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ABSTRACT

Bores generated by dam-break and initial mound of wa-
ter and their propagation over horizontal and inclined sur-
faces are studied by use of theoretical approaches. Cal-
culations are carried out in two and three dimensions and
particular attention is given to the bore impact on hor-
izontal and vertical surfaces. Downstream of the initial
mound of water may be wet or dry. Discussion is pro-
vided on the influence of the downstream water on the bore
behaviour and impact. Three methods are used in this
study, namely the Reynolds-Averaged Navier-Stokes equa-
tions (RANS), the Green-Naghdi (GN) equations and Saint
Venant equations (SV). The governing equations subject to
appropriate boundary conditions are solved with various
numerical techniques. Results of these models are com-
pared with each other, and with laboratory experiments
when available. Discussion is given on the limitations and
applicability of these models to study the bore generation,
propagation and pressure on horizontal and vertical sur-
faces. It is found that the GN equations compare well with
the RANS equations, while the SV equations have substan-
tially simplified the solution.
Keywords: Dam break, initial mound of water, Reynolds-
Averaged Navier-Stokes equations, Green-Naghdi equa-
tions, Saint Venant equations

Introduction
Bore is generated due to the collapse of a block of fluid.

The block of fluid maybe initially at rest (in the case of bores
generated by collapse of a reservoir) or in the form of a sta-
ble moving wave (in the case of bores generated by solitary
wave breaking). Bore dynamic depends on the generation
mechanisms and characteristics, and the downstream condi-
tions. Dam-break and initial mound of water are two ex-
amples of bore generation due to a reservoir. The difference
between these two cases is the level of the downstream water
depth, which results in different bore behaviours.

Propagation of water surging over dry or wet beds is
studied as dam-break problems. Examples of dam-break
problems are the flash flood caused by dam failure, debris
flow surges and tsunami bore runup on a dry coast. Due to
the large inertia and impact of the sudden interaction of the
body of fluid with structure in a dam-break, immense dam-
ages may occur.

There are many examples of the vast damages made by
dam-break impact. On December 1, 1923, one buttress of
the Gleno Dam in Italy was destroyed and about 4500000m3

of water rushed out from the reservoir behind the dam from
an elevation about 1535m above the sea level to the valley
below. 356 lives were lost in this disaster, see Pilottiet al.
(2010) [1]. On June 5, 1976, due to the piping and internal
erosion at the foot of the Teton Dam in the United States,
the right-bank of the main dam wall disintegrated. At a flow
rate of 57000m3/s, muddy water run off the reservoir into
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the Teton River canyon. The damage was estimated at 2
billion USD and 11 people died in this disaster, see Seed
and Duncan (1981) [2]. Due to the epicentre off the west
coast of Sumatra, Indonesia, on 26 December 2004, a series
of devastating tsunamis, with a height about 30m, arrived at
coastal communities, see Yalcineret al. (2005) [3]. With
about 250000 killed in 14 countries, the tsunami is recorded
as one of the deadliest natural disasters in the history, see
West, Sánchez and McNutt (2005) [4].

Perhaps one of the first studies on dam break flows is
that of Ritter (1892) [5], who introduced theoretical solution
of dam break flows based on his shallow water theory. More
recently, numerous studies on dam break flows have been
carried out, but the dynamics of dam break flows have not
been thoroughly studied before 1999. The constrained inter-
polation profile (CIP) method is adopted by Hu and Masashi
(2004) [6] for their CFD model to study the pressure on the
downstream wall of a dam-break case. The numerical sim-
ulation results of pressure are compared with experiments.
Good agreement is achieved by their CIP-based method.
Zhouet al. (1999) [7] present a series of numerical results,
based on Glimm’s method, of dam-break pressure. Kleefs-
manet al. (2005) [8] studied the problem by use of volume
of fluid method to determine the pressure closer to the hor-
izontal bed. Wemmenhoveet al. (2010) [9] carried out a
similar study but their simulations are focused on examining
sloshing physics. Dam-break experiments are carried out by
Lobovskỳet al. (2014) [10] to study the bore propagation
and magnitude of the pressure on the downstream wall.

