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Abstract 

The contour method is being increasingly utilised for characterising residual stresses in 

engineering components because it has the ability to measure a two-dimensional map of 

residual stresses on a plane of interest [1], it is not limited by the size or geometry of the 

component and is insensitive to microstructural variations. It involves carefully cutting a 

component into two halves and measuring the resulting deformation on the cut surfaces 

due to the relaxation of residual stresses. The measured deformation data is used to back 

calculate a map of the original residual stresses acting normal to the plane of the cut [2].  

Similar to other mechanical strain relief techniques the contour method is based on elastic 

relaxation of residual stresses and the cutting technique for material removal should not 

induce residual stress and plastic deformation. However, there is an assumption unique to 

the contour method and that is the width of the cut must be constant. Usually wire EDM is 

employed for cutting as it imposes minimal stress on the material. In practice, the stresses 

near the cut tip can cause a deviation from the cutting requirement, referred to as the bulge 

error or elastic bulging. These deformation errors can cause significant bias errors in the 

contour method stress results. The aim of this research is to understand how to control and 

correct deformation errors that occur during the cutting step of the technique to help to 

obtain accurate and reliable residual stress measurements made with the contour method.  

In the first part of this thesis the iterative FE based (2D) bulge correction procedure first 

published by Prime and Kastengren [3] is investigated and applied for a compact tension, 

C(T), cross-weld specimen that appeared to show bulge error in the residual stresses 

measured by the contour method [4]. The procedure is also extended to perform a more 

complex 3D bulge correction. A simpler procedure, which calculates directly the stress error 

due to bulge, has been developed and applied for the case study.  

Following this, numerical mode I  stress intensity factor (SIF) correlations were developed 

for a finite plate with a uniform far field tension loading in the plane stress and plane strain 

condition to improve the understanding of the factors that influence the bulge error. Then a 

new analytical solution based on the linear elastic fracture mechanics mode I SIF is 

developed and validated to replace the cumbersome iterative FE procedure to estimate the 

bulge error. This solution is used to develop a set of stress error correlations for periodic 

cosine stress functions to predict the magnitude of stress errors due to bulging in contour 

method measurements. Finally, a set of guidelines are developed to assist practitioners of 

the contour method to decide on a suitable approach to correct for the bulge error.   
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Chapter 1: Introduction 

Residual stress is that which remains in a body that is stationary and at equilibrium with its 

surroundings (in the absence of external forces) [5]. These stresses are generated during 

most manufacturing processes involving material deformation, heat treatment, machining 

or processing operations that transform the shape or change the properties of a material 

[6]. The contribution of the residual stresses can be beneficial or harmful, dependent on the 

sign (i.e. tensile or compressive) and location of the residual stresses [1]. Accordingly, 

residual stress analysis is a compulsory stage in the design of parts and structural elements 

and in the estimation of their reliability under real service conditions [6]. However, the 

processes that bring about residual stresses are often complex and analytical predictions 

only provide approximate solutions of the residual stress magnitude and distribution. 

Numerical analyses have been increasingly employed to predict residual stress in 

engineering structures but the reliability of the results is highly dependent on the 

assumptions which have to be made. Therefore, experimental methods have become 

important to measure these stresses and validate analytical and numerical predictions. 

There are many different methods available for measuring residual stresses in different 

types of components have been developed [6].  Mechanical stress relaxation methods rely 

on the measurement of deformations due to the release of residual stresses upon removal 

of material from the specimen [6]. The contour method is one such technique, first published 

in detail in 2000 [2], which is appealing because provides high resolution maps of the 

residual stress distribution normal to a plane of interest [1] and can be applied with 

equipment that is generally available in workshops and inspection laboratories. The method 

is also not limited by the specimen size and geometry. And unlike diffraction techniques, 

the contour method is not sensitive to microstructural variations. Although the contour 

method has many advantages, it is the youngest technique to measure residual stresses 

and needs further development to deal with potential sources of error and uncertainties in 

the assumptions to implement the technique [1]. 

The experimental procedure involves cutting through the specimen cross-section using wire 

Electric Discharge Machining (EDM) and measuring the surface height profiles of the cut 

surfaces using a coordinate measuring machine or a laser profilometer [1]. Finite element 

modelling is then used to determine the normal stresses required to restore the deformed 

cut surface shape back to its original flat shape [2]. This requires the assumption that a 

precisely flat cut is created when sectioning the component. However, assuming a flat cut 
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is overly restrictive and the fundamental assumption for the contour method is that the cut 

removes a constant width of material thereby creating a fixed slot width when measured 

relative to the original state of the body [3]. A deviation from this occurs during cutting, the 

stresses within the remaining material will redistribute to maintain interior equilibrium [1] and 

results in a stress concentration at the cut tip that elastically deforms, i.e. stretches or 

contracts, the material at the cut tip. Since the physical cut width is fixed by the EDM wire 

size, this causes the width of material removed to vary along the cut length which creates 

slot width errors. This error, also referred to as the ‘bulge error’ [3], can cause significant 

bias in the contour method results if not dealt with [3].  

This PhD project was undertaken to understand the origins and influence of the slot width 

error in residual stress measurements made with the contour method. The novel numerical 

and analytical approaches proposed in this thesis have the potential to simplify correcting 

contour measurements for the slot width error, thereby helping to improve the accuracy and 

reliability of residual stress measurements. 

1.1 Outline of the thesis 

The layout of the thesis is as follows:  

Chapter two provides an overview of the characteristics of residual stresses and the 

available techniques for measuring residual stresses. The contour method measurement 

technique is described and the sources of cutting errors are outlined. The published 

literature on the deformation errors in the contour method is reviewed as this is the main 

focus of this research. As the cutting process in the contour method can be seen as a slow-

moving blunt crack, the stress intensity factor is introduced based on linear elastic fracture 

mechanics to characterise the stresses and displacements at the crack tip. Finally, the main 

aims and methodologies in this research are set out. 

In Chapter 3 the proposed bulge correction procedure is carefully studied to correct contour 

method residual stress measurements. The capability of the procedure to correct complex 

(varying) stress distributions is evaluated by using two-dimensional and three-dimensional 

FE modelling. The case study was a stainless steel (Esshete 1250) compact tension, C(T), 

welded specimen where residual stresses had been previously measured using neutron 

diffraction, incremental slitting and the contour method [4]. From this work an alternative 

method is proposed and applied to calculate the corrected stresses which simplifies the 

time-consuming procedure to correct for the bulge error in contour measurements. 
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One of the main aims of this research is to understand the fundamental theory of the bulge 

error to determine when it arises. Chapter 4 starts with a proof of the hypothesis that the 

bulge error is dependent on the stress concentration at the cut tip using the stress intensity 

factor. Then a new analytical solution to calculate the bulge displacement is presented 

based on fracture mechanics crack tip displacement field equations. The new approach is 

then validated with numerical predictions of the bulge error using 2D and 3D models 

subjected to idealised stress distributions and real residual stress measurements made with 

the contour method. 

The contour method technique is appealing because it is simple to implement but the need 

to correct residual stress measurements for the bulge error may be a drawback. For that 

reason, Chapter 5 investigates possible correlations between the stress error due to bulging 

and the stress intensity factor parameter to predict the level of stress error associated with 

the bulge in contour measurements. The aim of this work is to determine the magnitude of 

the bulge error in contour method stress results to enable the practitioner to decide whether 

to correct for it. 

In Chapter 6 the current and new proposed approaches to estimate and correct contour 

measurements for the bulge error are discussed and guidelines are provided. Finally, the 

main conclusions and suggestions for future work throughout this research is presented in 

Chapter 7. 
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Chapter 2: Literature review 

Residual stresses can be beneficial or detrimental to the performance of a material or the 

life of a component. Consequently, it is important to have reliable methods for the 

measurement of these stresses and to understand the level of information they can provide 

[5]. There are several residual stress measurement techniques that have different spatial 

resolution and penetration capabilities [1]. The main focus of this research is the contour 

method technique. 

This chapter provides an overview of the origin and types of residual stresses and the three 

categories of residual stress measurement techniques (non-destructive, destructive and 

semi-destructive). Then a detailed description of the contour method theory, assumptions 

and experimental procedures is presented and the advantages of the contour method are 

discussed. Followed by a summary of the cutting errors in the contour method and a review 

of the two deformation errors which is the main focus of this research, that is plasticity and 

bulging or “varying cut width”. The current published literature on correcting for deformation 

errors in the contour method is reviewed and the steps of the iterative finite element 

procedure proposed by Prime and Kastengren [3] to correct contour measurements for the 

bulge error is established. Then the basic linear elastic fracture mechanics concepts are 

introduced and the available methods to estimate the stress intensity factor are considered. 

Finally, the needs and gaps in the contour method are identified and the individual aims and 

methodology for this research are outlined.  

2.1 Residual stresses 

Residual stresses are “locked-in” [7] stresses that exist in materials and structures, 

independent of the presence of any external loads. Residual stresses in a body originate 

from geometrical misfits [5] between different regions or phases in a material. These give 

rise to macro or micro stresses or both can be present in a component. Figure 2 - 1 shows 

different external load mechanisms and the expected profile of the induced residual 

stresses. The interaction between misfits and the restraint of the surrounding material 

determines the magnitude of residual stresses induced and their length scales [5].  

The mechanical properties of materials and structural components, such as fatigue life and 

corrosion resistance, can be considerably influenced by the presence of residual stresses 

[7]. These stresses can enhance the strength of a material or cause premature failure, 

depending on the sign and location of the residual stresses [1]. The presence of tensile 
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residual stresses is generally harmful since they can cause fatigue failure and stress 

corrosion cracking [8]. Welding is an example of a manufacturing process that produces 

harmful tensile stresses and these stresses usually show very steep residual stress to 

distance gradients [9]. They are commonly relaxed by stress relief annealing and post-weld 

heat treatments (PWHT) are routinely applied to welds in safety critical plant [10]. One of 

the most effective means of prolonging the fatigue life of a component is by placing the 

surface in residual in-plane compression. Most commonly this is achieved by the 

introduction of plasticity local to the surface region [10] by techniques such as shot peening, 

laser peening, water-jet peening, ultrasonic peening and roller burnishing. In shot peening, 

the surface is repeatedly impacted by hard millimetre sized ‘shot’ [10]. Whereas the laser 

peening process offers a much deeper peened surface, whereby the workpiece surface is 

subjected to planar laser shocks (pulses) from high-powered lasers [11]. In water-jet 

peening a water jet at high pressures impinges on the surface of the workpiece, inducing 

compressive residual stresses and surface hardening at the same level as in shot peening 

[12]. Ultrasonic peening process uses a hand tool based on a piezoelectric transducer [13]. 

In the roller burnishing process, also called surface rolling, the surface is cold worked by a 

hard and highly polished roller or set of rollers [14]. The ability to measure residual stresses 

is important in understanding material failure and to predict the life of engineering structures. 

 

Figure 2 - 1: Ways in which macro and micro residual stresses are created in materials from 

engineering processes [5]. 
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2.2 Types of residual stresses 

Residual stresses are characterised by the length scale over which they self-equilibrate [5]. 

Figure 2 - 2 illustrates the types of residual stresses and how they equilibrate over different 

length scales. Type I or macro stresses are in equilibrium over the entire cross section of a 

component, type II or intergranular stresses are in equilibrium over a single grain or several 

grains and type III stresses are in equilibrium at a scale smaller than a grain size at the 

subatomic scale. Macro stresses can typically arise through the interaction between mis 

fitting parts within an assembly, and through generation of chemical, thermal, and plastically 

induced misfits between different regions within one part [15]. This is in contrast to 

intergranular stresses which typically arise in multi-phase materials due to the 

incompatibility between different grains, for example from differences in slip behaviour [10], 

and the subatomic stresses which usually arise from crystal defects such as dislocations.  

Type II and III stresses have zero resultant force over the measurement volumes that macro 

residual stresses can be measured and therefore have negligible influence on longer length 

scale stresses. However, the occurrence of many misfits of a shorter scale may have a 

cumulative effect such that they give rise to stresses at a longer scale. For example, the 

cumulative presence of many geometrically necessary dislocations can give rise to plastic 

strain gradients and thereby macroscale misfits and stresses of type I [10]. In the structural 

integrity assessment of engineering components attention is focused on type I macro 

stresses [5], therefore it is this type of residual stress which is of interest in this research 

and is referred to throughout this thesis. 

 

Figure 2 - 2: Categorisation of residual stresses according to length scales [16]. 
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2.3 Residual stress measurement techniques 

Experimental techniques to measure residual stresses that develop within engineering 

components are essential to validate analytical or numerical predictions. In practice, 

residual stresses cannot be measured directly [17], instead techniques such as mechanical 

stress-relaxation methods or diffraction methods, measure fundamental quantities, such as 

elastic strain or displacement, that can be related to stress. Residual stress measurement 

techniques are generally classified as destructive, semi-destructive or non-destructive. 

When developing a stress measurement strategy, it is imperative that techniques are 

chosen which are sensitive to the relevant length scale (macroscopic or microscopic) and 

that sensitivities to shorter length scales do not affect the reliability of the measurements 

[18]. In effect, residual stresses are three dimensional and may have large stress gradients 

to maintain equilibrium conditions, therefore it is important to consider the required spatial 

resolution and the depth over which they can penetrate. Figure 2 - 3 shows the penetration 

capabilities versus spatial resolution of different measurement techniques, along with 

measurement speed and cost [1]. 

There is a wide variety of techniques available for measurement of residual stresses [19]. 

Non-destructive measurement techniques involve measurement of stress by diffraction or 

some other properties, such as ultrasonic waves or magnetism. The non-destructive 

residual stress measurement methods have the obvious advantage of specimen 

preservation, and they are particularly useful for production quality control and for 

measurement of valuable specimens. The most commonly used non-destructive diffraction 

techniques include neutron diffraction, synchrotron diffraction and x-ray diffraction. The 

destructive and semi destructive residual stresses measurement methods use mechanical 

stress-relaxing methods, that is, the strain or deformation is measured as a result of stress 

relaxation when material is removed [6]. Generally, they require much fewer specific 

calibrations because they measure fundamental quantities such as displacements or 

strains, thus giving them a wide range of application [7]. The semi-destructive techniques 

remove only a small amount of material from a component leaving its overall structural 

integrity intact for further testing, repair and/or use. The most commonly used semi-

destructive techniques include conventional hole drilling, incremental hole drilling, ring core 

method and the deep hole method, while the destructive techniques include slitting (crack 

compliance) method, layer removal and the contour method. Table A - 1 in the Appendix A 

provides a summary of the advantages and disadvantages of the most commonly used 

residual stress measurement techniques.  
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In the remainder of this section the destructive and non-destructive techniques used to 

validate the bulge error studies throughout this work, that is slitting, contour method and 

neutron diffraction, are discussed.  Since the contour method is a main subject of this 

research, the method will be described in more detail in sections 2.4 to 2.7. 

 

Figure 2 - 3: Measurement penetration vs. spatial resolution for various residual stress 

measurement methods [1]. Courtesy of Michael Fitzpatrick, Open University, UK 

2.3.1 Destructive methods 

Destructive or relaxation methods [5, 19] involve the removal of stressed material, allowing 

the residual stresses in the material to relax and redistribute which produces localized 

distortion. The distortion is measured experimentally as strain or displacement and used to 

back calculate the original stresses in the material. These techniques are preferred because 

they can penetrate deeper in thick components and are not sensitive to microstructural 

variations. In addition, they are applied with commonly available equipment, such as strain 

gauges or conventional machining [20]. However, the cutting process used should not 

introduce plasticity or heat, so that the original residual stress can be measured without the 

influence of plasticity effects on the cutting planes’ surface.  

Slitting Method 

The slitting method [1, 20] involves incrementally cutting a slot into a component which 

releases the residual stress at the cut face and deforms the part. The resulting strains are 

measured as a function of slot depth using surface strain gauges and used to solve for the 
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distribution of stresses along the cut surface. In typical practice for metallic materials, the 

slit is cut using a wire electric discharge machine [1]. Strain gauges attached on the top 

surface shown in Figure 2 - 4, are used for near surface stress measurements, whereas 

strains recorded on the back face can measure stresses all the way through the thickness.  

The residual stress is computed from the measured strains through a linear system called 

the compliance matrix, which is determined from finite element analysis, for example [1]. 

The technique is capable of measuring a single in-plane normal component of residual 

stress through the thickness of a material [1]. Limitations of the slitting technique are its 

destructive nature as well as the fact that residual stresses are averaged over the cut width, 

so this needs to be considered when choosing the cutting variables. The spatial resolution 

is inherently limited by the distance between the strain measurement and the location of the 

desired interior stresses. To resolve stress variations over a distance of say 1 mm, you must 

make cuts with increments of less than 1 mm. However, just making cuts in finer depth 

increments is not necessarily sufficient [20]. While this method can be used for a wide range 

of materials, the sub-millimetre spatial resolution cannot be matched [6] compared to 

diffraction techniques. Furthermore, the slitting method cannot determine the stresses over 

the last few percent of the specimen thickness because the weight of the specimen and 

yielding will affect the strain readings. However, one benefit of the slitting method is when 

the stress intensity factor (SIF) is of interest, then this method can calculate the SIF directly 

and precisely without prior knowledge of the residual stresses [21]. 

 

Figure 2 - 4: Slitting method coordinate system and terminology [20]. 

2.3.2 Non-destructive methods 

Neutron, X-ray and synchrotron diffraction involve directing a beam of a specific wavelength 

on the sample material containing residual stresses and measuring the angular distribution 

of the diffracted beam from the material [1]. X-ray diffraction can measure residual stresses 
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very near the surface of the specimen, whereas neutron and synchrotron diffraction have 

the advantage that they can measure residual stress with depths of a few centimetres. 

These techniques provide the average stress over a small gauge volume (1 to 2 mm3) and 

are therefore useful for measuring stress gradients. However, the accuracy of diffraction 

techniques is greatly affected by the grain size and texture and require careful surface 

preparation. 

Neutron Diffraction 

The diffraction technique, including neutron diffraction, is based on Bragg’s Law (see Figure 

2 - 5) which relates the atomic lattice spacing for crystallographic planes to a particular 

angle at which the peak of these planes are observed [22]. The Bragg relationship can be 

generalised in Equation 2 – 1 to apply to multiple different crystal planes, 

nλ=2 𝑑ℎ𝑘𝑙 sin𝜃ℎ𝑘𝑙        Eqn. 2 - 1 

where the subscripts (hkl) are the Miller indices that define the crystallographic planes. 𝜃ℎ𝑘𝑙 

is the Bragg scattering angle,  𝑑ℎ𝑘𝑙 is the atomic lattice spacing, λ is the radiation wavelength 

and n is a positive integer. 

 

Figure 2 - 5: Radiation diffraction within a crystal structure d = spacing between lattice 

planes, θ = Bragg angle, and λ = wavelength of the radiation [1]. 

Residual stress measurement by the neutron diffraction technique involves performing a 

lattice parameter measurement for both stressed and stress-free material, followed by data 

analysis for diffraction peak fitting and strain-stress calculations.  

The accuracy of the neutron diffraction residual strain calculations is highly dependent on 

obtaining reliable measurement of a stress-free reference material (d0) specially on effect 
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of microstructure. The reference samples may have the form of thin plates, combs or small 

cubes cut with the expectation that the stress normal to the surface in a thin section is zero 

[23].  

