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In this paper, we analyze the scaling of velocity structure functions of turbulent thermal convection. Using
high-resolution numerical simulations, we show that the structure functions scale similar to those of hydrody-
namic turbulence, with the scaling exponents in agreement with She and Leveque’s predictions [Phys. Rev.
Lett. 72, 336-339 (1994)]. The probability distribution functions of velocity increments are non-Gaussian
with wide tails in the dissipative scales and become close to Gaussian in the inertial range. The tails of the
probability distribution follow a stretched exponential. We also show that in thermal convection, the energy
flux in the inertial range is less than the viscous dissipation rate. This is unlike in hydrodynamic turbulence
where the energy flux and the dissipation rate are equal.

PACS numbers: 47.27.te, 47.27.-i, 47.55.P-

I. INTRODUCTION

Turbulence remains largely an unsolved problem for
scientists and engineers even today. The energetics of
three-dimensional homogeneous and isotropic turbulence
is, however, well understood and was explained by Kol-
mogorov 1,2 . Here, the energy supplied at large scales
cascades down to intermediate scales and then to dissi-
pative scales. The rate of energy supply equals the energy
flux, Πu, and the viscous dissipation rate εu. Kolmogorov
showed that such flows exhibit the following property1–3:

〈[{u(r + l)− u(r)} · l̂]3〉 = −4

5
Πul,

Πu = εu, (1)

for η � l � L, where L is the length scale at which
energy is supplied and is of the order of the domain size,
and η is the dissipative scale, called Kolmogorov length
scale. In Eq. (1), 〈.〉 represents the ensemble average,
and u(r) and u(r + l) are the velocity fields at positions
r and r + l respectively. The left-hand side of Eq. (1), de-
noted as Su3 (l), is the third-order velocity structure func-
tion. For any order q, one expects, using dimensional
analysis, that Suq (l) = 〈[{u(r + l)− u(r)} · l̂]q〉 ∼ lq/3.

Using the theory of Obukhov 4 and Corrsin 5 on turbu-
lence with passive scalar θ, dimensional analysis yields
Sθq (l) ∼ lq/3, where Sθq (l) = 〈{θ(r + l) − θ(r)}q〉 is the
structure function for the passive scalar. The aforemen-
tioned relations for Suq and Sθq are known as Kolmogorov-
Obukhov (KO) scaling in literature. In reality, however,
the exponents deviate from q/3 (other than for 3) due
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to intermittency effects. The velocity structure functions
scale as Suq (l) ∼ lζq , where the exponents ζq fit well with

the model of She and Leveque 6 .

The scaling of structure functions of turbulent convec-
tion, however, remains an unsolved problem and hence is
the theme of our present paper. We focus on Rayleigh-
Bénard Convection (RBC) that deals with a fluid en-
closed between two horizontal plates, with the bottom
plate kept at a higher temperature than the top plate. In
thermal convection, complications arise due to anisotropy
introduced by gravity, and also because the temperature
T is an active scalar.

For stably stratified turbulence, Bolgiano 7 and
Obukhov 8 predicted the kinetic energy spectrum Eu(k)
and thermal energy spectrum ET (k) to scale as k−11/5

and k−7/5 respectively, where k ∼ 1/l is the wavenumber.
An extension of Bolgiano-Obukov (BO) theory to struc-
ture functions gives Suq (l) ∼ l3q/5 and STq (l) ∼ lq/5, where

STq is the temperature structure function. BO scaling oc-
curs above the Bolgiano length scale lB , where the buoy-
ancy forces are dominant. Evidences of BO scaling have
been observed in recent studies of stably-stratified9,10

and rotating stratified turbulence11. Using theoretical
arguments, Procaccia and Zeitak 12 , L’vov 13 , L’vov and
Falkovich 14 , and Rubinstein 15 proposed the applicabil-
ity of BO scaling to RBC as well. Researchers have at-
tempted to confirm the above theory with the help of
experiments and numerical simulations, as well as using
theoretical arguments.

Benzi et al. 16,17 simulated both 2D and 3D RBC us-
ing Lattice Boltzmann method and computed velocity
and temperature structure functions up to the sixth or-
der. They could not observe any discernible scaling for
the structure functions due to short inertial range. They
found them, however, to be self-similar for a wide range
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of l, a phenomenon known as extended self-similarity
(ESS)18,19. Further, they claimed BO scaling from the
relationship between the velocity and the temperature
structure functions. Ching 20 computed temperature and
velocity structure functions of thermal convection using
the experimental data of Heslot, Castaing, and Libch-
aber 21 , and Sano, Wu, and Libchaber 22 , as well as the
numerical data of Benzi et al. 23 . Although Ching 20 ob-
served two distinct scaling regimes separated by the Bol-
giano scale, the scaling exponents deviated from BO the-
ory.

Many researchers obtained KO scaling in the bulk and
attributed it to the large value of local lB , which is of
the same order as the box size. Since lB is small near
the walls, it is argued that the structure functions in
those regions follow BO scaling. Using third-order struc-
ture functions calculated using their lattice Boltzmann
simulation data, Calzavarini, Toschi, and Tripiccione 24

claimed BO scaling near the walls and KO scaling at the
cell center. High-resolution multipoint measurements of
velocity and temperature fields in water were conducted
by Sun, Zhou, and Xia 25 . Their exponents of velocity
structure functions computed at the cell center fit well
with the She-Leveque model, with the lower orders fol-
lowing Kolmogorov scaling. Using refined similarity hy-
pothesis, Ching et al. 26 derived power-law relations for
conditional velocity and temperature structure functions
computed at given values of the locally averaged ther-
mal dissipation rate. Ching et al. 26 further computed
the conditional temperature structure functions up to
the fourth order using the experimental data of He and
Tong 27 . Based on the observed power-law scaling, they
concluded BO scaling near walls and KO scaling at the
cell center.

Using the experimental data of Castaing et al. 28 and
Shang et al. 29 , Ching 30 computed the structure func-
tions of plume velocity and found them to scale simi-
lar to the temperature structure functions. This is un-
like the case of velocity structure functions in BO scal-
ing, where they scale differently from the temperature
structure functions. Kunnen et al. 31 conducted direct
numerical simulations of RBC in a grid resolution of
129 × 257 × 257. The velocity structure functions com-
puted by them follow BO scaling for Rayleigh number
Ra = 108 and Kolmogorov scaling for higher Ra. Ching
and Cheng 32 calculated temperature structure functions
using shell model of homogeneous RBC and found them
to deviate significantly from BO scaling for q > 4. Kac-
zorowski and Xia 33 conducted direct numerical simula-
tions (DNS) of RBC in grids ranging from 643 to 7703,
and found that the velocity structure functions computed
at cell center approach Kolmogorov scaling for lower or-
ders.