Another form of bore generation is due to the breaking
of an initial mound of water. The fundamental difference
between dam-break and initial mound of water is due to the
ratio of the reservoir depth to the downstream water depth.
In the dam-break problems, this ratio is larger than (ap-
proximately) while this ratio is smaller than 2 for the initial
mound of water. This difference in downstream water depth
results in different form of flow generation downstream of
the reservoir. In this work, we will study both types of bores,
generated by dam-break and by an initial mound of water.

Although many works have been done on estimating the
bore pressure distribution, the descriptions of that of bore on
the downstream wall are still not very clear. It is important
to find an appropriate model which can calculate the bore
pressure correctly, both in engineering and scientific appli-
cations.

This study is concerned with the calculation of bore
generation and pressure on the horizontal floor and vertical
walls. Three theoretical approaches are used to study this
problem, including the Reynolds-Averaged Navier-Stokes
equations, the Green-Naghdi equations and the Saint Venant
equations. Our goal is to determine whether these models
can provide acceptable results of the bore propagation and
pressure, and to provide discussion on their limitations and
restrictions.

The Theories
Three sets of equations are used in this study, namely

the Reynolds-Averaged Navier-Stokes (RANS) equations,
the Green-Naghdi (GN) equations and the Saint Venant (SV)
equations. These are discussed in this section. We adopt
a right-handed 3-D Cartesian coordinate system, withx1

pointing to the right,x2 pointing vertically opposite to the di-
rection of the gravitational acceleration (x2 = 0 corresponds
to the sea-floor), andx3 pointing into the paper. Indicial no-
tation and Einstein’s summation convention are used. Sub-
scripts after comma indicate differentiation.

Reynolds-Averaged Navier-Stokes Equations
For a homogeneous, Newtonian and incompressible

fluid, the three dimensional RANS equations are given by
the following conservation of mass and momentum equa-
tions:

ūi,i = 0, i = 1,2,3 (1)

ū j ,t +(ūiū j +u′iu
′
j),i = g j −

1
ρ

p̄, j +νū j ,ii , i, j = 1,2,3

(2)
where f̄ (x1,x2,x3, t) is the time-averaged value of the fluctu-
ation value,~u= ui~ei is the velocity vector, and~ei is the unit
normal vectors in thei direction. ρ is the density of fluid,
ν is kinematic viscosity,~g = (0,−g,0) is the gravitational
acceleration andp is the pressure.

There are two commonly used turbulence models for
the RANS equations, namely, thek−ω model and thek− ε
model. There are two advantages of thek−ω for the bore
impact problems: the model is applicable to variable pres-
sure gradients, and it is more sensitive to free surface prob-
lems, seee.g. Wilcox et.al. (1988) [11]. The pressure on the
downstream wall is sensitive to the shape of the bore, see
Mokrani and Abadie (2016) [12]. We adopt ak−ω model
in this study for the turbulence closure.

In thek−ω model, the kinematic viscosity is assumed
to be related to the turbulent kinetic energy and dissipation.
Menter (1993) [13] introduced the relation as

νt =
ω
ρk

, (3)

whereνt is the eddy-viscosity,k is the thermal conductivity
andω is the specific turbulence dissipation rate. The value
of ω is related to the turbulence kinetic energy and turbu-
lence dissipation rate, See Menter (1993) [13] and Menter,
and Kuntz and Langtry (2003) [14] for more details on the
k−ω model used here.

Volume of Fluid method (VOF method), originally in-
troduced by Hirt and Nichols (1981) [15], is used to deter-
mine the free surface between air and water. A scale func-
tion is used to represent the volume of fluid in each cell, see
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Hirt and Nichols (1981) [15].
OpenFOAM is used for the computations of the RANS

equations. Boundary conditions used in this study are pre-
sented in Table 1. Details of these boundary conditions can
be found ine.g. Greenshields (2018) [16] and Higuera, Lara
and Losada (2013) [17].

