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ABSTRACT 16 

Surfactant-like peptides are a class of amphiphilic macromolecules, which are able to self-assemble 17 

in water forming different supramolecular structures. Among them, octapeptides composed of six 18 

hydrophobic and two hydrophilic residues have attracted interest since they have a length similar to 19 

those of natural phospholipids. Supramolecular structures of different amphiphilic octapeptides have 20 

been widely reported, but no study has been performed aimed at investigating the effect of 21 

PEGylation on their self-assembling behaviour. The aim of the present work was to synthesize and 22 

characterise the self-assembling behaviour of PEGylated alanine- or valine based amphiphilic 23 

octapeptides (mPEG1.9kDa-DDAAAAAA and mPEG1.9kDa-DDVVVVVV) in comparison to the non-24 

PEGylated ones (DDAAAAAA and DDVVVVVV).  25 

The self-aggregation process in ultrapure water was investigated by fluorescence spectroscopy, small 26 

angle neutron scattering (SANS), dynamic light scattering (DLS), while the secondary structure was 27 

assessed by circular dichroism.  28 

PEGylation markedly affects the self-assembling behaviour of these amphiphilic octapeptides in 29 

terms of both critical aggregation concentration (CAC) and shape of the formed supramolecular 30 

aggregates. Indeed, PEGylation increases CAC and prevents the self-aggregation into fibrillary 31 

supramolecular aggregates (as observed for non-PEGylated peptides), by promoting the formation of 32 

micelle-like structures (as demonstrated for valine-based octapeptide).  33 
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On the other side, the secondary structure of peptides seems not to be affected by PEGylation. Overall, 34 

these results suggest that self-assembling behaviour of amphiphilic octapeptides can be modified by 35 

PEGylation, with a great potential impact for the future applications of these nanomaterials. 36 

 37 

KEYWORDS: surfactant-like peptides, PEGylated peptides, nanostructures, small angle neutron 38 

scattering (SANS), micelles. 39 
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INTRODUCTION 68 

In recent years, molecular self-assembly of peptides has attracted great interest due to wide potential 69 

applications in nanotechnology and nanomedicine for the design of nanostructured smart materials 1. 70 

The amphiphilic self-assembled peptides are termed as “surfactant-like peptides”. They are composed 71 

of a sequence of consecutive hydrophobic amino acids as the tail and one or two hydrophilic amino 72 

acids as the head 2. Generally, the hydrophobic sequences contain glycine (G), alanine (A), valine 73 

(V), leucine (L) or isoleucine (I) residues, while the hydrophilic heads are made up of negatively (i.e. 74 

aspartic (D) or glutamic acid (E)) or positively (i.e. lysine (K), histidine (H) or arginine (R)) charged 75 

amino acids. The hydrophobic tail of a surfactant-like peptide is composed of six to nine hydrophobic 76 

residues, so that it is similar to the length of natural phospholipids (around 2.5-3 nm).  77 

Valine and alanine residues are preferred to glycine, leucine and isoleucine residues since they 78 

produce more homogeneous and stable structures, probably due to the formation of stronger β-sheet 79 

elements 3.  80 

The self-assembling properties of these materials can be tuned by changing the peptide sequences, 81 

both in the hydrophobic and hydrophilic region, giving a range of supramolecular architectures, 82 

including nanotubes, nanovesicles or nanofibers. Upon dissolution in water (4-5 mM), negatively 83 

charged peptides, such as Ac-A6D, Ac-V6D, Ac-G8DD or KV6, are able to form open-ended 84 

nanotubes with 30-50 nm of diameter and different lengths up to 1 µm 4.  85 

The amphiphilic sequences consisting of alanine, valine and glutamic acid can be coupled with other 86 

materials to produce nanostructures with a wide range of applications. In one such example, these 87 

sequences were coupled with a palmitoyl chain to form fibrillar nanostructures as promising 88 

biomimetic hydrogel scaffolds 5. In fact, Pashuck et al. observed that the arrangement of the 89 

