
Inferring HIV incidence trends and transmission
dynamics with a spatio-temporal HIV epidemic model

Timothy M Wolock∗,a, Seth R Flaxmana, Jeffrey W Eatonb

aDepartment of Mathematics, Imperial College London, London, UK
bDepartment of Infectious Disease Epidemiology, Imperial College London, London, UK

Abstract

Reliable estimation of spatio-temporal trends in population-level HIV incidence
is becoming an increasingly critical component of HIV prevention policy-making.
However, direct measurement is nearly impossible. Current, widely used models
infer incidence from survey and surveillance seroprevalence data, but they require
unrealistic assumptions about spatial independence across spatial units.

In this study, we present an epidemic model of HIV that explicitly simulates
the spatial dynamics of HIV over many small, interacting areal units. By
integrating all available population-level data, we are able to infer not only
spatio-temporally varying incidence, but also ART initiation rates and patient
counts. Our study illustrates the feasibility of applying compartmental models
to larger inferential problems than those to which they are typically applied, as
well as the value of “data fusion” approaches to infectious disease modeling.
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Introduction

Fitting population-level models of the human immunodeficiency virus (HIV)
epidemic to a combination of survey and surveillance data is an essential com-
ponent of HIV policymaking (Stover et al. 2017). HIV is most prevalent in
countries with limited capacity for health surveillance, so data are relatively
sparse in the places where we need it most. We use models to fill in the gaps
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and estimate the indicators we need in order to assess the epidemic’s trajectory
(Brown et al. 2014). These indicators include things like adult HIV preva-
lence, HIV incidence, and coverage of life-saving antiretroviral treatment (ART)
(“Monitoring, Evaluation, and Reporting (MER 2.0) Indicator Reference Guide”
2017).

Recently, improved data collection and expanded computational power have
increased demand for indicators at subnational levels (Meyer-Rath et al. 2018).
We have the data and models to produce reliable maps of HIV prevalence, but
similar deep thought has not been given to inferring HIV incidence over space
(Dwyer-Lindgren et al. 2019; Cuadros et al. 2017; Gutreuter et al. 2019).Existing
methods for inferring HIV inference invariably treat each spatial unit as separate
from all others (Brown et al. 2014; Stover et al. 2017), an obviously incorrect
assumption. This is more than a theoretical concern. If we were to enact a truly
effective HIV prevention programme in an urban area and evaluate it without
taking into account the new infections prevented in surrounding suburban areas,
we could easily underestimate our programme’s efficacy.

Our goal is to develop a model of HIV that can infer incidence over space, as
well as time. It must offer estimates at useful geographic resolutions without
incurring extreme computational costs. In this technical report, we will provide
a detailed account of our progress towards this end.

First, we will outline the available population-level data sources that might
inform estimates of HIV incidence and distributional assumptions we could use
to integrate these data into a statistical model. Then, we will describe the
mechanistic model we are using to project the HIV epidemic given a set of
inferred parameters. Finally, we will provide preliminary estimates from an
application to Malawi and a summary of our findings thus far.

Methodology

Because a new HIV infection might not be detected for several years, incidence
is virtually impossible to observe directly. Instead, we can use mechanistic models
to “fuse” together what indicators we do have and infer the incidence series that
was most likely to have generated the combined observed dataset. This is the
principle of data fusion (Hall and Llinas 1997). In this section, we will first
describe and develop notation for types of data used in our analysis and propose
distributional assumptions that we believe represent the generation processes of
those data. Then we will describe our compartmental model of HIV in detail.
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Data and Distributional Assumptions

We have identified three measurable indicators that will allow us to infer
HIV incidence: prevalence, ART coverage, and the proportion of infections at a
given time classified as “recent.”

Prevalence
HIV antibody assay results are far and away the most prevalent and reliable

source of population-level HIV data. They come from two main sources: large,
nationally representative household surveys and routine surveillance at antenatal
care (ANC) clinics. These assays give us seroprevalence data consisting the
number of tests conducted in a given group and the number of those tests that
were positive. Let r and t represent a geographic region and point in time,
respectively. Then for a given data source, s, we can denote the number of tests
in region r at time t as T s,HIV

r,t and the number of positive tests as P s,HIV
r,t . Here,

s represents either a specific survey or a specific antenatal care site.
We assume that large household surveys are representative for every region,

so if s is a household survey, P s,HIV
r,t /T s,HIV

r,t provides an unbiased estimate of
true prevalence in demographic segment {r, t}, denoted ρr(t). Therefore, we can
assume that P s,HIV

r,t is a sample from a binomial distribution with T s,HIV
r,t trials

each with a probability of ρr(t):

P s,HIV
r,t ∼ Binom(T s,HIV

r,t , ρr(t)) (1)

These surveys are the most reliable data source we have for HIV prevalence,
but they are expensive and relatively infrequent. We might have two or three
surveys over the past 10 years in any given sub-Saharan African nation.