The lattice parameter (d-spacing) can be determined by two methods, monochromatic 2𝜃 

strain scanning and the time of flight technique [5, 22]. The monochromatic 2θ strain 

scanning technique is commonly found at a reactor source. Since the technique is based 

on a monochromatic (i.e. single wavelength) neutron beam , Equation 2 – 1 can be 

differentiated to Equation 2 – 2 which can be applied for strain calculation. 

ε= 
𝑑− 𝑑0

𝑑0
= 

∆𝑑

𝑑0
 = - cotθ Δθ        Eqn. 2 - 2 

where ∆𝑑 is the change in lattice spacing and 𝑑0 is the stress-free lattice spacing. 

The residual strains can then be converted into stresses by using the material’s diffraction 

elastic constants (such as bulk Young’s modulus and Poisson’s ratio of isotropic materials) 

and by applying the classical Hooke’s law in Equation 2 – 3. 

𝜎𝑥𝑥 =
𝐸

(1+𝜈)(1−2𝜈)
[(1 − 𝜈)𝜀𝑥𝑥 + 𝜈(𝜀𝑦𝑦 + 𝜀𝑧𝑧)]  

𝜎𝑦𝑦 =
𝐸

(1+𝜈)(1−2𝜈)
[(1 − 𝜈)𝜀𝑦𝑦 + 𝜈(𝜀𝑥𝑥 + 𝜀𝑧𝑧)]     Eqn. 2 - 3 

𝜎𝑧𝑧 =
𝐸

(1+𝜈)(1−2𝜈)
[(1 − 𝜈)𝜀𝑧𝑧 + 𝜈(𝜀𝑥𝑥 + 𝜀𝑦𝑦)]  

were 𝜎𝑥𝑥 is the relevant stress direction and 𝐸 and 𝜈 are the crystallographic Young’s 

modulus and Poisson’s ratio, respectively. 

Neutron diffraction has the advantage that it can measure bulk residual stresses for up to 

100 mm in aluminium or 25 mm in steel [1]. With high spatial resolution, the neutron 

diffraction method can provide complete three-dimensional maps of the residual stresses in 

material [6]. An important complication in the application of neutron diffraction is the 

introduction of apparent strains when internal or external surfaces are encountered. This 

arises because of shifts in the centre of gravity of the diffracting volume when it is only 

partially filled [5]. Also, compared to other diffraction technique such as X-ray diffraction, the 

relative cost of application of neutron diffraction method, is much higher, mainly because of 

the equipment cost. It is too expensive to be used for routine process quality control in 

engineering applications [6]. 
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2.4 The contour method 

The contour method, first published by Mike Prime in 2000 [2], is unique in its ability to 

measure a 2-D cross-sectional map of residual stresses on a plane of interest [1]. In its 

application, a specimen is cut into two halves and residual stresses in the part are allowed 

to relax causing the cut surfaces to distort. The cut surface profile (contour) is then 

measured and used to back calculate the 2-D map of original residual stresses normal to 

the plane of the cut [1].  

In this section the ideal theory of the contour method and assumptions required for practical 

implementation are presented. The steps of the experimental procedure of the contour 

method is discussed in the next section. 

2.4.1 Theory of the contour method 

The theory of the contour method is based on a variation of Bueckner’s elastic superposition 

principle [24] as shown in Figure 2 - 6. 

 

Figure 2 - 6: Superposition principle to calculate residual stresses in the contour method 

[25]. 

Step A represents the undisturbed part containing residual stresses. In step B, the part has 

been cut in two halves on the plane x = 0 and the cut surface has deformed due to the 

relaxing residual stresses along the cut plane. In step C, the deformed cut surface is forced 

back to its original shape and the resulting change in stress is determined [1]. 
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Superimposing the stress state in B with the change in stress from C gives the original 

residual stresses throughout the part [2]. Therefore, 

σA(x,y,z) = σB(x,y,z) + σC(x,y,z)      Eqn. 2 - 4 

where σ refers to the entire stress tensor and the superscripts refer to the various steps of 

Figure 2 - 6. 

However, the remaining stresses throughout the part in step B is unknown, but the normal 

and shear stresses on the cut surface (σx, τxy and τxz) must be zero to satisfy the free surface 

boundary condition. 

σx
(B)

(0, y, z) = 0 

Therefore, step C by itself will give the correct original stress distribution (σx) along the plane 

of the cut in step A [25]. 

σx
(A)

(0,y,z) = σx
(C)

(0,y,z)        Eqn. 2 - 5 

2.4.2 Assumptions and approximations 

The three main assumptions for the practical application of the superposition principle are: 

• The material behaves elastically during stress relaxation. 

• The material removal process does not introduce significant stresses that affect 

the measured displacements. 

• The width of the cut is constant, when measured relative to the state of the body 

prior to cutting. 

The first two assumptions are common to most mechanical stress relaxation techniques but 

the third assumption is unique to the contour method.  

From a theoretical point of view, the superposition principle can determine the full stress 

tensor on the cut surface. But because practically one can only measure out of plane 

deformations, shear stresses cannot be measured. However, this is not going to have 

effects on normal stress measurement because the FE calculation also correctly reveals 

how the shear stress component has changed in step C [26]. The effect of shear stress on 

the surface deformation can be evaluated by considering the surface tractions equivalent 
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to the releasing stresses on the cut plane as shown in Figure 2 - 7. The normal traction, Tx, 

is symmetric with respect to the cut plane, whereas the transverse traction, Ty, is 

antisymmetric [2]. Averaging the contours of the two halves removes the transverse shear 

stress effect to uniquely provide information about the normal stresses. This is a necessary 

step for the correct implementation of the contour method. It is worth noting that if one could 

measure in-plane displacements on the cut surface, the superposition theory would be 

complete [1]. 

 

Figure 2 - 7: Surface tractions equivalent to releasing residual stress on the cut surface [2]. 

Averaging requires the assumption that the cut occurs on a symmetric plane were the 

material stiffness is the same on both sides of the cut. This assumption is satisfied for 

homogenous materials that are cut precisely in half but challenges exist for dissimilar 

materials and making asymmetric cuts. However, in practice, the part only needs to be 

symmetric about the cut within the region where the stress release has a significant effect. 

The length of this region is about 1.5 times the Saint Venant’s characteristic distance, 

usually taken as the thickness of the component [3].  

One approximation to the theory is implemented to make the finite element analysis simpler. 

The component is initially modelled with a flat surface along the cut plane and the opposite 

of the measured deformations are applied as boundary conditions to force the surface into 

the deformed shape. Prime [2] showed that because the deformations are small for 

engineering components and the stress analysis is elastic and linear, this approximation will 

not have significant influence on the accuracy of the results. 

2.5 Experimental procedure of the contour method 

The four stages of the contour method include: (1) cutting the specimen into two halves, (2) 

measuring the out of plane surface deformations of the cut surfaces, (3) processing and 

smoothing the data and (4) back-calculating the residual stresses using finite element 
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analysis. This section describes the equipment necessary to implement the contour method 

and requirements for each step to ensure that accurate results are achieved. 

2.5.1 Specimen cutting 

Cutting the specimen into two halves is the most important step in the contour method, as 

all subsequent steps are dependent on the precise information from the cut surfaces after 

stress relaxation. The ideal cutting technique should produce a straight cut of minimal cut 

width and low surface roughness, not introduce significant stresses or recut surfaces that 

have already been cut and avoid local cutting irregularities. 

Wire electro-discharge machining (EDM) is the most effective cutting technique to satisfy 

the requirements for the contour method. This limits the application of the technique to 

metals and a few other materials that can be cut with EDM [1]. However recent studies have 

found other cutting methods to be effective to produce accurate contour cut, such as water-

jet cutting [27]. In wire EDM shown in Figure 2 - 8, a wire is electrically charged with respect 

to the workpiece, and spark erosion causes material removal. The best results for the quality 

of cut have been obtained using wire made of brass.  

Conventional EDM usually performs a rough cut followed by several finish cuts, however 

the contour method requires a single cut with good surface finish and accuracy. Therefore, 

“finishing or skim” cut settings in a single pass should be performed for contour cutting. The 

high temperature involved in wire EDM introduces a heat affected zone HAZ that contains 

a thin layer of recast [28], shown in Figure 2 - 9. When skim cuts are used, much less energy 

is applied to the surface which has negligible effect on the material properties [29], provides 

low surface roughness and greatly reduces the recast layer [28]. During cutting the spark 

erosion generally leaves a path slightly wider than the wire depending on the intensity of 

the spark energy. Also, the part is submerged in temperature controlled deionized water 

during cutting, which minimizes thermal effects [30].  

Since the cutting procedure for the contour method deviates from the conventional EDM 

cutting technique, special consideration must be given when selecting the cutting wire size 

and operating parameters for each component. Using a smaller wire size (typically 100-

150µm) is favourable to remove minimum material, however this can result in undesirable 

wire breakage and long cutting times. Using a larger wire size (typically 200-250µm) and 

an orientation that minimises the wire contact length [1], will minimise the risk of wire 

breakage especially in the presence of defects.  
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An important practice, to ensure that the cut plane does not move during stress relaxation, 

is to clamp the specimen on both sides, preferably symmetrically, and as close to the cut 

as is practicable [31].  

The use of sacrificial layers is advisable when determining near-surface residual stresses 

with the contour method [32] and to minimize very-near-surface cutting irregularities along 

the perimeter of the cut [33]. Good practice guidelines are available in the literature on how 

best to cut the specimens for contour residual stress measurement [30]. 

 

Figure 2 - 8: Schematic drawing of a component being cut by wire electro-discharge 

machining [30]. 

 

Figure 2 - 9: Schematic drawing of the EDM process showing the moving wire, debris, re-

cast layer and HAZ [30]. 
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2.5.2 Surface contour measurement 

The contour method requires accurate measurement of the cut surface deformations and 

lateral location on the surface. Surface measurements in the contour method generally have 

a peak-to valley magnitude of approximately 10 to 100 µm [1] which requires the use of 

precision metrology equipment. Data about the deformation along the cut surface contours 

is gathered using a coordinate measurement machine or laser profilometer [1]. The most 

common technique for the contour method is a coordinate measurement machine (CMM) 

shown in Figure 2 - 10. A CMM is a commonly found device for measuring geometrical 

characteristics of an object with sub-micrometre precision. Measurements are defined by a 

probe, usually tactile or laser, attached to a moving axis of the machine and recorded using 

a mathematical grid form. For the contour method measurement process, both cut surfaces 

are measured using the same point locations. The CMM is usually programmed to measure 

the perimeter of the specimen first and then move across the cut surface to record the cut 

surface deformations.  

 

Figure 2 - 10:  Hybrid Coordinate Measurement Machine at the Open University. 

Tactile or touch probes generally have good resolution of 0.5 µm [30] and do not suffer from 

large quantities of background noise. Using a large probe diameter reduces the effect of the 

surface roughness on the measurement being taken. However, they do encounter problems 

close to the specimen edges and may also record false points (‘air-trigger’) when the force 

threshold is set too low [31]. Because the probe is in contact with the surface during 
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measurement, there is a risk that the specimen may be locally deformed by the contact 

force. The peak-to-valley amplitude of the contour method typically decreases as the stress 

magnitude or sample size decreases because the surface contour is a displacement not a 

strain. The laser CMM offers better resolution less than 0.1 µm [30] which is suitable for 

smaller specimens and specimens with low stress levels. The technique has quicker 

sampling times compared to touch probes. However, the measurements are often very 

noisy throughout and large data sets can be problematic and usually require some sort of 

reduction process. The method is also very sensitive to surface roughness and defects 

which can cause unwanted points to be recorded in the contour method [31] and the surface 

contour map can be uncertain near edges because, especially with noncontact scanners, it 

can be difficult to know exactly where the edge of the surface is. It is recommended that, 

for thin samples, the sacrificial layers be carefully removed before the contour measurement 

as the subsequent removal of the data from the sacrificial layers and the interface is 

challenging [32] . For high-precision measurements, temperature stability is important and 

the CMM is usually isolated from thermal fluctuations [1]. The component is left to reach the 

room temperature before performing the measurement. 

2.5.3 Data processing 

The measured data obtained from the cut surface is usually a combination of surface 

deformations due to the releasing stresses and noise from cutting artefacts or surface 

roughness caused by the EDM and inherent errors in the measurement process. Therefore, 

it is essential to process the measured data to minimize the errors and extract the underlying 

surface deformation that is purely due to the relaxation of residual stress. In the contour 

method the data is processed in several steps. At the Open University the data processing 

is done in MATLAB and the Spline Toolbox using specifically developed scripts [1]. This 

section gives a brief description of these steps. 

1. Aligning: As discussed in section 2.4.2, the measured data of the two cut halves needs 

to be averaged and this requires that they be on the same coordinate system. However, 

during the CMM measurement each cut half is measured in its own local coordinate 

system. To align the two sets shown in step (a) of Figure 2 - 11 so that the points 

correspond to each other, one surface is mirrored about the y-axis as shown in step (b), 

then one of the two data sets is reoriented by translating and rotating the coordinate 

system in the x–y plane as shown in step (c) [30]. The perimeter trace can be used to 

assist the alignment [1]. 
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Figure 2 - 11: Schematic of the different steps of the data alignment process. The black and 

red dots represent the perimeter and cut surface deformation data respectively [34]. 

2. Interpolating: After alignment, the grid point coordinates of the two surfaces might not 

be the same, due to lateral misalignment errors during the measurement process [26]. 

Also, the smoothing process requires that the data be on a rectangular grid. To resolve 

this, data sets are linearly interpolated to a common grid with approximately the same 

size density as the original data [26]. 

3. Extrapolating: For the subsequent finite element analysis, displacement information for 

all nodes on the cut surface must be applied including those regions on the perimeter 

of the cut surface [30]. However, the measurement process does not give accurate or 

complete displacement information at the perimeter and the missing data must be filled 

in by extrapolation. 

4. Averaging: It is a standard practice in the contour method to average the data of the two 

contour halves to remove the effects of the releasing shear stresses and some cutting 

artefacts. The data sets, now on a common grid, are averaged point by point to generate 

a single x, y data set used for further processing [30]. 

5. Cleaning: At this stage, the surface data can be plotted to identify and remove any 

obvious outliers from the overall surface. These may exist because of measurement or 

cutting irregularities, for example, the CMM probe slipping at the edge of the specimen, 

wire breakage during cutting or over burning of EDM at some foreign particle [30]. 

6. Flattening: It is necessary to calculate the zero position for the out-of-plane 

measurement direction because the reference plane for the surface contour is not 

clearly defined from the measurement process. This is done by taking an average of the 

whole data set, which is effectively placing the zero point in the middle of the data set 

[30]. 
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7. Smoothing: Different fitting methods can be used for smoothing and removing any noise 

in the data, such as fitting to a Fourier series, polynomial smoothing and bivariate spline 

fitting [26, 31]. It has been reported that the Fourier series method cannot always 

capture all the important features of a surface contour [26]. Spline fitting is currently the 

most widely used approach and is typically accomplished by fitting the displacements 

to a cubic spline (piecewise polynomial). The piecewise polynomials are joined at given 

locations called “knots” which define the domain of each polynomial. The main factor 

that determines the amount of smoothing is the knot spacing, which is the spacing 

between the points where the piecewise polynomials are joined as shown in Figure 2 - 

12.  

 

Figure 2 - 12: Construction of a spline - piecewise smooth combinations of polynomials [31]. 

Uncertainties in the smoothing process arise from using a too large knot spacing which may 

not accurately capture the features on the surface or a too small knot spacing which can 

capture noise in the data.  However, the amount of smoothing can be objectively chosen by 

minimizing the estimate of uncertainty in the calculated stresses. This is done by 

incrementally refining the knot spacing and calculating the stresses for each increment [26]. 

The standard deviation technique, equation 2 - 6, is then used to estimate the uncertainty 

between the new stress at a given node and the previous stress having coarser knot 

spacing. Then an average over the whole stress map is calculated by the root mean square 

of all the nodal uncertainty using equation 2 - 7.  The optimum smoothing is then achieved 

by minimising the uncertainty in the calculated stress [30]. 

∂σ(i,j)=
1

√2
[σ(i,j)-σ(i,j-1)]       Eqn. 2 - 6 
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where σ(i,j) is the stress at node i on the FE model cut surface for the smoothing spline 

solution designated j, and j-1 refers to the previous, coarser smoothing-spline solution. 

∂σ(j)=
1

√n
√∑ [∂σ(i,j)]2n

i=1        Eqn. 2 - 7 

where n is the number of FE nodes on the cut surface in the model. 

8. Evaluating the data for the FE model: To prepare the data for the subsequent finite 

element (FE) analysis, the z coordinates of the smoothed data are evaluated at the x, y 

locations of the nodes of the FE model and the sign of the deformations reversed. The 

final displacements are then written into the FE input deck as displacement boundary 

conditions [26]. 

2.5.4 Residual stresses back calculation 

Calculating the residual stresses in the contour method is possible to do analytically for 

simple rectangular geometries with homogenous material properties [35]. However, for 

most engineering components a numerical technique is required and finite element (FE) 

modelling using ABAQUS software is suitable. 

For the FE analysis, a 3D model of one half of the component is constructed to reveal the 

cross section of the cut plane. For simple geometries the perimeter trace from the CMM 

measurement is used to sketch the perimeter of the part and is then extruded in the third 

dimension to create the model. In general, detailed features of the part far from the 

measurement plane are unlikely to influence the stiffness properties at the cut region and 

can typically be ignored [1].  

Linear elastic material properties, that is, Young’s modulus and Poisson’s ratio, are then 

defined to represent the stiffness behaviour of the material under investigation. However, 

Bueckner’s principle and the contour method do not require any assumption that the 

material is elastically isotropic or homogeneous, only that the linear elastic behaviour is 

accurately reflected in the FE model used to calculate stress [1]. Therefore, for cases of 

heterogeneous elasticity, such as weld clad components or dissimilar welded alloys, it is 

important to apply the appropriate elastic properties for each material of the component. 

A mesh is then generated on the model using first or second order hexahedral elements 

and is usually bias for higher refinement at the measurement surface and near the edges. 

This can help to produce a converged solution in an efficient manner [1]. Three restraining 
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boundary conditions, shown in Figure 2 - 13, are applied at the measurement surface to 

prevent rigid body motion, that is, translation in the y and z directions [1]. The boundary 

conditions used are only translational BC’s and not rotational. Finally, a list of nodes and 

their coordinate positions on the measurement surface are generated and used to apply the 

smoothed and reversed displacements as boundary conditions. A linear elastic stress 

analysis is performed and the model is allowed to reach equilibrium. Information about the 

stresses normal to the cut surfaces at each node on the measurement surface is the result 

for the contour method and represents the residual stresses that were originally on the cut 

plane prior to cutting. 

 

Figure 2 - 13: Additional constraints to prevent rigid body motion [2]. 

2.5.5 Contour method versus common measurement techniques 

The contour method has the ability to provide a 2D map of residual stresses through the 

cross section of a component. The only methods that can measure similar 2D stress maps 

are neutron diffraction and sectioning methods but these have significant limitations [2]. The 

contour technique is relatively simple and can be applied with equipment that is generally 

available in workshops and inspection laboratories [2]. Another advantage is that the 

residual stresses can be obtained directly from localized deformations on the cut surface, 

therefore no inverse procedure or assumptions about the stress variations are necessary 

[2]. While the conventional contour method can determine one component of residual stress 

(i.e. normal to the cut plane), several approaches have been developed to access multiple 

stress components, such as application of the eigenstrain theory [36-38], the multiple cuts 

contour method which allows for stress components to be determined on different cross 

sections of the part [39-41] and the surface superposition contour method which makes use 

of additional measurement techniques, namely X-ray diffraction and hole-drilling, to 

determine the remaining surface stresses [42-45].  
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The contour method has proven useful for studying various manufacturing processes such 

as bent beams [2], quenched steel [46-48], impacted plates [49, 50] and more recently 

additive manufacturing [51, 52]. One particular advantage compared with diffraction 

techniques is for measuring welding residual stresses as it is insensitive to microstructural 

variations [53-55]. The method has been used to achieve 2D stress maps in specimens with 

different welding methods including arc welding [56, 57], variable-polarity plasma-arc 

welding [58, 59], friction welding [60-63], and electron beam welding [64-67].  

