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Abstract 

Helminth parasite secreted molecules have been shown to modulate the host immune 

system to the extent of alleviating symptoms of immune disorders such as allergy and 

autoimmunity. Apyrases secreted by helminth parasites have potential immunoregulatory 

functions. They constitute a family of nucleotide-metabolising enzymes which can disturb 

purinergic signalling pathways of immune cells via hydrolysing inflammatory ATP released 

following tissue damage. In this thesis, the biochemical properties of the five apyrases 

secreted by the intestinal nematode Heligmosomoides polygyrus were elucidated via 

heterologous expression in the yeast Pichia pastoris. Results showed that the enzymes 

belonged to a group of calcium-dependent apyrases with a broad optimum pH and a broad 

substrate specificity, catalysing the hydrolysis of both nucleoside tri- and diphosphates. In 

an attempt to understand if any immune modulation was displayed by apyrases, in vivo 

studies were performed. Apyrase-1 and -3 were expressed in Trypanosoma musculi, a 

suitable in vivo vehicle for the expression of genes encoding secreted proteins of nematode 

parasites. Among the results shown, the transgenes grew faster compared to control 

trypanosomes, and splenocytes from mice infected with T. musculi expressing Apy-3 

produced higher levels of IL-5 and IL-13. Both immunological and physiological factors 

appear to be responsible for these changes, suggesting that apyrases might modulate the 

immune response in addition to influencing the availability of extracellular purines for 

salvage by parasites. The effect of H. polygyrus secreted apyrases on type 2 immunity was 

also examined in this thesis during an acute model of allergic inflammation and during 

nematode infection. Intranasal administration of recombinant Apy-1 and Apy-3 did not 

seem to have an effect in regulating immunological responses, at least in the models tested. 

Further work is required to probe the precise function of apyrases secreted by parasitic 

nematodes and the possible immune modulatory effects exerted by these enzymes. 
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1.1 Helminth parasites 

 

Helminth parasite infections 

Almost one third of the global human and livestock population are infected with one or 

more helminth species occurring mostly in the poor areas of the developing world (Hotez et 

al., 2008; WHO, 2011; Savioli, 2012). Helminths have a significant impact on economy and 

health. They impose widespread agricultural losses and a considerable disease burden 

associated with diverse pathologies ranging from malnutrition to impaired growth and 

anaemia resulting in severe morbidity (Hotez et al., 2004, 2008; Brooker, Hotez and Bundy, 

2008; Sanchez et al., 2013; Gyorkos and Gilbert, 2014; Jourdan et al., 2017; Sotillo et al., 

2017; Wright et al., 2018). 

 

Helminths, derived from the Greek word “helmins” meaning worms, are large 

multicellular eukaryotic invertebrates that were either parasitic or free-living throughout 

evolutionary history. The two major phyla that have received the greatest amount of 

interest in research over the past decade are: Nematoda and Platyhelminths. Nematodes 

also known as roundworms, include the intestinal worms or soil-transmitted helminths 

(STH) (i.e. Trichuris trichiura, Necator americanus and Ancylostoma duodenale), and the 

filarial worms that cause lymphatic filariasis (LF) and onchocerciasis (Faust, Russell and Jung, 

1970; Castro, 1996). Molecular phylogenetic analysis arranged this phylum into five major 

clades (Clade I, II, III, IV and V) (Blaxter et al., 1998; Blaxter and Koutsovoulos, 2015), all of 

which include about 25,000 described species (Zhang, 2013). Platyhelminths or flatworms 

include the trematodes (flukes) such as schistosome species that cause schistosomiasis, and 
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cestodes (tapeworms) like Taenia and Echinococcus (Faust, Russell and Jung, 1970; Castro, 

1996). The Acanthocephala (thorny-headed worms) which have an evolutionary relationship 

in-between cestodes and nematodes, and the Annelida (segmented worms) are another 

two phyla which are also thought to belong to helminths. 

 

Parasitic helminths reside in their hosts for substantial periods of time, secreting a 

range of molecules that facilitate their migratory paths to reach the final destination (Sotillo 

et al., 2017). They have adapted to colonise diverse niches such as the gastrointestinal tract, 

bloodstream, lymphatic system, liver, lungs or subcutaneous tissues. The developmental 

process of these organisms comprises egg, larval and adult stages, however their life cycles 

and routes of entry vary. For instance, the infection of the hookworms Necator americanus 

or Nippostrongylus brasiliensis is acquired through penetration of the skin by third stage 

larvae (L3) which then migrate through the bloodstream to the lungs. Adult worms develop 

in the small intestine after the L4 larvae are coughed up and swallowed. The eggs released 

in the faeces, hatch and develop into infective larvae (Ogilvie and Jones, 1971; Brooker, 

Bethony and Hotez, 2004; Brooker and Bundy, 2013). Other gastrointestinal worms, such as 

Heligmosomoides polygyrus,  are transmitted orally by ingesting infective larvae (Camberis, 

Le Gros and Urban, 2003).  

 

 

Immune response against parasitic helminths 

The host’s immune response generated against all helminth infections comprise both innate 

and adaptive immunity regardless of the various colonisation sites of helminth species 



 

22 
 

(Maizels and Yazdanbakhsh, 2003; Anthony et al., 2007; Saenz, Noti and Artis, 2010; Harris 

and Loke, 2017). This immune response is predominantly characterised by a type 2 arm with 

T helper 2 (Th2) cells and innate lymphoid type 2 cells (ILC2s) as key players. It is generally 

associated with an elevated secretion of several protective cytokines resulting in the 

activation of specialised effector cells such as mast cells, eosinophils and basophils, as well 

as the expansion and activation of alternatively activated macrophages (Figure 1.1A) (Hagan 

et al., 1991; Finkelman et al., 2004; Jackson et al., 2004; Fallon et al., 2006; Turner et al., 

2008; Sallusto and Lanzavecchia, 2009; Moro et al., 2010; Neill et al., 2010a; Price et al., 

2010; Yasuda et al., 2012).  

 

During helminth infections, epithelial cells and other cells provoke the release of 

alarmin cytokines IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) (Owyang et al., 

2006; Zaph et al., 2007; Saenz, Taylor and Artis, 2008; Massacand et al., 2009; Taylor et al., 

2009; Saenz, Noti and Artis, 2010; Hepworth et al., 2012; Allen and Sutherland, 2014; Cayrol 

and Girard, 2014; Shimokawa et al., 2017). IL-33, a member of the IL-1 family (Schmitz et al., 

2005; Arend, Palmer and Gabay, 2008), binds to its receptor ST2 (suppression of 

tumorigenicity 2) resulting in the activation of a wide range of immune cells and inducing 

the production of an array of type 2 cytokines including IL-4, IL-5 and IL-13 by Th2 cells, 

basophils, mast cells and ILC2s (Schmitz et al., 2005; Ho et al., 2007; Humphreys et al., 2008; 

Kondo et al., 2008; Voehringer, 2009; Liew, 2012; Walker and McKenzie, 2013; Hung et al., 

2013; Scalfone et al., 2013; Cayrol and Girard, 2014; Liew, Girard and Turnquist, 2016). Th2 

cytokines produced by ILC2s and other cells trigger the expulsion of most helminths and 

mediate resistance to re-infection (Maizels, Hewitson and Smith, 2012; Medzhitov, 

Schneider and Soares, 2012; Grencis, 2015).  
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Expansion of Th2 cells induces eosinophilia via IL-5 (Yasuda et al., 2012), and 

promotes B cell isotype switching to immunoglobulin (Ig)E and IgG1 (mice) or IgG4 (humans) 

by IL-4 and IL-13 (Harris and Gause, 2011). The latter can also increase smooth muscle 

contractility, epithelial cell electrolyte secretion and mucus production, resulting in the 

clearance of most intestinal parasites (Urban et al., 1998; Akiho et al., 2002; Finkelman et 

al., 2004; Cliffe et al., 2005; Hasnain et al., 2011, 2013). Through the activation of FcεR 

receptor, IgE triggers the degranulation of basophils, eosinophils and mast cells, causing the 

release of  IL-4, IL-13, TGFβ, and inflammatory mediators like histamine and leukotrienes 

(Stone, Prussin and Metcalfe, 2010; Warrington et al., 2011). 

 

When macrophages are exposed to IL-4, IL-13 and IL-33 (Mantovani, Sica and Locati, 

2005; Jackson-Jones et al., 2016), they are polarised towards an alternatively activated 

macrophage phenotype (AAM or M2) (Chen et al., 2012; Du et al., 2014) involved in wound 

healing and helminth killing (Flores et al., 1994; Herbert et al., 2004; Kreider et al., 2007; 

Koh and DiPietro, 2011; Mantovani et al., 2013). AAMs release the chitinase-like protein 

Ym1 that elicits the recruitment of neutrophils and the production of IL-17 from γδT cells 

(Sutherland et al., 2014), together with resistin-like molecule (Relmα) and programmed 

death ligand 2 (PD-L2) which regulate Th2 responses (Herbert et al., 2009; Pesce et al., 

2009; Huber et al., 2010; van der Werf et al., 2013). It was also shown that IL-33 induces 

ILC2s to produce IL-9 which in turns stimulates mast cells to secrete IL-2, leading to further 

ILC2 expansion (Mohapatra et al., 2016; Moretti et al., 2017). 

 

Furthermore, recent studies investigated the role of tuft cells following helminth 

infections and showed that they are important cells in driving mucosal type 2 responses and 
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worm expulsion. Tuft cells secrete IL-25, a member of the IL-17 family, which activates IL-13 

production by ILC2s, further promoting the differentiation of tuft and goblet cells and 

amplifying a positive-feedback loop of type-2-cell-mediated responses (Gerbe, Legraverend 

and Jay, 2012; Gerbe et al., 2016; Von Moltke et al., 2016). On the other hand, TSLP, an IL-7-

like cytokine (Park et al., 2000), was shown to induce a Th2 cytokine response via the 

activation of B cells and dendritic cells (DCs) (Leonard, 2002) and the differentiation of CD4 

Th2 cells (Zaph et al., 2007; Massacand et al., 2009; Taylor et al., 2009; Ziegler and Artis, 

2010; Kim et al., 2013). 

 

 

1.2 Therapeutic benefits of helminth products 

 

The Yin-Yang of helminth infections 

In Western society, the reduced exposure to certain infectious agents (such as helminths) 

during early age and therefore the early stages of immune development, was noticed to be 

associated with an expansion of allergic and autoimmune diseases; whereas in the presence 

of helminth infections, especially in developing countries, a lower incidence of 

immunopathological disorders was observed. This inverse relationship, termed ‘Hygiene 

Hypothesis’, was supported by a large number of studies and is believed to be caused by 

molecules secreted by helminths (Greenwood, 1968; Strachan, 1989; Wills-Karp, Santeliz 

and Karp, 2001; Yazdanbakhsh, Kremsner and Van Ree, 2002; Bloomfield et al., 2006; 

Zandman-Goddard and Shoenfeld, 2009; Hewitson, Grainger and Maizels, 2009; Okada et 
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al., 2010; Mustonen et al., 2013; Parker and Ollerton, 2013; Prokopakis et al., 2013; Maizels, 

Mcsorley and Smyth, 2014; Helmby, 2015; Villeneuve et al., 2018; Haspeslagh et al., 2018).  

 

Helminths and vertebrates have co-evolved over millions of years, with parasites 

developing complex mechanisms to suppress the host immune response from the early 

stages of infection. They promote long-term survival enabling protective pathways to 

maintain their feeding, life cycle completion, and successful reproduction. It happens that 

both the host and the parasite benefit from this stealthy strategy: first it allows the parasite 

to evade the host immune system preventing it from being killed or expelled; and in doing 

so it also inhibits responses to unrelated antigens in allergy and autoimmunity (Allen and 

Maizels, 2011; Smallwood et al., 2017; Maruszewska-Cheruiyot, Donskow-Lysoniewska and 

Doligalska, 2018). The questions raised by this process are: how do helminths evade the 

host immune system, what mechanisms do they employ to limit inflammation, and do 

parasitic worms provide new insights into drug-based therapies protecting against 

inflammation and autoimmune diseases? 

 

Using live pathogens as clinical treatments is probably not feasible on a large scale 

and has several disadvantages, thus an alternative to helminth therapy is the identification 

and characterisation of individual molecules in the complex mixture of secreted products 

and that might be applied to treat inflammatory diseases. A substantial amount of human 

epidemiological studies coupled with mouse models of pathological disorders examined the 

effects of different helminth infections. They confirmed that helminth parasites secrete a 

wide range of molecules which can act as immunomodulators and hold potential for future 

human therapy in the prevention or suppression of immune-mediated diseases such as 
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allergy, autoimmunity and colitis (Erb, 2009; Hewitson, Grainger and Maizels, 2009; 

Baqueiro et al., 2010; Harnett and Harnett, 2010; Allen and Maizels, 2011; Brenna et al., 

2013; Viehmann Milam et al., 2014; Harnett, 2014; Johnston et al., 2014; Shepherd et al., 

2015; Bashi et al., 2015; Navarro et al., 2016; Nascimento Santos et al., 2017; Caraballo, 

2018).  

 

 

Immunoregulatory effects 

Given that helminth excretory/secretory (ES) products have been shown to modulate the 

host immune system in a protective way, it is essential to investigate which molecules are 

immunoregulators. A number of studies have identified these proteins using various 

techniques including genomics, transcriptomics and mass spectrometry, and characterised 

them by expressing their active forms in suitable expression systems such as bacteria 

(Escherichia coli), yeast (Pichia pastoris), protozoa (Trypanosoma musculi), insect cells and 

mammalian cells (Frenzel, Hust and Schirrmann, 2013). 

 

For instance, one of the extensively studied helminth molecules is the glycoprotein 

ES-62 derived from the filarial nematode Acanthocheilonema viteae (Harnett, Harnett and 

Byron, 2003), which showed modulatory effects in a range of inflammatory models including 

arthritis (Harnett, Melendez and Harnett, 2010; Pineda et al., 2012; Al-Riyami et al., 2013; 

Rzepecka et al., 2013; Harnett, Harnett and Pineda, 2014; Coltherd et al., 2016; Janicova et 

al., 2016; Lumb et al., 2017). Additionally, the recombinant cystatin, a cysteine protease 

inhibitor, and secreted cathepsins which belong to the cysteine protease family, have been 
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reported to suppress allergic airway inflammation and colitis (Carmona et al., 1993; Stack et 

al., 2005; Donnelly et al., 2010; Smooker et al., 2010; Jang et al., 2011; Kang et al., 2011; Sun 

et al., 2013; Daniłowicz-Luebert et al., 2013; Ji et al., 2014; Ziegler et al., 2015; Coronado et 

al., 2016; Wang et al., 2016; Coronado et al., 2017; Venugopal et al., 2017). Interestingly, 

helminth parasites also secrete molecules that can interrupt immune cell signalling 

pathways, such as purinergic and cholinergic signalling disrupted by apyrase and 

acetylcholinesterase respectively (Ogilvie et al., 1973; Nisbet et al., 2011; Darby et al., 2015).  

Other helminth-derived molecules have been studied and was shown to alter intestinal and 

airway inflammation, like the S. mansoni egg-derived glycoprotein ω1, macrophage 

migration inhibitory factor (MIF), heat shock proteins (HSP), neutrophil inhibitory factor 

(NIF), and many more reviewed in depth previously (Khan and Fallon, 2013; Maizels and 

McSorley, 2016; Harnett and Harnett, 2017; Nascimento Santos et al., 2017; Kahl, Brattig 

and Liebau, 2018; Schwartz, Hams and Fallon, 2018). Parasitic helminths are able to secrete 

not only proteins but also glycans, small-molecules and metabolites, short-chain fatty acids, 

as well as exosomes (extracellular vesicles) containing immunomodulatory microRNAs (Buck 

et al., 2014; Shepherd et al., 2015; Siles-Lucas et al., 2015; Cai, Gobert and McManus, 2016; 

Entwistle and Wilson, 2017).  

 

These products exert their effect in different ways modifying or suppressing Th2 

immune response induced to clear helminth infections (Correale, Farez and Razzitte, 2008; 

Taylor et al., 2009; Amu et al., 2010; Hussaarts et al., 2011; Khan et al., 2015; Yang, Seoh 

and Jang, 2017). The control of Th2 responses by helminth parasites is mediated by several 

mechanisms including a reduction in IgE, IL-4 and IL-5 levels as well as eosinophilia, and an 

inhibition of the pro-inflammatory cytokines IL-2, interferon (IFN)-γ, and IL-17 (Schnoeller et 
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al., 2008; Kim et al., 2010; Ji et al., 2014). Furthermore, some molecules are able to 

stimulate the generation of regulatory T cells (Tregs) (Layland et al., 2013), resulting in the 

production of anti-inflammatory cytokines, particularly IL-10 and transforming growth factor 

(TGF)-β (Figure 1.1B) (Shiny et al., 2011; Jang and Nair, 2013; Finlay, Walsh and Mills, 2014). 

Studies have also shown that H. polygyrus secreted products can block the release of 

alarmin cytokine IL-33 from epithelial cells in response to fungal allergen (McSorley et al., 

2014). Other helminths including Nippostrongylus brasiliensis are able to inhibit IL-12 

production from dendritic cells suppressing proinflammatory Th1 immune responses (Balic 

et al., 2004; Segura et al., 2007; Massacand et al., 2009; Donnelly et al., 2010). These diverse 

regulatory pathways enforced by parasites or their products not only allow helminths to 

establish chronic infections, but also promote a wound repair function limiting host tissue 

damage (Bashi et al., 2015; Maizels and McSorley, 2016). Collectively, helminth secreted 

products may lead to the discovery and generation of new drugs treating 

immunopathologies, thus improving life span. 

 

 

Immune-related disorders versus parasitic helminths  

When functioning properly, the immune system protects humans from pathogens (bacteria, 

virus or parasite) and other invaders, maintaining a state of homeostasis through a cascade 

of reactions, the so-called immune response. However, in the presence of immune 

dysregulation, uncontrolled inflammation could lead to an increased susceptibility to 

chronic pathologies causing inflammatory and autoimmune diseases. Interestingly, and as 

mentioned earlier, helminths induce a strong type 2 immune response. However, through 
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their regulatory mechanisms, parasites have developed the ability to target Th2- and 

Th1/Th17-driven inflammation, thus constraining the symptoms associated with allergy and 

autoimmunity (Wilson et al., 2005; Mangan et al., 2006; Schnoeller et al., 2008; Kobayashi 

et al., 2009; Amu et al., 2010; Correale and Farez, 2011; Cosnes et al., 2011; Kondrashova et 

al., 2013; Finlay, Walsh and Mills, 2014; Lambrecht and Hammad, 2017; Schwartz, Hams and 

Fallon, 2018). 

 

Asthma (airway inflammatory disease) and allergic rhinitis (hay fever) are 

characterised by a Th2 response associated with high levels of IL-4, IL-5, IL-13 and IgE, in 

addition to infiltration of eosinophils (Figure 1.1C) (Poole and Rosenwasser, 2005; Kim, 

Dekruyff and Umetsu, 2010). The protective effects against allergy evoked by some parasitic 

helminths are mediated by a modified Th2 type response, suppressing the secretion of pro-

inflammatory cytokines and switching of IgE to IgG4, leading to high levels of  IL-10 and 

TGFβ, as well as Tregs (Hussain, Poindexter and Ottesen, 1992; Akdis et al., 1998; Van Den 

Biggelaar et al., 2000; Bashir et al., 2002; Francis, Till and Durham, 2003; Mangan et al., 

2004; Fallon and Mangan, 2007; Mo et al., 2008; Adjobimey and Hoerauf, 2010; Navarro et 

al., 2016; Titz et al., 2017; Logan et al., 2018; Midttun et al., 2018). Another activator of 

allergic responses is the alarmin cytokine IL-33, which was shown to be blocked by parasitic 

secreted products (Neukirch et al., 1999; Agarwal, 2011; Kouzaki et al., 2011; Cayrol and 

Girard, 2014; McSorley et al., 2014; Snelgrove et al., 2014; Christianson et al., 2015; De 

Salvo et al., 2016; Liew, Girard and Turnquist, 2016). 

 

In autoimmune diseases, the immune system recognises normal body parts as 

foreign, damaging its own healthy tissues and causing diseases such as coeliac disease, 
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multiple sclerosis (MS), rheumatoid arthritis (RA), type-1 diabetes and inflammatory bowel 

disease (IBD - including ulcerative colitis and Crohn's disease). As in allergic disorders, 

evidence suggested that helminths and their products can ameliorate autoimmune 

pathologies in humans and animal models (Rook, 2012) via multiple mechanisms depending 

on the disease and on the worm. Parasites are able to downregulate Th1 or Th17 pathways 

mediated during autoimmune diseases (Bettelli, Oukka and Kuchroo, 2007; Zaccone et al., 

2010; Du et al., 2011; Chen et al., 2014; Lund et al., 2014). Several studies have examined 

the administration of whole products and extracts from the rat tapeworm Hymenolepis 

diminuta, the hookworms Ancylostoma ceylanicum and Ancylostoma caninum, the 

nematode Trichinella spiralis, the filarial nematode Litomosoides sigmodontis, and 

schistosome worms on a range of colitis and MS mouse models. They reported a reduction 

in Th1 markers such as TNFα and IFNγ, an increase in regulatory markers (IL-10 and TGFβ), 

and activation of Tregs, along with an increase in AAM markers (Elliott et al., 2003, 2008; 

Walsh et al., 2009; Hübner, Thomas Stocker and Mitre, 2009; Motomura et al., 2009; Wilson 

et al., 2010; Johnston et al., 2010; Cançado et al., 2011; Du et al., 2011; Hubner et al., 2012; 

Ferreira et al., 2013; Heylen et al., 2014).  

 

Although relatively limited, clinical trials were also performed using helminth 

infections to treat immune diseases. Crohn’s disease and ulcerative colitis patients infected 

with the pig whipworm Trichuris suis, which is naturally expelled within 6 weeks, reported 

improvements in disease outcome, however these results are inconclusive due to lack of 

efficacy in some studies (Summers et al., 2003, 2005; Shi et al., 2011; Graepel et al., 2013; 

Sandborn et al., 2013; Weinstock and Elliott, 2013; Fleming and Weinstock, 2015; Helmby, 

2015; Mckay, 2015). 
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Figure 1.1: Type 2 immune response and helminth regulatory mechanisms 

(A) Response to helminth infection. IL-25, IL-33 and TSLP released by epithelial cells during 
helminth infections, drive type-2 responses stimulating ILC2s and Th2 cells to produce 
several protective cytokines including IL-4, IL-5 and IL-13. This results in B cell isotype 
switching to IgE and IgG1, the activation of specialised effector cells such as mast cells, 
eosinophils and basophils, the increase of eosinophilia, as well as the expansion and 
activation of alternatively activated macrophages (AAMs) which can initiate wound healing 
and tissue repair. The cytokines released trigger the parasite expulsion. 

(B) Helminth-induced regulatory mechanisms. Helminth ES products can induce regulatory 
cells such as Tregs, Bregs and AAMs. Through the production of anti-inflammatory cytokines 
IL-10 and TGFβ and the increased expression of AAMs markers (i.e. Arg1), Th2 immune 
responses are suppressed thus promoting the parasite survival, in addition to reducing 
allergic effector mechanisms. 

(C) Allergic inflammation. During airway inflammation, allergens evoke a type 2 immune 
response, similar to helminths, associated with high levels of IL-4, IL-5, IL-13 and IgE, in 
addition to infiltration of eosinophils. This cascade can lead to an increase in smooth muscle 
contractility, mucus production, eosinophilia and epithelial cell proliferation.  

IL: interleukin; TSLP: thymic stromal lymphopoietin; Th2: T helper 2; ILC2: group 2 innate 
lymphoid cells; Ig: immunoglobulin; AAMs: alternatively activated macrophages; ES: 
excretory/secretory; Treg: regulatory T cell; Breg: regulatory B cell; TGF-β: transforming 
growth factor-β.  
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1.3 The Heligmosomoides polygyrus model 

Heligmosomoides polygyrus bakeri (H. polygyrus), previously known as Nematospiroides 

dubius, is a natural intestinal parasite of mice sharing the same taxonomic subfamily as the 

human hookworms Ancylostoma duodenale and Necator americanus. H. polygyrus is widely 

used as a laboratory model to understand the pathology associated with human chronic 

helminth infections and most importantly to study immunomodulatory mechanisms in 

inflammatory diseases (Behnke, 1987; Robinson et al., 1989; Behnke, Menge and Noyes, 

2009; Donskow-Łysoniewska et al., 2013; Filbey et al., 2014). 

 

Within 24 hours of H. polygyrus larvae ingestion, third-stage (L3) infective larvae 

migrate to the duodenum, where they invade the muscular layer and reside beneath the 

serosal membrane (Figure 1.2). The larvae develop into L4 stage worms in the muscularis 

externa by day 5, then emerge back into the intestinal lumen as adult worms approximately 

8 days post-infection.  Around the villi of the proximal intestinal epithelium, they coil and 

feed on the intestinal tissues, unlike their hookworm relatives which are blood feeders 

penetrating the epithelium to access blood (Bansemir and Sukhdeo, 1994). By day 10, adult 

worms mate and start shedding eggs with the faeces. The eggs hatch 36 hours later giving 

way to the first larval stages (L1 and L2). L3 infective larvae then develop in faeces within 7-

8 days (Figure 1.2) (Reynolds, Filbey and Maizels, 2012; Johnston et al., 2015). Similar to 

other nematode infections, H. polygyrus induce Th2 immune responses displaying an 

elevation of IL-4, IL-5, and IL-13 production as well as IgG1 and IgE antibodies (Reynolds, 

Filbey and Maizels, 2012). 

During infection, the parasite releases products termed H. polygyrus 

excretory/secretory (HES), that have been found to protect against immunopathology in 
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experimental models of autoimmunity, allergy and colitis. Recent studies showed that 

secreted products from the parasitic nematode H. polygyrus can block IL-33 receptor 

expression (Buck et al., 2014) and IL-33 production during Alternaria alternata-induced 

airway inflammation (McSorley et al., 2014). It was then reported that following alternaria 

administration, H. polygyrus Alarmin Release Inhibitor (HpARI) secreted by the larvae and 

adult worm (Hewitson et al., 2013) reproduce the IL-33 inhibitory effect suppressing type 2 

responses and lung eosinophilia (Osbourn et al., 2017). Furthermore, adult H. polygyrus 

persists in the host for several months and prolongs its survival through the activation and 

expansion of host regulatory cells, in particular Treg cells, mediating immunosuppressive 

mechanisms such as IL-10 production (Wilson et al., 2005, 2010; Finney et al., 2007; Rausch 

et al., 2008; Grainger et al., 2010; K. A. Smith et al., 2016). More recently, TGFβ mimic (HP-

TGM), a protein secreted by H. polygyrus, was shown to mimic TGFβ properties, inducing 

suppressive Treg cells (Johnston et al., 2017). 

 

Several other proteins with possible immunomodulatory function have been 

identified including venom-allergen-like (VAL) proteins, proteases and protease inhibitors, 

acetylcholinesterases, lysozymes and apyrases (Hewitson et al., 2011). Secretion of these 

type of proteins has previously been found in other strongylids such as H. contortus and 

Teladorsagia circumcincta (Yatsuda et al., 2003; Mulvenna et al., 2009; Nisbet et al., 2010; 

Hewitson et al., 2011). Besides known immunomodulators, several other H. polygyrus-

derived molecules have been identified. Among these are families which contain a large 

number of uncharacterized proteins termed novel secreted proteins (NSPs) whose function 

has yet to be outlined, and proteins of unknown function with homologues in other 

nematodes (Hewitson et al., 2011). 
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Figure 1.2: Life cycle of Heligmosomoides polygyrus 

Ingested third-stage (L3) infective larvae migrate to the intestine, develop into L4 stage 
worms then to adult worms. By day 10 p.i., adults start shedding eggs which hatch 36 hours 
later giving way to L1 and L2. L3 infective larvae develop in faeces within 7-8 days. 
 p.i.: post-infection. 
 

 

1.4 Purinergic signalling 

The “purinergic signalling pathway” was first discovered by Burnstock in the early 1970s, 

proposing a purinergic neuromuscular transmission mechanism in the central nervous 

system (CNS), which involved the synthesis, storage and release of the purine nucleotide 

ATP. In the late 1970s, Burnstock and Kennedy classified the purinergic receptors into types 

and subtypes (Burnstock et al., 1970; Burnstock, 1972, 1978; Burnstock and Kennedy, 1985). 

Since then, purinergic signalling has been described in other organs and tissues, and more 

receptor subtypes have been identified. Many studies have demonstrated the importance 
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of extracellular ATP and targeted purinergic receptors as potential therapeutics to treat a 

wide range of diseases including cancer, inflammatory and immune disorders, autoimmune 

diseases, neurological and psychiatric illnesses, stroke, thrombosis, supraventricular 

tachycardia, visceral pain, chronic cough, hypertension, bladder disorders, neuropathic pain, 

and more (Burnstock, 2017). 

