM Tris base, 3.5 mM sodium dodecyl sulphate, 1 mM EDTA, 0.25 % 

(v/v) NuPAGE antioxidant), at 90 V for 10 min, followed by 60 min at 170 V. Separated 

proteins were transferred to nitrocellulose membranes using the iBlot dry blotting 

system, in accordance with the manufacturer’s instructions. To ensure the transfer 

process was successful, membranes were stained for 10 sec with Ponceau S solution. 

Membranes were blocked for 15 min, on an orbital shaker, in tris-buffered saline (TBS; 

0.15 M NaCl, 25 mM Tris base, 3 mM KC1, pH 7.0) containing 0.1 % (v/v) Tween 20 

and 10 % (weight/volume; w/v) non-fat dry milk. Blocked membranes were probed for 1 

h with rabbit anti-mouse Nrf2 (1:5000 in TBS-Tween containing 2 % (w/v) BSA), goat 

anti-Keapl (1:2000 in TBS-Tween containing 2 % (w/v) non-fat dry milk) or sheep anti- 

Gclc (1:5000 in TBS-Tween containing 2 % (w/v) non-fat dry milk) primary antisera. 

Following several washes in TBS-Tween, membranes were probed for 1 h with goat 

anti-rabbit (1:10,000 in TBS-Tween containing 2 % (w/v) BSA), rabbit anti-goat 

(1:3000 in TBS-Tween containing 2 % (w/v) non-fat dry milk) or rabbit anti-sheep 

(1:10,000 in TBS-Tween containing 2 % (w/v) non-fat dry milk) horseradish peroxidase
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(HRP) -conjugated secondary antisera. Immunoblots were visualised with Western 

Lightening chemiluminescence reagents and exposed to Hyperfilm ECL under darkroom 

conditions, using a Kodak BioMax MS intensifying screen. Blots were developed using 

Kodak developer and fixer solutions. In order to ensure equal loading across gels, 

membranes were probed with rabbit anti-P-actin primary (1:5000 in TBS-Tween 

containing 2 % (w/v) BSA) and goat anti-rabbit HRP-conjugated secondary antisera. 

Recombinant mouse Nrf2 or mouse Keapl, or mouse liver lysate (Gclc standard), were 

loaded as standards to confirm antibody specificity. Films were scanned using a GS-710 

calibrated imaging densitometer, immunoreactive band volumes were quantified using 

TotalLab 100 software, in accordance with the manufacturer’s instructions, and 

normalised to P-actin.

2.2,7 Confocal microscopy

Hepa-lclc7 cells were seeded onto Lab-TEK II chamber slides, at 2 x 105 

cells/chamber, 24 h prior to treatment. Treatments were performed essentially as 

described in section 2.2.3. Following treatment, cells were washed via 2 x 3  min 

incubations with 0.5 mL of IX phosphate-buffered saline (PBS; 0.137 M NaCl, 10 mM 

Na2HPC>4, 1.8 mM KH2PO4, 2.7 mM KC1, pH 7.4). The removal of media from the 

chambers was achieved by inverting the slide and gently tapping onto a paper towel, to 

avoid dislodging cells through repeated pipetting. Cells were fixed in 0.5 mL fresh 4 % 

(w/v) paraformaldehyde at 4 °C for 30 min, followed by 4 x 3 min washes with 0.5 mL 

PBS. Fixed cells were permeabilised with 0.3 mL of 0.2 % (v/v) Triton X-100, quenched 

with 0.3 mL of 0.1 M glycine and blocked with 0.3 mL of 10 % (v/v) FBS, for 10 min 

each. Cells were then incubated with 0.2 mL of 2 % (v/v) FBS containing anti-mouse 

Nrf2 antiserum (1:500) at 37 °C for 1 h. Following 3 x 3  min washes with 0.5 mL PBS, 

cells were incubated with 0.2 mL of 2 % (v/v) FBS containing 8 pg/mL Alexa Fluor 

594-conjugated goat anti-rabbit IgG, at 37 °C for 1 h. To prevent bleaching of the 

fluorescent signal, during this and subsequent steps, the chamber slide was wrapped in 

aluminium foil. Cells were washed for 3 x 3 min with 0.5 mL PBS and nuclear DNA
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was counterstained at room temperature, for 10 min, with 0.2 mL PBS containing 2 

pg/mL Hoechst 33258. Cells were washed with 0.5 mL PBS for 3 x 3 min. Chambers 

were carefully detached from slides, using the splitting tool provided by the 

manufacturer, and slides were allowed to dry at room temperature for 5 min. Coverslips 

were mounted using VectaShield hard-set medium, in accordance with the 

manufacturer’s instructions. Slides were wrapped in aluminium foil and stored at 4 °C 

prior to confocal analysis. Immunofluoresence was visualised using a SP2 AOBS 

confocal microscope, with a 63X 1.4 oil objective. A total of five separate fields were 

evaluated for each treatment group (representative fields are presented).

2.2.8 Analysis of mouse N q o l ARE reporter transgene activity

Hepa-lclc7 cells were seeded onto 96-well plates, at 2 x 104 cells/well, 24 h prior to 

transfection. Cells were then transfected for 24 h with 100 ng of either pGL3B- 

\0\6/nqo5'-luc wild-type reporter plasmid or a mutant plasmid containing an entirely 

scrambled ARE sequence, as previously described by Nioi et al. (2005). pGL3B- 

\0\6/nqo5'-luc represents the pGL3 basic luciferase vector into which a 1016 bp 5’- 

upstream region of the mouse Nqol gene has been subcloned, enabling ARE-mediated 

regulation of modified firefly luciferase gene expression. To control for any differences 

in the amount of reporter plasmid DNA transfected between wells, all cells were co­

transfected with 100 ng of pCMV SPORT-p-galactosidase plasmid, in which the E. coli 

P-galactosidase gene is under the control of the upstream cytomegalovirus (CMV) 

promoter. Transfections were performed using GeneJuice reagent, in accordance with 

the manufacturer’s instructions. For treatments, cells were washed once with 

unsupplemented DMEM, and then 199 pL unsupplemented DMEM was added to each 

well. NAPQI was dissolved, at 200x the required final concentration, in dimethyl 

sulphoxide (DMSO) and 1 pL was added to appropriate wells (i.e. 1:200 dilution). The 

overall concentration of DMSO in the cell culture medium was 0.5 % (v/v). The cells 

were then returned to a humidified incubator (37 °C, 5 % CO2) for the indicated period 

of time. Following treatment, the media was removed and cells were lysed in situ with
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0.1 mL of IX Reporter Lysis Buffer. Lysates (20 pL) were transferred to a white 96-well 

plate and 20 pL Bright-Glo Luciferase Assay Reagent was added. 15 pg QuantiLum 

recombinant firefly luciferase was used as a positive control for the assay. Air bubbles 

were removed via brief centrifugation of the plate at 3000 revolutions per minute (rpm). 

Firefly luciferase activity was measured immediately on a FL600 fluorescence 

microplate reader, adapted to measure luminescence. Blank readings were obtained from 

wells containing IX Reporter Lysis Buffer and Bright-Glo Reagent, and subtracted from 

sample readings. The P-Galactosidase Enzyme Assay System was used to measure 0- 

galactosidase activity within the lysates; a separate 20 pL aliquot of each lysate was 

transferred to a clear 96-well plate, combined with 20 pL of 2X Assay Buffer, and 

incubated at 37 °C for 30 min. 1 unit (U) recombinant p-galactosidase was used as a 

positive control for the assay. The reaction was stopped by the addition of 60 pL of 1 M 

sodium carbonate. Air bubbles were removed via brief centrifugation of the plate at 

3000 rpm. P-Galactosidase activity was measured at 405 nm, on a MRX microplate 

reader. Blank readings were obtained from wells containing IX Reporter Lysis Buffer 

and IX Assay Buffer, and subtracted from sample readings. Luciferase activity was 

normalised to P-galactosidase activity for all samples, to control for transfection 

efficiency.

2.2.9 Determination of total glutathione levels

Total GSH content was quantified using the 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) 

-GSH reductase recycling method, as previously described by Vandeputte et al. (1994), 

whereby:

1) 2GSH + DTNB -*■ GSSG + TNB

2) GSSG + NADPH + PC —> 2GSH + NADP+ (catalysed by GSH reductase)

In this method, GSH is oxidised by DTNB to yield GSSG and the 5-thio-2-nitrobenzoic 

acid (TNB) chromophore, which has an absorbance maximum of 412 nm. Thus, the rate
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of formation of TNB, as followed at 405 nm, is proportional to the sum of GSH and 

GSSG present in each sample. Briefly, cells in 24-well plates (seeded at 2 x 105 

cells/well) were harvested by scraping in 0.125 mL of 10 mM HC1. Appropriate aliquots 

were taken to enable the determination of total protein content, as described in section 

2.2.5. To the remaining samples, sulphosalicylic acid was added to a final concentration 

of 1.3 % (w/v), and protein precipitation was facilitated by incubating on ice for 10 min. 

Protein was pelleted by centrifugation at 18,000 g for 5 min. 20 pL supernatant was 

transferred to a clear 96-well plate, and combined with 20 pL assay buffer (0.143 M 

NaH2P 0 4, 6.3 mM EDTA, pH 7.4) to neutralise pH. Samples were incubated, at room 

temperature, with 0.2 mL assay reagent (1.0 mM DTNB, 0.34 mM NADPH, in 0.143 M 

NaH2P 0 4, 6.3 mM EDTA, pH 7.4) for 5 min. The enzymatic reaction was initiated by 

the addition of 0.35 U GSH reductase and followed kinetically at 405 nm for 5 min on a 

MRX microplate reader. The rate of TNB formation was calculated as the change in 

absorbance min'1. Sample GSH concentrations were calculated via reference to a 

standard curve ranging from 1-50 nmol/mL GSH. The GSH concentration for each 

sample was normalised to total protein content.

2.2.10 Determination of lactate dehydrogenase leakage

Overt cytotoxicity was assessed by measuring the leakage of the cytoplasmic enzyme 

lactate dehydrogenase (LDH) into the cell culture media. LDH reduces NAD+ to NADH 

+ H+, via the oxidation of lactate to pyruvate. The transfer of 2H from NADH + H+ to 

the tétrazolium salt 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-phenyltetrazolium chloride by 

a catalyst (diaphorose) yields a formazan dye with an absorbance maximum of 500 nm:

Lactate
LDH

Pyruvate

NAD+ NADH + H+

Formazan salt
Diapharose

Tétrazolium salt
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Thus, the amount of formazan formed over time is directly proportional to the LDH 

activity in the culture media, and therefore correlates to the degree of cell death. As the 

leakage o f LDH is particularly indicative of the degree of membrane damage, it is 

typically used as a marker o f cellular necrosis.

Hepa-lclc7 cells were seeded onto 96-well plates at 1 x 104 cells/well and treated as 

described in section 2.2.3. Following treatment, the plate was briefly centrifuged at 3000 

rpm to pellet cells, and the cell-free culture media was removed to a new 96-well plate. 

Cells were lysed via the addition of 40 pL DMEM containing 2 % (v/v) Triton X-100, 

followed by centrifugation at 3000 rpm for 5 min. 50 pL cell-free culture media (diluted 

1:4 in DMEM) and cell lysate (diluted 1:20 in DMEM) were separately transferred to 

new 96-well plates. LDH leakage was measured using a Cytotoxicity Detection Kit; 50 

pL assay reagent (1 pL catalyst per 45 pL dye solution) was then added to each well. 

Following incubation in the dark for 30 min, air bubbles were removed via brief 

centrifugation of the plates at 3000 rpm. Formazan salt formation was measured at 490 

nm on a MRX microplate reader. Blank readings were obtained from wells containing 

50 pL DMEM, and subtracted from sample readings. LDH leakage from cells into the 

culture media (extracellular) is expressed as a percentage of total LDH (intracellular plus 

extracellular).

2.2.11 RNA interference

Depletion of Nrf2 or Keapl in Hepa-lclc7 cells was achieved by RNAi, which exploits 

a natural cellular process that facilitates the post-transcriptional silencing of specific 

genes, through the targeted degradation of mRNA (for a review, see Novina et al., 

2004). RNAi is typically triggered when a cell encounters a long double-stranded RNA 

(dsRNA) molecule (Fig. 2.2) (Fire et al., 1998). The dsRNA is cleaved into smaller 

fragments, called short interfering RNAs (siRNA), by the enzyme Dicer (Bernstein et 

al., 2001). siRNA molecules are 21-23 nucleotide strands of dsRNA, with symmetric 3’ 

overhangs of 2-3 nucleotides in length, and 5’-phosphate and 3’-hydroxyl groups
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(Elbashir et al., 2001b). The sense strand of the siRNA is degraded, whilst the antisense 

strand becomes incorporated into an RNA-induced silencing complex (RISC), which 

then targets complementary mRNA sequences for destruction (Fig. 2.2) (Hammond et 

al., 2000). As a result of this mRNA destruction, no protein is translated. Hence, gene 

expression is effectively silenced in a post-transcriptional manner. As such, RNAi has 

proved to be a major advance in the field of biomedical research, and the targeted 

silencing of a large number of genes is now possible through the widespread availability 

of synthetic siRNA molecules (Elbashir et al., 2001a).

U_L l l l l l l l

1

mRNA degradation

Post-transcriptional 
gene silencing

Fig. 2.2 - Overview of RNAi pathway. The endogenous RNAi pathway is typically 
triggered when a cell encounters a long double-stranded RNA (dsRNA) molecule. The 
dsRNA is cleaved into smaller short interfering RNAs (siRNA) by the enzyme Dicer. 
The sense strand of the siRNA is degraded, whilst the antisense strand becomes 
incorporated into an RNA-induced silencing complex (RISC), which then targets 
complementary mRNA sequences for destruction. As a result of this mRNA destruction, 
no protein is translated, and gene expression is effectively silenced in a post- 
transcriptional manner.

Predesigned siRNA duplexes targeted against mouse Nrf2 (si-Nrf2) or Keapl (si- 

Keapl), and a scrambled, non-targeting control siRNA duplex (si-Con), were purchased 

from Dharmacon’s siGENOME library. The siRNA duplex sequences were as follows;
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si-Nrf2 #1 sense 5’-GCA AGA AGC CAG AUA CAA AUU-3’, antisense 5’-P UUU 

GUA UCU GGC UUC UUG CUU-3’; si-Nrf2 #2 sense 5’-AGA CUC AAA UCC CAC 

CUU AUU-3’, antisense 5’-P UAA GGU GGG AUU UGA GUC UUU-3’; si-Keapl #1 

sense 5’-GAA GCA AAU UGA UCA ACA AUU-3\ antisense 5’-P UUG UUG AUC 

AAU UUG CUU CUU-3’; si-Keapl #2 sense 5’-GCU AUG ACC CGG ACA GUG 

AUU-3’, antisense 5’-P UCA CUG UCC GGG UCA UAG CUU-3’, si-Con sense 5’- 

AUG UAU UGG CCU GUA UUA GUU-3’, antisense 5’-P CUA AUA CAG GCC 

AAU ACA UUU-3’. Hepa-lclc7 cells were seeded onto 12-well plates at 2.5 x 105 

cells/well for RNA isolations, or 24-well plates at 1.25 x 105 cells/well for all other 

experiments, and allowed to grow for 6  h. Cells were transfected with 10 nM siRNA for 

48 h, using Lipofectamine 2000, in accordance with the manufacturer’s instructions.

2.2.12 RNA isolation

Total RNA was isolated from Hepa-lclc7 cells using TRI reagent, an acidic solution 

containing guanidinium thiocyanate, sodium acetate, phenol and chloroform, which 

enables centrifugal separation of RNA from DNA and protein {Chomczynski, 1987 

#724}. All surfaces and equipment were rendered RNase-free, by wiping with 

RNasezap, prior to the isolation of RNA. Briefly, cells in 12-well plates were harvested 

in 0.5 mL TRI reagent per well, transferred to RNase-free microcentrifuge tubes and 

incubated at room temperature for 5 min. Working inside a laminar flow cabinet, 0.1 mL 

chloroform was added to all samples, which were then vortexed for 15 sec and incubated 

at room temperature for 2 min. Following centrifugation at 12,000 g, 4 °C, for 15 min, 

the RNA-containing clear aqueous phase was removed to a new RNase-free 

microcentrifuge tube, combined with 0.25 mL isopropyl alcohol, and incubated at room 

temperature for 10 min, to precipitate RNA. Following centrifugation at 12,000 g, 4 °C, 

for 10 min, the RNA pellet was washed in 0.5 mL DNase/RNase-free water containing 

75 % (v/v) ethanol. RNA was pelleted at 12,000 g, 4 °C, for 5 min; the supernatant was 

discarded and the pellet allowed to air-dry, at room temperature, for 10 min. The dried
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RNA pellet was reconstituted in 25 pL DNase/RNase-free water and incubated at 55 °C 

for 2 min. RNA was stored at -80 °C until required.

2.2.13 Determination of RNA quantity and purity

RNA concentration and purity were assessed using a DU640 ultraviolet (UV) 

spectrophotometer. RNA was diluted 1:100 in IX TE buffer (10 mM Tris base, 1 mM 

EDTA, pH 7.5); the latter was used to blank the spectrophotometer. From the average of 

triplicate measurements, and given that an absorbance of 1.0 at 260 nm equates to 40 

pg/mL RNA, the concentration of RNA in each sample was determined as follows:

Absorbance at 260 nm x 100 (to correct fo r  dilution) x  40 = RNA concentration (pg/mL)

The purity of RNA in each sample was determined via reference to the 260:280 nm 

ratio, as protein is detected at 280 nm. RNA samples with a 260:280 nm ratio of below

1.7 were rejected as impure.

2.2.14 cDNA synthesis

RNA was reverse-transcribed to cDNA using the TaqMan Reverse Transcription Kit. 

Reactions (20 pL) contained 2 pg RNA, 0.7X reverse transcription buffer, 3.6 mM 

MgCh, 2.9 mM deoxyribonucleotide triphosphate (dNTP), 1.8 pM random hexamers, 

14.4 U RNase inhibitor and 36.0 U RTase multiscribe. Reverse-transcription was 

performed using the GeneAmp 9700 polymerase chain reaction (PCR) system, with 

reactions held for 10 min at 25 °C, followed by 30 min at 48 °C.
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2.2.15 TaqMan real-time PCR

cDNA (1 pL, approximately 0.1 pg) was combined with 10 pL of 2X TaqMan Universal 

PCR Master Mix, 1 pL of the appropriate Gene Expression Kit, pre-optimised by 

Applied Biosystems for detection of mouse Nrf2 (Mm00477784_ml), Gclc 

(Mm00802655_ml) or the housekeeping gene p2 microglobulin (fhM\ 

Mm00437762_ml), and 8 pL DNase/RNase-free water, in a clear MicroAmp optical 96- 

well reaction plate. Plates were sealed with Absolute QPCR seals, using an adhesive seal 

applicator, and briefly centrifuged at 3000 rpm to remove air bubbles. Gene expression 

was analysed by quantitative real-time PCR on an ABI PRISM 7000 Sequence 

Detection System, in accordance with the manufacturer’s instructions. Levels of Nrf2 

and Gclc gene expression were calculated via reference to standard curves ranging from 

1-300 ng cDNA, and normalised to /?2M

2.2.16 Data analysis

Where appropriate, experiments were performed at least in duplicate, and all 

experiments were replicated on separate occasions. Data are expressed as mean ± 

standard deviation of the mean (SD). One-way analysis of variance (ANOVA), with 

Dunnett’s post-test applied, was used to assess the significance of any differences in the 

data compared to appropriate controls. A two-sided P value of <0.05 was considered to 

be statistically significant.
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2.3 RESULTS

2.3.1 Validation of Hepa-lclc7 as a model for studying the Nrf2-ARE pathway

In order to ascertain that the Hepa-lclc7 cell line was a valid model for studying the 

Nrf2-ARE pathway, the functional operation of this pathway was determined using an 

RNAi approach. siRNA duplexes targeting two distinct regions of the mouse Nr/2 (si- 

Nrf2 #1 and #2) or mouse Keapl (si-Keapl #1 and #2) transcripts were designed. The 

introduction of a siRNA duplex into a cell can cause off-target effects, typically due to 

activation of non-specific innate immune responses, such as the interferon response 

(Bridge et al., 2003; Sledz et al., 2003), or because of inadvertent complementarity to 

non-target mRNA sequences. Aversion of the latter off-target effect is fairly 

straightforward; database search engines, such as BLAST (Basic local alignment search 

tool; http://www.ncbi.nlm.nih.gov/blast/Blast.cgi), can be used to examine all known 

mRNA sequences for complementarity to candidate siRNA target sequences. Such a 

procedure was performed for all of the siRNA duplexes used in this study; no 

complementarity with non-target mRNA sequences was found. Other off-target effects, 

such as activation of the interferon response, are typically observed following the 

introduction of siRNA into cells at relatively high concentrations, particularly > 100 nM 

(Persengiev et al., 2004; Semizarov et al., 2003). Therefore, it is important to optimise 

the amount of siRNA transfected into cells in order to achieve a final concentration that 

enables maximal target gene depletion with minimal off-target effects. To this end, 

preliminary optimisation experiments were performed, using a range of siRNA 

concentrations between 1-100 nM, and it was determined that for each of the siRNA 

duplexes, transfecting Hepa-lclc7 cells for 48 h with 10 nM siRNA provided 

considerable depletion of the respective target gene, without noticeably affecting the 

cellular mRNA level of the housekeeping gene fi2M  (Nrf2 analysis; Fig. 2.3) or the 

protein level of the cytoskeletal protein P-actin (Keapl analysis; data to be presented in 

Mr. Alvin Chia’s thesis). Transfection of Hepa-lclc7 cells with Nrf2 or Keapl siRNA 

did not result in any major changes in cell viability or morphology, as determined by 

visual assessment using a light microscope (data not shown). Using siRNA at
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concentrations below 20-30 nM is generally considered to be unlikely to stimulate non­

specific innate immune responses and/or other off-target effects (Persengiev et al., 2004; 

Semizarov et al., 2003).
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Fig. 2.3 - Preliminary analysis of N rf2  mRNA depletion by RNAi. Hepa-lclc7 cells 
were mock-transfected, or transfected with 1, 10 or 100 nM of one of two Nrf2-targeting 
siRNA duplexes (si-Nrf2 #1 or #2), or a scrambled, non-targeting control siRNA duplex 
(si-Con), for 48 h. Total RNA was isolated, reverse-transcribed to cDNA and Nrf2 gene 
expression was measured by TaqMan real-time PCR. Results are normalised to the 
housekeeping gene p2 microglobulin, and are expressed relative to the mock-transfected 
Nrf2 mRNA level, which was arbitrarily set at 100 %. Bars represent the mean mRNA 
level from duplicate transfections, n=l.

2.3.1.1 RNAi depletion of Nrf2 and Keapl

Due to the difficulties in detecting endogenous Nrf2 protein in the absence of cellular 

stress, RNAi depletion of the transcription factor was confirmed by measuring Nrf2 

mRNA. Transfection of Hepa-lclc7 cells with the siRNA duplexes targeted against the 

Nrf2 transcript resulted in a depletion of the transcription factor mRNA to 23.0 ±3 .0  % 

(si-Nrf2 #1) or 25.4 ± 2.3 % (si-Nrf2 #2) of the mock-transfected control level (Fig. 2.4). 

In contrast, a scrambled, non-targeting control siRNA duplex (si-Con) had no 

discernible effect on Nrf2 mRNA (Fig. 2.4), demonstrating that the observed depletion 

of Nrf2 mRNA was not simply due to activation of the RNAi pathway per se, but due to
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sequence-specific targeting of the Nrf2 transcript. Notably, none of the siRNA duplexes 

significantly affected the mRNA level of the housekeeping gene demonstrating a 

lack of non-target effects.
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Fig. 2.4 - RNAi depletion of N rf2  mRNA. Hepa-lclc7 cells were mock-transfected, or 
transfected with 10 nM of one of two AV/2-targeting siRNA duplexes (si-Nrf2 #1 or #2), 
or a scrambled, non-targeting control siRNA duplex (si-Con), for 48 h. Total RNA was 
isolated, reverse-transcribed to cDNA and Nrf2 gene expression was measured by 
TaqMan real-time PCR. Results are normalised to the housekeeping gene p2 
microglobulin, and are expressed relative to the mock-transfected Nrf2 mRNA level, 
which was arbitrarily set at 100 %. One-way ANOVA, # P  <0.001 versus mock, @ P  
<0.001 versus si-Con. Error bars = standard deviation of mean, n=3.

At the same time that RNAi depletion of Nrf2 was confirmed in Hepa-lclc7 cells, a 

laboratory colleague, Mr. Alvin Chia, successfully optimised the depletion of Keapl 

using targeted siRNA duplexes. At a concentration of 10 nM, both siRNA duplexes 

targeted against the Keapl transcript caused a considerable depletion of the protein to 

below 35 % of the levels in mock-transfected cells (data to be presented in Mr. Alvin 

Chia’s thesis). The specificity of these changes was demonstrated by the fact that si-Con 

had no effect on Keapl protein level, and that neither K eapl-targeting siRNA duplex 

had any discernible effect on levels of P-actin (data to be presented in Mr. Alvin Chia’s 

thesis). Importantly, in light of the fact that Keapl is known to repress the basal activity
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of Nrf2, in part by tethering it within the cytosol, and therefore restricting the access of 

the transcription factor to the nucleus (Dhakshinamoorthy et a i, 2001; Itoh et al., 1999), 

it was shown that RNAi depletion of Keapl resulted in a concomitant increase in the 

nuclear level of Nrf2 protein, compared with the mock-transfected control level (data to 

be presented in Mr. Alvin Chia’s thesis). These results demonstrate that Keapl serves as 

a functional repressor of Nrf2 in Hepa-lclc7 cells.

2.3.1.2 Effect of RNAi depletion of Nrf2 or Keapl on the basal expression of GCLC

In order to confirm that Nrf2 controls the expression of ARE-regulated genes in Hepa- 

lc lc7  cells, the effect of RNAi depletion of the transcription factor, or Keapl, on the 

expression of Gclc, a typical ARE-regulated cytoprotective enzyme (Chan et al., 2000; 

Jeyapaul et al., 2000; Sekhar et al., 2000; Wild et al., 1999), was assessed by Western 

blot. Targeted depletion of Nrf2 decreased the basal protein level of Gclc by 20-30 % 

compared to mock-transfected cells (Fig. 2.5), whereas depletion of Keapl, which 

results in the nuclear accumulation of Nrf2 under resting conditions, increased Gclc 

protein level by 50-60 % (Fig. 2.5). These results demonstrate that Nrf2 regulates the 

expression of an important ARE-containing gene in Hepa-lclc7, and that Keapl 

antagonises this activity, probably through repression of the transcription factor.
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Fig. 2.5 - Effect of RNAi depletion of N rf2  or K ea p l on the basal expression of Gclc.
Hepa-lclc7 cells were mock-transfected, or transfected with 10 nM Nrf2-targeting (si- 
Nrf2 #1 or #2) or Keapl-targeting (si-Keapl #1 or #2) siRNA duplexes, or si-Con, for 
48 h. Cytosolic fractions were prepared and the Gclc protein level was assessed by 
Western blot analysis. Gclc protein bands were quantified by densitometry and 
expressed relative to P-actin, to enable comparison with the mock-transfected Gclc level, 
which was arbitrarily set at 1. Mouse liver lysate was loaded onto the gel as a standard 
(Std). Representative gels from n=3 are presented.

2.3.1.3 Effect of RNAi depletion of N rf2  or K ea p l on the basal level of GSH

Gclc is the rate-limiting enzyme in the GSH synthetic pathway (for a review, see 

Kaplowitz et al., 1985). Therefore, the changes in expression of Gclc observed in 

response to RNAi depletion of Nrf2 or Keapl should result in concomitant changes in 

the level of GSH in Hepa-lclc7 cells. Indeed, Nrf2-targeting siRNA decreased, whereas 

Keapl-targeting siRNA increased, basal levels of GSH (Fig. 2.6), demonstrating that 

Nrf2-mediated induction of a typical ARE-regulated gene results in the upregulation of 

cell defence. In summary, the Nrf2-ARE pathway appears to be functional in Hepa- 

lc lc7  cells. As such, Hepa-lclc7 is a valid model for investigating the molecular 

regulation of the Nrf2-ARE pathway.
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Fig. 2.6 - Effect of RNAi depletion of N rf2  or K ea p l on the basal level of GSH.
Hepa-lclc7 cells were mock-transfected, or transfected with 10 nM Nrf2-targeting (si- 
Nrf2 #1 or #2) or Keapl-targeting (si-Keapl #1 or #2) siRNA duplexes, or si-Con, for 
48 h. Total GSH levels were quantified, using the DTNB-GSH reductase recycling 
method (Vandeputte et al., 1994). The GSH concentration for each sample was 
normalised to total protein content. Results are expressed as the change in GSH relative 
to mock-transfected cells. The GSH content in mock-transfected cells was 35.8 ± 4.5 
nmol/mg. One-way ANOVA, # P  <0.001 versus mock, @ P  <0.001 versus si-Con. Error 
bars = standard deviation of mean, n=3.

2.3.2 Activation of the Nrf2-ARE pathway by NAPQI

Activation of the Nrf2-ARE pathway has previously been observed in mouse liver 

following administration of paracetamol in vivo (Goldring et al., 2004). In order to test 

the hypothesis that paracetamol may activate Nrf2 via the formation of the reactive 

metabolite NAPQI, Hepa-lclc7 cells were directly exposed to NAPQI, and changes in 

the Nrf2-ARE pathway were assessed.
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2.3.2.1 Effect of NAPQI on the subcellular distribution of Nrf2

Following exposure of Hepa-lclc7 cells to NAPQI for 1 h, the subcellular distribution 

of Nrf2 was determined by immunocytochemistry and confocal microscopy. In the 

absence of NAPQI, Nrf2 appeared to be ubiquitously distributed throughout the cells, at 

low levels (Fig. 2.7). In contrast, Nrf2 accumulated within the nuclei of Hepa-lclc7 

cells, as demonstrated by co-localisation with Hoechst 33258 DNA staining, following 

direct exposure to NAPQI (Fig. 2.7).
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Fig. 2.7 - Effect of NAPQI on the subcellular distribution of Nrf2.
Immunocytochemical analysis of subcellular Nrf2 localisation in Hepa-lclc7 cells 
exposed to 0.5 % DMSO (top panels) or 50 pM NAPQI (bottom panels) for 1 h. Treated 
cells were fixed, permeabilised and incubated with a rabbit anti-mouse Nrf2 antibody, 
followed by Alexa Fluor 594-conjugated goat anti-rabbit IgG (i and iv). Nuclei were 
counterstained with Hoechst 33258 (ii and v). (iii and vi) Merged images of Nrf2 and 
Hoechst signals. Immunofluoresence was visualised by confocal microscopy. 
Representative fields are presented. Scale bar = 25 pm.
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2 3 .2 .2  Effect of NAPQI on the activity of an ARE-regulated reporter transgene

In order to confirm that the observed increase in nuclear Nrf2 was functionally relevant, 

the activity of a reporter transgene controlled by the promoter region of the mouse Nqol 

gene, which contains a functional ARE motif, was assessed. Hepa-lclc7 cells were 

transfected for 24 h, exposed to NAPQI for 1 h, the medium was then exchanged for 

NAPQI-free DMEM, and the cells were incubated for a further 15 h. In the absence of 

NAPQI, activity of the wild-type ARE reporter transgene was more than double that of a 

scrambled, mutant ARE construct (Fig. 2.8), indicating the constitutive activity of 

factors that bind to the ARE under resting conditions. Compared with vehicle-treated 

cells, a 42 % increase in ARE-driven reporter transgene activity was observed following 

exposure to NAPQI (Fig. 2.8). However, NAPQI failed to augment the luciferase 

activity of the mutant reporter transgene (Fig, 2.8), indicating that the observed increase 

in luciferase activity was mediated by one or more ARE-binding factors, such as Nrf2.
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Fig. 2.8 - Effect of NAPQI on the activity of an ARE-regulated reporter transgene.
Hepa-lclc7 cells were co-transfected with pCMV SPORT-P-galactosidase and pGL3B- 
I0\6/nqo5,-luc Nqol luciferase reporter plasmid containing a wild-type (WT) or a 
scrambled ARE sequence (Mut), as depicted in the top panel (mutated bases are 
underlined). Following 1 h exposure to 0.5 % DMSO (□) or 50 pM NAPQI (■), and a 
further 15 h incubation in drug-free medium, cells were lysed and luciferase activity was 
determined as described in 2.2.8. Results are normalised to P-galactosidase internal 
control activity and expressed as the change in relative light units compared to WT 
plasmid-transfected, vehicle-treated control cells. One-way ANOVA, *** P  <0.001. 
Error bars = standard deviation of mean, n=3.
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2.3.3 Induction of an adaptive defence response by NAPQI

Activation of Nrf2 and induction of ARE-regulated genes typically enhances cell 

defence. Therefore, the effect of NAPQI on markers of cell defence was assessed in 

Hepa-lclc7 cells.

2.3.3.1 Time-dependent induction of GSH synthesis by NAPQI

Levels of GSH were measured over a period of 24 h, following exposure of Hepa-lclc7 

cells to NAPQI for 1 h. Consistent with its known reactivity with GSH (Albano et al., 

1985; Dahlin et al., 1984; Potter et al., 1986; Rosen et al., 1984), NAPQI stimulated an 

initial depletion of GSH at 1 h, which was then followed by a time-dependent increase in 

GSH, which rose 2.1-fold, compared with the pre-treatment level, at the 24 h timepoint 

(Fig. 2.9). In contrast, vehicle-exposed cells experienced only a slight increase in GSH 

over the same time period (Fig. 2.9). These results indicate that NAPQI provokes an 

adaptive defence response, characterized by the induction of GSH synthesis.