The contour measurement method has been validated with several other measurement 

techniques [68-70] and compares well with the conventional and more established methods 

of neutron and synchrotron x-ray diffraction [31]. It is also a powerful tool for informing and 

validating FE-based weld residual stress analyses [6, 71]. The contour method generally 

shows good agreement with diffraction techniques for non-welded specimens such as 

railway rails [72], laser deposited Waspaloy [73] and laser peened plates [44, 74]. Some 

contour measurements can show poor agreement with diffraction techniques for materials 

with severe microstructural gradients in the weld regions [31, 75, 76] or in the heat affected 

zone [77], but diffraction techniques can have issues to obtain reliable d0 measurements for 

welds [78]. Also, high stress gradients [64, 79] and localized stress fields found in weld 

specimens can be difficult to resolve using the contour method [80]. Although contour weld 

residual stress results still show good agreement with diffraction techniques considering the 

problem of innate scatter in multiple measurements [81, 82]. The method shows good 

agreement with diffraction techniques for measuring complicated geometries [83-85] and 

novel approaches have been developed to obtain excellent agreement for bearing rings [86] 

and welded cylinders [31, 45]. 

The contour method can be used to measure residual stresses in large components [45, 

87, 88]. There are some difficulties for thin samples which are very sensitive to data analysis 

parameters [32, 89]. High resolution measurements can be performed with the contour 

method if careful measures are taken [6, 30], however performing measurements on parts 

smaller than 5 mm by 5 mm in cross-section requires extreme precision [1].  

One limitation of the method is that near-surface residual stresses are challenging to obtain 

owing to cutting and measurement artefacts as well as the challenge of accurately 

measuring surface deformations near the edges of the cut surfaces [3, 90]. However, 

reliable near-surface residual stress measurements are possible with careful work on 

contour measurements as shown for laser peened plates [44, 74, 89] and electron-beam 

welded specimens [91]. Some contour measurement errors are caused by cutting 
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difficulties, for example wire breakage can lead to re-cut surfaces in welded specimens [92], 

incorrect EDM wire selection for case hardened disks [93], edge effects such as the 

barrelling shape in friction stir welded parts [61] or artefacts on the cut surface for non-

uniform cross-sections [86] or dissimilar metal specimens [66]. Contour method results are 

also influenced by post-processing procedures [94] and over-smoothing the contour data 

can result in under-measured peak stresses [66, 95] or less variation in the results [96], 

particularly for weld specimens.  

Two systematic errors which can cause significant measurement inaccuracies are plasticity 

and/or bulge error, discussed in more detail in section 2.7. These errors manifests as 

reduced magnitude stresses and a phase shift in the results obtained from the contour 

method [17, 97]. Plasticity errors are possible for measurements of very high magnitude 

stresses often found in welding and surface treatment processes [62, 70, 98, 99] and bulge 

error can occur when specimens are only clamped on one side for simultaneous slitting and 

contour measurements [4, 100]. For example, Figure 2 - 14 shows the longitudinal stresses 

on a through wall line, identified as line BD, at the centre of an austenitic three-pass slot 

welded plate [70] measured using the contour method, incremental deep hole drilling 

technique and several diffraction-based measurements. The first contour method 

measurement, on specimen 2-1B, clearly deviates from the other measurement results. The 

authors attributed this to occurrence of plasticity during the measurement. Plasticity error is 

plausible since high magnitude residual stresses were present and the asymmetric and 

lower than expected peak stresses measured by the contour method are features 

suggesting that significant plasticity has occurred during cutting. The second measurement 

was optimised to minimise cut plasticity (using a novel embedded cutting strategy [101]) 

and achieved extremely good agreement with the diffraction consensus [102]. Similar lower 

than expected peak stresses were observed in contour method residual stress 

measurements in a ferritic weld bead-on-plate sample [103], when compared with the 

results from neutron diffraction, see Figure 2 - 15. At – 4 mm from the weld centre line the 

peak stress from the contour method of 350 MPa is substantially lower than the neutron 

peak of 450 MPa [103]. The reduced tensile stresses measured by the contour method 

were related to the onset of local tensile plasticity at the weld centre line, despite the special 

measures taken to minimise plasticity effects (embedded cutting configuration, symmetric 

clamping and using a large diameter EDM wire). That being the case, bulge error could also 

be present in the contour method results.  

Prime et al. [3] examined the bulge error on a bent beam specimen with a low magnitude 

(< 150 MPa) residual stress profile where the initial stress results measured by the contour 
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method showed both a reduced peak stress magnitude and a spatial shift of the peaks 

compared with the stresses predicted in the bend test, see Figure 2 - 25. A novel FEM 

procedure, discussed in detail in section 2.7.3, was applied to correct for bulge error and 

the revised contour method results were in closer agreement with the bend test prediction. 

For specimens that are only clamped on one-side, the main feature is an apparent shift in 

the location of the peak stress region. For example, Traore et al. [4] examined the 

transverse residual stresses in an Esshete 1250 C(T) specimen containing an electron 

beam weld by neutron diffraction, slitting, and the contour method, shown in Figure 2 - 16, 

where the results are shown at mid-thickness of the specimen. A shift in the stress profile 

measured by the contour method under asymmetric clamping arrangement can be seen. 

The possible sources of error in the contour method technique was explained by 

development of compressive plasticity during cutting associated with the lack of restraint 

applied to the specimen during the measurement or wire cutting artefacts which were 

observed at a cut depth of about 5 mm [34]. The potential significance of cutting plasticity 

on the accuracy of the slitting stresses was assessed [34] and estimated to be about 15 % 

for the parent material and 2 % in the region of the electron beam weld. Nonetheless, the 

one-sided clamping will make for a larger bulge error and correcting for this systematic error 

in contour method measurements will give more reliable comparison with independent 

techniques.  

 

Figure 2 - 14: Comparison of measured longitudinal stresses on line BD using strain-relief 

methods with diffraction-based best estimates. Best estimate (with symbols and lines) and 

± 1 sd (lines) shown in yellow [70]. 



Chapter 2: Literature review 

26 

 

 

Figure 2 - 15: Photograph of the 20 mm thick weld bead-on-plate specimen showing the 

holes for clamping and the location of the contour cut (a). In (b) the measured longitudinal 

contour results at 17.5 mm from the plate back face are compared with neutron diffraction 

measurements (made on one side of the plate and mirrored about the weld centre-line) 

[104]. 

 

Figure 2 - 16: Schematic drawing/photograph showing the 16 mm thick compact tension 

specimen blank studied, with the measurement line marked up. In (b) transverse residual 

stresses measured by the contour method are compared with neutron diffraction results at 

mid-thickness and slitting results (averaged over the thickness) [104]. 

Repeatability studies have demonstrated that the contour method is in reasonable 

agreement with that found in other residual stress repeatability studies [105]. The 

repeatability of results obtained from the contour method performed for a range of 

specimens was found to be relatively good in the specimen interior but poor along the 

perimeter [106, 107]. For instance the repeatability standard deviations over much of the 

cross section ranged from 5 MPa for an aluminium T-section to 25 MPa for a nickel disk 

forging [107]. In another study of a stainless steel plate containing a weld, the repeatability 

standard deviation was under 20 MPa over a large portion of the cross-section, but was 
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near 30 MPa in the weld region [108]. A method to estimate the uncertainties in contour 

stress results caused by the noise in the measured displacement surface (displacement 

error) and smoothing used in the data processing (model error) has been proposed [26, 

109]. The uncertainty estimator shows the contour method to have larger uncertainty near 

the perimeter of the measurement plane [109]. For example the uncertainty due to the post-

processing procedure in a bent notched specimen was about 55 MPa at the edges and 20 

MPa in the rest of the specimen [94]. The average uncertainty based on the model error 

described above was 41 MPa for the contour method results for a 2 mm thick aluminium 

alloy laser peened plate but was significantly lower, only 10 MPa, for a 28 mm thick laser-

peened aluminium alloy sample [89]. The stress uncertainty estimated considering both 

errors for contour measurements in an 80 mm thick weld was about ±30 MPa [76] and at 

least ± 50 MPa for the rings of a through hardened inner bearing race [86]. 

Nevertheless, the contour method is the youngest technique to measure residual stresses 

and there are some challenges to improve the accuracy and reliability of the measurement 

results. In the next section the cutting errors in the method are discussed. 

2.6 Cutting errors in the contour method 

As with any measurement process, errors and uncertainties exist due to limitations and 

inaccuracies in implementation of the technique. In the contour method, errors occur at all 

stages: cutting the specimen, measuring the cut surfaces, processing the data and 

calculating the stresses. These errors will accumulate during the different stages but a 

number of good practices have been established to minimize these errors during each step 

of the process [3, 30, 31]. Nonetheless, cutting errors are the most significant as all 

subsequent processes are dependent on the quality of the cut surface. This section focuses 

on sources of cutting errors and ways to minimise these errors in the contour method. Bulge 

errors, which is the main subject of this research, is described in detail in section 2.7.2. 

Cutting errors in the contour method can be characterised by their effect on the cut surfaces, 

namely anti-symmetric and symmetric effects. Figure 2 - 17 provides a summary of cutting 

error sources and methods that have been successfully applied to correct for these errors 

in the contour method. 
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Figure 2 - 17: Summary of cutting error sources and correction methods in the contour 

method. 

2.6.1 Anti-symmetric errors 

Anti-symmetric errors are usually from the release of shear stresses, warped cut paths or 

when the part is only clamped on one side or clamped non-symmetrically during cutting [3]. 

These effects form opposite features on the two cut surfaces as shown in Figure 2 - 18 and 

are consequently removed by averaging the cut two halves. The effect of a wandering cut 

i.e. crooked cut, is shown in Figure 2 - 19. 

 

Figure 2 - 18: Asymmetric contours after cutting and effect of averaging [3]. 
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Figure 2 - 19: The effect of a crooked cut removed by averaging the two contour surfaces 

[3]. 

2.6.2 Symmetric errors 

The elastic relaxation of normal stress causes symmetric deformations on the cut surfaces. 

It is these symmetric features that have to be measured and used to back calculate the 

stresses in the contour method. However, there are sources of errors that could cause 

symmetric features on the cut surfaces. These sources of errors are either dependent or 

independent on the stress state in the material. 

Stress independent errors 

Stress independent errors are caused by local cutting irregularities. These errors originate 

from surface roughness, wire entry and exit artefacts (such as flared edges), bowed 

surfaces, wire breakages or hot-spots [83], varying cut width for components with different 

materials or thickness [3] etc. These effects are usually small and are removed when 

smoothing the measured deformation data [3]. However, topographic artefacts having a 

length-scale, across the cut plane, greater than the wire diameter are not removed when 

processing the data [110]. Other effects, such as wire vibration can be minimized by 

performing cutting trials to determine suitable wire EDM settings or estimated by making a 

cut in a stress-free material. For errors near the edges of the component, using sacrificial 

plates on the top and back faces of the component and at the start and end of the cut has 

been shown to reduce these effects [64, 83, 89]. 
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Stress dependent errors 

Stress dependant errors are caused by the changing stress state in the material at the cut 

tip as the cut proceeds and have effects that do not average away. These deformation 

errors can cause significant bias errors in the contour method residual stress results. Since 

the two resulting effects, namely plasticity and bulge errors, are the focus of this research 

they are explained in detail in the next section. 

2.7 Deformation errors in the contour method 

As previously explained, in practice, errors can be introduced from imperfect cutting and 

measurement processes. Some errors can be removed by processing the measured data 

or minimised by means of good cutting practices. But two errors that are difficult to predict, 

control or avoid are: plasticity and elastic bulging. Both are dependent on the continually 

changing stresses in the material during cutting. In this section plasticity and bulge effects 

are described and published work reviewed relating to the influence of these errors in the 

contour method. 

2.7.1 Plasticity induced errors  

The contour method, like other mechanical stress relaxation techniques, is based on the 

elastic relaxation of stresses by removing material. However, during the cutting process the 

magnitude of stress in the material may approach the material yield strength and plastic 

yielding can occur. The residual stresses are not allowed to relax completely and this would 

cause errors in the measured results. In the contour method, the cut created by wire EDM 

can be seen as a moving blunt crack which causes a redistribution of stresses in the material 

ahead of the cut. In the region around the cut tip a stress concentration develops which may 

cause high magnitude redistributed stresses that yield the material. The stress 

concentration at the cut tip depends on the cut length and magnitude of the stresses along 

the cut path [34, 101]. For this reason, welded components can be challenging for contour 

measurements because the stresses can be quite high and the local yield strength may be 

lowered by the thermal process, both effects increasing plasticity errors [1].  

Plasticity errors often manifests itself by asymmetric stress profiles and reduced peak 

stresses in the contour method results. Several practitioners have investigated the influence 

of plasticity in contour method measurements and showed that clamping the component on 

both sides of the cut and all along the cut length helps to minimize the stress concentration 

at the cut tip and reduce plasticity effects [46, 97, 111, 112]. 
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More in depth research on plasticity in the contour method was performed by Yeli Traore at 

the Open University [34, 101, 104]. The severity of the stress field around the cut tip can be 

characterised by the mode I stress intensity factor (SIF) [113]. Therefore, the SIF distribution 

along the cut path could be used to evaluate the likelihood of plasticity-induced errors during 

the contour cut. The conclusion from this study was that plasticity-induced errors in the 

contour method can be mitigated by controlling the stress intensity factor along the cut 

length. 

The SIF can be controlled by designing optimum cutting and restraint strategies. It is 

recommended to restrain the component using rigid clamping close to the cut plane; 

however, this can be difficult to achieve in practice and the chosen clamping arrangement 

should not disturb the stresses in the material. Using a larger wire diameter for the cutting 

process can also help to minimise plasticity-induced errors by the removal of the plastic 

wake zone behind the crack front [34]. Different cutting strategies can be investigated to 

reduce plasticity effects by carefully choosing the orientation and direction of the cut. One 

proposed cutting strategy is to create an embedded cut, to impose self-constraint during 

sample cutting, providing an effective way to reduce plasticity induced errors in contour 

method measurements [101]. The conventional contour cut is like an edge crack and the 

SIF of an edge crack is larger than the SIF of an embedded crack, hence the embedded 

cut configuration has the benefit of less risk of plasticity. This can be achieved by initiating 

the cut within the test component by using pilot holes positioned away from the edge [101].  

To assist with controlling and evaluating plasticity effects, a procedure was developed to 

estimate plasticity-induced errors in contour method measurements [34]. The inputs require 

defining the initial residual stresses, specimen dimensions and material properties. Then 

the stress intensity factor for a particular cutting and restraint strategy is determined using 

either numerical tools or analytical solutions. From the obtained SIF data, the material yield 

stress and the specimen dimensions; the normalised average plastic zone size ahead of 

the crack tip is analytically calculated using a first order approximation. Finally, a set of key 

graphs was developed that links the normalised plastic zone size to the stress errors 

introduced in the contour results. The plasticity-induced error is estimated as a percentage 

and the procedure can be repeated for different cutting and restraining configurations until 

the average error is less than 5% and hence plasticity effects is minimal [34]. 

The procedure for estimating and mitigating plasticity-induced errors was applied to a plate 

containing a 3-pass slot weld, shown in Figure 2 - 20, were the transverse component of 

stress was measured in a notionally identical test specimen using neutron diffraction and 



Chapter 2: Literature review 

32 

 

the contour method [114]. Figure 2 - 21 compares the transverse component of residual 

stress along a measurement line parallel to the weld and located 7.5 mm below the plate 

top surface.  The ‘old contour cut’ stress measurement deviated from the neutron results in 

two regions which were possibly associated with cutting process plasticity: a tensile peak 

just before the weld start and constant increase of tensile stresses in the weld metal. To 

mitigate plasticity-induced errors the cutting and restraint strategy was optimised by using 

an embedded cut and firm clamping with fitted bolts. Figure 2 - 20 shows the two pilot holes 

to create the embedded cut and holes for the bolts. The position of the pilot holes was 

chosen using finite element analysis to minimize excessive plasticity in the ligaments. The 

measured stresses from the optimized ‘new contour cut’, in Figure 2 - 21, showed a tensile 

region that was more uniformly distributed over the weld region and lower compressive 

stresses towards the specimen top surface [101]. 

More recent work has extended the self-constraint approach by employing a double-

embedded cutting configuration and demonstrated experimentally and numerically how 

optimised cutting directions and clamping strategies can be employed to minimise the 

amount of plasticity-induced stress errors in the contour method [71, 102, 115]. Although 

numerical studies for certain weld residual stresses have shown that a self-equilibrating 

cutting strategy [116] did not perform significantly better than a conventional cutting 

approach and the mechanical restraint was the primary variable influencing cutting-induced 

plasticity development [117]. 

 

Figure 2 - 20: Schematic of the 3-pass specimen showing the cutting holes and clamping 

holes [101]. 
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Figure 2 - 21: Comparison of transverse residual stress measurements for the 3-pass 

specimen along a line parallel to the weld at 7.5mm below the top surface determined by 

the contour method and neutron diffraction [101]. 

2.7.2 Bulge induced errors 

One of the main assumptions of the contour method is that a constant width of material is 

removed during cutting when measured relative to the original state of the body. In practice 

a deviation from the cutting requirement, referred to as the bulge error or elastic bulging [3], 

causes the width of material removed to vary along the cut length. Bulge errors occur as 

cutting proceeds, the stresses relax and the stresses in the material ahead of the cut 

continually change to satisfy equilibrium. This causes the material at the cut tip to elastically 

deform. The physical EDM cut width is fixed, which means that the width of material 

removed has changed as shown in Figure 2 - 22. A tensile force at the cut tip will cause the 

cut tip to stretch and a reduced amount of material removed, whereas a compressive force 

will cause the cut tip to contract and an increased amount of material removed. Since the 

fundamental assumption is that step C of Figure 2 - 6 returns the material points to their 

original flat configuration, this causes an error that will not be averaged away [3]. In practice, 

the measured contours of the cut surfaces will contain effects from the varying cut width 

and produce errors in the stress results. 

The ideal contour cut would be zero width for which there would be no bulge error. The 

magnitude of the bulge error depends on the change in stress state at the cut tip relative to 

the original stress state and this effect scales with the width of the cut. Prime and 

Kastengren [3] proposed that the bulge error is approximately proportional to the stress 
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intensity factor (SIF) at the cut tip from the accumulated effect of releasing residual stress. 

Since plasticity and bulge errors are both dependent on the change in stress state at the 

cut tip they both potentially add to each other [3]. However, because they cause similar 

effects in the results, any efforts to minimize the bulge error should also reduce plasticity 

errors. Similar to controlling plasticity effect, the bulge effect can be minimised by securely 

clamping the component on both sides of the cut during the EDM process. Firmly clamping 

the component, minimizes the crack opening and closing during cutting and helps to control 

(reduce) the concentration of redistributed stress at the cut tip [111]. Using a smaller wire 

diameter also helps to reduce bulge errors but using a wire diameter below 100μm may 

introduce other difficulties (such as wire breakage) in the cutting process [3].  