From the conflicting nature of past results, it is clear
that the behaviour of the structure functions of turbulent
convection has not yet been clearly established. Lohse
and Xia 34 reviewed the experimental, numerical and the-
oretical results of past works critically and raised doubts

on the applicability of BO scaling in RBC. Recently,
using phenomenological arguments and numerical sim-
ulations, Kumar, Chatterjee, and Verma 9 and Verma,
Kumar, and Pandey 10 showed Kolmogorov energy spec-
trum in RBC. Using energetics arguments, they derived
that the energy cascade rate in turbulent convection is
constant, leading to Kolmogorov scaling. Their predic-
tions are being accepted and acknowledged by several
groups as is evident from recent literature35–41. How-
ever, some researchers still believe that BO scaling is ap-
plicable to RBC11,42–44. In this paper, using numerical
simulations, we reinforce the results of Kumar, Chatter-
jee, and Verma 9 and Verma, Kumar, and Pandey 10 by
showing that the velocity structure functions of thermal
convection scale similarly as those of 3D hydrodynamic
turbulence. We further show that although the energy
flux in turbulent convection is constant similar to hydro-
dynamic turbulence, it differs from viscous dissipation
rate. We will discuss the scaling of temperature struc-
ture functions in a future work.

The outline of the paper is as follows: In Sec. II, we
describe the governing equations of RBC. In Sec. III, we
discuss the phenomenology of turbulent convection and
derive the scaling of third-order structure functions. In
Sec. IV, we briefly discuss the simulation details and the
procedure employed to calculate the velocity structure
functions. In Sec. V, we present the scaling of the struc-
ture functions and discuss the nature of the probability
distribution functions of velocity increments. Further, we
compare the energy flux and viscous dissipation rate in
RBC and show that the flux is less than the dissipation
rate. Finally, we conclude in Sec. VI.

II. GOVERNING EQUATIONS

In RBC, under the Boussinesq approximation45,46, we
assume the kinematic viscosity ν, thermal diffusivity κ,
and thermal expansion coefficient α to be constants. Fur-
ther, the density of the fluid is taken to be constant ex-
cept for the buoyancy term in the momentum equation.
The temperature field T can be split as

T (x, y, z) = Tc(z) + θ(x, y, z), (2)

where Tc(z) is the conduction temperature profile, and
θ(x, y, z) is the deviation of temperature from the con-
duction state. Further, the temperature fluctuation θ is
related to the density fluctuation ρ as45,47

ρ = −ρ0αθ,

where ρ0 is the mean fluid density. The governing equa-
tions of RBC are as follows:

∂u

∂t
+ (u · ∇)u = −∇σ

ρ0
+ αgθẑ + ν∇2u, (3)

∂θ

∂t
+ (u · ∇)θ =

∆

d
uz + κ∇2θ, (4)

∇ · u = 0, (5)
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where u and σ are the velocity and the pressure fields
respectively, and ∆ and d are the temperature difference
and distance respectively between the top and the bot-
tom plates.

Using d as the length scale,
√
αg∆d as the veloc-

ity scale, and ∆ as the temperature scale, we non-
dimensionalize Eqs. (3)-(5), which yields

∂u

∂t
+ u · ∇u = −∇σ + θẑ +

√
Pr

Ra
∇2u, (6)

∂θ

∂t
+ u · ∇θ = uz +

1√
RaPr

∇2θ, (7)

∇ · u = 0, (8)

where Ra = αg∆d3/(νκ) is the Rayleigh number, and
Pr = ν/κ is the Prandtl number. The Rayleigh and
Prandtl numbers are the main governing parameters of
RBC.

In the next section we construct a phenomenology for
the structure functions of turbulent convection.

III. HYDRODYNAMIC TURBULENCE-LIKE
PHENOMENOLOGY FOR TURBULENT CONVECTION

A. Energy fluxes and spectra in hydrodynamic turbulence
and thermal convection

For 3D hydrodynamic turbulence, the energy cascade
rate Πu in turbulent flows is constant in the inertial range
(η � l � L). Dimensional analysis gives the following
relation for the energy spectrum Eu(k):

Eu(k) = KKO(Πu)2/3k−5/3, (9)

where KKO is the Kolmogorov constant. The aforemen-
tioned k−5/3 spectrum is known as Kolmogorov’s spec-
trum. In this section, we briefly describe the phenomeno-
logical arguments of Kumar, Chatterjee, and Verma 9 ,
Verma, Kumar, and Pandey 10 , and Verma 47 , accord-
ing to which the energy spectrum in turbulent convec-
tion follows Kolmogorov scaling with constant energy
flux, contrary to the arguments of L’vov 13 and L’vov
and Falkovich 14 , who propose Bolgiano-Obukhov scal-
ing with variable flux.

In all turbulent flows, the following can be derived us-
ing Eq. (3) (see Refs.3,47,48):

∂

∂t
Eu(k, t) = − ∂

∂k
Πu(k, t) + F̂(k, t)− D̂u(k, t), (10)

where F̂(k, t) is the energy feed due to forcing, and D̂u(k)
is the dissipation rate of kinetic energy. For a steady
state, we have ∂

∂tEu(k, t) ≈ 0 that modifies Eq. (10) to

d

dk
Πu(k) = F̂(k)− D̂u(k). (11)

Now, we will separately consider hydrodynamic turbu-
lence and RBC and show that the flux is constant for
both the cases. However, there is a difference between
the two fluxes, as shown below.

1. Hydrodynamic turbulence

The forcing in hydrodynamic turbulence is supplied at
small wavenumbers. In the inertial range, F̂(k) = 0 and

D̂u(k) is negligible. This results in the following1–3,48:

d

dk
Πu(k) = 0, ⇒ Πu(k) = constant. (12)

Note that in hydrodynamic turbulence, the forcing injec-
tion F(k) is modelled numerically in many ways. Refer
to Canuto et al. 49 for details.

Let us consider a small wavenumber k0 that lies in
the inertial range and is slightly larger than the forcing
wavenumber. Integration of Eq. (11) from 0 to k0 yields

Πu(k0)−Πu(0) =

∫ k0

0

F̂(k)dk −
∫ k0

0

D̂u(k)dk. (13)

Note that
∫ k0
0
F̂(k)dk is the total energy injection rate

for hydrodynamic turbulence. Since Πu(0) = 0 and the
dissipation at small wavenumbers is negligible, we obtain

Πu(k0) ≈
∫ k0

0

F̂(k)dk. (14)

Now, integration of Eq. (11) from k0 to ∞ yields

Πu(∞)−Πu(k0) =

∫ ∞
k0

F̂(k)dk −
∫ ∞
k0

D̂u(k)dk. (15)

Since Πu(∞) = 0 and F̂(k) = 0 for k ∈ [k0,∞), we get

Πu(k0) =

∫ ∞
k0

D̂u(k)dk ≈
∫ ∞
0

D̂u(k)dk = εu. (16)

Note that k0 is small, and D̂u(k) is small in the forc-
ing band. Therefore the lower limit of the aforemen-
tioned integration has been replaced with 0. Thus, using
Eqs. (14,16) we deduce that in hydrodynamic turbulence,
the energy flux in the inertial range is constant, and is
approximately equal to the dissipation rate εu and the
total energy injection rate.

