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Abstract 18 

The idea that there is an impenetrable barrier that separates the germline and soma has shaped 19 

much thinking in evolutionary biology and in many other disciplines. However, recent 20 

research has revealed that the so-called ‘Weismann Barrier’ is leaky, and that information is 21 

transferred from soma to germline. Moreover, the germline itself is now known to age, and to 22 

be influenced by age-related deterioration of the soma that houses and protects it. This could 23 

reduce the likelihood of successful reproduction by old individuals, but also lead to long-term 24 

deleterious consequences for any offspring that they do produce (including a shortened 25 

lifespan). Here we review the evidence from a diverse and multidisciplinary literature for 26 

senescence in the germline and its consequences; we also examine the underlying 27 

mechanisms responsible, emphasising changes in mutation rate, telomere loss and impaired 28 

mitochondrial function in gametes. We consider the effect on life history evolution, 29 

particularly reproductive scheduling and mate choice. Throughout, we draw attention to 30 

unresolved issues, new questions to consider and areas where more research is needed. We 31 

also highlight the need for a more comparative approach that would reveal the diversity of 32 

processes that organisms have evolved to slow or halt age-related germline deterioration. 33 
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Introduction 37 

While a mechanism whereby offspring inherit beneficial traits from their parents is central to 38 

the theory of evolution by natural selection, robust scientific information on the processes of 39 

heredity was lacking when Darwin put forward his theory in 1859 [1]. Being apparently 40 

unaware of the pioneering work of Mendel on inheritance, Darwin later suggested that 41 

inheritance might occur via ‘gemmules’, tiny particles that circulate around the body and 42 

accumulate in the gonads, a developmental process he termed ‘Pangenesis’ [2]. Attempts to 43 

test this idea, notably by Galton, provided no support and it fell by the wayside [3]. Towards 44 

the end of the nineteenth century, August Weismann put forward his ‘germ plasm’ theory, 45 

based on the idea of continuity of the germline, its high level of protection, and its isolation 46 

from the somatic cells [4, 5]. In contrast to Darwin, he proposed that there was no transfer of 47 

genetic information between the soma and the germline, a separation which came to be 48 

termed the Weismann Barrier. This distinction between germline and soma became central to 49 

the neo-Darwinian evolutionary theories developed in the early twentieth century. It has also 50 

been central to key theories of the evolution of ageing in animals, such as the disposable 51 

soma theory [6], with the soma being seen as the vehicle that prioritises, protects, and 52 

preserves the integrity of germline, passing it on to future generations. The central argument 53 

is that, while the soma is allowed to degenerate with age, the germline is protected and 54 

damage to it should not be allowed to accumulate, either within the individual or from 55 

generation to generation.   56 

However, we now know that Darwin’s gemmule idea may not be entirely fanciful [3, 57 

7], and that the Weismann Barrier is not so impenetrable as previously thought [8]: various 58 

potential carriers of epigenetic hereditary information from the soma to the germline have 59 

been identified, particularly those involving DNA methylation, chromatin modification, small 60 

RNAs and proteins that can influence gene expression, and extra-cellular vesicles that 61 

potentially move from the soma to the germline  [7-12]. Investigating the transfer of 62 

epigenetic information across the generations by both sexes is a fast growing field of 63 

research. Moreover, while it appears that germline DNA is indeed afforded special protection 64 

[13], germline mutations do occur, since neither DNA replication nor repair are perfect 65 

processes and external insults can also inflict significant damage.  66 

So to what extent is the germline imperfectly isolated from the age-related 67 

deterioration generally evident in the soma? Does the germline itself also age, and if so in 68 



 

what way? Is this different in male and female germ cells? How does this affect the germline 69 

DNA and other hereditary processes? Is it also the case that the material passed via the 70 

cytoplasm of the oocyte is adversely influenced by the passage of time, both by deterioration 71 

in the oocyte itself and in the somatic tissue that exists to protect it? Does all of this have 72 

implications for the shaping of animal life histories?  73 

 These questions are the focus of this review. First we consider briefly whether there 74 

is evidence of a negative effect of parental age on offspring health and longevity, and the 75 

routes whereby such an effect of paternal and maternal age could occur. We then focus on the 76 

germline itself, examine the evidence that it can deteriorate as the soma ages, and review the 77 

mechanisms by which this occurs. We then consider what this means for relevant aspects of 78 

life history evolution, in particular the scheduling of reproduction and mate choice. 79 

Throughout, we highlight and discuss the most critical gaps in our current understanding. 80 

1.  Negative effects of parental age on offspring longevity 81 

One of the first studies to demonstrate parental age effects on offspring health and longevity 82 

was undertaken by Alexander Graham Bell, inventor of the telephone. Towards the end of his 83 

life he developed an interest in heredity (unfortunately combined with one in eugenics). 84 

Using data from the family tree of William Hyde, one of the early English settlers in 85 

Connecticut, USA, Bell showed in 1918 that children born to older mothers and fathers had 86 

reduced lifespans [14]. Jennings and Lynch followed up this idea experimentally by using 87 

parthenogenically reproducing rotifers Proales sordida [15]; their results also suggested 88 

(while not being statistically significant) that the offspring of old females do not live as long 89 

as those of young females. This was taken further by Albert Lansing, using clones of the 90 

rotifer Philodina citrina. In 1947 he showed, through selecting old animals as breeders, that 91 

the offspring of old parents had a reduced lifespan [16], an effect that has become known as 92 

the Lansing effect. Furthermore, by creating parthenogenic selection lines in which he 93 

continually used the offspring of old or young individuals as parents for the next generation, 94 

his experiments appeared to show that this adverse parental age effect became magnified over 95 

generations, leading to the relatively rapid extinction of the old breeder line. In contrast, there 96 

was no change in lifespan or viability in lines based on selecting offspring produced only by 97 

young individuals [16].  98 

 It is important to note that almost all recent studies of the Lansing effect only consider 99 

two generations (i.e. they test whether offspring of old parents have a shortened lifespan), and 100 



 

so cannot test whether (or how) the effect is or is not cumulative over successive generations, 101 

as suggested in Lansing’s original experiments. A partial exception is a study showing a 102 

cumulative negative effect of maternal age on offspring in Drosophila: the lowest proportion 103 

of eggs that reached adulthood came from old mothers that also had old grandmothers [17]. 104 