+DMSO/NAPQI

Time (h)

Fig. 2.9 - Induction of GSH synthesis by NAPQI. Hepa-lclc7 cells were exposed to 
0.5 % DMSO (A) or 25 pM NAPQI (•)  for 1 h, followed by a further 23 h incubation in 
drug-free medium. Total GSH was measured at the indicated timepoints. The GSH 
concentration for each sample was normalised to total protein content. Results are 
expressed as the change in GSH relative to 0 h control cells. GSH content in 0 h control 
cells was 37.7 ± 2.5 nmol/mg. One-way ANOVA, *** P  <0.001 versus DMSO. Error 
bars = standard deviation of mean, n=3.
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2.3.3.2 Nrf2- and time-dependent induction of Gclc and GSH by NAPQI

In order to gain a mechanistic insight into the observed induction of GSH by NAPQI 

(Fig. 2.9), particularly in terms of the role of the Nrf2-ARE pathway in this adaptive 

response, Hepa-lclc7 cells transfected with AV/2-targeting siRNA were exposed to 

NAPQI for 1 h, and Gclc mRNA was measured over 8 h, by TaqMan real-time PCR. At 

4 h, in mock-transfected cells, and cells transfected with control siRNA, Gclc mRNA 

increased 2.1-fold, compared with the pre-treatment level (Fig. 2.10). In cells 

transfected with Nrf2-targeting siRNA, basal Gclc mRNA was reduced to around 45 % 

of levels measured in mock-transfected cells (Fig. 2.10). Nrf2-targeting siRNA also 

antagonised the NAPQI-induced increase in Gclc mRNA at 4 h (Fig. 2.10). Furthermore, 

the NAPQI-induced, time-dependent increase in GSH was suppressed by Ar/2-targeting 

siRNA, but not control siRNA (Fig. 2.11). Therefore, the adaptive defence response to 

NAPQI, characterised by a time-dependent elevation of cellular GSH, involves an Nrf2- 

mediated induction of Gclc.
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Fig. 2.10 - Nrf2- and time-dependent induction of Gclc by NAPQI. Hepa-lclc7 cells 
were transfected with 10 nM Ar/2-targeting siRNA (si-Nrf2 #1 or #2) or a scrambled, 
non-targeting control siRNA duplex (si-Con) for 48 h. Cells were exposed to 25 pM 
NAPQI for 1 h, followed by a further 7 h incubation in drug-free medium. At the 
indicated timepoints, total RNA was isolated, reverse-transcribed to cDNA and Gclc 
gene expression was measured by TaqMan real-time PCR. Results are normalised to p2 
microglobulin, and expressed relative to mock-transfected Gclc mRNA level, which was 
arbitrarily set at 100 %. One-way ANOVA, § P <0.001 si-Nrf2 #1 versus mock, ]f P 
<0.001 si-Nrf2 #2 versus mock. Error bars = standard deviation of mean, n=3.
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+NAPQI

Fig. 2.11 - Nrf2- and time-dependent induction of GSH by NAPQI. Hepa-lclc7 cells 
were transfected with 10 nM Nrf2-targeting siRNA (si-Nrf2 #1 or #2) or a scrambled, 
non-targeting control siRNA duplex (si-Con) for 48 h. Cells were exposed to 25 pM 
NAPQI for 1 h, followed by a further 7 h incubation in drug-free media. Total GSH was 
measured at the indicated timepoints. The GSH concentration for each sample was 
normalised to total protein content. Results are expressed as the change in GSH relative 
to 0 h mock-transfected cells, which was arbitrarily set at 100 %. The GSH content in 0 
h mock-transfected cells was 51.1 ± 10.0 nmol/mg. One-way ANOVA, § P <0.001 si- 
Nrf2 #1 versus mock, f  P <0.001 si-Nrf2 #2 versus mock. Error bars = standard 
deviation of mean, n=3.

2.3.4 The role of cysteine reactivity in the activation of the Nrf2-ARE pathway by 

NAPQI

In an attempt to understand the chemical and biochemical aspects of the activation of the 

Nrf2-ARE pathway by NAPQI, the dose-dependency of Nrf2 nuclear accumulation was 

measured following exposure of cells to NAPQI, the model cysteine-reactive 

electrophiles DNCB and 15d-PGJ2, and the lysine-reactive molecule TMA. NAPQI (Fig. 

2.12a), DNCB (Fig. 2.12b) and 15d-PGJ2 (Fig. 2.12c) stimulated Nrf2 nuclear 

accumulation in a dose-dependent manner, with maximum increases over vehicle control 

of 4-fold (250 pM NAPQI) and 3-fold (50 pM DNCB, 10 pM 15d-PGJ2). In contrast, 

the lysine-reactive molecule TMA had no effect on nuclear Nrf2 content over the 

concentration range studied (Fig. 2.12d). These results are in agreement with the current
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consensus that cysteine-reactivity is an important property of Nrf2-activating molecules, 

and suggest that modification of cysteine residues within Keapl may be a plausible 

hypothesis to explain the ability of NAPQI to activate the Nrf2-ARE pathway.
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Fig. 2.12 - The role of cysteine reactivity in the activation of the Nrf2-ARE pathway 
by NAPQI and other model electrophiles. Hepa-lclc7 cells were exposed to (A) 
NAPQI, (B) DNCB, (C) 15d-PGJ2 or (D) TMA, at the indicated concentrations, for 1 h. 
Nuclear fractions were prepared and the Nrf2 protein level was assessed by Western blot 
analysis. Nrf2 bands were quantified by densitometry and expressed relative to ß-actin, 
to enable comparison with vehicle-treated control (0 pM) Nrf2 levels, which were 
arbitrarily set at 100 %. Recombinant Nrf2-His, which runs slightly quicker than the 
endogenous protein, was loaded onto the gels as a standard (Std). Non-specific proteins 
that cross-react with the antibody are labeled *. Representative gels from n=3 are 
presented.
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2.3.5 The role of GSH depletion in the activation of the Nrf2-ARE pathway by 

NAPQI

To assess the role of GSH depletion in the activation of Nrf2 by NAPQI and the model 

electrophiles, levels of GSH were measured in Hepa-lclc7 cells following a 1 h 

exposure. NAPQI and DNCB both caused significant, dose-dependent depletion of GSH 

at, or above, 5 pM, whereas TMA had no significant effect on cellular GSH levels (Fig. 

2.13a). Notably, 15d-PGJ2 had no discernible effect on GSH over the same 

concentration range that induced Nrf2 nuclear accumulation (Fig. 2.13b), indicating that 

GSH depletion is not an absolute prerequisite for the activation of Nrf2.

A B

Fig. 2.13 - The role of GSH depletion in the activation of the Nrf2-ARE pathway by 
NAPQI and other model electrophiles. Hepa-lclc7 cells were exposed to (A) NAPQI, 
DNCB or TMA, or (B) 15d-PGJ2, at the indicated concentrations, for 1 h, and total GSH 
levels were quantified. The GSH concentration for each sample was normalised to total 
protein content. Results are expressed as the change in GSH relative to the vehicle- 
treated control (0 pM) GSH level. The GSH content in vehicle-treated control cells was 
35.5 ± 1.5 nmol/mg. One-way ANOVA, *** P  <0.001 versus vehicle-treated control. 
Error bars = standard deviation of mean, n=3.

2.3.6 The role of cytotoxicity in the activation of the Nrf2-ARE pathway by NAPQI

To examine the relationship between Nrf2 activation and cytotoxicity, LDH leakage 

from Hepa-lclc7 cells was measured following exposure to the electrophiles. Notably,
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none of the molecules caused significant cytotoxicity following a 1 h exposure (Fig. 

2.14a-b), at which time point Nrf2 activation was observed at the concentrations studied 

(Fig. 2.12). At 24 h, however, NAPQI, DNCB and 15d-PGJ2 (Fig. 2.14c-d) provoked 

dose-dependent increases in LDH leakage, compared to vehicle control. In contrast, 

TMA had no discernible effect on LDH leakage at 24 h (Fig. 2.14c).

A B

D

Fig. 2.14 - The role of cytotoxicity in the activation of the Nrf2-ARE pathway by 
NAPQI and other model electrophiles. Hepa-lclc7 cells were exposed to (A and C) 
NAPQI, DNCB or TMA, or (B and D) 15d-PGJ2, at the indicated concentrations, for 1 h 
(A and B) or 24 h (C and D). Cytotoxicity was assessed by measuring leakage of LDH 
into the culture medium. Extracellular LDH activity is expressed as a percentage of total 
(extracellular plus intracellular) LDH activity. One-way ANOVA, *** P  <0.001 versus 
vehicle-treated control. Error bars = standard deviation of mean, n=3.
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2.4 DISCUSSION

The Nrf2-ARE pathway represents an inducible defence mechanism that protects 

mammalian cells against the deleterious effects of chemical/oxidative stress (for a 

review, see Kensler et al., 2007). Work in this research group has demonstrated that 

administration of paracetamol in vivo stimulates the Nrf2-ARE pathway in mouse liver, 

inducing an adaptive response characterised by the increased expression of 

cytoprotective enzymes (Goldring et a l, 2004). The over-arching hypothesis of the work 

described in this chapter is that the activation of the Nrf2-ARE pathway in mouse liver 

by paracetamol is linked to the formation of the reactive metabolite NAPQI, which has 

the potential to modify cysteine residues within Keapl, the cytosolic repressor of Nrf2. 

The main aim of the studies carried out in this chapter was to ascertain whether NAPQI 

was able to directly activate the Nrf2-ARE pathway in a mouse liver cell line, Hepa- 

lclc7 . The results presented in section 2.3.1 demonstrate that Hepa-lclc7 is a 

functionally valid model for studying the Nrf2-ARE pathway, as has been shown 

previously by others (Jowsey et al., 2003; McWalter et al., 2004; Petzer et al., 2003).

The results presented in section 2.3.2 demonstrate that NAPQI can directly activate the 

Nrf2-ARE pathway in Hepa-lclc7 cells. NAPQI was used as a metabolite per se, to 

eliminate the potentially confounding effects of other paracetamol metabolites on Nrf2 

activation. Due to the practical difficulties associated with measuring levels of unstable 

reactive intermediates, the threshold intracellular concentration of NAPQI that is 

associated with hepatotoxicity following paracetamol overdose is not precisely known. 

However, a reasonable, although somewhat simplistic, estimate can be made on the basis 

that the average liver (1.5 L volume) contains 6  mmol GSH (DeLeve et al., 1991), and 

that paracetamol-induced hepatotoxicity is associated with the depletion of hepatic GSH 

to at least 70 % of basal levels (Mitchell et al., 1973). Assuming the conjugation of GSH 

and NAPQI is stoichiometric, 4.2 mmol NAPQI (70 % of 6  mmol) would be required to 

cause the necessary degree of hepatic GSH depletion (Mitchell et al., 1974; Rumack, 

2002). This translates into a cellular concentration of 2.8 mM NAPQI (4.2 mmol per 1.5 

L). Therefore, the concentrations of NAPQI used in this study (5-250 pM) are within the
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range of concentrations that are estimated to occur in the liver following ingestion of a 

hepatotoxic.dose of paracetamol.

Although there is a general consensus that the direct exposure of cells to NAPQI can 

provide valuable information on the signaling pathways that are involved in the cellular 

response to this reactive intermediate (Albano et al., 1985; Andersson et al., 1990; 

Bender et al., 2004; Dahlin et al., 1984; Harman et al., 1991; Holme et al., 1984; Holme 

et al., 1982a; Holme et al., 1982b; Rundgren et al., 1988), it is important to consider the 

physiological limitations of such an approach. Due to the predominant abundance of 

CYP450 enzymes on the cytoplasmic surface of the smooth endoplasmic reticulum 

(Guengerich, 1990), the majority of reactive intermediates are formed in or around this 

region in vivo. The direct application of NAPQI to cells may, therefore, not accurately 

represent the relative subcellular concentrations of NAPQI formed during the metabolic 

bioactivation of paracetamol in vivo. Indeed, the half-life of NAPQI is estimated to be 

less than 10 sec in the presence of nucleophiles and reductants (Miner et al., 1979). 

Therefore, the direct exposure of cells to NAPQI most likely results in a ‘short, sharp 

hit’, with cell surface proteins bearing the greatest degree of exposure. In contrast, 

hepatocytes exposed to paracetamol generate the reactive metabolite at relatively low 

levels, over a longer period of time. Hence, it is important to consider the physiological 

site of NAPQI generation in any future attempts to dissect the mechanism(s) of Nrf2 

activation by paracetamol in vivo. This issue should be addressed, initially, by 

employing metabolically competent cells that are capable of bioactivating paracetamol 

to NAPQI, and in which the Nrf2-ARE pathway is known to function. This would 

facilitate the direct application of the parent molecule, as opposed to the metabolite, and, 

through the pharmacological inhibition of CYP450 enzyme activity, would better enable 

the process of drug metabolism to be linked to the activation of Nrf2 by paracetamol. 

Interestingly, it has recently been demonstrated that, whilst localising predominantly 

within the perinuclear region of the cytoplasm, Keapl is found to be present in the 

endoplasmic reticulum (Watai et al., 2007). It is possible that such localisation enables 

Keapl to ‘sense’ chemical stress at the initial point of generation.
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Consistent with the observation that activation of Nrf2 by paracetamol induces cell 

defence in mouse liver in vivo (Goldring et al., 2004), stimulation of the Nrf2-ARE 

pathway by NAPQI in Hepa-lclc7 cells was associated with an adaptive defence 

response, characterised by the time-dependent induction of GSH synthesis. Such a 

response would augment the redox buffer within cells, and should enable the enhanced 

bioinactivation of NAPQI, therefore protecting cells against the toxic insult associated 

with this reactive intermediate. The adaptive response was shown to be mediated via an 

Nrf2-dependent induction of Gclc, the ARE-regulated rate-limiting enzyme in the 

synthesis of GSH (Wild et al., 1999). The Nrf2-mediated adaptive response to NAPQI 

may serve as a critical determinant of the threshold for paracetamol toxicity, as separate 

studies have demonstrated that Nrf2~'~ mice are more vulnerable to paracetamol-induced 

liver injury (Chan et al., 2001; Enomoto et al., 2001), whereas hepatocyte-specific 

knockout of the murine Keapl gene, which enhances Nrf2-dependent cell defence, 

confers protection against paracetamol hepatotoxicity (Okawa et al., 2006). Therefore, it 

would be informative in future experiments to examine the effects of RNAi depletion of 

Nrf2 ox Keapl on the cytotoxic effects of NAPQI towards Hepa-lclc7 cells.

The currently favoured model of Nrf2 regulation suggests that the transcription factor 

only accumulates within the nucleus in response to cellular stress (Dhakshinamoorthy et 

al., 2001; Itoh et al., 1999), since it is targeted for proteasomal degradation, via Keapl- 

directed ubiquitination, under resting conditions (Kobayashi et al., 2004; McMahon et 

al., 2003; Nguyen et al., 2003; Stewart et al., 2003; Zhang et al., 2003a). Therefore, 

Nrf2 has primarily been regarded as a key regulator of inducible cell defence. However, 

the results presented in section 2 .3.2 . 2  demonstrate the constitutive activity of factors, 

probably including Nrf2, that bind to the ARE in the absence of cellular stress, as 

indicated by the differences in basal activity of the Nqol reporter transgenes containing 

wild-type and mutated AREs. Furthermore, this study has demonstrated a decrease in the 

basal expression of Gclc, and levels of GSH, following RNAi depletion of Nrf2. These 

findings are consistent with those of recent studies that have employed RNAi to 

demonstrate the importance of Nrf2 as a regulator of mammalian cell defence (Cao et 

al., 2005; Chen et al., 2005b; Dhakshinamoorthy et al., 2004; Gong et al., 2006b; So et
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al., 2006; Warabi et al., 2007; Zhang et al., 2006b). A number of independent studies 

have also demonstrated the decreased basal expression of various ARE-regulated genes 

in mice lacking Nrf2 (Chan et al., 2000; Lee et al., 2003; McMahon et al., 2001 ; Ramos- 

Gomez et al., 2001). It therefore appears that the activity of Nrf2 extends beyond that of 

mediating the adaptive response to cellular stress, by regulating the basal transcription of 

certain defence genes. As such, in addition to directing the response to cellular stress, 

Nrf2 may define the initial threshold for toxicity, by controlling, at least in part, the 

constitutive tier of cell defence. However, the current model of Nrf2 regulation does not 

fully address this latter point. It is possible that the expression of Nrf2 relative to Keapl 

is tightly balanced, such that, in the absence of cellular stress, a small pool of Nrf2 is 

able to evade repression by Keapl, facilitating the basal transactivation of ARE- 

regulated genes. Thus, it is particularly interesting that putative ARE motifs have 

recently been identified in the promoter region of the mouse Keapl gene (Lee et al., 

2007). It is possible, therefore, that the expression of Keapl is, at least partly, regulated 

by Nrf2 itself. Alternatively, background levels of oxidative stress, such as that caused 

by the generation of ROS as byproducts of mitochondrial aerobic respiration, may 

provide low-level stimulation of the Nrf2 pathway. In any case, this ambiguity in the 

current model of Nrf2 regulation has yet to be fully resolved.

Whilst the molecular mechanisms underlying the activation of Nrf2 by chemical 

inducers are yet to be fully defined, it is clear that the Nrf2-ARE pathway is responsive 

to a range of structurally diverse chemicals that are all electrophilic (Presterà et al., 

1993a; Talalay et al., 1988) and capable of modifying sulphydryl groups (Dinkova- 

Kostova et al., 2001). It has been postulated that the modification of critical cysteine 

residues within Keapl represents a molecular ‘sensing’ mechanism that provides the 

trigger for activation of the Nrf2-dependent defence response (Dinkova-Kostova et al., 

2001). Nrf2-activating molecules can be broadly grouped into the following classes: 

alkenes, arsenicals, dithiolethiones, enones, isothiocyanates, mercaptans and disulphides, 

Michael acceptors, and diphenols and quinones. Given that NAPQI is a quinoneimine, 

which is known to react with cysteine thiols via 1,4-addition in vitro and in vivo 

(Hoffmann et al., 1985a; Hoffmann et al., 1985b; Streeter et al., 1984), it is plausible
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that NAPQI activates the Nrf2-ARE pathway through the modification of cysteine 

residues within Keapl, and this may form the molecular basis for the activation of the 

Nrf2-ARE pathway in mouse liver by paracetamol (Goldring et al., 2004).

In order to test the role of cysteine reactivity in the activation of the Nrf2-ARE pathway 

by NAPQI, the responsiveness of Nrf2 to a panel of structurally distinct molecules, with 

different electrophilic chemistries, was assessed. Amongst the cysteine-reactive 

molecules employed, DNCB is a known Nrf2-dependent inducer of HO-1 in mouse 

primary macrophages (Ishii et al., 2000), and 15d-PGJ2 has been shown to activate Nrf2 

in a number of cell types (Chen et al., 2006; Hosoya et al., 2005; Itoh et al., 2004; Yu et 

al., 2006). It can be seen in section 2.3.4 that the cysteine reactive molecules NAPQI, 

DNCB and 15d-PGJ2 stimulated the nuclear accumulation of Nrf2 in a concentration- 

dependent manner, whereas the lysine-reactive hard electrophile TMA did not. DNCB, 

along with many other skin sensitizers, has recently been verified as a potent inducer of 

ARE-driven gene expression (Natsch et al., 2007). The authors of this recent study 

hypothesised that the activation of Nrf2-dependent cell defence by some skin sensitizers 

may account for the lack of sensitivity observed in the majority of the population. As 

such, the idiosyncrasy associated with some sensitizations, and indeed other adverse 

drug reactions, may be partly determined by deficiencies in the Nrf2-ARE pathway. 

Therefore, it will be important to determine whether there is variability in the Nrf2-ARE 

pathway within the general population that may alter the inter-individual threshold for, 

and susceptibility to, drug-induced toxicity. The study by Natsch et al. (2007) also 

demonstrated that, similar to TMA, the lysine-reactive molecule phtalic anhydride is 

unable to activate the Nrf2-ARE pathway. Although TMA is incapable of reacting 

irreversibly with sulphydryl groups (de la Escalera et al., 1989), related structures are 

capable of forming labile adducts with cysteine (Ahlfors et al., 2005; Brinegar et al., 

1981; Palacian et al., 1990). Therefore, it would be interesting to measure the response 

o f the Nrf2-ARE pathway to TMA under conditions which may favour the modification 

o f cysteine sulphydryls, for example following the depletion of cellular GSH. Indeed, 

molecules which can be classified as hard electrophiles have been shown to activate the 

Nrf2-ARE pathway, albeit by a redox-sensitive mechanism (Wang et a l, 2006c). Taken
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together, these data support the notion that cysteine reactivity is an important chemical 

property of Nrf2-activating molecules, and indirectly support the hypothesis that the 

modification of cysteines within Keapl may underlie the ability of NAPQI to activate 

the Nrf2-ARE pathway.

Through the use of several experimental approaches, the direct chemical modification of 

cysteine residues within Keapl has gained support as a triggering mechanism for the 

activation of Nrf2 (Dinkova-Kostova et al., 2002; Itoh et al., 2004; Levonen et al., 2004; 

Sekhar et al., 2003). However, the common thiol reactivity of Nrf2-activating molecules 

also raises the possibility that the depletion of GSH, through conjugation at its 

nucleophilic sulphydryl group, may represent an indirect means of stimulating the 

transcription factor. Indeed, it is possible that, via the generation of an oxidising 

environment, the depletion of GSH may cause changes in the redox state of certain 

cysteines within Keapl, thus triggering Nrf2 activation. However, although it cannot be 

discounted that an alteration of the redox balance may contribute to the activation of 

Nrf2 by NAPQI and DNCB, the fact that 15d-PGJ2 was able to induce the nuclear 

accumulation of the transcription factor without significantly affecting GSH levels 

indicates that depletion of GSH is not an absolute prerequisite for the stimulation of 

Nrf2.

Notably, components of the ubiquitin-proteasome pathway, which has a major role in 

regulating the basal activity of Nrf2 (Kobayashi et al., 2004; McMahon et al., 2003; 

Nguyen et al., 2003; Stewart et al., 2003; Zhang et al., 2003a), are redox sensitive 

(Jahngen-Hodge et al., 1997), and the function of this important cellular pathway is 

known to be inhibited by thiol-reactive molecules (Obin et al., 1998), including 15d- 

PGJ2 (Ishii et al., 2005a; Mullally et al., 2001; Shibata et al., 2003). Cyclopentenone 

prostaglandins have also been shown to disrupt the actin cytoskeleton (Gayarre et al., 

2006), to which Keapl is anchored (Kang et al., 2004). Therefore, the ability of 15d- 

PGJ2 to activate Nrf2 may be independent of the direct antagonism of Keapl through 

chemical modification of critical cysteines. Further work is required to examine this 

hypothesis. Taken together, these results imply that biochemical mechanisms other than

86



Chapter 2

the depletion of GSH, such as the modification of cysteine residues within Keapl, may 

have an important role in the activation of Nrf2 by certain molecules. Given that the 

mutual activation of multiple signaling pathways, in a chemical-specific manner, may 

contribute to the activation of the Nrf2-ARE pathway, further work, employing a broad 

panel of chemical inducers with well-characterised effects on cell signaling pathways, is 

required to fully elucidate the nature of the biochemical mechanisms that regulate Nrf2 

activity.

Concentrations of NAPQI, DNCB and 15d-PGJ2 that were not cytotoxic over lh, but 

induced significant leakage of LDH over 24 h, stimulated the nuclear accumulation of 

Nr£2. These results, in keeping with our previous observation that Nrf2 is activated in 

murine liver by paracetamol at non-hepatotoxic, as well as hepatotoxic, doses (Goldring 

et al., 2004), suggest that the Nrf2-ARE pathway is able to ‘sense’ and respond to 

chemical stress before the onset of overt cytotoxicity. However, it should also be noted 

that concentrations of NAPQI that caused almost complete cytotoxicity after 24 h 

incubations did so in spite of activating the Nrf2-ARE pathway. Therefore, it is clear 

that induction of Nrf2-dependent cell defence does not guarantee survival following 

exposure to cytotoxic chemicals. What is, perhaps, more important is the balance 

between the extent of the cytotoxic insult and the activation of Nrf2, and other 

cytoprotective signaling pathways. At lower levels of exposure, deleterious cytotoxic 

effects may be surmountable by the induction of cytoprotective systems. As the level of 

exposure increases, however, defensive barriers may simply be overwhelmed by the 

increasing scale of cellular stress. In keeping with this concept, the dose threshold of 

paracetamol required to induce hepatotoxicity is markedly reduced in Nrf2-null mice 

(Chan et al., 2001; Enomoto et al., 2001) and increased in hepatocyte-specific Keapl 

knockout animals (Okawa et al., 2006). Thus, cytoprotective signaling pathways may 

enable cells, and indeed whole organisms, to withstand low-level exposure to toxic 

environments, but cannot provide complete protection against cytotoxic insults.

In summary, the results presented in this chapter demonstrate that NAPQI, the reactive 

metabolite of paracetamol, can directly activate the Nrf2-ARE pathway in a mouse liver
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cell line, inducing an adaptive defence response characterised by the Nrf2-dependent 

induction of Gclc and GSH. Through the use of a panel of structurally distinct 

electrophiles, the activation of Nrf2 has been shown to be associated with the cysteine 

reactivity of a molecule, but not to be entirely dependent on the depletion of GSH. 

Therefore, it is possible that NAPQI activates the Nrf2-ARE pathway via the 

modification of cysteine residues within Keapl, and the subsequent chapters o f this 

thesis are aimed towards investigating this potential signaling mechanism.
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CHAPTER 3

Development of a cell-free in vitro system for investigating the 

chemical modification of Keapl by Nrf2-activating electrophiles
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3.1 INTRODUCTION

The results presented in chapter 2, and the work of others (Dinkova-Kostova et a l, 

2001; Prestera et al., 1993a; Talalay et a l, 1988; Zhang, 2001), have demonstrated that 

cysteine reactivity is an important chemical property of Nrf2-activating molecules. 

Given that Keapl is the major regulator of Nrf2 activity (Itoh et a l, 1999), and that 

Keapl is a highly cysteine-rich protein, it has been proposed that the modification of one 

or more cysteine residues within Keapl may evoke a conformational change in the 

protein, rendering it unable to efficiently repress Nrf2, and thus providing a trigger for 

activation of the transcription factor (Dinkova-Kostova et a l, 2002).

Site-directed mutagenesis has been employed to demonstrate the importance of certain 

cysteine residues, particularly Cys-151, -273 and -288, in the function of Keapl 

(Kobayashi et a l, 2006; Levonen et a l, 2004; Wakabayashi et a l, 2004; Zhang et a l, 

2003a). In addition, recent work has provided compelling evidence for the chemical 

modification of Keapl, through the use of biotinylated analogues of Nrf2-activating 

molecules (Itoh et a l,  2004; Levonen et a l, 2004), spectroscopic binding experiments 

(Dinkova-Kostova et a l, 2002) and mass spectrometry (Dinkova-Kostova et a l, 2002). 

Although it appears that other triggers for Nrf2 activation may exist, including direct 

phosphorylation of the transcription factor (Cullinan et a l,  2003; Huang et a l, 2002; 

Nguyen et a l, 2000), there is a far more substantial weight of evidence indicating that 

certain cysteines within Keapl may be the targets of electrophiles, and that modification 

of Keapl may underlie the ability of these molecules to induce Nrf2-dependent cell 

defence. The studies presented in this and subsequent chapters aim to explore the role of 

Keapl modification in the regulation of Nrf2 activity.

The results presented in chapter 2 demonstrate that NAPQI, the electrophilic metabolite 

of paracetamol, directly activates the Nrf2-ARE pathway in a mouse liver cell line. 

Given that NAPQI is known to react with cysteine thiols in vitro and in vivo (Hoffmann 

et a l, 1985a; Hoffmann et al., 1985b), a plausible hypothesis to explain the activation of 

the Nrf2-ARE pathway by paracetamol in vivo (Goldring et a l, 2004), and by NAPQI in

91



Chapter 3

established cells, is that chemical modification of Keapl by NAPQI perturbs its ability 

to repress the transcription factor. In order to explore this hypothesis, a cell-free in vitro 

test system has been developed, based on the expression and purification of recombinant 

polyhistidine-tagged mouse Keapl protein, and its use in combination with mass 

spectrometry to enable the examination of Keapl modification by NAPQI and other 

Nrf2-activating electrophiles. The work presented within this chapter describes the 

development and validation of this in vitro test system.
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3.2 METHODS

3.2.1 Materials and reagents

The mouse Keapl I.M.A.G.E. cDNA clone was from Geneservice (Cambridge, UK). 

PCR and sequencing primers were custom-synthesised by Sigma-Genosys (Haverhill, 

UK). Expand High Fidelity PCR System and the 100 bp DNA ladder were from Roche 

Diagnostics (Burgess Hill, UK). pET-21a(+) was from Novagen (Nottingham, UK). AseI 

was from New England Biolabs (Hitchin, UK). BL21 (DE3) competent E. coli, SOC 

media, UltraPure agarose and the SilverXpress silver staining kit were from Invitrogen 

(Paisley, UK). XL 10-Gold ultracompetent E. coli were from Stratagene (Amsterdam, 

Netherlands). Isopropyl-ß-D-thiogalactopyranoside and sequencing-grade modified 

trypsin were from Promega (Southampton, UK). The BCA Protein Assay Kit was from 

Pierce (Cramlington, UK). The Soniprep 150 ultrasonic disintegrator was from MSE 

(London, UK). aCHCA matrix was from Laserbio Labs (Valbonne, France). The 

GeneAmp 9700 PCR system, MALDI target plate, Voyager-DE PRO MALDI-TOF 

Biospectrometry Workstation, API QSTAR Pulsar i MS/MS spectrometer, and Analyst 

QS and ProteinPilot software packages were from Applied Biosystems (Warrington, 

UK). DTT was from USB Corporation (Cleveland, USA). Perfectprep gel cleanup kit 

was from Eppendorf (Cambridge, UK). ChromasPro software was from Technelysium 

(Tewantin, Australia). The integrated LCPackings System and C l8 PepMap column 

were from Dionex (Camberley, UK). PicoTip emitters were from New Objective 

(Woburn, USA). Power Broth was from Athena Enzyme Systems (Baltimore, USA). 

Sex pheromone inhibitor peptide iPDl was from Bachem (St Helens, UK). GenElute 

plasmid mini-prep kit, ethidium bromide, BglII, Hindlll, Ndel, Sacl, Xbal, Xhol, the 

QuickLink DNA ligation kit, LB agar tablets, LB broth powder, ampicillin, imidazole, 

HIS-Select nickel-charged agarose beads, sepharose 6 B beads, Iodoacetamide, N- 

ethylmaleimide, ProteoMass MALDI-MS standards (angiotensin II, ACTH fragment 18- 

39, oxidised insulin chain B), caesium iodide and the monoclonal anti-polyhistidine 

HRP-conjugated antibody were from Sigma-Aldrich (Poole, UK). All other reagents 

were o f analytical or molecular grade, and were from Sigma-Aldrich.
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3.2.2 Preparation of mouse K ea p l coding sequence DNA template

An I.M.A.G.E. cDNA clone (# 6404252) for mouse Keapl was supplied streaked onto 

an agar slope; a small amount of this agar was used to inoculate 2 mL LB broth 

containing 50 pg/mL ampicillin, which was incubated overnight at 37 °C, 250 rpm. The 

clone vector was purified using a GenElute plasmid mini-prep kit, in accordance with 

the manufacturer’s instructions.

3.2.3 Polymerase chain reaction

The purified vector, containing the mouse Keapl cDNA clone, was used as a template 

for hot-start PCR amplification of the mouse Keapl coding sequence. A forward primer 

(5 ’ -TCGATTAATAGCATGCAGCCCGAACCCAA-3 ’) was designed to introduce an 

AseI restriction site, flanked on either side by three bases, at the start of the Keapl 

coding sequence. A reverse primer (5’-CGACTCGAGCTCGCAGGTACAGTTT 

TGTT-3’) was designed to omit the stop codon (TGA) and to introduce a Xhol 

restriction site flanked on either side by three bases, at the end of the Keapl coding 

sequence. Hot-start PCR (see Table 3.1) was performed using the Expand High Fidelity 

PCR System. Reactions (50 pL) contained 1 pL purified vector, IX Expand buffer, 2.5 

mM MgCh, 0.2 mM dNTP mix and 0.2 nM forward and reverse primer. Reactions were 

heated to 80 °C in a GeneAmp 9700 PCR system and held at this temperature to allow 

the addition of 2.6 U Expand enzyme mix.
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Step Cycles Denaturing Annealing Elongation
# 1 1 2 min at 95 °C — —

# 2 2 5 sec at 95 °C 30 sec at 6 8  °C 1.5 min at 72 °C
#3 2 5 sec at 95 °C 30 sec at 6 6  °C 1.5 min at 72 °C
#4 2 5 sec at 95 °C 30 sec at 64 °C 1.5 min at 72 °C
#5 2 5 sec at 95 °C 30 sec at 62 °C 1.5 min at 72 °C
# 6 2 5 sec at 95 °C 30 sec at 60 °C 1.5 min at 72 °C
#7 2 5 sec at 95 °C 30 sec at 58 °C 1.5 min at 72 °C
# 8 2 5 sec at 95 °C 30 sec at 56 °C 1.5 min at 72 °C
#9 2 5 sec at 95 °C 30 sec at 54 °C 1.5 min at 72 °C

# 1 0 2 5 sec at 95 °C 30 sec at 52 °C 1.5 min at 72 °C
# 1 1 24 5 sec at 95 °C 30 sec at 50 °C 1.5 min at 72 °C

Table 3.1 - Steps and cycles for hot-start PCR amplification of mouse K ea p l coding 

sequence.

3.2.4 Sub-cloning of K ea p l into pET-21a(+)

The pET-21a(+) vector was opened by restriction digest with Ndel and Xhol for 2 h at 

37 °C. The digestion reaction (20 pL) contained 5 pL pET-21a(+), 10 U Ndel, 10 U 

Xhol and IX buffer SH. The mouse Keapl PCR product from 3.2.3 was digested with 

AseI and Xhol for 2 h at 37 °C. The digestion reaction (20 pL) contained 5 pL PCR 

product, 10 U Ase I, 10 U Xhol, and IX buffer 3. As Ndel and Ase I yield compatible ends 

following restriction digest, it was possible to ligate 4.s-eI/A7?oI-digested Keapl into 

Afafel/ATzoI-digested pET-21a(+). An Ase I restriction site, and not a Ndel restriction site, 

was introduced at the start of the Keapl coding sequence as the Ndel restriction site 

contains an ATG initiation codon, which would have resulted in premature translation of 

the construct. The pET-2 la(+) and Keapl restriction products, alongside a 100 base pair 

(bp) DNA ladder, were resolved by electrophoresis on a 1 % agarose gel supplemented 

with 0.5 pg/mL ethidium bromide. The agarose gel was made by dissolving 0.5 g 

UltraPure agarose in 50 mL TBE buffer (89 mM Tris-base, 89 mM boric acid, 2 mM 

EDTA, pH 8.3) and heating the solution to boiling point. Ethidium bromide was added, 

and the solution was poured into a casting tray and allowed to set at room temperature. 