2. Thermal convection

In turbulent convection, the energy is injected into
the system by buoyancy. We denote this energy feed
as F̂B(k). Note that we do not inject energy exter-
nally in convection as we do in hydrodynamic turbulence.
Further, unlike hydrodynamic turbulence, F̂B(k) acts at

all scales in thermal convection. Replacing F̂(k) with

F̂B(k), we rewrite Eq. (11) as

d

dk
Πu(k) = F̂B(k)− D̂u(k). (17)
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kdk
Π u

(k)

ℱ̂B(k)
D̂u(k)ℱ̂B(k) ≈ 0Finite

dΠu(k)/dk ≈ 0

ℱ̂B(k)dk

(a)

Πu(k) Πu(k + dk)k

k + dk

(b)

FIG. 1. For RBC: (a) A schematic diagram of a wavenumber shell of radius k showing the buoyant energy feed F̂B and the

kinetic energy flux Πu(k). (b) Schematic plot of Πu(k) vs. k. Πu(k) ≈ constant in the inertial range because of weak F̂B .

Viscous dissipation D̂u(k) is dominant for k > kd.

Since hot plumes ascend and the cold plumes descend,
uz and θ are positively correlated, which means that9,10

〈θ(r)uz(r)〉 > 0.

Using this condition, Kumar, Chatterjee, and Verma 9

and Verma, Kumar, and Pandey 10 claimed that F̂B(k) >
0, that is, buoyancy feeds energy to the system. Hence,
d
dkΠu(k) > 0 in steady state from Eq. (17). It is im-
portant to note that in stably-stratified flows, buoyancy
depletes energy from the system. Thus, for such flows,
F̂B < 0, resulting in d

dkΠu(k) < 0. This means that
the flux decreases with wavenumber in the inertial range;
this is an important ingradient of Bolgiano-Obukhov scal-
ing7,8. Since the flux does not decrease with wavenumber
in thermal convection, Bolgiano-Obukhov scaling is ruled
out.

Further, in turbulent convection, Pandey and Verma 50

and Pandey et al. 51 showed that buoyancy is strong only
at large scales and is weak in the inertial range. Nath
et al. 52 showed that the distribution of velocity field in
turbulent convection is nearly isotropic similar to hydro-
dynamic turbulence, again indicating weak buoyancy.

Based on the above observations, Kumar, Chatterjee,
and Verma 9 , and Verma, Kumar, and Pandey 10 argued
that F̂B does not bring about a noticeable increase in
Πu(k) (See Fig. 1). Therefore, F̂B ≈ D̂u ≈ 0, which
reduces Eq. (17) to

d

dk
Πu(k) ≈ 0, ⇒ Πu(k) ≈ constant. (18)

Thus, it can be inferred from Eq. (18) that Kolmogorov’s
theory of hydrodynamic turbulence is also applicable to

thermal convection. Integrating Eq. (17) from 0 to a
small wavenumber k0 lying in the inertial range yields

Πu(k0)−Πu(0) =

∫ k0

0

F̂B(k)dk −
∫ k0

0

D̂u(k)dk. (19)

Since Πu(0) = 0 and the dissipation rate is negligible at
small wavenumbers, the above equation reduces to

Πu(k0) ≈
∫ k0

0

F̂B(k)dk. (20)

Since F̂B(k) is strong at large scales, we deduce from
Eq. (20) that a large part of energy is injected by buoy-
ancy at large scales that contributes to the energy flux in
the inertial range; this feature is similar to hydrodynamic
turbulence.

There is, however, a difference between the energetics
of RBC and that of 3D turbulence. Integrating Eq. (17)
from k0 to ∞ yields

Πu(∞)−Πu(k0) =

∫ ∞
k0

F̂B(k)dk −
∫ ∞
k0

D̂u(k)dk. (21)

Since Πu(∞) = 0, the above equation becomes

Πu(k0) =

∫ ∞
k0

D̂u(k)dk −
∫ ∞
k0

F̂B(k)dk. (22)

Since k0 is small compared to the dissipation range
wavenumbers, we can write∫ ∞

k0

D̂u(k)dk ≈
∫ ∞
0

D̂u(k)dk = εu.
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Now,
∫∞
k0
F̂B(k)dk is the energy injected by buoyancy at

small scales. It must be noted that
∫∞
k0
F̂B(k)dk > 0 in

RBC, because F̂B(k), albeit weak, is positive and adds up
to a significant amount when integrated over the inertial
and dissipation range (see Sec. V C). Therefore,

Πu(k0) ≈ εu −
∫ ∞
k0

F̂B(k)dk < εu. (23)

Eq. (23) clearly shows that unlike in hydrodynamic tur-
bulence, the energy flux in the inertial range is smaller
than the dissipation rate due to the energy injected by
buoyancy at small scales. Recall that in hydrodynamic
turbulence, no energy is injected in these regimes. In
Sec. V C, using the results of numerical simulations of
turbulent convection, we show that the energy flux is
smaller than the dissipation rate by a factor of two to
three for our selected cases. Note that this factor likely
depends on Ra, Pr, type of boundary conditions, etc. A
careful study of the spectra and fluxes of thermal con-
vection for different regimes of Ra and Pr needs to be
carried out to ascertain how this factor depends on the
aforementioned parameters.

In the next subsection, following the procedure of Kol-
mogorov 1,2 , we derive the relation for the third-order
velocity structure functions of turbulent convection.

B. Velocity structure functions of turbulent convection

Sun, Zhou, and Xia 25 and Zhou, Sun, and Xia 53 per-
formed experiments of turbulent thermal convection and
observed isotropy in regions away from walls. Using de-
tailed numerical simulations, Nath et al. 52 computed the
modal energy of the inertial-range Fourier modes of tur-
bulent convection as a function of polar angle Θ (angle
between buoyancy direction and the wavenumber), and
found it to be approximately independent of Θ. Thus,
they showed that turbulent convection is nearly isotropic.
In Sec. V A, we compute the second-order velocity struc-
ture functions as functions of l and Θ (Θ is the angle
between the buoyancy direction and l) using our numer-
ical data, and show that they are nearly independent of
Θ. This again shows near-isotropy in thermal convection.
We believe that isotropy is related to the fact that in tur-
bulent convection, buoyancy “effectively” injects energy
at large scales, but it is weak in the inertial range.

Further, at high Rayleigh numbers, the boundary lay-
ers are very thin, with the boundary layer thickness
δu � d, d being the domain height. Therefore, for sim-
plification, we neglect the effects of boundary layers and
consider the system to be homogeneous. In Appendix A
we show that in turbulent thermal convection, the pla-
nar structure functions and those computed in the entire
domain exhibit somewhat similar scaling; this result too
validates the assumptions of approximate homogeneity
and isotropy for turbulent convection. Using the assump-
tions of homogeneity, isotropy and steady state, and fol-

lowing similar lines of arguments as Kolmogorov 1,2 , we
derive the relation for third-order structure function for
turbulent convection in the following discussion.