The Green-Naghdi Equations
The GN equations are originally derived by use of the

directed fluid sheet theory introduced by Green, Laws and
Naghdi (1974) [18], and Green and Naghdi (1976) [19].
They are applicable to unsteady, nonlinear flows of invis-
cid and incompressible fluids. The GN equations satisfy the
nonlinear boundary conditions exactly, and postulate the in-
tegral balance laws. Green and Naghdi [20] showed that
the GN equation can be obtained from the exact 3-D gov-
erning equations of an incompressible and inviscid fluid by
making a single assumption about the distribution of the ver-
tical velocity along the fluid sheet. The resulting equations
satisfy exactly the nonlinear boundary conditions, the mass
conservation, and the integrated momentum and moment of
momentum, see e.g. Ertekin (1985) [21] for details. The GN
equations are classified based on their levels, corresponding
to the function used for the distribution of the vertical veloc-
ity along the water column. In this study, we use the Level
I the GN equations (or the original GN equations). A lin-
ear distribution of vertical velocity is assumed in the level I
equations.

The GN equations are use here in two dimensions and
in the form first given by Ertekin (1984) [21]:

ζ,t +[(h+ ζ −α)u1],1 = 0, (4)

u̇1+gζ,1+
p̂,1
ρ

=−
1
6
[(2ζ +α),1 α̈

+(4ζ −α),1 ζ̈

− (h+ ζ −α)
(

α̈ +2ζ̈
)

,1
],

(5)

whereζ is the free surface elevation measured from the still
water level (SWL),α is the elevation of the bottom surface,
and p̂ is the pressure on the top surface of the fluid sheet.
The superposed dot denotes the material time derivative, and
double dot is the second order material derivation.

The GN equations have been applied to many problems
of unsteady flow impact on structures, seee.g.Hayatdavoodi
and Ertekin (2015) [22–24] for impact on horizontal sur-
faces, and Neillet al. (2018) [25] and Hayatdavoodiet al.
(2018) [26] for impact on vertical surfaces.

Saint-Venant Equations
The SV equations, whose 3-D form is called Shallow

Water equations, are derived from Eqs. (1) and (2) with three

assumptions: (i) the viscous terms are negligible, (ii ) pres-
sure is assumed hydrostatic, and (iii ) the fluid flows in one
dimension only (x1 direction), whereu2 is small enough to
be omitted, andu1 is assumed to be constant inx2−direction.
In the absence of viscous terms, the effect of viscosity is con-
sidered by use of empirical terms and the body force. Hence
the SV equations read as, (see Saint-Venant (1871) [27] and
Mises (1945) [28]),

u1,t +u1u1,1 =−gh,1+gS−gSf , (6)

whereh is the water depth,S(x1) = −α,x1 is the bed slope,
Sf (x1, t) =

τ
ρgR is the friction slope,τ(x1, t) is the shear

stress along the wetted perimeterp(x1, t) of the cross section
at locationx1 andR(x1, t) =

A
p is the hydraulic radius, where

A(x1, t) is the cross-sectional area of the flow. The shear
stress is given by Manning Equations, see Manning [29]. To
determine the pressure, we use the unsteady Bernoulli equa-
tion.

For small-amplitude oscillations, the unsteady
Bernoulli equation is given by (seee.g. Kundu and
Cohen (1990) [30]):

φ,t +
p
ρ
+g(h− x2) =C, (7)

whereφ is the velocity potential,C is a constant,x2 is the
vertical height from the base (x2 = 0) andp is the pressure.
By substitutingdφ = u1dx1+u2dx2 in Eq. (7), we obtain

∂ (
∫

u1dx1+
∫

u2dx2)

∂ t
+

p
ρ
+g(h− x2) =C, (8)

and hence the pressure is determined by:

p(x1,x2, t) = ρg(h− x2)+ρ
∂ (

∫

u1dx1+
∫

u2dx2)

∂ t
. (9)

Numerical Solutions

The three governing equations are solved numerically
using various techniques. These are introduced here.

The RANS equations are solved by use of a
finite-volume approach. The integral form of the RANS
equations, Eqs. (1) and (2) over time and space can be writ-
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TABLE 1: Boundary conditions used in the RANS model. For definition of the boundary conditions, seee.g. Greenshields
(2018) [16] and Higuera, Lara and Losada (2013) [17].

Boundary β p u

bottom zeroGradient zeroGradient fixedValue (0,0,0)

left and right wall zeroGradient zeroGradient fixedValue (0,0,0)

front and back wall empty empty empty

atmosphere inletOutlet totalPressure pressureInletOutletVelocity

ten as:

∫ t+∆t

t
[

∫∫

ū j ,tdxidxj +

∫∫

(ūi ū j +u′iu
′
j),idxidx j ]dt

=

∫ t+∆t

t
[

∫∫

g jdxidxj

−

∫∫

1
ρ

p̄, jdxidxj

+

∫∫

νū j ,ii dxidxj ]dt,(i, j = 1,2,3),

(10)
seee.g. Jameson, Schmidt and Turkel (1981) [31] for more
information.

