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Channel Impulse Response-based Source
Localization in a Diffusion-based Molecular

Communication System
Henry E. Baidoo-Williams*, Muhammad Mahboob Ur Rahman*, Qammer H. Abbasi

Abstract—Molecular source localization finds its applications
in future healthcare systems, including proactive diagnostics.
This work localizes a molecular source in a diffusion based
molecular communication (DbMC) system via a minimal set
of passive anchor nodes and a fusion center. Two methods are
presented which both utilize (the peak of) the channel impulse
response measurements to uniquely localize the source, under the
assumption that the molecular source of interest lies within the
open convex-hull of the sensor/anchor nodes. The first method
is a one-shot, triangulation-based approach which estimates the
unknown location of the molecular source using least-squares
method. The second method is an iterative approach, which
utilizes the gradient-descent control law to minimize a non-convex
cost function. The corresponding Cramer-Rao bound (CRB) is
also derived. Simulation results reveal that: i) the gradient-
descent method outperforms the triangulation method (in terms
of mean squared error performance) for a wide range of values
of signal-to-noise ratio; ii) the gradient-descent method converges
to the true source location uniformly (in less than hundred
iterations).

I. INTRODUCTION

A nano-scale, molecular communication system consists
of a nano-transmitter (emitter) and a nano-receiver (passive,
absorbing, ligand-binding) in a fluid medium which are apart
by a few micro-meters; information transfer between them is
realized via exchange of molecules [1], [2]. In a diffusion
based molecular communication (DbMC) system, molecules
undertake a brownian motion governed by the diffusion
process. The very slow diffusion of molecules through the
fluid medium implies that the DbMC channel is a low-rate,
broadcast channel [3]. DbMC has recently attracted a lot of at-
tention as it helps realize a body-centric network consisting of
several (on-body, inside-body) autonomous bionano-machines
[1], [2]. Therefore, DbMC has the potential to revolutionize
the healthcare system. Additionally, it finds its applications
in environmental monitoring and military scenarios [1], [4].
As of today, the researchers have done the noise analysis
[5], computed the channel capacity [3], designed modulation
schemes [6], optimal receivers [5], and much more (see the
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survey article [2] which provides a comprehensive overview
of the recent development in the field).

Source localization, on the other hand, is the umbrella term
for a handful of techniques which locate a signal source by
utilizing the measurements collected by a set of sensor/anchor
nodes (at known locations). Source localization has been
extensively studied to localize a radio-frequency signal source
[7], optical source [8], acoustic source [9], and radioactive
source [10]. Most of the localization algorithms comprise
of the following two steps: i) the sensor nodes construct
some measurement (received signal strength, time of arrival,
time difference of arrival, pathloss, distance) from the signal
received from the signal source of interest, ii) the fusion
center fuses the measurements collected by the sensor nodes
to minimize an appropriate cost function. To this end, various
techniques have been reported in the literature, e.g., semidefi-
nite programming [11],[12], second order cone programming,
gradient descent [10], weighted least-squares etc.

Very recently, the researchers have started to investigate the
distance estimation methods1 and the corresponding perfor-
mance bounds for the DbMC systems [13–17]. In [13], authors
estimate the round-trip time and the signal attenuation from the
received feedback signal in order to estimate the distance. [14]
presents two distance estimation methods based on the peak
and energy of the concentration of the received molecules. In
[15], Huang et. al. do synchronization-free distance estimation
using one-way signaling (via peak concentration and double-
spike methods). [16] computes the Cramer-Rao bound (CRB)
for distance estimation in a DbMC channel. [17] considers
DbMC in a vessel-like environment with passive receivers and
Poiseuille flow, and does distance estimation for the two cases
of known and unknown emission start time.

Another set of works broadly relevant to the scope of our
paper is [18–24] where detection and tracking of a bionano
target is performed using self-organizing, mobile bionano-
sensors that are capable of releasing attractant and repellent
molecules. Specifically, [18] develops a partial differential
equations based mathematical model for the target tracking
problem. [19] performs target tracking with the aim of targeted
drug delivery. [20] carries out in-silico experiments by utilizing
chemotactic bacteria and provide some information-theoretic
insights on the performance of their proposed target tracking
scheme. [21] extends the previous works to track multiple

1Note that a large number of algorithms reported in the literature on
localization of a wireless source build upon the distance estimates obtained
by the sensor nodes (see [7], [12] and the references therein).
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targets. [22, 23] propose a leader-follower model for target
tracking, describe the model mathematically and estimate the
model parameters via maximum-likelihood approach. Finally,
[24] extends [20] by utilizing relay nodes for increased chemo-
tactic efficiency. However, contrary to the works [18–24]
which rely solely upon chemical interactions,2 our work does
the localization by leveraging a set of passive, static, sensor
nodes which record the measurements and a fusion center that
is capable of fusing them to perform the computations.

