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A review of the functional role of jellyfish in Ecopath with Ecosim (EwE) models by Pauly et al. [Pauly, D., Graham, W., Libralato, S.,
Morissette, L., and Deng Palomares, M. L. 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia, 616: 67–85.]
a decade ago concluded that recreation of jellyfish population dynamics in models required additional ecological research and the careful
consideration of their unique biology during model construction. Here, amidst calls for ecosystem-based management and the growing rec-
ognition of jellyfishes’ role in foodwebs, we investigate how jellyfish are implemented in EwE models and identify areas requiring improve-
ment. Over time, an increasing percentage of models have included jellyfish. Jellyfish were often linked to the wider ecosystem, with many
predators and prey included in models. However, ecotrophic efficiency, a measure of the extent to which they are used by higher trophic
levels, was frequently set at low values, suggesting that jellyfish are still perceived as under-utilized components of the ecosystem. Moving
forward, greater care should be taken to differentiate the functional roles played by ctenophores, cnidarians, and pelagic tunicates.
Additionally, when feasible, early life stages should be incorporated as multi-stanza groups to more accurately depict jellyfishes’ complex
life cycle.
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Introduction
Keeping marine ecosystems resilient and healthy is a conserva-

tion, economic development, and food security goal. The sustain-

ability of fish stocks is not only dependant on careful

management of catches, but also factors such as the preservation

of foodweb linkages that underpin fish stocks and the

ecologically-compatible implementation of other human activi-

ties in the marine environment (Pitcher et al., 2009). Ecosystem-

based management (EBM) incorporates many of these

considerations and is thought to be essential to the future health

of fish stocks. Calls for EBM are widespread through academic

and policy literature (Pauly et al., 2002; Murawski, 2007; Froese

et al., 2016) and is a statutory requirement under the EU

Common Fisheries Policy (Jennings and Rice, 2011).

Whole-ecosystem models can play an important role towards

achieving EBM by providing a framework to quantify interspe-

cific interactions. They can facilitate the exploration of alternative

ecosystem states, improve our understanding of the ecosystem
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network structure, and can identify knowledge gaps (Essington,

2007). Indeed, an inability to accurately parametrize a species in a

model is often indicative of uncertainties in fundamental aspects

of their ecology.

Jellyfish (here using the broadest definition of jellyfish includ-

ing species belonging to the phyla Cnidaria and Ctenophora, in

addition to pelagic tunicates), have been the focus of recent re-

search, in part because of increases in the adverse economic and

ecological effects they cause: such as overrunning aquaculture

installations, stinging bathers, and physically blocking infrastruc-

ture such as cooling pipes (Purcell, 2012). However, there is un-

certainty over the cause of these adverse effects: it has been

suggested jellyfish populations are increasing globally (Brotz

et al., 2012), conversely there is also evidence reporting bias and

increased encounter rates may be responsible these apparent

increases (Condon et al., 2012). Resolving the role of jellyfish in

ecosystems is important for understanding potential mechanisms

for their population growth, and managing their populations in a

manner compatible with EBM (Roux et al., 2013).

Ecosystem modelling can play a role in understanding jellyfish

population dynamics, as well as exposing knowledge gaps in their

ecology. Previously, Pauly et al. (2009) used 23 Ecopath with

Ecosim (EwE) models (Christensen and Pauly, 1992; the most

frequently used whole-ecosystem approach for marine systems;

Steenbeek et al., 2013), the FishBase database, and the SeaLifeBase

database to summarize the modelling community’s understand-

ing of jellyfish ecology. Gelatinous biomass was higher in dis-

turbed ecosystems where overfishing was thought to allow

jellyfish population expansion by feeding on the zooplankton,

which would otherwise be consumed by fish. Much variation in

the parameterization of jellyfish was present in the EwE models.

For example, in some models jellyfish were treated as trophic

dead ends, whereas in others they were considered an integral

part of the ecosystem. In some ecosystems (Lancaster Sound and

Chesapeake Bay) jellyfish were considered to exert a large influ-

ence on other biota as a keystone species, whereas in others there

appeared to be little influence. In the time since, knowledge of jel-

lyfish ecology has improved, the tools available for analysis, and

the number of published EwE models containing jellyfish have

expanded considerably. Therefore, revisiting the Pauly et al.