On the other hand, ANC clinics report data regularly but are attended
exclusively by pregnant women, who we might expect to be at differential risk of
HIV infection relative to the general population. Therefore, we cannot estimate
ρr(t) with P s,HIV

r,t /T s,HIV
r,t with. Instead, following Bao (2012), We estimate

site-specific ANC prevalence as a function of general population prevalence and
clinic effects:

logit ρsr(t) = logit ρr(t) + δs

δs ∼ N(0, σ2
δ )

σ2
s ∼ N+(0, 1)

(2)
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where δs is a clinic-specific intercept. Then we can proceed as above:

P s,HIV
r,t ∼ Binom(T s,HIV

r,t , ρsr(t)). (3)

ANC clinic HIV test results are less representative and more susceptible to
collection error than survey data, but they are available at far greater temporal
frequency.

Treatment
Several of the most recent household surveys conducted assays for the pres-

ence of antiretroviral treatment (ART) in HIV-positive respondents’ blood
samples.(ICAP at Columbia University and PEPFAR 2019) Let T s,ART

r,t repre-
sent the number of people tested for ART, and let the P s,HIV

r,t be the number of
positive tests. As above, we assume that these seroprevalence data provide an
unbiased estimate of true ART coverage in population segment {r, t}, denoted
αr(t). Then we can make the same assumption as before:

P s,ART
r,t ∼ Binom(T s,ART

r,t , αr(t)). (4)

Programmatic Patient Count Data
Because government-run clinics represent the largest administrators of ART

in most high-prevalence areas, we have an additional source of data on ART
coverage: facility-level ART patient counts. For a given facility, we have the
number of ART patients that facility treated over a given time span (often
quarterly intervals), which we will denote Csr,t. For convenience, we are currently
using counts aggregated to the region level: Cr,t.

Given that we cannot measure the denominators for these data and that they
represent a nearly complete count of the number of adults receiving ART in
segment a given region at a given time, we need to model them as count data. If
we are willing to assume that the share of people on ART who receive treatment
outside of government run clinics is negligibly small, then we can assume that
Cr,t is an unbiased measurement of the true number of adults on treatment at
time t in region r, denoted Ar(t).

A Likelihood for Varying Population Sizes. Fitting a model to these counts is
a trickier problem that it might seem. All else being equal, we would expect a
large urban region to serve more ART patients than a small rural region, so we
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need a model that will make assumptions about variance that can work across
regions of varying population sizes.

Following Lindén and Mäntyniemi (2011), we have implemented a negative
binomial model with a variance that can scale both linearly and quadratically
with its mean. Say we are using the standard negative binomial parameterization:

Pr(X = x; r, p) = Γ(x+ r)
x!Γ(r) pr(1− p)x. (5)

Then E(X) = µ = r(1− p)/p and Var(X) = σ2 = r(1− p)/p2. We can solve
for r and p to see that r = µ2/(σ2 − µ) and p = µ/σ2. In a traditional negative
binomial model with µ < σ2, we estimate an overdispersion parameter, θ > 0,
and define

σ2 = µ+ θµ2. (6)

As θ → 0, σ2 → µ and the distribution converges to a Poisson distribution
with rate parameter µ.

With this formulation, we can see why fitting a model simultaneously to
regions of varying size might be difficult. A single value of θ will impact regions
of different sizes in radically different ways. A lower value of θ might explain the
variation in a large region well, while not adequately accounting for overdispersion
in a small region.

To help ease these problems, we use the formulation from Lindén and Män-
tyniemi (2011):

σ2 = µ+ ωµ+ θµ2, (7)

where θ, ω > 0. The addition of a linear term should help avoid larger regions
blowing smaller regions out of the water, so to speak. Given fixed θ and µ,
as ω → 0, this distribution converges to a traditional negative binomial with
overdispersion θ. Conversely, given fixed ω and µ, as θ → 0, it converges to
a “quasi-Poisson” distribution. We will write this three-parameter version of
the negative binomial distribution as NegBinom(µ, ω, θ) assuming that σ2 (and
consequently r and p) is calculated internally.

