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1. Introduction

Theoretical literature suggests a positive relationship between innovation and growth (Geroski,

2005, Aghion and Howitt, 1992) but the empirical literature has reported mixed results with positive

links only in some situations, and conditional on firm characteristics (Coad and Rao, 2010, Demirel

and Mazzucato, 2012, Deschryvere, 2014, Audretsch et al., 2014). Size, scope, and experience are

important factors in determining how much innovative activity a firm undertakes, and whether it

results in successful innovation (Acs and Audretsch, 1990, Henderson and Cockburn, 1996). Recent

literature has focused on lack of symmetry in the distribution of growth rates and in the returns to

innovation to unravel the types of firms that innovate and contribute to growth most, for instance

high growth/superstar firms (Coad and Rao, 2008, Capasso et al., 2015, Mazzucato and Parris,

2015). However, not all innovations lead to firm growth, as they may in fact cannibalize sales of

existing products (Conner, 1988, Banbury and Mitchell, 1995).

Building on the insights from Hall (1987), Geroski and Machin (1992), Geroski and Toker (1996),

Freel (2000), Del Monte and Papagni (2003) and Demirel and Mazzucato (2012), that innovative

and/or more R&D active firms outperform non-innovative firms, in this paper we explore the link

between innovation, measured by introduction of additional drugs and pack varieties within a ther-

apeutic class, and revenue growth in the UK pharmaceutical sector. The empirical literature that

has investigated this relationship has often focused on innovative inputs, such as R&D intensity

and patent counts, rather than innovative outputs, such as introduction of new products (see Roper

(1997), Flor and Oltra (2004), Coad and Rao (2008, 2010) and Becheikh et al. (2006) for a review).

We follow Cucculelli and Ermini (2012) and use a counts based approach of innovative output

as a measure of innovation, but highlight the role of two different types of innovations, product

and marketing innovations (two of the four types of innovation accounted for by Tavassoli and

Karlsson (2015)), as each strategy can have a separate and distinct impact on growth via product

differentiation or by price discrimination.1

Studies that have used the innovative output approach have often reported lack of a statistically

significant positive relationship between growth and innovative output (e.g. Geroski et al., 1997,

Bottazzi et al., 2001, Geroski and Mazzucato, 2002, Stam and Wennberg, 2009). However, as pointed

out by Corsino and Gabriele (2011), aggregation across heterogeneous products may hide the true

relationship, and hence empirical investigations need to focus on sub-markets where products are

relatively homogenous, firms draw on a similar knowledge base, and importantly, target the same

type of consumers. Following on from that, we use quarterly sales data from the UK pharmaceutical

1Our distinction between products and packs also relates to heterogeneous measures of innovative output on growth in

Akcigit and Kerr (2018) (internal and external innovations) and Caggese (2019) (radical or incremental innovation) and how

they differ by firm size.
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prescription market during the 2003-2014 period, and measure firms’ sales growth within narrowly

defined therapeutic classes, which roughly translates into similar patients (customers), and identify

the impact of additional drugs and new pack varieties on growth by these subclasses. We call a

firm’s operation within a narrow therapeutic class a business unit, and by focusing on business units

as opposed to firms, we are better able to measure the impact of product innovations (drugs) and

marketing innovations (additional pack varieties) on revenue growth by relevant sub-markets.

We follow the empirical literature and estimate reduced form equations where we regress growth on

lagged size and counts of products and packs at the business unit level in a dynamic panel model

(Evans, 1987a,b). Indeed, revenue and number of products and packs are equilibrium outcomes,

and as such, any omitted demand-side factors can induce positive correlation between revenue

growth and introduction of new products and packs. Accordingly, in some specifications we treat

these measures of products and packs as endogenous, and attempt to find an exogenous source

of variation for these variables. We also allow for an interaction between these two variables to

understand whether they are complementary or substitutable actions within a business unit.

Our main result is that both the introduction of additional drugs (product innovations) and addi-

tional packs (marketing innovations) have a significant impact on revenue growth, and the magni-

tude is larger for new drugs. New drugs also contribute to the growth in the long run since sales

keep increasing, perhaps because more patients switch to the newer formulation. On the other

hand, additional packs contribute only to short run growth. Nonetheless, given the price regulation

for branded drugs in the UK, a marketing innovation of a new pack may still be a viable short-term

business strategy as the cost of introducing a new pack is likely to be much smaller than that of

introducing a new drug. This may be particularly helpful for small business units as we find that the

impact of additional packs (and products) on growth is much stronger for them. When we further

restrict the analysis to a selected sample of surviving business units, we observe that the marginal

effect of new products and packs gets smaller, and is closer in magnitude to that of larger business

units. This suggests that new introductions by small firms give them a boost in revenue growth,

and absent such growth, the lack of innovation also lowers their survival probability. Similar to

other studies regarding firm size (e.g. Evans (1987a), Dunne and Hughes (1994) or Bottazzi and

Secchi (2005) who find some limited evidence) we observe that smaller business units grow faster

than larger ones. Our result that the marginal effect of new products is larger for smaller business

units is perhaps consistent with Demirel and Mazzucato (2012), who report positive impact of R&D

on growth for small firms, albeit as long as they are patenting consistently.

We make three important contributions to the innovation-growth literature. First, we link innova-

tive outputs to growth (rather than inputs) and explicitly recognize that innovative outputs differ in

their appropriability conditions and provide evidence that they have different impact on growth. In
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the pharmaceutical sector, drugs with new molecules or formulations are product innovations that

are often protected by Europe-wide patents and market exclusivity, and impact revenue growth

by channelling demand to better suited drugs or finding new patients. On the other hand, new

drug introductions that exploit size or strength variation may be marketing innovations with lower

appropriability and affect revenue growth via a different channel, for instance price discrimination.

In turn, the impact of these innovations may differ on revenue growth, they are likely to be substi-

tutes, and hence combining these two distinct forms of innovations into one homogenous measure

may be inappropriate. The evidence that we provide is likely to be indicative of the pharmaceutical

industry more generally outside of the UK as well. Second, we focus on firm sales within nar-

rowly defined therapeutic areas (which we call business units) rather than overall sales or growth

by the firm. This is important for studying the link between innovation and growth, as the new

introduction of a specific drug may lead to revenue growth within that therapeutic class, but if the

firm has operations in many other larger classes, the overall growth at firm level may be small and

the correlation may not be picked up by firm level analysis. While our example is from UK phar-

maceuticals, where on average a typical firm operates in 9.48 therapeutic classes, the idea carries

over to innovative activities of conglomerate firms outside the pharmaceutical industry. Finally,

while several papers have already studied growth or innovation in pharmaceuticals, we add to that

literature by documenting the innovation-growth link by size of business units, type of innovative

output and which one will have a larger impact on growth.2

The rest of the paper is organized as follows. The next section describes differences in product

and marketing innovations, and sets out the hypotheses we test. Section three describes the data

and provides descriptive evidence on the relationship between product and pack introductions and

growth. Section four outlines our empirical strategy and discusses sources of endogeneity. Section

five gives the results and the last section concludes.

2. Product and marketing innovations and hypotheses

In this paper we use a counts based approach and ask how the introduction of additional products

and packs of existing drugs affect the growth of a firm in a therapeutic class (business unit), whether

these strategies are substitutes or complements, and whether we should expect results to differ by

size of business unit. Firms can introduce new drugs or packs for unilateral reasons if these affect

their revenues and/or profits, but may also do so for strategic reasons. Indeed, firms with soon

to expire patents can launch additional drugs to deter entry or maintain market shares, or even

2For some recent papers see, Gambardella et al. (1995), Bottazzi et al. (2001), Orsenigo et al. (2001), Grabowski et al.

(2002), Matia et al. (2004), Bottazzi and Secchi (2005), Coad and Rao (2008), Paul et al. (2010), Scannell et al. (2012),

Mazzucato and Parris (2015).
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increase the prices of their branded drugs post generic entry for their brand loyal market segment

(Ellison and Ellison, 2011, Frank and Salkever, 1992, Regan, 2008). Similarly, the originator may

make a minor tweak on the original drug, say via a dosage change, as part of a ‘product-hopping’

strategy (Hemphill and Sampat, 2012, Scott Morton and Kyle, 2011). Doing so can prevent a generic

drug from gaining market share.3 Our focus is on revenue growth, and not alternative reasons for

new introductions per se, and hence we discuss below how or why they may influence growth for a

business unit.

2.1. Innovation and growth. Within the usual four types of innovation (product, process, mar-

keting and organizational), new drugs or packs can be classified as product and marketing innova-

tions. When a firm introduces a new drug within the same therapeutic class it does so by either

changing the molecule or the formulation, which typically requires costly and risky R&D activity

to receive marketing approval. Instead, introducing an additional strength or pack size requires less

medical research (as safety and efficacy of the original molecule/formulation are already established)

but it may require further marketing research for placement and pricing strategy. Admittedly, the

line between product and marketing innovation is not always clear as a new pack strength can

also be seen as product differentiation. Nonetheless, we think of the new drug with an alternative

molecule/formulation as product innovation, and new pack as a marketing innovation that allows

price discrimination.

The work developed by Geroski and Toker (1996) and Freel (2000), and subsequently by Demirel

and Mazzucato (2012), Deschryvere (2014) and Audretsch et al. (2014), among others, show the

existence of a positive relationship between innovation and growth at firm level. Based on this

literature we test the existence of the same type of relationship between the forms of innovation at

business unit (BU) level in the UK pharmaceutical sector.

• Hypothesis 1. Introducing additional products or packs increases sales growth.

2.2. Returns to product vs marketing innovations. As discussed in Tavassoli and Karlsson

(2015), product and marketing innovations differ in persistence (i.e., repeated events of innovations)

due to differences in sunk R&D costs, the ‘success breeds success’ hypothesis, and appropriability

conditions. The authors find that product innovations are more persistent than marketing innova-

tions due to differences in (inter alia) appropriability conditions. In turn, this implies that increase

in revenue (or growth) associated with new products will be larger than with new packs. Certainly,

3This is because the generic would have filed for, and gained entry for a different dosage, and patients may have been switched

to the newer formulation via marketing or other mechanisms to curtail demand for the original formulation. Alternatively,

follow-on drugs (by originators or new entrants) may provide substantial welfare gains, perhaps by lowering the side effects of

the pioneer drugs, changing the delivery mechanism, or targeting a new sub-population and effectively increasing the market

size (Arcidiacono et al., 2013, Bokhari and Fournier, 2013).
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the two types of innovations we discuss here differ in appropriability conditions since a new drug

introduction can often be protected via patent or other marketing exclusivity rules, but the same

IP protection is not necessarily extended to pack innovations. In introducing a new drug, they may

also meet some pent-up demand to serve new patients, or alternatively allow low valuation patients

to switch to the new formulation if they value the alternative more for medical reasons.

For example, in 2001 Shire introduced Adderall XR as a once-a-day extended release formulation

of its original drug called Adderall, which was to be taken multiple times a day to treat ADHD

symptoms (for school aged children, having an option to give the medication once a day is an

important innovation due to difficulties in administering a drug during school hours). In 2000,

Shire had 31.1% of the US ADHD drug market. At the time, there were several other firms also

producing ADHD drugs using other molecules, but due to a patent that was valid until 2002, Shire

was the only one using the specific molecule used in Adderall. When Shire introduced the XR

version, it acquired a new patent on the formulation and obtained a market exclusivity for the XR

version of that specific molecule. By 2003 share of the generic Adderall by competitors was 7.6%,

that of the original Adderall by Shire was 2.9%, and of new Adderall XR was 23.8% (Bokhari and

Fournier, 2013). As a result of this strategy, Shire’s sales for these products increased from $296.8

million in 2000 to $624.35 million in 2003, a 110.36% increase in revenue.

Table 1. Price per mg as function of packs

Add Remove Time Time Sq Time Cb Constant
Pack Pack (T ) (T 2) (T 3)

(ln) price/mg 0.053a -0.002 0.007 -7.3e-05b 1.85e-07b 1.702a

(0.011) (0.008) (0.005) (3.34e-05) (7.96e-08) (0.229)

Fixed effects regression (with individual drug ids) for log price of drug per mg on adding and removing
packs within a drug. Total 152,673 observations from monthly prices over 10 years for drugs in tablet or
capsule form. Superscripts a, b, c indicate significance at 1%, 5% and 10%, respectively and standard errors
are clustered by therapeutic area of the drug.

Alternatively, firms can change price per unit for the same drug by introducing a new pack, which

can vary either by strength or size (or both). For instance, in May 2000, 3M’s Aerolin (a salbutamol

used for treating bronchial asthma) was available in the UK for £12 per pack of 56 pills of strength

8mg. Two months later, a 56 pills pack of 4mg strength was also available for £10.55, so while the

price per pill and per pack decreased, the price per mg nearly doubled from 2.67 to 4.71 pence.

An example of packs varying by size is Abbot’s Prothiaden, an SSRI with dosulepin hydrochloride

as the main active ingredient for treating depression was sold in the UK in 2003 as a 75mg 28-tab

pack for £4.20 per pack or as 75mg 500-tab pack for £85.81, which works out to £2.00 per gram

and £2.88 per gram respectively. Indeed, there are many examples of non-linear pricing in the UK

pharmaceutical data. Our data has several similar examples which indicate that among branded
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drugs, the introduction of a new pack is followed by an increase of approximately 5.3% in price per

gram for tablets or capsules (see Table 1).4

Thus, due to the difference in appropriability conditions (new patients and marketing exclusivity)

between products and packs, we state our second hypothesis.

• Hypothesis 2. Revenue growth is higher for new products relative to new packs.

2.3. Substitutability between product and marketing innovations. If launching additional

drugs helps the business unit create product differentiation (so patients select into the drug type

most medically suitable for them for which they or NHS pays a higher price) while an additional pack

size helps in creating price discrimination, these two strategies may not be complementary but rather

work as substitutes. In Appendix A.1 we provide an example which shows launching an additional

drug or a new pack increases firm revenue via product differentiation or by price discrimination, but

doing both simultaneously may not be optimal. The intuition is that with product differentiation,

the market is segmented and low value consumers switch to the new product if they value it more. If

there is also price discrimination in the original product (due to an additional pack being available

for the original drug), some low value consumers may not switch to the new product since they

are already getting the original product at their low valuation (market is covered), in which case

implementing both strategies simultaneously may not be optimal relatively to implementing them

separately.5 Thus, we have the following hypothesis.