 

 

Extracellular ATP release 

The ATP molecule, besides being well known as an intracellular energy source for all living 

cells, serves also as a messenger between cells, making ATP essential to basic function and 

development of organs and tissues (Khakh and Burnstock, 2009). Under a normal healthy 

state, extracellular ATP concentration is undetectable. However, during pathological 

conditions, for example intracellular pathogen infection (Mempin et al., 2013), tumours 

(Pellegatti et al., 2008), and pro-inflammatory or allogeneic graft injury (Hart et al., 2008; 

Zeiser et al., 2016), extracellular ATP increases, reaching a concentration of a few hundred 

µM (Idzko, Ferrari and Eltzschig, 2014; Morciano et al., 2017). Following tissue injury, 

stressed or apoptotic cells release ATP and other nucleotides from intracellular storage 

pools into the extracellular space (Surprenant and North, 2009; Cekic and Linden, 2016; 

Zimmermann, 2016) via connexin (Cx) or pannexin (Panx) cell-surface membrane 

hemichannels, such as Cx43 and Panx1 (Eltzschig et al., 2006; Chekeni et al., 2010; Esseltine 

and Laird, 2016; Dou et al., 2018). The release of ATP then activate immune cells triggering 

pro-inflammatory immune responses (Ohta and Sitkovsky, 2001; Junger, 2011; Ayna et al., 

2012; Asgari et al., 2013; Wang and Chen, 2018). 
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Purinergic (P1 and P2) receptors 

Once in the extracellular compartment, nucleotides and nucleosides play a signal 

transduction role in different cellular responses through the activation of P1 and P2 

purinergic receptors. These receptors are widely distributed in almost all cell types 

mediating physiological and pathophysiological responses (Khakh and Alan North, 2006; 

Surprenant and North, 2009). Studies have revealed the functions of each subtype using 

knockout mice, transgenic mice and selective receptor agonists and antagonists. 

 

P2 receptors have been sub-classified into the ionotropic P2X receptors (P2XRs) 

(Brake, Wagenbach and Julius, 1994; Valera et al., 1994) and metabotropic G protein-

coupled P2Y receptors (P2YRs) (Burnstock and Kennedy, 1985). So far, seven P2XRs and 

eight P2YRs have been identified and characterized in mammals (Ralevic and Burnstock, 

1998; Burnstock, 2007; Nishimura et al., 2017). P2XRs (P2X1-7R), activated by ATP, are 

plasma membrane ion channels selective for the monovalent cations Na+ and K+, and the 

divalent cation Ca2+. Each P2XR subunit assembles in a trimeric homomer or heteromer 

complex to form seven different subtypes that share two transmembrane domains 

separated by a large glycosylated disulphide-rich extracellular loop and an intracellular N- 

and C- termini (Brake, Wagenbach and Julius, 1994; Valera et al., 1994; Nicke et al., 1998; 

North, 2002; Aschrafi et al., 2004). The P2X1 receptor has been shown to be expressed at 

sympathetically innervated smooth muscles, thus when activated, it can initiate contraction 

of smooth muscles such as in the vas deferens (Mulryan et al., 2000). In addition,  P2X1R is 

involved in platelet activation (Hechler et al., 2003; Oury et al., 2003), renal autoregulation 

(Inscho et al., 2003) and neutrophil chemotaxis (Lecut et al., 2009). P2X2, P2X3 and their co-
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assembly heteromeric P2X2/3 receptors were found to be commonly expressed on sensory 

neurons, where they play an important role in the initiation of sensory signalling pathways 

like gustatory signalling (Finger et al., 2005; Eddy et al., 2009; Hallock et al., 2009), intestinal 

neurotransmission (Bian et al., 2003; Ren et al., 2003), and inflammatory and neuropathic 

pain (Cockayne et al., 2000, 2005; Souslova et al., 2000; Jarvis et al., 2002). Moreover, the 

P2X4R is able to regulate synaptic plasticity as well as vascular endothelium tone and 

contractility of the cardiomyocytes. It is also implicated in neuropathic pain (Tsuda et al., 

2003, 2009; Sim, 2006; Ulmann et al., 2008; Ulmann, Hirbec and Rassendren, 2010). Studies 

have shown that mice lacking the P2X4 receptor gene have smaller-diameter arteries, no 

vascular re-modelling, and are hypertensive (Yang et al., 2004; Shen, 2006; Yamamoto et al., 

2006; Shen et al., 2009). As for the P2X5R, it was shown to be essential for the activation of 

the ATP-mediated inflammasome and the production of IL-1β by osteoclasts (Kim et al., 

2017). However, the activation of P2X7 receptors results in the release of pro-inflammatory 

cytokines, and the activation of immune cells (Solle et al., 2001; Labasi et al., 2002; Ke et al., 

2003; Chessell et al., 2005; Honore et al., 2006).  

 

P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14) belong to the family of G protein 

coupled receptors, and they contain seven hydrophobic transmembrane spanning domains 

joined by three extracellular and three intracellular loops  (Erb et al., 2006). Each receptor is 

activated by a variety of extracellular nucleotides such as ATP, ADP, UTP, UDP and UDP-

glucose. P2YRs are demonstrated to regulate a range of physiological functions including 

proliferation, differentiation, secretion, cell adhesion, phagocytosis, nociception and cell 

migration. For instance, P2Y1R is activated by ADP and is expressed on the surface of 
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platelets and megakaryocytes (Soulet et al., 2005). In contrast, the P2Y2 receptor is activated 

by ATP and UTP, and is involved in the inhibition of bone formation (Orriss et al., 2007), 

immune cell recruitment and phagocytosis, blood pressure regulation, and wound healing 

(Chen et al., 2006; Rieg et al., 2007; Boucher et al., 2010; Müller et al., 2010). The P2Y4R is 

highly selective for UTP. It can be activated by ATP but not nucleoside diphosphates, and is 

involved in intestinal K+/Cl- secretion (Matos et al., 2005). P2Y6R activated by UDP was 

shown to stimulate the release of cytokine/chemokine from macrophages (Bar et al., 2008), 

whereas the P2Y11 receptor activated only by ATP, can inhibit neutrophil apoptosis 

(Vaughan et al., 2007) and induce the secretion of pancreatic Cl- (Nguyen et al., 2001). Only 

ADP can activate P2Y2 and P2Y13 receptors, which are shown to be involved in platelet 

aggregation and in regulation of microglial activation, as well as dendritic cell activation 

(Haynes et al., 2006), bone formation, liver uptake of HDL, and inhibition of ATP release 

from RBCs (Wang et al., 2005). Finally, the P2Y14 receptor, activated by UDP and UDP-

glucose, can stimulate the release of IL-8 in epithelium gastric function, and is involved in 

stomach contractility (Müller et al., 2005; Arase et al., 2009).  

 

P1  receptors, also called adenosine receptors (ARs), belong to the superfamily of G 

protein-coupled metabotropic receptors and contain seven hydrophobic transmembrane-

spanning segments (Jespers et al., 2018). Four distinct ARs have been identified: A1, A2A, A2B 

and A3 (Urbina and Docampo, 2003) with A1 and A2A receptors being the most sensitive as 

they can be activated in the nanomolar range (Jacobson and Gao, 2006). Adenosine, 

generated in the extracellular compartment, can stimulate or inhibit adenylyl cyclase 

activity via the activation of A2A,B or A1,3 receptors respectively (Vallon, Mühlbauer and 
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Osswald, 2006; Fredholm et al., 2011). ARs are widely distributed on most cells in the body 

and have been considered as a major target for drug development against pathological 

conditions of the cardiovascular, nervous, gastrointestinal and immune systems (Poulsen 

and Quinn, 1998; Silverman et al., 2008; Massie et al., 2010; Gessi et al., 2011; Lopes, 

Sebastião and Ribeiro, 2011; Antonioli, Blandizzi, et al., 2013; Chen, Eltzschig and Fredholm, 

2013; Borea et al., 2016; Haskó, Antonioli and Cronstein, 2018). A1R is highly expressed in 

CNS tissues (brain cortex, cerebellum and hippocampus), as well in the eye, adrenal gland 

and atria, where it can modulate several physiological mechanisms (Olah and Stiles, 1995; 

Poulsen and Quinn, 1998; Yuzlenko and Kieć-Kononowicz, 2006). Based on adenosine 

affinity, A2Rs were subdivided into the A2A (low affinity) and A2B (high affinity) receptors 

(Cieślak, Komoszyński and Wojtczak, 2008). A2ARs are localised in the neurons, olfactory 

bulb, spleen, thymus and leukocytes (Schiffmann et al., 1990; Svenningsson et al., 1999; 

Fredholm, Cunha and Svenningsson, 2003), and are mainly involved in motor behaviour 

(Kuwana et al., 1999; Matasi et al., 2005). Their activation was also shown to have an anti-

inflammatory effect in allergic lung inflammation (da Rocha Lapa et al., 2013). However, 

A2BR was shown to be important in the initiating of type 2 immunity such as in allergic 

diseases and helminth infections (Karmouty-Quintana et al., 2015; Philip et al., 2017). These 

receptors were found to be expressed in airway smooth muscle cells, lung fibroblast cells, 

and mast cells. As for the A3 receptor, it was shown to be expressed in the brain and 

endocrine tissues, as well as on eosinophils and neutrophils (Linden, 1994). In summary, P1 

and P2 receptors have a crucial role in the immune response, heart and neurotransmission. 
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Purinergic signalling in immune cells 

Several recent studies and reviews have described the widespread expression of purinergic 

receptors throughout different immune cells and highlighted the importance of these 

receptors in inflammation and immunomodulation (Di Virgilio and Vuerich, 2015; Beamer, 

Fischer and Engel, 2017; Burnstock, 2017; Di Virgilio, Sarti and Grassi, 2018).  

 

In response to cell and tissue injury, extracellular ATP and other nucleotides are 

rapidly released through hemichannels, attracting and activating immune cells such as 

monocytes, DCs and neutrophils (Elliott et al., 2009). ATP then binds to ionotropic P2XRs 

which become permeable to Na+, K+ and Ca2+ (Figure 1.3). All P2XR subtypes have been 

identified to be expressed on immune cells, in particular P2X1,4,7Rs with  P2X7 receptor the 

most widely expressed and shown to be important in activating lymphocytes, granulocytes, 

macrophages and dendritic cells (Junger, 2011; Ayna et al., 2012; Asgari et al., 2013; Di 

Virgilio et al., 2017).  

 

The activation of metabotropic P2Y receptors, such as P2Y2 (Chen et al., 2006) and 

P2Y14 (Barrett et al., 2013), stimulates the chemotaxis and activation of phagocytes, and 

reduces anti-cAMP accumulation. Subsequently, in the presence of ecto-nucleotidases that 

hydrolyse ATP to adenosine, extracellular adenosine levels start to increase slowly, 

upregulating A2AR and A2BR on immune cells. These 2 adenosine receptors were shown to 

suppress inflammatory cytokine production (IL-12 and TNFα), enhance the production of IL-

10 by monocytes and macrophages (Hasko & Cronstein, 2004), inhibit platelet aggregation, 
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inhibit phagocyte chemotaxis and activate protein Kinase A (PKA), thus limiting 

inflammation. It was also suggested that adenosine production activates Foxp3+ regulatory 

T cells (Tregs), suppressing the activation of DCs and effector T cells (Deaglio et al., 2007). 

Therefore, targeting P2X, P2Y and P1 receptors is useful for reducing inflammation caused 

by different diseases. Clinically, P2 purinergic receptor (mainly P2X7R) antagonists and 

A2AR agonists are being tested for the treatment of tissue inflammation in autoimmune 

diseases (Lang et al., 2010) tissue transplantation (Vergani et al., 2013) and in long-term 

inflammatory diseases (Cekic and Linden, 2016). 

 

 

Figure 1.3: Extracellular ATP signalling during inflammation 
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1.5 Kinetoplastids and Trypanosomatids 

Kinetoplastids belong to the class kinetoplastidae and are members of the flagellated 

protozoans. They are unicellular eukaryotic parasites, classified into two monophyletic 

groups, the uniflagellated trypanosomatids and the free-living biflagellated bodonids 

(Vickerman 1974; Hamilton et al., 2004; Moreira, López-García and Vickerman, 2004).  

 

The cellular features of kinetoplastids include: a nucleus, a golgi apparatus, an 

endoplasmic reticulum, a peroxisome-like organelle named a glycosome to perform 

glycolysis, a cytoskeleton made up of subpellicular microtubules, a paraxial rod which runs 

along the axoneme, one or two flagellae emerging from a flagellar pocket and supported by 

a paraflagellar rod and a basal body, in addition to a very distinguishing feature, the 

kinetoplast, which contains the mitochondrial DNA called kDNA (Hoare and Wallace, 1966; 

Hoare, 1967; McGhee and Cosgrove, 1980; Vickerman, 1994, 2008; Souza, 2002; Gadelha et 

al., 2005; Field and Carrington, 2009). The kDNA is composed of minicircle and maxicircle 

DNA rings and is located within a single large mitochondrion. Kinetoplastid cells grow 

asexually within their host and divide by binary fission (Ray, 1989; Yurchenko et al., 1999; 

Lukeš et al., 2002; Hong and Simpson, 2003; Vargas-Parada, 2010).  

 

The morphological form of these flagellated protozoans is defined by the position of 

the kinetoplast in relation to the nucleus (Figure 1.4). In the amastigote stage, the parasite is 

spherical with no free flagellum and the kinetoplast is near the nucleus, whereas in the 

promastigote stage, the kinetoplast is located in front of the nucleus to the anterior end, 
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and the flagellum, which is not attached to the cell body, is anterior to the nucleus. In the 

epimastigote stage, the kinetoplast is located centrally between the nucleus and the 

anterior end of the body and the flagellum is connected by an undulating membrane. 

However in the trypomastigote stage, the kinetoplast is located in a posterior position 

related to the nucleus, and the flagellum is attached to the entire length of the cell body by 

an undulating membrane which help in increasing the motility of the parasite (Hoare and 

Wallace, 1966).  

 

 

Figure 1.4: Major Kinotoplastid morphological forms 

 

 

 
Trypanosomatids, the first organisms viewed in an electron microscope, belong to 

the genus Trypanosoma and the class Kinetoplastidae (Sleigh, 1989). These parasites include 

species and subspecies which cause various diseases in animals and humans (Stuart et al., 
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2008). In humans, the most common serious diseases include Chagas disease caused by 

Trypanosoma cruzi (Urbina and Docampo, 2003; de Souza, 2007), human African 

trypanosomiasis or sleeping sickness caused by Trypanosoma brucei species (Fairlamb, 

2003) and Leishmaniasis caused by Leishmania species (Croft and Coombs, 2003; Dujardin, 

2006; Lukeš et al., 2014). Two types of trypanosomes have been described: the stercorarian 

trypanosomes which are transmitted to their hosts via faeces of insect vectors, and the 

salivarian trypanosomes which are transmitted in the saliva of a biting insect (Tsetse fly) 

(Hoare, 1964, 1972). 

 

Trypanosomatids have been of great interest in molecular biology, as they express 

genes in a unique way which differs from plants, fungi and animals (Figure 1.5). In the 

nucleus, multiple protein-coding genes are arranged in polycistronic transcription units, and 

bi-directional transcription is initiated between two divergent gene clusters by RNA 

polymerase II (Johnson, Kooter and Borst, 1987; Mottram, Murphy and Agabian, 1989; 

Campbell, Thomas and Sturm, 2003; Martínez-Calvillo et al., 2003, 2010; Das, Banday and 

Bellofatto, 2008; De Gaudenzi et al., 2011). Genes are co-transcribed then processed to 

individual mature mRNAs before translation via a process called trans-splicing. This process 

is performed by the addition of a capped 39-nucleotide long mini-exon from a spliced leader 

RNA (SL RNA) to generate a capped 5´ end, coupled with the cleavage and polyadenylation 

of the mRNA 3´ end (Kooter and Borst, 1984; Parsons et al., 1984; LeBowitz et al., 1993; 

Teixeira and daRocha, 2003). In the cytosol, mRNAs are degraded by the removal of the 

poly(A) tail then de-capped and digested in the 5´-3´ direction. Most of the gene expression 
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process in trypanosomes is regulated post-transcriptionally (Maslov and Simpson, 1994; 

Haile and Papadopoulou, 2007; Hajduk and Ochsenreiter, 2010). 

 

 
 
Figure 1.5: Schematic representation of kinetoplastid gene expression 

(Figure from Clayton, 2016) 

 

Trypanosoma musculi 

Trypanosoma musculi (T. musculi), a stercorarian trypanosome, is a natural 

protozoan parasite of mice, closely related to Trypanosoma lewisi, which infects only rats 

(Taliaferro and Alesandro, 1971). Once introduced into the host, a single parasite can 

reproduce and initiate an infection. The two major proliferative stages of T. musculi are the 

epimastigote and the trypomastigote forms, with the latter being 28-32 µm in length and 2-

3 µm in width when mature (Ashraf et al., 2002; Hong et al., 2017). It resides extracellularly 
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in the bloodstream and tissue fluids of the mouse, as well as in organs such as the liver, 

spleen, kidneys, lungs and in smaller amount in the intestine (Albright et al., 1999). T. 

musculi causes a self-limiting infection that persists for a period of 3 weeks. The course of 

parasitaemia is characterized by a pre-patent phase (2-4 days), a logarithmic growth phase 

(5-7 days), and a parasitaemia plateau phase (5-7 days) which is followed by an immune 

parasite clearance from the vascular system (5-7 days) by an antibody-dependent cell-

mediated process (Targett and Viens, 1975; Viens, Targett and Lumsden, 1975). After 

recovery from the infection, mice are resistant to reinfection and the parasites, though no 

longer detected in peripheral blood or other organs, have been shown to persist for the 

lifetime of mice in the vasa recta of the kidneys (KFs, Kidney forms) described as an 

immunologically privileged site (Viens et al., 1972; Albright, Pierantoni and Albright, 1990; 

Monroy and Dusanic, 2000). 

 

 

Immune response to T. musculi  

It is important to know how the parasite interacts with the host immune system and how it 

is controlled and eliminated. T. musculi infection causes an enlargement of the spleen and 

lymph nodes by 10 and 3 fold respectively, as well as the liver to a lesser degree when 

compared to naïve mice (Hirokawa et al., 1981; Albright, Pierantoni and Albright, 1990). 

During the early course of T. musculi infection, acquired humoral immunity is suppressed, 

whereas the innate system controls but does not cure the infection. NK cells seem to control 

the infection through the secretion of cytokines, presumably TNFα and IFNγ, which activate 
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peritoneal space macrophages, but NK cells are unable to damage T. musculi directly 

(Albright, Jiang and Albright, 1997).  

 

Reproduction of the parasites was inhibited during the plateau phase by a substance 

termed ablastin which was later shown to be an immunoglobin (Dusanic, 1975; Ormerod, 

1975). Immunoglobulin, specifically IgG1 and IgG2a subtypes, binds first to trypanosomes, 

then to FcγR1/γ2b and FcγR2a receptors on macrophages (Vincendeau, Daeron and 

Daulouede, 1986; Wechsler and Kongshavn, 1986, 1988; Shaw et al., 1992). Trypanosomes 

are killed either by phagocytosis or release of NO from macrophages. Previous studies have 

shown that T. musculi elimination is an antibody-facilitated, cell-dependent process 

requiring the assistance of trypanosome-specific antibodies, particularly IgG1, IgG2a and b, 

IgG3, Kupffer cells of the liver and spleen, and activated macrophages, leaving the host 

immune to reinfection (Vargas Del, Viens and Kongshavn, 1984; Wechsler and Kongshavn, 

1986; Albright and Albright, 1991; Albright, J.W., Stewart, M.J., Latham, P.S., Albright, 1994; 

Albright, Jiang and Albright, 1997). Athymic or nude mice and T-cell deprived mice did not 

recover from T. musculi infection, showing that T lymphocytes play a vital role in the 

elimination of dividing parasites and the termination of the infection (Viens, Targett and 

Lumsden, 1975). 

 

 

Trypanosome purine salvage 

Purines are molecules of great importance in all living organisms (Figure 1.6). They play an 

essential role in nucleic acid synthesis and also act as signalling molecules, besides being 
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part of energy-requiring reactions and components of ATP, cyclic AMP, coenzyme A, GTP 

and NADH (El Kouni, 2003; Berg et al., 2010). Purine nucleotides can be synthesized by de 

novo and/or salvage pathways.  

 

Figure 1.6: The main purine molecules 

 

Nearly all parasitic protozoa, including T. musculi (Albright and Albright, 1988), are 

unable to synthesise purines de novo, instead they rely on purine salvage to supply their 

metabolic requirements (Marr, Berens and Nelson, 1978; Boonlayangoor, Albach and 

Booden, 1980; Berens et al., 1981; Fish et al., 1982; Schwartzman and Pfefferkorn, 1982; 

Hammond and Gutteridge, 1984). Therefore, they express nucleoside/nucleobase 

transporters and intracellular salvage enzymes to take up and synthesise purine bases from 

their hosts (Gutteridge and Davies, 1981; Allen and Ullman, 1994; De Koning and Jarvis, 

1997; Van Rompay, Johansson and Karlsson, 2000; de Jersey et al., 2011). This pathway 

attracted chemotherapeutic studies over the last twenty years as a potential drug target for 

different parasites, such as Leishmania and Trypanosoma (Boitz et al., 2012; Li et al., 2015; 

Doleželová et al., 2018).  Trypanosomes are shown to compete with their hosts for purines, 

transporting and concentrating adenosine via high affinity adenosine transporters (Carter 

and Fairlamb, 1993; Koning, Watson and Jarvis, 1998). 
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Adenine, adenosine, inosine, guanosine and sometimes hypoxanthine are imported 

via the P1 nucleoside transporter (Ortiz et al., 2009), whereas P2 enables transport of 

adenine and adenosine (Mäser et al., 1999) (Figure 1.7) and has been shown to be of great 

pharmacological importance as it can also transports trypanocidal drugs (Carter and 

Fairlamb, 1993; Carter, Berger and Fairlamb, 1995; Li et al., 2015). All other nucleobases can 

be imported via the other 4 nucleobase transporters H1-H4, mainly H2 and H3 (De Koning, 

Bridges and Burchmore, 2005). Some trypanosomes such as T. brucei and T. cruzi have a 

preference for adenine and adenosine over other purines, as these have been shown to be 

taken up the fastest (Fish et al., 1982; Vodnala et al., 2008; Berg et al., 2010). 

 

Intracellularly, several enzymes are involved in the trypanosome purine salvage 

pathway including salvage enzyme transferases such as nucleoside hydrolases (Inosine-

adenosine-guanosine NH and inosine-guanosine NH), phosphoribosyltransferases (6-

oxopurine PRTase, adenine PRTase) methylthioadenine phosphorylase (MTAP) (Parkin, 

1996; Versées et al., 2001) and adenosine kinase (AK). In addition to interconversion 

enzymes like AMP deaminase, adenylosuccinate lyase (ADSL), adenylosuccinate synthetase 

(ADSS), guanine deaminase, GMP synthase (GMPS), GMP reductase and inosine-5´-

monophosphate dehydrogenase (Figure 1.6). In the bloodstream form T. brucei, AK 

phosphorylates adenosine to AMP (Vodnala et al., 2008) and some other enzymes packaged 

in glycosomes can be involved in purine salvage and pyrimidine biosynthesis (Opperdoes 

and Michels, 1993; Lüscher et al., 2014; Doleželová et al., 2018). In the purine salvage 

pathway of P. falciparum, adenosine and hypoxanthine are converted to AMP and GMP and 
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excess AMP is de-aminated back to IMP by AMP deaminase to constitute the purine 

nucleotide cycle (Albright and Albright, 1988).  

 

 

 

Figure 1.7: Purine salvage pathway in trypanosomes  

(Figure from Doleželová et al., 2018) 
 

 

 

1.6 Ecto-nucleotidase enzymes 

On the surface of most cells, including immune cells, there are enzymes belonging to a large 

family known as the ectonucleotidase family, responsible in controlling ATP and ADP levels 

in the extracellular milieu. These nucleotidase enzymes have been extensively characterized 

on the external surface of trypanosomatids, where they are expressed presumably to 
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guarantee the supply of purines which they cannot synthesis de novo (Fietto et al., 2004). 

For instance, a recent study  showed that purine starvation increased the activity of 

Leishmania infantum ecto-nucleotidase, suggesting that this enzyme play an important role 

in parasite nutrition and survival (Peres et al., 2018). Various families of ecto-nucleotidase 

enzymes have been described in protozoan parasites. 

 

E-type ATPases (extracellular ATPases) are membrane bound enzymes localized at 

the cell surface and hydrolysing mainly ATP besides other nucleoside tri- and diphosphates 

(Plesner, 1995; Kirley, 1997). An Ecto-ATPase, an E- type ATPase subclass, which can only 

hydrolyse ATP, but no other nucleoside di- or triphosphates and which is cation dependent 

(Mg2+ or Ca2+), has been shown to be present on the surface of protozoan parasites 

including Leishmania tropica (Meyer-Fernandes et al., 1997), Leishmania amazonensis 

(Berrêdo-Pinho et al., 2001), Toxoplasma gondii (Asai et al., 1995; Nakaar et al., 1998), 

Entamoeba histolytica (Barros et al., 2000), Trypanosoma cruzi (Bernardes et al., 2000; 

Bisaggio et al., 2003; Meyer-Fernandes et al., 2004), and Tetrahymena thermophila 

(Smith  Jr., Kirley and Hennessey, 1997). 

 

Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases or ENTPDase), 

also known as CD39, are enzymes of the apyrase family characterized by the presence of 

five highly conserved domains known as “apyrase conserved regions” (ACR1 to ACR5). These 

ecto-enzymes can hydrolyse nucleoside tri- and diphosphates to nucleoside 

monophosphates, which are further catalysed to adenosine by an ecto-5´-nucleotidase 

(ecto-5´-NT) also known as CD73 (Plesner, 1995; Zimmermann, 1999, 2000, 2001). Ecto-5´-
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NT and ecto-NTPDase hydrolysing a broad range of nucleoside tri- and diphosphates have 

been previously characterised in T. cruzi. The presence of an Mg ecto-NTPDase activity was 

also described in T. brucei and L. amazonensis (Fietto et al., 2004; Gomes et al., 2015). 

Adenosine signalling is terminated by adenosine deaminase (ADA) which converts 

adenosine to inosine (Langer et al., 2008), or by the cellular uptake of adenosine by 

equilibrative or concentrative nucleoside transporters (ENTs or CNTs) to the intracellular 

compartment, where it is phosphorylated to AMP by adenosine kinase (ADK) (Baldwin et al., 

2004; Gray, Owen and Giacomini, 2004).  

 

The shift from a pro-inflammatory to an anti-inflammatory environment, 

characterized by adenosine production via CD39/CD73, has been of great importance in the 

control of various pathologies of the immune system such as autoimmunity, infections and 

cancer (Takenaka, Robson and Quintana, 2016; Dou et al., 2018). 
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Aims of the study 

 

The aims addressed by this study are as follows:  

 

1. Expression of Heligmosomoides polygyrus secreted apyrases and characterisation of 

their enzymatic activity. 

2. Expression of apyrases in Trypanosoma musculi in order to determine possible 

immunomodulatory effects. 

3. In vivo administration of parasite apyrases in order to study their effect on type 2 

immunity. 
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CHAPTER 2 

 

 

 

Materials and Methods 
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2.1 Laboratory animals, husbandry and ethics statement 

Six- to eight-week-old female BALB/c mice were purchased from Charles River UK or Harlan 

UK Laboratories and maintained at the Central Biomedical Services (CBS) facility at Imperial 

College London in accordance with Imperial guidelines. Mice were housed in groups of five 

in individually ventilated cages in controlled rooms (20-24°C, 55% relative humidity and 

12:12 hours light to dark cycle) and were acclimated for 7 days upon delivery before any 

experimental manipulation. Animal procedures considered in this study were reviewed by 

the Imperial College Animal Welfare Ethical Review Body (AWERB) and performed under the 

UK Home Office Animals (Scientific Procedures) Act Personal Project Licence number 

70/8193: ‘Immunomodulation by helminth parasites’.  

 

 

2.2 Parasites 

 

Propagation and maintenance of Heligmosomoides polygyrus  

Female BALB/c mice were inoculated with 200 H. polygyrus infective third-stage larvae (L3) 

in 200 µl of distilled water by oral gavage using a stainless-steel feeding needle with a 

curved end. The suspension was mixed prior to infection as the larvae settle very quickly. 