For homogeneous and incompressible turbulent flows,
the temporal evolution of the second-order velocity cor-
relation function can be written as follows1–3:

∂

∂t

[
1

2
〈ui(r)ui(r + l)〉

]
= Tu(l) + FB(l)−Du(l), (24)

where

Tu(l) =
1

4
∇l ·

〈
[u(r + l)− u(r)]2[u(r + l)− u(r)]

〉
,

FB(l) = 〈Fi(r)ui(r + l)〉,
Du(l) = ν∇′2〈ui(r)ui(r + l)〉.

Here, Tu(l) is the non-linear energy transfer at scale l,
FB(l) is the force correlation at l, and Du(l) is the cor-
responding dissipation rate. The symbol ∇′2 represents
the Laplacian at r + l. Under a steady state, the left-
hand side of Eq. (24) disappears. Further, we focus on
the inertial range where Du(l) ≈ 0 that yields

FB(l) ≈ −Tu(l). (25)

Now, FB(l) can be expanded as Fourier series as follows:

FB(l) =
∑
k

F̂B(k) exp(ik · l). (26)

Following Verma, Kumar, and Pandey 10 , we model
F̂B(k) as3

F̂B(k) =
A

2
(δk,k0

+ δk,−k0
) +Bk−5/3. (27)

Substitution of Eq. (27) in Eq. (26) yields

FB(l) = A cos(k0 · l) +

∫
Bk−5/3 exp(ik · l)dk

≈ A+DBl2/3. (28)

This is because k0 · l ≈ 0 since turbulent convection is
essentially forced by large-scale plumes10. Here, B is a
small constant. Now, for an isotropic flow, Tu(l) = Tu(l),
and is related to the third-order structure function Su3 (l)
as (see Frisch 3)

Tu(l) =
1

12

1

l2
d

dl

[
1

l

d

dl
{l4Su3 (l)}

]
. (29)

Combining Eqs. (25), (28) and (29), we get

− 1

12

1

l2
d

dl

[
1

l

d

dl
{l4Su3 (l)}

]
= A+DBl2/3. (30)

Integrating the above expression twice, and noting that
Su3 (0) = 0, we obtain the following relation:

Su3 (l) = −4

5
(Al +D′Bl5/3). (31)
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Now, we assume that the large-scale buoyant energy feed
at k = k0 equals the energy flux Πu, and that B is small.
Therefore, we have A ≈ Πu, and

Su3 (l) = −4

5
Πul. (32)

Thus, the scaling of the third-order structure functions of
RBC is similar to those of 3D hydrodynamic turbulence,
except that εu of Su3 (l) is replaced by Πu. Note that
Πu < εu for RBC. We will verify the above relation in
Sec. V using numerical simulations.

It is important to note that for hydrodynamic tur-
bulence, F̂(k) is provided at small wavenumbers and is
equal to the viscous dissipation rate εu. Inverse Fourier
transform of F̂(k) results in a constant value of F(l) that
equals εu. Using the same procedure as shown above, one
can derive that Su3 (l) = −(4/5)εul. Note that in RBC,
εu of the above Su3 (l) is replaced by Πu. We also re-
mark that our arguments are consistent with the results
of Kunnen and Clercx 54 , who computed the scale-by-
scale energy budget in direct numerical simulations of
RBC and showed that Su3 (l) 6= −(4/5)εul for convective
turbulence.

Finally, as mentioned previously, it must be noted that
Eq. (32) has been derived under the assumption of ho-
mogeneity and isotropy, which may not be the case for
all regimes of turbulent convection. For example, Nath
et al. 52 has shown that anistropy is stronger for large
Prandtl numbers. Thus, we cannot make the assump-
tion of isotropy in this regime.

In the next section, we discuss the numerical tech-
niques involved in the computation of the structure func-
tions.

IV. NUMERICAL METHODS

We use two sets of numerical data to compute the
velocity structure functions, each set having different
boundary conditions. The first set is the data of Verma,
Kumar, and Pandey 10 , who performed direct numerical
simulation (DNS) of RBC on a 40963 grid. The grid
corresponds to a cube of unit dimension. The Rayleigh
and Prandtl numbers were chosen as 1.1×1011 and unity
respectively. The grid corresponds to a cubical domain
of unit dimension. The simulation was performed us-
ing a pseudo-spectral code55,56. Free-slip and isother-
mal boundary conditions were employed at the top and
bottom plates, and periodic boundary conditions were
employed at the side walls. For details, refer to Verma,
Kumar, and Pandey 10 .

The second set of data is that of Kumar and Verma 57 .
This simulation was performed using a finite volume
solver58 on a non-uniform 2563 grid that corresponds to a
cube of unit dimension. The Rayleigh and Prandtl num-
bers were chosen as 1 × 108 and unity respectively. No-
slip boundary conditions were imposed at all the walls;

such realistic boundary conditions capture the wall ef-
fects. Isothermal boundary conditions were imposed at
the top and bottom plates and adiabatic boundary condi-
tions at the side walls. For spatial discretization schemes,
time-marching method, and the validation of the code,
see Refs.57,59,60. We interpolate the velocity fields to a
uniform 2563 grid.

We compute the velocity structure functions in the en-
tire domain using a combination of shared (OpenMP)
and distributed memory (MPI) parallelization (see
Pacheco 61). The computations involve running six
nested for loops: the outer three loops describing the
position vector r and the inner three loops describing
r + l. To save computational resources, we condense our
free-slip data to 5123 grid. Note that we are interested
only in scales pertaining to the inertial range and not
the dissipative scales. After the aforementioned coarsen-
ing, we are still able to resolve scales above 6η and cap-
ture the inertial range very well in addition to avoiding
unnecessary computational costs. The number of MPI
nodes used were equal to the number of grid points in
the x-direction, while the number of OpenMP threads
used were 32.

In the forthcoming section, we will discuss the numer-
ical results.

V. NUMERICAL RESULTS

In the present section, for turbulent thermal convec-
tion, we describe the scaling of the velocity structure
functions, the probability distribution functions of ve-
locity increments, and the difference between the energy
flux and viscous dissipation rate.

A. Structure functions

Before computing the structure functions, we first nu-
merically compute the viscous dissipation rate εu using
the velocity field data of our free-slip and no-slip cases.
We use the relation

εu = 〈2νSijSij〉 (33)

to compute the viscous dissipation rate, where Sij is the
strain rate tensor, and 〈.〉 represents the volume aver-
age. Further, we compute the Kolmogorov length scale
η and the Nusselt number Nu using the following rela-
tions3,34,62:

η =

(
ν3

εu

)1/4

, (34)

Nu = 1 +
〈uzθ〉
κ∆d−1

. (35)

In Table I, we list the values of Nu, ν, εu and η for both
free-slip and no-slip data. Clearly, η is larger for the no-
slip case because of lower Ra. Further, we remark that
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TABLE I. For the two simulations of RBC: Rayleigh number Ra, Nusselt number Nu, kinematic viscosity ν, viscous dissipation
rate εu, and Kolmogorov length scale η.