• Hypothesis 3. Introduction of new products and packs are substitute strategies for revenue

growth.

2.4. Returns by size. While we have made a distinction between product and marketing inno-

vations, they can further be classified as being radically different from existing product lines or

not. For instance, launching an additional extended release tablet when a regular tablet is available

versus launching a transdermal patch may be a more innovative drug introduction. Caggese (2019)

4While we consider a new pack to be a marketing innovation that allows some form of price discrimination, indeed it can

also be considered a form of product differentiation, for instance where a patient cannot cut a capsule in two parts to take

half-strength drug even though that may be medically ideal for them.
5In the context of NHS where patients do not directly pay for prescription drugs except for a small co-pay, it is still

possible to talk about a ‘low value’ consumer. In the UK after a drug is approved for marketing authorization, the National

Institute of Clinical Excellence (NICE) undertakes cost-effectiveness (CE) of the new treatment option. The CE analysis

is based with a target patient population in mind, where the patient population is defined based on demographics, overall

health condition, and reported symptoms. The CE analysis then attempts to measure changes in Quality Adjusted Life Years

(QALYs) associated with the new therapy relative to the status quo, and may find one group of patients for whom the new

drug is not cost effective while for another it is. This would then translate into ‘recommendation with restriction’ and also

permeate in clinical guidelines describing for which group patients the new drug is recommended and for whom it is not. See

the next section ‘Background and data’ for more information on role of NICE.
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calls these radical and incremental innovations (a relabelling of Schumpeter’s concept of ‘disruptive

innovation’) and states that if there are no financial frictions the firms that rapidly grow in pro-

ductivity and size are the young and small firms as they tend to prefer radical innovations more

than large firms. On the other hand, financial frictions reduce competition in the market and the

by-product is that young and small firms find less profitable the investment in radical innovations,

making incremental innovation more appealing. Similarly, Akcigit (2010) shows that innovation

activities (measured by R&D intensity) and high-quality innovation (measured by patent citations)

relate inversely to firm size and Akcigit and Kerr (2018) show that small firms contribute most

to the relative rate of radical innovation. If indeed smaller BUs introduce more radical/innovative

drugs compared to larger ones, then we would expect that returns from innovation will be higher

for smaller BUs, which we test as a hypothesis.

• Hypothesis 4. Small business units have a higher revenue growth from innovation than larger

business units.

We test these hypotheses using revenue growth equations for a business unit as a function of new

products, packs and their interactions.

3. Background and data

To bring either a new drug or a generic copy to the market in Europe, a pharmaceutical firm

requires market authorization (MA) from a national authority (Medicines and Healthcare products

Regulatory Agency (MHRA) in the UK) or, as of 1995, from the European Medicines Agency

(EMA). The process starts with the firm filing for a new drug application (in case of a new molecular

entity) or an ‘abridged’ application for generic entry. In the former case, MA is granted after

establishing safety and efficacy via three phase clinical trials that take several years to complete

while in the latter case, the generic applicant references data for an earlier drug and aims to establish

bioequivalence to it.

Drug development is expensive and risky as not all new discoveries make it to the market in the

form of a new drug (Torjesen, 2015, DiMasi et al., 2016). Further, because patent life is 20 years

from initial file date, and significant time is lost in drug development, EU provides two routes that

allow innovators to extend the exclusive marketing of their products. The first, available since 1992,

is the Supplementary Protection Certificate (SPC) which allows originators to extend the patent for

up to five years after the expiration of the original patent, or fifteen years from the first marketing

authorization in the EU, whichever is less. Second, there is an explicit data exclusivity period which

was introduced in 1984 at the EU level (prior to that, drug approval was at the national level and

with varying rules) during which a generic firm may not reference the originators data. Initially,
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data exclusivity extended either to six years or ten years from the start of MA date depending on

the member state (UK had 10 years). In 2005, a new ‘8+2(+1)’ exclusivity period was introduced

at the EU level which provided unified rules of exclusivity across all member states – eight years of

data exclusivity during which a generic cannot file for an abridged application, plus two additional

years of market exclusivity, i.e., the generic may file the abridged application, but not market the

drug, and a final one additional year of market exclusivity for new indication(s) if they constitute

a significant clinical benefit.

In the UK there is an additional step which is particularly relevant for new expensive drugs. National

Institute of Clinical Excellence (NICE), which was established in 1999, is charged with undertaking

health technology appraisals including those for new medicines as well as providing clinical guidelines

for physicians. While NICE is not part of EMA and does not assess safety and efficacy of drugs,

it undertakes cost-effectiveness of EMA/MHRA licensed drugs relative to existing practice in the

NHS.6 Not all new drugs are necessarily reviewed by NICE (Ward et al. (2014) identified 134 new

MAs by EMA between 2005 and 2011 and found that only about 54% were apprised by NICE).

However if apprised, a positive review means that the drug must be covered by NHS while a negative

review means that it will not be covered by NHS (in other cases NICE may give “recommend with

restriction” for a smaller population relative to the one listed in original drug approval application).

As reported in Jaska et al. (2014a,b), between 2007-2013, the overall negative recommendation rate

was 32% but this was mostly driven by oncology related drugs which are often used in hospitals

(52% for oncology vs 16% for non-oncology reviews). Nonetheless, drugs that are not eligible to

be covered by the NHS are either available over-the-counter (OTC) or face a thin online market.

The OTC drugs have reached £2.62bn in Britain in 2016, versus £17.4 billion NHS expenditure in

England in 2016/17 (Connelly, 2017, NHS Digital, 2018).

Use of UK data is attractive, as price is less regulated compared to some of the other EU member

states, and because in many member states, reimbursement is often in terms of price per defined

daily dose, which lowers the potential for (second-degree) price discrimination via pack variations.

Additionally, prices from the UK are often used as comparison when setting prices in other European

countries.7 Unlike some other European countries that use some form of direct price control, the UK

instead employs indirect methods and regulates profit on sales of branded drugs to the National

Health Service (NHS) under its Pharmaceutical Price Regulation Scheme (PPRS). The scheme,

6NICE provides appraisals for England and Wales while the Scottish Medicines Consortium (SMC) plays a similar role in

Scotland including advice on drugs apprised through NICE. Further, drugs that cost NHS over £20m a year in the first three

years of launch require a commercial discussion between NHS and the manufacturer.
7A common tool is the external reference pricing, employed for instance in France, Greece, Ireland, Italy, the Netherlands

and Portugal, where the relevant health authority uses the average price from other EU countries to set the maximum

reimbursement rate for a branded drug and UK prices often feature in that reference pricing (Kanavos, 2003, Ruggeri and

Nolte, 2013).
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which was initially introduced in 1957, has evolved over the years, but as of 1986 it applies only

to branded drugs. The terms of this scheme are revised approximately every five years. Under

the PPRS, firms are free to set prices of branded drugs, which the NHS will reimburse, but prices

are indirectly controlled through caps on the overall return on capital for research active firms.

Manufacturers can set the price of new drugs without pre-approval by the Department of Health

(DH). However, price increases for existing branded drugs need to be justified and approved by the

DH, and in practice may even require a reduction of price of some other drugs in the firm’s portfolio

to justify the increase in price elsewhere.

We use the 2003-2013 British Pharmaceutical Index (BPI) data series by Intercontinental Marketing

Services (IMS), a data set which provides national level monthly sales at the package level for all

drugs sold in the UK. The BPI data set contains information in terms of total shipments by nominal

sales value and various measures of quantity from wholesalers to retail pharmacies and dispensing

doctors, but does not include direct sales from manufacturers to hospitals or to non-pharmacy

stores (e.g. grocery stores). Individual drugs in the data are identified by manufacturer, product

name, and pack variation. The data also includes information on main/active molecule(s), strength

and form, as well as if the drug is branded or generic, over the counter or prescription, and if it is

reimbursable by NHS or not. We restrict our analysis to prescription drugs covered by the NHS, i.e.

over-the-counter (OTC) and non-reimbursable drugs are excluded as these would be sold outside of

pharmacies as well, and we do not have complete sales data on those drugs. In 2005, the OTC or

self-medication market represents about 12.03% of all pharmaceutical sales in the UK (p.707 Habl

et al., 2006). In a later section we also comment on how our results change if we do not exclude

these drugs from the analysis.

For each individual item at the pack level, the data set lists the associated four-digit anatomical

therapeutic chemical code (ATC4) and three-digit new form classification code (NFC3). The ATC

codes allow drugs to be classified by active ingredients and are further refined by anatomical,

therapeutic, pharmacological and chemical subgroups, while the NFC codes provide information on

various forms of the drug, e.g., tablet, capsule, extended release, liquid, cream etc. In our analysis,

we use the combination of four-digit ATC classification and firm identity to define a ‘business unit’,

and NFC codes to differentiate among various products within a business unit. We aggregate

monthly sales data from individual drugs at the pack level to ATC4 classification by manufacturer

and quarter. For example, acid pump inhibitors (A02B2) and psychostimulants (N06B0) produced

by Novartis are treated as two separate business units (BUs). The final sample consists of sales

data from 218 pharmaceutical firms operating in 385 different ATC4 classes spanning 2,090 business

units (i.e., firm-class pairs) observed over 40 quarters (Q2 2003 to Q1 2013) for a total of 56,070
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observations.8 All sales figures are adjusted for inflation using the consumer price index as deflator

with base period set to second quarter of 2003.

Figure 1. Log-log scatter plot of revenues

As might be expected, sales are highly skewed and we use log of sales (distribution of log sales is

relatively symmetric and is given in the appendix in Figure A-1). Based on tertile distribution of

the initial log size of a BU (i.e., first period), we classify them as small, medium and large and

where the cut-off points are 9.84 and 12.50 in log size.9 In terms of growth, defined as the change

in log sales, we find some variation by the size of the business unit. Figure 1 plots the natural

logarithm of sales in period t against the one period lagged value of the same variable (each period

is a quarter), and plots the frequency of such pairs on the z-axis. Values along the 45-degree line

indicate absence of growth for the BU while those above the line show positive growth. Variation

appears to be larger for middle level of sales, and on average, small sized BUs appear to grow more

than very large sized ones. Nonetheless, there are relatively fewer observations that deviate from

the 45-degree line and most are very near the line.

8The BPI does not separately identify all generic manufacturers and hence within each ATC4 class multiple generic

manufacturers are treated as one firm. As a robustness check, we dropped all observations relating to these unidentified

generic manufacturers and discuss them in the on-line appendix.
9A small BU corresponds to an average firm size of £80.5M, a medium BU corresponds to average firm size of £80.7M,

and a large BU corresponds to an average firm size of £138M.
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We define a product as a unique combination of proprietary or international nonproprietary name

listed in the database, its specific formulation (tablet, extended release, liquid, gel, etc.), the as-

sociated ATC4 therapeutic class, and the name of the manufacturer. If any of these change, we

count it as different product. Next, for a given product, packs can vary either by size (28 pill pack

vs 14 pill pack) or by strength (100MG vs 250MG), and after counting total number of packs per

product, we define pack variety (or just variety for short) as the total number of packs for a BU

minus the total number of products. Thus, at the BU level,

pack variety = #packs−#products (1)

and our pack variety measure begins at zero when each product is available in only one pack size.

This is so that when a new product is introduced, it does not lead to an automatic increase in pack

varieties offered by the BU as well (since each product must come in at least one pack size).

While we use count of drugs in business unit to measure innovation, a shortcoming of this approach

is that it weighs all new drugs equally, even though some drugs may be small tweaks on the original

variant as mentioned earlier. In our data, it is not possible to construct measures that capture

the innovativeness of new drug. For instance, studies that use patent counts try to overcome this

difficulty by using citation count of a patent.

Merger and acquisition activities during the period are handled by IMS by retroactively reassigning

the sales and associated products to the end-of-period corporation that owns them as if they owned

it for the entire period. Thus, if two firms merged during the observed period they appear to be

a single firm from the start (a similar method is used for instance in Bottazzi and Secchi (2005))

and hence a merger would not lead to an increase in the count of drugs and revenues due to the

merger. Generally, a similar rule applies to product line acquisitions, however here we found some

inconsistencies in data which lead to small errors in counts of products. Thus while we use count

of drugs as a measure of innovative activity, this is not a perfect measure but based on the sample

of cases that we investigated this is not a frequent issue.10

Figure 2 plots the total sales and average number of product and pack varieties per BU for all ATC4

classes. Consistent with other industry reports of a slow down in manufacturing, our data shows

that revenues dropped by 22 percent during the 2004-2012 period. The figure shows that total

sales declined over the period, but also that there is some seasonality in sales. More interestingly,

10For instance, in a few cases of single or a small product line acquisitions, we found that both the product name and

company name changed in the raw data. Thus, the product in question appears with the initial firm up to the acquisition

date, and then with the acquiring firm along with a modified product name after that date. This implies that in these cases,

the count of products decreases by one for the selling firm and increases by the same amount for the acquiring firm without

there being any innovation. Since a separate exhaustive list of all such acquisitions is not available, we cannot make these

corrections systematically.
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Figure 2. Products, pack varieties per BU and total sales

while the average number of products per BU is stable around 2.2, there is a decline in the average

number of pack varieties starting with 2009 and continues for the next two years until it settles

to a new steady state value. While this decline in the number of pack varieties coincides with the

global financial crisis, we do not observe a similar decline in pack varieties in the OTC and non-NHS

reimbursable drugs (recall we also have data on those drugs that is not included in this analysis).

The start of the decline however does coincide with the last PPRS update in the observation period,

which was negotiated at the end of 2008 and was effective for the 2009-2013 period. The figure

suggests that there is a positive relationship between aggregate sales and average products/varieties

per BU, and that perhaps sales are in decline in the UK since firms do not bother introducing new

products and packs. This however is not necessarily true. Similar figures drawn at class level indicate

different relationships between sales and product and pack introductions at this disaggregated level

(see Figure A-2 in the appendix for some selected classes).11

Finally, and before analyzing growth more systematically in the next section, Table 2 shows growth

just before and after a BU introduces a product or a pack, and compares it to the growth of

11Figure A-2 in the appendix shows that sales, products and packs are increasing in the second panel (top right, for

stomatologicals) where increase in pack varieties is followed by an increase in sales. By contrast, the middle two panels for

seroton and vitamin D show an increase followed by a decrease in sales, and do not exhibit a positive correlation with products

and packs over the entire period. Similarly, the bottom two panels (gastroprokinetics and stimulant laxatives) show very little

change in products and pack varieties and yet there is considerable change in sales, showing that at the micro level, it is not

true that a decline in sales is due to firms not introducing products and packs.
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competitors in the same ATC class (the table reports four period moving average of growth before

and after introductions). On a class-by-class basis, we find that when a BU introduces a new

pack, on average its growth changes from 0.0319 to 0.0507, and for the competitors in the same

class but not introducing in that period, growth changes from -0.0103 to -0.0243 (these figures are

statistically different from zero). The impact of product introductions has a similar pattern and is

given in Table 2.