Infections were verified by the presence of eggs in faecal samples 10 days post-infection.  
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Collection of H. polygyrus eggs and larvae from infected mice 

Infected mice were kept for 4 hours in a wire-bottomed cage with a tray beneath covered 

with a layer of moistened paper towels. Faecal pellets were collected in a 50 ml tube and 

soaked in a suitable volume of distilled water (dH2O) (enough to cover the pellets) for 1 hour 

at room temperature before they were mashed into a smooth paste. The faecal slurry was 

then washed 3 times in 50 ml dH2O by centrifugation of the collection tube at 300 x g, 4⁰C 

for 2 minutes, aspirating the supernatant down to the pellet and refilling the tube. After the 

last wash, the pellet was re-suspended with 50 ml dH2O and passed through a sieve into a 

new tube which was then centrifuged as before. The pellet was plated on the centre of 5-6 

layers of wet Whatman 40 filter paper in a petri dish, leaving 2 cm at the edge of the filter 

paper clean. The plates were placed in a humid box in the dark at room temperature and 

kept moist throughout the incubation period by adding drops of water to the faecal culture 

and to the edge of the filter paper. From day 7 onwards, infective L3 were collected into a 

15 ml tube by rinsing the petri dish and the edge of the filter paper with dH2O using a 

transfer pipette. The collected water was centrifuged at 250 x g for 2 minutes. The larvae 

were then washed three times in 15 ml dH2O and stored at 4°C in dH2O for up to six months. 

 

 

Recovery and culture of H. polygyrus adult worms 

Adult H. polygyrus were recovered from the intestine 21 days post-infection using 

Baermann Apparatus as previously described (Johnston et al., 2015). Adult worms were 

washed extensively in sterile Hanks’ solution, then incubated for 3 weeks at 37°C/5% CO2 in 

RPMI 1640 supplemented with 1% glucose, 100 units/ml penicillin, 100 μg/ml streptomycin, 

2 mM L-glutamine, and 100 μg/ml gentamicin (Johnston et al., 2015). 
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Collection of H. polygyrus secreted proteins 

Culture supernatants from adult H. polygyrus were recovered twice per week, cleared 

through a 0.2 μm filter and replaced with an equal volume of medium. Secreted products 

were pooled (excluding the first collection after 24 hours) and concentrated through a 3,000 

molecular weight cut-off (MWCO) Amicon membrane in an ultrafiltration device under 

nitrogen pressure. Secreted proteins were washed several times with 50 mM HEPES buffer 

(pH 7.5) using 3000 MWCO spin columns (vivaspin). Protein concentration was measured by 

Bradford assay. 

 

 

Nippostrongylus brasiliensis 

Infection of mice with N. brasiliensis  

Mice were infected sub-cutaneously (s.c.) with 500 L3 N. brasiliensis in 200 µl sterile PBS 

using a 21-gauge needle. 

 

 

Faecal egg count 

Each infected mouse was restrained for enough time to collect 3 to 4 faecal pellets. The 

faeces were weighted then soaked in 5 ml of dH2O for 1 hour at room temperature in a 15 

ml tube. The mixture was then vortexed and 5 ml of water saturated sodium chloride (NaCl) 

solution was added. A McMaster Egg Slide (Hawksley) was filled with well shaken 

suspension and kept at room temperature for 3-5 minutes waiting for the eggs to float to 
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the top of the chamber before being counted. Faecal egg count was expressed as eggs per 

gram of faeces (EPG) using the following equation: 

𝐸𝑃𝐺 =
𝐶𝑎𝑣𝑟𝑔./𝑉𝑔𝑟𝑖𝑑 ∗ 𝑉𝑡

𝑀
 

Where: 

Cavrg. is the average count of eggs in the grid of chambers 1 and 2 in McMaster slide 
Vgrid is the volume under the grid of chambers 1 and 2 (0.30 ml) 
Vt is the total volume of mixture (10 ml) 
M is the mass of faeces (grams) 
 

 

Gut parasite burden 

Day 5 post-infection, mice were euthanized and the entire length of the small intestine of 

each mouse was removed and placed in a petri dish containing PBS. The intestine was 

teased open longitudinally using dissecting scissors with straight round blades, then 

wrapped in a double layer of cheesecloth and submerged in a 50 ml Falcon tube filled with 

45 ml pre-warmed PBS. The excess of cheesecloth was trapped under the cap of the tubes, 

and tubes were incubated upright in a water bath at 37°C for 2-3 hours. After incubation, 

the intestines and the cheesecloth were examined under a dissecting microscope for any 

remaining worms, which were placed in the tube of the corresponding sample. The worms 

from each collection tube were transferred to a petri dish and counted. 

 

 

2.3 Intranasal administration of substances to mice 

Mice were lightly anaesthetized with isoflurane delivered by SurgiVet classic T3 Isoflurane 

funnel fill vaporizer (Smiths Medical) in an induction chamber with O2 supplies (2 l/min) 
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entering the gas circuits downstream of the vaporizer. Animals were held in a supine 

position and 50 μl PBS containing substances (as indicated in individual experiments) were 

intranasally delivered dropwise to each nare of the mouse using a pipette (P100, Gilson). 

Mice were dosed with 10 μg of active or inactive apyrase purified from Pichia pastoris with 

or without 50 μg Alternaria alternata extract (Greer Laboratories, USA). Control mice 

received 50 μl PBS only or 10-20 μg BSA (bovine serum albumin) diluted in PBS. 

 

 

2.4 RNA extraction and cDNA synthesis 

Total RNA was isolated from H. polygyrus L4 stage larvae or adult worms by homogenising in 

1 ml cold TRIzol reagent (Sigma), using a glass homogeniser. Samples were then centrifuged 

for 10 minutes to remove insoluble material. Following centrifugation, the clear supernatant 

was collected in a new tube and incubated for 5 minutes at room temperature to permit 

complete dissociation of the nucleoproteins complex. Chloroform (0.2 ml per 1 ml of TRIzol) 

was added to the homogenised samples which were mixed by vortexing for 15 seconds and 

centrifuged for 15 minutes. The upper aqueous phase, containing RNA, was transferred to a 

fresh tube and incubated for 10 minutes at room temperature with 0.5 ml of isopropanol. 

Samples were spun for 10 minutes, and the RNA pellet was washed with 75% (v/v) ethanol, 

centrifuged for 5 minutes at 7,500 x g, then air-dried for 5-10 minutes at room temperature 

before being resuspended in 80 μl RNase-free water. RNA was treated with DNase I 

(Qiagen), followed by RNA clean-up using the QIAgen RNeasy Mini Kit (Qiagen) according to 

the manufacturer’s protocols. Total RNA concentration and purity were assessed by a 

NanoDrop spectrophotometer, and RNA quality was checked on a 1% (w/v) agarose gel by 



 

60 
 

electrophoresis. RNA extracted was stored at −80°C. All centrifugation steps were 

performed at 12, 000 x g at 4°C unless otherwise noted. 

 

Following RNA extraction, cDNA was synthesised using Super Script III Reverse 

Transcriptase (Invitrogen) according to the manufacturer’s instructions. Briefly, in a 20 µl 

final reaction volume, 1 μg of total RNA was incubated with 150 ng random hexamers and 5 

mM dNTPs mix at 65°C for 5 minutes, then placed on ice for 1-2 minutes. Ribolock RNase 

Inhibitor (40 U), 0.1 mM dithiothreitol (DTT), first strand cDNA reaction buffer (5 x), and 200 

U Reverse Transcriptase enzyme (RT) were then added and the mixture was placed in a 

thermocycler with the conditions as follow: 5 minutes at 25°C, one hour at 50°C and 15 

minutes at 72°C. Reverse transcribed cDNA sample was stored at -20°C. 

 

 

2.5 Polymerase Chain Reaction (PCR) 

PCR was carried out in a 20 μl reaction volume using Q5 High-Fidelity DNA Polymerase (New 

England Biolabs) according to the manufacturer’s instructions, in a thermocycler under the 

following conditions: initial denaturation at 98°C for 30 seconds, 35 Cycles of 98°C for 10 

seconds, primers annealing temperature for 30 seconds, and 72°C for 30 seconds per kb; 

followed by a final elongation of 72°C for 2 minutes. All reactions were run with a no-

template control to check for contamination of reagents, and a no-RT control to check for 

genomic DNA (gDNA) contamination. PCR products were resolved on a 1-2% (w/v) agarose 

gel stained with GelRed nucleic acid gel stain (Biotium) and visualised using a GelDOC-IT TS 

imaging system (UVP). Following PCR amplification, cDNA fragments were purified using the 

GenElute PCR clean-up kit (Sigma-Aldrich) according to the manufacturer’s protocol.  
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2.6 Expression and purification of recombinant apyrase from Pichia 

pastoris 

Gene cloning and sequencing 

Purified PCR products (apy-1, 2, 3, 4 and 5) and pPICZα-A plasmid (see appendix A.1 for 

plasmid map) were digested overnight with XbaI and KpnI restriction endonucleases, 

resolved on a 1% (w/v) agarose gel then recovered and purified using GenElute Gel 

Extraction Kit (Sigma-Aldrich). Before ligation, purified linearised plasmid was treated with 

FastAP Thermosensitive Alkaline Phosphatase (Thermo Scientific) according to the 

manufacturer’s instructions to prevent re-ligation. Digested PCR products were subcloned 

into pPICZα-A vector using T4 DNA ligase (New England Biolabs) at room temperature for 

one hour. The recombinant clones were transformed into E. coli DH5-α competent cells 

(Invitrogen), and the transformation mixture was spread onto Luria Broth (LB) agar plates 

supplemented with Zeocin (50 μg/ml). Plates were incubated overnight at 37°C. Individual 

colonies were picked and tested by colony PCR using Taq DNA polymerase in Thermopol 

buffer (New England Biolabs) in a thermocycler under the following conditions: initial 

denaturation at 95°C for 5 minutes; 30 cycles of: denaturation at 95°C for 30 seconds, 

primers annealing temperature for 30 seconds and elongation at 68°C for 1 minutes per kb; 

followed by a final elongation step for 5 minutes at 68°C. Selected positive transformants 

were cultured in 6 ml LB medium containing 50 μg/ml Zeocin, and incubated overnight at 

37°C with shaking. Plasmid DNA was then isolated from these cultures following the 

GenElute Miniprep protocol (Sigma-Aldrich).  

Diagnostic digests were carried out to identify which clones contained the insert of 

the correct size in the correct orientation, and these clones were sent to GATC Biotech for 
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sequencing. The sequence data was analysed using A Plasmid Editor (ApE) software. Once 

the insert was cloned and sequenced, 5–10 μg of plasmid DNA was generated for 

transformation following the GenElute plasmid Midiprep protocol (Sigma-Aldrich). Plasmid 

DNA was then linearized using SacI restriction enzyme, extracted with phenol/chloroform 

and recovered by ethanol precipitation.  

 

Apyrase expression in Pichia pastoris 

The transformation of Pichia strain X-33 with the construct was performed following the 

EasySelect Pichia Expression protocol (Invitrogen). Yeast extract peptone dextrose (YPD) 

medium (500 ml) was inoculated with a single colony of Pichia and grown overnight at 30°C 

in a shaking incubator at 250 RPM. Cells were collected by centrifugation at 1,500 x g for 5 

minutes at 4°C, washed with 250 ml sterile dH2O twice and with 20 ml sorbitol (1 M) once 

before being re-suspended in 1 ml sorbitol and stored on ice.  

 

P. pastoris cells (80 μl) were transferred to an ice-cold 0.2 cm electroporation 

cuvette to which the concentrated linearized plasmid DNA (5-10 μg) was added. Samples 

were incubated on ice for 5 minutes, then pulsed at 1,500 V charging voltage, 25 μF 

capacitance and 200 Ω resistance. After electroporation, 1 ml of ice-cold 1 M sorbitol was 

added immediately to the cuvette. The mixture was transferred to a sterile 15 ml tube and 

incubated at 30°C without shaking for 2-3 hours before being spread on YPDS plates (1% 

yeast extract, 2% peptone, 2% dextrose, 1 M sorbitol, 2% agar) containing different 

concentrations of Zeocin (100, 250, 500 and 1000 μg/ml). Plates were incubated at 30°C 

until colonies formed. 
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Isolation and purification of apyrase 

A single colony was selected to inoculate 25 ml BMGY medium (1% yeast extract, 2% 

peptone, 0.1 M potassium phosphate (pH 6.0), 1.34% yeast nitrogen base, 400 ng/ml biotin, 

1% glycerol) and grown overnight at 30°C with constant shaking at 200 RPM.  Cells were 

then harvested by centrifugation at 3,000 x g for 5 minutes, re-suspended in 20 ml BMMY 

medium (same as BMGY, but with 1% methanol instead of glycerol) to induce expression 

and incubated at 30°C with constant shaking. To maintain induction of protein expression, 

methanol was added to a final concentration of 0.5% (v/v) every 24 hours for 2 days. Cells 

were then centrifuged as before, and the culture supernatant containing the recombinant 

protein was passed through 0.2 μm filter and concentrated using 30,000 MWCO spin 

columns (vivaspin). Recombinant protein was washed several times with 50 mM HEPES 

buffer (pH 7.5) and tested for enzyme activity. Once the expression was optimized, the 

expression protocol was scaled-up to produce more protein, increasing the culture volume 

and using larger baffled flasks. Following this, total yeast supernatant was concentrated 

through a 30,000 MWCO Amicon membrane in an ultrafiltration device, then dialysed 

overnight at 4°C against HEPES buffer (50 mM, pH 7.5) for activity assays, or buffer A (50 

mM NaH2PO4, 300 mM NaCl, 1 mM imidazole pH 8.0 in dH20) for protein purification. 

 

Recombinant 6 x His-tagged apyrase was purified using Superflow nickel 

nitrilotriacetic acid (Ni-NTA) resin affinity chromatography. Ni-NTA-agarose beads (GE 

Healthcare Lifesciences) were equilibrated with buffer A, then added to the dialysed 

concentrated yeast supernatant, and incubated for one hour with rotation at 4°C. The beads 

were loaded on a chromatography column (Bio-Rad) and allowed to sediment before 
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collecting the flow-through. The column was washed twice with 10 ml buffer A and twice 

with 10 ml buffer B (buffer A + 10 mM imidazole) to remove unbound proteins. Bound 

proteins were then eluted with 3-5 ml buffer C (buffer A + 200 mM imidazole) and dialysed 

against 2 changes with 50 mM HEPES buffer (pH 7.5) for 4 hours, then again with fresh 

buffer overnight to remove all imidazole. Purified proteins were then concentrated using 30 

kDa vivaspin column to a volume of 200 μl and stored at -80°C until further use. 

 

 

2.7 Endotoxin removal  

Purified proteins used for in vivo purposes were cleared from pyrogens using Detoxi-Gel 

endotoxin removing columns (Thermo Fisher) then tested using Pierce™ LAL (Limulus 

Amoebocyte Lysate) Chromogenic Endotoxin Quantitation Kit, according to the 

manufacturer’s protocols. Absorbance of samples and endotoxin standards was read at 450 

nm on a FluoSTAR OPTIMA plate reader (BMG Labtech). A standard curve was generated 

using Fluostar OPTIMA software, and endotoxin levels were quantified in EU/ml. 

 

 

2.8 Determination of protein concentration 

Protein concentration was determined using the Coomassie (Bradford) Protein Assay Kit 

(ThermoFisher Scientific) according to the manufacturer’s instructions. Briefly, a standard 

curve was generated using serial dilutions of BSA at a concentration ranging from 0.025 

mg/ml to 2 mg/ml. The assay was carried out in a 96 well flat bottom plate using 200 ul 

Coomassie assay reagent and 5 ul of standard, blank or protein samples added in triplicate. 
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Absorbance was measured at 600 nm using FLUOstar OPTIMA microplate reader (BMG 

Labtech) and protein concentration was determined. 

 

 

2.9 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-

PAGE) 

Protein samples (15 μl maximum volume) were mixed with 1x SDS-loading buffer (50 mM 

Tris-HCl pH 6.8, 0.5 M DTT (dithiothreitol), 2% v/v SDS, 10% v/v glycerol, 0.1% v/v 

bromophenol blue) and boiled at 105°C for 5 minutes. Samples and pre-stained ladder 

(ThermoFisher Scientific) were loaded onto 12% polyacrylamide gel (table 2.1) and 

electrophoresed in 1 x running buffer (2.5 mM Tris-base, 19.2 mM glycine, 0.01% SDS, pH 

8.3) at 70 V until proteins run through the stacking gel, then voltage was increased to 100 V 

until the ladder reaches the bottom of the resolving gel. The gels were either stained with 

Coomassie blue stain or transferred to a polyvinylidene fluoride (PVDF) blotting membrane 

(Amersham Hybond, GE Healthcare). 

 

 Resolving Gel Stacking Gel 

 
Volume 

(10 ml) 

Final 

Concentration 

Volume 

(5 ml) 

Final 

Concentration 

30 % N,N’-Methylenebis 

(acrylamide) 
4 ml 12 % 830 µl 5 % 

Tris Buffer (1.5 M, pH 8.8) 2.5 ml 375 mM - - 

Tris Buffer (1 M, pH 6.8) - - 625 µl 125 mM 

10 % (w/v) SDS 100 µl 0.1 % 50 µl 0.1 % 

10 % (w/v) ammonium 

persulphate (APS) 
100 µl 0.1 % 50 µl 0.1 % 
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N,N,N’,N’-

Tetramethylethylenediamine 

(TEMED) 

10 µl 0.1 % 5 µl 0.1 % 

dH2O 3.3 ml - 3.4 ml - 

 

Table 2.1: Polyacrylamide gels recipe 

 

 

2.10 Coomassie blue staining of polyacrylamide gels 

Following SDS-PAGE, gels were stained with Coomassie blue stain (50% v/v dH2O, 10% v/v 

glacial acetic acid, 25% v/v methanol, 0.4% w/v Coomassie brilliant blue-R) overnight at 

room temperature with shaking, then washed in destain solution (65% v/v dH2O, 10% v/v 

glacial acetic acid, 25% v/v methanol) the following day until blue protein bands were clearly 

seen.  

 

 

2.11 Western blotting analysis  

Proteins were transferred onto a PVDF membrane (pre-wet in 100% methanol for 30 

seconds) in 1 x transfer buffer (2.5 mM Tris pH8.3, 19.2 mM glycine, 20% v/v methanol) for 

90 minutes at 300 mA. Following transfer, the membrane was blocked for 1 hour at room 

temperature on a shaker using blocking buffer containing 5% (w/v) skimmed milk powder in 

1 x Tris-Buffered Saline-Tween (TBS-T: 50 mM Tris-base, 150 mM NaCl, 0.1% Tween 20, pH 

7.6). The membrane was washed for 5 minutes in TBS-T, repeated 3 times, then probed 

overnight at 4 °C with murine anti-c-myc primary antibody diluted 1:1000 in blocking buffer. 

The membrane was washed again as before, then incubated with goat anti-mouse Ig-
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horseradish peroxidase (HRP) secondary antibody (1:1000) for one hour on a shaker at room 

temperature. The membrane was then washed, and protein bands were visualized using 

enhanced chemiluminescence (ECL) Western Blotting Detection Reagents (Amersham 

Bioscience). Chemiluminescence was detected using a LAS-3000 Fuji Imager. 

 

 

2.12 Measurement of enzymatic activity 

Enzymatic activity was determined using a phosphate colorimetric assay kit (Abcam) 

assaying inorganic phosphate (Pi) released from nucleotides with reference to a standard 

curve generated using a range of inorganic phosphate standards. All reactions were carried 

out in triplicate in a 96 well flat bottom plate (Sterilin) in a final volume of 40 μl HEPES 

buffer (25 mM HEPES, 150 mM NaCl, pH 7.5) containing 2 mM nucleotide substrates (unless 

otherwise stated) and the enzyme (apyrase or 5-nucleotidase). Plates were incubated for 10 

minutes at room temperature, and the reaction was stopped by the addition of 160 μl dH2O 

and 30 μl phosphate reagent to each well. Samples were incubated in the dark for 30 

minutes before measuring the absorbance at 600 nm using FLUOstar OPTIMA microplate 

reader (BMG Labtech). Enzyme activity was expressed as nmol of Pi generated per µg of 

protein per hour. 

 

To determine divalent cation dependence, between 0 mM and 10 mM CaCl2, MgCl2 or 

ZnCl2 were added to the HEPES buffer. To evaluate optimum pH, reactions were carried out 

in a buffer containing 25 mM Bis-Tris propane and 150 mM NaCl with a pH ranging from 5.0 

to 10 in increments of 0.5 pH units. To determine kinetic constants (Km and Vmax), 

enzymatic activity was carried out in HEPES buffer containing different ATP concentrations 
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(0-10 mM), and values were calculated by Graphpad Prism 7.0 software using non-linear 

regression analysis fitted to the Michaelis–Menten equation. 

 

 

2.13 Gene expression in Trypanosoma musculi 

 

Gene cloning and sequencing 

PCR product, digested with NheI and BamHI restriction endonucleases, was subcloned into 

the linearized pSSUsp plasmid (see appendix A.3 for plasmid map), and transformed into E. 

coli DH5-α competent cells (Invitrogen) as described previously using 100 μg/ml Ampicillin 

instead of Zeocin. Once the insert was cloned and the correct insertion confirmed by 

sequencing, 10 μg of plasmid DNA was generated and linearised with ScaI restriction 

enzyme. DNA was then extracted with phenol/chloroform, recovered by ethanol 

precipitation and re-suspended in 10 μl Tris-HCl (10 mM pH 8.0). 

 

 

Preparation of macrophage-conditioned medium 

Murine macrophages (RAW 264.7) were maintained at 37°C/ 5% CO2 in complete Dulbecco’s 

Modified Eagle’s Medium (cDMEM) supplemented with 10% heat-inactivated foetal calf 

serum (FCS), 2 mM L-glutamine and antibiotics (100 units/ml penicillin, 100 μg/ml 

streptomycin). Conditioned media were collected from cultured macrophages prior to 

confluency and centrifuged at 300 x g for 6 minutes. Supernatants were passed through a 

0.2 μm filter and stored at -20°C. 



 

69 
 

In vitro culture of T. musculi 

T. musculi were cultured at 37°C/ 5% CO2 in medium containing 50% macrophage-

conditioned medium and 50% McCoy’s 5A medium supplemented with L-glutamine, 25 mM 

HEPES, 10% heat-inactivated FCS, 2 mM sodium pyruvate, 100 units/ml penicillin, 100 μg/ml 

streptomycin, 0.2 mM L-cysteine and 0.1 mM 2-mercaptoethanol.  

 

 

Generation of transgenic cell lines 

Approximately 5 x 107 wild type (WT) trypanosomes were collected and washed with sterile 

PBS containing 1% glucose (PBS-G), centrifuged at 1,000 x g for 10 minutes, and re-

suspended carefully in 100 μl room temperature transfection buffer (90 mM sodium 

phosphate, 5 mM potassium chloride, 50 mM HEPES, 0.15 mM calcium chloride, pH 7.3). 

Trypanosomes were transferred to a 0.2 cm electroporation cuvette to which the 

concentrated linearized plasmid DNA was added, and immediately transfected by 

electroporation using Nucleofector II from Amaxa Biosystem (Lonza). The cell suspension 

was gently transferred into 30 ml of pre-warmed medium with no selection drugs and 

cultured at 37°C/5% CO2. After 24 hours recovery, transfectants were selected by the 

addition of 25 μg/ml blasticidin, and fresh selection medium was added every 2-3 days. 

After 7-10 days, blasticidin-resistant clonal cell lines were isolated by serial dilution and 

maintained in 20 μg/ml blasticidin. 
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Isolation of T. musculi gDNA and total RNA 

Genomic DNA (gDNA) was isolated from wild type and transgenic T. musculi using QIAgen 

DNeasy Blood and Tissue Kit (QIAgen), and total RNA was extracted using Mammalian Total 

RNA Miniprep Kit (GenElute) following the manufacturer’s instructions. RNA was reverse 

transcribed as described previously.  

 

 

T. musculi lysate and secreted proteins 

WT and transgenic T. musculi were collected, washed twice with PBS and grown in a 

medium containing 50% McCoy’s 5A complete medium (described previously but without 

heat-inactivated FCS) and 50% DMEM supplemented with 2 mM L-glutamine, 100 units/ml 

penicillin and 100 μg/ml streptomycin. After 24-48 hours, trypanosomes were centrifuged at 

1,000 x g for 10 minutes. Culture supernatants containing total secreted proteins were 

filtered, concentrated and washed with 50 mM HEPES buffer, and trypanosomes (pellet) 

were lysed in ice-cold lysis buffer (50 mM HEPES pH 7.5, 10% glycerol, 1% Triton X-100, 1.5 

mM MgCl2, 1 mM EGTA and protease inhibitor cocktail).  

 

 

Enzymatic activity of T. musculi secreted proteins 

Protein concentration was determined by Bradford assay, and nucleotidase activity of total 

secreted proteins was assessed by colorimetric method (phosphate assay kit, Abcam) 

described previously. Results were expressed in nmol of Pi generated per μg of total 

secreted proteins per hour.  
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Ecto-NTPDase activity in T. musculi 

Live parasites were washed twice with 0.9% NaCl and incubated for 1 hour at 37°C/ 5% CO2 

in reaction buffer (50 mM HEPES, 116 mM NaCl, 5.4 mM KCl, 5 mM MgCl2, 5.6 mM D-

glucose, pH 7.4) containing 5 mM nucleotide substrate, in a final volume of 250 µl (1 x 108 

parasites/ml). The reaction was initiated with the addition of specific substrate and 

terminated by addition of 250 µl ice-cold HCl (0.2 M). The cell suspensions were centrifuged, 

and Pi was measured in aliquots of the supernatant using a phosphate assay colorimetric kit 

(Abcam). Parasites were counted before and after the assay to check if any cell lysis 

occurred. Enzymatic activity, expressed as nmol of Pi released by 1 x 108 parasites in one 

hour, was calculated by subtracting non-specific hydrolysis that was detected in the absence 

of cells, in the absence of cells and substrate, or after adding the parasites once the reaction 

was stopped.  

 

Ecto-nucleotidase activity was further analysed in the presence of various inhibitory 

agents. Activity was measured in reaction buffer containing 5 mM ATP in the presence of 1 

mM sodium fluoride or 3 µM ammonium molybdate (acid phosphatase inhibitors), 1 mM 

levamisole (alkaline phosphatase inhibitor), 100 µM DIDS (4,40-diisothiocyanatostilbene 

2,20-disulfonic acid) or Suramin (ecto-ATPase inhibitors), or 1 mM vanadate (ecto-NTPDase 

inhibitor). 

 

Parasite infection 

In order to adapt in vitro T. musculi to growth in vivo, trypanosomes were passaged through 

irradiated mice until parasitaemias reach 106 parasites/ml of blood. Irradiated (1 Gy) female 
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BALB/c mice were infected intraperitoneally with T. musculi, and their blood was sub-

passaged every 7-10 days in new irradiated mice. After the third passage, trypanosomes 

were isolated from the blood by cardiac puncture, diluted in sodium citrate buffer (PBS, 

3.2% w/v sodium citrate, 1% w/v glucose), counted, and 2 x 105 were injected 

intraperitoneally into experimental mice. Parasitaemias were monitored by microscopy 

analysis of tail vein blood samples diluted in ACK lysis buffer (155 mM NH4Cl, 10 mM KHCO3, 

0.1 mM EDTA, pH 7.2) and expressed as number of parasites per ml of blood. In vivo growth 

curves were performed by counting the parasites and converting the average to log 

equivalent values. 

 

 

2.14 Generation of inactive apyrase 

The expression of inactive apyrase by P. pastoris or T. musculi was carried out in the same 

way as for the active form. Inactivation of the apyrase catalytic activity was achieved by 

altering glutamate 147 to glutamine (E147Q) (Jiayin Dai et al., 2004), using the Q5 site-

directed mutagenesis kit (New England Biolabs) according to the manufacturer’s 

instructions. Specific primers with the desired mutation were designed and used in a PCR 

reaction that amplifies the entire vector. A methylation-dependent endonuclease (DpnI) 

was used to remove the original un-mutated plasmid without affecting the mutated one. 

Colonies were sequenced to confirm the desired modification, and phosphate assays were 

performed to assess the loss of enzymatic activity.  
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2.15 Tissue processing 

 

Bronchoalveolar lavage (BAL) 

Mice were euthanized, and the trachea was exposed and cannulated with an 18-gauge 

needle catheter. Lavage was performed twice by slowly injecting 1 ml cold PBS containing 

0.2% BSA and 2 mM EDTA. BAL fluid was then aspirated, collected in a 15 ml Falcon tube, 

and centrifuged at 300 x g for 5 minutes. The supernatant was recovered and stored at -

20°C until assayed. Cytokines levels were measured in the supernatants of BAL fluid by ELISA 

according to the manufacturer’s instructions.   