The extent to which a parental age effect on offspring fitness persists beyond the F1 105 

generation, and whether it is truly cumulative, is little known in other taxa. However, a 106 

substantial body of evidence does exist to show that the age of the parents at reproduction can 107 

reduce offspring longevity in the F1 generation. Early investigations of effects of parental age 108 

on offspring in sexually reproducing species (mostly Drosophila spp.) gave inconsistent 109 

results (see [18] for a critical appraisal of these early studies), but more recent studies have 110 

frequently found a negative effect on offspring longevity in a wide range of species including 111 

humans [19-23], other mammals [24, 25], birds [26-29], rotifers, crustaceans, numerous 112 

insects, yeast and nematodes [30-32]. These include studies where animals were raised in 113 

consistent and benign laboratory conditions, such that the shorter lifespan of offspring 114 

appears to be due to faster ageing independent of environmental conditions (e.g. [24]). A 115 

reduced reproductive performance in offspring of older parents has also been reported in 116 

some cases [26, 27]; while this is much less frequently reported than effects on lifespan (and 117 

may not always be apparent [25]), it should be noted that studies of lifetime reproductive 118 

effects of parental age under natural conditions are very limited ([25] and references therein).  119 

 Both establishing and teasing apart the causes of effects of parental age on offspring 120 

viability is not straightforward. In sexually reproducing animals, both maternal and paternal 121 

age can potentially adversely affect the offspring; in practice however, it can be difficult to 122 

tease apart the two since the age of the two parents is often correlated under natural 123 

conditions. There are many different pre- and post-natal routes for such effects. However, it 124 

is important to mention that there can be causes of a negative relationship between parental 125 

age and offspring viability that do not involve ageing of the germline – or indeed any ageing 126 

process at all. For instance, it is important to recognise that previous reproductive effort could 127 

have effects independent of parental age [33]. Many of the studies to date, particularly in 128 

long-lived species, are non-experimental and cross-sectional (i.e. comparing young versus old 129 

members of the population at a given time) rather than longitudinal (comparing the same 130 

parents when they are young vs when they are old), and thus differential survival of parental 131 

phenotypes into old age could mask or enhance effects, as could cohort effects since in many 132 

studies the capacity to compare aged individuals born in different years is limited [34].  133 



 

Germline senescence is a wide-reaching, multidisciplinary topic. We restrict our 134 

review to mechanisms related to the ageing of the germline in animals where there is a 135 

separation of the germline and the soma. We also confine ourselves to sexually reproducing 136 

animals (noting the current bias in the literature towards vertebrates), and consider effects 137 

operating via both eggs and sperm. We now briefly describe relevant aspects of the 138 

production and storage of the gametes before discussing the evidence that they deteriorate 139 

with parental age, focussing in particular on age-related changes in levels of de novo DNA 140 

mutation and aneuploidy, telomere length and mitochondrial function since these are key 141 

factors that could give rise to both transmissible and cumulative negative effects on offspring 142 

health and longevity.  143 

2.  Production of the germline and gametes 144 

In most metazoan animals, the germline resides in the eggs and sperm. The gametes arise 145 

from specialised cells, the primordial germ cells (PGCs), which eventually become located in 146 

the gonads during early development. These cells are not pluripotent, and, under natural 147 

conditions, can only give rise to gametes [35]. While in all plants and some animal taxa (e.g. 148 

tunicates, cnidarians, flatworms) the PGCs can be formed from somatic cells, in most 149 

sexually reproducing animals PGCs arise very early in embryogenesis by one of two 150 

methods, termed the induction and inheritance modes. The induction mode, typical of 151 

mammals, is apparently the more prevalent mode and is thought to be the ancestral condition; 152 

here PGC formation is induced by cell signalling pathways activated by the zygote genome 153 

[36, 37]. Alternatively, in the inheritance mode, PGCs arise from specialised germplasm 154 

already present in the oocyte cytoplasm. This contains specific proteins and RNAs needed for 155 

PGC formation. The inheritance mode occurs in many taxa including birds and, interestingly, 156 

in the non-mammalian species typically used in developmental studies such as Drosophila, 157 

Xenopus, and zebrafish [36]; both modes are found in insects and amphibians. It has been 158 

suggested that the rate of evolution within taxa might relate to the mode of PGC formation, 159 

but this has been shown not to be the case [38]. It remains unclear what favours one or other 160 

mode of germ cell formation. The inheritance mode potentially increases the opportunity for 161 

factors influencing gene expression to be transmitted from parents, particularly the mother, to 162 

the embryo [37]. Whether the mode of origin of PGCs has any bearing on the susceptibility 163 

of the resulting gametes to age-related damage is unknown. The PGCs form at the blastoderm 164 

stage in the inheritance mode, but shortly before gastrulation (i.e. slightly later) in the 165 

induction mode [36]. This could potentially influence age-related effects on germ cells, since 166 



 

the number of cell divisions before PGC formation is higher in the induction mode [37]. In 167 

both modes, after their formation the PGCs migrate to the genital ridges where they start 168 

colonising the gonads, undergo epigenetic re-programming involving the erasing and 169 

resetting of maternal and paternal imprinting, differentiate into male and female gametes and 170 

proliferate [35, 39].  171 

Detailed knowledge of most of the processes of gamete formation is still relatively 172 

limited and comes largely from studies of mice and humans [35] and to a lesser extent, birds 173 

[40]. In the ovarian tissue of mammals and birds, the colonisation of the genital ridge leads to 174 

rapid mitotic division, followed by substantial cell loss. The remaining cells become the 175 

primary oocytes and enter Prophase 1 of meiosis, progressing as far as the diplotene stage, by 176 

which point homologous chromosomes have aligned, the chiasmatic bridges that occur at 177 

apparently random points between the chromosomes have already formed, and crossing over 178 

has taken place [39]. The primary oocytes undergo meiotic arrest at this point. Meiosis 179 

resumes just before ovulation, with each primary oocyte giving rise to one haploid cell and 180 

three polar bodies. In long lived species, the resumption of meiosis in some oocytes can be 181 

much later in life (up to 50 years in the case of humans). This long period of meiotic arrest 182 

may require unique methods of DNA repair and replacement of proteins, and is a stage at 183 

which significant age-related deterioration could occur.  184 

In mammals and birds the full stock of oocytes is generally thought to be produced 185 

before birth, and substantial loss again takes place in post-natal life - in humans it is 186 

estimated that <0.1% will be shed as mature ova during a female’s reproductive life [39]. 187 

