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Thesis Abstract 

Lava dome eruptions are one of the most hazardous forms of intermediate volcanic 

activity, with their ability to switch from benign effusive to catastrophic explosive eruption 

style with little precursory warning. Such behaviour can be attributed to a complex interplay 

between deep and shallow magmatic processes which alter the rheological, physical and 

chemical state of the magma, and its propensity to erupt. A comprehensive understanding of 

such processes is thus paramount for deciphering causes for different eruptive behaviours. 

This thesis aims to address three distinct processes, all of which are deemed a common 

phenomenon at lava dome volcanoes and can have an integral role in magma ascent dynamics 

in shallow volcanic conduits: (1) magma shearing, (2) fault friction and (3) magma recharge.  

During the ascent of high-viscosity magma, crystallisation and volatile exsolution 

favours a non-Newtonian response, which promotes localisation of stress and strain near the 

conduit margins, leading to the formation of discrete shear zones. The impact and role of strain 

localisation during magma ascent was investigated through a detailed petrological survey of 

a shear zone developed at the margins of the 1994–1995 lava spine at Unzen volcano (Japan). 

A multidisciplinary approach combining field observations, microtextures, crystallography 

and magnetics was deployed, which was supplemented by the first high-temperature, high-

velocity rotary shear experiment to simulate the processes involved during shear. I show that 

crystals can effectively monitor stress conditions during magma ascent through the viscous–

brittle transition, with viscous remobilisation, crystal plastically and comminution all 

systematically increasing with shear intensity at the conduit margins. I suggest evidence for a 

thermo-mechanical response due to strain localisation (shear/frictional heating) which 

triggered disequilibrium conditions leading to mineral reactions, altered rock magnetic 

properties and compacted the original porous network. The range of deformation textures 

recorded can have a profound effect on magma outgassing and the style of surface activity. 

Strain localisation can lead to seismogenic magma failure proceeded by faulting and 

slip along fracture planes. In particular, frictional sliding near the conduit margins can cause 

localised melting (by frictional heating) and impose an important rheological control on slip 

dynamics, acting as a lubricant or viscous brake that controls magma ascent in the upper 

conduit. Frictional melting is a non-equilibrium process, involving the selective melting of 

mineral phases and the softening of a glass at the glass transition. I present a detailed, 

systematic experimental investigation demonstrating the importance of host-rock mineralogy 

on the mechanical, geochemical, textural and rheological evolution of a frictional melt. The 

presence of hydrous minerals, such as amphibole, have the most influential role due to their 

lower melting point, generating heterogeneous mafic melts with lower viscosities that promote 

slip. In contrast, when amphibole is absent, frictional melts are more compositionally 

homogenous with higher viscosities resulting in higher shear resistance during slip. 

Understanding frictional properties with respect to mineralogy may aid in constraining flow 

behaviour in the shallow volcanic conduit that can impact activity at the surface.  

Regular, small-to-moderate gas-and-ash explosions at Santiaguito dome complex 

(Guatemala) have previously been attributed to shear and frictional processes. However, in 

2015–2016, eruptive activity intensified to larger, less frequent ash-rich explosive activity. I 

present a unique, multiparametric dataset that integrates petrological and geochemical 

signatures of the eruptive products with a rich geophysical dataset to assess the cause for a 

shift in eruption style. I provide evidence for a magma recharge event, resulting in changes in 

ash componentry, mingling textures, bulk compositional changes, alteration of groundmass 

microlite textures that occur concordantly with a deeper explosion source in the conduit 

revealed by seismicity. The integrated observations imply a switch from shallow shear-driven 

fragmentation to deeper gas overpressure fragmentation, intensifying local hazards. These 

observations not only aid in understanding Santiaguito’s ongoing dynamic activity, but may 

also assist in deciphering complex shifts in eruption style at many active volcanoes. 
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Chapter 1  Introduction 

1.1.  MOTIVATION 

Volcanic eruptions are the surface expression of dynamic Earth. Volcanoes connect 

Earth’s interior to the surface, acting as agents for the evolution of the atmosphere, the 

hydrosphere and biosphere, and bringing a combination of fear and fascination. Human 

populations can reap societal benefits and economic welfare from active volcanism, including 

fertile soils, geothermal energy, ore deposits and tourism, while also providing inspiration to 

artists. However, these awe-inspiring phenomena are more renowned for their destructive 

force and direct threat to those living in close proximity. During the past 10,000 years, over 

1500 terrestrial volcanoes have been active (Siebert et al., 2010), amongst which, 

approximately 575 of these have experienced at least one eruptive episode and continue to be 

active today (Tilling, 2005, 2008). The catastrophic 1902 Mount Pelée eruption (Martinique) 

was a landmark for volcanology, where, for the first-time, scientists began to elucidate the 

cause behind such devastating events. However, it was not until the 1980’s, following the 

Mount St. Helens eruption (Washington State, USA), that volcanology matured to its current 

state, as one of the most interdisciplinary scientific fields (Cashman & Sparks, 2013). Owing 

to a rapidly growing population, volcanoes pose a potential hazard for ~58 million people 

estimated to live within 10 km of an active volcano, although up to ~600 million people could 

be affected by volcanic activity (Small & Naumann, 2001; Brown et al., 2015). With an 

increasing population and increased dependence on infrastructure in the 21st century, 

mitigating the risks associated with volcanic unrest forms a non-trivial task for volcanologists 

and public officials. In the past 500 years, 275,000 volcano-related fatalities have been 

recorded due to primary effects (e.g., pyroclastic flows), although many more unrecorded, and 

despite our best efforts this number continues to grow (Tilling, 2005, 2008; Auker et al., 

2013).  

Our understanding of volcanic eruptions has greatly improved in the last two decades 

(e.g., Cashman & Sparks, 2013) owing to advancement in monitoring techniques (e.g., 

seismometers, tilt meters, gas sensors), a plethora of observational and analytical datasets (i.e., 

geophysical, geochemical and petrological), and improved communication for impending 

eruptions and rapid transfer of knowledge. Precursory monitored signals have improved our 

ability to forecast when an eruption may take place; however, assessing how the eruption will 

proceed at the surface still remains a challenging task. Reducing the vulnerability to volcanic 

activity thus requires a comprehensive understanding of the physical processes that regulate 

them. 
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Volcanoes vary significantly in both morphology and eruption style. Magma 

composition has a fundamental control, which can range from mafic (iron- and magnesium- 

rich) to intermediate and silicic (silica-rich) composition. Intermediate–silicic volcanoes 

represent some of the most iconic landforms, with relatively steep-sided cones formed from 

continuous deposition of viscous lava flows (i.e., sticky causing a high flow resistance) and 

are renowned for their structural instability (e.g., the 1980 Mount St. Helens sector collapse; 

Voight, 2000; Sherrod et al., 2008; Reid et al., 2010) and explosive eruptions (e.g., 1991 

Mount Pinatubo; Lynch & Stephens, 1996). The biggest challenge posed by intermediate–

silicic volcanoes is their unpredictability in eruption style, ranging from benign effusive 

episodes to catastrophic explosions, and occasionally, both simultaneously. In particular, lava 

dome eruptions represent one of the most hazardous forms, renowned for their ability to switch 

from effusive to explosive activity with little precursory warning (e.g., Fink & Griffiths, 

1998). Approximately 6% of all volcanic eruptions are dome-building, of which 95% of these 

have experienced an explosive episode (Calder et al., 2015 and references therein). Detailed 

field, experimental, analytical and theoretical investigations of eruptive products have 

demonstrated that shallow magmatic processes are essential factors that regulate eruption style 

due to their ability to influence the chemical, rheological and physical properties of the magma 

(Fink et al., 1992; Sparks, 1997; Voight et al., 1999; Castro et al., 2002; Allen & McPhie, 

2003; Gonnermann & Manga, 2005; Mueller et al., 2005; Tuffen & Dingwell, 2005; Lavallée 

et al., 2007; Hale & Wadge, 2008; Yamamoto et al., 2008; Cordonnier et al., 2009; Lavallée 

et al., 2013; Pallister et al., 2013; Kendrick et al., 2014a; Hornby et al., 2015). Owing to the 

unpredictability of intermediate volcanic activity, specifically lava dome eruptions, improved 

forecasting and management of their hazards demands a better understanding of the processes 

that take place during magma ascent and thus forms the overarching motivation of this thesis. 

In this thesis, the following questions will be addressed: 

1) What is the impact of strain localisation on the geochemical, rheological and physical 

properties of magma as it ascends in the volcanic conduit at lava domes? 

2) What thermo-mechanical effects does strain localisation have on the petrological 

architecture of magma? 

3) Can crystals be used as effective deformation markers during magma ascent? 

4) How important is mineral assemblage on the frictional properties of magma? 

5) Can magma shearing and friction regulate shifts in eruption style at lava domes? 

6) What effect does magma recharge have on shallow conduit processes and eruption 

style (effusive vs. explosive)? 



 3 

1.2.  LAVA DOME ERUPTIONS 

Lava domes are mounds of viscous lava that extrude and accumulate around an active 

vent (e.g., Fink & Bridges, 1995). Although lava domes generally erupt passively in the form 

of effusive dome growth, they represent one of the most challenging volcanic crises to manage 

owing to the range of hazards generated, including impulsive transitions to explosive activity 

(vulcanian to sub-plinian; e.g., Cashman, 1992; Stix et al., 1997; Hammer et al., 1999; Sparks, 

2003a; Clarke et al., 2007), dome collapse events (e.g., Voight et al., 2000), pyroclastic flows 

(e.g., Sato et al., 1992; Calder et al., 1999), block-and-ash flows (e.g., Cole et al., 2002), 

tephra/ash fall (e.g., Baxter et al., 1999) and lahars following heavy rain (e.g., Sparks & 

Young, 2002). Magma rheology has a fundamental role on lava dome morphology and its 

style of activity, with strain localisation during magma ascent and associated 

thermomechanical discontinuities having a significant impact (see section 1.5). Lava domes 

are typically associated with magmas exhibiting a high viscosity, causing the dome to grow 

in one of two ways, endogenously or exogenously. Endogenous dome growth occurs when 

the dome increases in size by internal expansion, while exogenous dome growth takes place 

when magma pieces through the dome’s exterior surface (i.e., the carapace) causing the dome 

to grow externally via accumulation of lava flows and other extruded material. Lava domes 

can grow relatively fast (days–weeks), while activity at a single dome can last up to several 

decades, although their growth is often interrupted by intermittent explosive episodes or dome 

collapses. Well known examples of dome-building systems (Fig. 1.1) and eruptions include: 

Mount St. Helens, Washington, USA (1980–1986 and 2004–2008; Swanson & Holcomb, 

1990; Sherrod et al., 2008); Soufrière Hills Volcano, Montserrat (1995–present; Sparks & 

Young, 2002); Unzen volcano, Japan (1991–1995; e.g., Nakada et al., 1999), Volcán de 

Colima, Mexico (1998–present; e.g., Varley et al., 2010); and Santiaguito dome complex, 

Guatemala (1922–present; e.g., Rose, 1972; Harris et al., 2003). Extensive studies of these 

systems have highlighted that dome growth is controlled by the complex evolution in the 

chemical, petrological, rheological, and mechanical properties of the magma as it ascends in 

the volcanic conduit (Cashman, 1992; Goto, 1999; Nakada & Motomura, 1999; Nakada et al., 

1999; Sato et al., 1999; Venezky & Rutherford, 1999; Luhr, 2002; Harris et al., 2003; Blundy 

& Cashman, 2005; Holtz et al., 2005; Iverson, 2008; Kohno et al., 2008; Noguchi et al., 

2008b; Pallister et al., 2008; Kennedy et al., 2009; Cichy et al., 2011; Avard & Whittington, 

2012; Lavallée et al., 2012b; Scott et al., 2012; Cashman & Blundy, 2013; Kendrick et al., 

2013b; Gaunt et al., 2014; Cassidy et al., 2015; Hornby et al., 2015; Rhodes et al., 2018). 

Their eruptive products display a range of deformation structures and petrological textures 

suggesting a complex interplay between deep and shallow magmatic processes that can be 

used to unravel the story of magma storage and ascent. 
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Figure 1.1 – Classic examples of lava domes. (a) Soufrière Hills Volcano, Montserrat (Wadge 

et al., 2014), (b) Mount St. Helens, Washington DC, USA (credit: S. Schilling, USGS), (c) 

Unzen volcano, Japan (Nakada et al., 1999), and (d) Santiaguito dome complex, Guatemala 

(credit: O. Lamb). 

 

Lava dome eruptions are regulated by a combination of magma rheology and their 

ability to degas (e.g., Lavallée et al., 2013); the competition between outgassing and dome 

pressurisation is integral to the style of dome activity (e.g., Sparks, 1997). If gas accumulates 

faster than the rate of gas escape, then pore overpressures develop and the magma will 

fragment causing an explosion (e.g., Self et al., 1979). In contrast, if the rate of gas 

accumulation is lower than the rate of gas loss then the lava will erupt passively, either as a 

dome, a flow or spine (e.g., Melnik & Sparks, 2002; Watts et al., 2002; Sparks, 2003b). 

Outgassing takes place through permeable structures that can develop by bubble coalescence 

(e.g., Klug & Cashman, 1996), collapse of magma foams (e.g., von Aulock et al., 2017) or 

deformation of magma as it ascends in the conduit, including fracture networks, conduit 

margin shear zones or permeable wall rocks (Eichelberger, 1995; Tuffen & Dingwell, 2005; 

Kendrick et al., 2013a; Heap et al., 2015; Farquharson et al., 2016a). Strain localisation can 

influence the outgassing efficiency by causing pore dilation (e.g., Gaunt et al., 2014), 

compaction (e.g., Kendrick et al., 2013a; Ashwell et al., 2015) and/or anisotropy (Farquharson 

et al., 2016b) near the conduit margins (Fig. 1.2a; Lavallée et al., 2013). Furthermore, 

permeable pathways may infill (e.g., tuffisite veins; Castro et al., 2012; Kendrick et al., 2016) 

and/ or heal (i.e., fracture-healing; Tuffen et al., 2003; Lamur et al., 2019), which can facilitate 

pressurisation and favour explosive activity. Another mechanism for explosive activity at lava 
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domes is shear-induced fragmentation (Papale, 1999; Gonnermann & Manga, 2003), 

attributed to high strain conditions at the conduit margins causing brittle failure and slip 

causing intermittent development of outgassing pathways (e.g., Tuffen et al., 2003; Lavallée 

et al., 2008; Castro et al., 2012); this mechanism has been used to explain gas-and-ash 

explosions at Santiaguito dome complex, Guatemala (Fig. 1.2b–d; e.g., Bluth & Rose, 2004; 

Johnson et al., 2008; Sahetapy-Engel et al., 2008; Lavallée et al., 2015a). Thus, the style of 

activity is strongly influenced by the development or destruction of permeable pathways in 

the shallow volcanic conduit. Integrating petrological signatures of erupted products with 

geophysical monitoring signals (e.g., seismicity, infrasound, gas sensors, thermal data) may 

provide further information about shallow conduit processes (e.g., magma influx, gas fluxing, 

fragmentation depths; Blundy & Cashman, 2001; Edmonds et al., 2009; Johnson et al., 2014). 

 

Figure 1.2 – Architecture of shear-induced fracture networks and permeable outgassing 

pathways at the conduit margins (from Lavallée et al., 2013). Strain localisation near the 

conduit margins and subsequent failure promotes lateral outgassing (Kh) followed by vertical 

gas ascent (Kv) along anisotropic fracture planes to the surface. (a) Conduit margin fracturing 

and slip is believed to be the cause for gas-and-ash explosions at Santiaguito dome complex, 

Guatemala, which is supported by visual observations of gas-and-ash venting along ring 

fractures within the dome (b–d; from Johnson et al., 2008). 
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1.3.  PETROLOGICAL CONSTRAINTS ON MAGMA STORAGE AND 

ASCENT 

In order to provide a comprehensive assessment of eruption style during dome 

building eruptions, an understanding of the processes that occur as magma is transported from 

a deep (several km) storage region to the surface is required. The physical, chemical and 

textural characteristics of eruptive products form an archive of the processes that take place 

during magma storage and ascent. Geophysical imaging combined with numerical models are 

commonly used to constrain magma storage regions (e.g., seismic tomography; Paulatto et al., 

2012). However, new advances such as muon imaging techniques have given greater insights 

into the internal structure of volcanic systems (Macedonio & Martini, 2010); yet these 

techniques are rare, thus petrological tools are extensively used for such purposes (e.g., 

Cashman & Blundy, 2013; Stechern et al., 2017; Stock et al., 2018). Petrological assessment 

of magma storage conditions prior to an eruption come from compositions of phenocrysts 

(e.g., Cashman & Blundy, 2013; Costa et al., 2013; Scott et al., 2013; Kiss et al., 2014), their 

growth zonations (e.g., Huppert et al., 1982; Cassidy et al., 2016; Ubide & Kamber, 2018) 

and comparison of natural mineral assemblages to those created in experiments (i.e., phase 

equilibria; e.g., Barclay et al., 1998; Rutherford & Devine, 2003; Holtz et al., 2005; Blundy 

& Cashman, 2008; Gualda et al., 2012). The processes regulating magma storage regions are 

highly complex with magma mixing/ mingling (e.g., Nakamura, 1995; Venezky & Rutherford, 

1999; Murphy et al., 2000; Couch et al., 2001), assimilation of the country rock (e.g., Tepley 

et al., 2000) and compositional stratification of storage regions (e.g., Scott et al., 2013) 

believed to be common. Magma stored in the sub-volcanic plumbing system has long been 

portrayed as a body of liquid-rich (>50%) melt within a magma chamber (Daly, 1911). 

However, increasing evidence from eruptive products (e.g., entrained fragments of crystal-

rich enclaves) and geophysical signals of active volcanic systems have caused a paradigm 

shift away from large liquid-rich magma reservoirs to an extensive storage region comprising 

liquid-poor (5–15%), crystal-laden (85–95%) mush zones (e.g., Cashman et al., 2017; Holness 

et al., 2019). 

Magma recharge events (typically of mafic composition) that trigger an eruption have 

frequently been reported at intermediate volcanic systems, where the intrusion of hotter, less 

viscous magma interacts with a cooler, more evolved and crystal-rich magma (e.g., Murphy 

et al., 2000). The destabilisation by new magma can generate convection driven by heat, 

causing the remobilisation of the crystal-mush zone resulting in a mobile and eruptible magma 

that contains crystals with different origins (e.g., Huppert & Sparks, 1984; Nakamura, 1995; 
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Couch et al., 2001; Burgisser & Bergantz, 2011; Larrea et al., 2013; Cooper & Kent, 2014; 

Klemetti & Clynne, 2014; Bergantz et al., 2015).  

Conditions of magma storage, particularly temperatures and pressures, can be 

obtained through the application of chemical thermodynamics, which allows the assessment 

of magma in both equilibrium and disequilibrium states (e.g., Richet & Ottonello, 2010). 

Quantification of these intensive variables can be determined by geothermobarometry where 

chemical equilibrium is reached following a reaction involving two or more phases (Blundy 

& Cashman, 2008; Putirka, 2008). Thermometry (temperature-sensitivity) relies on reactions 

with high enthalpy changes that are commonly brought about by exchange reactions between 

different phases (e.g., Fe and Mg exchange). Barometers (pressure-sensitivity) require 

reactions involving high volume changes through net transfer of components from a reactant 

phase to a product phase. Based on these principles, it can provide useful information on the 

conditions of magma crystallisation. Subsequently, a range of geothermobarometers have 

been developed for such purposes, for example plagioclase-melt (Putirka, 2008), amphibole-

plagioclase (Holland & Blundy, 1994) and two-pyroxene (Putirka, 2008), which have been 

calibrated experimentally from known equilibrium pressure and temperature conditions in the 

laboratory. New and pre-existing geothermobarometers are frequently being developed to 

improve accuracy of pressure and temperature estimates. In particular, amphibole is a widely 

used tool to estimate conditions of pre-eruptive magma conditions (e.g., Rutherford & Hill, 

1993; Browne & Gardner, 2006; Ridolfi et al., 2010; De Angelis et al., 2015) due to their 

composition and texture being highly sensitive to many magmatic variables (e.g., pressure, 

temperature, H2O content, oxidation state (fO2)). Ridolfi et al. (2010) and Ridolfi and Renzulli 

(2012) demonstrated that due to this sensitivity, amphibole composition alone can be used as 

an estimate for physical and chemical conditions in calc-alkaline magmas, allowing 

construction of empirical thermobarometric equations. These equations include estimates for: 

(1) temperature, which is strongly influenced by Si and Ti concentration; (2) pressure, 

dependent on total Al content; (3) fO2 from Mg and Ti content; and (4) dissolved melt H2O 

content, which is most sensitive to Al concentration. This model has been validated by 

comparing it to other geothermobarometers and seismic data of magma storage, and 

subsequently has been widely used to constrain conditions of crystallisation at many 

intermediate volcanic systems (e.g., Scott et al., 2012; Shane & Smith, 2013; Kiss et al., 2014; 

Nagasaki et al., 2017). 

Mineral reactions with the surrounding melt can provide information about magma 

ascent processes. For example, amphibole is a ubiquitous hydrous mineral in many 

subduction-related volcanic systems that forms within a hydrous melt and crystallises within 

the deeper magmatic system where water contents are high (up to several wt.% H2O) as they 
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are yet to exsolve. When forced out of their stability zone (i.e., in disequilibrium with the 

surrounding melt), they breakdown to form a reaction rim of anhydrous mineral phases 

(pyroxene, plagioclase and Fe-Ti oxides). Textures of amphibole reaction rims (thickness, 

mineralogy and grain size/shape) have been investigated to reconcile the process driving their 

destabilisation, such as decompression (e.g., Rutherford & Hill, 1993; Browne & Gardner, 

2006; Buckley et al., 2006), heating (e.g., Murphy et al., 2000; Rutherford & Devine, 2003) 

and oxidation (e.g., Garcia & Jacobson, 1979). Isothermal decompression experiments 

(Rutherford & Hill, 1993; Browne & Gardner, 2006) were the first to successfully replicate 

amphibole breakdown rims by reducing the amount of H2O in the melt, which demonstrated 

that rim thickness may be used as a proxy for magma ascent rates and resulted in a calibrated 

model that is still extensively used today (Rutherford & Hill, 1993). However, decompression 

driving such a reaction may be considered an oversimplification, with a more recent 

experimental investigation (De Angelis et al., 2015) highlighting that breakdown rims can 

also form by heating the magma above its stability field and on much shorter timescales (hours 

rather than days for decompression; Fig. 1.3). Consequently, owing to their high sensitivity, a 

range of processes that trigger thermal instabilities in the shallow volcanic conduit, 

particularly in dome-building systems, may cause amphibole to destabilise (see Chapter 2). 

 

Figure 1.3 – Experimental heating-induced amphibole reaction rims (from De Angelis et al., 

2015). For the experiments, amphiboles were held within their stability field (870 ºC and 140 

MPa) for 24 hours for equilibration, and then heated for either 10, 30 and 50 ºC and held for 

a further 3–48 hours. (a–f) Mineral X-ray maps for the experiments heated 30 ºC above the 

amphibole stability field and held for 3–48 hours. Breakdown rims formed within 3 hours and 

completely broke down to pseudomorphs after 36 hours, demonstrating the importance of 

temperature on amphibole destabilisation. 
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The most fundamental process that takes place during magma ascent is volatile 

exsolution of the melt phase (i.e., degassing), driven primarily by decompression, as volatiles 

are less soluble at lower pressures (e.g., Papale et al., 2006).  For silicate melts, H2O is the 

dominant volatile species (up to several wt.%; e.g., Carmichael, 2002) along with less 

abundant CO2, SO2 and Cl (e.g., Wallace, 2005); the extent of degassing is thus controlled by 

the amount of H2O in the melt during ascent (e.g., Dingwell et al., 1996). During 

decompression, the exsolution of these volatiles causes nucleation and growth of bubbles and 

crystallisation (Sparks, 1978; Tait et al., 1989), which has a drastic effect on magma rheology 

at low pressures (<2 km depth; e.g., Dingwell, 1996). For crystallisation to take place, volatile 

exsolution causes an increase in the stability of anhydrous minerals (particularly plagioclase) 

by increasing their liquidus temperature relative to the temperature of the magma (Kirkpatrick, 

1981), termed effective undercooling (T), which promotes the formation of groundmass 

microlites (e.g., Cashman, 1992; Geschwind & Rutherford, 1995; Hammer et al., 1999; 

Hammer et al., 2000). Over the past two decades, extensive experimental investigations 

(Hammer & Rutherford, 2002; Couch et al., 2003; Brugger & Hammer, 2010) have linked the 

amount of T, decompression style and plagioclase microlite textures. These experiments 

importantly demonstrated that these textures are reproducible on eruptive timescales (e.g., 

Geschwind & Rutherford, 1995). The rate of decompression, and thus volatile exsolution, has 

been shown to be influential to crystallisation kinetics (i.e., crystal nucleation and growth), 

and it is reported that magma ascent rate has an integral role on eruption style (effusive or 

explosive; e.g., Toramaru et al., 2008; Cassidy et al., 2015; Cassidy et al., 2018). When the 

melt experiences a higher T, crystal nucleation dominates leading to the formation of 

numerous small microlites, while a lower T favours crystal growth, resulting in fewer but 

larger microlites (Mollo & Hammer, 2017). Additionally, experiments have related feldspar 

crystal shape to T, where crystals change from equant/ tabular to more elongate/ acicular 

with increasing T (Hammer & Rutherford, 2002; Couch et al., 2003).  

Naturally, many studies have compared the groundmass textures of eruptive products 

(i.e., crystal size, shape, abundance), particularly of volcanic ash, with these experimentally 

calibrated models to infer pre-eruptive conduit processes prior to and during an eruption, 

including magma ascent rate, decompression path (i.e., continuous, single-step or multi-step) 

and volatile content (e.g., Cashman & Blundy, 2000; Hammer et al., 2000; Noguchi et al., 

2008b; Toramaru et al., 2008; Miwa et al., 2009; Preece et al., 2013; Cassidy et al., 2015; 

Preece et al., 2016). However, temperature changes due to magma ascent processes in the 

volcanic conduit are unconstrained by these models. In particular, crystallisation during 

magma ascent can release latent heat (Blundy et al., 2006), which could contribute up to 

100 ºC temperature rise, further influencing petrological reactions and subsequent textures. 
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1.4.  MAGMA RHEOLOGY 

Rheology is a term used to describe how a material flows under given stress 

conditions. The processes that take place in a volcanic conduit influence its rheological 

behaviour, owing to magmas’ physicochemical changes that alter the dynamics of magma 

ascent. The volcanic dilemma, to flow or blow, is commonly attributed to a change in magma 

rheology (Dingwell, 1996). Magmas are comprised of silicate melts which are viscoelastic 

liquids (i.e., exhibit properties of both a viscous body and elastic solid), following the 

theoretical notion of Maxwell (1867), that abides to the timescales of structural relaxation 

(Dingwell & Webb, 1989). The boundary between the liquid and glassy state of a melt is 

known as the glass transition (Tg), which is a compositionally-unique kinetic barrier that varies 

as a function of temperature and strain rate (Dingwell & Webb, 1989; Webb & Dingwell, 

1990). At low strain rates (or long timescales) the melt behaves as a Newtonian liquid, while 

higher strain rates (or short timescales that approach the timescales of structural relaxation) it 

forces the melt to behave as a glass, causing brittle failure. This phenomenon illustrates silicate 

melts’ temperature and strain-rate dependence of viscosity (Fig. 1.4), a concept that has been 

invoked in many eruptive scenarios to contribute to the ductile-brittle transition in magmas, 

particularly fragmentation during explosive eruptions (e.g., Gonnermann & Manga, 2003). 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – Illustration of the glass transition (Tg) in strain rate (time-reciprocal) 

temperature space (modified from Dingwell, 1996). The liquid state refers to when a melt is 

relaxed, and deformation is slower (low strain rates) than the timescale of structural 

relaxation. During faster deformation (high strain rates) the timescale of structural relaxation 

is approached, resulting in an elastic response of the melt and a shear-thinning, non-
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Newtonian behaviour, eventually leading to brittle failure. Variations in silica and water 

content also influence the position of Tg, highlighting the importance of degassing (loss of 

water) and crystallisation (increase in silica) on the melt’s mechanical behaviour during 

magma ascent. 

 

Composition and volatile content (particularly H2O) of the melt have a large influence 

on melt viscosity, with decreasing silica content and increasing water content favouring 

viscous flow over brittle failure (Dingwell, 1996; Giordano et al., 2008). The viscosity of 

silicate melts can vary over several orders of magnitude (from 101 to 1012 Pa.s.); 

experimentally calibrated models for constraining the non-Arrhenian, temperature-

dependence of melt viscosity for a range of compositions has consequently been generated 

(Hess & Dingwell, 1996; Giordano et al., 2008).  

During transport through the crust, magma evolves from a single-phase melt 

(although sometimes with rare bubbles and crystals) to a multi-phase mixture through the 

addition of suspended crystals and bubbles owing to volatile exsolution, which can interact to 

bring complex rheological changes and a non-Newtonian rheology. The influence of bubbles 

on magma rheology depends on their ability to interact during flow. If they behave as rigid 

objects they can increase viscosity, but if they are able to deform freely, they may reduce 

viscosity (e.g., Manga et al., 1998; Lejeune et al., 1999; Llewellin & Manga, 2004). However, 

magmas feeding lava dome eruptions are commonly crystal-rich (>50% crystallinity) with 

low porosity (<35%) that results from relatively slow extrusion rates and extensive degassing 

in the shallow conduit (Nakada & Motomura, 1999; Cashman & Blundy, 2000; Kueppers et 

al., 2005; Lavallée et al., 2012b). Crystals represent rigid suspensions that can cause 

complexities to rheological flow laws, fundamentally increasing magma viscosity (e.g., 

Lejeune & Richet, 1995; Stevenson et al., 1996; Caricchi et al., 2007; Lavallée et al., 2007; 

Cordonnier et al., 2009; Costa et al., 2009). Crystal fraction has a significant control on 

rheological dynamics, where melts with low crystal fractions behave as Newtonian fluids 

converting to non-Newtonian once a maximum packing fraction is reached (Caricchi et al., 

2007; Cordonnier et al., 2009; Cordonnier et al., 2012; Moitra & Gonnermann, 2015). The 

maximum packing fraction represents a critical threshold in which crystals can interact and 

hamper flow, causing a non-linear increase in viscosity (e.g., Einstein, 1906; Roscoe, 1952). 

The extent of crystal interaction is dependent on their shape, size and distribution (e.g., Saar 

et al., 2001; Mueller et al., 2011; Picard et al., 2011). In particular, particle aspect ratio exerts 

a strong control on the maximum packing fraction. Crystals with higher aspect ratios (i.e., 

elongate) can create a locking effect allowing crystals to interact at lower packing fractions, 

having a greater impact on the viscosity than more equant crystals (Mueller et al., 2010; 
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Mueller et al., 2011). However, magmas typically contain crystals with different shapes and 

sizes (i.e., from phenocrysts and microlites). Such polydispersity can have a large effect on 

rheology, yet quantifying the role of polydisperse suspensions remains an area of active 

research (e.g., Cimarelli et al., 2011; Mader et al., 2013).  

At high crystallinities (>50%), typical of dome lavas, crystals begin to interact via 

partitioning strain and adopt a single rheological law and a shear-thinning rheology (viscosity 

decreases with strain rate; Caricchi et al., 2007; Lavallée et al., 2007; Costa et al., 2009; 

Mueller et al., 2010; Mader et al., 2013). Rheological models have subsequently been 

developed that link magmas’ non-Newtonian behaviour with crystal content and strain rate 

(Fig. 1.5; Caricchi et al., 2007; Costa et al., 2009). In particular, a rheological law for the non-

Newtonian behaviour of crystal-rich dome lavas was developed by Lavallée et al. (2007), 

derived from parallel plate experiments on natural samples, demonstrating the strain-rate 

dependence of viscosity at eruptive temperatures. Such models have further been developed 

to assess failure criteria for crystalline dome lavas at a range of strain rates, temperatures and 

porosities (e.g., Cordonnier et al., 2009; Cordonnier et al., 2012; Lavallée et al., 2012b; Coats 

et al., 2018). Although these rheological models do not take into account natural dispersity of 

crystal sizes and shapes, they give a first order relationship across a broad range of strain rates 

and crystal fractions, which have greatly improved our understanding of magma ascent 

dynamics in the volcanic conduit during dome-building eruptions. 

 

 

 

 

 

 

 

 

Figure 1.5 – Effect of crystal fraction () and strain rate () on the relative viscosity (r) of 

magmas (from Caricchi et al., 2007). The colour bar denotes r. The rheological model shows 

that with increasing crystal fraction the r increases, while an increase in  causes a decrease 

in r causing a shear-thinning, non-Newtonian behaviour. Crystal-bearing magmas, such as 

those at lava domes, are thus ideal candidates for strain localisation in high strain regions of 

the volcanic conduit during magma ascent. 
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1.5.  STRAIN LOCALISATION, MAGMA SHEARING AND FRICTION 

A consequence of magmas’ non-Newtonian, shear-thinning rheology is that it 

promotes strain localisation in regions of most stress, causing crystals and bubbles to rearrange 

and deform (Lavallée et al., 2007; Okumura et al., 2009; Petford, 2009; Wright & Weinberg, 

2009). The ascent of high viscosity, crystal-laden magma facilities the localisation of stress 

and strain near the conduit margins which generates a velocity gradient across the conduit 

resulting in a “plug flow” style ascent (e.g., Llewellin & Manga, 2004; Hale, 2007; Hale et 

al., 2007). Marginal shear zones may develop in such regions, which are then subjected to a 

range of transient deformation modes as magma ascents through the viscous-brittle transition, 

preserving evidence for strain within bubbles and/ or crystals. Magma shearing is deemed as 

a pervasive process that can take place across the entire width of a conduit, albeit to varying 

extents, and may propagate to great depths in the conduit (Costa et al., 2007; Cashman et al., 

2008). Strain localisation in the volcanic conduit has previously been assessed using vesicle 

shapes preserved in rapidly quenched eruptive products (i.e., pumice clasts; Wright & 

Weinberg, 2009; Dingwell et al., 2016); elongated, sheared vesicles have been interpreted to 

be the result of high strain rates near the conduit margins. However, during the slow extrusion 

of dome lavas, these textures are likely to be erased as a result of relaxation timescales, where 

surface tension takes over in the absence of shear causing deformed bubbles to relax to a 

spherical shape (e.g., Rust & Manga, 2002) or a simplified network (e.g., Kennedy et al., 

2016). Consequently, assessing strain conditions in the volcanic conduit during dome-building 

eruptions remains problematic. 

Crystals may also act as indictors of stress concentration (e.g., Deubelbeiss et al., 

2011). Strain conditions during viscous flow have previously been assessed by the preferential 

orientation of crystals within a melt (e.g., Castro et al., 2002; Picard et al., 2011), while in the 

brittle regime crystals can fracture and comminute under high stresses (e.g., Allen & McPhie, 

2003; Cordonnier et al., 2009; Forien et al., 2011). However, prior to failure in high strain 

conditions, crystals may exhibit a permanent deformation by deforming plasticity, as 

evidenced in many tectonic, mylonitic shear zones (e.g., Vernon, 2000; Selverstone et al., 

2012) and plutonic intrusions (e.g., Murray, 1979; Vernon & Paterson, 1993; Zibra et al., 

2012). Crystal plasticity is a permanent strain that develops when a shear stress exceeds a 

crystal’s yield stress causing the formation and accumulation of dislocations in a crystal’s 

lattice (Fig. 1.6; e.g., Poirier, 1995; Brewer et al., 2006). A recent experimental study by 

Kendrick et al. (2017) highlighted crystal plasticity in extrusive lavas may be used as an outlet 

for strain during magma ascent through the viscous–brittle transition in the volcanic conduit. 

Crystal plasticity is a relatively new concept in the context of volcanic eruptions and has yet 
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to be explored at outcrop scale; however, its systematic variation as a function of imposed 

strain conditions reveals a potential for using it to unravel the extent of strain localisation 

during magma ascent and eruption (see chapter 2). 

Figure 1.6 – Schematic of a dislocation in a crystal lattice leading to crystal plastic 

deformation (from Kendrick et al., 2017). The development of a dislocation involves: (a) 

isostatic stress and no deformation; (b) elastic strain caused by differential stress; (c) the 

crystal lattice yields causing a dislocation to form; (d) the dislocation migrates along the 

lattice under continued stress, leaving internal distortions, and eventually passes through (e); 

(f) differential stress removed and elastic strain recovered. If a dislocation passes all the way 

through the crystal lattice, no internal distortion would be recorded. A quantification of 

crystal plasticity requires dislocations to move and accumulate within the lattice (c–d) without 

passing all the way through (e-f). 

 

The mechanical work associated with shear deformation may be converted to viscous 

shear heating, defined as the dissipation of viscous energy in the liquid state (Ockendon, 

1979). Shear heating has previously been reported to generate > 100 ºC temperature rise in 

areas of most strain generating contrasts in viscosity within the magma (Rosi et al., 2004; 

Mastin, 2005; Costa et al., 2007; Hale et al., 2007). Additionally, rheological experiments by 

Hess et al. (2008) recorded increased magma temperatures with increased applied stress due 

to shear heating, and measured rates of a few ºC/s in highly viscous melt (from 108 to 1012 

Pa.s.) when subjected to strain rates exceeding 10-3 s-1. A thermal input associated with shear 

heating may cause a physical and chemical alteration of the magma and thus play a role in 

defining eruption style by altering magma flow dynamics in the conduit (e.g., Polacci et al., 

2001; Costa & Macedonio, 2003; Hale, 2007). Evidence for shear heating has previously been 

reported to take place in the conduit during explosive eruptions (e.g., Polacci et al., 2001; Rosi 

et al., 2004), relating different degrees of vesicle deformation and crystallinity of pumice 
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clasts to being derived from different regions of the conduit. Such a process has been 

theoretically constrained and modelled assuming magma ascent through a pipe-like conduit 

geometry (Hale et al., 2007), yet the thermal impact of magma shearing on eruption dynamics 

remains elusive, raising questions on the thermal budget of magma during ascent in the 

shallow conduit (see chapter 2). 

Magma failure is integral for dome-building eruptions. Magma can either fail by 

forming localised fractures in regions of high strain, or fragment via decompression if pore 

pressures overcome magma strength, leading to an explosive eruption (e.g., Gonnermann, 

2015). Fracture formation takes place during strain localisation forcing magma to encounter 

the brittle regime, which prevents pressure accumulation and facilitates outgassing if 

connected to the surface (e.g., Smith et al., 2001; Gonnermann & Manga, 2003; Spieler et al., 

2004; Tuffen et al., 2008; Smith et al., 2011; Lavallée et al., 2013). If fractures propagate to 

the surface the lava may extrude in a near solid-state as a lava spine that forces through the 

dome carapace bounded by fault zones (e.g., Cashman et al., 2008; Kennedy et al., 2009; 

Kendrick et al., 2012; Pallister et al., 2013; Hornby et al., 2015). Spines typically form either 

at the beginning of an eruptive phase, forcing relics of old, degassed lava out of the conduit, 

or at the end of an eruptive phase when extrusion rate slows down causing viscosity to increase 

(e.g., Nakada et al., 1999). Classic examples of lava spines (Fig. 1.7) include those that formed 

during the 1902 eruption of Mount Pelée, Martinique (e.g., Tanguy, 2004), the 2004–2008 

eruption of Mount St. Helens (e.g., Sherrod et al., 2008; Pallister et al., 2013), and the 1991–

1995 eruption of Unzen volcano (e.g., Nakada et al., 1999). Spines that protract from a lava 

dome are structurally unstable, thus are prone to collapse, exposing remnants of the dome 

interior and providing a unique opportunity to assess syn-eruptive conduit processes (e.g., 

Nakada et al., 1999). Structures and textures of the 2004–2008 Mount St. Helens lava spine 

indicated pure brittle deformation during extrusion at sub-solidus conditions, evidenced by 

extensive marginal fractures, tensile dilation, comminution, and cataclastic gouge layers 

(Cashman et al., 2008; Kennedy et al., 2009; Kendrick et al., 2012; Pallister et al., 2013), yet 

further microstructural evidence suggested rapid heating by frictional processes may have 

been involved (Kendrick et al., 2012).  
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Figure 1.7 – Photographs of lava spines. (a) The 1902 lava spine from Mt. Pelée, Martinique, 

which reached a maximum height of 305 m before it collapsed in 1903 (from Lacroix, 1904). 

(b) 2004–2008 Mount St. Helens lava spine (credit: D. Dzurisin, USGS). (c) Unzen volcano 

lava spine which extruded towards the end of the 1991–1995 eruption. 

 

Magma ascent during dome-building eruptions has been observed to take place in 

cyclic behaviour due to frequent shallow seismicity emitted from the upper conduit (e.g., 

Voight et al., 1999; Iverson et al., 2006; Neuberg et al., 2006; Iverson, 2008; Johnson et al., 

2014; Lamb et al., 2015). These seismic signals are often accompanied by tilt cycles due to 

elastic deformation of the edifice causing the dome and/ or edifice to seemingly inflate and 

deflate (e.g., Neuberg et al., 2006; Johnson et al., 2014; Lavallée et al., 2015a; Neuberg et al., 

2018). Failure of magma and cyclic faulting in regions of strain localisation (i.e., conduit 

margins) is considered to modulate such a process, facilitating ascent in a piston-like manner 

with traction at the conduit walls (e.g., Iverson et al., 2006; Neuberg et al., 2006; Lensky et 

al., 2008; Neuberg et al., 2018). Seismogenic failure and the formation of fault planes near 

the conduit margins facilitates slip and friction, which ultimately dictate magma ascent in the 

shallow conduit (e.g., Lavallée et al., 2008; Kendrick et al., 2014b; Lavallée et al., 2015b). 

Extreme frictional work during co-seismic slip along fault planes can rapidly raise magmatic 

temperatures by several hundred degrees (i.e., frictional heating) causing local melting of the 

adjoining rocks (e.g., Carslaw & Jaeger, 1959), termed frictional melts, which then follow a 

temperature path during cooling and occasionally quenching rapidly to a glass. Evidence of 

frictional melting is preserved in the geologic record as pseudotachylyte (sometimes termed 

frictionite) and is likely a common product of viscous magma ascent in volcanic conduits 

feeding lava domes (Fig. 1.8; e.g., Kendrick et al., 2012; Kendrick et al., 2014a). 
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Figure 1.8 – Shear band hosting pseudotachylyte layers from Soufrière Hills Volcano, 

Montserrat (from Kendrick et al., 2014a). (a) Metre-sized andesitic block from a block-and-

ash flow displaying a shear band that cuts through the host rock with interlayered bands of 

pseudotachylyte and cataclasite formed by friction of viscous magma in the conduit. (b) 

Photomicrograph of the shear band and pseudotachylyte (red lines), along with lenses of 

cataclasite (yellow lines). Labelled minerals include plagioclase (Pl) and amphibole (Am). 