 

 

Preparation of lung single-cell suspensions  

Mice were euthanized, and the trachea was exposed and cannulated with an 18-gauge 

needle catheter connected to a 3 ml syringe and injecting 1.5 ml dispase II (Sigma) digest 

solution (5 mg/ml) until lungs were inflated. The trachea was tied off with a suture and 

lungs were gently extracted from the thorax and placed into a 5 ml polystyrene bijou tube 

containing another 1.5 ml of digest solution. Lungs were incubated for 25 minutes at room 

temperature then for a further 30 minutes at 37°C. Subsequently, the heart and mediastinal 

tissues were snipped away and discarded, and lungs were mechanically dissociated in 7 ml 

serum-free DMEM supplemented with 100 units/ml DNAse I and 25 mM HEPES. Samples 

were then incubated for 10 minutes at room temperature on a rocking shaker. After this 

time, DNAse-treated samples were pushed through a 100 μm Falcon cell strainer (BD 

Biosciences) into a sterile tube using the plunger end of a 2 ml syringe, then washed with 
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cDMEM and centrifuged at 450 x g for 6 minutes at 4°C. The cell suspension was treated 

with ACK lysis buffer for 5 minutes at room temperature to lyse red blood cells, then 

neutralised with cDMEM and centrifuged again as before. Cells were re-suspended in a 

known volume of cDMEM, passed through 70 μm cell strainer and total viable cells were 

counted. 

 

 

Preparation of spleen single-cell suspensions  

Spleens were isolated and placed on ice into a 5 ml polystyrene bijou tube containing 1 ml 

cDMEM. Tissues were processed into a single-cell suspension by pushing the spleen through 

a 100 μm cell strainer. The cell suspension was centrifuged at 450 x g for 5 minutes, treated 

with ACK lysis buffer for 5 minutes at room temperature and neutralised with cDMEM 

medium. After being centrifuged, cells were re-suspended in a known volume of cDMEM, 

passed through 70 μm cell strainer and counted. 

 

 

Cell counting 

Samples were diluted in 0.2% trypan blue (in PBS) and total live cells were counted by 

microscopy using a haemocytomer. The total number of cells in each sample was 

determined as follow: 

Total Cell Number = Cavrg * 104 * DF * Vt 

Where:  
Cavrg is the average count of cells in the 4x4 grids of the haemocytomer 
DF is the dilution factor in trypan blue 
Vt is the total volume of sample. 
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Serum collection 

Blood was collected by cardiac puncture in blood collection tubes containing serum 

separating gel. Tubes were centrifuged at 4000 x g for 10 minutes, and serum was stored at  

-80°C until analysed. 

 

 

2.16 Fluorescence Activated Cell Sorting (FACS) analysis 

 

Negative controls (Unstained or live/dead) received FACS buffer (1% FCS, 25 mM HEPES, 1 

mM EDTA diluted in PBS) only, and suitable fluorescence minus one (FMO) samples were 

considered where needed. All incubations were made at 4°C in the dark, unless otherwise 

stated. 

 

Extracellular cell staining 

After single-cell suspensions were made and cells were counted, 2 x 106 cells/well were 

plated in a 96 well V bottomed plate, centrifuged at 900 x g for 2 minutes at 4°C, and 

washed with 200 µl cold PBS. Cells were centrifuged as before, then stained for 20 minutes 

with Live/Dead Zombie Aqua (Biolegends, diluted in PBS) to exclude dead cells from 

subsequent analysis. Cells were then washed with FACS buffer, centrifuged, and incubated 

for 20 minutes in Fcγ receptor block (BD Biosciences, diluted in FACS buffer) to prevent non-

specific binding to Fc receptors. Cells were washed and pelleted as before prior to being 

stained for 30 minutes with the appropriate fluophore conjugated antibody cocktails (listed 
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in table 2.2). Following staining, cells were washed then re-suspended in 150 μl of FACS 

buffer and stored at 4°C in the dark until analysis.  

 

 

Intracellular cell staining  

For intracellular staining, cells stained with the appropriate cell surface markers were fixed 

with 200 μl Cytoperm/Cytofix (BD Biosciences) for 20 minutes at room temperature in the 

dark. Cells were centrifuged again as before, re-suspended in 200 μl permeabilisation buffer 

(BD Biosciences), then centrifuged and incubated for 30 minutes with Fc block. After this 

time, cells were washed by adding 100 μl permeabilisation buffer, centrifuged as previously 

and stained with 50 μl fluorophore antibody cocktails diluted in permeabilisation buffer. 

After 30 minutes incubation, cells were centrifuged then re-suspended in 150 μl FACS buffer 

and stored in the dark at 4°C until analysed by flow cytometry.  

 

For Intracellular cell staining of cytokines (such as IL-5 and IL-13), single-cell 

suspensions were plated in a 96 well V bottomed plates and incubated at 37°C/5% CO2. 

After 2 hours, cells were centrifuged as before, and re-suspended in cDMEM containing 

phorbol myristate acetate (PMA, 100 ng/ml) and ionomycin (1 µg/ml) and incubated at 

37°C/ 5% CO2 for one hour. Samples were then incubated for a further 3 hours in the 

presence of Golgi-Plug (Brefeldin-A, BD Biosciences) diluted in cDMEM and added to each 

well. After this time, cells were centrifuged as before, washed once with PBS and stained 

with live/dead and extracellular markers as described previously, before being fixed for 

intracellular cell staining.  
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Antigen 

recognised 
Fluophore/conjugate Clone number Dilution Manufacturer 

CD3 APC-Cy7 145-2C11 1:150 Biolegend 

CD4 AF700 RM4-5 1:100 eBioscience 

CD8 PB 53-6.7 1:200 eBioscience 

CD11b PE M1170 1:600 BD Bioscience 

CD11c PE-Cy7 N418 1:1600 Biolegend 

CD19 PE 6D5 1:300 Biolegend 

CD39 PE-Cy7 Duha59 1:200 Biolegend 

CD44 PerCP-Cy5.5 IM7 1:200 Biolegend 

CD45 AF700 30-F11 1:400 Biolegend 

CD62L PE MEL14 1:200 eBioscience 

CD73 PE TY/11.8 1:200 Biolegend 

CD127 APC A7R34 1:100 Biolegend 

CD278 (ICOS) Pe-Cy7 C398.4A 1:100 Biolegend 

F4/80 APC-Cy7 BM8 1:200 Biolegend 

Foxp3 PerCp-Cy5.5 FJK-16S 1:200 eBioscience 

Gr1 PB RB6-*C5 1:400 Biolegend 

IL-5 APC TRFK5 1:100 BD Pharmingen 

IL-13 PE-Cy7 EBIO13A 1:100 eBioscience 

Siglec F APC                 E50-2440 1:1600 BD Pharmingen 

ST2 PerCP-CY5.5 RMST2 1:50 eBioscience 

CD16/CD32 Unconjugated 2.4g2 1:500 TONBO Bioscience 

 

Table 2.2: Flow cytometry antibodies 

 

 

Data analysis and cell gating 

Data were acquired using an LSR-Fortessa flow cytometer (BD Biosciences) and analysed 

with FlowJo software (TreeStar). Compensations and voltage setup were performed prior to 

each experiment using fluochrome-labelled beads (eBioscience) and unstained cells, and a 
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total of 100,000 to 1,000,000 events were collected. Forward scatter (FSC) and sideway 

scatter (SSC) parameters were used to exclude doublets, debris and cell fragments and 

AQUA Live/Dead stain was used to define live cells. Gating strategies for different cell 

populations are shown below (figures 2.1-2.3).  

 

 

 

 
 

Figure 2.1: Staining and gating strategy for live, single-celled lymphocytes 

FSC-H, FSC-W and FSC-A: Forward scatter (FSC), height (H), width (W) and aperture (A). 

SSC-H, SSC-W and SSC-A: Sideways scatter (SSC), height (H), width (W) and aperture (A). 

 

 

 
 

 
 
Figure 2.2: Staining and gating strategy for NK cells (NKp46+), eosinophils 

(CD11b+SiglecF+) and neutrophils (CD11b+SiglecF-Gr1+) 

After gating for live and single cells, different cell populations were selected.  
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Figure 2.3: Staining and gating strategy for B (CD19+) and T (CD3+) lymphocytes, T cell 
subsets (CD4+ and CD8+), CD4+ T cell activation markers, and CD4+Foxp3+ T cell subsets 
(Foxp3+CD39+ and Foxp3+CD73+) 
After gating for live and single cells, different cell populations were selected.  
 

  



 

80 
 

2.17 Enzyme Linked Immunosorbent Assay (ELISA) 

 

Cytokine ELISA 

Spleen cells were seeded into a 96 well flat-bottom plate with 2 x 106 cells/ well and 

stimulated with 10 μg anti-CD3/anti-CD28 for 24 hours. Cell culture supernatants were 

recovered by centrifugation (500 x g, 5 minutes), carefully pipetted into a fresh plate and 

stored at –20°C until assayed.  

 

Cytokine ELISA was carried out using BD BioLegend kits or R&D systems according to 

the manufacturer’s recommendations. Nunc 96 maxisorp plates (Thermoscientific) were 

coated with capture antibody in 0.5 M carbonate-bicarbonate buffer and incubated 

overnight at 4°C. The capture antibody was aspirated, and the plates were washed 3 times 

with washing buffer (PBS, 0.05% v/v Tween 20). Plates were then incubated with blocking 

buffer (PBS, 1% w/v BSA) for one hour at room temperature. Plates were washed as before 

and 50 μl of samples and standards at the appropriate dilutions were loaded in triplicates 

and incubated for 2 hours at room temperature. Plates were further washed then incubated 

with biotinylated detection antibody for 2 hours. Streptavidin-coupled horseradish 

peroxidase (HRP, 50 μl) was added after washing the plates which were then incubated in 

the dark for 30 minutes. The plates were further washed and TMB (3,3’,5,5’-

Tetramethylbenzidine) substrate was added before stopping the reaction with 1 M H2SO4. 

Absorbance was measured at 450 nm and 540 nm in a FLUOstar OPTIMA microplate reader 

(BMG Labtech), and levels of cytokines were determined after subtracting the absorbance at 

540 nm from the absorbance at 450 nm.  
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Antibody subtype ELISA 

Parasite-specific antibody were measured by ELISA coating Nunc plates with 5 µg/ml of wild 

type T. musculi protein extract in 0.1 M carbonate buffer overnight. To determine end-point 

titres, sera from infected mice were used in doubling dilutions, and plates were incubated 

with HRP-conjugated goat anti-mouse antibodies (Invitrogen) diluted in blocking buffer: IgM 

(1:10000), IgG1 (1:12000), IgG2a (1:8000), IgG2b (1:2000) and IgG3 (1:8000).  

 

 

2.18 Quantitative real-time PCR (qPCR) 

Total RNA was extracted from spleenocytes using GenElute Mammalian Total RNA Miniprep 

Kit (Sigma Aldrich) and converted to cDNA using Superscript III (Invitrogen) according to the 

manufacturer’s instructions. The qPCR reactions were carried out using QuantiTect SYBR 

Green PCR Master Mix (Qiagen) in a 7500 Fast Real-time PCR thermocycler (Applied 

Biosystems) under the following conditions: 30 seconds denaturation at 95°C, 30 seconds 

annealing at 60°C and 30 seconds elongation at 72°C for 40 cycles. All reactions were run in 

duplicates including a no-template and no-RT controls to check for contamination. 

 

Relative gene expression of NOS2, Chi3l3, SOCS1, MRC1, ARG1 and RELMα was 

calculated by the comparative cycle threshold (Ct) method (2-ΔΔCt) using HPRT, B2m and 

HMBS as housekeeping genes. Ct values were calibrated to the median of control samples 

infected with T. musculi mutant Apy-3.  
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Gene symbol Gene Name Primer Sequence (5’-3’) 
Annealing 

Temperature 
(°C) 

B2m 
Beta-2  

microglobulin 
Forward: CTCACACTGAATTCACCCCCA 
Reverse:CATGTCTCGATCCCAGTAGACG 

60 

HMBS 
Hydroxy-methylbilane 

synthase 
Forward: AGGTCCCTGTTCAGCAAGAA 
Reverse: CATTAAGCTGCCGTGCAACA 

60 

HPRT 

Hypoxanthine 
guanine 

phosphoribosyl 
transferase 

Forward: ACAGGCCAGACTTTGTTGGA 
Reverse: ACTTGCGCTCATCTTAGGCT 

60 

ARG1 arginase-1 
Forward: AAAGGCCGATTCACCTGAGC 
Reverse:CTGAAAGGAGCCCTGTCTTGTA 

60 

Chi3l3 (YM1) chitinase-like 3/YM1 
Forward: AAGTTGAAGGCTCAGTGGCT 
Reverse:GTAGATGTCAGAGGGAAATGTCT 

60 

MRC1 
mannose  
receptor 
 C-type-1 

Forward: GGAGGGTGCGGTACACTAAC 
Reverse: TCAGTAGCAGGGATTTCGTCTG 

60 

NOS2 
nitric oxide  
synthase-2 

Forward: CCGGCAAACCCAAGGTCTAC 
Reverse: CTGCTCCTCGCTCAAGTTCA 

60 

RELMα 
resistin-like molecule-

alpha 
Forward:TCTTGCCAATTCCAGCTAACTATC 
Reverse: GCCACAAGCACACCCAGTAG 

60 

SOCS1 
suppressor  

of cytokine signaling-1 
Forward: CAACGGAACTGCTTCTTCGC 
Reverse: AGCTCGAAAAGGCAGTCGAA 

60 

 

Table 2.3: List of primers used for qPCR 

 

 

2.19 Nitric Oxide (NO) and arginase activity assays  

Spleen single-cell suspensions were incubated for 48 hours in DMEM after being stimulated 

with 10 μg/ml T. musculi extract. Supernatants were recovered, and nitrite level was 

assayed by Griess assay (Promega) according to the manufacturer’s instructions. Briefly, a 

standard curve was generated by serial dilutions of the stock nitrite solution (0.1 M) at 

concentrations ranging from 100 μM to 1.56 μM. The assay was carried out in a 96 well flat-

bottom plate adding 50 μl sulphanilamide reagent to 50 μl sample or standard. The plate 

was incubated for 10 minutes at room temperature in the dark, then 50 μl of N-1-
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naphthylethylenediamine dihydrochloride (NED) solution was added to each well, and the 

plate was incubated again as before. Absorbance was measured at 540 nm using FLUOstar 

OPTIMA microplate reader (BMG Labtech), and nitrite concentration was calculated from 

the mean of triplicate values. 

 

Cells were lysed with 0.1% (v/v) Triton X-100 containing protease inhibitors. Urea 

standards, at a concentration ranging from 160 µg/ml to 1.25 µg/ml, were prepared in 

MnCl2 buffer (10 mM MnCl2, 25 mM Tris-HCl, 0.1% v/v Triton X-100) using serial dilutions of 

10 mg/ml urea stock solution. Cell lysates were incubated for 10 minutes at 55°C in 10 mM 

MnCl2, 50 mM Tris-HCl (pH 7.5), then further incubated for one hour at 37°C after the 

addition of L-Arginine (500 mM, pH 9.7). To stop the reaction, 800 µl acid mix (H2SO4: H3PO4: 

H2O at a ratio of 1:3:7) was added, followed by 40 μl of 9% ISPF (α-

isonitrosopropiophenone). Samples and standards were incubated for 30 minutes at 95°C, 

then for 10 minutes at room temperature in the dark. After this time, samples were plated 

in triplicate in a 96 well flat-bottom plate, and absorbance was measured at 450 nm. Urea 

concentration was calculated from the mean of triplicate values. 

 

 

2.20 Statistical analysis  

Data were expressed as the mean ± SEM and analysed using GraphPad Prism 7.0 (GraphPad 

Software). Significance differences were calculated using non-parametric Mann-Whitney 

test, one-way ANOVA Kruskal-Wallis test, or parametric two tailed non-paired student’s t-

test (unless otherwise stated). Results were considered to be statistically significant when p 

value was lower than 0.05: *p<0.05, **p<0.01, ***p<0.001. 
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CHAPTER 3 

 

 

 

Characterisation of the recombinant and 

native secreted Heligmosomoides 

polygyrus apyrases 
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3.1 Introduction 

Apyrases (EC 3.6.1.5), also known as nucleoside triphosphate-diphosphohydrolases 

(NTPDases), are nucleotide-metabolising enzymes that can hydrolyse a broad range of 

nucleoside triphosphates and diphosphates to monophosphates. The latter can then be 

hydrolysed by 5´-nucleotidase (5´-NT) to nucleosides (Figure 3.1) (Zimmermann et al., 1992; 

Champagne et al., 1995; Zimmermann, 1996). Their enzymatic activities are usually 

dependent on divalent cations such as Ca2+, Mn2+, Co2+, Mg2+, or Zn2+ (Meyerhof, 1945; 

Plesner, 1995; Komoszyński and Wojtczak, 1996). 

 

 
 

 
 

Figure 3.1: ATP hydrolysis pathway  
A structural illustration of the hydrolysis of ATP, ADP and AMP by apyrase and 5´-NT to 
produce adenosine.  
ATP: Adenosine triphosphate; ADP: Adenosine diphosphate; AMP: adenosine 
monophosphate; Pi: inorganic phosphate. 
 

 

 

Apyrases can be classified into five distinct families. The ecto-apyrases are 

membrane-bound, with their catalytic domain exposed on the cell surface. These include 

the human apyrase referred to as CD39, NTPDase 1, 2, 3 and 8 (Plesner, 1995; Kaczmarek et 

al., 1996; Komoszyński and Wojtczak, 1996). They are characterised by the presence of five 
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conserved domains of amino acids called “apyrase conserved regions” (ACRs) essential for 

enzyme function (Handa and Guidotti, 1996; Smith and Kirley, 1999b; Joan H. F. Drosopoulos 

et al., 2000; Smith et al., 2002). The endo-apyrases, with their catalytic domain localized 

intracellularly, are intracellular enzymes but can be secreted as well (Zimmermann, 1999). 

There is also a family referred to as organelle-located (for example Golgi apparatus) apyrases 

which are not known to be secreted (Biederbick et al., 2000; Komoszynski and Wojtczak, 

1996; Wang and Guidotti, 1998, Zimmermann et al., 2000). The secreted apyrases are 

another family which is also called Cimex-type apyrases, as they were first discovered in a 

blood-feeding insect, the bed bug Cimex lectularius (Valenzuela et al., 1998; Smith et al., 

2002; Hughes, 2013). The 5´-nucleotidase (5´-NT) enzymes (Champagne et al., 1995) are 

another family of apyrases which include CD73.  

 

Functionally, secreted and membrane-bound apyrases have been previously 

documented to play important roles in many biological processes in a vast range of 

organisms including animals, plants and parasitic helminths (Komoszynski and Wojtczak, 

1996). They have been shown to be involved in blood platelet aggregation (Colman, 1990; 

Côté et al., 1992; Marcus and Safier, 1993), blood pressure regulation (Zimmermann, 1996), 

blood fluidity maintenance (Smith et al., 2002), membrane permeability (Komoszynski and 

Wojtczak, 1996) and homeostasis (Bernardes et al., 2000). Furthermore, apyrases have been 

shown to play a role in several other mechanisms such as pathogen-host interaction 

(Bisaggio et al., 2003; Matin and Khan, 2008), parasite virulence (Berrêdo-Pinho et al., 2001), 

purine salvage (de Souza Leite et al., 2007), cell lipid and protein glycosylation, plant growth, 

eye development and oncogenesis (Knowles, Isler and Reece, 1983; Smith and Kirley, 1999a; 

Murphy and Kirley, 2003; Knowles and Li, 2006; Massé et al., 2007; Knowles, 2011). In 
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addition to regulating many physiological and metabolic processes, apyrases have also been 

proposed as key regulators of neurotransmission (Battastini et al., 1991; Sarkis and Salto, 

1991; Wang, Rosenberg and Guidotti, 1997; Zimmermann, Zebisch and Sträter, 2012). 

 

Moreover, apyrases are thought to play key roles in the immune system. Extracellular 

nucleotides, mainly ATP, are released in the extracellular space from damaged, stressed or 

apoptotic cells. Extracellular ATP binds to purinergic P2 receptors expressed on the cell 

surface of immune cells and triggers pro-inflammatory immune responses. Apyrases can be 

immunomodulatory, by converting the potent pro-inflammatory ATP to ADP then to AMP 

which could be converted to the anti-inflammatory molecule adenosine. The latter was 

shown to suppress inflammatory cytokine production (IL-12 and TNFα) and to enhance the 

release of IL-10 by macrophages (Hasko & Cronstein, 2004). It has also been shown that 

adenosine can induce regulatory T cells (Tregs) thus suppressing  the activation of Dendritic 

cells (DCs) and effector T cells (Deaglio et al., 2007). Tregs express the membrane-bound 

enzymes CD39 and CD73, which show apyrase and 5´-NT activity respectively, and they act in 

concert to produce adenosine which can suppress T cell activation (Antonioli, Pacher, et al., 

2013). In the intestine, the release of ATP by intestinal bacteria activates DCs to secrete the 

pro-inflammatory cytokines IL-6 and IL-23 resulting in the induction of inflammatory Th17 

cells, and promotes the conversion of Treg cells into effector Th17 cells. These two processes 

seem likely to be limited by apyrase enzymes as the ATP would be broken down (Atarashi et 

al., 2008; Schenk et al., 2011). Similarly, ATP-dependent dendritic cell activation is essential 

for Th2-dependent lung pathology in asthma models, and this can be inhibited through the 

administration of an apyrase (Idzko et al., 2007).  
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In a proteomic analysis, four apyrases (Apy-1 – Apy-4) have been identified in the 

excretory/secretory products of adult Heligmosomoides polygyrus, with Apy-1 consisting of 

three minor isoforms (Hewitson et al., 2011). Subsequently, L4 stage H. polygyrus have been 

shown to secrete Apy-3 and low levels of a fifth L4-specific apyrase, termed Apy-5 (Hewitson 

et al., 2013). Biochemical characterisation of H. polygyrus apyrases was not yet undertaken. 

Thus, in order to investigate the function of these apyrases and study their 

immunomodulatory effects, they need to be either purified in native form or cloned and 

expressed. This study aimed to clone, express and characterise the apyrases secreted by the 

L4 and adult worms via heterologous expression. 

 

The methylotrophic yeast Pichia pastoris is a single-celled eukaryote used 

successfully as an expression system which can generate high amounts of recombinant 

proteins (Cereghino et al., 2002; Krainer et al., 2012; Ahmad et al., 2014). One of the vector 

series used for P. pastoris expression is pPICZα (Appendix A1) which has the very strong, 

methanol inducible alcohol oxidase (AOX1) promoter (Weidner, Taupp and Hallam, 2010; 

Bawa et al., 2014), and where methanol serves as the main carbon source while inducing 

expression (Ellis et al., 1985). This vector also contains an α-factor secretion signal for 

secretion of the recombinant protein, an antibiotic (Zeocin) resistance gene and a C-terminal 

peptide containing the c-myc epitope and the polyhistidine (6xHis) tag for detection and 

purification of the recombinant protein (Weidner, Taupp and Hallam, 2010; Yang et al., 

2013). 
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3.2 Results 

 

H. polygyrus apyrase genes were successfully cloned into pPICZαA and expressed in Pichia 

pastoris 

In order to biochemically characterise the apyrases secreted by L4 stage (Apy-5) and adult 

(Apy-1-4) H. polygyrus, the mature protein-coding sequences were amplified by RT-PCR, 

cloned into a yeast expression vector, then expressed as secreted proteins in the 

methylotrophic yeast P. pastoris. Apy-1.3, one of the three minor sequence variants of Apy-

1, was expressed in Pichia, but for convenience it will be referred as Apy-1 in this thesis.  

 

Total RNA was first isolated from L4 and adult H. polygyrus, reverse transcribed to 

cDNA which was then amplified by PCR excluding the signal peptide of the corresponding 

gene, using forward and reverse primers specific for each apyrase and including suitable 

restriction sites (XbaI and KpnI). Amplification yielded fragments with the expected size of 

~1000 bp (Figure 3.2). All five apyrase genes were then cloned into the pPICZαA plasmid 

downstream of the Saccharomyces cerevisiae α-mating secretion factor, and transformant 

cells were selected by Zeocin resistance. Positive clones were identified by colony PCR, then 

sequenced to confirm that the genes were successfully cloned in frame with the C-terminal 

peptide tag into the expression vector and to ensure that no mutations were present in the 

gene sequence or key features of the plasmid. Having confirmed the correct sequence of 

the constructs with no mutations present, the plasmid DNAs were linearized by digestion 

with SacI to promote integration into the yeast genome, then purified by phenol/chloroform 

extraction and transformed into P. pastoris strain X-33. Pichia transformants (5-10 for each 
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apyrase gene) were selected using Zeocin in a small-scale expression study, and the total 

culture supernatants were analysed by SDS-PAGE for expression of apyrases. 

 

Results showed a protein of approximately 50-55 kDa for Apy-1 and Apy-4, and a 

more diffuse band of 55-60 kDa for Apy-2, Apy-3 and Apy-5 as visualized by Coomassie 

brilliant blue staining (Figure 3.3A). A western blot was performed using a primary anti-c-

myc mouse monoclonal antibody and a secondary goat anti-mouse horseradish peroxidase 

(HRP) antibody, which confirmed that the bands correspond to recombinant proteins with 

the c-myc tag (Figure 3.3B). For all five apyrases, bands ranging in apparent molecular 

weight between 50 and 60 kDa indicated the expression of the recombinant His-tagged 

proteins. In addition, no bands were observed in culture supernatants of WT P. pastoris.  

 

The molecular weight of the recombinant proteins appeared to be larger than the 

expected size from the cDNA sequence (Table 3.1). This suggests that the proteins are likely 

to be glycosylated, causing the shift on SDS-PAGE. Therefore, in order to investigate the 

possible presence of glycan residues, an enzymatic deglycosylation reaction was performed 

using PNGase F enzyme and analysed by SDS-PAGE and Coomassie Brilliant Blue staining. 

Post-PNGase F treatment, protein bands shifted from 50-60 kDa to about 40 kDa, the 

expected molecular mass of the native apyrases (Figure 3.4). This confirms that the 

recombinant enzymes expressed in P. pastoris were glycosylated with N-linked 

oligosaccharides. 
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Figure 3.2: Amplification of H. polygyrus apyrase cDNAs by RT-PCR 
Apyrase cDNAs were amplified by RT-PCR using RNA from H. polygyrus L4 and adult worms. 
Specific primers were used to amplify the full-length coding sequence (minus signal peptide) 
for each gene (apy-1, apy-2, apy-3, apy-4, and apy-5) and introduce 5´ KpnI and 3´ XbaI 
restriction sites. Amplification products were separated on 1.5% (w/v) agarose gels, stained 
with GelRed stain and visualized on a UV trans-illuminator.  
Lanes 2, 4, 6, 8, 10: RT-PCR products from apy-1, apy-2, apy-3, apy-4 and apy-5. 
Lanes 1, 3, 5, 7, 9: No-RT (no reverse transcriptase) controls for each gene. 
Lane 11: Negative control sample (N) in which template cDNA was not included in PCR 
reaction. 
Lane M: Molecular weight markers (1 kb DNA ladder). 
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Figure 3.3: Expression of apyrases in Pichia pastoris 
Panel A: Culture supernatants from P. pastoris clones expressing Apy-1, 2, 3, 4, and 5. 
Samples were resolved on a 12% SDS-polyacrylamide gel and stained with Coomassie 
Brilliant Blue. 
 
Panel B: Western blot of the same samples probed with mouse anti-c-myc epitope 
antibody. 
WT: Culture supernatant from P. pastoris wild-type strain X-33. 
M: Molecular mass marker shown in kilodaltons. 
 
 
 
 
 

Apyrase Molecular Weight (kDa) 

Apy-1 39.8 

Apy-2 41.2 

Apy-3 40.1 

Apy-4 40.0 

Apy-5 40.2 

 
Table 3.1: Molecular weight in kDa  
Expected molecular weight of expressed apyrases from the nucleotide plasmid sequence. 
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Figure 3.4: Coomassie-stained SDS-PAGE gel demonstrating apyrases pre- and post-
treatment with PNGase F 
Yeast culture supernatants were treated with PNGase-F for one hour, subjected to SDS-
PAGE and analysed by Coomassie Blue staining.  
M: Molecular mass marker shown in kilodaltons. 
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Recombinant secreted apyrases require Ca2+ and hydrolyse NTPs and NDPs 

Following confirmation of apyrase expression by P. pastoris, the biochemical 

characterisation of the yeast total supernatants was performed using a phosphate assay kit 

which measures the inorganic phosphate (Pi) released as described previously (see Materials 

and Methods). The enzymatic activity of the recombinant apyrases was analysed, testing the 

dependence on divalent cations, the optimum pH and the substrate specificity of the 

recombinant apyrases. No nucleotidase activity was detected with WT yeast culture 

supernatant. 

 

The effect of divalent cations on the catalytic activity of the recombinant apyrases 

was tested using ATP as a substrate in the presence of calcium, magnesium or zinc as co-

factors. Results showed that the addition of 5 mM Ca2+ dramatically enhanced the hydrolysis 

of ATP. However, equivalent Mg2+ and Zn2+ concentrations caused an inhibition of ATP 

hydrolysis with all apyrases (Figure 3.5). Furthermore, the effect of calcium concentrations 

in the range of 1-10 mM was tested, and maximal activity was observed at the 

concentration of 10 mM (Figure 3.6). No activity was detected in the absence of Ca2+. The 

data suggest that the apyrase activities are completely dependent on the presence of 

calcium. 