The resolved DNA fragments were purified using a Perfectprep gel cleanup kit, in
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accordance with the manufacturer’s instructions. The gel-purified restriction products 

were ligated using a QuickLink DNA ligation kit, in accordance with the manufacturer’s 

instructions. XL 10-Gold ultracompetent E. coli were immediately transformed with the 

ligated construct (0.6 pL per 30 pL bacteria), via a 30 sec heat-shock at 42 °C, and 

incubated in 0.25 mL nutrient-rich SOC media for 1 h, at 37 °C, 250 rpm. The bacteria 

were streaked onto a sterile LB-agar plate, made with LB-agar tablets, containing 50 

pg/mL ampicillin, and incubated at 37 °C overnight. Antibiotic-resistant colonies were 

picked from the plate and used to inoculate 2 mL LB broth containing 50 pg/mL 

ampicillin; these cultures were incubated for 24 h at 37 °C, 250 rpm. The construct was 

purified by mini-prep. Diagnostic restriction digests were performed with BgEl (5 pL 

PCR product, 10 U Bglll, IX buffer SM, 37 °C, 1 h), HindlWXhol (5 pL PCR product, 

10 U Hindlll, 10 U Xho\, IX buffer SB, 37 °C, 1 h) and Xbal/Sacl (5 pL PCR product, 

10 U Xbal, 10 U SacI, IX buffer SA, 37 °C, 1 h). BL21 (DE3) competent E. coli were 

transformed with pET-21a(+)/Keapl, via a 30 sec heat-shock at 42 °C, and incubated in 

0.25 mL SOC media for 1 h, at 37 °C, 250 rpm. The bacteria were streaked onto a sterile 

LB-agar plate, containing 50 pg/mL ampicillin, and incubated at 37 °C overnight. 

Antibiotic-resistant colonies were picked from the plate and used to inoculate 2 mL LB 

broth containing 50 pg/mL ampicillin; these cultures were incubated for 24 h at 37 °C, 

250 rpm. The construct was purified by mini-prep, and diagnostic restriction digests 

were performed to confirm successful transformation with pET-21a(+)/Keapl, as 

described above. Glycerol stocks of a pET-21a(+)/Keapl-transformed BL21 (DE3) 

colony were made by supplementing a mid-log phase culture with 15 % (v/v) glycerol; 

these stocks were stored at -80 °C until required.

3.2.5 DNA two-strand sequencing

BL21 (DE3), transformed with pET-21a(+)/Keapl, and primers (at 3.2 pM) were sent to 

Geneservice for two-strand sequencing of pET-21a(+)/Keapl. Sequencing primers were 

custom-synthesised by Sigma-Genosys, in accordance with the requirements of 

Geneservice; external forward 5’-TAATACGACTCACTATAGGG-3’, internal forward
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5’-CCACCCTAAGGTCATGGAAA-3’, external reverse 5’-GCTAGTTATTGCTCAG 

CGG-3’, internal reverse 5’-GCTAGTTATTGCTCAGCGG-3\ Sequencing results were 

analysed using ChromasPro software.

3.2.6 Expression and purification of Keapl-His

LB broth (0.125 L), supplemented with 50 pg/mL ampicillin, was inoculated with 3 mL 

pET-2 la(+)/Keapl-transformed BL21 (DE3) glycerol stock and incubated at 37 °C, 250 

rpm, overnight. The culture was then diluted to 1.2 L in LB broth containing 50 pg/mL 

ampicillin, and incubated at 37 °C, 250 rpm, for 30 min. At this point, the optical density 

at 600 nm (OD60onm) was measured using a spectrophotometer, to ensure that the culture 

was at early-log phase of growth (OD6oonm of approximately 0.4). Keapl-His protein 

expression was induced over 4 h, at 37 °C, 250 rpm, with 1 mM isopropyl-p-D- 

thiogalactopyranoside (IPTG). Following induction, bacteria were pelleted at 5000 g, for 

5 min, and washed in 50 mL refolding buffer (0.5 M NaCl, 50 mM Tris base, 20 mM 

imidazole, pH 8.0). The washed pellet was resuspended in 50 mL ice-cold isolation 

buffer (2 M urea, 0.5 M NaCl, 50 mM Tris base, 2 % (v/v) Triton X-100, pH 8.0), 

divided into two equal aliquots in 50 mL tubes and disrupted in an ultrasonic 

disintegrator (10 sec, followed by 10 sec recovery, x 4 repeats). Disrupted bacteria were 

pelleted at 10,000 g for 5 min, resuspended in 30 mL binding buffer ( 6  M guanidine 

HC1, 0.5 M NaCl, 50 mM Tris base, 20 mM imidazole, 1 mM P-mercaptoethanol, pH 

8.0) and shaken vigorously at 4 °C for 30 min. After making 1.5 mL aliquots o f this 

solution, cell debris was pelleted at 18,000 g for 1 0  min; the supernatants were pooled 

and incubated with 0.6 mL (dry volume) HIS-Select nickel (Ni2+) -charged agarose, or 

Sepharose 6 B, beads at 4 °C for 30 min. Beads were pelleted by making 1.5 mL aliquots 

of the binding solution and centrifuging at 5000 g for 1 min. Beads were washed once 

with 1 mL binding buffer, three times with 1 mL wash buffer ( 6  M urea, 0.5 M NaCl, 50 

mM Tris base, 20 mM imidazole, 1 mM P-mercaptoethanol, pH 8.0) and three times 

with 1 mL refolding buffer. Beads were finally resuspended in an equal volume of ice- 

cold phosphate buffer (13.08 mM KH2PO4, 67.27 mM Na2HP0 4, pH 7.4).
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3.2.7 Western blot analysis

Keapl-His expression and purification were determined by Western blot analysis, 

essentially as described in section 2.2.6. To assess Ni2+ purification of Keapl-His, 

proteins were eluted from agarose beads by resuspending in an equal volume of 

NuPAGE loading buffer. The slurry was heated at 80 °C for 5 min, the beads were 

pelleted by centrifugation at 5000 g for 5 min, and the supernatant loaded onto a pre-cast 

4-12 % NuPAGE Novex bis-tris polyacrylamide gel. The anti-polyhistidine HRP- 

conjugated antibody was used at 1:10,000 in TBS-Tween containing 2 % (w/v) BSA.

3.2.8 Silver stain analysis

Keapl-His expression and purification were determined using a SilverXpress silver 

staining kit, in accordance with the manufacturer’s instructions. Gels were scanned using 

a GS-710 calibrated imaging densitometer.

3.2.9 Determination of on-bead Keapl-His content

The on-bead content of Keapl-His was assessed with a bicinchoninic acid (BCA) 

Protein Assay Kit, with a slight modification of the method of Stich (1990). The BCA 

assay is based on the reduction of Cu2+ to Cu4 by protein in an alkaline environment (the 

biuret reaction). Each Cu+ formed reacts with two molecules of BCA to form a purple 

chromophore that has an absorbance maximum at 562 nm (Smith et al., 1985). For the 

determination of protein immobilised on agarose beads, the BCA assay is preferred to a 

standard Bradford protein assay because the blue chromophore that forms when 

Coomassie Brilliant Blue G-250 reacts with immobilised protein remains associated 

with the agarose beads, which settle at the bottom of the plate/tube. Thus, constant 

stirring of the sample is required to enable spectrophotometric determination of protein 

content. The purple chromophore formed via the reaction of BCA with immobilised
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protein is water-soluble, and thus does not remain associated with the agarose beads, 

enabling spectrophotometric determination of protein content without the need for 

constant stirring of the sample. Keapl-His -coupled Ni2+-charged agarose beads (50 pL 

dry volume) were washed three times with 0.2 mL distilled H20  (dH20). A standard 

curve ranging from 0.01-1 mg/mL BSA was prepared in separate tubes (50 pL each). 

Beads and standards were combined with 1 mL BCA assay reagent (0.98 mL reagent A, 

20 pL reagent B) and incubated in a 37 °C water bath for 30 min. All tubes were 

vortexed every 10 min during this incubation period. Following the 30 min incubation, 

tubes were stored on ice to avoid further colour development. The beads were pelleted 

by centrifugation at 5000 g for 1 min. 0.2 mL supernatant, or standards, were transferred 

to a clear 96-well plate and the absorbance at 570 nm was read on a MRX microplate 

reader. A blank reading (dH20  and BCA reagent) was subtracted from all sample and 

standard readings. A bead blank reading (uncoupled Ni2+-charged agarose beads and 

BCA reagent) was subtracted from the sample reading. For the calculation of molar 

ratios, the concentration of Keapl-His (pg/pL) was converted to molarity using the 

following equation:

Protein concentration (pg/pL) x [1/protein molecular weight (pg)] = concentration (pM)

3.2.10 Determination of Keapl-His cysteine redox states

To determine whether Keapl-His cysteines were in sulphydryl or disulphide states, a 

differential chemical capping approach was developed. To cap free sulphydryls, Keapl- 

His -coupled Ni2+-charged agarose beads (50 pL dry volume) were resuspended in 0.13 

mL phosphate buffer and 20 pL of 0.55 M iodoacetamide, and incubated on a 

mechanical roller at 4 °C for 30 min. The beads were washed three times in 0.5 mL 

phosphate buffer to remove residual iodoacetamide. To reduce disulphides, the beads 

were resuspended in 0.148 mL phosphate buffer and 2 pL of 0.1 M DTT, and incubated 

on a mechanical roller at 4 °C for 30 min. The beads were washed three times in 0.5 mL 

phosphate buffer to remove residual DTT. In order to cap the sulphydryls formed from

99



Chapter 3

the reduction of disulphides, the beads were resuspended in 0.13 mL phosphate buffer 

and 20 pL of 0.2 M N-ethylmaleimide (NEM), and incubated on a mechanical roller at 4 

°C for 30 min. The beads were washed three times in 0.5 mL phosphate buffer to 

remove residual NEM. Prior to digestion with trypsin, the beads were washed once with 

0.5 mL of 25 mM ammonium bicarbonate, and then resuspended in 25 pL of 25 mM 

ammonium bicarbonate. A 400 pg/mL stock solution of sequencing-grade modified 

trypsin was diluted 1:10, in 25 mM ammonium bicarbonate, and 6  pL (240 ng) was 

added to the bead slurry. Tryptic digestion was allowed to proceed overnight at 37 °C.

3.2.11 MALDI-TOF mass spectrometry

Following overnight tryptic digestion, peptide mixtures (0.5 pL) were combined with an 

equal volume of a-cyano-4-hydroxy-cinnamic acid (aCHCA) matrix (10 mg/mL 

aCHCA in 50 % (v/v) acetonitrile (ACN), 0.1 % (v/v) trifluoroacetic acid (TFA)) and 

spotted onto a matrix-assisted laser desorption ionization mass spectrometry (MALDI- 

MS) target plate alongside ProteoMass MALDI-MS standards (angiotensin II, 

adrenocorticotropic hormone fragment 18-39, oxidised insulin chain B, 0.5 pmol each), 

using the dried-droplet method. Peptide mass fingerprints were obtained on a Voyager 

DE Pro MALDI time-of-flight (TOF) Biospectrometry Workstation, in linear positive 

ion mode, and used in a MASCOT protein database search 

(http://www.matrixscience.com) to enable identification of proteins present within the 

sample.

3.2.12 LC-ESI-MS/MS mass spectrometry

Samples were delivered into an API QSTAR Pulsar i system by automated in-line 

reversed phase liquid chromatography (LC), using an integrated LCPackings System 

(Famos autosampler, Ultimate LC pump, Switchos microcolumn switching module) and 

75 pm x 15 cm C l8 PepMap column, via a nano-electrospray source head and 10 pm
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inner diameter PicoTip emitter. A gradient of 5-48 % (v/v) ACN, 0.05 % (v/v) TFA over 

60 min, followed by 10 min at 99 % (v/v) ACN, 0.05 % (v/v) TFA and 15 min at 5 % 

(v/v) ACN, 0.05 % (v/v) TFA, was applied to the column at a flow rate of 0.35 pL/min. 

Across a mass range of 300-2000 atomic mass units (amu), MS and MS/MS spectra 

were acquired automatically in positive ion mode using information-dependent 

acquisition powered by Analyst QS software. Above a threshold of 5 counts per sec, the 

three most intense ions in each MS spectrum were subjected to MS/MS analysis for 1.5 

sec, and subsequently excluded from further analysis for 40 seconds. The instrument 

was routinely calibrated with 0.3 nmol caesium iodide (M+H+ = 132.9) and 30 pmol sex 

pheromone inhibitor peptide iPDl (M+H+ = 829.5) in 50 % (v/v) methanol, 1 % (v/v) 

formic acid. Amino acid modifications were detected with ProteinPilot software v2.0 

using the Paragon™ algorithm (Shilov et al., 2007) and the most recent version of the 

SwissProt database. Carboxyamidomethyl (+57.0 amu) or NEM (+125.0 amu) were 

selected as variable modifications. All adducts were confirmed by visual inspection of 

the MS/MS spectra.
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3.3 RESULTS

3.3.1 PCR amplification of mouse K ea p l coding sequence

The mouse Keapl coding sequence (1875 bp) was amplified by PCR. Primers were 

designed to enable amplification of the coding sequence without the TGA stop codon, to 

facilitate the translation of a polyhistidine-tagged Keapl protein. The primers also 

permitted the introduction of an additional 12  bp at the 5’ and 3’ ends of the coding 

sequence. These inserts, containing Asel (5’) and Xhol (3’) restriction digest sites (Fig. 

3.1), were introduced to enable the ligation of the Keapl coding sequence into the Ndel 

and Xhol restriction sites of pET-21a(+). An Asel restriction site, and not an Ndel site, 

was introduced into the Keapl coding sequence because the latter site contains an ATG 

initiation codon, which would have resulted in the premature translation of the construct.

Asel
tcgattaatagc
agctaattatcg

5• 2' Xhol
gagctcgagtcg 
ctcgagctcagcMouse Keapl CDS

Fig. 3.1 - Schematic diagram showing insertion of A se l and X h o l restriction digest 
sites at the 5’ and 3’ ends, respectively, of the mouse K ea p l coding sequence (CDS).
The restriction sites are shown in bold.

3.3.2 Ligation of mouse K ea p l coding sequence into pET-21a(+)

The tagged Keapl PCR product was digested with Asel and Xhol, whilst pET-2 la(+) 

(Fig. 3.2) was digested with Ndel and Xhol', both restriction fragments were resolved by 

electrophoresis (Fig. 3.3). As digestion with Asel and Ndel yields compatible ends, the 

v4seI/A7zoI-digested Keapl fragment was ligated into MM/ATzoI-digested pET-2la(+). 

XL10-Gold ultracompetent E. coli were transformed with the ligated construct. 

Successful transformation was confirmed by diagnostic restriction digests of construct 

DNA purified from selected bacterial colonies (Fig. 3.4). Specifically, fragments of the
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expected size(s) were visualised following digestion with Bglll (cuts at -106 and 1694 of 

K eapl; 1800 bp fragment), Xhal and Sad  (Xbal cuts at -40, S a d  cuts at 923; 963 bp 

fragment), and Hindlll and Xhol {HindiII cuts at 16, Xho\ cuts at 1879; 1863 fragment). 

These diagnostic restriction digests demonstrate that the Keapl coding sequence ligated 

into pET-21a(+) successfully, and in the correct orientation. In order to confirm that the 

PCR amplification process had not introduced mutations into the Keapl coding 

sequence, the pET-21a(+)/Keapl construct was verified by two-strand sequencing. This 

process confirmed that no non-synonymous mutations, i.e. those that result in the 

translation of a different amino acid, were present in pET-21a(+)/Keapl. An example 

electropherogram, depicting the Xhol restriction site, polyhistidine tag and TGA stop 

codon of pET-21a(+)/Keapl, is presented in Fig. 3.5.

Fig. 3.2 - pET-21a(+) vector map. The tagged Keapl coding sequence was ligated into 
the Ndel and Xhol restriction sites of pET-21a(+). Image taken from Novagen on-line 
catalogue (http://www.merckbiosciences.co.uk/docs/NDIS/TB036-000.pdf).
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Fig. 3.3 - Restriction digested mouse Keapl coding sequence and pET-2 la(+). The
tagged mouse Keapl coding sequence was digested with AseJ and Xhol. pET-21a(+) was 
digested with Ndel and Xhol. Both restriction fragments, alongside a 100 bp DNA 
ladder, were resolved by electrophoresis on a 1 % (w/v) agarose gel, containing 0.5 
pg/mL ethidium bromide. DNA fragments were visualised under UV illumination.
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Fig. 3.4 - Diagnostic restriction digests of pET-2la(+)/Keapl from putative 
transformed XLIO-Gold E. coli. pET-2 la(+)/Keapl was purified from selected 
bacterial colonies by mini-prep. The construct was digested with BglII (cuts at -106 and 
1694 of Keapl ; 1800 bp fragment), Xhal and S a d  (Xbal cuts at -40, S a d  cuts at 923; 
963 bp fragment), and Hindiil and Xhol (Hindlll cuts at 16, Xhol cuts at 1879; 1863 
fragment). The restriction fragments, the undigested construct, and a 100 bp DNA ladder 
were resolved by electrophoresis on a 1 % (w/v) agarose gel, containing 0.5 pg/mL 
ethidium bromide. DNA fragments were visualised under UV illumination.
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Xhoi
restriction

site

C T C C A

Stop
6xHis tag codon

Fig. 3.5 - Sequencing electropherogram of pET-21a(+)/Keapl. pET-2la(+)/Keapl 
was sequenced by Geneservice; the construct was amplified by PCR in the presence of 
the terminator nucleotides dideoxy -adenine (■), -thymine (■), -guanine (■) and - 
cytosine (■). The amplification products were resolved by electrophoresis, visualised 
under UV illumination, and recorded automatically. The region of electropherogram 
shown depicts the Xhol restriction site, polyhistidine (6 xHis) tag and TGA stop codon of 
pET-2 la(+)/Keapl.

3.3.3 Expression and purification of Keapl-His

BL21 (DE3) competent E. coli were transformed with the verified pET-2 la(+)/Keapl 

construct, and Keapl-His expression was induced via supplementation of the culture 

with IPTG. As an analogue of lactose, IPTG displaces the repressor from the lac 

operator o f the BL21 (DE3) T7 polymerase gene (Dubendorff et al., 1991; Studier el al., 

1986), allowing T7 polymerase to drive transcription of the gene of interest via the T7 

promoter (Dubendorff et al., 1991; Studier et al., 1986). The inducible expression of 

Keapl-His was confirmed by Western blot analysis (Fig. 3.6). It was noted that the anti- 

Keapl antibody consistently detected two protein bands of slightly different molecular 

weights (Fig. 3.6). As the exact nature of the two bands was not investigated during this 

work, the cause of this phenomenon is not clear. A large proportion of the recombinant
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Keapl-His protein was insoluble following sonication of the bacterial pellet in IX PBS 

(Fig. 3.6), and was thus unsuitable for purification of Keapl-His using Ni2+-charged 

agarose beads, which could not have been separated from the insoluble pellet by 

centrifugation. Therefore, Keapl-His was purified under denaturing conditions, in order 

to enable maximal recovery of the recombinant protein in a soluble form. Denaturing 

purification of Keapl-His from the crude bacterial lysate was confirmed by silver stain, 

which showed a high degree of purity in the recovered fraction (Fig. 3.7). Western blot 

analysis also showed a high recovery of a polyhistidine-tagged protein that ran at the 

size anticipated for Keapl-His (70.8 kiloDalton; kDa) (Fig. 3.7).

Fig. 3.6 - Inducible expression of Keapl-His in BL21 (DE3) E. coli. BL21 (DE3) 
transformed with pET-21a(+)/Keapl were cultured in LB broth and, at an ODeoonm of 
0.4, were not induced, or induced with 1 mM IPTG, for 4 h at 37 °C, 250 rpm. The 
bacterial pellets were resuspended in IX PBS and disrupted by sonication. The soluble 
lysates and insoluble pellets were resolved by denaturing electrophoresis and Keapl 
expression was assessed by Western blot analysis.
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Fig. 3.7 - Denaturing purification of Keapl-His. Keapl-His expression was induced 
or not by the supplementation of a BL21 (DE3) culture with 1 mM IPTG. Following 
incubation for 4 h at 37 °C, 250 rpm, the bacterial pellets were lysed under denaturing 
conditions, and the soluble lysates were incubated for 30 min, at 4 °C, with HIS-Select 
Ni2+-charged agarose, or Sepharose 6 B, beads. The crude bacterial lysates and the 
proteins eluted from the respective beads were resolved by denaturing electrophoresis. 
Keapl-His expression and purification was confirmed by silver stain and Western blot 
analysis; the latter was performed separately with anti-Keapl and anti-polyhistidine 
antisera.

MALDI-TOF MS analysis revealed that the polyhistidine-tagged protein recovered from 

pET-2la(+)/Keapl -transformed BL21, using Ni2+-charged agarose beads, was Keapl- 

His (Fig. 3.8). The peptide mass fingerprint obtained from this analysis was used in a 

MASCOT protein database search, which identified mouse Keapl as the major 

constituent of the tryptic digest (Fig. 3.9). The amino acid coverage for mouse Keapl, 

from the MALDI-TOF MS analysis, was 82 %, and included Cys-151, -273 and -288,
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which have been shown to be critical for the function of Keapl (Kobayashi et al., 2006; 

Levonen et al., 2004; Wakabayashi et al., 2004; Zhang et al., 2003a). Of the 25 

cysteines in Keapl-His, only Cys-622 and -624 were not routinely covered during MS 

analysis, as they were not released from the Ni2+-charged agarose beads by tryptic 

digestion, due to their proximity to the polyhistidine tag of Keapl-His. Compound 

mutation o f the three cysteines (Cys-613, -622, -624) located within the C-terminal 

domain o f Keapl has no effect on the repressive activity of Keapl towards Nrf2 

(Wakabayashi et al., 2004), implying that Cys-622 and -624 are not essential for Keapl 

function.

Fig. 3.8 - MALDI-TOF mass spectrum of the tryptic digest of protein(s) purified by 
N r  affinity, under denaturing conditions, from pET-2la(+)/Keapl -transformed 
BL21 (DE3). Keapl-His expression was induced via the supplementation of a BL21 
(DE3) culture with 1 mM IPTG. Following incubation for 4 h at 37 °C, 250 rpm, the 
bacterial pellets were lysed under denaturing conditions and the soluble lysates were 
incubated for 30 min, at 4 °C, with HIS-Select Ni2+-charged agarose beads. Bead-bound 
protein(s) were reduced with 1 mM DTT, alkylated with 55 mM iodoacetamide, and 
digested overnight with 240 ng trypsin. The resulting peptide mixture was visualised on 
a Voyager DE Pro MALDI-TOF Biospectrometry Workstation, in linear positive ion 
mode.
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Accession Mass Score Description

1. a1 133416964 69508 319 Kelch-like ECH-associated protein 1 [Mus musculus]
2. gi 137359786 71015 309 mKIAA0132 protein [Mus musculus]
3. gi 174207025 69492 301 unnamed protein product [Mus musculus]
4. gi 126337871 69478 298 unnamed protein product [Mus musculus]
5. gi 174219578 69482 274 unnamed protein product [Mus musculus]

Match to: gi|33416964 Kelch-like ECH-associated protein 1 [Mus musculus]
Sequence Coverage: 82%

1 MQPEPKLSGA PRSSQFLPLW SKCPEGAGDA VMYASTECKA EVTPSQDGNR
51 TFSYTLEDHT KQAFGVMNEL RLSQQLCDVT LQVKYEDIPA AQFMAHKWL

101 ASSSPVFKAM FTNGLREQGM EWSIEGIHP KVMERLIEFA YTASISVGEK
151 CVLHVMNGAV MYQIDSWRA CSDFLVQQLD PSNAIGIANF AEQIGCTELH
201 QRAREYIYMH FGEVAKQEEF FNLSHCQLAT LISRDDLNVR CESEVFHACI
251 DWVKYDCPQR RFYVQALLRA VRCHALTPRF LQTQLQKCEI LQADARCKDY
301 LVQIFQELTL HKPTQAVPCR APKVGRLIYT AGGYFRQSLS YLEAYNPSNG
351 SWLRLADLQV PRSGLAGCW GGLLYAVGGR NNSPDGNTDS SALDCYNPMT
401 NQWSPCASMS VPRNRIGVGV IDGHIYAVGG SHGCIHHSSV ERYEPERDEW
451 HLVAPMLTRR IGVGVAVLNR LLYAVGGFDG TNRLNSAECY YPERNEWRMI
501 TPMNTIRSGA GVCVLHNCIY AAGGYDGQDQ LNSVERYDVE TETWTFVAPM
551 RHHRSALGIT VHQGKIYVLG GYDGHTFLDS VECYDPDSDT WSEVTRMTSG
601 RSGVGVAVTM EPCRKQIDQQ NCTC

Fig. 3.9 - MASCOT protein database search result for peptide mass fingerprint 
obtained from the MALDI-TOF MS analysis of protein(s) purified by Ni2+ affinity, 
under denaturing conditions, from pET-2 la(+)/Keapl -transformed BL21 (DE3).
The peptide mass fingerprint shown in Fig. 3.8 was used in a MASCOT protein database 
search (http://www.matrixscience.com), which identified mouse Keapl as the major 
constituent protein in the tryptic digest. The five proteins identified with the highest 
degree of confidence are shown (all are variant database entries for mouse Keapl). The 
amino acid sequence coverage for mouse Keapl was 82 %. The specific amino acids 
covered by the MALDI-TOF MS analysis are underlined and in bold.

3.3.4 Determination of Keapl-His cysteine redox states

Although the denaturing purification process contained a refolding step, in which all 

denaturing and reducing agents were removed from the protein(s), it was not possible to 

determine if this step facilitated the reliable and correct folding of Keapl-His, partly 

because there is, at present, no point of reference for the whole protein, in that crystal 

structures have only been resolved for the DGR and C-terminal domains of mouse 

Keapl (Padmanabhan et al., 2005). Therefore, because the main application of the 

purified Keapl-His was to be in the analysis of Keapl cysteine modification by Nrf2- 

activating molecules, the consistency of cysteine redox states in Keapl-His across
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separate purifications was assessed using a differential chemical capping approach (Fig. 

3.10). One of two procedures was followed: 1) Keapl-His was alkylated, or reduced and 

then alkylated; any cysteines that were alkylated without reduction were likely to be in a 

sulphydryl state, whilst those that were alkylated only following reduction were likely to 

be in a disulphide state, and 2) Keapl-His was exposed to iodoacetamide, then reduced 

with DTT, and exposed to NEM; any cysteines that were alkylated by iodoacetamide 

were likely to be in a sulphydryl state, whilst those that were only alkylated by N- 

ethylmaleimide were likely to be in a disulphide state. This approach, coupled with 

liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI- 

MS/MS), enabled the redox states of the cysteines in mouse Keapl-His to be 

determined, by detecting mass shifts (+57.0 amu for iodoacetamide, +125.0 amu for 

NEM) on each cysteine residue.

SH~{ Keapl )— SH

s —s

CAM -s— ( Keapl ]~s~
I I

CAM

S — S

CAM - S — Keapl
T T ~

SH SH

— S -C A M

CAM - S — Keapl
i  r

— S -C A M

N E M -S  S -N E M

+ lodoacetamide
Capping of free -SH (+57.0 amu)

+ DTT
Reduction of S-S to free -SH

+ N-ethylmaleimide
Capping of former S-S (+125.0 amu)

Fig. 3.10 - Differential chemical capping approach for determining the redox states 
of Keapl-His cysteines. Purified Keapl-His was alkylated with iodoacetamide, reduced 
with DTT and alkylated with N-ethylmaleimide. Cysteines in a -SH state were identified 
by an increase in mass of +57.0 amu (carboxamidomethylation; CAM) prior to 
reduction. Cysteines in a S-S state were identified by a lack of carboxamidomethylation 
prior to reduction and an increase in mass of +125.0 amu (N-ethylmaleimide; NEM) 
only following reduction.
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Across three separate purifications, performed on individual bacterial pellets on the 

same day, inconsistencies in the redox states of Keapl-His cysteines were detected 

(Table 3.1). For example, certain residues were found to be in a sulphydryl state in one 

purification and a disulphide state in another. Some cysteine residues were also found to 

be in both sulphydryl and disulphide states within the same purification. Similar 

inconsistencies were also found across purifications performed on separate days (Table 

3.1). These results indicate that the denaturing and refolding process employed to purify 

Keapl-His could not ensure a consistent redox state for Keapl-His cysteine residues, 

within or across purifications. Therefore, it would not be possible to assume that Keapl- 

His purified on separate occasions was structurally identical. Similarly, it was clearly not 

going to be possible to use the method described here to study the modification of Keapl 

cysteines by Nrf2-activating molecules without first rendering all of the cysteines free 

for adduction (i.e. in a sulphydryl state). It was considered that such an approach would 

not render subsequent studies of Keapl cysteine modification invalid, for the following 

reasons: 1) the native redox states of cysteines other than those residing within the DGR 

domain of human Keapl (Li et al., 2004b) have yet to be elucidated, and so it may 

transpire that many or all of the cysteines in Keapl are naturally in a sulphydryl state, 

and, more importantly, 2) ensuring that all Keapl cysteines were in a sulphydryl state 

would render all of them free for modification, thus enabling the examination of the 

relative reactivities of Keapl cysteines towards chemically distinct Nrf2-activating 

molecules. In summary, then, these data describe the generation of recombinant mouse 

Keapl-His and validation of its use as an in vitro model for studying the modification of 

Keapl cysteines by Nrf2-activating molecules, using LC-ESI-MS/MS.
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Chapter 3

3.3.5 Expression and purification of soluble Keapl-His under non-denaturing 

conditions

In the latter stages of this PhD, and with the technical assistance of Mr. Peter Metcalfe, 

the successful expression and purification of a soluble form of Keapl-His was achieved 

using non-denaturing conditions. LB broth was substituted with Power Broth, a nutrient- 

rich, proprietary formulation (Athena Enzyme Systems). pET-21a(+)/Keapl 

-transformed BL21 (DE3) were grown in Power Broth and, at an OD6oonm of 0.4, were 

induced overnight at 20 °C, 250 rpm, via supplementation with 1 mM IPTG. The next 

morning, the pH of the culture was adjusted to 7.5 with 1 M Tris base, the bacteria were 

then pelleted and resuspended in binding buffer (0.5 M NaCl, 20 mM Na2HPC>4, 20 mM 

imidazole, pH 7.4). The bacteria were disrupted by sonication (six bursts of 10 sec, 

interspersed with 10 sec recoveries) and clarified by centrifugation. Polyhistidine-tagged 

proteins were then purified from the soluble fraction using a HisTrap HP affinity column 

(Amersham, Little Chalfont, UK), in accordance with the manufacturer’s instructions. 

Affinity-purified proteins were eluted from the column in elution buffer (0.5 M 

imidazole, 0.5 M NaCl, 20 mM Na2HPC>4, pH 7.4), resolved by denaturing 

electrophoresis, and visualised by staining with Coomassie Brilliant Blue G-250. An 

abundant protein, at the anticipated size of Keapl-His (70.8 kDa) was detected in the 

lysate from induced, but not uninduced, pET-21a(+)/Keapl -transformed BL21 (DE3) 

(Fig. 3.11). The successful purification of Keapl-His was confirmed by MALDI-TOF 

MS analysis of the trypsin-digested proteins eluted from the affinity column (Fig. 3.12). 

The peptide mass fingerprint obtained from this analysis was used in a MASCOT 

protein database search, which identified mouse Keapl as the major constituent of the 

tryptic digest (Fig. 3.13). The amino acid coverage for mouse Keapl, from the MALDI- 

TOF MS analysis, was 45 %. The amino acid coverage from LC-ESI-MS/MS analysis, 

which affords greater resolution due to the chromatographic separation of peptides, was 

85 %. Since this method was developed in the latter stages of the project, there was 

insufficient time to use the protein in further studies into the modification of Keapl 

cysteines by Nrf2-activating molecules.
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‘Power Broth’ -  IPTG ‘Power Broth’ + IPTG

Fig. 3.11 - Coomassie Brilliant Blue stain of proteins eluted from a HisTrap HP 
affinity column, following non-denaturing expression of Keapl-His. Keapl-His 
expression was not induced or induced via the supplementation of a BL21 (DE3) Power 
Broth culture with 1 mM IPTG. Following overnight incubation at 20 °C, 250 rpm, the 
bacterial pellets were lysed under non-denaturing conditions and the soluble lysates were 
passed through a HisTrap HP affinity column. Proteins eluted from the column were 
resolved, alongside the flow-through fraction and protein molecular weight markers, by 
denaturing electrophoresis on a bis-tris polyacrylamide gel, which was subsequently 
stained with Coomassie Brilliant Blue G-250.
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Fig. 3.12 - MALDI-TOF mass spectrum of the tryptic digest of protein(s) purified 
by Ni2+ affinity, under non-denaturing conditions, from pET-2la(+)/Keapl - 
transformed BL21 (DE3). Keapl-His expression was induced via the supplementation 
of a BL21 (DE3) Power Broth culture with 1 mM IPTG. Following overnight incubation 
at 20 °C, 250 rpm, the bacterial pellets were lysed under non-denaturing conditions and 
the soluble lysates were passed through a HisTrap HP affinity column. Affinity purified 
protein(s) were reduced with 1 mM DTT, alkylated with 55 mM iodoacetamide, and 
digested overnight with 240 ng trypsin. The resulting peptide mixture was visualised on 
a Voyager DE Pro MALDI-TOF Biospectrometry Workstation, in linear positive ion 
mode.
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Accession Mass Score Description

1. gi| 7710044 69508 161 kelch-like ECH-associated protein 1 [Mus musculus]
2. gi| 74181739 69492 161 unnamed protein product [Mus musculus]
3. gi| 26337871 69478 161 unnamed protein product [Mus musculus]
4. gi| 37359786 71015 159 mKIAA0132 protein [Mus tuscuius]
5. gi 174212473 69482 143 unnamed protein product [Mus musculus]

Match to: gi|7710044 kelch-like ECH-associated protein 1 [Mus musculus]
Sequence Coverage: 45%

1 MQPEPKLSGA PRSSQFLPLW SKCPEGAGDA VMYASTECKA EVTPSQDGNR 
51 TFSYTLEDHT KQAFGVMNEL RLSQQLCDVT LQVKYEDIPA AQFMAHKWL 

101 ASSSPVFKAM FTNGLREQGM EWSIEGIHP KVMERLIEFA YTASISVGEK 
151 CVLHVMNGAV MYQIDSWRA CSDFLVQQLD PSNAIGIANF AEQIGCTELH 
201 QRAREYIYMH FGEVAKQEEF FNLSHCQLAT LISRDDLNVR CESEVFHACI 
251 DWVKYDCPQR RFYVQALLRA VRCHALTPRF LQTQLQKCEI LQADARCKDY 
301 LVQIFQELTL HKPTQAVPCR APKVGRLIYT AGGYFRQSLS YLEAYNPSNG 
351 SWLRLADLQV PRSGLAGCW GGLLYAVGGR NNSPDGNTDS SALDCYNPMT 
401 NQWSPCASMS VPRNRIGVGV IDGHIYAVGG SHGCIHHSSV ERYEPERDEW 
451 HLVAPMLTRR IGVGVAVLNR LLYAVGGFDG TNRLNSAECY YPERNEWRMI 
501 TPMNTIRSGA GVCVLHNCIY AAGGYDGQDQ LNSVERYDVE TETWTFVAPM 
551 RHHRSALGIT VHQGKIYVLG GYDGHTFLDS VECYDPDSDT WSEVTRMTSG 
601 RSGVGVAVTM EPCRKQIDQQ NCTC

Fig. 3.13 - MASCOT protein database search result for peptide mass fingerprint 
obtained from the MALDI-TOF MS analysis of protein(s) purified by Ni2+ affinity, 
under non-denaturing conditions, from pET-2la(+)/Keapl -transformed BL21 
(DE3). The peptide mass fingerprint shown in Fig. 3.12 was used in a MASCOT protein 
database search (http://www.matrixscience.com), which identified mouse Keapl as the 
major constituent protein in the tryptic digest. The five proteins identified with the 
highest degree of confidence are shown (all are variant database entries for mouse 
Keapl). The amino acid sequence coverage for mouse Keapl was 45 %. The specific 
amino acids covered by the MALDI-TOF MS analysis are underlined and in bold.
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3.4 DISCUSSION

The Nrf2-ARE pathway represents an inducible defence mechanism that affords 

protection to mammalian cells against chemical/oxidative stress (for a review, see 

Kensler et al., 2007). The work presented in this chapter describes the development of a 

cell-free in vitro test system, based on the use of recombinant mouse Keapl protein in 

combination with mass spectrometry, that provides an experimental basis to test the 

hypothesis that NAPQI activates the Nrf2-ARE pathway via the direct chemical 

modification of cysteine residues within Keapl, the cytosolic repressor of Nrf2. This 

system may also provide insights into the molecular mechanism that triggers Nrf2 

activation in mouse liver following administration of paracetamol in vivo (Goldring et 

a l, 2004).