Case Ra Nu ν εu η

Free-slip 1.1× 1011 582 3.02× 10−6 2.59× 10−3 3.21× 10−4

No-slip 1.0× 108 32.8 1.00× 10−4 3.18× 10−3 4.21× 10−3

TABLE II. For the free-slip and no-slip simulations of RBC: prefactor A and the scaling exponent ζq for the structure functions
computed by fitting the relation |Suq (l)| = Alζq to our data.

Free-slip simulation (Ra = 1.1× 1011) No-slip simulation (Ra = 1.0× 108)
q A ζq A ζq

2 (2.8± 0.1)× 10−2 0.70± 0.01 (2.3± 0.1)× 10−2 0.71± 0.01
3 (9.3± 0.5)× 10−4 0.97± 0.01 (8.5± 0.5)× 10−4 0.98± 0.02
4 (2.0± 0.1)× 10−3 1.26± 0.02 (1.6± 0.1)× 10−3 1.25± 0.02
5 (1.5± 0.1)× 10−4 1.45± 0.02 (2.6± 0.2)× 10−4 1.60± 0.04
6 (1.8± 0.1)× 10−4 1.69± 0.02 (2.6± 0.2)× 10−4 1.76± 0.03
7 (2.1± 0.1)× 10−5 1.81± 0.02 (7.6± 0.8)× 10−5 2.01± 0.05
8 (2.7± 0.3)× 10−5 2.09± 0.03 (6.0± 0.6)× 10−5 2.16± 0.05
9 (3.9± 0.7)× 10−6 2.14± 0.05 (2.6± 0.4)× 10−5 2.33± 0.07
10 (3.1± 0.5)× 10−6 2.28± 0.05 (2.1± 0.3)× 10−5 2.51± 0.07

the viscous boundary layers are thin for our data, with
δu = 0 for the free-slip simulation and δu ≈ 2η for the
no-slip simulation59. Thus, most of the flow resides in
the bulk.

Next, we validate the assumption of isotropy in tur-
bulent convection. Using both sets of data, we compute
the second-order velocity structure functions in the entire
domain as functions of l and Θ, where Θ is the angle be-
tween the buoyancy direction and l. Figs. 2(a,b) exhibit
the polar plots Su2 (l,Θ), with l spanning the inertial-
dissipation range (0 < l/η < 210 for the free-slip case
and 0 < l/η < 40 for the no-slip case). The figures
clearly show that the structure functions are nearly in-
dependent of Θ, thereby demonstrating near-isotropy in
the inertial-dissipation range.

Now, we compute the magnitude of Suq as a function of
l in the entire domain, with q ranging from 2 to 10. Fig. 3
exhibits the plots of structure functions of orders 2, 3, 6,
8 and 10 versus l/η for both sets of data. Contrary to
the results of Benzi et al. 16,17 , we observe a discernible
scaling range for the third order structure function. The
range is found to be 32 < l/η < 200 for the free-slip data
and 19 < l/η < 40 for the no-slip data. The range is
much smaller for the no-slip case because of the higher
value of η. Note that the length scales in the inertial
range are much larger than the boundary layer thickness.

We compute the scaling exponents ζq and the prefactor
A by fitting the relation Suq (l) = Alζq to our data within
the scaling range. Table II lists A and ζq for both sets
of data. Note that ζ3 = 0.97 and 0.98 for the free-slip
and the no-slip cases respectively, which are close to Kol-
mogorov scaling of Su3 ∼ l. From Table II and Figs. 3 and
4, we observe that for lower orders, the scaling exponents

−3.6 −3.0 −2.4 −4.0 −3.0 −2.0

(a) Free-slip (b) No-slip

FIG. 2. For the (a) free-slip and (b) no-slip simulations of
RBC: Polar (l,Θ) plots of the logarithms of second-order
velocity structure functions, where Θ is the angle between
the buoyancy-direction and l. l spans the inertial-dissipation
range: 0 < l/η < 210 for the free-slip data and 0 < l/η < 40
for the no-slip data. The structure functions are nearly
independent of Θ, thus demonstrating near-isotropy in the
inertial-dissipation range.

ζq for free-slip and no-slip boundary conditions are nearly
equal, and they are close to q/3, which is a generalisa-
tion of Kolmogorov’s theory of turbulence. For q = 2,
ζ2 ≈ 2q/3 that yields k−5/3 energy spectrum. These
results are consistent with the Kolmogorov energy spec-
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ζ2 = 0.72

ζ3 = 0.97

ζ6 = 1.69

ζ8 = 2.09

ζ10 = 2.28

ζ2 = 0.72

ζ3 = 0.98

ζ6 = 1.76

ζ8 = 2.16

ζ10 = 2.51

lB

lB

(a) Free-slip

(b) No-slip

FIG. 3. For (a) the free-slip and (b) no-slip simulations of
RBC: plots of |Suq | with decreasing line thickness for q = 2
(green), 3 (red), 6 (purple), 8 (brown) and 10 (blue) vs. l/η.
The vertical solid gray line marks the Bolgiano length scale.

trum in thermal convection observed by Kumar, Chat-
terjee, and Verma 9 , Verma, Kumar, and Pandey 10 , and
Kumar and Verma 57 . Our results are also consistent
with those of Sun, Zhou, and Xia 25 and Kaczorowski and
Xia 33 , who report Kolmogorov scaling of the structure
functions of RBC computed at the cell center. On the
other hand, our results are contrary to those of Benzi
et al. 16,17 , Calzavarini, Toschi, and Tripiccione 24 , and
Kunnen et al. 31 (for Ra = 108), who deduce Bolgiano-
Obukhov scaling based on their simulations. However, it
must be noted that Kunnen et al. 31 could not observe
Bolgiano-Obukhov scaling for Ra > 108; rather, they re-
port Kolmogorov scaling, similar to our results. We will
discuss more on Bolgiano-Obukhov scaling later in this
section.

As illustrated in Table II and Fig. 4, higher order ζq’s
for the free-slip data are marginally lower than those for
the no-slip data. Also, for higher order structure func-
tions, ζq deviates from q/3 due to intermittency. To ex-
plain intermittency effects in hydrodynamic turbulence,
She and Leveque 6 proposed the following model for ζq:

ζq =
q

9
+ 2

(
1−

(
2

3

)q/3)
. (36)

ζ q
ζ q

q

BO59
KO41
SL94

(a)

(b)

BO59
KO41
SL94

(b) No-slip

(a) Free-slip

FIG. 4. For (a) the free-slip and (b) no-slip simulations of
RBC: plots of ζq (squares) vs. q. ζq matches closely with the
predictions of She and Leveque 6(dashed line). The figures
also contain Kolmogorov’s prediction ζq = q/3 (dotted line)
and Bolgiano-Obukhov’s prediction ζq = 3q/5 (chained line).