 

However, the preservation of frictional melts and pseudotachylytes in volcanic 

systems is poor owing to the high ambient temperatures in volcanic conduit and low stability 

of glass, which promotes crystallisation, thus overprinting distinguishing features (e.g., 

Kendrick et al., 2012; Kirkpatrick & Rowe, 2013). In the absence of visible melt filaments 

(from individual breakdown of minerals; e.g., Lavallée et al., 2012a), microtextures, such as 

a reduction in crystal size (e.g., Kendrick et al., 2012) accompanied by rounding of the crystal 

edges (e.g., Lin, 1999), have previously been given in evidence for frictional comminution 

and melting. Furthermore, magnetic analyses of a material have also been shown to provide 

useful information on its thermal history by the alteration of magnetic minerals (such as 

magnetite and haematite; e.g., Nakamura et al., 2002; Ferré et al., 2005; Freund et al., 2007; 

Kendrick et al., 2012). Demagnetisation is the most significant process, which can be caused 

by reheating events (such as frictional heating) that raise the magma above its Curie 

temperature. Additionally, chemical alteration of the magnetic minerals by hydrothermal 

activity (gas and fluid migration) or oxidation can also impact rock magnetic properties (e.g., 

Krása & Herrero-Bervera, 2005; Bouligand et al., 2014; Geuna et al., 2014). 
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High-velocity rotary shear experiments on igneous rocks have demonstrated frictional 

melting can take place after a fraction of a second or just a few centimetres of slip and control 

slip properties, either acting as a lubricant (e.g., McKenzie & Brune, 1972; Tsutsumi & 

Shimamoto, 1997) or viscous brake (e.g., Koizumi et al., 2004; Kendrick et al., 2014b). A 

frictional melt’s ability to act as a brake or lubricate has been demonstrated to be dependent 

on its rheological properties (e.g., Lavallée et al., 2012a; Hornby et al., 2015). As described 

in section 1.4, the rheological behaviour of a silicate melt is strongly controlled by 

composition, along with temperature and strain rate (Hess & Dingwell, 1996; Giordano et al., 

2008). Due to the rapid heating involved, frictional melting is a disequilibrium process and 

involves the selective melting of the constituent mineral phases (e.g., Scott & Drever, 1953; 

Sibson, 1975; Spray, 1992; Lin & Shimamoto, 1998). Subsequently, a hierarchy of common-

rock forming minerals susceptible to frictional melting was constructed (Fig. 1.9; Spray, 

1992). In volcanic rocks, hydrous minerals (e.g., amphibole), when present, are the most likely 

to preferentially melt due to their lower melting point compared to the rest of the mineral 

assemblage (e.g., plagioclase, pyroxene, quartz, Fe-Ti oxide), which may impact the 

compositional and rheological evolution of the frictional melt (e.g., Hornby et al., 2015). 

Additionally, extrusive volcanic rocks typically consist of a glass, which, due to its 

dependence on the glass transition (Fig. 1.4), may impact the frictional ‘melting’ (or 

remobilisation) process (Lavallée et al., 2015b). The ability of melt to act as an effective brake 

can cause slip to halt, potentially leading to cyclic failure and slip, termed stick-slip, 

generating a characteristic drumbeat seismicity commonly recorded during magma ascent at 

lava domes (e.g., Tuffen et al., 2003; Neuberg et al., 2006; Lensky et al., 2008; Kendrick et 

al., 2014b), particularly during the pulsatory extrusion of lava spines (e.g., Iverson et al., 2006; 

Pallister et al., 2013; Hornby et al., 2015; Lamb et al., 2015). In contrast, melts may lubricate 

fracture planes and facilitate magma ascent and expulsion. Thus, understanding the role slip 

and frictional melts requires detailed investigation of the contributing mineral phases during 

the melting process (see chapter 3).  
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Figure 1.9 – Mineral hierarchy for frictional melting susceptibility (from Spray, 2010). The 

approximate melting temperature versus Mohs hardness (HM), indentation hardness (HI), 

yield strength (y) and shear yield strength (k) for common rock-forming mineral phases. 
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1.6.  AIMS OF THE THESIS 

This thesis aims to constrain the impact of strain localisation on the geochemical, 

rheological and physical evolution of magma as it ascends in the volcanic conduit, and 

importantly to assess its role on eruption style. The focus is directed to crystal-rich, 

intermediate (andesite–dacite) lava domes where enigmatic shifts from effusive–explosive 

activity are common. Eruptive products from both effusive and explosive activity are analysed 

structurally, chemically and petrographically (Chapters 2, 3 and 4), while natural processes 

are replicated by laboratory experimentation (Chapters 2 and 3). The thesis also aims to 

highlight the importance of multidisciplinary datasets (including petrological, geochemical, 

rheological, crystallographic, microstructural, magnetics, geophysical, and experimentation) 

in gaining a compressive assessment of magmatic processes (Chapters 2 and 4).  

The thermo-mechanical response of magma in the shallow conduit (e.g., in shear and 

fault zones) remains elusive, with shear and frictional heating deemed a likely phenomenon 

during magma ascent. However, the role of thermal instabilities during shearing on the 

petrological architecture of the magma remains poorly constrained, which may alter magma 

permeability, outgassing efficiency and drive different modes of dome activity. Controls on 

the different deformation mechanisms as magma is transported in the shallow conduit 

(viscous, plastic and brittle) will be assessed in the field and by microstructural analysis. Lava 

spine extrusion following the 1991–1995 eruption at Unzen volcano (Nakada et al., 1999) 

provided the unique opportunity to assess in-situ the role of pre-eruptive conduit processes 

that are archived within the spine (Chapter 2). In recent years, efforts have focused on the 

viscous and brittle contributions, with little attention on the plastic regime, which may provide 

new insights on stress conditions in the conduit (Kendrick et al., 2017). Crystal plasticity is 

quantified by electron backscatter diffraction (EBSD), with the aim to drive EBSD as a useful 

tool in volcanology. The data gathered will provide insights into rheological changes that 

occur as magma ascends in the conduit and demonstrate the importance of crystals as they 

may act as an indicator of strain (Chapter 2 explores this in detail).  

Faulting and friction in the shallow volcanic conduit can dictate magma ascent style 

preceding an eruption. Extensive experimental studies have demonstrated the role of frictional 

melts on slip properties, acting as a lubricant or brake. In geological environments, frictional 

melts are silicate melts, thus like magmas, their behaviour is viscosity-dependent, which, in 

turn, is influenced by composition (along with temperature and strain rate). As frictional 

melting is defined as a selective mineral melting processes (Spray, 1992), it is apparent that 

the mineral assemblage of the host material is an essential factor that determines slip 

progression. Yet, the impact of mineralogy on a frictional melt’s chemical, textural and 
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rheological evolution remains relatively unexplored. Chapter 3 aims to address the importance 

of mineral assemblage on frictional melt properties by experimental and geochemical 

investigation, which will provide new insights on magma ascent dynamics controlling lava 

dome eruptions. 

The thesis will then move away from thinking specifically about strain localisation 

and apply our understanding of these processes to a constrain a shift in eruption intensity at 

Santiaguito dome complex, Guatemala, by integrating observations of petrological and 

geochemical signatures of explosive products (ash and bombs) with geophysical (seismic and 

infrasound) and thermal monitoring (Chapter 4). Regular, small-to-moderate gas-and-ash 

explosions at Santiaguito have previously been attributed to shear-driven processes at the 

conduit margins (e.g., Johnson et al., 2008; Sahetapy-Engel et al., 2008; Lavallée et al., 2015a; 

Fig. 1.2), yet a shift to less frequent, larger ash-rich explosions in 2015–2016 (as reported by 

Lamb et al., 2019) highlights the need to evaluate the magmatic plumbing system as a whole 

and the explosion mechanisms in play. 

 

1.7.  THESIS STRUCTURE 

Following this introduction chapter, which has provided a background to the thesis 

topic, the thesis moves onto the original research that was collected for this thesis. The thesis 

presented is paper-based, thus readers are referred to each individual chapter for details on the 

analytical and experimental techniques used. 

Chapters 2–4 are stand-alone papers presented in a logical order starting with pre-

eruptive conduit processes (Chapter 2: Magma shearing; Chapter 3: Frictional melting) that 

can alter the magma’s physical and chemical properties and influence eruption style, followed 

by a unique case study that marks a transition from effusive to explosive activity (Chapter 4: 

Santiaguito dome complex). Each manuscript has been reformatted for consistency throughout 

the thesis, with all references compiled at the end of the thesis in the bibliography. As these 

chapters are stand-alone published papers, there will be repetition of some key concepts and 

analytical methods used. 

Chapter 5 provides a succinct summary of the results from each chapter and discusses 

the implications of these new findings on a broader scale, along with future directions for this 

research topic. Following the bibliography, Appendices (I–III) of supplementary figures for 

Chapters 2–4 are provided. Large supplementary data tables are provided as Electronic 

Appendices on CD, attached to the inside back cover of this thesis. 
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Chapter 2  Petrological architecture of a 

magmatic shear zone: A multidisciplinary 

investigation of strain localisation during magma 

ascent at Unzen Volcano, Japan 

ABSTRACT 

Shearing of magma during ascent can promote strain localisation near the conduit margins. 

Any mechanical and thermal discontinuities associated with such events may alter the 

chemical, physical and rheological stability of the magma, and thus its propensity to erupt. 

Lava spines can record such processes, preserving a range of macroscopic and microscopic 

deformation textures, attributed to shearing and friction, as magma ascends through the 

viscous-brittle transition. Here, we use a multidisciplinary approach combining petrology, 

microstructures, crystallography, magnetics and experimentation to assess the evidence, role 

and extent of shearing across a marginal shear zone of the 1994–1995 lava spine at Unzen 

volcano, Japan. Our results show that crystals can effectively monitor stress conditions during 

magma ascent, with viscous remobilisation, crystal plasticity and comminution all 

systematically increasing towards the spine margin. Accompanying this, we find an increase 

in mineral destabilisation in the form of pargasitic amphibole breakdown displaying textural 

variations across the shear zone, from symplectitic to granular rims towards the spine margin. 

In addition, the compaction of pores, chemical and textural alterations of interstitial glass, and 

magnetic variations all change systematically with shear intensity. The strong correlation 

between the degree of shearing, crystal deformation and disequilibrium features, together with 

distinct magnetic properties, implies a localised thermal input due to shear and frictional 

processes near the conduit margin during magma ascent. This was accompanied by late-stage 

or post-emplacement fluid- and gas-induced alteration of the gouge, as well as oxidation and 

glass devitrification. Understanding and recognising evidence for strain localisation during 

magma ascent may, therefore, be vital when assessing factors that regulate the style of 

volcanic eruptions, which may provide insights into the cryptic shifts from effusive to 

explosive activity as observed at many active lava domes. 
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2.1.  INTRODUCTION 

The characteristics of erupted lavas reflect a complex series of magmatic events from 

crystallisation, crystal segregation, chemical speciation, magma mixing, ascent, degassing, 

eruptive shearing and deposition. Strain localisation during the ascent of high viscosity 

magmas at lava domes may have an influential role on many pre-eruptive conduit processes 

as well as eruption dynamics. The ability for strain to preferentially localise during magma 

ascent is favoured by the magma’s non-Newtonian response, following crystallisation (e.g., 

Lejeune & Richet, 1995) and gas exsolution (e.g., Llewellin & Manga, 2004). This, in turn, 

can promote a transition from a Poiseuille to plug-like flow (Hale, 2007; Hale et al., 2007), 

facilitating the formation of discrete shear zones near conduit margins (Hale & Wadge, 2008; 

Lavallée et al., 2013) which may be more (Gaunt et al., 2014) or less permeable (Kendrick et 

al., 2013a) than the bulk of the magma. Where marginal shear zones with relatively high 

permeabilities (Gaunt et al., 2014) surround a relatively dense, degassed magma core, 

temporal sealing of these regions may cause gas pressure to accumulate below the plug and 

consequently fragment causing explosive activity and/or dome destabilisation (Voight et al., 

1999; Mason et al., 2006; Clarke et al., 2007; Lensky et al., 2008; Michaut et al., 2009; 

Kennedy et al., 2010; Ashwell et al., 2015; Farquharson et al., 2016b; Heap et al., 2017). 

Upon ascent, magma may encounter the viscous-brittle transition, beyond which, faulting 

processes can dominate (Kendrick et al., 2012). If faulting extends to the surface, it may result 

in the extrusion of a lava spine piercing through the dome carapace, contributing to the 

exogenous growth of dome-building eruptions (Mount St. Helens, USA – e.g., Cashman et 

al., 2008; Soufrière Hills volcano, Montserrat – e.g., Melnik & Sparks, 2002; Unzen volcano, 

Japan – e.g., Nakada et al., 1999; and Mont Pelée, Martinique – e.g., Tanguy, 2004). Hence, 

a lava spine provides a relic of magma shearing and faulting processes in the shallow volcanic 

conduit. 

Understanding the processes involved in spine extrusion may aid in constraining the 

complexities associated with ongoing eruptions at lava domes. Many lava domes are crystal-

rich. Crystals have the propensity to physically interact within the flowing magma by 

partitioning strain (e.g., Caricchi et al., 2007; Lavallée et al., 2007; Picard et al., 2011), 

promoting strain localisation (Cordonnier et al., 2009; Lavallée et al., 2012b; Lavallée et al., 

2013), and, as such, preserve deformation textures (e.g., Kendrick et al., 2017). The interaction 

of crystals has been observed and parameterised in many experimental investigations (e.g., 

Caricchi et al., 2007; Cordonnier et al., 2009; Forien et al., 2011; Picard et al., 2011), being 

portrayed as acting to localise stress, forming a rigid network. However, stress concentration 

(e.g., Deubelbeiss et al., 2011) may result in plastic deformation of the crystalline phase 

(Kendrick et al., 2017) and even fracturing (Lavallée et al., 2007; Cordonnier et al., 2009; 
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Forien et al., 2011; Coats et al., 2018) as magma undergoes the viscous-brittle transition. This 

characteristic suggests crystal plasticity and fracturing of crystals (also termed comminution 

when induced by shear) may play roles in accommodating strain, and that crystals in erupted 

lavas can act as deformation markers of shallow volcanic processes. Until now, the extent of 

crystal plasticity in extrusive lavas has yet to be explored at outcrop scale, and its role remains 

unquantified. 

Previous investigations on the mechanical processes of spine growth at Mount St. 

Helens observed multiple forms of evidence supporting brittle deformation at the conduit 

margin (e.g., Kennedy et al., 2009), resulting in a 1–3 m thick mantle of gouge dominated by 

tensile fracturing, granulation and cataclasis, all thought to form at sub-solidus conditions at 

<1 km depth (Cashman et al., 2008; Pallister et al., 2013). The products revealed no 

microstructural evidence of subsequent annealing, high-temperature viscous flow or solid-

state crystal plasticity (Cashman et al., 2008; Kennedy et al., 2009), although solid-state 

sintering has been attributed to the lithification of fault gouge at the spine margin (Ryan et al., 

2018). However, Kendrick et al. (2012) examined the latest spine at Mount St. Helens, finding 

evidence for the role of rapid heating in the form of textural and microstructural evolution, 

complemented by geochemical, mineralogical, kinetic and magnetic analyses of the sheared 

region of the spine 7 margin. 

It has become increasingly recognised, via theoretical models (e.g., Costa & 

Macedonio, 2003; Mastin, 2005; Vedeneeva et al., 2005; Hale et al., 2007), experimentation 

(Hess et al., 2008; Lavallée et al., 2012a; Kendrick et al., 2014b; Hornby et al., 2015) and 

detailed petrological constraints (e.g., Rosi et al., 2004; Wright & Weinberg, 2009), that shear 

and/or frictional heating in areas of strain localisation may locally raise magmatic 

temperatures. Shear heating is a thermodynamic response to the dissipation of viscous energy 

(Ockendon, 1979); similarly, fault friction can also generate substantial thermal input 

(Carslaw & Jaeger, 1959). The plug-like flow that characterises the extrusion of lava domes 

makes them more susceptible to these thermal effects, contributing to shifts in rheology that 

dictate magma ascent dynamics. It has been proposed, based on numerical modelling, that 

temperature rises of >100 ºC near the conduit margins are attainable due to viscous 

deformation (Rosi et al., 2004; Mastin, 2005; Costa et al., 2007; Hale et al., 2007). In contrast, 

fault friction, although localised on narrow planes, can generate a temperature rise of several 

hundred degrees (e.g., Lavallée et al., 2012a; Kendrick et al., 2014b; Hornby et al., 2015; 

Lavallée et al., 2015a). Such temperature increases could alter the magmas physical and 

chemical properties; in detail, heating could: drive mineral reactions (e.g., De Angelis et al., 

2015), melt crystalline phases (e.g., Kendrick et al., 2014b), re-set magnetic properties (e.g., 

Kendrick et al., 2012), trigger vesiculation (Lavallée et al., 2015a), lower interstitial melt 
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viscosity (e.g., Hornby et al., 2015), redistribute and collapse pores (e.g., Laumonier et al., 

2011) altering degassing pathways (e.g., Kendrick et al., 2014a; Ashwell et al., 2015), and 

more efficiently heal fractures (e.g., Tuffen et al., 2003; Lamur et al., 2019). In glass-bearing 

rocks at lower temperatures, a thermal input could push them above the glass transition 

temperature (Tg), a kinetic barrier that is dependent on the timescales of structural relaxation 

where the glass softens to a melt (Dingwell & Webb, 1989; Webb & Dingwell, 1990), enabling 

viscous remobilisation (e.g., Hornby et al., 2015; Lavallée et al., 2015a). Although becoming 

increasingly explored through laboratory experiments, few studies have documented the 

effects of shear or frictional heating in shallow volcanic conduits from a physical volcanology 

perspective (Smith et al., 2001; Rosi et al., 2004; Tuffen & Dingwell, 2005; Kendrick et al., 

2012; Kendrick et al., 2014a; Hornby et al., 2015; Lavallée et al., 2015a). Recognising 

evidence for strain localisation and the related thermal feedback processes should not be 

overlooked when assessing dome longevity and could contribute to cryptic shifts in eruption 

style (Sparks, 1997; Cashman & Sparks, 2013; Cassidy et al., 2018). 

Spine extrusion during the closing of the 1991–1995 lava dome eruption and 

subsequent quiescence at Unzen volcano, Japan, provided the unique opportunity to explore 

the occurrence, extent and role of shearing on crystal deformation and thermal disequilibrium 

during magma ascent. Here, we present the first systematic study of the mineralogy, 

microstructures, crystal size and shape distribution, mineral stability, and magnetic properties 

across a sheared margin of Unzen lava spine, where we explore the results in the context of 

syn-emplacement deformation and subsequent alteration. The data are complemented by the 

first high-temperature high-velocity rotary shear experiment on volcanic materials to simulate 

the conditions during eruptive shear. 
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Figure 2.1 – Unzen volcano and lava dome heterogeneity. (a) Map showing the location of 

Unzen volcano in southwestern Japan (created using ArcGIS® software by Esri™ under 

copyright © license; Esri, 2015). The inset shows the Shimabara Peninsula with Unzen 

volcano denoted with a triangle (Esri, 2009). (b) View of the eastern side of Unzen lava dome. 

(c) Dome summit displaying large, polygonal blocks with a range of deformation textures and 

variable degrees of oxidation. The lava spine can be seen having extruded from the top of the 

dome. (d) Eastern side of the 1994–1995 lava spine revealing multiple, broken segments and 

larger in-situ slabs, with the main spine residing in the background. (e) Example of an 

undeformed dome block with no macroscopic deformation, little alteration and negligible 

oxidation. (f) Close-up textures of an undeformed block consisting of large, euhedral, white 

plagioclase phenocrysts, along with dark amphibole and biotite crystals. (g) Example of a 

highly deformed dome block with moderate oxidation, consisting of shear bands and 

conjugate fractures. (h) Close-up textures of an extremely deformed block consisting of 

smeared plagioclase phenocrysts and elongated, oxidised amphibole crystals. 
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2.1.1.  Overview of the 1991–1995 dome eruption 

Unzen volcano is a stratovolcano located in southwest Japan on the Shimabara 

Peninsula (Fig. 2.1a). Since its formation ca. 500 ka, its historical activity consists dominantly 

of thick lava flows, domes, and their subsequent collapse deposits, which range from andesites 

to dacites, and notably lacks extensive explosive episodes (Hoshizumi et al., 1999; Nakada et 

al., 1999). The latest eruption took place between 1991–1995 following 198 years of 

dormancy, leading to the growth of a dacitic lava dome (Fig. 2.1b) with eruptive products 

having a narrow compositional variability of 64.5–66.0 wt % SiO2 (Nakada & Motomura, 

1999). A full description of the 1991–1995 dome-building eruption has been given by Nakada 

et al. (1999) and is briefly summarised here. On 20 May 1991, a dacitic lava dome appeared 

for the first time at Unzen volcano after persistent phreatic and phreatomagmatic activity 

several months prior (Nakada & Motomura, 1999; Nakada et al., 1999). The eruption lasted 

~4 years and was the most voluminous in Unzen’s history, being temporally characterised by 

two styles of dome growth; exogenous and endogenous. Exogenous growth occurred when 

effusion rates were high from May 1991 to November 1993 (Nakada et al., 1995; Nakada & 

Motomura, 1999), which contributed to the formation of 13 lava lobes (Sato et al., 1992; 

Nakada & Fujii, 1993; Nakada & Motomura, 1999; Nakada et al., 1999) and repetitive dome 

collapse events generating block-and-ash flows and pyroclastic density currents (Yamamoto 

et al., 1993; Miyabuchi, 1999; Ui et al., 1999; Sakuma et al., 2008). The dome grew 

endogenously when effusion rates waned (from November 1993 onwards) causing rhythmic 

inflation-deflation cycles (Nakada & Motomura, 1999; Nakada et al., 1999). By mid-October 

1994 to mid-February 1995 exogenic growth resumed as a lava spine extruded from the 

western limits of the endogenous crater (Fig. 2.1c and d; Nakada & Motomura, 1999; Nakada 

et al., 1999; Saito & Shikawa, 2007). Spine growth was accompanied by tilt cycles and 

shallow swarms of seismicity in 40–60 hour cycles (Nakada et al., 1999; Yamashina et al., 

1999; Umakoshi et al., 2008), attributed to pressure fluctuations (Hendrasto et al., 1997; 

Kohno et al., 2008) or traction during fault-controlled pulsatory magma ascent (Hornby et al., 

2015; Lamb et al., 2015). The spine extruded obliquely at an angle of ~45º towards the east-

south-east, consistent with the inclined nature of the conduit (Umakoshi et al., 2001; Kohno 

et al., 2008; Tanaka, 2016), with a final dimension of 150 m long, 30 m wide and 60 m high 

(Nakada et al., 1999). After the eruption ended, cooling contraction of the underlying dome 

led to partial collapse of the spine leaving behind dissected blocks that are detached from the 

main spine (Fig. 2.1d; Nakada et al., 1999). 

 

 



 31 

2.1.2.  Magma feeding the 1991–1995 eruption 

Based on petrographic evidence of the erupted products, the 1991–1995 eruption has 

been interpreted to be the result of magma mixing that took place within a ~7–8 km deep 

magma reservoir (e.g., Nakamura, 1995; Venezky & Rutherford, 1999; Holtz et al., 2005; 

Kohno et al., 2008; Sato et al., 2017). The abundance of disequilibrium textures, including 

reversely zoned plagioclase and hornblende phenocrysts, diffusion profiles of magnetite 

phenocrysts, biotite reaction rims consisting pargasitic amphiboles and embayed quartz, has 

suggested interaction of two compositionally contrasting magmas (e.g., Nakada & Fujii, 1993; 

Nakamura, 1995; Nakada & Motomura, 1999; Venezky & Rutherford, 1999). These 

observations, along with experimental investigations, demonstrated that mixing involved a 

high-temperature (~1050 ºC) aphyric andesite and a low-temperature (~790 ºC) crystal-rich 

rhyodacite, resulting in a mixed 870–900 ºC dacite (Venezky & Rutherford, 1999; Holtz et 

al., 2005). Most phenocrysts are interpreted to have derived from the low-temperature end-

member, while the groundmass assemblage is believed to be representative of a post-mixed 

melt (Nakada & Motomura, 1999; Cichy et al., 2011). The common occurrence of mafic 

enclaves further supports this model and has placed constraints on the different residence 

times between the different magmas involved (Sato et al., 2017). Fe-Ti oxide re-equilibration 

experiments have suggested that mixing took place a few weeks before the start of the eruption 

(Venezky & Rutherford, 1999), and that continuous or intermittent mixing may have taken 

place throughout the eruptive period (e.g., Nakamura, 1995; Venezky & Rutherford, 1999; 

Holtz et al., 2005). Although mixing likely continued during ascent from the magma reservoir 

(Nakada & Motomura, 1999), the Unzen Scientific Drilling Project demonstrated that the 

conduit from ca. 1 km depth consisted of a thoroughly mixed dacite (Goto et al., 2008). 

 

2.2.  METHODS 

2.2.1.  Sample collection 

To explore evidence for strain localisation and its implications for the mineralogical 

signature of ascending magma, the focus of the study was directed to two intact shear zones 

(Fig. 2.2a and Fig. 2.3a). Outcrop 1 (Fig. 2.2a), located ~60 m east of the main spine (Latitude: 

32.761313º Longitude: 130.299826º), represents a quasi-continuous gradation across a faulted 

margin of the spine. The shear zone is elongated towards the south-south-east (158º) with a 

dimension of 4.5 m long, 3.7 m wide and 2.5 m high. Based on the nature and degree of 

deformation observed, the shear zone was subdivided into four structurally discrete units (see 

results section “Field observations” for description), including: gouge (Fig. 2.2b); a “high 

shear” zone (Fig. 2.2c, d and e); transitioning to a “moderate shear” zone (Fig. 2.2f and g); 
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and a relatively undeformed core termed “low shear” (Fig. 2.2h and i) believed to be 

representative of the spine interior. Samples were collected along a transect of this shear zone 

(A–H in Fig. 2.2a), with all petrological and geochemical analysis in this study focusing 

exclusively to outcrop 1. For textural comparison, an undeformed dome block was collected 

from the talus (i.e., not from the spine), which represented a material that was extruded 

immediately prior to spine growth and thus acts as a suitable baseline (Fig. 2.2j). Outcrop 2 

(Fig. 2.3a) is the end-on exposure of a dissected portion of the east side of the main spine 

(Latitude: 32.761350° Longitude: 130.299444°), measuring >20 m wide by ~20 m high, and 

consisting of a relatively intact interior, grading to a fractured and highly sheared zone with a 

sharp boundary to a narrow gouge layer bordered on the other side by a breccia (as described 

in Hornby et al., 2015). This outcrop was used exclusively to assess magnetic variations across 

the faulted margin of the spine, along with loose blocks from the gouge, highly sheared and 

host (near-pristine spine interior) which were selected at outcrop 2 (Fig. 2.3b, c and d). All 

samples collected from outcrop 1 and 2 were thin sectioned perpendicular to the principle 

shear direction for petrographic analysis. Principle shear was characterised in each outcrop 

using in-situ textural fabrics (e.g., lineations, elongated crystals, Riedel fractures) that reveal 

consistent orientations within the high shear zones with respect to the position of the gouge, 

with both outcrops displaying the oblique upward shear motion of the extruded spine. 

 

2.2.2.  Geochemistry 

Whole-rock geochemistry (across outcrop 1) was determined by X-ray Fluorescence 

(XRF) on a PANalytical Axios Advanced XRF spectrometer at the University of Leicester. 

Major elements were measured on glass beads fused from ignited powders using a sample to 

flux ratio of 1:5 (80% Li metaborate: 20% Li tetraborate). Results are reported as component 

oxide weight percent and have been recalculated to include loss on ignition (LOI). Trace 

elements were analysed using 32 mm diameter pressed powder pellets produced by mixing 7 

g of fine ground sample powder with 12–15 drops of a 7 % polyvinyl alcohol solution (Mowiol 

8-88). Relative precisions and accuracies are better than 1–2 % for all major elements and 

better than 5 % for trace elements based on repeat analyses of international reference materials 

(BH-1 microgranodiorite, JR-1 rhyolite and BCR-1 basalt). 
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Figure 2.2 – Field and textural observations of outcrop 1 marginal shear zone of Unzen lava 

spine. (a) Photograph of the shear zone, which has been separated into four zones according 

to style and intensity of deformation, along with sample collection locations (points A–H). On 

the surface of the high shear zone, principle shear lineations (PS), and Riedel shear textures 

(R and R’) are visible, consistent with an upward movement of the spine. In panels (b–j), the 

left-hand side is the outcrop surface and the right-hand side is the corresponding plane 
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polarised light photomicrograph. (b) Gouge; a well-consolidated, reddish gouge layer 

consisting of cataclastic deformation textures in the form of abundant crystal fragments, 

larger intact clasts and surface fractures. (c–e) High shear zone, displaying strong lineations 

and elongated white filaments that decrease in intensity from (c) to (e). Photomicrographs in 

(c) and (d) show these filaments are comprised of plagioclase phenocryst fragments, with the 

elongated yellow-green area representing voids where some fragments were removed. 

Fragments of amphibole are also observed within the groundmass. (f–g) Moderate shear zone, 

individual crystals are more visible, representing larger fragments, and elongated filaments 

of plagioclase crystals are less apparent. Lineations are less intense, although still visible on 

the outcrop surface. (h–i) Low shear zone, a smooth outcrop surface with negligible 

deformation, consisting of intact, euhedral plagioclase and amphibole phenocrysts. (j) 

Undeformed dome block, consisting of large, euhedral plagioclase and amphibole 

phenocrysts, closely resembling the low shear zone. 

 

2.2.3.  Electron Microprobe (EPMA) 

Major element composition of the interstitial glass (from outcrop 1) was determined 

using a Cameca SX-5 field-emission electron probe microanalyser (EPMA) at the University 

of Oxford. Element abundances were determined using wavelength dispersive spectroscopy 

(WDS) with TAP, PET and LIF crystals. Standards for calibration of the spectrometers 

included a range of silicates and oxides (e.g., albite for Na, Si, Al; wollastonite for Ca). 

Analyses were performed using a 15 kV accelerating voltage, 5 nA beam current and a 

defocused spot size of 5 μm. Due to a 5 µm spot size being used on glass, the concentrations 

of alkalis, namely Na and K, may show minor reduction; however, owing to the abundance of 

microlites and devitrified glass filaments, the use of a defocused 10 µm beam would have 

yielded higher inaccuracies. Major elements have a relative precision better than 3 % and an 

accuracy better than 5 %, except Na which was better than 10%, based on repeat analyses of 

KN-18 glass standard (comendite obsidian, Kenya). Our results are consistent with 

compositions reported by Nakada and Motomura (1999) for partly devitrified. 

 

2.2.4.  Automated SEM-EDS (QEMSCAN) 

Mineral distribution and quantitative phase modality (of outcrop 1) was acquired 

using QEMSCAN (Quantitative Evaluation of Minerals by SCANning electron microscopy), 

an automated SEM-EDS system. It uses specially configured conventional SEM hardware and 

advanced, highly adaptable software, manufactured by FEI. Each analysis was performed on 
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an uncovered, polished and carbon coated thin section using a QEMSCAN WellSite at the 

University of Liverpool operating with a 15 kV accelerating voltage and ~5 nA beam current. 

Two Bruker energy dispersive X-ray spectrometers (EDS) recorded the discrete secondary X-

rays emitted by the sample excited by the electron beam (within an interaction volume of ~10 

µm3), which are processed to identify and quantify the elements present and output a chemical 

composition. The chemistry recorded is matched to known compositions for minerals, glasses 

and other chemically distinct phases. These phase compositions are stored in an extensive 

mineral database, referred to as a species identification protocol (SIP), which can be added to, 

and edited by, the user (see Gottlieb et al., 2000). The system cannot measure any 

crystallographic features, thus cannot differentiate between amorphous, crystalline or any 

chemically identical polymorphs (e.g., quartz, cristobalite and tridymite). Data were collected 

in field-scan mode collecting X-rays in an automated raster pattern at a specified step size 

(Gottlieb et al., 2000; Pirrie et al., 2004). For bulk mineralogy, whole thin section scans were 

performed with X-rays collected at 20 μm intervals, and to assess groundmass mineralogy a 2 

μm step size was used. The electron beam dwells at each point until sufficient X-rays are 

collected by the detectors to allow for successful phase matching (set to collect 1000 X-rays 

per point). A re-calibration of the system was performed after every sample exchange from 

the machine. Data processing and interpretation were performed using iDiscover software, 

which stitches the resulting data to form a continuous colour image of the sample, where each 

colour represents a different phase. Mineral statistics were obtained from the sum of the 

number of pixels of each phase and were normalised on a pore-free basis to provide a 

quantitative 2-D modal mineralogy (e.g., Pirrie et al., 2004; Ayling et al., 2012). The 

resolution (10 μm or 2 μm) did not influence the calculated mineralogy as there was no change 

in the beam operating conditions (i.e., interaction volume), only the spacing between analyses. 

Any phases smaller than the beam’s interaction volume are not identified individually but 

incorporated with the chemistry of its surroundings (e.g., crystals less than ~2 µm in diameter 

surrounded by glass). Although 100 % reproducibility of a different thin section of the same 

material is unlikely (simple thin section effect), precision errors based on repeat scans after 

removing and reinserting the same thin section produced standard deviations <0.39 for all 

phases. 
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2.2.5.  Image acquisition and analysis  

2.2.5.1.  Optical and scanning electron microscopy (SEM) 

Optical microscopy enabled the identification and comparison of the major phases 

and any microstructural variations across the samples. Plane polarised light (PPL) images and 

whole thin section scans were acquired using a Leica DM2500P microscope, at a 

magnification of 2.5x, and a Leica DFC295 camera with a pixel resolution of 5 x 5 µm. SEM 

analysis was conducted using a Philips XL30 tungsten filament scanning electron microscope 

and Hitachi TM3000 at the University of Liverpool. Thin sections were carbon coated and 

imaged using the Philips XL30 with a 20 kV beam, a working distance of 25 mm and a spot 

size of 5 μm, while the Hitachi TM3000 used a 15 kV beam and 10 mm working distance, 

both operating in backscattered electron (BSE) mode. 

 

2.2.5.2.  Plagioclase crystal size- and shape-distribution 

Whole thin section photomicrographs (from outcrop 1) collected in PPL were used to 

determine crystal size and shape variations of plagioclase phenocrysts across the shear zone 

to quantify crystal fracturing. The analysis was carried out using the National Institute of 

Health (NIH) ImageJ software package (Schneider et al., 2012), where scans were converted 

to binary images, replacing all plagioclase crystals with black pixels and all other phases, 

including pores, with white pixels. To prevent misidentification of plagioclase with quartz in 

the binary conversion process, QEMSCAN maps were used as a guide to ensure all black 

pixels were correctly identified as plagioclase. Measurements were made on phenocrysts 

above a detection limit of 0.01 mm2 ensuring all crystals above this size fraction were 

measured and shapes were accurately represented. Crystal size measurements included major 

and minor axis length (using the “fit ellipse” tool) and total area. Crystal shape was determined 

using the “shape descriptors” tool (circularity, aspect ratio, roundness and solidity). 

Circularity of each phenocryst in the thin section was calculated using: Circularity = 

4π(A/p2), where A is crystal area and p is the perimeter. Circularity values range from 0–1, 

with 1 indicating a perfect circle, becoming more elongate as values approach 0. 

 

2.2.5.3.  Groundmass pargasite reaction rims 

High-magnification BSE images of pargasitic amphibole crystals in the groundmass 

were collected from each section of outcrop 1 shear zone (gouge, high shear, moderate shear 

and low shear zones in Fig. 2.2a) and the undeformed dome rock (Fig. 2.2j). Reaction rim 

thickness variations were quantitatively assessed using ImageJ. The sizes of the pargasite 
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crystals were determined using the longest axis, and when permitted, using the C-axis. Due to 

the irregular and patchy occurrence of breakdown rims within a single crystal, the thickest 

part of the rim was measured. Data were collected for >30 pargasite crystals from each zone, 

ensuring coverage of the whole thin section to avoid misrepresentation. 

 

2.2.6.  Electron Backscatter Diffraction (EBSD) 

Permanent internal deformation of a crystal lattice can provide useful insights into the 

stress conditions that a material has been exposed to during its history. Crystal plasticity is an 

isovolumetric deformation process derived from external forces exceeding the yield stress of 

a crystal lattice (Poirier, 1995), manifesting in a permanent strain by generating internal 

stranded dislocations. Dislocations cause a distortion of the crystal lattice structure and this 

distortion can be measured by electron backscatter diffraction (EBSD) in the SEM as a 

crystallographic “misorientation” angle (Prior et al., 1999; Prior et al., 2009). The angular 

resolution of the technique is ±0.5º (e.g., Mariani et al., 2009). Crystal lattice orientation 

mapping for the identification and quantification of crystal plasticity was carried out across 

outcrop 1 shear zone samples using a CamScan X500 CrystalProbe field-emission gun (FEG) 

SEM using the AZtec EBSD acquisition software from Oxford Instruments HKL. Analyses 

were performed using a 20 kV accelerating voltage and 30 nA beam current. The electron 

beam source column is tilted at 70º relative to the sample surface. EBSD maps were collected 

on plagioclase and biotite phenocrysts and plagioclase microlites. The area coverage of 

phenocryst maps was dependent on the size of the target crystal, whereas microlites were 

analysed within a ~150 x 120 µm area from 2 or more locations within the same thin section 

to ensure accurate representation of each sample (see Fig. A1.1 for the mapped areas). 

Acquisition of the data was performed using Oxford Instruments HKL AZtec EBSD software 

using step sizes from 0.15–0.4 µm for microlites and 2 µm for phenocrysts. Minerals were 

identified using energy dispersive point analyses (EDS) to determine their chemistry and 

mapped by EBSD using the appropriate crystallographic match units for each of the phases 

investigated. For statistical representation, >40 plagioclase microlites from each section of the 

shear zone were analysed. Minerals were indexed using all 12 bands, 70 reflectors, 120 Hough 

resolution, band edges and 4 x 4 binning. Data processing was carried out in CHANNEL 5 

software by Oxford Instruments HKL. Individual crystals in the EBSD maps were subjected 

to a “texture component” analysis, where each pixel (each EBSD data point) is colour-coded 

according to the degree of misorientation of the crystal lattice relative to a selected reference 

pixel. All reference pixels were selected from one end of the crystal as this more accurately 

reflects the relative distortion across the crystal and depicts the maximum misorientation. 
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Similarly, misorientations were measured as profiles along the length of a crystal to give a 

quantitative description of the deformation experienced. For each crystal, the length and width 

were recorded, as well as the “maximum misorientation” along the major axis from the 

misorientation profile. “Misorientation per micron” values were determined by dividing the 

maximum misorientation by the long axis length of the crystal following the method of 

Kendrick et al. (2017). Through using the mean misorientation per micron, we can model the 

amount of lattice distortion expected in a plagioclase microlite for a given crystal length from 

each section of the shear zone. 

 

2.2.7.  Thermal analysis 

The kinetic and thermal properties of the Unzen lava spine were measured using 

differential scanning calorimetry (DSC), performed on a Netzsch simultaneous thermal 

analyser (STA) Jupiter 449 F1 at the University of Liverpool, using a single sapphire crystal 

for calibration of specific heat capacity (Cp). Cp as a function of temperature was calculated 

using DSC, which can provide a thermal history of the sample, in particular, a quantification 

of the glass transition temperature (Tg). Due to the high crystallinities of Unzen spine lavas 

and thus the low proportion of pristine glass to obtain a well-defined Tg measurement, spine 

material was lightly crushed into mm-sized fragments and groundmass dominated grains were 

selectively plucked to increase the glass:crystal ratio and provide a more reliable Tg value. 

Lightly crushed, phenocryst-free sample chips (38 mg) of low shear material from outcrop 1 

(Fig. 2.2i) were placed in a lidded platinum crucible (with a single hole in the centre of the 

lid) and heated at 10 ºC.min-1 to 1000 ºC with a continuous 20 mL.min-1 argon flow. The onset 

of the Tg interval is defined by an exothermic deflection (increase) in the DSC and Cp curves 

(e.g., Gottsmann et al., 2002). 

 

2.2.8.  Magnetic properties 

Magmas that have undergone extensive shearing and faulting are ideal candidates to 

display magnetic anomalies due to alignments of the magnetic carriers (Hayman et al., 2004) 

or a heating event associated with such processes (Nakamura et al., 2002; Ferré et al., 2005). 

The temperature dependent bulk magnetic susceptibility was measured on crushed chips 

(~140 g per measurement) from loose, in-situ blocks from outcrop 2 shear zone 

(undeformed host rock, Fig. 2.3b; highly sheared coherent lava, Fig. 2.3c; gouge, Fig. 2.3d). 

These were measured in an Agico MFK1-FA Kappabridge with CS4/CS-L high/low-

temperature attachments to measure the change in magnetic susceptibility across the 
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temperature range of -200 to 700 ºC (using 4–5 repeats of each sample to verify the results). 

To complement the laboratory measurements a Bartington MS2 surface scanning probe to 

measure magnetic susceptibility was utilised on the lava dome to non-destructively measure 

the in-situ distribution of susceptibility, with each measurement taken over a 20 cm circular 

area. Our measurements were performed across two transects of the spine margin shear zone 

(Fig. 2.3a) and on a selection of loose dome blocks that were categorised as either undeformed 

or deformed. A Magnetic Measurements Variable Field Translation Balance (MMVFTB) was 

further utilised to measure the Isothermal Remanent Magnetisation (IRM), backfield, 

hysteresis and thermomagnetic signal to identify magnetic grains and their domain states. 

Here, 4 or 5 measurements were made from crushed powder (~100 g per measurement) of the 

host, high shear and gouge material. The MMVFTB dataset was analysed using the 

RockMagAnalyzer software by Leonhardt (2006).  

 

 

Figure 2.3 – Photograph of outcrop 2 shear zone used for the investigation of magnetic 

properties of Unzen lava spine. (a) The shear zone is an end-on exposure of the eastern section 

of the spine, subdivided into four discrete units (host, high shear zone, gouge and breccia), as 

described by Hornby et al. (2015). The outlined areas (T1 and T2) are the locations of two 



 40 

transects across the shear zone margin where field magnetic measurements were taken. In 

panels (b–d), the left-hand side is the outcrop surface and the right-hand side is the 

corresponding plane polarised light photomicrograph.  (b) The host material represents an 

undeformed interior of the spine, akin to the low shear zone of outcrop 1. (c) High shear zone, 

consisting of elongated, white filaments similar to those observed in outcrop 1 and fragments 

of broken crystals. (d) A red, cataclastic gouge layer (~0.6 m wide) situated between the high 

shear zone and breccia, dominated by finely comminuted crystals.  

 

2.2.9.  Experimental simulation 

Experimental investigations on the co-existence of contrasting deformation textures 

in volcanic rocks (i.e., viscous, ductile and brittle) have primarily focused on the rheological 

implications associated with crystal interactions (e.g., Picard et al., 2011). These experiments 

provide useful insights into magma behaviour under varying stress conditions in the volcanic 

conduit, which can influence bulk magma rheology. To explore the role of magma shearing 

within a volcanic conduit and assess materials’ textural response to such a process, we 

experimentally recreated conduit margin processes using a high-temperature, high-velocity 

rotary shear (HVR) apparatus. The experiment was performed on a second-generation HVR 

at the University of Liverpool (see Hirose & Shimamoto, 2005 for details of the first-

generation HVR) using the natural, undeformed dome rock (as seen in Fig. 2.2j) as the starting 

material. The experiments involved the preparation of two 24.98 mm diameter plane parallel 

cylindrical cores with a 9 mm hollow centre, designed to create a ~8 mm wide annulus that 

would minimise any variations in slip rate across the contact surface. The two cores were 

placed inside the experimental apparatus, each connected to a separate piston so that during 

the experimental run one core would remain stationary and the other would rotate. Before 

placing the cores in direct contact, they were enclosed within a furnace and heated to 600 ºC 

at a rate of 10 ºC.min-1. This temperature was chosen for two reasons: 1) it represents a 

reasonable low-end temperature estimate of spine extrusion (with no recorded data available), 

which is also equivalent to temperatures estimated for the volcanic conduit at Mount St. 

Helens during faulting (Pallister et al., 2013) and moreover, 2) it was below the solidus and 

Tg thus any textural features observed could be directly related to shear and frictional heating 

and not the initial heating stage. After allowing ~30 minutes for thermal equilibration, a 

controlled axial load was applied and held constant using an air actuator on the non-rotating 

piston, corresponding to a normal stress of 2 MPa applied across the sample interface. The 

other piston and sample were rotated at 1150 rpm, equating to an equivalent slip rate of 1 m 

s-1 in direct shear (for sample geometry, see Shimamoto & Tsutsumi, 1994; Hirose & 
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Shimamoto, 2005), analogous to conduit conditions previously estimated at Unzen volcano 

(Hornby et al., 2015). The torque, axial load and sample shortening (using an externally-

mounted strain-gauge with 10 mm scale) were measured for the duration of the experiment 

and used to calculate the continuous slip rate, normal stress and shear stress at 100 Hz. During 

the experimental run, the samples were recorded using a FLIR X6000sc infrared 

thermographic camera through a sapphire window of the furnace at a pixel resolution of 90 x 

90 m and 30 frames per second to monitor the temperature change due to frictional and shear 

heating along the simulated shear zone. It should be noted that these recorded temperatures 

only depict that of the sample surface and may slightly underestimate the slip zone’s internal 

temperature. 