Cross-Region Treatment Seeking. The other critical problem we need to address
when dealing with these data are that they are collected from facilities, not
households. Patients can (and do) seek treatment outside of their regions-of-
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residence (or “home regions”), so we need to consider that the observed patient
count series for a given region is composed of patients from all sufficiently “close”
regions. For now, we will say any two regions j and r are sufficiently close if they
are within some fixed degree of adjacency of each other (the number of borders
we need to cross to get from r to j is less than D). The results presented below
were generated by a model with D = 2. Let j ∼ r denote j and r being adjacent,
and let {k ∼ r} be the set of all regions that are “close” to r.

We can define a multinomial model for the odds that an individual with
home region r will seek treatment in adjacent district j over region r:

log P (Ar→j)
P (Ar→r)

= log mj

d2
i→j

log mj ∼ N(log m̄j , σm)

σm ∼ N+(0, 1)

m̄j = 0.05
‖{k ∼ j} \ j‖

(8)

where mj is a destination-specific intercept and di→j is the number of borders
needed to cross to get from i to j. Note that P (Ar→r)/P (Ar→r) = mr = 1, so
we do not need a model for each home region. We are currently defining the
prior mean for each mj as 0.05 divided by the number of regions for which j is
a neighbor within D degrees, which is exactly {k ∼ j} \ j. Roughly speaking,
this means that we expect 5% of ART patients in any region r to seek treatment
outside of r. For all j ∼ r (including r itself), we can find

P (Ar→j) = πr→j = mj∑
l∈{k∼r}ml

. (9)

With πr→j , we can allocate the total count of people receiving treatment in
r to each j ∼ r. We can estimate the total number of people receiving treatment
in r as

A?r(t) =
∑

j∈{k∼r}

πj→rAj(t). (10)

Note that we are using πj→r inside the summand, not πr→j ; we are essentially
collecting all of the ART patients in j we believe are going from j to r to find
the total number of patients receiving treatment in r.
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At long last, we can define a likelihood for the ART patient count data. Using
the three-parameter negative binomial parameterisation from before, we have

Cr,t ∼ NegBinom(A?r(t), ω, θ)

log ω ∼ N(0, 2)

log θ ∼ N(0, 2),

(11)

where log ω and log θ are estimated parameters. The priors on ω and θ are
essentially arbitrary and could certainly be improved. In a sense, we are fitting
a multinomial model on a matrix of flow counts for which we only observe one
set of margins.

Recency
Our final source of data is recency assays from the most recent wave of

household surveys (those conducted as a part of the PHIA program). These
data offer estimates of the proportion of people living with HIV (PLHIV) who
were infected in the past year, the closest thing to direct incidence measurement
available. Reusing the notation from the other seroprevalence data sources, we
have P s,Rec

r,t and T s,Rec
r,t . If we know the HIV incidence and prevalence rates

in a given demographic segment, λr(t) and ρr(t) respectively, we can use the
estimator from Kassanjee, McWalter, and Welte (2014) to find the implied
proportion of infections that should be recent:

νr(t) = λr(t) · (1− ρr(t)) · (ΩR − γR) + γRρr(t)
ρr(t)

, (12)

where ΩR is the mean duration of recent infection (fixed at 130/365), and γR
is the proportion of positive recency assays that are false positives (fixed at 0).

As before, we assume that each P s,Rec
r,t is a sample from a binomial distribu-

tion:

P s,Rec
r,t ∼ Binom(T s,Rec

r,t , νr(t)). (13)

Although these data are the closest thing we have to direct measurement of
population-level incidence, they typically do not contain enough information to
be useful. For example, the recent MPHIA survey in Malawi returned at least
one positive recency assays in only nine of Malawi’s 28 districts.
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Inference Problem

As we have seen, none of the available data measure incidence directly, but
they are all generated from the same global HIV epidemic. Therefore, if we
can construct a model that estimates incidence and finds the implied values
of the measurable indicators, we can infer incidence. More formally, say we
are interested in estimation for a set of regions, {r1, ..., rR} and extent of time
[t1, tT ]. For convenience, let r and t be arbitrary elements in {r1, ..., rR} and
[t1, tT ], respectively. Then, our goal is to infer a matrix Λ where Λ(r,t) = λr(t)
given all available, relevant data D; that is, we want to estimate P (Λ | D) where
D is the collation of all indicators described in the previous section. Keeping
with previous literature (Brown et al. 2014, for example), our epidemic model
will be deterministic, so we know that P (Λ | D) = P (θ | D). Therefore, we can
use classical Bayesian inference:

P (θ | D) ∝ P (D | θ)P (θ). (14)

Within this framework, we need to define two components: a likelihood
P (D | θ) and a prior distribution P (θ). We have already defined the likelihood
and priors for the observation model with the distributional assumptions de-
scribed above. In the next section, we will describe the mechanistic model needed
to relate Λ to D and the priors required to identify that model.