hydrophobic residues not only affects the supramolecular structures but also the stiffness of the 90 

obtained hydrogel as a function of the total number of the hydrophobic residues and the strength of 91 

the β-sheet regions. The functionalization with lipids was also found to increase the in vivo stability 92 

of peptides. 93 

Apart from the modification with lipids, no other chemical functionalization of these alanine, valine 94 

or glutamic based amphiphilic peptides is reported in the literature.  95 

PEGylation is a common and well known strategy to improve water solubility and stability of 96 

peptides, and PEGylated peptides offer other advantages following in vivo administration, including 97 

increased plasma half-life and reduced immunogenity 6.  98 

Different studies were recently performed on a tetra-phenylalanine peptide linked to PEGs with 99 

different molecular weights (5 kDa, 1.8 kDa, 1.2 kDa and 350 Da) to investigate the self-assembling 100 

behaviour in aqueous solution 7–10. As an example, amphiphilic 3-helix PEGylated lipopeptides were 101 
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synthesized and were found to self-assemble into monodisperse micellar nanoparticles of 15 nm 102 

diameter. After loading with doxorubicin, used as model anticancer drug, they showed minimal 103 

leakage after 12 h of incubation with serum proteins at 37 °C. Moreover, the in vivo half-life was 104 

29.5 hours and minimal accumulation in the liver and spleen was observed using positron emission 105 

tomography 11.  106 

Despite the well-established beneficial attributes and improved performances imparted by 107 

PEGylation on different peptides, no study has been focused on the effect of PEGylation on the self-108 

assembling behaviour of surfactant-like octapeptides. Thus, the aim of this work was to synthesize 109 

and investigate for the first time the self-assembling behaviour in water of PEGylated alanine- and 110 

valine-based surfactant-like octapeptides (mPEG1.9kDa-DDAAAAAA and mPEG1.9kDa-111 

DDVVVVVV) and to compare them with the non-PEGylated ones (DDAAAAAA and 112 

DDVVVVVV).  113 

 114 

EXPERIMENTAL SECTION 115 

 116 

Synthesis of amphiphilic octapeptides 117 

 118 

All peptides were synthesized through the solid phase automated microwaved-assisted approach 119 

starting from protected amino acid Fmoc-ALA-OH (Fluorochem, UK), Fmoc-VAL-OH 120 

(Fluorochem, UK) Fmoc-ASP(otbu)-OH (Fluorochem, UK). Rink amide ChemMatrix (Biotage, NC, 121 

USA) was used as resin. For the amino acid sequence, the coupling agents were Ethyl 2-cyano-2 122 

(hydroxyimino) acetate (Oxyma; Fluorochem, UK) and N, N′-Diisopropylcarbodiimide (DIC; 123 

Fluorochem, UK). Coupling were performed at 75 °C for 5 minutes from the first to the fourth amino 124 

acid, for 7 minutes from the fifth and sixth amino acid and for 10 minutes for the last two amino 125 

acids. Subsequently, carboxylic-ended poly(ethylene glycol) monomethyl ether (1.9 kDa)  was 126 

coupled to the amino end of the amino acid sequence attached to the resin. Carboxylic-ended 127 

poly(ethylene glycol) monomethyl ether was synthesized from mPEG (1.9 kDa; Polysciences Europe, 128 

Germany). For the synthesis, mPEG was functionalised on the free hydroxyl group with glutaric 129 

anhydride (Sigma Aldrich, Italy), using 4-Dimethylaminopyridine (DMAP, Sigma Aldrich, Italy) as 130 

organocatalyst, in dichloromethane, to obtain a carboxylic end. After the reaction, the polymer was 131 

purified by dialysis using 1 kDa MWCO membrane (Spectra/Por®, USA). 132 

Carboxylic-ended poly(ethylene glycol) monomethyl ether was characterised by 1H-NMR and gel 133 

permeation chromatograpy (GPC) analysis (Mn 1842; Mw 2005; PDI 1,088). The Carboxylic-ended 134 

poly(ethylene glycol) monomethyl ether coupling was performed using 1-135 
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[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate 136 