Table 2. Moving average (order four) of revenue growth

New Packs New Products
Before After Before After

†Introducing BUs 0.0319a 0.0507a 0.0079 0.0785a

(Std.Err.) (0.0073) (0.0071) (0.0091) (0.0110)

‡Non-Introducing BUs -0.0103a -0.0243a -0.0120a -0.0225a

(Std.Err.) (0.0026) (0.0028) (0.0030) (0.0033)

†Four-quarter average growth for BUs introducing a pack or product in a given period.
‡Four-quarter average growth of non-introducing BUs in the class and period where a pack or product was
introduced.
aSignificant at 1% level.

4. Empirical specification

As our point of entry, we adopt the empirical firm growth model first introduced by Evans (1987a,b)

which specifies the change in log size as a linear function of lagged log size, age, other firm specific

characteristics of interest, and an additive error term. However, we do so in the context of business

units and panel data. Specifically, let gbt ≡ (lnRbt−lnRbt−1) denote the revenue growth for business

unit b (composed of firm f in anatomical class c) between period t and t− 1. We model the growth

equation by an autoregressive distributed lag specification with M lags of the dependent variable

and up to L lags of the time varying strategic variables (products and varieties) as

gbt =
M∑

m=1

γmgb(t−m) +
L∑
l=0

(
β1lpb(t−l) + β2lvb(t−l) + β3lpb(t−l)vb(t−l)

)
+ θ1sb(t−1) + xbtθ2 + xctθ3 + ut + αb + εbt, t = L+ 1, . . . , T, L ≥M.

(2)

In the equation above the business unit growth in period t is a linear function of lagged growth

(with M lags), current and past values of number of products and pack varieties per product (p, v

and their interactions up to L lags), and where the latter variables are potentially endogenous. In

the final specification we set M = 1 and L = 4. The specification also includes other relevant

variables, prominently the one period lagged size (sb,t−1), which we capture with the lagged natural

log of revenue. Note than in addition to measuring the impact of size on growth, earlier literature
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has also highlighted the relationship between size and innovative output (Acs and Audretsch, 1988,

Graves and Langowitz, 1993). Thus, not including size would cause an omitted variable bias as it

would be correlated with the variables of interest, i.e. counts of products and packs.

We also include other class-time varying variables such as the number of firms, Herfindahl index,

and lagged values of number of products and pack varieties at the class level in the vector xct,

and incorporate additional exogenous controls that vary at the BU level in xbt (specifically dummy

variables to indicate if the business unit has sales due to generic products and if its products are

available via parallel imports in the UK and lagged value of mean drug price in log form).12 All

variables listed here are described in full detail in the appendix in Table A-1 and correlations

between them are given in Table A-2. Finally, note that while the model includes an interaction

term and up to four lags of this term ( pb(t−l)vb(t−l) where l = 1, 2, 3, 4), we do not include any

mixed lags (for instance, two lags of products interacted with three lags of pack varieties). In part,

this decision is driven by the desire to keep the model parsimonious, but it is also based on low

correlations between product and pack introductions in different periods. For instance, while the

correlation in change in number of products and packs from same the lags is fairly high (between

.26 and .27, and hence these terms are included in the model), the correlation between mixed lags

is typically .05 or less (a full matrix showing correlations in change in products and packs is given

in Table A-3 in the appendix).

For short panels it is common to let the time effect be fixed, here given by ut and hence we

exclude it from the composite error term, which is given by the sum of the business unit unobserved

heterogeneity, αb, and the pure idiosyncratic error term, εbt. We assume the idiosyncratic error to

be serially uncorrelated and uncorrelated across ATC4 classes. Because of the presence of a lagged

dependent variable we follow the dynamic linear panel model literature and take a first difference

of equation (2) to remove inconsistencies of the parameters associated to the various lags of the

dependent variable. Thus we estimate the growth equation above in first difference form given by

∆gbt =
M∑

m=1

γm∆gb(t−m) +
L∑
l=0

[
β1l∆pb(t−l) + β2l∆vb(t−l) + β3l∆

(
pb(t−l)vb(t−l)

)]
+ θ1∆sb(t−1) + ∆xbtθ2 + ∆xctθ3 + τt + ∆εbt.

(3)

While the first difference form eliminates the unobserved heterogeneity specified earlier as αb term,

it is worth noting that by using a first difference estimator we also rule out estimating the effect

of any time-invariant factors such as the age of the business unit, which may be important (see for

instance Cabral and Mata, 2003, Coad et al., 2016).

12Our raw data comes with a price of a ‘counting unit’, which roughly translates into the smallest unit. For instance,

for solid form drugs, a counting unit is a tablet. We use this measure of price to compute share weighted average price per

counting unit over all drugs sold by the BU, where shares are based on revenues.
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Endogeneity. New products and packs are not randomly launched and there may be potentially

multiple sources of endogeneity. The first source is any omitted variables that are correlated with

growth as well as with product and pack varieties (demand side factors may bring more prod-

ucts/packs and sales growth). de Frutos et al. (2013) document that better drugs are advertised

more intensively, and advertising has a positive effect on prices. In turn, this could imply that the

magnitude of the positive relationship between launches and revenues may in part be driven by the

size of the marketing/sales force, which can easily mention the launch of a new product/pack.13

However, if the sales force is roughly proportional to the size of the BU and the proportionality

does not change from one period to the next, our first differencing approach should account for this

missing variable. If however the proportionality does change, but is still proportional to the size of

the BU, inclusion of the lagged size should act as a reasonable proxy (we also included the lagged

size of the firm rather than just that of the BU and it did not change our results in any meaningful

way). Thus, our first remedy is to use a first difference estimation, which should account for factors

not changing over time but affecting both revenue sales and new launches.

However, the first difference equation cannot be estimated consistently by OLS since now ∆εbt =

εbt − εb(t−1) is correlated with ∆gb(t−1) = gb(t−1) − gb(t−2) because gb(t−1) depends on εb(t−1) per

the initial specification. To this end we use the time series dimension of the panel and obtain

instruments for the change in the lagged dependent variable by following Anderson and Hsiao

(1982). Specifically, for m = 1, we can instrument ∆gb(t−1) with gb(t−2) since the latter term is

uncorrelated with ∆εbt by construction, and for m > 1, Anderson and Hsiao propose other lagged

dependent variables as instruments for themselves, i.e., that they can be treated as exogenous.

A second potential source of endogeneity is due to sample selection associated with survival. As

derived by Jovanovic’s model of firm efficiency, and verified in many empirical models, survival will

increase with age and size of the firm (Jovanovic, 1982, Dunne et al., 1988, Dunne and Hughes,

1994, Phillips and Kirchhoff, 1989, Baldwin and Gorecki, 1991, Audretsch and Mahmood, 1994).

Alternatively, it may be that new small firms grow slowly with age, not necessarily due to cost

differences, but because of differences in demand side fundamentals such as consumer experience

with newer products, and they catch-up if they initially survive the lack of demand for their prod-

ucts. Either way, it may be true that small and innovative start-up firms grow faster, and if they

13Pharmaceutical firms use various marketing instruments such as giving free samples, “detailing” physicians, advertising

in professional magazines, sponsoring at conferences, and in the case of US and New Zealand, also engage in direct-to-consumer

advertising. While it is well established that the overall marketing expenditures are high in this industry (see Hurwitz and

Caves, 1988, Manchanda and Honka, 2005), there is also some documentation over how they change over life cycle of a product

and with new introductions. Huskamp et al. (2008) find that firms facing imminent generic entry that launch a new formulation

shift promotional spends from the original drug to the new formulation, and do so prior to generic entry. They also report

that the overall promotional expenditures for the molecule decrease after generic entry takes place. Landsman et al. (2003,

p.206) also report that firms spend largest portion of marketing budget on physician detailing at the time of a new launch.
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do not launch new products/packs, they do not survive. Then if we were observing only surviving

BUs, our coefficients would be biased downwards. Fortunately our data does not suffer from this

selection problem as we observe all BUs, and not just those that survive the entire duration. In

fact when we restrict the analysis to only surviving BUs, the sample looks more like the established

bigger BUs, and the estimated marginal effects move in the anticipated direction.

Finally, the third source of endogenity is the potential reverse causality, where BU’s that grow more

are the ones that introduce more products and packs (Coad and Rao, 2010). In turn, this implies

that E(∆pb(t−l),∆εbt) 6= 0 and E(∆vb(t−l),∆εbt) 6= 0, and obviously E(∆(pb(t−l)× vb(t−l)),∆εbt) 6= 0,

with l = {0, 1} in the original levels equation. Thus, we need to treat ∆pbt, ∆vbt, their interaction

term, and in some specifications their lagged values as endogenous variables (in addition to ∆gb(t−1)

already discussed above).

To address these concerns, we use instrumental variables which are constructed as the average

number of products and packs in other closely related business units of the same firm (defined

as counts in those ATC4s that are within the same ATC2 level classification), along with their

interactions and lagged values. Details on constructing the exact variables and variation in them

are in the Appendix A.3. For these additional instruments to work however, two conditions must

hold. First, a firm’s propensity/ability to introduce additional products and varieties is driven by

factors that are common across its various BUs, and hence the number of products and varieties are

correlated across BUs. These correlations could arise due to firm level access to the same capital

markets, common large chemical libraries from which they draw their search for a new product (see

Thomke and Kuemmerle, 2002), common legal and product development departments dealing with

market approval and other regulatory needs.

The second assumption (giving exclusion restriction) is that any changes in the number of products

and varieties in one BU do not directly affect growth in another BU. For instance, boost in sales

in another unit due to introduction of new products/varieties is not used to cross-subsidize mar-

keting efforts in the reference BU which in turn would affect growth. Our instruments would also

fail the exclusion restriction if there is significant brand or firm loyalty among prescribers across

therapeutic classes. For example, if a new drug is introduced by a BU and is indeed a great success,

it generates brand loyalty so that patients also start purchasing drugs by the same firm in other

therapeutic classes as well. Indeed Bernard et al. (2018) show that when there are demand-scope

complementarities, an increase in a firm’s total product scope can increase demand for all of the

firm’s other products, and find evidence from Belgium manufacturers exporting own and sourced

products. However, given that we focus on prescription drugs and not over-the-counter medication,

we assume that physicians are guided by prescribing rules within NHS, and are strongly encour-

aged to prescribe by international non-proprietary name of the drug rather than by proprietary
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brand/firm name (see for instance Rawlins, 2015), and hence may be less susceptible to brand loy-

alty across therapeutic classes.14 In fact, in many cases it may not even be the same physician who

prescribes medication for different health issues across therapeutic classes: a specialist dealing with

children’s ADHD and prescribing drugs for that treatment may not have any similar experience

or exposure to successful drugs launched by the same firm in a different class. The more distinct

the therapeutic classes, the less likely the risk of brand loyalty, but then the weaker may be the

instrument as well (we discuss this further in the appendix).

However, a more serious limitation of our instruments is that our strategy does not work for firms

with single BUs. Restricting the analysis to firms with more than one BU may introduce other

selection biases while constructing instruments from more aggregated ATC2 classes can pick up

effects driven by other factors. Thus, we provide two sets of results: by restricting the analysis to

only those BUs that operate in more than one ATC4 class, but also on the full sample and ignoring

the third potential source of endogeneity. As we discuss later, the results from the two cases are not

very different and hence we prefer the analysis with the full sample. Finally, we provide additional

evidence for the first assumption above via first-stage F-tests, and while the second assumption

cannot be directly verified, we show over-identification tests as suggestive evidence in the appendix

and recognize that there is no true test for IV assumptions.

5. Results and discussion

5.1. Descriptive statistics. Table 3 provides summary statistics for all the main variables of

interest in our empirical model. Consistent with sales over time shown in Figure 2, the average BU

growth over the ten-year period is -0.02, while the average size of a business unit is 11.26 on the log

sales scale (corresponding to £1.34 million per quarter). However, there is significant variation in

both growth and size of BUs cross-sectionally (between BUs) as well as over time (within BUs) but

for growth, the variation is larger over time than cross-sectionally (within SD is 0.71 and between

SD is 0.42). In fact, outside of growth itself, between variation is larger for all variables of interest

relative to variation over time. In terms of the structure, while the average number of products

and varieties per BU are 2.19 and 2.49, the same two variables at the class level are 9.03 and

10.15, implying that there must be roughly three additional firms with an average of just above

two products, each competing with any given BU. The lower part of the table confirms this and

shows that on average there are 4.23 firms per ATC4 class. The inter-class competition ranges

from a monopoly to up to 29 different firms offering their products in the same class of drugs.