Bulge errors tend to show the same effects as plasticity, a shift in stress distribution towards 

the start of the cut along with reduced peak stresses. Most studies attribute asymmetric 

stress results to plasticity. But some studies indicate possible bulge error, particularly were 

the specimen was only clamped on one side. [4, 46, 65, 97, 100] and when the measured 

stresses were far below the yield stress [3, 31].  

 

Figure 2 - 22: Schematic of the bulging effect during the cutting process due to tensile stress 

relaxation [31]. 

2.7.3 Iterative FE procedure for bulge correction 

Prime and Kastengren [3] proposed an iterative ABAQUS finite element correction 

procedure to estimate the elastic deformation at the cut tip, which is referred to as the ‘bulge 

error’, by modelling of the cutting process. Removing this from the measured displacement 
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data would be a valuable improvement [31]. This correction procedure of Prime and 

Kastengren has been implemented for a small number of published contour method 

measurements [46, 65] but is not described in detail and standard procedures for correction 

have not been established. This section attempts to fully describe the steps of the iterative 

FE procedure to correct contour method measurements for bulge error. This procedure has 

been created with information from the published procedure [3] and additional information 

from private discussions with Mike Prime [118].  

Assumptions for the cutting simulation 

Several assumptions are used for the cutting simulation [3], (a) isotropic, linear elastic 

material behaviour is assumed throughout the analysis, (b) the cut is perfectly planar in 

space; hence, the deviations come only from deformation of the material, (c) for meshing 

convenience, a square slot bottom is used. 

For the square slot bottom assumption, the deviation from the constant cut width is given 

by the out of plane displacement of the material point where cutting is about to occur, i.e. 

the bottom corner of the slot as shown in Figure 2 - 23. However in practice the contour 

method EDM cutting procedure creates a semi-circular bottom slot, therefore this may 

introduce errors [3]. For the semi-circular bottom EDM slot, the final slot width is cut at the 

outer edge of the EDM wire diameter (i.e. lateral tangent of the cutting wire), shown in Figure 

2 - 23. Prime [118] suggested that this location might be a better position to estimate the 

slot width error. 

 

Figure 2 - 23: Schematic of the semi-circular bottomed EDM slot and square bottom 

assumption used in the FE cutting simulation [118].  
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Steps of the FE correction procedure 

Step 1: Complete an experimental contour method measurement and calculate the residual 

stresses in the specimen. 

Step 2: Create a finite element model of the specimen in ABAQUS to perform a linear 

elastic simulation of the EDM cutting procedure. Guidelines for selecting the correct model 

and parameters are given below. 

Analysis Type: A simplified 2D cutting simulation can only correct a line profile of the 

stresses whereas 3D modelling is a more robust approach. For rapidly varying stress 

distributions the bulge error may vary through the thickness of the specimen requiring 

3D FE analysis [1]. Furthermore, for an ideal contour method cut, clamped 

symmetrically on both sides of the cut, only one-half of the specimen needs to be 

modelled due to symmetry. If the specimen was clamped on one side only, a model of 

the entire specimen (i.e. no half symmetry) is required to accurately predict the bulge 

error on each side of the cut surfaces. 

Defining the coordinate system: The global coordinate system (x, y and z axes) should 

be defined so that a cut tip stretch is associated with a positive out of plane displacement 

whereas a cut tip compression is negative. Nevertheless, for a model of the entire 

specimen, a stretch or contraction at the cut tip will cause the nodal points on each side 

of the cut surfaces to move in opposite directions in the global coordinate system. This 

will be dealt with in the subsequent data processing step 6. Also, the origin of the 

coordinate system should be defined at a point located along the cutting start edge to 

easily obtain the results at each cut increment because the nodal output is written to the 

results file in the global system in ABAQUS (since this is more convenient for 

postprocessing) [87]. 

Material properties: For a linear elastic material model, Young’s modulus, 𝐸, and 

Poisson’s ratio, 𝜈, are defined. 

Mesh type and size at the cut: For 2D analysis, plane stress or plane strain quadrilateral 

elements, of types CPS and CPE respectively, are required at the cutting location in the 

model. For a 3D model, bricks elements of type C3D are used at the cut. The size of 

the elements that are removed to simulate cutting should represent the final cut width 

created during the EDM cutting procedure. For a half symmetry model this would be half 

of the cut width. For the square slot bottom assumption (see Figure 2 - 23), linear (first 
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order) elements are suitable to estimate the bulge displacement at the bottom corner of 

the slot. Whereas for the semi-circular bottom slot (see Figure 2 - 24), square quadratic 

(second-order) elements are necessary to estimate the bulge displacement at the mid 

side node or outer position of the slot. 

Cutting increment: The material removal and relaxation process is assumed to be 

elastic, which is then rate and path independent [118]. Therefore, several elements can 

be removed at a time to manage the number of cut increments in the model. 

Step 3: Introduce the contour method residual stresses in the model and perform a general 

step to allow the stresses to reach equilibrium. Since bulge errors in the contour method 

are relatively small, and the measured surface deformation profile closely parallels the 

actual surface deformation profile (i.e. without bulge errors), the calculated stress profile 

can be used as an initial guess in the FE model [3]. 

The initial stress condition can be defined in the FE model via the subroutine SIGINI or the 

MAP SOLUTION function in ABAQUS software [119]. One assumption, to obtain correct 

bulge error estimates, is that the initial stresses do not contain any effects of plasticity which 

may contribute to the error in the calculated stresses. Because the bulge error and plasticity 

show the same effects in the stress results, it would be difficult to determine if the effects of 

plasticity at the cut tip may have contributed to the error results and give inaccurate bulge 

estimates [3]. 

Step 4: Apply restraints to represent the clamping condition during EDM cutting and to 

prevent rigid body motion. The purpose of clamping is to minimize the opening and closing 

of the cut, that is to prevent the movement in the normal direction to the cut i.e. x-direction 

motion in Figure 2 - 24. The constraint applied during the FE simulation is representative of 

the perfect constraint, that is Ux = 0, which is not likely to be applied in practice and may 

influence the bulge estimation if applied very close to the cut surface. Modelling clamping 

with perfect displacement constraint is only an approximation and more realistic simulation 

of clamping forces and locations may help to quantify the bulge error more accurately [3].  

Step 5: Sequentially remove elements to simulate the cutting step and record the local 

normal displacement at the cut tip for each cut increment as described below. 

The bulge error is the out of plane displacement of the material at the cut tip. In the FE 

analysis, this is given by the displacement variable U in the x direction shown in Figure 2 - 

24. The proposed material positions at the cut tip to estimate the bulge error (see Figure 2 
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- 23) are represented in the FE model by the corner node (bottom of slot) and mid side node 

(outer edge of slot) as shown in Figure 2 - 24. For a model of the entire specimen, the 

displacement of the nodes on both sides of the slot is required and for 3D cases, the 

displacements through the thickness of the specimen should be measured. 

An additional measurement is required to obtain an accurate estimation of the bulge error. 

Since the assumption is that the cut width is constant when measured relative to the state 

of the body prior to cutting, this would essentially be after the stresses reach equilibrium in 

step 3. Therefore, the displacements after the equilibrium step should also be obtained in 

order to deduct these from the bulge displacements measured during cutting [118]. 

 

Figure 2 - 24: Schematic of the corner and mid side locations for bulge error measurement. 

Step 6: Extract and process the bulge displacement data to correct the averaged smoothed 

surface deformations measured from implementing experimental contour. Firstly, subtract 

the bulge displacements after the equilibrium step from those measured during cutting. The 

value after subtraction is final the bulge displacement error given by Equation 2 - 8.  

𝑈 𝑓𝑖𝑛𝑎𝑙 𝑏𝑢𝑙𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =  𝑈𝑏𝑢𝑙𝑔𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑐𝑢𝑡𝑡𝑖𝑛𝑔 −  𝑈𝑏𝑢𝑙𝑔𝑒 𝑎𝑓𝑡𝑒𝑟 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑠𝑡𝑒𝑝  Eqn. 2 - 8 

For a full model, calculate the final bulge displacement error for each cut half and then 

average the displacements using Equation 2 - 9. In the finite element analysis, each side of 

the cut tip is moving in opposite directions to the reference coordinate system, therefore the 

sign of the displacements from one side should be reversed before averaging. 

𝑈 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑓𝑖𝑛𝑎𝑙 𝑏𝑢𝑙𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =  
𝑈𝑓𝑖𝑛𝑎𝑙 𝑏𝑢𝑙𝑔𝑒 𝑠𝑖𝑑𝑒 1+ (−𝑈𝑓𝑖𝑛𝑎𝑙 𝑏𝑢𝑙𝑔𝑒 𝑠𝑖𝑑𝑒 2)

2
   Eqn. 2 - 9 

Then, interpolate the final bulge displacement error data for the positions required to correct 

the initial experimentally measured surface deformations. 
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Step 7: Correct the initial measured averaged smoothed surface deformations by 

subtracting the averaged final bulge displacement error using Equation 2 - 10. 

𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠

=  − (𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠

 −  𝑈𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑓𝑖𝑛𝑎𝑙 
𝑏𝑢𝑙𝑔𝑒 𝑒𝑟𝑟𝑜𝑟

)   Eqn. 2 - 10 

where the negative sign outside the bracket represents the reversed deformations used to 

calculate the stresses [3]. 

Step 8: Calculate the new stresses using the conventional contour method procedure, by 

creating a finite element model of one half of the specimen in ABAQUS and applying the 

corrected displacements as boundary conditions on the cut surface and allowing the model 

to reach equilibrium. 

Step 9: An iterative solution is required to solve for the new stresses since the first estimate 

of the bulge error is based on stresses calculated assuming no bulge error. The process is 

repeated until successive stress estimates converge. That is, repeat steps 3 to 8 by 

initializing the new stresses to re-estimate the bulge displacements.  For each iteration, the 

re-estimated bulge error is used to correct the initial averaged smoothed surface 

deformations and not the corrected displacements from the previous iteration. Since the 

bulge errors are usually relatively small, no more than two or three iterations are required 

for reasonable convergence. 

Step 10: Finally, the new stresses are evaluated for a converging solution. No criteria have 

been specified in the literature but the chosen criteria for convergence is a variance of less 

than 5 percent (≤ 5 %) for the peak stresses. 

Application of the iterative FE bulge correction procedure 

Prime and Kastengren [3] experimentally validated the finite element bulge correction 

procedure for a stainless steel four point bent beam were the correction was not large but 

moved the contour result closer to the bend test prediction as shown in Figure 2 - 25. Since 

then it has only been implemented for two contour measurements. The first is a 2D analysis 

for a stainless steel quenched cylinder contour measurement [46]  to assess the possibility 

of bulge error. However, no significant influence was observed after the correction shown 

in Figure 2 - 26 and the non-symmetry distributions of residual stresses was mainly 

attributed to plasticity effects. More recently the procedure was applied for an EB welded 

C(T) specimen contour measurement [65] using three dimensional (3D) cutting simulations 

to estimate the bulge error which is a more robust approach. In the corrected stress results 
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shown in Figure 2 - 27, the peak tensile stress was moved towards the mid-width of the 

specimen, which was the expected weld position, and there was a slight increase in the 

magnitude of the tensile residual stress. These studies showed that the bulge effect in the 

contour method residual stress results can cause errors of 5% to 10% in magnitude and 

spatial misalignment by a small amount, even when the part is securely clamped during 

cutting [3, 65]. Any effort to minimize or correct for these errors will improve the accuracy of 

measurements made by the contour method.  

 

Figure 2 - 25: Contour method residual stresses along mid-thickness of a stainless steel 

four-point bend beam, before and after bulge correction compared with the prediction from 

the bend test [3]. 

 

Figure 2 - 26: Residual stresses for a stainless steel quenched (at 850oC) cylinder after 

bulge correction for the first, second and third iterations compared with FE prediction along 

cylinder centreline [46]. 
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Figure 2 - 27: Contour method longitudinal weld residual stresses, along mid-thickness of 

EB welded C(T) blank, before and after bulge correction for the second and third iterations 

[65]. 

2.8 Fracture mechanics concepts 

In the contour method, the cut created by wire EDM can be seen as a moving blunt edge 

crack which causes a redistribution of residual stresses in the uncut material that are 

concentrated at the cut tip. In the field of Linear Elastic Fracture Mechanics (LEFM), the 

magnitude of the stresses and displacements surrounding the tip of a crack can be 

characterised by the stress intensity factor. In this section the principles and expressions of 

fracture mechanics analysis are presented and the existing methods to obtain the stress 

intensity factor is discussed with a focus on numerical solutions which are employed in this 

work. 

2.8.1 Linear Elastic Fracture Mechanics 

LEFM is the basic theory of fracture that deals with the growth of sharp cracks in elastic 

bodies controlled by the stresses and deformations around the crack tip. The surfaces of a 

crack are the dominating influence on the distribution of stresses near and around the crack-

tip, as they are the nearby stress-free boundaries of the body [120]. There are three modes 

of crack surface displacement shown in Figure 2 - 28, mode I is identified as the opening 

mode, in which the crack surfaces move opposite and perpendicular to each other. This 

mode has been studied more extensively than modes II and III, which involve sliding and 

lateral tearing respectively. The crack surface displacements can be conveniently 

characterised by the stress intensity factor [121], which is a function of the specimen 

dimensions and loading conditions. The general form of the stress intensity factor is 𝐾 =
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𝜎√𝜋𝑎, where 𝜎 is the remote load and 𝑎 is the crack length, which is expressed as 𝑀𝑃𝑎√𝑚. 

When 𝐾 is known, the stresses and displacements near the crack tip can be calculated 

using standard equations. As mentioned, 𝐾 is taken as positive when the crack surfaces 

move apart but a negative 𝐾 only has meaning if the crack is regarded as a narrow slit 

because if the crack surfaces are pressed together the crack has no effect on the stress 

distribution [121].  

 

Figure 2 - 28: Basic modes of crack surface displacements [120]. 

Closed-form expressions to determine the stress and displacement fields associated with 

each mode were first published by Irwin [122], which is based on the method of Westergaard 

[123]. The stresses and deformations around a sharp crack tip can be expressed in terms 

of stress intensity factors 𝐾 [124-126] in Equations 2 – 11 to 2 – 16 respectively, where 

𝑟 and 𝜃 are polar coordinates from the crack tip shown in Figure 2 - 29 [127]. As 𝑟 

approaches zero, the leading 1/(𝑟)1/2 term approaches infinity, but the other higher-order 

terms, such as uniform stress parallel to cracks, 𝜎𝑥0, and terms of the order of square root 

of 𝑟, 𝑂(𝑟1/2), remain finite or approach zero and are normally omitted [120]. Thus, stress 

near the crack tip varies with 𝑟, regardless of the configuration of the cracked body [124].  

The equations for the stresses and displacements near a crack tip are derived for a crack 

in an infinite plane subjected to remote biaxial tension a shown in Figure 2 - 30. However, 

these expressions hold for any cracked body undergoing mode I deformations. The 

difference is only the value of the stress intensity factor [128]. All elastic analysis is for static 

problems in linear elastic, isotropic, homogeneous materials. Small-scale non-linear effects, 

such as small amounts of plasticity or microstructural irregularities in the crack surface, do 

not affect the general character of the stress field and are regarded as being within the crack 

tip stress field and can therefore be neglected in a reasonable approximation [121].  
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For mode I, the displacement must be symmetric with respect to the crack direction. The 

equation implies that for mode I the crack opens into a parabola shape, and because a 

crack is regarded as a mathematical ‘cut’, 𝜃 must lie in the range ±𝜋. The displacements at 

a crack tip are non-singular and proportional to 𝐾𝐼√𝑟 and depend on the stress state [129]. 

The displacements are a factor (1 −  𝜈2) less for plane strain than for plane stress.  

 

Figure 2 - 29: Coordinates measured from leading edge of a crack and stress components 

in the crack-tip stress field [127]. 

The following equations present stress field for mode I crack opening, 

𝜎𝑥 =  
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] + 𝑂(𝑟)1/2     Eqn. 2 - 12 

𝜏𝑥𝑦 =  
𝐾𝐼

(2𝜋𝑟)1/2 𝑠𝑖𝑛
𝜃

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
+𝑂(𝑟)1/2     Eqn. 2 - 13 

The following equations present displacement fields for mode I crack opening (with higher-

order terms omitted), 

𝑣 =  
𝐾𝐼

𝐺
[𝑟/(2𝜋)]1/2 𝑐𝑜𝑠

𝜃

2
(1 − 2𝜈 + 2𝑠𝑖𝑛2 𝜃

2
)     Eqn. 2 - 14 

𝑢 =  
𝐾𝐼

𝐺
[𝑟/(2𝜋)]1/2  𝑠𝑖𝑛

𝜃

2
(2 − 2𝜈 − 2𝑐𝑜𝑠2 𝜃

2
)     Eqn. 2 - 15 

𝑤 =  0          Eqn. 2 - 16 

where 𝑣 and 𝑢 are the horizontal (x-direction) and vertical (y-direction) displacements, G is 

the shear modulus and 𝜈 is the Poisson’s ratio. Equations 2 – 11 to 2 -16 have been written 
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for the case of plane strain (i.e., 𝑤 = 0) but can be changed to plane stress by replacing 

Poisson’s ratio, 𝜈, in the displacements with 𝜈/(1 + 𝜈). 

 

Figure 2 - 30: Schematic drawing showing a biaxial loaded infinite plate containing a crack 

[130]. 

As previously mentioned, a blunted crack tip is introduced by wire EDM.  The field equations 

are only valid for “mathematically sharp” plane crack. The elastic stress field equations for 

blunt cracks [131], defined by Equations 2 – 17 to 2 - 19, were derived by shifting the origin 

of the co-ordinate system a distance 𝜌/2 away from the crack tip, were 𝜌 is the blunt crack 

tip radius shown in Figure 2 - 31. 

 

Figure 2 - 31: Coordinates for the local stress distribution at a distance 𝑟, ahead of a blunt 

crack tip radius 𝜌. 

The following equations present mode I crack opening stress fields for blunt crack, 

𝜎𝑥 =  
𝐾𝐼

(2𝜋𝑟)1/2 𝑐𝑜𝑠
𝜃

2
[1 − 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
]  − 

𝐾𝐼

(2𝜋𝑟)1/2

𝜌

2𝑟
𝑐𝑜𝑠

3𝜃

2
   Eqn. 2 - 17 

𝜎𝑦 =  
𝐾𝐼

(2𝜋𝑟)1/2 𝑐𝑜𝑠
𝜃

2
[1 + 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
] −  

𝐾𝐼

(2𝜋𝑟)1/2

𝜌

2𝑟
𝑐𝑜𝑠

3𝜃

2
   Eqn. 2 - 18 
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𝜏𝑥𝑦 =  
𝐾𝐼

(2𝜋𝑟)1/2 𝑠𝑖𝑛
𝜃

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
−  

𝐾𝐼

(2𝜋𝑟)1/2

𝜌

2𝑟
𝑠𝑖𝑛

3𝜃

2
    Eqn. 2 - 19  

For a blunt crack or slender notch, there is no singularity in stress at the crack tip 

(𝜃 = 0, 𝑟 = 𝜌/2) and for mode I type loading the maximum stress may be found by [120, 

132], 

𝜎𝑌 𝑚𝑎𝑥 =
2𝐾𝐼

√𝜋𝜌
         Eqn. 2 - 20 

2.8.2 Stress Intensity Factor Solutions 

The crack-tip stress intensity factor (SIF) values, which characterize the magnitude of the 

stress fields surrounding the crack-tip, depends linearly on the applied external load, on the 

length of the crack, and on the geometry of the crack and the geometry of the component. 