 

The influence of pH on ATP hydrolysis was then studied between pH 5.0 to 10.5 in 

the presence of  5 mM Ca2+. The catalytic activity was low at pH 5-6, then started to rise and 

plateaued at pH values greater than 7.0. The data suggest that all enzymes are active in 

alkaline conditions with optimal activities over a broad pH range between the values of 7.5 
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and 10.0 (Figure 3.7). All subsequent experiments were performed at pH 7.5 and in the 

presence of 5 mM CaCl2. 

 

The enzyme activity was further characterized examining the substrate specificity of 

recombinant proteins. At a concentration of 2 mM, nucleoside tri-, di- or monophosphates 

were used as substrates in the presence of 5 mM CaCl2. Inorganic phosphate, indicative of 

nucleotide hydrolysis, was detected in all samples when triphosphates and diphosphates 

were used as substrates. However, no activity was detected in the presence of AMP or other 

monophosphates (results not shown). In addition, apyrases showed no distinct preference 

for any nucleotide. Among the nucleoside triphosphates, the highest relative activities were 

observed with ATP and UTP, with less than 20% difference between substrates. Lower 

activities were observed with CTP and GTP. When nucleoside diphosphates were used as 

substrates, apyrases showed a preference for ADP and UDP.  CDP and GDP were hydrolysed 

at lower rates of that shown for the preferred diphosphate substrates (Figure 3.8). 

 

Overall, the recombinant enzymes were shown to exhibit true apyrase activity, 

hydrolysing only di- and triphosphates. They thus belong to the Ca-dependent apyrase 

family and are active over a broad pH range. 
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Figure 3.5: Cation dependence of secreted apyrases 
The effect of divalent cations on ATP hydrolysis (2mM) of apyrases in P. pastoris culture 
supernatants was evaluated in the presence of 5 mM Ca2+, Mg2+ or Zn2+. Bars represent the 
mean + S.D. of two independent experiments carried out in triplicate. N.D., Not detected. 
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Figure 3.6: Calcium dependence of secreted apyrases 
The enzymatic activity of apyrases in P. pastoris culture supernatants was assessed with 2 
mM ATP substrate at different concentrations of CaCl2 as indicated. Bars represent the 
mean + S.D. of two independent experiments carried out in triplicate. 
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Figure 3.7: pH dependence of secreted apyrases 
The enzymatic activity of apyrases in P. pastoris culture supernatants was assessed with 2 
mM ATP substrate as a function of pH in the presence of 5 mM Ca2+. Data are expressed as 
the mean ± S.D. for two independent experiments carried out in triplicate. 
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Figure 3.8: Substrate specificity of secreted apyrases 
The enzymatic activity of apyrases in P. pastoris culture supernatants was measured using 
nucleoside triphosphates, diphosphates or monophosphates, at a concentration of 2 mM in 
the presence of 5 mM Ca2+. The data shown represent the mean + S.D. of two independent 
experiments performed in triplicate. N.D., Not detected. 
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Biochemical characterisation of purified apyrases 

Since the expression of active apyrases was optimised, the Pichia expression protocol was 

scaled up in order to produce more proteins for purification. The yeast culture supernatants 

expressing the five 6xHis-tagged proteins were filtered, concentrated and purified by His-tag 

affinity chromatography. Enzymatic properties of the purified apyrases were studied using a 

colorimetric phosphate release assay. The enzymes had a molecular mass between 50 and 

60 kDa based on migration in SDS polyacrylamide gels (Figure 3.9A) and reacted to the anti-

c-myc antibody in an immunoblot analysis (Figure 3.9B). 

 

The apyrase catalytic activities saturated at a calcium concentration of about 0.05 

mM CaCl2 (Figure 3.10). No higher activity was observed as the concentration of calcium 

increased, and no activity was detected in the absence of calcium. This indicates that the 

purified proteins were strictly dependent on Ca2+. The activity of increasing amount of the 

purified enzymes determined the enzymatic saturation of each apyrase as shown in Figure 

3.11. Additionally, the activity with ATP was tested using pH values in the range 5.0-10.0 

(Figure 3.12) and showed a broad pH spectrum similar to the yeast culture supernatants 

expressing apyrases. Furthermore, increasing ATP concentrations (0-4 mM) determined the 

substrate saturation (Figure 3.13). The activities increased with increasing concentrations up 

to 200 µM, which was shown to be sufficient to saturate the enzymes. The kinetic 

parameters for ATP hydrolysis using substrate concentrations were also calculated. 

Lineweaver–Burk plot (inset Figure 3.14) was used to determine the Km (Michaelis constant) 

and Vmax (maximum velocity) values summarized in table 3.2. The turnover number (Km/vmax) 

of apyrases against ATP was also calculated. The nucleotidase activity of recombinant 
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saturated apyrases was then evaluated using a variety of substrates at a concentration of 1 

mM, in a buffer containing 0.5 mM Ca2+, at a pH of 7.5. As shown in figure 3.15, the Ca2+-

dependent apyrases exhibited a broad substrate specificity. 

 

 

 

Figure 3.9: Purification of apyrases from P. pastoris 
 
Panel A: Coomassie-stained SDS-PAGE gel demonstrating apyrases following purification 
from Pichia supernatant. 
 
Panel B: Western blot of the same samples probed with mouse anti-c-myc epitope 
antibody. 
M: Molecular mass marker shown in kilodaltons. 
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Figure 3.10: Calcium dependence of recombinant apyrases 
Calcium dependence was determined using ATP (2 mM) as substrate with different 
concentrations of CaCl2 (0-0.5 mM). Data represent the mean ± S.D. of three independent 
experiments carried out in triplicate. 
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Figure 3.11: Effect of enzyme concentration on catalytic activity 
Enzyme activity was measured using 2 mM ATP as substrate in the presence of 0.5 mM Ca2+. 
Data represent the mean ± S.D. of three independent experiments carried out in triplicate.  
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Figure 3.12: Optimum pH of recombinant apyrases 
The pH-dependence of purified enzymes was assessed using ATP (2 mM) as substrate in the 
presence of 0.5 mM Ca2+. Data represent the mean ± S.D. of three independent experiments 
performed in triplicate.  
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Figure 3.13: Michaelis-Menten plots for recombinant apyrases 
Substrate concentration dependence of the rate of ATP hydrolysis by recombinant apyrases 
are illustrated at pH 7.5 and in the presence of 5 mM Ca2+.  Experimental values shown 
represent the mean ± S.D. of three independent experiments performed in triplicate.  
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Figure 3.14: Representative Michaelis–Menten and Lineweaver–Burk plot in inset for  
Apy-1 
 
 
 
 
 

Apyrase Substrate Km (µM) Vmax (nmol hr-1) Vmax /Km 

Apy-1 ATP 42 ± 2.3 92.9 ± 7.6 2.21 x 103 

Apy-2 ATP 61 ± 2.5 1694 ± 127.7 2.78 x 104 

Apy-3 ATP 62 ± 2.4 2607 ± 188.4 4.20 x 104 

Apy-4 ATP 97 ± 3 381 ± 27.8 3.93 x 103 

Apy-5 ATP 75 ± 1.9 659.8 ± 36 8.80 x 103 

 
 

Table 3.2: Kinetic parameters of the recombinant apyrases  
Kinetic constants (Km and vmax) of all apyrases were calculated for ATP as substrate, using 
non-linear regression analysis. 
 

 
 

Apy-1 
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Figure 3.15: Substrate specificity of recombinant apyrases 
The substrate specificity was determined using nucleoside triphosphates or diphosphates at 
a concentration of 2 mM in the presence of 0.5 mM Ca2+. The data represent the mean + 
S.D. of three independent experiments carried out in triplicate. 
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Characterisation of H. polygyrus secreted products 

The activity of adult H. polygyrus total secreted proteins was also examined. Enzymatic 

activity levels were comparable to those found in recombinant proteins. H. polygyrus 

products contain enzymes capable of catalysing the hydrolysis of nucleoside tri- and 

diphosphates, with no activity against monophosphates, exhibiting true apyrase activity. 

The activity, optimal over a broad pH range between 7.5 and 10.5, was dependent on the 

presence of calcium (Figure 3.16 A and B). As for substrate specificity, HES products showed 

no distinct preference for any nucleotide, similar to that observed with recombinant 

purified apyrases (Figure 3.16C). 
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Figure 3.16: Characteristics of apyrase activity in adult H. polygyrus secreted products 
 
Panel A: Assays for calcium dependence were performed in a buffer containing incremental 
concentrations of CaCl2 (0-2 mM), where ATP (2 mM) was used as a substrate.  
 
Panel B: pH dependence was determined using a pH range from 5.0-10.5, in the presence of 
0.5 mM Ca2+ and 2 mM ATP.  
 
Panel C: The preference for different substrates at a concentration of 2 mM was assessed in 
the presence of the cofactor calcium (0.5 mM).  
 
Data shown represent the mean ± S.D. of three independent experiments performed in 
triplicate.  
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3.3 Discussion 

Helminth parasites have been documented to secrete molecules that can modulate the host 

immune system in order to prevent elimination of the parasite, but also reducing symptoms 

of immunopathological diseases in the host. An effective approach to gain insight into the 

potential functions of these molecules is their heterologous expression in an appropriate 

vehicle. The biochemical properties of H. polygyrus secreted apyrases haven’t been 

examined yet, thus studying these enzymes is essential in order to further understand their 

role in vivo. In the current study, secreted apyrases from the parasitic nematode H. 

polygyrus were successfully expressed in a heterologous system and biochemically 

characterised in terms of cation dependence, optimal pH and substrate specificity. The 

native secreted products from the adult worms were also characterised in the same 

manner. 

 

The methylotrophic yeast P. pastoris was used as an expression host, as it is suitable 

for the production of large amounts of secreted proteins (Tschopp et al., 1987; Heimo, 

Palmu and Suominen, 1997; Macauley-Patrick et al., 2005; Guo and Ma, 2008; Ahmad et al., 

2014). Pichia is known to secrete a very low level of native proteins; therefore, the 

heterologous protein will constitute the majority of the total proteins in the growth medium 

(Barr et al., 1992). In addition, secreted products from the wild type P. pastoris used in this 

study did not contain any nucleotidase activities, as was previously shown (Gounaris, Selkirk 

and Sadeghi, 2004), thus any nucleotide hydrolysis will be due to the recombinant enzymes. 

A slight difference was shown among the apyrases in terms of substrate preference, ion 

dependence and optimal pH.  
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It is highly likely that there is a binding site for calcium within the apyrases, as the 

activity of the recombinant proteins was greatly enhanced by the addition of calcium; 

however, no activity was detected in the absence of Ca2+, or in the presence of increasing 

concentrations of Mg2+ and Zn2+. H. polygyrus secreted apyrases can be therefore classified 

as Ca-dependent apyrases. NTPDases characterised so far are usually activated by either 

Mg2+ or Ca2+ divalent cations (Handa and Guidotti, 1996; Robson, Sévigny and Zimmermann, 

2006; Zimmermann, Zebisch and Sträter, 2012). For instance, apyrases secreted by other 

parasitic nematodes such as Ostertagia ostertagi (Zarlenga et al., 2011) and Teladorsagia 

circumcincta (Nisbet et al., 2011) have also been shown to be dependent on calcium. 

Furthermore, the activity of apyrases identified in the saliva of blood-feeding arthropods 

and belonging to the Cimex family was reported to be strictly Ca2+-dependent (Valenzuela et 

al., 1998, 2001), whereas the activity of CD39 apyrases can be active with Ca2+ or Mg2+. 

Other cation-dependent apyrases secreted by helminth parasites such as T. spiralis 

(Gounaris, 2002), and arthropods including ecto-ATP diphosphohydrolase of the 

trypanosomatid parasite Herpetomonas muscarum muscarum (Alves-Ferreira et al., 2003) 

showed a Mg2+-dependence. 

 

Biochemical characterisation of the recombinant apyrases showed a broad pH 

optimum ranging from approximately 6.5 to 10.0. This suggests that these enzymes could be 

active in quite different environments that occur during the H. polygyrus life cycle and 

cannot be inactivated by changes in pH of the host intestinal lumen. On the other hand, the 

release of inflammatory mediators as a result of the immune response during a H. polygyrus 

infection may affect the local pH, another reason why apyrases might operate at different 

pH conditions. The apyrases of most arthropods including Ochlerotatus 
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triseriatus (Say), Ochlerotatus hendersoni (Cockerell), and Aedes aegypti, have an optimal 

pH between 7.0 and 10.0 (Ribeiro et al., 1984; Ribeiro, Vaughan and Azad, 1990; Marinotti, 

De Brito and Moreira, 1996; Mans et al., 1998; Reno and Novak, 2005).  

 

Interestingly, purified recombinant apyrases seem to possess a broad substrate 

specificity. These enzymes catalysed the hydrolysis of all tested nucleoside tri- and 

diphosphates, but not monophosphates, thus displaying true apyrase activity (Champagne 

et al., 1995; Zimmermann, 1999; Valenzuela et al., 2001). This activity against distinct 

substrates, in particular adenine and uridine substrates, is possibly impacting various 

signalling pathways. They are likely to modulate the host immune system through interfering 

with the purinergic signalling by breaking down the inflammatory ATP/ADP to anti-

inflammatory AMP. The latter being a precursor for the production of adenosine via CD73 

expressed on the surface of immune cells, will result in suppression of immune responses 

(Atarashi et al., 2008; Fletcher et al., 2009). A recent study showed that during a H. 

polygyrus infection, extracellular ATP activates purinergic P2 receptors on the surface of 

mast cells which mediate the production of IL-33 (Shimokawa et al., 2017). Thus, apyrases 

might suppress the release of this cytokine by reducing levels of extracellular ATP (McSorley 

et al., 2014; Osbourn et al., 2017). 

 

Extracellular nucleotides, are often released during inflammation by damaged cells 

and function as a signalling molecule through the activation of purinergic P2 receptors, 

causing the release of pro-inflammatory cytokines. For example, ADP binds to P2 purine 

receptors on platelets, causing blood platelet aggregation (Marcus et al., 2005; Knowles, 

2011; Antonioli, Blandizzi, et al., 2013). Other nucleotides including ATP, ADP, UTP and UDP 
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have been shown to activate purinergic P2Y receptors (Von Kugelgen and Wetter, 2000). 

UTP can activate P2Y2 and P2Y4 receptors present on macrophages and dendritic cells 

(Matos et al., 2005; Müller et al., 2010), whereas UDP can activate the P2Y6 receptor 

expressed on monocytes leading to the production of the pro-inflammatory cytokine IL-8 

(Von Kugelgen and Wetter, 2000; Warny et al., 2001; Wang et al., 2004; Xu et al., 2018). In 

addition, the activation of P2Y6 on intestinal epithelial cells was shown to increase the 

intracellular Ca2+ and cAMP, thus stimulating the production of Cl- ions causing fluid 

secretion and eradicating parasites from the intestine (Köttgen et al., 2003). However, 

adenosine activates P1 purinergic receptors, exhibiting anti-inflammatory effects through 

inhibiting the production of TNF-α, IL-6 and IL-8 (Antonioli et al., 2013; Failer et al., 2002). 

 

Apyrases from bed bugs, i.e. Cimex species (Valenzuela et al., 1998, 2001) and 

several parasitic nematodes (Andersen et al., 2007; Nisbet et al., 2011; Zarlenga et al., 2011) 

were reported to hydrolyse ATP and ADP most efficiently. For instance, in the salivary glands 

of blood-feeding arthropods, apyrases were reported to hydrolyse both ATP and ADP but 

not AMP, restraining inflammation and thrombosis and thus facilitating the blood-feeding 

process (Strobel et al., 1996; Valenzuela et al., 1998, 2001; Charlab et al., 1999; Berrêdo-

Pinho et al., 2001; De Jesus et al., 2002; Andersen et al., 2007; Uccelletti et al., 2008). 

Apyrases from O. triseriatus, O. hendersoni, A. aegypti (Ribeiro et al., 1984; Champagne et 

al., 1995) and Aedes albopictus (Marinotti, De Brito and Moreira, 1996) have been shown to 

dephosphorylate ATP and ADP, with a preference for ATP. However, apyrases of the tick 

Ornithodoros moubata and both anthropophilic species Simulium metallicum and Simulium 

ochraceum were shown to have a preference for ADP over ATP in contrast to other 

Simulium species tested (Ribeiro, Endris and Endris, 1991). On the other hand, the activity of 
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nucleotide-metabolising enzymes from Trichinella spiralis was found to be highest with UDP 

(Gounaris, 2002). T. spiralis 5´-nucleotidase was shown to catalyse the hydrolysis of 

nucleoside di- and monophosphates, with no significant hydrolysis of any nucleoside 

triphosphate, showing both an apyrase and a 5´-nucleotidase activity (Gounaris, Selkirk and 

Sadeghi, 2004). In addition, there is little to no ATP hydrolytic activity in total secreted 

products of T. spiralis, suggesting that they do not express or secrete conventional apyrase 

enzymes (Gounaris, 2002). This probably reflects different requirement in term of 

nucleotide hydrolysis linked to the intracellular niche and the life cycle of the parasite. 

 

Additionally, nucleotide-metabolising enzymes have been found on the cell surface 

of some protozoan parasites such as Toxoplasma gondii (Silverman et al., 1998), Leishmania 

amazonensis (LeBel et al., 1980; Berrêdo-Pinho et al., 2001), Leishmania tropica (Peres-

Sampaio, Palumbo and Meyer-Fernandes, 2001), Trichomonas vaginalis (Cross et al., 1993; 

De Jesus et al., 2002), Entamoeba histolytica (Barros et al., 2000), Trypanosoma cruzi 

(Bisaggio et al., 2003; Fietto et al., 2004), Trypanosoma brucei (de Souza Leite et al., 2007), 

Tritrichomonas foetus (De Jesus et al., 2002) and Cryptosporidium parvum (Manque et al., 

2012). Schistosoma mansoni possesses ecto-apyrases on their surfaces as well, capable of 

hydrolysing exogenous ATP and ADP (Levano-Garcia et al., 2007; Bhardwaj and Skelly, 2009; 

A. A. Da’dara et al., 2014). A common feature of parasitic nematodes, blood-feeding insects 

and protozoans could thus be the ability to control levels of local pro-inflammatory ATP and 

pro-thrombotic ADP via secreted and ecto apyrases, thereby inhibiting inflammation and 

platelet aggregation, and protecting the parasites from the host immune system (Manque et 

al., 2012; Da’dara et al., 2014). 
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During H. polygyrus infection, L4 are embedded in the muscularis externa of the 

intestinal submucosa, and the adult worms reside in the lumen, coiling around the villi of 

the proximal intestinal epithelium (Bansemir and Sukhdeo, 1994; Telford et al., 1998; 

Maizels et al., 2012). Although the L4-specific apyrase, Apy-5, is from a different life cycle 

stage, the enzyme showed a similar activity profile to the apyrases secreted by adult worms. 

In addition, this study showed that native apyrases secreted by adult H. polygyrus shared 

several common features with the recombinant enzymes, in terms of optimum pH, 

nucleotide specificity and cation dependence, confirming the secretion of active apyrases by 

H. polygyrus, in addition to the fact that they do not secrete a 5´-nucleotidase. 

 

In conclusion, previous proteomic analysis indicated the secretion of five apyrases by 

the nematode H. polygyrus. This study elucidated biochemical properties of these secreted 

apyrases. The enzymes described here are a group of calcium-dependent apyrases with a 

broad optimum pH ranging from 6.5 to 10, and a broad substrate specificity, catalysing the 

hydrolysis of both nucleoside tri- and diphosphates to the final product monophosphate. H. 

polygyrus apyrases most likely act as immunomodulators and could potentially be 

therapeutically useful for immune disorders, but this has yet to be demonstrated 

experimentally. Additionally, around 374 proteins have been identified in H. polygyrus 

secreted products, many with unknown function; hence the importance to compile a 

comprehensive list of the immunomodulatory secreted proteins. 
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CHAPTER 4 

 

 

 

Expression of Apy-1, Apy-3 and 5´-NT in 

Trypanosoma musculi and their effect on 

infection 

 

 



 

117 
 

4.1 Introduction 

Methods in functional genomics such as knockout strategies by RNA interference (RNAi) or 

transgenesis, have been difficult to achieve in many parasitic helminths (Kalinna and 

Brindley, 2007; Dalzell et al., 2011; Selkirk et al., 2012). An alternative and possible 

technique to gain insights into cellular functions of specific parasitic helminth genes is 

heterologous expression. Bacteria, yeast, fungi, insect cells, mammalian cells and transgenic 

animals have been used as protein expression models. Heterologous host organisms, such 

as the soil nematode Caenorhabditis elegans, have been used previously to investigate the 

function of genes from Haemonchus contortus, Onchocerca volvulus and Strongyloides 

stercoralis parasitic nematodes (Grant, 1992; Britton and Murray, 2002; Massey et al., 

2006), however it is not a suitable model for studying immunomodulation as it has a free-

living lifestyle. 

 

Kinetoplastid parasites have been successfully used for analysis of gene function in 

transfected organisms or for protein expression in vitro. They are characterised by a genome 

with overlapping polycistronic transcriptional units and express genes by read-through 

transcription. Kinetoplastids are easily genetically manipulated and can produce high levels 

of exogenous proteins (Cruz and Beverley, 1990; Coburn et al., 1991; Clayton, 1999; 

Beverley, 2003). The intracellular kinetoplastid parasite Leishmania mexicana was described 

as an applicable expression system to assay immunomodulatory effects of helminth 

molecules (Gomez-Escobar et al., 2005; Maizels et al., 2008), but as the parasite is 

intracellular, it may not be suitable for all proteins secreted by extracellular helminths. The 
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systemic, non-pathogenic Trypanosoma theileri, a member of the kinetoplastid family, was 

developed as a vehicle to deliver vaccine antigens (Mott et al., 2011). 

 

T. musculi has been genetically manipulated in our lab to express and secrete N. 

brasiliensis AChE in vivo, and was shown to be a suitable vehicle to study 

immunomodulatory proteins (Vaux et al., 2016). There are many reasons for T. musculi 

being an excellent in vivo expression model to investigate immunomodulatory effects by 

helminth genes. T. musculi is a natural parasite very specific to mice, that can’t even infect 

rats (Albright and Albright, 1991) and is not a zoonotic pathogen (Zhang et al., 2018), which 

makes this organism safe to use. Being an extracellular parasite makes it suitable to study 

the effect of various parasitic helminth secreted proteins in vivo, as these proteins are 

normally delivered extracellularly to interact with the host immune system. T. musculi 

possess a simple, reproducible pattern of infection that lasts 3 weeks and is cleared by an 

antibody-dependent immune response (Albright and Albright, 1991); so any 

immunomodulatory effect that may alter the parasitaemia can be easily seen. Finally, T. 

musculi can be easily genetically manipulated by transfecting DNA using Amaxa 

Nucleofector technology (MacGregor et al., 2013) and selecting transfectants with 

blasiticidin antibiotic (Vaux et al., 2016).  
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4.2 Results 

 

Expression and secretion of Apy-1 by transgenic T. musculi results in higher parasitaemia 

and delay in clearance of infection 

In order to generate transgenic T. musculi secreting an exogenous gene, the coding 

sequence of the gene of interest was amplified by RT-PCR and expressed as a secreted 

protein using a previously designed expression cassette. The vector contains a blasticidin-

selection gene, regions of the 5´- and the 3´-end of the SSU rRNA gene, paraflagellar rod 

(PFR) and tubulin intergenic (IG) regions, in addition to the coding sequence for the N-

terminal signal peptide of T. musculi Binding Protein (BiP/GRP78) found in the endoplasmic 

reticulum (ER) to direct secretion (see appendix A.4 for vector map) (Vaux et al., 2016). 

 

Following isolation of total RNA from adult H. polygyrus, cDNA was generated by 

reverse transcription and used as a template to amplify apy-1 yielding to an amplification 

fragment with the expected size of 950 bp (Figure 4.1A). Apy-1 was then inserted into the 

expression cassette by ligation, and transformant cells were selected by ampicillin 

resistance. After confirming that the gene was successfully cloned in frame into the 

expression vector via colony PCR and diagnostic digest, and that there were no mutations in 

the gene sequence or key features of the plasmid via sequencing, the construct was 

linearized by digestion with ScaI restriction enzyme and used to transfect T. musculi by 

electroporation. Transfectants were selected by blasticidin, and the incorporation of apy-1 

into the T. musculi genome was confirmed by PCR using specific primers (Figure 4.1B). 
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At the protein level, the expression of Apy-1 by the transgenic line was revealed by 

western blot analysis, showing a protein band at 50 kDa in the cell lysate and a slightly 

higher mass in the supernatant, suggesting possible glycosylation of the secreted protein. 

No bands were shown in WT trypanosomes (figures 4.1C). Following confirmation of Apy-1 

expression by T. musculi, the apyrase activity of wild type and transgenic trypanosome 

secreted products was assayed to test whether the recombinant protein secreted by 

transgenic line was enzymatically active, and whether the wild type trypanosomes secrete 

an apyrase or any other nucleotide-metabolising enzymes. Is it noteworthy that Tm Apy-1 

(grey bars) secreted products can hydrolyse nucleoside tri- and diphosphates at 

substantially greater levels than Tm WT (black bars) (Figure 4.2), indicating that transgenic 

trypanosomes are secreting an active Apy-1 with the same substrate specificity as the native 

enzyme (see chapter 3). 

After the expression and secretion of an active apyrase by transgenic T. musculi, the 

immunomodulatory property of the transgenic line was studied in vivo. But first, the growth 

in vitro of Tm Apy-1 was compared to Tm Luc (trypanosomes engineered to express 

cytosolic luciferase) for 4 days. Tm Apy-1 showed a trend for growing faster than controls, 

although the difference was only statistically significant at day 2 (Figure 4.3A). Female 

BALB/c mice were then infected intraperitoneally with 2 x 105 trypanosomes, and 

parasitaemia was monitored every 1-2 days until parasites disappeared from the blood. The 

pattern of infection was similar in Tm Luc and Tm Apy-1 infected mice, reaching a peak 

around day 8, plateauing for 5-6 days and clearing few days later. However, the numbers of 

Tm Apy-1 parasites were approximately double that of Tm Luc throughout much of 

infection, with a significant difference from day 4 to day 10, and a clearance delayed from 

the circulation by 1 day (Figure 4.3B). 
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Figure 4.1: Apy-1 expression by transgenic T. musculi 
(A) Amplification of H. polygyrus Apy-1 by RT-PCR. Apy-1 was amplified from adult H. 
polygyrus cDNA by RT-PCR using specific primers (expected size = 1,000 bp). PCR products 
were separated on 1 % (w/v) agarose gel, stained with GelRed stain and visualised on a UV 
trans-illuminator.  
 
(B) Incorporation of Apy-1 into the T. musculi genome. Genomic DNA (gDNA) and total RNA 
converted to cDNA, were isolated from wild type (WT) T. musculi and transgenic T. musculi 
expressing Apy-1, and used for PCR with Apy-1 forward and reverse primers (expected size = 
1,000 bp). The α tubulin gene (tub) was amplified as a positive control for gDNA quality 
(expected size = 251 bp). Fragments were resolved on a 1 % (w/v) agarose gel.  
 
(C) Western Blot against H. polygyrus Apy-1. Proteins from cell lysate (5 x 105 
trypanosomes) and concentrated culture supernatants from WT and Apy-1 T. musculi were 
resolved on a 12 % (v/v) SDS polyacrylamide gel, blotted onto a PVDF membrane and probed 
with anti-c-myc epitope antibody followed by a goat anti-mouse horseradish peroxidase 
(HRP) secondary antibody. Chemiluminescence was detected using an LAS-300 Fuji Imager. 
Lane M: Molecular weight markers (1 kb DNA ladder). 
Lane No RT: no reverse transcriptase control sample. 
Lane N: Negative control in which gDNA template was not included in PCR reaction. 
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Figure 4.2: Substrate specificity of transgenic T. musculi secreted products 
Apyrase activity of secreted products from T. musculi expressing Luciferase (Luc; black bars) 
or Apy-1 (grey bars) was assessed with 2 mM substrate in the presence of 5 mM Ca2+. Data 
shown represent the mean + S.D. of three independent experiments carried out in triplicate. 
*p<0.05, **p<0.01, ***p<0.001. 
Activity is expressed in nmol/ng of total secreted proteins/hr/108 trypanosomes. 
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Figure 4.3: Growth of transgenic T. musculi in vivo and in vitro 
(A) Comparative in vitro growth curve. 
 Growth of Luc and Apy-1 T. musculi in culture starting from 1 x 105 parasites ml-1. Data 
points represent mean values ± S.D. obtained from four independent experiments 
performed in duplicate.  
 