This process of atresia is poorly understood, but could be a mechanism to remove defective 188 

oocytes [30]. At menopause in women, the stock of oocytes is depleted, but there is little 189 

evidence of oocyte depletion limiting reproductive life in other species. Moreover, the 190 

reduced fertility in older females is not simply a consequence of having run out of oocytes, 191 

since other aspects of the reproductive process (such as induction of hormonally driven 192 

oestrous cycles) become increasingly less controlled with age [41, 42]. Interestingly, it has 193 

recently been suggested that de novo oogenesis can take place in adult mammals, though the 194 

evidence is somewhat contradictory and the subject hotly debated amongst developmental 195 

biologists [43]. In some other taxa, there is reasonably good evidence that oogenesis occurs 196 

into adult life; such de novo oogenesis has been found to continue beyond sexual maturity in 197 

Drosophila, some teleost fishes, amphibians and possibly reptiles [39]. As an extreme 198 

example, in the long-lived deep sea rockfish (Sebastes alutus), histological work has shown 199 



 

the maintenance of follicular pools in females over 60 years old, with no indication of 200 

follicular senescence or atresia, so that egg production may continue throughout life (which 201 

can be for up to 90 years) [44]. On the other hand, sharks and sturgeons, also very long-lived 202 

species, appear to have limited oocyte stores [44].  203 

Significant cell proliferation also occurs when the primordial germ cells arrive at the 204 

genital ridge of a male embryo; at this point a proportion of the cells become undifferentiated 205 

spermatogonia. They then generally undergo mitotic arrest and enter meiosis only after birth. 206 

The developmental pathway leading from germ cells to mature sperm does not begin in 207 

earnest until puberty. At this point the spermatogonia rapidly increase in number by mitotic 208 

division. It is estimated that male and female germ lines have undergone a similar number of 209 

mitotic divisions (ca 30-35) by puberty [45]. Thereafter however, the number of cell divisions 210 

increases rapidly with age in males; sperm are produced as required, via a mitotic 211 

proliferative phase followed by two meiotic divisions which give rise to four haploid cells. 212 

Most of the cytoplasm is then ejected and the mature sperm develop. This proliferation 213 

continues through the fertile life of the male [39]. In the amniotes (reptiles, birds and 214 

mammals) substantial changes to the epigenome occur as sperm pass along the epididymis, 215 

and this is a potential source of the intergenerational transfer of environmental effects via the 216 

male germline [11, 12]. Age-related changes could be induced by the soma at this stage, but 217 

this has been little studied. 218 

3.  Evidence that the germline does deteriorate with age 219 

While it used to be assumed that the germline was ageless, there is now increasing evidence 220 

that the gametes of both sexes gradually deteriorate alongside (albeit at a slower rate than) the 221 

soma [46-48]. Considering first the female germline, it is now known that oocyte quality 222 

declines with the age of the female. This is appreciated in human IVF clinics: the egg donor’s 223 

age (and hence the age of the egg) is known to be more critical to outcomes than the 224 

recipient’s age [49, 50]. High reproductive rate can reduce female fecundity in species with 225 

high levels of egg production [51]. Sperm have also been shown to change with male age, 226 

during both the pre-meiotic and post-meiotic phases [52, 53]. Sperm ageing has led to the 227 

evolution of many responses (by both sexes) to prevent its adverse effects; these include the 228 

production of large amounts of sperm, dense ejaculates, sperm rejection (by both sexes) and 229 

multiple mating by females, as well as the evolution of signals of a male’s antioxidant status 230 

(i.e. his potential defences against sperm ageing) [53, 54]. It should be noted that both sexes 231 



 

can potentially store sperm, during which time it could deteriorate: in the male prior to 232 

mating, and in the female after mating but prior to fertilisation of the eggs [52]. Such storage 233 

effects have been shown in guppies Poecilia reticulata: prolonged sperm storage slows sperm 234 

swimming speed, and results in offspring that are themselves less fertile [55]. Relatively little 235 

is known about whether the shelf life of sperm varies with male age. Interestingly, in toads 236 

Bufo bufo it appears that hibernation can slow the ageing of stored sperm [56], and it would 237 

be interesting to know if this generally occurs when metabolic rate is lowered.  In 238 

mosquitofish Gambusia holbrooki,  the swimming rate of a male’s sperm after ejaculation 239 

declines with his age, and additionally with his prior reproductive effort, again highlighting 240 

the need to separate these two factors [33]. Sperm that has been stored by a female guppy 241 

tends to lose out in competition for fertilizations with fresh sperm [57]; whether this is due to 242 

its poorer swimming performance or to cryptic selection by the female is unknown. These 243 

signs of ageing in guppy sperm occurred over periods of many weeks, but similar patterns are 244 

seen over days in other taxa. Female birds fertilise and lay one egg every 1-2 days and may 245 

store sperm over the period when the clutch is being produced; however, fertilisation rate and 246 

embryo growth and survival were found to be impaired when female Black-legged kittiwakes 247 

Rissa tridactyla used sperm stored for more than 7 days [58]. Given this relatively rapid 248 

senescence of sperm, it is intriguing that social insect queens appear somehow able to 249 

maintain the quality of their stored sperm for decades (e.g. queen ants may mate once when 250 

young and then produce eggs for up to 30 years [59]). Relevant data from social insects on 251 

gamete deterioration during storage, or with the age of the male or female producing them, is 252 

surprisingly limited. While egg and embryo size have been found to decrease (and offspring 253 

mortality in response to stress increases) with age in honey bee Apis mellifera queens [60], it 254 

is not clear if this was due to the senescence of the queen, her eggs or her stored sperm. 255 

4.  Causes of germline deterioration 256 

Some mechanisms of ageing in somatic tissues do not appear, so far as is currently known, to 257 

be relevant to the germline. For instance, transposable elements (TEs) become more 258 

mobilized in somatic cells as the cells become older, and are thought to be a major cause of 259 

the increasing instability of their genome. However, germ cells have protective mechanisms 260 

that silence TEs, particularly the Piwi-piRNA pathway that is particularly active in germ cells 261 

[61, 62]. The widespread suppression of TEs in germlines suggests that this could have been 262 

a significant selection pressure promoting isolation between the soma and the germline. Other 263 

hallmarks of somatic ageing [63] would appear to be more likely to also have germline 264 