In terms of the Herfindahl index, which ranges from 0.13 to 1.00 with an average value of 0.69

14“... the high rates of generic prescribing in the UK owe much to the fact that general practitioner prescribing systems

automatically convert brand names to generic ones” (Rawlins, 2015, p.219).
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Table 3. Summary statistics (within and between variation)∗

Variable Mean SD† Min Max Obs‡

Business Unit level variables

Growth overall -0.02 0.73 -9.26 12.21 53,258
(∆ ln sales) between 0.42 -3.76 3.74 1,960

within 0.71 -8.89 13.59 27.17

Size overall 11.26 2.99 -1.46 18.63 56,070
(ln sales) between 3.28 -0.21 18.25 2,090

within 1.20 -0.47 17.75 26.83

Products overall 2.19 2.38 1.00 31.00 56,070
between 1.97 1.00 28.80 2,090
within 0.56 -5.43 10.57 26.83

Variety overall 2.49 4.75 0.00 62.00 56,070
between 3.91 0.00 54.35 2,090
within 1.26 -19.26 26.74 26.83

Parallel imports overall 0.32 0.47 0.00 1.00 56,070
(sales proportion) between 0.38 0.00 1.00 2,090

within 0.22 -0.65 1.30 26.83

Generics overall 0.23 0.42 0.00 1.00 56,070
(sales proportion) between 0.40 0.00 1.00 2,090

within 0.10 -0.74 1.20 26.83

Price overall -.73 2.07 -7.28 7.98 56,070
(ln BU avg price) between 2.16 -7.18 7.69 2,090

within 0.37 -5.37 3.15 26.83

Class level (ATC4) variables

Products overall 9.03 13.30 1.00 131.00 13,717
between 12.68 1.00 117.25 385
within 1.86 -10.35 30.65 35.63

Variety overall 10.15 21.66 0.00 220.00 13,717
between 20.34 0.00 175.03 385
within 3.96 -45.25 59.67 35.63

Herfindahl overall 0.69 0.28 0.13 1.00 13,717
Index (HHI) between 0.26 0.16 1.00 385

within 0.10 0.19 1.23 35.63

Number overall 4.23 3.96 1.00 29.00 13,717
of Firms between 3.80 1.00 25.88 385

within 0.74 -0.50 8.58 35.63

∗Variation over time for a given individual is called within (W) variation, and variation across
individuals (cross-section) is called between (B). Statistics for within are computed by trans-
forming the data by subtracting out the group mean and adding back in the overall mean.
†The overall variation can be approximately expressed as s2O ' s2W + s2B , where each com-
ponent is computed as follows: s2W = 1∑

i Ti

∑
i

∑
t (xit − xi)2; s2B = 1

M−1

∑
i (xi − x)2;

s2O = 1∑
i Ti

∑
i

∑
t (xit − x)2.

‡Observations are listed as overall (M), over number of BUs (m) for between, and average

number over time per BU (T ) for within.

and a cross-sectional SD of 0.10, the UK pharmaceutical industry for the prescription drug market

appears fairly concentrated at the 4-digit ATC level. Nonetheless, about 32% of business units face

some form of competition from parallel importers for one of their own products, and about 23% of

BUs offer some generic product. The (log of) share weighted average price per unit of a drug (for
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instance a tablet) across all drugs within a BU is -0.72 with greater variation between than within

BUs (shares based on revenues).

5.2. OLS estimates. Table 4 provides estimates of select coefficients and marginal effects under

alternative specifications of equation (3) while the full set of regression coefficients are given in

Table B-5 in the appendix.15 Column (1) lists OLS results from a parsimonious specification that

does not include lags of either the dependent variable (growth) or of products and varieties. However,

this specification includes lagged size which, in contradiction to Gibrat’s law of proportionate growth

has a negative and significant coefficient indicating larger growth for smaller business units (see

Simon and Bonini, 1958). This result is also in contradiction to the positive relation between size

and productivity growth at the industry level reported in Pagano and Schivardi (2003).

Regarding the earlier stated hypotheses, note that the number of products and varieties have pos-

itive and significant coefficients which supports hypothesis one. The interaction term between

products and varieties is negative and significant (albeit two orders of magnitude smaller) and pro-

vides support for hypothesis three that the two strategies are substitutes. Further, the coefficient

on products is roughly twice as large as that on varieties and is consistent with hypothesis two.

However, because the interaction term is negative and significant, we also provide marginal effects

in the lower part of the table to see how large is the effect: a one unit increase in products is

associated with a 26.4% increase in growth rate, while a one unit increase in varieties is associated

with 14.3% increase in growth for the BU.16 As we move through other columns in the table with

more controls or alternative estimation strategies, the sign of the coefficients on products, varieties,

the interaction term, and the relative magnitudes of the marginal effects listed at the bottom of the

table help us check if hypotheses one-three still hold up or not. The test for the last hypothesis,

that the marginal effect of additional products and varieties is larger for small BUs relative to large

BUs is post-postponed till we re-estimate the model by sub-samples as given in the last 4 columns

of the table.

In column (2) we provide OLS estimates of a distributed lagged model of the first difference form,

which includes up to four lags of products, varieties, and the interaction of these terms (coefficients

on lagged values are given in Table B-5). By adding these lagged variables to the model, the number

of observations drops from ∼ 49K to ∼ 45K. Column (3) also provides OLS estimates on the first

15All specifications include dummy variables for year and quarter, if the business unit has any sales due to generic products

or due to parallel imports, and class level variables that include one period lag of number of products and varieties by

competitors, number of competitors, and of HHI index for the class. These coefficients have been suppressed in the text but

are given in the appendix.
16For the static model (column (1)), the marginal effect for product is ∂gbt/∂pbt = β10 + β30vbt. We evaluate it at the

sample average value of vbt given in Table 3. The marginal effect with respect to variety is computed in a similar manner.

The standard errors are computed via the ‘delta’ method.
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Table 4. First difference growth models†

OLS IV (4) By sub-samples (IV)

(1) (2) (3) (4) (5) (6) (4S) (4M) (4L) (4X)

sb,t−1: Lagged size -1.06a -1.05a -1.05a -0.76a -0.71a -0.71a -0.77a -0.77a -1.12a -0.79a

(0.016) (0.016) (0.034) (0.099) (0.12) (0.12) (0.13) (0.18) (0.35) (0.10)

pbt: Products 0.28a 0.30a 0.27a 0.26a 0.25a 0.25a 0.58a 0.40a 0.15b 0.15a

(0.041) (0.044) (0.043) (0.044) (0.070) (0.070) (0.10) (0.12) (0.057) (0.024)

vbt: Varieties 0.16a 0.15a 0.14a 0.14a 0.17a 0.18a 0.32a 0.25a 0.079a 0.074a

(0.018) (0.018) (0.019) (0.019) (0.034) (0.035) (0.053) (0.055) (0.021) (0.012)

pbtvbt: Interaction (×10−2) -0.70a -0.70a -0.65a -0.63a -0.77a -0.80a -3.40a -1.60a -0.30a -0.31a

(Products×Varieties) (0.13) (0.13) (0.12) (0.12) (0.26) (0.26) (0.90) (0.54) (0.11) (0.064)

gb,t−1: Growth -0.003 -0.28a -0.34a -0.34a -0.36a -0.19 0.22 -0.29a

(Lag 1) (0.026) (0.098) (0.11) (0.11) (0.12) (0.17) (0.34) (0.098)

x3bt: log Price 0.0072 -0.0016 0.050b 0.027 0.017 0.020 -0.026 0.12c 0.052 0.040c

(Lag 2 log price) (0.027) (0.024) (0.024) (0.024) (0.034) (0.033) (0.028) (0.068) (0.032) (0.023)

Marginal effects of products and varieties ‡‡

Products (Short run) 0.280a 0.201a 0.126a 0.104a 0.106a 0.246a 0.259a 0.130b 0.067a

(0.041) (0.032) (0.021) (0.029) (0.029) (0.043) (0.080) (0.052) (0.011)

Products (Long run) 0.264a 0.435a 0.309a 0.163a 0.146a 0.134a 0.357a 0.403a 0.186a 0.084a

(0.039) (0.056) (0.044) (0.029) (0.049) (0.039) (0.080) (0.103) (0.067) (0.021)

Varieties (Short run) 0.130a 0.102a 0.063a 0.071a 0.071a 0.121a 0.152a 0.069a 0.033a

(0.016) (0.013) (0.009) (0.013) (0.014) (0.021) (0.034) (0.018) (0.005)

Varieties (Long run) 0.143a 0.188a 0.136a 0.065a 0.080a 0.072a 0.129a 0.209a 0.099a 0.031a

(0.016) (0.022) (0.017) (0.013) (0.022) (0.017) (0.039) (0.048) (0.031) (0.008)

Observations 48,799 44,856 42,994 42,994 23,035 23,035 12,567 14,815 15,612 38,345
R-squared 0.510 0.507 0.508 0.502 0.512 0.512 0.556 0.462 0.425 0.561

†Standard errors are in parenthesis and clustered by business unit (firm-ATC4 combination). Superscripts a, b, c indicate
significance at 1%, 5% and 10%, respectively. All regressions include additional controls at the class and BU level, as well as
indicator variables for year and quarter (see Table B-5 in the appendix for detailed results).

Specification (1) does not include any lags, (2) is a distributed lag model and includes up to four lags of products,
varieties and interactions. Specification (3) is an augmented distributed lag model that also includes four lags of the depen-
dent variable (i.e., growth). Specification (4) treats only the first lag of growth as endogenous, (5) treats the first lag of growth,
as well as products, and varieties, and their interaction and all four lags of each of these as endogenous variables (total 16), and
specification (6) treats the first lag of growth and only the contemporaneous values of products, varieties and interaction as
endogenous variables (total of 4 endogenous variables). Specifications (4S), (4M), and (4L) are same as (4), but on sub-samples
by initial size of business unit being (s)mall, (m)edium and (l)arge, while (4X) restricts (4) to BUs that do not exit the sample.

‡‡Marginal effects are computed at the sample mean. They account for the interaction terms, the lagged values of
the variable, as well as the lagged values of growth. Standard errors are computed using the delta method.

difference equation, but now extends the specification to an augmented distributed lagged model

that includes four lags of the dependent variable (growth), and where once again, the coefficients on

additional lags are given in the appendix. The number of observations further decreases to ∼ 43K

due to the addition of these lagged variables to the model.

Note that in moving from a static specification in column (1) to the distributed lagged model in

(2) or to a fully dynamic specification in (3), the coefficient on the size of BU does not change by
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much (-1.06 or -1.05 and significant) nor do the coefficients on contemporaneous values of products,

varieties and the interaction terms. Marginal effects are given in the lower part of the table, but

due to the lagged values of the variables in the dynamic growth models, it is possible to estimate

long run and short run marginal effects separately.17 Observe that the long run marginal effects in

specification (3) are similar to those in the static model, i.e., 30.9% and 13.6% for products and

varieties respectively, but the short run boost in revenue from an additional product or variety is

20.1% and 10.2%, respectively.18 Importantly, hypotheses one-three still hold up with small changes

in the coefficients of products, varieties and the interaction term, while the marginal effects of

products are still larger than that of varieties both in the long and the short run.

5.3. IV estimates. The next three columns re-estimate the dynamic growth model of (3) under

alternative assumptions about the correlation of the error term with right hand side variables.

Column (4) shows the results when only the first lagged value of growth is treated as endogenous,

and accordingly instrumented for, but all other variables are assumed to be exogenous. The lagged

value of growth is treated as endogenous because, as argued earlier, in the first difference form the

first lagged value of the dependent variable becomes correlated with the error term by construction.

Next, column (5) additionally treats the past and contemporaneous values of products, varieties

and their interactions as endogenous, so there are 16 total endogenous variables, while column (6)

treats only the first lagged value of growth and the contemporaneous values of products, varieties

and interaction as correlated with the error term and hence only four variables are treated as

endogenous in this model. Further, in columns (5) and (6) we restrict the sample to where a BU

operates in more than one ATC4 class within the ATC2 due to availability of instruments (recall

we construct the instruments for products and varieties for BU as the average value in other classes

and over time for the same firm, and hence the value is not available if the firm operates in only

one ATC4 class).19

17Column (2) is a distributed lag model and hence the long run marginal effect with respect to a product is given by

∂gbt/∂pbt = β10 + β30vbt +
∑4

j=1(β1j + β3jvb(t−j)) while the short run marginal effect is the same expression as the one given

for the static model in column (1). Marginal effects with respect to variety are computed in a similar manner. Column

(3) is an augmented distributed lag (ADL) model and long run marginal effect with respect to product is ∂gbt/∂pbt =

(β10 + β30vbt +
∑4

j=1(β1j + β3jvb(t−j)))/(1 −
∑4

m=1 γm) with an equivalent expression of marginal with respect to variety.

In the case of the ADL models, if γm is not statistically significant, we set its value equal to zero in the computation of the

marginal effect.
18For the static model in column (1), there is no distinction between short run and long run marginal effects since it is not

built into the specification. However, when comparing the results between static and dynamic models (where the latter does

have this distinction), we choose to interpret the results from the static model as those corresponding to the long run because,

(i) the static model can be seen as an adjustment to long run equilibrium, and (ii) because the static model in (1) can itself

be viewed as restricted version of (3), where the additional coefficients on the lags are constrained to be zero and hence the

expression for the long run marginal effects in (2) and (3) correspond to the marginal effects in column (1).
19An alternative set of instruments discussed earlier is to include BUs that operate within only a single class and to construct

instruments using the average value from other time periods. Results from these alternative instruments are qualitatively
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In terms of the main results, the largest change in estimated parameters and marginal effects

comes when we move from column (3), where all variables are treated as exogenous, to column (4)

which treats the first lag of the dependent variable as an endogenous variable. The coefficient on the

lagged size drops from -1.05 to -0.76 (though still statistically significant) and that on lagged growth

increases in magnitude from -0.003 and not significant to -0.28 and significant and with almost no

change in the lagged coefficients for products and varieties. However the long run marginal effects

with respect to products and varieties (computed at the sample mean), drop to roughly half their

previous values, i.e., from 30.9% and 13.6% in column (3) to 16.3% and 6.5% in column (4).

The results in the next two columns with either all variables related to products and varieties and

their interactions are endogenous (column 5), or just their contemporaneous values are endogenous

(column 6) are generally similar, while the marginal effects with respect to products decrease slightly

and those with respect to varieties increase. We verified that this additional change in coefficients

and marginal effects computed at the mean of the sample is mostly driven by change in the sample

(instead of nearly ∼ 43K observations in (4), we have about ∼ 23K in (5) and (6)) rather than due

to any additional endogeneity of products and packs by restricting (4) to the sample.20 Regardless

of which specification we use, coefficient signs and marginal effects are consistent with hypotheses

one-three (we look at difference in magnitude of marginal effects with respect to products and

varieties, and if the difference is statistically significant, in the next section).