 

2.3.  RESULTS 

2.3.1.  Field observations 

2.3.1.1.  Lava dome blocks 

Lava blocks on the talus and summit of Unzen lava dome are extremely heterogeneous 

(Fig. 2.1c). The characteristic differences of these blocks come most noticeably from their 

varying degrees of deformation, ranging from relatively undeformed (Fig. 2.1e and f) to 

complex deformation fabrics (i.e., sheared; Fig. 2.1g and h). All blocks display varying 

degrees of discolouration from pale grey to reddish-brown (Fig. 2.1c). Blocks that were 

classified as undeformed were distinguished by their massive nature (Fig. 2.1e), consisting of 

large, euhedral phenocrysts of plagioclase and amphibole, in addition to lacking any 

systematic textural anisotropy (Fig. 2.1f). Deformed or sheared blocks were characterised by 

the presence of at least one (but typically a combination) of the following: flow bands, 

systematic fractures (often conjugate), alignment of crystals or pores, and, in extreme cases, 

smeared plagioclase crystals visible to the naked eye (Fig. 2.1g and h). The porosity of these 

blocks is also quite variable, consistent to the porosity range of 8–33 % constrained for Unzen 

dome rocks (Kueppers et al., 2005; Coats et al., 2018), reiterating the heterogeneity of its 

deposits. The size of the blocks and proportion of sheared to undeformed material varies 

depending on the distance from the summit, which is observed succinctly on the western side 

of the dome (Fig. 2.1c). At the base of the talus, dome blocks are smallest (~1–2 m), more 

uniform in size and are typically undeformed. Further up the dome, blocks become larger (~2–

4 m) with an increasing proportion of blocks hosting shear textures. The summit shows the 

most heterogeneity, exposing multiple shear zones, cataclastic structures and sintered breccia 

either as fallen slabs surrounding the spine or larger in-situ units (Fig. 2.1d).  
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2.3.1.2.  Lava spine shear zones 

Detailed structural surveys of the spine (Fig. 2.1d) in autumn 2013 and summer 2016 

revealed an abundance of contemporaneous deformation fabrics at the margins including 

evidence for the co-existence of dilatational and compactional shear zones. Outcrop 1 shear 

zone (Fig. 2.2a) can be separated into four discrete zones based on lateral variations in the 

style and intensity of deformation: 

 Gouge: A <0.2 m thick, well-consolidated gouge layer is agglutinated onto the 

outcrop’s western limit. The gouge is matrix-supported (i.e., a groundmass to crystal 

ratio of ~60:40) and dominated by cataclastic deformation (Fig. 2.2b) including 

conjugate fractures, trails of broken grains, clusters of angular crystal fragments (e.g., 

plagioclase and amphibole) and a poorly sorted reddish matrix consisting of 

ostensibly sintered finer material (<2 mm). Rounded dacitic clasts up to 15 mm in 

diameter are incorporated into the gouge, distinguished by their pale-yellow 

groundmass and structural integrity (Fig. 2.2b). 

 High shear zone: Directly adjoining the gouge, the high shear zone takes the form of 

a narrow (0.1–0.2 m wide) region comprised of undulated white-yellow porphyritic 

filaments/lenses surrounded by a reddish-brown groundmass that runs parallel to the 

gouge contact (Fig. 2.2c and d). Optically, these filaments appear to be partially filled 

with remnant fragments of broken crystals, commonly plagioclase, with any 

excavated fragments leaving behind elongated voids. These filaments were traceable 

on two sides of the outcrop (A–C and C–H in Fig. 2.2a), which revealed a planar 

orientation of NEE-SWW and provided a principle shear direction of NNW-SSE. 

These elongated filaments grade into a 0.5 m wide zone displaying principle and 

Riedel shear lineations on the outcrop’s external surface (between sample D and E in 

Fig. 2.2a), indicative of the upwards sinistral motion of the spine. In this section of 

the high shear zone, crystal filaments become less clear and individual crystals are 

more visible (Fig. 2.2e). However, all crystals within the high shear zone take the 

form of broken, angular fragments that rarely exceed 1 mm and are often aligned in 

the extrusion direction (optical images in Fig. 2.2c–e), with no crystals remaining 

intact. 

 Moderate shear zone: A ~2 m thick zone which displays a reduction in principle shear 

intensity and lacks secondary Riedel features (E and F in Fig. 2.2a). Cataclastic 

structures are less intense, although still a predominant appearance. Crystals are 

significantly more visible, representing larger fragments compared to those observed 

in the high shear zone (up to 2 mm), although they still display alignment in the 
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extrusion direction. Rare elongated mafic enclaves (top left of Fig. 2.2f) are also 

observed, which were not visible at outcrop scale in the high shear zone, likely owing 

to their extreme flattening and the overprint of principle shear lineations. 

 Low shear zone: The moderate shear zone grades into a >1.5 m thick section 

consisting of negligible deformation. It has a smooth, reddish external surface and 

displays large (up to 5 mm), euhedral phenocrysts of plagioclase, amphibole and 

biotite, with little sign of fractured or aligned crystals. Mafic enclaves (up to 40 mm) 

are also present (Fig. 2.2h), being texturally similar to those in the moderate shear 

zone but more circular. This zone is comparable to the undeformed, non-spine dome 

rock, both at outcrop and thin section scale (Fig. 2.2j). 

Outcrop 2 (Fig. 2.3a), previously described by Smith et al. (2001) and Hornby et al. 

(2015), has been divided into four separate units. A <0.6 m wide red gouge layer (Fig. 2.3d) 

is mantled by a poorly-sorted, >6m thick massive fault breccia (right in Fig. 2.3a). Lenses of 

highly sheared coherent lava are embedded into the gouge and elongated parallel to the gouge-

breccia contact. A ~2 m wide high shear zone (Fig. 2.3a and c), texturally similar to that of 

outcrop 1 (Fig. 2.2c and d), lies to the left of the gouge, consisting of 20–40 mm elongated 

white filaments within a reddish-grey groundmass. Adjacent to this highly sheared region, a 

>8 m thick, relatively undeformed unit represents the core of the lava spine (termed host in 

Fig. 2.3a). Although here the dacite consists of large euhedral phenocrysts (up to 5 mm; Fig. 

2.3b), with textures similar to those observed in the low shear zone of outcrop 1 (Fig. 2.2i), 

occasional high-porosity shear bands that extend up to 2 m in length run sub-parallel to the 

spine margin (see Smith et al., 2001). 

 

2.3.2.  Bulk chemical heterogeneities 

Bulk-rock chemistry of the lava spine reveals a dacitic composition (65.4–65.9 wt % 

SiO2) with only subtle variations across the shear zone that are close to the analytical limit. 

Yet, it may be possible to distinguish each zone in Figure 2.2a (gouge, high, moderate and 

low shear) from individual major and trace elements (Table 2.1). For major components, the 

gouge has the lowest concentration of SiO2 and Na2O, and highest Fe2O3 and MgO contents; 

directly in contact, the high shear zone has the highest SiO2 and K2O. The low shear zone has 

the highest CaO and Na2O, together with the lowest Fe2O3, MgO and K2O. The moderate shear 

zone falls compositionally intermediate between these zones. Trace elements may reflect 

further variations between each zone. For example, the gouge reveals highest levels of Rb and 

Zr, with the low shear zone having the least. The high shear zone can be distinguished by the 
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lowest Sr content and highest La and Ce, while the low shear zone can be identified by the 

highest Sr. 

 

Table 2.1 – Whole-rock chemical analyses of major and trace elements from outcrop 1 shear 

zone 

 
Major and trace elements measured by XRF. 

* Total Fe as Fe2O3. 

 

2.3.3.  Mineralogy and petrography 

The dacitic spine is porphyritic, consisting of phenocrysts and microphenocrysts (27–

29 area %) of plagioclase (17–21 area %), amphibole (3.5–6.0 area %), biotite (2 area %) and 

quartz (1.5–3.5 area %). The groundmass contains 50–60 area % microlites of plagioclase, 

pargasitic amphibole, polymorphs of silica, pyroxene, Fe-Ti oxides and minor accessory 

minerals, set in a partially devitrified, peraluminous rhyolitic interstitial glass (ca. 79 wt % 

SiO2). Plagioclase dominates the mineral assemblage, occurring as phenocrysts up to 5 mm 

long, tabular and equant microlites in the groundmass, mineral inclusions within hornblende 

phenocrysts, and as a breakdown product of hydrous mineral phases (i.e., amphibole and 

biotite). Two types of amphibole are found in the dacite; hornblende as phenocrysts and 

pargasite as microphenocrysts and microlites in the groundmass. The hornblendes 

occasionally display reaction rims, often patchy, consisting of pyroxene, plagioclase and Fe-

Sample: A C E H 
Rock type: Lava spine Lava spine Lava spine Lava spine 
Zone: Gouge High shear Moderate shear Low shear 

(wt.%) 
    

SiO2 65.41 65.88 65.71 65.55 
TiO2  0.70 0.66 0.62 0.62 
Al2O3  15.49 15.34 15.30 15.58 
Fe2O3*  5.04 4.87 4.74 4.68 
MnO  0.10 0.10 0.10 0.10 
MgO  2.45 2.40 2.38 2.29 
CaO  4.50 4.51 4.61 4.61 
Na2O  3.57 3.58 3.61 3.65 
K2O  2.52 2.56 2.49 2.47 
P2O5  0.06 0.10 0.09 0.09 
LOI 0.17 0.11 0.18 0.26 
Total  100.01 100.11 99.83 99.90 
(ppm) 

    

Ba  498.06 480.96 464.98 477.13 
Ce  23.41 51.93 38.11 43.00 
Cu  20.75 20.57 28.52 21.55 
La  20.93 25.47 21.32 22.20 
Nb  13.85 13.53 13.67 13.38 
Rb  86.88 84.63 83.50 82.06 
Sc  11.43 13.38 12.31 10.99 
Sr  289.38 286.58 293.35 304.13 
V  80.73 86.91 87.58 91.18 
Y  16.47 17.32 18.38 17.12 
Zn  48.81 45.59 47.42 45.98 
Zr  152.47 144.15 145.65 140.29 
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Ti oxide microlites. Pargasite forms ellipsoidal crystals with occasional hollow cores and/or 

concentric zoning. Pargasites located in the spine shear zone display breakdown rims, which 

have not been reported in any other Unzen lava products from the eruption (e.g., Sato et al., 

1999). Biotite takes the form of large, tabular phenocrysts, often with distinct coarse-grained 

reaction rims of pargasite, plagioclase and pyroxene. Reaction rims on both hornblende and 

biotite phenocrysts are not exclusive to the spine and were also observed in pyroclastic flow 

deposits throughout the eruption (Nakada & Motomura, 1999), thus are not attributed to spine 

processes. Quartz often appears as resorbed fragmented phenocrysts (up to 2 mm) embedded 

within the groundmass (e.g., bottom left of photomicrograph in Fig. 2.2f). Fe-Ti oxides 

(magnetite and ilmenite) appear as rare microphenocrysts and small acicular microlites in the 

groundmass. Orthopyroxene and clinopyroxene are found either as groundmass microlites or 

within breakdown rims of biotite and amphibole. All samples reveal silica-rich patches in the 

groundmass, either filling voids or as a by-product of glass devitrification. 

Variations in mineral abundance across the shear zone were assessed by QEMSCAN 

analysis. The resulting data are expressed as colour-coded maps, providing a visual 

distribution of chemically discrete phases (Fig. 2.4 and Fig. 2.5) and through isolating each 

phase a quantitative comparison can be made across the shear zone (Table 2.2). All samples 

consist of the same mineral assemblage, although subtle differences in both bulk (phenocrysts 

plus groundmass phases, Fig. 2.4) and groundmass phases (Fig. 2.5) are observed. Bulk 

plagioclase content is highest in the low shear zone (40.2 area %), with a systematic decrease 

in the moderate and high shear zone (37.2 and 34.4 area %, respectively), increasing slightly 

in the gouge (37.7 area %). Amphibole displays a similar pattern, although to a lesser extent 

owing to its lower abundance. Bulk biotite and pure silica-phases show an opposite trend, both 

being lowest in the low shear zone and highest in the gouge. Total bulk glass content shows a 

subtle increase from the low shear zone to high shear zone (32.0–36.3 area %), with the gouge 

having significantly less glass than anywhere else in the outcrop (24.6 area %). However, it is 

important to note that these observed bulk mineralogical variations should be taken with some 

caution, owing to the natural heterogeneity of Unzen lava, plus the possible effect of highly 

fractured minerals being removed during sampling or thin section preparation of highly 

deformed material. This is observed by comparing field textures and photomicrographs of the 

high shear zone (Fig. 2.2c and d), which show the potential loss of plagioclase evacuating 

elongated voids. 
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Figure 2.4 – QEMSCAN mineral distribution maps of the gouge, high shear, moderate shear 

and low shear zones from outcrop 1. Top row panels are whole thin section scans taken in 

plane polarised light (PPL), followed by QEMSCAN maps with all phases highlighted and 

each colour representing a different mineral or glass phase (pore space in white). The bottom 

five rows are maps of individual phases isolated providing a clearer assessment of the 

variations across the shear zone and allowing a quantitative comparison of their modality 

(see Table 2.2). Arrows denote the extrusion direction. Note: Si polymorphs represent all SiO2 

phases, including quartz phenocrysts and groundmass silica phases. 
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Within the groundmass (Fig. 2.5), similar quantities of plagioclase microlites are 

observed in both the low and high shear zones (27.3 and 28.5 area %, respectively). 

Plagioclase abundance in the gouge groundmass is higher relative to the other zones (33.1 area 

%), which also corresponds to the presence of angular plagioclase fragments as remnants of 

phenocryst comminution. Groundmass amphibole (pargasite) also has minimal variation 

between the low and high shear zone (3.9 and 3.2 area %, respectively), although the gouge 

displays a subtle increase (4.9 area %). Pyroxene microlites have a similar abundance across 

the shear zone (all <2 area % for combined ortho- and clinopyroxene). The most significant 

difference is observed within the Si polymorphs (Fig. 2.5). The low and high shear zones have 

a similar textural arrangement of large, isolated silica-patches (up to 50 m) with a minor 

variation in abundance between them (17.0 and 14.8 area %, respectively). In the gouge, these 

larger silica-patches are absent, with the groundmass being dominated with small (<10 m), 

more abundant (21.4 area %) silica-rich phases that are interconnected with the interstitial 

glass. These micron-sized silica-patches in the gouge correspond to its lower interstitial glass 

content (Table 2.2). 

 
Table 2.2 – Bulk mineralogy and groundmass phase abundance of outcrop 1 derived from 

QEMSCAN 

 
All mineral phases and glass abundances are normalised on a pore-free basis. 

* combines all SiO2 polymorphs (including quartz and cristobalite). 

$ includes any partially devitrified glass and associated groundmass SiO2 phases smaller than 

the beams interaction volume (~10 µm3). 

# denotes when the beam interacts at the boundary between 2 or more phases. 

 

Sample: A C E H 

Rock type: Lava spine Lava spine 
Lava 
spine 

Lava spine 

Zone: Gouge High shear 
Moderate 
shear 

Low shear 

  Bulk G.mass Bulk G.mass Bulk Bulk G.mass 

P
h

a
s
e
s

 

(a
re

a
 %

 o
f 

s
o

li
d

 f
ra

c
ti

o
n
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Plagioclase 37.7 33.1 34.4 28.5 37.2 40.2 27.2 

Amphibole 9.3 4.9 6.6 3.2 6.8 7.7 3.9 

Biotite 3.3 1.2 2.7 0.7 2.5 1.9 0.9 

Si polymorph* 18.4 21.4 14.1 14.8 12.3 12.1 17.0 

Orthopyroxene 1.1 1.3 1.1 1.3 0.9 0.9 1.5 

Clinopyroxene 0.8 0.6 0.7 0.3 0.7 0.8 0.3 

Fe-Ti oxide 0.7 0.4 0.7 0.4 0.7 0.7 0.5 

Apatite 0.1 0.0 0.1 0.1 0.2 0.2 0.2 

Interstitial glass$ 24.6 33.5 36.3 47.7 35.2 32.0 45.6 

Boundary phases# 4.0 3.6 3.3 3.0 3.5 3.5 2.9 

Total 
100.
0 

100.0 100.0 100.0 100.0 100.0 100.0 

Porosity (area %) 16.1 19.2 13.2 13.0 19.0 22.4 18.7 
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The porous network of the shear zone shows significant heterogeneities (Fig. 2.4, Fig. 

2.5 and Table 2.2). The 2D bulk porosity, visualised and quantified for each section of the 

shear zone by QEMSCAN (white in Fig. 2.4), is highest in the low shear zone (22.4 area %), 

slightly reduced in the moderate shear zone (19.0 area %) and lowest in the high shear zone 

(13.2 area %). Interestingly, the porosity of the gouge (16.1 area %) is higher than the high 

shear zone but less porous than the low shear zone. The pores in the moderate and high shear 

zones are found as elongated voids, typically localised around fractured plagioclase 

phenocrysts, and less commonly amphiboles; this coincides with the relative decrease in 

plagioclase and amphibole in these zones (Fig. 2.4 and Table 2.2). By incorporating these 

porosity values with the bulk mineralogy abundances (i.e., combined and normalised to 100 

area %), the decrease in plagioclase and amphibole abundance from the low shear to high 

shear zone is significantly lower. Groundmass porosity also shows a similar reduction from 

the low shear to high shear zone (Fig. 2.5 and Table 2.2). In the low shear zone, pores are >10 

m in diameter and are commonly connected to form a permeable porous network, equating 

to a porosity of 18.7 area %. Pores in the high shear zone groundmass are significantly lower 

in both abundance (13.0 area %) and size (mostly <10 m diameter), with the majority of 

pores being unconnected. The gouge groundmass porosity is slightly higher than low shear 

zone (19.2 area %), being derived from a combination of small (<5 m diameter) isolated 

pores and localised microfractures located between broken plagioclase fragments (Fig. 2.5). 
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Figure 2.5 – Groundmass mineralogy, glass and porosity textures of the gouge, high shear 

and low shear zones using QEMSCAN. Plagioclase microlites are equant and tabular; they 

are randomly orientated in the low shear zone and preferentially aligned in the extrusion 

direction in the high shear zone, while the gouge consists of angular fragments derived from 

broken phenocrysts. Groundmass amphibole (pargasite) is present in all three zones as 
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ellipsoidal microlites, with occasional hollow cores. Si polymorphs in the groundmass of the 

low shear and high shear zone are discrete, isolated crystals often filling or surround pores, 

while in the gouge these are smaller and localised within the interstitial glass. These inherent 

differences are reflected in the glass variation, with the gouge being glass-poor relative to the 

high and low shear zones. Pores in the low shear zone are abundant and irregular shaped, 

often connected to form a permeable pathway, whereas the high shear pores are smaller, less 

abundant and typically isolated with no connectivity. The pores within the gouge sit 

intermediate between the low and high shear zone. 

 

2.3.4.  Crystal deformation 

2.3.4.1.  Banding, alignment and crystal failure 

Crystal deformation is a dominant feature of the spine due to crystals’ ability to record 

textures during transport and bulk viscous flow of the magma. Crystal alignment in the high 

shear zone is a characteristic feature seen most notably by the preferential orientation of 

plagioclase microphenocrysts and microlites with their major axis aligned parallel to extrusion 

direction, in addition to larger crystals displaying pressure shadows (labelled PS in Fig. 2.6a). 

These aligned microlites appear to be localised within flow bands that envelope larger 

phenocryst fragments. In the moderate shear zone (Fig. 2.6b), crystal alignment is still present, 

although subtle, with no evidence of banding or pressure shadows, whereas the low shear zone 

comprises of freely suspended and randomly oriented crystals (Fig. 2.6c). 

In order to investigate crystal deformation due to shearing, we focus on plagioclase 

owing to its high abundance and previously reported high sensitivity to stress (e.g., Cordonnier 

et al., 2009; Picard et al., 2011). The change in size and shape of plagioclase phenocrysts were 

investigated using thin section scans and binary maps (Fig. 2.7a; see Electronic Appendix 1.1 

for full quantitative data). Results show a reduction in crystal size with increasing shear (Fig. 

2.7b), which can be qualitatively seen in the binary phase maps (Fig. 2.7a), with the low shear 

zone hosting larger, more euhedral crystals which systemically become more fractured 

towards the shear zone margin. Average plagioclase circularity measurements of samples 

from the low and moderate shear zone oscillate between 0.48–0.58. Circularity values for 

plagioclase crystals in sample C and D of the high shear zone (Fig. 2.7c) show a slight decrease 

in circularity compared to crystals within the moderate shear zone (sample E in Fig. 2.7c), 

although they still fall within the range recorded in the low shear zone. Where the high shear 

zone is directly adjacent the gouge (sample B in Fig. 2.7c) plagioclase crystals have the lowest 

circularity values (mean 0.44), with the gouge displaying an abrupt increase (mean 0.56), 

which corresponds to the sharp boundary as observed at outcrop scale (Fig. 2.2a). 
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Qualitatively, amphibole (the second most abundant phenocryst phase) reveals a similar 

reduction in size across the shear zone (Fig. 2. 4 and 2.7a). 

 

Figure 2.6 – Photomicrographs in plane 

polarised light of comparative groundmass 

flow textures from high, moderate and low 

shear zones. (a) Tabular microlites and 

microphenocrysts of plagioclase (Pl) and 

amphibole (Amp) in the high shear zone 

have a strong preferential alignment in the 

extrusion direction, localising as flow bands 

that envelope larger crystal fragments 

resulting in pressure shadows (PS) at the 

tips of the crystal fragments. (b) The 

moderate shear zone has only minor 

alignment of tabular crystals, while the low 

shear zone (c) displays a random 

orientation of tabular crystals. Pores 

(yellow-green dye) are also systematically 

smaller in size and lower in abundance from 

the low shear to high shear zone. 
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Figure 2.7 – Crystal size and shape distribution of plagioclase phenocrysts across the shear 

zone. (a) Plane polarised light thin section scans of each sample (A–H) across the shear zone 

and binary images of plagioclase phenocrysts (>0.01 mm2) used for quantification. Each 

sample represents between 150–550 crystals depending on the number of phenocrysts present. 

Plagioclase phenocrysts size variation (b) and circularity variation (c) are shown with 

distance from the gouge. Both box plots show 25th and 75th percentile, the median value and 

whiskers outlining the 1–99% range. Diamonds represent outliers within the dataset and 

squares are the mean value per sample connected by the dashed line. Errors were calculated 

from repeat thresholding of the crystals and re-analysis. 

 

2.3.4.2.  Biotite and plagioclase lattice distortion 

EBSD was performed on both phenocryst and microlite phases across the shear zone. 

Crystal plasticity is the distortion of a crystal’s lattice owing to its rotation brought about by 

the movement and accumulation of dislocations, which is quantified as a misorientation 

(Brewer et al., 2006); the higher the misorientation value, the more distorted the crystal lattice. 

The variation in misorientation within a single crystal can be seen using colour-coded, texture 

component maps with the colours representing the relative distortion, or misorientation, of the 

crystal lattice with respect to a selected reference pixel. Misorientation maps on broken 

segments of a once intact plagioclase phenocryst from the gouge (segment 1–3 in Fig. 2.8a) 

reveal negligible plastic deformation, with all segments rarely exceeding a 1º misorientation 

despite being fragmental. However, analysis of biotite phenocrysts reveals an overwhelming 
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abundance of plastic deformation. This is a common feature in the high shear zone and gouge, 

where up to 60° of relative lattice distortion is observed (Fig. 2.8b). In some cases, biotite 

crystals have exceeded their plastic limit, causing the crystal to fracture in the areas of most 

lattice distortion (Fig. 2.8b). In the high shear zone, biotite plasticity is proceeded by brittle 

failure along shear bands, with plasticity remaining in the intact segments (Fig. 2.8c). Biotite 

plasticity is less common in the moderate shear zone, and not observed in the low shear zone 

or core of the spine.  

 

Figure 2.8 – Plastic deformation of plagioclase and biotite phenocrysts measured by electron 

backscatter diffraction (EBSD). For each panel (a–c), the left-hand side shows a plane 

polarised light photomicrograph of the crystal analysed and on the right-hand side is the 

corresponding band-contrast misorientation map overlain by a texture component map. 

Colours represent the amount of misorientation relative to a selected point along the crystal, 

with an angular resolution of  0.5º. All reference points were chosen at one end of the crystal 

in order to observe the maximum misorientation along the crystal’s major axis and are 

labelled in (a–c) with a white circle and cross. (a) Three fractured segments of a single 

plagioclase phenocryst from the gouge (Fig. 2.2b) displaying negligible internal deformation 



 54 

across each. Unlike plagioclase, biotite phenocrysts display extensive plastic deformation 

throughout the high shear zone. (b) A plastically deformed biotite crystal from the high shear 

zone (Fig. 2.2d), revealing a partial tear upon reaching its plastic limit in areas of highest 

lattice distortion. (c) A biotite phenocryst that deformed plastically in the high shear zone 

(Fig. 2.2d), producing an S-C style fabric and rupture along a shear band parallel to the 

extrusion direction, forming fragments with variable plasticity. 

 

In contrast to plagioclase phenocrysts, plastic deformation of plagioclase microlites 

within the spine shear zone is evident (Fig. 2.9a). The advantage of studying microlites is that 

it provides a statistically robust dataset and any potential data bias due to internal 

heterogeneities within a single thin section can be removed by analysing multiple areas within 

the same sample. Accurately quantifying the degree of lattice distortion in plagioclase 

microlites involved manually drawing misorientation transects from one end of each crystal 

to the other (T1 and T2 in Fig. 2.9a). Through compiling the maximum misorientation angles 

from microlites within each section of the shear zone (Electronic Appendix 1.2), lateral 

differences were identified. The unimodal distributions of lattice misorientations (Fig. 2.9b) 

show a shift towards higher angles from low to high shear zone and gouge. The low and 

moderate shear zones show that most microlites have <2º misorientation. The high shear zone 

and gouge reveal a broader microlite misorientation distribution with lattice distortions of >9º. 

Through calculating the misorientation per micron for each microlite (after Kendrick et al., 

2017) we can remove any bias that would be caused by comparing microlites of different 

lengths (Fig. 2.9c). We find that the mean and maximum misorientation per micron increases 

systematically from the low to high shear zone, with the gouge being slightly lower than the 

high shear zone. Using the mean misorientation per micron for each section of the shear zone 

(squares in Fig. 2.9c) and multiplying these by an infinite crystal length, we can provide a 

modelled estimation for the degree of lattice distortion for a given crystal length (line gradients 

in Fig. 2.9d). These modelled misorientation estimates reveal that microlites of the same 

length from each section of the shear zone, are more likely to display a higher degree of 

plasticity in the gouge and higher shear zone (Fig. 2.9d). EBSD analysis on the undeformed, 

non-spine dome rock (Fig. 2.2j) shows that microlites exhibit the lowest misorientation values 

(Fig. 2.9d) and are comparable to those located in the low shear zone of the spine.  
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Figure 2.9 – Plastic deformation of plagioclase microlites across the shear zone. (a) 

Greyscale band contrast maps with plagioclase microlites subjected to a texture component 

analysis. The colour gradient displays the relative misorientation across a single microlite 

grain, thresholding to display up to 8º lattice distortion, and visualised by drawing 

misorientation transects along the crystal’s axis from blue to red (T1 and T2). All 

misorientation angles have a resolution error of  0.5º. The dashed outlined areas in the gouge 

indicate crystalline silica phases owing to glass alteration. (b) Normalised frequency 

histogram of crystal plastic distortion from each section of the shear zone, binned every 1º 

misorientation. (c) Box plot of the intensity of plastic deformation represented by the 

misorientation per micron. The box highlights the 25th and 75th percentiles (the bottom and 

top of the boxes, respectively) and the whiskers show the data range. The horizontal line in 

the box marks the median value and the square represents the mean for each section of the 

shear zone. (d) Maximum misorientation within a single plagioclase microlite versus its 

length. The gradients of the lines represent the modelled degree of crystal lattice distortion 

for a given crystal length in each section of the shear zone. These misorientation gradients 

were modelled by multiplying the mean misorientation per micron, as shown in (c), by an 

infinite crystal length. Plagioclase microlites in the undeformed dome block were also 

analysed for comparison. 
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2.3.5.  Magnetic signatures 

A portable magnetic susceptibility meter was utilised on the lava dome to non-

destructively measure the in-situ distribution of susceptibility across two transects of the spine 

margin shear zone at outcrop 2 (Fig. 2.3a, Fig. 2.10a and 2.10b) and to measure a selection of 

loose dome blocks. The field measurements showed magnetic susceptibility values on the 

spine range between 0.27–7.21 x10-4 (SI) from more than 200 measurements, with the highest 

values seen in the undeformed spine host material and lowest values in the high shear zone 

and gouge (Fig. 2.10a and b). Field magnetic susceptibility measurements on loose blocks on 

the dome, categorised as undeformed and deformed, showed values in close agreement 

(Figure 2.10c; mean 3.14 and 5.85 x10-4 SI [range 1.29–6.53 and 3.04–10.05], respectively). 

Moreover, magnetic susceptibility measured in the laboratory using a Magnetic Measurements 

Ltd Variable Field Translation Balance (VFTB) on samples from the undeformed host rock, 

high shear zone, and gouge (Fig. 2.3b–d), also match closely (Figure 2.10c; Table 2.3). The 

bulk susceptibility, measured in an Agico MFK1-FA Kappabridge, also showed a similar 

relationship, where the undeformed host has the highest susceptibility, with the high shear 

zone having a slightly lower bulk susceptibility and gouge the lowest. The temperature-

dependence of the bulk susceptibility was also distinct between each zone (Fig. 2.10d). The 

host rock produced sharply dropping reversible curves indicative of a single, low coercivity 

phase of low-Ti titanomagnetite; in contrast, the high shear and, especially, the gouge 

produced less reversible curves with shallower, less abrupt drops at high-temperature that 

suggests an alteration of the magnetic carrier (Fig. 2.10d). 

The VFTB data were analysed using the RockMagAnalyzer software (Leonhardt, 

2006), from which Curie temperatures (TC; Table 2.3) were identified from the 

thermomagnetic curves (see Fig. A1.2 for curves) using the method of Moskowitz (1981). For 

each sample set, only one Curie temperature was identified, and these correspond well to the 

terminal decrease of bulk susceptibility (Fig. 2.10d), being 521 ºC in the undeformed host, 

507 ºC in the highly sheared rock and 544 ºC in the gouge.  
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Figure 2.10 – Field and laboratory magnetic susceptibility measurements. (a, b) Magnetic 

susceptibility across two different transects of the spine margin at outcrop 2 (T1 and T2 in 

Fig. 2.3a), measured using a Bartington portable magnetic susceptibility meter. The 

undeformed host rock (left in both panels) has the highest susceptibility, gradually decreasing 

through the highly sheared area to the lowest values in the red gouge layer and finally slightly 
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higher values in the fault breccia on the right of the gouge. (c) Box plot of field magnetic 

susceptibility measurements of pristine (undeformed) and sheared (deformed) loose dome 

rocks, which show values that are comparable to transects in (a) and (b). These are compared 

to laboratory magnetic susceptibility measurements (marked grey zones; measured using a 

VFTB) on the host rock, highly sheared coherent lava and gouge. (d) Temperature-dependent 

bulk susceptibility during heating and cooling cycles (measured using a Kappabridge) for the 

three rock types. Susceptibility is highest in the host, intermediate in the highly sheared zone 

and lowest in the gouge, and the magnetomineralogy and stability are distinguishable. (e) 

Comparison of the ratio of saturation remanence and saturation magnetisation (Mrs/Ms) to 

the coercive force (Bc), showing that the gouge has significantly different remanence carriers. 

(f) Day plot combining hysteresis and backfield data showing each section of the shear zone 

has discrete differences. (g) Mrs/Ms against the coercivity ratio (Brh/Bcr) reinforces the 

disparate evolution of the high shear and gouge from the host lava. 

 

 Isothermal Remanent Magnetisation (IRM) and backfield curves show each zone 

almost fully saturates at 200 to 300 mT (see Fig. A1.3 and A1.4 for raw data). Quantitatively, 

the S300 parameter, a measure of the degree of saturation at 300 mT (Bloemendal et al., 1992), 

records subtle differences between the host, high shear and gouge zones (0.99, 0.96 and 0.92, 

respectively; Table 2.3), but with all values close to 1. The dominant magnetic phase is low 

coercivity titanomagnetites. Coercivity of remanence values (Bcr; Table 2.3) are lowest in the 

undeformed material (35 mT), slightly higher in the highly sheared material (37 mT) and 

significantly higher in the gouge (53 mT). Higher associated ratios of saturation remanence to 

saturation magnetisation (Mrs/Ms) and coercive force (Bc; Fig. 2.10e), in addition to a 

contrasting morphology of the hysteresis curves (see Fig. A1.5), also highlights a distinct 

difference between the gouge and other zones of the spine; in particular, Bc values for host 

material consistently plot between the high shear zone and gouge. Further differences are 

recorded by calculating the shape parameter (hys) from the hysteresis curve, which shows that 

all samples are “potbellied” to different degrees. Plotting hys against the coercivity ratio 

(Brh/Bcr) highlights a systematic change from the host, high shear zone and gouge material 

(Fig. 2.10f, after Fabian, 2003). Henkel plots (Henkel, 1964) supplement this information, 

incorporating backfield and IRM data (i.e., remanence data) to identify the presence of a 

demagnetising field arising either from multi-domain (MD) effects or magnetostatic 

interactions between single-domain grains (see Fig. A1.6 for raw data). Samples are plotted 

against ideal Stoner-Wohlfarth particles, or uniaxial non-interacting single-domain particles 

(Wohlfarth, 1958), and although the gouge plots closest to this line, all plot below the line, 

and as such all remanence carriers from each section of the shear zone deviate from this ideal 
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behaviour. Hysteresis and backfield data can be combined into a Day plot (Day et al., 1977) 

to examine the domain state of the magnetic carriers. All sample sets are repeatable, and plot 

in distinctly different areas (Fig. 2.10g). Although all points fall within the pseudo-single-

domain (PSD) region for pure magnetite (Dunlop, 2002), the Day plot again indicates the 

tendency for gouge to be considerably more single-domain-like, with the host rock again 

falling between the highly sheared zone and the gouge.  

 

Table 2.3 – Laboratory-based magnetic properties of outcrop 2 shear zone: Magnetic 

susceptibility, Curie temperature, degree of saturation and coercivity of remanence 

 

2.3.6.  Groundmass textures and glass chemistry 

2.3.6.1.  Amphibole reaction rims 

The two populations of amphibole that are present in the dacitic spine are hornblende 

phenocrysts and pargasite microphenocrysts and microlites in the groundmass. Reaction rims 

have previously been identified on hornblende phenocrysts within the pyroclastic deposits of 

the 1991–1995 eruption (e.g., Nakada & Motomura, 1999), with no reports of rims on 

groundmass pargasites. Within the spine shear zone, reaction rims on hornblende phenocrysts 

are similar in appearance to those reported in pyroclastic deposits, thus are not discussed 

further. 

Magnetics measurement: Sample no.: Host High shear Gouge 

Magnetic susceptibility (10-

4 SI units) 

1 9.70 6.11 1.85 

2 8.97 5.21 2.25 

3 12.10 7.22 2.46 

4 10.70 6.39 3.10 

5 9.24 – 2.98 
 Average 10.14 6.23 2.53 

Curie Temperature, TC (C) 

1 522 509 552 

2 509 507 559 

3 533 506 555 

4 520 – 521 

5 – – 533 
 Average 521 507 544 

Degree of saturation, S300 
(at 300 mT) 

1 0.99 0.95 0.91 

2 0.99 0.95 0.91 

3 1.01 0.98 0.91 

4 1.00 0.96 0.93 

5 0.98 – 0.94 
 Average 0.99 0.96 0.92 

Coercivity of remanence, 
Bcr (mT) 

1 33.39 36.43 55.86 
2 33.66 37.29 53.17 
3 33.28 36.95 52.59 
4 38.81 38.06 51.10 
5 34.55 – 52.88 

 Average 34.74 37.18 53.12 
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Groundmass pargasite breakdown rims vary from those seen in hornblende 

phenocrysts, as they show two types of breakdown textures: symplectitic and granular (Fig. 

2.11a; see Fig. A1.7 for additional examples). In the low and moderate shear zone, 

symplectitic rims mantle pargasite, termed so owing to the submicron interconnection of 

pyroxene, plagioclase and Fe-Ti oxide laths. In the high shear zone, these symplectitic rims 

are locally surrounded by coarser, detached pyroxene microlites (Fig. 2.11a). Pargasite in the 

gouge consists exclusively of detached granular rims of pyroxene and Fe-Ti oxides microlites. 

Minor symplectitic patches are occasionally seen on the inner zone of these detached granular 

rims, directly in contact with the host pargasite. Within the undeformed dome rock, only minor 

symplectitic patches are observed, with some pargasite crystals showing no evidence of 

reaction. To quantify this variation, the maximum thickness of each rim was measured from 

each section of the shear zone (Fig. 2.11b; Electronic Appendix 1.3). Reaction rims are 

thickest in the gouge and high shear zone (maximum of 13.8 and 12.7 m, respectively), and 

thinnest in the low shear zone and undeformed dome rock (maximum 4.8 m and 3.2 m, 

respectively), with the latter, occasionally displaying no rims. These changes are systematic 

across the shear zone and undeformed dome rock from: (1) an unreacted pargasite as observed 

in undeformed dome material; (2) thin symplectitic rims in the low and moderate shear zone; 

(3) thicker symplectitic rims and the first appearance of granular rims in the high shear zone; 

(4) pronounced detached granular rims in the gouge.  
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Figure 2.11 – Backscattered electron (BSE) images of the groundmass textures across the 

shear zone (a) showing the progressive alteration of the groundmass glass and variations in 

pargasite reactions rims, both compared to the undeformed dome block. In the low shear zone 

and undeformed dome block, clusters of small, dark grey silica-rich patches are located 

around microlites. These clusters in the moderate shear zone spread into web-like domains 

that increase in abundance in the high shear zone. The gouge is textural distinct from the rest 

of the shear zone, consisting of larger silica-rich patches that are well distributed within the 

groundmass. Pargasite crystals are surrounded by granular rims in the gouge material, both 

granular and symplectitic rims in the high shear zone, and symplectitic rims only in the 

moderate and low shear zones, with the undeformed dome block showing negligible reaction 

rims. (b) Box plot showing the maximum thickness of pargasite reaction rims for >30 crystal 

measured per section of the shear zone. The plot shows the 25th and 75th percentiles, data 

range, median value (horizontal line) and mean value (square). Thickness error was 

calculated from the pixel resolution of the BSE images. Pargasite rim thicknesses show an 

average increase towards the gouge. 
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2.3.6.2.  Textural, chemical and thermal properties of the interstitial glass 

The solid groundmass of the dacitic lava spine’s shear zone consists of 33.5–47.8 area 

% interstitial glass (Table 2.2). Heterogeneous glass alteration textures are a prominent feature 

associated with the spine (Fig. 2.11a). In the low shear zone, clusters of fine-grained (<1–2 

m diameter), dark grey, silica-rich phases are observed within the glass, notably localised 

along plagioclase microlite edges. The moderate shear zone also consists of these silica-rich 

phases, which appear to be interconnected with web-like intergrowths that radiate in a 

spherulitic manner. These silica phases and intergrowths are seen most extensively within the 

high shear zone, where less pristine glass remains relative to the low shear zone. Despite these 

somewhat systematic differences between the low, moderate and high shear zone, the 

groundmass of the gouge is texturally different (Fig. 2.11a). The gouge consists of larger (5–

10 µm in diameter), subhedral silica phases, often displaying a scaly texture that forms an 

intercrystalline network around plagioclase microlites, with no web-like intergrowths and only 

minor interstitial glass remaining (as also recorded by QEMSCAN in Fig. 2.5 and Table 2.2). 

EBSD band contrast maps of the gouge (Fig. 2.9a and Fig. A1.1), which only detect phases 

with a definite crystalline structure (i.e., will not detect glass or any other amorphous phases) 

identify these silica phases as crystalline, likely cristobalite. 

 

Table 2.4 – Composition of the interstitial glass from outcrop 1 shear zone 

 

Normalised average compositions of the interstitial glass across the outcrop 1 shear zone. 

Numbers in parentheses show the standard deviation (1) derived from multiple analyses. 

n, number of microprobe analyses averaged to determine the average glass composition and 

standard deviation. 

* Total Fe as FeO. 

, averaged original microprobe totals. 

 

Sample: A C E H 

Rock type: Lava spine Lava spine Lava spine Lava spine 

Zone: Gouge High shear Moderate shear Low shear 

n 5 8 13 10 

SiO2 78.08 (0.75) 79.64 (0.82) 80.26 (0.42) 80.32 (0.38) 

TiO2 0.32 (0.05) 0.29 (0.02) 0.28 (0.01) 0.29 (0.01) 

Al2O3 11.42 (0.35) 10.67 (0.51) 10.42 (0.26) 10.40 (0.14) 

FeO* 0.80 (0.04) 0.81 (0.11) 0.73 (0.09) 0.74 (0.10) 

MgO 0.04 (0.01) 0.06 (0.02) 0.04 (0.02) 0.04 (0.01) 

CaO 0.22 (0.06) 0.27 (0.14) 0.20 (0.06) 0.18 (0.05) 

Na2O 2.43 (0.15) 2.04 (0.20) 2.00 (0.13) 1.85 (0.06) 

K2O 6.69 (0.24) 6.22 (0.25) 6.07 (0.12) 6.18 (0.17) 

Total 100.00 100.00 100.00 100.00 

  99.89 99.79 100.61 99.82 
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The groundmass glass is rhyolitic (77–81 SiO2 wt %), with subtle chemical variations 

between each section of the shear zone (Fig. 2.12; Table 2.4). Interstitial glass of the low and 

moderate shear zone has similar overlapping compositions for most major elements, 

particularly in SiO2 (Fig. 2.12a; 79.9–81.3 and 79.8–81.4 wt %, respectively), although some 

elements in the moderate shear zone display a larger range (e.g., Al2O3 and Na2O; Fig. 2.12b 

and c). The high shear zone consists of the most chemically heterogeneous glass; SiO2 extends 

~2 wt % below that recorded for the moderate and low shear zone (78.1–80.9 wt %). In 

contrast, most other elements extend towards higher values, most notably for Al2O3 and Na2O 

(Fig. 2.12b and c), with low concentration elements (e.g., MgO and CaO) residing within the 

range observed in the moderate and low shear zones. The interstitial glass of the gouge has 

the least SiO2 (Fig. 2.12a; 77.1–79.1 wt %), but highest Al2O3, K2O and Na2O (Fig. 2.12b and 

c) with respect to the other zones. MgO (Fig. 2.12d) is lower in the gouge relative to the high 

shear zone, although it is within range of the moderate and low shear zones. These seemingly 

systematic chemical changes in the interstitial glass across the shear zone, decreasing in SiO2 

from the low and moderate shear zone towards the gouge, and an overall shift towards higher 

concentrations for other elements, is concordant with the increased appearance of crystalline 

silica in the groundmass. A simple mass balance using the average glass composition of the 

low shear zone (Table 2.4) reveals ~6 and ~14 % crystallisation of an SiO2 polymorph 

(assuming 100 wt % SiO2) is required to change the chemistry to that measured in the high 

shear zone and gouge, respectively. This is consistent with both the groundmass textures (Fig. 

2.11a) and reduction of glass content in the gouge (Fig. 2.5 and Table 2.2). Although no 

reduction of glass was recorded for the high shear zone, this may be related to the <2 m silica 

phases in this region being smaller than the beam’s interaction volume (~10 µm3) thus being 

classified as glass in QEMSCAN analysis. 

