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Highlights 
- For the first time copper microtracks are photo-catalysed by a plant extract 

- Spinach extract is used as a catalyser for the synthesis of Ag NPs on polyimides 

- The photo-patterning reaction is accelerated by an order of magnitude 

- Highly conductive, photo-induced selective electroless copper plating is obtained 

- A simple extraction method of chlorophyll-A from spinach at 120 mg/L is developed 
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Abstract 

This work demonstrates the suitability of spinach extract as a bio-catalyser for the photo-

catalysed synthesis of silver nanoparticles on polyimide and polyetherimide, and their 

suitability as a seed-layer for the formation of conductive micro-track after plating. The study 

reveals that the extract can accelerate the reaction rates of the photo-patterning process by 

an order of magnitude, when applied on materials for flexible electronics and 3D printing. The 

two main components of the extract that can act as photo-catalysers - chlorophylls and 

plasmatic salts - have been individually studied by energy-dispersive X-rays, UV/VIS 

spectroscopy and X-ray Diffraction. A simple and well-defined method for extraction of 

chlorophyll-A (Ch-A) from fresh spinach at 120 ± 20 mg/L, has been developed. The study 

reveals that the main component enhancing photoreduction rates is due to the ionic salts 

present in the extract. The spinach extract has been demonstrated to be a valid catalyser to 

achieve highly conductive, selective electroless copper plating of track features, of thickness 

0.5 ± 0.2 µm and conductivity (0.7 ± 0.2) ×107 S/m. 10 µm wide tracks are obtained, and the 

copper plating withstands the adhesion test. Demonstration of selective, ionic-liquid 

immersion plating of silver onto electroless copper, highlights a high quality metal protective 

layer finishing process desirable for reduced waste and toxicity.  

 

Keywords: chlorophyll, silver nanoparticles, selective plating, photo-patterning, flexible 

electronics, polyimides 

1 Introduction  

The global consumer electronics market has a predicted compound annual growth of 

4 % by 2022, with a value of US $1,55Tn[1]. The outcome of this mass production is the 

generation of waste chemical solutions resulting from electrochemical industries such as 

those involved in metal finishing, printed circuit board, semiconductor devices and wafer 

manufacture. High restrictions and environmental regulations are imposed on how chemicals 

are disposed safely, incurring high costs for manufacturing companies[2]. The substitution of 

toxic chemistry with more environmentally friendly chemicals is highly desirable for a) the 

reduction of storage and disposal costs of waste chemistry; b) improved work health and 

safety; and c) a reduction to environmental footprint of manufacturing industries. Replacing 
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these chemicals with economic and environmentally friendly alternatives, which also provide 

no reduction to manufacturing quality is a highly desirable processing challenge that is 

supported by international government policies.  

In conventional lithographic-based electronic circuitry manufacture, a large volume of copper 

(Cu) waste is incurred due to the subtractive nature of the manufacturing procedure, where 

a large percentage of the total Cu surface is etched away. Direct Metallisation (DM) processes 

offer a lower material wastage whereby metallic features are directly patterned onto a 

substrate, therefore removing the need for lithographic metallic etching[3]. A suitable seed 

layer for DM can be obtained optically[4, 5], chemically[6], thermally[7] or by high energy 

radiation[8, 9]. Of particular interest is visible light, optically induced reduction of silver (Ag) 

metal nanoparticles due to its fast processing speed and low thermal output - resulting in low 

damage to substrate surface relative to other optical reduction wavelengths[10]. 

Photoreduction presents some challenges, and from a large list of metallic ions used in 

electronics, silver is one of the most suitable ones for this[11]. Highlighted in Figure 1 is a Ag-

based DM technique using optical reduction applying first, hydrolysis of a high-temperature 

polyimide-based plastic and ion exchange of Ag ions into its hydrolysed surface. Next, the 

surface is sensitized with a photo-catalyser agent, which is critical for accelerating the 

reaction and obtaining a process of industrial interest[4]. This is followed by a selective 

photoreduction of the Ag ions to Ag metal using visible light (460 nm) and an optical mask. At 

this stage, the ions in the masked regions which have not been photo-reduced are chemically 

removed, resulting in a substrate with only the reduced Ag metal on the surface which acts 

as a catalytic seed layer for electroless copper (Cu) plating. Using this technique high quality 

conductive micro-tracks[4] can be written onto polymer surfaces for use in electronic device 

manufacture. The technique also yields itself to the patterning of 3-D geometries for the 

development of new and innovative shapes as structural electronics[4]. Optical sensitisation 

enables increased photoreduction rates and contributes to the DM process outlined in Figure 

1.  