Recombinant DNA technology (Cohen et al., 1973) has contributed greatly to the field 

of biomedicine. The ability to express recombinant proteins has enabled, for example, 

the large-scale and reliable production of human insulin for the treatment of diabetes 

(Crea et al., 1978; Goeddel et al., 1979). The use of recombinant protein technology and 

mass spectrometry has proved to be a fruitful combination for the detection and 

characterisation of post-translational modifications, and is now commonplace within the 

field of biomedical research (see the reviews by Liebler (2002) and Mann et al. (2003) 

for further details). Many groups have used these principles to investigate, for example, 

the oxidation state of the active site cysteine in human protein tyrosine phosphatase IB 

(DeGnore et al., 1998), the inhibition of NF-kB -DNA binding via covalent modification 

of Cys-62 within the p50 subunit by the anti-inflammatory molecules 15d-PGJ2 

(Cemuda-Morollon et al., 2001), andrographolide (Xia et al., 2004) and kamebakaurin 

(Lee et al., 2002), and the modification of apolipoprotein B-100, the major protein 

constituent of low density lipoprotein, by the lipid peroxidation product 4-hydroxy-2- 

nonenal (Bolgar et al., 1996). These and many other investigations have demonstrated 

that the use of mass spectrometry coupled with recombinant protein technology is a 

feasible and accurate means of characterising post-translational modifications at the 

amino acid level. Increasingly, with the improvement of pre-analytical separation
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techniques and the continual evolution and increased sensitivity of mass spectrometers, 

the principles of these in vitro studies are being exploited to enable the characterisation 

o f protein post-translational modifications in cells and in vivo, from samples that are 

inherently much more complex in nature (Ji et al., 2007; Koen et al., 2006; Lemercier et 

al., 2004; Meier et al., 2007; Meier et al., 2005; Shin et al., 2007)..

The use of recombinant proteins has many advantages for the detection of chemical 

modification(s) by mass spectrometry. For instance, the purification and enrichment of a 

protein dramatically reduces the complexity of the sample to be analysed. Such a 

strategy may eliminate the confounding effects of other proteins on the reaction being 

studied. Furthermore, given that only a small fraction of the total protein may be 

modified, protein enrichment effectively increases the sensitivity of the mass 

spectrometer for the detection of modifications. In addition, the prior characterisation of 

residue-specific modifications in vitro, using recombinant proteins, may better inform in 

vivo analyses, by identifying diagnostic data patterns that help the investigator to detect 

specific changes within a complex heterogeneous sample. However, there are also 

limitations to the use of recombinant proteins as biological models. For example, a given 

protein may not fold into its native form when expressed in bacteria. Such misfolding 

can particularly affect proteins which in the native state bear disulphide bonds, the 

formation of which is inhibited in the reducing environment of the E. coli cytoplasm 

(Singh et a l, 2005). It is also important to consider that modifications observed in vitro, 

from the reaction between a chemical and purified recombinant protein, may not 

necessarily occur within a much more complex cellular milieu. Therefore, one should be 

cautious when attempting to extrapolate data obtained from in vitro analyses to a 

cellular, or even whole organism, context.

Recombinant proteins are routinely expressed with conjoined affinity tags, which can be 

defined as amino acid sequences with a high affinity for a specific biological or 

chemical ligand (Amau et a l, 2006). The incorporation of such tags enables the 

purification and enrichment of the protein of interest from the heterogeneous mixture of 

proteins present within the host expression system, such as E. coli. Polyhistidine tags,
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which comprise a short peptide containing (normally six) consecutive histidine residues, 

are amongst the most widely-used affinity tags for recombinant protein purification. The 

principle of immobilised metal-affinity chromatography (Porath et al., 1975), i.e. the 

strong interaction between a transition metal (Ni2+, Co2+, Cu2+, Zn2+) and the side chain 

o f histidine, is central to the use of polyhistidine tags in the process of protein 

purification. Importantly in this case, the binding specificity of this reaction is robust 

under both native and denaturing conditions (Porath, 1992). Competition for transition 

metal binding with imidazole, which contains the same ring structure as the side chain of 

histidine, enables the elution of affinity-purified proteins (Hochuli, 1990). Many other 

affinity tags have been developed, including short peptides such as FLAG 

(‘DYKDDDDK’) and c-Myc (‘EQKLISEEDL’), which enable purification via affinity 

towards an immobilised antibody, and much longer sequences that have a natural 

affinity for a biological molecule, such as streptavidin-binding protein (binds to 

immobilised streptavidin) and GST (binds to immobilised GSH) (Terpe, 2003). 

However, immobilised antibodies are generally expensive, and the incorporation of a 

large peptide or protein, in the case of GST, may have significant effects on the structure 

and/or function of the recombinant protein itself. In this regard, and given its wide­

spread application in the purification of recombinant proteins, the polyhistidine tag was 

chosen as the fusion partner for recombinant Keapl in this study.

E. coli is one of the most commonly-used systems for the expression of recombinant 

proteins, due in part to its rapid growth and well-characterised genetics (Baneyx, 1999). 

However, the use of E. coli for the production of recombinant protein is by no means a 

flawless process; one o f the most frequent problems encountered, particularly with 

expression vectors that contain a strong promoter, is the tendency of highly-expressed 

proteins to misfold and form insoluble aggregates, known as inclusion bodies (Hartley et 

al., 1988; Kane et al., 1991). From the results presented in section 3.3.3, it appears that 

initial attempts at expressing Keapl-His were hindered by aggregation, with a large 

proportion of the protein being insoluble following disruption of the bacteria. 

Importantly, proteins aggregated within inclusion bodies tend to lack biological activity 

(Rudolph et al., 1996). Fortunately, however, methods for the recovery of recombinant
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protein from inclusion bodies have been developed, and have classically involved the 

use of concentrated chemical dénaturants, particularly urea and guanidine hydrochloride, 

which are classified as chaotropes in light of their ability to disrupt non-covalent 

molecular structures (Rudolph et a l, 1996). Reducing agents, such as DTT and 0- 

mercaptoethanol, may also be used to counteract aggregation caused by the misforming 

of disulphide bonds (Rudolph et a l, 1996). To facilitate the refolding of solubilised 

proteins, dénaturants and reductants are gradually removed via dilution or dialysis 

(Rudolph et a l, 1996).

Dénaturants and reductants have been used in this study to enable the enhanced recovery 

o f insoluble recombinant Keapl-His. In this case, it is not possible to fully determine 

whether the recombinant Keapl protein expressed here and in other work (Dinkova- 

Kostova et a l, 2002) is correctly folded, because there is currently no point of reference, 

given that a crystal structure has been resolved only for the DGR and C-terminal 

domains of the mouse protein (Padmanabhan et a l, 2005). Until the complete crystal 

structure of Keapl is determined, the most suitable method for determining the fidelity 

o f the folding of recombinant Keapl may be to ensure that the protein is able to 

associate with its known interaction partners, namely Nrf2, actin, CUL3 and RBX1 

(Cullinan et a l, 2004; Dhakshinamoorthy et a l, 2001; Furukawa et a l, 2005; Itoh et a l, 

1999; Kang et a l, 2004; Kobayashi et a l, 2004; Zhang et a l, 2004; Zhang et a l, 2005). 

However, given that the redox states of the 25 cysteines in mouse Keapl-His were not 

consistent within or across purifications in section 3.3.4, it was decided that all cysteines 

would be rendered free for adduction via exposure to the reducing agent DTT. 

Therefore, studies of Keapl-His modification by Nrf2-activating molecules in chapter 4 

will examine the relative reactivities of Keapl cysteines towards different electrophiles, 

to explore the possibility that certain residues are preferentially reactive towards all Nrf2 

inducers. In light of this, the precise folding state of Keapl-His following dénaturation 

and renaturation was not deemed to be critical, given that all disulphide bonds were 

subsequently reduced, inhibiting tertiary structure formation. However, in order to 

examine the consequence(s) of cysteine modification on the structure of Keapl, 

correctly-folded soluble protein would need to be readily available. To this end, and
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towards the latter stages of this PhD, a method for the enhanced recovery of soluble 

Keapl-His was developed. Although not used for experimental purposes in this thesis, 

the ability to isolate recombinant Keapl in a soluble form may facilitate circular 

dicroism and/or nuclear magnetic resonance-based structural studies to test the 

hypothesis that modification of one or more cysteines within Keapl causes a 

conformational change in the protein. Indeed, this has been postulated as a critical 

molecular event that leads to the disruption of Nrf2 repression by Keapl, causing the 

induction of adaptive cell defence processes (for a review, see Tong et a l, 2006b). 

Experiments that test this hypothesis will enhance our understanding of the likely 

importance of Keapl cysteine modification in the activation ofNrf2.

In relation to this thesis, the most pertinent example of the use of mass spectrometry to 

characterise the modification of a recombinant protein is the study by Talalay and 

colleagues, who reported the residue-selective adduction of mouse Keapl by the thiol- 

reactive electrophile dex-mes (Dinkova-Kostova et a l, 2002). Although not 

representative of the physiological conditions within a cell, the procedures employed in 

this paper enabled the identification of five cysteines, from a total of 25 in the mouse 

protein, that were preferentially reactive towards dex-mes in vitro at a molar ratio of 

33:1 dex-mes:Keapl (Dinkova-Kostova et a l, 2002). Specifically, these residues were 

Cys-257, -273, -288, -297 and -613 (Dinkova-Kostova et a l, 2002). Indeed, it has 

recently been demonstrated that a Keapl protein in which Cys-257, -273, -288 and -297 

are mutated to alanine binds dex-mes at half the rate of the wild-type protein 

(Wakabayashi et a l, 2004). Other investigations have utilised site-directed mutagenesis 

to demonstrate that the integrities of Cys-273 and -288 in particular are critical for the 

function of Keapl (Kobayashi et a l, 2006; Levonen et a l, 2004; Wakabayashi et a l, 

2004; Zhang et al., 2003). Therefore, it would appear there is value in determining the 

relative reactivities of Keapl cysteine residues towards Nrf2-activating molecules using 

in vitro systems similar to those described by Dinkova-Kostova et a l  (2002) and in this 

chapter.
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In summary, this chapter describes the development and validation of a cell-free in vitro 

test system for exploring the modification of cysteine residues within Keapl by Nrf2- 

activating electrophiles. This system will be employed in chapter 4 to examine the role 

of Keapl modification in the activation of Nrf2 by NAPQI, DNCB and 15d-PGJ2.
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CHAPTER 4

Chemical modification of Keapl in vitro by 

N-acetyl-p-benzoquinoneimine and other Nrf2-activating electrophiles
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The activity of the transcription factor Nrf2 is primarily regulated through its interaction 

with the cysteine-rich protein Keapl (Itoh et a l, 1999). It has been postulated that the 

modification of one or more cysteine residues within Keapl may evoke a 

conformational change in the protein, rendering it unable to efficiently repress Nr£2, and 

thus providing a trigger for activation of the transcription factor (Dinkova-Kostova et 

a l, 2002). To date, compelling evidence for the chemical modification of Keapl has 

been provided through the use of biotinylated analogues of Nrf2-activating molecules 

(Itoh et a l, 2004; Levonen et a l, 2004), spectroscopic binding experiments (Dinkova- 

Kostova et a l, 2002) and mass spectrometry (Dinkova-Kostova et a l, 2002).

In the only investigation to date to employ mass spectrometry as an analytical tool to 

examine the modification of Keapl cysteines, the thiol-reactive steroid dex-mes was 

shown to preferentially modify Cys-257, -273, -288 and -297, located within the IVR 

domain, and the C-terminal Cys-613, of recombinant mouse Keapl (Dinkova-Kostova et 

a l, 2002). Cys-273, -288, -297 and -613 are amongst the many cysteines (see Fig. 1.9) 

in the mouse Keapl protein that have low predicted pKa values, and thus high relative 

reactivities, as they are flanked by at least one basic amino acid (Snyder et a l, 1981). 

Cys-273, -297 and -613 are immediately flanked by two basic residues, and are thus 

anticipated to be particularly reactive toward electrophiles. Therefore, further work is 

required to identify the target residues within Keapl of other Nrf2-activating molecules, 

in order to determine whether a defined cysteine, or subset of cysteines, represents a 

common target for all such molecules.

Insights into the role of specific cysteine residues in the function of Keapl, particularly 

Cys-151, -273 and -288, have mainly come from studies employing site-directed 

mutagenesis (Kobayashi et a l, 2006; Levonen et a l, 2004; Wakabayashi et a l, 2004; 

Zhang et a l, 2003). Cys-151, which resides within the BTB domain of Keapl, does not 

appear to be integral to Keapl function in the absence of chemical/oxidative stress, but 

is critical to its ability to respond to such conditions (Zhang et a l, 2003; Zhang et a l,

4.1 INTRODUCTION
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2004). In contrast, Cys-273 and -288, both located within the IVR domain of Keapl, are 

essential for the repressive activity of Keapl under basal conditions (Kobayashi et al., 

2006; Levonen et al., 2004; Wakabayashi et al., 2004; Zhang et al., 2003). Mutation of 

Cys-273 and/or -288 to serine or alanine renders Keapl unable to direct ubiquitination of 

Nr£2, inhibit its nuclear accumulation or repress transactivation of an ARE reporter 

transgene (Kobayashi et al., 2006; Levonen et al., 2004; Wakabayashi et al., 2004; 

Zhang et al., 2003). Furthermore, the responsiveness of Nrf2 to known inducers is 

diminished or abolished by the expression of Keapl Cys-273/288 mutants (Levonen et 

al., 2004; Zhang et al., 2003). Notably, the mutation of other cysteines within the IVR, 

N-terminal and C-terminal domains has essentially no effect on Keapl function 

(Wakabayashi et al., 2004; Zhang et al., 2003). Hence, the structural integrities of Cys- 

151, -273 and -288 are paramount for the function of Keapl. As for Cys-273 and -288, 

Cys-151 is flanked by basic amino acids (see Fig. 1.9), and is thus anticipated to be 

highly reactive towards electrophiles (Snyder et al., 1981). Therefore, in light of the 

evidence discussed, these residues are plausible targets for electrophilic inducers of 

Nrf2.

The work presented in chapter 3 has described the development of a cell-free in vitro 

system for examining the modification of Keapl by Nrf2-activating electrophiles, using 

tandem mass spectrometry to facilitate the identification of specific target residues. 

Through the use of a panel of structurally distinct molecules (NAPQI, DNCB and 15d- 

PGJ2) that were shown to activate Nrf2 in chapter 2, the initial aim of the work presented 

in this chapter is to use this in vitro system to determine the capacity of these molecules 

to modify cysteine residues within Keapl. Furthermore, this study aims to map the 

Keapl adduct patterns associated with different Nrf2-activating electrophiles, to test the 

hypothesis that all such molecules selectively modify one or more cysteines amongst the 

subset of Cys-151, -273 and -288, and that this underlies the ability of these molecules to 

activate Nrf2-dependent cell defence.
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4.2.1 Materials and reagents

Recombinant human His-GSTPl-1 was kindly donated by Samantha Dowdall (School 

of Biomedical Sciences, University of Liverpool, UK). DNFB was from Sigma-Aldrich 

(Poole, UK). All other reagents were of analytical or molecular grade, and were from 

Sigma-Aldrich.

4.2 METHODS

4.2.2 Expression and purification of Keapl-His

Expression and purification of Keapl-His was as described in section 3.2.6.

4.2.3 Determination of on-bead Keapl-His content

Determination of on-bead Keapl-His content was as described in section 3.2.9,

4.2.4 Incubation of Keapl-His with electrophiles

To render all cysteines free for modification, Keapl-His -coupled Ni2+-charged agarose 

beads (50 pL dry volume; -350 pmol) were resuspended in 0.148 mL phosphate buffer 

and 2 pL of 0.1 M DTT, and then incubated on a mechanical roller at 4 °C for 15 min. 

The beads were washed three times in 0.5 mL phosphate buffer to remove residual DTT. 

The beads were resuspended in 0.149 mL phosphate buffer, and 1 pL of 200X NAPQI, 

DNCB, 2,4-dinitrofluorobenzene (DNFB), 15d-PGJ2 or TMA, dissolved in DMSO, was 

added to give the required molar ratio of Keapl : electrophile. Following incubation on a 

mechanical roller for 1 h at 4 °C, the beads were washed three times in 0.5 mL 

phosphate buffer to remove residual electrophile. To cap unmodified cysteines, the
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beads were resuspended in 0.13 mL phosphate buffer and 20 pL of 0.55 M 

iodoacetamide, and incubated on a mechanical roller at 4 °C for 15 min. The beads were 

washed three times in 0.5 mL phosphate buffer to remove residual iodoacetamide. 

Tryptic digestion was performed as described in section 3.2.10.

4.2.5 LC-ESI-MS/MS mass spectrometry

Samples were analysed essentially as described in section 3.2.12. Amino acid 

modifications were detected with ProteinPilot software v2.0, using the Paragon™ 

algorithm (Shilov et a l, 2007) and the most recent version of the SwissProt database. 

Paracetamol (+149.1 amu), dinitrophenyl (DNP; +166.0 amu), 15d-PGJ2 (+316.2 amu), 

TMA (+192.0 amu) or carboxyamidomethyl (+57.0 amu) were selected as variable 

modifications. All adducts were confirmed by visual inspection of the MS/MS spectra.

4.2.6 Generation of peptide modification maps

Keapl peptide modification maps were generated using a software package available at 

http://www.liv.ac.uk/pfg/localtools.html, described previously by Beynon (2005).
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4.3.1 Modification of Keapl-His by Nrf2-activating electrophiles in vitro

In order to ascertain the relative reactivities of the 25 cysteines within mouse Keapl 

towards a panel of Nrf2-activating electrophiles, a dose-ranging study of the selectivity 

of Keapl modifications was conducted in vitro, using LC-ESI-MS/MS. In reporting 

Keapl adducts, the frequency of adducts detected from a total of three independent 

experiments has been used as an indicator of the relative reactivities of individual 

cysteine residues towards the panel of electrophiles. Keapl protein sequence coverage 

from MS/MS spectra averaged 89 % across 12 individual experiments. All cysteines 

were consistently detected, with the exception of Cys-622 and -624, which were not 

released from the Ni2+-charged agarose beads by tryptic digestion, due to their proximity 

to the polyhistidine tag of Keapl-His. Compound mutation of the three cysteines (Cys- 

613, -622, -624) located within the C-terminal domain of Keapl has no effect on the 

repressive activity of Keapl towards Nrf2 (Wakabayashi et al., 2004), implying that 

Cys-622 and -624 are not essential for Keapl function.

4.3 RESULTS

4.3.2 Modification of Keapl-His by NAPQI in vitro

Following incubation of Keapl-His with NAPQI for 1 h, no cysteine adducts were 

detected at a molar ratio of 0.01:1 NAPQTKeapl. At a molar ratio of 0.1:1 

NAPQI:Keapl, there was evidence for the modification of cysteine residues by NAPQI, 

albeit in one of three experiments. In this case, the identification of modified residues 

was based solely on the mass-to-charge ratio (m/z) and retention time of the modified 

peptide, as MS/MS spectra were not generated due to the relative low abundance o f the 

modified peptide ions. Therefore, it was not possible to unequivocally identify the 

modified residues by manually sequencing the corresponding MS/MS spectrum. In light 

of this fact, the cysteine residues that were judged to be the most readily modified by 

NAPQI in vitro were those that were detected following incubation of Keapl with
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NAPQI at a molar ratio of 1:1 NAPQI:Keapl, namely Cys-77, -226, -257, -273, -288, - 

434, -489, -583 and -613 (Table 4.1 and Fig. 4.1). Through inspection of the 

corresponding MS/MS spectra, each of these residues were found to be modified at this 

molar ratio in at least two of three independent experiments. Cys-151, the integrity of 

which has recently been shown to be critical for the ability of Keapl to respond to 

chemical/oxidative stress (Zhang et a l, 2003; Zhang et a l, 2004), was modified by 

NAPQI only at a molar ratio of 5:1 and above. Of the 23 Keapl cysteines that were 

routinely detected by LC-ESI-MS/MS, only eight residues were not modified by NAPQI 

at the highest molar ratio of 10:1, namely Cys-241, -249, -297, -319, -395, -406, -513 

and -518.
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Molar Ratio NAPQI:Keapl

Keapl Domain Cysteine # 0 0.1:1 1:1 5:1 10:1

N-terminal 23 1/3 2/3
N-terminal 38 1/3 2/3

BTB 77 1/3 3/3 3/3 3/3
BTB 151 2/3 2/3
BTB 171 1/3
IVR 196 1/3
IVR 226 3/3 3/3 3/3
IVR 241
IVR 249
IVR 257 2/3 3/3 3/3
IVR 273 1/3 2/3 3/3 3/3
IVR 288 1/3 3/3 3/3 3/3
IVR 297
IVR 319 1/3
DGR 368 1/3 2/3
DGR 395
DGR 406
DGR 434 2/3 2/3 3/3
DGR 489 1/3 3/3 3/3 3/3
DGR 513 1/3
DGR 518 1/3
DGR 583 1/3 3/3 3/3 3/3

C-terminal 613 3/3 3/3 3/3
C-terminal 622 nd nd nd nd nd
C-terminal 624 nd nd nd nd nd

Table 4.1 - Keapl-His cysteines modified by NAPQI in vitro. Ni2+ agarose bead- 
purified mouse Keapl-His (-350 pmol) was reduced on-bead with 1 mM DTT for 15 
min and incubated with NAPQI at the indicated molar ratios for 1 h. Free sulphydryls 
were capped with 55 mM iodoacetamide for 15 min. Keapl-His was digested overnight 
at 37 °C with 240 ng trypsin and the resulting tryptic peptides were analysed for adducts 
of interest by LC-ESI-MS/MS. The frequency of adduct detection, from a total of three 
experiments, is shown. Blank cells indicate that no NAPQI adducts were detected. nd\ 
Cys-622 and -624 were not routinely detected as NAPQI-modified or 
carboxyamidomethylated peptides.
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| +TOF Product (1015.4):
I a=3.57087223371498670e-004, t0*3.98646415190924020e+001

Max. 18.0 counts

CPEGAGD A VM Y ASTECK

) =

[M+2H]2+ = 1015.4 
[M] = (1015.4 X 2 ) - 2 = 2028.8 
Unmodified peptide = 1730.7 
A = +298.1 (2 x APAP)

100 200 300 400 500

Fig. 4.1 - MS/MS spectrum indicating modification of Keapl-His (A) Cys-23/38 and 
(B) Cys-77 by NAPQI in vitro, y- and b-ions are labelled where present. * denotes ions 
for which a mass shift o f +149.1 amu indicates modification by NAPQI. Immonium ions 
are labelled with the one-letter code for their corresponding amino acid.
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Fig. 4.1 - MS/MS spectrum indicating modification of Keapl-His (C) Cys-151 and 
(D) Cys-171/196 by NAPQI in vitro, y- and b-ions are labelled where present. * 
denotes ions for which a mass shift of +149.1 amu indicates modification by NAPQI. 
Immonium ions are labelled with the one-letter code for their corresponding amino acid.
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Fig. 4.1 - MS/MS spectrum indicating modification of Keapl-His (E) Cys-226 and 
(F) Cys-257 by NAPQI in vitro, y- and b-ions are labelled where present. * denotes 
ions for which a mass shift of + 149.1 amu indicates modification by NAPQI. Immonium 
ions are labelled with the one-letter code for their corresponding amino acid.
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I +TOF Product (5B4.3): Max. 42.0 count*
a= a  57085551386018430e-004, t0=3.98944492153568720e+001

Fig. 4.1 - MS/MS spectrum indicating modification of Keapl-His (G) Cys-273 and 
(H) Cys-288 by NAPQI in vitro, y- and b-ions are labelled where present. * denotes 
ions for which a mass shift of + 149.1 amu indicates modification by NAPQI. Immonium 
ions are labelled with the one-letter code for their corresponding amino acid.
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I a= 3.57088730897253560e-004, t0=3.97840698198015160e+001 

2D.0] C * 510*5

iq n I/L

Max. 20.0 counts

SG L A G C W G G LLY A V G G R

|M+2H]2+ = 899.5 
[M] = (899.5 x 2) - 2 = 1797.0 
Unmodified peptide = 1647.9 
A = +149.1 (APAP)

100 200

Fig. 4.1 - MS/MS spectrum indicating modification of Keapl-His (I) Cys-319 and 
(J) Cys-368 by NAPQI in vitro, y- and b-ions are labelled where present. * denotes ions 
for which a mass shift o f +149.1 amu indicates modification by NAPQI. Immonium ions 
are labelled with the one-letter code for their corresponding amino acid.
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Fig. 4.1 - MS/MS spectrum indicating modification of Keapl-His (K) Cys-434 and 
(L) Cys-489 by NAPQI in vitro, y- and b-ions are labelled where present. * denotes 
ions for which a mass shift of + 149.1 amu indicates modification by NAPQI. Immonium 
ions are labelled with the one-letter code for their corresponding amino acid.
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I a=3.57088730897253560e-004, »=3.97840698198015160e+001
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Fig. 4.1 - MS/MS spectrum indicating modification of Keapl-His (M) Cys-513/518 
and (N) Cys-583 by NAPQI in vitro, y- and b-ions are labelled where present. * 
denotes ions for which a mass shift of +149.1 amu indicates modification by NAPQI. 
Immonium ions are labelled with the one-letter code for their corresponding amino acid.
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F ig . 4 .1  -  M S /M S  sp e c tr u m  in d ica tin g  m o d if ica t io n  o f  K e a p l-H is  (O ) C y s-6 1 3  by  
N A P Q I in vitro, y- and b-ions are labelled where present. * denotes ions for which a 
mass shift o f +149.1 amu indicates modification by NAPQI. Immonium ions are labelled 
with the one-letter code for their corresponding amino acid.
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4 .3 .3  M o d ific a tio n  o f  K e a p l-H is  b y  D N C B  in vitro

Following incubation of Keapl-His with DNCB for 1 h, as for NAPQI, no cysteine 

adducts were detected at a molar ratio of 0.01:1 DNCB:Keapl. Although there was 

evidence, based on the sequencing of MS/MS spectra, for the modification of Cys-77, - 

226, -489 and -613 at a molar ratio of 1:1 DNCB:Keapl, this was limited to one of three 

experiments (Table 4.2 and Fig. 4.2). For this reason, the residues judged to be most 

readily modified by DNCB were those for which adduction was observed in at least two 

o f three independent experiments at a molar ratio of 5:1, namely Cys-77, -226, -257, - 

489, -583 and -613. DNCB did not modify any of Cys-151, -273 and -288, residues 

which have previously been suggested as plausible targets of Nrf2-activating molecules 

(Dinkova-Kostova et a l, 2002; Kobayashi et al., 2006; Levonen et al., 2004; 

Wakabayashi et al., 2004; Zhang et al., 2003; Zhang et al., 2004), implying that these 

cysteine residues are not particularly reactive with DNCB under the experimental 

conditions employed. In order to confirm that DNCB did not form adducts with Cys- 

151, -273 and/or -288 in vitro, the molar ratio was raised to 50:1 DNCB:Keapl; even at 

this ratio, no ions corresponding to the modified forms of these peptides were detected. 

In order to ascertain that Cys-151, -273 and -288 were available for adduction in the 

presence of DNCB, Keapl was co-incubated simultaneously with NAPQI and DNCB; 

all three cysteines were modified by NAPQI, but not by DNCB (data not shown). 

Furthermore, Keapl was incubated with DNFB, which also stimulates Nrf2 nuclear 

accumulation in Hepa-lclc7 cells (Fig. 4.3). DNFB is more reactive than DNCB, as 

fluorine is a better leaving group than chlorine, thus enhancing bimolecular nucleophilic 

substitution. Nevertheless, modification of Cys-151, -273 or -288 by DNFB was not 

detected; indeed, the pattern of cysteine modifications observed matched that of DNCB, 

with modification of Cys-171, -196 and -434 also detected (Fig. 4.4). Consistent with its 

known chemical reactivity (Park et a l, 1987), DNFB formed adducts with tyrosine and 

lysine residues in Keapl at the highest molar ratio of 50:1 (Fig. 4.4). In summary, 

DNCB does selectively modify cysteines within Keapl in vitro, but at different residues 

to NAPQI.
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M o la r  R a tio  D N C B :K e a p l

K e a p l  D o m a in C y ste in e  # 0 0 .1 :1 1:1 5:1 10:1 50:1

N-terminal 23
N-terminal 38

BTB 77 1/3 3/3 3/3 3/3
BTB 151
BTB 171
IVR 196
IVR 226 1/3 1/3 3/3 3/3 3/3
IVR 241
IVR 249
IVR 257 3/3 3/3 3/3
IVR 273
IVR 288
IVR 297
IVR 319
DGR 368 1/3 2/3 2/3
DGR 395
DGR 406
DGR 434
DGR 489 1/3 3/3 3/3 3/3
DGR 513 1/3
DGR 518 1/3
DGR 583 2/3 1/3 1/3

C-terminal 613 1/3 1/3 3/3 3/3 3/3
C-terminal 622 nd nd nd nd nd nd
C-terminal 624 nd nd nd nd nd nd

T a b le  4 .2  -  K e a p l-H is  cy ste in es  m o d ified  b y  D N C B  in vitro. Ni2+ agarose bead- 
purified mouse Keapl-His (-350 pmol) was reduced on-bead with 1 mM DTT for 15 
min and incubated with DNCB at the indicated molar ratios for 1 h. Free sulphydryls 
were capped with 55 mM iodoacetamide for 15 min. Keapl-His was digested overnight 
at 37 °C with 240 ng trypsin and the resulting tryptic peptides were analysed for adducts 
o f interest by LC-ESI-MS/MS. The frequency of adduct detection, from a total of three 
experiments, is shown. Blank cells indicate that no DNCB adducts were detected. nd\ 
Cys-622 and -624 were not routinely detected as DNCB-modified or 
carboxyamidomethylated peptides.
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+TOF Product (768.0):
a= 3.57121248857625760e-004, »=4.02995256485810390e+001

Max. 65.0 counts

B

F ig . 4 .2  - M S /M S  sp ec tru m  in d ica tin g  m o d if ica t io n  o f  K e a p l-H is  (A ) C y s-7 7  an d  
(B ) C y s-2 2 6  b y  D N C B  in vitro, y- and b-ions are labelled where present. * denotes ions 
for which a mass shift of + 166.0 amu indicates modification by DNCB. Immonium ions 
are labelled with the one-letter code for their corresponding amino acid.
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I +TOF Product (908.0):
I a=3.57098018353016940e-004, t0=3.95409315568977040e+001

D

SG LA G C W G G LLY A V G G R

|M+2H]2+ = 908.0 
[M] = (908.0 x 2)-2 = 1814.0 
Unmodified peptide = 1647.9 
A = +166.1 (DNP)

F ig . 4 .2  - M S /M S  sp e c tr u m  in d ic a tin g  m o d ifica tio n  o f  K e a p l-H is  (C ) C y s-2 5 7  a n d  
(D ) C y s-3 6 8  b y  D N C B  in vitro, y- and b-ions are labelled where present. * denotes ions 
for which a mass shift o f +166.0 amu indicates modification by DNCB. Immonium ions 
are labelled with the one-letter code for their corresponding amino acid.
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F ig . 4 .2  -  M S /M S  sp ec tru m  in d ic a tin g  m o d if ica t io n  o f  K e a p l-H is  (E ) C y s-4 8 9  an d  
(F ) C y s-5 1 5 /5 1 8  b y  D N C B  in vitro, y- and b-ions are labelled where present. * denotes 
ions for which a mass shift of + 166.0 amu indicates modification by DNCB. Immonium 
ions are labelled with the one-letter code for their corresponding amino acid.
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I +TOF Product (1235.9): Max. 155.0 counts
a= a 57101248899757810e-004, t0 -3 .93395167134622170e+001

F ig . 4 .2  - M S /M S  sp e c tr u m  in d ica tin g  m o d ifica tio n  o f  K e a p l-H is  (G ) C y s-5 8 3  and  
(H ) C y s-6 1 3  b y  D N C B  in vitro, y - and b-ions are labelled where present. * denotes ions 
for which a mass shift o f +166.0 amu indicates modification by DNCB. Immonium ions 
are labelled with the one-letter code for their corresponding amino acid.
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DNFB: -  + Std. 