Thermal analysis of the low shear zone groundmass material was performed to collate 

a thermal history of the magma, and, in particular, an estimation of the temperature at which 

viscous deformation may ensue, as determined by the glass transition (Tg). For the analysis, 

low shear zone material was used as it was considered to be the most representative of the 

magma’s groundmass prior to deformation and any chemical alteration. A calorimetric Tg 

value of 790 ºC was obtained (see Cp curve in Fig. A1.8 using a 10 ºC.min-1 heating/cooling 

rate). This value was consistent with the estimated temperature derived from the viscosity 

model of Giordano et al. (2008) using measured glass chemistry (773 ºC) which acts as a 

viscosity gauge for 1012 Pa.s. 
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Figure 2.12 – Spatial variation in the interstitial glass composition across the shear zone. (a) 

SiO2 and TiO2. (b) Al2O3 and K2O. (c) Na2O and CaO. (d) FeO and MgO. All values are 

presented on a volatile-free basis, with totals normalised to 100 wt %. Error bars adjacent to 

the corresponding component axis denote the relative uncertainty based on repeat analyses 

of KN-18 glass standard. 
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2.3.7.  Experimental insights 

During direct shear at the imposed experimental conditions (2 MPa normal stress and 

1 m s-1 slip rate), frictional work resulted in a rapid temperature rise of the dacite from 600 ºC 

to >1150 ºC in ~2 seconds (Fig. 2.13a, b and see Fig. A1.9 for raw mechanical data), 

permitting localised melting of the rock along a narrow slip plane. After ~5 seconds of slip, a 

full melt layer had formed causing the heat source to transition from frictional heat to viscous 

dissipation (i.e., shear heating; e.g., Hirose & Shimamoto, 2005), as recorded by the 

appearance of shear bands radiating from the slip zone (Fig. 2.13b). Temperature profiles 

across the simulated shear zone (Fig. 2.13a) reveal a gradual increase in width through time 

as the temperature exceeds the calorimetric Tg. Microtextural observations of the material 

adjacent to the melt zone show microlites and microphenocrysts are preferentially aligned in 

the direction of slip (Fig. 2.13c and d). Within this localised region, pores are reduced in both 

size and abundance, from ~40–100 m in diameter in the starting material to <10 m in 

diameter in the areas directly adjacent to the slip zone (Fig. 2.13e). A closer examination of 

the textures in the experimental shear zone (Fig. 2.13f) revealed localised reaction rims on 

pargasite microlites adjacent to the melt zone. Rims closest to the melt zone consist of coarse 

grained, detached pyroxene microlites (Fig. 2.13g), which become finer grained and more 

acicular further away (Fig. 2.13h). Pargasite away from the experimental shear zone (i.e., in 

the starting material) show negligible reaction rims and appear stable in the absence of 

shearing (Fig. 2.13i). Textural characteristics of the reaction rims in the experimental shear 

zone are similar to those in the natural gouge and high shear zone of the spine (Fig. 2.13j), 

while pargasite crystals in the low shear zone are more comparable to the starting material 

(Fig. 2.11a). Based on the microtextural differences induced across the experimental shear 

zone, it can be subdivided into discrete zones akin to outcrop 1 shear zone (Fig. 2.2a and Fig. 

2.13f): 1) a “low shear zone” with randomly oriented microlites, large open pores and no 

reaction rims on pargasite microlites; 2) a “moderate shear zone” with the onset of a reduction 

in porosity and thin reaction rims on pargasites; and 3) a “high shear zone” with strongly 

aligned tabular microlites, significantly collapsed pores and thick granular reaction rims on 

pargasite microlites. Using the temperature profile monitored across the shear zone by the 

thermographic camera, we can estimate the temperature range at which each of these discrete 

zones (and textures) would have formed (Fig. 2.13a), with the low shear zone between 790–

860 ºC, moderate shear zone between 860–980 ºC and high shear zone between 980–1080 ºC, 

with any bulk melting taking place at >1100 ºC. 
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Figure 2.13 – High-temperature, high-velocity rotary shear (HVR) experiment and associated 

textures of the experimental shear zone. (a) Temperature evolution across a 2 mm transect of 

the slip zone through time derived from the thermographic recording of the experimental slip 

zone (b). The dashed line in (a) denotes the calorimetric glass transition (790 ºC) equating to 

a viscosity of 1012 Pa.s. (b) After ~10 seconds of slip, shear bands are observed radiating from 

the slip zone. The line across the slip zone in the thermographic images represents the location 

of the transect used to obtain the temperature profile in (a). Textural observations in (c), (d) 

and (e) can be directly compared to the temperature profile above. (c) QEMSCAN map and 

(d) photomicrograph showing the remobilisation of crystals and their alignment adjacent to 

the melt zone. (e) Porosity distribution showing pores within the shear zone progressively 
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decrease in size and abundance towards the slip plane. (f) BSE image of the experimental 

shear zone, being dividing into four zones similar to outcrop 1 shear zone, along with 

temperature estimates for each zone using the temperature profile in (a). Pargasites (Pg) in 

the experimental shear zone display pyroxene (px) reaction rims in the areas of elevated 

temperatures, being granular at the highest temperatures (g) and becoming finer further away 

(h). (i) Example of a pargasite crystal in the starting material displaying no reaction rim. (j) 

A pargasite crystal from the gouge displaying a granular rim comparable to (g). 

 

2.4.  INTERPRETATION AND DISCUSSION 

Direct field studies investigating the textural complexities associated with extruding 

lavas are in short supply due to the prolonged nature of lava dome eruptions, in addition to the 

low probability that extruded structures remain well enough preserved to interpret the 

processes involved effectively (Mount St. Helens – e.g., Pallister et al. 2013; Gaunt et al. 

2014; Unzen volcano – e.g., Smith et al., 2001; Volcán de Colima – e.g., Kendrick et al., 

2016; Cordón Caulle – e.g., Castro et al., 2013; Tuffen et al., 2013). The quiescence following 

the 1991–1995 dome-building eruption at Unzen volcano provided this relatively unique 

opportunity, where remnants of the extruded lava spine and associated marginal shear zones 

remain intact. 

 

2.4.1.  Strain localisation and viscous remobilisation 

Our observations suggest the formation of these shear zones was a consequence of 

strain localisation, which in turn was governed by changes in the magma’s rheology during 

its ascent to the surface. Late-stage crystallisation and degassing of the dacitic magma (e.g., 

Noguchi et al., 2008b; Cichy et al., 2011) will increase viscosity and significantly hamper 

flow in the conduit, aiding a rheological transition of the magma, causing stress and strain to 

localise near the conduit margins (Fig. 2.14 panel [1]). A concentration of stress in the high 

viscosity, crystal-rich magma likely led to the dissipation of viscous energy (shear heating) or 

friction resulting in a temperature rise (e.g., Lavallée et al., 2008; Kendrick et al., 2014b), 

which reduced the viscosity of the magma, allowing crystals to align in the direction of flow 

(i.e., viscously remobilise; Fig. 2.6a), and pores to compact (Fig. 2.5 and Fig. 2.6a–c) reducing 

permeability (e.g., Kendrick et al., 2014a; Ashwell et al., 2015). The presence of an interstitial 

glass facilitates viscous remobilisation (e.g., Hornby et al., 2015); when a glass is not present, 

for example at Mount St. Helens, lava spines extruded in a near-solid state with no high-

temperature deformation of this kind observed (Cashman et al., 2008; Kennedy et al., 2009; 
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Kendrick et al., 2012; Pallister et al., 2013; Ryan et al., 2018). Here, the interstitial glass 

presents an opportunity to constrain the likely conditions during spine extrusion based on 

textural evolution, which indicates increasing temperature towards the spine margin (i.e., high 

shear zone). As experimentally demonstrated here (Fig. 2.13a and f), viscous remobilisation 

and subsequent crystal rotation and alignment likely took place 200–300 ºC degrees above Tg 

(980–1080 ºC). Our experiment also constrains an estimated temperature at which the magma 

in the conduit would remain undeformed (i.e., low shear zone), likely reflecting the 

temperature of magma that formed the core of the spine (~860 ºC, Fig. 2.13f), which is in 

close agreement to the post-magma mixing temperatures previously reported (870–900 ºC; 

Venezky & Rutherford, 1999; Holtz et al., 2005). 

 

 

Figure 2.14 – A conceptual model of the shallow conduit at Unzen volcano prior to the 

extrusion of the 1994–1995 lava spine. Panels 1–4 represent the textural evolution of 

plagioclase, pargasite, biotite and pores (bubbles) during magma evolution to the surface. 

The colour gradient across the transects of the conduit represents a temperature profile 

derived from the rotary shear experiment. During magma ascent (1), an increase in 

crystallisation and volatile exsolution causes the flow to transition from a Poiseuille flow 

regime to a plug style ascent. An increase in viscosity of the crystal-rich magma permits strain 

to localise near the conduit margins causing deformation and formation of shear zones (2). 
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Here, the increase in stress is manifested in the form of crystal rotation and alignment at the 

conduit margins. A thermal input likely accompanies viscous deformation due to shear 

heating, which causes a localised higher temperature region towards the conduit margins 

resulting in the destabilisation of pargasite in the form of granular breakdown rims and pore 

compaction. As magma ascends further (3), it encounters the viscous-brittle transition, where 

biotite phenocrysts and plagioclase microlites can accommodate strain by deforming 

plastically with crystal plasticity increasing towards the conduit margin. With further ascent, 

magma enters the brittle regime (4) causing strain localisation to be expressed by crystal 

comminution, which increases towards the conduit margins, where stress and strain are 

highest. The onset of brittle failure is accompanied by characteristic seismicity, as recorded 

during the extrusion of many domes and lava spines, where frictional behaviour takes over 

along the conduit margins. The slow extrusion of the high-temperature viscous spine is 

envisaged to experience late-stage oxidation, resulting in the formation of symplectitic 

pargasite breakdown rims accompanied with glass devitrification. 

 

2.4.2.  Thermal destabilisation of amphibole 

A characteristic effect of disequilibrium conditions is the reaction of mineral phases 

with the surrounding melt. Hydrous minerals, such as amphibole, are sensitive recorders of 

such processes and, once forced out of their stability zone, begin to breakdown, forming a rim 

of anhydrous phases (e.g., Rutherford & Hill, 1993; Browne & Gardner, 2006; De Angelis et 

al., 2015). Although many factors can cause amphibole decomposition (e.g., decompression, 

heating, change in melt chemistry, oxidation; Rutherford & Hill, 1993), we investigate the 

effect of shearing on the dynamic stability of amphibole during magma ascent at Unzen 

volcano. Within the sheared margins of the lava spine, high-temperature flow appears to 

influence the stability of pargasitic amphibole, causing localised breakdown rims (Fig. 2.11a). 

The granular rims are exclusive to the high shear zone and gouge material, often surrounding 

a symplectitic rim. The symplectitic rims are always in direct contact with pargasite crystals 

and found across the entire shear zone with varying thickness (Fig. 2.11a). Thus, based on the 

theoretical understanding of reaction rims growing from the outer edge of the crystal inwards 

towards the centre (e.g., Browne & Gardner, 2006), the granular rims formed first followed 

by symplectitic decay. Experimental investigations on heating-induced amphibole reaction 

rims (De Angelis et al., 2015) are texturally comparable to the granular rims observed in the 

high shear and gouge regions of the spine. Shear heating in these areas is the likely process 

that could cause the pargasite to breakdown, occurring contemporaneously with crystal 

alignment and pore compaction (Fig. 2.14 panel [2]). Similar granular rims also form during 
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the rotary shear experiment owing to a localised temperature rise brought about by shear 

heating (Fig. 2.13g and h). Symplectitic rims (Fig. 2.11a) have previously been related to 

extreme oxidation (i.e., at shallow conditions; Garcia & Jacobson, 1979); however, these 

textures have been recorded at other lava domes, being located as patches, either on the outer 

edge of a granular rim (Plechov et al., 2011) or between the granular rim and the host 

amphibole (Scott et al., 2012), making oxidation inconclusive. Yet, owing to the slow 

extrusion and cooling of the dacitic spine (Nakada & Motomura, 1999), along with the visual 

observation of surface reddening across outcrop 1 (Fig. 2.2a) and in blocks on the dome (e.g., 

Saito et al., 2007), it may imply that the symplectitic rims were the result of late-stage 

oxidation (e.g., Murphy et al., 2000). Kinetic variations across the shear zone also need to be 

taken into account due to a localised heat input related to shearing near the spine margin, with 

symplectitic rims possibly reflecting a kinetic delay (e.g., Scott et al., 2012). Less kinetic 

inhibition would be expected near the spine margin, leading to the formation of coarser 

grained reaction rims. However, the coexistence of granular and symplectitic rims on the same 

pargasite crystal suggests two discrete events were responsible; heating exclusive to the high 

shear zone, followed by shallower oxidation of the shear zone as a whole (Fig. 2.14 panel [3]). 

 

2.4.3.  Crystal plasticity as a strain indicator 

As magma approaches the viscous-brittle transition, flow behaviour converts from 

magmatic, viscous flow to near solid-state where fracturing and internal crystal deformation 

is feasible (Vernon, 2000). Solid-state crystal deformation has been observed to superimpose 

magmatic flow textures in several plutonic bodies (Murray, 1979; Vernon & Paterson, 1993; 

Zibra et al., 2012). Typically, eruptive products lack these microstructural textures due to the 

sustained coexistence of a melt fraction, which may relax stress by adapting to new 

configurations. However, we show that crystals in magmatic shear zones do not only interact 

by acting as rigid, brittle bodies but can serve to accommodate strain by deforming plastically 

and that this plasticity varies systematically with deformation conditions before succumbing 

to failure. The presence of these deformation textures may be attributed to the low interstitial 

melt concentrations and the prolonged timescales of magma ascent (~5 months), allowing 

more time for the crystals to capture the transition from viscous to brittle behaviour. Kendrick 

et al. (2017) experimentally induced plastic deformation within plagioclase microlites present 

in an andesitic dome lava (from Volcán de Colima, Mexico), highlighting that microlites that 

were subjected to higher stresses and strains had a higher misorientation (i.e., internal lattice 

distortion), akin to the systematic variation recorded here across the shear zone of the spine. 

The increase in crystal plasticity of plagioclase microlites (Fig. 2.9a–d) suggests more stress 
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and strain were localised and accommodated in these areas (Fig. 2.14 panel [3]). This is further 

confirmed by the extreme plastic deformation of biotite phenocrysts in the high shear zone 

(Fig. 2.8b and c), which are akin to mica fish associated with S-C fabrics within mylonitic 

shear zones in fully crystalline rocks (e.g., Selverstone et al., 2012). It has been observed that 

yield stresses required for plasticity to initiate decrease with increasing temperature (Poirier, 

1995). Therefore, a higher stress and strain at the conduit margins (e.g., Cordonnier et al., 

2009; Lavallée et al., 2012b; Lavallée et al., 2013), accompanied with a thermal input due to 

shear heating and fault friction, would facilitate the observed increase in crystal plasticity 

towards the spine margin. Additionally, temperature increase could cause a crystal plasticity 

feedback mechanism, as increasing temperatures would lower the viscosity of the magma in 

the higher shear zone, enabling further strain to localise and favour yet higher crystal plastic 

deformation in this region. With more experimentation, building on the work of Kendrick et 

al. (2017), the strain rates required to achieve plastic deformation and failure in different 

phases could be quantified and thus incorporated into future rheological models. 

 

2.4.4.  Brittle failure and comminution 

During spine extrusion, and once in the transitional brittle regime, crystals can fracture 

and comminute in areas of higher stress, resulting in a net grain size reduction of phenocrysts 

towards the spine margins (Fig. 2.14 panel [4]). The cataclastic behaviour, dominantly of 

plagioclase and amphibole phenocrysts (Fig. 2.4 and Fig. 2.7a), can thus be attributed to brittle 

deformation during fault slip (e.g., Monzawa & Otsuki, 2003). The point at which brittle 

failure would take over from viscous and plastic deformation depends on both the temperature 

and stress (and strain) conditions of the magma (e.g., Allen & McPhie, 2003; Lavallée et al., 

2008; Cordonnier et al., 2009; Cordonnier et al., 2012; Coats et al., 2018). Similar brittle 

textures were observed following uniaxial compression experiments performed on 80 mm by 

40 mm cores of natural Unzen dacite at 980 ºC, 1–32 MPa applied normal stress and total 

strain of 25 % (Cordonnier et al., 2009). These experiments showed that with increasing stress, 

phenocrysts first cracked, then began to fragment to reduce grain size gradually, and at highest 

stresses crystal powders formed, with plagioclase and amphibole phenocrysts being the most 

affected. The decrease in plagioclase circularity in the higher shear zone (sample B, Fig. 2.7b) 

can be related to initial remobilisation and preferential alignment of the crystals during shear, 

and subsequent fracturing parallel to the principle shear direction. 

Cordonnier et al. (2009) reported that following deformation of Unzen lavas under 

high stresses, finer crystal fragments and powders were commonly removed during thin 

section preparation, leaving behind voids with some residual fragments. This is in keeping 
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with our observations that increasing comminution of plagioclase, and to a lesser extent 

amphibole, caused their systematic reduction in size and abundance due to higher stress 

conditions at the spine margin (Fig. 2.2c, d, and Table 2.2). Biotite phenocrysts show no such 

reductions in abundance owing to their ability to deform plastically (Fig. 2.8c and d) and 

remain cohesive within the high shear zone and gouge. These differences in a crystal’s 

mechanical response to shear may be a partial cause (along with natural heterogeneities) for 

the subtle variability in bulk rock major and trace elements across the shear zone (Table 2.1); 

for example, the drop in plagioclase-compatible elements (Sr, Ca, Na, Al) in the high shear 

zone relative to the low shear zone is consistent with the reduction of plagioclase recorded by 

QEMSCAN. It is also likely that the conduit wall rock underwent some degree of fracturing, 

contributing material (along with the high shear zone) to the gouge, and thus causing a further 

shift in mineralogy (Fig. 2.4, Table 2.1 and 2.2). 

Brittle deformation within the conduit margin shear zones is considered to be the 

cause of the characteristic seismicity (Fig. 2.14) recorded during spine extrusion (Tuffen & 

Dingwell, 2005; Iverson et al., 2006; Neuberg et al., 2006; Iverson, 2008; Kendrick et al., 

2014b; Hornby et al., 2015; Lamb et al., 2015). The depth of the seismic source during spine 

extrusion at Unzen volcano was constrained to be <500 m (Yamashina et al., 1999; Umakoshi 

et al., 2008; Lamb et al., 2015), thus the onset of brittle deformation is estimated to occur at a 

similar depth, perhaps superseding viscous and crystal-plastic behaviour at this depth. 

Continued fracturing at the conduit margins caused faulting to extend to the surface, allowing 

the magma to extrude in the form of a lava spine, mantled by cataclastic gouge material and 

fault breccia. 

 

2.4.5.  Magnetic response to shear 

Magnetic properties of rocks can be highly sensitive to magnetomineralogical 

changes brought about by, for example, deformation and faulting generating heat (Ben-Zion 

& Sammis, 2003; Ferré et al., 2005; Freund et al., 2007; Kendrick et al., 2012) or 

hydrothermal alteration due to flushing through of fluids or gases (Krása & Herrero-Bervera, 

2005; Bouligand et al., 2014; Geuna et al., 2014). The magnetic variations across the spine 

shear zone reveal a disparate history of the magnetic carriers that coincide with the degree of 

shear. The variation in the reversibility of the magnetic susceptibility curves (Fig. 2.10d) 

suggests a single, low coercivity phase of low-Ti titanomagnetite (TC ~530 °C) in the host 

material; the less reversible curves of the high shear zone and gouge indicate a more 

distributed range of less stable phases, perhaps with suppressed Curie temperatures. The 

almost full saturation of the IRM and backfield curves support the predominance of these low 
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coercivity minerals (Leonhardt, 2006). However, the higher TC, Bcr, Mrs/Ms and Bc values in 

the gouge (Table 2.3 and Fig. 2.10e) suggests an increasing fraction of higher coercivity 

magnetite grains. These were likely produced by oxidation of the titanomagnetite in the gouge 

either through subdividing them further into lamellae of iron-rich and iron-poor end members 

(i.e., oxyexsolution), or potentially even via conversion to titanohaematite. Interestingly, the 

undeformed host material consistently plots between the high shear zone and gouge (Fig. 

2.10e and g), suggestive of two opposing formation pathways that took place at the spine 

margin. One event, likely oxidation well above ambient temperatures, influenced the high 

shear zone and gouge to differing degrees, creating the spread in susceptibility and coercivity 

ratio (Fig. 2.10a–g). However, the high shear appears to have been influenced by a second 

factor, potentially a pre- or syn-emplacement re-heating event that shifted the coercive force, 

and hence domain state in the opposite manner to the gouge (Fig. 2.10e and g). Such a shift in 

the magnetic carriers could be the result of shear or frictional heating in the laterally limited 

high shear zone (Fig. 2.3a). 

 

2.4.6.  Gouge alteration and glass devitrification 

The low porosity of the glass-poor gouge, relative to the least sheared region of the 

spine, suggests that extensive induration of the plastically deformed and comminuted crystal 

fragments took place (Fig. 2.2b and Fig. 2.4), which would be facilitated by the increased 

temperature and stress conditions at the conduit margin (e.g., Ryan et al., 2018). However, 

during its formation and lithification, the gouge is envisaged to have been exposed to 

prolonged periods of fluid and gas interaction, particularly during slow extrusion and post-

emplacement degassing causing alteration, which is visible at outcrop scale due to the red 

colouration of the gouge (Fig. 2.2b and Fig. 2.3b). The groundmass silica phase within the 

gouge is somewhat comparable to those found in drilled dacitic dykes retrieved by the USDP-

4 Unzen Scientific Drilling Project (Fig. 2.11a; Noguchi et al., 2008a), although the gouge 

lacks evidence for other alteration phases (e.g., pyrite and alkali-feldspar). One of these dykes 

(dyke C14) has been interpreted to be the feeder dyke for the 1991–1995 eruption based on 

its similar texture and composition to the erupted dome lava, but with a distinct overprint of a 

mosaic of silica-rich grains in the groundmass attributed to hydrothermal alteration by 

percolating fluids (Noguchi et al., 2008a). Therefore, in addition to the significant difference 

in rock magnetic parameters of the gouge (susceptibility and coercivity ratio; Fig. 2.10d and 

e), it suggests that the gouge layer experienced increased interaction with percolating 

hydrothermal fluids/gases relative to the bulk of the magma in the conduit. Fluids and gases 

filtrating through magmas and rocks have been seen to influence many petrological, 
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geochemical and magnetic parameters in volcanic systems (e.g., Krása & Herrero-Bervera, 

2005; Salaun et al., 2011; Bouligand et al., 2014; Geuna et al., 2014). Chemical effects are 

the result of transport of dissolved species either by diffusion or percolating fluids through 

open pores (Goncalves et al., 2012). Metasomatism of this kind has been observed in many 

large-scale shear zones (e.g., Wibberley, 1999; Yonkee et al., 2013), thus deciphering the 

influence of fluid migration during spine extrusion is critical. Porosity measurements (Table 

2.2 and Fig. 2.5) across the shear zone reveal a decrease from low shear to high shear, resulting 

from pervasive compaction in the shear zone occurring at depth. The prevention of fluid access 

with increasing shear-enhanced compaction will aid in the relative stabilisation of mineral 

phases, preventing geochemical reactions from taking place (e.g., Wibberley, 1999).  

Devitrification of amorphous glass is a common feature observed in many dome lavas 

(e.g., Mount St. Helens, Pallister et al., 2008; Santiaguito, Scott et al., 2012; Soufrière Hills 

volcano, Horwell et al., 2013); a solid-state crystallisation process that takes place during the 

slow cooling of the magma, leading to the formation of crystalline silica (SiO2) phases, 

commonly cristobalite (e.g., Baxter et al., 1999; Murphy et al., 2000; Horwell et al., 2013). 

Partially devitrified glass has previously been reported for Unzen lava spine by Nakada and 

Motomura (1999). The presence of groundmass silica phases in the shear zone, increasing 

systematically towards the spine exterior (Fig. 2.11a), are likely devitrification products, 

consistent to those textures observed in other systems (Cashman, 1992; Blundy & Cashman, 

2001; Couch et al., 2003; Harford et al., 2003; Horwell et al., 2013). Decompression 

experiments (Hammer & Rutherford, 2002; Couch et al., 2003) observed similar 

devitrification textures forming only at very low pressures (≤5 MPa), which led to the proposal 

that the extent of devitrification could act as a relative estimate for extrusion rate (Scott et al., 

2012; Horwell et al., 2013), with increased devitrification during slower extrusion. Thus, 

devitrification of the spine is consistent with its low extrusion rate and slow cooling (Nakada 

& Motomura, 1999), and likely coincided with oxidation and the formation of symplectitic 

rims on pargasite microlites. The high shear zone glass (representing the margin of the spine) 

is slightly more devitrified (Fig. 2.11a), which could reflect the higher temperatures 

experienced associated with shear heating that prolonged the cooling period to ambient 

temperature and consequently influenced the glass chemistry (Fig. 2.12). This is further 

supported by the higher abundance of more evenly distributed groundmass silica phases in the 

gouge (Fig. 2.11a), which may have spent a relatively longer amount of time in the conduit 

than the bulk of the spine due to periodic coupling to the conduit wall. 
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2.4.7.  Magma mixing: An added complexity 

Evidence for magma mixing is common in the eruptive products at Unzen volcano 

(e.g., Nakada & Fujii, 1993; Nakamura, 1995; Nakada & Motomura, 1999; Venezky & 

Rutherford, 1999), including the spine (e.g., biotite reaction rims, mafic enclaves). Pre- and 

syn-eruptive magma mixing has been documented at other volcanoes, leaving behind 

petrological and geochemical signatures (e.g., reaction rims on hydrous minerals, reverse 

zoned crystals, and changes in bulk and glass composition). This brings complications when 

deciphering the impact of shear and the natural heterogeneities brought about by mixing of 

the magmas at depth. For example, reaction rims on amphiboles have previously been related 

to a temperature rise brought about by mixing a lower temperature and higher temperature 

magma (e.g., Murphy et al., 2000; Rutherford & Devine, 2003; De Angelis et al., 2015). This 

could be an alternative cause for the pargasite rims observed in the spine shear zone. 

Additionally, magma mixing can bring about hybridised, compositional heterogeneities in 

both major and trace elements (e.g., Perugini & Poli, 2012; Morgavi et al., 2013), which could 

explain the subtle differences in bulk-rock composition across the shear zone. However, 

magma mixing is deemed an unsystematic, chaotic process, thus, although mixing of two or 

more magmas could explain the aforementioned differences, their systematic change with 

shear intensity across the shear zone and the range of complementary deformation indicators 

suggests otherwise. It has also been suggested that mixing of the magma at Unzen would be 

near-complete prior to reaching the last kilometre before extrusion (Nakada & Motomura, 

1999; Goto et al., 2008), while here we demonstrate that the differences observed across the 

spine shear zone likely formed within the final kilometre, and thus on a fully mixed magma. 

Nakada and Motomura (1999) found the bulk-rock composition of the porphyritic dacites 

from pyroclastic flow deposits collected throughout the 4-year eruption ranged from 64.5–

66.0 wt % SiO2, which was related to the natural variation in the abundance of phenocrysts. 

Consequently, although it is possible to attribute some of the bulk geochemical and 

mineralogical differences across the shear zone to deformation (fracturing of crystals during 

magma ascent and some loss of finer fragments forming cavities), inherent variabilities of the 

magma are expected. Therefore, it is important to consider, particularly for geochemical 

interpretations, natural variabilities within a mixed magma and refrain from over-

interpretation of subtle differences. 
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2.5.  IMPLICATIONS FOR ERUPTION STYLE 

Shear deformation and strain localisation in the volcanic conduit can regulate eruptive 

behaviour as demonstrated by the range of characteristic textures that record shallow conduit 

processes. We relate the combined effect of viscous remobilisation, pore compaction, 

pargasite destabilisation and variations in magnetic properties to a magmatic heating episode 

near the conduit margins as a consequence of shearing and friction during magma ascent, 

manifested here primarily in the high shear zone (see Fig. 2.14). This was likely followed by 

late fluid-rock alteration, oxidation and glass devitrification of the gouge and, to a lesser 

extent, high shear regions of the spine. 

In volcanic systems, highly fractured materials that reside in the conduit are ideal 

permeable pathways that facilitate outgassing, and thus reduce explosive potential (e.g., Gaunt 

et al., 2014; Ashwell et al., 2015). Marginal shear zones with their increased permeable 

network resulting from fracturing are believed to contribute to such depressurisation, 

preventing the build-up of excess pressure that can drive explosivity (e.g., Lamur et al., 2017). 

However, within the shear zone examined here, localised compaction of the magma brought 

about by an increased temperature resulted in a closure of the original porous network and 

reduced permeability in these zones. As outgassing proficiency depends on the pore 

connectivity and permeability anisotropy of the undeformed magma (e.g., Ashwell et al., 

2015; Heap et al., 2015; Farquharson et al., 2016b; Colombier et al., 2017; Gonnermann et 

al., 2017; Lamur et al., 2017), the compaction and closure of pore space in the high shear zone 

could have caused a shift in the location of outgassing, in this case towards the least sheared 

material (i.e., the core of the spine). A dilemma, therefore, arises when assessing a magma’s 

ability to fracture (i.e., dilate) or compact in shear zones (Heap et al., 2015), with the 

competition between the two favouring or limiting the extent of outgassing and therefore 

likely regulating the style of eruption. For example, explosive activity at Santiaguito volcano, 

Guatemala, has been attributed to strain localisation and faulting at the conduit margins 

(Lavallée et al., 2015a), creating a partially open-vent system that regularly seals to build 

pressure that produces an explosion (Holland et al., 2011; Johnson et al., 2014). Although 

during the 1991–1995 eruption very limited explosive activity was reported, likely owing to 

relatively efficient connectivity of the magma’s porous network (Nakada & Motomura, 1999; 

Nakada et al., 1999), this may not be the case for other systems or throughout any other given 

eruption where shifts from effusive–explosive activity have been observed (Cassidy et al., 

2018). Our model suggests magma shearing at the conduit margin could temporally seal gas 

pathways, by compacting the porous network, creating ideal conditions for explosive activity, 

a phenomenon that may also be responsible for the frequent shifts in eruption style observed 

at many other dome-building volcanoes (Voight et al., 1999; Mason et al., 2006; Clarke et al., 
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2007; Lensky et al., 2008; Michaut et al., 2009; Kennedy et al., 2010; Ashwell et al., 2015; 

Farquharson et al., 2016b; Heap et al., 2017). Petrological evidence for such a process 

influencing eruption style may be found in explosive deposits (i.e., ash and bombs); such 

signatures may include a combination of poorly vesicular clasts accompanied with plastically 

deformed microlites that show a fluidal or strong alignment, and in extreme cases the 

appearance of frictional melts. 

 

2.6.  CONCLUDING STATEMENT 

In this study, we integrated multidisciplinary observations made through field 

examinations, petrology, microstructures, crystallography, magnetics and experimentation, to 

constrain the impact of shear on the petrological evolution of magma during ascent and spine 

extrusion at Unzen volcano, Japan. Our results show that crystals can act as an outlet for strain 

via crystal plasticity, leading the magma towards failure, thus effectively monitoring stress 

conditions. This accumulation of strain coincides with disequilibrium conditions in the 

conduit, assisting in mineral decomposition, alteration, crystal alignment, and pore 

compaction, owing to shear heating near the margin during the late-stages of spine extrusion. 

This process is overprinted, perhaps by increasing prevalence of dilational shear in the upper 

conduit, by a narrow gouge layer, characterised by distinct petrographic and magnetic 

properties typical of gas or fluid-flushing induced alteration, which influences the 

neighbouring compactional high shear zone to a lesser extent. These deformation 

microstructures and related processes envisaged in the shallow conduit, especially during the 

ascent of high viscosity magma, can have a significant effect on the permeable network, 

altering the outgassing efficiency and extent of fluid-magma interaction during magma ascent, 

ultimately controlling the style of eruption seen at the surface. For this reason, incorporation 

of these late-stage processes (i.e., shear heating, crystal plasticity, shear-induced mineral 

reactions and comminution) into rheological models may assist in constraining the 

complexities associated with on-going eruptions and thus aid in our understanding of shifts 

from effusive to explosive activity. 
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Chapter 3  Frictional melt homogenisation 

during fault slip: Geochemical, textural and 

rheological fingerprints 

ABSTRACT 

Volcanic environments often represent structurally active settings where strain localisation 

can promote faulting, frictional deformation, and subsequent melting along fault planes. Such 

frictional melting is thermodynamically a disequilibrium process initiated by selective melting 

of individual mineral phases and softening of volcanic glass at its glass transition as a response 

to rapid frictional heating. The formation of a thin melt layer on a fault plane surface can 

drastically accelerate or terminate slip during fault motion. A comprehensive understanding 

of the physical and chemical properties of the frictional melt is required for a full assessment 

of slip mechanisms, as frictional rheology depends on the contributions from selectively 

melted mineral and glass phases as well as the physical effects of restite fragments suspended 

in the frictional melt. Here, we experimentally investigate the impact of host-rock mineralogy 

on the compositional and textural evolution of a frictional melt during slip. High-velocity 

rotary shear (HVR) experiments were performed under controlled, volcanically relevant, 

coseismic conditions (1 m s-1 slip rate and 1 MPa normal stress) using three intermediate dome 

lavas with contrasting mineral assemblages, sampled from volcanic systems where fault 

friction is evident: (1) an amphibole-bearing andesite (Soufrière Hills Volcano, Montserrat); 

(2) an amphibole-poor dacite (Santiaguito dome complex, Guatemala); and (3) an amphibole-

free andesite (Volcán de Colima, Mexico). For each sample, five HVR experiments were 

terminated at different stages of frictional melt evolution, namely: (1) at the onset of melting, 

(2) upon formation of a steady-state melt layer, and (3) after 5 m, (4) 10 m, and (5) 15 m of 

slip at steady-state conditions. Progressive mixing and homogenisation of selective, single-

phase melts within the frictional melt layer through double-diffusion convection demonstrates 

the control of melt composition on slip behaviour. Amphiboles melted preferentially, leading 

to consistently lower shear stress (~1 MPa less than amphibole-pore samples) and pronounced 

shear-weakening during the frictional melting of amphibole-bearing lavas. The results 

highlight the implications of mineral assemblages on fault slip, including conduit flow 

processes, which may influence the explosivity of eruptions, and run-out distances of rapid 

granular flows.  

 

 



 79 

3.1.  INTRODUCTION 

3.1.1.  Frictional melting 

Frictional melting is a highly dynamic and chemically chaotic phenomenon associated 

with coseismic faulting and slip as a manifestation of extreme strain localisation (e.g., Sibson, 

1975; Allen, 1979; Magloughlin & Spray, 1992; O'Hara, 1992). The presence of a thin melt 

layer on a narrow slip plane, commonly inferred to be generated at strain rates > 10−2 s−1 and 

slip velocities > 0.1 m s−1, is an important control on slip properties (Spray, 1992). The 

generation of such melts is a thermomechanical response to energy dissipation associated with 

the conversion of friction-induced deformation to heat (i.e., frictional heating). This process 

often results in a quasi-linear melt layer that is preserved in the geologic record as a 

pseudotachylyte, providing kinematic evidence for coseismic faulting activity (e.g., Shand, 

1916; Francis, 1972; Sibson, 1975; Di Toro et al., 2006). 

Experimental work has demonstrated the mechanical influence of frictional melting 

on slip dynamics in geological materials (e.g., Lin & Shimamoto, 1998; Hirose & Shimamoto, 

2005; Di Toro et al., 2006; Niemeijer et al., 2011; Kendrick et al., 2014b; Hornby et al., 2015). 

These studies have highlighted that the evolution of a frictional melt with slip displacement 

can dictate a material’s frictional behaviour. Frictional melts can act as either (1) a lubricant, 

drastically reducing the frictional resistance during slip (e.g., McKenzie & Brune, 1972; 

Tsutsumi & Shimamoto, 1997), or (2) a viscous brake, causing slip velocity to wane and 

seismic slip to terminate (e.g., Koizumi et al., 2004; Kendrick et al., 2014b).  

The physical properties of the host material (e.g., surface interface roughness; Nielsen 

et al., 2010; Harbord et al., 2017) and its constituent minerals (e.g., melting point and shear 

strength; Spray, 1992) influence the progression of frictional melting. Owing to rapid heating 

during fault slip, several hundred degrees over a few seconds of slip (e.g., McKenzie & Brune, 

1972; Lavallée et al., 2012a; Kendrick et al., 2014b; Hornby et al., 2015), frictional melting 

is considered a non-equilibrium adiabatic process involving the selective melting of individual 

mineral phases in the order of their solidus temperatures (e.g., Scott & Drever, 1953; Sibson, 

1975; Spray, 1992; Lin & Shimamoto, 1998). In particular, the presence of hydrous phases 

(e.g., phyllosilicates, amphiboles) can significantly enhance melting probability owing to their 

lower melting points and the associated release of H2O (Allen, 1979).  

The geochemical signatures of natural pseudotachylytes and experimentally-derived 

frictional melts demonstrate their derivation from selective melting of the host material 

(Magloughlin, 1992; O'Hara, 1992; Spray, 1992; Hetzel et al., 1996; Lavallée et al., 2012a; 

Jiang et al., 2015). Furthermore, it has been proposed that the compositional evolution of 
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frictional melts may be used to constrain source properties and slip duration (Jiang et al., 

2015), but a systematic experimental and geochemical approach has yet to be undertaken. 

The shear resistance exerted by frictional melts during slip is strongly influenced by 

their rheological properties (i.e., viscosity and strain rate; e.g., Hirose & Shimamoto, 2005; 

Lavallée et al., 2012a; Hornby et al., 2015). Work on the viscosities of multicomponent 

silicate melts has resulted in a statistically robust dataset over a wide compositional range, all 

displaying strong non-Arrhenian temperature-dependence and highlighting chemical 

composition, temperature and strain rate as key controls on rheology (Hess & Dingwell, 1996; 

Giordano et al., 2008). During frictional melting, only phases with melting temperatures 

higher than the formation temperature of the melt can survive, leaving a suspension of remnant 

crystals. Substantial work has demonstrated the influence of suspended crystals on non-

Newtonian viscosity and parameterisations have been generated (e.g., Caricchi et al., 2007; 

Costa et al., 2009; Cimarelli et al., 2011; Lavallée et al., 2012a; Mader et al., 2013). 

 

3.1.2.  Fault friction in volcanic environments 

Volcanic systems display abundant evidence for fault activity. For example, faulting 

can take place during: (1) the ascent of high-temperature, high-viscosity magma within the 

shallow volcanic conduit (e.g., Tuffen & Dingwell, 2005; Hale & Wadge, 2008; Kendrick et 

al., 2012; Lavallée et al., 2013; Wallace et al., 2019); (2) flank instabilities, sector collapses 

and landslides (e.g., Legros et al., 2000; Bernard & de Vries, 2017); and (3) block collision 

and sliding in pyroclastic density currents (e.g., Grunewald et al., 2000; Schwarzkopf et al., 

2001). In each scenario, the process of frictional melting is material-dependent; thus, magmas 

with different mineralogical assemblages may have adverse effects on the style of slip and 

subsequent hazards generated. Differences in mineral assemblages are expected between 

volcanic systems, although similar differences can be observed within the same system owing 

to natural heterogeneities or the dynamic nature of the plumbing system. In particular, 

intermediate volcanic systems can naturally evolve (both continuously and discontinuously) 

with regards to mineralogy and crystallinity, either reflecting long-term magmatic evolution, 

magma recharge, or changes in final ascent conditions (e.g., Murphy et al., 2000; Scott et al., 

2013). Previous studies have reported that the introduction of hydrous phases into the 

plumbing system, attributed to an elevated magma-water content at depth, often coincides 

with an increase in explosivity (e.g., Volcán de Colima, Mexico, Luhr & Carmichael, 1990; 

Macias et al., 2017). Thus, the question arises as to the importance of the mineral assemblage 

for frictional properties in volcanic systems. 
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A complication that arises in the generation of a frictional melt from volcanic rocks 

is the common presence of a glass phase (e.g., Violay et al., 2014; Lavallée et al., 2015b). 

Unlike crystalline phases, which must melt to generate a liquid phase, glass exhibits a thermo-

kinetic barrier, known as the glass transition temperature (Tg), where the glass softens into a 

liquid without any latent heat of reaction (Dingwell & Webb, 1989). The glass transition 

temperature increases with heating rate due to the timescales available for structural 

relaxation, which imposes important controls on fault friction (Lavallée et al., 2015b). For a 

degassed rhyolitic interstitial glass, common in intermediate extrusive rocks, Tg is typically < 

800 ºC at moderate heating rates (e.g., < 10 ºC /min), which is lower than the melting points 

of the minerals generally present in volcanic rocks. Thus, friction with low heating rates will 

enable viscous remobilisation of glass at temperatures far lower than mineral melting 

temperatures, and therefore earlier than mineral melting itself (e.g., Lavallée et al., 2015b). 

However, during rapid frictional heating, Tg may be encountered at higher temperatures (e.g., 

~1000 ºC; Lavallée et al., 2015b) and closer to that of crystal melting temperatures. 

Here, we experimentally assess the impact of mineralogy during the frictional melting 

of intermediate volcanic lavas on the evolutionary dynamics of slip. We highlight the 

importance of bulk mineralogy on fault properties during shallow-conduit and post-eruptive 

volcanic processes in high-viscosity systems (e.g., lava domes), which are as yet unaccounted 

for in current hazard models. A better understanding of frictional melts in systems with 

contrasting mineral assemblages will improve models for fault slip rheology and magma flow 

in the conduit, which in turn will aid forecasts of magma behaviour during ascent and the 

interpretation of early warning geophysical signals. It may also elucidate fault propagation 

processes at the base of rapid granular flows and help constrain run-out distances during such 

hazardous events. 
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3.2.  MATERIALS AND METHODS 

3.2.1.  Starting material 

Three crystal-rich, glass-bearing, intermediate dome lavas from well-characterised, 

active volcanic systems were chosen for this study: (1) an amphibole-bearing andesite from 

Soufrière Hills Volcano (SHV), Montserrat; (2) an amphibole-poor dacite from the 

Santiaguito dome complex (SG), Guatemala; and (3) an amphibole-free andesite from Volcán 

de Colima (COL), Mexico. Both SHV and COL andesites were collected from dome collapse 

deposits, while the SG dacite formed part of a lava spine extruded from the El Monje vent. 

The starting materials where chosen because they are from active volcanic systems renowned 

for rheological and structural instability, and because they cover a range of mineral 

assemblages found in intermediate lavas (andesite–dacite). 

The whole-rock geochemistry of each rock sample was determined by X-ray 

Fluorescence Spectrometry (XRF) on a PANalytical Axios Advanced XRF spectrometer at 

the University of Leicester. Major elements were measured on glass beads fused from ignited 

powders, and trace elements were measured using pressed powder pellets (Table 3.1). Relative 

precision and accuracy were better than 1.5% for major elements and 5% for trace elements 

based on repeat analyses of international reference materials (see Electronic Appendix 2). 

Mineral abundance statistics were collected using QEMSCAN (Quantitative Evaluation of 

Minerals by Scanning Electron Microscope) on an automated SEM-EDS (Scanning Electron 

Microscope-Energy Dispersive Spectrometer) system equipped with two Bruker energy 

dispersive X-ray spectrometers. QEMSCAN formulates a chemical composition from the X-

ray point spectra collected in a raster across a sample and then matches the chemistry to a 

customisable reference library containing known compositions for minerals and glasses (for 

more details see, e.g., Gottlieb et al., 2000). Data were collected across an entire polished, 

carbon-coated thin section from each starting material using a 15 kV accelerating voltage, 5 

nA beam current, 10 m step size, and dwell time sufficient to collect enough X-ray counts 

for accurate phase identification (defined as 1,000 X-ray counts). The resulting data were 

combined to produce a false-colour phase distribution map where each colour represents a 

compositionally discrete phase. Each coloured pixel was summed and normalised on a pore-

free basis to provide a quantitative comparison of the mineral modal abundances of each 

starting material (Table 3.2). Despite precision errors from removing and reinserting the same 

thin section, standard deviations were better than 0.39 for all phases. QEMSCAN 

identification is limited to phases larger than the beam’s interaction volume (~10 µm3); 

groundmass phases smaller than this cannot be identified individually but are assigned the 

composition of the surroundings (e.g., crystals less than ~2 µm in diameter are assigned to the 
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surrounding glass). Consequently, groundmass mineralogy and interstitial glass were 

quantified separately from point counts of > 1000 points in a 200 × 200 m area per sample. 