Epidemic Model

We have made a set of distributional assumptions about the relationships
between three data sources (surveys, surveillance, and programmatic counts) and
the true, underlying HIV epidemic. To actually calculate P (D; θ?) for a given
candidate set of parameters θ? we need to estimate the underlying epidemic.
Specifically, we need estimates of, prevalence, ART coverage, ART patient counts,
and incidence (ρr(t), αr(t), Ar(t), and λr(t), respectively).

Compartmental Models
Compartmental models give us a way to build a generative model of the

disease indicators we need. Our model is essentially a variation of the classical
susceptible-infectious-recovered (SIR) model of infectious disease. We track the
populations in several mutually exclusive and comprehensive compartments and
define a system of ordinary differential equations (ODEs) to govern rates of
movement from one compartment to another.
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For example, the classical SIR model measures the number of susceptible,
infectious, and recovered individuals (S(t), I(t), and R(t), respectively) in a
closed population. Let N(t) = S(t) + I(t) +R(t) be the size of the population at
time t. We can assume that infectious individuals move from I to R according
to some recovery rate γ ∈ R+. Further, if we assume the principle of mass action
holds, we can assume that individuals move from S to I in proportion to the
size of I according to a transmission rate κ ∈ R+. Then we can define the whole
model:

∂S(t)
∂t

= −κS(t)I(t)/N(t)

∂I(t)
∂t

= κS(t)I(t)/N(t)− γI(t)

∂R(t)
∂t

= γI(t).

(15)

Fixing κ, γ, and the initial state of the system, (S(0), I(0), R(0)), we can use
the numerical method of our choosing to find (S(t), I(t), R(t)) for any t > 0.

In keeping with other work in this area, we are using the forward Euler
method, meaning we will be discretising the domain of the system of ODEs (in
this case, time) into intervals of length h:

S(t+ h) = S(t) + h · (−κS(t)I(t))

I(t+ h) = I(t) + h · (κS(t)I(t)− γI(t))

R(t+ h) = R(t) + h · (γI(t)).

(16)

If we define h to be some percentage of a calendar year, we can view this as
a discrete-time SIR model where h scales per-person-year rates to a timescale of
our choice.

Epidemic Model of HIV
Baseline Model. For many reasons, this simple SIR model is not suited for HIV.
We will outline a few discrepancies here:

1. Because HIV is a lifelong infection, the size of the R compartment is zero
everywhere (ignoring two remarkable cases (Hütter et al. 2009; Gupta et
al. 2019)), and so we can drop it.
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2. HIV prevalence rates can range far above 25% in some populations (“HIV
and AIDS in eSwatini. AVERT” 2015), so we cannot ignore demographic
dynamics (non-HIV mortality, migration, and ageing-in to the adult popu-
lation).

3. Untreated HIV is highly fatal, so we need to account for AIDS-related
mortality (Yiannoutsos et al. 2012; Todd et al. 2007; Marston et al. 2007).

4. Good adherence to ART drastically reduces infectiousness, so assuming
that risk of infection is constant across contacts with all PLHIV regardless
of treatment status will lead to biased estimates of incidence. Therefore,
we need to add a compartment for people receiving treatment (Fonner et
al. 2016).

Integrating these changes into the system of ODEs from before and reformu-
lating how we calculate incidence to reflect the prophylactic effects of ART, we
have the following:

∂S(t)
∂t

= S(t) · (−λ(t)− µS) + Et

∂I(t)
∂t

= I(t) · (−(µS + µI)− α?t ) + λ(t)S(t) + ηA(t)

∂A(t)
∂t

= A(t) · (−µS − µA − η) + α?t I(t),

(17)

where µS is non-HIV mortality, Et is the number of new entrants to the popu-
lation, µI and µA are HIV-related mortality with and without ART, respectively,
α?t is the time-dependent rate at which PLHIV initiate ART, and η is the rate
of dropout from ART. We have rewritten incidence as λ(t) = κtρ(t)(1− ωα(t)),
where ρ(t) = I(t)/N(t) is population prevalence, ω ∈ [0, 1] is percent by which
ART reduces infectiousness, and α(t) = A(t)/(I(t) + A(t)) is ART coverage
among all PLHIV. Hence, ρ(t)(1− ωα(t)) is ART-adjusted prevalence. We have
also allowed the HIV transmission rate to vary over time.