Interestingly, the aforementioned equation describes
ζq calculated using our RBC data quite well; see
Figs. 4(a,b). These results demonstrate similarities be-
tween ζq scaling in convection and in hydrodynamic tur-
bulence, consistent with earlier results9,10,47. Our results
also match with the experimental work of Sun, Zhou,
and Xia 25 , who observed the scaling exponents of struc-
ture functions calculated at cell-center to fit with She-
Leveque’s model.

In Fig. 5, we plot the logarithms of Su2 , Su6 , Su8 and Su10
versus log10 |Su3 | for both free-slip and no-slip cases, and
observe the structure functions to be self-similar, that is,

Suq ∼ (Su3 )β(q,3), (37)

where β(q, 3) = ζq/ζ3. The computed values of the ex-
ponent β(q, 3) are also shown in the figure. This scaling
occurs for l/η ranging from 12 to 530 for the free-slip
case and 9 to 45 for the no-slip case. The range of Suq
versus Su3 plots of Fig. 5 is wider than that of Suq plots
of Fig. 3 (In Fig. 5, the range extends well beyond the
inertial range to the dissipative scales). This is called ex-
tended self-similarity (ESS)18,19. ESS has been observed
in previous studies of convection16,17,34. Note that ESS
was first reported by Benzi et al. 18 in hydrodynamic tur-
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β(2,3) = 0.72

β(6,3) = 1.83

β(8,3) = 2.22

β(10,3) = 2.43

β(2,3) = 0.72

β(6,3) = 1.80

β(8,3) = 2.20

β(10,3) = 2.56

(a) Free-slip

(b) No-slip

FIG. 5. For (a) the free-slip and (b) no-slip simulations of
RBC: plots of Suq vs. Su3 . This extended self-similarity goes
beyond the inertial range.

bulence.
According to Pope 62 , the upper limit of the inertial

range can be estimated by lPEI ≈ L/6 and the lower limit
lPDI ≈ 60η. Going by this estimate, lPEI = 530η for our
free-slip data. Note that the upper and the lower lim-
its of the power-law range of the structure functions for
our free-slip data are of the same order of magnitude
as Pope’s estimate. For the no-slip case, because of the
large value of η and the dissipative nature of OpenFOAM
solver, lPDI(= 60η) is greater than lPEI(= 40η). Therefore,
Pope’s estimate for the lower limit does not hold for the
no-slip case; this is expected because Pope’s estimates
are expected to work for homogenous and isotropic tur-
bulence, or periodic boundary condition.

An important point to note is that ζq curve does not
fit with ζq = 3q/5, which is a generalisation of Bolgiano-
Obukhov (BO) model. As discussed in Sec. III A 2,
Kumar, Chatterjee, and Verma 9 , and Verma, Kumar,
and Pandey 10 have argued against Bolgiano-Obukhov
(BO) model for RBC based on energy flux argu-
ments. This result is contrary to some of the earlier
works12–14,16,17,20,31 that argue in favour of Bolgiano-
Obukhov model. Note that Bolgiano length computed
using lB = Nu1/2/(PrRa)1/4 are approximately 130η
and 14η for the free-slip and no-slip boundary condi-
tions respectively. They are marked as vertical lines in

Fig. 3. We do not discuss lB in detail because Bolgiano-
Obukhov (BO) model has been shown to be inapplicable
for RBC9,10,47(see Sec. III A 2).

In Appendix A, we compute the planar structure func-
tions for several horizontal cross sections. We observe
that the these structure functions are somewhat similar
to those described above, with a difference that planar
structure functions exhibit relatively higher fluctuations.
This is due to lesser averaging for the planar structure
function.

In the next subsection we describe the probability dis-
tribution function (PDF) for the velocity difference be-
tween two points.

B. Probability distribution function for velocity increments

For different values of l/η, we compute the probabil-
ity distribution functions (PDFs) of velocity increments,

δu = {u(r + l)− u(r)} · l̂, using the free-slip and the
no-slip data. Fig. 6(a) exhibits the PDFs of δu for the
free-slip data. For small l, the PDFs are non-Gaussian
with wide tails. The tails fit with a stretched expo-

(a)

(b)

δu/⟨δu2⟩1/2

PD
F

PD
F

(a) Free-slip

(b) No-slip

FIG. 6. For (a) the free-slip and (b) no-slip simulations of
RBC: probability distribution functions of δu for various l/η
(as shown in legends). The tails fit well with stretched expo-
nential (solid curves). The dashed black curves represent the
standard Gaussian distribution.
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nential curve given by P (δu) ∼ exp(−m|δu∗|α), where

δu∗ = δu/
√
〈δu2〉. We observe that the stretching ex-

ponent α = 0.8, 1.0, and 1.8 for l/η = 12, 62, and 170
respectively. Thus, the PDFs become closer to Gaus-
sian (represented by dashed black curve) as l increases.
This is expected since the velocities at two largely sep-
arated points become independent of each other. Our
results are similar to those observed in hydrodynamic
turbulence (see Refs63,64).

Fig. 6(b) exhibits the PDFs of δu calculated using the
no-slip data. Clearly, the tails are narrower compared to
the free-slip case. This is because of the weaker velocity
fluctuations owing to the lower Rayleigh number. More-
over, the presence of viscous boundary layers also reduces
the fluctuations. Pandey et al. 65 show that for the same
parameters, the large scale velocity and heat flux are less
for convection with no-slip walls than with free-slip walls.
Similar to the free-slip case, the tails of the PDFs fit well
with a stretched exponential. For l/η = 7, 12, and 37,
α’s are 0.9, 1.0, and 1.7 respectively for the left tail, and
1.0, 1.2, and 1.9 respectively for the right tail. The PDFs
become close to Gaussian at large scales, similar to the
free-slip case.

C. Buoyancy forcing, energy flux and viscous dissipation
rate

In this section, we provide a numerical demonstration
that the energy flux and the viscous dissipation rate differ
in RBC.

Using the third-order velocity structure functions, we
calculate the energy flux Πu using Eq. (32) as

Πu = −5

4

Su3
l
. (38)

We list the values of the energy flux in Table III. We
also compute the Fourier transform of our velocity and
temperature field data, and compute the spectral energy
flux using the following relation55,56:

Πu(k0) =
∑
k≥k0

∑
p<k0

δk,p+q=([k · u(q)][u∗(k) · u(p)]).

(39)
We plot the flux [computed using Eq. (39)] against k

in Fig. 7. We observe the value of the flux to be almost
constant in the inertial range and it closely matches with
that computed using Eq. (38). In Table III, we also list
the values of εu computed in Sec.V A.