(B) Parasitaemia during T. musculi infection.  
BALB/c female mice were infected with 2 x 105 T. musculi expressing Luciferase (Luc) or Apy-
1 at day 0. Parasitaemias were followed by microscopy analysis of tail vein blood samples 
diluted in blood lysis buffer and expressed as number of parasites (in thousands) per ml of 
blood (limit of detection = 5 x 104 trypanosomes/ml). Each point represents the mean ± S.D. 
of two independent experiments (n=5 in each experiment). The error bars for some data 
points are smaller than the symbol size. 
*p<0.05, **p<0.01, ***p<0.001. 
 
  

A
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T. musculi ecto-nucleotidase activity 

Enzymes that catabolise exogenous nucleotides were not previously described in T. musculi, 

therefore examining the presence of these enzymes on the surface of trypanosomes is 

required, since most protozoan parasites possess ecto-nucleotidases. To do so, live 

trypanosomes were cultured in vitro in a medium containing ATP, and nucleotidase activity 

was analysed, showing that T. musculi were able to hydrolyse exogenous ATP (Figure 4.4A). 

The number of live trypanosomes before and after the assay was the same, indicating that 

ATP hydrolysis did not occur as a result of cell lysis. To eliminate the possibility that ATP 

hydrolysis was due to secreted enzymes, or to phosphate background from substrates, 

trypanosomes were incubated in the absence of any substrate, and the latter was tested in 

the absence of parasites. Supernatants from these control samples failed to show non-

specific hydrolysis, confirming the presence of an ecto-nucleotidase.  

 

The substrate specificity was also characterised by evaluating the ability of 

trypanosomes to hydrolyse other nucleotides. Figure 4.4A shows an evident substrate 

preference for ATP followed by GTP and CTP. A very low hydrolysis rate was generated with 

UTP and all diphosphates, along with negligible to no activity when monophosphate 

nucleosides were used as substrates. These results indicate that there are no 5´-

nucleotidase enzymes on the surface of T. musculi and suggest the presence of an ecto-

ATPase that can hydrolyse nucleoside tri- and/or diphosphates, but not monophosphates. 

To confirm this hypothesis, the effect of known extracellular impermeant inhibitors on ATP 

hydrolytic activity was evaluated in live trypanosomes. Sodium fluoride (NaF) and 

ammonium (NH4) molybdate, two potent inhibitors of acid phosphatases (Fernandes et al., 
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1997; Dutra et al., 1998), and levamisole, an inhibitor of alkaline phosphatases (Van Belle, 

1976), had no effect on the ATP hydrolysis (Figure 4.4B). Since these results rule out the 

possibility that the hydrolysis is due to an acid or alkaline phosphatase, it is likely that this 

ecto-enzyme is an ecto-ATPase. The presence of vanadate, an inhibitor of p-type ATPase 

(Sodré et al., 2000; Miranda et al., 2005), resulted in a 42% reduction in ATP hydrolysis 

compared to control. Subsequently, the addition of suramin, an ecto-ATPase inhibitor 

(Hourani and Chown, 1989; Ziganshin et al., 1995; Meyer-Fernandes et al., 1997), and DIDS 

(4,40-diisothiocyanatostilbene 2,20-disulfonic acid) which is a selective inhibitor of ecto-

ATPase as well (Knowles, 1988; Barbacci et al., 1996; Meyer-Fernandes et al., 1997) resulted 

in a 50 and 44% inhibition of ATP hydrolysis rate, respectively. These data confirm that ATP 

hydrolysis is catalysed by an ecto-ATPase present on the surface of T. musculi.  
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Figure 4.4: T. musculi ecto-nucleotidase activity 
(A) Substrate specificity. Ecto-nucleotidase activity of wild type T. musculi was assessed in 
the presence of 5 mM triphosphates, diphosphates or monophosphates.  
 
(B) The effect of inhibitory agents on T. musculi ecto-nucleotidase activity. Enzymatic 
activity was measured in reaction buffer (described under Materials and Methods) 
containing 5 mM ATP in the presence of various inhibitory agents. 
The data shown represent the mean of enzyme activity + S.D. of three independent 
experiments performed in triplicate. Statistical significance was calculated using Mann-
Whitney test (*p < 0.05, **p < 0.01). 
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Expression and secretion of Apy-3 and 5´-NT by transgenic T. musculi  

In light of the results described in chapter 3, Apy-3 was expressed in T. musculi, as it was 

shown that Apy-1 was the least active apyrase and Apy-3 the most active one. Adult H. 

polygyrus and T. spiralis cDNA were used as a template to amplify apy-3 and 5´-NT, 

respectively. PCR products were the expected size of 1000 bp for apy-3 and 1500 bp for 5´-

NT (Figure 4.5A). Genes were then inserted into the expression cassette, and transformant 

cells were selected by ampicillin resistance. Colony PCR, diagnostic digest and sequencing 

were performed to confirm that the genes were successfully cloned in frame into the 

expression vector and that there were no mutations in the gene sequence.  

 

As the ideal control for an active protein would be its inactive form, inactivation of 

Apy-3 catalytic activity was generated using specific primers with the desired mutation in a 

PCR reaction that amplifies the vector containing apy-3, altering glutamate 147 to glutamine 

(E147Q) (Dai et al., 2004). After confirming that the desired mutation was introduced via 

sequencing, all three constructs containing apy-3, mutant apy-3 or 5´-NT were linearized by 

digestion with ScaI restriction enzyme and used to transfect T. musculi by electroporation, 

selecting transfectants with blasticidin. The expression of the three proteins by transgenic 

lines was revealed by western blot analysis showing a protein band in the supernatant at 60 

kDa for active and mutant Apy-3, and at 85 kDa for 5´-NT. No bands were shown in cell 

lysates (Figure 4.5B). 

 

In order to test if Apy-3 and 5´-NT were enzymatically active, and mutant Apy-3 was 

inactive, trypanosome secreted products were assayed. Mutated Apy-3 transgenic line 
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showed the same apyrase activity as wild type trypanosomes, confirming that mutant Apy-3 

was enzymatically inactive (Figure 4.6A). It is clear that an active apyrase was highly 

detected in secreted products of Apy-3 transgenic trypanosomes compared to those 

expressing mutated Apy-3, and that this active apyrase had almost the same substrate 

specificity as the native enzyme (see chapter 3). On the other hand, Tm 5´-NT hydrolysed 

diphosphates and monophosphates at substantially greater levels than Tm WT (Figure 4.6B), 

indicating that transgenic trypanosomes secreted an active form of the enzyme. 

 

The growth in vitro of T. musculi expressing active Apy-3 was compared to those 

expressing 5´-NT, mApy-3 (mutant Apy-3) and a mix of the two transgenic cells (50:50 active 

Apy-3 and 5´-NT), and observed to exhibit a significant difference only at day 2 (Figure 4.7A). 

Female BALB/c mice were then infected intraperitoneally with 2 x 105 trypanosomes, and 

parasitaemia was monitored every 1-2 days until parasites disappeared from the blood. Tm 

5´-NT, Tm mix and Tm mApy-3 exhibited almost the same course of parasitaemia, except 

that Tm 5´-NT infection was cleared from the circulation one day earlier. However, the 

course of parasitaemia of Tm active Apy-3 was substantially higher at day 4, and from day 

10 to day 15, compared to mApy-3. Moreover, clearance was delayed from the circulation 

by 2 days (Figure 4.7B).  

 

Given that the secretion of apyrase by transgenic trypanosomes would be predicted 

to increase extracellular AMP, and assuming that the host 5´-NT will hydrolyse AMP to 

adenosine to supply the purine salvage pathway, the effect of adenosine and AMP on the 

growth of wild type trypanosomes was tested in vitro. The addition of 100 µM adenosine or 

AMP had no effect on the T. musculi growth when compared to controls (Figure 4.8). 
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Figure 4.5: Mutant Apy-3, Apy-3 and 5´-NT expression by transgenic T. musculi 
(A) Agarose gel electrophoresis of RT-PCR amplified products of H. polygyrus apy-3, 
mutant apy-3 and T. spiralis 5´-NT. Apy-3, mutant apy-3 and 5´-NT were amplified by RT-
PCR using specific primers. PCR products were separated on 1.5 % (w/v) agarose gel, stained 
with GelRed stain and visualised on a UV trans-illuminator. 
 
(B) Western Blot against Apy-3, mutant Apy-3 and 5´-NT. Cell lysate (5 x 105) and culture 
supernatants (sup.) from transgenic T. musculi were resolved on a 12 % (v/v) SDS 
polyacrylamide gel, blotted onto a PVDF membrane and probed with anti-c-myc epitope 
antibody followed by a goat anti-mouse horseradish peroxidase (HRP) secondary antibody. 
Chemiluminescence was detected using an LAS-300 Fuji Imager.  
Lane No-RT: no reverse transcriptase control sample.  
mApy-3: mutant Apy-3 
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Figure 4.6: Substrate specificity of WT and transgenic T. musculi secreted products 
 Apyrase (A) and 5´-Nucleotidase (B) activities of secreted products from mutant Apy-3 (blue 
bars), Apy-3 (red bars), WT (black bars) and 5´-NT (green bars) were assessed with 2 mM 
substrates in the presence of 5 mM Ca2+. Data shown represent the mean + S.D. of two 
independent experiments carried out in triplicate.  
Activity is expressed in nmol/ng of total secreted proteins/hr/108 trypanosomes. 
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Figure 4.7: Growth of transgenic T. musculi in vitro and in vivo 
(A) Comparative in vitro growth curve of transgenic T. musculi. 
 Growth of T. musculi expressing mutant Apy-3 (mApy-3; blue), 5´-NT (green), Apy-3 (red) 
and a 50:50 mix of Apy-3 and 5´-NT (black dotted line) in culture starting from 1 x 105 
parasites ml-1. Values expressed in number of parasites per ml of culture represent the mean 
± S.D. of three independent experiments performed in triplicate. The error bars for some 
data points are smaller than the symbols.  
 
(B) Parasitaemia during transgenic T. musculi infection.  
Female BALB/c mice were infected on day 0 with 2 x 105 T. musculi expressing Apy-3 (red), 
mutant Apy-3 (blue), 5´-NT (green) or a 50:50 mix of Apy-3:5’-NT (black dotted line). 
Parasitaemias were followed by microscopy analysis of tail vein blood samples diluted in 
blood lysis buffer and expressed as number of parasites (in thousands) per ml of blood (limit 
of detection = 5 x 104 trypanosomes/ml). Each point represents the mean ± S.D. of 5 
individual mice per group (*p < 0.05, **p < 0.01). 
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Figure 4.8: Growth of T. musculi in the presence of AMP or adenosine 
Wild type (WT) T. musculi were grown in culture starting from 1 x 105 parasites ml-1 in the 
presence of 100 µM AMP or adenosine. Parasites were counted and fresh AMP or 
adenosine were added daily. Values expressed in number of parasites per ml of culture 
represent the mean ± S.D. of two independent experiments performed in triplicate. The 
error bars for some data points are smaller than the symbols.  
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Spleen cellular composition, cytokine levels, antibody responses and macrophage 

activation markers during transgenic T. musculi infection 

In order to address the possible immunomodulatory properties of the recombinant proteins 

secreted by the transgenic trypanosomes, spleen cellular composition was tested at day 13 

post-infection. A decrease in leukocyte populations was observed in the spleens of mice 

infected with Tm Apy-3, 5´-NT or mix when compared to controls, although this decrease 

was only significant with Tm 5´-NT and Tm mix infections (Figure 4.9).  

 

There was a significantly lower number of B cells, T cells and CD8+ T cells in the 

spleens during Tm 5´-NT, Apy-3 and mix infections, in addition to fewer CD4+ T cells which 

were only significant in the spleen of mice infected with Tm 5´-NT (figure 4.10). A further 

analysis of the CD4+ T cell population was performed to differentiate between cells 

expressing regulatory T cells (CD4+Foxp3+), naïve CD4+ T cells (CD44-CD62L+), 

effector/memory CD4+ T cells (CD44+CD62Llow) and central memory CD4+ T cells 

(CD44+CD62L+). No difference was observed in central memory CD4+ T cells, whereas 

significantly lower numbers of effector memory phenotype were observed in spleens during 

Tm 5´-NT, Apy-3 and mix infections when compared to controls (Figure 4.11). There was a 

significantly lower level of regulatory T cells (Tregs) in Tm 5´-NT infection when compared to 

controls, and less Tregs were expressing CD73 and CD39 markers (Figure 4.12).  However, 

the numbers were the same in Tm mApy-3 and Tm Apy-3 infections.  

 

Furthermore, T cell cytokine production was measured during transgenic T. musculi 

infections. There was no significant difference in the amount of TNFα, IFNγ, and IL-4 
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produced by splenocytes from mice infected with Tm Apy-3, 5´-NT, and mix when compared 

to Tm mApy-3. However, enhanced IL-5 and IL-13 production, although not significant, was 

observed during Tm Apy-3 infection, accompanied by lower levels during Tm 5´-NT infections 

(figure 4.13). On the other hand, antibody end-point titres for IgG subclasses and IgM were 

performed at day 13 post-infection and no significant differences were observed (Figure 

4.14). 

 

Macrophage activation and polarisation markers (NOS2, Arg1, Ym1, Socs1, Mrc1 and 

Relmα) expressed by spleen cells were investigated by Griess assay and qPCR. No significant 

difference was observed in the expression of NOS2, however Arg1 expression was 

significantly upregulated in Tm Apy-3 and Tm mix infections. The expression of the 

alternative activation marker Ym1 was significantly downregulated in Tm 5´-NT and Tm mix 

infected mice, whereas Mrc1 expression was significantly upregulated in these same 

infections. However, Socs1 and Relmα level of expressions were intact in all infections 

(Figure 4.15). In addition, spleen cells were stimulated with T. musculi extract, but the levels 

of nitric oxide and arginase measured were below the limits of detection.   
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Figure 4.9: Total spleen cell numbers from mice infected with transgenic T. musculi 
Female BALB/c mice infected with 2 x 105 T. musculi were harvested at day 13 post-infection 
and single cell suspensions made. Cells treated with RBC lysis buffer (see Materials and 
Methods) were stained with trypan blue and live cells were counted. Data are represented 
as mean +/- S.E.M (n= 5 mice/group). Statistical significance was calculated using Mann-
Whitney test (*p < 0.05, **p < 0.01). 
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Figure 4.10: Total number and proportion of B cells, T cells, CD4+ T cells, and CD8+ T cells 
in the spleen of mice infected with transgenic T. musculi 
Female BALB/c mice infected intraperitoneally with 2 x 105 T. musculi expressing Apy-3, 
mutant Apy-3, 5´-NT, or a 50:50 mix of Apy-3 and 5´-NT, were harvested at day 13 post-
infection. Spleen single-cell suspensions were stained and analysed by flow cytometry for 
the number (left panels) and percentage (right panels) of B cells (CD19+), T cells (CD3+), 
CD4+ T cells (CD3+CD4+), and CD8+ T cells (CD3+CD8+). Data are shown as mean +/- SEM 
(n=5 mice/ group) (*p < 0.05, **p < 0.01). 
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Figure 4.11: Total number and proportion of CD4+ T cells expressing central memory or 
effector/memory phenotype in the spleen of mice infected with transgenic T. musculi  
Female BALB/c mice infected intraperioneally with 2 x 105 T. musculi expressing Apy-3, 
mutant Apy-3, 5´-NT, or a 50:50 mix of Apy-3 and 5´-NT, were harvested at day 13 post-
infection. Single-cell spleen suspensions were stained and analysed by flow cytometry for 
the number (left panels) and percentage (right panels) of CD4+ T cells expressing a central 
memory (CD44+CD62L+) or effector/memory (CD44+CD62Llo) phenotype. Data are shown 
as mean +/- SEM (n=5 mice/ group). (*p < 0.05, **p < 0.01). 
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Figure 4.12: Total number and proportion of Foxp3+, CD73+ and CD39+ cells in spleen 
CD4+ populations of mice infected with transgenic T. musculi  
Female BALB/c mice infected intraperioneally with 2 x 105 T. musculi expressing Apy-3, 
mutant Apy-3, 5´-NT, or a 50:50 mix of Apy-3 and 5´-NT, were harvested at day 13 post-
infection. Spleen single-cell suspensions were stained and analysed by flow cytometry for 
the number (left panels) and percentage (right panels) of Foxp3+ within CD4+ cells. Foxp3+ 
populations were further analysed for the expression of intracellular CD39 and CD73.  Data 
are shown as mean +/- SEM (n=5 mice/ group). (*p < 0.05, **p < 0.01). 
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Figure 4.13: Cytokine production by splenocytes at day 13 post-infection with transgenic T. 
musculi 
Spleen cells from mice infected intraperioneally with 2 x 105 T. musculi expressing Apy-3, 
mutant Apy-3, 5´-NT, or a 50:50 mix of Apy-3 and 5´-NT, were cultured at a density of 1 x 106 
ml-1 and stimulated with anti-CD3/CD28 for 48 hours. The levels of interferon-gamma (IFN-
γ), tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), IL-13 and IL-5 produced in the 
culture supernatant were determined by ELISA. Data are shown as mean +/- SEM (n=5 mice/ 
group). (*p < 0.05, **p < 0.01).  
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Figure 4.14: Specific anti-trypanosome antibody responses (end-point titres) at day 13 

post-infection with transgenic T. musculi 

 Female BALB/c mice infected intraperioneally with 2 x 105 T. musculi expressing Apy-3, 

mutant Apy-3, 5´-NT, or a 50:50 mix of Apy-3 and 5´-NT, were harvested at day 13 post-

infection, and serum was isolated. IgG1, IgG2a, IgG2b, IgG3 and IgM antibody titres were 

measured by ELISA against wild type T. musculi extracts. Results are expressed as the mean 

of antibody endpoint titres +/- SEM (n=5 mice/ group). (*p < 0.05, **p < 0.01). 
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Figure 4.15: Expression of macrophage polarisation markers in splenic macrophage 

population of mice infected with transgenic T. musculi at day 13 post-infection 

Expression of NOS2 (iNOS), Ym1, Arginase, Socs1, Mrc1 and Relmα was measured by 

quantitative real-time PCR and shown as fold-change relative to the median of mice infected 

with T. musculi mutant Apy-3. Data are represented as mean +/- SEM (n=5 mice/ group). 

(*p < 0.05, **p < 0.01). 
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4.3 Discussion 

Helminth parasites secrete a wide range of immunomodulatory molecules which can 

influence the host immune response in a way to prevent the clearance of the parasite, but 

also suppress symptoms of immune dysregulatory diseases of the infected host. These 

molecules, contained in excretory/secretory (ES) products, often exert their effects by 

suppressing type 2 immune responses, thus constraining the symptoms associated with Th2-

related diseases. They target host cells in many distinct ways, inducing IgG4 along with a 

decrease in IgE, IL-4 and IL-5, and an increase in IL-10 levels (Hewitson, Grainger and 

Maizels, 2009; Allen and Maizels, 2011; McSorley et al., 2014). A large number of studies 

have examined the effects of helminth infections, e.g. Nippostrongylus brasiliensis, 

Heligmosomoides polygyrus and Trichinella spiralis on a range of mouse models of 

immunopathological diseases. These studies indicate that infection with helminth parasites 

downregulates the immune system and can protect against development of immune-

mediated diseases such as colitis, allergy and type-1 diabetes. From here comes the interest 

in these molecules as a target for future human therapies (Erb, 2009; Hewitson et al., 2011; 

Donskow-Łysoniewska et al., 2013).  

 

However, genetic manipulation of helminth parasites is limited. For instance, 

inducing gene knockdown via RNA interference (RNAi) in H. polygyrus has been unsuccessful 

(Lendner et al., 2008). An alternative approach to study parasite gene function within a host 

is heterologous expression into an appropriate vehicle. Heterologous expression systems 

have been previously used to analyse gene function in transfected organisms or in vitro. The 

intracellular kinetoplastid parasite Leishmania mexicana was described as an applicable 
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expression system to assay immunomodulatory effects of helminth molecules, such as 

Brugia malayi ALT proteins (Gomez-Escobar et al., 2005; Maizels et al., 2008), but as the 

parasite is intracellular, it may not be suitable for all proteins secreted by extracellular 

helminths. The systemic, non-pathogenic extracellular Trypanosoma theileri, a member of 

the kinetoplastid family, was developed as a vehicle to deliver vaccines against pathogens to 

cattle targeting multiple infections, including major cattle-borne zoonoses (Mott et al., 

2011). T. theileri persists at very low levels for the lifetime of the host, and thus may not be a 

suitable vehicle to study the effect of an exogenous protein on the host immune response 

over a short period of time. Other studies have suggested the use of the non-colonising 

bacterium Lactococcus lactis as a vaccine delivery system to treat helminth infections 

(Medina et al., 2010; Berlec et al., 2015; Durmaz et al., 2016), and immunopathologies such 

as colitis via the secretion of IL-10 (Steidler et al., 2000, 2011; Braat et al., 2006; Foligne et 

al., 2007).  

 

Although these previously described heterologous systems have been proven to be 

useful for the expression of exogenous genes, the aim here is to study the effect of the gene 

of interest and genes of unknown functions on the immune responses when the expressed 

protein is delivered extracellularly, as in a worm infection. T. musculi has been shown to be 

an excellent in vivo expression model to investigate immunomodulatory effects by helminth 

genes, as it is an extracellular natural mouse parasite which can deliver the exogenous 

proteins to various host tissues. It is easy to genetically manipulate, with a simple, 

reproducible pattern of infection that lasts for three weeks, allowing study of the host-

pathogen interactions through monitoring changes in parasitaemia. It has been successfully 
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used as a vehicle for expression and secretion of N. brasiliensis acetylcholinesterase (AChE) 

in mice by Vaux et al. (2016).   

 

In this study, the immunomodulatory functions of H. polygyrus apyrases (Apy-1 and 

Apy-3) and T. spiralis 5´-NT have been examined via heterologous expression in T. musculi. 

Apyrases secreted by H. polygyrus are hypothesised to inhibit ATP-mediated inflammation 

and ADP-mediated thrombosis by catabolising ATP and ADP to AMP, thus helping the 

parasite to neutralise the host’s immune system and promote persistence within the host. T. 

spiralis 5´-NT was shown to catalyse the hydrolysis of nucleoside di- and monophosphates to 

the anti-inflammatory molecule adenosine which activates P1 receptors on immune cells 

and are therefore predicted to suppress immune responses (Gounaris, Selkirk and Sadeghi, 

2004). Thus, one major approach to consider is that apyrases and 5´-NT might selectively 

target P2 and P1 receptors respectively, reducing inflammation and suppressing the immune 

system; hence the importance of further studying the effects of these parasitic molecules on 

the host immune system. The H. polygyrus apy-1 gene was first inserted into the expression 

vector, and when the construct was transfected into trypanosomes via electroporation, RT-

PCR confirmed that the gene was found to be expressed and integrated into the T. musculi 

genome. Western blot results then confirmed the presence of the protein in the cell lysate 

and the supernatant of the transgenic lines and not of the WT trypanosomes, confirming the 

secretion of the recombinant protein. The latter might have been glycosylated while being 

translocated into the ER, which could explain the presence of a slightly higher mass in the 

supernatant.  
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No previous studies have examined the presence of ecto-nucleotidase enzymes on 

the external surface of T. musculi, neither the secretion of an apyrase. Thus, apyrase activity 

assays were performed on both the WT and transgenic trypanosomes. Very little nucleoside 

tri- and diphosphate hydrolysis was detected in WT T. musculi secreted products. This could 

be due to an enzyme belonging to one of the four classes: phosphatase, phosphodiesterase, 

ATP diphosphohydrolyse, or apyrase (A. A. Da’dara et al., 2014). In contrast, the transgenic 

trypanosomes showed the secretion of an active apyrase, with a substrate specificity 

reflecting that of Apy-1 expressed in P. pastoris (see chapter 3).  

 

Moreover, the data here confirm the presence of an ecto-ATPase sensitive to the 

impermeant inhibitor DIDS and suramin, which are inhibitors of ecto-ATPases (Hourani and 

Chown, 1989; Ziganshin et al., 1995). The activity could not be attributed to the presence of 

an acid- or alkaline phosphatase, since the ATP hydrolysis was insensitive to sodium fluoride, 

ammonium molybdate and levamisole, potent inhibitors of phosphatase activities. Since the 

ecto-ATPase described here did not hydrolyse AMP and monophosphates, in addition to 

being insensitive to ammonium molybdate, the 5´-NT inhibitor (Gottlieb and Dwyer, 1983), 

the possibility of the presence of an ecto-5´-nucleotidase was discounted. The presence of 

ecto-nucleotidases have been described in several parasites including protozoans, and was 

shown to exert important roles including cellular adhesion and termination of purinergic 

signalling (Plesner, 1995). Studies have suggested that the Mg-dependent ecto-ATPase 

expressed on the surface of Entamoeba histolytica (Barros et al., 2000), Leishmania 

amazonensis (Berrêdo-Pinho et al., 2001) and Trypanosoma cruzi (Silber et al., 2002) is 

considered a marker of pathogenesis for these parasites as the virulent promastigotes and 

trypomastigotes have a much higher ATPase activity than the avirulent ones. In addition, it is 
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known that trypanosomatids such as T. musculi, T. cruzi, L. amazonensis and other 

protozoans are unable to synthesise purines de novo, and thus they rely on purine salvage 

pathways from the external environment as source of these nutrients. The presence of ecto-

nucleotidase enables these parasites to hydrolyse nucleotides to the respective nucleosides 

to support purine salvage (Albright, Pierantoni and Albright, 1990; Berrêdo-Pinho et al., 

2001; Meyer-Fernandes et al., 2004; De Koning, Bridges and Burchmore, 2005).  

 

The effect of Apy-1 was then studied in vivo in order to gain some understanding of 

its potential role in H. polygyrus. When the parasitaemia of mice infected with T. musculi 

secreting active Apy-1 was compared to Tm-Luc infection, Tm Apy-1 was found to grow 

faster, with a prolonged infection and delayed clearance. These results suggest that the 

changes to survival rates could results from either a physiological and/or an immunological 

advantage. Secretion of an active apyrase by the transgenic trypanosomes, along with the 

presence of the ecto-ATPase on the surface of T. musculi, will likely increase the capacity of 

hydrolysing the extracellular potent pro-inflammatory ATP. This is released upon tissue 

damage, which would clearly be caused by migrating helminth parasites. This has been 

considered for Schistosoma mansoni (Smith and Von Lichtenberg, 1974; Bloch, 1980; 

Bhardwaj and Skelly, 2009), and would also be relevant for H. polygyrus, although it is 

unclear whether T. musculi causes significant tissue damage. Hydrolysis of ATP could result in 

the accumulation of extracellular nucleosides available for the trypanosomes to take up if 

working in concert with host 5´-NT, thus supplying the T. musculi purine salvage pathways 

(Albright, Pierantoni and Albright, 1990). On the other hand, apyrase might be interfering 

with early control of the infection, impeding host immunity which would favour the 

multiplication of the parasite, hence the difference in parasitaemia.  
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Prior to studying the reason behind the faster growth, a more active apyrase (Apy-3) 

secreted by H. polygyrus was expressed in T. musculi together with 5´-NT secreted by T. 

spiralis, as Apy-1 was shown to be the least active apyrase (see chapter 3), and 5´-NT will 

result in the accumulation of the anti-inflammatory molecule adenosine. In addition, the 

catalytic activity of Apy-3 was inactivated, and a mutant form of Apy-3 was expressed in T. 

musculi to be used as a control for the active form of the enzyme. Results confirmed the 

secretion of enzymatically active Apy-3 and 5´-NT and inactive mutant Apy-3 (mApy-3). 

 

The effect of these enzymes was first studied in vitro, and it was found that Tm Apy-3 

grow slightly faster than the control Tm mApy-3. All strains eventually reached the same 

level of growth after few days due to nutrient depletion, however the difference observed is 

in rate of growth. This might be due to the presence of nucleoside tri- or diphosphates such 

as ATP and ADP, in the medium or serum (Creek et al., 2013; Doleželová et al., 2018), which 

were hydrolysed to nucleosides and supported the faster growth of the transgenic 

trypanosomes secreting 5´-NT and Apy-3 in culture. The transgenic trypanosomes were 

therefore grown in the absence of 10% FCS and conditioned medium (data not shown), and 

all transgenic lines replicated at the same rate, although depletion of FCS is growth limiting 

since it is essential in supplying nutrients to support trypanosome growth to higher densities 

(Creek et al., 2013; Doleželová et al., 2018). Different FCS and conditioned medium batches 

were tested for the presence of ATP, and results confirmed that some batches contain very 

small amounts of ATP. This might be the reason behind the slight faster growth of transgenic 

trypanosomes, as apyrase and 5´-NT will hydrolyse the ATP to adenosine, supporting purine 

salvage and growth. 
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Given that the secretion of apyrase or 5´-NT by the transgenic lines should increase 

extracellular AMP and adenosine in vivo, the addition of an appropriate low concentration of 

adenosine and AMP in the culture medium would favour the growth of T. musculi in vitro. 