 

Table 3.1 – Geochemical composition of the bulk starting materials (measured by XRF) and 

interstitial glass (measured by electron probe microanalysis). 

 

All oxide concentrations for glass are normalised averages of n measurements. Values in 

parentheses are standard deviations (1) from n analyses. See Electronic Appendix 2 for all 

measurements. 

$ Original total 

*All Fe as FeO  

<lld, below lower limit of detection 

 

 

 

 

 

 

Location: Soufrière Hills Volcano Santiaguito dome complex Volcán de Colima 
Sample: SHV SG COL 
Rock type: Andesite Dacite Andesite 
Deposit: Dome collapse Lava spine Dome collapse 
 Bulk-rock Glass Bulk-rock Glass Bulk-rock Glass 

(wt.%)  n 14  n 9  n 19 
SiO2 59.59 79.72 (4.82) 64.44 75.65 (1.38) 62.05 77.00 (0.71) 
TiO2 0.60 0.29 (0.09) 0.42 0.44 (0.05) 0.51 0.56 (0.06) 
Al2O3 18.49 10.93 (2.91) 17.66 12.27 (0.79) 17.74 11.35 (0.38) 
FeO* 6.13 1.32 (0.50) 4.06 1.81 (0.46) 4.58 1.86 (0.11) 
MnO 0.16 <lld 0.14 <lld 0.10 <lld 
MgO 2.74 0.18 (0.26) 1.67 0.30 (0.27) 2.83 0.16 (0.06) 
CaO 7.76 2.20 (1.10) 4.61 0.45 (0.29) 5.59 0.48 (0.13) 
Na2O 3.34 3.23 (0.63) 4.79 3.88 (0.54) 4.48 4.04 (0.22) 
K2O 0.80 1.91 (0.64) 1.70 4.95 (0.34) 1.32 4.27 (0.33) 
P2O5 0.13 <lld 0.21 <lld 0.18 <lld 
Cl - 0.08 (0.04) - 0.11 (0.04) - 0.12 (0.03) 
LOI 0.07 - 0.18 - 0.15 - 
Total$ 99.81 100.84 99.88 99.32 99.53 99.72 
(ppm)       
Ba 214 - 805 - 618 - 
Ce 26 - 26 - 30 - 
La 13 - 16 - 11 - 
Nb 3 - 6 - 3 - 
Nd 14 - 16 - 16 - 
Pb 3 - 8 - 6 - 
Rb 17 - 32 - 19 - 
Sc 16 - 8 - 12 - 
Sr 278 - 470 - 601 - 
Th 2 - 2 - 1 - 
V 131 - 53 - 97 - 
Y 24 - 17 - 14 - 
Zn 56 - 73 - 53 - 
Zr 99 - 154 - 124 - 
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3.2.2.  Experimental procedure 

Frictional melting experiments were performed using a high-velocity rotary shear 

(HVR) apparatus at the Kochi Core Centre in Japan. Each experiment involved the preparation 

of two 24.98 mm diameter plane-parallel cylindrical cores with a 9 mm hollow centre, which 

created an ~8 mm wide annulus to minimise variations in slip rate across the contact surface. 

The two cores were placed into the experimental apparatus with one core being held stationary 

and the other rotating. The stationary sample holder was attached to a hydraulic piston that 

was used to apply a controlled axial stress of 1 MPa, while the other rotated at a constant 

(coseismically relevant) slip rate of 1 m s−1. See Hirose and Shimamoto (2005) for more details 

of the experimental apparatus. These slip conditions were chosen because they represent 

realistic estimates for those reported during faulting events, such as at active lava domes (e.g., 

Johnson et al., 2008; Hornby et al., 2015; Lavallée et al., 2015a), while also providing an ideal 

timeframe for frictional melting to allow the assessment of melting progression at different 

stages of slip. For each of the three starting materials, a set of five experiments were 

performed, with experiments terminated at five different conditions: (1) the onset of melting 

(Tm); (2) immediately after the achievement of steady-state conditions (Tss); (3) after 5 m of 

slip at steady-state conditions (T5); (4) after 10 m of slip at steady-state conditions (T10); and 

(5) after 15 m of slip at steady-state melting conditions (T15). All T15 experiments were 

performed first to act as an initial gauge for the shorter slip distance experiments; however, 

visual monitoring was always used to identify the onset of melting. Steady-state conditions 

were defined as the attainment of a near-constant value of shear stress and the beginning of 

sample shortening. All experiments were recorded using an optical camera to track the 

frictional melting process and correlate it with the mechanical data. At the end of each test, 

the two cores were welded together by a frictional melt layer. Post-experimental samples were 

thin-sectioned perpendicular to the slip surface for textural and chemical analysis. 

 

3.2.3.  Textural & chemical characterisation  

3.2.3.1.  Scanning electron microscopy & electron probe microanalysis 

Microtextural and geochemical analyses were performed on polished, carbon-coated 

thin sections for each experiment. Textural assessment of the frictional melt zone was 

performed using backscattered electron images (BSE) taken on a Philips XL30 scanning 

electron microscope (SEM) at the University of Liverpool, operated with a 20 kV accelerating 

voltage, 5 μm spot size and a 10 m working distance. 



 85 

The compositions of the different phases present in the starting material (host-rock 

crystals and interstitial glass), the experimentally generated frictional melt, and any non-

melted crystals suspended within the melt zone were determined using a Cameca SX100 

electron probe microanalyser (EPMA) at the Ludwig Maximilian University of Munich. 

Elemental abundances were acquired using wavelength dispersive spectrometers (WDS). 

Analyses on crystals were performed using a 15 kV accelerating voltage, 20 nA beam current, 

and a focused (~1 m) beam. For all glass measurements, a defocussed 10 m beam was used 

with a 5 nA beam current. A peak count time of 10 seconds and background count times of 5 

seconds were used for all elements, with Na peaks counted first to minimise alkali loss during 

analysis. Matrix corrections were performed using the PAP procedure (Pouchou & Pichoir, 

1984). To ensure accuracy and precision, eight working standards from the Smithsonian 

collection were utilised throughout the analysis. The full list of reference materials, their 

measured and known compositions and detection limits, along with the standards used for 

calibration of the spectrometers can be found in Electronic Appendix 2. All standards were 

measured regularly to ensure quality. Reproducibility of all elements in the working standards 

was high, with standard deviations < 0.5. By comparing the measured quantities with the 

known reference values for each standard, relative accuracies were generally better than 3% 

for major elements and 20% for minor elements based on multiple repeat analyses. Frictional 

melt compositions were measured as single points and transects across the width of the slip 

zone, making sure to avoid remnant crystals. Any melt totals outside 97–102 wt.% were cross-

checked with BSE images and discarded in the event of beam interaction with crystal 

fragments. 

 

3.2.4.  Synchrotron X-ray spectroscopy 

Prior to EPMA, selected major and trace elements of the frictional melt were analysed 

by high-brightness, micron-scale X-ray spectroscopy using the I18 microfocus spectroscopy 

beamline at the Diamond Light Source synchrotron, UK. Element maps were produced with 

a 4 × 3 m spatial resolution allowing detailed investigation of the extent of frictional melt 

homogeneity and to investigate mineral susceptibility to contribute to the melt composition. 

A solid-state detector system enabled the analysis of nine elements per map, of which the 

focus was on the concentrations of Ca, Fe, K, Ti, Mn, Rb, Sr, Y, and Zr. These elements were 

chosen because of their different diffusion coefficients and different concentrations in the 

phases (i.e., minerals and glass), making their distinction straightforward. 
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3.2.5.  Frictional melt rheology 

The non-Arrhenian, Newtonian temperature-dependence of frictional melt viscosity 

was estimated using the GRD viscosity model (Giordano et al., 2008). For the viscosity-

temperature model, frictional melt compositions obtained by EMPA were imported into the 

calculator, along with a 0.1 wt.% H2O and zero fluorine content. These latter values were 

assumed based on the low water contents expected upon eruption, plus the absence of hydrous 

phases in the SG dacite and COL andesite (Harford et al., 2003; Reubi & Blundy, 2008; Savov 

et al., 2008). However, the presence of hydrous amphibole in the SHV andesite makes water 

content during frictional melting a variable, in addition to fluorine, which can often substitute 

for hydroxyl (OH). Although fluorine concentration in SHV amphiboles is reportedly low 

(0.04–0.06 wt.%; Humphreys et al., 2009), it was demonstrated that this element has a similar 

viscosity-reduction effect as water with the tendency to remain dissolved within the melt for 

longer (Giordano et al., 2004). Thus, for simplicity, we assessed the impact of H2O content 

on SHV frictional melt viscosity. 

Apparent viscosities for the frictional melts were calculated using the recorded 

mechanical data from the experiments as: 

    𝜂𝑎𝑝𝑝 =
𝜏

𝜀̇
    (3.1) 

where 𝜏 is the recorded shear stress (in Pa) taken when slip behaviour reached a steady-state 

condition (i.e., shear stress attained a quasi-constant value), and 𝜀̇ is the strain rate (in s-1). 

Strain rates (𝜀̇) were calculated as: 

    𝜀̇ =
2𝜋𝐷𝑒

𝑑𝑡
    (3.2) 

where De is the circumference of the circular trajectory at a given radius (referred to as an 

equivalent diameter), d is assumed to reflect the thickness of the melt zone (in mm) as 

measured by optical analysis, and t is slip duration (in seconds). The De was calculated as: 

    𝐷𝑒 =
𝑉𝑒

𝑅𝜋
    (3.3) 

where R is the rotation rate (in min-1) and Ve is the equivalent rotation velocity (i.e., 

displacement rate; in mm per min-1). Ve is defined as such that τVe S gives the rate of total 

frictional work on a fault with area S, assuming a constant shear stress on the fault surface 

after Shimamoto and Tsutsumi (1994): 

   𝑉𝑒 =
4𝜋𝑅(𝐷𝑜

2+𝐷𝑖𝐷𝑜+𝐷𝑖
2)

3𝐷𝑜+𝐷𝑖
    (3.4) 

where Do and Di are the outer and inner diameters (in mm), respectively, of the hollow core 

sample. 
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Crystals that remain in the frictional melt may also influence frictional melt viscosity 

(e.g., Caricchi et al., 2007). This effect was estimated using the empirical relative-viscosity 

calculator of Costa et al. (2009) based on a strain-rate dependent rheology model combined 

with fitting parameters solved experimentally by Caricchi et al. (2007). For input values, a 

maximum packing fraction of 0.55 was used based on the semi-equant crystal population 

(Mueller et al., 2011) and a crystal fraction estimated from ImageJ (Schneider et al., 2012) 

using BSE images of the frictional melt. The relative effect of crystals was added to the 

calculated temperature-dependence of viscosity for the homogenised frictional melts to 

produce a modelled apparent viscosity of the suspension. 

 

Table 3.2 – Quantitative mineral modal abundance for the bulk starting materials and the 

host groundmass. 

 
a Bulk mineralogy acquired from QEMSCAN 

b Groundmass mineralogy determined using point counting 

c Combines quartz, cristobalite, and tridymite 

d Groundmass pyroxene abundances combines both orthopyroxene and clinopyroxene. 

e Connected porosities measured by He-pycnometry using cores from each starting material 

 

 

 

 

Location: Soufrière Hills Volcano Santiaguito dome complex Volcán de Colima 

Sample: SHV SG COL 

Rock type: Andesite Dacite Andesite 

Deposit: Dome collapse Lava spine Dome collapse 

(vol.%) 
Bulk-
rocka Groundmassb Bulk-

rocka Groundmassb Bulk-
rocka Groundmassb 

Plagioclase 52.5 27.4 63.9 38.8 67.0 30.0 

Amphibole 9.3 0.0 1.5 0.0 1.1 0.0 

Orthopyroxene 6.4 
16.8d 

2.9 
2.6d 

6.5 
3.8d 

Clinopyroxene 2.3 0.3 1.2 

Si polymorphc 13.0 23.2 14.2 11.0 5.6 2.0 

Fe-Ti oxide 1.9 3.4 1.0 1.4 0.8 2.2 

Apatite 0.3 - 0.4 - 0.4 - 

Olivine 0.0 0.0 0.0 0.0 Rare 0.0 

Glass 14.4 19.2 15.9 46.2 17.2 62.0 

Vesicularity 15.2 10.0 7.0 0.0 13.7 0.0 

Porosity (Pyc)e 13.0 n.a. 9.0 n.a. 17.0 n.a. 
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3.3.  RESULTS 

3.3.1.  Characterisation of the starting material 

All three starting materials were crystal-rich, porphyritic, and compositionally 

intermediate lavas (Fig. 3.1, Table 3.1 and Table 3.2). The sample from Soufrière Hills 

Volcano (SHV) was andesitic (59.6 wt.% SiO2; Fig. 3.1a, b) and consisted of large 

phenocrysts of calcic-amphibole (i.e., hornblende; 9 vol.%; up to 6 mm), plagioclase (38 

vol.%; up to 2 mm), orthopyroxene (5 vol.%; up to 2.5 mm), and minor clinopyroxene, quartz, 

and Fe-Ti oxides. The groundmass (Fig. 3.1c) was highly crystalline and consisted of 

plagioclase (27 vol.%), pyroxene (17 vol.%), and minor Fe-Ti oxide microlites (3 vol.%). 

Silica-rich phases (~5 µm diameter), with characteristic fish-scale cracks (likely cristobalite, 

a typical byproduct of glass devitrification in SHV lavas; e.g., Horwell et al., 2013), formed 

the second most abundant groundmass phase (23 vol.%), while an interstitial rhyolitic glass 

was located between the microlite phases (19 vol.%). 

The sample from the Santiaguito dome complex (SG) was dacitic (64.4 wt.% SiO2; 

Fig. 3.1d, e) and had a similar porphyritic texture (phenocryst size and shape) to that of the 

SHV andesite (39 vol.% plagioclase and 3 vol.% orthopyroxene); however, amphibole was 

rare (~1 vol.%). Again, plagioclase microlites dominated the groundmass (39 vol.%; Fig. 

3.1f), along with less abundant pyroxene (3 vol.%), Fe-Ti oxides (~1 vol.%), and a silica-rich 

phase (~10 µm diameter; likely tridymite, as reported for early Santiaguito lavas; e.g., Rose, 

1972). These microlites were situated within an unaltered and abundant interstitial rhyolitic 

glass (46 vol.%). 

The sample from Volcán de Colima (COL) was andesitic (62.1 wt.% SiO2; Fig. 3.1g, 

h) and consisted of plagioclase phenocrysts that were more abundant (47 vol.%) and tabular 

(length up to 3 mm) than those in the SHV and SG samples. Both orthopyroxene (6 vol.%) 

and clinopyroxene (2 vol.%) were present as phenocryst phases (both up to 800 m), in 

addition to rare quartz and Fe-Ti oxides. Rare, single olivine crystals were also present in the 

COL andesite, but owing to their infrequent appearance they were unlikely to influence 

frictional melting processes. Plagioclase dominated the groundmass mineralogy (30 vol.%; 

Fig. 3.1i) along with a pristine interstitial rhyolitic glass (62 vol.%), and minor pyroxene (4 

vol.%) and Fe-Ti oxides (2 vol.%). Minor silica phases (2 vol.%) were occasionally located 

at the edges of plagioclase microlites.  
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Figure 3.1 – Mineralogical and textural characteristics of the three host materials used in the 

high-velocity rotary shear (HVR) experiments: Soufrière Hills Volcano (SHV) andesite (a–c), 

Santiaguito dome complex (SG) dacite (d–f), and Volcán de Colima (COL) andesite (g–i). 

Panels (a, d and g) are photographs of the cored starting materials, (b, e and h) are 

QEMSCAN maps used for quantifying bulk-rock phase abundances, where colours identify 

phases as shown in the key and white indicates pore space, and (c, f and i) are backscattered 

electron (BSE) images showing groundmass textures. The phases in the groundmass include 

plagioclase (Pl), pyroxenes (Px), Fe-Ti oxides (Ox), silica polymorphs (Si), and interstitial 

glass (Gl). 
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3.3.2.  Mechanical behaviour of high-velocity frictional melts 

During HVR experiments, frictional melts formed on the slip plane surfaces (Fig. 

3.2a). The slip properties of the three sample sets evolved differently (Fig. 3.2b); mechanical 

data for all experiments are displayed in Appendix II (Fig. A2.1–A2.3). The frictional 

properties of the SHV andesite were characterised by a sudden increase in shear stress within 

the first metre of slip. As slip progressed, the shear stress plateaued at 0.50 MPa for ~2 m 

before it strengthened to a maximum stress of 1.34 MPa at ~10 m of total slip, which coincided 

with incandescence along the fault contact. This was followed by the growth of melt patches, 

which eventually coalesced to form a molten zone that extended across the entire slip plane 

(Tm). Upon the formation of a continuous melt layer (at ~10 m of total slip), the SHV andesite 

exhibited a weakening phase that resulted in a decay of the shear stress of 0.46 MPa (from 

1.34 MPa to 0.88 MPa). Further slip was characterised by the shear stress sustaining a steady-

state value of 0.88 MPa until the experiment was stopped (from Tss to T15). Concurrent with 

steady-state conditions, continuous axial shortening of the sample at a constant rate of 0.12 

mm/s (or 0.12 mm/m) was recorded and resulted in a total shortening of 1.4 mm after T15. 

The COL andesite and SG dacite showed similar frictional behaviours, despite their 

differences in bulk-rock composition, and contrasted with the behaviour of the SHV andesite. 

Both samples displayed an abrupt increase in shear stress during the first few metres of slip, 

which plateaued at ~0.50 MPa. Shear stress then oscillated around this value for ~9 m before 

strengthening to a maximum (1.83 MPa for SG and 2.00 MPa for COL) at ~15 m of total slip. 

Simultaneously, incandescence initiated and melt patches grew, approximately 5 m later than 

with SHV andesite, which eventually connected to form a single melt layer at ~12 m of total 

slip (Tm). With increased slip distance (> 15 m), both SG and COL samples experienced only 

minor shear-weakening (0.13 and 0.29 MPa, respectively) and remained at a similar steady-

state condition of ~1.70 MPa from Tss to T15. Steady-state frictional melting was accompanied 

by continuous axial shortening at a rate of 0.45 mm/s (or 0.45 mm/m) for both SG and COL 

samples, almost four times faster than for the SHV andesite, which resulted in a total 

shortening of 5.3 and 5.5 mm after T15, respectively. For all experiments, the distance and 

time to the onset of melting varied owing to natural mineralogical heterogeneities in the lava 

samples (Fig. 3.2c; Fig. A2.1–A2.3); thus, for textural and chemical analysis, each frictional 

melt was normalised with respect to the onset of melting (i.e., Tm = 0 m and 0 s) to allow direct 

comparison across sample sets. 
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Figure 3.2 – Visual and mechanical observations of frictional melt evolution of the Soufrière 

Hills Volcano (SHV) andesite, Santiaguito dome complex (SG) dacite, and Volcán de Colima 

(COL) andesite. (a) Freeze-frames of optical recordings of the simulated fault zone upon 

stopping the experiment at Tm (melting onset), T5 (5 m of slip at steady-state conditions), and 

T15 (15 m of slip at steady-state conditions). The time (t) refers to the total duration of the 

experiment. (b) Mechanical data showing the different slip behaviours of the three starting 

materials, including evolution in shear stress () and experimental sample shortening. Only 

the mechanical data for T15 experiments are displayed for comparison (see Fig. A2.1–A2.3 

for all data). (c) Timeline displaying different stages of frictional melting: onset of melting 

(Tm), reaching steady-state conditions (Tss), 5 m slip at steady-state (T5), and 10 m slip at 

steady-state (T10), with all data derived from the T15 experiment in (b). 
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3.3.3.  Microtextural evolution 

SHV andesite produced the thinnest melt zones (0.1–0.4 mm thick), while SG dacite 

and COL andesite generated thicker frictional melts (0.2–1.0 mm thick). At the onset of 

melting (Tm), the frictional melts exhibited ultra-fine broken crystals (< 5 m) suspended 

within a melt that quenched to a glass after the experiment was stopped (Fig. 3.3). These 

crystal fragments were mineralogically the same as those recorded in the host-rock, except for 

amphibole, an abundant phase in the SHV andesite, which was not found as a remnant crystal 

within the entire melt zone. BSE images of the melt zones at Tm showed subtle grey-scale 

heterogeneities in the frictional melt phase (Fig. 3.3). For frictional melts that reached steady-

state (Tss), the number of finely suspended clasts had reduced while the melt fraction had 

increased (Fig. 3.3). Larger crystal fragments (up to 40 µm in diameter), primarily plagioclase, 

also became more isolated within the melt. From 5 m of steady-state slip onwards (T5–T15), 

all frictional melt zones contained large (up to 80 µm) relic plagioclase fragments that were 

equant with rounded edges. Partially resorbed rims around these fragments were also a 

characteristic feature (Fig. 3.3 T10 and T15). Furthermore, the silica-rich phases observed in 

the host groundmass of the SHV andesite and SG dacite appear undisturbed in the frictional 

melts, with their original shape and surficial textures remaining unaltered. 

All melt layers contained circular and evenly distributed micro-bubbles, although 

their sizes and number densities were dependent on the host material involved. The SHV melts 

displayed consistently large and abundant bubbles that increased in size with slip distance 

(from < 5 to 14 m diameter). SG and COL melts showed fewer and smaller bubbles (< 5 m 

diameter) with little systematic variation with slip distance. The irregular voids observed in 

the melt zones (Fig. 3.3) likely reflect an artefact of plucked crystals due to sample polishing 

and should not be mistaken for vesicles. 
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Figure 3.3 – Backscattered electron (BSE) images showing the microtextural evolution of 

frictional melts from the onset of melting (Tm) to 15 m of slip at steady-state conditions (T15) 

for each starting material. The inset text shows the fraction of melt and crystals, along with 

the percentage porosity of the frictional melt layer (pores/bubbles were defined using a >0.8 
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circularity threshold in imageJ). Labelled phases include: plagioclase (Pl), pyroxenes (Px), 

Fe-Ti oxides (Ox), silica polymorphs (Si), and interstitial glass (Gl), in addition to bubbles 

(Bl.) in the melt zone. ‘Rim’ denotes examples of partially resorbed crystal edges. 

 

3.3.4.  Frictional melt compositional variability 

The SiO2 concentration of the SHV frictional melts ranged from 54.5 wt.% to 72.3 

wt.% (Fig. 3.4a), while the compositions of the SG (Fig. 3.4b) and COL (Fig. 3.4c) frictional 

melts were more restricted (60.3–72.4 wt.% and 59.5–66.6 wt.%, respectively). Similarly, the 

ranges in MgO and FeO were 3–4 times larger in the SHV melts compared with the SG and 

COL melts. For all frictional melts, their composition evolved as slip distance increased, 

although the style of chemical progression showed a dependence on the starting material. For 

both the SG and COL melts, as slip distance increased from Tm to T15, the variability in melt 

composition decreased and eventually approached a near-homogeneous equivalent to its bulk-

rock composition. Discrepancies between melt composition and the bulk-rock composition 

were expected, owing to incomplete melting of crystalline fragments (Fig. 3.3). In contrast, 

the SHV melts became increasingly mafic with time, as reflected by a progressive increase in 

FeO and MgO. Although compositional discrepancies existed for all frictional melts, binary 

plots defined a quasi-linear pattern depending on the element oxide (Fig. 3.4). Some element 

oxide pairs displayed a strong linear relationship (e.g., SHV FeO vs. MgO, SG SiO2 vs. Al2O3), 

with compositions located along a classic mixing line between host-rock plagioclase and 

interstitial glass, while others showed a larger degree of variability away from this trend (e.g., 

SHV SiO2 vs. Al2O3, SHV and SG Al2O3 vs. Na2O). Transects perpendicular to the melt zone 

were also analysed for compositional variability (Fig. A2.4). These transects recorded a 

similar trend to that observed in the binary plots, although the higher spatial resolution 

provided more detail of the extent of melt heterogeneity within a localised area and how it 

evolved with slip distance. All chemical transects revealed homogenisation towards the bulk-

rock composition from Tm to T15. However, only in the SHV melt zones that went beyond Tss 

did the melt composition deviate from that of the bulk-rock, while SG and COL melts 

maintained a composition close to the precursor material. 

 

 

 

 



 95 

 

Figure 3.4 – Binary plots showing the evolution in frictional melt composition for 

representative major element oxides (SiO2, CaO, FeO, MgO, Al2O3, and Na2O) with 

increasing slip displacement from the onset of melting (Tm) to 15 m of steady-state slip (T15). 

(a) Soufrière Hills Volcano (SHV) andesite, (b) Santiaguito dome complex (SG) dacite, and 

(c) Volcán de Colima (COL) andesite. For comparison, the composition of host-rock 

plagioclase, interstitial glass, and amphibole (for SHV only) are plotted, along with the 

composition of each bulk starting material.  
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Evaluating compositional variations through time required careful consideration of all 

the different components present within the system, as their diffusivities can vary greatly. The 

standard deviations of concentration across the melt zone for each major element oxide 

showed an exponential decrease with slip distance (Fig. 3.5). For each starting material, a 

similar systematic ordering of the decay curves was observed, with SiO2 and Al2O3 showing 

the largest variability (Fig. 3.5a, b). This ordering roughly correlated to relative diffusivities 

of the measured components. The melt derived from the SHV andesite showed the largest 

standard deviations throughout, with the most homogenous melt compositions at T15 being 

comparable to those at Tm for SG dacite and COL andesite (Fig. 3.5a–f). 

 

 

Figure 3.5 – Standard deviations () of compositional variability for the experimental 

frictional melts as a function of slip distance from the onset of melting (Tm) to 15 m of slip at 

steady-state conditions (T15) for the different major components (a–f). The  for each 

component decreases with slip duration for all starting materials, modelled using an 

exponential fit of the data. Frictional melts derived from the Soufrière Hills Volcano (SHV) 

andesite have the highest  for all major components, while melts from Santiaguito dome 

complex (SG) dacite and Volcán de Colima (COL) andesite have the lowest. 
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3.3.5.  Crystal-melt interaction 

Areas of interest for electron probe microanalysis (EPMA) and high-resolution 

synchrotron X-ray spectroscopy were selected, where each crystal phase was in direct contact 

with the melt zone, to investigate its susceptibility to breakdown and incorporation in the melt 

zone. Where amphibole crystals were found adjacent to the SHV melt zone, the frictional melt 

was often twice as thick as anywhere else along the slip plane (Fig. 3.6a). Texturally, 

amphibole-melt contacts were transitional (Fig. 3.6b), exhibiting: (1) an intact amphibole 

phenocryst; (2) a partially embayed amphibole, with increased embayment towards the melt 

zone; and (3) a fully formed frictional melt zone. An EPMA transect across this contact region 

revealed the direct transfer of amphibole components to the melt, which resulted in a quasi-

linear gradational trend for major components (Fig. 3.6c). Components that are low in 

concentration in these amphiboles (e.g., Na2O) showed only minor influence on melt 

composition. Element maps along the amphibole-melt contact also depicted the contribution 

of key elements to frictional melt composition (Fig. 3.6d and Fig. A2.5); in particular, the 

adjacent melts were enriched with Ca, Fe, and Y, along with minor Ti and Mn. Although K, 

Sr, Rb, and Zr are incompatible in amphibole, they were still detected in the melt. Fe-Ti oxide 

crystals in the melt zones appeared less affected by the high temperatures, although they 

typically showed a subtle halo of Ti-rich melt (Fig. 3.6d).  

In contrast to the amphibole-melt relationship, when plagioclase phenocrysts were in 

contact with the melt zones no embayment textures were observed (Fig. 3.6a); in these areas, 

the melt layers were often the thinnest (< 50 µm; Fig. A2.6). Plagioclase is similarly abundant 

in Ca as other phases in the host materials (e.g., amphibole and clinopyroxene), yet its high Sr 

compatibility allows easy detection and makes its involvement in frictional melt composition 

distinct. X-ray spectroscopy maps revealed that SG and COL frictional melts were all notably 

enriched in Sr (Fig. 3.7 and A3.7), although the SHV melts were all relatively Sr poor (Fig. 

3.6d, A3.5 and A3.6). Augite (clinopyroxene) and hypersthene (orthopyroxene) were the 

dominant pyroxene phases in all three host materials (see Electronic Appendix 2). Although 

pyroxenes are generally similar in composition to amphiboles, importantly they are anhydrous 

and lacked resorption textures when in contact with the melt zone (Fig. 2.6 and A2.7). In these 

areas, SG and COL frictional melts were noticeably lower in Ca and Fe and overall less 

compositionally heterogeneous compared with the SHV melts. Within the SG and COL melts, 

the contribution of interstitial glass was identified by the high concentration of K, along with 

zones that showed elevated concentrations of Rb and Zr (Fig. 3.7 and A3.7). However, K, Rb, 

and Zr were low in concentration in the SHV melts (Fig. 3.6d and Fig. A2.5). 
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Figure 3.6 – Amphibole-melt interaction during frictional melting of the Soufrière Hills 

Volcano (SHV) andesite. (a) Backscattered electron (BSE) image of the frictional melt zone 

after 15 m of slip at steady-state conditions (T15), displaying both an amphibole and 

plagioclase phenocryst on the right side of the melt zone, and groundmass on the left side of 

the melt zone. (b) BSE image emphasising the nature of the contact between the amphibole 

and the melt zone displaying textural alteration of the amphibole. (c) Composition of the 

frictional melt and amphibole phenocryst along the transect labelled by the arrow in (b). (d) 

Synchrotron X-ray spectroscopy element maps of the amphibole-melt contact as shown in (b). 
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Figure 3.7 – Synchrotron X-ray element maps of Volcán de Colima (COL) andesite frictional 

melt after 10 m of slip at steady-state conditions (T10). The backscattered electron (BSE) image 

shows the contact between the frictional melt and the host-rock groundmass. The element 

maps are taken from the outlined area of the BSE image (red box) and depict the contribution 

of interstitial glass and other groundmass phases to frictional melt composition. Interstitial 

glass is identified by the highest concentrations of K, Rb, and Zr. 

 

Mass balance mineral contributions to each frictional melt composition were 

calculated by applying the adapted least squares petrological mixing program MINSQ 

(Herrmann & Berry, 2002), using the compositions of host-rock minerals, interstitial glass, 

and frictional melts from EPMA. Given that the chemical compositions of these phases were 

expressed as weight percentage of element oxides, modal phase proportions were also 

calculated as weight percentages. Weight percentages were converted to volume percentages 

for comparison with measured abundances in the host-rock using the following phase densities 

(g cm-3): amphibole = 3.2, plagioclase = 2.7, clinopyroxene = 3.3, orthopyroxene = 3.5, Fe-

oxide = 5.2, quartz (for Si-phases) = 2.6 and glass = 2.4. In the least squares calculations, 

frictional melt compositions from each experiment were used as the target composition and 

the host-rock minerals and interstitial glass as the contributing phases. Figure 3.8 shows the 

major contributing phases for the entire range of compositions measured in each sample suite 

and how their abundance evolved with slip distance. From these results, calcic-amphibole 

(hornblende) was shown to be a key component of the SHV melt composition, with the 

measured melts estimated to have a 0–27 vol.% amphibole contribution (Fig. 3.8a). At the 

early stages of melting (Tm–Tss), an average of 6–7 vol.% amphibole was estimated to 

contribute to the frictional melt composition, but after steady-state melting was achieved, up 

to 27 vol.% amphibole was incorporated into the melt, consistent with the evolution observed 
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in the binary plots (Fig. 3.4a). Plagioclase dominated the frictional melt modal compositions 

in all samples (Fig. 3.8b), albeit under-represented relative to the bulk mineralogy. There was 

a general decrease in plagioclase abundance and variability with slip distance, which averaged 

between 43 and 50 vol.% at T15 for each starting material. Interstitial glass was the second-

most influential phase on melt composition, which appeared to be overrepresented relative to 

the bulk-rock (Fig. 3.8c). Similar to plagioclase, the contribution range of interstitial glass to 

melt composition became less variable with slip distance; however, the evolutionary trends 

between the three sample sets were different. SHV melts showed an average decrease in glass 

contribution with slip distance (from 43 to 35 vol.%), while the proportions of glass in both 

SG and COL melts increased (from 31 to 44 vol.% and 31 to 36 vol.%, respectively). All 

frictional melts showed an increase in orthopyroxene (hypersthene) melting with slip distance 

(Fig. 3.8d), although SG and COL melts were underrepresented compared with the bulk. 

Clinopyroxene (augite) had only a minor involvement in the compositions of the SHV and SG 

melts; however, the COL melts showed a more significant clinopyroxene contribution (Fig. 

3.8e), consistent with its occurrence as large phenocrysts in the COL andesite. Fe-Ti oxides 

represented a minor component of all melt compositions, yet still revealed a subtle increase 

with slip distance (Fig. 3.8f).  

The same least squares model was employed to approximate a theoretical proportion 

of phases required to further melt and incorporate with the frictional melts to obtain the bulk-

rock composition. The measured fraction of homogenised frictional melt (quantified using 

BSE images) was combined with the compositions of crystal fragments remaining in the melt 

zone to obtain the following: 

1 𝑆𝐻𝑉 𝐵𝑢𝑙𝑘 = 0.53 𝑀𝑒𝑙𝑡 + 0.33 𝑝𝑙𝑎𝑔 + 0.05 𝑔𝑙𝑎𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 + 0.06 𝑞𝑡𝑧 + 0.02 𝑇𝑖 𝑚𝑎𝑔 +

                             0.02 𝑜𝑝𝑥(𝐻𝑦𝑝) ±  𝑐𝑝𝑥(𝐴𝑢𝑔)     (3.5) 

1 𝐶𝑂𝐿 𝐵𝑢𝑙𝑘 = 0.65 𝑀𝑒𝑙𝑡 + 0.24 𝑝𝑙𝑎𝑔 + 0.08 𝑞𝑡𝑧 + 0.01 𝑇𝑖 𝑚𝑎𝑔 + 0.02 𝑜𝑝𝑥(𝐻𝑦𝑝)  ±

                             𝑐𝑝𝑥(𝐴𝑢𝑔)        (3.6) 

1 𝑆𝐺 𝐵𝑢𝑙𝑘 = 0.53 𝑀𝑒𝑙𝑡 + 0.29 𝑝𝑙𝑎𝑔 + 0.13 𝑞𝑡𝑧 + 0.03 𝑇𝑖 𝑚𝑎𝑔 + 0.02 𝑜𝑝𝑥(𝐻𝑦𝑝) ±

                          𝑐𝑝𝑥(𝐴𝑢𝑔)         (3.7) 

These estimated phase proportions were consistent with observations seen in BSE images of 

the melt zone at T15 (Fig. 3.3). 

 

 

 

 



 101 

 

 

Figure 3.8 – Box plots showing the contribution of the different minerals and glass phases to 

the frictional melt composition calculated using the least squares petrological mixing 

program MINSQ (Herrmann & Berry, 2002). The phases contributing to the frictional melt 

derived from Soufrière Hills Volcano (SHV) andesite, Santiaguito dome complex (SG) dacite, 

and Volcán de Colima (COL) andesite, include: (a) amphibole (hornblende), (b) plagioclase, 

(c) interstitial glass, (d) orthopyroxene (hypersthene), (e) clinopyroxene (augite), and (f) Fe-

Ti oxides. All estimated phase abundances are compared to the respective abundances of the 

host rocks. Outliers were detected using the interquartile range (IQR) rule.  
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3.3.6.  Rheological response of frictional melt 

Silicate melt viscosity is primarily determined by chemical composition. Frictional 

melt viscosities were estimated using the empirical equation of Giordano et al. (2008). Owing 

to the large compositional heterogeneities for melts formed between Tm and Tss, obtaining a 

single value for melt viscosity for these melts is challenging. However, the more homogenous 

melt compositions at T15 formed the closest to an equilibrium state, which permitted a more 

robust approximation for the temperature-dependence of viscosity.  

Figure 3.9a–c displays the temperature-viscosity relationships for the homogenised 

frictional melts for each starting material, plus felsic and mafic melt filaments formed at the 

onset of melting which act as viscosity end-members. For comparison, viscosities were also 

calculated for the interstitial glass and molten bulk-rock. The relative effect of solid particles 

suspended in the melt (estimated using Costa et al., 2009) was added to the temperature-

dependence of melt viscosity derived from Giordano et al. (2008) to model its apparent 

viscosity. For the homogenised frictional melts at T15 derived from SHV, COL, and SG 

samples, the presence of crystals added 0.92, 0.63, and 0.36 orders of magnitude to the 

viscosity, respectively (Table 3.3). Through calculating an apparent viscosity derived from 

the mechanical data (Eq. 3.1) and comparing these values to the modelled temperature-

dependent viscosity curves for each sample (Fig. 3.9a–c), estimates of the temperature range 

for the frictional melts during steady-state slip were obtained. The SHV melts had an estimated 

viscosity range of 1.95–2.17 [log Pa s] across a wide temperature range from 1270 ºC (for a 

crystal-free melt) to 1510 ºC (if the melt contained up to 45 vol.% crystal suspensions; Table 

3.3). SG and COL melts revealed overlapping viscosity ranges (of 2.33–2.54 and 2.41–2.73 

[log Pa s], respectively), which were consistently higher than the SHV melts. However, 

estimated temperatures for both SG and COL melts differed significantly from 1400 ºC to 

1510 ºC and 1280 ºC to 1440 ºC, respectively. It is important to note that these viscosities, and 

thus temperature ranges, could be a slight overestimate owing to the possible underestimation 

of the melt zone thickness (as required for strain rate calculations; Eq. 3.2). Figure 3.9d shows 

the effect of increasing water content on the temperature-dependent modelled apparent 

viscosity of the homogenised SHV frictional melt suspension. It demonstrates that if the SHV 

melts contained water, the modelled apparent viscosities would be lower; thus, the SHV melt 

zones would require a lower temperature to achieve the apparent viscosities measured using 

the mechanical data (Eq. 3.1). 



 

Table 3.3 – A summary of the experimental conditions along with mechanical and rheological data measured for each high-velocity rotary shear (HVR) 

experiment: SHV = Soufrière Hills Volcano andesite; COL = Volcán de Colima andesite; SG = Santiaguito dome complex dacite. 

 

a Maximum and steady-state shear stress values are an average of the peak and steady-state portion of the curves in Figs. A3.1–A3.3, respectively.  

b Melt zone thickness estimated from optical images and averaged using multiple transects perpendicular to the slip surface; to ensure accuracy, measurements 

were only taken where melt was is in direct contact with the bulk material on both sides. 

c Crystal fractions quantified using SEM-BSE images of the melt. 

d Equivalent rotation velocities (Ve) were used to calculate displacement rates (Eq. 3.4) after Shimamoto and Tsutsumi (1994).  

e Strain rates (𝜀̇) were calculated for slip during steady-state conditions (Eq. 3.2) using an equivalent diameter (De; Eq. 3.3), melt thickness, and slip duration. 

f Relative effect of crystals suspended within the frictional melt on melt viscosities were estimated by applying the method of Costa et al. (2009) and the 

parameterised experimental data of Caricchi et al. (2007), using measured crystal fractions and calculated strain rate data. 

g HVR apparent viscosities were calculated from the mechanical data using Eq. 3.1 for steady-state conditions.

Experiment 

Max. 
shear 
stress 
(MPa)a 

Steady-
state 
shear 
stress 
(MPa)a 

Total slip 
distance 
(m) 

Total 
shortening 
(mm) 

Melt zone 
thickness 
(avg.; mm)b 

Crystal 
fractionc RPM 

Outer 
diameter 
(mm) 

Inner 
diameter 
(mm) 

Ve 
(Rotation 
Velocity; 
m s-1)d 

(𝜀̇) 

Strain 
rate     (s-

1)e 

Relative 
viscosity 
(Log Pa s)f 

HVR 
apparent 
viscosity 
(Log Pa s)g 

SHV Tm 1.08 - 10.8 0.00 0.30 0.32 1043 24.94 9.32 1.00 4.1E+03 0.55 - 

SHV Tss 1.25 0.92 16.7 0.08 0.30 0.30 1044 24.96 9.27 1.00 6.4E+03 0.50 2.16 

SHV T5 1.27 0.88 17.6 0.18 0.30 0.38 1044 24.97 9.29 1.00 6.8E+03 0.72 2.11 

SHV T10 1.24 0.87 25.5 0.46 0.30 0.44 1044 24.96 9.30 1.00 9.8E+03 0.97 1.95 

SHV T15 1.34 0.88 27.2 1.43 0.30 0.43 1044 24.94 9.26 1.00 1.0E+04 0.92 1.93 

COL Tm 1.07 - 9.30 0.01 0.25 0.36 1047 24.97 9.02 1.00 4.3E+03 0.65 - 

COL Tss 1.12 0.73 12.1 0.01 0.55 0.24 1047 24.96 9.13 1.00 2.5E+03 0.36 2.46 

COL T5 1.88 1.50 18.1 1.49 0.55 0.40 1044 24.97 9.25 1.00 3.8E+03 0.79 2.60 

COL T10 2.11 1.68 23.0 3.34 0.55 0.35 1047 24.98 9.19 1.00 4.8E+03 0.63 2.54 

COL T15 2.00 1.70 32.2 5.53 0.50 0.35 1044 24.95 9.20 1.00 7.4E+03 0.63 2.36 

SG Tm 1.30 - 16.0 0.11 0.35 0.20 1046 24.96 9.12 1.00 5.2E+03 0.28 - 

SG Tss 1.89 1.78 21.9 0.29 0.50 0.21 1044 24.99 9.18 1.00 5.0E+03 0.30 2.55 

SG T5 1.78 1.44 21.9 1.05 0.45 0.30 1053 24.83 8.98 1.00 5.5E+03 0.50 2.41 

SG T10 1.90 1.71 27.3 3.39 0.45 0.26 1035 24.96 9.72 1.00 7.0E+03 0.40 2.39 

SG T15 1.91 1.70 31.4 5.22 0.45 0.24 1044 24.94 9.28 1.00 8.0E+03 0.36 2.33 
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Figure 3.9 – Non-Arrhenian temperature dependence of viscosity of the experimental 

frictional melts. Viscosities were calculated using the GRD viscosity model of Giordano et al. 

(2008) for melts derived from the frictional melting of (a) Soufrière Hills Volcano (SHV) 

andesite, (b) Santiaguito dome complex (SG) dacite, and (c) Volcàn de Colima (COL) 

andesite. The chemical compositions of the frictional melts, derived by electron probe 

microanalysis, were used as input parameters, including the most mafic and felsic melts from 

the onset of melting (Tm) and the homogenised frictional melts after 15 m of steady-state slip 

(T15). The relative effect of crystals on melt viscosity was modelled considering crystal fraction 

and strain rate following the method of Costa et al. (2009); these relative viscosities were 

added to the homogenised melt curves to produce a modelled apparent viscosity. The modelled 

apparent viscosities of the frictional melt suspensions were compared with the mechanically 

constrained apparent viscosities (Eq. 3.1; Monitored), providing an estimated temperature of 

the frictional melt zone (TEstimated). (d) Effect of different water contents on the apparent 

viscosity of SHV frictional melt owing to the presence of hydrous amphibole melting. The red 

line indicates 0.5 wt.% H2O based on 27 vol.% amphibole melting for frictional melts at T15. 
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3.4.  DISCUSSION 

3.4.1.  Mechanisms driving frictional melting of volcanic rocks 

Amongst the many studies that exist on tribological instabilities, dynamic fault slip 

events are typically described using a rate- and state-dependent friction law (e.g., Dieterich, 

1979; Rice et al., 2001; Ohmura & Kawamura, 2007; Popov et al., 2012). Previous 

experimental investigations on the frictional properties of igneous, metamorphic, and 

sedimentary rocks have highlighted their dynamic evolution with increasing displacement, a 

consequence of thermal instabilities brought about by frictional heating and subsequent 

melting (e.g., Tsutsumi & Shimamoto, 1997; Hirose & Shimamoto, 2005; Di Toro et al., 2011; 

Niemeijer et al., 2011; Chen et al., 2017; Lockner et al., 2017). Furthermore, the frictional 

behaviour of both intrusive and extrusive igneous rocks at coseismic slip rates (> 0.1 m s−1) 

has been shown to inherit complex transient regimes in the form of both shear-weakening and 

strengthening (e.g., Tsutsumi & Shimamoto, 1997; Hirose & Shimamoto, 2005; Kendrick et 

al., 2014b; Hornby et al., 2015; Chen et al., 2017). Analogous to these reports, the frictional 

behaviour of the three mineralogically contrasting lavas in the present study can be divided 

into three discrete stages: (1) an initial steady-state regime; (2) a shear-strengthening regime; 

and (3) a final shear-weakening to steady-state slip regime. The timing and intensity of each 

of these stages is material dependent. The SHV andesite experienced only a minor stage 1, 

lasting just 1–2 m of slip, whereas the SG dacite and COL andesite spent ~10 m at this stage. 