Other materials can help further reducing the environmental footprint, namely the 

use of plant extracts and ionic liquids.  

Plant extracts have shown potential as reducing agent for graphene[12] and metal 

nanoparticle green synthesis[13], mainly in suspensions[14], and a variety of methods have 

been developed using plants such as Amaranthus Gangeticus[15], Bridelia retusa fruit[16], or 
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Buddleja globosa[17]. To the best of the authors’ knowledge, no work has been performed to 

date applying plant extracts in the DM of microelectronics circuitry. Spinach-extract has been 

shown as reducing agent for silver NP synthesis in solution[18] and recently we have 

demonstrated its use as optical sensitiser[19] on polymer. Its use provides a renewable, low 

toxicity, ‘green chemical’ alternative to traditional optical sensitisers[20]. It is also a crop used 

in food production and so does not contribute to the issue of dedicated crop in the renewable 

energy debate[21]. Spinach-sourced components have also been shown to be useful for the 

synthesis of bioplastics[22] and as light harvesters[23].  

Ionic Liquids (IL) are a relatively new range of chemicals used in electrochemical 

manufacturing[24]. They require no water in their formulation which enables a manufacturer 

to reduce waste water environmental impact and avoid water treatment costs. IL can be used 

as alternatives to existing chemical solutions used in microelectronics manufacture such as 

immersion, electroless and electroplating[25]. A metal is deposited onto another metal to 

protect it from oxidation in a process referred to as metal finishing and is a requirement for 

Printed Circuit Board manufacture for further processing by the soldering of components[26]. 

IL have been formulated for metal finishing onto Cu microcircuitry, providing a low 

environmental foot print alternative to traditional processing such as immersion Ag 

plating[27].  

The cost savings introduced by DM and IL, along with the introduction of an 

environmentally friendly optical-sensitizer chemistry, is a highly desirable collection of 

manufacturing processes and materials. For this reason studies were performed to 

characterise the performance of spinach extract for its use in electronics DM manufacture, to 

identify the chemicals responsible for the enhancements to process performance and to 

introduce a DM method for metal finishing using IL. The composition of the spinach extract 

was compared against other chlorophyll-based chemicals which have light harvesting 

properties useful for photochemical reactions[28]. The quality of the plated conductive 

features is also characterised to highlight the IL and sensitizer processing performance against 

standard microelectronic quality metrics.  

2 Experimental  

Experiments were performed on Polyimide-based polymers, Polyimide (PI) 25 µm 

Kapton® sheet from DuPontTM, UK, and 75 μm thick Polyetherimide (PEI) 1000B ULTEM®, from 
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Cadillac Plastics Ltd., UK. Additionally, PEI filaments for Fused Deposition Modelling (ULTEM 

® 9085) were purchased from Stratasys Ltd., US. Chlorophyll samples derived from spinach 

extract were purchased from Sigma-Aldrich UK (MerckTM) and were formulated to specific 

concentrations. These were: Chlorophyll-A (Ch-A) (C55H72MgN4O5, Ch-A content 100 %), to 

500 mg/L and Chlorophyll-B (Ch-B) (C55H70MgN4O6, Ch-B content ≥ 90 % and Ch-A ≤ 0.5 %), to 

1000 mg/L. All other chemicals used were obtained from Fisher Scientific, UK. A spinach 

extract was made by blending into 150 mL of ethanol 50 g of spinach leaves (stalks removed) 

obtained from supermarket TescoTM, UK. The resulting liquid was filtered several times with 

grade 1 filter (1:11 μm). The spinach was divided into two samples, one kept at 4 oC in a fridge 

for 5 days before being used referred to here after as ‘fresh sample’ and the other kept at 

room temperature for 5 days, referred to as ‘degraded sample’. Lastly, a sensitiser 0.01 M KCl 

was made up in 3:1, ethanol:DI water for comparison with existing DM processes[4].  