Nrf2 ►

Actin ►

2 500% 
c
O 400%
(/)
>, 300% 

§  200%

|  100%

1  0%
DC -DNFB +DNFB

F ig . 4 .3  -  A c tiv a tio n  o f  N rf2  b y  D N F B . Hepa-lclc7 cells were exposed to vehicle (0 .5  
% DMSO) or DNFB (1 0 0  pM) for 1 h. Nuclear fractions were prepared and the Nrf2 
protein level was assessed by Western blot analysis. Nrf2 bands were quantified by 
densitometry and expressed relative to p-actin, to enable comparison with vehicle- 
treated control Nrf2 level, which was arbitrarily set at 100 %. Recombinant Nrf2-His 
was loaded onto the gels as a standard (Std). Non-specific proteins that cross-react with 
the antibody are labeled *.
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F 3.57101248899757810e-004,10=3.93395167134622170e+001 

370.2189

ACSDFLVQQLDPSNAIGIANFAEQIGCTELHQR

Max. 7.0 counts

A

n o2

|M+3H]j+ = 1307.7 
[M] = (1307.7 x 3) - 3 = 3920.1 
Unmodified peptide = 3587.7 
A = +332.4 (2 x DNP)

900 950 1000 1050 1100 1150 1200 1250 1300

F ig . 4 .4  -  M S /M S  sp e c tr u m  in d ic a tin g  m o d ifica tio n  o f  K e a p l-H is  (A ) C y s-1 7 1 /1 9 6  
a n d  (B ) C y s-4 3 4  b y  D N F B  in vitro, y- and b-ions are labelled where present. * denotes 
ions for which a mass shift o f +166.0 amu indicates modification by DNFB. Immonium 
ions are labelled with the one-letter code for their corresponding amino acid.
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Fig. 4.4 - MS/MS spectrum indicating modification of Keapl-His (C) Tyr-85 and 
(D) Tyr-206 by DNFB in vitro, y- and b-ions are labelled where present. * denotes ions 
for which a mass shift o f +166.0 amu indicates modification by DNFB. Immonium ions 
are labelled with the one-letter code for their corresponding amino acid.
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»= 3.57101248899757810e-004, ©=3.93395167134622170e+001 

403.2528

Max. 18.0 counts

YDVETETW TFVAPM R

[M+2H)2+= 1006.0 
(M] = (1006.0 x 2) - 2 = 2010.0 
Unmodified peptide = 1843.9 
A = +166.1 (DNP)

Fig. 4.4 - MS/MS spectrum indicating modification of Keapl-His (E) Tyr-537 and 
(F) Lys-131 by DNFB in vitro, y- and b-ions are labelled where present. * denotes ions 
for which a mass shift o f +166.0 amu indicates modification by DNFB. Immonium ions 
are labelled with the one-letter code for their corresponding amino acid.
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Fig. 4.4 - MS/MS spectrum indicating modification of Keapl-His (G) Lys-565 by 
DNFB in vitro, y- and b-ions are labelled where present. * denotes ions for which a 
mass shift o f +166.0 amu indicates modification by DNFB. Immonium ions are labelled 
with the one-letter code for their corresponding amino acid.
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Following incubation of Keapl-His with 15d-PGJ2 for 1 h, as for NAPQI and DNCB, no 

cysteine adducts were detected at a molar ratio of 0.01:1 15d-PGJ2:Keapl. However, in 

contrast to NAPQI and DNCB, cysteine adducts were not detected at molar ratios of 

0.1:1 or 1:1 15d-PGJ2:Keapl (Table 4.3 and Fig. 4.5). Indeed, detection of 15d-PGJ2- 

cysteine adducts was limited to low intensity ions, at relatively high molar ratios, in one 

of three experiments. The adducts detected were Cys-226, -368, -513/518 and -613. 

There was no evidence for the modification of Cys-151, -273 and/or -288 by 15d-PGJ2, 

even following incubation of Keapl with a 100-fold molar excess of the cyclopentenone.

In order to confirm that the conditions used for the detection of 15d-PGJ2-cysteine 

adducts were robust, the cyclopentenone was incubated with a reference protein with 

which our research group has extensive experience as a model for chemical modification 

experiments (Jenkins et a l, 2008), namely human GSTP1-1. At an equimolar ratio and 

greater, 15d-PGJ2 reproducibly modified the reactive Cys-47 of GSTP1-1, as did NAPQI 

and DNCB (see Appendix). For some Keapl and GSTP1-1 peptides modified by 15d- 

PGJ2, although it was clear that the parent ions had undergone an increase in mass 

consistent with adduction by 15d-PGJ2 (+316.2 amu), it was not possible to identify 

modified y- and/or b-ions. However, it was noticeable from visual inspection of the 

MS/MS spectra that the peptide fragmentation process had resulted in the dissociation of 

15d-PGJ2 from the cysteine residue; therefore the singly-charged prostaglandin molecule 

(317.2 amu) was detectable. This characteristic ion was not present when Keapl or 

GSTP1-1 was incubated with iodoacetamide alone. Therefore, it appears that cysteines 

within Keapl react weakly with the Nrf2-activating cyclopentenone 15d-PGJ2 in vitro, 

although the lability of the adduct formed between 15d-PGJ2 and cysteine residues in 

Keapl may hinder the detection of modifications under the experimental conditions 

employed here.

4.3.4 Modification of Keapl-His by 15d-PGJ2 in vitro
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Molar Ratio 15d-PGJ2:Keapl

Keapl Domain Cysteine # 0 5:1 10:1 50:1 100:1

N-terminal 23
N-terminal 38

BTB 77
BTB 151
BTB 171
IVR 196
IVR 226 1/3 1/3 1/3 1/3
IVR 241
IVR 249
IVR 257
IVR 273
IVR 288
IVR 297
IVR 319
DGR 368 1/3 1/3 1/3
DGR 395
DGR 406
DGR 434
DGR 489
DGR 513

1/3* 1/3 1/3 1/3
DGR 518
DGR 583

C-terminal 613 1/3 1/3 1/3 1/3
C-terminal 622 nd nd nd nd nd
C-terminal 624 nd nd nd nd nd

Table 4.3 - Keapl-His cysteines modified by 15d-PGJ2 in vitro. Ni2+ agarose bead- 
purified mouse Keapl-His (-350 pmol) was reduced on-bead with 1 mM DTT for 15 
min and incubated with 15d-PGJ2 at the indicated molar ratios for 1 h. Free sulphydryls 
were capped with 55 mM iodoacetamide for 15 min. Keapl-His was digested overnight 
at 37 °C with 240 ng trypsin and the resulting tryptic peptides were analysed for adducts 
of interest by LC-ESI-MS/MS. The frequency of adduct detection, from a total of three 
experiments, is shown. Blank cells indicate that no 15d-PGJ2 adducts were detected. No 
15d-PGJ2-cysteine adducts were detected at molar ratios of 0.01:1, 0.1:1 or 1:1. nd; Cys- 
622 and -624 were not routinely detected as 15d-PGJ2 -modified or 
carboxyamidomethylated peptides. *A mass shift equivalent to the addition of one 
molecule of 15d-PGJ2 was detected on this peptide. Due to the lack of sufficient b-ions, 
however, it was not possible to determine which of the two cysteines, Cys-513 or Cys- 
518, was adducted.
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Fig. 4.5 - MS/MS spectrum indicating modification of Keapl-His (A) Cys-226 and 
(B) Cys-368 by 15d-PGJ2 in vitro, y- and b-ions are labelled where present. * denotes 
ions for which a mass shift of +316.2 amu indicates modification by 15d-PGJ2. 
Immonium ions are labelled with the one-letter code for their corresponding amino acid. 
It was not determined via which of the two electrophilic «,/i-unsaturated carbonyl 
moieties (labelled #) adduction occurred.
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♦TOF Product (1105.3):
' 3  57101997726526510e-004.10=3 93048760968413260e+001 

136.0927^175.1211

s g a g v c v l h n & y a a g g y d g q d q l n s v e r  

#

Max. 8.0 counts

c

COOH

Fig. 4.5 - MS/MS spectrum indicating modification of Keapl-His (C) Cys-513/518 
and (D) Cys-613 by 15d-PGJ2 in vitro, y- and b-ions are labelled where present. * 
denotes ions for which a mass shift of +316.2 amu indicates modification by 15d-PGJ2. 
Immonium ions are labelled with the one-letter code for their corresponding amino acid. 
It was not determined via which of the two electrophilic a,/?-unsaturated carbonyl 
moieties (labelled #) adduction occurred. C) A mass shift equivalent to the addition of 
one molecule of 15d-PGJ2 was detected on this peptide. Due to the lack of sufficient b- 
ions, however, it was not possible to determine which of the two cysteines, Cys-513 or 
Cys-518, was adducted.
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Given that TMA does not activate Nrf2, and is a hard electrophile capable of reacting 

with the amine group of lysine, but relatively incapable of modifying cysteines, it was 

anticipated that TMA would not form adducts with cysteine residues within Keapl in 

vitro. Indeed, no cysteine adducts were detected following incubation of Keapl-His with 

TMA, to a molar ratio of 50:1, although adduction of Lys-108 was identified (Fig. 4.6).

4.3.5 Modification of Keapl-His by TMA in vitro

Fig. 4.6 - MS/MS spectrum indicating modification of Keapl-His Lys-108 by TMA
in vitro, y- and b-ions are labelled where present. * denotes ions for which a mass shift 
of +192.0 amu indicates modification by TMA. Immonium ions are labelled with the 
one-letter code for their corresponding amino acid.
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The only cysteines that were not found to be modified by NAPQI, DNCB and/or 15d- 

PGJ2 in this study were Cys-241, -249, -297, -395 and -406. As evidence that these 

cysteines were available for modification and detectable by LC-ESI-MS/MS analysis, 

MS/MS spectra for peptides containing Cys-241/249, -297 and -395/406 are presented 

as iodoacetamide adducts in Fig. 4.7.

4.3.6 Summary of Keapl-His modifications

Fig. 4.7 - MS/MS spectrum indicating modification of Keapl-His (A) Cys-241/249 
and by iodoacetamide in vitro, y- and b-ions are labelled where present. * denotes ions 
for which a mass shift of +57.1 amu indicates modification by iodoacetamide. 
Immonium ions are labelled with the one-letter code for their corresponding amino acid.
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Fig. 4.7 - MS/MS spectrum indicating modification of Keapl-His (B) Cys-297/319 
and (C) Cys-395/406 by iodoacetamide in vitro, y- and b-ions are labelled where 
present. * denotes ions for which a mass shift of +57.1 amu indicates modification by 
iodoacetamide. Immonium ions are labelled with the one-letter code for their 
corresponding amino acid.

157



Chapter 4

In summary, the results presented in this chapter demonstrate different patterns of Keapl 

cysteine modification induced by a panel of chemically distinct, Nrf2-activating 

electrophiles (Fig. 4.8); the only residues commonly targeted by NAPQI, DNCB and 

15d-PGJ2 in vitro, at relatively high molar ratios, were Cys-226, -368 and -613.
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Fig. 4.8 - Summary of in vitro Keapl-His cysteine adduct patterns for NAPQI, 
DNCB and 15d-PGJ2. Modification maps for cysteine-containing Keapl-His peptides 
were generated using a software package described previously by Beynon (2005). The 
horizontal lines represent the full-length Keapl protein (amino acids 1-624), the vertical 
lines represent the boundaries between sequential tryptic peptides. Filled boxes represent 
cysteine-containing peptides found to be modified by NAPQI (■), DNCB (■) or 15d- 
PGJ2 (□), at the indicated molar ratios. Multi-shaded boxes represent cysteines modified 
by more than one of the three molecules. The specific cysteines modified are noted at 
the top of the figure. Experiments involving a molar ratio of 50:1 were performed with 
DNCB and 15d-PGJ2, but not NAPQI. Experiments involving a molar ratio of 100:1 
were performed with 15d-PGJ2 only.
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4.4 DISCUSSION

The Nrf2-ARE pathway serves to protect mammalian cells against chemical/oxidative 

stress, via the inducible expression of cytoprotective enzymes and proteins (for a review, 

see Kensler et a l, 2007). It has been proposed that chemical inducers activate the Nr£2- 

ARE pathway through the direct modification of critical cysteine residues within Keapl, 

the cytosolic repressor of Nrf2 (Dinkova-Kostova et a l, 2002). The aim of the work 

presented in this chapter was two-fold, a) to explore the hypothesis that NAPQI activates 

the Nrf2-ARE pathway through the selective modification of cysteine residues within 

Keapl, and b) to test, using a panel of structurally-distinct electrophiles, the hypothesis 

that all Nrf2-activating molecules selectively modify one or more Keapl cysteines 

amongst the subset of Cys-151, -273 and -288. In order to test these hypotheses, 

recombinant mouse Keapl-His (expression and purification described in chapter 3) was 

exposed to NAPQI, DNCB, 15d-PGJ2 and TMA in vitro, and cysteine adducts were 

mapped by MS/MS. Importantly, during the course of this work, a number of 

independent studies have employed a similar methodology to provide compelling 

evidence for the chemical modification of Keapl in vitro by DNCB (Liu et a l, 2005) 

and the Nrf2-activating molecules menadione (Liu et a l, 2005), biotinylated 

iodoacetamide (BIA) (Eggler et a l, 2005; Hong et a l, 2005b), sulforaphane (Hong et 

a l, 2005a), xanthohumol (Dietz et a l, 2005; Luo et a l, 2007), isoliquiritigenin and 10- 

shogaol (Luo et a l, 2007). The results of the work presented in this chapter will be 

discussed in light of these recent investigations.

This study has demonstrated direct chemical modification of Keapl by NAPQI, and 

thereby provides the first evidence for the modification of Keap 1 by the metabolite of a 

widely-used therapeutic drug. At an equimolar ratio of NAPQLKeapl, 10 cysteine 

residues were found to be modified, including Cys-257, -273, -288 and -613, i.e. four of 

the five cysteines in mouse Keapl originally identified as the most reactive towards dex- 

mes in vitro (Dinkova-Kostova et a l, 2002). Indeed, Cys-273 and -288 were amongst 

five residues found to be the most readily modified by NAPQI at the lowest molar ratio 

o f 0.1:1. Additionally, NAPQI modified the BTB domain residue Cys-151, which has
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also been proposed as a target for activators of Nrf2, based on evidence from site- 

directed mutagenesis experiments (Zhang et a l, 2003). Therefore, these findings support 

the concept that Cys-151, -273 and -288 of Keapl may be preferential targets of Nrf2- 

activating molecules, and indirectly support the hypothesis that NAPQI activates the 

Nrf2-ARE pathway through direct modification of Keapl. O f course, it is necessary to 

be cautious when attempting to extrapolate data obtained from such in vitro analyses to a 

cellular context. Therefore, a cell-based method is required to further explore, under 

more biologically-relevant conditions, the association between modification of Keapl 

and activation of Nrf2 by NAPQI.

In an attempt to provide a biochemical rationale for the ability of NAPQI and other 

electrophiles to activate Nrf2-dependent cell defence, the residue-selectivity of Keapl 

modification by structurally-distinct Nrf2-activating molecules (DNCB and 15d-PGJ2) 

has also been determined. Notably, MALDI-TOF MS has recently been used to show 

that DNCB forms adducts with human Keapl, following incubation of the protein with a 

20-fold molar excess of DNCB for 2 h (Liu et al., 2005). Although the authors of this 

study did not explicitly identify the cysteine residues that were modified by DNCB, they 

did note the appearance of new peptide ion signals that correspond to DNCB-modified 

cysteine-containing peptides (Liu et a l, 2005). By comparing the masses of these signals 

to a theoretical tryptic digest of human Keapl, it can be determined that the specific 

residues modified by DNCB in the study of Liu et al. (2005) were Cys-226, -257, -319, - 

489 and -613. With the exception of Cys-319, all of these residues were found to be 

modified in mouse Keapl by DNCB in section 4.3.3 of this thesis, indicating a degree of 

agreement between these independent investigations.

In contrast to NAPQI, it was not possible to detect modification by DNCB of Cys-151, - 

273 or -288, contradicting the notion that these residues are preferentially reactive 

towards all Nrf2-activating molecules. However, DNCB did preferentially modify the 

IVR residue Cys-257 and the C-terminal domain residue Cys-613, two of the five 

cysteines found to be the most reactive towards dex-mes in vitro (Dinkova-Kostova et 

al., 2002), suggesting that modification of reactive Keapl cysteines in general, and not
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of specific residues per se, may be critical for the activation of Nrf2-dependent cell 

defence.

Recently, biotin-tagged analogues of 15d-PGJ2 have been employed to demonstrate 

binding of the cyclopentenone to Keapl in cells (Hosoya et al., 2005; Itoh et al., 2004; 

Levonen et al., 2004). Although such an approach cannot identify specific residues that 

are targeted by 15d-PGJ2, compound mutation of seven cysteines within the IVR domain 

of Keapl abolishes this adduct formation (Hosoya et al., 2005), indicating that one or 

more cysteines within this region are targeted by 15d-PGJ2 in cells. The present study, in 

providing the first mass spectrometry-based evidence for the modification of specific 

Keapl cysteines by 15d-PGJ2 in vitro, has demonstrated adduction of one of these IVR 

residues, Cys-226, in addition to Cys-368, -513/518 and -613. Again, it was not possible 

to detect modification of Cys-151, -273 or -288 by 15d-PGJ2, confirming that, at least in 

vitro, these residues are not preferential targets for all Nrf2-activating molecules.

Notably, the molar amounts of 15d-PGJ2 required to detect Keapl cysteine adducts were 

relatively high, when compared to NAPQI and DNCB. Furthermore, evidence for 

modification of Keapl cysteines by 15d-PGJ2 was apparent in only one of three 

experiments. This may be due to the lability of the adducts formed between 15d-PGJ2 

and sulphydryl moieties, which may be susceptible to decomposition during sample 

preparation or in the course of the MS/MS fragmentation process. Hence, there may be 

value in optimising workup and/or analysis procedures in order to preserve 15d-PGJ2- 

cysteine adducts, in a similar manner to that reported by Hong et al. (2005a) in their 

recent study of Keapl modification by sulforaphane, which also forms relatively labile 

adducts with cysteine. Alternatively, it is possible that, in activating Nrf2, the initial 

point of interaction of 15d-PGJ2 may be with upstream signalling molecules other than 

Keapl. Indeed, evidence exists for an inhibitory effect of 15d-PGJ2 on the ubiquitin- 

proteasome pathway (Mullally et al., 2001; Shibata et al., 2003), which has a major role 

in regulating the basal activity of Nrf2 (Kobayashi et al., 2004; McMahon et al., 2003; 

Nguyen et al., 2003; Stewart et al., 2003; Zhang et al., 2003). Therefore, the ability of 

15d-PGJ2 to activate Nrf2 may be at least partially independent of direct modification of
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Keapl. 15d-PGJ2 has been shown previously to adduct and inhibit the activity of other 

important cellular proteins including the transcription factors NF-kB (Cemuda-Morollon 

et al., 2001) and AP-1 (Perez-Sala et al., 2003), and the GSH-conjugating enzyme 

GSTP1-1 (Sanchez-Gomez et al., 2007); the latter was used in this study as a model 

cysteine-containing protein to confirm that the method used for detecting 15d-PGJ2- 

cysteine adducts was robust. In summary, this work demonstrates that 15d-PGJ2 

selectively modifies Keapl cysteines in vitro, albeit relatively weakly compared to 

NAPQI and DNCB. It is, therefore, imperative that further work is undertaken to 

ascertain the importance of Keapl modification in the activation of Nrf2 by 15d-PGJ2 in 

a cellular context.

In contrast to NAPQI, DNCB and 15d-PGJ2, and in keeping with its known chemical 

reactivity, it was not possible to detect modification of Keapl cysteines by the lysine- 

reactive molecule TMA, which does not activate Nrf2 in Hepa-lclc7 cells. Taken 

together, therefore, the findings of this study indicate that reactivity towards cysteine is 

an important chemical property shared by Nrf2-activating molecules. However, through 

mapping Keapl cysteine modifications by three chemically-distinct electrophiles using 

the same test system, it has been demonstrated that the pattern of adducts associated with 

different Nrf2-activators may vary, at least in vitro, a conclusion that can also be drawn 

from the recent mass spectrometry-based investigations of Keap 1 modification by thiol- 

reactive, Nrf2-activating electrophiles (Table 4.4) (Dinkova-Kostova et al., 2002; Eggler 

et al., 2005; Hong et al., 2005a; Hong et al., 2005b; Luo et al., 2007). Indeed, the only 

residues commonly modified by NAPQI, DNCB and 15d-PGJ2 in this study, at 

relatively high molar ratios, were Cys-226, -368 and -613. Given that Cys-226 and -613 

are flanked by at least one basic amino acid, which should lower their pKa values and 

increase their relative reactivities towards electrophiles (Snyder et al., 1981), it is 

perhaps not surprising that these residues are targeted by all three molecules. Although 

there are no reports at present whereby mutagenesis of these residues alone has been 

used to assess their relative importance for Keapl function, Cys-226 has recently been 

shown to be preferentially modified in vitro by the Nrf2-activating molecules 

sulforaphane (Hong et al., 2005a) and isoliquiritigenin (Luo et al., 2007), but not by dex
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M o u se  K e a p l H u m a n  K e a p l

D o m a in C y s # D ex-m es N A P Q I D N C B 1 5 d -P G J2 B lA a B IA b SU L X A N IS O S H O

N T 13 np np np np

N T 14 np np np np

N T 23

N T 38

B TB 77

B TB 151 n d

B TB 171

IV R 196
IV R 226
IV R 241

IV R 249

IV R 257

IV R 273

IV R 288

IV R 297

IV R 319

D G R 368

D G R 395 n d

D G R 406 n d

D G R 434

D G R 489

D G R 513

D G R 518

D G R 583 n d

C T 613

C T 622 n d n d n d

C T 624 n d n d n d

T a b le  4 .4 . S u m m a ry  o f  K e a p l  cy ste in e  r e sid u es  m o d ified  in vitro b y  N r f2 -a c tiv a tin g  
m o le c u le s , as d e ter m in ed  in  ch a p ter  4  o f  th is  th esis  a n d  b y  in d e p e n d e n t re sea rch  
g ro u p s . Shaded cells represent cysteine residues modified at lowest molar ratio of 
electrophile:Keapl at which there was reliable evidence for modification. Dex-mes, 
dexamethasone 21-mesylate (Dinkova-Kostova et al., 2002); NAPQI, DNCB, 15d-PGJ2 
(chapter 4 of this thesis); BIA, biotinylated iodoacetamide a(Eggler et al., 2005) b(Hong 
et al., 2005b); SUL, sulforaphane (Hong et al., 2005a); XAN, xanthohumol (Luo et al., 
2007); ISO, isoliquiritigenin (Luo et al., 2007); SHO, 10-shogaol (Luo et al., 2007). np, 
residues are not cysteines in the mouse protein, nd, peptide not detected during analysis. 
NT, N-terminal; CT, C-terminal.
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-mes (Dinkova-Kostova et al., 2002), xanthohumol and 10-shogaol (Luo et al., 2007). 

Also, there are conflicting reports regarding the modification of Cys-226 by BIA (Eggler 

et al., 2005; Hong et al., 2005b). The CT domain, containing Cys-613, is apparently 

essential for Keapl-mediated repression of Nrf2 activity (Kang et al., 2004), and Cys- 

613 has been shown to be particularly reactive towards dex-mes (Dinkova-Kostova et 

al., 2002) and xanthohumol (Luo et al., 2007), but not towards IAB (Eggler et al., 2005; 

Hong et al., 2005b), sulforaphane (Hong et al., 2005a), 10-shogaol and isoliquiritigenin 

(Luo et al., 2007). Notably, there are no basic residues flanking Cys-368 in the mouse 

Keapl protein. Hence, it is less likely that Cys-368 is stabilised in the thiolate form (-S') 

(Snyder et al., 1981), and this residue should not be highly reactive towards 

electrophiles. It is therefore surprising that Cys-368 is modified by NAPQI, DNCB and 

15d-PGJ2. Cys-368 has also been shown to be a preferential target of sulforaphane 

(Hong et al., 2005a) and 10-shogaol (Luo et al., 2007), but not of dex-mes (Dinkova- 

Kostova et al., 2002), IAB (Eggler et al., 2005; Hong et al., 2005b), xanthohumol and 

isoliquiritigenin (Luo et al., 2007). Therefore, the potential roles of Keapl Cys-226, - 

368 and -613 in the regulation of Nrf2 function merit further investigation, but, at least 

in vitro, these residues are not selective targets of all Nrf2-activating molecules.

It was noted that, of the three Nrf2-activating molecules tested in this study, only 

NAPQI modified the apparently critical subset of Cys-151, -273 and -288. This suggests 

that, at least within the test system employed, these residues do not react preferentially 

with all Nrf2-activating molecules. In keeping with this, Cys-151 has been shown to be 

preferentially modified in vitro by xanthohumol, isoliquiritigenin and 10-shogaol (Luo et 

al., 2007), but not by dex-mes (Dinkova-Kostova et al., 2002) and sulforaphane (Hong 

et al., 2005a). There is also controversy regarding the preferential reactivity of Cys-151 

towards BIA (Eggler et al., 2005; Hong et al., 2005b), although this has recently been 

attributed to the different procedures used by the two groups for purifying recombinant 

Keapl (Eggler et al., 2007). Cys-273 of Keapl is preferentially adducted in vitro by dex- 

mes (Dinkova-Kostova et al., 2002), but not by sulforaphane (Hong et al., 2005a), BIA 

(Eggler et al., 2005; Hong et al., 2005b), xanthohumol, isoliquiritigenin and 10-shogaol 

(Luo et al., 2007). This is somewhat surprising, given that Cys-273 is flanked on either
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side by basic amino acids, and thus has a low predicted pKa value, and high relative 

reactivity towards electrophiles (Snyder et al., 1981). Cys-288 has recently been shown 

to be selectively targeted in vitro by dex-mes (Dinkova-Kostova et al., 2002) and BIA 

(Eggler et al., 2005; Hong et al., 2005b), but not by sulforaphane (Hong et al., 2005a), 

xanthohumol, isoliquiritigenin and 10-shogaol (Luo et al., 2007). Therefore, at least in 

terms of primary structure, the apparently critical subset of Cys-151, -273 and -288 of 

Keapl are capable of reacting preferentially with some, but not all, Nrf2-activating 

molecules (Table 4.4). Further investigations are required to elucidate the importance of 

direct modification of these residues in the activation of Nrf2.

From the recent mass spectrometry-based investigations of Keapl modification by Nrf2- 

activating electrophiles, is it evident that no single cysteine appears to react 

preferentially with all of the molecules tested, at least in vitro (Table 4.4) (Dinkova- 

Kostova et al., 2002; Eggler et al., 2005; Hong et al., 2005a; Hong et al., 2005b; Luo et 

al., 2007). The different adduct patterns observed between molecules in these studies 

may be a function of the inherent reactivity of a given electrophile toward a specific 

cysteine residue, or may simply reflect slight differences in experimental approaches, or 

both. Of course, it is plausible that modification of any single residue may in itself be 

sufficient to trigger the activation of Nr£2. Indeed, such a non-specific triggering 

mechanism may underlie the chemical versatility of the Nrf2-ARE pathway, in terms of 

its capacity to ‘sense’ and respond to a variety of structurally-distinct molecules. More 

specifically, it is possible that the modification of a single cysteine residue/group of 

residues within a critical domain of Keapl provides the molecular trigger for Nrf2 

activation. Indeed, it is clear that each of the Nrf2-activating molecules tested to date 

preferentially modify one or more cysteine residues within the IVR domain of Keapl in 

vitro (Table 4.4). In keeping with this, it is notable that l-biotinamido-4-(4’- 

[maleimidoethyl-cyclohexane]carboxamido)-butane, which does not activate the Nr£2- 

ARE pathway, modifies human Keapl in vitro, but at cysteine residues outside of the 

IVR domain (Hong et al., 2005b). Taken together, these findings imply that a number of 

alternative target sets are present amongst the reactive cysteines of Keapl, but 

particularly within the IVR domain of the protein (Table 4.4). Further investigations,
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particularly within a cellular context, are therefore required to elucidate the importance 

of modification within the IVR domain in the activation of Nrf2.
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CHAPTER 5

Development of a cell-based method for investigating the chemical 

modification of Keapl and concomitant activation of Nrf2 by electrophiles
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5.1 INTRODUCTION

It has been postulated that the modification of one or more cysteine residues within 

Keapl, the major regulator of Nrf2 activity (Itoh et al., 1999), may provide a 

biochemical trigger for activation of the transcription factor (Dinkova-Kostova et al., 

2002). Through the use of a cell-free in vitro system, the data presented in chapter 4 

demonstrate residue-selective modification of Keapl by structurally distinct Nrf2- 

activating electrophiles. However, these results, and the work of others (Dinkova- 

Kostova et al., 2002; Eggler et al., 2005; Hong et al., 2005a; Hong et al., 2005b; Luo et 

al., 2007), indicate that no single cysteine appears to react preferentially with all of the 

molecules tested, at least in vitro, perhaps implying that a single common target residue 

does not exist for all Nrf2-activating molecules. The different Keapl adduct patterns 

observed between molecules in the highlighted studies may represent the biochemical 

versatility of the Nrf2-ARE pathway, in terms of its ability to ‘sense’ and respond to a 

variety of structurally distinct molecules. However, these differences may also be the 

result of the in vitro methodologies employed.

It is important to consider that, although bacterially-expressed recombinant proteins are 

useful tools for assessing the relative reactivities of cysteine residues towards a given 

molecule in vitro, there are inherent limitations in the capacity of these systems to 

identify the likely targets of a molecule within cells. For instance, such systems may not 

fully represent the accessibility of specific cysteines for modification in cells, where 

protein folding, post-translational modification(s) and the interaction with Nrf2, CUL3 

and/or other partners may mask certain residues in Keapl. Furthermore, in determining 

the relative reactivities of Keapl cysteines towards Nrf2-activating molecules, the work 

reported in chapter 4 and in other recent mass spectrometry-based investigations 

(Dinkova-Kostova et al., 2002; Eggler et al., 2005; Hong et al., 2005a; Hong et al., 

2005b; Luo et al., 2007) have employed bacterially-expressed, purified Keapl proteins 

in which all cysteines are free for adduction, due to prior incubation with reducing 

agents such as DTT or tris(carboxyethyl)phosphine. However, the physiological 

relevance of such a method cannot be determined, at least at present, as the native redox
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states of the numerous cysteines in Keapl have yet to be determined, with the exception 

of the eight residues located within the DGR domain of the human protein (Li et a l, 

2004). In light of this gap in our current knowledge, and in addition to the limitations of 

in vitro systems, it is particularly difficult to infer that selective modifications of Keapl 

observed in vitro also occur in vivo. Hence, there are several key milestones that need to 

be achieved to facilitate a better understanding of the contribution of Keapl 

modification to the activation of the Nrf2-ARE pathway; a) the determination of the 

redox states of all of the cysteine residues in the native Keapl protein, b) the 

comprehensive analysis of residue-selective Keapl modification by Nrf2-activating 

molecules within a cellular and, where bioanalytical techniques permit, in vivo context, 

and c) detailed examination of the effect of cysteine modification on the 

structure/folding of Keapl and its interaction with Nrf2. Such studies should greatly 

enhance our appreciation of the molecular switch that triggers Nrf2-dependent cell 

defence in response to chemical/oxidative stress.

In considering the evidence for modification of Keapl in cells, a review of the published 

literature to date reveals two major issues, a) only two (biotinylated) Nrf2-activating 

molecules have been shown to modify Keapl within a cellular context (Hong et a l, 

2005b; Hosoya et a l, 2005; Itoh et a l, 2004; Levonen et a l, 2004), and b) only one of 

these studies used mass spectrometry to unequivocally identify the target residues within 

Keapl that were modified, in this case, by BIA (Hong et a l, 2005b). Therefore, there is 

a clear need to further determine the role that Keapl modification plays in the activation 

o f Nrf2 in cells, and to identify the target residues that are modified by Nrf2-activating 

molecules. In keeping with this, the initial aim of the work presented in this chapter was 

to develop a cell-based method to enable the characterisation, by MS/MS, of Keapl 

modification within a more biologically-relevant cellular setting, in order to test the 

hypothesis that modification of Keapl is associated with activation ofNrf2 in cells. Two 

approaches were taken; immunoprécipitation of endogenous Keapl, and ectopic 

expression of an epitope-tagged Keapl protein followed by affinity purification. The 

latter model system was used to map the Keapl adduct patterns associated with Nrf2-
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activating molecules, in order to test the hypothesis that a common cysteine, or subset of 

cysteines, is modified by all such molecules within a cellular context.
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5.2 METHODS

5.2.1 Materials and reagents

HotStarTaq DNA polymerase and the QIAfilter Plasmid Midi Kit were from Qiagen 

(Crawley, UK). Eco47lll and Taq DNA polymerase were from Promega (Southampton, 

UK). EcoRl and Ava\ were from Roche Diagnostics (Burgess Hill, UK). pcDNA3.1/V5- 

His-TOPO was from Invitrogen (Paisley, UK). Pme I was from New England Biolabs 

(Hitchin, UK). The sonicating water bath was from Decon (Hove, UK). The monoclonal 

mouse anti-Keapl primary antibody was from R&D Systems (Abingdon, UK). The 

mouse monoclonal anti-human Nrf2 antibody was kindly donated by Dr. Paul Hayter 

(Pfizer Ltd, Sandwich, UK). The Concentrator 5301 was from Eppendorf (Cambridge, 

UK). RIPA buffer, NP-40, protein-G agarose beads, BamHl, EcoRV, Sac I, anti-V5 

agarose beads, Brilliant Blue G colloidal concentrate, the rabbit anti-DNP primary 

antibody and the rabbit anti-mouse HRP-conjugated secondary antibody were from 

Sigma-Aldrich (Poole, UK). All other reagents were of analytical or molecular grade, 

and were from Sigma-Aldrich.