(2009) study is warranted to investigate whether the recommen-

dations have been incorporated into common practice, and how

the state of jellyfish in the ecosystem-modelling field has changed.

Ecobase is a database of more than 450 EwE models and meta-

data assembled by Colléter et al. (2015) that provides the basis for

this study. The aim here is to characterize how jellyfish are incor-

porated into EwE models, with special attention being paid to the

following objectives: (i) quantification of the extent and the man-

ner in which jellyfish are incorporated in models (i.e. do the

modelling community consider jellyfish to be important enough

in foodwebs to warrant their inclusion in models?), (ii) assess-

ment of the connectedness of jellyfish with the rest of the ecosys-

tem (i.e. are jellyfish always treated as trophic dead ends? Is the

trophic role of jellyfish groups in models changing as more evi-

dence about their functional roles is gathered?), (iii) determina-

tion of the influence of key models (i.e. have parameters been

copied between models? Do key publications strongly influence

the field and if so, what is the rigour of “keystone” literature?),

and (iv) to check if estimates of key parameters reflect the current

state of jellyfish ecological knowledge.

Methods
Data collection
The primary literature (technical reports, publications, disserta-

tions, and theses) and EwE models detailed in Ecobase were first

examined to ascertain whether the models included a jellyfish

group. The broadest definition of jellyfish was employed, and so

all models that integrated pelagic tunicates, ctenophores, cnidar-

ians, or some combination of all three were included in the analy-

sis. In some instances, the primary literature could not be

accessed, in which case the model was assessed by accessing the

Ecobase database using R (R Core Team, 2017) or downloading

and inspecting the model directly in EwE.

Models that contained jellyfish were categorized as “plankton

groups that included jellyfish” for those that represented jellyfish

in the model as part of a broad zooplankton group, or “jellyfish

groups” for those that had incorporated jellyfish as their own

node (e.g. jellies, gelatinous zooplankton, or similar) or if they

amounted to more than 75% of a zooplankton-subgroup such as

carnivorous zooplankton. Hereafter, “jellyfish group” is used to

refer to a mathematical representation of jellyfish in a model,

whereas jellyfish refers to the organisms themselves. For all

groups, the geographic location of the model was extracted from

Ecobase using R where possible, or georeferenced in QGIS 3.2

(QGIS Development Team, 2018) using the map section of

“Discovery Tools” on the Ecobase website (http://ecobase.eco

path.org/). For models with “jellyfish groups,” the Biomass (B);

consumption to biomass ratio (Q:B); production to biomass ratio

(P:B), and ecotrophic efficiency (EE, a measure of the extent to

which an organism is consumed and used by higher trophic level)

were extracted. In addition, the input parameter estimated by

EwE via mass-balance, prey items of jellyfish, predators of jelly-

fish, and the literature cited for parameterizing the “jellyfish

group” were recorded for each jellyfish group within a model. In

some instances, models had multiple jellyfish groups, or the same

model was parameterized for different years: in these instances,

all jellyfish groups and years were recorded.

Data visualization and statistical analysis
Many models with multiple EwE implementations for different

years were created before the advent of Ecosim, and were used to

conduct crude temporal analysis. To treat these models in a mode

more analogous with contemporary models (that use a single

Ecopath model) we used mean values of the input parameters

across different periods to give a single set of values for each jelly-

fish group. For models with multiple jellyfish groups, all jellyfish

groups were included for analysis.

It was hypothesized that EE would increase over time, as jellyfish

were considered a more important component of the ecosystem—

to this end EE and publication year were plotted, although non-

independent data precluded formal analysis. To assess the relative

influence of models within the literature, EwE models and the cor-

responding cited literature were used as nodes in a directed model

in the R package “network” (Butts, 2008). Groups that jellyfish

preyed upon, and groups that fed on jellyfish were visualized using

“metacoder” (Foster et al., 2017). Because subtly different termi-

nology (e.g. “macrozooplankton” and “zooplankton”) was used to

describe similar taxonomic groups, some functional groups were

combined as detailed in Supplementary Tables S1 and Table S2.
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Results
In total 329 models were examined: 211 contained no jellyfish