 The polyimide-based substrates were first cleaned with isopropanol and then 

hydrolysed in a heated potassium hydroxide (KOH) solution. PI and PEI were hydrolysed for 

15 min at 50 oC in 1 M and 15 M KOH, respectively. After rinsing in DI water and ultrasound 

agitation, samples were submerged in a 0.1 M Ag nitrate (AgNO3) solution for 10 minutes for 

ion exchange of Ag+ onto the surface and rinsed with DI water. Photosensitization was 

performed by immersing the samples in the respective sensitiser solution for 30 seconds at 

room temperature and left to dry after. Selective photopatterning, photoreduction was 

achieved using an optical chrome glass mask, supplied by JD Photo-data Ltd, UK and a high 

power (1 W, 460 nm) LED for 30 sec duration unless stated otherwise. 

Selective electroless Cu plating was performed on the Ag photoreduced surfaces using 

the process outlined in a previous publication[29]. This formulation allows selective plating 

only on the areas that present metallic seeds[30, 31]. IL immersion Ag plating was then 

performed on the selective electroless Cu plated surface. The IL immersion solution used 

comprised of 0.01 M silver nitrate and ethaline (1 ChCl:2 ethylene glycol), which was made-

up to conditions outlined in[27]. The Cu plated samples we Ag IL plated at room temperature 

for 10 min and after, rinsed in ethanol, DI water and isopropanol.  

Scanning Electron Microscope (SEM) images were obtained using a Quanta 3-D FEG 

and Energy dispersive X-ray (EDX) were obtained using an Oxford Instruments X-maxN 150 

mm EDX detector, of photoreduced Ag on PEI and dried, fresh undiluted spinach leaf extract 

on silicon (Si) wafer. To evaluate the water content of the fresh undiluted spinach sample, 1 
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mL of solution was weighed before and after evaporation of the liquid, and the concentration 

of the KCl constituents derived from the average EDX % values. X-ray Diffraction 

(XRD) measurements were obtained with a D8 Discover, from Bruker Corporation (λ = 0.15418 

nm) of photoreduced Ag on PEI, processed using fresh, undiluted spinach extract.  

To evaluate the conductivity of the electroless and immersion deposits, measurement 

results of thickness were obtained using a Bruker Dektak 3 Profilometer. Ten measurements 

of the electrical resistance of the deposited metal were obtained using a two-point 

probe, SignatoneTM probe station and the average converted to conductivity using an average 

deposit thickness. High resolution optical images were obtained of the surfaces using a Leica 

DM5000 microscope. Optical absorbance spectroscopy was measured using a Perkin-Elmer 

LAMBDA 950 UV–Vis Spectrophotometer, for Ag photoreduced PEI surface;  chlorophyll 

solutions A and B diluted to, 19 mL/L and 38 ml/L, respectively in ethanol; and spinach-extract 

solutions both in a 2:25 dilution in ethanol, poured into 10 mm optical-path cuvettes. Base 

line measurements for the Ag photoreduced PEI surface were obtained with blank PEI, while 

pure ethanol in a 10 mm cuvette was used as baseline for the solutions. 

3 Results and Discussion  

3.1 Photoreduction on different polyimide-based substrates 

Table 1 presents high resolution images of polyimide-based materials after Ag 

photoreduction with optical sensitization by spinach extract and without. After 

photoreduction track features of 3 mm pitch were patterned on the surfaces. The degree of 

photoreduction is highlighted qualitatively by the change in colour of the patterned surface. 

A plastic thin film containing small Ag nanoparticles appears yellow due to the localised 

surface plasmon resonance (LSPR) of small Ag NPs[32]. If the NPs increase in size, the LSPR 

peak will broaden and the sample will turn reddish[33]. If the NPs grow further, they will 

create larger Ag aggregates with a metallic appearance[4]. Applying the spinach extract 

enables an increase in the degree of photoreduction, shown by an increase in the intensity 

and contrast of the photoreduced features and a change in colour towards darker shades. 