 

effects, i.e. DNA mutations, telomere attrition and mitochondrial dysfunction. Others such as 265 

the loss of proteostasis may also be important: for example, the greater levels of oxidative 266 

damage to proteins in the oocytes of older female Drosophila has been linked to reduced egg 267 

viability [64]. However, relatively little is known of the magnitude or pervasiveness of these 268 

effects. We have therefore concentrated on the three ageing mechanisms for which there is 269 

evidence of occurrence in the germline. 270 

(a) Mutations in the germline DNA 271 

Is there evidence that mutations in the germline DNA increase with age and could contribute 272 

to germline senescence? There are many stages at which germ cells of both sexes are 273 

potentially susceptible to DNA damage. This can be due for example to replication errors, 274 

faulty repair processes and chromosomal non-disjunction, environmental factors such as 275 

chemical or thermally induced damage, or damage resulting from exposure to internally 276 

generated Reactive Oxygen Species (ROS). Such damage can occur during both the 277 

formation and storage of the gametes. Germ cells appear to have significantly superior 278 

genome maintenance mechanisms compared with somatic cells, partly as a result of more 279 

efficient base excision repair systems [13]. However unrepaired mutations, while rare, do 280 

occur and can increase with parental age in both sexes [52, 65-67]. Robust estimates of 281 

germline mutation rates are still limited, but overall they appear to occur at a higher rate in 282 

humans and other primates than in the other vertebrate and invertebrate taxa that have been 283 

studied [68-71]. Most detailed information comes from studies of humans and mice. Point 284 

mutations in germ cells are much more common in sperm than in oocytes and increase 285 

significantly with paternal age: in humans a man is expected to transmit ca 40 mutations to a 286 

child he fathers when he is aged 20, but twice this number when he is 40 [13, 72]. Note that 287 

these estimates of mutation load include those in non-coding regions of the genome; a recent 288 

study based on RNA-seq (so only considering coding regions) found no difference in 289 

mutation frequency in sperm from old versus young male mice [24], and the importance of 290 

any difference in mutation load in the non-coding regions is not currently known.  291 

It is estimated that more than three-quarters of those human germline mutations that 292 

do occur are paternal in origin, and the number increases with paternal age [45, 71, 73]. The 293 

greater incidence of point mutations in sperm than oocytes has generally been thought to be 294 

primarily related to the high rate of cell division of the male germ cells, and to the high 295 

metabolic activity and limited repair of DNA in mature spermatozoa [13]. However, this 296 



 

explanation has recently been challenged, since the difference between the incidence of 297 

maternally- versus paternally-derived germline mutations is already evident in the offspring 298 

of young human parents, and this difference remains relatively stable with increased parental 299 

age [45]. Chromosome-based abnormalities such as aneuploidy are more commonly of 300 

maternal than paternal origin [67], due to problems associated with the resumption of meiosis 301 

in primary oocytes after a long period of arrest [67]. Aneuploidy increases sharply in humans 302 

with maternal age, thought to be due to the maintenance of the chiasmata and sister chromatid 303 

cohesion becoming less secure in older oocytes, with eventual failure of chromosomes to 304 

segregate [74]. There is little evidence of increasing aneuploidy in the sperm of older men 305 

[75]. In fact, the incidence of Down’s syndrome is greatest in the children of very young 306 

fathers once maternal age is taken into account [76]. It has also been suggested that the DNA 307 

repair and replication capacity deteriorates with maternal age [45].While there are extensive 308 

quality control processes that eliminate defective gametes in both ovaries and testes, the 309 

efficacy of such processes may also deteriorate with parental age [52]. Germline maintenance 310 

is likely to be very expensive, and the capacity to invest in this may decrease with age [77]. 311 

Interestingly, some repair of the genome is known to occur in the zygote after fertilisation, 312 

and it appears that the oocyte is responsible for this repair to both maternally- and paternally-313 

derived DNA [67].  314 

All of these sources of damage to the germline DNA can lead to reduced fertility in 315 

older parents (because fewer gametes are undamaged), but also to an increase in defective 316 

offspring where such gametes and zygotes escape the quality control processes. Little is 317 

known about mutations in oocytes in species where oogenesis occurs throughout life, or of 318 

how germline mutations are influenced by the age of reproduction in semelparous species, in 319 

which maturation in some species can take many years – clearly potentially fruitful areas of 320 

future research. 321 

(b) Telomere attrition in the germline 322 

Telomere attrition is thought to be an important factor associated with somatic ageing in 323 

many, albeit not all, taxa studied in the laboratory and in the wild [63, 78, 79]. A key question 324 

therefore is whether telomere loss occurs in germ cell DNA.  Most of what we know about 325 

telomeres comes from somatic cell studies. Telomeres are complex structures comprising a 326 

variable number of tandem repeats of a DNA sequence (TTAGGG in most eukaryotes), 327 

shelterin proteins and telomere repeat-containing RNAs. Telomeres cap the ends of the linear 328 



 

chromosomes of eukaryotes, distinguishing true ends from double stranded chromosomal 329 

breaks and preventing the triggering of a DNA damage response, thereby ensuring genome 330 

stability [80]. They play a crucial role during cell division. Since the process of DNA 331 

replication is incomplete at the end of the lagging DNA strand (the ‘end-replication 332 

problem’), the sequence loss is absorbed by the telomere and the protein-coding sequences 333 

preserved. Telomeres are also involved in other aspects of cell division, the movement, 334 

localisation and anchoring of the chromosomes to the nuclear envelope, the pairing of 335 

homologous chromosomes and synapsis formation [81]. In addition to the end-replication 336 

problem, increased telomere loss can also arise as a consequence of damage to DNA, for 337 

example by ROS and other factors [82]. In the absence of restoration, telomeres therefore 338 

become progressively shorter with each round of cell division and this important change in 339 

the nuclear DNA of cells eventually has substantial consequences. Once the telomeres 340 

become critically short, the genome becomes unstable; the cell enters cell cycle arrest 341 

followed either by apoptosis or an altered, pro-inflammatory secretory profile. Unrestored 342 

telomere loss therefore sets a finite limit on the replicative potential of cells. Progressive 343 

telomere loss contributes to the deterioration of the soma with age [63] and in some species 344 

telomere length or loss rates have been shown to be predictive of eventual lifespan [83-85]. It 345 

has also recently been shown that experimental elongation of telomeres in mice results in 346 

slower metabolic ageing and increased longevity, providing confirmatory evidence of the 347 

causative role of telomere length in contributing to somatic deterioration in later life [79]. 348 