(HATU, Sigma-Aldrich, UK) and N,N-Diisopropylethylamine (DIPEA; Sigma-Aldrich, UK) at 75 137 

°C for 10 minutes. After cleavage from the resin with trifluoroacetic acid (Fluorochem, UK), peptides 138 

were precipitated in cold diethyl ether. The raw materials were purified through RP-HPLC (Thermo 139 

Scientific Dionex Ultimate 3000 RP-HPLC equipped with a Phenomenex Gemini NX C18 110 Å, 140 

150 x 4.6 mm) column, using the following buffer systems: A: 50 mM ammonium carbonate, B: 141 

acetonitrile and a flow rate of 1 ml/min. The following gradient was applied: 95% A for 2 min; 5-142 

95% B in 25 min; 95% B for 5 min.  143 

 144 

Mass analysis 145 

For electron spray mass ionization (ESI) analysis, approximately 1 mg of each peptide was dissolved 146 

in ultrapure water and analysed by direct injection in an ESI mass apparatus (HP 1100 LC/MSD, 147 

Agilent) equipped with a single quadrupole detector. The sample was analysed in the positive mode 148 

at a fragmentor voltage of 30 V. 149 

MALDI-TOF spectra were acquired on a 400 Plus MALDI TOF/TOF Analyzer (AB Sciex, MA, 150 

USA). Peptides were dissolved in ultrapure water with 0.05% TFA and mixed, in the same volumetric 151 

amount, with the saturated matrix solution (2, 5-Dihydroxybenzoic acid saturated solution in 50:50, 152 

0.05% TFA water/acetonitrile). 1 μL of this solution was applied onto the MALDI sample plate and 153 

allowed to co-crystalize at room temperature and then analysed at a 6000 laser intensity.  154 

 155 

Circular Dichroism (CD) 156 

Far UV CD spectra of peptides were collected using a π*-180 step-flow spectrometer (Applied 157 

Photophysics, Leatherhead, UK). Peptides were analysed dissolved in ultrapure water at a 158 

concentration of 1 mg/mL for non-PEGylated and 3 mg/mL for PEGylated peptides. Spectra were 159 

recorded in the range of 180-280 nm with a step of 0.1 nm and a bandwidth of 1 nm. The acquisition 160 

time was 2 s for each point. A 10 mm path length quartz cuvette was filled with the peptide solution 161 

and measured at room temperature. 162 

 163 

Critical aggregation concentration (CAC)  164 

Steady-state fluorescence spectra of pyrene in the presence of different concentration of non-165 

PEGylated or PEGylated peptides were recorded at 37 °C using a spectrofluorimeter (LS-55, Perkin-166 

Elmer) equipped with a thermostated cell (HAAKE C25P thermostat). The fluorescence emission 167 
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spectra (350–600 nm) of pyrene were measured using an excitation wavelength λexc = 338 nm and 168 

2.5 nm slits. The intensity ratio of the first (I) and third (III) vibronic band of the emission spectrum 169 

of pyrene, at 372 nm and 384 nm, was plotted against the peptide concentration. The critical 170 

aggregation concentration (CAC) of peptides was determined by fitting the experimental data with 171 

the following equation (GraphPad Prism 6): 172 

𝑌 =
𝐵𝑜𝑡𝑡𝑜𝑚 + (𝑇𝑜𝑝 − 𝐵𝑜𝑡𝑡𝑜𝑚)

1 + 10^[(𝐿𝑜𝑔𝐶𝑀𝐶 − 𝑥) ∗ 𝐻𝑖𝑙𝑙 𝑠𝑙𝑜𝑝𝑒
 173 

where Top and Bottom are the plateau of the curve in the unit of Y axis, hill slope is the steepness of 174 

the curve.  175 

 176 

Small angle neutron scattering (SANS) 177 

SANS data were collected on the LOQ small-angle diffractometer at the ISIS Pulsed Neutron Source 178 