This change is likely due to a higher density of Ag metal reduced onto the surface induced by 

the faster photoreduction rates brought on by the spinach treatment[4]. 
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The PI material in Table 1 displays the smallest change in response to photoreduction 

relative to the PEI samples. This is likely due to a smaller ion exchange of Ag ions into the PI 

surface. Hydrolysis of PI generates polyamic acid[34] which can be easily be removed off its 

surface during rinsing due to its low adhesion to PI[35], reducing therefore the amount of Ag 

ion exchanged and the lower, more sparse photoreduction. Regardless, the application of 

spinach enhances photoreduction rate on PI. 

The silver-loaded PEI ULTEM 9085 filament for FDM 3D printing was successfully 

photo-patterned with Ag metal producing an orange-like appearance. With the application of 

the spinach extract a darker deposit was formed indicating a denser photoreduction. The 

successful patterning of PEI filament using spinach extract, highlights its application for the 

additive manufacturing of unique 3-D circuitry in space-saving circuit designs, which are highly 

desirable for satellite and automotive manufacture[36]. 

For the PEI flexible substrate ULTEM 1000B, two different photoreduction exposure 

durations were applied, 10 min and 30 sec. Increasing the exposure duration increases the 

degree of Ag ions photoreduced as indicated by the larger area coverage and the higher 

intensity of the pattern. The 10 min exposed sample reveals that, without the extract, a dark 

red central regions is observed where the light intensity has been higher, surrounded by 

extended yellow patterns. With spinach leaf extract, metallic grey features are observed with 

a yellow feature - bottom left of image – where the light intensity has been higher. The change 

in appearance observed indicates the degree of Ag metal reduction. The different colours 

observed for all of the photopatterned samples could be explained to the different Ag deposit 

density and morphology[37]. At prolonged exposures thermal reduction by heat generated 

from the LED beam could also contribute to the total reduction of the Ag ions[7].  

The material PEI ULTEM 1000B displays the fastest photoreduction requiring the 

lowest LED dose (30 sec) for observable photoreduction. As such, it is more ideally suited to 

manufacturing which seeks to minimise chemical use and obtain a fast processing duration. 

For these reasons, this material has been used for the remaining investigations. From Table 1 

it is possible to see that an exposure of 30 s by using the spinach extract patterns a larger area 

than a 10 min exposure without the extract. The energy dose difference is a factor of 20.  

Figure 2 shows PEI ULTEM 1000B after selective photoreduction using fresh spinach 

extract. In Figure 2.A, the photoreduced region can be identified by the yellow/green 

patterning and the unexposed PEI by the blue/grey colour. Scratches on surface are due to 
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handling. SEM insert highlights nanoparticles formed on surface in response to 

photoreduction. 

 

In Figure 2.B, analysis by XRD reveals the presence of a peak at 28.2o which coincides 

with cubic AgCl peak (111) (ICSD No. 64734). Another AgCl peak for (200) exists around 32o 

(ICSD No. 64734), although its low intensity barely surpasses the noise threshold[38]. No Ag 

metal peaks were witnessed which could be due either to the low NP density, unable to reach 

the noise threshold of the PEI substrate, or to an amorphous morphology of the 

photoreduced Ag which could broaden its peaks[39]. In Figure 2.C, UV/VIS absorbance reveals 

the presence of a peak around 430 nm which corresponds to reported values for Ag NP[4]. A 

scan of blank PEI was also provided for reference revealing no peaks. The addition of the 

spinach leaf extract enables photoreduction of the Ag ion, leading to the formation of Ag. The 

presence of AgCl peaks indicates that a constituent of the spinach extract contains Cl which 

has contributed to the metal salt formation. AgCl is optically sensitive to the LED wavelength 

applied[4] and so could contribute to the enhanced photoreduction rates witnessed.      

 

3.2 Selective plating onto PEI ULTEM 1000B using spinach extract and ionic 

liquids 

The photoreduced features act as catalytic sites for electroless Cu plating to form 

conductive electrical track features[40]. Without the spinach leaf extract electroless plating 

onto PEI ULTEM 1000B is unsuccessful using the conditions applied, due to the smaller 

amount of photoreduced Ag (samples not shown). However, selective Cu plating was 

achieved with the sensitised samples. Selectivity was obtained by the application of a cleaning 

process after photoreduction, where unreduced ions are removed off the substrate surface 

leaving behind reduced Ag onto which electroless plating can be performed, see Figure 1[4]. 