To solve the pressure -velocity coupling in Eq. (10),
There are three popular algorithms that can be employed,
namely the Pressure Implicit Splitting Operator (PISO) algo-
rithm, the Semi-Implicit Method for Pressure-Linked equa-
tions (SIMPLE) algorithm and the PISO-SIMPLE (PIM-
PLE) algorithm. In PIMPLE algorithm, the SIMPLE al-
gorithm are employed to iteratively calculate pressure from
velocity component in the Navier-Stokes (NS) equations and
the PISO algorithm is employed to revise the results, see Issa
(1986) [32] and Ferzigeret al. (2012) [33]. The PIMPLE
algorithm is time saving because a larger Courant number
(Cr ≫ 1) can be used. PIMPLE do not show too much ad-
vantages in simple cases and flow patterns. For more com-
plicated geometries, skewed, non-orhogonal meshes, PIM-
PLE can stabilize the simulations whereas the case may fail
or cost too much time with PISO and SIMPLE, see Holz-
mann (2016) [34].

The free surface is determined by use of the volume of
fluid method. The computations are carried out using an
open source computational software, namely OpenFOAM.

The GN equations are solved by use of a central dif-
ference scheme, second order in space, and by use of the
modified Euler’s method for time marching. See Ertekin
(1984) [21] and Ertekin, Webster and Wehausen (1986) [35]
for discussion on the solution of the Level I the GN equa-
tions as used here.

The SV equations are solved by use of a finite volume
method. The integral form of Eq. (6) over time and space

FIGURE 1: Schematic of the dam-break experimental tank
of Lobovskỳet al. (2014) [10] used for the comparison

purposes. The unit is in mm.

can be written as:

∫ t+∆t

t

∫

u1,tdx1+
∫

u1∂u1,1dx1]dt =
∫ t+∆t

t
[
∫

−gh,1dx1

+

∫

gS−gSf dx1]dt.

(11)
Details of the computational model of the SV equations

as used here can be found in Morris (2013) [36].

Numerical Setup
A grid convergence study is performed to determine

the appropriate grid for the computations. Here, we only
present the grid convergence of the RANS equations. The
convergence test of the GN and the SV equations can be
found in e.g. Ertekinet al. (2014) [37] and Morris (2013)
[36], respectively. For the grid convergence study of the
RANS model, we consider the experiment of Lobovskỳet
al. (2014) [10].

In the experiments of Lobovskỳet al. (2014) [10], a
tank, 1,610mmlong, 600mmhigh and 150mmwide is used.
The reservoir is on the left, and the gate is 600mm away
from the upstream wall of the tank, as shown in Fig.1. The
initial dam height isH = 300mm. The gate opens att = 0s,
and bore propagates toward downstream and hits the down-
stream wall. Five pressure sensors are placed at the down-
stream wall to record the bore pressure. The locations of the
sensors,S1-S5, are shown in Fig. 2. More details about the
experiment is given in the following sections.

For the RANS computations, two IntelR©Xeon E5-
2697A v4 processor (16 cores, 40 M Cache, 3.00GHz)
are used. Maximum Courant Number is 0.25 and average

4 Copyright c© 2019 by ASME
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FIGURE 2: A front view showing the location of pressure
sensors on the impact wall downstream the tank. The unit is

in mm.

TABLE 2: Grid information of the convergence tests of the
2D RANS equations.

Grid ID ∆x1/h ∆x2/h
number of cells

Computation
x1 x2 duration(hr)

1 0.0008 0.0008 2013 750 2.74

2 0.001 0.001 1610 600 1.12

3 0.0012 0.0012 1342 500 0.51

4 0.0014 0.0014 1150 429 0.29

Courant Number is 0.0086. Four uniform grids are con-
sidered in this part which are summarized in Table 2. The
RANS model for the grid convergence study is preformed
in two dimensions only. The distribution of the pressure
on the downstream wall are studied in five pressure sensors
for these grids. Comparisons of pressure time series on the
downstream wall of the four grids are shown in Fig. 3. Re-
sults are given in dimensionless form usingρ , g andH or
h as a dimensionally independent set. For the dam-break
problems,p′ = p/ρgH andt ′ = t

√

g/H, whereH is the ini-
tial dam height, shown in Fig. 1. For the initial mound of
water problem,p′ = p/ρghandt ′ = t

√

g/h, whereh is the
downstream water level, shown in Fig. 6.