For specifications (4), (5) and (6), results related to the first stage F-statistics (weak instruments

test), under identification and over identification are given in the appendix in Table B-6. In all

cases the first stage F-statistics suggest that the instruments are not weak as the relevant F-values

are always above 10, and in all three specifications, the null of under identification is rejected and

in models (5) and (6) the null of over identification in not rejected (model 4 is just identified so the

test is not available). Similar tests for the specifications by sub-samples (4S) through (4X) are also

summarized in the same table and do not point to any problems with these instruments.21

similar, but since their validity is suspect, we prefer to restrict the sample to firms that operate in more than one ATC4 class,

and not use variation over time alone to construct the instruments.
20For instance, if we re-estimate (4) with the restricted sample, the four marginal effects for specification (4) become 0.104,

0.135, 0.054, and 0.055 respectively, which are very close to those of specification (6).
21Since our additional instruments for specifications (5) and (6) rely on inter-class, intra-firm correlation in capabilities,

clustering the standard errors at sub-firm level may be masking a weak instruments problem (we cluster at the BU level

which is defined via Firm*ATC4 interaction). To check if this is so, we re-estimated all the models but clustered either at

the firm level or at the therapeutic class level. Neither of these alternative clusterings resulted in first stage statistics that

would indicate that the instruments are weak. The entire first stage results, along with under and over identification tests

with alternative clustering at either the firm level or the therapeutic class level are summarized in Table B-7. Overall, the

statistical tests summarized in these tables lend support to these instruments as valid and relevant, and that in first difference

form (and after treating lagged growth as endogenous) there is perhaps no additional endogeneity concern for products and

packs.
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Observe also that coefficients related to products and pack varieties do not change much once we

treat these additional variables as endogenous. Indeed a Hausman test between specifications (4)

and (5) (i.e. the vector of contrasts between these specifications and the so-called endogeneity test)

does not reject the null of the exogeneity of these additional 15 variables (the χ2(15) is 17.22 with

an associated p-value of 0.306). This does not mean that the endogeneity is not present, but rather

if present, it is mild enough that it does not appear to have a significant effect on the estimates of

the regression coefficients. Given that there is not much difference in the estimated parameters and

marginal effects in the three models (especially after we account for sample size differences), we use

specification (4) as the preferred model and discuss further results in light of this specification (we

do however also provide additional results by specification (6) in the appendix).

5.4. Marginal effects. Due to the interaction term between products and varieties (which are

significant in all models), the marginal effects are not constant. For instance, the marginal effect

with respect to products is a function of varieties, and similarly the other way around, and this is

true for both the long run and short run marginal effects. Figure 3 plots the estimated marginal

effect of products for a range of observed values of varieties, and similarly, the marginal effect of

varieties for a range of values of products. To be clear, the graph shows ∂gbt/∂pbt on vertical axis

plotted against values of vbt and also ∂gbt/∂vbt plotted against pbt (also recall that our pack variety

measure starts at zero as it is defined as total number of products minus total number of packs,

and hence for a BU with one pack for each product, pack variety is zero). The marginal effects are

for both the long run (left panel) and short run (right panel), and the vertical error bars show the

95% confidence intervals.

Figure 3. Marginal Effects – Products and Varieties
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Consistent with hypothesis one, each of the four marginal effects are positive and significantly

different from zero for a range of observed values of products and varieties and not just at the

sample mean values of 2.19 and 2.49. Equally important, the negative slopes of these graphs imply

that the impact on growth from an additional product is smaller if the BU has many pack varieties

than if it had fewer pack varieties (hypothesis three). Similarly, the marginal with respect to pack

varieties is diminishing in products. Both in the long and shot run, the marginal effects with respect

to products is higher than that of varieties and the non-overlapping error bars indicate that these

differences in marginal effects are statistically significant over a range of values, i.e., we do not reject

hypothesis two. However, the figure also shows that while there is a (statistical) difference in the

long and short run marginal effect of additional products, there is virtually none in the long and

short run for varieties. In turn, these imply that the boost in sales from additional pack varieties

are smaller but more immediate, whereas those from introducing additional products are larger,

but also over a longer period of time.

5.5. By subsamples. We next turn to hypothesis four. So far our analysis controls for size of

the business unit but does not allow for the impact of products and varieties on growth to vary by

the size of the business unit (see Belenzon and Patacconi (2014) for differential effects of patents

and publications by firm size). To study this effect, one possible extension is to allow for an

interaction between (lagged) size and products and varieties so that the marginal effects can vary

by size. Instead, due to the richness of our data, we allow for more flexible version by re-estimating

specification (4) on separate sub-samples by size, which in turn let all coefficients vary by size, rather

than just those related to products and varieties. Columns (4S), (4M) and (4L) in Table 4 display

estimates from sub-samples by business unit size classified as small, medium and large respectively

(recall that the classification is based on tertile distribution of the initial log size). The appendix

provides additional results for sub-samples based on specification (6).

The change in the estimated coefficients for the relevant variables are substantial, both when the

comparison is done within the sub-sample of class sizes and when it is set against the entire sample

displayed in column (4). The coefficients on products, varieties and interactions increase in mag-

nitude for small business units and decrease for large business units. For instance, in column (4)

the coefficient on varieties is 0.14 but this increases to 0.32 and 0.25 for small and medium size

BUs respectively (4S, 4M), and decreases to 0.08 for large BUs (4L). Similarly, the coefficient on

products also increases for small and medium size BUs (0.58 and 0.40 respectively) but decreases for

the large BUs (0.15). In fact, consistent with hypothesis four, the long run marginal effect of new

products is positive and much greater for small BUs than for large BUs. On the other hand, the

marginal impact of additional variety on growth is much smaller and was not statistically different

for small vs large BUs, and hence does not support the hypothesis.
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While several studies have found evidence supporting growth by small firms (see for instance Calvo,

2006) or at least for short periods after birth (e.g. Lotti et al., 2003), our results shed further insight

into this mechanism for growth: the returns in terms of growth from introducing a new product

are much larger for small BUs than for larger ones. This could be because smaller firms (in our

case smaller BUs) introduce more radical innovations relative to their counterparts. From our data

we cannot attest to the type of additional drugs launched by BUs, i.e., how radically differentiated

they are in comparison to their existing portfolio of drugs. However, we find that smaller BUs

focus more on new drugs relative to pack varieties, while larger BUs have greater pack variation per

product (packs per product ratio is 2.68 for large BUs and 1.70 for small BUs). Additionally, we

find that when a small BU introduces a new drug, there are relatively fewer pre-existing drugs in

the ATC class, relative to when a large BU introduces a new drug: when a small BU introduces a

new drug, the median (mean) number of drugs already in class are 13.5 (22.6) while similar numbers

for a large BU are 28 (38.5). If relative entry sequence is indicative of novelty, these statistics are

suggestive that small BUs are willing to take risks and hence perhaps introduce more radically

different drugs. This would be consistent with Akcigit (2010) and Akcigit and Kerr (2018) who find

that smaller firms produce higher quality innovations (as measured by citation counts), or more

‘external’ vs ‘internal’ innovations (i.e., new products vs improvements of product lines) and with

Caggese (2019) who reports that small firms undertake more radical innovation.

Finally, in column (4X) we consider one additional sub-sample; only those business units that

survive all the way to the end of our observational window. Business units that do not survive

are smaller, have fewer number of products and packs, and experience negative growth compared

to their surviving counterparts (and these differences are statistically significant), which is similar

to findings reported elsewhere in the literature (see for instance Agarwal, 1997). Accordingly, we

find that the coefficients on products and pack varieties, as well as marginal effects in the short

and long run are similar to those reported earlier for large business units. This result is consistent

with that reported by Disney et al. (2003) who find that in the UK manufacturing sector, small

entrants are more likely to fail than their larger counterparts, and that the hazard declines if there

is fast growth. Our results using BU analysis suggest that this fast growth for small firms may be

precisely due to product and pack launches as shown in column (4S).

In line with hypothesis one, we find that both types of innovations have a positive impact on sales

growth. Furthermore, the findings that a new product leads to substantial growth in the short and

long run, whereas a new pack variety only produces a short-term effect with no additional impact

on growth over the long run confirm hypothesis two. The negative coefficient on the interaction

between products and varieties corroborates hypothesis three. We also find that in the British

pharmaceutical sector, smaller business units grew more than larger ones. Equally important, as
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put forward in hypothesis four, for an existing combination of products and varieties, an additional

product may be more profitable, vis-a-vis opportunity for growth, for the smaller business units

than for larger ones. On the other hand, the difference in marginal effects with respect to pack

variety is much smaller relative to products, and also does not differ by size of the business unit.

5.6. Quantity and price. The foregoing analysis shows that product and pack varieties are posi-

tively associated with revenue sales growth. Since revenue is quantity times price, to check if this

association in growth is via increase in price, in quantity demanded or both, we estimated auxiliary

regressions using price and quantity indexes on counts of products and packs. The quantity index

was computed as the ratio of revenue sales to a price index for the BU, where the latter itself

was computed as a share weighted average price per unit. Simple reduced form regressions (not

shown here in interest of space) of log of quantity index and log of price index on products, pack

varieties, and time trends show strong positive associations of these variables on both the price

and quantity (regressions included BU fixed effects, polynomial time trends and clustered standard

errors). Further, we also estimated a growth model identical to the one in specifications (4) and

(6) above, but using change in quantity index rather than revenue as a measure of growth. For the

equivalent of specification (4), estimates for quantity growth model were very similar to the revenue

growth model, with marginal effects being 9.0% and 14.7% for products (short run and long run

respectively) and 5.5% and 6.2% for varieties (short run and long run respectively), indicating that

new introductions affect quantity demanded as well as prices.22

5.7. Robustness to OTC and non-reimbursable drugs. Recall that we have excluded all

drugs from analysis that were over-the-counter or not reimbursable by NHS even though sales for

those are available in our data. Primary reason for exclusions was that IMS does not cover direct

sales from manufacturers to hospitals or to non-pharmacy outlets and hence our data on OTC and

non-reimbursable drugs is incomplete. Habl et al. (p.707 2006) report that in 2005 total OTC or

self-medication market represented about 12.03% of all pharmaceutical sales in the UK. For the

same year, our data which only records sales to pharmacies and doctors’ offices, shows that OTC

and non-reimbursable make up 7.85% of all sales (for the full 10 years they are 13.63% of all sales

in our data). Thus, based on 2005 sample, our data would be missing about 4.2% of sales which

are presumably to hospitals and grocery stores etc. Additionally, we also omitted these sales as

these outlet markets may be fundamentally different from the prescription drug market covered by

pharmacies. Nonetheless, ignoring these outside sales not recorded in the data, we re-estimated the

models by including OTC and non-reimbursable drugs. Marginal effects from specifications (1), (4)

and (6) are given in Table 5 (and for ease of comparison, those from the original data are also listed

22The marginal effects for equivalent of specification (6) for quantity growth were 8.5%, 14.2% for products (short run and

long run respectively) and 7.1% and 8.0% for varieties (short run and long run respectively).
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in the same table). The marginal effects are fairly close to the original estimates though slightly

smaller than before.

Table 5. Comparison with OTC/Non-Reimbursable Included∗

(1) (4) (6)

Original With Original With Original With

Products (Short run) 0.126a 0.108a 0.106a 0.104a

(0.021) (0.015) (0.029) (0.022)

Products (Long run) 0.264a 0.239a 0.162a 0.137a 0.134a 0.138a

(0.039) (0.028) (0.029) (0.022) (0.039) (0.032)

Varieties (Short run) 0.063a 0.053a 0.071a 0.057a

(0.009) (0.006) (0.014) (0.010)

Varieties (Long run) 0.143a 0.125a 0.065a 0.053a 0.072a 0.059a

(0.016) (0.013) (0.013) (0.011) (0.017) (0.011)
∗ ‘With’ refers to sales data inclusive of all OTC and other non-reimbursable drugs sold in UK pharmacies
and doctors’ offices. ‘Original’ refers to the original data not inclusive of these additional sales.

5.8. Robustness to generics and unidentified generic manufacturers. In the preceding re-

sults, the regression coefficient for generic products is not significant (x2bt). Note that this variable

is coded as a 1/0 dummy indicating if the BU has any sales due to generic drugs. If instead we

construct it as share of sales that are due to generic drugs, the regression coefficient changes but

is still not significant in any of the models. Further, the marginal effects for products and varieties

are virtually the same (we verified this for specifications (1), (4) and (6)). Similarly, if we drop this

variable from the regressions entirely, the marginal effects reported earlier remain unchanged. In

interest of space we do not show them here.

However, recall that our data does not separately identify all generic manufacturers (see footnote

8 in the main text): for some manufacturers producing only generic drugs we do not know their

identity, and hence all such manufacturers within a given ATC4 class are treated as one firm.

Clearly any additional drugs introduced by these BUs are not ‘innovations’, since by definitions

they are generic drugs. Same goes for drug introductions by manufacturers with known identify

when they introduce a drug which is a generic. If we remove all such observations and re-estimate

the models, the marginal effects for products increase slightly, but not much for pack varieties. We

show in Table 6 the marginals from specifications (1), (4) and (6) with and without these additional

observations.
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Table 6. Comparison with generics and unknown manufacturers excluded∗

(1) (4) (6)

Original Without Original Without Original Without

Products (Short run) 0.126a 0.153a 0.106a 0.129c

(0.021) (0.036) (0.029) (0.067)

Products (Long run) 0.264a 0.338a 0.162a 0.212a 0.134a 0.162b

(0.039) (0.067) (0.029) (0.051) (0.039) (0.080)

Varieties (Short run) 0.063a 0.073a 0.071a 0.082a

(0.009) (0.013) (0.014) (0.020)

Varieties (Long run) 0.143a 0.160a 0.065a 0.099a 0.072a 0.106a

(0.016) (0.023) (0.013) (0.020) (0.017) (0.028)
∗ ‘Without’ refers to sales data not including unknown generic BUs or observations from BUs if they produce
any generic drugs. ‘Original’ refers to the original data not inclusive of these additional sales.

6. Conclusions

Our paper contributes to the innovation-growth literature in various ways. First, we map innovative

output rather than input to growth, and highlight the fact that in the pharmaceutical sector we

have different types of innovations which differ in their appropriability conditions, and hence may

have differential impact on growth (Tavassoli and Karlsson, 2015). Product innovations are drugs

with new molecules or formulations, which often enjoy patent and marketing exclusivity, and can

serve a patient base for which earlier drugs were less suitable. These types of innovations differ from

marketing innovations, such as a new pack that varies by size or strength and could be introduced

due to price discrimination motivation. These pack varieties will not necessarily have any additional

marketing exclusivity associated with them. Heterogeneity in these sources of innovations can have

an asymmetric impact on revenue growth, and in this work, we emphasize this aspect.