5.2.2 Immunoprécipitation of endogenous Keapl

Eight folly-confluent 75 cm2 flasks of Hepa-lclc7 cells were harvested by 

trypsinisation, as described in section 2.2.2. Following resuspension in growth media, 

cells were pelleted by centrifugation at 1000 g for 5 min, and the supernatant was 

discarded. The pellet was washed in 5 mL IX PBS, divided into two equal aliquots, and 

centrifuged at 1000 g for 5 min. For denaturing immunoprécipitation, following the 

method of Tansey (2007a), one of the pellets was resuspended in 0.2 mL TSD buffer (50 

mM Tris-Cl (Sigma-Aldrich), 1 % (v/v) SDS, 5 mM DTT, 0.2 % (v/v) protease inhibitor 

cocktail), heated at 80 °C for 10 min and clarified by centrifugation at 1000 g for 5 min. 

For non-denaturing immunoprécipitation, following the method of Tansey (2007b), the 

other pellet was resuspended in 0.2 mL radioimmunoprécipitation assay (RIPA) buffer
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(0.15 M NaCl, 1 % (v/v) NP-40, 0.5 % (v/v) sodium deoxycholate, 0.1 % (v/v) SDS, 25 

mM Tris-Cl, 0.2 % (v/v) protease inhibitor cocktail) and centrifuged at 1000g for 5 min. 

The protein content o f clarified lysates was determined as described in section 2.2.5. The 

lysates were split into four aliquots of 1 mg total protein. Each aliquot was diluted to 0.5 

mL with TON buffer (50 mM Tris-Cl, 0.25 M NaCl, 5 mM EDTA, 0.5 % (v/v) NP-40, 

0.2 % (v/v) protease inhibitor cocktail) for denaturing immunoprécipitation, or RIPA 

buffer for non-denaturing immunoprécipitation. Selected aliquots were supplemented 

with 0.4 mL IX PBS or a crude lysate from Keapl-His -expressing BL21 (DE3) E. coli. 

The bacterial lysate was prepared by pelleting a 10 mL culture (induced with 1 mM 

IPTG for 4 h at 37 °C, 250 rpm) at 5000 g for 5 min. The pellet was washed in 10 mL 

IX PBS and centrifuged at 5000 g for 5 min. The pellet was resuspended in 1 mL IX 

PBS and disrupted by sonication (10 sec, followed by 10 sec recovery, x 4 repeats). 

Disrupted bacteria were centrifuged at 5000 g for 5 min, and the supernatant retained as 

a crude lysate. Aliquots were pre-cleared with 20 pL protein-G agarose beads via 

incubation on a mechanical roller at 4 °C for 1 h. The beads were pelleted by 

centrifugation at 5000 g for 1 min. The supernatants were transferred to a new tube and 

supplemented with 5 pg monoclonal mouse anti-Keapl or polyclonal goat anti-Keapl 

antisera. Immunoprécipitation was performed overnight at 4 °C, on a mechanical roller. 

Antibody conjugates were captured via the addition of 50 pL protein-G agarose beads, 

and incubation at 4 °C, on a mechanical roller, for 2 h. The beads were pelleted, by 

centrifugation at 5000 g for 1 min, and washed three times with 0.2 mL IX PBS. In 

order to elute immunoprecipitated proteins, the beads were resuspended in an equal 

volume of NuPAGE loading buffer, heated at 80 °C for 5 min, and centrifuged at 5000 g 

for 5 min. The supernatants were loaded onto pre-cast 4-12 % NuPAGE Novex bis-tris 

polyacrylamide gels. Western blot analysis was performed essentially as described in 

section 2.2.6. For samples in which the monoclonal mouse anti-Keapl antibody had 

been used for immunoprécipitation, membranes were probed with the goat anti-Keapl 

primary and rabbit anti-goat HRP-conjugated IgG secondary antibodies. For samples in 

which the polyclonal goat anti-Keapl antibody had been used for immunoprécipitation, 

membranes were probed with the monoclonal mouse anti-Keapl primary (1:1000 in
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TBS-Tween containing 2 % (w/v) BSA) and rabbit anti-mouse HRP-conjugated 

secondary (1:10,000 in TBS-Tween containing 2 % (w/v) BSA) antibodies.

5.2.3 Preparation of mouse K ea p l coding sequence DNA template

The DNA template for mouse Keapl was prepared as described in section 3.2.2.

5.2.4 Polymerase chain reaction

The purified vector, containing the mouse Keapl cDNA clone, was used as a template 

for hot-start PCR amplification of the mouse Keapl coding sequence. A forward primer 

(5’-ATGCAGCCCGAACCCAAG-3’) and two reverse primers (‘STOP’ 5’-TCAGCAG 

GTACAGTTTTG-3 ’ and ‘V5-HIS’ 5’-GCAGGTACAGTTTTGTTGAT-3’) were 

designed to enable the amplification of Keapl with (‘STOP’) or without (‘V5-HIS’) the 

stop codon (TGA). Hot-start PCR was performed as described in section 3.2.3. The PCR 

products were resolved by electrophoresis on a 1 % agarose gel, supplemented with 0.5 

pg/mL ethidium bromide, and purified using a Perfectprep gel cleanup kit, in accordance 

with the manufacturer’s instructions. The gel-purified PCR products were 3’ A-tailed 

using Taq DNA polymerase. Reactions (10 pL) contained 8 pL gel-purified PCR 

product, IX Taq DNA polymerase buffer containing 1.5 mM MgCl2, 5 pM 

deoxyadenosine triphosphate (dATP) and 2.5 U Taq DNA polymerase. A-tailing was 

performed at 72 °C for 8 min.

5.2.5 Sub-cloning of K ea p l into pcDNA3.1/V5-His-TOPO

The A-tailed Keapl PCR products were ligated into the T-overhangs of the TOPO 

cloning site of pcDNA3.1/V5-His-TOPO, in accordance with the manufacturer’s 

instructions. XL10-Gold ultracompetent E. coli were immediately transformed with the
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ligated constructs (3 pL per 30 pL bacteria), via a 30 sec heat-shock at 42 °C, and 

incubated in 0.25 mL SOC media for 1 h, at 37 °C, 250 rpm. The bacteria were streaked 

onto a sterile LB-agar plate, containing 50 pg/mL ampicillin, and incubated at 37 °C 

overnight. Antibiotic-resistant colonies were picked from the plate and used to inoculate 

2 mL LB broth containing 50 pg/mL ampicillin; these cultures were incubated for 24 h 

at 37 °C, 250 rpm. The constructs were purified by mini-prep. Diagnostic restriction 

digests were performed with Baml/Eco47U\ (5 pL PCR product, 10 U Baml, 10 U 

Eco47lll, IX buffer D, 37 °C, 1 h) and EcoRN/Eco47lll (5 pL PCR product, 10 U 

EcoRW, 10 U Eco47l\\, IX buffer SB, 37 °C, 1 h). Glycerol stocks of a 

pcDNA3.1/Keapl-transformed XL10 Gold colony were made by supplementing a mid­

log phase culture with 15 % (v/v) glycerol; these stocks were stored at -80 °C until 

required. For transfections, pcDNA3.1/Keapl was purified from a 0.6 L culture of XL 10 

Gold E. coli, in LB broth supplemented with 50 pg/mL ampicillin, using a QIAfilter 

Plasmid Midi Kit. pcDNA3.1/Keapl was eluted into IX TE buffer, and the DNA 

concentration and purity were assessed as described for RNA in section 2.2.13, with the 

following exception (given that an absorbance of 1 at 260 nm equates to 50 pg/mL 

DNA):

Absorbance at 260 nm x 100 (to correct fo r  dilution) x  50 = DNA concentration (pg/mL)

5.2.6 DNA two-strand sequencing

XL10 Gold E. coli transformed with pcDNA3.1/Keapl, along with primers (3.2 pM), 

were sent to Geneservice for two-strand sequencing of pcDNA3.1/Keapl. The T7 

forward (5’-TAATACGACTCACTATAGGG-3’) and BGH reverse (5’-CCTCGACTG 

TGCCTTCTA-3’) priming sites were designated as the external sequencing sites. The 

internal sequencing primers were custom-synthesised by Sigma-Genosys, in accordance 

with the requirements of Geneservice; internal forward 5’-CCACCCTAAGGTCATGG 

AAA-3’, internal reverse 5’-GCTAGTTATTGCTCAG CGG-3’. Sequencing results 

were analysed using ChromasPro software; no mutations were identified.
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5.2.7 Cell culture

Hepa-lclc7 were maintained as described in section 2.2.2. The human embryonic 

kidney cell line, HEK293T, was maintained in ‘growth media’ (DMEM supplemented 

with 584 mg/L L-glutamine, 10 % FBS, 100 U/mL penicillin and 100 pg/mL 

streptomycin) and cultured as described for Hepa-lclc7 in section 2.2.2. HEK293T are 

transformed with the large T antigen of Simian virus 40 (SV40), and this enables 

episomal replication of transfected vectors that contain the SV40 origin of replication, 

effectively amplifying the expression of the transfected gene product (DuBridge et al., 

1987).

5.2.8 Transfection of cells with Keapl-V5-His

Hepa-lclc7 or HEK293T cells were seeded onto 56.7 cm2 Nunclon A culture dishes, at 

5 x 106 cells/dish, 24 h prior to transfection,. At around 80 % confluency, cells were 

transfected with pcDNA3.1/Keapl-V5-His using Lipofectamine 2000, with slight 

modifications to the manufacturer’s instructions. For each dish of cells, 1 mL DMEM 

was combined with 16 pg pcDNA3.1/Keapl-V5-His in a sterile 25 mL tube. In a 

separate 25 mL tube, 1 mL DMEM was combined with 40 pL Lipofectamine 2000. The 

contents of each tube were combined, mixed gently, and incubated at room temperature 

for 20 min. The entire mixture was added, dropwise, to the dish of cells. Cells were 

returned to a humidified incubator, at 37 °C in a 5 % CO2 atmosphere, for 24 h. The 

cells from three dishes were combined and lysed, by repeated vigorous pipetting, in 1 

mL RIPA buffer. The lysate was clarified by centrifugation at 5000 g for 1 min.
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5.2.9 Western blot analysis of whole cell lysates

Whole cell lysates (20 jug) were analysed by Western blot as described in section 2.2.6. 

Recombinant mouse Keapl-His was loaded as a standard to confirm antibody 

specificity.

5.2.10 Purification of Keapl-V5-His from cell lysates

The whole cell lysate (1 mL) prepared in section 5.2.8 was aliquoted into two 1.5 mL 

microcentrifuge tubes (0.5 mL each). The lysates were incubated with 60 pL HIS-Select 

or anti-V5 agarose beads, on a mechanical roller, for 2 h at 4 °C. The beads were 

collected by centrifugation at 5000 g for 1 min, and washed three times with 0.5 mL IX 

PBS.

5.2.11 Western blot analysis of purified Keapl-V5-His

Keapl-V5-His purification was confirmed by Western blot analysis, essentially as 

described in section 2.2.6. Proteins were eluted from HIS-Select or anti-V5 agarose 

beads by resuspending in an equal volume of NuPAGE loading buffer. The slurry was 

heated at 80 °C for 5 min, the beads were pelleted by centrifugation at 5000 g for 5 min, 

and the supernatant loaded onto a pre-cast 4-12 % NuPAGE Novex bis-tris 

polyacrylamide gel.

5.2.12 Coomassie Brilliant Blue staining and in-gel tryptic digestion

Following electrophoresis, as described in section 2.2.6, the gel was fixed for 1 h in 40 

% (v/v) methanol containing 7 % (v/v) glacial acetic acid. Coomassie staining solution 

was prepared by mixing 4 part Coomassie stain (0.1 % (w/v) Coomassie Brilliant Blue
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G-250 in 2 % (w/v) phosphoric acid, 16 % (w/v) ammonium sulphate) with 1 part 

methanol. The gel was stained with Coomassie solution for 1 h, with gentle agitation. 

The gel was destained, with 25 % (v/v) methanol containing 10 % (v/v) glacial acetic 

acid, for 1 min. The gel was rinsed with, and then stored at 4 °C in, 25 % (v/v) methanol. 

The stained gel was placed on top of a light box and bands of interest were carefully 

excised using a scalpel. The gel pieces were individually destained, in 0.1 mL of 50 mM 

ammonium bicarbonate in 50 % (v/v) ACN, for 15 min at room temperature, with 

occasional agitation. The destaining solution was removed and the gel pieces were dried 

in a Concentrator 5301 over 15 min. The gel pieces were rehydrated in 10 pL of 50 mM 

ammonium bicarbonate containing 5 ng/pL sequencing-grade modified trypsin, and 

incubated at 37 °C overnight. Following the addition of 30 pL of 60 % (v/v) ACN, 1 % 

(v/v) TFA, the samples were placed in a sonicating water bath for 5 min, at room 

temperature. The gel pieces were pelleted by centrifugation, at 1000 g for 30 sec, and the 

supernatant transferred to a new tube. A further 30 pL of 60 % (v/v) ACN, 1 % (v/v) 

TFA was added to the gel pieces, and the samples were placed in a sonicating water bath 

for 5 min, at room temperature. The gel pieces were pelleted by centrifugation, at 1000 g 

for 30 sec, and the supernatant combined with that from the previous centrifugation step. 

The sample was dried in a Concentrator 5301 over lh, and the solute reconstituted in 10 

pL of 5 % (v/v) ACN, 0.05 % (v/v) TFA.

5.2.13 Preparation of Keapl-V5-His for mass spectrometry

Keapl-V5-His, bound to anti-V5 agarose beads, was reduced by resuspending the beads 

(50 pL dry volume) in 0.148 mL phosphate buffer and 2 pL of 0.1 M DTT. The slurry 

was incubated on a mechanical roller at 4 °C for 15 min. The beads were washed three 

times in 0.5 mL phosphate buffer to remove residual DTT. To cap unmodified cysteines, 

the beads were resuspended in 0.13 mL phosphate buffer and 20 pL of 0.55 M 

iodoacetamide, and incubated on a mechanical roller at 4 °C for 15 min. The beads were 

washed three times in 0.5 mL phosphate buffer to remove residual iodoacetamide. 

Tryptic digestion was performed as described in section 3.2.10. For LC-ESI-MS/MS
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analysis, the beads were pelleted by centrifugation at 5000 g for 30 sec. The supernatant, 

containing tryptic peptides, was transferred to a new tube and dried in a Concentrator 

5301 over 45 min. The solute was reconstituted in 65 pL of 5 % (v/v) ACN, 0.05 % 

(v/v) TFA.

5.2.14 MALDI-TOF mass spectrometry

Samples were analysed as described in section 3.2.11.

5.2.15 LC-ESI-MS/MS mass spectrometry

The reconstituted solute (60 pL) from section 5.2.13 was loaded using a 0.1 mL loop. 

Samples were analysed essentially as described in section 3.2.12. LC conditions were as 

follows: 15 min at 5 % (v/v) ACN, 0.05 % (v/v) TFA, a gradient of 5-48 % (v/v) ACN, 

0.05 % (v/v) TFA over 60 min, 10 min at 99 % (v/v) ACN, 0.05 % (v/v) TFA and 10 

min at 5 % (v/v) ACN, 0.05 % (v/v) TFA, with a flow rate of 0.35 pL/min throughout.

5.2.16 Treatment of Keapl-V5 -expressing cells with electrophiles

Keapl-V5 -expressing HEK293T cells were treated essentially as described for Hepa- 

lclc7  cells in section 2.2.3. Three dishes of cells were simultaneously exposed to each 

electrophile. The cells from these three dishes were combined and lysed, by repeated 

vigorous pipetting, in 1 mL RIPA buffer. The lysate was clarified by centrifugation at 

5000 g for 1 min.
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5.2.17 Preparation of nuclear fractions

Nuclear fractions were prepared from HEK293T cells as described for Hepa-lclc7 cells 

in section 2.2.4.

5.2.18 Determination of protein content

The total protein content of subcellular fractions was determined as described in section 

2.2.5.

5.2.19 Western blot analysis of nuclear fractions

Nuclear fractions (20 pg) were resolved by denaturing electrophoresis and transferred to 

nitrocellulose membranes, which were then blocked, as described in section 2.2.6. 

Blocked membranes were probed for 1 h with a monoclonal mouse anti-human Nrf2 

antiserum (1:1000 in TBS-Tween containing 2 % (w/v) BSA). Following several washes 

in TBS-Tween, membranes were probed for 1 h with rabbit anti-mouse HRP-conjugated 

anti-IgG (1:10,000 in TBS-Tween containing 2 % (w/v) BSA). Recombinant human 

Nrf2-His was loaded as a standard to confirm antibody specificity.

5.2.20 Immunopurification of Keapl-V5-His

Keapl-V5-His was immunopurified from the whole cell lysate prepared in section 5.2.4.

1 mL lysate was incubated with 80 pL anti-V5 agarose beads, on a mechanical roller, for

2 h at 4 °C. The beads were collected by centrifugation at 5000 g for 1 min, and washed 

three times with 0.5 mL IX PBS.
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5.2.21 Western blot analysis of immunopurified Keapl-V5-His

Keapl-V5-His immunopurification was confirmed by Western blot analysis, as 

described in section 5.2.11. To probe for DNCB adducts, a rabbit anti-DNP primary 

antibody was used (1:20,000 in TBS-Tween containing 2 % (w/v) BSA). To enable 

additional probing, membranes were stripped by shaking in 0.1 M glycine (pH 3.0), for 

2 h, at room temperature.
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5.3 RESULTS

5.3.1 Immunoprécipitation of endogenous Keapl

In an effort to examine the modification of Keapl by Nrf2-activating electrophiles under 

physiologically relevant cellular conditions, attempts were made to immunoprecipitate 

endogenous Keapl from Hepa-lclc7 cells and analyse the protein by mass 

spectrometry. At the time at which these investigations were carried out, two 

commercial anti-Keapl primary antibodies were available. The first was a monoclonal 

antibody, produced from a hybridoma resulting from the fusion of a mouse myeloma 

with B cells obtained from a mouse immunised with a purified recombinant fragment 

(amino acids 90-250) of human Keapl (R&D Systems). The fragment of human Keapl 

used as the immunogen shares 98 % sequence homology with the equivalent fragment of 

mouse Keapl. Furthermore, this antibody can detect the mouse protein by Western blot 

(Fig. 5.1a). The second anti-Keapl antibody was a polyclonal antibody, raised in goat 

against a purified recombinant fragment (amino acids 10-60) of human Keapl (Santa 

Cruz Biotechnology). The fragment of human Keapl used as the immunogen for this 

antibody shares 84 % sequence homology with the equivalent fragment of mouse Keapl. 

This antibody can also detect the mouse protein by Western blot (Fig. 5.1b).

Monoclonal 
anti-Keapl IgG

B mKeap1-His

Keapl ►

Polyclonal 
anti-Keapl IgG

Fig. 5.1 - Detection of mouse Keapl by monoclonal and polyclonal anti-Keapl 
antibodies. Recombinant mouse Keapl-His was purified using Ni2+ -charged agarose 
beads and various amounts were resolved by denaturing electrophoresis. Keapl was 
detected by Western blot, using a monoclonal (A) or polyclonal (B) anti-Keapl 
antibody. This result demonstrates that each antibody can detect mouse Keapl by 
Western blot. Note, the amounts of protein loaded onto each gel are not identical, thus it 
is not possible to differentiate between the sensitivities of the antibodies from these gels.
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Ideally, it would be possible to immunoprecipitate endogenous Keapl under non­

denaturing conditions, so as not to disrupt the structural integrity of the protein and 

affect the putative modification of Keapl by Nrf2-activating electrophiles. However, the 

ability of both anti-Keapl antibodies to detect mouse Keapl by Western blot had only 

been confirmed under denaturing conditions, and hence immunoprécipitations were 

attempted separately under non-denaturing and denaturing conditions. Protein G 

sepharose was used to immunopurify antibody conjugates, as both Keapl antibodies 

were of the IgG class, which shows high affinity for streptococcal Protein G (Bjorck et 

a l, 1984).

A series of controls demonstrated that the polyclonal anti-Keapl antibody reacted 

strongly with Protein G, and non-specifically with some cellular proteins in both non- 

denatured and denatured lysates (Fig. 5.2). Although endogenous Keapl was detected in 

the input and flow-through fractions of the cell lysates, particularly in the non-denatured 

lysate, immunoprécipitation with the monoclonal anti-Keap 1 antibody only resulted in a 

noticeable recovery of Keapl when the cell lysates were supplemented with recombinant 

mouse Keapl-His protein (Fig. 5.3). Even less endogenous Keapl protein was recovered 

following immunoprécipitation with the polyclonal anti-Keapl antibody (Fig. 5.4). 

Therefore, under the experimental conditions employed, the two available commercial 

anti-Keapl antibodies are not suitable for the immunoprécipitation of endogenous 

Keapl from Hepa-lclc7 cells. Although extensive optimisation may enhance the 

recovery of Keapl from cells, it is anticipated that the material yielded may still not be 

sufficient for effective analysis by mass spectrometry.
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Fig. 5.2 - Non-specific reactivity of polyclonal anti-Keapl antibody with cellular 
proteins and Protein G. Hepa-lclc7 cells were lysed under denaturing (TSD) or non­
denaturing (RIPA) conditions. Each lysate (0.2 mg protein) was incubated with Protein 
G sepharose beads for 1 h at 4 °C. Lysates (20 pg) were resolved, by denaturing 
electrophoresis, alongside the proteins eluted from the respective Protein G sepharose 
beads and a crude lysate from Keapl-His -expressing BL21 (DE3) E. coli. Proteins 
reacting with the polyclonal anti-Keapl antibody were detected by Western blot. IB; 
immunoblot.
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IP: Monoclonal anti-Keap1 / IB: Polyclonal anti-Keap1

Fig. 5.3 - Attempted immunoprécipitation of Keapl from Hepa-lclc7 cells using a 
monoclonal anti-Keapl antibody. Hepa-lclc7 cells were lysed under denaturing 
(TSD) or non-denaturing (RIPA) conditions. Lysates (1 mg protein) were not 
supplemented (- recomb.), or supplemented (+ recomb.) with a crude lysate from Keapl- 
His -expressing BL21 (DE3) E. coli, and pre-cleared with Protein G sepharose beads for 
1 h at 4 °C. Cleared lysates were incubated at 4 °C, overnight, with 5 fig monoclonal 
anti-Keapl antibody, and antibody conjugates were captured via incubation with Protein 
G sepharose beads for 2 h at 4 °C. Fractions of the lysates pre- (input) and post- (flow­
through) immunoprécipitation were resolved by denaturing electrophoresis, alongside 
the proteins eluted from the respective Protein G sepharose beads and appropriate 
controls. Keapl was detected by Western blot, with a polyclonal anti-Keapl antibody. 
IP; immunoprécipitation. IB; immunoblot.
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Fig. 5.4 - Attempted immunoprécipitation of Keapl from Hepa-lclc7 cells using a 
polyclonal anti-Keapl antibody. Hepa-lclc7 cells were lysed under denaturing (TSD) 
or non-denaturing (RIPA) conditions. Lysates (1 mg protein) were not supplemented (- 
recomb.), or supplemented (+ recomb.) with a crude lysate from Keapl-His -expressing 
BL21 (DE3) E. coli, and pre-cleared with Protein G sepharose beads for 1 h at 4 °C. 
Cleared lysates were incubated at 4 °C, overnight, with 5 pg polyclonal anti-Keapl 
antibody, and antibody conjugates were captured via incubation with Protein G 
sepharose beads for 2 h at 4 °C. Fractions of the lysates pre- (input) and post- (flow­
through) immunoprécipitation were resolved by denaturing electrophoresis, alongside 
the proteins eluted from the respective Protein G sepharose beads and appropriate 
controls. Keapl was detected by Western blot, with a monoclonal anti-Keapl antibody. 
IP; immunoprécipitation. IB; immunoblot.
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5.3.2 PCR amplification of mouse K ea p l coding sequence

In light of the unsuccessful attempts to immunoprecipitate endogenous Keapl from 

Hepa-lclc7 cells, the ectopic expression of epitope-tagged Keapl was pursued as an 

alternative method of detecting in-cell modification of Keapl by mass spectrometry. The 

mouse Keapl coding sequence (1875 bp) was amplified by PCR. Primers were designed 

to enable to amplification of the coding sequence with or without the TGA stop codon, 

to facilitate the eventual translation of a wild-type (‘STOP’) or V5-His -tagged Keapl 

protein, respectively. Both PCR products were 3’ A-tailed (Fig. 5.5) in order to enable 

ligation into the TOPO cloning site of pcDNA3.1/V5-His-TOPO (Fig. 5.6).

Fig. 5.5 - Schematic diagram showing 3’ A-tailing of the mouse K ea p l coding 
sequence (CDS) and its ligation into pcDNA3.1/V5-His-TOPO, via the T-overhangs 
of the TOPO cloning site. The nucleotides immediately flanking the TOPO cloning site 
of pcDNA3.1/V5-His-TOPO are represented as solid lines.

Fig. 5.6 - pcDNA3.1/V5-His-TOPO vector map. The A-tailed Keapl coding sequence 
was ligated into the T-overhangs of pcDNA3. l/V5-His-TOPO. Image taken from the 
Invitrogen on-line catalogue (http://www.invitrogen.eom/content/sfs/vectors/pcdna3.l 
v5histopo_map .pdf).
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5.3.3 Ligation of mouse Keapl coding sequence into pcDNA3.1/V5-His-TOPO

The A-tailed Keapl PCR products were ligated into pcDNA3.l/V5-His-TOPO, and 

XL10-Gold ultracompetent E. coli were transformed with one of the two ligated 

constructs. Successful transformation was confirmed by diagnostic restriction digests of 

construct DNA purified from selected bacterial colonies (Fig. 5.7). Specifically, 

fragments of the expected size(s) were visualised following digestion with BamHl and 

Eco47\\\ (BamHl cuts at -34 of Keapl, Eco47\\\ cuts at 1606 of Keapl; 1640 bp 

fragment) and Eco47lll and EcoRV (Eco47lll cuts at 1606 of Keapl, EcoKV cuts at 

1891 of Keapl \ 285 bp fragment).
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Fig. 5.7 - Diagnostic restriction digests of pcDNA3.1/Keapl ‘STOP’ and ‘V5-His’ 
variants from putative transformed XL10-Gold E. coli. Each pcDNA3.1/Keapl 
construct was purified from three selected bacterial colonies (#1-3 and #A-C) by mini- 
prep. The constructs were digested with BamHl and Eco47lll (BamHl cuts at -34, 
Eco47lll cuts at 1606; 1640 bp fragment) and Eco47lll and EcoKV (Eco47lll cuts at 
1606, EcoRV cuts at 1891; 285 bp fragment). The restriction fragments, the undigested 
constructs, and a 100 bp DNA ladder were resolved by electrophoresis on a 1 % (w/v) 
agarose gel, containing 0.5 pg/mL ethidium bromide. DNA fragments were visualised 
under UV illumination. Constructs yielding restriction fragments of expected size, i.e. 
those from colonies #2, #3, #B and #C, are labeled *.
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These diagnostic restriction digests demonstrate that the Keapl coding sequences ligated 

into pcDNA3. l/V5-His-TOPO successfully, and in the correct orientation. In order to 

confirm that the PCR amplification process had not introduced mutations into the Keapl 

coding sequence, the pcDNA3.1/Keapl constructs were verified by two-strand 

sequencing. This process confirmed that no non-synonymous mutations, i.e. those that 

result in the translation of a different amino acid, were present in either 

pcDNA3.1 /Keap 1 construct.

5.3.4 Expression and purification of pcDNA3.1/Keapl

HEK293T, a human embryonic kidney cell line that is widely used as a model for the 

ectopic expression of proteins, and Hepa-lclc7, the mouse hepatoma cell line used for 

investigations into the molecular regulation of the Nrf2-ARE pathway in chapter 2, were 

transiently transfected with Keapl -STOP (i.e. wild-type protein) or -V5-His (Keapl 

protein proceeded by a 45 amino acid sequence, which contains the V5 epitope and 

polyhistidine region, but does not contain any cysteines). Both Keapl variants were 

expressed in both cell lines, however the level of expression was markedly higher in 

HEK293T cells (Fig. 5.8). In light of the relatively weak expression of Keapl -STOP 

and -V5-His in Hepa-lclc7 cells, and given that only Keapl-V5-His could be affinity- 

or immuno-purified from cell lysates, all subsequent experiments were undertaken using 

HEK293T cells transiently expressing Keap 1-V5-His only.

Theoretically, it should be possible to purify Keapl-V5-His by both Ni2+ affinity and 

anti-V5 immunoaffinity, as the protein bears both a V5 epitope and a polyhistidine tag. 

In order to compare the recovery of Keapl-V5-His achieved with each purification 

method, cell lysates prepared from Keap 1-V5-His -expressing HEK293T cells were 

incubated with Ni -charged agarose beads or anti-V5 agarose beads.
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Hepa- 
293T 1c1c7
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Fig. 5.8 - Transient expression of Keapl-STOP and Keapl-V5-His in HEK293T 
and Hepa-lclc7 cells. HEK293T or Hepa-lclc7 cells were mock transfected or 
transfected for 24 h with pcDNA3.1/Keapl -STOP or -V5-His. Whole cell lysates were 
prepared and resolved by denaturing electrophoresis. Keapl and P-actin were detected 
by Western blot. Recombinant mouse Keapl-His was loaded onto the gel as a standard 
(Std).

Although Ni2+ affinity purification did yield a large amount of Keapl, as assessed by 

Western blot, a substantial number of other proteins were co-purified, as demonstrated 

by Ponceau Red stain of the pull-down fraction (Fig. 5.9). Such was the abundance of 

contaminating proteins within the sample, it was not possible to identify Keapl-V5-His 

by MALDI-TOF MS analysis. Anti-V5 immunopurification yielded a greater amount of 

Keapl, in a much purer form, than Ni2+ affinity purification (Fig. 5.9). In fact, only three 

prominent protein bands were visible on the Ponceau Red stain of the pull-down fraction 

(Fig. 5.9). The major constituents of these bands were identified, by LC-ESI-MS/MS 

analysis of Coomassie Brilliant Blue G-250 -stained, trypsin-digested polyacrylamide 

gel sections, to be mouse Keapl and the heavy (gamma) and light (kappa) chains of 

mouse IgG (Fig. 5.10); the latter were the fragments of anti-V5 IgG released from the 

anti-V5 agarose beads, along with Keapl-V5-His, during the elution process. MALDI- 

TOF MS analysis of the total protein fraction bound to the anti-V5 agarose beads, 

following incubation with Keapl-V5-His -expressing HEK293T cell lysate, identified 

mouse Keapl as the major constituent protein (Fig. 5.11 and Fig. 5.12).
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Fig. 5.9 - Purification of Keapl-V5-His from HEK293T cells. HEK293T cells were 
mock transfected or transfected for 24 h with pcDNA3.1/Keapl-V5-His. Whole cell 
lysates were prepared and incubated with Ni2+-charged agarose beads or anti-V5 agarose 
beads for 2 h at 4 °C. The crude lysates, the proteins that eluted from the respective 
agarose beads (pull-down) and the lysates that remained following the pull-downs (flow­
through) were resolved by denaturing electrophoresis, alongside protein molecular 
weight markers. Resolved proteins were transferred to nitrocellulose and total protein 
was visualised by Ponceau Red stain (A). Keapl was detected on the same membrane by 
Western blot (B).
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Kelch-like ECH-associated protein 1
(mouse)

Immunoglobulin heavy (gamma) chain
(mouse)

Immunoglobulin light (kappa) chain
(mouse)

Fig. 5.10 - Identification of prominent proteins eluted from anti-V5 agarose beads.
HEK293T cells were mock transfected or transfected for 24 h with pcDNA3.1/Keapl- 
V5-His and whole cell lysates were prepared. The lysates were incubated with Ni2+- 
charged agarose beads or anti-V5 agarose beads and all fractions were resolved by 
denaturing electrophoresis. The Ponceau Red stain of the proteins, following transfer to 
nitrocellulose, is shown. The equivalent polyacrylamide gel was stained with Coomassie 
Brilliant Blue G-250 and the bands were excised. The protein(s) present within the 
bands were digested with trypsin, and the resulting peptide mixtures were analysed by 
LC-ESI-MS/MS. The data obtained from the MS/MS spectra were used in a ProteinPilot 
database search to identify the major protein constituent(s) for each band. The protein 
identified with the highest degree of confidence for each band is shown.
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1583.8325 1862.9440

Fig. 5.11 - MALDI-TOF mass spectrum of the tryptic digest of protein(s) purified 
by anti-V5 immunoaffinity from Keapl-V5-His -expressing HEK23T cells.
HEK293T cells were transfected for 24 h with pcDNA3.1/Keapl-V5-His, whole cell 
lysates were prepared and incubated with anti-V5 agarose beads. Bead-bound protein(s) 
were reduced with 1 mM DTT, alkylated with 55 mM iodoacetamide, and digested 
overnight with 240 ng trypsin. The resulting peptide mixture was visualised on a 
Voyager DE Pro MALDI-TOF Biospectrometry Workstation, in linear positive ion 
mode.
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Accession Mass Score Description

1. gi [7710044 69508 101 kelch-like ECH-associated protein 1 [Mus musculus]
2. gi |74181739 69492 101 unnamed protein product [Mus musculus]
3. gi ¡26337871 69478 94 unnamed protein product [Mus musculus]
4. gi j 74212473 69482 93 unnamed protein product [Mus musculus]
5. gi ¡37359786 71015 88 mKIAA0132 protein [Mus imusculus]

Match to: gi|7710044 Kelch-like ECH-associated protein 1 [Mus musculus]
Sequence Coverage: 47%

1 MQPEPKLSGA PRSSQFLPLW SKCPEGAGDA VMYASTECKA EVTPSQDGNR 
51 TFSYTLEDHT KQAFGVMNEL RLSQQLCDVT LQVKYEDIPA AQFMAHKW L

101 ASSSPVFKAM FTNGLREQGM EWSIEGIHP KVMERLIEFA YTASISVGEK 
151 CVLHVMNGAV MYQIDSWRA CSDFLVQQLD PSNAIGIANF AEQIGCTELH 
201 QRAREYIYMH FGEVAKQEEF FNLSHCQLAT LISRDDLNVR CESEVFHACI 
251 DWVKYDCPQR RFYVQALLRA VRCHALTPRF LQTQLQKCEI LQADARCKDY 
301 LVQIFQELTL HKPTQAVPCR APKVGRLIYT AGGYFRQSLS YLEAYNPSNG 
351 SWLRLADLQV PRSGLAGCW GGLLYAVGGR NNSPDGNTDS SALDCYNPMT 
401 NQWSPCASMS VPRNRIGVGV IDGHIYAVGG SHGCIHHSSV ERYEPERDEW 
451 HLVAPMLTRR IGVGVAVLNR LLYAVGGFDG TNRLNSAECY YPERNEWRMI 
501 TPMNTIRSGA GVCVLHNCIY AAGGYDGQDQ LNSVERYDVE TETWTFVAPM 
551 RHHRSALGIT VHQGKIYVLG GYDGHTFLDS VECYDPDSDT WSEVTRMTSG 
601 RSGVGVAVTM EPCRKQIDQQ NCTC

Fig. 5.12 - MASCOT protein database search result for peptide mass fingerprint 
obtained from the MALDI-TOF MS analysis of protein(s) purified by anti-V5 
immunoaffinity from Keapl-V5-His -expressing HEK293T cells. The peptide mass 
fingerprint shown in Fig. 5.11 was used in a MASCOT protein database search 
(http://www.matrixscience.com), which identified mouse Keapl as the major constituent 
protein in the tryptic digest. The five proteins identified with the highest degree of 
confidence are shown (all are variant database entries for mouse Keapl). The amino acid 
sequence coverage for mouse Keapl was 47 %. The specific amino acids covered by the 
MALDI-TOF MS analysis are underlined and in bold.