From this grid study, we determine that Grid 3 (∆x1/h=
∆x2/h = 0.0012) can be used for this problem. The grids
used by all models for the problems studied here are listed
in Table 3.

Results and Discussion
Bores generated by breaking of a dam and initial mound

of water are studied here. The fundamental difference be-

2 3 4
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2 3 4

1

2

3
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FIGURE 3: The grid convergence study of the RANS
equations: comparisons of pressure recorded by SensorsS1,

S2, S4 andS5 computed by the RANS equations vs
laboratory measurements of Lobovskỳet al. (2014) [10].

TABLE 3: Grid size of the cases studied in this work. N/A
stands for not applicable.

model ∆x1/h ∆x2/h

RANS equations 0.0012 0.0012

GN equations 0.03 N/A

SV equations 0.001 N/A
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FIGURE 4: Snapshots of(a) the bore att ′ = 2.29 (t = 0.4s)
and(b) at t ′ = 2.86 (t = 0.5s) .

tween these cases is the downstream water depth; in the dam
break problem, down stream is either dry or the water depth
is much smaller than the initial mound of water. We first
consider the dam break case and the experiments carried out
by Lobovskỳet al. (2014) [10]. The NS and SV equations
are used to study the dam break problem. This is followed
by discussion of the initial mound of water problem, where
downstream water depth is larger than the initial height of
the reservoir (above the SWL).

Bore Generated by Dam Break
Simulations of the three dimensional experiment of

Lobovskỳet al. (2014) [10] is first presented. The tank used
in the experiment is shown in Fig.1. The initial dam height
is H = 300mm. There are five pressure sensors at the down-
stream wall. The locations of the sensors,S1-S5, are shown
in Fig. 2.

Shown in Fig. 2, sensor S3 is used to study the three
dimensionality effect. All results are presented in dimen-
sionless form. The experimental data of Lobovskỳet al.
(2014) [10] are given in dimensionless quantities with re-
spect to the constant initial dam height (H), water density
(ρ), and the gravitational acceleration (g).

The RANS computations are carried out in both 2D and
3D, for comparison purposes. The grid size inx1 andx2 di-
rections of the 3D computations, used the 3D RANS equa-
tions, are the same with that of the 2D RANS equations, see
Table 2. The grid size inx3 (into the page) is∆x3/h= 0.0012
and the number of cells inx3 direction is 125. The 3D RANS
computations were completed in 478 hours.

Snapshots of the bore propagations, determined by the
2D RANS equations, are presented in Fig. 4 for two times:
(upper) bore shape before it arrives at the downstream wall,
and (lower) bore shape as it hits the downstream wall.

The pressure on the downstream wall computed by the
3D RANS equations, the 2D RANS equations and SV equa-

2.4 3.2 4

1

2

3

4

2.4 3.2 4

1

2

3

4

2.4 3.2 4

1

2

3

4

2.4 3.2 4

1

2

3

4

2.4 3.2 4

1
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4

FIGURE 5: Comparisons of bore pressure time series
between experimental measurement of Lobovskỳet al.

(2014) [10], the 2D RANS equations, 3D RANS equations
and SV equations at Sensors (a)S1, (b)S2, (c)S3, (d)S4 and

(e)S5.

tions are compared with the experimental data in Figs. 5.
The pressure at SensorS3, shown in Fig. 5(c) of the 2D
RANS equations is the same with that at SensorS2.