Consequently formulas for their evaluation come from a complete stress analysis of a given 

configuration and loading [120]. Closed-form solutions for 𝐾 have been derived for a number 

of simple configurations. It can be written in the form [130], 

𝐾𝐼 =  𝑌(𝑎/𝑊) 𝜎 √𝜋𝑎         Eqn. 2 - 21  

where 𝑌(𝑎/𝑊) is a dimensionless geometric factor that depends on the geometries of the 

specimen and crack, and 𝜎  is the (remotely) applied stress. 

Two common geometries for which closed-form solution exists [130] are shown in Figure 2 

- 32. For the infinite plate with a central crack with length 2𝑎, 𝑌(𝑎/𝑊) = 1 and thus 𝐾𝐼 =

 𝜎√𝜋𝑎. A related solution is that for a semi-infinite plate with an edge crack the stress 

intensity factor is given by 𝐾𝐼 = 1.12 𝜎√𝜋𝑎. The 12% increase in 𝐾𝐼 for the edge crack is 

caused by different boundary conditions at the free edge but has diminishing effect as the 

crack extends deeper into the material.  
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Figure 2 - 32: Schematic drawing showing two common cracked-plate configurations: centre 

crack (left) and single edge notched (right) [130]. 

Expressions such as this for other types of cracks and loading geometries have been 

obtained for numerous structural configurations. Methods to determine the stress intensity 

factor can be broadly categorised into analytical, numerical and experimental methods. In 

general, analytical methods are restricted to idealized problems where the geometrical 

configuration of cracks and the boundary conditions are rather simple. The numerical 

method is useful for determining the stress intensity factor where the geometry and loading 

are complex and not available from simple analytical solutions. Experimental methods 

cannot directly measure the stress intensity factor, but it is determined from its relationship 

to measurable quantities such as strain or displacement, therefore they are approximate 

solutions. SIF solutions for numerous geometries and loading conditions have been 

compiled in published handbooks [120, 133, 134]. Some solutions include analytical 

methods such as closed form solutions [120, 130] and weight functions [135, 136]. 

Numerical methods include finite element methods (ABAQUS software [119]), boundary 

collocation methods [137, 138] and software (R-Code [139] or CRACKWISE [140]). 

Common experimental techniques include the compliance method [20], photoelastcity and 

moire interferometry [141]. 

The numerical finite element method and boundary collocation method (BCM) are 

considered to determine the stress intensity factors in this research, that is to characterise 

the stresses at the cut tip during finite element simulation of the EDM cutting process and 

relate this to the bulge error. Therefore, the FE and BCM methods to estimate 𝐾 will be 

described next.  
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K Estimates from Finite Element Method (FEM) 

Fundamentals of the finite element method  

ABAQUS software is a powerful engineering simulation program, based on finite element 

method, that can analyse a wide range of complex geometric configurations, boundary 

conditions and loads. The finite element method is a procedure for obtaining approximate 

solutions to continuum problems. It involves conceptually dividing the body under 

consideration into elements that are connected to associated nodes and assuming an 

approximate form for the solution within each element. For each typical element, there exist 

dependent variables at the nodes such as displacement. An interpolation function is defined 

relative to the values of the dependent variables at the nodes associated with the element. 

For one element, the equation including these variable can be expressed by [119], 

[𝐾]𝑒{𝑈}𝑒 = {𝐹}𝑒        Eqn. 2 - 22  

where [𝐾]𝑒 is the elementary stiffness matrix, which is determined by geometry, material 

property and element property, {𝑈}𝑒 is the elementary displacement vector, which describe 

the motion of nodes under force and {𝐹}𝑒 is the elementary force vector, which describe the 

force applied on element.  

The functions of all the elements are assembled into global matrix equation [𝐾] {𝑈} = {𝐹} 

(governing algebraic equations) to represent the object.   

After applying boundary condition, the governing algebraic equation can be solved for the 

dependent variable at each node. The strain and stress can be calculated based on the 

displacement of nodes associated with the element. 

Calculating K by the finite element method 

There are a few methods for evaluating the stress intensity factor by FEM, such as the crack 

tip displacement extrapolation, the J-integral approach and the strain energy approach 

using the virtual crack extension technique. For ABAQUS linear elastic analysis, a simple 

and accurate method to obtain the stress intensity factor at the crack tip is by a contour 

integral evaluation related to the J-integral [119]. The finite element method to calculate the 

stress intensity factor requires conforming the mesh to the cracked geometry, to explicitly 

define the crack front, and to specify the crack extension direction. Special contour elements 

are required  to manage the stress singularity at the sharp crack tip in order to obtain correct 

stress intensity factor solutions. Generally, second-order elements are used and the crack 
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tip is modelled with a ring of collapsed elements with the mid side nodes connected to the 

crack tip moved to the 1/4 point nearest the crack tip, as shown in Figure 2 - 33. Each 

contour is a ring of elements completely surrounding the crack tip or the nodes along the 

crack line. The rings of elements are defined recursively to surround all previous contours 

and each ring provides an evaluation of the contour integral [119]. The accuracy of these 

contours is determined by evaluating the value of the contour integral that appears 

approximately constant from one contour to the next. In linear elastic problems the first and 

second contours may be inaccurate and should be ignored. 

The number of contours to be used in calculating contour integrals must be specified as 

well as the type of contour integral to be calculated. By default ABAQUS calculates the J-

integral [119]. For an elastic crack, the J-integral is calculated by ABAQUS, and then 𝐾 is 

determined by a conversion.  

𝐽𝑒 =  
𝐾𝐼

2

𝐸′
         Eqn. 2 - 23 

where the Young’s Modulus 𝐸′ = 𝐸 for plane stress and 𝐸′ = 𝐸/(1 − 𝜈2) for plane strain. 

 

Figure 2 - 33: Typical focused mesh for modelling the crack-tip singularity [119]. 

K Estimates from the Boundary Collocation Method 

Another numerical modelling method is the boundary collocation method, which only the 

boundaries of the region of interest need to be modelled. The method of boundary 

collocation consists in finding certain coefficients of the elastic crack solution by satisfying 

the boundary conditions at a finite number of points along the boundary of the body. A 

boundary value collocation procedure was employed to determine the elastic stress 

distribution in the immediate vicinity of the tip of an edge crack in a finite-width specimen 
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subjected to uniform tensile and bending loading [137, 138]. The analytical results were 

expressed so that the stress intensity factor may be determined from known conditions of 

specimen geometry and loading. 

Stress intensity factors 𝐾 for the case of a freely deformable single edge-cracked plate of 

width 𝑊, height 2𝐻, containing a crack of depth 𝑎, were determined using the boundary 

collocation method (BCM) for pure tension (Figure 2 - 34 (a)) and pure bending (Figure 2 - 

34 (b)) and input into Table 2 - 1 and Table 2 - 2 in the form of the geometric function F’ 

defined by Equation 2 -24 for several 𝐻/𝑊 ratios [135, 142]. 

𝐾 =  𝜎√𝜋𝑎 𝐹 (𝛼,
𝐻

𝑊
),          𝐹′ = 𝐹(1 − 𝛼)3/2,          𝛼 = 𝑎/𝑊   Eqn. 2 - 24 

where σ is the constant stress in the tensile case or the outer fibre bending stress σ0 under 

bending load 𝜎(𝑥) = 𝜎0(1 − 2𝑥/𝑊) 

The numerical values of 𝐹(𝑎/𝑊) using collocation method are based on results which is 

accurate to within 1% for all 𝐻/𝑊 ≥ 1.0 and 𝑎/𝑊 ≤ 0.6 [120, 134]. The effect of 𝐻/𝑊 is 

practically negligible for 𝐻/𝑊 ≥ 1.0 [120]. Since no restriction on free deformation is made, 

bending of the cracked specimen is possible due to the homogeneous stresses at the 

specimen ends.  

 

Figure 2 - 34: Edge-cracked rectangular plate under (a) tensile and (b) bending loading. 
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Table 2 - 1: Geometric functions F’ for tension, in Equation 2 – 15, to determine the stress 

intensity factor using the boundary collocation methods (BCM) [142]. 

 

Table 2 - 2: Geometric functions F’ for bending, in Equation 2 – 15, to determine the stress 

intensity factor using the boundary collocation methods (BCM) [142]. 

 

2.9 The contour method needs and gaps 

The contour method is gaining increasing use in characterising residual stresses in a wide 

range of engineering structures due to its unique advantages. These include (a) providing 

a two-dimensional map of the residual stress distribution over the entire material cross-

section, (b) not being restricted by the size and geometry of the component and (c) being 

insensitive to microstructural changes in the material. Nevertheless the contour method is 

the youngest residual stress measurement technique and is not as well established as other 

methods [1]. 

One limitation to apply the contour method is that the part is symmetric about the cut plane 

and measuring stresses where the two halves are not the same shape or size would require 

creating asymmetric cuts which will may introduce large errors. However, recent work has 
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been done to advance the contour method for asymmetric cuts [143, 144]. Another 

challenge for the contour method is when near-surface residual stresses are desired to be 

determined and often the near surface stresses results in contour measurements are not 

reported. Some studies [31, 55, 70, 72] have been performed to try to minimize the edge 

effects during cutting using sacrificial plates or improve the measured results near the 

surfaces but standard practices to deal with near surface measurements has not been 

established. 

Errors and uncertainties in the contour method can be introduced at all experimental 

measurement and data processing stages. Some errors can be removed by processing the 

measured data or minimised by means of good cutting practices. But two errors that are 

difficult to predict, control or avoid are: plasticity and elastic bulging. These phenomena do 

not average away and can cause significant bias in residual stress measurements. There 

are many published studies on plasticity in the contour method [34, 46, 97, 101, 104, 111, 

112] but the procedure for estimating plasticity-induced errors in contour method 

measurements [34, 101, 104] was developed for 2D plane stress and plane strain analysis 

and elastic-perfectly plastic materials. Further work is needed to develop procedures to 

estimate plasticity errors in strain hardening materials and for 3D cases. 

Bulge error can have a significant effect on the accuracy of stress measurement made by 

the contour method as it causes decreased magnitude and a spatial misalignment of the 

stress predictions. This can be very important, for example in structural integrity assessment 

when the SIF is calculated from contour method results. However, bulge error has only 

recently been addressed and little knowledge exists about the influence of bulge errors in 

contour method measurements. Prime and Kastengren [3] proposed an iterative ABAQUS 

finite element procedure to estimate and correct contour measurements for bulge error. 

However, the procedure can be cumbersome and time consuming and 3D modelling is 

required in most engineering cases. Some improvement is required to automate the finite 

element procedure or develop a simpler approach whereby bulge correction can be easily 

integrated into the data analysis procedure of the technique. And to improve the fidelity of 

the simulations at the beginning and end of the cut and applied constraint to represent the 

actual clamping condition used during the cutting process. Besides the correction procedure 

of Prime and Kastengren has been implemented for a small number of published contour 

method measurements [28, 42] and standard procedures for bulge correction have not been 

established. Furthermore, the interaction between bulge and plasticity deformation errors is 

unknown.  
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Understanding how to control and correct deformation errors that occur during the cutting 

step of the technique will help to improve the accuracy and reliability of measurements made 

by the contour method. Details of the aim and objectives are explained in the following 

section.  

2.10 Aims of the research 

This research will be working towards improving the understanding of bulge errors in the 

contour method. The main aim is to understand when the bulge error arises, estimate the 

magnitude of that error, develop procedures to correct for it, and where feasible, eliminate 

or control it. The hypothesis put forward was that a simple approach could be developed to 

be integrated in the standard data analysis of the contour method in order to correct for 

bulge error.  

Based on this, the objectives of this research are as follows: 

• Develop an analytical solution to describe the deformation at the cut tip using LEFM and 

predict the onset of bulging. 

• Evaluate the 2D iterative FE procedure proposed by Prime and Kastengren [3] to 

estimate and correct for the bulge error in residual stress measurements made with the 

contour method and advance the method for application to 3D models (i.e. contour 

measurements of real components).  

• Develop an alternative quantitative approach to replace the cumbersome iterative FE 

procedure to estimate and correct for the bulge error in contour method measurements. 

This research will also investigate the influence of parameters on the bulge error such 

as plane stress and plane strain conditions, material properties and cut width.  

• Develop approaches to estimate the level of error in residual stress measurement that 

can be introduced by bulging to enable the practitioner to decide whether to correct for 

it. 

• Develop guidelines for correcting for bulge errors in residual stress measurements made 

with the contour method. 
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2.11 Methodology 

The research method in this thesis consists of two main approaches, analytical solution and 

finite element analysis. This section describes the individual methods that will be used for 

the objectives outlined in the previous section and includes any proposed specimens where 

applicable.  

A part of this study is focused on the fundamental theory of the contour method to 

understand the origin of the bulge error and factors that influence the magnitude of 

deformation at the cut tip. This part of the research is focused on using the principles of 

linear elastic fracture mechanics to explore an analytical solution to relate the displacements 

at the crack tip to the local stress distribution [120]. That is to develop a criterion to predict 

the onset of bulging error for the contour method. 

The study to investigate the finite element bulge correction procedure proposed by Prime 

and Kastengren [3] is achieved by applying the procedure for a stainless steel (Esshete 

1250) C(T) cross-weld specimen where residual stresses were measured using neutron 

diffraction, incremental slitting and the contour method [4] and the bulge error was 

suspected to be present in the contour method measurement. This study evaluates the 

capability of the bulge correction procedure for complex (varying) residual stress, first using 

2D FE modelling in ABAQUS to correct the C(T) specimen contour method stresses at mid-

thickness and then 3D modelling to correct the stresses across the cut surface. 

An alternative quantitative method to estimate the bulge error in contour method 

measurements may be possible as Prime and Kastengren [3] proposed that the bulge error 

is approximately proportional to the mode I stress intensity factor (SIF). To demonstrate the 

relationship between the SIF and the bulge error or “varying cut width”,  extensive finite 

element simulations for a series of different parameters i.e. stress conditions, plate 

geometries, material properties and cut width sizes, were chosen to develop robust 

correlations. Then an analytical solution to estimate the bulge error is derived based on the 

standard LEFM displacement field equations for a crack in a body found in the literature. 

The analytical approach is implemented for two contour method measurements, first the 

cross-weld C(T) specimen which was investigated previously and then a bent beam 

specimen which was the first published work to correct for the bulge error using the iterative 

FE procedure [3].  

 



Chapter 2: Literature review 

54 

 

The final study is to develop correlations of the normalised stress error with the mode I 

stress intensity factor. The stress error due to bulging is evaluated using Fourier based SIF 

solutions [145] and finite element analysis for the simple case of a self-equilibrated cosine 

residual stress profile and then for a more real case of a complex weld stress profile in the 

plane stress and plane strain conditions. Systematic studies were performed for different 

parameters to develop the stress error correlations.  

Based on this research, guidelines are proposed for correcting contour method 

measurements for the bulge error. 
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Chapter 3: Investigating the iterative FE bulge 

correction procedure 

One of the main assumptions of the contour method is that a constant width of material is 

removed during cutting when measured relative to the original state of the body. Bulge 

errors occur as cutting proceeds because the stresses relax and the material at the cut tip 

elastically deforms. This causes the width of material removed to vary along the cut length. 

To estimate and correct for the bulge error Prime and Kastengren  [3] proposed an iterative 

ABAQUS finite element correction procedure which has been described in the literature 

review chapter. This correction procedure of Prime and Kastengren has been implemented 

for a small number of published contour method measurements [46, 65] but is not described 

in detail and standard procedures for correction have not been established. 

The primary objective of this chapter is to set out the steps of Prime and Kastengren bulge 

correction procedure in detail and understand its ability and limitations with respect to 

correcting contour measurements with complex (varying) residual stress fields. The iterative 

FE procedure proposed by Prime and Kastengren [3] is based on two-dimensional (2D) 

plane stress finite element analysis. There is only one publication extending the bulge 

correction procedure to a 3D case [65]. A secondary objective of this chapter is to develop 

the 2D iterative FE procedure for application to 3D cases (i.e. real contour method 

measurements). The objectives are achieved by applying the corrective procedures to a 

case study that is a welded compact tension, C(T), specimen where the bulge error was 

suspected to be present in a previous contour method measurement. 

First, the case study C(T) specimen details and previous contour measurement results are 

given. Next Prime and Kastengren bulge correction procedure is implemented using a 2D 

FE analysis to correct the C(T) specimen stresses at mid-thickness previously measured 

using the contour method. Then the procedure is extended to a full 3D FE analysis for the 

same sample to correct the stresses across the cut surface. Based on this investigation, an 

alternative simpler procedure to calculate the corrected stresses is presented and applied 

for the C(T) specimen. Finally, a discussion and the main conclusions are given. 

3.1 Case study : cross-weld C(T) specimen 

The previous work on this C(T) specimen was performed by Yeli Traore at the Open 

University [4, 34] and involved characterising the distribution of residual stress by neutron 
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diffraction, incremental slitting and contour method measurement techniques. In the contour 

method result, a small shift in the position of the tensile peak in the stress distribution was 

found when compared with the slitting and neutron results. The hypothesis put forward to 

explain this result was the possible occurrence of plasticity during cutting or elastic bulging 

error, or both types of error. The influence of plasticity was previously studied for this sample 

[4] but no work has been done to evaluate the bulge error. In this work the iterative FE 

procedure is implemented to correct the previously measured contour method stresses for 

bulge error. 

The aim is to investigate two different bulge correction approaches, the first using the 2D 

FE approach proposed by Prime and Kastengren which assumes stresses are uniform 

across the thickness and then a more robust 3D FE approach to correct the stresses across 

the entire cut surface. A secondary aim is to explore which displacements in the FE 

idealised model of the slot geometry should be used to estimate the bulge error. This 

includes the model positions for the bottom corner of the slot described in the literature 

review chapter (see Figure 2 - 23), that have been proposed by Prime [118], and the outer 

edge of the slot not yet examined (see Figure 2 - 24).  

This section first describes the specimen details and previous measurement results. Then 

the 2D bulge correction procedure and the results are presented. After that the 3D 

procedure is presented following with the results. Finally, the corrected contour method 

stress results are compared with those previously obtained by neutron diffraction and the 

slitting methods. 

3.1.1 Specimen details 

The cross-weld test sample of interest was extracted from an austenitic stainless steel 

(Esshete 1250) pipe butt weld that had previously experienced prolonged exposure to high 

temperature service conditions. The multi-pass butt weld was made using a manual metal 

arc (MMA) process, see Figure 3 - 1. 

In order to create a geometry that resembles a C(T) test specimen of standard dimensions, 

an extension piece also made from Esshete 1250, was attached to the outer surface of the 

sample by electron beam (EB) welding [34] as shown in Figure 3 - 1. A rectangular block 

47.5 mm wide, 45.3 mm deep and 21mm thick was then extracted from the welded sample 

by wire EDM. A 5 mm thick slice was also removed from the face labelled A, by wire EDM 

to determine the stress-free lattice parameter measurements for the neutron diffraction 
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technique. This reduced the thickness of the specimen to 16 mm. Finally, the cut face was 

polished and etched to reveal the MMA weld fusion boundary. 

The elastic properties of the service-exposed parent materials and weld metal were 

assumed to be isotropic with a Young’s modulus of 204.5 GPa and a Poisson’s ratio of 0.29 

at room temperature [146]. 

 

Figure 3 - 1: Photograph of the T-shaped welded specimen prior to machining the C(T) 

specimen. 