(STFC Rutherford Appleton Laboratory, Didcot, U.K.), using a two-dimensional, position-sensitive, 179 

3He detector neutron detector to provide a simultaneous Q range of 0.08−2 nm-1 12,13. Each sample 180 

and solvent (D2O for background) was placed in 2 mm path length quartz banjo cuvettes and measured 181 

for a total of 2 hours in order to gather data of high statistical precision. Each raw scattering data set 182 

was then corrected for the detector efficiencies, sample transmission and background scattering and 183 

converted to scattering cross-section data (∂Σ/∂Ω vs Q) using the instrument-specific software 184 

(MantidPlot) 14. Non-PEGylated peptides were analysed at 5 mg/mL, while PEGylated peptides at 30 185 

mg/mL in ultrapure water at 37 °C. The temperature was controlled by using a thermostat (Julabo 186 

bath) with a precision of 0.1 °C. SANS data were analysed using SASview 4.1 software. 187 

 188 

Dynamic light scattering (DLS)  189 

The hydrodynamic diameter (nm) and size distribution (width; nm) of non-PEGylated and PEGylated 190 

peptides were determined by DLS from the size by intensity (%) traces. DLS measurements were 191 

carried out using a Zetasizer Nano S (Malvern Instruments, UK) that employs a 173° backscatter 192 

detector. For the analysis, samples were loaded inside disposable cuvette and equilibrated 300 s at 193 

the operating temperature. The operating settings were position (mm): 4.65; attenuator: 11 and 194 

temperature: 37 °C.  195 

 196 

 197 
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RESULTS AND DISCUSSION 198 

 199 

All synthesized peptides were characterized by mass analysis. Mass analysis is a standard technique 200 

employed for the identification and determination of the eventual presence of impurities in the 201 

sample. ESI mass spectra (positive mode) indicate the purity of non-PEGylated peptides. In mass 202 

spectra, only one molecular ion (m/z) and the relative adduct ions can be recognized. For 203 

DDAAAAAA the molecular ion is at 674.5 m/z, while for DDVVVVVV the molecular ion is at 842.8 204 

m/z (Figure 1). These mass values are comparable to those theoretically calculated for these peptide 205 

sequences.  206 

 207 

 208 

Figure 1 ESI mass spectra of non-PEGylated amphiphilic octapeptides: DDAAAAAA (A) and   209 

DDVVVVVV (B). 210 

 211 

Due to the higher molecular weight (above 1000 Da), no reliable results were obtained from ESI mass 212 

analysis of PEGylated peptides. Specifically, a large number of fragment ions below 1000 Da were 213 

observed, which were not unambiguous assigned to the sample. Therefore, PEGylated peptides were 214 

subsequently analysed by MALDI-TOF. A single molecular weight distribution can be observed in 215 

the analysed mass range 1-5 kDa for both PEGylated peptides, referring to the PEGylated adducts, as 216 

demonstrated from the calculated average molecular weights (2778 Da for mPEG1.9kDa-DDAAAAAA 217 

and 2984 Da for mPEG1.9 kDa-DDVVVVVV) (Figure 2).  218 

 219 
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 220 

Figure 2 MALDI-TOF mass spectra of PEGylated amphiphilic octapeptides: mPEG1.9kDa-221 