Telomeres can be restored by the reverse transcriptase telomerase, or by 349 

recombination-based processes termed Alternative Telomere Lengthening (ALT). While the 350 

basic mechanisms of telomere biology are highly conserved, the pattern of telomere loss and 351 

restoration varies among species, individuals and tissues, in part in relation to the risk of 352 

tumour formation associated with a requirement for large numbers of cell divisions; it 353 

appears that, in mammals, broadly speaking telomere length positively covaries with lifespan, 354 

while somatic telomerase activity negatively covaries with body size [86]. In many large 355 

bodied and long-lived species, little telomere restoration occurs in the majority of somatic 356 

tissues [87, 88]. Interestingly, it also appears that for some age-related diseases such as 357 

atherosclerosis, shorter telomeres may be advantageous so further trade-offs may be involved 358 

[89]. The pattern of telomere inheritance is difficult to measure, and different studies have 359 

alternatively suggested a mainly paternal, mainly maternal, or no parental effect on offspring 360 

telomeres [e.g. see 90, 91-94]. However, in many of these telomere inheritance studies 361 



 

important confounding variables have not been taken into account and sample size is often 362 

insufficient for results to be conclusive [95]. Much further work is needed. 363 

Telomere maintenance is essential during development and gametogenesis and is 364 

closely regulated, with telomerase and ALT being important at different stages [96, 97]. 365 

There has been a great deal of interest in the extent to which this close regulation might break 366 

down in older parents, in whether shortened gamete telomeres might contribute to declining 367 

fertility and embryo developmental problems at older ages, and whether short telomeres 368 

might be transmitted across generations. To date, telomere length in germ cells has been 369 

studied mainly in rodents and humans. While at one time it was thought that germ cells do 370 

not show telomere attrition, it is now known that this is not the case, at least for mammalian 371 

oocytes, where telomere attrition appears to play a central role in oocyte ageing [98]. In mice 372 

and humans, oocytes have shorter telomere lengths than sperm, and oocyte telomeres are 373 

amongst the shortest in the body, while those of sperm are amongst the longest [91, 96, 97, 374 

99]. This is consistent with levels of telomerase being low in oocytes but high in 375 

spermatogonia, although the generality of these patterns is unknown [92, 99].  376 

During the meiotic arrest, the oocytes do not divide, but their precursor cells have 377 

divided extensively. Therefore there is the potential for substantial telomere attrition during 378 

the highly prolific mitotic stage following the primordial germ cells populating the 379 

developing ovary. The oocytes from older women have weakened DNA and protein repair 380 

mechanisms and impaired ROS metabolism [100], which, when combined with impaired 381 

telomere maintenance (lower expression of the telomerase TERT gene and lower levels of 382 

telomerase), leads to shorter telomeres in the oocytes of old females compared to those from 383 

younger females [98] (Figure 1). Shorter telomeres have been found in the oocytes from old 384 

compared with young mice [101], and are associated with lowered levels of the protein 385 

SIRT6; experimental overexpression of SIRT6 promotes telomere elongation at the 2-cell 386 

blastomere stage, suggesting that this protein is directly involved in the age-related decline in 387 

telomere length in oocytes [102]. Oocytes with shorter telomeres develop abnormal meiotic 388 

spindles and decreased chiasmata, which is thought to contribute to declining fertility with 389 

age in human females [97]. Interestingly, there is evidence that the last oocytes ovulated by 390 

older women come from those oogonia produced towards the end of the mitotic proliferative 391 

stage [103]; having arisen from more cycles of cell division, they potentially have shorter 392 

telomeres [97]. Additionally, oocyte telomeres might be damaged by ROS during the long 393 

arrest prior to ovulation. However, it is very difficult to study oocyte telomeres in viviparous 394 



 

species, and there is scope for much more work on oviparous species, especially those with 395 

external fertilisation which offer the opportunity to examine telomere dynamics in both 396 

unfertilised and fertilised eggs.  397 

Sperm telomeres are obviously much easier to study than those in eggs. The continued 398 

proliferation of cells to generate sperm throughout adult life may explain the presence of high 399 

levels of telomerase in order to maintain sperm telomere length [81]. Again most data come 400 

from mammals, where the picture with respect to age-related changes is mixed. For example, 401 

sperm telomeres have been reported to both decline [91] and increase [101] with male age in 402 

mice Mus musculus, but decrease in rats Rattus norvegicus [104]. In humans, telomere 403 

lengths in sperm have been found to increase with male age [92, 105] in contrast to the 404 

pattern in somatic tissues [106]. How an increase with male age occurs remains unclear 405 

[106]. It could be due to expression of telomerase, or stringent quality control of sperm that 406 

results in the removal of an increasing proportion of sperm with short telomeres as males age, 407 

or be a consequence of cohort effects or differential survival of male phenotypes [106]. Loss 408 

of sperm with malfunctioning telomeres could contribute to reduced male fertility with age. 409 

Recently, sperm telomere length has been suggested as a good marker for male infertility, 410 

being indicative of abnormal spermatogenesis, though its utility is still unclear [107].  411 

While it is evident that telomere attrition does occur in germ cell DNA, it is still not 412 

clear how these changes in gamete telomere length with parental age affect offspring. 413 

Fertilisation triggers a substantial elongation of telomere lengths in the zygote, a process 414 

which appears to involve the recombination-based method ALT [97, 108]. Studies to date in 415 

non-human species indicate that this might not be a simple restoration to the average telomere 416 

length of the parents. Most importantly in the context of this review, studies of birds, reptiles 417 

and non-human mammals have reported that older fathers have offspring with shorter 418 

telomeres [24, 91, 109-111], though a positive correlation between male and female age 419 

within a breeding pair often makes it difficult to separate maternal and paternal effects in 420 

natural populations [112]. In controlled conditions using laboratory mice, offspring from 421 

older fathers have been reported to have shorter telomeres [91]. In humans on the other hand, 422 

offspring from older fathers have been found to have longer telomeres [92]. In both mice and 423 

men, this is in line with the respective changes in sperm telomere lengths with male age as 424 

mentioned above. However, in most of the studies of parent-offspring telomere lengths in 425 

humans, offspring telomere length has been measured only post-natally, often when adult, 426 

and the studies are mainly cross-sectional, so multiple processes could be involved that do 427 



 

not relate to germ cell telomere lengths. Differential survival of parental phenotypes, or 428 

different environmental factors during rearing for different cohorts of fathers, could 429 

potentially explain, or at least contribute to, the observed positive effect of paternal age on 430 

offspring telomere length in humans. In a study in which cohort effects on changes in 431 

telomere length with paternal age in humans were examined, they were found to be stronger 432 

than the paternal age effect, though both were significant. Year-of-birth effects on telomere 433 

length are in themselves interesting and might be due to variation in environmental 434 

conditions such as nutrition and pollution which could affect the pattern of sperm ageing 435 