Contributions and Outlook. This work proposes two
novel methods for source localization in a DbMC system,
namely, triangulation/least-squares-based method, and gradient
descent-based method. For the triangulation-based method, the
corresponding CRB is also derived. Some futuristic applica-
tions in the healthcare domain that could potentially benefit
from this work include early disease (e.g., cancer) detection,
targeted drug delivery [19],[26], and quick toxicity detection.

Outline. The rest of this paper is organized as follows.
Section II introduces the system model and the DbMC channel
model. Section III describes the measurement model used
by the two proposed methods. Section IV presents the two
proposed methods for source localization. Section V provides
some simulation results. Section VI concludes the paper.

II. SYSTEM MODEL & CHANNEL MODEL

A. System Model

Consider a molecular source/emitter, whose location y∗ ∈

RN (where N ∈ {2,3}) is to be estimated (see Fig. 1). Source
localization is done by deploying a set of sensor nodes in
close vicinity of the source which report their measurements
to a fusion center (FC). The FC is assumed to be a powerful
node capable of performing sophisticated signal processing
operations (therefore, FC is likely to be an on-body node). As
for the sensor nodes, Triangulation based methods have shown
that we need at least n = N +1 sensors located at xi ∈ RN , i ∈
{1,⋯, n} which are non-collinear for N = 2 case and non-
coplanar for N = 3 case. To keep the analysis tractable, this
work assumes that: i) the source is a point transmitter, ii) the
sensors are passive receivers [27], iii) there is no interference
caused by the molecules sent in previous slots, and iv) the
reporting channel (i.e., the link between the sensor nodes and
the FC) is error-free and delay-free, v) the measurements by
the sensor nodes are statistically independent.

Define di as the euclidean distance between the source and
i-th sensor/anchor node (with known location xi):

di = ∣∣xi − y
∗
∣∣ (1)

where ∣∣.∣∣ is the 2-norm operator.
Next, following assumption is made.
Assumption 2.1: The location of the source node y∗ ∈ RN

is within the open convex hull of the measurement sensors.
Note that assumption 2.1 can easily be satisfied using

coarse initial estimates by perturbing the locations of the
measurement sensors.

2On a side note, [25] presents two molecular messaging methods (Rosen-
brock gradient-ascent algorithm and a chemical encoding messaging method)
for localization of a crashed object in a vast underwater search space.

Fig. 1. System model: The molecular source that is to-be localized lies within
the convex hull of the nano sensor/anchor nodes (each of which receives the
molecules emitted by the source). Moreover, the sensor nodes report their
measurements to a fusion center which ultimately does the signal processing
to localize the source.

B. The DbMC Channel Model

Consider a DbMC system whereby the transmitter uses
pulse-based modulation (i.e., on/off keying) and sends Q
molecules within one pulse. Since communication (transport
of molecules from source to sensors) takes place through a
diffusion paradigm, the DbMC channel can be described as
broadcast channel, hence, the transmitter’s “message” can be
received by all the sensors. Consequently, one can use Fick’s
second law of diffusion to characterize the mean change in
concentration of molecules at a fixed distance di w.r.t. time
(because diffusion is a stochastic process):

∂p(di, t∣d0)

∂t
=D∇2p(di, t∣d0) (2)

where ∇2 is the Laplacian operator, p(di, t∣d0) is the molecule
distribution function at time t, distance di given the initial
distance d0, and D is diffusion coefficient of the medium.

The solution to (2), given in (3), is the expected concentra-
tion of molecules as a function of time and distance (which
is also the impulse response of the DbMC channel), where
ci(di, t) denotes the concentration at distance di and time t
from the initial transmission time:

ci(di, t) =
Q

(4πDt)
N
2

e−
d2i
4Dt (3)

A typical pulse/CIR following the model in (3), as seen by
the i-th sensor is shown in Fig. 2.