Incorporating Disease Progression. To more accurately reflect mortality patterns,
we break the infected and on-ART compartments into substages, which we will
denote as Ic(t) and Ac(t). Here c indexes something slightly different across the
two super-compartments. We track four substages for both I and A defined by
a single set of CD4 count intervals: ([0, 200), [200, 350), [350, 500), [500,∞)). We
are currently defining these compartments with CD4 count thresholds, but we
could equally define them with viral load thresholds. These specific thresholds
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Figure 1: Diagram of our compartmental epidemic model of HIV focused on a single region

are borrowed from Johnson and Dorrington’s Thembisa model (Johnson and
Dorrington 2019).

For the I compartment, c indexes individuals’ current CD4 count, whereas
for the A compartment, it indexes the individuals’ CD4 count at treatment
initiation. We assume that individuals can “move” from Ic to Ic+1 but not from
Ac to Ac+1.

Including these disease progression dynamics in the model, we get

∂S(t)
∂t

=S(t) · (−λ(t)− µS) + Et

∂Ic(t)
∂t

=Ic(t) · (−(µS + µIc)− α?c,t − τc) + λc(t)S(t)+

ηAc(t) + τc−1Ic−1(t)
∂Ac(t)
∂t

=Ac(t) · (−µS − µAc − η) + α?c,tI(t),

(18)

where τc is the rate of progression from disease stage c to stage c + 1 for
c less than the maximum value. We take our values of τc from Johnson and
Dorrington (2019) Table 3.1. Note that AIDS-related mortality now varies by
disease stage. Figure 1 outlines the structure of this model.

Spatial Compartmental Model. Coming back to inferring incidence over space,
we can construct a (currently independent) model for each region r and arrive
at our final model:
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∂Sr(t)
∂t

=Sr(t) · (−λr(t)− µS) + Er,t

∂Ir,c(t)
∂t

=Ir,c(t) · (−(µS + µIc)− α?r,c,t − τc) + λr,c(t)S(t)+

ηAr,c(t) + τc−1Ir,c−1(t)
∂Ar,c(t)
∂t

=Ar,c(t) · (−µS − µAc − η) + α?r,c,tI(t).

(19)

To project the HIV epidemic and find the indicators we need to evaluate our
likelihood, we need models for λr(t), α?r(t), and (Sr(0), Ir,c(0), Ar,c(0)) for all r.
Because we have not made any structural changes to the model, Figure 1 is still
accurate.

If the epidemic in each r were to be perfectly independent from that of all
other regions, our previous model of incidence would still be valid. However,
this assumption is demonstrably false in a model of infectious disease. HIV
first emerged in central Africa in the early 1900s and has since spread to every
corner of the globe (Sharp and Hahn 2011); clearly we cannot claim that any
two regions contain truly independent epidemics.

We model the spread of disease over space directly by making incidence in
region r a function of prevalence in region r and all adjacent regions (again,
{k ∼ r}). Specifically, we first model the rate of infections attributable to disease
stage c as

log λr,c(t) = log κr,c,t + log
∑

j∈{k∼r}

w(r, j)ρr,c(t)(1− ωαr,c(t)), (20)

where κr,c,t is a region-/substage-/time-specific transmission rate, and w(r, j)
is a weight proportionate to a measure of distance between r and j. Currently,
we define w(r, j) such that the share of risk coming from r, w0, is fixed and the
remaining share is divided among its neighbors:

w(r, j) =


w0 r = j

pj(1− w0)
‖{j ∼ r} \ r‖

r 6= j,
(21)

where pj is the share of population at time 0 that lives in j among neighbors of
r. Figure 2 illustrates five assumptions about the degree of spatial connectedness
between districts in the Southern region of Malawi relative to the Zomba district.

We model the log-transformed region-/stage-/time-specific HIV transmission
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Independent 75% 50% 25% Equal weight

0% 25% 50% 75% 100%

Share of infection risk

Degree of connectedness

Figure 2: Values of w(r, j) resulting from five assumptions about the degree of connectedness
between districts of southern Malawi. Independent assumes that every infection originates
internally, whereas "Equal weight" assumes an infection is as likely to come from any of Zomba’s
neighbours as from Zomba itself.

rate log κr,c,t as a hierarchical b-spline:

log κr,c,t = log ξc +
∑Kκ+1
i=1 (βκi,0 + βκi,r)φi(t)

βκi,0 ∼ N(0, 5)
βκi,r ∼ N(0, σκ)

βκi,r − βκi−1,r ∼ N(0, 1)
σκ ∼ N+(0, 1),

(22)

where ξc is the relative infectiousness of stage c, Kκ is the number of knots,
φ is a b-spline basis function of some order, βi,0 is a mean coefficient for basis
function i, and βi,r is a penalized region-specific coefficient for region r. Currently,
we place knots at five-year intervals and use a spline of order three. We use
the relative infectiousness ratios listed in Table 3.1 in Johnson and Dorrington
(2019) to fix the values of ξc.