From the table, we observe that εu ≈ 2Πu for the free-
slip case and ≈ 3Πu for the no-slip case. This is unlike in
3D hydrodynamic turbulence in which flux and viscous
dissipation rate are equal. Our results are consistent with
our arguments in Sec. III A 2 where we show that the
difference between the flux and the viscous dissipation
rate arises due to non-zero buoyancy in the inertial range.

Using the values of Πu(k) computed using Eq. (39),
we numerically compute d

dkΠu(k) using central-difference

method. We also compute the energy spectrum Eu(k)
and obtain the spectrum of viscous dissipation using the
relation D̂u(k) = 2νk2Eu(k). Using the values of the
dissipation spectrum and d

dkΠu(k) and assuming steady

state, we compute F̂B(k) using Eq. (17):

F̂B(k) =
d

dk
Πu(k) + D̂u(k).

We plot the values of Πu(k), F̂B(k), and
∫∞
k
F̂B(k′)dk′

in Fig 7(a) for the free-slip case and in Fig 7(b) for the no-
slip case. In each of the plots, we also draw a horizontal
line denoting the viscous dissipation rate. As shown in
Figs. 7(a,b), in the inertial range,

Πu ∼
∫ ∞
k

F̂B(k′)dk′,

and is approximately εu/2 for the free-slip case and εu/3

for the no-slip case. Also, F̂B(k′) in the inertial range is
weak, consistent with our previous arguments.

(a) Free-slip

(b) No-slip

ϵu

ϵu

ℱ̂B(k)

∫
∞

k
ℱ̂B(k′�)dk′�

Π
u (k)

ℱ̂
B (k)

∫
∞

k
ℱ̂

B (k′�)dk′�
Π

u (k)

FIG. 7. For (a) the free-slip and (b) no-slip simulations of

RBC: the spectra of buoyancy forcing F̂B(k) (dashed blue

lines), its integral
∫∞
k
F̂B(k′)dk′ (chained black lines), and the

kinetic energy flux Πu(k) (solid red lines). F̂B(k) is weak in

the inertial range. Πu(k) is of the same order as
∫∞
k
F̂B(k′)dk′

and is less than the viscous dissipation rate εu (dotted green
lines).
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TABLE III. For the two simulations of RBC: energy flux Πu computed using the third-order structure functions, viscous
dissipation rate εu, and the Kolmogorov constant KKO.

Case Πu εu KKO

Free-slip (1.29± 0.06)× 10−3 2.59× 10−3 1.59± 0.09
No-slip (1.09± 0.03)× 10−3 3.18× 10−3 1.53± 0.04

(a) Free-slip

(b) No-slip

∫
k

0
D̂u(k′�)dk′�

∫
k

0
ℱ̂B(k′ �)dk′�

Π
u (k)

Π
u (k)

∫
k

0
D̂ u(k′

�)dk′�

∫
k

0
ℱ̂B(k′ �)dk′�

FIG. 8. For (a) the free-slip and (b) no-slip simula-
tions of RBC: the spectra of cumulative buoyancy forcing∫ k
0
F̂B(k′)dk′ (chained black lines), kinetic energy flux Πu(k)

(solid red lines) and cumulative dissipation rate
∫ k
0
D̂u(k′)dk′

(thick green lines). The cumulative buoyancy forcing at small
wavenumbers contributes mainly to the flux in the inertial
range.

In Fig. 8, we plot the cumulative buoyant energy forc-

ing
∫ k
0
F̂B(k′)dk′, the cumulative viscous dissipation rate∫ k

0
D̂u(k′)dk′, and the energy flux Πu(k) against k for

both sets of data. The plots clearly show that the cu-
mulative buoyant enegy forcing at small wavenumbers
contributes to the energy flux in the inertial range, con-
sistent with our arguments in Sec. III A 2. For the free-

slip data,
∫ k
0
F̂B(k′)dk′ remains close to the flux till

k = 200, after which it deviates from Πu(k). Similar be-
havior is also observed for the no-slip data, but with the

threshold wavenumber k = 18. Above these wavenum-
bers,

∫ k
0
F̂B(k′)dk′ increases slowly and merges with the

cumulative dissipation rate
∫ k
0
D̂u(k′)dk′ at dissipation

wavenumbers. It is clear that
∫ k
0
F̂B(k′)dk′ at small

wavenumbers (which contributes to the inertial range en-
ergy flux) is respectively 1/2 and 1/3 of the total energy

injection rate (
∫∞
0
F̂B(k′)dk′) for the free-slip and the

no-slip data.
Lastly, we compute the Kolmogorov constant KKO by

first calculating the constant C using the following re-
lation involving the second-order structure function and
the energy flux:

Su2 (l) = C(Πu)2/3l2/3. (40)

After this, we compute the Kolmogorov constant using62

KKO =
55

72
C. (41)

We list the values of Kolmogorov constant for both free-
slip and no-slip cases in Table III. Interestingly, KKO of
Table III is quite close to that for hydrodynamic turbu-
lence3.

VI. CONCLUSIONS

Using the numerical data of thermal convection, we
compute the velocity structure functions Suq for q = 2

to 10. The first data set10 was generated with free-slip
boundary conditions for Ra = 1.1 × 1011 and Pr = 1,
and the second set57 with no-slip boundary conditions
with Ra = 1× 108 and Pr = 1. We calculate the scaling
exponent ζq from Suq .

We show that the third-order structure functions, com-
puted using both sets of data, scale according to Kol-
mogorov’s theory [Su3 = −(4/5)Πul]. Our results are
consistent with Kolmogorov’s energy spectrum observed
in turbulent convection. The exponents of the structure
functions of thermal convection match well with She-
Leveque’s predictions. We demonstrate that the struc-
ture functions show extended self-similarity.

We also calculate the probability distribution function
(PDF) of velocity increments for different values of the
separation distance l. We show that for small l, the PDFs
are non-Gaussian with wide tails. With increasing l, the
PDFs become closer to Gaussian. The tails of the PDFs



12

follow a stretched exponential, and the stretching expo-
nent increases with l. Note that the PDFs of hydrody-
namic turbulence show similar behaviour.

We compute the energy flux Πu using the third-order
structure functions and show that Πu 6= εu; instead, it
is two to three times less than εu for our cases. This is
unlike in hydrodynamic turbulence where flux equals the
dissipation rate. Using phenomenological arguments, we
have shown that this difference arises due to non-zero,
albeit weak, buoyancy present in the inertial range.