[105]. Overall, across species, there is no consistent pattern in whether or not a paternal effect 436 

on offspring telomere length is positive or negative, or absent, though positive effects appear 437 

to be a feature of catarrine primates [92]. Whether this bears any relation to which sex has the 438 

strongest influence on telomere length is unknown. Interestingly, there is evidence that the 439 

paternal age effect in humans is detectable across at least two generations, since the age of 440 

the paternal grandfather at the time of the father’s conception also has a positive effect on the 441 

telomere length of the grandchild [113].  442 

Effects of maternal age on offspring telomere length have been relatively little studied 443 

and the results are again mixed, with both positive and negative relationships being reported 444 

[92, 94, 114], or alternatively no effect of the age of either parent [115, 116]. A comparison 445 

in the zebra finch Taeniopygia guttata of offspring from the same mothers when young and 446 

when old (both mated to young males) shows a marked decline in the telomere length of fully 447 

grown offspring with maternal age [117]. This may or may not involve age-related changes in 448 

oocytes. More longitudinal experiments involving both fathers and mothers are needed. There 449 

is also a need for more studies in which early developmental stages are examined since this is 450 

a very important period for phenotypic development [82, 118]. Two such studies in non-451 

humans have revealed interesting patterns. Firstly, in comparison with young males, older 452 

male mice Mus musculus produced sperm with shorter telomeres, which led to shorter 453 

telomeres in offspring at both the two-cell embryo and pup stage when that sperm was used 454 

via IVF to fertilize young females [91] (Figure 2). Secondly, when the same female zebra 455 

finch was mated with young and old males in quick succession (and randomized order), the 456 

telomere lengths in the resulting 5-day-old embryos (held in an incubator) were shorter when 457 

the father was older [29].  458 

The declines in offspring telomere length with parent age potentially provide a 459 

mechanism whereby offspring from older parents have reduced health and longevity. We 460 



 

need more information on how telomere lengths are ‘reset’ during embryo development. 461 

Inheritance of progressively shortened telomeres could act as the ‘ageing factor’ postulated 462 

by Lansing to accumulate across generations, but experimental research is needed to examine 463 

the extent to which telomere length decreases cumulatively from generation to generation 464 

when only old individuals are allowed to breed. In addition, more modelling of the population 465 

consequences would be very interesting given that fathers and mothers are unlikely to breed 466 

only when they are very old, and will produce both more and higher quality offspring earlier 467 

in their breeding lives.  468 

(c) Mitochondrial ageing in the germline 469 

Not all effects on germline ageing will be due to genomic effects. Ageing in attributes of the 470 

gamete cytoplasm could also be important. Of particular interest in this context are the 471 

mitochondria. Increasing mitochondrial dysfunction with age is now known to be an 472 

important contributory factor to ageing of the soma [119]. Do mitochondria in germ cells also 473 

age? There are a number of lines of evidence indicating that the reduced fertility in older 474 

females is associated with increasing levels of dysfunction in the mitochondria of their 475 

oocytes [46, 120, 121]. It has been known for a long time that mitochondria ‘age’ in somatic 476 

tissues as a result of a gradual increase over time in levels of oxidative damage to 477 

mitochondrial DNA (mtDNA) and mitochondrial membranes [122, 123] and mutations in 478 

mtDNA due to replication errors [124, 125]. Oxidative damage arises as a result of an 479 

imbalance between the production of ROS, principally by the mitochondria themselves, and 480 

the cell’s antioxidant defences [126]. This increase in damage is non-trivial: for example, the 481 

level of oxidative damage and the consequent mutation rate of mitochondrial DNA is far 482 

higher than that of nuclear DNA, due to mtDNA being positioned very close to the inner 483 

mitochondrial membrane (the major source of the ROS) yet lacking the protective histones 484 

and DNA repair capacity of nuclear DNA [122, 127]. Replication errors also accumulate 485 

faster in mtDNA than in nuclear DNA due to the rapid turnover of the mitochondria [124, 486 

125]. It is noteworthy that somatic cells lack the means to eliminate most forms of deleterious 487 

mtDNA from their tissues [123]. 488 

The steady accumulation of mutations in mitochondrial DNA results in a 489 

corresponding decrease over the lifetime of a cell in the efficiency with which ATP is 490 

produced, and has been considered for some time to be a major contributor to the senescence 491 

of somatic tissues [122, 123]. The same accumulation of damage occurs with age in the 492 



 

mitochondria of the gametes of both sexes [46-48, 120, 128]. This is associated with impaired 493 

mitochondrial function, as in somatic tissues: for instance, the ovulated oocytes of older 494 

female mammals of several species have been shown to have a lower mitochondrial density 495 

(measured in terms of quantity of mtDNA) and lower ATP levels, with the reduction in ATP 496 

production likely to be due to lower mitochondrial membrane potentials [129-132]. A further 497 

contributing factor to the decline in oocyte mitochondrial efficiency with maternal age is a 498 

reduced expression of genes responsible for Coenzyme Q (CoQ), a key component of the 499 

electron transport chain of the mitochondria [121]. An impressive multi-faceted study of the 500 

mechanisms underlying age-related declines in fertility showed that dietary supplementation 501 

with CoQ not only reversed the decline in mitochondrial function in the oocytes of ageing 502 

female mice, but also increased the numbers of oocytes that these older mice ovulated and 503 

restored litter sizes to those produced by young mice [121] (Figure 3). The impaired 504 

mitochondrial efficiency in oocytes from older females has also been proposed as a 505 

mechanism underlying the Lansing effect, if the offspring of older mothers were to inherit a 506 

greater proportion of dysfunctional mitochondria which would then shorten their lives [133].  507 

Contrary to expectations, some studies have found mtDNA levels (a measure of 508 

mitochondrial density) to be higher (rather than lower) in the blastocysts from older women; 509 

furthermore high mtDNA levels in blastocysts have been associated with a greater risk of the 510 

embryo failing to implant [134, 135]. While it seems counterintuitive for high mitochondrial 511 

densities to be an indicator of a failing embryo, this is in line with the ‘quiet embryo’ 512 

hypothesis [136] that suggests normal embryonic development is associated with low rates of 513 

metabolism (and hence low mitochondrial densities) at the blastocyst stage. Under this 514 

scenario, the high mitochondrial copy number of oocytes from older mothers can be seen as a 515 

compensatory response to their impaired mitochondrial efficiency. This has led to speculation 516 

that IVF treatments could be optimised by screening for mtDNA content when embryos are 517 

being selected for implantation, rejecting all those with higher mitochondrial densities [135]. 518 