DDAAAAAA (A) and mPEG1.9kDa-DDVVVVVV (B). 222 

 223 

 224 

The secondary structure in aqueous dispersion of peptides was investigated by circular dichroism. As 225 

for other valine and alanine based-peptides 15–17, this analysis confirmed that the amphiphilic peptides 226 

assume predominantly a beta-sheet conformation in water, as indicated by a minimum in ellipticity 227 

at around 220 nm. An appreciable fraction of random coil was only observed for the non-PEGylated 228 

valine peptide (DDVVVVVV) due to the presence of a minimum at around 190-200nm. Random coil 229 

fraction was negligible for the other peptides. Notably, PEGylation does not affect the secondary 230 

structure of peptides since PEGylated amphiphilic octapeptides (DDAAAAAA and DDVVVVVV) 231 

maintains the beta-sheet conformation as the non-PEGylated ones (Figure 3). 232 

 233 

Figure 3 CD spectra of alanine-based (DDAAAAAA and mPEG1.9 kDa-DDAAAAAA) peptides (A) 234 

and valine-based (DDVVVVVV and mPEG1.9 kDa-DDVVVVVV) peptides (B). 235 

 236 
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The critical aggregation concentration (CAC) values of the synthesized peptides were calculated by 237 

steady state fluorescence from the I/III peak ratio of pyrene, used as a probe. This ratio is particularly 238 

sensitive to the polarity of the microenvironment around the probe, which decreases at a peptide 239 

concentration at which the aggregation process begins. The calculated CAC values were 0.055 ± 240 

0.003 mg/mL (0.065 mM; R2 = 0.993) for DDVVVVVV; 0.906 ± 0.047 mg/mL (1.3 mM; R2 = 0.982) 241 

for DDAAAAAA; 1.638 ± 0.402 mg/mL (0.6 mM; R2 = 0.994) for mPEG1.9kDa-DDVVVVVV. No 242 

changes in the I/III fluorescence ratio were observed for mPEG1.9kDa-DDAAAAAA at the tested 243 

concentrations, suggesting no aggregation process. The results clearly indicated the effect of peptide 244 

sequence and PEG-coupling on CAC. Particularly, the lower CAC values for DDVVVVVV peptide 245 

in comparison to DDAAAAAA peptides are related to the higher hydrophobicity of valine residues. 246 

On the other hand, PEGylation has an opposite effect by inducing an increase in the self-aggregation 247 

concentration of the analysed peptides. The lower fluorescence intensity I/III ratio reached for 248 

concentrations of non-PEGylated peptides above CAC, in comparison to mPEG1.9 kDa-DDVVVVVV, 249 

indicates a more hydrophobic environment of the core compared to that of aggregates formed by the 250 

analysed PEGylated peptide (Figure 4). 251 

 252 

Figure 4 Variation of fluorescence intensity for the ratio between vibrionic peak I (λ 372 nm) and 253 

peak III (λ 384 nm) of pyrene as a function of concentration for non-PEGylated (DDAAAAAA and 254 

DDVVVVVV) and PEGylated (mPEG1.9kDa-DDAAAAAA and mPEG1.9kDa-DDVVVVVV) 255 

octapeptides. 256 

 257 

The fitting of SANS profiles related to the PEGylated peptides, using the ellipsoid model, revealed 258 

the formation in aqueous dispersion of micellar-type aggregates with an elongated shape. The 259 

calculated radii were 5.1 nm (polar) and 11.7 nm (equatorial) for mPEG1.9kDa-DDVVVVVV and 1.8 260 



 10 

nm (polar) and 1.7 nm (equatorial) for mPEG1.9kDa-DDAAAAAA. This result highlighted a self-261 

assembling process only for the PEGylated valine-based peptide and not for the alanine-based peptide 262 

at the tested concentration, confirming the results obtained from fluorescence spectroscopy using 263 

pyrene as a probe. On the contrary, non-PEGylated peptides showed a different scattering profiles 264 

which can be attributed to fibrillary structures of larger dimensions. DDVVVVVV profiles can be 265 

fitted with a lamellar model with a thickness of 2.8 nm, while for DDAAAAAA the lamellar thickness 266 

was around 12.0 nm. The higher computed polydispersity for DDAAAAAA with respect to 267 