The transition to stage 2 was similar in all cases, although SG and COL samples continued to 

strengthen to a higher peak stress and underwent only minor shear-weakening during stage 3. 

In contrast, the SHV andesite reached a lower shear stress and experienced a more distinct 

shear-weakening step during stage 3. These observations were similar to previous studies of 

volcanic rocks, with their differences in slip properties attributed to a contrast in mineral 

assemblage and the presence of an interstitial glass (Kendrick et al., 2014b). The work of 

Spray (1992) highlighted the significance of a host material’s constituent minerals on 

frictional properties. Accordingly, a hierarchy of frictional melting susceptibility for a range 

of common rock-forming minerals was constructed, taking into account their shear strength, 

fracture toughness and most importantly melting point. Applying this hierarchy to the 

individual phases of the three lavas in this study, the theoretical order of phases preferentially 

affected during frictional sliding would be rhyolitic glass (Tg = 740–770 ºC, estimated using 

Giordano et al. (2008) as a viscosity gauge for 1012 Pa s; Fig. 3.9a–c), calcic-amphibole 

(hornblende; ~750–1000 ºC), plagioclase (An40–An90; ~1280–1500 ºC), clinopyroxene 

(augite; ~1400 ºC), orthopyroxene (hypersthene; ~1425 ºC), Fe-Ti oxides (~1600 ºC), and Si-

polymorphs (SiO2; ~1700 ºC). However, due to the fast heating rates involved during 
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frictional heating and melting, the Tg for the rhyolitic interstitial glass may be momentarily 

higher than the melting temperature of amphibole. 

The marked increase in shear stress at the onset of friction is attributed to the initial 

interaction of asperities on the slip surfaces, which led to subsequent comminution of the host-

rock and likely coincided with minor plucking of minerals. In the SHV andesite, amphibole 

was the mineral most susceptible to grain size reduction owing to its lower fracture toughness 

and yield strength (Spray, 1992); for SG and COL samples, the mechanically weakest mineral 

was plagioclase (Spray, 1992). Additionally, the high abundance of silica phases in the 

groundmass of the SHV andesite (due to glass devitrification) likely had more of a physical 

effect at the early stages of slip than an unaltered glass. This micromechanical response 

resulted in the formation of a cataclastic gouge layer on the contact surface (e.g., Hetzel et al., 

1996; Spagnuolo et al., 2016), which acted as a lubricant and permitted minor shear-

weakening that led to near steady-state shear stress within the first few metres of slip (e.g., 

Reches & Lockner, 2010; Lavallée et al., 2014). Frictional heating caused an abrupt shear-

strengthening attributed to volumetric expansion of the sample (as seen in the shortening data; 

Fig. 3.2b) and the first production of a melt on the slip plane. The preferential melting of ultra-

fine crystal fragments, due to their larger surface area (Spray, 1992), generated molten patches 

on the slip surface (Tsutsumi & Shimamoto, 1997; Hirose & Shimamoto, 2005; Chen et al., 

2017). These melt patches behaved as a preliminary viscous brake and caused the shear stress 

to rise to a maximum (Tsutsumi & Shimamoto, 1997; Fialko & Khazan, 2005; Hirose & 

Shimamoto, 2005). Owing to the ubiquitous occurrence of amphibole in the SHV andesite, 

this process took place ~5 m (5 s) earlier than in the experiments with the SG dacite and COL 

andesite. This shorter slip distance required to generate melt could be related to a higher rate 

of comminution followed by the preferential melting of the amphibole fraction. It has also 

been postulated that the release of water from the melting of hydrous phases could facilitate 

this stage (e.g., Allen, 1979; Hetzel et al., 1996). As the temperature increased concurrently 

with shear stress, melt patches began to coalesce upon increased melting, resulting in a molten 

layer with abundant crystal fragments, as seen at the onset of melting (Tm; Fig. 3.3). With 

further melting, a fully formed frictional melt separated the two sliding surfaces, owing to an 

increase in the volume of melt to crystals, until a critical melt fraction is reached (Fialko & 

Khazan, 2005; Rosenberg & Handy, 2005; Chen et al., 2017). Thickening of the molten layer 

accompanied by increased melting caused a decrease in shear stress towards a steady-state 

condition (e.g., Tsutsumi & Shimamoto, 1997), which increased the distance between the two 

opposing interfaces (referred to as the Stefan problem; e.g., Hirose & Shimamoto, 2005). At 

this stage, slip behaviour was dependent on the viscosity of the melt, which in turn was 

influenced by the strain rate in the slip zone. The SHV andesite showed a larger shear-
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weakening response (0.46 MPa) compared with SG dacite (0.13 MPa) and COL andesite (0.29 

MPa), which matched the variation in estimated frictional melt viscosities for each material 

(Fig. 3.9; Table 3.3). From this stage on, the ability of the slip zone to sustain a molten layer 

was determined by the heat produced by shear heating rather than solid friction (Hirose & 

Shimamoto, 2005). Microstructural evidence of a reduction in finer crystal fragments upon 

steady-state melting confirmed this (Fig. 3.3), suggesting that intense comminution was no 

longer in action. Steady-state conditions were marked by a sudden increase in melt production 

as maximum temperatures were reached. Here, comminution was replaced by tearing of 

crystals along the slip interface. Consequently, large angular crystal fragments, derived from 

the host material, became isolated within the molten layer (from Tss onwards; Fig. 3.3) and 

their outer edges subsequently became rounded by combined attrition and melting (Lin, 1999), 

a characteristic feature of natural pseudotachylytes (e.g., Sibson, 1975). Melting of the outer 

edges of plagioclase fragments generated the resorbed rim textures (Fig. 3.3), which 

demonstrated that these fragments were subjected to temperatures exceeding their equilibrium 

conditions. The thickening of the melt zone and change in shape of the rock-melt interface 

towards steady-state conditions was an important characteristic that likely altered the 

roughness of the fault plane and affected the frictional properties (i.e., flow rheology). Such a 

change in melt-surface topography was most noticeably brought about by the interaction of 

amphibole crystals with the melt zone (Fig. 3.6a). Amphibole embayment along with a 

consistently thicker melt zone adjacent to amphibole crystals provided evidence for its 

selective melting (e.g., Spray, 1992). Similar textures have been related to the Gibbs-Thomson 

effect (Hirose & Shimamoto, 2003), by which the local melting temperature of a mineral’s 

external surface—when in contact with the melt zone—is reduced. In contrast, plagioclase 

crystals showed less textural evidence for melting, expressed as a thinner melt layer where 

plagioclase phenocrysts are adjacent to the slip zone (Fig. 3.6 and Fig. A2.6). The variation in 

final melt thickness between each sample set corresponded to the amount of shortening 

experienced during the experimental run (Fig. 3.2b). However, it is possible that the melt 

thickness measured may not be fully representative because the melt zone may have been 

compressed slightly after the experiment ceased, while a normal stress (1 MPa) was still being 

applied. 

 

3.4.2.  Selective phase melting and preferential melting of amphibole 

Frictional melting has long been portrayed as a disequilibrium selective mineral 

melting process (Shimamoto & Lin, 1994; Lin & Shimamoto, 1998), yet the influence of 

discrete phases on the mechanics of frictional melt production during faulting remains an area 

that is not fully constrained (e.g., Jiang et al., 2015). Here, we relate mechanical and 
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compositional progression of frictional melting to the presence or absence of amphibole in the 

host material. Although interstitial glass was more abundant in the SG dacite and COL 

andesite than in the SHV andesite, it was likely to have a secondary role on the mechanical 

properties when amphibole was present; this may be a consequence of the high heating rates 

involved, limiting the timescale of structural relaxation of the glass, and possibly resulted in 

Tg being higher than the melting point of amphibole (e.g., Dingwell & Webb, 1989; Lavallée 

et al., 2015b). Previous HVR experiments on the frictional melting of andesites and dacites 

that were both glass-rich and amphibole-rich (e.g., Kendrick et al., 2014b; Hornby et al., 2015) 

recorded similar mechanical behaviours to the SHV andesite in this study, supporting the 

theory that hydrous minerals have a primary control on frictional behaviour. The absence of 

amphibole fragments hosted within the SHV frictional melt supports the disequilibrium 

melting model of Spray (1992), where amphibole has the lowest melting point; other studies 

also reported the lack of ferromagnesian hydrous fragments in experimental melts and natural 

pseudotachylytes (e.g., Scott & Drever, 1953; Sibson, 1975; Hetzel et al., 1996; Hirose & 

Shimamoto, 2005; Jiang et al., 2015). The composition of the melts can thus be related to the 

chemical components that were derived from melting of the different host-rock phases, as 

revealed by the least squares model (Fig. 3.8).  

All melt compositions showed a near-linear relationship between the composition of 

the interstitial glass and plagioclase (Fig. 3.4), suggesting that these two phases were 

influential in the melting process. However, a deviation from this trend may have come from 

either a combination of contrasting mobilities of different chemical elements, referred to as 

diffusive fractionation (e.g., Perugini et al., 2006; Morgavi et al., 2013; Perugini et al., 2013), 

or  the interaction of mafic minerals (e.g., amphiboles, pyroxenes, and Fe-Ti oxides). The high 

level of Sr in the SG and COL frictional melts confirms the dominance of plagioclase melting. 

Additionally, the elevated K, Rb, and Zr concentrations in these melts demonstrates melting 

of the interstitial glass was integral during frictional melting of SG dacite and COL andesite; 

this is consistent with the higher abundance of K-rich interstitial glass in their host material. 

A low concentration of K, Sr, Rb, and Zr in the SHV frictional melts suggests melting of 

plagioclase and glass was more limited, consistent with less interstitial glass in the host 

material, as the preferential melting of amphibole proceeded. Interestingly, the composition 

of the SHV melt at the onset of melting showed only minor amphibole influence based on 

lower ferromagnesian components (Fig. 3.4); this is supported by the least squares model (Fig. 

3.8a). This lack of amphibole contribution was likely due to the absence of amphibole 

phenocrysts adjacent to or on the slip plane. With slip progression, an overall increase in FeO, 

MgO, and CaO, along with a slight decrease in Al2O3, suggests an increased amphibole 

contribution, which also corresponds to the increase in bubble content. Homogenisation 
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towards the host’s bulk composition, which has been proposed previously (e.g., Spray, 1992; 

Hirose & Shimamoto, 2005), appeared to be the case upon steady-state melting (Tss) due to 

increased mixing efficiency. However, due to preferential amphibole melting in the SHV 

andesite, the melt composition became more mafic with time. This contrasts with the 

interpretation of Jiang et al. (2015), who suggested that melts will become progressively more 

felsic with time if hydrous phases are present. An increased amphibole input was likely the 

result of the conduction of heat through the sample. High temperatures would have initiated 

along the fault plane, which would only allow phases exposed to the contact surface to melt 

(i.e., plagioclase and glass). However, as melting progressed, a strong thermal gradient 

between the melt zone and the host-rock surface likely formed (e.g., Nielsen et al., 2008). 

Consequently, any heat being transferred through the host’s wall may have been limited to a 

small distance from the interface where temperatures may not have been high enough to melt 

most minerals that were directly adjacent to the melt zone. However, as amphiboles have a 

significantly lower melting temperature compared with the other phases (750–1000 ºC; Spray, 

1992), these minerals were likely still affected even if temperatures were a few hundreds of 

degrees lower than in the melt zone interior. The textures observed in Figure 3.6b confirm 

this, where amphibole began to melt ~200 µm away from the melt zone. A similar effect has 

been observed on landslide slip surfaces, in which minerals directly beneath the fault plane 

had thermally decomposed due to frictional heating (Hu et al., 2018). It is also possible that 

mafic melt filaments that formed at the onset of melting could have been compromised owing 

to rapid diffusion related to low viscosities (e.g., Rossi et al., 2017), unlike more felsic 

filaments with higher viscosities; this may further explain the apparent lack of amphibole 

signature at the onset. However, the mafic trend with slip progression opens a potential case 

for amphibole-bearing rocks not being able to (or required to) produce frictional melt 

temperatures high enough for efficient bulk melting, creating a feedback that encourages 

mafic compositions. 

Compositional trends for the SG and COL melts fit the expected evolution towards 

homogeneity and bulk-rock composition with increasing slip distance. Although these melts 

initially had a hybridised composition between plagioclase and interstitial glass, an increase 

in FeO and MgO with time confirms the melting of pyroxenes. The lack of a CaO trend for 

these melts suggests the contribution of orthopyroxene to frictional melt composition 

dominated over clinopyroxene, which corresponds to the relative modal fractions in the host 

materials. Although clinopyroxene (augite) and orthopyroxene (hypersthene) have similar 

estimated melting temperatures (~1400 ºC and ~1425 ºC, respectively), orthopyroxene 

generally has a lower yield strength and shear strength (Spray, 1992), which may have 

favoured faster comminution and subsequent melting from the onset of slip. The presence of 
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silica phases suspended in the SHV and SG frictional melts (derived from the host’s 

groundmass; Fig. 3.3) confirms the higher temperatures required to melt them (> 1700 ºC). 

However, mass balance calculations for the SG frictional melt suggest that some melt 

filaments required up to 28 vol.% of a pure silica phase to obtain its composition. From the 

temperature-viscosity model (Fig. 3.9), estimated temperatures of the molten layer rarely 

exceeded 1500 ºC. However, Lee et al. (2017) showed that the melting temperature of quartz 

could be suppressed by > 200 ºC owing to preferential melting of finer quartz fractions and 

conversion to a meta-stable -quartz, referred to as quasi-equilibrium melting. 

 

3.4.3.  Chaotic mixing and chemical homogenisation during frictional melting 

The evolution of frictional melt composition during the progressive melting of 

chemically discrete phases is governed by a dynamic chaotic mixing phenomenon, akin to 

magma mixing (e.g., Perugini et al., 2003; De Campos et al., 2011). In recent years, chaotic 

mixing between mafic and felsic silicate melts has been constrained experimentally to assess 

the timescales of chemical homogenisation during magma mixing events (e.g., Morgavi et al., 

2013; Perugini et al., 2013; Rossi et al., 2017). The diffusivities of the different major 

elements alone would not permit the chemical exchanges observed over the timescales of 

frictional melting in our experiments (< 20 s); thus, physical mixing must play a fundamental 

role. At the onset of melting (Tm), the formation of melt filaments within the molten layer 

generated compositional gradients; via shearing, these filaments began to stretch and fold, 

which increased the surface area to enhance chemical diffusion. Owing to different element 

diffusivities, this may have caused a diffusive fractionation resulting in melts with a hybridised 

composition (Perugini et al., 2006; Perugini et al., 2008; Perugini et al., 2013). In a simple 

case, the mixing of two melts (with one component) should form linear trends in binary plots 

(e.g., Fourcade & Allègre, 1981). However, due to the fractal distribution of melt filaments 

and a frictional melt consisting of more than two end-members with multiple components, a 

non-linear trend between elements exists (Fig. 3.4), which highlights the complexity involved 

during chemical mixing of a frictional melt. Consequently, discriminating the effect of 

diffusive fractionation and the range of chemical filaments involved is a challenging task. 

Gradational melt filaments observed in BSE images of the frictional melts (Fig. 3.3 

Tm) likely represent local areas of immiscibility and incomplete mixing of the different melted 

phases (termed schlieren). The various compositions of these different filaments suggest that 

viscosity contrasts would exist within a frictional melt. These viscosity contrasts would have 

a significant influence on melt filament mixing efficiency (e.g., Sparks & Marshall, 1986), 

with a larger viscosity contrast taking more time to mix and homogenise (e.g., Morgavi et al., 
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2013). The large viscosity contrasts expected between amphibole, plagioclase, and interstitial 

glass filaments could explain the more heterogeneous nature of the SHV melts (Fig. 3.4a). 

The smaller viscosity contrasts between plagioclase and glass in the SG and COL melts would 

aid a faster rate of homogenisation (Fig. 3.4b, c). Due to density variations brought about by 

varying chemical compositions of the melt filaments, mixing during frictional melting can be 

described as a form of double-diffusion convection, where convection is forced by filaments 

with juxtaposing diffusivities (Huppert & Sparks, 1984; Hirose & Shimamoto, 2005). In 

summary, we highlight the complexity involved when attempting to assess chaotic mixing of 

a frictional melt due to selective phase melting. 

 

3.4.4.  Rheology 

As discussed, the dynamic physicochemical complexity of a frictional melt brings 

about a convoluted rheological response. It has been well documented that the viscosity of the 

growing molten layer between two sliding surfaces determines the shear resistance of a melt 

during slip (e.g., Hirose & Shimamoto, 2005). Consequently, it is the viscosity dependence 

on melt composition that determines whether a frictional melt will serve as a lubricant or brake 

(e.g., Koizumi et al., 2004; Hirose & Shimamoto, 2005; Kendrick et al., 2014b). The mafic 

trend observed in the SHV frictional melts suggests a likely decrease in melt viscosity with 

slip distance owing to increased amphibole-melt interaction. Heat transfer to the wall rock 

adjacent to the melt layer can result in a continuous injection of low-viscosity amphibole melt 

causing the viscosity to be dynamic. However, the more homogenising response of the SG 

and COL melts suggests a more constant viscosity with time. A constant viscosity may be the 

cause of the instantaneous transition from peak shear stress to steady-state with little 

weakening involved (Fig. 3.2b); this was in contrast to the SHV melt, which showed a clear 

weakening phase before steady-state conditions were achieved. 

The presence of crystals and bubbles within a frictional melt can influence the 

apparent viscosity (Lavallée et al., 2012a; Hornby et al., 2015). Crystals in all the frictional 

melts increase shear resistance by adding between 0.36 and 0.97 Pa s to the apparent viscosity 

causing increased strain-rate dependence (Fig. 3.9a–c). However, bubbles may either increase 

apparent viscosity or have an opposite effect depending on whether the bubbles can resist 

deformation or deform viscously, respectively (e.g., Bagdassarov & Dingwell, 1992). As 

highlighted by Lavallée et al. (2012a), the low estimated viscosities of the frictional melt 

imply that bubbles should deform, lowering the apparent viscosity. Yet, bubbles showed no 

signs of deformation (Fig. 3.3). Undeformed bubbles were previously given as evidence for 

their formation at the end of sliding (Hirose & Shimamoto, 2005). However, circular bubbles 
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more likely reflect the relaxation of a low viscosity melt that was dominated by highly 

isotropic surface tension which brought the bubbles back to spherical once shearing ceased 

(Rust & Manga, 2002). The increase in bubble content with slip distance in the SHV melt is 

attributed to elevated water contents due to an increasing input from amphibole melt. With 

amphibole containing ~2 wt.% H2O in its structure, a contribution of 27 vol.% amphibole melt 

(Fig. 3.8a) may have resulted in up to 0.54 wt.% H2O being transferred to the frictional melt, 

and thus lowered the modelled apparent viscosity and lowered the estimated temperatures of 

the SHV melt zone by ~100 ºC (Fig. 3.9d). 

The apparent viscosity of a frictional melt suspension is strain-rate dependent and 

results in dynamic slip mechanics. In nature, slip rates are rarely constant. Considering the 

non-Newtonian nature of suspensions (e.g., Caricchi et al., 2007; Lavallée et al., 2007), a 

decrease in slip velocity would result in a reduced strain rate, causing an increase in apparent 

viscosity; moreover, such slip velocity reduction may promote cooling and further increase 

the apparent viscosity. These may manifest as a rise in shear stress that exceeds the structural 

relaxation of the melt causing slip to terminate or melt to rupture (Lavallée et al., 2015b). The 

slip zone may subsequently heal (e.g., Lamur et al., 2019) and then reactivate following the 

accumulation of shear stress, resulting in a stick-slip motion (e.g., Koizumi et al., 2004; 

Kendrick et al., 2014b; Lavallée et al., 2015b; Lockner et al., 2017). Consequently, we infer 

that host materials bearing a similar mineral assemblage to SG dacite and COL andesite are 

more likely to form frictional melts that operate as a viscous brake during deceleration of fault 

slip. On the other hand, in materials bearing a high abundance of hydrous minerals, similar to 

the SHV andesite, frictional melts would lubricate slip even during deceleration.   

 

3.5.  IMPLICATIONS FOR VOLCANIC SETTINGS 

During the ascent of high-temperature, high-viscosity magma, common during dome-

building eruptions, strain localisation along the conduit margins can result in the development 

of shear zones that experience seismogenic failure as magma encounters the viscous-brittle 

transition (Neuberg et al., 2006; De Angelis & Henton, 2011; Kendrick et al., 2014a). High 

strain rates in these regions can lead to frictional melting along the faulted contact and, 

consequently, dictate ascent dynamics and influence the style of activity at the surface 

(Kendrick et al., 2014a). 

At Santiaguito dome complex (Guatemala), regular gas-and-ash explosions have been 

attributed to strain localisation and friction during piston-like faulting of a lava plug at the 

conduit margins due to rapid uplift of the dome, corresponding to a slip velocity of up to 1 m 

s−1 (Johnson et al., 2008). Evidence of frictional melting was recorded by the presence of melt 
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filaments in erupted ash fragments and frictional marks on blocks forming the dome carapace 

(Lavallée et al., 2015a). In addition to explosive activity, Hornby et al. (2015) reported that 

frictional melting was a likely process during repetitive slip of an emerging lava spine at 

Unzen volcano (Japan) following an experimental investigation. The study coupled high-

velocity rotary shear experiments with seismic signals recorded during spine growth and 

constrained a slip velocity of 0.75 m s-1. Shear zones that developed at the margins of the lava 

spine during its extrusion record extensive petrological evidence for localised frictional 

deformation and subsequent heating (Wallace et al., 2019). 

The difficulty we face when identifying pseudotachylytes in volcanic conduits is the 

high and sustained ambient temperatures (> 500 ºC) which promote slow cooling, 

crystallisation, hydrothermal alteration, and the metastability of glass. Such post-melting 

alteration processes can result in chemical, textural, and geophysical overprints that make it 

difficult to decipher the conditions of frictional melting (e.g., Kendrick et al., 2012; 

Kirkpatrick & Rowe, 2013). 

Fluxes in the abundance of mineral phases have been observed in many volcanic 

systems, particularly hydrous phases that are attributed to the injection of hydrous magma. 

Volcán de Colima has experienced such events, where an increased abundance of amphibole 

was recorded in products erupted in 1818 and from 1869 to 1913. This has been labelled as a 

potential precursor of explosive activity (Luhr & Carmichael, 1990; Luhr, 2002; Savov et al., 

2008; Saucedo et al., 2010). We suggest that the introduction of amphibole could play a 

fundamental role in altering flow dynamics in the upper conduit by reducing the shear 

resistance during slip and facilitating explosive behaviour. This is because a lubricating effect 

could enable a continuous, fast magma ascent in the conduit where less shear resistance takes 

place near conduit margins. As amphibole-derived frictional melts are less likely to act as 

viscous brakes during a deceleration in magma ascent rate, they may be less prone to generate 

permeable fractures. Additionally, our observations that lavas containing amphibole generate 

frictional melts faster than amphibole-free lavas suggest amphibole-bearing systems are more 

susceptible to frictional melting. Consequently, the rapid formation of frictional melts in 

amphibole-bearing systems following short slip events may help seal fault planes that 

subsequently heal, thus decreasing the permeability of the system. Both these mechanisms 

promote higher gas overpressures and greater explosivity. If the magma is amphibole-free, 

frictional melts are less likely to form during very short slip events, and even during prolonged 

slip frictional melts are more likely to fail and fracture, leading to a pulsatory magma ascent 

in a stick-slip motion. Thus, frictional melting in amphibole-free systems favours the 

development of outgassing pathways that relieve the pressure of the system and reduce the 

explosive potential. However, for hydrous phases to control frictional behaviour, their 
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abundances would likely need to be above a critical fraction to ensure continuous interaction 

during frictional melting.  

Additionally, rapid granular flows due to collapse events (e.g., landslides, pyroclastic 

flows, block-and-ash flows) in materials’ bearing hydrous minerals could facilitate 

propagation processes, by decreasing the frictional resistance and thereby increasing the 

velocity of the flow and its travel distance. Frictional marks on block exteriors from block-

and-ash flow deposits have highlighted the highly energetic internal processes taking place 

within rapid granular flows, where blocks continuously collide and slide past each other (e.g., 

Grunewald et al., 2000; Schwarzkopf et al., 2001). An investigation of frictional marks found 

on amphibole-bearing andesitic blocks from Soufrière Hills Volcano (SHV) identified thin 

pseudotachylyte veins that were compositionally heterogeneous, with SiO2 ranging from 53 

to 63.5 wt.% (Grunewald et al., 2000). The pseudotachylyte glass composition had no overlap 

with that of the bulk-rock composition and was attributed to matrix melting rather than bulk 

melting of the host andesite. However, from our findings using a similar andesite from SHV, 

we suggest pure matrix melting was unlikely and these pseudotachylyte-bearing frictional 

marks represented very short-lived slip where only the onset of selective phase melting took 

place rather than prolonged slip to achieve a composition comparable to that of the bulk 

precursor rock. Contrary to the work of Grunewald et al. (2000), Schwarzkopf et al. (2001) 

performed a similar chemical analysis on frictional marks imprinted on the surface of 

andesitic–basaltic-andesite blocks from a block-and-ash flow deposit from Merapi volcano 

(Indonesia), classifying pseudotachylyte formation as a response to flash melting of the entire 

rock following frictional contact. This interpretation was based on the consistent 

compositional overlap of the pseudotachylyte and bulk-rock. From the experiments performed 

here, the different compositional relationships between the blocks from SHV and Merapi 

volcano could be explained by either prolonged sliding of blocks at Merapi (several metres of 

slip to allow the melt to homogenise towards the bulk-rock composition), prolonged incursion 

to high temperatures (to favour bulk melting), or a different mineral assemblage. Sustained 

slip between blocks in a block-and-ash flow is highly unlikely owing to the short-lived, chaotic 

collisions of rotating blocks; thus, we relate these previously assessed chemical observations 

to their contrasting bulk mineral assemblages, primarily the high abundance of amphibole in 

the SHV andesite. We thus anticipate our experimental and geochemical findings will also 

contribute to the improvement of flow models of similar rapid granular flows, including basal 

faulting during volcanic avalanches (e.g., Legros et al., 2000; Bernard & de Vries, 2017). 
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3.6.  CONCLUSIONS 

We have experimentally demonstrated the effect of contrasting mineral assemblages 

on the frictional properties of extrusive volcanic rocks, providing a chemical viewpoint to a 

physical process. We find that the compositional discrepancies in frictional melts are 

attributed to selective phase melting during faulting, which, in addition to suspended crystal 

fragments, have a profound influence on the rheological properties of the melt, consequently 

controlling the mechanical response to slip. Selective melting preferentially occurs in phases 

with the lowest melting temperatures and mechanical strength, represented by amphibole in 

the volcanic rocks studied here. In the presence of amphibole, frictional melts are chemically 

and rheologically complex heterogeneous liquids. With time, these melts homogenise and 

evolve simultaneously, moving chemically further away from the bulk-rock towards a more 

mafic composition as amphiboles further from the fault zone continue to melt preferentially. 

Consequently, the lower melt viscosities attributed to preferential amphibole melting, likely 

accompanied by H2O release, facilitate a lower shear resistance that promotes slip. When 

amphibole is absent, frictional melts are compositionally more homogenous from the onset 

and in general homogenise continuously towards the bulk composition. In this case, the 

rheological response of the melt is dependent on preferential melting of phases with the next 

lowest melting temperatures and strength (i.e., plagioclase and rhyolitic glass). High modal 

fractions of these molten phases lead to frictional melt compositions that are closer to the bulk-

rock. Selective melts of these phases have higher melt viscosities that cause a stronger shear 

resistance during slip, which may inhibit slip progression and eventually lead to failure. These 

findings provide new insights for assessing volcanic processes that involve slip displacement, 

either by altering conduit flow dynamics, which could impact the style of an eruption 

(explosive or effusive), or by contributing to the velocities and run-out distances of rapid 

granular flows. 
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Chapter 4  Integrated constraints on explosive 

eruption intensification at Santiaguito dome 

complex, Guatemala 

ABSTRACT 

Protracted volcanic eruptions may exhibit unanticipated intensifications in explosive 

behaviour. Santiaguito dome complex, Guatemala, has been characterised by century-long 

effusion interspersed with small-to-moderate gas-and-ash explosions. During 2015–2016, 

explosions intensified, generating hazardous ash-rich plumes and pyroclastic flows, thus 

raising questions over the current state of Santiaguito’s magmatic system. Here, we integrate 

geochemical, petrological and geophysical evidence to evaluate the causes in explosion 

intensification, providing a unique dataset that captures an enigmatic shift in eruption style. 

Seismic and infrasound signals reveal progressively longer repose intervals between 

explosions and deeper fragmentation levels as the magnitude of these events increased. The 

onset of large explosions is concordant with a relatively fast ascent of deep-sourced, hot, 

volatile-rich magma, that mingles at shallow depth with the left-over mush under-rooting the 

pre-2015 lava dome. We interpret that purging by new magma led to consequential changes 

in the explosion mechanism and energy, intensifying local volcanic hazards. The 

multiparametric record indicates that geophysical data provide an instantaneous record of 

eruption intensification, whereas geochemical and petrological changes, which trigger 

explosion intensifications, are only expressed by examining the eruptive products following 

eruption. 
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4.1.  INTRODUCTION 

Subduction-related volcanic systems often exhibit transitions in eruption style over 

short (mins to days) and long (months to years) timescales. Amongst these, lava domes present 

one of the most hazardous forms of volcanic activity, with their ability to shift from benign 

effusive to catastrophic explosive eruption style with little precursory warning (e.g., Mount St 

Helens, Cashman (1992); Soufrière Hills volcano, Clarke et al. (2007); Pinatubo, Hammer et 

al. (1999); Galeras volcano, Stix et al. (1993); Stix et al. (1997)). Achieving comprehensive 

understanding of the processes that facilitate one style of activity over the other remains a non-

trivial task for real-time hazard assessment and future monitoring efforts. Effective forecasting 

thus relies on the integration of multi-parametric observations, including geophysical 

monitoring data and petrological and geochemical signatures of the erupted material. Yet, 

such interdisciplinary datasets are rare for a single eruption and even more so over a period 

exhibiting a prolonged transition in eruption style (e.g., Wadge et al., 2014; Stock et al., 2018). 

Volcanic eruptions are highly dynamic, both temporally and spatially, that involve a 

complex interplay between many physico-chemical processes. It is thus envisaged that no 

single process is responsible for a given eruption style (Cassidy et al., 2018), but rather a 

feedback associated with multiple competing factors as magma is transported through the 

Earth’s crust. For instance, a shift in activity within, or between, eruptive episodes is 

commonly attributed to a switch in the degassing-regime from open-system to partially 

closed-system degassing (e.g., Fink et al., 1992; Stix et al., 1993; Woods & Koyaguchi, 1994; 

Adams et al., 2006), regulated by a combination of deep (e.g., magma injection, deep 

convection, mush instabilities and volatile fluctuations; Sparks et al., 1977; Pallister et al., 

1992; Murphy et al., 2000; Williamson et al., 2010; Burgisser & Bergantz, 2011) and shallow 

(e.g., volatile exsolution, degassing, crystallisation, shearing/friction; Hammer et al., 1999; 

Sparks et al., 2000; Sparks, 2003b; Edmonds, 2008; Lavallée et al., 2012b; Lavallée et al., 

2013; Preece et al., 2013; Wallace et al., 2019) magmatic processes that control the 

composition, physical properties, rheology, and ultimately ascent style of the magma. 

The architecture of magma plumbing systems and inferences of deep magmatic 

processes that influence volcanic activity often come from petrological and geochemical 

analyses of erupted materials. Information may be archived in the bulk-rock composition and/ 

or the constituent mineral and glass phases (incl. phenocryst zonations and diffusion profiles, 

disequilibrium textures, reaction rims on hydrous minerals and melt inclusions). Of particular 

importance is the ability to constrain magma storage conditions, which are commonly 

estimated from geochemical analyses via application of experimentally-calibrated 

geothermobarometers (e.g., Holland & Blundy, 1994; Putirka, 2008; Ridolfi et al., 2010), as 
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well as deciphering the processes that may overprint these signals during ascent immediately 

prior to and during eruptions. As magma ascends to the surface, decompression drives volatile 

exsolution of the melt phase, which in turn influences their petrological and rheological 

evolution. Melt degassing causes an increase in the liquidus temperature and generates an 

effective undercooling (difference in temperature between that of the melt and liquidus, ∆T) 

favouring conditions for microlite crystallisation; thus groundmass textures of eruptive 

products reflect the ascent history (e.g., Cashman & Blundy, 2000; Noguchi et al., 2008b; 

Toramaru et al., 2008; Miwa et al., 2009; Preece et al., 2013; Cassidy et al., 2015; Preece et 

al., 2016). Degassing as well as associated crystallisation increase bulk magma viscosity and 

may inhibit flow in the upper conduit leading to plug formation (e.g., Lavallée et al., 2012b; 

Lavallée et al., 2013). The outgassing efficiency of such a plug determines the development 

of pore pressure in the magmatic column (e.g., Diller et al., 2006; Mueller et al., 2008; 

Burgisser et al., 2010); if pore pressure induces strain rates that exceed the relaxation rate of 

magma it can cause the plug to rupture and generate an explosion (Dingwell, 1996). Open-

system volcanoes, such as protracted lava dome eruptions, commonly display pulsatory 

magma ascent associated with cyclic seismicity (e.g., Neuberg et al., 2006; Iverson, 2008; 

Kendrick et al., 2014b), ground deformation (e.g., Voight et al., 1999; Johnson et al., 2014; 

Neuberg et al., 2018), gas emission (e.g., Edmonds et al., 2003; Michaut et al., 2013) and 

explosion (e.g., Gonnermann & Manga, 2003; Johnson et al., 2014; Lavallée et al., 2015a) as 

a result of complex interplays between magma ascent, petrological and rheological evolution, 

deformation and gas fluxing through the system. However, during the course of an eruption, 

the physico-chemical properties of magma in the source region may evolve (due to 

assimilation, differentiation or magma mixing), thus affecting the balance between the 

aforementioned pre-eruptive processes, and resulting in a shift in eruptive behaviour (e.g., 

Melnik & Sparks, 2002). Understanding of the timescale, signs and causes of such changes in 

the volcanic system remains insufficient for hazard assessment.  

In this study, we integrate geophysical observations with petrological and 

geochemical analyses of the erupted material to characterise a phase of eruption intensification 

during 2015–2016 at Santiaguito dome complex, Guatemala. Geochemical and microtextural 

investigations were performed on ash and bombs ejected during Vulcanian explosions across 

the transition period, and compared with seismic and infrasound signals, to explore the cause 

behind this shift in eruption style and the implications it had on eruption mechanism. 
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4.2.  SANTIAGUITO DOME COMPLEX 

4.2.1.  Eruptive history and explosive activity 

Santiaguito is an active dacitic-andesitic dome complex in south-west Guatemala.  

Following the cataclysmic Plinian eruption of Santa Maria (Fig. 4.1) in 1902, and after 20 

years of quiescence, in 1922 extrusion began in the centre of the explosion crater and has been 

ongoing for the past century from four vents (Rhodes et al., 2018): El Caliente (active during 

1922–39 and 1967–present), La Mitad (1939–49), El Monje (1949–58) and El Brujo (1958–

86). El Caliente is considered the primary vent as it has remained continuously active (via 

intense fumarolic activity) even during extrusion from the other vents (Rose, 1972). For the 

past two decades, Santiaguito’s eruptive activity has been characterised by exogenous dome 

growth, including continuous slow extrusion of blocky lava flows and regular, small-to-

moderate gas-and-ash explosions (≤2 per hour) with plume heights rarely exceeding 1–2 km 

above the vent (Bluth & Rose, 2004; Sahetapy-Engel et al., 2008; Yamamoto et al., 2008; 

Johnson et al., 2014; Lavallée et al., 2015a; De Angelis et al., 2016). However, from 

December 2014, these regular explosions (>30 per day) became less frequent, gradually 

decreasing to <10 per day by July 2015 while their magnitude increased significantly (Lamb 

et al., 2019). This shift in explosive activity caused excavation of the crater by mid-2016 

(Lamb et al., 2019) and generated ash-rich plumes up to 7 km high, before returning to 

characteristic regular, small-to-moderate explosions in-late 2016 and the growth of a new lava 

dome within the El Caliente vent. 

 

4.2.2.  Previous constraints on the magma plumbing system 

Petrological and geochemical assessments of extruded lava between 1922–2002 have 

provided a comprehensive overview of the evolution of the system (Scott et al., 2012; Scott 

et al., 2013; Andrews, 2014). Whole-rock composition revealed a progressive decrease of ~4 

wt.% SiO2 through time (~66 to 62 wt.%; Rose, 1972; Harris et al., 2003; Avard & 

Whittington, 2012; Scott et al., 2013), attributed to a combination of magma mixing that likely 

triggered the 1902 eruption, and varying degrees of fractional crystallisation which took place 

~25 ka prior (Scott et al., 2013). Magma feeding the Santiaguito dome complex has been 

constrained to reside between ~12 and ~24 km depth at temperatures ~940–980 ºC (Scott et 

al., 2012), with no definitive evidence of an additional, shallower reservoir. Based on the 

extrusion of less evolved magma over the past century, a compositionally, vertically-stratified 

storage region in the lower crust was proposed, grading from basaltic at depth to dacitic in the 

shallow region, with the system currently extruding andesite (Scott et al., 2013). The extrusion 

of this lava has taken place in 7 to 15-year cycles (nine documented) of high and low extrusion 
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rates, with high extrusion rates taking place over a 3–6 year period and low extrusion rates 

over a 3–11 year period (Harris et al., 2003; Rhodes et al., 2018); this accompanied by the 

magma’s compositional trend led to the hypothesis that the magma source beneath Santiaguito 

was depressurising, and was proposed to succumb to complete exhaustion between 2014–

2024 (Harris et al., 2003). However, the eruption intensification in 2015–2016 brings 

questions on the current state of magma storage and ascent processes (Rhodes et al., 2018; 

Lamb et al., 2019). 

 

 

Figure 4.1 – Map of Santiaguito dome complex showing the location of the deployed 

instrument network and sample collection locations. Bottom right inset of Central America 

showing the location of Santiaguito in SW Guatemala. Top left insert shows an aerial 

photograph (sourced from Google Earth CNES/Airbus data © 2018) of the dome complex 

taken in January 2017 corresponding to the dashed area of the map and the four domes (EC: 

El Caliente; LM: La Mitad; EM: El Monje; EB: El Brujo). The red dashed line marks the 

crater scarp on the SW flank of Santa Maria formed by the 1902 eruption. 
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4.3.  METHODS 

4.3.1.  Seismic and acoustic infrasound 

A geophysical network, consisting of 11 seismometers (six broadband and five short-

period instruments) and five acoustic infrasound microphones located around the dome 

complex was deployed between November 2014 and May 2017 (Fig. 4.1; see Lamb et al. 

(2019) for further details on the network deployment). A waveform characterisation 

algorithm, that matches the seismic waveforms from each event with triggered acoustic signals 

(using infrasound waveform shape, amplitude and frequency), was used to detect individual 

explosions (Lamb et al., 2019; Bueno et al., in preparation, VINEDA—Volcanic Infrasound 

Explosions Detector Algorithm). This approach provided a means for tracking the real-time 

evolution of the intensity and magnitude of explosions across the transition period, recording 

over 6000 explosion events. For each explosion in the catalogue, the energy of each event was 

calculated from the seismic waveform using an approach that assumes velocity waveforms 

are representative of the seismic kinetic energy at a specific location on the volcano. Following 

Johnson and Aster (2005), seismic energy can be calculated as: 

𝐸𝑠𝑒𝑖𝑠𝑚𝑖𝑐 = 2𝜋𝑟2𝜌𝑒𝑎𝑟𝑡ℎ𝑐𝑒𝑎𝑟𝑡ℎ
1

𝐴
∫ 𝑆2𝑈(𝑡)2𝑑𝑡  (4.1) 

where r is source-to-receiver distance, earth is rock density, cearth is seismic velocity (2150 m 

s-1), A is attenuation, S is seismic site response, and U is the particle velocity. For each 

explosion, we integrate over a time window that corresponds to the entire duration of the event 

waveform.  

 

4.3.2.  Thermal radiance 

Near-real-time thermal infrared satellite data was obtained from the non-interactive 

algorithm MODVOLC (http://modis.higp.hawaii.edu) to assess evidence for surficial 

temperature changes across the same eruptive period (Wright, 2016). MODVOLC uses low-

spatial, high-temporal resolution infrared satellite data (1 km pixel resolution) acquired by the 

Moderate Resolution Imaging Spectroradiometer (MODIS) to detect thermal anomalies and 

quantify emitted spectral radiance at a given hotspot using the 3.595 µm infrared region (short-

wave) of the electromagnetic spectrum. MODVOLC uses the radiance emitted to estimate the 

radiant heat flux from the surface (in W) following the method of Wright et al. (2016). 

 

 

 

http://modis.higp.hawaii.edu/
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4.3.3.  Eruptive products and characterisation 

Ejected ash and bombs from heightened explosive activity in 2015–2016 were 

periodically sampled from both proximal and distal locations (0.1–10.0 km away) from the 

active El Caliente vent (Fig. 4.1). Pre-prepared thin sections for ash samples from explosions 

in January 1968, January 2003, November 2014 and January 2018 were also analysed to assess 

changes in groundmass microlite textures and glass chemistry for pre- and post-heightened 

activity (the samples from 2003 and 1968 were provided courtesy of Bill Rose). Collected ash 

from 2015–2016 was dried in a furnace at 70 ºC for 6 hours and sieved into 6 grain size 

fractions (1 mm, 0.5 mm, 0.25 mm, 0.125 mm, 0.063 mm and <0.063 mm). Only the 0.25–

0.5 mm size fraction was selected for the study to enable direct comparison across the sample 

suite. Ash componentry analysis was performed using a binocular microscope to quantify the 

abundance of different clast types based on their physical appearance (counting >300 grains 

per sample). Two Bombs, from Febuary and April 2016, were thin sectioned and all ash 

particles were set in a cylindrical resin mount, which were polished and carbon coated for 

textural and chemical investigation. 

Mineralogy and phases abundances were quantified using QEMSCAN (Quantitative 

Evaluation of Minerals by Scanning Electron Microscopy), an automated SEM-EDS 

(Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy) system (Pirrie et al., 

2004). Analyses were performed using 15 KeV accelerating voltage and a ~5 nA beam current, 

with the beam rastering along the sample at 20 µm intervals. The chemical compositions, 

determined by EDS, were matched with compositions for known mineral or glass phases 

stored within a reference library to produce a colour-coded phase distribution map for each 

ash and bomb sample (see Wallace et al. (2019) for more detail). Phase abundances were 

calculated using the sum of pixels of each coloured phase, normalised on a pore-free basis to 

enable a quantitative comparison across the sample suite. 

 

4.3.4.  Geochemistry 

Whole-rock major and trace element concentrations were measured by X-ray 

Fluorescence (XRF) for all ash and bomb samples using a PANalytical Axios Advanced XRF 

spectrometer at the University of Leicester. Relative precisions and accuracies are better than 

1–2% for all major elements and better than 5% for trace elements based on repeat analyses 

of international reference materials (BH-1 microgranodiorite, JR-1 rhyolite 55 and BCR-1 

basalt).  