Figure 3A shows images of selective electroless Cu plating of features of size 50 to 160 µm, 

on PEI substrate ULTEM 1000B. The Cu deposit thickness is 0.5 ± 0.2 µm and a conductivity 

measured as (0.7 ± 0.2) ×107 s/m, which is approximately one tenth the value of bulk copper 

(5.9 ×107 s/m) and is equivalent to values expected for this thickness[41]. Thicker electroless 

Cu deposits will produce larger conductivities although at the expense of longer processing 
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durations and a compromise of feature selectivity[41]. Spinach residues can also be observed 

on the PEI surface, highlighted by irregular green spots which are present after DI rinsing of 

the substrate. The spinach extract was prepared by sieving with a 11 µm sized pore filter and 

as the contaminations have a the size of 50 µm, it is clear that they are produced from 

agglomeration of smaller residues in suspension. 

A selectively electroless Cu plated sample was then IL immersion plated with Ag to 

obtain a finishing plating, which is commonly sought in the PCB manufacturing industry 

(Figure 3B). The Ag deposit selectively formed onto the regions where the electroless Cu had 

been deposited. A measure of thickness for the Ag/Cu deposit was approximately 0.9 ± 0.2 

µm. Immersion plated Ag is typically of 0.1 µm thickness[26] which is below the thickness 

variation measured for the sample making it difficult to approximate the Ag thickness on the 

Cu. A measure of Ag/Cu conductivity is (0.005 ± 0.002) ×107 s/m which is less than the Cu 

deposit by itself. The reason for this lower conductivity could relate to the tarnish of Ag, as 

Ag is susceptible to aerobic oxidation[27] and this Ag oxide/sulphide layer lowers the 

measured conductivity of the deposit[42]. This oxidation results in the sought protective 

finishing layer, which is stable and soluble in common solder compositions. Figure 3.c shows 

the results of the EDX analysis, revealing that copper atoms represent 14.6% of the atomic 

percentage, and silver atoms 7.1%. The remaining percentages are supposed to come mainly 

from the polymer (carbon: 65.6%; oxygen: 12.7%). These percentages reveal a ratio C:O of 

5.2:1, while pure PEI presents a ratio of 6.2:1. This excess of oxygen reinforces the hypothesis 

of the possible partial oxidation of the silver. The SEM insert shows the silver surface, 

composed of small crystallites.  

In order to study the resolution of the process when using the spinach extract, masks of 

parallel tracks with 40 and 20 µm pitch have been used. Figure 4.A presents the 

photopatterned tracks directly after exposure. The electroless plating does not seem to 

worsen the resolution, and copper tracks of 10 and 20 µm have been successfully produced 

(Fig.4.B and C, respectively). The adhesion of the copper has also been tested by using the 

Scotch tape test applied to the electroless plated samples. A representative sample is shown 

in Figure 4.D. After the test, the sample presents exactly the same aspect as before (Fig.4.E). 

An image of the tape reveals that no copper has been removed during the test (Fig.4.F), which 

is indicative of a good adhesion. 
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3.3 Spinach extract composition 

The spinach extract has been analysed in order to identify the chemical responsible 

for photo-catalysis. Figure5 shows a SEM image of fresh undiluted spinach extract dried on a 

Si wafer surface revealing dendritic and cubic crystalline structures. An EDX scan indicates 

that carbon (C) and oxygen (O) constitute more than half of the sample and also reveals a high 

percentage of Si, due to it being the substrate on which the extract was analysed. Other 

elements such as sodium (Na), aluminium (Al), chloride (Cl) and potassium (K) are also present 

in lower amounts. The cubic crystals comprise of a large fraction of the extract and an EDX of 

them reveals that they are likely KCl due to their high elemental % instead of Na - which also 

forms cubic structures[43]. The extract has 7.5 g/L of dry residues. The initial mass of the 

spinach (water content: 91%) and the amount of ethanol used allow us to deduce that the 

final solution is composed of 3:1 of ethanol:water. The KCl, which is the most abundant salt 

in the spinach plasma, is concentrated as 0.01 ± 0.003 M in the resulting spinach extract, as 

derived by the mass of solute remaining after evaporation, and approximated from the 

average percentage as observed by EDX. 