5.3.5 Validation of Keapl-V5 -expressing HEK293T cells as a model for 

investigating the modification of Keapl by Nrf2-activating electrophiles in cells

As the results presented in section 5.3.4 demonstrate that the most efficient method of 

purifying Keapl-V5-His from HEK293T cells was via the V5 epitope, the construct will 

subsequently be referred to simply as Keapl-V5. HEK293T cells were transiently 

transfected with Keapl-V5 and exposed to 100 pM DNCB for 1 h. These conditions 

were shown to induce the nuclear accumulation of Nrf2 in Hepa-lclc7 in chapter 2, and 

here (Fig. 5.13a). In response to DNCB exposure, Nrf2 accumulated within the nuclei of 

both mock transfected HEK293T cells and cells expressing epitope-tagged Keapl (Fig.
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5.13b), findings that are consistent with recent studies by Liebler and colleagues (Hong 

et a l,  2005a; Hong et a l, 2005b). Furthermore, Keapl-V5 immunopurified from 

HEK293T cells was shown to be associated with endogenous Nrf2, and this association 

was enhanced following exposure of cells to DNCB, in agreement with recent 

independent observations (He et a l, 2006; Kobayashi et a l,  2006) (Fig. 5.14). The in­

cell modification of Keapl-V5 by DNCB was demonstrated by the reaction of an anti- 

DNP antibody with Keapl-V5, following its immunoprécipitation from DNCB-exposed, 

but not vehicle-exposed, cells (Fig. 5.14). Therefore, Keapl-V5 -expressing HEK293T 

cells represent a functionally valid model system for investigating the modification of 

Keapl by Nrf2-activating molecules, and the associated biological effects, in a cellular 

context.

A

Hepa-
1c1c7

B
HEK293T

Mock +V5

Fig. 5.13 - Ectopic expression of Keapl-V5 in HEK293T cells does not compromise 
the responsiveness of Nrf2 to DNCB. Hepa-lclc7 cells or HEK293T cells that were 
mock transfected or transfected with Keapl-V5 were exposed to 0.5 % (v/v) DMSO (-) 
or 100 pM DNCB (+) for 1 h. Nuclear fractions were prepared and the Nrf2 protein level 
was assessed in Hepa-lclc7 (A) or HEK293T cells (B) by Western blot analysis with an 
anti-mouse or anti-human Nrf2 antibody, respectively. Recombinant mouse (Hepa- 
lclc7) or human (HEK293T) Nrf2-His was loaded onto the appropriate gel as a standard 
(Std). Non-specific proteins that cross-react with the antibody are labeled *.
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DNCB: -  +
Keapl ►

Nrf2 ►

DNP ►

IP (V5)

Fig. 5.14 - Association of Keapl-V5 with endogenous Nrf2 and modification by 
DNCB in HEK293T cells. HEK293T cells expressing Keapl-V5 were exposed to 0.5 
% (v/v) DMSO (-) or 100 pM DNCB (+) for 1 h. Keapl-V5 was immunopurified using 
anti-V5 agarose beads. The proteins eluted from the beads were resolved by denaturing 
electrophoresis. Keapl-V5, its association with endogenous Nrf2, and its modification 
by DNCB were assessed by Western blot analysis with anti-Keapl, anti-human Nrf2 and 
anti-dinitrophenyl (DNP) antibodies, respectively.

5.3.6 Mass spectrometric analysis of Keapl-V5 modification by Nrf2-activating 

electrophiles in cells

Keapl-V5 -expressing HEK239T cells were exposed to NAPQI, DNCB (both 100 pM) 

or 15d-PGJ2 (10 pM) for 1 h, conditions that stimulated the nuclear accumulation of 

Nrf2 in Hepa-lclc7 cells in chapter 2. LC-ESI-MS/MS analysis revealed that NAPQI 

modified Cys-226 (2/2 experiments), -288 (2/2) and -434 (2/2), DNCB modified Cys- 

257 (2/2), and 15d-PGJ2 modified Cys-257 (2/2) and -273 (2/2) of Keapl-V5 in 

HEK293T cells (Fig. 5.15). Careful examination of the MS/MS spectrum indicating 

modification of Cys-273 by 15d-PGJ2 revealed that, by coincidence, the unfragmented 

peptide ion [M+2H]2+ (557.3 amu) masked both y5 (557.4 amu) and *b2 (557.28) 

fragment ions, resulting in a relatively high intensity peak at this m/z (Fig. 5.15f-g). 

Overall, although there is residue selectivity amongst this panel of Nrf2-activating 

molecules, a common theme is apparent, in that the modification of cysteines within the 

IVR domain of Keapl (Fig. 5.16) is associated with the activation of Nrf2 by 

electrophiles in cells. Despite recent suggestions that Keapl is ubiquitinated under 

certain conditions of chemical/oxidative (Hong et a l, 2005b; Zhang et a l, 2005), there 

was no evidence for the ubiquitination of Keapl-V5 in the experiments reported here.
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Fig. 5.15 - MS/MS spectrum indicating modification of Keapl-V5 (A) Cys-226 and 
(B) Cys-288 by NAPQI in HEK293T cells, y- and b-ions are labelled where present. * 
denotes ions for which a mass shift of +149.1 amu indicates modification by NAPQI. 
Immonium ions are labelled with the one-letter code for their corresponding amino acid.

198



Chapter 5

Fig. 5.15 - MS/MS spectrum indicating modification of Keapl-V5 (C) Cys-434 by 
NAPQI and (D) Cys-257 by DNCB in HEK293T cells. y- and b-ions are labelled 
where present. * denotes ions for which a mass shift of C) +149.1 amu indicates 
modification by NAPQI and D) +166.0 amu indicates modifications by DNCB. 
Immonium ions are labelled with the one-letter code for their corresponding amino acid.
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F ig . 5 .1 5  -  M S /M S  sp e c tr u m  in d ica tin g  m o d if ica t io n  o f  K e a p l-V 5  (E ) C y s-2 5 7  an d  
(F ) C y s-2 7 3  b y  1 5 d -P G J 2 in  H E K 2 9 3 T  c e lls , y- and b-ions are labelled where present. 
It should be noted that adduction of Keapl cysteines by 15d-PGJ2 may occur via either 
o f the electrophilic «,/i-unsaturated carbonyl moieties (labelled #). * denotes ions for 
which a mass shift of +316.2 amu indicates modification by 15d-PGJ2. Immonium ions 
are labelled with the one-letter code for their corresponding amino acid.
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Fig. 5.15 - Magnified view of [M+2H]2+ from MS/MS spectrum indicating 
modification of Keap-V5 (G) Cys-273 by 15d-PGJ2 in HEK293T cells. The
unfragmented peptide ion [M+2H]2+ (557.3 amu) masks both the y5 (557.4 amu) and *b2 
(557.28) fragment ions in Fig. 5.15f.

1
t - H - H — I I I I  I I I I

C257 C273 C288

C226
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H— H H ----------H — HH
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!VR domain

Fig. 5.16 - Summary of Keapl-V5 cysteine adduct patterns for NAPQI, DNCB and 
15d-PGJ2 in HEK293T cells. Modification maps for cysteine-containing Keapl-V5 
peptides were generated using a software package described previously by Beynon 
(2005). The horizontal lines represent the full-length Keapl protein (amino acids 1-624), 
the vertical lines represent the boundaries between sequential tryptic peptides. Filled 
boxes represent cysteine-containing peptides found to be modified by NAPQI (■), 
DNCB (■) or 15d-PGJ2 (D).The specific cysteines modified are noted at the top of the 
figure. The IVR domain of Keapl (amino acids 180-314) is highlighted.
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5.3.7 Mass spectrométrie analysis of putative Keapl-V5 -interacting proteins

Although the primary aim of the experiments described in this chapter was to identify 

the specific Keapl cysteine targets of Nrf2-activating electrophiles within a cellular 

context, the techniques used also enabled the characterisation of other proteins that were 

immunopurified from HEK293T cells with Keapl-V5. Due to a lack of time at the end 

of the project, it was not possible to differentiate between proteins that had an intrinsic 

affinity for the anti-V5 agarose beads and those that were immunopurified in a complex 

with Keapl-V5. Nevertheless, a subset of nuclear and cytosolic proteins was 

consistently identified in the immunopurified fractions by LC-ESI-MS/MS (Table 5.1). 

Four proteins were detected in the immunopurified fraction only when HEK293T cells 

had been exposed to an Nrf2-activating electrophile, and not vehicle control (Table 5.2). 

These proteins were identified as dipeptidyl-peptidase 3 (DPP3), eukaryotic peptide 

chain release factor subunit 1, heat shock protein 90p (HSP-90P), and peroxiredoxin 1 

(PRX1).

Protein Function
40S ribosomal protein S12 Structural constituents of the ribosome60S ribosomal protein L12
Actin, cytoplasmic 1 Structural constituent of the cytoskeleton
ATP-dependent RNA 
helicase A

Transcriptional activator; unwinds double-stranded 
DNA and RNA

ATP synthase subunit alpha, 
mitochondrial precursor

Produces ATP from ADP in the presence of a proton 
gradient across the mitochondrial membrane.

DNA-binding protein A Translational repressor

Elongation factor 1-alpha 1 Promotes GTP-dependent binding of aminoacyl-tRNA 
to the A-site of ribosomes during protein biosynthesis

Table 5.1 - Proteins immunopurified alongside Keapl-V5 from HEK293T cells 
exposed to vehicle or Nrf2 activators. HEK293T cells expressing Keapl-V5 were 
exposed to vehicle (0.5 % (v/v) DMSO) or Nrf2 activators (100 pM DNCB, 100 pM 
NAPQI or 10 pM 15d-PGJ2) for 1 h. Keapl-V5 was immunopurified using anti-V5 
agarose beads. Proteins eluted from the beads were analysed by LC-ESI-MS/MS. 
Proteins identified in at least two samples from cells exposed to vehicle or Nrf2 
activators are presented. Protein function descriptions are taken directly from the NCBI 
Entrez Protein database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein).
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Heat shock 70 kDa protein 1 Molecular chaperone; stabilises proteins against 
aggregation and mediates folding of newly translated 
polypeptides

Heterogeneous nuclear 
ribonucleoprotein A/B Binds single-stranded RNA

Histone HID Enable condensation of nucleosome chains into higher 
order structures.Histone H2B

Histone H4
Ig gamma-1 chain C region 
secreted form Fragments o f anti-V5 antibody, covalently attached to 

agarose beadsIg heavy chain V region H8
Interleukin enhancer-binding 
factor 3

May facilitate double-stranded RNA-regulated gene 
expression at the level of post-transcription

KH domain-containing, 
RNA-binding, signal 
transduction-associated 
protein 1

Adapter protein in signal transduction cascades; 
represses CBP-dependent transcriptional activation by 
binding to CBP; mediates mRNA nuclear export

Non-POU domain- 
containing octamer-binding 
protein

DNA- and RNA binding protein; involved in several 
nuclear processes

Nuclease sensitive element­
binding protein 1

Binds to splice sites in pre-mRNA and regulates splice 
site selection; binds and stabilizes cytoplasmic mRNA

Nucleolysin TIAR
RNA-binding protein; possesses nucleolytic activity 
against cytotoxic lymphocyte target cells; may be 
involved in apoptosis

Nucleophosmin

Associated with nucleolar ribonucleoprotein 
structures; binds single-stranded nucleic acids; may 
function in the assembly and/or transport of the 
ribosome

Phosphoglycerate mutase 
family member 5 precursor

Catalyzes the conversion of 3-phosphoglycerate to 2- 
phosphoglycerate in the glycolytic cycle

Probable ATP-dependent 
RNA helicase DDX17

Involved in ATP-dependent RNA unwinding; required 
in a variety of cellular processes including splicing, 
ribosome biogenesis and RNA degradation

Protein TFG
Putative component of the NF-kB pathway that 
interacts with NEMO and TANK, and activates NF-kB 
in cooperation with other proteins.

Putative Xaa-Pro 
aminopeptidase 3

Releases any N-terminal amino acid that is linked to 
proline

RNA-binding protein EWS Translational repressor

Table 5.1 contd. - Proteins immunopurifled alongside Keapl-V5 from HEK293T 
cells exposed to vehicle or Nrf2 activators.
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RNA-binding protein FUS Promotes ATP-independent annealing of 
complementary single-stranded DNAs and D-loop 
formation in superhelical double-stranded DNA

Serine/arginine repetitive 
matrix protein 2

Component of the active spliceosome; involved in pre- 
mRNA splicing

Sequestosome-1
Scaffold protein; may regulate the activation of NF-kB 
by TNF-a, nerve growth factor and IL-1; may regulate 
signaling cascades through ubiquitination

Splicing factor 3B subunit 1 Involved in RNA splicing

TATA-binding protein- 
associated factor 2N

RNA and DNA -binding protein; belongs to the RNA 
polymerase II (Pol II) transcriptional multiprotein 
complex

Tubulin alpha-1A chain Structural constituents of microtubulesTubulin beta-2A chain

Y-box-binding protein 2
Major constituent of messenger ribonucleoprotein 
particles (mRNPs); involved in regulating the stability 
and/or translation of germ cell mRNAs.

Zinc finger protein 503 Transcriptional repressor

Table 5.1 contd. - Proteins immunopurified alongside Keapl-V5 from HEK293T 
cells exposed to vehicle or Nrf2 activators.

Protein Function

Dipeptidyl-peptidase 3 Cleaves N-terminal Arg-Arg-p-naphthylamide from a 
peptide comprising four or more residues

Eukaryotic peptide chain 
release
factor subunit 1

Directs the termination of nascent peptide synthesis in 
response to the stop codons UAA, UAG and UGA.

Heat shock protein 90p
Molecular chaperone; stabilises proteins against 
aggregation and mediates folding of newly translated 
polypeptides

Peroxiredoxin 1 Reduces peroxides; involved in redox regulation of the 
cell

Table 5.2 - Proteins immunopurified alongside Keapl-V5 from HEK293T cells 
exposed to Nrf2 activators only. HEK293T cells expressing Keapl-V5 were exposed 
to vehicle (0.5 % (v/v) DMSO) or Nrf2 activators (100 pM DNCB, 100 pM NAPQI or 
10 pM 15d-PGJ2) for 1 h. Keapl-V5 was immunopurified using anti-V5 agarose beads. 
Proteins eluted from the beads were analysed by LC-ESI-MS/MS. Proteins identified in 
at least two samples from cells exposed to Nrf2 activators, but not vehicle, are presented. 
Protein function descriptions are taken directly from the NCBI Entrez Protein database 
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein).
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5.4 DISCUSSION

The Nrf2-ARE pathway protects mammalian cells against chemical/oxidative stress, via 

the inducible expression of cytoprotective enzymes and proteins (for a review, see 

Kensler et a l, 2007). The elucidation of the precise molecular mechanisms that underlie 

the capacity of the Nrf2-ARE pathway to ‘sense’ and respond to stress is vital to our 

understanding of the biochemical pathways that regulate Nrf2-dependent cell defence. It 

has been proposed that chemical inducers activate the Nrf2-ARE pathway through the 

direct modification of critical cysteine residues within Keapl, the cytosolic repressor of 

Nrf2 (Dinkova-Kostova et a l, 2002). Although the results presented in chapter 4 and a 

number of recent studies (Dietz et a l, 2005; Dinkova-Kostova et a l, 2002; Eggler et a l, 

2005; Hong et a l, 2005a; Hong et a l, 2005b; Liu et a l, 2005; Luo et a l,  2007) have 

provided compelling evidence for the modification of recombinant Keapl protein by 

Nrf2-activating molecules in vitro, very little is known regarding the residue-selectivity 

o f Keapl modification in a cellular context. Therefore, the aim of the work presented in 

this chapter was to develop a cell-based method to enable the characterisation, by 

MS/MS, of Keapl modification within a more biologically-relevant cellular setting, in 

order to explore the hypothesis that modification of Keapl is associated with activation 

o f Nrf2 in cells.

Initial attempts to characterise Keapl modification in cells focused on the 

immunoprécipitation of the endogenous protein from Hepa-lclc7 cells. As a general 

strategy to look at post-translational modification of proteins, immunoprécipitation 

coupled to mass spectrometry is still in its infancy (for some examples, see Abraham et 

a l,  2000; Walgren et a l, 2003; Yang et a l, 2006). Unfortunately, it was not possible to 

immunoprecipitate enough Keapl for MS/MS analysis, despite employing two different 

anti-Keapl antibodies under non-denaturing and denaturing conditions. Further 

optimisation may enhance the yield of this procedure, but it may be that the low cellular 

abundance of Keapl, as has recently been reported by McMahon et a l (2006), is below 

the present detection limits of MS/MS analysis, particularly when considering that the 

non-specific binding of other proteins may mask the Keapl signal.

205



Chapter 5

In light of the unsuccessful attempts at immunoprécipitation of endogenous Keapl, a 

cell-based model was developed, in which Keapl-V5 was ectopically expressed in 

HEK293T cells. Efforts to purify Keapl-V5 from cells using a secondary affinity tag, 

the polyhistidine epitope that has a high affinity for Ni2+, were not successful, due to the 

large number of contaminating proteins that co-precipitated with Keapl-V5. However, 

this can be rationalised in light of the observation that proteins with as little as two 

adjacent histidines show affinity for the Ni2+ nitrilotriacetic acid adsorbent that is 

typically used for purification of polyhistidine-tagged proteins (Hochuli et a l, 1988). A 

BLAST protein database search reveals at least 91 human proteins that contain four or 

five adjacent histidines. A much higher number of matches would be anticipated for 

proteins with two or three adjacent histidines. Conversely, no human proteins contain 

the complete 14 amino acid V5 epitope (GKPIPNPLLGLDST), which probably 

accounts for the relatively low complexity of the anti-V5 agarose bead eluate in section 

5.3.4. Therefore, use of the polyhistidine tag alone is not sufficient for the highly 

stringent purification of Keapl-V5 from cells.

The functional validity of Keapl-V5 -expressing HEK293T cells as a model for 

studying the biochemical regulation of the Nrf2-ARE pathway was confirmed by the 

following observations; a) Nrf2 nuclear accumulation was detected following exposure 

of mock-transfected and Keapl-V5 -expressing cells to DNCB, b) Keapl-V5 interacted 

with endogenous Nrf2, and this interaction was enhanced following exposure of cells to 

DNCB, and c) Keapl-V5 was modified by DNCB in cells, as shown by its 

immunoreactivity towards an anti-DNP antibody. It is plausible that the over-expression 

of Keapl-V5 may alter the dose-response relationship for Nrf2 activation by chemical 

inducers, through the increased repression of the transcription factor under basal 

conditions. However, at least at the single concentration of DNCB used to validate this 

model system in section 5.3.5, this did not appear to be the case, a finding that is 

consistent with previous studies whereby epitope-tagged Keapl has been over-expressed 

in cells (Dhakshinamoorthy et a l, 2001; Hong et al., 2005a; Hong et a l, 2005b; Zhang 

et a l, 2004). It could be suggested that ectopically-expressed Keapl-V5 may simply be 

compartmentalised within the cell at some distance from the native site(s) of interaction

206



Chapter 5

with Nrf2. However, this cannot be the case entirely, as endogenous Nrf2 has clearly 

been shown to associate with Keapl-V5 in section 5.3.5. Thus, although it would appear 

that over-expression of Keapl-V5 does not compromise the functionality of the Nrf2- 

ARE pathway, in terms of its ability to respond to chemical inducers, further work is 

required to fully characterise the nature of the interaction between Keapl-V5 and 

endogenous Nrf2 under basal conditions and in the presence of chemical/oxidative 

stress. For example, it would be of interest to examine the effect of Keapl-V5 

expression, perhaps with or without co-expression of Nr£2, on the activity of an ARE- 

driven luciferase reporter transgene, such as that described in section 2.2.8.

Using the functional HEK293T cell model in which modification of Keapl could be 

detected concomitantly with activation of Nrf2, residue-selective adduction of Keap 1 by 

NAPQI, DNCB and 15d-PGJ2 was observed. NAPQI modified Cys-226, -288 and -434, 

DNCB modified Cys-257, and 15d-PGJ2 modified Cys-257 and -273 of Keapl-V5. Of 

these residues, Cys-257, -273 and -288 of mouse Keapl have previously been shown to 

be highly reactive towards dex-mes in vitro (Dinkova-Kostova et al., 2002). In addition, 

it has been demonstrated that site-directed mutagenesis of Cys-273 and/or -288 of 

human and mouse Keap 1 causes an increase in the basal activity of Nrf2 (Kobayashi et 

al., 2006; Levonen et al., 2004; Wakabayashi et al., 2004; Zhang et al., 2003). On the 

other hand, the single mutation of Cys-257 of human and mouse Keapl (Levonen et al., 

2004; Zhang et al., 2003) or the compound mutation of Cys-226 along with Cys-241 and 

-249 of mouse Keapl (Wakabayashi et al., 2004) have no apparent effect on the basal 

and/or inducible activity of Nr£2.

There are no reports on the functional effect of mutating Cys-434, the one residue 

outside of the IVR domain that was found to be adducted (by NAPQI) in this study. 

However, it is notable that this residue lies at the end of strand p2 blade III of the 0- 

propeller structure that is formed by the DGR domain of Keapl (Padmanabhan et al., 

2006). A hydrogen bond between the neighbouring Ser-431 and Asn-414 of Keapl 

stabilises the position of Arg-415, which allows it to interact with residues located 

within the ETGE and DLG motifs of the Neh2 domain of Nrf2 (Padmanabhan et al.,
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2006). It is possible, therefore, that the modification of Cys-434 may provoke a local 

conformational change that may disrupt the molecular contacts between Keapl and 

Nrf2, leading to a loss of repression of the transcription factor. Hence, further 

investigations are required to define the biological significance o f the direct modification 

of Cys-434, and the other Keapl target residues identified here. For instance, there may 

be value in examining the effect of mutating Cys-434 to a bulky amino acid such as 

tryptophan or tyrosine, as a means of assessing the likely effect on Nrf2 activity of a 

substantial chemical modification at Cys-434 of Keapl.

Although no single residue in Keapl-V5 was targeted by all three molecules in cells, the 

common theme established in chapter 4, i.e. the modification of one or more cysteines 

within the IVR domain of Keapl, was again apparent. Indeed, the only previous report 

of residue-selective Keapl adduction in cells also identified IVR residues (Cys-241, - 

257 and -273) as targets of BIA (Hong et a l, 2005b). Recent work has also shown that 

binding of biotinylated 15d-PGJ2 (Hosoya et a l, 2005) to Keapl is attenuated by 

compound mutation of cysteine residues within this IVR domain, including Cys-257 and 

-273, which have been shown to be modified by 15d-PGJ2 in cells in this study. In this 

regard, it would be interesting to investigate whether the mutation of single or multiple 

residues that are targets of the panel of electrophiles used here completely abolishes the 

modification of Keapl and prevents the activation ofNrf2.

It was notable that, although all three Nrf2-activating molecules did modify cysteine 

residues within the IVR domain of Keapl-V5 in cells and Keapl-His in vitro (chapter 

4), the overall pattern of adducts associated with each molecule was more random in the 

in vitro experiments. There are several plausible explanations for this discrepancy. 

Firstly, the redox states of the numerous cysteines in Keapl have yet to be determined, 

with the exception of the eight residues located within the DGR domain of the human 

protein; these cysteines do not appear to participate in disulphide bonds, at least in the 

absence of chemical/oxidative stress (Li et a l, 2004). Therefore, a recombinant Keapl - 

His protein in which all cysteines are free for adduction, as used in chapter 4, may not be 

representative of the physiological state of the protein in cells. It is therefore imperative
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that the redox states of the cysteine residues outside of the DGR domain of Keapl are 

determined. Secondly, the relative reactivities of Keapl cysteines in the recombinant 

protein may differ significantly from the situation in cells, due to protein folding, post- 

translational modification(s), and/or the interaction with protein partners. These factors 

may cause some potential binding sites that are free for adduction in vitro to be obscured 

on the protein in cells. Thirdly, in order to modify Keapl within a cell, an electrophile 

must bypass various intracellular antioxidants and reductants, such as GSH, as well as 

other cellular proteins. These obstacles may hinder the modification of some cysteines in 

Keapl that may not be as reactive as those which were found to be adducted in cells 

here. For these reasons, one should be cautious when attempting to extrapolate data 

obtained from in vitro analyses to a cellular or in vivo context.

Despite the discrepancies between the two methods, a degree of overlap was observed 

between some of the target residues identified in cells and those that were found to be 

the most reactive in recombinant Keapl-His in vitro. This suggests that, whilst in vitro 

systems are not fully representative of the physiological conditions within cells, 

determining the reactivity of cysteines in recombinant Keapl in vitro towards inducers 

of the Nrf2-ARE pathway is useful. The different reactivities of Keapl residues in the 

two model systems used in this thesis may be informative of various cellular factors, 

such as protein folding, that may influence the nature of the trigger for Nrf2 activation. 

Future work should focus on utilising the model cell system described here to examine 

the site-selectivity of Keapl modification by other electrophiles, in order to further 

characterise the critical target residues o f Nrf2-activating molecules within cells. 

Furthermore, this system may prove useful in defining the role of Keapl modifications 

other than alkylation in triggering Nrf2-dependent cell defence.

HEK293T cells (DuBridge et al., 1987) have been used as a model in many studies 

whereby the ectopic expression of a protein has been exploited to gain an insight into its 

biological role. A particularly noteworthy example is the recent work by Macpherson et 

al. (2007), who used mass spectrometry to demonstrate that thiol-reactive, noxious 

electrophiles activate the transient receptor potential ankyrin 1 ion channel, which is
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present in nociceptive neurons, via the covalent modification of reactive cysteine 

residues. Indeed, HEK293T were used as the cellular expression vehicle in the only 

previous examination of Keapl modification by an Nrf2-activating molecule in cells 

(Hong et al., 2005b). Although HEK293T cells are a suitable model, it would be 

desirable to examine Keapl modification in Hepa-lclc7 cells, to enable a better 

correlation with the biochemical analyses performed in chapter 2. To this end, transient 

expression of Keapl-V5 was attempted in Hepa-lclc7 cells, but, as demonstrated in 

section 5.3.4, the level of expression was considerably lower than that in HEK293T 

cells. Indeed, this is not unexpected, given that HEK293T cells, but not Hepa-lclc7 

cells, are transformed with the large T antigen of SV40 (DuBridge et al., 1987), enabling 

episomal replication of pcDNA3.1/Keapl and thus effectively increasing the expression 

of Keapl-V5. In addition, attempts were made to generate Hepa-lclc7 clones stably- 

transfected with pcDNA3.1/Keapl, but these attempts were unsuccessful. This may be 

rationalised in terms of continual over-expression of Keapl causing a relentless over­

repression of Nrf2, lowering cytoprotective barriers, and thus resulting in transfected 

cells being highly susceptible to background levels of oxidative stress. Therefore, the 

constant over-expression of Keapl may be toxic to cells. In keeping with this, there are 

no reports in the literature in which stably-transfected Keapl-expressing cell lines have 

been developed. Hence, there may be value in pursuing the generation of stably- 

transfected Hepa-lclc7 cells using an inducible expression system, such as the 

doxycycline-responsive Tet-On system (Gossen et al., 1995). The expression of 

transgenes through the Tet-On system can be tightly regulated in response to varying 

concentrations of doxycycline (Gossen et al., 1995), such that it may be possible to 

express Keapl-V5 at levels equivalent to endogenous Keapl, reducing the confounding 

effects of protein over-expression, whilst still enabling immunopurification and mass 

spectrometric analysis.

Whilst a comprehensive analysis was not possible within the timeframe of this thesis, it 

was noted that some proteins were consistently immunopurified along with Keapl-V5 

from HEK293T cells. Interestingly, both cytosolic and nuclear proteins were identified, 

despite the recent confirmation that endogenous Keapl is predominantly a cytosolic
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protein (Watai et al., 2007). O f course, the disruption of subcellular compartments 

following cell lysis may expose some proteins that would not normally be accessible to 

Keapl under physiological conditions. Therefore, future work should examine the 

cellular localisation of Keapl-V5 and ensure that appropriate subcellular fractions are 

isolated prior to its immunopurification. Noteworthy proteins that were identified as 

putative Keapl-interacting partners include the cytoskeletal protein actin, which is 

known to associate with Keapl in the cytosol (Kang et al., 2004), KH domain- 

containing, RNA-binding, signal transduction-associated protein 1, which is known to 

repress transcriptional activation through binding to the Nrf2-interacting protein CBP 

(Babic et al., 2004; Hong et al., 2002; Katoh et al., 2001; Zhu et al., 2001), and 

phosphoglycerate mutase family member 5, which has recently been shown to be a 

substrate for Keapl-mediated ubiquitination and proteasomal degradation (Lo et al., 

2006). Although the physiological significance of these and other putative interactions 

with Keapl warrant further exploration, these particular observations may be important 

in terms of validating this method for identifying Keapl-interacting proteins. However, 

perhaps surprisingly, Nrf2 was not identified alongside Keapl-V5 in any of the 

immunopurified fractions. This conflict may represent the relative low cellular 

abundance of Nrf2, which may be below the limit of detection of current MS/MS 

analysis.

Four proteins were consistently identified in the immunopurified fraction only following 

exposure of HEK293T cells to an Nrf2-activating molecule. One of these proteins, DPP3 

is a cytosolic enzyme that cleaves N-terminal Arg-Arg-P-naphthylamide and, to a lesser 

extent, other dipeptide motifs (Ellis et al., 1967). Such peptidase activity is important in 

regulating the disposition of enkephalins and angiotensins (Ellis et al., 1967; Lee et al., 

1982). Although DPP3 has not previously been shown to associate with Nrf2 or Keapl 

directly, the ectopic expression of DPP3 has recently been shown to promote Nrf2 

nuclear accumulation and induce Nrf2-dependent cell defence in IMR-32 human 

neuroblastoma cells (Liu et al., 2007), via a mechanism that is sensitive to inhibition of 

the PI3K and PKC phosphorylation pathways (Liu et al., 2007). It is notable that, similar 

to Keapl (Dinkova-Kostova et al., 2005), DPP3 is a zinc-binding protein, and its activity
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is inhibited by thiol-reactive molecules (Fukasawa et al., 1998; Lee et al., 1982). 

However, it appears unlikely that Nrf2 or Keapl are substrates of DPP3, as neither 

protein contains the N-terminal Arg-Arg-P-naphthylamide motif that is favoured by the 

enzyme. Alternatively, DPP3 may directly associate with Keapl by some other means 

under conditions of chemical/oxidative stress and disrupt the interaction with Nrf2, 

triggering an adaptive defence response. A second protein that was identified as a novel 

activator of Nrf2 in the study by Liu et al. (2007) was the scaffold protein sequestosome 

1. This ubiquitin-binding protein, which may have a regulatory role in the NF-kB 

pathway (Moscat et al., 2007) was shown here, by mass spectrometry, to immunopurify 

along with Keapl-V5 in cells exposed to either vehicle or Nrf2 inducers. Therefore, the 

biochemical mechanisms by which DPP3 and sequestosome 1 activate the Nrf2-ARE 

pathway require further examination.

Of the other proteins that were shown to immunopurify alongside Keapl-V5 from 

HEK293T cells only following exposure to Nrf2-activating molecules, eukaryotic 

peptide chain release factor subunit 1 directs the termination of protein translation via 

recognition of a stop codon and the hydrolysis of the ester bond linking the polypeptide 

chain with the peptidyl site tRNA (for a review, see Nakamura et al., 1998). Another 

identified protein, HSP-90P is a molecular chaperone that acts to maintain correct 

protein folding and regulate the activity of several signaling proteins, including steroid 

hormone receptors and protein kinases (Pearl et al., 2006; Zhao et al., 2005). PRX1, 

which catalyses the reduction of peroxides (Ishii et al., 2007; Wood et al., 2003), was 

also immunopurified alongside Keapl-V5 only from HEK293T cells exposed to Nrf2- 

activating molecules. In light of the important antioxidant role of the PRX family (Ishii 

et al., 2007; Wood et al., 2003), it is possible that the putative interaction of PRX1 with 

Keapl signifies the involvement of oxidative stress, and more specifically a change in 

the redox state of Keapl cysteines, following exposure of cells to Nrf2-activating 

molecules. Although the 1-Cys PRX6 is known to interact with GSTP1-1, a process that 

reestablishes the catalytic activity of PRX6 (Manevich et al., 2004; Noguera-Mazon et 

al., 2006; Ralat et al., 2006), there are no reports documenting an interaction between 

the 2-Cys PRX1 and another protein. Hence, the identification of PRX1 as a possible
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interaction partner of Keapl is intriguing and, along with the other proteins discussed 

here, warrants further examination. O f course, in light of the absence of suitable 

controls, particularly anti-V5 immunopurifications from HEK293T cells that do not 

express Keapl-V5, it is not possible to differentiate between those proteins which 

genuinely interact with Keapl-V5 and those which simply have an affinity for the anti- 

V5 agarose beads. Once these controls are properly established, this model system may 

prove a valuable tool in identifying novel interaction partners of Keap 1 under different 

cellular conditions.