Chemical composition of crystals and interstitial glass were determined using a 

Cameca SX100 electron microprobe (EPMA) at Ludwig-Maximilians-University in Munich. 
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Crystal analyses were performed using a 15 kV accelerating voltage, 20 nA beam current, and 

a focused (~1 m) beam; all analyses on glass used a 5 nA beam current and a defocussed 10 

m beam. Alkalis were measured first to avoid their migration during the analyses. Eight 

working standards from the Smithsonian collection (incl. VG-568 rhyolitic glass and Kakanui 

hornblende) were measured at regular intervals to ensure accuracy and precision. All elements 

had standard deviations < 0.5 and relative accuracies were generally better than 3% for major 

elements and 20% for minor elements. Any data with totals outside 97–101 wt.% were 

excluded from the results. 

 

4.3.5.  Textural analysis 

SEM analysis was conducted using a Hitachi TM3000 operating at 15 kV accelerating 

voltage and 10 mm working distance, in backscattered electron (BSE) mode. Quantitative 

microlite texture analysis of juvenile ash (dense brown and transparent clasts) and bombs were 

conducted on high resolution BSE images. Plagioclase microlites were manually outlined 

within a 10,000 mm2 area using Adobe Illustrator. The digitised images were converted to 

high-resolution TIFF files, which were imported to ImageJ for crystal measurements using the 

best-fit ellipse tool (Schneider et al., 2012). Measurements included the total area analysed, 

number of crystals per area, total area % of crystals, individual and mean crystal area, and 

crystal dimensions (long and short axes). From this data, microlite area %, microlite fraction 

(φ), and microlite number density (NA, mm-2) were calculated. Plagioclase φ was calculated 

on phenocryst-free and mafic microlite-free basis (i.e., area available for plagioclase 

crystallisation) following the methods of Hammer et al. (1999), and NA was calculated by 

dividing the total number of whole crystals by the area of groundmass measured. Crystal 

shapes were determined using CSDSlice (Morgan & Jerram, 2006), which objectively 

converts 2D measurements into known 3D shapes to obtain a short (S), intermediate (I) and 

long (L) axes. 

CSDCorrections software (Higgins, 2000) was used to provide 3D crystal size 

distributions (CSDs) by stereological conversion of the 2D crystal intersections measured in 

ImageJ. From the CSD data, volumetric plagioclase number densities were calculated using 

𝑁v = 𝑛o ×
−1

𝛼
, where  is the slope of a straight CSD curve (in mm-1) and no is the y-intercept 

(Blundy & Cashman, 2008). The CSDs can also be used to estimate microlite nucleation rates 

(J) and growth rates (G) if crystallisation times (τ) are known (Cashman, 1988; Marsh, 1988):  

 = −1/Gτ and J = noG. As crystallisation times (τ) at Santiaguito are unknown, maximum 

and minimum crystallisation times were estimated from the onset of a change in explosion 

seismicity (i.e., when explosions first began to increase in magnitude in February 2015) and 
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repose times between explosions, respectively. As our geophysical network did not extend 

further back than November 2014, a maximum crystallisation time for microlites in the 

November 2014 ash was estimated as the onset of lava extrusion in April 2014. Nucleation 

and growth rates for explosions in 1968 and 2003 were not calculated due to the large 

uncertainty in crystallisation time. 

 

4.4.  RESULTS 

4.4.1.  2014–2017 eruptive activity and associated monitoring signals  

Visual monitoring of eruptive activity between 2014 and 2017 (Fig. 4.2a–f) has been 

compiled from multiple field campaigns, activity reports (Global Volcanism Program) and 

INSIVUMEH, and are here integrated with the geophysical and thermal signals monitored 

during this period (Fig. 4.2g). Four phases were identified and these are compared to the pre-

2015 observed activity. 

 

4.4.1.1.  Pre-2015 activity 

Prior to the deployment of the geophysical network in November 2014, a significant 

collapse of El Caliente’s eastern flank on the 9th April 2014 was followed by the extrusion of 

a blocky lava flow that eventually halted in December 2014 (Global Volcanism Program, 

2015). Regular, small to moderate explosions interspersed this extrusion period; plumes were 

ash-poor and rose ≤1 km above the vent from arcuate to ring-shaped fractures within an 

infilled crater (Fig. 4.2a and b). Similar observations were reported for explosions in 2007 by 

Johnson et al. (2008). Explosions in November and December 2014 were low energy (avg. 15 

MJ), with repose intervals averaging ~47 minutes, equating to ~30 explosions per day (Fig. 

4.2g); thermal heat flux during this time remained consistently low (avg. 15 MW). Integrating 

these seismic signals with infrasound observations can be used to gain insights into explosion 

source mechanisms (e.g., Johnson et al., 2004); in particular, time difference between the two 

signals can be used as a proxy for explosion depths in the conduit (e.g., Hagerty et al., 2000), 

thus can be temporally assessed across the 2014–2017 period. By comparing seismic and 

infrasound signals from a number of randomly selected explosion events in late-2014, the 

delay in arrival times are up to 6 seconds (Fig. 4.2h). 



 125 

 

Figure 4.2 – Visual observations and monitored geophysical signals of the 2014–2017 

eruptive activity. (a-f) Photographs of explosions from the El Caliente vent through time taken 

from OVSAN (a, c, e), and the subsequent change in crater morphology taken from Santa 

Maria summit (b, d, f). (g) Seismic record of explosions as captured by the deployed 

geophysical network from Nov 2014 to May 2017, showing a change in repose intervals (left 

vertical axis) and energy of individual explosions (bubble sizes) across the transition period. 

The satellite radiant heat flux data (green circles and right vertical axis), as derived from 

MODVOLC, overlays the seismic data (g). The coloured arrows located above seismic time 

sequence in (g) indicate eruption dates for the samples analysed: lava flow (orange), ash 

(red), bombs (green). (h) Comparison of selected seismic and acoustic infrasound signals 

displaying larger delays in arrival times for explosion events in phase 3. 
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4.4.1.2.  Phase 1: February–September 2015 

The regular, small-to-moderate explosions from late-2014 continued until February 

2015. From this point on, explosions formed ash plumes that were visually darker and more 

ash-rich, which occasionally generated pyroclastic flows (Global Volcanism Program, 2015). 

From February to September 2015 (Fig. 4.2g), these explosions became progressively less 

frequent (decreasing towards <10 per day; Lamb et al., 2019), with average repose intervals 

of ≥2 hours, as their magnitude increased synchronously (up to 8.8 x 103 MJ). The time delays 

between seismic and infrasound signals during this phase were the same as those recorded for 

pre-2015 explosions.  Although few thermal satellite anomalies were detected during this 

period (likely due to cloud coverage), there was no apparent change in the heat flux (Fig. 

4.2g). 

 

4.4.1.3.  Phase 2: September 2015–March 2016 

From September 2015, the number of explosions per day was at its minimum (<10 

per day) and remained so for the following year (Fig. 4.2g; Lamb et al., 2019). Explosions in 

December 2015 produced ash plumes up to 7 km above sea level (a.s.l.) with ash fall reported 

>10 km away from the vent. Intense explosions on 7th February 2016 produced dense ash 

plumes up to 6 km a.s.l, ballistics and pyroclastic flows (Global Volcanism Program, 2016). 

These explosions continued to produce similar time arrival delays for the seismic and 

infrasound signals with those in pre-2015 and phase 1 (Fig. 4.2h); however, occasional high 

thermal anomalies were detected (up to 54.2 MW; Fig. 4.2g), which were not observed in 

phase 1. Similar large, irregular and ash-rich explosions and pyroclastic flows continued in 

early 2016, with ash falling on villages up to 20 km away from the active vent, often 

interspersed by small explosions. Repose intervals during this phase often increased to ~12 

hours as explosions became more energetic (avg. ~ 9.0 x 102 MJ; Fig. 4.2g). 

 

4.4.1.4.  Phase 3: March–October 2016 

Explosions throughout mid-2016 continued to be irregular, ash-rich and plumes up to 

several kilometres above the active vent (Fig. 4.2c). However, explosions in April and May 

2016 were the largest reported throughout the 2015–2016 eruptive period (Fig. 4.2g; up to 1.3 

x 105 MJ), and completely excavated the summit crater (Fig. 4.2d; ~300 m width and ~175 m 

depth). Metre sized blocks and bombs were ejected up to 3 km away from the El Caliente 

vent. Similar activity continued until October 2016 (Fig. 4.2e), accompanied by irregular 

pyroclastic flows, although no explosions exceeded 9 x 103 MJ after May and their frequency 
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remained at <10 per day. Irregular spikes in the detected heat flux persisted throughout this 

period (Fig. 4.2g), with the largest recorded in mid-April (up to 114.5 MW) which coincided 

with the explosions that excavated the crater. The time delay in arrivals between the seismic 

and infrasound signals within this period overlap with those in phase 1 and 2 (i.e., ~6 seconds); 

however, some explosions during this high-energy phase have up to a 17 second delay (Fig. 

4.2h). Amongst the many primary hazards generated during the phase, heavy rainfall from 

May to September 2016 led to erratic lahars (Global Volcanism Program, 2016). 

 

4.4.1.5.  Phase 4: October 2016–January 2018 

From October 2016 onwards, no large explosions were reported, and activity 

gradually returned to regular, small-to-moderate regular explosions (>30 per day). 

Contemporaneously, the extrusion of lava began to fill the excavated El Caliente summit crater 

leading to the growth of a new dome (Fig. 4.2f). By March 2017, lava had completely filled 

the excavated crater and began to overflow generating block-and-ash flows down the flank of 

the dome. The thermal data during this time detected no anomalous heat flux, although the 

satellite did detect an anomaly in April 2017 (Fig. 4.2g) that was notably larger than those 

detected during phase 3. By late-2017 and early-2018, weak gas-and-ash explosions continued 

to emerge from the infilled Caliente crater (~14 per day), with ash plumes rarely exceeding 1 

km above the vent (Global Volcanism Program, 2018). 

 

4.4.2.  Eruptive products 

4.4.2.1.  Ash componentry 

Ash erupted from explosion events during phases 2 and 3 of the 2014–2017 eruptive 

period comprised eight clast types: dense brown (DB), transparent (TC), dense grey, white 

vesicular, dull lithic, hydrothermally altered, and single felsic and mafic crystals. DB clasts 

have a brown, glossy surface texture that is glass-rich, has angular edges and no apparent 

vesicularity (Fig. 4.3a). BSE images of DB clasts often contain varying abundance of mafic 

microlites in the groundmass (Fig. 4.3b). TC clasts are grey to transparent with a glossy 

surface texture (i.e., glass-rich) and have a similar low vesicularity to the DB clasts; however, 

bubble walls are often observed at the edges of TC fragments (Fig. 4.3c). Unlike the DB clasts, 

the TC clasts consistently contain a lower abundance of mafic microlites in the groundmass 

(Fig. 4.3d). As DB and TC clasts are glass-rich, we refer to these as the juvenile components 

(representing freshest material). The dense grey, dull lithic and white vesicular clasts reveal 

no fresh glass, which has degraded to SiO2 phases (Fig. A3.1), and thus are regarded as non-
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juvenile. Dense bombs ejected during an explosion on 7th February 2016 are texturally similar 

to TC clasts, while bombs from an explosion on 21st April 2016 consist of discrete domains 

of dark- and light-coloured groundmass (Fig. 4.3e), comparable to the textures in DB and TC 

clasts, respectively (Fig. 4.3b, d and f). The lighter domains are macro-vesicular (up to 500 

µm diameter), consistent with bubble walls observed at the edges of the TC clasts (Fig. 4.3c), 

while the darker domains are significantly less vesicular. Quantification of the temporal 

changes in the ash components are displayed in Figure 4.3g. Ash from explosions during phase 

2 (December 2015 and February 2016) are dominated by DB clasts (~60–70 %), which switch 

to TC dominated (up to 60 %) during the highest energy explosions in phase 3 (April 2016). 

Ash from explosion events during May and June 2016 contain a higher amount of dense grey 

clasts (up to 30%), which coincides with a reduction in the amount of TC clasts. Ash ejected 

form a small explosion event in January 2018 has a similar componentry to ash from large 

explosions in April 2016, although contains more hydrothermally altered fragments. 

 

Figure 4.3 – Ash and bomb characteristics from 2015–2016 explosions. (a) Image of ash 

(250–500 µm size) from 31st December 2015 displaying the dominance of dense brown (DB) 

clasts, along with a representative BSE image of the DB groundmass textures (b). (c) Image 

of ash (250–500 µm size) from 21st April 2016 show a change in ash componentry to a 

dominance in transparent clasts (TC) and representative groundmass textures (d). (e) 

Photomicrograph of a bomb ejected during an explosion on 21st April 2016, revealing two 

distinct domains, dark and light-coloured groundmass, mingled together (outlined in red). 

Note the high vesicularity of the light-coloured groundmass. (f) Groundmass texture of the 

contact between the two domains showing distinct microlite textures, akin to the DB and TC 

ash. (g) Quantitative component analysis across for the 2015–2016 ash (on the 250–500 µm 

fraction), measuring >300 ash particles per sample. 
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4.4.2.2.  Mineralogy 

All erupted samples are porphyritic with phenocrysts of plagioclase, clinopyroxene, 

orthopyroxene, amphibole and titanomagnetite. Quartz is rare, although, when present, takes 

the form of resorbed fragments. The groundmass contains microlites (<50 µm in length) of 

plagioclase, pyroxene, titanomagnetite, and minor apatite, situated with an interstitial rhyolitic 

glass. Silica-rich phases are present in the groundmass of the non-juvenile ash clasts and are 

locally found in clusters in the dark, dense domains of the bombs. QEMSCAN mineral maps 

were collected on raw ash samples (Fig. 4.4a–f) and bombs (Fig. A3.2). The mineralogy is 

broadly consistent across all samples (Fig. 4.4g), although subtle differences are observed 

between the ratio in Si-rich phases (Si polymorph) and glass that are consistent with the ash 

componentry. For example, the increase in silica polymorphs in ash samples in May and June 

2016 is in agreement to the increased abundance of dense grey lithic clasts, and the higher 

glass content of the bombs indicates they are exceptionally juvenile. XRD further confirms an 

increase in silica polymorphs in ash from late-2015 to mid-2016, identified as tridymite (Fig. 

4.4h). 
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Figure 4.4 – Quantitative mineral modal abundance of explosive products from pre-2015 

(1968, 2003 and 2014) and across the 2015–2016 transition period. (a–f) QEMSCAN maps 

of unsieved ash particles from explosions between November 2014 and June 2016. (g) 

Temporal variations in mineral abundance derived from QEMSCAN, including ash from 

January 1968 and 2003, and bombs from February and April 2016. Letters A–C denote 

different samples with the same eruption date. (h) XRD spectra for powdered ash samples 

confirming the mineralogy detected by QEMSCAN. The insets are close-ups of the spectra 

heighted by the red box, displaying the detection of silica polymorph tridymite in ash in April 

and June 2016. 

 

 

 

 

 

 

 



 

Table 4.1 – Whole rock chemical composition of major and trace elements for ash and bombs collected between 2015–2016, along with eruption date and 

collection location. Sample locations include El Caliente (El), VIP camp (VC), El Brujo (EB), La Mitad (LM), El Palmar (EP), Monte Bello Farm (MBF), 

OVSAN and Llano de Pinal (see Fig. 4.1). 

Eruption 
Date: 

26/11 
2014 

 

30/12 
2015 

31/12 
2015 

07/02 
2016 

19/04 
2016 

21/04 
2016 

 

06/05 
2016 

25/05 
2016 

19/06 
2016 

Location: EC VC 
 

EB 
 

LM 
 

EP 
 

EP 
 

MBF OVSAN 
 

EP 
 

OVSAN MBF LdP 

Lithology: L. Flow Ash Ash Ash Bomb Ash Ash Ash Vesicular-
domain 
bomb 

Dense-
domain 
bomb 

Ash Ash Ash Ash 

Sample no.: 261114 301215 311125C 070216C 070216A 070216B 190416 210416B 210416C 210416A 210416A 060516A 060516B 250516 190616 

(wt.%)                

SiO2 62.65 61.37 61.30 61.84 61.68 61.51 61.57 61.62 61.56 61.57 62.10 61.64 61.42 61.96 62.27 
TiO2 0.48 0.60 0.63 0.58 0.58 0.58 0.57 0.57 0.60 0.59 0.57 0.60 0.57 0.58 0.52 
Al2O3 17.17 17.65 16.97 17.31 17.79 17.70 17.93 17.92 17.32 17.78 17.86 16.97 17.98 17.18 18.08 
Fe2O3* 5.13 5.79 6.48 5.61 5.54 5.63 5.50 5.49 6.13 5.70 5.58 6.09 5.50 5.73 5.15 
MnO 0.15 0.14 0.17 0.15 0.14 0.14 0.14 0.14 0.16 0.14 0.14 0.17 0.14 0.15 0.14 
MgO 1.72 2.29 2.77 2.33 2.20 2.19 2.10 2.11 2.65 2.26 2.24 2.62 2.09 2.35 1.88 
CaO 5.42 5.75 5.49 5.44 5.69 5.70 5.73 5.73 5.57 5.73 5.64 5.39 5.78 5.34 5.61 
Na2O 4.76 4.42 4.28 4.43 4.50 4.47 4.52 4.52 4.37 4.54 4.57 4.36 4.55 4.42 4.55 
K2O 1.36 1.55 1.53 1.57 1.53 1.54 1.49 1.49 1.50 1.54 1.57 1.58 1.46 1.61 1.46 
P2O5 0.23 0.22 0.23 0.21 0.22 0.22 0.22 0.21 0.23 0.22 0.22 0.23 0.21 0.23 0.21 
LOI 0.08 -0.04 -0.02 0.06 -0.06 -0.04 0.01 0.04 0.03 0.02 -0.05 -0.03 0.05 0.10 0.06 

Total 99.14 99.76 99.85 99.55 99.81 99.67 99.79 99.83 100.15 100.09 100.45 99.62 99.76 99.67 99.95 
(ppm)                

Ba 780 728 729 755 758 752 759 760 730 743 751 766 756 774 765 
Ce 28 26 27 26 29 26 26 25 30 29 27 25 23 24 23 
Cu 20 22 27 24 24 24 23 25 22 32 26 26 25 24 19 
La 14 13 13 15 14 14 14 14 14 15 14 15 16 13 14 
Nb 4 4 4 5 4 4 4 4 4 6 5 4 4 5 4 
Rb 30 29 30 30 29 29 28 28 30 29 29 30 27 31 28 
Sc 9 12 13 12 15 12 14 14 12 14 13 13 12 14 12 
Sr 501 492 474 475 498 501 512 509 492 499 494 460 513 469 517 
V 74 91 106 94 90 90 91 96 95 104 96 103 92 95 84 
Y 19 20 20 20 19 20 20 19 20 19 18 20 19 21 19 
Zn 72 71 82 82 69 71 75 74 124 76 74 85 71 80 70 
Zr 150 145 148 150 145 146 143 143 146 145 148 149 141 153 141 
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4.4.3.  Geochemical signatures 

4.4.3.1.  Bulk-rock compositional differences 

All erupted products are andesites (61.3–62.7 wt.% SiO2; Table 4.1) that abide to 

Santiaguito’s historical mafic trend (Fig. 4.5a). However, subtle variabilities exist across the 

2014–2017 eruptive period (Fig. 4.5b). The 2014 lava flow is the most evolved with 62.7 wt.% 

SiO2 and a Mg # of 57.1. Ash and bombs erupted during phase 2 record a significant decrease 

in SiO2 (by 1.0–1.5 wt.%) and increase in Mg # (by 4.0–6.0). During the high energy 

explosions in phase 3 the bulk-ash composition remained similarly more mafic, as in phase 2, 

although it became progressively less mafic during explosions in May and June 2016. The 

vesicular domains within the April 2016 bombs, which display groundmass textures similar 

to the TC clasts, are compositionally more mafic (61.57 wt.% SiO2) than the denser domains 

(62.10 wt.% SiO2). 

 

Figure 4.5 – Geochemical signatures of the eruptive products. (a) Historical bulk-rock SiO2 

trend for Santiaguito from 1922–2016. (b) Bulk-rock compositional changes across collected 

samples from November 2014 to June 2016. (c) BSE images of amphibole phenocrysts 

displaying variations in breakdown rim texture indicative of multiple interacting processes. 

(d) Amphibole geothermobarometry from the method of Ridolfi et al. (2010) for amphiboles 

pre-2002 (Scott et al., 2012) and those from 2015–2016. (e) Plagioclase phenocrysts textures 

and respective An content of core and rim from the 21st April 2016 bomb. (f) Histogram 

displaying the evolution of plagioclase phenocryst cores An content for pre-2002 lavas (Scott 

et al., 2013) and 2015–2016 ash and bombs, along with phenocryst rim and microlite 

compositions. 
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4.4.3.2.  Amphibole phenocrysts 

Amphibole crystals in the eruptive products from 2015–2016 are sparse (≤2 area %), 

and are found as clusters or individual phenocrysts. They typically display breakdown rims of 

anhydrous mineral phases, including plagioclase, orthopyroxene, clinopyroxene and 

titanomagnetite. Rims textures vary from thin, fine grained symplectitic laths consisting of 

anhydrous crystals to thick, coarse-grained crystals in the rim (Fig. 4.5c). In some cases, 

amphibole crystals are completely broken down resulting in pseudomorphs. Their remnant 

core compositions of different pressure-sensitive (e.g., Al) and temperature-sensitive (e.g., Si 

and Ti) elements can be used to estimate the conditions in which they crystallised (Ridolfi et 

al., 2010; Ridolfi & Renzulli, 2012; Andrews, 2014; Kiss et al., 2014). By employing the 

empirical amphibole geothermobarometer of Ridolfi et al. (2010), the amphiboles from large 

explosions in 2016 were estimated to crystallise at temperatures between ~965 and ~1024 ºC 

(±22 ºC) and pressures from ~446 to ~619 MPa (±50), which represents conditions at the 

higher temperature and pressure end of the previously constrained storage region (Fig. 4.5d; 

Scott et al., 2012). The Ridolfi et al. (2010) model also provides formulations for a hygrometer 

(primarily influenced by Al content), with estimated dissolved magma H2O contents of 

between 6 and 8%. 

 

4.4.3.3.  Plagioclase phenocrysts 

Plagioclase phenocryst core compositions from Santiaguito lavas between 1922 and 

2002 record a temporal evolution based on An content (Fig. 4.5f; Scott et al., 2012), which 

reveals a diminishing bimodal (peaks at An40–50 and An60) to a final unimodal distribution 

(single An50–55 peak) through time. A small An85–90 peak was recorded in all of Santiaguito’s 

pre-2002 lavas (<10% of the phenocryst population). Plagioclase phenocryst core 

compositions from the explosive deposits in 2015–2016 (Fig. 4.5e and f; see Electronic 

Appendix 3) have a similar An peak to the early lavas (An45–55, accounting 42% of the 

phenocrysts), although an additional strong peak at An85–95 accounts 30% of the total 

plagioclase phenocryst population. Plagioclase phenocryst rim compositions record a single, 

strong unimodal distribution with a peak at An50–55, while microlites reveal still lower An 

contents (An22–57). 
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4.4.4.  Groundmass textures and composition 

4.4.4.1.  Interstitial glass chemistry 

The compositions of the interstitial groundmass glass for the ash and bombs pre-, 

during and post-2015–2016 are dominantly rhyolitic, although glass compositions for samples 

from 2015–2016 and 2018 are more heterogeneous with some extending to dacitic and 

trachytic (see Electronic Appendix 3). DB clasts have SiO2 concentrations ranging 74–79 

wt.%, while TC clasts show a larger range in glass SiO2 content from 66–79 wt.%. Glass 

composition of the 2016 bombs reveal a similar heterogeneous SiO2 range (69–79 wt.%), 

although negligible chemical differences were recorded for the dark and vesicular domains in 

the April 2016 bomb. Projecting the glass compositions onto the haplogranitic plot of 

Cashman and Blundy (2000), which uses An-corrected normative Qz-Ab-Or, provides an 

approximate assessment of the glasses’ equilibrium state and kinetics of crystallisation (Fig. 

4.6a). Liquid lines of descent show progressively higher glass equilibrium pressures through 

time, with the bomb in April 2016 and ash in January 2018 revealing significant 

disequilibrium between the melt and microlites at lower pressures. 

Magmatic temperatures and water contents of the erupted products were estimated 

using the plagioclase-melt geothermometer and hygrometer of Putirka (2008). An average of 

the glass chemistry from each clast type was used as the melt composition along with the 

coexisting plagioclase microlites. These estimates show the TC clasts were hotter (~1000–

1010 ºC) and more H2O-rich (~2.4–2.7 %) than the DB clasts, which was significantly cooler 

(~920–930 ºC) and degassed (≤1 % H2O), consistent with the vesicular texture of the bombs 

and pore shaped geometry of the TC clasts. 
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Figure 4.6 – Interstitial glass composition and microlite textures. (a) Projection of glass 

composition on the haplogranitic plot after Cashman and Blundy (2000), revealing a temporal 

change to less evolved glass compositions. The phases represent albite (Ab), quartz (Qtz) and 

orthoclase (Or). (b–d) Quantitative assessment of plagioclase microlite textures and 

groundmass glass chemistry. Microlite number density (NA) against (b) microlite crystallinity 

(φ), (c) mean crystal size and (d) aspect ratio using short/long axis (S/L) calculated from 

CSDSlice (Morgan & Jerram, 2006). Shaded areas in (a) show composition with other well 

characterised systems including Pinatubo (Hammer et al., 1999), Soufrière Hills Volcano 

(Clarke et al., 2007) and Merapi (Preece et al., 2013).  

 

 

 

 



 

Table 4.2 – Quantitative textural analysis of groundmass plagioclase microlites for different juvenile clast types in the ash (transparent, TC, and dense brown, 

DB) and bombs from explosions in 2015–2016, compared to ash from 1968, 2003, 2014 and 2018 (n denotes number of crystals analysed). Crystals aspect 

ratios (short:intermediate:long axes) were calculated using the 3D stereological correction program CSDSlice (Morgan & Jerram, 2006). Growth rates and 

nucleation rates were calculated from equations of Marsh (1988). Ascents rates were calculated using the water exsolution rate meter of Toramaru et al. (2008). 

Explosion 
date 

Sample-
grain/area 

no. 

Clast type 2D areal measurements 
 

3D volumetric 
measurements 

Calculated aspect ratio 
(R2) 

Average 
growth rates, 
G (mm s-1) 

Average 
nucleation 

rates, J 
(mm-3 s-1) 

Ascent rate 
(m s-1) 

 
 

 
n NA (mm-2) Area % φ Mean crystal 

area (µm2) 
S/L Nv (mm-3)  

15/01/1968 150168-1 DB 162 16,344 38.82 0.396 24.00 0.18 3,212,401 1.00:1.60:5.50 (0.6578) – – 2.6E-05 
150168-2 DB 88 9,090 36.06 0.372 41.00 0.17 1,236,048 1.00:1.40:6.00 (0.6457) – – 1.4E-05 
150168-3 DB 113 11,509 30.52 0.312 27.00 0.11 1,943,297 1.00:2.00:9.00 (0.5789) – – 1.8E-05 

13/01/2003 131103-1 DB 120 12,864 34.02 0.365 28.00 0.18 1,799,670 1.00:1.70:5.50 (0.6207) – – 5.9E-05 
131103-2 DB 113 11,932 35.78 0.378 32.00 0.13 4,640,812 1.00:1.40:8.00 (0.5751) – – 1.1E-04 
131103-3 DB 123 12,782 35.74 0.372 29.00 0.17 1,958,538 1.00:1.90:6.00 (0.4447) – – 6.2E-05 

26/11/2014 261114-1 DB 103 10,737 28.69 0.298 28.00 0.13 1,528,740 1.00:1.50:8.00 (0.5023) 1.38E-06 270 3.5E-05 
261114-2 DB 86 9,067 29.74 0.313 34.00 0.10 1,645,045 1.00:2.00:10.00 (0.3931) 7.76E-07 290 3.7E-05 
261114-3 DB 126 14,461 24.52 0.256 18.00 0.14 2,083,549 1.00:1.10:7.00 (0.4566) 1.50E-06 368 4.3E-05 

31/12/2015 311215A-1 TC 108 11,154 30.04 0.310 28.00 0.22 2,973,955 1.00:1.40:4.50 (0.7052) 3.50E-08 33 2.1E-04 
311215A-2 DB 124 12,718 33.40 0.362 28.00 0.14 1,493,738 1.00:1.30:7.00 (0.4808) 6.11E-08 17 1.0E-05 
311215A-3 TC 85 9,123 24.81 0.267 29.00 0.25 1,071,510 1.00:1.10:4.00 (0.6790) 8.31E-08 12 1.2E-04 

07/02/2016 070216-1 TC 98 10,608 27.32 0.295 28.00 0.67 3,152,877 1.00:1.40:1.50 (0.6809) 2.54E-08 35 1.7E-04 
070216-2 DB 104 10,912 24.75 0.260 24.00 0.17 2,018,066 1.00:1.60:6.00 (0.8513) 2.70E-08 23 1.3E-05 
070216-3 DB 108 11,942 28.97 0.296 25.00 0.13 1,289,272 1.00:1.40:8.00 (0.4383) 1.26E-07 14 1.1E-05 

070216A-1 Bomb 107 10,853 30.49 0.309 28.00 0.36 3,327,415 1.00:1.50:2.80 (0.7703) 2.62E-08 37 1.5E-05 
070216A-2 Bomb 128 14,126 27.75 0.288 20.00 0.20 3,971,338 1.00:1.15:5.00 (0.4969) 1.51E-08 45 1.7E-05 
070216B-3 Bomb 109 11,268 38.07 0.393 35.00 0.45 1,974,087 1.00:1.30:2.20 (0.6027) 2.87E-08 22 1.0E-05 
070216B-4 Bomb 136 14,574 29.60 0.316 22.00 0.40 3,425,310 1.00:1.50:2.50 (0.6194) 1.29E-08 39 1.5E-05 

19/04/2016 190416-1 TC 145 15,076 31.53 0.328 22.00 0.53 6,251,354 1.00:1.40:1.90 (0.7008) 1.29E-08 70 6.8E-04 
190416-2 DB 190 19,699 33.77 0.351 18.00 0.40 6,488,447 1.00:1.60:2.50 (0.7163) 1.75E-08 73 1.5E-05 
190416-3 TC 123 12,885 30.06 0.317 25.00 0.45 3,886,170 1.00:1.30:2.20 (0.6092) 8.38E-09 44 2.7E-04 

21/04/2016 210416B-1 DB 173 18,136 34.14 0.358 20.00 0.11 2,484,393 1.00:1.40:9.00 (0.7163) 6.91E-08 28 2.4E-05 
210416B-2 TC 102 10,740 30.55 0.321 30.00 0.22 852,169 1.00:1.25:4.50 (0.7605) 3.53E-08 10 8.2E-05 
210416B-3 TC 148 16,291 33.36 0.342 21.00 0.29 3,762,548 1.00:1.50:3.40 (0.6509) 2.28E-08 42 1.4E-04 
210416A-1 Vesicular bomb 163 17,171 25.81 0.272 16.00 0.50 4,268,243 1.00:1.40:2.00 (0.8289) 4.14E-08 48 1.5E-03 
210416A-2 Dense bomb 146 15,167 37.42 0.395 26.00 0.53 4,775,529 1.00:1.50:1.90 (0.7181) 2.97E-08 54 2.7E-05 

06/05/2016 060516-1 TC 106 10,944 40.72 0.421 38.00 0.25 1,182,184 1.00:1.15:4.00 (0.5013) 7.84E-08 13 1.4E-04 
20/01/2018 200118-1 TC 83 8,414 35.44 0.361 43.00 0.50 1,317,677 1.00:1.25:2.00 (0.6718) 3.62E-07 107 8.5E-04 

200118-2 TC 103 10,985 29.17 0.305 28.00 0.40 2,746,636 1.00:1.25:2.50 (0.7892) 2.40E-07 223 1.6E-03 

200118-3 TC 88 8,834 31.08 0.314 36.00 0.45 1,237,069 1.00:1.20:2.20 (0.7054) 2.19E-07 100 3.4E-03 
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4.4.4.2.  Plagioclase microlite textures 

The groundmass of the ash and bombs across the 2015–2016 eruptive transition 

consists of 25–40% plagioclase, 1–8% mafic crystals (combined pyroxene and 

titanomagnetite), 55–70 % interstitial glass and <1 % porosity (Fig. 4.3b and d). Textural 

characterisation of groundmass microlites can provide a quantitative assessment of the style 

of late-stage crystallisation. We focus exclusively on quantification of plagioclase microlites 

between the DB and TC clasts, as well as the bombs (Fig. 4.3a–f, Fig. A3.3; Table 4.2). 

Both DB and TC clasts have similar overlapping microlite number densities (NA) 

(9067–19699 mm-2 and 8414–16291 mm-2, respectively). Similarly, fractal plagioclase 

crystallinities for both clasts (φ) fall within a similar range (0.25–0.41) and show negligible 

correlation with NA (Fig. 4.6b). However, NA for both DB and TC clasts correlate with crystal 

size and fit along isopleth lines for crystallinity, with smaller crystals having a higher NA and 

larger crystals having a lower NA (Fig. 4.6c). Although negligible 2D textural variations exist 

between NA and φ for the DB and TC clasts, 3D crystal morphologies (determined using 

CSDSlice) reveal a distinct divide between the clast types (Fig 4.6d). Plagioclase microlite 

aspect ratios (S/L) for DB clasts were typically less than 0.2 (i.e., elongate/acicular), while 

microlites’ aspect ratios in TC clasts were consistently higher (0.2–0.7; i.e., more equant). 

3D crystal size distributions (CSDs) correct for the errors obtained by using 2D slices, 

which can provide a more quantitative assessment of the style of late-stage magma ascent (see 

Fig. A3.4 for all CSD curves). Using the slope () and y-intercept (no) of the steepest portion 

of the CSD curves (smallest microlites representing late-crystallisation), volumetric number 

densities (Nv), microlite growth rates (G) and nucleation rates (J) were calculated (Marsh, 

1988; Blundy and Cashman, 2008) and temporally assessed (Fig. 4.7a–d). Nv for pre-2015 ash 

were typically <3 x106 mm-3 (except for an anomalous high Nv in ash from 2013), which show 

a progressive increase in the upper limit through 2015–2016 (up to 6.5 x106 mm-3) that 

returned to <3 x106 mm-3 in 2018 (Fig. 4.7a). The temporal evolution in S/L values also show 

an increase for explosions in 2015–2016, which remain high in 2018 (Fig. 4.7b). G values 

(Fig. 4.7c) and J values (Fig. 4.7d) show large ranges owing to the uncertainty of 

crystallisation timescales (), thus should be taken with caution. However, by using repose 

times as the minimum , and the time difference between the explosion and the start of phase 

1 as the maximum , an average G and J can be calculated which provides an approximate, 

realistic estimate. Average growth rates for microlites in 2014 are ~1.2 x 10-6 mm s-1, drop to 

~4.0 x 10-8 mm s-1 in 2015–2016, and increase again in 2018 (2.7 x 10-8 mm s-1); similar trend 

is calculated for the average J (~300 mm-3 s-1 in 2014,  ~35 mm-3 s-1 in 2015–2016, and  ~140 

mm-3 s-1 in 2018), yet no clear differences in G and J were calculated for DB and TC clasts. 
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Figure 4.7 – Temporal 

evolution of 3D plagioclase 

microlite textural 

characteristics for ash and 

bombs samples over the 

eruptive period. (a) Volumetric 

number densities (Nv), (b) 

short/long axes (S/L) 

determined using CSDSlice 

(Morgan & Jerram, 2006), (c) 

average growth rates (G) and 

(d) nucleation rates (J), and (e) 

calculated ascent rates using 

the water exsolution rate meter 

(Toramaru et al., 2008). Error 

bars in (c) and (d) represent 

minimum and maximum rates. 

Symbols are the same as those 

in Figure 4.6. 
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4.4.4.3.  Ascent rates 

In order to assess whether a variation in magma ascent rate took place during microlite 

crystallisation, ascent rates were estimated using the water exsolution rate meter of Toramaru 

et al. (2008). Firstly, decompression rates (dPw/dt) were calculated as: 

|
𝑑𝑃𝑤

𝑑𝑡
| =

𝑐

𝑏
(

𝑁

𝑎
)

2

3
   (4.2) 

where c is a function of the water content, b is a constant (40 for plagioclase), N is the microlite 

number volume and a is a calculation combining both glass SiO2 and water content. Water 

contents of 1% and 2.5% were used for the DB and TC clasts, respectively, as derived from 

the plagioclase-melt hygrometer of Putirka (2008), although the most sensitive factors are the 

volumetric number densities and glass composition. An ascent rate (Vn) was then calculated 

from the following: 

    𝑉𝑛 =
1

𝜌𝑔
|

𝑑𝑃

𝑑𝑧
|

𝑧=𝑧𝑛
   (4.3) 

where  is the density (2500 kg m-3), g is gravity and dP/dz is the decompression rate at a 

given water content at a given depth (i.e., onset of microlite crystallisation). Estimated ascent 

rates (Fig. 4.7e) for the DB clasts are between 1.0–3.5 x 10-5 m s-1 (Fig. 4.7e), while the TC 

clasts from 2015–2016 and 2018, along with the vesicular domains in the bombs, ascended up 

to 2 orders of magnitude faster (3.4 x 10-3 m s-1). 

 

4.5.  DISCUSSION AND INTERPRETATION 

The explosive eruption intensification during 2015–2016 coincided with systematic 

shifts in the geophysical, geochemical and petrological (i.e., microtextural and mineralogical) 

signals. Previous eruption intensifications at other systems have been attributed to deep 

magmatic process, particularly the injection of new magma (e.g., Sparks et al., 1977; Pallister 

et al., 1992; Venezky & Rutherford, 1999; Murphy et al., 2000), fluctuations in volatile 

content (e.g., Edmonds & Herd, 2007; Williamson et al., 2010; Costa et al., 2013; Parmigiani 

et al., 2016), changes in ascent style and rate (e.g., Hammer et al., 1999; Noguchi et al., 2008b; 

Preece et al., 2013; Cassidy et al., 2015) or cyclic pressure accumulation and release (e.g., 

Voight et al., 1999; Melnik & Sparks, 2002; Johnson et al., 2014) within a high-viscosity plug. 

Thus, identifying the cause requires an understanding of the magma plumbing system from 

source to surface. 
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4.5.1.  Architecture of the 2015–2016 magma storage region 

Amphiboles are ubiquitous hydrous minerals found in many intermediate volcanic 

systems, which provide a useful tool for assessing the conditions and processes occurring 

during magma storage and ascent owing to their sensitivity to different intensive variables 

(e.g., Rutherford & Hill, 1993; Browne & Gardner, 2006; Ridolfi et al., 2010; De Angelis et 

al., 2015). Our data suggest that amphibole crystals in the ash and bombs erupted explosively 

in 2015–2016 were derived from a hottest (~965–1024 ºC), deepest (~446–619 MPa) and 

volatile-rich (6–8 wt.% H2O) region of the pre-constrained magmatic plumbing system (~940–

980 ºC, ~330–615 MPa, 5–7 wt.% H2O; Fig. 4.8a; Scott et al. (2012)). The use of amphiboles 

as geothermometers is generally well accepted, however their use as a reliable geobarometer 

remains controversial (e.g., Putirka, 2016), despite being used widely to reconstruct magma 

source conditions (e.g., Shane & Smith, 2013; Kiss et al., 2014) that agree with depths 

constrained by seismicity (e.g., Nagasaki et al., 2017). The shift to a less evolved bulk-rock 

composition for the ash and bombs during 2015–2016 (Fig. 4.5b) further supports the 

geothermobarometry, which also abides to the hypothesised chemically stratified storage 

region beneath Santiaguito (e.g., Scott et al., 2013).  

Compositions of plagioclase phenocrysts, in particular growth zonations from core to 

rim (Fig. 4.5e), can provide useful insights into deeper magmatic processes as they are 

influenced by the composition of the surrounding parent melt, along with pressure, 

temperature and volatile contents (Fig. 4.5e). Although plagioclase phenocrysts’ core 

compositions from lava extruded since the 1940’s have retained a homogenous peak at An45–

45, which took over from the two peaks from the 1920’s attributed to magma mixing (Scott et 

al., 2013), the increase of high An cores (An85–95) in the 2015–2016 eruptive products suggests 

remobilisation and/ or convection of a relatively thick mush zone at ~17–24 km depth (e.g., 

Kratzmann et al., 2009; Burgisser & Bergantz, 2011). This mush zone likely contained 

crystals formed from a more primitive melt (e.g., Stock et al., 2018), which got incorporated 

as antecrysts (e.g., Larrea et al., 2013; Cashman et al., 2017; Holness et al., 2019) during 

ascent and followed a similar path through the shallow system as confirmed by the near-

homogenous plagioclase rim compositions (Fig. 4.5f and 4.8a). 
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Figure 4.8 – Conceptual model for the change in explosivity during 2015–2016. (a) An 

interpretative model for the magma plumbing system from 1922–2015 modified from Scott et 

al. (2013). Coloured-gradation reflects the degree of magma evolution from dacitic to 

basaltic. The storage region was constrained by amphibole thermobarometry to reside at 12–

24 km depth. Slow, continuous magma ascent from the deep to shallow system would have 

taken place, with crystallisation and volatile exsolution leading to the formation of blocky 

lava flows and generation of a plug. Shallow shear and friction-driven fragmentation likely 

resulted in small (<1 km high) ash-poor plumes. (b) Injection of new magma into the shallow 

magmatic system from depth, which passed through an extensive mush zone. Magma likely 

ascended as volatile-rich pulses that experienced a relatively fast ascent towards the surface, 

stalling beneath the dome which facilitated mingling with pre-2015 magma. Overpressure 

from rising magma and gases from beneath led to the gradual excavation of the 2014 lava 

flow that plugged the vent causing greater delays in the arrival times in seismic and acoustic 

signals (as fragmentation depth increased), resulting in high energy, ash-rich explosions and 

pyroclastic flows. 
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4.5.2.  Magma ascent 

Textural characterisation of groundmass microlites can provide a quantitative 

assessment of the style of crystallisation, which may thus be used to constrain pre-eruptive 

magmatic process and ascent paths in the shallow volcanic conduit (e.g., Cashman & Blundy, 

2000; Hammer et al., 2000; Noguchi et al., 2008b; Toramaru et al., 2008; Miwa et al., 2009; 

Preece et al., 2013; Cassidy et al., 2015; Preece et al., 2016; Bain et al., 2019). Plagioclase 

microlites reflect the degree of undercooling (∆T) and thus ascent rate (e.g., Hammer & 

Rutherford, 2002; Brugger & Hammer, 2010). Theoretically, a larger ∆T favours a nucleation-

dominated regime with the formation of many small microlites, whereas a smaller ∆T would 

result in a growth-dominated regime and the growth of fewer large crystals (Mollo & Hammer, 

2017). The overlapping microlite number densities (NA), mean crystal sizes and crystallinities 

(φ) for the DB and TC ash fragments across the eruptive transition period makes such an 

interpretation challenging. Yet, the differences in the crystal morphology (S/L) for the two 

clast types (Fig. 4.6c and 4.7b) can also be related to the style of crystallisation (e.g., Hammer 

& Rutherford, 2002; Couch et al., 2003); these experimental studies have shown that crystals 

change from equant/tabular to acicular with an increasing ∆T. Microlites in TC clasts have a 

consistently higher S/L values than the DB clasts, suggesting these clasts experienced a lower 

∆T. Apply these results to the experimentally calibrated model linking crystal morphology 

with final crystallisation pressures (Hammer & Rutherford, 2002), DB clasts suggest 

continued crystallisation to ~10 MPa in the conduit (~400 m depth) as previously estimated 

for pre-2002 lavas (Scott et al., 2012), while TC clasts suggest final pressures of ≥50 MPa (~2 

km depth). This is supported by the observation that TC microlites show more pronounced 

growth zones (Fig. 4.3b and d). Furthermore, the broad range in plagioclase microlite An 

contents (An22–57; Fig. 4.5f) suggests microlites in both clast types formed at different 

temperatures, pressures and water-contents indicative of multi-step decompression (e.g., 

Cassidy et al., 2015; Bain et al., 2019). 