To obtain the HIV infection rate attributable to all disease stages combined,
we convert each λr,c(t) to a probability, P (infc; r, t) = 1−exp(−h·λr,c(t)) assume
independence across disease stages, and aggregate as follows:
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P (not infc; r, t) = 1− P (infc; r, t)
= exp(−h · λr,c(t))

P (not inf; r, t) = P (∩cnot infc; r, t)
=

∏
c P (not infc; r, t)

=
∏
c exp(−h · λr,c(t))

P (inf; r, t) = 1−
∏
c exp(−h · λr,c(t))

= 1− exp(−h
∑
c
λr,c(t))

(23)

Therefore, assuming the probability of infection from each disease stage is inde-
pendent from all other stages (that is, that P (not inf; r, t) =

∏
c P (not infc; r, t)),

the incidence rates are additive. Finally, we can find λr(t) = 1/h · logP (inf; r, t).

Model of ART Initiation. Our model of the ART initiation rate among eligible
disease stages is similar to our model of incidence:

log α?r,c,t = log ζc +
∑Kα+1
i=1 (βα?i,0 + βα

?

i,r )φi(t)
βα

?

i,0 ∼ N(0, 5)
βα

?

i,r ∼ N(0, σα?)
βα

?

i,r − βα
?

i−1,r ∼ N(0, 1)
σα? ∼ N+(0, 1).

(24)

Here, we place a knot every year and set φ to be order one, essentially
making this model a random walk. For all t before ART was scaled up in any
region-of-interest, we fix φi(t) to be zero; additionally, we do not estimate any
βα

?

i with support entirely before ART scale-up. The model used to generate
results presented on December 5th, 2019 fixed ζc = 1 for all eligible c, but the
latest, less tested version sets ζc = µIc/µ

I
1; in other words, PLHIV at stage c

initiate treatment in proportion to the expected mortality in c.

Estimation of Initial State. Our model can begin the epidemic projection at
any point in time by estimating the initial state of the compartmental model,
denoted (Sr(0), Ir,c(0), Ar,c(0)), with a small area model that draws strength
across regions. Specifically, we use logit-linear models to estimate ρr(0) and
αr(0) and use them to solve for (Sr(0), Ir,c(0), Ar,c(0)).

Our model for initial prevalence is as follows:
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logit ρr(0) = ρ0 + ρr

ρr ∼ N(0, σρ)

ρ0 ∼ N(0, 5)

σρ ∼ N+(0, 1),

(25)

where ρ0 is cross-region logit-transformed prevalence at time 0 and ρr is a
regional deviation from ρ0.

If time 0 is before ART scale-up, αr(0) is fixed to be zero in all regions.
Otherwise, we use an equivalent model:

logit αr(0) = α0 + αr

αr ∼ N(0, σα)

α0 ∼ N(0, 5)

σα ∼ N+(0, 1).

(26)

Making fixed assumptions about the share of each substage among people
with and without treatment, bαc and bρc , respectively, we can find Ir,c(0), Ar,c(0),
and Sr(0):

Ir,c(0) = bρc · (1− αr(0)) · ρr(0) · Pr(0)
Ar,c(0) = bαc · αr(0) · ρr(0) · Pr(0)
Sr(0) = Pr(0)−

∑
c(Ir,c(0) +Ar,c(0)),

(27)

where Pr(0) is exogenously defined population at time 0 and bρc and bαc are
fixed assumptions about the share of PLHIV without. Ideally, we would estimate
bρc and bαc , but too few sources provide CD4-specific data for that to be possible.
With a model for the initial state, we have everything we need to project the
epidemic using our compartmental model.