3.1.2 Previous measurement results documented in [4, 34] 

The final geometry of the C(T) specimen that has been measured in this study is shown in 

Figure 3 - 2 (i.e. a rectangular unnotched sample). The xy measurement plane for all three 

residual stress measurement techniques is also shown in Figure 3 - 2. This plane is located 

2 mm from the deepest point of penetration of the MMA weld passes. First, neutron 

diffraction was applied to measure the full residual stress tensor along a line at mid-

thickness. Then the contour and slitting methods were conducted in tandem to measure the 

transverse stresses on the measurement plane. 

The neutron diffraction residual strain measurements were carried out on the L3 

spectrometer of the Canadian Neutron Beam Centre. The gauge volume used for all 

measurements was (2 x 2 x 2) mm3. The measurement points were spaced at 2 mm 

intervals with the first point located 1.41mm from the C(T) specimen front face giving a total 

of 23 points. The stress-free lattice parameter was measured using several stress-free 

reference cubes of dimensions (5 x 5 x 5) mm3. 

Then the slitting technique was implemented by introducing a slit using the incremental wire 

EDM process. A relatively large wire diameter 250 µm was used to help to minimise the risk 
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of wire breakage and plasticity during cutting. The specimen was ‘finger’ clamped on one 

side during cutting to allow the sample to deform and strains to be monitored at the back 

face shown in Figure 3 - 2. The gauge length of all strain gauges was 1 mm. Cutting was 

performed using two different cut increment settings: 0.1 mm increment from 0 up to 8 mm 

and from 46 mm up to 47.4 mm and 0.2 mm increment from 8 mm to 46 mm. The weight 

function approach, for a single edge crack within a finite width rectangular plate, was applied 

to determine the averaged residual stress distribution across the thickness of the sample. 

A plane strain condition was assumed based on the C(T) specimen dimensions. 

 

Figure 3 - 2: Schematic drawing showing the final dimensions of C(T) sample and the ‘finger’ 

clamp arrangement on one side during wire EDM cutting, from [34] 

On completion of cutting for the slitting technique, the created cut surfaces were analysed 

using the contour method. Ideal restraint conditions to produce a high-quality contour cut 

requires rigidly clamping the specimen on both sides of the cut. The non-ideal restraint 

condition (clamping on one side) used for slitting will increase the likelihood of getting non-

symmetric surface deformations and increase the risk of plasticity. The cut surfaces profiles 

were measured using a CMM with a 3 mm diameter touch probe and a measurement 

spacing of 0.5 mm in the x and y directions in Figure 3 - 2. The data from the two cut 

surfaces were averaged to eliminate antisymmetric errors and the effect of shear stress. 

Two approaches were evaluated to smooth the data: cubic spline fitting with different knot 

spacings and an alternative second order polynomial smoothing technique. To back-

calculate the residual stresses, the finite element model of one half of the specimen was 

meshed with linear hexahedral elementals of type C3D8R and a mesh size of 0.5 mm. The 

polynomial smoothing approach [147] was found to be more robust in dealing with the 

extrapolation of data to specimen edges compared to the spline fitting. Therefore, the 

results obtained from the polynomial smoothing approach were used when comparing 

measurements from the three techniques. 

Measurement plane 
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The distribution of transverse stress for a line profile at mid-thickness of the sample 

measured using neutron diffraction, slitting and contour method techniques is presented in 

Figure 3 - 3. All three stress profiles follow the same trend with a tensile region located 

around the electron beam weld balanced by compressive stress fields in the parent material 

extension piece and in the HAZ of the MMA weld. The peak transverse residual stress 

measured by the contour method and slitting were lower than the neutron diffraction 

measurement (~ 640 MPa) by 19MPa (3%) and 50 MPa (8%) respectively. In the contour 

method result, a slight shift (2 mm) in the location of the tensile peak towards the C(T) 

specimen front face is observed. The 2D map of transverse residual stress on the cut 

surface measured by the contour method is also shown in Figure 3 - 3.  

For neutron diffraction, the uncertainty in the calculated stresses, based on the 

measurement of both lattice parameters was no greater than ± 25 MPa. The significance of 

plasticity error in the slitting measurement was assessed using the approach of Prime [148] 

and found to be about 15 % for the parent material for a yield stress of 241 MPa and 2 % in 

the region of the electron beam weld for a yield stress of 430 MPa. Upon further 

investigation the author found that the small shift in location of the contour method peak 

tensile stress can be explained by the development of compressive plasticity during cutting 

caused by the lack of restraint applied to the specimen during the measurement [34]. 

Nevertheless, bulge error has the same symptoms as plasticity error and therefore cannot 

be discounted. 
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Figure 3 - 3: (a) Comparison of the transverse residual stress distribution at mid-thickness 

of a C(T) sample measured by neutron diffraction, slitting and the contour method (b) 2D 

map of transverse residual stresses measured using the contour method, from [34] 
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3.1.3 2D bulge correction procedure 

The hypothesis put forward was that the slight shift in the location of the maximum tensile 

stress and the marginally lower tensile stress magnitude obtained in the contour method 

measurement results could be associated with bulge error. To investigate this conjecture 

2D iterative bulge correction procedure, described in section 2.7.2 of the literature review 

chapter, was implemented to correct the contour method stresses at mid thickness. 

In this procedure, the transverse residual stress profile at mid thickness from the contour 

measurement was applied as an initial condition in a 2D FE model of the C(T) sample. The 

entire sample cross section was modelled (i.e. no half symmetry) to correctly represent the 

asymmetric restraint condition, clamping on one side, used for the slitting measurement. 

The weld metal and homogenous parent materials were assumed to be isotropic. The 

cutting process was then simulated by sequentially removing elements. At each cut 

increment, the normal displacement of the material points originally on the cut plane were 

recorded to estimate the bulge error. After bulge estimation, a line profile of measured 

contour surface deformations was corrected for bulge error and used to back calculate 

corrected stresses at mid thickness using the conventional contour method. The procedure 

was iteratively repeated until the stress distributions converged, that is a variance of less 

than 5 percent (≤ 5 %) was achieved for the peak tensile stress. The details of the steps 

used to perform the 2D bulge correction are described next. 

Step 1: Experimental contour method measurement 

The transverse residual stresses at mid thickness of the C(T) sample has been previously 

calculated using the contour method (see Figure 3 - 3). 

Step 2: Creating the finite element model 

To perform the cutting analysis a 2D model of the specimen was created in ABAQUS, as 

shown in Figure 3 - 4. A linear elastic homogenous material model was used with Young’s 

modulus, E, and Poisson’s ratio, , of 205 GPa and 0.29 respectively. A final cut width of 

0.3 mm was chosen to represent the material removed by the 250 µm diameter wire used 

for cutting. An element size of 0.3 mm in the x and y directions was chosen. A plane strain 

condition was assumed based on the specimen dimensions. The model was meshed with 

43 766 quadratic plane strain elements of type CPE8R and contained 132 169 number of 

nodes. The mesh was refined at the cut and biased by a factor of 4 to the opposite edges. 
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Figure 3 - 4: The 2D FE mesh used to estimate the bulge error in the contour measurement 

of the C(T) sample. 

Step 3: Initiating the residual stresses 

An initial residual stress field was defined in the model by using an ABAQUS user subroutine 

(SIGINI) provided by Prime [118]. This subroutine defined the initial stresses at material 

points along the cut path as functions of model coordinates. The initial stresses were then 

introduced in the remainder of the sample using interpolation, i.e. the method assumes a 

uniform stress distribution along the length of the sample normal to the cut path. This 

interpolation is performed using an embedded FORTRAN polynomial interpolation 

subroutine which in general takes a set of data associated with successive values of a 

parameter and produces an interpolating function which can be evaluated over a continuous 

range of the parameter [149]. 

When initial stresses are introduced into an ABAQUS mechanical model, the initial stress 

state may not satisfy equilibrium. A subsequent static step is applied to allow ABAQUS to 

check for equilibrium and iterate, if necessary, to achieve equilibrium [119]. A map of the 

initial residual stress field defined in the model and stresses after reaching equilibrium is 

shown in Figure 3 - 5 (a) and Figure 3 - 5 (b) respectively. A line profile of the stresses along 

the cut path at mid thickness of the model is shown in Figure 3 - 6. During the subsequent 

step, the stress field was modified to satisfy force and moment equilibrium and the boundary 

conditions (𝜎𝑥 = 0  and 𝜏𝑥𝑦 = 0 at the edges of the specimen). The peak tensile stress at 

mid thickness decreased by ~100 MPa. For a complex (varying) stress field, as for the C(T) 

welded specimen, a line profile of stresses at mid thickness of the specimen is not likely to 
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be in equilibrium, instead the stresses would be balanced through the thickness of the 

sample. 

 

Figure 3 - 5: Map of the contour method residual stresses defined in the 2D FE model (a) 

before and (b) after equilibrium to be used for iterative bulge correction for the C(T) sample. 
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Figure 3 - 6: Line profile of the contour method residual at mid thickness in the FE model 

before and after equilibrium to be used for iterative bulge correction for the C(T) sample. 

Step 4: Applying the restraints for clamping 

The restraints applied to represent the asymmetric (one-sided) ‘finger’ clamping condition 

used for the slitting technique is shown in Figure 3 - 7. In practice finger clamps prevent the 

part from moving by applying sufficient vertical clamping force and to some extent the lateral 

movement is restricted by friction. Since the purpose of the clamping for the contour method 

is to minimize the lateral movement or opening and closing of the cut, only movement in the 

x direction is prevented. To implement this, a set of nodes 5 mm from the left edge and all 

along the cut line were fixed in the x direction. To prevent rigid body motion during cutting 
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the model was fixed in the y direction at the left top corner node. For this analysis, the left 

half of the model is referred to as the ‘clamped side’ and the right half the ‘unclamped side. 

 

Figure 3 - 7: The FE model used for the bulge error correction of the C(T) sample showing 

the restraint applied to represent one sided clamping strategy implemented for the slitting 

measurement. 

Step 5: Performing the contour cut simulation 

To simulate the cutting step of the contour method the MODEL CHANGE function in 

ABAQUS was used to sequentially remove elements representing the cut width (see Figure 

3 - 4) giving 158 cut increments in total. After each increment the normal displacements at 

the cut tip (bulge error), Ux, for the clamped and unclamped sides were recorded as history 

output data. The displacement was measured at two node locations, the corner and mid 

side entry nodes, shown in Figure 3 - 8. Initially the deviation from the flat cut assumption 

was suggested by Prime and Kastengren [3] to be the out of plane displacement of the 

material point where cutting is about to occur, i.e. the bottom corner of the slot. However, 

Prime later suggested [118] that the wire mid side entry node, which represents the outer 

position of the EDM wire diameter, is a better location to estimate the bulge error. The final 

slot width is created at the outer wire diameter position; therefore, the mid side node is a 

better representation of the slot width and could provide a more accurate estimation of the 

slot width error. 
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Figure 3 - 8: Redistributed stresses ahead of the cut for the C(T) sample cutting simulation 

and positions for determining the bulge error at 5 mm cut increment. 

Mesh sensitivity study: 

The results obtained using the finite element method are dependent on the mesh size and 

a mesh refinement study must be carried out. Using smaller elements can result in much 

longer computation times and it is usually a compromise between mesh size and the 

accuracy of results. Consideration should be given to the optimum element size, that is the 

smallest element size necessary to obtain converged results, and a practical element size 

which can be used to ensure a reasonable simulation time and accuracy of the results. 

For the mesh sensitivity study, the mesh next to the cut path was incrementally refined to 

evaluate its influence on the displacement being measured at the cut tip. The element width 

in the x-direction was evaluated for mesh sizes 0.3, 0.15, 0.075 and 0.0375 mm. The 

maximum bulge displacement at cut length 19 mm for the mid side location and the first 

iteration was taken as a reference. It can be seen in Figure 3 - 9 that the magnitude of the 

bulge displacement increases with mesh refinement. The optimum element size would be 

0.0375 mm as the difference between the last two mesh sizes was only 1.5 percentage (%). 

However, to reduce the simulation time the second to last element size of 0.075 mm was 

chosen for the cutting analysis. 
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Figure 3 - 9: Variation of the maximum bulge displacement at the mid side location for 

different mesh sizes next to the cut path. 

Step 6 to 10: Correcting for the bulge error 

When a specimen clamped non-symmetrically is cut for an experimental residual stress 

measurement, large differences can be seen between the surface deformation measured 

on the two halves after cutting. However, the stresses calculated using the average surface 

deformation can provide good stress results [3]. Similarly, the final bulge displacement was 

first calculated for the clamped and unclamped sides separately using Equation 2-8 in 

section 2.7.2. Then the displacement data from both sides were averaged using Equation 

2-9. The average bulge displacement profile was interpolated to correspond with the 0.5 

mm grid spacing used for the experimental surface deformation data processing. This was 

done in MATLAB with the cubic spline interpolation [150] function. 

Then a line profile of the experimentally measured surface deformations at mid thickness 

of the specimen were corrected for bulge using Equation 2-10. However, the surface 

deformations are not corrected at the start and end of the cut since there is no bulge error 

measured at the free edges of the specimen. This may lead to large discrepancies in the 

corrected surface deformation profile and result in erratic stresses near the edges of the 

specimen. Therefore, the corrected surface deformations were extrapolated to the start and 

end edges of the specimen using the MATLAB cubic spline extrapolation function. 

To back-calculate the corrected stresses a 2D model of one half of the C(T) specimen was 

created in ABAQUS, shown in Figure 3 - 10. A linear elastic material model was used with 

Young’s modulus, E, and Poisson’s ratio, , of 205 GPa and 0.29 respectively. A mesh 

sensitivity study, also depicted in Figure 3 - 10, showed that an optimum element size of 

0.15 mm next to the cut surface was suitable to calculate the stresses. The mesh was 
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concentrated at the cut face and biased toward the opposite edge. The mesh was created 

with 3780 linear plane strain elements of type CPE4 and 3904 nodes. The top corner node 

was fixed in the y direction to prevent rigid body motion. The corrected surface deformation 

was applied as a boundary condition to the nodes on the cut surface and an elastic stress 

analysis was performed. 

Finally, to perform the next iteration, the new corrected stresses were defined in the cutting 

model (Figure 3 - 4) as an initial condition and the contour cut simulation and bulge 

correction procedures repeated until a converged solution was reached for the stresses. 

The corrected stresses converged after the third iteration. The results for the 2D bulge 

correction are presented next. 
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Figure 3 - 10: (a) The mesh of the FE model used to back calculate the corrected contour 

stresses for the C(T) sample, also shown is the boundary condition applied to prevent Rigid 

Body Motion. (b) Mesh sensitivity analysis showing the variation of the peak stress for the 

C(T) sample for different mesh sizes (x-dimension) at the cut surface. 

3.1.4 Results and discussion of 2D bulge error correction 

For the 2D bulge error analysis, it was important to first understand how using a line profile 

of the experimentally measured surface deformations at mid-thickness to correct the 

stresses would differ from using the surface deformations on the entire cut surface as in the 

experimental contour procedure (3D analysis).  To do this the initial surface deformation at 

mid-thickness, i.e. before bulge correction, was applied as a boundary condition in the 2D 

model of one half of the C(T) specimen (see Figure 3 - 10) to back calculate the stresses. 

Figure 3 - 11 compares the initial stresses obtained using 2D FE analysis with the contour 

method measured stresses at mid-thickness based on 3D analysis (see Figure 3 - 6). The 

stresses using 2D FE analysis did not give the same magnitude stresses as the 3D analysis. 

The peak tensile stress at 18 mm decreased by 10 % (to 552.5 MPa) and the peak 
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compressive stress at 3.75 mm increased by 17 % (to -314.3 MPa). The stresses most likely 

changed to satisfy equilibrium as described previously. 
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Figure 3 - 11: Comparison of the initial experimental contour method measured stresses at 

mid-thickness based on 3D FE analysis and the initial stresses obtained using 2D FE 

analysis. 

The average bulge displacement for each iteration is shown in Figure 3 - 12. A negative 

bulge displacement corresponds to cutting through compressive stresses causing the cut 

tip to contract and a positive displacement to tensile stresses causing the cut tip to stretch. 

The maximum mid-side bulge correction (3.7 µm) is almost 3 x greater than the corner bulge 

correction (1.3 µm), though both are located at roughly 20 mm cut length. This is close to 

the tensile region located around the electron beam weld at 18 mm. The initial surface 

deformation and corrected surface deformation at mid-thickness after iteration is shown in 

Figure 3 - 13. For the initially measured surface deformation range of ± 17 µm (ignoring the 

first 5 mm cut length), the maximum corner bulge correction is ~8 % of the displacements 

and the mid side bulge correction is ~22 % of the displacements. The shift in the contour 

profile is more significant for the mid-side correction. 

The corrected contour stresses after each iteration are shown in Figure 3 - 14. For the third 

iteration, the peak tensile stress decreased by 12 % for the corner correction and 5 % for 

the mid side correction. Both results showed a slight shift (0.754 mm) in peak tensile stress 

position towards the cut end.  

As demonstrated earlier using a line profile of the experimental measured surface 

deformations at mid-thickness to back-calculate the stresses at mid-thickness gave 

stresses that were initially not in equilibrium. ABAQUS modified the stress field to achieve 

equilibrium in a subsequent step. Consequently, this gave unreliable corrected stresses 
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after bulge correction. For a specimen with a complex (varying) residual stress field, 3D 

bulge correction is probably necessary. This will be investigated for the C(T) welded 

specimen in the next section. 
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Figure 3 - 12: Average bulge displacement for the C(T) sample at the (a) corner and (b) 

mid-side locations for each iteration using 2D correction procedure. 
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Figure 3 - 13: Initial average out of plane displacement for the C(T) sample along the mid 

thickness of the contour cut plane and the corrected displacement for bulge error for each 

iteration using 2D correction procedure for the (a) corner and (b) mid-side bulge 

measurement. 
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Figure 3 - 14: Initial stresses at mid-thickness of the C(T) sample using 2D FE analysis and 

the corrected stresses for bulge error for each iteration using the (a) corner and (b) mid side 

bulge measurements. 

3.1.5 3D bulge correction procedure 

The previous section implemented a 2D bulge correction procedure based upon the mid 

thickness stress profile measured in the C(T) sample using the contour method. Here the 

bulge correction procedure, described in section 2.7.2, is extended to a 3D analysis to 

correct the previously measured contour method stresses on the entire cut surface.  

In this procedure, contour method measured residual stresses across the cut surface were 

applied as an initial condition in a 3D FE model of the C(T) entire sample including 

constraints for one-sided clamping. The cutting process was then simulated by sequentially 

removing rows of elements to predict the displacements along the length of the cut tip at 

each cut increment. After the bulge displacements were estimated, the measured 

displacements on the cut surface were corrected and used to back calculate the corrected 

stresses using the conventional finite element procedure performed for the contour method. 

The procedure was iteratively repeated until the stress distributions converged, that is a 

variance of less than 5 percent (≤ 5 %) was achieved for the peak tensile stress. The details 

of the steps used to perform 3D bulge correction are described next. 

Step 1: Experimental contour method measurement 

The transverse residual stresses at mid thickness of the C(T) sample has been previously 

calculated using the contour method (see Figure 3 - 3). 
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Step 2: Creating the finite element model 

In order to embed measured residual stresses into a FE model of the C(T) sample, a 3D 

model of one half of the specimen was created in ABAQUS. The cross section of the cut 

surface was built based on the measured perimeter from the contour method measurement 

and then extruded in the length, z, direction to create a 3D model of one half of the C(T) 

sample, shown in Figure 3 - 15.  A linear elastic material model was used with Young’s 

modulus, E, and Poisson’s ratio, , of 205 GPa and 0.29 respectively. The model was 

meshed with 100 170 quadratic hexahedral elements of type C3D20R and 427 318 nodes. 