Although the work presented in this chapter represents the most comprehensive cellular 

analysis of Keapl modification by Nrf2-activating molecules to date, there remains a 

need to further characterise the residue-selectivities of different inducers, particularly 

those with distinct electrophilic chemistries, in order to gain further insight into the 

precise chemical nature of the redox switch that controls the activation of Nrf2- 

dependent cell defence. Mass spectrometry is increasingly being used to characterise the 

modification of endogenous protein(s) in cells and tissues (Ji et al., 2007; Koen et al., 

2006; Lemercier et al., 2004; Meier et al., 2007; Meier et al., 2005; Shin et al., 2007). 

Ultimately, experimental methods and bioanalytical techniques must evolve to enable 

the sensitive analysis of endogenous Keapl modification in vivo, in order to step closer 

to fully understanding the biochemical regulation of the Nrf2-ARE pathway under 

physiological conditions.
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Chapter 6

6.1 Introduction

Adverse drug reactions, such as DILI, constitute a major public heath concern. In order 

to improve patient wellbeing, and to address the issue of drug attrition within the 

pharmaceutical industry, it is important that the design and development of safer, more 

efficacious medicines is informed by continued advances in our understanding of the 

chemical, biochemical and molecular mechanisms that underlie specific adverse drug 

reactions. The process of drug metabolism can, in some cases, contribute to the onset of 

toxicity, through the generation of chemically reactive intermediates that can promote 

oxidative stress and/or inhibit the function of critical cellular macromolecules (for a 

review, see Park, 1986). Hence, the ability of an organism to withstand the potential 

toxic effect(s) of a given molecule is often determined by the balance between 

bioactivation and detoxification. In order to maintain a favourable balance between 

bioactivation and detoxification, mammalian cells have evolved a multi-faceted, highly 

regulated cell defence system that affords protection against the deleterious effects of 

endogenous and exogenous chemical species. The functionality of this defence system is 

regulated, in part, by the activity of certain transcription factors, particularly Nrf2 (for a 

review, see Jaiswal, 2004). An appreciation of the molecular mechanisms that underlie 

the adaptive response to cellular stress is vital to gain insights into the signalling events 

that determine the progression and outcome of adverse drug reactions, such as DILI. 

Therefore, the main aims of the studies presented in this thesis were to further our 

understanding of the means by which the Nrf2-ARE cell defence pathway is regulated, 

and to elucidate its role in the protection against DILL

6.2 Activation of Nrf2 by paracetamol -  Role of Keapl modification by NAPQI

The commonly-used analgesic and antipyretic paracetamol is often associated with 

DILI. Indeed, the hepatotoxicity associated with overdose of paracetamol is the single 

biggest cause of acute liver failure in both the UK (Davem et a l, 2006) and USA 

(Larson et a l, 2005). Research within this laboratory has provided evidence to suggest
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that the liver launches an adaptive defence response to paracetamol that is mediated by 

Nrf2 (Goldring et al., 2004), findings that have recently been confirmed by a separate 

research group (Aleksunes et al., 2008). Primed with the knowledge that Nrf2-activating 

molecules are chemically reactive and capable of modifying sulphydryl groups 

(Dinkova-Kostova et al., 2001), it was hypothesised that the underyling molecular 

mechanism by which paracetamol activates the Nrf2-ARE pathway was through the 

modification of Keapl by the metabolic intermediate NAPQI. Consistent with this 

hypothesis, the results presented in chapter 2 demonstrate that NAPQI can directly 

activate the Nrf2-ARE pathway and induce an adaptive defence response in a mouse 

liver cell line. Furthermore, the results presented in chapters 4 and 5 show that NAPQI 

can directly modify cysteine residues within Keapl, in a residue-selective manner, both 

in recombinant Keapl protein in vitro and in cells. Although further work is required, 

particularly using cells that possess the metabolic competence required to bioactivate 

paracetamol to NAPQI in situ, these findings support the notion that modification of 

Keapl by NAPQI underlies the ability of paracetamol to activate the Nrf2-ARE 

pathway. Through the analysis of Keapl modifications by the Nrf2-activating molecules 

DNCB and 15d-PGJ2, and by reference to several recent in vitro investigations of Keapl 

modification by structurally-distinct electrophiles (Dinkova-Kostova et al., 2002; Eggler 

et al., 2005; Hong et al., 2005a; Hong et al., 2005b; Luo et al., 2007), it has become 

clear that, although no single cysteine residue in Keapl is preferentially modified by all 

o f the molecules tested, the adduction of residues within the IVR domain represents a 

possible unifying theme. Indeed, cell-based models have been used to confirm that 

activation of Nrf2 by NAPQI, DNCB, 15d-PGJ2 (chapter 5 of this thesis) and BIA 

(Hong et al., 2005b) is associated with the selective modification of cysteines within the 

IVR domain of Keapl. Therefore, although further work is required to characterise the 

residue-selectivity of Keapl modification by other Nrf2-activating molecules in cells, 

and ultimately in vivo, it would appear that the modification of cysteine residues within 

the IVR domain is associated with the activation of Nrf2, and is therefore a possible 

triggering mechanism for the induction of Nrf2-dependent cell defence.
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6.3 The importance of Keapl modification in the activation of Nrf2

Although it is well-established that Nrf2-activating molecules can modify Keapl, it is 

important to consider the fate of Keapl following modification, and the means by which 

modification may contribute to the activation of Nrf2-dependent cell defence. The 

formation of high molecular weight forms of Keapl has been observed following 

exposure of cells to tBHQ (Zhang et a l, 2003) and ebselen (Sakurai et al., 2006), and 

this phenomenon is prevented through mutation of Cys-151 (Sakurai et al., 2006; Zhang 

et al., 2003), implying that Cys-151 plays an important role in ‘sensing’ molecules that 

promote the formation of high molecular weight Keapl complexes. It has been 

postulated that the incorporation of multiple ubiquitin molecules accounts for the 

increase in molecular weight of Keapl in response to tBHQ and ebselen. The 

ubiquitination and degradation of Keapl, via a proteasome-independent pathway, may 

contribute to the diminished repression of Nrf2 under certain conditions of 

chemical/oxidative stress (Hong et al., 2005b; Zhang et al., 2005). Molecular deletion of 

the IVR domain attenuates the ubiquitination of Keapl following exposure to tBHQ 

(Zhang et al., 2005), and MS/MS analysis has provided evidence for the ubiquitination 

of IVR residue Lys-298 (Hong et al., 2005b), further implicating the IVR domain as an 

important regulatory region of the Keapl protein. However, it appears that not all Nrf2- 

activating molecules induce the formation of high molecular weight forms of Keapl 

(Hong et al., 2005b; Sakurai et al., 2006; Zhang et al., 2005). Indeed, from the results 

presented in chapter 5, there was no evidence for the ubiquitination of Keapl-V5 in 

HEK293T cells following exposure to NAPQI, DNCB or 15d-PGJ2. Hence, the general 

importance of Keapl ubiquitination in the response to chemical/oxidative stress is yet to 

be fully determined.

When considering the biological consequence(s) of Keapl modification, it has yet to be 

demonstrated conclusively that direct modification of Keap 1 antagonises its interaction 

with the ETGE and/or DLG motifs of Nrf2. However, support for this concept has come 

from recent observations that the reaction of Nrf2-activating molecules with 

recombinant Keapl results in a conformational change in the protein, as demonstrated
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by alterations in its circular dichroism spectrum (Gao et al., 2007) and tryptophan 

fluorescence (Dinkova-Kostova et al., 2005b). Recently, Keapl has been shown to 

contain thiol-bound zinc, which is displaced following exposure of the protein to Nrf2- 

activating molecules, and Cys-273 and -288 of Keapl are important for zinc 

coordination (Dinkova-Kostova et al., 2005a). Amongst other E3 ubiquitin ligase 

complexes, MDM2, for example, requires integrity of its protein structure for its ligase 

activity towards the cell cycle regulator p53, via the coordination of zinc with cysteine 

residues (Fang et al., 2000). Hence, it is possible that chemical/oxidative stress may 

promote modification of critical cysteine residues within Keapl, resulting in the 

displacement of zinc and rendering Keapl unable to serve as an efficient substrate 

adaptor for Nrf2 ubiquitination. It has also been suggested that Nrf2-activating 

molecules can disrupt the ubiquitination of Nrf2 by attenuating the association between 

Keapl and CUL3, possibly through induction of conformational changes in the structure 

of Keapl (Gao et al., 2007). However, single/multiple mutations of cysteine residues 

within the IVR domain of Keapl do not affect its association with CUL3 (Kobayashi et 

al., 2004), and thus further evidence is required to support this notion.

The S-guanylation of Keapl by 8 -nitroguanosine 3',5'-cyclic monophosphate, a nitrated 

derivative of cyclic GMP, has recently been demonstrated in cultured cells (Sawa et al., 

2007), implying that putative endogenous ligands may interact with Keapl to activate 

Nrf2-dependent cell defence in response to oxidative/nitrosative stress. In addition to the 

concept of direct modification of Keapl by Nrf2-activating molecules, it has also been 

suggested that the oxidation of one or more cysteines may lead to the formation of a 

disulfide-linked Keapl homodimer, via the intermediate formation of a sulphenic acid 

(Wakabayashi et al., 2004). Should the oxidation of Keapl cysteines be confirmed as a 

mechanism of Nrf2 activation, it is possible that the induction of antioxidant defences 

(TRX, TRX-R, GR, GSH etc.) by Nrf2 may provide a means of regenerating functional 

Keapl, through the reduction of oxidised residues, and may therefore represent a 

feedback loop that limits the extent of Nrf2-ARE pathway activation over time.
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6.4 Activation of Nrf2 via mechanisms other than the modification of Keapl

It is important to consider that signaling events other than the modification of Keapl 

may contribute to the activation of the Nrf2-ARE pathway. Indeed, it is possible that 

multiple activation mechanisms have evolved to enable this cytoprotective pathway to 

respond to a variety of stimuli under diverse cellular conditions. The activation of Nrf2 

has been associated with the direct phosphorylation of the transcription factor by PKC 

(Bloom et al., 2003; Huang et al., 2002; Nguyen et al., 2000), ERK-1 (Papaiahgari et 

al., 2006) and PERK (Cullinan et al., 2003). Furthermore, the chemical inhibition of 

phosphatases, which serve to remove phosphate groups from the substrates of protein 

kinases (for a review, see Hunter, 1995), stimulates activation of the Nrf2-ARE pathway 

(Nguyen et al., 2003). Therefore, it is possible that the phosphorylation of Nrf2 enables 

it to evade Keapl-mediated repression. In this regard, Nrf2 may be regulated by a 

mechanism similar to that of the transcription factor p53 (Nguyen et al., 2004). Under 

physiological conditions, p53 is directed for ubiquitin-dependent proteasomal 

degradation via its association with the E3 ligase MDM2, but is phosphorylated in 

response to DNA damage, weakening its interaction with MDM2 and enabling its 

stabilisation (Chehab et al., 1999; Unger et al., 1999). Therefore, as with many other 

cellular processes, the activity of Nrf2 may be regulated by phosphorylation.

The pharmacological inhibition of protein kinase pathways has been used extensively to 

demonstrate a role for the PKC (Liby et al., 2005; Numazawa et al., 2003), MAPK 

(Papaiahgari et al., 2004; Yeh et al., 2006; Yuan et al., 2006; Zipper et al., 2003) and 

PI3K (Kang et al., 2007; Martin et al., 2004; Nakaso et al., 2003; Reichard et al., 2006; 

Wielandt et al., 2006) pathways in the activation of Nrf2 by specific inducers. It is 

important to consider that inhibition of a protein kinase pathway will undoubtedly have 

significant effects on multiple cell signaling processes, which themselves may have an 

impact upon the integrity of the Nrf2 system. Furthermore, the specificity of some o f the 

small-molecule inhibitors that are commonly used to dissect the involvement of certain 

protein kinases in a biological process has been questioned (Bain et al., 2003; Bain et 

al., 2007; Davies et al., 2000). The p38 MAPK inhibitor SB203580 (Alam et al., 2000;
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Balogun et al., 2003; Yeh et al., 2006), the ERK MAPK inhibitor PD98059 (Yao et a l, 

2007; Zipper et al., 2003; Zipper et a l, 2000), and the PI3K inhibitor LY294002 (Kang 

et a l,  2002; Lee et a l, 2001; Li et a l, 2006) have all been used to demonstrate the role 

of protein kinase cascades in the activation of Nrf2 by certain inducers, despite recent 

concerns regarding their specificity. Therefore, there are still some questions 

surrounding the importance of phosphorylation in the activation of Nrf2. What is clear is 

that no single protein kinase cascade is involved in the activation of Nrf2 by all inducers. 

Hence, in light of the conflicting evidence regarding the relative contributions of distinct 

protein kinases to the activation of Nrf2, the importance of phosphorylation in the 

stimulation of Nrf2 may be chemical, cell or species -dependent in nature. In any case, 

further work is required to fully define the role of phosphorylation in regulating the 

activation state of Nrf2. It is possible that the modification of cysteines within Keapl 

and the phosphorylation of Nrf2 represent cooperative mechanisms of triggering Nrf2- 

dependent cell defence. Certain protein kinases are known to be activated in response to 

oxidative stress, whereas cysteine-based phosphatases are inactivated under such 

conditions (for reviews, see Nakashima et a l,  2002; Salmeen et a l, 2005). Therefore, it 

is plausible that the onset of chemical/oxidative stress may trigger the activation of the 

Nrf2-ARE pathway via the modification of Keapl, the activation of Nrf2-targeting 

protein kinases, the inhibition of phosphatases, or indeed a combination of these 

mechanisms. It will be important to determine the relative contributions of these and 

other signals in driving the Nrf2 response.

Aside from the concept of post-translational modification, a novel mechanism of Nrf2 

activation has been proposed by Karapetian and colleagues (2005), who identified the 

nuclear protein prothymosin a  as a partner for Keapl, an interaction that may displace 

Nrf2 via competition for Keapl binding. Although predominantly documented as a 

cytoplasmic protein (Watai et a l, 2007), individual studies have described the nuclear 

translocation of Keapl in response to the nuclear export inhibitor leptomycin B and 

following the molecular mutation of a nuclear export signal (NES) found within the IVR 

domain of Keapl (Karapetian et a l, 2005; Nguyen et a l, 2005; Velichkova et a l, 2005). 

However, conflicting evidence exists regarding the nuclear accumulation of Keapl
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following exposure to chemical/oxidative stress (He et al., 2007; Nguyen et al., 2005; 

Velichkova et al., 2005). Notably, no nuclear localisation signal (NLS) has been 

identified in Keapl. Therefore, with the exception of experimental conditions under 

which the NES of Keapl is repressed, it is not clear under what physiological 

circumstances Keapl may localise to the nucleus, although it has been suggested that 

sub-cellular redistribution may be possible via association with Nrf2, which does 

possess at least two NLS (Velichkova et al., 2005). Hence, the likelihood of an 

interaction between Keapl and prothymosin a  requires clarification.

It is notable that investigations into the modification of the components of the Nrf2-ARE 

pathway by inducers have focused almost exclusively on Keapl, with apparently very 

little interest in the possibility that Nrf2 itself is directly modified by inducers. It is 

known that Nrf2 contains a redox-sensitive cysteine (Cys-506) in the Nehl DNA- 

binding domain (Bloom et al., 2002). Mutation or oxidation of this residue inhibits the 

ability of Nrf2 to drive ARE-regulated gene expression (Bloom et al., 2002). Hence, 

given that Nrf2-activating molecules clearly augment the transactivation of ARE-driven 

genes, it should be assumed that these molecules do not directly modify Cys-506 of 

Nrf2, at least under more physiological conditions. Further work is required to determine 

whether the modification of Cys-506 represents a toxic effect that perturbs the 

cytoprotective activity of Nrf2 following exposure of cells to very high levels of a 

xenobiotic. The human and mouse Keapl proteins contain 27 and 25 cysteines 

respectively, representing 4.3 and 4.0 % of the 624 total amino acids. In contrast, the 

human and mouse Nrf2 proteins contain six and seven cysteine residues, respectively, 

representing 1.0 % and 1.2 % of the 605 and 597 total amino acids. Given that the 

average cysteine content across all human and mouse proteins is 2.3 % (Miseta et al., 

2000), it is apparent that the cysteine content of Keapl is almost double, whereas that of 

Nrf2 is almost half, that of most proteins. Notwithstanding the many other cellular 

proteins that are cysteine-rich, it is possible that, within the confines of the Nrf2-ARE 

pathway, Keapl and Nrf2 have evolved with marked differences in cysteine content in 

order to provide a degree of selectivity for the modification of Keapl over that of Nrf2,
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such that cells can ‘sense’ and respond to chemical/oxidative stress without the 

disruption of Nrf2-DNA binding.

6.5 Contribution of the Nrf2-ARE pathway to the physiology of the liver

The Nrf2-ARE cell defence pathway appears to have an important role in the physiology 

and pathophysiology of the liver (for a review, see Aleksunes et al., 2007). For instance, 

studies on the effects of model hepatotoxins and hepatocarcinogens in Nrf2'A animals 

have shown that the integrity of the Nrf2-ARE pathway is vital to enable organisms to 

withstand exposure to paracetamol (Chan et al., 2001; Enomoto et a l, 2001; Okawa et 

al., 2006), 2-amino-3-methylimidazo[4,5-f]quinoline (Kitamura et al., 2007) and 

pentachlorophenol (Umemura et al., 2006). Furthermore, the liver appears to launch an 

adaptive, Nrf2-driven defence response following exposure to model hepatotoxins such 

as paracetamol and carbon tetrachloride (Fukushima et al., 2006; Goldring et al., 2004; 

Randle et al., 2008). Evidence has recently emerged to suggest that activation of the 

Nrf2-ARE pathway represents an early adaptive response to combat alcohol-induced 

liver injury, following the increase in oxidative stress that is associated with the 

induction of CYP2E1 by ethanol (Gong et al., 2006). Loss of Nrf2 is also associated 

with an increase in levels of lipid peroxidation and DNA damage in the liver, probably 

due to a compromised ability to nullify oxidative stress (Li et al., 2004). Therefore, the 

Nrf2-ARE pathway appears to serve a vital protective role against toxic insult in the 

liver, as indeed it does in many other tissues within the body.

For some drugs, including isoniazid, halothane and allyl alcohol, there is a well- 

established increase in the risk of DILI with age (Banks et al., 1995; Dalu et al., 1995; 

Maddrey, 2005; Mitchell et al., 1976; Mooney et al., 1985; Rikans, 1984; Schenker et 

al., 1994; Tarazi et al., 1993). The process of aging is also associated with a decline in 

the cytoprotective activity of Nrf2 (Shih et al., 2007; Suh et al., 2004; Zaman et al., 

2007). It is possible, therefore, that a gradual reduction in the protective capacity of the 

Nrf2-ARE pathway may contribute to the link between age and susceptibility to the
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DILI caused by some drugs. The age-related decline in Nrf2 activity may also be an 

important consideration in the transplantation of organs, as low levels of Nrf2 mRNA in 

the livers of older donors have been linked to reduced organ function following 

transplantation (Zaman et al., 2007). Nrf2 may serve an important role in the process of 

tissue repair, as liver regeneration is impaired, following partial hepatectomy, in mice 

lacking Nrf2 (Beyer et al., 2008). It appears that accumulation of ROS in the injured 

Nrf2-deficient liver reduces tyrosine phosphorylation of insulin receptor substrates 1 and 

2, preventing stimulation of insulin-like growth factor 1 receptor (Beyer et al., 2008). As 

a result, PI3K-mediated phosphorylation, and thus activation, of the protein kinase AKT 

and its downstream targets is reduced (Beyer et al., 2008), therefore inhibiting cell 

proliferation and survival (Lawlor et al., 2001). Hence, it would appear that the Nrf2- 

ARE pathway has several important roles in maintaining the physiological integrity of 

the liver, and in protecting it against deleterious toxic insults, such as those which may 

cause DILI. As such, the therapeutic targeting of the Nrf2-ARE pathway, either 

prophylactically or immediately following exposure to a hepatotoxin/carcinogen, may 

prove to be a worthwhile strategy for the prevention and/or treatment of DILI. 

Consistent with this notion, the synthetic triterpenoid CDDO-imidazolide, which is a 

potent inducer of the Nrf2-ARE pathway, has recently been shown to protect against 

aflatoxin-induced hepatocarcinogenesis in rats (Yates et al., 2006). Furthermore, 

pharmacological manipulation of Nrf2 by the isothiocyanate sulforaphane, a derivative 

of glucoraphanin, which is present at high concentrations in broccoli, Brussels sprouts 

and cabbage (Zhang et al., 1992), is currently being trialed as a means of preventing 

breast cancer (Comblatt et al., 2007; Dinkova-Kostova et al., 2007; Dinkova-Kostova et 

al., 2006; Shapiro et al., 2006).

6.6 Future directions

Since Nrf2 was first characterised by Moi et al. (1994), there have been huge advances 

in our understanding of the chemical, biochemical and molecular means by which the 

Nrf2-ARE pathway is regulated. This thesis has sought to further define the importance
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of direct modification of Keapl in the activation of Nr£2. Future research should 

consider the relative importance of different post-translational modifications (direct 

adduction, oxidation, phosphorylation) in triggering Nrf2 activation, and the precise 

means by which these modifications are translated into biological effect. However, 

before further studies are undertaken in this area, it is vital that the native redox states of 

the cysteine residues in Keapl are fully defined. In this regard, there may be value in 

developing a differential chemical capping approach, similar to that used in section 3.3.4 

o f this thesis, to define those cysteines that are free for modification and those that 

participate in disulphide bonds in the correctly-folded protein. The recombinant Keapl 

protein expressed and purified under non-denaturing conditions, described in section 

3.3.5, may be suitable for such an application. It will also be important to determine 

which cysteine residues are located on the solvent-accessible surfaces of Keapl, as it is 

these residues which are likely to be the most susceptible to modification. Of course, it 

should be considered that interactions with protein partners, including Nrf2, CUL3 and 

actin, may conceal otherwise accessible cysteines in Keapl. Therefore, it may be useful 

to create an in vitro reconstruction of the Nrf2-CUL3-Keapl-actin complex, and to 

identify the cysteine residues that are labelled. It is important that these experiments are 

performed promptly, so that a more representative in vitro test system can be designed, 

and so as to gain a better understanding of the value of extrapolating recent in vitro 

findings (Dinkova-Kostova et a l, 2002; Eggler et a l, 2005; Hong et a l, 2005a; Luo et 

a l,  2007) to a cellular and in vivo context.

Although there is strong evidence to suggest that Nrf2-activating molecules selectively 

modify cysteine residues in Keapl (Dinkova-Kostova et a l, 2002; Eggler et a l, 2005; 

Hong et a l, 2005a; Hong et a l, 2005b; Luo et a l, 2007), it has yet to be demonstrated 

unequivocally that modification of Keapl triggers the activation of Nrf2 in cells or in 

vivo. The major bioanalytical constraint that hampers the investigation of protein 

modification and function in parallel is that modifications are often substoichiometric in 

nature, with only as much as 1 -2  % of the total amount of a given protein modified 

under physiological conditions. This problem can be further compounded by the fact that 

modifications are often lost through the processes of protein turnover and repair
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(Schoneich et al., 2006). This makes it particularly difficult to detect a modified protein, 

and even more difficult to identify the site of modification, from a cell/tissue lysate 

containing thousands of proteins with different levels of abundance. In a recent review 

on this subject, Liebler (2008) likened this problem to “looking for dozens of needles in 

thousand of haystacks”. It is for this reason that many investigators seeking to define the 

impact of post-translational modification(s) on the activity of a given protein have opted 

initially to conduct experiments using recombinant protein, which can be expressed at 

relatively high levels and purified to near homogeneity via an incorporated epitope tag. 

Although useful for gaining a chemical insight into the modification of a protein in 

isolation, the in vitro reaction of a large amount of protein with a high concentration of 

electrophile is not indicative of the situation in cells and in vivo. Therefore, the 

enrichment of endogenous proteins is required in order to facilitate the reliable and 

sensitive analysis of relatively low-abundance post-translational modifications. Such 

enrichment strategies can be as simple as decreasing the overall complexity of the 

sample through biochemical purification of subcellular compartments and organelles. In 

addition, chemically-adapted model electrophiles, such as biotinylated analogues of 

iodoacetamide and N-ethylmaleimide (Dennehy et al., 2006; Shin et al., 2007), have 

been developed that enable affinity enrichment of modified proteins. However, such an 

approach may not be particularly valuable for investigations of protein modification by 

xenobiotics and intracellular signalling molecules, as these would also need to be 

chemically tagged. This may prove practically difficult, and it is not clear what effect the 

presence of such a tag has on the reactivity of an electrophile.

In light of the unsuitability of some pre-analytical enrichment strategies for examining 

the modification of native proteins in cells and tissues, advances have been made in the 

field of mass spectrometry that have effectively increased the specificity and the 

sensitivity of this already powerful analytical tool. One such advance is the process of 

multiple reaction monitoring (MRM), whereby predefined target ions, such as those that 

represent modified peptides, are selected and enriched within the mass spectrometer 

during the analytical run. Because only ions of a predefined mass-to-charge ratio are 

filtered into the collision cell of the mass spectrometer, and fragmented product ions can

226



Chapter 6

be trapped and ejected towards the mass detector at a given threshold, background 

signals are lowered significantly, and thus signal-to-noise ratios are increased, allowing 

more sensitive detection of modified peptides (Unwin et a l, 2005). In this regard, the 

prior characterisation of residue-specific modifications in vitro using recombinant 

proteins may better inform cellular and in vivo analyses, by identifying diagnostic data 

patterns that help to define specific ions to be selected during the MRM process. 

Research within our group has recently demonstrated the potential of MRM as a means 

o f detecting post-translational modifications in vivo, using mouse GSTP1-1 as a model 

protein (Jenkins et a l, 2008). Although the feasibility of using MRM to detect 

modification of proteins that are much lower in abundance than GSTP1-1, such as 

Keapl, is still unclear, advances in the sampling rate, sensitivity and resolution of mass 

spectrometers are now beginning to enable the characterisation of endogenous protein 

modification in cells and tissues (Ji et a l, 2007; Koen et a l, 2006; Lemercier et a l, 

2004; Meier et a l, 2007; Meier et a l, 2005; Shin et a l, 2007).

In addition to correlating the activation of Nrf2 with the occurrence of a particular 

modification per se, it will also be important to understand how the extent of 

modification influences the biological response. It is possible that Keapl functions as a 

redox rheostat, in that the modification of a single highly reactive ‘sensor’ cysteine 

within the IVR domain is sufficient to trigger the activation of Nrf2, with additional 

modifications of other cysteine residues augmenting this response. In this regard, it is 

vital to obtain quantitative measurements of the ratio of modified versus unmodified 

residues in Keapl, and to relate this to biological outcome. This may be possible through 

the use of stable isotope labelling of Keapl cysteines by isotope-coded affinity tagging 

(ICAT), in which heavy and light -tagged model electrophiles are applied to the protein 

or cell extract under different conditions (i.e. unmodified control sample = light-tagged, 

modified sample = heavy-tagged). Both samples are mixed and the mass differences 

resolved by mass spectrometry, in order to quantify their relative abundance 

(Sethuraman et a l, 2004a; Sethuraman et a l, 2004b). If a particular cysteine residue in 

Keapl is modified, it will not be available for ICAT labelling, and the abundance of the 

modified peptide ion will decrease relative to that of the unmodified ion.
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As discussed in section 6.4, it is important to consider that signaling events other than 

the direct modification of Keapl may contribute to the activation of the Nrf2-ARE 

pathway by some inducers. Recently, much attention has focused on the importance of 

reversible oxidation of thiols (to sulphenic acid; -SOH) as a signalling mechanism 

within cells (for a review, see Biswas et a l, 2006). In fact, there is evidence to suggest 

that pro-oxidants can activate Nrf2 (Gong et a l, 2006; Lee-Hilz et a l, 2006; Purdom- 

Dickinson et a l, 2007), and oxidation of protein thiols has been proposed as a means by 

which NAPQI induces hepatocellular dysfunction (for a review, see Jaeschke et a l, 

2003). Therefore, it is possible that both direct adduction and oxidation of Keapl are 

important in the activation of Nrf2 by NAPQI. The in vitro and cell-based assays 

developed during this thesis to study direct adduction of Keapl may be suitable tools for 

investigating the role of oxidation in the activation of Nrf2. Residue-specific oxidation 

can be detected by mass spectrometric measurement of the relevant mass shifts (+16 Da 

for -SOH, +32 Da for -S 0 2H, +48 Da for -SO3H), although the detection of reversible - 

SOH formation is complicated by the lability of this modification. However, -SOH 

trapping agents are available, such as 5,5-dimethyl-1,3-cyclohexanedione, which reacts 

with -SOH to form a stable thioether (Allison, 1976) that can be detected by mass 

spectrometry (+138 Da). In addition, -SOH can be detected following reaction with 

arsenite, which does not affect disulphides, but reduces -SOH back to -SH, which can 

then be labelled for detection (Torchinsky, 1981). These and other tools may facilitate 

investigations into the role of Keapl oxidation in the activation of Nrf2.

A switch in the ubiquitination of Nrf2 to that of Keapl has been suggested as a means by 

which some molecules antagonise Keapl-mediated repression of the transcription factor 

(Hong et a l, 2005b; Zhang et a l, 2005). However, the general importance of this 

mechanism is not yet clear. Ubiquitination can be detected by way of a Gly-Gly 

dipeptide tag (+114 Da) that remains attached to the modified lysine residue following 

tryptic digestion (Peng et a l, 2003). This principle of diagnostic mass shifts also enables 

the mass spectrometric detection of residue-specific phosphorylation (HPO3; +80 Da), 

and this is important because there is much ambiguity surrounding the importance of 

direct phosphorylation of Nrf2 in the activation of the transcription factor by some
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inducers. Therefore, much work remains to be done in defining the relative contributions 

o f these and other post-translational modifications in the activation of Nrf2. These 

important questions may be addressed, in order to advance our appreciation of the means 

by which the Nrf2-ARE pathway is regulated, once the relevant bioanalytical constraints 

are surmounted.

6.7 Concluding remarks

In summary, the main aims of the studies presented in this thesis were to further our 

understanding of the means by which the Nrf2-ARE pathway is regulated, and to 

elucidate its role in the protection against DILI. Specifically, investigations have been 

undertaken in an attempt to elucidate the molecular mechanisms by which paracetamol, 

which causes DILI in overdose, activates the Nrf2-ARE pathway in mouse liver. The 

results presented in this thesis have demonstrated that NAPQI, the hepatotoxic 

metabolite of paracetamol, can directly activate the Nrf2-ARE cell defence pathway in 

mouse liver cells, and selectively modifies cysteines residues within Keapl, both in the 

recombinant protein in vitro and in a cell-based model. In determining the residue- 

selectivity of Keapl modification in cells by NAPQI and other Nrf2-activating 

molecules, and taking into account the recent work of Hong et al. (2005b), a unifying 

theme has been observed, in that all of the molecules tested modify one or more 

cysteines within the IVR domain of Keapl. The identification of a universal triggering 

mechanism may better facilitate the targeting of the Nrf2-ARE pathway for the 

prevention and/or treatment of diseases, such as DILI, in the near future. Furthermore, a 

better understanding of the molecular mechanisms that govern the activity of the Nrf2- 

ARE pathway may facilitate its incorporation into pre-clinical screens for novel 

xenobiotics that are likely to cause chemical/oxidative stress and thus pose a risk of 

toxicity in patients.

In light of the important role of the Nrf2-ARE pathway in regulating inducible, and 

perhaps basal, cell defence, genetic variation in this pathway may have important
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consequences for human health. Research in this laboratory has identified several novel, 

albeit synonymous, polymorphisms in the genes encoding Nrf2 and Keapl, through the 

screening of a cohort of healthy human volunteers (Wang et al., 2006). Single nucleotide 

polymorphisms have been identified within the promoter region of the human (Arisawa 

et al., 2007; Marzec et al., 2007; Yamamoto et al., 2004) and mouse (Cho et al., 2002) 

Nrf2 genes, and these mutations are associated with an increase in susceptibility to 

certain diseases (Arisawa et al., 2007; Arisawa et al., 2008; Cho et al., 2002; Marzec et 

al., 2007). Furthermore, two non-synonymous mutations in Nrf2 have recently been 

identified in Japanese type II diabetes patients (Fukushima-Uesaka et al., 2007), and 

somatic loss-of-fimction mutations in Keapl have been identified in lung and breast 

carcinoma cell lines and in lung cancer patients (Nioi et al., 2007; Padmanabhan et al., 

2006; Singh et al., 2006). It will be important to determine whether there is variability in 

the competence of the Nrf2-ARE pathway amongst the general population, and whether 

such variability influences an individual’s susceptibility to an adverse drug reaction. The 

design of safe and effective treatment regimens is critically dependent on our 

understanding of the chemical, biochemical and molecular mechanisms that underlie 

physiological processes and the actions of specific drugs. Therefore, if future work does 

reveal a degree of inter-individual variability in the competence of the Nrf2-ARE 

pathway, the development of a diagnostic screen, perhaps based on the establishment of 

a biomarker for the functionality of the Nrf2-ARE pathway, may contribute to the 

advancement of ‘personalised medicine’, by allowing clinicians to identify susceptible 

patients before, and not after, the onset of an adverse drug reaction.
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APPENDIX

MS/MS spectra depicting modification of GSTP1-1 

Cys-47 by 15d-PGJ2, iodoacetamide, NAPQI and DNCB
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Appendix Fig. 1 - MS/MS spectrum indicating modification of G S T P 1 -1  Cys-47 by 
15d -P G J2 (A) or iodoacetamide (B ) in vitro, y- and b-ions are labelled where present. 
* denotes ions for which a mass shift of +316.2 amu indicates modification by 15d-PGJ2 
(A) or +57.1 amu indicates modification by iodoacetamide (B). Immonium ions are 
labelled with the one-letter code for their corresponding amino acid. Note: both the 
singly-charged 15d-PGJ2 ion (317.2 amu), characteristic of adduct cleavage during 
MS/MS peptide fragmentation, and the cysteine-15d-PGJ2 immonium ion (392.2 amu) 
are absent following incubation of GSTP1-1 with iodoacetamide alone.
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Appendix Fig. 1 - MS/MS spectrum indicating modification of GSTP1-1 Cys-47 by 
NAPQI (C) or DNCB (D) in vitro, y- and b-ions are labelled where present. * denotes 
ions for which a mass shift of +149.1 amu indicates modification by NAPQI (C) or 
+166.0 amu indicates modification by DNCB (D). Immonium ions are labelled with the 
one-letter code for their corresponding amino acid.
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