III. MEASUREMENT MODEL

Assume that L measurements mi[l] (l = 1, ..., L) of channel
impulse response (CIR) are taken by sensor i during a single
observation interval of length symbol duration:

mi[l] = ci(di, l) + ωi[l] =
Q

(4πDlTs)
N
2

e−
d2i

4DlTs + ωi[l] (4)
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Fig. 2. The received molecular pulse/CIR at i-th sensor that is di = 2 µm
away from the molecular source (for Q = 5 × 105, D = 1e − 9 m2/sec).

where ωi[l] is the Poisson noise, and Ts is the sampling period
of the system. In this work, sensor i picks the largest measure-
ment zi =maxl(mi[l]) (that corresponds to the instant where
received molecular concentration was maximum3):

zi = (
N

2π
)

N
2

.(
1

e
)

N
2

.
Q

dNi
+ ωi (5)

and sends it to the fusion center.
Definition 3.1: Let α = ( N

2π
)
N
2 . ( 1

e
)
N
2 .Q. Then (5) at

sensor i becomes:
zi =

α

dNi
+ ωi. (6)

Assuming that ωi ∼ Poisson(λi) with λi =
α
dNi

, define the
signal-to-noise ratio (SNR) γi at sensor i as the ratio of the
amplitudes of the signal received at sensor i and the noise at
sensor i. That is, γi =

α/dNi
√

α/dNi

=
√

α
dNi

. Then, the average SNR

at the FC is defined as: SNR = 1
n ∑

n
i=1 γi.

IV. SOURCE LOCALIZATION

This section begins with the following assumption:
Assumption 4.1: The location of the sensor xi, i ∈ {1,⋯, n}

is not coincident with the location of the source, y∗.
Assumption 4.1 makes sense since (5) is undefined otherwise
at xi = y∗.

Next, the two proposed methods are presented, one by one.

A. Triangulation-based Localization

The measurements zi, i ∈ {1,⋯, n} by the sensors give rise
to the following equations:

zi =
α

dNi
⇒

∥xi − y
∗
∥
N
=
α

zi

(xi − y
∗
)
T
(xi − y

∗
) = (

α

zi
)

2
N

(7)

3The peak of CIR of the DbMC channel is analogous to the notion of
received signal strength in wireless communication.

Taking any two equations from (7), we realise (8).

xTi xi − x
T
j xj − 2(xTi − x

T
j )y

∗
= (

α

zi
)

2
N

− (
α

zj
)

2
N

−2(xTi − x
T
j )y

∗
= (

α

zi
)

2
N

− (
α

zj
)

2
N

− xTi xi + x
T
j xj

(8)

(8) leads to n0 =
n(n−1)

2
equations which are used to form

the least-squares solution. Define A ∈ Rn0×N as:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xT1 − x
T
2

⋮

xT1 − x
T
n

xT2 − x
T
3

⋮

xTn−1 − x
T
n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

and B ∈ Rn0×1 as:

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( α
z1

)

2
N
− ( α

z2
)

2
N
− xT1 x1 + x

T
2 x2

⋮

( α
z1

)

2
N
− ( α

zn
)

2
N
− xT1 x1 + x

T
nxn

( α
z2

)

2
N
− ( α

z3
)

2
N
− xT2 x2 + x

T
3 x3

⋮

( α
zn−1

)

2
N
− ( α

zn
)

2
N
− xTn−1xn−1 + x

T
nxn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)

Then, the triangulation-based estimate ŷ of location of the
molecular source is given by:

ŷ = (ATA)
−1

ATB (11)

B. Gradient-Descent Localization

Lemma 4.1: Under (5) and assumption 4.1, zi is analytic
and a strictly decreasing function of di in the noise-free case.

Proof: Notice that

żi = −N
α

dN+1
i

≤ 0 ∀i (12)

This concludes the proof.
Consequent to Lemma 4.1, one could apply the gradient-
descent minimization procedure to the following non-convex
cost function [10]:

J(y) =
n

∑
i=1

(zi − g(di))
2 (13)

where g(di) = α
dNi

. Then, the gradient-descent control law at
fusion center is the following:

y[k + 1] = y[k] − µ
∂J(y)

∂y
∣
y=y[k]

(14)

where µ > 0 is the step size, and k is the iteration number of
the algorithm. With the knowledge of Q, D, zi and y[k], (14)
is implementable at the fusion center. Specifically, the gradient
of y is given as:

∂J(y)

∂y
= 2

n

∑
i=1

(zi − gi(di))ġi(di)(y − xi)

di
(15)
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It has been shown in [10] that given (15), suppose there
are precisely n = N + 1 measurement sensors in RN , and the
source y∗ is in the open convex hull of the sensor locations
xi, i ∈ {1,⋯,N+1}, then: (i) there is a unique point within the
open convex hull of the sensor locations where (15) and (13)
are identically zero, (ii) the gradient-descent law converges
uniformly to the true optima, i.e., y∗ in the absence of noise.
Notice that this is the same minimum number of sensors
required for triangulation-based methods.