The cut width was 0.3 mm for the 250 µm diameter wire used for cutting. The mesh size at 

the cut was 0.75 mm x 0.3 mm x 0.15 mm in the x, y and z directions respectively. The 

mesh through the length, i.e. in the z direction, was kept uniform for 5 mm and then biased 

by a factor of 4 to the opposite edge to reduce the computation time. 

 

Figure 3 - 15: 3D FE model of the C(T) sample used for bulge error estimation. 

Step 3: Introducing initial residual stresses 

To define the initial stress field in the model Prime and Kastengren [3] have proposed 

employing a user-defined SIGINI subroutine and assuming a uniform stress distribution 

across the entire sample length. For 3D modelling, this would require a complex SIGINI 

subroutine to be scripted. An alternative method is to map the stress results from the 

experimental contour FE model directly in a new 3D model for the cutting simulation. 

However, in the contour calculation, the stresses away from the cut surface equilibrate to 
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satisfy the stress-free condition at the edges of the specimen i.e. the stresses diminish with 

increasing distance from the cut surface. Though only the stresses at the cut surface are 

expected to have a significant effect on the local bulge displacement required to be 

measured at the cut tip.  

 

Therefore, the residual stresses from the contour method measurement (Figure 3 - 3) were 

defined in the model for bulge estimation as an initial stress field using the MAP SOLUTION 

function in ABAQUS. A static step was included to allow the model to equilibrate. There was 

only a slight change (< 10 MPa) to the mapped stress field shown in Figure 3 - 16 which 

results from the ABAQUS interpolation for the new mesh size. 

 

Figure 3 - 16: Contour method stresses mapped onto the new 3D FE model to be used for 

iterative FE bulge correction for the C(T) sample. 

Step 4: Applying restraints for clamping 

Due to the specimen being clamped on one side during EDM cutting, a model of the entire 

specimen (no half symmetry) is required to correctly represent the clamping condition so 

that the bulge error can be estimated for the clamped and unclamped sides during the 

cutting analysis. To create a full model of the C(T) specimen, the SYMMETRIC MODEL 

GENERATION and SYMMETRIC RESULTS TRANSFER functions in ABAQUS were used 

to transfer the stresses to a full 3D model for the cutting analysis shown in Figure 3 - 18. 

The restraints applied to represent the asymmetric (one-sided) clamping condition used for 

the slitting technique is also shown in Figure 3 - 17. A set of nodes at the top and bottom 

left edge were fixed in the z direction to prevent lateral movement on one side of the 
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specimen during cutting. For this analysis, the left half of the model is referred to as the 

‘clamped side’ and the right half the ‘unclamped side’. 

 

Figure 3 - 17: Full 3D model used for bulge error correction for the C(T) sample and restraint 

applied to represent the one sided clamping implemented for the slitting measurement. 

Step 5: Performing a contour cut simulation 

The MODEL CHANGE function in ABAQUS was used to sequentially remove two rows of 

elements for each of 79 cut increments. After each increment the displacements at the cut 

tip (bulge error), Uz, must be recorded for the clamped and unclamped sides through the 

thickness of the specimen. The error evaluation positions for the 3 mm cut increment are 

shown in Figure 3 - 18. 

 

 

Figure 3 - 18: Redistributed stresses ahead of the cut for the C(T) sample cutting simulation 

and positions for evaluating bulge error displacements at the 3 mm depth cut increment. 
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An ABAQUS Python script was created to extract the displacements at each cut increment 

and subtract the displacement after the equilibrium step to give the final bulge displacement 

for the clamped and unclamped sides separately using Equation 2-8 in section 2.7.2. Then 

the final bulge corrections from both sides were averaged using Equation 2-9. Lastly, the 

average bulge correction was interpolated for the grid spacing used for the experimental 

surface deformation data processing that is 0.5 mm spacing, in the x and y directions. This 

was done in MATLAB with the scatter interpolation function using natural neighbour 

interpolation which gave the least number of outliers through the thickness compared with 

the linear and nearest neighbour interpolation. 

Step 6 to 10: Correcting for the bulge error 

The initial averaged surface deformations on the cut surface experimentally measured for 

the contour method were then corrected using Equation 2-10. As explained in the 2D 

correction procedure, the corrected displacements should be extrapolated to the free edges 

of the specimen to avoid erratic stress results in this region. This was done in MATLAB with 

the scatter interpolation [150] function by specifying nearest neighbour extrapolation. 

To back-calculate the corrected stresses, the original FE model of one half of the C(T) 

specimen (Figure 3 - 3) was used to apply the corrected averaged displacement as a 

boundary condition to the nodes on the cut surface and an elastic stress analysis performed.  

For the iteration step the new corrected stresses were introduced into the cutting model 

(Figure 3 - 16) as an initial condition and the contour cut simulation and bulge correction 

procedures repeated until a converged solution was reached for the stresses. The corrected 

stresses converged after the second iteration. The 3D bulge corrected results are presented 

next. 

3.1.6 Result and discussion of 3D bulge error correction 

The average bulge displacements after one iteration is shown in Figure 3 - 19. A negative 

bulge displacement corresponds to a reduced cut width and a positive displacement to a 

stretched cut width. The maximum mid side bulge correction (4.1 µm) is 2.5 x greater than 

the corner bulge correction (1.6 µm) and both are located at roughly 19 mm cut length. This 

is quite close to the electron beam weld located at 18 mm. The initial surface deformation 

at mid thickness and corrected surface deformation at mid thickness after iteration is shown 

in Figure 3 - 20. For the initially measured contour range of ± 17 µm (ignoring the first 5 mm 

cut length), the maximum corner correction is 9 % of the displacements and the mid side 
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correction is 24 % of the displacements. These results are remarkably close to the bulge 

correction obtained for the 2D FE analysis considering the uncertainties in the changing 

stresses. 

A 3D map of the corrected stresses on the cut surface after the first iteration is shown in 

Figure 3 - 21 and the results at mid-thickness after iteration in Figure 3 - 22. After iteration, 

the peak tensile stress at mid-thickness of the specimen (616.9 MPa) increased by 7.1 % 

(to 660.70 MPa) for the corner correction and 20.4 % (to 742.80 MPa) for the mid side 

correction. Though both results showed a negligible shift (0.001 mm) in peak tensile stress, 

a slight shift in the stress profile towards the cut end can be seen. Special care has been 

taken to extrapolate the displacements near the edges of the cut which has given reliable 

stress results in this region.  

Further work is needed to understand how the applied restraint conditions influence the 

bulge prediction and whether the stress distribution in the remainder of the model has an 

important influence. 

(a) (b)  

Figure 3 - 19: Average bulge displacement for the C(T) sample at (a) the corner node and 

(b) the mid-side node locations using the 3D correction procedure after the second iteration. 
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Figure 3 - 20: Initial average out of plane displacement for the C(T) sample along the mid 

thickness of the contour cut plane and the corrected displacement for each iteration using 

the 3D correction procedure and (a) the corner node and (b) the mid-side node bulge error 

estimates. 

 

Figure 3 - 21: (a) Initial transverse stress map on the cut surface of the C(T) sample 

measured using the contour method and the map of corrected stresses for the bulge error 

using 3D FE analysis based on (b) the corner node and (c) the mid-side node bulge error 

estimates after the first iteration. 
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Figure 3 - 22: Line profile distribution of transverse stress along the mid thickness of the 

contour cut plane showing the initially measured stresses and stresses corrected for bulge 

displacements obtained from (a) the corner node and (b) the mid-side node locations using 

3D FE analysis. 

Comparison of neutron, slitting and contour method results: 

The graph comparing the initially measured stresses using neutron diffraction, slitting and 

contour method techniques (Figure 3 - 3), is revised in Figure 3 - 23 to include the corner 

and mid-side position corrected contour method stresses from the 3D bulge correction 

analysis. It is evident that the 3D bulge corrected results correlate more closely with the 

neutron diffraction and slitting measurements with the mid-side correction giving 

significantly better results. 

The peak tensile stress from the mid side corrected contour method measurement (743 

MPa) was greater by 103 MPa and 153 MPa than the neutron diffraction and slitting 

measurements respectively. The slitting technique measures the average stresses across 

the thickness of the specimen; therefore, these stresses are expected to be lower in 

magnitude. The neutron diffraction stresses are also averaged over the gauge volume. If 

the uncertainty in the neutron diffraction results (± 25 MPa) is included, then the difference 

is reduced to 78 MPa. The corrected contour method profile was shifted slightly (negative 

y-direction) towards the neutron diffraction and slitting measurements. This supports the 

author’s conjecture that the shift is potentially a result of the presence of compressive 

plasticity associated with non-ideal (one-sided) restraint condition used during cutting [4, 

34].  
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Figure 3 - 23: Comparison of the transverse residual stress distribution at mid-thickness of 

a C(T) sample measured by neutron diffraction, slitting and the contour method and the 

corrected contour method results using 3D FE analysis with bulge displacements obtained 

from (a) the corner and (b) mid side locations. 

3.2 Alternative stress correction procedure 

In this section an alternative approach to calculate corrected stresses from estimated bulge 

displacements is proposed. The proposed approach is less cumbersome than the 

procedure discussed previously. It involves using estimated bulge displacements directly in 

a contour type of elastic FE analysis to calculate the stress error. The obtained stress error 

is then used to correct the initial contour method measured stresses. The approach is valid 

because the solid mechanics analyses are linear elastic. The advantage of this procedure 

is that the complexity of the bulge correction is reduced, and the initially measured surface 

deformations are not required for determining the bulge error. 
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In this section the steps of the iterative FE bulge correction procedure, explained in section 

2.7.2, are revised for the proposed approach. Then the procedure is implemented for the 

C(T) specimen case study to correct the contour method stresses for the bulge error using 

2D and 3D analysis. The results from the original and alternative stress correction 

approaches are then compared. 

3.2.1 Revised bulge correction procedure 

The initial steps to perform the cutting analysis and estimate the bulge displacements (steps 

1 to 5 below which are described in more detail in section 2.7.2) are the same, therefore 

the revised procedure starts from step 6 below. 

Step 1: Complete a contour method measurement to determine the residual stresses in the 

specimen. 

Step 2: Create a finite element model of the specimen in ABAQUS to perform a linear 

elastic simulation of the EDM cutting procedure. 

Step 3: Initialize the contour method stresses in the model and perform a general stress 

analysis step to allow the stresses to reach equilibrium. 

Step 4: Apply restraints to represent the clamping condition during EDM cutting and to 

prevent rigid body motion. 

Step 5: Sequentially remove elements to simulate the cutting step and record the local 

bulge displacements at the cut tip for each cut increment.  

Step 6: Process the bulge displacement data to correct the initial measured stresses from 

implementing the contour method procedure. 

Step 7: Calculate the stress error using the conventional contour method procedure, by 

creating a finite element model of one half of the specimen in ABAQUS and applying the 

opposite of the bulge displacements as boundary conditions on the cut surface and 

performing an elastic stress analysis. The back calculated stresses are the stress error 

(σstress error) due to the bulge. 

Step 8: Add the stress error calculated in step 7 to the initially measured stresses (σinitial CM 

stress) to obtain the corrected contour stresses. 

𝜎𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐶𝑀 𝑠𝑡𝑟𝑒𝑠𝑠 =  𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑀 𝑠𝑡𝑟𝑒𝑠𝑠 +  𝜎𝑠𝑡𝑟𝑒𝑠𝑠 𝑒𝑟𝑟𝑜𝑟    Eqn. 3 - 1 
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Step 9: Iteration is necessary since the first estimate of the bulge error is based on the 

stresses calculated assuming no bulge error. To perform the iteration, steps 3 to 8 are 

repeated by initializing the corrected stresses in the cutting simulation and re-estimate the 

bulge displacements. For each iteration, the new stress error is added to the initially 

measured stresses and not the corrected stresses from the previous iteration. 

Step 10: Finally check whether the corrected stresses have converged. An incremental 

change of ≤ 5 % of the peak tensile stress has been used in the present study to indicate 

convergence. 

3.2.2 Application of the alternative approach 

In this section the alternative approach is implemented using 2D analysis to correct the C(T) 

welded specimen stresses at mid-thickness and then using 3D analysis to correct the 

stresses on the entire cut surface. In both analyses, the bulge displacements for the first 

iteration have already been predicted in section 3.1.3 and 3.1.5. Therefore, this section only 

describes the alternative procedure used to calculate the stress error and correct the 

stresses. Only the mid side bulge location is evaluated since this gave a better bulge error 

correction and was selected as the final result in the previous study. 

(1) 2D bulge correction 

To calculate the stress error, step 7 in section 3.2.1, the opposite of the final average bulge 

displacements for the first iteration, shown in Figure 3 - 12, was applied as a boundary 

condition to the cut surface of the 2D FE model shown in Figure 3 - 10. Before doing this, it 

was necessary to extrapolate the bulge displacements to the edges of the specimen since 

there is no bulge displacement measured at the start and end of the cut. This was done in 

MATLAB using the cubic spline extrapolation function. 

The stress error was then combined with the initial contour method stresses at mid thickness 

to give the new stress results using Equation 3-1 in step 7. Iteration was performed 

according to steps 8 and 9 and a converged stress solution was reached after two iterations. 

The corrected stresses after each iteration are shown in Figure 3 - 24. After the second 

iteration, the peak tensile stress increased by 19.6 % (to 738.03 MPa) and a slight shift in 

the stress profile towards the cut end can be seen. The corrected stresses are very similar 

to the previous 3D results at mid-thickness (Figure 3 - 22). This is a very promising result 

considering the bulge estimation is based on the stresses which decreased after 

equilibrating (Figure 3 - 5 (b)). In Figure 3 - 25 the corrected stresses at mid thickness are 
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compared with the corrected stresses using the original procedure where the corrected 

tensile stresses decreased after iteration. 
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Figure 3 - 24: Line profile distribution of transverse stress along the mid thickness of the 

contour cut plane showing the initial measured stresses and stresses corrected for bulge 

error using the proposed alternative procedure for bulge displacements obtained from the 

mid side node location using 2D iterative FE analysis. 

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30 35 40 45 50

T
ra

n
s

ve
rs

e
 s

tr
e

s
s 

(M
P

a
)

Cut length (mm)

Method 1

Method 2

 

Figure 3 - 25: Comparison of the 2D corrected stresses for the C(T) sample at mid-thickness 

using the original bulge error correction procedure (method 1) and the proposed alternative 

approach (method 2). 

(2) 3D bulge correction 

To calculate the stress error, step 7 in section 3.2.1, the opposite of the 3D map of bulge 

displacements, shown in Figure 3 - 19, were applied as boundary conditions to the FE model 
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of half of the C(T) sample (see Figure 3 - 15) and elastic stress analysis was performed. As 

previously explained, the bulge displacements were first extrapolated to the edges of the 

specimen in MATLAB with the scatter interpolation function by specifying nearest neighbour 

extrapolation. 

The stress error was then combined with the initial contour method stresses on the cut 

surface to give the corrected stress results using Equation 3-1 in step 7. Iteration was 

performed according to steps 8 and 9 and a converged stress solution was reached after 

two iterations. The corrected stresses on the cut surface for the first iteration were visualized 

in MATLAB using a contour plot, shown in Figure 3 - 26. The corrected stresses at mid 

thickness are compared with the corrected stresses using the original procedure in Figure 

3 - 27. As expected, the results from both approaches are in excellent agreement due to 

the nature of linear elastic stress analysis. 

 

Figure 3 - 26: Map of the corrected transverse stresses on the contour cut plane after 

iteration using the proposed alternative correction procedure and the bulge displacements 

obtained from the mid side node location using 3D FE analysis. 
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Figure 3 - 27: Comparison of the 3D corrected stresses for the C(T) sample at mid-thickness 

using the original bulge error correction procedure (method 1) and the proposed alternative 

approach (method 2). 

(3) Comparison of 2D and 3D bulge correction 

For the 2D correction the stress error was estimated for the mid-thickness stresses based 

upon a 2D FE model of the cutting process and the correction was applied to the measured 

mid thickness stress profile from the 3D contour measurement. Whereas for the 3D 

correction the stress error was estimated for the stresses across the cut surface based upon 

a 3D FE model of the cutting process and the stress correction was applied to the entire 3D 

contour measurement.  

A comparison of the 2D and 3D corrected contour stress profiles at mid-thickness using the 

alternative procedure for each iteration is shown in Figure 3 - 28.  The corrected stresses 

for both iterations agree very well. This result is promising as it shows that, even for a 

complex (varying) contour residual stress map, the bulge error can be corrected for along 

a line by using simplified 2D analysis, thus avoiding the need to perform complex 3D 

analysis. 



Chapter 3: Investigating the iterative FE bulge correction procedure 

83 

 

(a)

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30 35 40 45 50T
ra

n
s

ve
rs

e
 s

tr
e

s
s
 (

M
P

a
)

Cut length (mm)

3D Corrected iteration 1

2D Corrected iteration 1

 

(b)

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30 35 40 45 50T
ra

n
s

ve
rs

e
 s

tr
e

s
s
 (

M
P

a
)

Cut length (mm)

3D Corrected iteration 2

2D Corrected iteration 2

 

Figure 3 - 28: Comparison of corrected contour stresses at mid thickness based on 2D and 

3D FE bulge stress error correction analyses for (a) the first and (b) the second iteration. 

3.3 Discussion 

In this chapter the published iterative FE bulge error correction procedure [3] of Prime and 

Kastengren was applied to a C(T) weld specimen that appeared to show symptoms of bulge 

error in the measured residual stress results made by the contour method. The capability 

of the bulge correction procedure to correct the complex (varying) residual stress field was 

investigated using a simplified 2D approach and a more robust 3D approach.  

In the 2D approach a line profile of the contour method stresses at mid thickness were 

corrected for the bulge error. The experiment measured stress profile at mid thickness was 

used as an initial condition in a two-dimensional finite element contour cutting simulation in 

ABAQUS to estimate the bulge error. The magnitude of the tensile stresses in the model 

reduced by 16 % during the first analysis equilibrium step prior to cutting but the stress 

profile remained sufficiently representative to give a reasonable estimate of the bulge 
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displacement error. A line profile of the experimental contour displacements at mid 

thickness were corrected for bulge error and used to back calculate corrected contour 

stresses at mid thickness. After three iterations the corrected stresses showed reduced 

tensile stresses relative to the equilibrated 2D FE model and increased compressive 

stresses which is not consistent with published contour method measurements corrected 

for bulge error [3, 65]. Using the contour method stresses that are averaged across the 

thickness of the specimen is more likely to be balanced but varying residual stress fields 

will change significantly. Therefore, for a specimen with a complex (varying) residual stress 

field, 3D bulge correction is probably necessary. 

In the 3D approach the contour method stresses on the entire cut surface were corrected 

for the bulge error. The stresses on the cut surface would be physically self-balanced and 

provide a more accurate finite element bulge estimation and correction procedure in 

ABAQUS. A converged stress solution was reached after two iterations. The peak tensile 

stress was increased from 617MPa to 743MPa (~20%) and slightly shifted towards the end 

of the cut . These changes in the stresses are expected after bulge correction and confirmed 

that the 3D approach is robust. The increase in magnitude of the corrected contour stresses 

demonstrated that the bulge error can significantly compromise the accuracy of 

measurements made using the contour method.  