In summary, the scaling behaviour of velocity struc-
ture functions of turbulent convection shows similarities
with those of 3D hydrodynamic turbulence. We do not
analyze the temperature structure functions in this pa-
per. Some of the notable works on temperature struc-
ture functions of turbulent convection include those of
Ching 20 and Ching et al. 26 . We will discuss the scaling
of temperature structure functions in a future work.
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Appendix A: Extent of homogeneity in turbulent convection

For very high Rayleigh number RBC, the boundary
layers are quite thin. Hence, the flow, mostly residing in
the bulk, is nearly homogeneous. However, for relatively
smaller Ra (around 108), there can be some inhomogene-
ity due to plumes and large-scale structures. To test the
extent of inhomogeneity, we compute the third-order ve-
locity structure functions for three horizontal slices of
the free-slip and no-slip flow profiles detailed in the main
text. The three slices are at z = 0.25, 0.5, 0.75. Note that
the z = 0.5 corresponds to the mid plane.

Figure 9 exhibits the plots of |Su3 (l)| vs. l/η for
the three planes. For the free-slip data with higher
Ra [Fig. 9(a)], |Su3 (l)| ∼ lζ3 , where ζ3 ≈ 1 for z = 0.25
and 0.5. However, for the z = 0.75 plane, ζ3 = 0.86,
which is slightly below unity. The upper and the lower
limits of the scaling range are nearly same as those for the
structure functions computed in the entire domain [see
Fig. 3(a)]. Thus, it is reasonable to assume the free-slip
data to be homogeneous. However we observe stronger

ζ3 = 1.02

ζ3 = 0.86

ζ3 = 1.01

ζ3 = 1.15ζ3 = 1.01

(a) Free-slip

(b) No-slip

FIG. 9. Plots of the planar structure function Su3 (l) at z =
0.25, 0.5, 0.75 for (a) the free-slip and (b) no-slip simulations.
Despite some spatial inhomogeneity, especially for the no-slip
boundary condition (b), there exist scaling range with the
scaling exponent ζ3 ∼ 1.

spatial inhomogeneities for the no-slip data, as shown in
Fig. 9(b). Here, the scaling regime of |Su3 (l)| ∼ lζ3 is
observed for all the three planes, with ζ3 ranging from
1.02 to 1.15. However, the range of the scaling regime
differs for the three planes. Note that the spatial in-
homogeneities are stronger for no-slip boundary condi-
tion due to the relatively stronger plumes for the no-slip
boundaries.

As mentioned earlier, the observed inhomogeneity,
which is more prominent for no-slip data, can be at-
tributed to localized plumes. Thus, the structure func-
tions are required to be averaged over more points to can-
cel out the effects of the plumes. That is why bulk struc-
ture functions are smoother than those for the planes,
and they are closer to the predictions of She-Leveque6.
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46F. Chillà and J. Schumacher, “New perspectives in turbulent
Rayleigh-Bénard convection,” Eur. Phys. J. E 35, 58 (2012).

47M. K. Verma, Physics of Buoyant Flows (World Scientific, Sin-
gapore, 2018).

48M. Lesieur, Turbulence in Fluids (Springer-Verlag, Dordrecht,
2008).

49C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spec-
tral Methods in Fluid Dynamics (Springer-Verlag, Berlin Heidel-
berg, 1988).

50A. Pandey and M. K. Verma, “Scaling of large-scale quantities in
Rayleigh-Bénard convection,” Phys. Fluids 28, 095105 (2016).

51A. Pandey, A. Kumar, A. G. Chatterjee, and M. K. Verma, “Dy-
namics of large-scale quantities in Rayleigh-Bénard convection,”
Phys. Rev. E 94, 053106 (2016).

52D. Nath, A. Pandey, A. Kumar, and M. K. Verma, “Near
isotropic behavior of turbulent thermal convection,” Phys. Rev.
Fluids 1, 064302 (2016).

53Q. Zhou, C. Sun, and K.-Q. Xia, “Experimental investigation
of homogeneity, isotropy, and circulation of the velocity field
in buoyancy-driven turbulence,” J. Fluid Mech. 598, 361–372
(2008).



14

54R. P. J. Kunnen and H. J. H. Clercx, “Probing the energy cascade
of convective turbulence,” Phys. Rev. E 90, 063018 (2014).

55M. K. Verma, A. G. Chatterjee, R. K. Yadav, S. Paul, M. Chan-
dra, and R. Samtaney, “Benchmarking and scaling stud-
ies of pseudospectral code Tarang for turbulence simulations,”
Pramana-J. Phys. 81, 617–629 (2013).

56A. G. Chatterjee, M. K. Verma, A. Kumar, R. Samtaney,
B. Hadri, and R. Khurram, “Scaling of a Fast Fourier Trans-
form and a pseudo-spectral fluid solver up to 196608 cores,” J.
Parallel Distrib. Comput. 113, 77–91 (2018).

57A. Kumar and M. K. Verma, “Applicability of Taylor’s hypothe-
sis in thermally driven turbulence,” Royal Society Open Science
5, 172152 (2018).

58H. Jasak, A. Jemcov, Z. Tukovic, et al., “OpenFOAM: A C++
library for complex physics simulations,” in International work-
shop on coupled methods in numerical dynamics, Vol. 1000 (IUC
Dubrovnik, Croatia, 2007) pp. 1–20.

59S. Bhattacharya, A. Pandey, A. Kumar, and M. K. Verma,

“Complexity of viscous dissipation in turbulent thermal convec-
tion,” Phys. Fluids 30, 031702 (2018).

60S. Bhattacharya, R. Samtaney, and M. K. Verma, “Scaling and
spatial intermittency of thermal dissipation in turbulent convec-
tion,” Phys. Fluids 31, 075104 (2019).

61P. S. Pacheco, An Introduction to Parallel Programming (Mor-
gan Kaufmann, Burlington, 2011).

62S. B. Pope, Turbulent Flows (Cambridge University Press, Cam-
bridge, 2000).

63P. Kailasnath, K. R. Sreenivasan, and G. Stolovitzky, “Prob-
ability density of velocity increments in turbulent flows,” Phys.
Rev. Lett. 68, 2766–2769 (1992).

64D. A. Donzis, P. K. Yeung, and K. R. Sreenivasan, “Dissipation
and enstrophy in isotropic turbulence: Resolution effects and
scaling in direct numerical simulations,” Phys. Fluids 20, 045108
(2008).

65A. Pandey, M. K. Verma, A. G. Chatterjee, and B. Dutta, “Simi-
larities between 2D and 3D convection for large Prandtl number,”
Pramana-J. Phys. 87, 13 (2016).


	Similarities between the structure functions of thermal convection and hydrodynamic turbulence
	Abstract
	Introduction
	Governing equations
	Hydrodynamic turbulence-like phenomenology for turbulent convection
	Energy fluxes and spectra in hydrodynamic turbulence and thermal convection
	Hydrodynamic turbulence
	Thermal convection

	Velocity structure functions of turbulent convection

	Numerical methods
	Numerical results
	Structure functions
	Probability distribution function for velocity increments
	Buoyancy forcing, energy flux and viscous dissipation rate

	Conclusions
	Acknowledgments
	Extent of homogeneity in turbulent convection