groups, 32 included jellyfish as part of a zooplankton group, and

86 models incorporated jellyfish explicitly as their own separate

group(s). The inclusion of jellyfish groups in EwE models has in-

creased over time and is characterized by three periods: 1984–

2000, 2000–2007, and 2007-present (Figure 1). Early models

rarely featured jellyfish groups, but by the year 2000, six EwE

models explicitly featured jellyfish groups, whereas 15.4% of

models included jellyfish in some capacity. From 2000 to 2007 a

rapid increase in the inclusion of jellyfish then occurred, with an

approximate 50:50 split between models including jellyfish as part

of a zooplankton group and those where jellyfish were included

as an explicit group. Starting in 2007, representing jellyfish in

EwE models as their own functional group became more promi-

nent. During this time only four models included jellyfish as part

of a wider plankton group, in contrast to 56 models that featured

explicit jellyfish groups. Models that incorporate jellyfish now

(2007-present) account for around 36% of models, 73% feature

an explicit jellyfish group. Jellyfish groups are represented in a

wide variety of ecosystem models around the world, although

there is a concentration of research in North America and

Europe, with fewer models seen in the other continents

(Figure 2).

The network analysis of citations used to parameterize jellyfish

components in the EwE models revealed that none of the pub-

lished models are particularly influential, with the most-influen-

tial model used to parameterize only two other models

(Figure 3). The cited literature tells a similar story; six manu-

scripts were used to parameterize more than three models.

Models for the most part used locally derived independent sour-

ces of data.

The B, Q:B, P:B, and EE for models containing jellyfish groups

are shown in Figure 4 (full details can be found in Supplementary

Table S3). Figure 4a shows estimates of biomass used. Most esti-

mates cluster between 0.1 and 10 tonnes km�2 (although note the

log scale). Two clear outliers can be seen at �300 tonnes km�2:

these studies (Orek, 2000; Gucu, 2002) both model the outbreak

of Mnemiopsis leidyi blooms in the Black Sea, which were respon-

sible for fishery crashes and extirpation of some zooplankton and

fish species (Finenko et al., 2006).

Figure 4b and c shows a unimodal distribution of data is pre-

sent in the Q:B and P:B ratio respectively, although there are

outliers present in Q:B ratio. It is unclear why the Q:B is set so

high for the most extreme outlier (Heymans and Baird, 2000). In

this particular study, the model is the northern Benguela upwell-

ing, a marine ecosystem now considered to be dominated by jel-

lyfish after a fishery collapse (Lynam et al., 2006). It is possible

that the model has a high consumption to emulate strong top-

down pressure from the jellyfish group on prey groups. The

other outlier Q:B values belong to models of the Gulf of Maine,

Mid-Atlantic Bight, Southern New England, and Georges Bank.

The associated technical report (Link et al., 2006) for all these

models is unavailable and so again it is unclear why such high

values were chosen.

Figure 4d shows the distribution of EE values. Unlike, B, P:B,

and Q:B a unimodal distribution is not present, instead EE has

no obvious central tendency with peaks at the zero (0) bin and

just above the 0.75 bin. Although non-independent data preclude

formal analysis no obvious EE trend appears present (Figure 5).

Ecotrophic efficiency was the input parameter most frequently

estimated by EwE (Figure 6) through mass-balance. Figure 7a

shows EE values estimated via mass-balance calculation,

Figure 7b shows EE when manually entered into the model.

Because data are not independent, statistical testing is not possi-

ble. Anecdotally, it appears that the zero (0) bin is mainly fav-

oured when manually inputting EE, whereas the 0.75 bin occurs

with EwE-estimated EE.

In total, 44 prey items were extracted from the models

(Figure 8). Because of the lack of consistency on how prey were

described in models (e.g. taxonomic rank used) inferring com-

mon prey items from data proved challenging. However, once co-

erced into a network structure, common prey items within

models became apparent including zooplankton, other inverte-

brates, and pelagic fish.

A diverse range of predators (n¼ 69) consuming jellyfish were

reported within models (Figure 9). Much like prey items of jelly-

fish, predators required coercion into a network structure to illus-

trate inter-model commonalties. Predators frequently incorporated

into models included deep-sea fish, pelagic fish, invertebrates, ma-

rine mammals, and plankton. Figure 9 details predators of jellyfish

as reported in models.