The higher estimated H2O content and temperatures of the TC magma and vesicular 

domains in the bombs (from plagioclase-melt hygrometer) suggests limited degassing in the 

shallow conduit, which is supported by the higher equilibrium pressures of the interstitial glass 

(Fig. 4.6a) and faster ascent rates relative to degassed DB clasts (Fig. 4.7e). This is consistent 

with the pore shaped edges of the TC clasts (Fig. 4.3c). Several lines of evidence thus 

demonstrate that the TC clasts and vesicular bomb domains were derived from a new magma 

source that influenced final ascent style and thus the differentiation of the groundmass 

microlite textures and glass composition. Consequently, the mingling of the volatile-rich, 

vesicular domains and degassed dense-domains in April 2016, which appear to represent the 

TC and DC clasts, respectively, likely interacted at a shallow level in the conduit following 
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groundmass crystallisation (e.g., Cimarelli et al., 2010). During such mingling at shallow 

levels, it is likely that the eruptive products entrained material that had coupled to the conduit 

margin wall-rock. The systemically more evolved composition of ash from the large 

explosions in May and June 2016 (Fig. 4.5b), which coincides with increased content of lithic 

clasts (Fig. 4.3g) comprising increased silica polymorphs (Fig. 4.4g and h), suggests 

entrainment of the more evolved conduit wall-rock. The presence of clast with silica 

polymorphs suggests that these clasts had resided at high temperatures and shallow depths for 

a long duration causing subsequent glass devitrification (e.g., Couch et al., 2003; Scott et al., 

2012; Horwell et al., 2013). 

 

4.5.3.  Explosion mechanisms: Linking geophysical and petrological observations 

Early interpretations of Santiaguito’s regular, weak explosive activity suggested 

magma-water interaction may be responsible (i.e., phreatomagmatic) owing to a combination 

of heavy rainfall and the active vent residing in the centre of the 1902 crater (Rose, 1972). 

However, more recent observations have led to different mechanisms being proposed. 

Geophysical monitoring of the dome using tilt meters revealed regular (every ~26 minutes) 

inflation and deflation cycles throughout 2012–2014 (Johnson et al., 2014; Lavallée et al., 

2015a; Lamb et al., 2019). Intermittent Very Long Period (VLP) earthquakes (Johnson et al., 

2014) accompanied explosions which occurred during the most rapid inflation-deflation 

cycles; whereas steady, slower inflation-deflation cycles resulted in passive degassing at the 

vent, no explosion and no VLP earthquakes. These cycles have been attributed to gas 

accumulation from a pressure source (Sanderson et al., 2010; Johnson et al., 2014), either 

beneath a plug or within a shallow reservoir, during times of temporal sealing of permeable 

pathways, followed by its sudden release, rapid decompression and deflation of the surface 

with a corresponding gas flux of ~101 kg s-1 (Johnson et al., 2008; Johnson et al., 2014). 

Combined seismic, acoustic and thermal monitoring of these explosions provided depth 

constraints for the source of these explosions, occurring 100–620 metres beneath the vent 

(Sahetapy-Engel et al., 2008; Johnson et al., 2014). The dominance of DB clasts in ash 

generated during similar events pre-2015 suggests fragmentation of a completely degassed 

magma plug that resided at <400 m depth in the conduit (Fig. 4.8a). The low energy of these 

explosions (Fig. 4.2g) and relatively short delays in the time arrivals between the seismic and 

acoustic infrasound signals observed here support a shallow explosion source, likely 

representing fragmentation of the 2014 lava that filled the conduit. The capping of open-

system volcanic conduits with a high viscosity plug is a common phenomenon observed at 

many silicic volcanoes that show persistent explosive activity (e.g., Volcán de Colima, 

Lavallée et al. (2013); Sakurajima, Miwa et al. (2009); Soufrière Hills, Clarke et al. (2007)). 
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Conduit flow modelling suggests shear-induced fragmentation is a likely process in such cases 

(Gonnermann & Manga, 2003), owing to pulsatory ascent and subsequent localised failure 

near the conduit margins (e.g., Goto, 1999; Papale, 1999; Bluth & Rose, 2004; Neuberg et al., 

2006). At Santiaguito, this model is supported by the gas-rich, ash-poor nature of the 2014 

eruption plumes (De Angelis et al., 2016), along with rapid outgassing along arcuate fractures 

(Bluth & Rose, 2004; Johnson et al., 2008; Sahetapy-Engel et al., 2008). Furthermore, SO2 

gas fluxing during explosions in 2008–2009 have provided further evidence for localised shear 

fracturing, in which monitored SO2 degassing remained continuous throughout repose 

intervals, suggesting no significant sealing of the permeable network took place for pressure 

to accumulate (Holland et al., 2011). We thus infer that the trigger mechanism for explosions 

up until phase 1 (Fig. 4.2g) were driven primarily by shear-induced fragmentation at shallow 

depth (Fig. 4.8a). The detectable, low heat flux from satellite data in pre-2015 supports this 

shallow fragmentation that failed to excavate the crater to access fresh magma; as such the 

heat flux likely derived from incandescence of fractures within the infilled crater. 

The gradual increase in the repose intervals and energy of explosions from phase 1 to 

phase 2 likely reflects a change in magma ascent, evolution and eruption mechanism 

influenced by the injection of volatile-rich magma (likely a low volume) modifying the 

pressure source in the conduit and the outgassing efficiency of the high-viscosity magma (Fig. 

4.8a). During this time, the development and destruction of outgassing pathways, including 

fracture networks (e.g., Tuffen et al., 2003), tuffisite veins (e.g., Castro et al., 2012; Kendrick 

et al., 2016) and other permeable networks (e.g., Heap et al., 2015; Farquharson et al., 2016b), 

would play a non-trivial role. However, the new magma would not have the same permeable 

mature outgassing pathways as the old magma (e.g., Kennedy et al., 2016). The largest 

explosions recorded in phase 3 (April 2016) coincided with the high abundance of TC clasts 

in the ash and mingled bombs, contemporaneous with the excavation of the crater. The longer 

delay in the seismic and acoustic time arrivals for some explosion events during this period 

suggests a potential deeper fragmentation source, which is consistent with the higher final 

crystallisation pressures (lower degree of undercooling, ∆T) and more equant shaped (high 

S/L values) microlites in the TC clasts. It thus suggests a switch from shallow-shear 

fragmentation to deeper overpressure-driven fragmentation may have been triggered by a 

small injection pulse of magma entering the shallow system causing an evolution from phase 

1 to 4 (Fig. 4.2g and 4.8b). Interestingly, although activity returned to regular, small-to-

moderate explosions in phase 4 (late-2016) and the crater subsequently refilled, ash from 

January 2018 was abundant in TC clasts, leaving questions on the future state of Santiaguito’s 

eruptive activity. 
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4.6.  CONCLUSION 

The shift in eruption style at Santiaguito from early-2015 to late-2016 has been 

explored by combining petrological, geochemical, geophysical and thermal observations. In 

this study, we show a unique dataset that documents this escalation in explosivity using a 

multiparametric approach. Multiple lines of evidence, including a shift to less evolved magma, 

geothermobarometry estimates, influx of plagioclase antecrysts, higher estimated dissolved 

H2O contents, and a shift in ash componentry suggests eruption intensification in 2015–2016 

was influenced by the injection of new magma. Monitored seismic and acoustic signals 

suggest that this caused fewer, more erratic (i.e., less regular), larger explosions, generated 

from generally deeper fragmentation levels. These larger explosions disrupted the dome, 

excavated a crater and exposed the hot interior of the dome as observed by satellite-based 

thermal imagery. Although many questions regarding the processes taking place during 2015–

2016 at Santiaguito remain (e.g., the role of volatiles), we highlight the importance of long-

term multiparametric monitoring techniques coupled with detailed investigation of the erupted 

products. Such efforts will assist in improving our understanding of pre-eruptive volcanic 

processes, the monitored signals these processes produce and shifts in eruption style at 

intermediate volcanic systems, ultimately to mitigate the threats to local communities. 
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Chapter 5  Conclusions and outlook 

5.1.  SUMMARY OF RESULTS 

The enigmatic behaviour of lava dome eruptions and associated hazards arises from 

the complex interplay and feedback between deep and shallow magmatic processes that can 

alter the rheological, physical and chemical properties of the magma. The dynamic 

relationship between rheological transitions of magma during ascent, shallow mechanical 

processes and petrological signatures of the eruptive products demonstrates the importance of 

multidisciplinary studies. In this thesis, I have investigated the impact of strain localisation 

during magma ascent, including the role of shearing (Chapter 2) and friction (Chapter 3) in 

the upper conduit preceding and contributing to eruption. Furthermore, I investigated the 

cause of a shift in eruption intensification at Santiaguito dome complex, Guatemala (Chapter 

4), where explosive activity has previously been attributed to faulting and shear-driven 

processes at the conduit margins. For each chapter, I elucidate how the impact of shear, friction 

and magma recharge can regulate intermediate–silicic volcanism, particularly at lava domes, 

with this thesis contributing new insights on processes that can have an essential role in 

regulating eruptive activity. 

In Chapter 2, I assessed the evidence for and role of strain localisation during magma 

ascent at Unzen volcano, Japan, through a detailed, systematic petrological survey of a 

marginal shear zone of the 1994–95 lava spine. I deployed a multidisciplinary approach 

combining field observations, petrology, microstructures, crystallography, magnetics and 

experimentation to constrain the impact of shear on the architecture of the magmatic column. 

Based on the understanding of a magma’s rheological behaviour from extensive experimental 

investigations (e.g., Caricchi et al., 2007; Lavallée et al., 2007; Costa et al., 2009), shear zone 

development was attributed to the shear thinning, non-Newtonian rheology of the magma, 

which facilitated in localising stress and strain near the conduit margins, favouring plug style 

ascent (Hale, 2007; Hale et al., 2007). I demonstrated that crystals can monitor stress 

conditions as magma ascends through the viscous–brittle transition, from viscous 

remobilisation and crystal alignment to brittle failure and comminution in regions of most 

strain. Previous work on Mount St. Helens (Washington, USA) lava spines revealed evidence 

for only brittle deformation at the conduit margins, suggesting fault traction was the main 

processes involved (Cashman et al., 2008; Kennedy et al., 2009; Pallister et al., 2013). 

However, at Unzen volcano I showed that lava spine extrusion involved a complex interplay 

between viscous, plastic and brittle deformation mechanisms. I highlighted for the first time 

for extrusive lavas at outcrop scale, that crystals can accommodate strain by deforming 

plastically, wherein I revealed an increase in crystal plasticity towards the spine margin 



 147 

associated with shear intensity. Naturally, crystal plasticity may be used as an outlet for strain 

as magma ascends through the viscous–brittle transition, which may even delay the onset of 

brittle failure. Brittle failure manifested primarily as cataclasis and comminution of the main 

phenocryst phases (plagioclase and amphiboles), which caused a reduction in crystal size 

towards the spine margin. The crystal textures observed with increased strain conditions are 

similar to those reported by Cordonnier et al. (2009). Owing to intense comminution of these 

phases in the high shear zone, some finer crystal fragments were excavated from cataclastic 

bands causing a shift in mineral modal abundance across the shear zone. 

Disequilibrium conditions were also shown to be associated with magmatic shearing 

in the form of amphibole reaction rims. Processes that are known to contribute to amphibole 

breakdown are decompression (e.g., Rutherford & Hill, 1993; Browne & Gardner, 2006), 

heating (e.g., Murphy et al., 2000; Rutherford & Devine, 2003; De Angelis et al., 2015) or 

oxidation (e.g., Garcia & Jacobson, 1979). I showed that the amphibole reaction rims in the 

magmatic shear zone become more pronounced with shear intensity. Two types of rims were 

displayed, a granular rim exclusive to the high shear zone and gouge, which was attributed to 

shear heating, and a symplectitic rim related to late-stage oxidation of the spine. The localised 

granular reaction rims coupled with viscous remobilisation, compaction of the porous network 

and distinct magnetic properties in the high shear zone indicated a thermal input due to shear 

and frictional heating. I further suggested that this temperature increase may also have 

contributed to the increase in crystal plasticity towards the spine margin, owing to yield 

stresses required for crystal plasticity being lower at high temperatures (Poirier, 1995). These 

deformation textures would facilitate in reducing permeability in the shear zone, enabling gas 

accumulation and favouring explosive behaviour. However, it appears that due to Unzen’s 

relatively high connected porosity, sufficient pressure was unable to accumulate to trigger an 

explosion, yet it remains a factor that needs to be considered when assessing shifts in eruption 

style during future eruptions at Unzen and at other intermediate volcanic systems.  

The processes taking place during magma shearing in the volcanic conduit were 

simulated by performing the first (to our knowledge) high ambient temperature, high-velocity 

rotary shear experiment on the lava from Unzen. This experiment provided a temperature 

constraint for shearing by recreating natural spine textures through frictional heating and 

thermal dissipation away from the slip zone, including viscous deformation, pore compaction 

and amphibole reaction rim textures. I also showed that the lava spine experienced a chemical 

and textural overprint in the form of devitrification of the interstitial glass as a result of the 

prolonged exposure to higher temperatures. In particular, the gouge displays intense 

breakdown of the glass to silica-rich phases, which implied continuous decoupling from the 
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spine, along with magnetic signatures that suggest fluid and gas fluxing at high temperatures 

following emplacement.  

The high strain conditions at the conduit margins, as demonstrated in Chapter 2, can 

lead to seismogenic magma failure that promotes faulting and slip along fracture planes (e.g., 

Iverson et al., 2006; Neuberg et al., 2006; Lavallée et al., 2008; Lensky et al., 2008; Kendrick 

et al., 2014b; Lavallée et al., 2015b). Frictional melting of the adjoining slip surfaces, 

associated with extreme frictional heat, can have a profound effect on the style of slip, which 

may dictate magma ascent dynamics in the upper conduit (Kendrick et al., 2014a). The 

mechanical behaviour of a frictional melt is determined by its shear resistance during slip, 

acting as either a lubricant (e.g., McKenzie & Brune, 1972; Tsutsumi & Shimamoto, 1997) or 

viscous brake (e.g., Koizumi et al., 2004; Kendrick et al., 2014b), which is dependent on its 

rheological properties (e.g., Hirose & Shimamoto, 2005; Lavallée et al., 2012a; Hornby et al., 

2015). In Chapter 3, I provide a detailed, systematic, experimental investigation to assess the 

geochemical, textural and rheological evolution of a frictional melt and demonstrate the 

contribution of the host-rock mineral assemblage to slip properties via selective phase melting 

(Spray, 1992). High-velocity rotary shear experiments were performed on three 

mineralogically contrasting intermediate lavas collected from active lava dome volcanoes. 

These included an amphibole-bearing andesite from Soufrière Hills Volcano, Montserrat, an 

amphibole-pore dacite from Santiaguito dome complex, Guatemala, and an amphibole-free 

andesite from Volcán de Colima, Mexico. I report in detail the textural evolution of the slip-

zone frictional melts with increasing slip distance. At the early stages of melting, comminution 

dominates leading to the formation of ultra-fine crystal fragments that subsequently melt due 

to frictional heating. The first melts to form on the slip surface cause an initial increase in 

shear stress, which continues to climb to a maximum until a full melt layer has formed. With 

increasing slip, the frictional melts exhibit a shear-weakening response leading to steady-state 

conditions. At this point, comminution is replaced by tearing of large crystals along the slip 

interface, attributed to a switch from frictional heating to shear heating (i.e., viscous energy 

dissipation). 

I showed that the mechanical behaviour during frictional melting is dependent on the 

mineral assemblage of the precursor material, in particular, the presence or absence of 

amphibole. Frictional melting of the amphibole-bearing andesite generated the lowest shear 

resistance during slip, had a pronounced shear-weakening stage that preceded steady-state 

conditions and experienced only minor sample shortening (i.e., the wear rate and subsequent 

melting were slow). However, the amphibole-poor dacite and amphibole-free andesite 

displayed a stronger shear resistance during slip, had a negligible shear-weakening stage and 

experienced a faster rate of sample shortening. I demonstrate that these differences in 



 149 

mechanical properties are primarily a result of preferential amphibole melting, due to its lower 

melting temperature (Allen, 1979; Spray, 1992), influencing the compositional heterogeneity 

and viscosity of the frictional melt layer. Microstructural investigation revealed that selective 

melting initially form isolated melt filaments, which begin to stretch and fold as melting and 

mixing efficiency increased with time, eventually homogenising by double-diffusion 

convection. Owing to preferential amphibole melting, frictional melting of the amphibole-

bearing andesite generates progressively more mafic melts with lower viscosities. This finding 

opposes the theoretical assumption of Jiang et al. (2015), who suggested frictional melts will 

progressively become less mafic if hydrous minerals are present. Additionally, amphibole 

decomposition can contribute H2O to the frictional melt, leading to ubiquitous bubble 

formation, and lowering the melt viscosity further. In contrast, frictional melting of the 

amphibole-pore dacite and amphibole-free andesite primarily involved melting of plagioclase 

and softening/remobilising of glass (i.e., phases with higher melting temperatures), causing 

the melt to homogenise continuously towards the bulk-rock composition and generate 

frictional melts with increasingly higher viscosities. As frictional melting temperatures did not 

exceed melting temperatures of the entire mineral assemblage, restite fragments of some 

minerals remained in the melt zone. I thus also modelled the impact of crystal suspensions on 

frictional melt rheology (Caricchi et al., 2007; Costa et al., 2009), which caused a relative 

increase in viscosity. I highlight the importance of a glass phase to frictional melt composition 

due its kinetic nature and glass transition temperature (Tg) being lower than mineral melting 

temperatures. However, owing to the high heating rates involved, it would have limited the 

timescales available for structural relaxation of the glass, and likely shifted the Tg to 

temperatures beyond that of some mineral melting temperatures (e.g., amphibole). As a result, 

I suggest that during the frictional melting of volcanic materials, hydrous minerals are more 

influential to slip properties than a glass phase. 

In nature, slip velocities are rarely constant (Kendrick et al., 2014b; Lavallée et al., 

2015b). As slip velocity wanes, the strain rates within the melt zone would simultaneously 

decrease, causing less frictional heat, which decreased temperature and, in addition to the non-

Newtonian nature of suspensions (whose viscosity decreases with strain rate), increased the 

frictional melt apparent viscosity. I suggest that during deceleration in the presence of 

amphibole, the frictional melts’ lower viscosity would still enable slip to progress, while in 

the absence of amphibole, the higher melt viscosities would eventually cause the melt to fail. 

Consequently, this study (Chapter 3) demonstrates the importance of mineral assemblage on 

frictional melting dynamics, which can impact the style of magma ascent and activity at the 

surface (Fig. 5.1). These results also provide new constraints for the modelling of the 
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velocities and run-out distances of granular flows during collapse events (e.g., landslides, 

block-and-ash flows and debris-avalanches). 

The scarce observations (and arguably, the lack of in-situ preservation) of frictional 

melts and pseudotachylytes in volcanic environments is attributed to the high ambient 

background temperatures causing chemical, textural and physical overprints (e.g., Kendrick 

et al., 2012; Kirkpatrick & Rowe, 2013). Yet, in addition to a number of collapse-related 

pseudotachylytes, evidence of pseudotachylyte formation during eruption has been observed 

in blocks from block-and-ash flow deposits that represent the dome interior at Soufrière Hills 

Volcano (Kendrick et al., 2014a), on the lava spine margin at Mount St. Helens (Kendrick et 

al., 2012) and in volcanic ash fragments from explosive activity at Santiaguito dome complex 

(Lavallée et al., 2015a). For the last century, Santiaguito dome complex has been characterised 

by cyclic lava effusion interspersed by regular, small gas-and-ash explosions (e.g., Harris et 

al., 2003; Bluth & Rose, 2004). Monitoring data of the active Caliente dome over the past 

decade suggests that these explosions are a consequence of strain localisation and fault friction 

at the conduit margins during ascent of a magma plug (e.g., Bluth & Rose, 2004; Holland et 

al., 2011; Lavallée et al., 2015a). However, in Chapter 4 I report a unique dataset that marks 

a shift in eruption intensification in 2015–2016, transitioning from these small, regular ash-

poor explosions (ash plumes <1 km high) to larger, less frequent ash-rich explosions (ash 

plumes up to 7 km high), which returned to regular activity by late 2016. Here, I employed a 

multiparametric approach that combined petrological, geochemical and geophysical 

observations to constrain the cause behind this shift in activity. An integration of the seismic 

signals and visual observations of dome activity from November 2014 to April 2017 revealed 

a gradual increase in the repose intervals between explosions, while the magnitude of the 

events increased simultaneously that peaked in April and May 2016. Satellite thermal data 

during the period of largest explosions detected an elevated heat flux, which was concordant 

with the excavation of the crater. The geophysical data revealed a change in the time arrivals 

between the seismic and infrasound signals, with some explosions during the heightened 

activity having a longer delay between the two, indicative of the explosion source situated 

deeper in the conduit.  

The ash componentry also changed during these larger explosions, noted by an 

increase in the juvenile transparent clasts and decrease in dense brown clasts. Surface textures 

of the transparent ash fragments displayed evidence for fragmentation of a vesicular magma 

(i.e., bubble wall geometry), while textures of the dense brown clasts suggested these were 

derived from a degassed magma. Composition of the explosive products (ash and bombs) 

revealed a decrease in bulk-rock SiO2 compared to the lava previously extruded, along with 

amphibole geothermobarometry and plagioclase phenocrysts suggesting a deeper, higher 
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temperature and more mafic magma injection was involved. Microlite textures for the two 

clast types revealed contrasting degassing histories, associated with the combined effect of 

undercooling and magma ascent rates. The dense brown clasts ascended at a slow rate in the 

conduit to low pressures, allowing extensive degassing; however, I showed evidence that the 

transparent clasts ascended relatively faster and experienced less degassing, which likely 

stalled beneath the degassed plug. Mingling textures within the bombs (representing the two 

clasts types) further support the proposed different ascent styles prior to eruption. These 

observations are supported by the shift in fragmentation depth suggested by the geophysical 

data, where the transparent clasts were excavated from deeper in the conduit by fragmentation 

due to gas overpressures, while the dense clasts were a result of shallow shear-driven 

fragmentation of the plug (e.g., Gonnermann & Manga, 2003; Lavallée et al., 2015a). Thus, I 

suggest ash componentry can provide a means for indicating fragmentations depths in the 

volcanic conduit. These integrated observations highlight the importance of using 

multiparametric datasets to infer eruption dynamics, particularly to constrain the cause for 

shifts from effusive-explosive activity as observed at many active lava domes. This unique 

dataset is anticipated to advance our understanding of long-standing dome activity and assist 

in mitigating the risks associated with rapid transitions in eruption styles. 

 

5.2.  IMPLICATIONS FOR EFFUSIVE–EXPLOSIVE ACTIVITY 

As described in Chapter 1, the explosive potential of a volcanic system is regulated 

by magma’s ability to outgas efficiently and prevent pressure accumulation following 

degassing (e.g., Lavallée et al., 2013; Gaunt et al., 2014; Ashwell et al., 2015; Cassidy et al., 

2018). Conduit margins are typically assigned as ideal outgassing pathways as a response high 

strain conditions and creating porosity via the development of fracture networks that increase 

permeability, favouring effusive activity (Fig. 5.1a; e.g., Eichelberger, 1995; Tuffen & 

Dingwell, 2005; Kendrick et al., 2013a; Heap et al., 2015; Farquharson et al., 2016a). The 

porosity of magma can also be a defining factor, which may compact or dilate during shear 

(e.g., Heap et al., 2015), and as such, determines whether the magma seals or creates degassing 

pathways, which can contribute to the explosivity. In Chapter 2, I showed evidence for 

increased stress and temperature causing the original porous network within a shear zone to 

partially close, reducing permeability. In the event of densification via shear at the conduit 

margins, I suggest that pore connectivity and permeability anisotropy of the magma has a non-

trivial role in determining eruptive activity by shifting the location of outgassing, either 

through the wall-rock or a relatively undeformed magma core (e.g., Ashwell et al., 2015; Heap 

et al., 2015; Farquharson et al., 2016b). Consequently, the effect of shear and shear heating 
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during magma ascent may temporally seal gas pathways in high strain regions in the volcanic 

conduit by compacting the porous network and creating isolated porosity, facilitating pressure 

build up that can drive explosive activity (Fig. 5.1b). A magma’s response to strain localisation 

may thus be responsible for rapid shifts from effusive–explosive activity as observed at many 

intermediate-silicic volcanoes. 

Magma shearing can lead to seismogenic failure as magma encounters the viscous-

brittle transition (e.g., Lavallée et al., 2008; Coats et al., 2018). The high strain rates developed 

near the conduit margins can promote slip along fault and fracture planes, leading to the 

formation of a frictional melt (Fig. 5.1), which may influence the style of ascent and overall 

dome morphology (e.g., Lavallée et al., 2008; Kendrick et al., 2014b; Lavallée et al., 2015b). 

In Chapter 3, I demonstrated that the role of a frictional melt is highly dependent on mineral 

assemblage, which may change over time due to long term magmatic evolution (e.g., Scott et 

al., 2013) or magma recharge events (e.g., Murphy et al., 2000). In particular, the introduction 

of amphibole by the injection of hydrous magma at depth (e.g., Luhr & Carmichael, 1990; 

Luhr, 2002; Savov et al., 2008; Saucedo et al., 2010) may have a profound effect on fault 

rheology and other mechanical processes occurring in the upper conduit. The frictional 

melting of amphibole-bearing magmas can reduce the frictional resistance during slip, 

facilitating continuous lubrication of the fault surface that is less likely to result in failure than 

more silicic, viscous melts. Consequently, frictional melting in amphibole-bearing systems 

(which may onset rapidly during frictional sliding) can assist in sealing fracture planes, 

reducing permeability and favouring higher gas overpressures that can result in explosive 

activity (Fig. 5.1b). Furthermore, the observations that these melts can form faster than 

frictional melting of an amphibole-free material may also prove non-trivial. However, the 

frictional melting of amphibole-free material is likely to have an opposing effect by having a 

higher melt viscosity and thus stronger shear resistance during slip, producing shear zones that 

are more prone to failure. Whilst this phenomenon generates local fragmentation events, it 

may also create fracture networks that could facilitate outgassing and reduce the explosive 

potential, causing magma to ascend in a stick-slip manner owing to cyclic slip and fracturing 

along the fault plane, as deemed responsible for characteristic, shallow drumbeat seismicity 

(e.g., Tuffen et al., 2003; Iverson et al., 2006; Neuberg et al., 2006; Lensky et al., 2008; 

Kendrick et al., 2014b). 

Although shearing and friction may trigger shifts in eruption style, in Chapter 4 I 

suggest deeper magmatic processes can temporally overprint these processes, causing a shift 

in explosion mechanism (Fig. 5.1a–b). I used a multiparametric approach to examine the cause 

for a switch from regular, small-to-moderate explosions to less frequent, large explosions at 

Santiaguito dome complex, Guatemala, by integrating geophysical monitoring signals with 
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petrological and geochemical signatures of the eruptive products. I showed that deeper magma 

injection caused a shift in the componentry, mineralogy and geochemistry of ash particles, 

whilst seismicity provided a proxy for the explosion source at depth, demonstrating a switch 

from shallow, shear-driven explosions (e.g., Goto, 1999; Papale, 1999; Bluth & Rose, 2004; 

Lavallée et al., 2015a) to deeper overpressure driven explosions. This thesis thus highlights 

the importance of characterising and understanding the way magmas respond to strain 

localisation during magma ascent in the shallow volcanic conduit, but also demonstrates that 

deeper magmatic processes can have an important impact on the style of activity and dome 

growth. An integration of these factors into current models of magma ascent is vital for 

understanding shifts from effusive-explosive activity (Cassidy et al., 2018), which can assist 

in mitigating risks associated with the hazards that proceed. 
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Figure 5.1 – A conceptual model of volcanic conduit processes that can regulate eruptive 

activity at the surface and the different eruptive regimes: (a) effusive and (b) explosive. As 

magma ascends in the conduit, volatile exsolution and crystallisation causes a rheological 

transition where the magma adopts a non-Newtonian behaviour, facilitating in localising 

stress and strain near the conduit margins. An increase strain in such regions leads to the 

development of localised shear zones, where magma deformation transitions from viscous to 

brittle behaviour, with the boundary between the two being marked by crystal-plastic 

deformation. Deformation in these shear zones can generate a permeable network of 

connected porosity and open fractures that allow efficient outgassing leading to effusive 

activity (a), in the form as degassing, lava flow extrusion or spine growth. However, shear 

heating during strain localisation may compact the porous network and generate gas 

overpressures causing an explosion (b). As magma ascends further, plug flow and 

subsequently brittle failure and faulting at the conduit margins can regulate activity. 

Frictional melting during faulting can influence slip dynamics, which depending on the 

mineral assemblage may promote slip, causing an explosion, or prevent slip leading to failure, 

causing seismicity. Explosive activity (b) can also be triggered by deep magma injection. 

Magma recharge events can introduce more mafic, volatile-rich magma into the shallow 

volcanic system that are highly susceptible to generate gas overpressures beneath an 

overlying plug. Deep gas overpressures can alter shallower processes (e.g., faulting and 

friction), by causing deeper fragmentation and resulting in explosive products (ash and 

bombs) displaying mixing or mingling textures between the recharged magma and plug 

material. 

 

5.3.  SUGGESTIONS FOR FUTURE STUDIES 

In this thesis, I highlight the importance of strain localisation during magma ascent 

and the role of shearing and friction on petrological and rheological instabilities in the volcanic 

conduit. The thermo-mechanical response due to shear and frictional heating requires an 

assessment of the thermal budget of magma. Although I have eluded to the role of shear on 

petrological disequilibrium textures, further investigation is needed to fully constrain its role.  

In particular, although I related microlite textures to decompression induced 

degassing, thermal instabilities in the volcanic conduit can also drive volatile exsolution (e.g., 

Lavallée et al., 2015a). An increase in temperature may lower the degree of undercooling 

experienced by the melt, thus influencing the style of crystallisation and resultant groundmass 

textures. Constraining the impact of shear and resultant heating on the kinetics of 

crystallisation (i.e., nucleation and growth) and crystal textures (size and shape) may provide 
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important insights into the competition between changes in pressure and temperature during 

final magma ascent in the shallow conduit, which is yet to be addressed. 

Additionally, evidence of the impact of shear on amphibole stability was shown in 

this study in a qualitative perspective. In order for this to be applied quantitatively to future 

investigations it requires a more extensive experimental investigation of shear and shear 

heating on mineral stability. Development of a calibrated model is thus required, enabling 

discrimination between heating-induced reactions rims and other processes that may drive 

mineral reactions (e.g., decompression, CO2 flushing). Furthermore, hydrous mineral 

destabilisation at shallow depths in the conduit may affect many physical and chemical 

processes due to the release of H2O during the reactions. For example, fracture healing is a 

process that is dependent on diffusion timescales (Lamur et al., 2019), which may be enhanced 

by amphibole releasing water into the system during dehydration, and may also influence the 

timescales of sintering of comminuted crystal and glass fragments during gouge lithification 

(e.g., Ryan et al., 2018). 

Crystal deformation, as discussed in Chapter 2, provides useful information on stress 

conditions in the volcanic conduit. In particular, crystal plasticity can contribute to the non-

Newtonian behaviour of magma. The observation that crystal plastic deformation increases 

with shear intensity demonstrates the importance of incorporating this deformation 

mechanism into rheological models. In order to provide a quantitative model linking strain 

rates and degree of crystal plastic deformation, required for rheological models, future 

experimental investigations are required to build on the work of Kendrick et al. (2017). 

Additionally, different crystal phases would have different internal yield strengths (e.g., 

Poirier, 1995), thus the conditions required for these to deform plastically would vary. To fully 

investigate this, experiments could be performed under a range of temperature and stress/strain 

conditions to induce internal crystal deformation in suspensions with different crystal cargos, 

followed by EBSD analysis to quantify the degree of crystal plasticity. Other constraints on 

stress conditions in the volcanic conduit may be found in mafic enclaves, which are highly 

deformed within the Unzen shear zone (Chapter 2). Although no detailed analysis was 

performed to constrain their mode and extent of deformation it may give greater insights into 

strain conditions inside the volcanic conduit. 

In Chapter 3, I demonstrated the importance of mineral assemblage on frictional 

melting and slip progression. However, the role of porosity on frictional properties is likely 

an essential factor that requires greater consideration, as higher porosity material would reduce 

the contact area available for friction, thus concentrating stresses and potentially succumbing 

to failure more readily (as strength is largely porosity dependent). Frictional melts are often 

poorly preserved due to their formation at high ambient temperature, likely due to their 
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chemical and textural overprints (e.g., Kendrick et al., 2012; Kirkpatrick & Rowe, 2013). Yet, 

it is also likely that the lack of evidence for such features is due to their formation in high 

strain regions. As pseudotachylytes form on pre-existing fracture planes within high strain 

regions (i.e., shear zones), continuous deformation accompanied by repetitive healing and re-

fracturing in the same location is common. Consequently, fracturing and fragmentation of 

pseudotachylytes to fine ash is likely a common process. A typical limitation of many ash 

studies is that they discard non-juvenile fragments, yet I anticipate that evidence for frictional 

melting may be more likely preserved in such fragments. 

As shown in Chapter 4, multiparametric observations are the most robust means for 

assessing shifts in eruptive activity. At Santiaguito, activity was inferred to come to a close 

between 2014–2024 based on the long-term chemical trend of the magma and the decrease in 

cyclic extrusion rates (Harris et al., 2003), which suggested gradual depressurisation and 

exhaustion of the source region. However, the eruption intensification in 2015–2016 raised 

new questions about the plumbing system and the processes regulating activity. Coupling the 

geophysical and petrological findings with gas fluxing data during this eruptive period (i.e., 

SO2 and CO2) may further enhance our understanding of eruptive activity, particularly during 

repose intervals. Another consideration that needs to be taken into account is the role of 

volatiles. An assessment of melt inclusions to track volatiles through the magmatic system are 

required to understand the importance of CO2 and H2O fluctuations on eruptive activity 

(Cashman & Blundy, 2013; Cassidy et al., 2016). Furthermore, the eruptive products of 

Santiaguito often contain mafic enclaves. A detailed evaluation of the chemistry and type of 

enclaves in Santiaguito’s eruptive products may provide greater information on magma 

storage processes (e.g., Murphy et al., 2000), and even provide constraints on magma 

residence time owing to their re-equilibration as they ascend to lower pressures (e.g., Sato et 

al., 2017). However, the current state and future of Santiaguito remains elusive, thus it is vital 

that active monitoring of Santiaguito, and other active lava domes, continues from both a 

geophysical and petrological standpoint. 
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Appendix I: Supplementary Figures (Chapter 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.1 – Band contrast images of areas for plagioclase microlite EBSD analysis (Fig. 

2.9), with all plagioclase highlighted in red. All other phases are the non-highlighted grey 

areas. Black represents either glass, pore space or any crystals that were not successfully 

indexed. The crystals quantified for plastic deformation were those with good indexing to 

ensure quality and accuracy. Measurements from each sample were compiled in terms of 

section of the shear zone (i.e., gouge (A), high shear (B & C), moderate shear (E), low shear 

(H) from outcrop 1 and the undeformed dome rock. Note the higher abundance of small grey 

patches (~5–10 m in diameter) in the gouge relative to the low, moderate and higher shear 

zones. These correspond to silica phases in the groundmass and are therefore crystalline SiO2 

polymorphs. 
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Figure A1.2 – Thermomagnetic heating (red) and cooling (blue) curves used to derive Curie temperatures from Outcrop 2 shear zone. For each sample set one 

Curie temperature was identified using the method of Moskowitz (Moskowitz, 1981) from the heating curves and produced averages of 521 ºC in the undeformed 

host rock, 507 ºC in the highly sheared rock and 544 ºC in the gouge, corresponding well with the demagnetisation of bulk susceptibility (Fig. 2.10d). Notably, 

the least reversible behaviour is seen in the highly sheared samples. A minor inflection is observed at 230–240 ºC during cooling in the gouge suggesting the 

incipient formation of a new phase after heating to 700 ºC in the laboratory. 
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Figure A1.3 – Isothermal Remanent Magnetisation (IRM) curves for each sample of Outcrop 2. The shape of the lines indicates that the host material is almost 

fully saturated at ~ 200 mT, whereas, in the gouge, the IRM is still increasing above 700 mT; the highly sheared material is intermediate. All sample sets show 

very repeatable behaviour. 
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Figure A1.4 – Backfield curves used to characterise the coercivity of the different samples. Similar to Fig. A1.3, the morphology of the curves demonstrates 

gradational changes from the host, to high shear, to gouge samples. 
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Figure A1.5 – Hysteresis plots indicating the presence of low coercivity minerals, the samples are all “potbellied”, but the gouge samples show the broadest 

hysteresis loop, indicative of the presence of higher coercivity minerals. 
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Figure A1.6 – Henkel plots which combine backfield and IRM data to identify the presence of a demagnetising field. Sample data are plotted (in black) versus 

the behaviour (in red) of uniaxial non-interacting single-domain particles (i.e., ideal Stoner-Wohlfarth particles; Wohlfarth, 1958). The remanence carriers for 

all samples deviate from this ideal behaviour, though the host rock is furthest, and gouge is closest (the high shear being intermediate).
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Figure A1.7 – Representative examples of pargasite crystals in the groundmass across 

outcrop 1 shear zone and those from the undeformed dome block, an extension of examples 

shown in Fig. 2.11a. Pargasite in the dome and low shear zone show either no or very thin 

reaction rims in the form of a symplectitic decay. The moderate shear zone hosts pargasites 

with thicker symplectitic rims. In the high shear zone, symplectitic pargasite rims are more 

pronounced with the occasional presence of a coarser, detached granular rim. Pargasite rims 

in the gouge are all granular, with minor symplectitic patches between the granular rims and 

unaltered pargasite cores. 
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Figure A1.8 – Heat capacity (Cp) for the low shear zone sample H, displaying the heating 

curve at a rate of 10 ºC.min-1. The deviation from linear of the Cp curve at ~790 ºC is 

interpreted to be the glass transition temperature (Tg). This temperature is consistent with 

modelled values of Tg using measured glass chemistry. 

 

 

 

 

 

 

 

 

 

 

Figure A1.9 – The mechanical data for the high-temperature, high-velocity rotary shear 

(HVR) experiment. The data shows the constant slip rate of 1 m s-1, a controlled axial stress 

of 2 MPa and resulting shear stress, shortening (corresponding to melt expelled from the slip 

zone) and maximum temperature evolution. 
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Appendix II: Supplementary Figures (Chapter 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.1 – Mechanical data for the five high-velocity rotary shear (HVR) experiments 

performed on the Soufrière Hills Volcano (SHV) andesite. Each panel represents the evolution 

in frictional properties (i.e., shear stress, normal stress and sample shortening) monitored 

during experiments that were terminated at: (a) onset of melting (Tm), (b) formation of full 

frictional melt and attainment of steady-state condition (Tss), (c) after 5 m of slip at steady-

state conditions (T5), (d) after 10 m of slip at steady-state conditions (T10), and (e) after 15 m 

of slip at steady-state conditions (T15). 
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Figure A2.2 – Mechanical data for the five high-velocity rotary shear (HVR) experiments 

performed on the Santiaguito dome complex (SG) dacite. Each panel represents the evolution 

in frictional properties (i.e., shear stress, normal stress and sample shortening) monitored 

during experiments that were terminated at: (a) onset of melting (Tm), (b) formation of full 

frictional melt and attainment of steady-state condition (Tss), (c) after 5 m of slip at steady-

state conditions (T5), (d) after 10 m of slip at steady-state conditions (T10), and (e) after 15 m 

of slip at steady-state conditions (T15). 
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Figure A2.3 – Mechanical data for the five high-velocity rotary shear (HVR) experiments 

performed on the Volcán de Colima (COL) andesite. Each panel represents the evolution in 

frictional properties (i.e., shear stress, normal stress and sample shortening) monitored 

during experiments that were terminated at: (a) onset of melting (Tm), (b) formation of full 

frictional melt and attainment of steady-state condition (Tss), (c) after 5 m of slip at steady-

state conditions (T5), (d) after 10 m of slip at steady-state conditions (T10), and (e) after 15 m 

of slip at steady-state conditions (T15). Note that steady-state melting in (b) occurred at a 

shorter slip distance than the onset of melting in (a), which demonstrates the natural 

variability of a single sample. 
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 Figure A2.4 – Major element chemical transects across the experimental melt zone (i.e., 

perpendicular to the slip plane) following melting of the (a) Soufrière Hills Volcano (SHV) 

andesite, (b) Santiaguito dome complex (SG) dacite and (c) Volcán de Colima (COL) andesite 

at: onset of melting (Tm), formation of full frictional melt and attainment of steady-state 

condition (Tss), and after 5 m (T5), 10 m (T10), and 15 m of slip at steady-state conditions (T15). 

The composition of the bulk-rock along with averages of the bulk-rock interstitial glass and 

plagioclase crystals have been labelled for reference. 
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 Figure A2.5 – Synchrotron X-ray element maps of Soufrière Hills Volcano (SHV) frictional 

melt formed after 5 m of slip at steady-state conditions (T5) displaying the contribution of 

amphibole to frictional melt composition. Elements that are high in concentration in 

amphiboles include: Ca, Fe and Y; amphibole incompatible elements include: K, Sr, Rb, and 

Zr. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.6 – Synchrotron X-ray element maps of Soufrière Hills Volcano (SHV) frictional 

melt upon reaching steady-state conditions (Tss) displaying the contributions of plagioclase 

(left of maps) and clinopyroxene (augite; right of maps) to frictional melt composition. 
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Figure A2.7 – Synchrotron X-ray element maps of Santiaguito dome complex (SG) frictional 

melt upon reaching steady-state conditions (Tss) displaying the contributions of orthopyroxene 

(OPX, hypersthene; top right of map) and interstitial glass (bottom of maps) to frictional melt 

composition. 
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Appendix III: Supplementary Figures (Chapter 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.1 – Backscattered electron (BSE) images of the groundmass textures for the 

different components of the ash. (a) Juvenile dense brown (DB) clasts displaying abundant 

mafic microlites (lighter grey crystals) and elongated plagioclase microlites (darker grey 

crystals). (b) Juvenile transparent clasts (TC) displaying less mafic microlites and more 

equant plagioclase microlites. (c) Non-juvenile dense grey clasts showing elongated 

plagioclase microlites (similar to DB clasts) and abundant Si-rich phases (darkest grey) as a 

result of glass devitrification. (d) Non-juvenile vesicular white clasts showing abundant 

vesicles but no glass. (e) Mingling textures with the 21st April 2016 bomb revealing different 

groundmass textures between the two vesicular-domains (bottom half) and dense-domains 

(top half). 
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Figure A4.2 – QEMSCAN maps of volcanic bombs erupted on 7th February (a–b) and 21st 

April (c–d) 2016. In each panel, the top map provides an overview of the bomb textures, and 

the six inset maps below them are high resolution close-ups. Mingling textures with vesicular 

and dense domains can be observed in the 21st April 2016 bomb (c–d). 

 



 194 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.3 – Examples of manually outlined microlites used for 2D and 3D textural analysis 

in Figures 4.6, 4.7 and Table 4.2. Note the variations in aspect ratios for plagioclase microlite 

between the samples. 
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Figure A4.4 – Three-dimensional crystal size distribution (CSD) plots of plagioclase 

microlites for the time-constrained ash and bomb samples used for 3D textural analysis using 

CSDCorrections (Higgins, 2000). Population density refers to the number of crystals per 

volume per length. The CSD curves can be separated into 3 segments as shown in the 1968 

ash panel. The steepest segment (segment 1) for each CSD curve was used for the calculations 

of growth and nucleation rates (Fig. 4.7), representing the last microlites to form before 

eruption. 
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 Electronic Appendix 1.3 – Amphibole reaction rim thickness measurements from 
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 Electronic Appendix 2 – Electron probe microanalysis (EPMA) data of host-rock 

phases (minerals and glass) and frictional melt compositions, including standards used 

for calibration of the spectrometers, working standards for calculations of accuracy 

and precision, and detection limits for both EPMA and XRF (Chapter 3) 

 Electronic Appendix 3 – Electron probe microanalysis (EPMA) data of glass and 

mineral (plagioclase and amphibole) compositions for Santiaguito ash and bomb 

samples (Chapter 4) 
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