However, follow-up studies have failed to replicate these results, finding no association 519 

between the mtDNA content of early human blastocysts and either the age of the mother or 520 

the likelihood of the blastocyst becoming implanted [137, 138]. At present it seems likely that 521 

the discrepancies between studies are due to differences in the way in which samples are 522 

either collected, stored or analysed [138, 139], and the true relationship between maternal age 523 

and mitochondrial content of the early embryo remains to be resolved. 524 



 

The relative level of oxidative damage is likely to be greater in sperm than in eggs, as 525 

a consequence of sperm needing to be motile and so having a high requirement for ATP (with 526 

consequent inevitable production of ROS: ROS production rates are higher in active than in 527 

stored sperm [140]). In contrast,  oocytes require little ATP until they start to mature; it seems 528 

possible that their modest energy requirements can be met by glycolysis (not involving the 529 

mitochondria) or import of ATP from neighbouring somatic cells [141, 142]. The inevitable 530 

risk of more oxidative damage to sperm compared with eggs led to the ‘division of labour’ 531 

hypothesis [141, 143], which suggested that strictly maternal inheritance of mitochondria is 532 

an adaptation to avoid the transfer of damaged mitochondria to the next generation (i.e. the 533 

inheritance of an aged phenotype). It has been shown in diverse species (Drosophila, jellyfish 534 

Auerelia aurita and zebrafish Danio rerio) that the mitochondria in sperm are active, 535 

producing both ATP and ROS, whereas (at least the majority of) those in primary oocytes are 536 

small, quiescent and simple in structure, producing neither ATP nor ROS [128, 144, 145]. 537 

This division allows inheritance (via the maternal line) of undamaged ‘template’ 538 

mitochondria, which become active in somatic and male germline tissues but not in the 539 

female germline until late in oocyte development – indeed, in long-lived species such as 540 

humans the mitochondria in primary oocytes can remain quiescent for up to 50 years.  541 

The reduction in the number of mitochondria during gametogenesis is thought to 542 

allow selection against defective mitochondria (the ‘mtDNA bottleneck’), so preventing the 543 

accumulation of deleterious mutations through Muller’s ratchet and maintaining 544 

mitochondrial function between generations [123, 146]. Once the oocyte starts to mature 545 

there is intensive mitogenesis so that by the time it is fully mature it contains an order of 546 

magnitude more mitochondria (and hence mtDNA) than any other cell in the body [128, 138]. 547 

The mitochondria become very active, so that most ATP in the oocyte is now produced 548 

through oxidative phosphorylation rather than glycolysis, and there is a significant increase in 549 

ATP content per oocyte [127, 146].  550 

The ‘division of labour’ hypothesis mentioned above [141, 143] is not applicable to 551 

all metazoan species. For instance, there is a group of 100+ species of bivalve molluscs, 552 

spread across at least 7 families, in which the mitochondria can be inherited from either 553 

parent. In this doubly-uniparental inheritance (DUI) system there are distinct ‘male’ M-type 554 

and ‘female’ F-type mitochondrial lineages in the gametes that have been separately evolving 555 

for some time. Both sexes usually only contain F-type mitochondria in their somatic tissues, 556 

but their gametes contain only the sex-specific form of mitochondria (i.e. M-type in sperm 557 



 

and F-type in oocytes) [147]. This means that M-type mitochondria must be passed on by 558 

fathers to the germline of their sons. Moreover, both kinds of mitochondria are functionally 559 

active in their respective gametes [148], so there is no division of labour and seemingly no 560 

possibility for quiescent ‘template’ mitochondria to be passed on to the next generation [149]. 561 

It is thus an unresolved question as to how these DUI species manage to prevent oxidatively-562 

damaged mitochondria from being passed to offspring. The two types of mitochondria in 563 

gametes have recently been shown to differ in their functioning, but in ways that would 564 

actually appear to increase the risk of oxidative damage to M-type mitochondria in the sperm 565 

[147]; this is so even in Arctica islandica, which can live to over 500 years and is thus the 566 

longest lived noncolonial metazoan [150]. Whether the existence of DUI refutes the concept 567 

of the ‘division of labour’ as a means to prevent the inheritance of an aged phenotype is 568 

unresolved [149, 151].  569 

Age-related changes in mitochondrial function clearly provide one potential route 570 

whereby parental, particularly maternal, age can affect offspring viability, but there are still 571 

unanswered questions. For instance, does the ‘mtDNA bottleneck’ really filter out 572 

dysfunctional mitochondria? Is there any intergenerational effect of mitochondrial 573 

dysfunction in ageing gametes on mitochondrial function in the offspring? Are there 574 

differences in the mitochondrial activity (and hence likely build-up of ROS) in the sperm of 575 

species with external versus internal fertilisation, given the relative distance that the sperm 576 

have to swim? And how can a male animal live to be 500 without significant ageing of the 577 

mitochondria in its sperm, or this being passed on to its sons?  578 

5.  Implications for life histories 579 

It is clear that the germline itself shows age-related deterioration. Mutations can accumulate, 580 

telomeres can shorten, and mitochondrial function can decline in germ cells, all of which may 581 

potentially contribute to ageing of the germline and affect offspring health and longevity 582 

although their relative importance is not yet known. It is also clear that in sexually 583 

reproducing animals, the separation between germline and soma is not an impenetrable 584 

barrier. Some information can pass epigenetically from the soma to the germ cells, and at 585 

least some of this information, which generally affects gene expression, passes to the 586 

resulting offspring [8, 9], with adaptive or non-adaptive consequences. The germline is not 587 

entirely protected from ageing of the soma, and is also influenced by senescence of the 588 

tissues that maintain the germ line. The selection pressures affecting age-related germline 589 