Discussion
Prevalence of jellyfish in models
One of the most salient findings from this current review is that

64.1% of models do not include jellyfish (Figure 1). This situation

appears most prevalent in older models (1984–2000, 84.6% con-

tained no jellyfish) with an increase in the absolute and relative

inclusion of jellyfish in EwE models identified in more recent

times (2007–2018, 58.2% contained no jellyfish; Figure 1).

Increased representation in models may be influenced by two fac-

tors. First, interest and research into jellyfish ecology has in-

creased in recent years (Condon et al., 2014) in part because of

the frequency with which observed blooms interfere with human

enterprise and cause economic losses (Purcell, 2012). Second, the

Pauly et al. (2009) publication “Jellyfish in ecosystems, online

Figure 1. The accumulation of EwE models through time. Light grey
are EwE models with no jellyfish functional group included at all.
The mid-tone indicates models with jellyfish as part of a wider
zooplankton group. The dark tone is those models with jellyfish
included as their own group.
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databases, and ecosystem models” may have elicited jellyfish

group inclusion by explicitly highlighting the omission of jellyfish

from EwE models and providing summaries of EwE parameters,

thereby making the inclusion of jellyfish in new models much eas-

ier. Our directed citation network analysis of EwE jellyfish models

and cited literature (Figure 3) supports this idea, as Pauly et al.

(2009) is the joint most-influential publication in the literature of

direct citations. Whatever the underlying drivers for their inclu-

sion, the fact that jellyfish are more frequently incorporated into

EwE models should be lauded, as this improves the biological re-

alism of the ecosystem models and helps dispel the notion that

jellyfish are trophic dead ends.

The trophic ecology of jellyfish
Simply looking at the inclusion of jellyfish groups says nothing

about how accurately jellyfish are incorporated into EwE models.

The trophic ecology of jellyfish presented in the models presents a

mixed picture: jellyfish prey (Figure 8) and predators (Figure 9)

were broadly consistent with species included in the literature

(Hansson et al., 2005; Sullivan and Kremer, 2011; D’Ambra et al.,

2018; Hays et al., 2018). However, shortcomings were present:

notably EE was frequently set to zero even when predators of jel-

lyfish were listed. When this occurs, jellyfish groups are treated as

if no biomass is used by the next trophic level within the model.

Low EE values are often associated with organisms that die-off

following blooms (Christensen et al., 2005). However, even taking

this precedent into account, the values ascribed to jellyfish seem

extreme. Older models may use very low EE values as this reflects

the understanding of jellyfish ecology of the time. The archaic

view that jellyfish are trophic dead ends is no longer widely held

(Hays et al., 2018), yet this contemporary understanding of jelly-

fish ecology is not reflected within EwE models, with EE values

showing no change over time (Figure 5). Changing EE values to

match the current state of jellyfish ecology should be a priority

Figure 2. The global distribution of EwE models containing jellyfish. Groups containing jellyfish as part of a broad “zooplankton” group are
denoted by squares. Models containing jellyfish as explicit functional groups are shown with circles. Models not containing jellyfish are not
shown.

Figure 3. A directed citation network of EwE jellyfish models (dark
nodes) and cited literature (light nodes). The network only contains
models with citations to other models or literature, models that
used no other literature in parameterization of the jellyfish group
are not included. Additionally, only citations within models are
included, references between literatures are absent. The size of the
nodes corresponds to the number of direct citations. Influential
nodes, with more than three citations are labelled.
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(a) (b)

(c) (d)

Figure 4. The (a) biomass, (b) Q:B (consumption:biomass) ratio, (c) P:B (production:biomass) ratio, and (d) EE (ecotrophic efficiency) of
jellyfish groups included in EwE models.

Figure 5. The ecotrophic efficiency (EE) reported in jellyfish groups over time. Within each year separate jellyfish groups (e.g. small jellyfish
and large jellyfish) that feature within the same model are highlighted (shape) and connected to indicate non-independence.