DDVVVVVV peptides indicates the formation of less homogeneous structures for alanine based-268 

peptides (Figure 5A). The mPEG1.9kDa-DDVVVVVV peptide was also analysed at different 269 

concentrations above CAC (30 mg/mL, 10 mg/mL and 3 mg/mL). The fitting of the relative SANS 270 

profiles confirmed that the elongated shape of micellar aggregates for PEGylated valine octapeptide 271 

is maintained at all concentrations analysed above CAC (Figure 5B). 272 

 273 

Figure 5 SANS profiles for non-PEGylated (DDAAAAAA and DDVVVVVV) octapeptides at a 274 

concentration of 5 mg/mL and for PEGylated (mPEG1.9kDa-DDAAAAAA and mPEG1.9kDa-275 

DDVVVVVV) octapeptides at a concentration of 30 mg/mL (A). SANS profiles for the mPEG1.9 kDa-276 

DDVVVVVV octapeptide at different concentrations above CAC (30 mg/mL, 10 mg/mL and 3 277 

mg/mL) (B). Lines represent the fitted signals. 278 

 279 

 280 

Figure 6 shows the size distribution traces (intensity %) relative to the analysed PEGylated or non-281 

PEGylated amphiphilic DDVVVVVV peptide. A smaller and monomodal particle size distribution 282 

was observed for the PEGylated peptide, with a calculated hydrodynamic diameter of 26.63 ± 0.41 283 

nm. This size value is comparable to that of spherical/elongated micelles and comparable with the 284 
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range of size (10-50 nm) reported for other PEGylated peptides 18,19. On the other hand, bimodal and 285 

larger distributions were found for the non-PEGylated alanine based-peptide. The bimodal 286 

appearance of DLS traces related to non-PEGylated amphiphilic peptides (DDVVVVVV) reflects the 287 

possible non-spherical shape of these samples. DLS analysis in fact suggests the presence of at least 288 

two dimensions, one significantly below 100 nm (approximately 35-40 nm) and another from 200 nm 289 

to more than 1000 nm. This result can be explained by considering DDVVVVVV could form 290 

fibrillary supramolecular structures, as reported in the literature for similar amphiphilic peptides 20,21.  291 

 292 

Figure 6 DLS traces of valine-based amphiphilic octapeptide at 25 °C before and after PEGylation 293 

obtained at a concentration above CAC (5 mg/mL for DDVVVVVV and 30 mg/mL for mPEG1.9kDa-294 

DDVVVVVV).  295 

 296 

Surfactant-like peptides represent a class of amphiphilic macromolecules, which have been widely 297 

characterized in terms of self-assembling behaviour. Amphiphilic peptides can form a number of 298 

supramolecular structures in water (e.g. nanofibers, nanorods, nanovesicles) due to different possible 299 

interactions between amino acid residues. Hydrogen bonds, van der Waals forces as well as 300 

electrostatic, hydrophobic and/or aromatic interactions (π–π stacking) can all be involved in the self-301 

assembling process. The properties of these peptides can be tuned by changing the amino acid 302 

sequence or by a further derivatization at the amino or carboxyl end groups, leading to the design of 303 

novel functional biomaterials. In the field of drug delivery, peptides have been largely investigated 304 

as potential macromolecules for the design of novel nanocarriers, since they display some advantages 305 

over common synthetic surfactants. These include a better biocompatibility and the possibility of 306 

inducing specific biological functions or controlling drug release and enhancing cell uptake in 307 

response to stimuli, based on the amino acid sequence.  308 
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The drawbacks of nanosystems formed by the self-assembly of surfactant-like peptides however 309 

include low stability in solution, poor aqueous solubility, potential heterogenicity of the 310 

nanoassemblies and the low drug loading. To overcome some limitations of these nanocarriers, 311 

hydrophilic peptides have been functionalized with fatty acids, to give rise to amphiphilic 312 

macromolecules, known as peptide amphiphiles, which, at the moment, represent the most 313 

investigated building blocks for the design of peptide-based nanocarriers.  314 

Additional functionalization strategies of peptides are possible, which maintain the amphiphilic 315 

character of these materials and the self-assembly ability. One of these is PEGylation. Covering the 316 

surface of nanosystems with PEG is, indeed, a very common strategy to reduce immunogenicity, 317 

thereby increasing the systemic circulation time. The use of PEGylated lipids to prepare PEGylated 318 

liposomes (the so-called second generation or stealth liposomes) is an established practice. 319 