A second contribution is that we refine the empirical analysis at the business unit level rather than

at firm level. This distinction is important, since the contribution of each innovation to a business

unit growth can get lost at the firm level as many business units not innovating can wash it out. This

in fact may be a reason why the literature has not found a robust link between innovative activities

and firm performance (for a review, see Coad, 2009, Audretsch et al., 2014). Aggregation across

heterogenous sub-markets in which a pharmaceutical firm may be operating, i.e., vastly different

therapeutic classes, may mask the true relationship between innovative outputs and growth, a point

made earlier by Corsino and Gabriele (2011) in a different setting. A fundamental question then is

whether the lessons learnt in this current research about the link between innovation and growth

at the business unit level imply more generally similar relationship at the firm level? Our data
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indicate that large business units are associated to firms that are almost double the size of firms

associated to small business units. Industries where sub-markets have little or no heterogeneity in

products or services, firm and business unit level analysis ought to give similar conclusions. However,

when there is significant variation in product sub-markets, inferring links between innovation and

growth from business unit level analysis to firm level may not be straight forward. Nonetheless,

in our view, in such cases the appropriate analysis is at a more disaggregated level. For instance,

in telecommunications, it may be more useful to study the output innovations within sub-sectors,

such as wireless communications, processing systems, long distance carriers, broadband and data

services etc. and linking those to specific units of AT&T, Verizon, Vodafone etc. that are active in

these areas, rather than overall innovative outputs and firm level revenue changes which could be

driven by many other factors in these firms.

Finally, our analysis adds to the literature on growth-innovation link by firm size, albeit we do so

in the context of pharmaceutical business units and by type of innovations (see Coad, 2009). As

pointed out in Pagano and Schivardi (2003), small firms are important for job creation and growth,

as they intensify competition. In our exposition, we showed that small entities (small business

units) are able to get higher returns from innovations, vis-à-vis growth opportunities, particularly

product innovations, compared to their larger counter parts. In part this may be because they

introduce more innovative products, as for instance indicated by entry order of their products in

the therapy class (but it could also be due to other factors not analyzed here, for instance better

management or market intelligence). The fact that small business units receive a higher return from

product innovations than large business units are evocative of a dynamic market. Also, our finding

that new drug introductions generate long run business-unit revenue growth is suggestive that the

pharmaceutical market in the UK, through appropriability conditions, is endowed with powerful

tools to expand, even when patient bases in therapy class may be slow to grow.

After an initial descriptive analysis, we used reduced form linear dynamic revenue growth models

to explore how the number of drugs and pack varieties trigger business units’ growth. Looking at

both long and short run, we find that both product and marketing innovations have a significant

impact on revenue growth, with a magnitude larger for new drugs than new packs. A finding of

interest is that new products generate persistent growth – evidence that product innovation is a

robust driving force for business unit growth – whereas marketing innovations contribute only to

short run growth. However, as we emphasize in the paper, producing only short run growth is not

per se a bad strategy. In fact, due to price regulation for branded drugs, marketing innovations can

be a profitable short-term business strategy, as the cost of introducing a new pack is likely not to

exceed that of introducing a new drug.
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There are several limitations of our work that suggest extensions. While we control for competition

using a HHI index at the class level, we have not allowed for an interaction between heterogeneous

innovation and competition. Mazzucato and Parris (2015) have studied (for high-growth firms) the

effect of R&D investments on growth during periods of intense and soft competition. One could

go one-step further and test whether the heterogeneous effect of different innovative outputs on

growth is affected by competition, or market structure more generally. This could be executed

using different periods of competition, as in Mazzucato and Parris (2015), or by interacting an

index of competition with innovative outputs/inputs. Alternatively, it would be useful to study

the growth-innovation link in the context of endogenous market power and exit of non-innovating

business units. A related possible extension of this study is an investigation of the asymmetric

effect of innovation for high-growth and low-growth business units, using a quantile regression as

in Coad and Rao (2008) and Capasso et al. (2015). This experiment could be extended to compare

growth for top firms/business units (top 10, top 20, and top 50) and study whether skewness of size

is informative on the impact of innovative outputs on growth.

In our analysis we focused on innovation affecting growth, and while we acknowledge the reverse

causality and attempt to correct for this source of endogeneity, we do not explicitly model what

type of business units are more likely to introduce innovations. Nor do we fully investigate whether

the novelty of innovations differ by business unit characteristics, or how these characteristics may

interact with market structure to determine future innovation. A conclusion from this study is to

facilitate introduction of new drugs relative to pack variation. However, there is need for further

research that separates out the types of new drug introduction, distinguishing between radical inno-

vations and small incremental variations of existing drugs such as me-too drugs, or those introduced

as part of a product hopping strategy (Hemphill and Sampat, 2012, Bokhari and Fournier, 2013).

This latter may also have some anticompetitive effects and it would be important to test for the

separate effects that the two have on growth, with particular focus on small versus large firms (or

business units). We hope to investigate some of these issues in future research.
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Appendix A. Appendix

A.1. Product differentiation and price discrimination (Example). To get intuition as to
why an additional product or a new pack may be a source of increased revenue and how they may
be substitutes, consider a simple example where a monopolist faces three consumers who differ
in their valuation for a tablet and an extended release version (XR) due to differences in health
conditions. Suppose further that additional packs of the tablet offer an instrument that allows for
price discrimination (for simplicity, first degree in the example below). Assume also that marginal
cost for either formulation is zero.

Consumer Tablet (valuations) Tablet XR (valuations)
A 150 100
B 100 150
C 10 100

In the baseline case, the monopolist has only one formulation, tablet, which she sells at a uniform
price (i.e. no additional packs available). Then she would set a price of 100 and earn a revenue of
TR = 200. Consumer C would be priced out of the market.

We now compare this benchmark to three cases: (i) a new XR formulation is available, (ii) additional
packs for original tablet are available and hence price discrimination (PD) is possible, and (iii) both
strategies can be employed (but additional packs are only for the original tablet).

(1) New XR. It is easy to see that by setting a price of 100 for the XR version, and increasing
the price of the tablet to 150, the monopolist would earn TR = 350. There is both a market
expansion effect (C now purchases the capsule) and a price increase effect (price of tablet
increases by 50) and the TR changes by 350-200 = 150. With the additional product, the
consumers with lower valuation for the original product (consumers B & C) switch to the
new product where they have higher valuation, while consumer A stays with the original
product.

(2) PD for original tab via additional packs: If the monopolist can perfectly price discriminate
then the prices would be 150, 100 and 10 for the three consumers for a TR = 260. Relative
to the base case, revenue increases by 60 and market expands (C is not priced out) though
the average price decreases from 100 to (150+100+10)/3 = 86.67. Alternatively, if there was
only limited scope for price discrimination, so that only two different prices can be offered
(say there are only 2 pack variations available), then TR = 250, and relative to base case,
the increase in revenue of 50 is via increase in average price (100+150)/2 = 125.

(3) New XR and PD for the original tablet. At a uniform price of 150 for XR (or an epsilon
below that), consumer B would switch to it, while A and C will continue to buy original
tablets at discriminatory prices of 150 and 10 for a TR= 310. Compared to the baseline
case, TR changes by 310 – 200 = 110. However, this is not optimal pricing. If possible,
the monopolist would prefer the low value consumer C to switch to XR as well, and can
force them to do so by setting higher discriminatory price for C for tablet just above 10
and setting a lower uniform price of XR to 100. In this later case, her revenue would again
increase to 350, which is same as that of the second scenario of only introducing an XR and
demand does not expand.

This is obviously not an exhaustive example, but it is clear from it that introducing a new product
or a pack can increase revenues, while doing both simultaneously may not necessarily be any better
than just product differentiation and PD separately. With product differentiation, the market is
segmented , and low value consumers switch to the new product if they value it more. If there is
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also PD in the original product, some low value consumers may not switch to the new product since
they are already getting the product at their valuation (unless forced to do so for C as in case 4
above), in which case implementing both strategies simultaneously may not be optimal relatively
to implementing them separately.

A.2. Variable definitions and correlations. Table A-1 provides a list of all variables used in
the regressions.

Table A-1. Definitions

Variable Definition

(1) sb,t−1 Size: measured as ln sales (lagged one period).

(2) pbt Products: Count of total products (drugs) in the BU. A product is counted
as a distinct product if either the molecule or the formulation (tablet, capsule,
extended release etc.) changes. Alternative strengths or pack sizes are not
counted as different products.

(3) vbt Pack Varieties: Total number of packs offered by the BU minus the number of
products. Thus vbt = #packsbt − pbt where #packs is count of items offered
by the BU when either the molecule or formulation or strength or size differs.
Example: If a BU has 4 different products and each comes in exactly one type of
pack then vbt = 0. If one of the 4 products is offered in two different strengths,
then vbt = 1.

(4) pbtvbt Interaction of (2) and (3) above.

(5) gb,t−1 Growth (lagged): Difference of log revenues over two consecutive periods lnRbt−
lnRbt−1 where lnRb. is log of revenue in two consecutive periods.

(6) x1bt PI: 1/0 dummy set to 1 if the BU has sales due to parallel imports.

(7) x2bt Generic: 1/0 dummy set to 1 if the BU has any sales due to generic drugs in its
profile.

(8) x3bt Log price: Log of weighted prices of counting units in the BU. A counting unit
is the smallest denomination of a drug, for instance an individual pill in a pack.
The weights are derived from share of revenue associated with each pack in the
BU.

(9) x1c(t−1) Products in class. Similar to pbt but counted at class level (ATC4) rather than
at the BU level.

(10) x2c(t−1) Pack varieties in class. Similar to vbt but counted at class level (ATC4) rather
than at the BU level.

(11) x3c(t−1) HHI at class level. Herfindahl index at class level computed from BU revenue of
all BUs in the ATC4 class of the reference BU.

(12) x4c(t−1) Total number of firms in the ATC4 class of the reference BU.

(13) τjt, j = 1, . . . , 13 Set of dummy variables for each year and quarter.

The regressions also included lagged values of some of these variables.
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Table A-2. Correlations (all variables in the main model)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
(1) sb,t−1 1.000
(2) pbt 0.368 1.000
(3) vbt 0.425 0.732 1.000
(4) pbtvbt 0.251 0.845 0.774 1.000
(5) gb,t−1 0.158 0.015 0.012 0.008 1.000
(6) x1bt 0.490 0.181 0.239 0.098 0.002 1.000
(7) x2bt 0.012 0.312 0.227 0.221 0.011 -0.173 1.000
(8) x3bt 0.108 -0.008 0.042 -0.017 0.028 0.007 -0.192 1.000
(9) x1c(t−1) 0.145 0.247 0.232 0.203 -0.016 0.097 -0.021 -0.173 1.000
(10) x2c(t−1) 0.173 0.213 0.332 0.198 -0.015 0.110 -0.012 -0.108 0.853 1.000
(11) x3c(t−1) -0.229 -0.154 -0.157 -0.107 -0.011 -0.154 0.007 0.051 -0.475 -0.413 1.000
(12) x4c(t−1) 0.176 0.242 0.242 0.213 -0.014 0.114 0.001 -0.206 0.914 0.788 -0.590 1.000
(13) gb,t−2 0.121 0.009 0.007 0.005 -0.063 -0.004 0.012 0.041 -0.013 -0.013 -0.009 -0.012 1.000
(14) gb,t−3 0.064 0.004 0.004 0.004 -0.131 -0.010 -0.001 0.027 -0.011 -0.010 0.006 -0.013 -0.116 1.000
(15) gb,t−4 0.043 0.001 0.001 0.001 -0.014 -0.017 -0.003 0.027 -0.008 -0.007 0.010 -0.011 -0.159 -0.083
(16) pb,t−1 0.366 0.996 0.729 0.842 0.015 0.180 0.309 -0.009 0.248 0.212 -0.154 0.242 0.009 0.003
(17) pb,t−2 0.363 0.993 0.726 0.839 0.008 0.179 0.305 -0.011 0.249 0.212 -0.153 0.243 0.008 0.003
(18) pb,t−3 0.360 0.989 0.722 0.836 0.006 0.179 0.301 -0.013 0.250 0.211 -0.152 0.243 0.003 0.002
(19) pb,t−4 0.357 0.985 0.719 0.833 0.006 0.178 0.298 -0.015 0.251 0.210 -0.151 0.244 0.001 -0.003
(20) vb,t−1 0.424 0.732 0.996 0.773 0.009 0.240 0.226 0.040 0.233 0.331 -0.156 0.243 0.005 0.002
(21) vb,t−2 0.421 0.732 0.992 0.773 0.003 0.240 0.224 0.038 0.234 0.329 -0.155 0.243 0.003 0.001
(22) vb,t−3 0.418 0.731 0.988 0.772 0.000 0.240 0.223 0.036 0.234 0.327 -0.154 0.244 -0.003 -0.001
(23) vb,t−4 0.415 0.731 0.983 0.772 0.000 0.240 0.221 0.033 0.234 0.325 -0.153 0.244 -0.004 -0.007
(24) pb,t−1vb,t−1 0.250 0.843 0.772 0.998 0.008 0.098 0.219 -0.018 0.203 0.197 -0.106 0.214 0.005 0.003
(25) pb,t−2vb,t−2 0.249 0.841 0.770 0.996 0.005 0.098 0.218 -0.018 0.203 0.196 -0.105 0.214 0.005 0.003
(26) pb,t−3vb,t−4 0.248 0.839 0.768 0.994 0.005 0.098 0.216 -0.019 0.203 0.195 -0.105 0.214 0.003 0.003
(27) pb,t−4vb,t−4 0.247 0.837 0.765 0.992 0.005 0.097 0.214 -0.019 0.203 0.193 -0.104 0.214 0.002 0.001

(15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27)
(15) gb,t−4 1.000
(16) pb,t−1 0.000 1.000
(17) pb,t−2 -0.002 0.996 1.000
(18) pb,t−3 -0.001 0.993 0.996 1.000
(19) pb,t−4 -0.002 0.989 0.993 0.996 1.000
(20) vb,t−1 -0.001 0.731 0.728 0.725 0.721 1.000
(21) vb,t−2 -0.003 0.731 0.730 0.727 0.724 0.996 1.000
(22) vb,t−3 -0.004 0.731 0.730 0.729 0.727 0.993 0.996 1.000
(23) vb,t−4 -0.006 0.731 0.730 0.730 0.729 0.988 0.992 0.996 1.000
(24) pb,t−1vb,t−1 0.001 0.843 0.841 0.838 0.835 0.774 0.774 0.774 0.774 1.000
(25) pb,t−2vb,t−2 0.001 0.842 0.842 0.840 0.837 0.773 0.775 0.775 0.775 0.998 1.000
(26) pb,t−3vb,t−4 0.000 0.840 0.841 0.841 0.839 0.771 0.773 0.776 0.776 0.996 0.998 1.000
(27) pb,t−4vb,t−4 0.000 0.838 0.839 0.839 0.840 0.768 0.771 0.774 0.776 0.994 0.996 0.998 1.000

Correlations based on sample used in specification (4) in the main analysis. Year and quarter dummies
omitted.