Jellyfish in EwE 5

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article-abstract/doi/10.1093/icesjm
s/fsz165/5584405 by U

niversity of East Anglia user on 06 D
ecem

ber 2019



for ecosystem modellers as poorly optimized models will give er-

roneous predictions. Quantitative diet assessment techniques

such as stable isotope analysis (Cardona et al., 2012) could be

employed to generate accurate EE values. Alternatively, EE could

be estimated within EwE by using B, Q:B, and P:B estimates de-

rived from high-quality sources.

Input parameters and the ecology of jellyfish
Accurate input parameters for jellyfish groups are important, not

just to ensure the ecosystem model accurately portrays the rela-

tive biomasses of species found in the environment, but also be-

cause these values (B, P:B, Q:B) are used to infer the trophic

ecology (EE) of jellyfish groups. Issues can arise as EwE was prin-

cipally developed with the physiology and development of fish

functional groups in mind, where energetic content of biomass is

assumed to be the same across all functional groups (Plagányi

and Butterworth, 2004). However, jellyfish have a much lower en-

ergy density than fish (Doyle et al., 2007). Therefore, modellers

must decide if biomass should be adjusted to represent relative

energy flows or remain closer to values seen in the ecosystem.

Furthermore, in some instances, the paucity of jellyfish biomass

data (Lucas et al., 2014) makes it such that it is difficult to assess

what a biologically accurate portrayal of jellyfish within an ecosys-

tem model may entail. Generating novel jellyfish biomass esti-

mates [e.g. Bastian et al., 2014; estimated that the average

biomass of jellyfish in the Irish sea was more than seven times

that of the herring biomass (39.7� 106 kg vs. 292� 106 kg)] and

the ongoing curation of jellyfish databases such as JeDI (Lucas

et al., 2014) should aid modellers in incorporating jellyfish groups

within ecosystem models.

If locally derived data are not available, a frequently used ap-

proach is to borrow model input parameters from another EwE

model. However, this approach can propagate bias and erroneous

findings throughout the literature. Previously, Sanz-Martı́n et al.

(2016) used network analysis to demonstrate that the common

perception that jellyfish populations were increasing was propa-

gated mainly as a result of inappropriate citation practices. Using

a similar concept, Figure 3 shows a citation network of EwE mod-

els containing jellyfish groups. A loose network is formed, how-

ever, the references used for parameterizing jellyfish groups

appear to be largely independent from one another; 84.7% of

nodes are cited only once, 11.3% cited twice. Papers with more

than two citations are labelled: four papers were cited three times,

and only Pauly et al. (2009) and Malej (1989) were cited four

times. In some instances, citations appear appropriate, for in-

stance, the Barausse et al. (2009), Coll et al. (2006), and Libralato

et al. (2010) models of the Adriatic Sea borrowed jellyfish param-

eters of Malej’s (1989) study of the same ecosystem. However,

elsewhere more questionable use of published data was observed,

notably where the input parameters for jellyfish were borrowed or

derived from contrasting ecosystems. For example a jellyfish

group from the Falkland Islands (Cheung and Pitcher, 2005) was

parameterized with data obtained from Hong Kong harbour

(Pitcher et al., 2002). Similarly, jellyfish data from Alaska (Okey

and Pauly, 1999) were used to parameterize a jellyfish group in

the Gulf of Carpentaria, Australia. Fortunately, the constructed

citation network suggests that only a loose network exists and so

any hypothetically unfounded parametrization of jellyfish does

not proliferate throughout the entire field, but instead remains in

the original model for the most part. However, our approach

only investigated direct references of models (shared citations be-

tween references was not included) and so the extent to which jel-

lyfish data are shared (indirectly) may be greater than that

suggested by the network presented here.

Figure 6. EwE requires four main inputs when parameterizing a
group: biomass (B), ecotrophic efficiency (EE), production to
biomass ratio (P:B), and consumption to biomass ratio (Q:B). Three
inputs must be entered manually, whereas the fourth (usually the
parameter with most uncertainty) can be calculated within EwE.
Here, the EwE-estimated input parameters for jellyfish groups
(n¼ 122) are shown.