 

Chlorophylls have been identified as a candidate for influencing the photosensitising 

properties of the spinach extract due to their importance in photosynthesis[19, 28]. Using 

UV/VIS absorbance measurements, the composition of two diluted chlorophyll solutions A 

and B is compared with two 2:25 diluted spinach extracted solutions, fresh and degraded, 

which have been aged for five days under temperatures 4oC and 25oC, respectively, as shown 

in Figure 6. In the plot the chlorophyll samples A and B are identified from their absorption 

spectra with three absorption peaks at 419 nm, 615 nm and 660 nm for Chl-A and two peaks 

at 458 nm and  638 nm for Chl-B, which coincide with values found in the literature[44]. The 

absorbance spectrum of diluted fresh spinach extract shows three peaks which coincide with 

Ch-A spectrum, although the 419 nm also coincides with the element lutein that exists within 

spinach, hiding the absorption value for the chlorophyll peak[45]. The intensity of the two 

peaks at 615 nm and 660 nm in the diluted fresh spinach, represent an average 51 ± 9 % of 

the respective intensities of Ch-A peaks. From the Beer-Lambert law it can be deduced that 

the concentration of Ch-A in the fresh spinach extract is approximately half the value of Ch-A 

sample[46]. As such, the diluted sample of fresh spinach extract has approximately 10 ± 2 
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mg/L of Ch-A and hence, the original undiluted fresh extract is 120 ± 20 mg/L. For the 2:25 

diluted degraded sample, the average of the two peaks in Ch-A, have decreased to 25 ± 9 %, 

which indicates that the Ch-A content in the degraded spinach extract has also decreased by 

the same amount, to give a Ch-A value in the diluted solution of 5 ± 1.5 mg/L, which in the 

undiluted solution equates to 59 ± 20 mg/L. The reduction in chlorophyll content at room 

temperature of approximately 60 mg/L, is related to catabolism of the chlorophyll molecules 

which is faster at higher temperatures[47]. The presence of Ch-B in the fresh and degraded 

spinach extracts is more difficult to evaluate, because the two peaks at 638 nm and 458 nm, 

cannot be directly identified in the spinach extract spectra. This is due to the presence of the 

lutein peaks in the range 420 – 470 nm which hides the Chl-B and Chl-A peaks[45, 48] and 

possibly due to drift of the spectrum due to the addition of ethanol in its makeup[44].  

Images of the samples in curvets under UV/VIS analysis are included as inserts in Figure 

6. The visible transparency differs in the solutions. Ch-A shows a turquoise-green colour whilst 

Ch-B is olive-green. The absorbance spectra of Ch-B is approximately double that of Chl-A, 

which corresponds to the concentration differences of 38 mg/L and 19 mg/L, respectively. As 

such, the darker appearance of the Chlorophyll solutions coincides with a greater 

concentration. Additionally, the visible appearance of Chl-B is more reddish that Chl-A giving 

it darker completion[48]. The degraded, diluted spinach solution shows the lightest shade of 

all the solutions, which coincides with its smaller absorption spectrum and lowest Chl-A 

concentration.  

 

3.4 Photoreduction with various optical sensitiser solutions 

Table 2 shows images of PEI ULTEM 1000B after photoreduction for different optical 

sensitiser solutions and different optical exposure durations. Photoreduction appears on all 

samples. Using diluted solution of Ch-A and Chlorophyll B, the photoreduction appears with 

the same intensity as without any sensitizer. From this it can be determined that chlorophyll 

does not catalyse the photoreduction reaction. The samples also show green discolouration 

due to staining by the high concentrations of chlorophyll. 

 

Samples treated with fresh and degraded spinach extract reveal a rapid photoreduction with 

exposures of 3 s and 30 s showing an intense photopatterning that covers an area larger than 
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the 30 s untreated PEI. For 30 s exposure the photopatterning appears with a greater intensity 

for the degraded spinach extract rather than the fresh extract. The degraded extract contains 

less chlorophyll remaining in its composition after five days at room temperature, as shown 

in the previous section and yet photopatterning occurs rapidly. This could be due to un-

degraded pigments in the darker, fresh chlorophyll solution, absorbing the incoming light and 

hindering the rate of photoreduction[49]. Finally, samples were photoreduced using a 0.01 M 

KCl solution and showed a similar result to the spinach extracted results, although with a 

lower photoreduced intensity. This is a clear indication that the sensitization by spinach 

extract is due to KCl content in the spinach leaf and not the chlorophylls. 