Table A-3. Correlations (∆pb,(t−l) ×∆vb,(t−l))

∆pb,(t−l) ∆vb,(t−l)

t− 1 t− 2 t− 3 t− 4 t− 1 t− 2 t− 3 t− 4
∆pb,(t−l) t− 1 1.000

t− 2 -0.034 1.000
t− 3 0.024 -0.039 1.000
t− 4 0.018 0.023 -0.045 1.000

∆vb,(t−l) t− 1 0.276 0.037 0.041 0.017 1.000
t− 2 0.032 0.268 0.040 0.042 0.054 1.000
t− 3 0.040 0.030 0.263 0.042 0.065 0.051 1.000
t− 4 0.027 0.043 0.024 0.266 0.035 0.066 0.040 1.000
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A.3. Instruments. To construct our instruments we make use of the fact that firms often operate
in multiple ATC classes. In our data, a firm is on average operating in 9.48 different ATC4 classes,
and hence it would appear as nine or ten different business units. Further, the raw correlation
between the number of products produced by a given BU and the average number of products in
all other BUs associated with the same firm is 0.251. Similarly, the correlation for pack varieties
variable across same firm BUs is 0.226. We combine this observation with the assumption that the
idiosyncratic error in the growth equation for a BU is serially uncorrelated and independent across
ATC classes to construct our instruments for products, pack varieties and interactions as follows.
We compute the average value of number of products by the same firm in other related classes,
where related classes are defined as business units within the same two-digit ATC classification.
Specifically, we instrument ∆pbt with ∆p−bt, where p−bt is the firm’s average value of p over time
and over other BUs classes within the same ATC2 class, i.e. excluding the current BU and time
period. Thus we obtain an instrument that varies by the business unit and time and which can be
thought of as the deviation from the BU’s long run steady state average number of products, where
the latter is determined at the firm level in related classes. The raw correlation between pbt and
p−bt is then 0.741. The logic is extended to derive instruments for the lagged values, i.e., ∆p−b(t−1)
as instrument for ∆pb(t−1), as well as for other lagged values of this variable. The instruments for
number of pack varieties and its lagged values are constructed in a similar manner. We also use
the total number of other business units the firm operates in, and its lagged values as additional
instruments. Finally, the instrument for the interaction between number of products and varieties
is constructed as the interaction of the instruments for number of products and those for number
of varieties (and similarly for any lagged values of the interaction term).

Observe that if a firm does not operate in more than one class, we cannot construct an instrument
for its products and varieties in the manner described above. However, to handle such cases, we can
either drop the requirement of going outside the current ATC4 class and just use the average value
from other time periods, or alternatively, use the average value from other time periods and any
other ATC4 classes (i.e., do not restrict to average from the same ATC2 class assuming the firm
operates in some other ATC class). Thus we also experimented with alternative ways of constructing
these instruments by averaging the value of products or varieties over all other ATC4 classes, rather
than just those within the same ATC2 class, or over other time periods except the current time
period. The alternative instruments either turned out to be weak (when we went too wide and did
not restrict to same ATC2 class), or were suspect for validity when we averaged only over other
time periods. The main instruments listed here generally performed well when we restricted the
sample to BUs that operate in more than one ATC4 class in various statistical tests relating to
under and over identification, as well as first-stage weak instruments F-tests.
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Figure A-1. Distribution of Log Sales

Figure A-2. Sales, Products, and Pack Varieties – Overall and for selected ATC4 classes
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A.4. Specification (6) by Sub-samples. This appendix provides estimates of the specification
(6) by sub-samples. Only selected regression coefficients and marginal effects, along with first-stage
statistics are shown.

Table A-4. First difference growth models (6) by sub-samples†

(6) (6S) (6M) (6L) (6X)

Selected regression coefficients

sb,t−1: Lagged size -0.71a -1.02a -0.65a -0.48c -0.86a

(0.12) (0.20) (0.22) (0.25) (0.18)

pbt: Products 0.25a 0.23 0.34c 0.24b 0.095b

(0.070) (0.43) (0.18) (0.11) (0.047)

vbt: Varieties 0.18a 0.28c 0.29a 0.11a 0.068a

(0.035) (0.16) (0.083) (0.042) (0.015)

pbtvbt: Interaction -0.80a 0.044 -2.3b -0.57b -0.19c

(Products×Varieties) (×10−2) (0.26) (5.0) (01.1) (0.29) (0.11)

gb,t−1: Growth -0.34a -0.17 -0.31 -0.37 -0.25
(Lag 1) (0.11) (0.17) (0.22) (0.23) (0.16)

x3bt: log Price 0.020 0.013 0.046 0.026 0.063c

(Lag 2 of log wt. avg price) (0.033) (0.053) (0.044) (0.051) (0.034)

Marginal effects of products and varieties ‡‡

Products (Short run) 0.105a 0.125 0.194c 0.130b 0.047b

(0.029) (0.199) (0.105) (0.059) (0.024)

Products (Long run) 0.132a 0.418c 0.253c 0.131b 0.077c

(0.039) (0.255) (0.133) (0.059) (0.042)

Varieties (Short run) 0.071a 0.152a 0.158a 0.058a 0.034a

(0.013) (0.048) (0.042) (0.020) (0.007)

Varieties (Long run) 0.072a 0.147c 0.237a 0.058a 0.037a

(0.017) (0.076) (0.071) (0.020) (0.013)

Observations 23,035 5,612 8,326 9,097 20,999
R-squared 0.512 0.608 0.459 0.365 0.582

First Stage F-tests
Endogenous Variable(s)
gb,t−1: Growth (Lag 1) 30.39 23.68 15.12 20.31 22.39
pb,t: Products 69.33 13.00 32.35 191.28 58.81
vb,t: Variety 218.1 98.10 86.60 137.30 214.1
pbt ∗ vbt: Interaction 64.16 9.14 25.58 65.17 60.48

Under and Over Identification Tests

Under-id χ2(df) 133.9 (2) 5.00 (2) 10.43 (2) 30.23 (2) 121.02 (2)
P-value < .000 0.082 0.005 < .000 < 0.000
Over-id χ2(df) 1.54 (1) 0.03 (1) 0.59 (1) 1.80 (1) 0.398 (1)
P-vale 0.215 0.855 0.443 0.180 0.528

†Standard errors are in parenthesis and clustered by business unit (firm-ATC4 combination). Superscripts a, b, c indicate
significance at 1%, 5% and 10%, respectively. All regressions include additional controls at the class and BU level, as
well as indicator variables for year and quarter.
The results shown are for specification (6) in Table 4 which treats the first lag of growth as well as contemporaneous
values of products, varieties and their interaction as endogenous. Specifications (6S), (6M), and (6L) are same as (6),
but on sub-samples by initial size of business unit being (s)mall, (m)edium and (l)arge, while (6X) restricts (6) to BUs
that do not exit the sample.
‡‡ Marginal effects are computed at the sample mean. They account for the interaction terms, the lagged values of the
variable as well as the lagged values of growth. Standard errors are computed using the delta method.
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Appendix B. Online appendix

B.1. Regression coefficients. A shorter version of this table is included in the main paper (see
Table 4) where it shows the coefficient of selected variables. This appendix contains regression
coefficients on all the variables.

Table B-5. FD Growth Models†

OLS IV (4) By sub-samples (IV)

(1) (2) (3) (4) (5) (6) (4S) (4M) (4L) (4X)

sb,t−1: Size -1.06a -1.05a -1.05a -0.76a -0.71a -0.71a -0.77a -0.77a -1.12a -0.79a

(Lagged Size of Bus. Unit) (0.016) (0.016) (0.034) (0.099) (0.12) (0.12) (0.13) (0.18) (0.35) (0.10)

pbt: Products 0.28a 0.30a 0.27a 0.26a 0.25a 0.25a 0.58a 0.40a 0.15b 0.15a

(0.041) (0.044) (0.043) (0.044) (0.070) (0.070) (0.10) (0.12) (0.057) (0.024)

vbt: Variety 0.16a 0.15a 0.14a 0.14a 0.17a 0.18a 0.32a 0.25a 0.079a 0.074a

(0.018) (0.018) (0.019) (0.019) (0.034) (0.035) (0.053) (0.055) (0.021) (0.012)

pbtvbt: Interaction -0.70a -0.70a -0.65a -0.63a -0.77a -0.80a -3.40a -1.60a -0.30a -0.31a

(Products×Variety) (×10−2) (0.13) (0.13) (0.12) (0.12) (0.26) (0.26) (0.90) (0.54) (0.11) (0.064)

gb,t−1: Growth -0.0030 -0.28a -0.34a -0.34a -0.36a -0.19 0.22 -0.29a

(Lag 1) (0.026) (0.098) (0.11) (0.11) (0.12) (0.17) (0.34) (0.098)

x1bt: Any PI Sales? 0.12a 0.12a 0.12a 0.11a 0.13a 0.13a 0.16c 0.11a 0.081b 0.099a

(1/0 Dummy, 1 if true) (0.026) (0.026) (0.025) (0.026) (0.035) (0.035) (0.085) (0.037) (0.032) (0.023)

x2bt: Any generic products? -0.0039 -0.099 -0.071 -0.057 0.031 0.034 -0.41 0.24 -0.13b -0.049
(1/0 Dummy, 1 if true) (0.11) (0.088) (0.095) (0.098) (0.12) (0.12) (0.44) (0.22) (0.052) (0.071)

x3bt: Log Price 0.0072 -0.0016 0.050b 0.027 0.017 0.020 -0.026 0.12c 0.052 0.040c

(Lag 2 Wt avg price of BU drugs) (0.027) (0.024) (0.024) (0.024) (0.034) (0.033) (0.028) (0.068) (0.032) (0.023)

x1c,t−1: Products in Class (×10−2) -0.53 -0.63 -0.71 -0.59 -0.37 -0.36 -0.54 0.085 -1.20b -0.74c

(Lag 1 of Products by Others) (0.42) (0.45) (0.46) (0.46) (0.71) (0.71) (1.30) (0.940) (0.510) (0.390)

x2c,t−1: Varieties in Class (×10−2) -0.11 -0.033 0.014 -0.019 -0.46 -0.42 0.41 0.48 -0.32c 0.09
(Lag 1 of Varieties by Others) (0.19) (0.19) (0.20) (0.19) (0.34) (0.34) (0.48) (0.45) (0.19) (0.18)

x3c,t−1: HHI 0.34b 0.30c 0.41b 0.41b 0.30 0.30 0.28 0.68 0.25 0.40b

(Lag 1) (0.17) (0.18) (0.18) (0.18) (0.22) (0.22) (0.18) (0.45) (0.46) (0.17)

x4c,t−1: Firms in Class 0.87 0.61 0.57 0.30 -0.10 -0.061 0.96 -1.30 0.80 0.047
(Lag 1) (×10−2) (0.92) (0.90) (0.91) (0.92) (1.20) (1.30) (2.50) (1.70) (1.10) (0.790)

(Lags)

Observations 48,799 44,856 42,994 42,994 23,035 23,035 12,567 14,815 15,612 38,345
R-squared 0.510 0.507 0.508 0.502 0.512 0.512 0.556 0.461 0.425 0.560

†Standard errors are in parenthesis and clustered by business unit (firm-ATC4 combination). Superscripts a, b, c indicate
significance at 1%, 5% and 10%, respectively.