High (mM) concentrations are toxic to trypanosomes (Taliaferro and Alesandro, 1971; Geiser 

et al., 2005; Lüscher et al., 2014). Data here showed that supplementing the medium with 

AMP or adenosine had no effect on the growth of trypanosomes. However, on the basis of 

these results, we cannot conclude that Apy-3 and 5´-NT do not play a beneficial physiological 

role for trypanosomes in vivo. 

 

When the effect of these proteins was monitored in vivo, the course of parasitaemia 

of Tm Apy-3 was found to be substantially higher at day 4, again with a prolonged infection 

and a delayed clearance when compared to the control. However, Tm 5´-NT and Tm mix 

parasites exhibited a similar course of parasitaemia as the control until late in infection when 

Tm expressing 5´-NT were cleared from the bloodstream a day earlier than the control. 

These differences might suggest that the faster growth of Tm apyrase could be due to 

modulation of innate immune responses, whereas the early clearance of Tm 5´-NT and the 

prolonged infections of Tm Apy-3 could be due to modulation of the adaptive immune 

responses (Figure 4.7B). Albright and Albright (1999) suggest that early control of 

trypanosome infection is induced by NK cells which might activate macrophages via the 

secretion of IFNγ, thus numbers and phenotype of macrophages and NK cells would be more 

informative. 

 

Following the generation of T. musculi transgenic lines secreting inactive Apy-3, 

active Apy-3 and 5´-NT, and monitoring the course of parasitaemia in vivo for three weeks, it 
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was essential to study the possible immunomodulatory functions of apyrase and 5´-NT, 

screening for potential effects these proteins may have on the host immune response by 

determining antibodies, cytokine levels and leukocyte populations at day 13 post-infection.   

 

Purinergic signalling plays an essential role in regulating the immune system. 

Extracellular ATP (eATP), released during inflammation, functions as a signalling molecule 

through the activation of purinergic P2 receptors, inducing an inflammatory response by 

recruiting innate immune cells and causing the release of pro-inflammatory cytokines and 

inflammatory mediators such as nitric oxide (NO) (Junger, 2011).  

 

During Tm Apy-3 infection, extracellular ATP would be predicted to be degraded to 

AMP via secreted Apy-3 and T. musculi ecto-ATPase. AMP could then serve as a substrate to 

CD73 for the extracellular generation of adenosine. With Tm 5´-NT infected animals, 

extracellular adenosine would be predicted to be generated via the secreted 5´-NT. Once 

adenosine is produced in the extracellular compartment, it will activate P1 purinergic 

receptors expressed on the surface of a wide range of immune cells including T and B 

lymphocytes, macrophages, dendritic cells and neutrophils. Depending on the concentration 

of extracellular adenosine, different adenosine receptors might be activated, due to the 

difference in receptor affinity (Bours et al., 2006). In vivo studies using adenosine receptor 

knockout mice suggested that A2A receptors are the most dominant P1 receptors in 

inducing lymphocyte responses. It was previously shown that the activation of these 

receptors inhibited the production of IL-2 (Naganuma et al., 2006), IFNγ and IL-4 by naïve 

CD4+ T cells (Lappas, Rieger and Linden, 2005). In addition, IL-2 production by CD8+ T cells 
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was inhibited (Erdmann et al., 2005), however the production of IL-4 and IL-5 cytokines 

produced by cytotoxic CD8+ T cells was not influenced.  

 

B and T cell numbers were lower in mice infected with Tm Apy-3, 5´-NT and mix. A 

lower number of CD4+, CD8+ and effector CD4+ T cells was also observed with Tm Apy-3 and 

Tm 5´-NT infections, in addition to a lower number of Tregs, CD73+ and CD39+ Tregs with Tm 

5´-NT infection. These data suggest that hydrolysis of ATP by apyrase and 5´-NT introduced 

by transgenic T. musculi might have resulted in accumulation of extracellular adenosine 

which then activated adenosine receptors expressed on B cells (Mainly A1, A2A and A3), 

resulting in downregulation of activation and proliferation of B cells. This suppression might 

be mediated via A3 adenosine receptors, which upon activation with adenosine, can prevent 

functional activation of B cells (Saze et al., 2013). B cells are necessary for proliferation and 

expansion of CD4+ T cells and Tregs. Other studies suggest that B cells can mediate a dual 

regulatory activity effect on T cells, either upregulating CD4+ and CD8+ T cells or 

downregulating CD73 expression, thus inhibiting T cell proliferation and cytokine production. 

This was shown to be directed by 5´-AMP and adenosine, products of ATP hydrolysis in the 

extracellular compartment. However, activated B cells were shown to upregulate CD39 

expression thus increasing the production of 5´-AMP, which is an A1 adenosine receptor 

agonist (Rittiner et al., 2012), and suppressing activated T cells (Tu et al., 2008; Chen et al., 

2009; Sakowicz-Burkiewicz et al., 2012; Saze et al., 2013). On the other hand, adenosine 

deaminase (ADA) present on activated T effector cells can terminate adenosine signalling by 

hydrolysing adenosine to the purine nucleoside inosine, that has a longer half-life than 

adenosine (Welihinda et al., 2018). However, activated B cells can oppose this effect via 
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adenosine kinase by phosphorylating adenosine to 5´-AMP, which can bind to A1 receptors 

on activated T effector cells and inhibit their function (Saze et al., 2013). 

 

Foxp3+ Tregs are known to co-express the ecto-nucleotidase enzymes CD39 and 

CD73, which are responsible for increasing pericellular adenosine (Kobie et al., 2006; Deaglio 

et al., 2007; Dwyer et al., 2007; Mandapathil et al., 2009; Schuler et al., 2011). During 

inflammation, extracellular ATP activates P2X7 receptors on Treg cells, inhibiting their 

differentiation and suppressive function while stimulating T cell differentiation towards pro-

inflammatory Th17 cells (Piconese et al., 2009; Schenk et al., 2011; Takenaka, Robson and 

Quintana, 2016). However, adenosine activates A2A receptors on Tregs in an autocrine 

signalling loop, upregulating their expression and increasing their immunoregulatory activity 

(Borsellino et al., 2007; Zarek et al., 2008; Ohta et al., 2012; Antonioli, Pacher, et al., 2013; 

Ohta and Sitkovsky, 2014; Faas, Sáez and de Vos, 2017). CD39 activity is induced on 

activation of T cell receptors (TCRs) expressed on Treg cells. It was also shown that Tregs 

secrete CD39 and CD73 in exosomes that can suppress effector T cell proliferation and IL-2 

secretion through the activation of A2A receptors expressed on T effector cells (Deaglio et al., 

2007; Smyth et al., 2013). 

 

Cytokine responses were intact in all infections, except for IL-5 and IL-13 which were 

higher, although not significantly so, in Tm Apy-3 infections. Studies have shown that 

activation of the A2B receptor by adenosine downregulates IL-5 and IL-13 production by 

group 2 innate lymphoid cells (ILC2) (Csóka et al., 2017). This was not evident in the current 

study, in which slightly higher levels of these cytokines were detected. No significant 

changes were seen in TNFα and IFNγ levels, nor in iNOS expression or NO production, so it is 
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less likely that TNF is contributing to the premature clearance seen in Tm 5´-NT. However, 

injection of TNF induces rapid clearance of T. musculi, and TNF is known to induce iNOS 

expression in macrophages, thus controlling the parasite in vivo (Kongshavn and Ghadirian, 

1988; Liew, Li and Millott, 1990; Silva et al., 1995; Fonseca et al., 2003). In addition, IFNγ 

stimulates macrophages to produce NO which was shown to kill T. musculi in vitro 

(Vincendeau and Daulouède, 1991; Albright et al., 1994). No changes in titres of IgG 

subclasses and IgM were observed here, although IgG1, IgG2b and predominantly IgG2a 

were shown to be the antibodies associated with T. musculi clearance (Olivier, Tijssen and 

Viens, 1986; Vincendeau, Daeron and Daulouede, 1986; Wechsler and Kongshavn, 1986). 

 

Monocytes are polarised into classically activated macrophages (M1) or alternatively 

activated macrophages (M2 or AAMs), depending on the cytokine environment. Studies 

have shown that M1 macrophages are pro-inflammatory, whereas M2 macrophages 

suppress inflammation and promote tissue remodelling (Csoka et al., 2012; Zanin et al., 

2012). During parasitic helminth infections, such as filarial and gastrointestinal nematode 

infections, the expression of AAM markers (Arg1 and Ym1) are upregulated (Nair et al., 2005; 

Taylor et al., 2006).  

 

In this study, the expression of macrophage polarisation markers (NOS2, Arg1, Ym1, 

Socs1, Mrc1 and Relmα) by splenocytes from T. musculi-Apy-3 and/or T. musculi-5´-NT 

infected mice were compared to T. musculi-mutant Apy-3 infected mice. The accumulation 

of adenosine due to ATP hydrolysis by T. musculi expressing active Apy-3 and/or 5´-NT led to 

a higher expression of Arg1 and a lower expression of Ym1 when compared to T. musculi 

expressing mutant Apy-3. Adenosine is known to induce polarisation to an M2 phenotype 
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characterized by high expression of arginase-1, TIMP-1, and mgl-1, but not Ym1 and Fizz1 

(Csoka et al., 2012), in addition to low expression of pro-inflammatory cytokines such as 

TNFα, IL-6, IL-8 and IL-12. The regulatory effects of adenosine are mediated by the activation 

of A2A and A2B receptors on macrophages (HASKO, 2000; Majumdar and Aggarwal, 2003; 

Fortin et al., 2005; Garcia et al., 2007; Gessi et al., 2007; Addi et al., 2008; Haskó and Pacher, 

2012; Koscso et al., 2012; Antonioli, Pacher, et al., 2013; Ferrante et al., 2013). For instance, 

activation of the A2A receptor mediates inhibition of TNFα production (HASKO, 2000; 

Kreckler et al., 2006; Ryzhov et al., 2007), and activation of the A2B receptor inhibits 

production of NO and IL-12 by macrophages infected with Leishmania, thus enhancing 

parasite persistence in the host (Figueiredo, Souza-Testasicca and Afonso, 2016). In addition, 

A2B receptors have been shown to be involved in promoting macrophage differentiation into 

an M2 phenotype which are important for defence against extracellular parasites (Noël et 

al., 2004), as well as increasing IL-4 or IL-13 induced macrophage activation (Patel et al., 

2014).  

 

Several recent studies suggested that adenosine activates A2B receptors which 

upregulate IL-33 release and drive type 2 immunity during helminth infection including H. 

polygyrus (Chen et al., 2012; Csoka et al., 2012; Gause, Wynn and Allen, 2013; Hung et al., 

2013). In this study, there was a non-significant trend for less IL-4 being produced by 

splenocytes from mice infected with Tm 5´-NT. This decrease might contribute to the lower 

expression of Ym1, although macrophages from Tm Apy-3 and Tm 5´-NT infections showed 

higher expression of arginase, another marker of M2 macrophages. 
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In summary, Tm Apy3 grew faster than the control Tm Luc or Tm mApy3. There were 

no changes in titres of IgG subclasses, and no lower production of pro-inflammatory 

cytokines and mediators such as TNFα, IFNγ, and NO. Lower levels of IL-4 were observed 

with Tm 5´-NT, coupled with lower Ym1 expression, however significant higher expression of 

Arg1 was seen with Tm Apy-3 infections, along with higher levels of IL-5 and IL-13. The 

changes might be due to a combination of factors both immunological and physiological. 

These data suggest that the secretion of an apyrase or 5´-NT by T. musculi might be 

contributing in modulating the host immune response in addition to supplying the purine 

salvage pathway. 
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CHAPTER 5 

 

 

 

Effect of apyrase on Nippostrongylus 

brasiliensis infection and allergic 

inflammation 
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5.1 Introduction 

ATP is well known for its pivotal intracellular roles in many biological processes such as 

chemical energy, motility, cell division and biosynthesis. Its presence extracellularly was 

initially believed to be due only to cell damage (Burnstock, 1999; Khakh and Burnstock, 

2009). However, it was reported that under physiological conditions and at low micromolar 

concentrations, extracellular ATP acts as a signalling molecule for nonadrenergic, 

noncholinergic neurotransmission, in addition to other responses such as cardiac function, 

muscle contraction and relaxation, vascular tone, endothelium-dependent vasodilation, 

calcium-dependent histamine secretion from mast cells, prostacyclin production and cell 

growth (Wolf and Berne, 1956; Keller, 1966; Burnstock, 1972; Dahlquist, Diamant and 

Krüger, 1974; Needleman, Minkes and Douglas, 1974; Burnstock and Meghji, 1981; 

Boeynaems and Galand, 1983; Gordon, 1986; Schwiebert and Zsembery, 2003).  

 

In the respiratory system, extracellular ATP contributes to airway homeostasis in 

normal conditions. It is released via connexin or pannexin hemichannels, ion channels or 

vesicular exocytosis (Bodin and Burnstock, 2001; Lazarowski, 2012) from airway and alveolar 

epithelial cells, lung fibroblasts, pulmonary artery endothelial cells and airway smooth 

muscle (ASM) cells in response to mechanical stretch and compression (Takahara et al., 

2014). ATP activates P2X and P2Y purinergic receptors in both autocrine and paracrine 

epithelial cell signalling (Lazarowski and Boucher, 2009), regulating airway surface hydration 

and epithelial mucociliary clearance for lung defence against inhaled pathogens (Tarran et 

al., 2005; Button, Picher and Boucher, 2007; Button et al., 2013). ATP can also up-regulate 

transepithelial salt and fluid transport (Mason, Paradiso and Boucher, 1991; Benali et al., 
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1994), mucin secretion (Kim and Lee, 1991; Canwen et al., 1993; Lethem et al., 1993; Benali 

et al., 1994; Tarran et al., 2005; Lazarowski and Boucher, 2009), surfactant secretion (Patel 

et al., 2005), intracellular Ca2+ mobilization (Mason, Paradiso and Boucher, 1991), hydration 

of mucus and respiratory mucosa (Benali et al., 1994), and airway epithelial cells ciliary beat 

frequency (Brown et al., 1991; Saano et al., 1992). The concentration of ATP released 

extracellularly is balanced and kept at low micromolar level via ecto-nucleotidase enzymes 

(CD39 and CD73).  

 

In response to tissue damage and inflammation, the extracellular ATP concentration 

can dramatically increase, alerting the immune system. Thus, besides its physiological roles, 

ATP can act as a danger-associate molecular pattern (DAMP) contributing to the 

pathophysiology of various lung and airway diseases including asthma, cystic fibrosis, 

pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), lung cancer and lung 

injury (Mohsenin and Blackburn, 2006; Idzko et al., 2007; Esther et al., 2008; Mortaz et al., 

2009, 2010; Polosa and Blackburn, 2009; Willart and Lambrecht, 2009; Lommatzsch et al., 

2010; Riteau et al., 2010). The release of ATP activates purinergic receptors expressed on a 

wide range of immune cells such as macrophages, dendritic cells, lymphocytes, eosinophils 

and neutrophils, triggering a pro-inflammatory immune response and tissue degradation 

(Junger, 2011; Ayna et al., 2012; Asgari et al., 2013; Gallo and Gallucci, 2013; Pittman and 

Kubes, 2013; Wang and Chen, 2018). 

 

Asthma is an inflammatory disease of the airways characterized by bronchial hyper-

responsiveness (AHR), airflow obstruction, increased mucus secretion and 
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bronchoconstriction. Environmental and genetic factors contribute to this disease, which is 

associated with many symptoms in both adults and children (Robinson et al., 1992; 

Howarth, 1995; Kim, Dekruyff and Umetsu, 2010; Zambalde et al., 2016; Thiriou et al., 2017; 

Li et al., 2018). During allergic asthma, extracellular ATP initiates a T helper 2 (Th2) immune 

response via the activation of P2 purinergic receptors, mainly P2Y2R expressed on dendritic 

cells and eosinophils, and triggers the production of reactive oxygen species (ROS), 

eosinophil infiltration, and increased serum level of IgE (Dichmann et al., 2000; Ferrari et al., 

2000; Idzko et al., 2001, 2003, 2007; Mohanty et al., 2001; Song, Vijayaraghavan and Sladek, 

2006; Müller et al., 2010; Kobayashi et al., 2015; Zech et al., 2015). Activated Th2 cells drive 

chronic inflammation via the secretion of cytokines such as IL-4 which initiates IgE synthesis, 

IL-5 which induces the recruitment and activation of eosinophils, and IL-13 which promotes 

overproduction of mucus and airway smooth muscle contraction (Wills-Karp et al., 1998; 

Khurana Hershey, 2003; Kuperman and Schleimer, 2008; Akdis et al., 2011; Romeo et al., 

2014; Chung, 2015; Kobayashi et al., 2017; Dickinson et al., 2018).  

 

However, type 2 innate lymphoid cells (ILC2s) and airway epithelium have recently 

been shown to be of great importance, as these cells are associated with the initiation of 

asthma. The increased level of the “danger signal” ATP activates purinergic receptors and 

sustains increased intracellular Ca2+ concentration (Burnstock, 2006; Lüthi et al., 2009; 

Kouzaki et al., 2011; Barlow et al., 2012; Bartemes et al., 2012; Halim et al., 2012; Kim et al., 

2012; Lambrecht and Hammad, 2012; Wolterink et al., 2012). Studies suggested that this P2 

purinergic pathway induces the secretion of IL-25, IL-33 and thymic stromal lymphopoietin 

(TSLP) cytokines from airway epithelial cells, promoting ILC2 proliferation and activity, and 

leading to a Th2-type immune response independent of adaptive immunity (Guo et al., 
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2009; Paul and Zhu, 2010; Kouzaki et al., 2011; Ober and Yao, 2011; Ohno et al., 2012; 

Kobayashi et al., 2013; Makrinioti et al., 2014; McSorley et al., 2014; S. G. Smith et al., 2016; 

Yanagibashi et al., 2017). Thus, both innate and adaptive immune responses are associated 

with the development of asthma. 

 

Alternaria alternata (A. alternata or ALT) is a fungal allergen clinically associated with 

asthma in humans (O’Hollaren et al., 1991; Downs et al., 2001; Saglani, 2017), and used as a 

murine model to study the immune response during Th2-mediated inflammation (Denis et 

al., 2007; Kobayashi, Iijima and Kita, 2008; Kobayashi et al., 2009; Moosavi et al., 2009; 

Kouzaki et al., 2011; Gil et al., 2014; Iijima et al., 2014). The administration of ALT extract 

induces rapid release of IL-33 from epithelial cells, followed by the activation of ILC2s and 

the production of IL-5 and IL-13 (Kouzaki et al., 2011; Bartemes et al., 2012; Hardman, 

Panova and Mckenzie, 2013; Gold et al., 2014; Halim et al., 2014; Snelgrove et al., 2014; 

Kabata et al., 2015; Stier et al., 2017). 

A Th2 immune response is also induced in infection with helminth parasites such as 

the intestinal nematode Nippostrongylus brasiliensis. The alarmin cytokine IL-33 has been 

shown to promote both airway inflammation and immunity to nematode infection 

(Humphreys et al., 2008; Liew, Pitman and McInnes, 2010; Neill et al., 2010a; Kouzaki et al., 

2011; Bartemes et al., 2012; Yasuda et al., 2012). Studies have suggested that helminth 

parasite secreted products possess anti-allergic properties, partly through inhibiting the 

release of IL-33 in order to promote parasite survival in the host (McSorley et al., 2014). 

Thus it is important to study immune regulation pathways during helminth infection for 

developing allergic disease therapies (Postigo, Guisantes and Martínez, 2016).  
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5.2 Results 

 

Lung cellular composition and cytokine production following administration of H. 

polygyrus recombinant Apy-1 during N. brasiliensis infection 

Experimental design, worm burden and faecal egg count  

H. polygyrus enzymatically active and inactive recombinant Apy-1 expressed in Pichia 

pastoris (see Chapter 3) were purified, then subjected to endotoxin removal and tested by 

an LAL-assay. Inactive recombinant Apy-1 was produced via heat-inactivation, and 

nucleotidase assays confirmed the loss of activity. Mice were infected subcutaneously with 

N. brasiliensis in PBS (naïve groups received PBS only), then intranasally dosed for 3 

consecutive days with recombinant enzymes, PBS or BSA (bovine serum albumin) as controls 

(Figure 5.1). After the mice were euthanised at day 5 post-infection, the intestinal worms 

and the faecal eggs were enumerated (Figure 5.2). The worm burden showed a possible 

trend of higher number of parasites in animals dosed with active Apy-1 when compared to 

the other groups, but this was not statistically significant. Furthermore, the pattern for 

faecal egg counts was the same in mice treated with Apy-1 when compared to PBS control 

group only.  

 

 

Eosinophils and neutrophils 

At the same time, the lung cellular composition was tested and cytometrically analysed. An 

increase in leukocyte populations was observed in the lungs of mice treated with active Apy-

1 in both naïve and infected groups, although this increase was only significant with non-
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infected animals (Figure 5.3). Intranasal dosing with active recombinant Apy-1 significantly 

enhanced eosinophilia (CD11b+SiglecF+) in the lungs of naïve mice compared to BSA and 

inactive enzyme controls (Figure 5.4). A similar increase was observed in neutrophils 

(CD11b+SiglecF-CD11c-Gr1+), macrophages (CD11b+F4/80+) and pDendritic cells 

(CD11b+CD11c+) in the lungs of mice treated with active Apy-1 when compared to PBS and 

BSA control animals. As for the infected groups, an increase in these cells, although not 

statistically significant, was shown following Apy-1a treatment (Figure 5.4, 5.5).  

 

 

B and T cells 

There was a significantly higher number of B cells, T cells and NK cells in the lungs during 

Apy-1a treatment in both naïve and infected groups (Figure 5.6), in addition to greater CD4+ 

T cells, which were only significantly higher in the lungs of infected animals (Figure 5.7). A 

further analysis of the CD4+ T cell population was performed to differentiate between cells 

expressing central memory CD4+ T cells (CD44+CD62L+), effector/memory CD4+ T cells 

(CD44+CD62Llow), naïve CD4+ T cells (CD44-CD62L+) and regulatory T cells (Tregs) 

(CD4+Foxp3+).  

 

There was no difference in the numbers of Tregs in the lungs of naïve groups treated 

with inactive and active apyrases when compared to PBS and BSA controls (Figure 5.8). No 

difference was also observed in naïve CD4+ T cells during N. brasiliensis infection, but 

significantly higher numbers of effector/memory and central memory phenotype were 

observed in lungs of Apy-1a treated animals (Figure 5.9). T cell cytokine production was 

measured in both naïve and infected groups. There was no significant difference in the 
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amount of IL-5 and IL-13 produced by lungs from the naïve groups, but significantly lower IL-

13 and slightly lower IL-5 levels were observed during N. brasiliensis infections of mice 

treated with Apy-1a (Figure 5.10). 

 

 

 

 

 
 
Figure 5.1: Schematic illustration of the experimental design 
Female BALB/c mice were infected by sub-cutaneous injection (s.c.) with 500 L3 N. 
brasiliensis in PBS at day 0. Naïve mice received the same volume of PBS. Naïve and infected 
mice were dosed intranasally (i.n.) for 3 consecutive days (days 0, 1 and 2 post-infection) 
with recombinant enzymatically active Apy-1 (Apy-1a), enzymatically inactive Apy-1 (Apy-1i), 
BSA (bovine serum albumin) or vehicle control (PBS). Mice were euthanised at day 5 post-
infection.  



 

163 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 5.2: Worm and egg burden of N. brasiliensis infected mice following intranasal 
administration of recombinant Apy-1 
(A) Adult worm recovery from the small intestine of mice at day 5 post-infection. 
(B) Faecal egg count expressed as eggs per gram of faeces at day 5 post-infection (EPG). 
Data are represented as mean +/- S.E.M (n=5 mice/group).  
 
  



 

164 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 5.3: Total lung cell count 
Naïve (A) and N. brasiliensis-infected (B) mice were harvested at day 5 post-infection. Single 
cell suspension of lungs were made and viable cells counted. Data are represented as mean 
+/- S.E.M (n=5 mice/group). Statistical significance was calculated using Mann-Whitney test 
(*p < 0.05, **p < 0.01). PBS: vehicle control; BSA: bovine serum albumin; Apy-1i: 
recombinant enzymatically inactive Apy-1; Apy-1a: recombinant enzymatically active Apy-1. 
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Figure 5.4: Total number and proportion of eosinophils and neutrophils in the lungs of 
mice following intranasal administration of recombinant Apy-1 
Naïve and N. brasiliensis-infected mice were harvested at day 5 post-infection. Lung single-
cell suspensions from each treated group were stained and analysed by flow cytometry for 
the number (left panels) and percentage (right panels) of eosinophils (CD11b+SiglecF+) and 
neutrophils (CD11b+Gr1+). Data are shown as mean +/- SEM (n=5 mice/ treated group) 
(*p < 0.05, **p < 0.01). PBS: vehicle control; BSA: bovine serum albumin; Apy-1i: 
recombinant enzymatically inactive Apy-1; Apy-1a: recombinant enzymatically active Apy-1.  
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Figure 5.5: Total number and proportion of macrophages and dendritic cells in the lungs of 
mice following intranasal administration of recombinant Apy-1 
Naïve and N. brasiliensis-infected mice were harvested at day 5 post-infection. Lung single-
cell suspensions from each treated group were stained and analysed by flow cytometry for 
the number (left panels) and percentage (right panels) of macrophages (CD11b+F4/80+), 
dendritic cells (CD11b-CD11c+) and plasmacytoid dendritic cells (CD11b+CD11c+). Data are 
shown as mean +/- SEM (n=5 mice/treated group) (*p < 0.05, **p < 0.01). PBS: vehicle 
control; BSA: bovine serum albumin; Apy-1i: recombinant enzymatically inactive Apy-1; Apy-
1a: recombinant enzymatically active Apy-1. 



 

167 
 

 
Figure 5.6: Total number and proportion of NK cells, B cells, and T cells in the lungs of mice 
following intranasal administration of recombinant Apy-1 
Naïve and N. brasiliensis-infected mice were harvested at day 5 post-infection. Lung single-
cell suspensions from each treated group were stained and analysed by flow cytometry for 
the number (left panels) and percentage (right panels) of B cells (CD19+), T cells (CD3+) and 
NK cells (Nkp46+). Data are shown as mean +/- SEM (n=5 mice/ treated group). (*p < 0.05, 
**p < 0.01). PBS: vehicle control; BSA: bovine serum albumin; Apy-1i: recombinant 
enzymatically inactive Apy-1; Apy-1a: recombinant enzymatically active Apy-1. 
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Figure 5.7: Total number and proportion of CD4+ and CD8+ T cells in the lungs of mice 
following intranasal administration of recombinant Apy-1 
Naïve and N. brasiliensis-infected mice were harvested at day 5 post-infection. Lung single-
cell suspensions from each treated group were stained and analysed by flow cytometry for 
the number (left panels) and percentage (right panels) of CD4+ T cells (CD3+CD4+), and 
CD8+ T cells (CD3+CD8+). Data are shown as mean +/- SEM (n=5 mice/ treated group). 
(*p < 0.05, **p < 0.01). PBS: vehicle control; BSA: bovine serum albumin; Apy-1i: 
recombinant enzymatically inactive Apy-1; Apy-1a: recombinant enzymatically active Apy-1. 
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Figure 5.8: Total number and proportion of Foxp3+ in lung CD4+ populations of mice 
following intranasal administration of recombinant Apy-1 
Naïve and N. brasiliensis-infected mice were harvested at day 5 post-infection. Lung single-
cell suspensions from each treated group were stained and analysed by flow cytometry for 
the number (left panels) and percentage (right panels) of Foxp3+ within CD4+ cells. Data are 
shown as mean +/- SEM (n=5 mice/ treated group). (*p < 0.05, **p < 0.01).  
PBS: vehicle control; BSA: bovine serum albumin; Apy-1i: recombinant enzymatically 
inactive Apy-1; Apy-1a: recombinant enzymatically active Apy-1. 
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Figure 5.9: Total number and proportion of CD4+ T cells expressing naïve, central memory 
or effector/memory phenotype in the lungs of mice following intranasal administration of 
recombinant Apy-1 
Naïve and N. brasiliensis-infected mice were harvested at day 5 post-infection. Lung single-
cell suspensions from each treated group were stained and analysed by flow cytometry for 
the number (left panels) and percentage (right panels) of CD4+ T cells expressing a naïve 
(CD44loCD62L+), central memory (CD44+CD62L+) or effector/memory (CD44+CD62Llo) 
phenotype. Data are shown as mean +/- SEM (n=5 mice/ treated group). (*p < 0.05, 
**p < 0.01). PBS: vehicle control; BSA: bovine serum albumin; Apy-1i: recombinant 
enzymatically inactive Apy-1; Apy-1a: recombinant enzymatically active Apy-1. 
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Figure 5.10: Cytokine production by lung cells of mice following intranasal administration 
of recombinant Apy-1 
Lung cells from naïve and N. brasiliensis-infected mice were stimulated with 
PMA/ionomycin for 24 hours. The levels of IL-5 and IL-13 produced in the culture 
supernatants were tested by ELISA. Data are shown as mean +/- SEM (n=5 mice/ group). 
(*p < 0.05, **p < 0.01). 
PBS: vehicle control; BSA: bovine serum albumin; Apy-1i: recombinant enzymatically 
inactive Apy-1; Apy-1a: recombinant enzymatically active Apy-1. 
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Cellular composition and cytokine production in the lung and airways after administration 

of H. polygyrus recombinant Apy-3 during Alternaria-induced allergic airway inflammation 

Experimental design and total cell count 

Samples of H. polygyrus enzymatically active and inactive recombinant Apy-3 expressed in 

Pichia pastoris (see Chapter 3) were purified then subjected to endotoxin removal and 

tested by an LAL-assay. Inactive recombinant Apy-3 was produced using Q5 site-directed 

mutagenesis (see Materials and Methods) and nucleotidase assays confirmed the loss of 

activity. Mice were intranasally dosed with Alternaria alternata (ALT) alongside a single dose 

of recombinant enzyme or PBS. Inflammation was induced over 24 hours, then lung tissues 

and BAL fluid cells were tested and cytometrically analysed (Figure 5.11). An increase in 

leukocyte populations was observed in the lungs and BAL samples of mice exposed to 

Alternaria extract compared to the PBS only control group. There were no significant 

difference between the ALT:PBS and ALT:Apy-3i control groups in the lung or BAL total cell 

count, however ALT:Apy-3a treated animals displayed a significant increased cell count in 

the lungs compared to PBS control group (Figure 5.12). 