 

deterioration are likely to depend on the lifespan of the species, since this will influence for 590 

instance whether there has been enough time for sufficient mutations to accumulate to cause 591 

dysfunction [124, 125].  592 

  This raises a number of interesting questions with respect to life history evolution, 593 

particularly for traits such as reproductive scheduling and mating strategies. The scheduling 594 

of reproduction, in terms of both the onset of sexual maturity and reproductive effort at 595 

different life history stages, will be influenced by germline senescence. While older 596 

individuals may have accumulated resources and experience that can have positive effects on 597 

their offspring, gamete deterioration with parental age will mean that offspring produced later 598 

in life could have a lower fitness value. This will give rise to a selection pressure in favour of 599 

earlier reproduction and reduced reproductive effort later in life, not simply as a consequence 600 

of senescence of the parental soma, but also because the offspring are inherently likely to be 601 

less fit because they originate from aged germ cells. The stronger such late-life effects, the 602 

greater their influence on the evolution of reproductive schedules. We should expect that 603 

evolution will shape reproductive schedules towards the optimal age for reproduction but 604 

there will be many other factors involved here, and many questions are unanswered. Are 605 

there costs in delaying sexual maturation associated with germline deterioration? What 606 

protective measures are in place for species where sexual maturation does not occur for many 607 

years, and does this matter more in semelparous or iteroparous species? Does body 608 

temperature affect germline deterioration, and might hibernation halt it? Why can some 609 

species continue reproduction throughout a long adult life, while in others, notably humans, 610 

reproduction is curtailed during adult life? Why is this more marked in females, when we 611 

know that most mutations occur in the male germline and that the rate of mutation in sperm 612 

DNA increases with male age?   613 

 Individuals do of course have the potential to reduce the effects of parental age by 614 

choosing not to mate with older individuals [53, 152], provided that they can recognise the 615 

age of potential mates. This could lead to conflict between the sexes, though it may not be 616 

possible to disguise ageing of the soma to any significant degree. However, that individuals 617 

survive into old age may be an indicator of their high genetic quality, and such individuals 618 

will have acquired more experience and possibly resources. There may therefore be a conflict 619 

between the resource and genetic benefits that come with an old mate and costs to offspring 620 

quality from aged gametes; the balance between the two will influence mating strategies in 621 

both sexes. Studies using in vitro fertilisation have the potential to identify effects arising 622 



 

directly from gamete deterioration and to detect post-copulatory sexual selection. In houbara 623 

bustards Chlamydotis undulata for example, the use of sperm from older males in IVF trials 624 

gave rise to reduced hatching success and slower growing offspring [153, 154]. However, the 625 

sperm of younger males was found to either outcompete that of older males or to be 626 

preferentially selected by females [154]. Surprisingly, sperm from immature males produced 627 

the fastest growing offspring [153]; this raises the question as to why such males still behave 628 

as if they are immature when their sperm appear to be of particularly high quality, but it could 629 

relate to the costs of competition with other males. 630 

 An important consideration is the extent to which age-related germline deterioration 631 

can be prevented, slowed or reversed, or its effects mitigated.  Is germline deterioration an 632 

inevitable consequence of somatic ageing, or could germline function be preserved 633 

independently of deterioration of the soma? We know little about the relationship between 634 

the respective rates of somatic and of germ cell deterioration, both among and within species. 635 

While intuitively one might expect a positive relationship, it could be negative if germ cell 636 

maintenance is costly (and there is evidence that this is so [77]). The extent to which the rate 637 

of ageing in the germline is a by-product of (and so is constrained by) the processes causing 638 

ageing in the soma is not well understood, although some of the possible mechanisms (such 639 

as dysregulation of hormonal controls) are unique to the germline.   640 

From an evolutionary perspective, we need more research investigating the extent to 641 

which germline ageing is counteracted by the decreasing reproductive value of older 642 

individuals. The persistence of germline material over millions of years indicates that highly 643 

effective mechanisms have evolved to prevent certain cases of ageing occurring in the 644 

germline, to repair damage, and to screen gametes to eliminate damaged eggs and sperm, 645 

thereby reducing intergenerational effects at the expense of fertility. As mentioned about, 646 

offspring from older parents do show reduced fitness, and thus selection is likely to occur 647 

against breeding when the germline is aged. A life history strategy in which individuals delay 648 

reproduction to a point where the germline has deteriorated would be strongly selected 649 

against, and most reproduction occurs prior to this having occurred. An age-related decrease 650 

in the capacity of individuals to maintain a high quality germline does occur, as evidenced for 651 

example by the higher rate of genetic mutations in offspring of older parents. To some extent 652 

this could be offset by a later-life shift in investment towards gametic rather than somatic 653 

maintenance, which could increase offspring quality towards the end of parental life. 654 



 

However, it may either not be possible to completely prevent germline deterioration or it may 655 

simply be too costly.  656 

Many intriguing but tractable questions remain to be answered, and the diversity of 657 

reproductive strategies and ageing patterns amongst organisms offers a wealth of 658 

opportunities. For example, some species of Cnidaria are capable of reversing their 659 

development, turning from a sexually-mature adult into a juvenile stage without differentiated 660 

tissues, and so potentially becoming ‘immortal’ [155]. What are the consequences for 661 

senescence of their germline? Are the observed decreases in honey bee embryo viability with 662 

increasing age of the queen [60] due to ageing of the somatic tissues of the queen, of her 663 

oocytes or of the sperm that she has stored for much of her adult life? This could be explored 664 

by looking at changes in the performance and genome of drones produced over the course of 665 

the queen’s life, since changes in these haploid castes cannot be due to sperm ageing.  666 

Much of the research on germline deterioration with parental age takes place in the 667 

context of mitigating age-related declines in fertility in humans and focusses on either 668 

humans or mice (notwithstanding the substantial differences in the selection pressures 669 

favouring the evolution of processes to mitigate age-related germline deterioration in long- 670 

and short-lived species). Investigation of germline senescence is a potentially very productive 671 

yet understudied field for scientists from many disciplines. A more comparative approach 672 

could greatly broaden our understanding of what is and is not possible.   673 
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Figure 1: 1073 

 1074 

Fig. 1. (A) Relative telomerase activity and (B) relative telomere lengths in oocytes of young 1075 

and old mice. After [98]. 1076 
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 1078 

Figure 2: 1079 

 1080 

Fig. 2. Differences in the relative telomere length in sperm of young (hatched bars) and old 1081 

(white bars) male mice translates into differences in the telomere lengths of the resulting 2-1082 

cell blastocysts and offspring, when the sperm was used via IVF to fertilise young females. 1083 

After [91]. 1084 

  1085 



 

Figure 3: 1086 

 1087 

Fig. 3. (A) ATP production by oocyte mitochondria declines in old mice but is restored by 1088 

supplementation with Coenzyme Q10 (CoQ10), a component of the mitochondrial electron 1089 

transport chain. These changes in mitochondrial function in the oocytes are reflected in the 1090 

reproductive potential of the mice: the number of oocytes (B) and offspring (C) produced 1091 

after hormonal stimulation is lower in older females, but is restored after CoQ10 treatment. 1092 

After [121]. 1093 