 

In order to quantify the velocity of the photopatterning effect, different samples were 

prepared with the spinach extract and without it, and irradiated at different exposure times. 

Their absorbance was measured and is represented in Figure 7. The results show that the 

optical density of the samples treated with the extract increase much faster than without it. 

Additionally, the plasmon resonance is also broader when using the spinach extract. This can 

be attributed to the silver nanoparticles being synthesized on the AgCl, where they are known 

to present a reddish colour. Without the extract, the patterning is only visible to the naked 

eye for exposures longer than 30 seconds. In contrast, when using the extract, even one-

second exposure is enough to reveal some patterns, which is indicative to an enhancement 

factor of one order of magnitude. For a more accurate calculation, the optical absorbance has 

been measured at 450 nm for each sample and plotted in the insert of Figure 7. The slopes of 

the trendlines indicate that the absorbance when using the extract escalates eight times 

faster than without extract (slope 0.0023 s-1 versus 0.0003 s-1). 

 

4 Conclusions  

This study demonstrates successful micro-photopatterning on a range of polyimide-

based materials and types of surfaces (planar, contoured) using low toxicity, renewably 

sourced, spinach-extracted photosensitiser chemistry. A simple method for preparing spinach 

extract with a high amount of Chl-A (120mg/L) has been used. The spinach extract assists the 

synthesis of Ag nanoparticles by increasing the photoreduction rate. The compound 

responsible for enhanced photoreduction rates was identified as the plasmatic salts within 
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the spinach, specifically the presence of chlorine, rather than the chlorophyll content which 

had no noticeable effect, even when applying chlorophyll A and B at high concentrations. 

Highly conductive electroless plated deposits were selectively formed on the photopatterned 

substrates, highlighting microelectronic fabrication applications contending to standard 

processes applied in industry. The application of an IL Ag finish was demonstrated on the Cu 

patterned surfaces highlighting the successful application of a low toxicity finish chemistry. 
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Figure 1 - Process to achieve the metallisation of polyimide-based polymers, including 

hydrolysis breaking of the imide ring and ion exchange of Ag and sensitization step crucial to 

achieve rapid photoreduction, where potassium ion is exchanged by Ag producing Ag 

polyamate. 

 

Figure 2 – PEI ULTEM 1000B after selective Ag photoreduction using fresh spinach extract 

showing, A) image of surface with SEM insert, B) XRD and C) UV/Vis. 
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Figure 3 – A) Electroless copper plated PEI ULTEM 1000B after fresh undiluted spinach 

extract treatment and photopatterning. B) Ionic Liquid immersion silver plated finish on 

spinach-assisted electroless copper. C) EDX analysis of the final copper and silver plated 

sample. Insert: SEM of the surface. 
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Figure 4 – A) PEI ULTEM 1000B by using spinach extract treatment and photopatterning, 

revealing 20 µm wide tracks. B) Patterned and electroless copper plated sample with 10 µm 

wide tracks, and 20 µm (C). D) Electroless copper plated sample before the tape test, and after 

(E). F) Image of the tape revealing that no copper has been removed. 
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Figure 5 - SEM micrograph of dried fresh undiluted spinach extract on silicon and EDX 

showing the % composition of the different regions of the dried sample. 
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Figure 6 – UV/VIS absorbance of chlorophyll solutions Chlorophyll-A and Chlorophyll-B, and 

2:25 diluted spinach extracts - fresh and degraded. 

 

Figure 7 – UV/VIS absorbance of photopatterned samples with spinach extract (Chl) and 

without (W/Chl.) exposed at different times. The insert is the absorbance measured at 450 

nm. 
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Table 1 – Polyimide-based substrates after photoreduction.  
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Table 2 - PEI ULTEM 1000B after Ag photoreduction with different sensitiser solutions and 

for different optical exposure durations. 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of