Implementation

We have implemented this model in C++ using the TMB R/C++ library
(Kristensen et al. 2016). This software allows users to write statistical models
using the Eigen C++ library (Guennebaud, Jacob, and others 2010) and in-
teract with the compiled models through R. We used the sparse matrix tools
built in to Eigen to develop an efficient implementation of the Euler method.
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Using automatic differentiation, TMB provides access to the gradient functions
of arbitrary statistical models and, as such, is a powerful tool for inference and
optimization. The inference strategy built in to TMB optimizes the approximate
marginal likelihood with respect to a pre-defined set of “random” parameters
and, after finding the maximum a posterior (MAP) parameter estimates, assumes
the parameters form a multivariate normal distribution around those modes
(Kristensen et al. 2016; Skaug and Fournier 2006).

The TMB inference strategy makes extensive use of the Laplace approximation
and might therefore be poorly suited to produce samples from distribution that is
assymetric, bimodal, or otherwise non-normal. This gap is filled by the tmbstan

R package (Monnahan and Kristensen 2018), which uses the objects that TMB

builds to run the rstan package’s implementation of No-U-Turn sampler (NUTS)
(Carpenter et al. 2017). NUTS is a variant of Hamiltonian Monte Carlo that can
reliably produce samples from even extremely complex statistical models and
that we believe represents the current gold standard for sampling algorithms.
Through tmbstan we can use either inference strategy. The results presented
in this paper and at Epidemics 7 were generated from posterior distributions
obtained through NUTS.

Application

We fit the model to district-level data from Malawi from the beginning of 2000
to the end of 2018. Between January 1st, 2000 and December 31st, 2018, four
nationally representative household surveys collected data on HIV seroprevalence
in Malawi: three DHS surveys (2004, 2010, and 2015) (“The DHS Program -
DHS Methodology” n.d.) and one PHIA survey (2015-2016) (ICAP at Columbia
University and PEPFAR 2019). We used HIV seroprevalence data from each of
these surveys, aggregating test results to the district level. The MPHIA survey
also provides results of ART and recency blood tests. We incorporated HIV
prevalence data from sentinel ANC facilities, of which there are typically two
per district, using the hierarchical logistic model described above. Finally, we
used reported district-level ART patient counts to inform the model of ART
initiation.

Results

The model seems to perform well in applications to data from Malawi,
reconciling each of the included data sources without favoring one over another.
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Figure 3: Data and estimates in the Dedza district of Malawi. Circular points and line ranges
represent point estimates and 95-percent confidence intervals from surveys. Connected series
of crosses in the prevalence plot represent observed prevalence series from sentinel surveillance
ANC clinics. Non-connected crosses in the ART patient count plot represent reported pro-
grammatic patient counts. Each red line is the median estimate for the corresponding metric,
and each red region is corresponding 95-percent uncertainty interval.

Figure 3 presents inferred incidence per 1,000 person-years and ART initiaton
probabilities as well as fit to data on prevalence and ART patient counts in the
Dedza district of Malawi. Because both incidence and underlying ART initiation
rates are difficult to measure directly, our ability to assess the validity of our
inference is limited. This hinderance is not unique to our study, but it is worth
highlighting.

Figures 4, 5, 6, and 7, and present our estimates of prevalence, incidence, ART
coverage, and ART patient counts for 12 of Malawi’s 28 districts. We specifically
included Likoma and Phalombe and selected the remaining 10 districts at random.
To conserve space, we are only including plots of these 12 districts. The full sets
of plots are readily available upon request.

Figure 4 shows that the model seems to capture variation in HIV prevalence
over space, time, and their interaction reasonably well. We are over estimating
prevalence across the board in Neno, but the survey estimates there are so
uncertain that we cannot include them on the plot. Interestingly, we predict
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Figure 4: Data and estimates in 12 districts of Malawi. Circular points and line ranges
represent point estimates and 95-percent confidence intervals from surveys. Connected series
of crosses in the prevalence plot represent observed prevalence series from sentinel surveillance
ANC clinics. Each red line is the median estimate for the corresponding metric, and each red
region is corresponding 95-percent uncertainty interval.
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Figure 5: Data and estimates in 12 districts of Malawi. Each red line is the median estimate
for the corresponding metric, and each red region is corresponding 95-percent uncertainty
interval.

that the epidemic peaked significantly later in Phalombe than in other districts.
We also note that the model fit well to data from Likoma, for which we have far
less data than for any other district.

In Figure 5, we see that our inferred incidence series also exhibit considerable
heterogeneity over space and time. For example, the late prevalence peak we
observed in Phalombe is reflected in a later, higher peak incidence. This figure
also illustrates the value of fitting to multiple regions at once: we would never be
able to produce incidence estimates in Likoma if we did not share information
across regions.