Specification (1) does not include any lags, (2) is a distributed lag model and includes up to four lags of products,
varieties and interactions. Specification (3) is an augmented distributed lag model that also includes four lags of the
dependent variable (i.e., growth). Specification (4) treats only the first lag of growth as endogenous, (5) treats the first lag
of growth, as well as products, and varieties, and their interaction and all four lags of each of these as endogenous variables
(total 16), and specification (6) treats the first lag of growth and only the contemporaneous values of products, varieties and
interaction as endogenous variables (total of 4 endogenous variables). Specifications (4S), (4M), and (4L) are same as (4),
but on sub-samples by initial size of business unit being (s)mall, (m)edium and (l)arge, while (4X) restricts (4) to BUs that
do not exit the sample.
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Table B-5. FD Growth Models†

OLS IV (4) By sub-samples (IV)

(1) (2) (3) (4) (5) (6) (4S) (4M) (4L) (4X)

gb,t−2: Growth -0.13a -0.34a -0.42a -0.42a -0.41a -0.26b 0.059 -0.37a

(Lag 2) (0.033) (0.087) (0.093) (0.092) (0.12) (0.13) (0.24) (0.086)

gb,t−3: Growth -0.15a -0.28a -0.35a -0.35a -0.33a -0.21b -0.029 -0.32a

(Lag 3) (0.033) (0.065) (0.072) (0.072) (0.093) (0.088) (0.15) (0.066)

gb,t−4: Growth -0.019 -0.076a -0.11a -0.11a -0.11a -0.018 0.063 -0.082a

(Lag 4) (0.012) (0.025) (0.030) (0.030) (0.031) (0.052) (0.065) (0.027)

pb,t−1: Products 0.10a 0.089a 0.081a 0.042 0.077a 0.22b 0.15b 0.019 0.074a

(Lag1) (0.021) (0.021) (0.021) (0.032) (0.026) (0.091) (0.070) (0.017) (0.021)

pb,t−2: Products 0.030 0.059b 0.044b 0.11b 0.070b 0.14b 0.058 0.028 0.031c

(Lag 2) (0.025) (0.023) (0.022) (0.056) (0.029) (0.061) (0.060) (0.030) (0.017)

pb,t−3: Products -0.018 -0.00073 -0.022 -0.033 -0.037c -0.033 -0.015 0.0095 -0.026
(Lag 3) (0.016) (0.016) (0.019) (0.025) (0.021) (0.069) (0.053) (0.019) (0.016)

pb,t−4: Products 0.050 -0.00099 -0.028 -0.021 -0.044c -0.058 0.038 0.0038 -0.041c

(Lag 4) (0.031) (0.019) (0.023) (0.031) (0.024) (0.082) (0.053) (0.018) (0.022)

vb,t−1:Variety 0.033a 0.029a 0.021b 0.020 0.025b 0.048 0.082a 0.010 0.022a

(Lag 1) (0.0088) (0.0086) (0.0088) (0.014) (0.012) (0.033) (0.031) (0.0090) (0.0075)

vb,t−2: Variety 0.90 1.80b 0.66 1.90 0.082 2.80 2.40 1.50 0.50
(Lag 2)(×10−2) (0.79) (0.89) (0.90) (2.30) (1.20) (2.80) (2.20) (1.30) (0.61)

vb,t−3: Variety 0.55 0.42 -0.79 -1.40 -1.40c 0.40 0.30 0.17 -1.20
(Lag 3) (×10−2) (0.61) (0.65) (0.81) (1.10) (0.85) (3.40) (1.90) (0.79) (0.73)

vb,t−4: Variety 1.90a 0.025 -1.20 0.14 -0.68 -2.10 0.48 0.66 -1.70b

(Lag 4) (×10−2) (0.66) (0.66) (0.80) (1.20) (0.88) (3.20) (2.00) (0.73) (0.70)

pb,t−1v3,t−1: Interaction -0.23a -0.20a -0.17a -0.060 -0.21a -1.20 -0.88c -0.034 -0.14a

(Products×Variety, Lag 1) (×10−2) (0.054) (0.051) (0.049) (0.12) (0.075) (0.77) (0.51) (0.037) (0.043)

p2,t−2v3,t−2: Interaction -0.082c -0.13a -0.090b -0.24 -0.13c -0.60 -0.56a -0.062 -0.070b

(Products×Variety, Lag 2) (×10−2) (0.047) (0.049) (0.045) (0.17) (0.064) (0.59) (0.20) (0.060) (0.033)

p2,t−3v3,t−3: Interaction 0.036 0.0071 0.062 0.082 0.10c -0.57 0.051 -0.0046 0.068c

(Products×Variety, Lag 3) (×10−2) (0.037) (0.037) (0.043) (0.084) (0.054) (0.63) (0.27) (0.038) (0.036)

p2,t−4v3,t−4: Interaction -0.11c 0.0035 0.064 -0.059 0.078 -0.51 -0.23 -9.0e-04 0.087b

(Products×Variety, Lag 4) (×10−2) (0.065) (0.042) (0.049) (0.093) (0.057) (0.67) (0.22) (0.033) (0.042)

τ1t: Yr 2004 0.0056 -0.014 -0.068b -0.066b 0.020 -0.048 0.0083 0.025

Observations 48,799 44,856 42,994 42,994 23,035 23,035 12,567 14,815 15,612 38,345
R-squared 0.510 0.507 0.508 0.502 0.512 0.512 0.556 0.461 0.425 0.560

†Standard errors are in parenthesis and clustered by business unit (firm-ATC4 combination). Superscripts a, b, c indicate
significance at 1%, 5% and 10%, respectively.

Specification (1) does not include any lags, (2) is a distributed lag model and includes up to four lags of products,
varieties and interactions. Specification (3) is an augmented distributed lag model that also includes four lags of the
dependent variable (i.e., growth). Specification (4) treats only the first lag of growth as endogenous, (5) treats the first lag
of growth, as well as products, and varieties, and their interaction and all four lags of each of these as endogenous variables
(total 16), and specification (6) treats the first lag of growth and only the contemporaneous values of products, varieties and
interaction as endogenous variables (total of 4 endogenous variables). Specifications (4S), (4M), and (4L) are same as (4),
but on sub-samples by initial size of business unit being (s)mall, (m)edium and (l)arge, while (4X) restricts (4) to BUs that
do not exit the sample.
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Table B-5. FD Growth Models†

OLS IV (4) By sub-samples (IV)

(1) (2) (3) (4) (5) (6) (4S) (4M) (4L) (4X)

(1/0 Dummy, 1 if true) (0.012) (0.023) (0.031) (0.032) (0.063) (0.037) (0.029) (0.023)

τ2t: Yr 2005 -0.029c -0.016 -0.028 -0.071a -0.070a -0.0042 -0.047 -0.024 0.0086
(1/0 Dummy, 1 if true) (0.016) (0.018) (0.018) (0.022) (0.022) (0.036) (0.032) (0.027) (0.017)

τ3t: Yr 2006 0.017 -0.019 -0.0063 -0.021 -0.071a -0.070a -0.018 -0.044 -0.0093 0.038b

(1/0 Dummy, 1 if true) (0.013) (0.016) (0.017) (0.019) (0.023) (0.023) (0.040) (0.033) (0.024) (0.018)

τ4t: Yr 2007 0.023b -0.011 0.00097 -0.017 -0.074a -0.072a -0.011 -0.027 -0.012 0.016
(1/0 Dummy, 1 if true) (0.011) (0.014) (0.017) (0.018) (0.023) (0.023) (0.036) (0.032) (0.026) (0.017)

τ5t: Yr 2008 0.023c -0.011 -0.0018 -0.016 -0.069a -0.067a 0.017 -0.037 -0.023 0.021
(1/0 Dummy, 1 if true) (0.012) (0.015) (0.017) (0.018) (0.023) (0.023) (0.039) (0.031) (0.025) (0.017)

τ6t: Yr 2009 0.0037 -0.026c -0.010 -0.025 -0.077a -0.075a -0.0099 -0.058c -0.013 0.0099
(1/0 Dummy, 1 if true) (0.012) (0.015) (0.017) (0.018) (0.022) (0.022) (0.037) (0.032) (0.023) (0.017)

τ7t: Yr 2010 0.0083 -0.019 -0.0050 -0.017 -0.071a -0.070a -0.0031 -0.033 -0.0099 0.012
(1/0 Dummy, 1 if true) (0.011) (0.015) (0.017) (0.018) (0.024) (0.024) (0.035) (0.033) (0.026) (0.017)

τ8t: Yr 2011 -0.0097 -0.035b -0.016 -0.030c -0.075a -0.074a -0.012 -0.040 -0.030 0.0046
(1/0 Dummy, 1 if true) (0.011) (0.015) (0.016) (0.018) (0.023) (0.023) (0.037) (0.032) (0.026) (0.017)

τ9t: Yr 2012 0.022c -0.0098 0.0021 -0.0086 -0.058b -0.055b 0.030 -0.039 -0.017 0.020
(1/0 Dummy, 1 if true) (0.012) (0.014) (0.017) (0.018) (0.024) (0.024) (0.036) (0.032) (0.025) (0.017)

τ10t: Yr 2013 0.022 -0.0015 0.012
(1/0 Dummy, 1 if true) (0.018) (0.022) (0.023)

τ11t: Qtr 2 0.065a 0.081a 0.072a 0.071a 0.081a 0.081a 0.031c 0.085a 0.088a 0.060a

(1/0 Dummy, 1 if true) (0.0087) (0.0088) (0.0084) (0.0084) (0.012) (0.012) (0.017) (0.016) (0.012) (0.0071)

τ12t: Qtr 3 0.065a 0.055a 0.042a 0.043a 0.045a 0.045a 0.045b 0.044a 0.027b 0.037a

(1/0 Dummy, 1 if true) (0.013) (0.012) (0.0081) (0.0082) (0.011) (0.011) (0.018) (0.016) (0.013) (0.0069)

τ13t: Qtr 4 0.053a 0.053a 0.050a 0.050a 0.060a 0.060a 0.039c 0.071a 0.033a 0.040a

(1/0 Dummy, 1 if true) (0.011) (0.011) (0.0087) (0.0088) (0.012) (0.012) (0.021) (0.015) (0.011) (0.0075)

x0t: Constant -0.094a -0.070a -0.082a -0.067a -0.019 -0.020 -0.084a -0.064b -0.058b -0.072a

(0.011) (0.014) (0.017) (0.015) (0.018) (0.018) (0.030) (0.027) (0.025) (0.015)

Observations 48,799 44,856 42,994 42,994 23,035 23,035 12,567 14,815 15,612 38,345
R-squared 0.510 0.507 0.508 0.502 0.512 0.512 0.556 0.461 0.425 0.560

†Standard errors are in parenthesis and clustered by business unit (firm-ATC4 combination). Superscripts a, b, c indicate
significance at 1%, 5% and 10%, respectively.

Specification (1) does not include any lags, (2) is a distributed lag model and includes up to four lags of products,
varieties and interactions. Specification (3) is an augmented distributed lag model that also includes four lags of the
dependent variable (i.e., growth). Specification (4) treats only the first lag of growth as endogenous, (5) treats the first lag
of growth, as well as products, and varieties, and their interaction and all four lags of each of these as endogenous variables
(total 16), and specification (6) treats the first lag of growth and only the contemporaneous values of products, varieties and
interaction as endogenous variables (total of 4 endogenous variables). Specifications (4S), (4M), and (4L) are same as (4),
but on sub-samples by initial size of business unit being (s)mall, (m)edium and (l)arge, while (4X) restricts (4) to BUs that
do not exit the sample.
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Table B-6. First stage and other tests for instruments

(4) (5) (6) (4S) (4M) (4L) (4X)

Weak instruments tests

Endogenous Variable(s) First-stage F-statistics

gb,t−1: Growth (Lag 1) 59.42 13.45 30.39 37.97 15.19 15.19 31.18
pb,t: Products 37.80 69.33
vb,t: Variety 80.94 218.1
pbt ∗ vbt: Interaction 32.26 64.16
pb,t−1: Products (Lag 1) 64.98
pb,t−2: Products (Lag 2) 86.81
pb,t−3: Products (Lag 3) 84.42
pb,t−4: Products (Lag 4) 91.59
vb,t−1:Variety (Lag1) 76.66
vb,t−2:Variety (Lag2) 74.63
vb,t−3:Variety (Lag3) 70.51
vb,t−4:Variety (Lag4) 72.31
pb,t−1 ∗ vb,t−1: Interaction (Lag 1) 37.18
pb,t−2 ∗ vb,t−2: Interaction (Lag 2) 55.30
pb,t−3 ∗ vb,t−3: Interaction (Lag 3) 39.25
pb,t−4 ∗ vb,t−4: Interaction (Lag 4) 34.47

Under and Over Identification Tests

(Ho: Model is under identified)
Under-id χ2(df) 169.01 (1) 139.6 (6) 133.9 (2) 92.62 (1) 56.59 (1) 22.28 (1) 121.54 (1)
P-value < .000 < .000 < .000 < .000 < .000 < .000 < .000

(Ho: Model is over identified)
Over-id χ2(df) . 6.06 (5) 1.54 (1) . . . .
P-value . 0.306 0.215 . . . .
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Table B-7. Instruments test w./ alternative clustering

Clustering at the Firm level
(4) (5) (6) (4S) (6M) (6L) (6X)

Endogenous Variable(s) First-stage F-statistics

gb,t−1: Growth (Lag 1) 34.06 59.49 36.17 34.13 12.08 14.58 14.84
pb,t: Products 926.4 211.4
vb,t: Variety 3804 131.1
pbt ∗ vbt: Interaction 1426 172.1
pb,t−1: Products (Lag 1) 1701
pb,t−2: Products (Lag 2) 1663
pb,t−3: Products (Lag 3) 2762
pb,t−4: Products (Lag 4) 1094
vb,t−1:Variety (Lag1) 9204
vb,t−2:Variety (Lag2) 5728
vb,t−3:Variety (Lag3) 808.9
vb,t−4:Variety (Lag4) 505.6
pb,t−1 ∗ vb,t−1: Interaction (Lag 1) 1515
pb,t−2 ∗ vb,t−2: Interaction (Lag 2) 1828
pb,t−3 ∗ vb,t−3: Interaction (Lag 3) 5879
pb,t−4 ∗ vb,t−4: Interaction (Lag 4) 3677

Under and Over Identification Tests

Ho: Model is under identified
Under-id χ2(df) 44.10 (1) 25.27 (6) 17.18 (2) 33.66 (1) 27.08 (1) 13.58 (1) 36.32 (1)
P-value < .000 < .000 < .000 < .000 < .000 < .000 < .000

Ho: Model is over identified
Over-id χ2(df) . 7.23 (5) 0.48 (1) . . . .
P-value . 0.204 0.490 . . . .

Clustering at the ATC4 level
(4) (5) (6) (4S) (4M) (4L) (4X)

Endogenous Variable(s) First-stage F-statistics

gb,t−1: Growth (Lag 1) 54.33 21.40 23.89 30.51 16.17 15.17 29.95
pb,t: Products 49.31 48.58
vb,t: Variety 88.42 198.89
pbt ∗ vbt: Interaction 90.75 54.19
pb,t−1: Products (Lag 1) 80.49
pb,t−2: Products (Lag 2) 90.57
pb,t−3: Products (Lag 3) 71.44
pb,t−4: Products (Lag 4) 71.57
vb,t−1:Variety (Lag1) 109.8
vb,t−2:Variety (Lag2) 79.19
vb,t−3:Variety (Lag3) 71.93
vb,t−4:Variety (Lag4) 77.17
pb,t−1 ∗ vb,t−1: Interaction (Lag 1) 104.6
pb,t−2 ∗ vb,t−2: Interaction (Lag 2) 127.4
pb,t−3 ∗ vb,t−3: Interaction (Lag 3) 73.21
pb,t−4 ∗ vb,t−4: Interaction (Lag 4) 50.32

Under and Over Identification Tests

(Ho: Model is under identified)
Under-id χ2(df) 77.82 (1) 79.79 (6) 77.88(2) 61.62 (1) 42.99 (1) 18.71 (1) 62.30 (1)
P-value < .000 < .000 < .000 < .000 < .000 < .000 < .000

(Ho: Model is over identified)
Over-id χ2(df) . 5.92 (5) 1.58 (1) . . . .
P-value . 0.314 0.209 . . . .
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