C. Cramer-Rao Bound Analysis

Finally, the Cramer-Rao bound (CRB) for the measurement
model of (6) is computed. Due to statistically independent
measurements by the sensor nodes, the fusion center constructs
the joint probability density function as follows:

f(y∗∣z1,⋯,zn) =
n

∏
i=1

( α
dNi

)
zi
e
−
α

dN
i

zi!
(16)

The log-likelihood function, log f(y∗∣z1,⋯,zn) = L(y∗∣z1,⋯,zn)

is:

L(y∗∣z1,⋯,zn) =
n

∑
i=1

zi log
α

dNi
−
α

dNi
− log zi!

= −(
n

∑
i=1

Nzi log di +
α

dNi
) + κ(z1,⋯,zn)

(17)

where κ(z1,⋯,zn) is a constant. The first and second deriva-
tives with respect to y∗ will yield:

L̇(y∗∣z1,⋯,zn) = N
n

∑
i=1

(
α

dN+1
i

−
zi
di

)
1

di
(y∗ − xi) (18)

L̈(y∗∣z1,⋯,zn) = −N[
n

∑
i=1

(
α(N + 2)

dN+4
i

−
2zi
d4i

)(y∗ − xi) (y
∗
− xi)

T

+ (
zi
d2i

−
α

dN+2
i

) In×n]

(19)

where In×n is the identity matrix of size n×n. From (19),
one could compute the Fisher information matrix (FIM) as:

−E [L̈(y∗∣z1,⋯,zn)] = N
2α

n

∑
i=1

(y∗ − xi) (y
∗ − xi)

T

dN+4
i

(20)

where E(.) is the expectation operator. The CRB is thus the
trace of the inverse of (20):

CRB = Tr
⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
N2α

n

∑
i=1

(y∗ − xi) (y
∗ − xi)

T

dN+4
i

⎞

⎠

−1⎤
⎥
⎥
⎥
⎥
⎦

(21)

where Tr(.) is the trace of a matrix.

V. NUMERICAL RESULTS

Simulations were performed for N = 2, n = 3, and Q = 50.
Fig. 3 (a) investigates the mean squared error (MSE) perfor-
mance of the triangulation method and the gradient-descent
method (as well as the CRB) against the average SNR at
the FC. To generate Fig. 3 (a), Monte-Carlo simulations were
performed with 5000 realizations of zi, while the MSE of the
gradient-descent method was recorded after 100 iterations (for
each SNR value). Fig. 3 (a) shows that the CRB and the MSE
of both methods decrease with the increase in the SNR, as
expected. Moreover, the curve for the gradient-descent method
is nearly super-imposed onto the CRB curve. Thus, gradient-
descent method outperforms the triangulation method for the
whole range of interest of the SNR values (of course, at
the cost of increased complexity due to iterative nature of
the gradient-descent method). Fig. 3 (b) plots the squared
error ∣∣ŷ − y∗∣∣2 against the number of iterations k. Note that
the error vanishes uniformly, i.e., the gradient descent-based
method converges to the true optima/source location in less
than hundred iterations.

10 15 20 25
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5

10
6

10
7
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8

Triangulation MSE
Gradient descent MSE
CRB

200 400 600 800 1000
number of iterations

(b)

10
5

10
6

10
7

10
8

Fig. 3. (a) Gradient-descent method outperforms the triangulation method for
whole range of interest of SNR values, (b) the squared error of the gradient-
descent method decreases monotonically with number of iterations k.

Fig. 4 (a) & (b) show a 2D layout to demonstrate the local-
ization performance of the triangulation method and gradient-
descent method, respectively. For this plot, the molecular
source was placed within the convex hull of the three sensor
nodes. Fig. 4 (a) shows that the triangulation-based location
estimate given by (11) is quite close to the true source location.
Fig. 4 (b) shows that the trajectory of the iterated estimates
y[k] of the gradient-descent method converges to the true
source location quickly (in less than hundred iterations).

VI. CONCLUSION

This work presented two methods which both utilized
(the peak of) the channel impulse response measurements to
uniquely localize a molecule emitter. The first method, the
triangulation-based approach, estimated the unknown location
of the molecular source using the least-squares method. The
second method utilized the gradient-descent control law to
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location uniformly.

minimize a non-convex cost function. The corresponding CRB
was also derived. Simulation results revealed that the gradient-
descent method outperforms the triangulation method (in terms
of the MSE performance) for the whole range of interest of
the SNR values.

Some futuristic applications in the healthcare domain that
could potentially benefit from the proposed method include
early disease detection, targeted drug delivery, and quick
toxicity detection.

One potential follow-up work could be to do source local-
ization using time-of-arrival measurements and compare its
performance against the two CIR-based localization methods
proposed in this work. Another promising direction will be
to consider the effect of interference caused by previously
sent molecules on the performance of the proposed source
localization methods.
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