Taking Figures 6 and 7 as a pair, we see that our model of ART initiation
both produces plausible time series of both ART coverage and ART patient
counts. We recognize that this is a particularly easy (exceptionally linear) case,
but we believe that the results are still encouraging. Further work is required
to thoroughly interrogate the model of ART initiation, but valid inference of
the spatio-temporal variation in ART initiation could be a significant aid to
policymakers. Figure 8 shows these estimates for the current set of results from
the beginning of 2015 to the end of the study period. We can see that, even in
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the most recent timepoint, there is considerable heterogeneity.
Our model of cross-region treatment seeking is also difficult to validate but

seems to be performing well. Figure 9 shows the probability a person receiving
ART in Dedza will seek treatment each of the districts that are within two
degrees of adjacency from Dedza. The majority of treatment-seekers in Dedza
stayed in their home region, but a significant portion went to Lilongwe, which
contains the capital and largest city. Without allowing for cross-region treatment
seeking, our model consistently overestimates prevalence in districts like Lilongwe
and Chiradzulu, which have a longer history of high-quality treatment provision.

Most importantly, the model fits well to each of the data sources we provide
to it. By adding flexibility in the models of HIV transmission rates and ART initi-
ation probabilities, we can fit simultaneously to both traditional (seroprevalence
measurements) and non-traditional (programmatic counts) data sources.

Conclusion

In this study, we present a multivariate model of population-level HIV that
combines all available population-level data sources and exploits the spatial
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Figure 9: Estimated geographic distribution of treatment seeking among PLHIV residing in
Dedza (median shares and 95-percent uncertainty intervals).

structure of existing data in order to facilitate more credible inference of HIV
incidence at relatively granular geographic resolutions. Incidentally, the support-
ing spatio-temporal models of HIV transmission rates, ART initiation rates, and
cross-region treatment seeking provide estimates of politically relevant indicators
that cannot be obtained from the other models widely in use.

We believe that our work illustrates several key points:

1. Compartmental models of infectious disease are compatible with
modern inferential frameworks. Using sparse matrices, we were able
to cut down the cost of integrating our model to the point where, even at
relatively large geographic scales, we can run the inference procedure on a
laptop. We suspect that further computational gains could be found by
performing calculations in parallel or on a graphics processing unit.

2. Accounting for the inherent spatial dynamics of HIV is critical
at granular geographic resolutions. We observed considerable spatio-
temporal heterogeneity in incidence, transmission, ART initiation, and
cross-region treatment seeking. Neglecting to account for any of these
spatial dynamics would hamper our inference of the others. In particular,
models that did not allow individuals to seek treatment outside of their
home region severely overestimated prevalence (and, hence, incidence)
in many regions. By letting the model “reallocate” patients to nearby
districts, we allow it to explain high ART patient counts without increasing
prevalence to implausibly high levels.
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3. The combined set of data sources is more valuable than the sum
of its parts. Our compartmental model is an explicit link between each of
the various observable indicators, so every indicator informs our estimates
of every other indicator. For example, a proposed parameter set that
predicts very high HIV prevalence would result in poor fit to not only
the direct observation of prevalence, but also to ART coverage and ART
patient counts.

4. Simultaneous modeling of multiple spatial units provides better
inference in all cases. First, shrinkage priors allow us to estimate the
initial state of the epidemic across regions even if some of those regions
are data-sparse. Additionally, giving the model the flexibility to explain
observations in one area with epidemic patterns in another area helps avoid
implausible estimates. For example, sustained high prevalence in one area
might be the result of poor treatment coverage in a nearby area.

Future Work

We are actively working on this model and foresee several improvements.

1. Greater demographic detail: Incorporating age and sex dynamics will
allow us to build a more realistic model of mortality and population.

2. Incorporating population data: The model currently includes a demo-
graphic projection, but we neither fit to nor match any data on population
levels. We plan to explore a strategy where the total population in each time
is fixed (from exogenous estimation processes) and migration is calculated
as the difference between modeled population and observed population.
Alternatively, we could attempt to fit to census data, but we suspect that
that is out of scope for this particular project.

3. Designing cross-validation scheme: We are currently fitting to all
available data, but we would like to devise a cross-validation scheme that
prioritizes validity in more recent years. The challenge is that we have
relatively little data to begin with.

4. Tools for model comparison: Because this model is complex and
nonlinear, we do not have access to the typical set of model comparison
tools we would use in a regression setting. Finding the appropriate metrics
to assess the effects of changes to both the structure of the model and the
inferential procedure will be an important step in interrogating our results.
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