Figure 5(a) shows the pressure at SensorS1 has a sud-
den jump to the highest value when the bore arrives at the
downstream wall and decreases gradually after that. Good
agreement is observed between the 2D and the 3D RANS
equations and the experimental data. The pressure at Sen-
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sor S1 computed by the SV equations jump to the highest
value when the bore arrives at the downstream wall, drops
to a small value and increases slowly with fluctuations be-
fore t ′ = 3.0. The bore speed determined by the SV equa-
tions is significantly smaller than others, and the maximum
pressure magnitude is underestimated.The difference of the
results between the SV equations and others is due to the
assumptions made in deriving the SV equations. The bore
propagation along the downstream wall, is underestimated
by the SV equations, so the pressure computed by the SV
equations drop to a small value.

The bore, computed by 2D and the 3D RANS equations,
reach SensorS1 at t ′ = 2.415 andt ′ = 2.421, respectively,
and att ′ = 2.592 for the SV equations and att ′ = 2.445
for the experiments. The slight difference between the 2D
RANS equations and 3D RANS equations in bore propaga-
tion speed is due to the effect of the left and right wall of the
tank in the 3D RANS equations simulation. The SV equa-
tions have underestimated the bore propagation speed and
pressure, due to the assumptions made.

Figures 5(b), 5(c) and 5(d) show the pressures of Sen-
sorsS2, S3 andS4, respectively. At SensorsS2, S3 andS4,
pressure of the laboratory experiment and the pressure com-
puted by the 2D RANS equations and 3D RANS equations
increases to highest value then decreases gently, while the
pressure computed by the SV equations increases with large
fluctuations before and at a later timet ′ = 3.0.

There is little difference between the pressure of the 2D
RANS equations and 3D RANS equations beforet ′ = 3.0.
After that time, some differences can be seen in Figs. 5(b),
5(c) and 5(d). In the snapshots shown in Fig 4, taken att ′ =
2.86, the bore almost reaches the highest level on the wall
and is going to returns towards upstream. Larger differences
are seen between the pressure of the 2D RANS equations
and 3D RANS equations at this point, as the resistance from
the front and back walls on the bore is significant. Hence,
it appears that the 2D RANS equations model can be safely
used to study the pressure on downstream wall before the
bore reaches the highest level.

Figure 5(e) shows the pressure at SensorsS5. At Sen-
sorsS5, the pressure of the experiment and the pressure com-
puted by the 2D RANS equations and 3D RANS equations
increase gently without experiencing a peak. This is because
the horizontal bore speed is smaller at the position of Sen-
sor S5, when compared to the other sensors. The pressure
computed by the SV equations increase with fluctuations.

The pressures on the downstream wall computed by the
2D RANS equations and 3D RANS equations agree well
with the pressure peak measured by the five sensors in the
laboratory experiment of Lobovskỳet al. (2014) [10] .

The pressures computed by the 2D RANS equations are
closer to the experimental data than that of the SV equations.
The SV equations cannot capture the sudden change in bore
propagation and hence the pressure.

Bore Generated by Initial Mound of Water
In this section, we study the bore generation, propaga-

tion and pressure due to an initial mound of water. The sig-
nificant difference of this case, when compared to the dam-
break problem, is due to the downstream water depth. Com-
putations of this section is in two dimensions.

A schematic of the numerical tank is shown in Fig. 6.
Note that in the case of an initial mound of water,A < h,
whereA is the water height (above the SWL) at the reservoir.
The RANS, GN and SV models are used in this section. The
length of the computational domain is defined such that the
computations stop before waves arrive at the downstream
boundary.

At time t = 0, water is at rest. After that, gate atx1 = L
is removed instantly and completely. Several solitons are
generated and move towards downstream without significant
change in wave height, details can be seen ine.g. Ertekin,
Hayatdavoodi and Kim (2014) [37]. We consider a case with
initial mound amplitude,A = 0.4h, and initial length,L =
12h. Six pressure sensors and six wave gauges are located
on the tank floor to measure the pressure on the base. The
locations of the gauges and sensors are shown in Fig. 6.

The GN computations are carried out for dimensionless
variables with respect to the downstream water depth. The
downstream water depth,h = 1m is constant in the RANS
and the SV computations.

The snapshots of the surface elevation computed by the
RANS equations, the GN equations and the SV equations at
t ′ = 30, 50 are shown in Fig. 7. The vertical axis shows the
surface elevation of water. The results of the computational
models are in close agreement for the leading solitons, but
the results of the SV equations lose the details and has only
provided the average.