 

 

Eosinophils and neutrophils 

Animals treated with ALT had a significant increase in eosinophils and neutrophils in the 

lungs and BAL compared to those dosed with PBS, indicating that the allergic airway model 

was successful. The numbers of both cells in the lungs were enhanced by addition of active, 

but not inactive apyrase (Figure 5.13). 
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Figure 5.11: Schematic illustration of the Alternaria experimental design 
 
Female BALB/c mice were dosed intranasally (i.n.) with Alternaria alternata (ALT) and 
recombinant enzymatically active Apy-3 (Apy-3a) or enzymatically inactive Apy-3 (Apy-3i), 
vehicle control (PBS only) or ALT only. Mice were euthanised after 24 hours, and lung tissues 
and BAL fluid cells were analysed.   
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Figure 5.12: Total lung (A) and BAL (B) cell count 
Mice were harvested 24 hours post-intranasal administration. A single cell suspension of 
lungs and BAL fluid was made and viable cells counted. Data are represented as mean +/- 
S.E.M (n=5 mice/group). Statistical significance was calculated using Mann-Whitney test 
(*p < 0.05). 
Apy-3i: recombinant enzymatically inactive Apy-3; Apy-3a: recombinant enzymatically active 
Apy-3. 
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Figure 5.13: Total number and proportion of eosinophils and neutrophils in the lungs and 
BAL of mice following intranasal administration of ALT and recombinant Apy-3 
Mice were harvested 24 hours post-intranasal administration. Lung and BAL single-cell 
suspensions from each treated group were stained and analysed by flow cytometry for the 
number (left panels) and percentage (right panels) of eosinophils (CD11b+SiglecF+) and 
neutrophils (CD11b+Gr1+). Data are shown as mean +/- SEM (n=5 mice/ treated group) 
(*p < 0.05, **p < 0.01). Apy-3i: recombinant enzymatically inactive Apy-3; Apy-3a: 
recombinant enzymatically active Apy-3.   
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Type 2 innate lymphoid cells (ILC2s) 

Group 2 innate lymphoid cells (ILC2s), which lack the lineage markers (surface markers for T, 

B, NK cells, and monocyte/macrophage lineage) (Moro et al., 2010; Neill et al., 2010b; Price 

et al., 2010), have been shown to play a key role in the early immune responses to helminth 

parasites, as well as in the pathophysiology of allergic diseases such as asthma (Kabata et 

al., 2015). Recently, ILC2 population responsive to IL-25 and expressing KLRG1 (Killer cell 

lectin-like receptor G1) have been termed as inflammatory ILC2 (iILC2), distinct from IL-33 

responsive ILC2s which express ST2 (a component of the IL-33 receptor) and reside naturally 

in the lung (nILC2) (Huang et al., 2015; Huang and Paul, 2016). 

 

Following ALT treatment, the expression of ICOS, ST2 and KLRG1 on ILC2s was 

increased, but this was unaffected by addition of either active or inactive apyrase (Figure 

5.14). The number of total ILC2 (CD45+Lin-CD127-ICOS+), nILC2 (ST2+KLRG1-/lo) and iILC2 

(ST2-/loKLRG1+) in the lungs of active Apy-3 treated animals was significantly higher 

compared to inactive control group (Figure 5.15). Additionally, active Apy-3 dosing led to a 

trend of increased intracellular IL-5 production by ILC2s. The same pattern was observed 

with IL-13 production in all ALT treated mice, and was only significant in the lungs of 

ALT:PBS group (Figure 5.16-17). 
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Figure 5.14: ILC2 phenotype in the lungs of mice following intranasal administration of ALT 
and recombinant Apy-3 
Mice were harvested 24 hours post-intranasal administration. Lung single-cell suspensions 
from each treated group were stained and analysed by flow cytometry for ILC2 extracellular 
staining for ICOS, ST2 and KLRG1. Data are shown as mean +/- SEM (n=5 mice/ treated 
group) (*p < 0.05, **p < 0.01). Apy-3i: recombinant enzymatically inactive Apy-3; Apy-3a: 
recombinant enzymatically active Apy-3.  
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Figure 5.15: Total number and proportion of ILC2 in the lungs of mice following intranasal 
administration of ALT and recombinant Apy-3 
Mice were harvested 24 hours post-intranasal administration. Lung single-cell suspensions 
from each treated group were stained and analysed by flow cytometry for the number (left 
panels) and percentage (right panels) of total ILC2 (CD45+Lineage-CD127-ICOS+), nILC2 
(ICOS+ST2+KLRG1-/lo), and iILC2 (ICOS+ST2-/loKLRG1+). Data are shown as mean +/- SEM 
(n=5 mice/ treated group) (*p < 0.05, **p < 0.01). Apy-3i: recombinant enzymatically 
inactive Apy-3; Apy-3a: recombinant enzymatically active Apy-3. 
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Figure 5.16: Total number and proportion of total ILC2 expressing IL-5 and IL-13 in the 
lungs of mice following intranasal administration of ALT and recombinant Apy-3 
Mice were harvested 24 hours post-intranasal administration. Lung single-cell suspensions 
from each treated group were stained and analysed by flow cytometry for the geometric 
mean fluorescence intensity (MFI) (left panels) and percentage (right panels) of IL-5 and IL-
13 within total ILC2 cells. Data are shown as mean +/- SEM (n=5 mice/ treated group) 
(*p < 0.05, **p < 0.01, ***p=<0.001).  Apy-3i: recombinant enzymatically inactive Apy-3; 
Apy-3a: recombinant enzymatically active Apy-3. 
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Figure 5.17: Total number and proportion of nILC2 and iILC2 expressing IL-5 and IL-13 in 
the lungs of mice following intranasal administration of ALT and recombinant Apy-3 
Mice were harvested 24 hours post-intranasal administration. Lung single-cell suspensions 
from each treated group were stained and analysed by flow cytometry for the geometric 
mean fluorescence intensity (MFI) (left panels) and percentage (right panels) of IL-5 and IL-
13 within nILC2 and iILC2 cells. Data are shown as mean +/- SEM (n=5 mice/ treated group) 
(*p < 0.05, ***p=<0.001). Apy-3i: recombinant enzymatically inactive Apy-3; Apy-3a: 
recombinant enzymatically active Apy-3.  
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5.3 Discussion 

H. polygyrus secreted products were shown to block production of the alarmin cytokine IL-

33 during allergic Alternaria-induced inflammation, suppressing eosinophilia and ILC2 

pathways (Kouzaki et al., 2011; McSorley et al., 2014). Thus, this parasitic nematode 

possesses molecules that can act against the development of type 2 immune response to 

infection and allergy (McSorley et al., 2014). As demonstrated in this thesis, apyrase exerts 

an important role in the termination of purinergic signalling via the hydrolysis of the pro-

inflammatory ATP to AMP. The aim of this chapter was to study the effects of active 

apyrases secreted by H. polygyrus during type 2 immune scenarios.  

 

Administration of active Apy-1 showed a trend for higher numbers of parasites in the 

gut of mice infected with N. brasiliensis, although the difference did not reach statistical 

significance. Apyrases are most likely to hydrolyse extracellular ATP produced in response to 

tissue damage after the larvae have migrated through the lung and airways. However, this 

possible mechanism was not translated in terms of eosinophil numbers, as any expected 

reduction due to the eosinophil killing ability was not observed. In contrast, an increase in 

eosinophils, neutrophils, dendritic cells, macrophages and T cells was shown following 

apyrase treatment in both naïve and infected groups. These data indicate that there might 

be some impurity in the enzyme preparations, although they went through endotoxin-

removing columns. Interestingly, a trend for decreased IL-5 with reduced IL-13 production 

was observed during N. brasiliensis infections of mice treated with Apy-1a, suggesting a 

possible role for apyrase in the regulation of IL-5 and IL-13 cytokine responses in this type 2 

immunity model.  
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In order to understand if apyrase activity had any effect on ILC2s during a non-

parasite related experimental model of type 2 immunity, BAL and lung cells were analysed 

after 24 hours of Alternaria-induced airway inflammation. Enhanced eosinophilia and 

neutrophilia were observed in all ALT treated groups when compared to the PBS only 

control group, in addition to an increased ILC2 expression of ICOS and ST2. This confirms 

that the intranasal administration of substances and ALT extract were successful and in line 

with expectations for the Alternaria model (Bartemes et al., 2012).  

 

Several studies have reported that during asthma pathogenesis, ATP plays a role in 

the recruitment and activation of immune cells including eosinophils, lymphocytes and DCs, 

in addition to the release of alarmins such as IL-33 which in turn activates the production of 

ILC2-mediated Th2 cytokines (Ferrari et al., 1997, 2006, Idzko et al., 2002, 2003; Pelleg and 

Schulman, 2002; Bours et al., 2006; Bartemes et al., 2012, 2014; Idzko, Ferrari and Eltzschig, 

2014). When extracellular ATP levels increase in the airways, the cardinal features of asthma 

such as eosinophilic airway inflammation and bronchial hyper-responsiveness increase, 

however in the presence of P2 purinergic receptor antagonists, Th2 immune responses are 

inhibited (Idzko et al., 2007). In this study, locally derived apyrase was anticipated to reduce 

the levels of extracellular ATP, preventing its binding to purinergic receptors on immune 

cells and thus suppressing IL-33 release. Among the results observed, the apyrase-treated 

group showed a higher expression of ST2 (Figure 5.14-15), suggesting that a similar level of 

IL-33 was released regardless of the apyrase activity. This goes against the hypothesized 

type 2 suppressive effects of the apyrase.  
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IL-33 release mechanisms are not well understood, but it is known to be released in 

response to cell death, mechanical and oxidative stress, or through ATP purinergic signalling. 

It was recently shown that Alternaria allergen proteases and endogenous calpains released 

from damaged airway epithelial cells proteolytically increase the IL-33 alarmin functional 

activity, independently from serine proteases released from immune cells such as mast cells, 

neutrophils and cytotoxic lymphocytes (Scott et al., 2018). 

 

In conclusion, the present study demonstrates that H. polygyrus apyrase has no 

effect on the suppression of type 2 immune responses under the experimental conditions 

employed. This was unexpected, as apyrases hydrolyse pro-inflammatory ATP, which is an 

essential factor for generation of IL-33 and subsequent initiation of type 2 responses. It is 

quite possible that intranasal administration of the enzyme is not suitable or sufficient to 

hydrolyse ATP in localised microenvironments in the airways to the extent that an effect can 

be measured. Suppression of apyrase expression by parasites, if possible, would provide an 

alternative means to address this question. 
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CHAPTER 6 

 

 

 

Conclusions and Future Work 
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Several studies have highlighted the importance of helminth secreted products in 

preventing and treating immune dysregulatory diseases such as allergy and autoimmunity. 

These secreted molecules have been shown to affect a variety of pathways, ultimately 

suppressing immune responses. Thus, in order to develop new therapeutics, it is necessary 

to understand the interaction between the parasite and the host immune system and to 

gain insights into the cellular and molecular mechanism of action of helminth secreted 

effector molecules. Given the numerous immunoregulatory effects of helminth infection, it 

is highly likely that many proteins secreted by the intestinal parasitic nematode H. polygyrus 

target the immune system; hence the importance to compile a comprehensive list of the 

immunomodulatory proteins through assessing the function of isolated molecules. Of these 

products, apyrases, previously identified by proteomic analysis, most likely act as 

immunomodulators, but this remains to be demonstrated experimentally. These nucleotide-

metabolising enzymes can hydrolyse inflammatory ATP, changing nucleotide availability, 

and thus potentially disturbing purinergic signalling pathways of immune cells. The 

characterisation and the study of the immunological effects of these apyrases is therefore 

essential. 

 

During this study, the five apyrases secreted by the nematode H. polygyrus were 

biochemically characterised. Apy1-5 were successfully cloned and expressed in the 

heterologous expression system Pichia pastoris, and enzymatic activities were performed 

using a colorimetric assay which detect inorganic phosphate released. The enzymes 

belonged to a group of calcium-dependent apyrases with a broad optimum pH ranging from 

6.5 to 10 and a broad substrate specificity, catalysing the hydrolysis of both nucleoside tri- 

and diphosphates to the final product monophosphate. The activity of H. polygyrus total 
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secreted products was also tested, and enzymatic activities were comparable to those 

shown by recombinant proteins. After biochemical characterisation, in vivo studies were 

performed in order to reveal if any immune modulation was displayed by apyrases, and if 

they could show potential for future therapy of immune disorders.  

 

The murine unicellular organism Trypanosoma musculi has been previously 

genetically modified by transfection and used as a heterologous system for the expression 

of parasitic helminth secreted proteins to study gain of function (Vaux et al., 2016). In this 

thesis, the extracellular trypanosome was used as an in vivo vehicle for the expression of H. 

polygyrus apyrases and T. spiralis 5´-NT, and the immunological function of the transgenes 

was studied in order to investigate any possible immunomodulatory properties. The 

expression of active apyrase and 5´-NT in trypanosomes was successful, and both exhibited 

a substrate specificity similar to that of recombinant enzymes expressed in Pichia. When 

mice were infected with T. musculi expressing apyrase (apy-1 or apy-3), the trypanosomes 

grew faster compared to a control line. The immune cell numbers and cytokine profile in the 

spleen were tested and no changes were detected in pro-inflammatory cytokines and 

mediators such as TNF-α, IFN-γ, and NO; however significantly higher expression of Arg1 was 

seen, along with higher levels of IL-5 and IL-13. Both immunological and physiological factors 

appear to be responsible for these changes, suggesting that the secretion of an apyrase or 

5´-NT by T. musculi might be modulating the host immune response in addition to affecting 

the purine salvage pathway in trypanosomes. 

 

The effect of apyrase on type 2 immunity was also examined in this thesis. It was 

hypothesised that by hydrolysing ATP, apyrases might inhibit release of IL-33 with 
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subsequent reduction in IL-5 and IL-13 cytokine production. However, of the cells studied in 

the lung and airways during an acute model of allergic inflammation, intranasal 

administration of apyrase did not seem to have an effect in regulating immunological 

responses. Pro-inflammatory ATP triggers the release of the alarmin cytokine IL-33, which in 

turn regulates the activation of ILC2s. In this study, the activation and function of pulmonary 

ILC2s were not affected by the presence of an active apyrase. It is quite possible that the 

apyrase administered in these experiments was not able to access localised 

microenvironments in order to hydrolyse ATP and cause a measurable effect.  

 

Drawing these conclusions together, the remaining question to be answered is why 

various parasitic nematodes including H. polygyrus, evolved to secrete a family of apyrases, 

and what effect these nucleotide-metabolising enzymes have on the host immune response.  

 

The work presented in this thesis suggests that apyrase may not regulate type 2 

immune responses, at least in the models that I have tested, however this does not negate 

other possible immunomodulatory functions of H. polygyrus secreted apyrases. Further 

work to probe the precise function of these apyrases is required. This could involve 

developing the T. musculi heterologous expression system. For instance, the fusion of a 

ligand to the protein which can bind a fluorescent molecule injected during transgene 

infection or tagging apyrase with a GFP reporter could be used in order to detect any 

protein interaction with immune cells by flow cytometry. Alternatively, the use of a 

luciferase-based in vivo imaging technique with a tetracycline inducible system would allow 

tracking the parasite location and targeting transgene expression during infection. 
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Suppression of apyrase expression by parasites, if possible, would also provide an 

alternative means to elucidate the true function and potential benefits of secreted apyrases. 

 

Another important step is the investigation of parasitic helminth secreted proteins 

which belong to families of unknown function, as the discovery of anti-inflammatory or 

immunomodulatory molecules holds potential for future therapeutic drugs. Measuring 

parasitaemia of a T. musculi transgenic line expressing a gene of unknown function and 

looking at any perturbations in parasitaemia can be indicative of immunomodulation. Thus, 

screening novel proteins using a T. musculi-based system could be useful in order to know 

which gene to study further via measuring immune cell number, cytokine and antibody 

subtype production. The recombinant protein can also be isolated and intranasally 

administered into models of allergy or autoimmune diseases to assess whether this protein 

is an immunomodulator. 
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A.1 Heligmosomoides polygyrus apyrases sequence 

 
 
Apy-1: 
 
ATGAGCCCTTTGCCAGTGGGAGAATGCACTGTTGACGCATCGGACAGAACGTTAAACATCATTGCCA
TCACTGACATGGATAAGGAATCCAGGACATCACCTGAGGGTTACACGTGGAGAGCGTTGACAAGAA
AGGGACAGCTGTTTGTGAAGGACGAACTAGCAAAGCTTGAAGTGACATGGGATCTCTCGTCTGACC
AAAATTTAACTACGCACCTAAACATGAAAGGACGAGCCATGGAGATGTCGGACTTGGTGAAATTTA
ACGGTCACTTGCTTTCGCCTGACGACAAAACCGGAATGATCTTTGAAACTGAAGACAAGAAGGCAAT
TCCATGGCTGTTCCTCAATTCTGGGCCAGGGAACACGGAAAGCGGAATGAAGGCGGAGTGGATGA
CGTTGAAAGACGACCAGCTGTATGTTGGCGGTCACGGAATGGCGTATAGGAACAAAAAGGGAGAG
ATTTTCAGCACGGATGCAATGTGGATAAAAATCATATCTCATGACGGAGTTGTCAAAAGCGTAGACT
GGACTGATGTCTATGACGAAATTGCACAAGCAGCTGGTGCAACATCGCCAGGATACCTGACCCACG
AAGCTGTGCAATGGTCGGAGATACACAAGAGATGGTTCTTCCTTCCAAGAAAATACTCAACTGAAAT
CTATAACGACGAATTGGACGAGATCAGGGGAACTAACCTACTAATTACCGCGGATGAATCTATGGA
AGACATCCAAGTTGTGAAAATTGGAGAACTAACACATCCAGATCGTGGATACTCGGCTTTCGATTTT
GTACCAGGAACCTGCGATAGCGTGATTTTAGCCCTTAAATCAATGGAGCATGATGGATCGACAGAG
AGTTATATCACTGCCCTTGATACTAATGGCAATGTACTTCTGGAAGACCAACCCCTCGATGGCGACCT
CAAATTCGAAGGATTGTACTTTTTGTGA 
 
Apy-2: 
 
ATGGCAGTTATCAAGCCCAGAAAGATCGACCTCAGTGCAAACAAACTTGGCCAGAAATCTACCAGAT
TCACTACACTACCTGATGGCTCAACTGAATACGAAATAATGGCCATCACGGACAACGACAAGTCTTC
GGTGGTCACGGCAGGCAGCACGTGGCAAGCTGTGACAAGAAAGGGAAAGCTGACTTTGAACAAGG
ATAAGACCCAGGCTAATGTAGTCTGGGATGCCAACGCCGACCAAACGGTTCAGTCAGGACTGAACT
ATAAAGGAAGAGCAATGGAGCTGTCGGATTTGGTGAATTTCAACGGGCATGTCATTTCACCTGACG
ATAAAACCGGACTGGTTTACGAGATCAAGGGCAACCAGGCAATTCCATGGATATTTCTAAATGCTGG
ACCTGGAAATACTACAGATGCCATGAAAGCCGAGTGGATGACTTTGAAAGACGGAGAGGTTTACAT
TGGAGGACATGGAACGGAATACATCGATCAAAATCAGCAAGTGGTCAACAGGTATGCAATGTGGAT
CAAGGTTGTATCGCCCGATGGACTTATTAAGCACGTCGACTGGAGGCGCAACTTCAACAGAATTCGA
AACGCTGCAGGGTTCCCCTTCCCCGGCTACCTCACCCATGAGGCAGCTCAATGGTCGGACATTCACA
AACGCTGGTTCTTCCTTCCGCGAAAACAGTCCAAGGAAATTTACGATGAAGCCAAAGACGAGACAA
GAGGTAGCAATCTTCTCATCTCTACAAACAGCTACATGATGGATCTGAAAAAGGTGGAAGTCGGACC
ACTGACTGATCCGTCCAAAGGCCACTCCGCGTTCCAGTTCGTTCCAGGCACTAACGACGAAATCATT
GTAGCTCTGAAAACGAGAGAAAGCGGAGGAACCACGAGCAGCTTCATCACGGTGTTCGATATTACG
GGAAAAATCATTCTTAGTGACCAGCAGCTCGCTGGCAATCACAAATTCGAAGGGTTATACTTTATTT
AA 
 
Apy-3: 
 
ATGGCTGCCCCTATGCCTCAGGAGCTAATCTGCGTTCCCGATGTAGTAGACAGAACGTATGATCTGA
TTGCTATCACTGACATGGACAAAGACGCTGGCGGAAGCCCATCAGACTGGACATGGCGGGCAGTCA
AAAGGAAGGGGCAGCTGACGATAAGCGGAGACGGTGAGAAGATCGCCGTGAATTGGGATCCTTCT
GCTGATCAAAATGTCACCACACACCTGAACGTGAAAGGACGAGCGATGGAGCTGTCAGACCTGGCA
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CTATTCAATGGCCATCTGATTTCACCTGACGACAAAACCGGAATGATCTACCAGATAGAAGGCCAGA
AGGCTATTCCGTGGGTGTTTTTGAACTCGGGGCCTGGAAATACTACAAACGGCATGAAAGCGGAGT
GGATGGCTTTGAAGGACGGCCAGCTCTACGTCGGTGGACATGGGACGGAGTACAGAGCGAAGGAT
GGATCAATTGTGAGTACGGATTCTATGTGGATAAAAATCGTCTCGGCTGATGGTGCTGTTCAACATA
AGGACTGGACCAAAAATTACGAGAAGATTCGAGACGCAGCAGGATTTCCAGCACCTGGCTACCTCA
CACATGAGGCAGTGCAGTGGTCGAAAGTACACCACAGGTGGTTTTTCATCCCCAGAAGGCACTCCA
AGAAGATCTATGATGAAGAAGCCGACGAGCGCAGAGGCAGCAATAAAATAATTAGTGCGGACGAA
AATTTCGACGACTTCTACACGATAGACATTGGGGCGCTGAAGGATCGCAAGCGAGGATTCTCGGCG
TTCGCCTTTATCCCAGGCACCTGTGATGAGCTGGCTCTCGGCATTAAATCGGTGGAGTTTAAGGGCA
CAACGGAGAGCTACATCACCGCATTCGATCTTATGGGCAACATCTATCTTGAGGATCAGCGACTGCA
GGGTAACCTTAAATTCGAGGGACTGTACATTGTCAAAAAGTGA 
 
Apy-4: 
 
ATGACATCATCGTCGTCACTGACATGGACAAGGACTCCAGAACCTCGGAATGGACATGGCGAGCAC
TGACAAGGAAGGGAATGGCATTTATGAAAAATGAACGATCGAAAGTTGAAGTAACATGGGATCCTT
CGTCTGATCAGAATGTAACCACGCATTTGAACATGAAAGGCCGAGCAATGGAGTTATCGGACTTGG
TGAAGTTTAACGGTCACTTGCTATCACCTGACGACAAGACTGGAATGATCTATGAGATAGAAGGAA
ACAAGGCGATTCCATGGATATTCCTGAACTCTGGACGAGGGGATACCACAAGTGGAATGAAGGCTG
AATGGATGACATTGAAGGATGGCCAGCTTTACGTTGGCGGTCATGGAATGGAGTACAGAGACAAAA
CCGGAAAAGTTTATAGCAGAGATGCTATGTGGATAAAAATCGTGTCGCCTGAAGGAGTTGTTAAGC
ATGTGGACTGGACAAGTAATTATAACGACATTGCACGCGCGGCTGATGTAACATCACCAGGTTACCT
CACACATGAAGCAGTACAGTGGTCTGAGATACACAAGCGATGGTTCTTCCTTCCAAGAAAATACTCC
ATAGAGGCGTACGACGAAAAAGCGGATGAGCGAAAGGGCACTAATCTACTCATCACCGCCGACGA
GACTTTCTCCGAAATCAGTGTGCTTGAAATAGGAGATCGAATTCATACAGAACGCGGATACTCAGCT
TTCGACTTTATGCCAGGAACTTGCGATACAGTGATTCTAGCGCTTAAGTCGATGGAACTTGAAGACA
ATACAGCAAGTTACATTACAGCCTTCAATACTGAAGGCACCATCCTCCTGGAGGACCAGCCCCTTGA
CGGTGACCTCAAGTTTGAAGGACTGTACTTTTTGTGA 
 
Apy-5: 
 
ATGTGGTCGCTGTCACTCTACATGGTCCTATTATTCACCATTGAACTTCTTCAAACCACCCTAGCTGCC
CCTTTGACTCCGCCTGAGGAGTGCATTCCTGAAGGAGGAGAGCGAACGCTCAAACTGATAGCGATC
ACTGACCTAGACAAAAAGGCTAGAACATCCGTTACGGATTGGACATGGAGAGCAGTGAAAAGGAG
CGGAGAGCTGCATCTGAACACAGAAAAGGGGGAGATTGGTGTGACTTGGGACCCCTCTTCCGATCA
GAATGTTACCACACAACTGAATGTGAAAGGACGAGGAATGGAGCTGTCCGACCTGGCCAATTTCAA
TGGTCACCTTCTCTCACCTGATGACAAAACCGGAATGATCTACCAAATAGAAGGCAAAAAGGCTATT
CCATGGGTCTTCCTCAACTCTGGACCTGGTAACACCACGAGCGGTATGAAGGCGGAGTGGATGACT
TTGAAGGACGGTCGGCTCTACGTCGGAGGACATGGAACGGAGTACAGAGGCAAAAACGGAGAAGT
CTTAAGCACAGACCCTATGTGGATAAAAATCGTCTCGCCAAGCGGAGCTGTCGAACACAAAGACTG
GACCGATGTCTACAAAAAGATTCGTCAGGCGGCTGGTTTTCCAGCACCGGGTTACCTCACTCATGAG
GCGGTGCAGTGGTCAGACATTCACCAGAAATGGTTCTTCCTTCCGAGAAAGCATTCCAAGCACGTTT
ATGACGAGGCTAAGGACGAGCGCAGAGGCAGCAATCTGTTAATTAGCGCGGACGATAACATTGAA
AATATCCAAGTGGTAAAGGTCGGCGAACTGGACAATCGTAAGCGTGGATACGCTGCCTTTGAATTT
GTACCAGGCACCTGTGACTACATGATCGTAGCAATCAAATCGAAGGAAATTGAAGACTCTACGGAA
AGCTATATCACAGTATTCGATATAAATGGCAACGTTCTTCTTGATGACCAAAAACTGGAGGGAAGCC
TCAAGTTTGAGGGTCTGTACTTTGTATGA 
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A.2 Vector diagram of pPICZα  

 
 
 

 

 
 
 
Figure A.1: pPICZα vector map  
Figure from EasySelect™ Pichia Expression Kit manual 2010 (Invitrogen, USA). 
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A.3 Apy-1 cloned into pPICZαA 

 

 

 

 

 

 
 

 
Figure A.2: Plasmid map of apy-1 cloned into the Pichia pastoris vector pPICZαA  
Figure created with SnapGene viewer. 
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A.4 Apy-3 cloned into pSSU  

 

 

 

 

 
 

 
 
 
Figure A.3: Plasmid map of apy-3 cloned into the Trypanosoma musculi vector pSSU 
Figure created with SnapGene viewer. 

 