(a)

(b)

Figure 7. Distribution of EE values when (a) it is estimated by the
EwE software via mass-balance, and (b) when it is directly input into
the model.
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Regardless of whether the input parameters were sourced di-

rectly from the research, or borrowed from another EwE model,

due diligence to assess the quality of the original source of the

data from a model must be undertaken and explicitly stated in

model documentation. To this end, we strongly encourage mod-

ellers to use Heymans et al. (2016) guidance: particularly the use

of EwE’s pedigree functionality (a score to show the confidence in

the underlying assumptions of a modelled group; Christensen

and Walters, 2004) as this facilitates the appropriate interpreta-

tion of EwE model predictions in light of the quality of the un-

derlying data.

The life cycle of jellyfish
Most (but not all) cnidarian jellyfish share a metagenetic life

cycle. The timing of the life cycle can vary between years within

a population, between populations of the same species, and

between different species (Ceh et al., 2015). However, a general

pattern emerges in which sessile polyps reproduce asexually on

hard substrata (typically overwinter), until conditions favour

strobilation and production of planktonic jellyfish known as

ephyrae (Lucas et al., 2012). Ephyrae develop into large free-

swimming jellyfish known as medusae (about 2–4 months in

Aurelia aurita; Lucas, 2001). Medusae reproduce sexually to

create planula, a small planktonic form that spends a few days

in the water column, before settling onto hard substrata and

developing into polyps. Recent evidence suggests that predators

consume jellyfish life stages differently: medusae appear to be

targeted less frequently than ephyrae or polyps (Lamb et al.,

2019). Large, free-swimming medusae are also likely to play a

different trophic role to small sessile polyps both as predators

and prey. EwE features a “multi-stanza” approach to model

species with a changing role within the ecosystem. This is

achieved by representing different ontogenetic life stages with

linked groups within the model (such that population growth

of adult groups depends on the success of juvenile life stages;

Christensen and Walters, 2004). However, none of the reviewed

models used the “multi-stanza” functionality with jellyfish

groups. The lack of the incorporation of different jellyfish on-

togenetic stages in models is troubling and may be a function

Figure 8. Reported prey items of jellyfish. Large nodes, and dark tones, indicate prey is frequently reported in models. Smaller nodes, and
light tones, show that prey are infrequently listed in models. Note that the hierarchy is split into functional groups, to match the
nomenclature found in models, rather than taxonomic classifications.
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of the rarity of quantitative data on polyp populations;

reviewed by Lucas et al., 2012). Additional field research into

the ecology of polyps is required to generate the requisite input

parameters needed for a multi-stanza approach. It should be

noted that additional complexity in EwE models inherently

increases the uncertainty in the output (Plagányi and

Butterworth, 2004). Therefore, explicitly considering the trade-

off between biological realism and model simplicity should be

made when deciding if a multi-stanza approach may yield bet-

ter model performance.

Conclusion
Jellyfish are recognized as an important part of marine ecosystems

around the world, and feature in a growing array of EwE models.

Analysis of 329 models uncovered the current state of jellyfish in

EwE models, as well as future data needs. Here, we focused on

areas that were addressable with the metadata held in Ecobase.

However, there are other parameters within EwE (especially those

pertaining to Ecosim modules) that may affect model perfor-

mance: vulnerability, time spent in the foraging arena, and speed

splitting settings for jellyfish groups could be further explored

Figure 9. Predators of jellyfish. Large nodes, and dark hues, indicate a predator is frequently reported in models. Smaller nodes, and light
tones, show that the predators are infrequently listed in models. Note that the hierarchy is split into functional groups, to match the
nomenclature found in models, rather than taxonomic classifications.
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(ideally with time-series data) to improve biological realism.

Outside the modelling environment, other measures could take

place to improve the biological realism of modellers. Historically,

jellyfish have been overlooked or ignored in many monitoring

programmes (Hamilton, 2016). Moving forward, including jelly-

fish in monitoring programmes and making data available either

through publication or the use of databases is warranted: at pre-

sent, modellers may lack the biological details required to accu-

rately parameterize jellyfish groups. Research should also be

directed towards quantifying the interspecific interactions be-

tween jellyfish and the rest of the ecosystem. Furthermore, docu-

menting the ecology of wild polyps and less studied jellyfish life

stages are also recommended. These steps should facilitate the ac-

curate parametrization of jellyfish groups in EwE models and

may, ultimately, improve our knowledge of the role of jellyfish in

marine ecosystems and our ability to manage jellyfish

populations.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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