PEGylation has also been demonstrated as an effective approach to improve the stability and 320 

solubility of peptides in water. Despite these advantages, not enough attention has been focused on 321 

the effect of PEGylation on the self-assembling behaviour.  322 

Self-assembling is known to be affected by the secondary structure (e.g. α-helix, β-sheets) and the 323 

obtained nanostructures (such as nanospheres, nanofibers, nanorods and nanotubes) are dependent on 324 

the feature of the hydrophilic and hydrophobic portions of the material 22. Different works have 325 

investigated the secondary structure of octapeptides 23,24. Particularly for surfactant-like peptides 326 

formed by six hydrophobic and one or two anionic residues, a β-sheet conformation has been reported 327 

21, which is probably related to the repetition of the hydrophobic residues such as alanine or valine, 328 

owing to the stacking interaction via intermolecular hydrogen bonds 3,25. In this work, a β-sheet 329 

conformation was observed for DDAAAAAA and DDVVVVVV peptides, which was not affected 330 

after conjugation with PEG. Actually, the effect of PEGylation on conformational stability of proteins 331 

or peptides is not well clarified 26. In some studies, no effect was observed on the secondary structure 332 

of epta- or octapeptides after PEGylation 27. No systematic studies can also be found in the literature 333 

in which CAC of PEGylated peptides are compared with that of non-PEGylated counterparts. 334 

Theoretically, PEGylation should increase the CAC value of peptides by increasing its hydrophilicity. 335 

For instance, CAC values in the range of µM up to 1-2 mM have been calculated for surfactant-like 336 

peptides 28–30, and, generally, higher CAC values (in the range of mM) have been found for PEGylated 337 

peptides 31,11. SANS profiles confirmed the effect exerted by the coupling of 1.9kDa PEG to the 338 

hydrophilic portion on the self-assembling behaviour of the investigated surfactant-like octapeptides. 339 

We demonstrate that, PEGylation maintains the self-assembling properties only for the valine-based 340 

octapeptide. This is different to the effect seen with alanine-based peptides, suggesting that the 341 

coupling with 1.9kDa PEG confers a high level of hydrophilicity, which can be balanced only by the 342 
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higher hydrophobicity of valine compared to alanine residues. Moreover, PEGylation seems to induce 343 

the formation of more homogeneous and elongated micelles, unlike non-PEGylated octapeptides for 344 

which fibrillar or ribbon-like structures have been already reported 32–34.  345 

 346 

CONCLUSIONS 347 

Overall, the results suggest that the PEGylation of amphiphilic alanine- or valine-based octapeptides 348 

markedly affects their self-assembling behaviour in terms of critical aggregation concentration as 349 

well as in terms of shape and structure of the formed supramolecular aggregates. Particularly, 350 

PEGylation increases the CAC of these amphiphilic peptides and prevents the self-aggregation into 351 

fibrillary aggregates. As evidenced by SANS and DLS, PEGylation promotes the formation of 352 

elongated micellar structure for valine-based amphiphilic octapeptides, differently from the alanine-353 

based amphiphilic octapeptide, which does not self-assemble at the concentrations tested (up to 30 354 

mg/mL). Conversely, PEGylation does not influence the secondary conformation of amphiphilic 355 

octapeptides as evidenced by circular dichroism. Overall, these results suggest that PEGylation can 356 

modify the self-assembling behaviour of amphiphilic octapeptides, leading to the formation of 357 

different supramolecular aggregates. These findings can be helpful to enlarge the future applications 358 

of these nanomaterials in different fields. 359 

 360 
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