The pressures on the tank floor computed by the RANS
equations and the SV equations are compared with that of
the GN equations in Fig. 8. The bore pressure is recorded
by six sensors located on the tank floor. The sensors are
labelled S1-S6 and are shown in Fig. 6. Also shown in Fig.
8 is the surface elevation recorded at wave gauges located
exactly above the pressure sensors.

Figure 8(a) and Fig.8(g) show the surface elevations of
gaugeG1 and the pressure at SensorS1, respectively, com-
puted by the GN equations, RANS equations and SV equa-
tions. Overall, results of the RANS and GN equations are in
close agreement, while the SV equations have simplified the
solution. The surface elevation and pressure computed by
the GN equations show larger fluctuations than the results of
the RANS equations. The reason of this should be due to the
numerical fluctuation found near the gate, see Fig.7.

Figures 8(b)-8(f) and 8(h)-8(l) show the surface eleva-
tions of GaugesG2−G6 and pressures of SensorsS2−S6,
respectively, computed by the GN equations, RANS equa-
tions and SV equations. Results are in good agreements.
The results of the GN equations do not shows the fluctua-
tions any more for the gauges and sensors are far from the
gate.

Overall, the surface elevation and pressure computed by
the GN equations show good agreement with results of the
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FIGURE 6: Schematic of the numerical tank of the initial mound of water problem and location at the wave gauges and th
pressure sensors. Not to scale.
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FIGURE 7: Snapshots of the computational model at
different time. (A= 0.4h, L = 100h)

RANS equations, while the SV equations only provide av-
erage information. The SV equations and GN equations ap-
pear to show less sensitivity to the pressure than the RANS
equations. The bottom pressure shows close relation with
the free-surface fluctuations. So hydrostatic pressure is the
main component of the bottom pressure when initial mound
of water problem is studied.

Concluding Remarks
The 2D RANS equations, the 3D RANS equations and

the SV equations are used to study the dam-break problem,

where initial height of the water is much larger than the
downstream water depth. The pressure on the downstream
wall of these three models are compared with laboratory ex-
periments.

It is found that the pressures computed by the 2D RANS
equations and 3D RANS equations agree well with each
other before the bore reaches the highest point on the down-
stream wall. The boundary conditions of the front and back
walls in the 3D RANS equations is one of the reasons for
slight differences after that point. Moreover, in the 3D
model, the bore can propagate into the page direction after
it hits the vertical wall. So the pressure during this period
computed by the 3D model is slightly different from that of
the 2D model. As the 3D model is computationally more
costly, 2D model is suggested when the interest is confined
to the pressure before bore approaches the highest point on
the downstream wall.

Pressure computed by the SV equations agrees well
with the RANS equations and experimental data when the
pressure sensor is high enough on the wall. But the SV equa-
tions underestimate the bore height and speed and hence
shows less sensitivity with the sudden change of water
height. In the SV equations, pressure distribution is simpli-
fied by hydrostatic distribution and the momentum direction
is restricted to one dimension.

The pressure peaks computed by 2D and the 3D RANS
equations agree well with the experimental data, although
there are slight differences in the time of the pressure peak.
The maximum pressure results provided by the RANS equa-
tions seems to be acceptable for engineering applications.

The RANS equations, GN equations and SV equations
are used to study the generation, propagation and pressure of
an initial mound of water. The equations show close agree-
ment for the generation and propagation of bore of initial
mound of water. The results of the SV equations has signif-
icantly lost the details.

Overall, close agreement is observed between the re-
sults of the RANS equations, GN equations and SV equa-
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FIGURE 8: Comparison of the surface elevation between the RANS equations, the GN equations and the SV equations at
Gauges (a)G1, (b)G2, (c)G3, (d)G4, (e)G5 and , (f)G6 and the pressure between the RANS equations, the GN equations and the

SV equations at Sensors (g)S6, (h)S7, (i)S8, (j)S9, (k)S10 and (l)S11. (A= 0.4h, L = 12h)

tions. Given that the computational cost of the GN equations
(often less than a minute) is much less than that of the RANS
equations, the GN equations appear to be a good substitute
to the RANS equations in these cases. In the GN equations,
however, the functionζ (surface elevation) is single-valued.
Hence, application of the GN equations is limited to cases
that do not involve wave breaking or dry seabed.
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