The geometric/nodal positions used to estimate the displacement at the cut tip in the FE 

analysis was also examined and found to be important. The magnitude of the estimated 

displacement errors at the cut tip were found to be up to 9 % of the measured surface 

deformations for the corner node position and up to 24 % for the mid side position. For the 

corner node, this agrees with a similar study, for an electron beam (EB) welded C(T) 

specimen, which found the displacements at the cut tip to be 10 % of the average 

displacements on the surface [65]. The estimated displacements at the mid side position 

were much larger and produced a larger correction (~20%) in the peak tensile stress, 

compared to the corner position (~7%). The mid side position is a better location to estimate 

the displacements since this represents the physical location of where the EDM wire creates 

the final slot width. The estimated cut tip displacements for the 2D and 3D procedures were 

in close agreement considering the differences in the stress fields used as an initial 

condition for the contour cutting simulation.  

The practices established in this work to ensure reliable estimation and correction of the 

bulge error using the iterative finite element procedure are discussed next, 
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• As there is no bulge error at the start and end of the cut, extrapolating the corrected 

surface deformations near the edges of the cut using MATLAB software gave reliable 

stress results in this region.  

• A mesh sensitivity study showed the size of the mesh close to the cutting path had a 

significant effect on the displacements and stresses calculated at the cut. The results 

showed that the width of the mesh close to the cut should be at least half the size of the 

mesh used along the cutting path.  

• The effect of the asymmetric clamping (required for the slitting measurement) was 

removed by averaging the bulge displacements from both cut halves before correcting 

the measured averaged contour displacements. In the finite element analysis, each side 

of the cut tip is moving in opposite directions to the reference coordinate system, 

therefore the sign of the displacements from one side should be reversed before 

averaging. 

• An incremental change of ≤ 5 % of the peak tensile stress has been used in the present 

study to indicate convergence. 

The factors that have not been explored in this work to determine their influence on the 

bulge prediction are the applied restraint to represent the clamping condition, the stress 

distribution in the remainder of the model and using a semi-circular slot bottom. 

Based on this investigation, a simpler correction procedure for full field contour 

measurement is proposed. Estimated bulge displacement errors at the cut tip are used 

directly in an elastic contour type FE analysis to calculate the associated stress error. The 

stress error is then used to correct the initially measured stresses. This procedure has been 

applied for the C(T) specimen case study using 2D and 3D finite element analysis. The 

corrected stresses showed excellent agreement with the original procedure due to the 

nature of linear elastic stress analysis. The alternative procedure can be used to correct a 

line profile of contour method residual stresses using the estimated bulge displacements 

from a simplified 2D contour cutting simulation. And a complex 3D bulge correction 

procedure is not necessary, even for a complex (varying) residual stress profile. 
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3.4 Conclusion 

• A 2D FE approach proposed by Prime and Kastengren [3] to correct complex (varying) 

stress fields for the bulge error is unreliable and 3D analysis is necessary.  

• A 3D FE approach can be applied to correct complex stress fields for the bulge error, but 

this procedure is very complex and time-consuming requiring bespoke scripts to extract the 

bulge error through the thickness of the specimen. 

• The displacement at the wire mid side entry node is a better position to estimate the bulge 

error as the correct contour method measurement for the case study explored in this chapter 

showed a closer correlation with the neutron diffraction and slitting measurements. 

• The bulge error can be significant for contour measurements. The peak tensile stress 

increased by ~20 % for the case study explored in this chapter. 

• A simpler procedure, which calculates directly the stress error offers a more robust 

approach to correcting contour results. 

• The simple procedure allows stress line profiles from a contour measurement map to be 

corrected based upon stress errors estimated from a 2D FE model of the cutting process.  

The work in this chapter has shown that the bulge error can have significant effects on 

reliable measurements made by the contour method. An iterative FE correction procedure 

is time consuming and 3D modeling is required in most engineering cases. Furthermore, 

the position at the tip of a contour cut to estimate the bulge error has so far only been 

explored using finite element analysis and there is a need for experimental validation (see 

future work section 7.2). In the next chapter an analytical approach to estimate and correct 

for the bulge error is investigated. 
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Chapter 4: An analytical approach for bulge error 

estimation 

In the contour method, the cut created by wire electric discharge machining (WEDM) can 

be interpreted as a slow-moving blunt crack which causes a redistribution of residual 

stresses in the uncut material that are concentrated at the cut tip. The bulge error arises 

when the stress field near the cut tip causes the material at the cut tip to elastically deform 

resulting in a varying amount of material being removed. Linear Elastic Fracture Mechanics 

(LEFM) characterises the magnitude of the stresses and displacements surrounding the tip 

of a sharp crack by the stress intensity factor (SIF), associated with the cut length and the 

redistributed residual stress field. The hypothesis explored in this chapter is that bulge error 

opening and closing displacements, are dependent on the local stress state at the cut tip 

which can be characterised by the mode-I SIF. If true, the SIF for a sharp crack can be used 

to predict the elastic displacements for a blunt crack or slot [125, 126]. 

The main aim of this chapter is to develop an analytical method to predict the bulge error 

using the SIF as an alternative to the finite element procedures presented in Chapter 3. The 

initial objective is to demonstrate the relationship between bulge error and SIF by FE 

analysis, then to investigate using the LEFM displacement field equations to estimate the 

bulge displacements (bulge error), and finally to establish the suitability of the equations for 

idealised stress distributions and real residual stress measurements made with the contour 

method. In each study the analytical bulge displacement solution is compared with the FE 

predictive procedure to evaluate its accuracy. 

This chapter first describes the design of the simulation matrix to develop the SIF 

correlations and results. Then the analytical solution to estimate the bulge error is derived 

based on standard LEFM displacement field equations for a crack in a body found in 

literature. Following this, the derived bulge displacement equations are verified for two 

idealised cases; first an edged cracked plate under tension loading in plane stress and 

plane strain conditions and secondly a quenched cylinder to evaluate the bulge 

displacements through the thickness of the specimen. Finally the analytical bulge correction 

approach is implemented for two contour method measurements; first the cross-weld C(T) 

specimen which was investigated in Chapter 3 and then the bent beam test specimen 

example where an iterative FE bulge correction procedure [3] was first applied. A discussion 

of the results and conclusions are given at the end. 
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4.1 Stress Intensity Factor Correlations 

The purpose of this work was to examine the relationship between the stress state at the 

tip of a contour cut and the cut width. Extensive FE simulations were carried out for a series 

of different parameters i.e. stress conditions, plate geometries, material properties and cut 

width sizes, to develop robust correlations. The underlying assumption in this work is that 

the LEFM stress intensity factor (SIF) characterises the stress state at the tip of a blunt 

notch. 

First the specimen and simulation matrix comprising a total of 36 different test conditions to 

produce the correlations is described. Then the FE simulations are presented including a 

mesh convergence study and validation of the FE SIF. The correlation results, that is graphs 

of bulge displacement versus SIF, and the study findings are given at the end. 

4.1.1 Specimen Design and Parameters 

A benchmark case was designed to vary the SIF, cut length and cut width. An important 

consideration is the extent to which the SIF value is affected by the specimen design. SIF 

solutions, and expressions for the near-tip stresses and displacements, of edge-crack 

problems in finite width plates are widely available [120, 133, 134]. The solutions are 

generally for isotropic linear elastic material containing a mathematical or sharp crack 

positioned symmetrically with respect to the specimen geometry and applied loading. 

For this reason, a single edge “crack” with a finite width geometry in a flat plate was chosen.  

A series of 2D linear-elastic finite element simulations were performed in ABAQUS for an 

edge-notched plate subjected to far field uniform tension and pure bending loadings. A 

schematic of the plate is shown in Figure 4 - 1 identifying the length (L), width (W), cut length 

(a) and cut width (b). The uniform tension and bending stresses that are applied at the far 

edge of the plate are also shown.  
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Figure 4 - 1: Schematic of a single edge-cracked plate and far field loading used to develop 

the stress intensity factor correlations. 

SIFs depend on the geometry of the component, crack shape and loading condition. Taking 

this into consideration, the main parameters varied in the simulation studies were the plate 

geometry, plane stress and plane strain state, the elastic material properties and the cut 

width. The initial plate dimensions were chosen to be 50 mm for the length and width, aspect 

ratio L/W = 1, based on a standard compact tension, C(T), specimen size. The elastic 

material properties, Young's modulus or Modulus of Elasticity (E) and Poisson's ratio (), 

were defined for aluminium 7050 which has a low modulus of elasticity with E = 71.1 GPa 

and  = 0.33. The initial cut width size (b) was 250 µm which is representative of a wire 

EDM cut. A uniform tensile stress (σTension) of 10 MPa was chosen to create sufficient load 

in the plate to identify the bulge displacements and SIF at the cut tip.  

Following this, the length of the plate was varied for aspect ratios L/W = 0.5 and 2, to include 

short and long plates. The elastic material properties were changed to stainless steel 316H 

having a higher modulus of elasticity with E = 195.6 GPa and  = 0.294. The cut width size 

for the initial plate geometry was varied and six sizes were evaluated based on the range 

of wire diameters typically used for EDM cutting and the final slot width: 50 µm, 150 µm, 

250 µm, 350 µm, 450 µm and 550 µm. And finally, the different cut width sizes were re-

assessed for a bending load having a bending moment of 200 Nm. For each study, plane 

stress and plane strain analysis were performed. One factor was varied for each study to 

develop the stress intensity factor correlations giving a total of 36 cases. The complete 

simulation matrix is shown in Table 4 - 1 in the appendix. 
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4.1.2 FE Models and Mesh Sensitivity Studies 

This section first describes the FE models used to develop the SIF correlations. Mesh 

sensitivity studies were performed to evaluate the significance of the element size and 

shape at the cut tip for the square slot assumption. The FE stress intensity factor was 

verified using the Boundary Collocation Method (BCM) [135, 142]. The correlation results, 

that is graphs of bulge error versus SIF, are presented in section 4.1.3. 

FE Models and Procedure 

To simplify the FE analysis, a 2D model of one half of the plate was created in ABAQUS 

with a symmetry boundary condition, shown in Figure 4 - 2. A linear elastic material model 

was used with the Young’s modulus, E, and Poisson’s ratio, , defined. The tensile and 

bending loads were defined at the far edge of the plate. The model was allowed to freely 

deform (unconstrained) and only one additional constraint was applied to avoid rigid body 

motion. 

 

Figure 4 - 2: The FE model of a single edge-cracked plate used for the stress intensity factor 

correlations showing the loading edge and boundary condition to prevent rigid body motion. 

Two models were required, one with a sharp crack to evaluate the SIF and the other with a 

square slot for bulge quantification. Figure 4 - 3 shows the mesh used to evaluate the stress 

intensity factor and bulge displacement for the different plate geometries. For a 0.25 mm 

cut width size, the element size at the cut was 0.125 mm and 0.25 mm in the x and y 

directions respectively. Figure 4 - 4 shows the mesh to evaluate the different cut width sizes 

using a plate with aspect ratio L/W = 1. The element size at the cut was chosen so that an 
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increasing number of elements could be removed as the cut width size increased without 

needing to re-mesh the model. The element size at the cut was 0.025 mm and 0.05 mm in 

the x and y directions respectively. Therefore, to create the smallest cut width one element 

was removed and for the largest cut width 11 elements were removed in the x-direction. 

For both configurations, the models were meshed with quadratic elements and plane stress 

and plane strain conditions were applied by selecting plane stress and plane strain elements 

of type CPS8R and CPE8R respectively. The models in Figure 4 - 3 with plate aspect ratios 

0.5, 1 and 2 were meshed with 14 000, 16 000, 21 000 elements and contained 42 541, 48 

561, 63 611 nodes respectively. The model in Figure 4 - 4 was meshed with 95 624 

elements and contained 287 627 nodes. The global element size for both was 1 mm and 

biased away from the cutting edge in stages. 

 

Figure 4 - 3: The 2D mesh and dimensions for the FE modelling of different plate geometries 

used for determining the stress intensity factor and bulge displacements. 
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Figure 4 - 4: The 2D mesh and dimensions for the FE modelling of different cut width sizes 

used for determining the bulge error. 

The tensile load was created by defining a constant pressure of 10 MPa on the far edge of 

the plate. The bending load was applied as a distribution of stresses that are tensile at the 

bottom of the plate and compressive at the top. The stress at any point along the y axis can 

be calculated using Equation 4 – 1. The resulting stress distribution for the 200 Nm bending 

moment, shown in Figure 4 - 5, was applied on the far edge of the plate, using the analytical 

expression field in ABAQUS. 

𝜎𝐵𝑒𝑛𝑑𝑖𝑛𝑔 =
−𝑀𝑦

𝐼𝑥
           Eqn. 4 - 1 

where M is the bending moment, y is the distance from the neutral axis to the top or bottom 

of the plate and Ix is the second moment of area of the cross section about the x-axis that 

can be calculated by, 

𝐼𝑥 =  
1

12
𝐿𝑊3          Eqn. 4 - 2 
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Figure 4 - 5: Distribution of bending stresses as a function of distance from the neutral axis. 

To evaluate the SIF, a sharp crack was created by sequentially removing the symmetry 

boundary condition along the cut line. The crack was modelled by defining the crack tip and 

crack propagation direction. The stress singularity at the crack tip was controlled by defining 

quarter point node positions at the crack tip. The mode I stress intensity factor, KI, was 

calculated using the J-integral method in ABAQUS. The J-integral calculation is performed 

over several contours to check for contour independency. To evaluate the bulge 

displacements, a square slot was created by sequentially removing elements along the cut 

line. The normal displacement at the cut tip (bulge error), Ux, was estimated at the wire mid 

side entry node as confirmed in Chapter 3. For both analyses cutting was simulated in 1 

mm increments giving 50 cut increments in total. At each cut length, the bulge displacement 

and stress intensity factor were recorded. 

Crack Tip Mesh Sensitivity Studies 

The first study evaluates the sensitivity of bulge displacements to the mesh refinement used 

to represent the cut width. The second study evaluates the effect of the cut tip shape. For 

mesh convenience, a square slot bottom has been used to simulate cutting. However, in 

practice the wire EDM cut has a semi-circular bottom and this may introduce errors in the 

predicted bulge displacements [3]. The conclusions from both mesh studies are given at the 

end of this section. 

(a) Mesh size 

A comparison is made between one, five and ten elements used to represent a cut width 

size of 0.25 mm, shown in Figure 4 - 6. The following parameters were specified for all 

analyses, a remote uniform tensile stress of 10 MPa, a linear elastic material model with 
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Young’s Modulus 71.1 GPa and Poisson’s ratio 0.33 and a plane stress condition. The bulge 

displacements, Ux, were recorded at 1 mm cut increments at mid side node shown in Figure 

4 - 6. The results, shown in Figure 4 - 7, show no change in the measured bulge 

displacements when the mesh used to represent the cut width is refined. Equation 4 – 3 

was used to calculate the percentage error between the predictions of the bulge 

displacements for one element (x1) and five or ten elements (x2). The percentage error was 

found to be less than 1 % along the entire cut length. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =  |
𝑥1−𝑥2

𝑥2
| × 100     Eqn. 4 - 3 

 

Figure 4 - 6: The mesh at the cut using one element (Figure 4 – 4, L/W = 1) compared to 5 

and 10 elements (Figure 4 – 5) to represent a cut width size 0.25 mm and the bulge 

monitoring locations. 
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Figure 4 - 7: Comparison of the bulge displacements as a function of cut length for the mesh 

using one, five and ten elements to represent a cut width size 0.25 mm for a plate with a 

remote tensile stress of 10 MPa, Young’s Modulus 71.1 GPa and Poisson’s ratio 0.33, 

aspect ratio (L/W) of 1 and plane stress condition. 
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(b) Mesh shape 

In this study a new FE model of the plate with L/W = 1 was created with a semi-circular 

shaped slot to represent a cut diameter of 0.25 mm. The parameters specified in the 

previous mesh study (a), were defined in the new model. Figure 4 - 8 shows the refined 

contoured elements at the cut tip and bulge measurement location. Since a new FE model 

is required for each cut length only five locations were selected at 5 mm, 15 mm, 25 mm, 

35 mm and 45 mm. 

Figure 4 - 9 compares the bulge displacements as a function of cut length for the semi-

circular slot with the results from the previous study for the square slot. The difference 

increases as the cut length increases. Equation 4 – 4 was used to calculate the percentage 

error between the two numerical predictions of the bulge displacements for the square slot 

(x1) and semi-circular slot (x2). Figure 4 - 10 shows the error is up to 10 percent with the 

square idealisation overestimating bulge displacements. 

 

Figure 4 - 8: The mesh at the cut for the semi-circular slot bottom analysis using a slot 

diameter of 0.25 mm to estimate the bulge displacement at the outer edge of the radius. 
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Figure 4 - 9: Comparison of the bulge displacements at selected cut lengths for the mesh 

using a square versus semi-circular shaped slot of diameter 0.25 mm to represent the EDM 

cut. 
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Figure 4 - 10: Percentage error in the bulge displacements using a square versus semi-

circular shaped slot of diameter 0.25 mm to represent the EDM cut. 

Conclusions 

• Using a more refined mesh to represent the cut width has no effect on the measured 

bulge displacements. Therefore, both models can be used to predict the bulge error. 

• A fairly significant error (up to 10 % over prediction) was found using the square slot 

assumption compared with the semi-circular slot created by the EDM cutting process. 

Since the meshing for a semi-circular slot would greatly increase the complexity of the 

FE analysis, it was decided to continue with the square slot idealisation to predict the 
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bulge error. Therefore, the square slot idealisation is likely to overestimate the bulge 

error. 

Validation of the FE Stress Intensity Factor 

Two studies are presented to check the SIFs obtained using FE simulations in ABAQUS. In 

the first study the FE SIF for a single edge cracked plate with tension loading is verified 

using the BCM solution [135, 142] explained in the literature review chapter. In linear elastic 

fracture mechanics, SIF solutions are typically derived for sharp cracks which assume that 

the stresses become infinite at the crack tip. The hypothesis is that the SIF for a sharp crack 

can be used to accurately predict the bulge displacements for a blunt crack or slot. Blunt 

cracks, which have a finite width, reduce the severity of the stress field around the crack tip 

and have no stress singularity. Therefore, the second study is to evaluate how the SIF for 

a finite width crack deviates from a sharp crack. The conclusions from both SIF studies are 

given at the end of this section. 

(a) Comparison of the FE SIF with the Boundary Collocation Method 

First the FE mode I SIF, KI, was calculated for the different plate lengths shown in Figure 4 

- 3 for a sharp crack. The following parameters were specified for all analyses, a remote 

uniform tensile stress of 10 MPa, a linear elastic material model with Young’s Modulus 71.1 

GPa and Poisson’s ratio 0.33 and a plane stress condition. Then the stress intensity factors 

were calculated with the BCM solution for a single edge-crack plate under tension loading. 

The SIF solution for this case is given by the formula 𝐾𝐼 =  𝜎√𝜋𝑎 𝐹𝑡 where  is the tension 

load, a is the crack length and F is the geometric function compiled in Table 2 - 1 in the 

literature review chapter [142] for several plate aspect ratios and cut lengths. The BCM 

solution is based on results which is accurate to within 1% for all 𝐿/𝑊 ≥ 1.0 and 𝑎/𝑊 ≤ 0.6 

[120, 134]. 

Figure 4 - 11 shows the FE SIF as a function of cut length for the uniform tension loading 

compared with the BCM solution. The SIF for the sharp crack was stable after 5 contours. 

The SIF differs for the short plate (L/W = 0.5) but remained the same for longer plates. This 

is consistent with the findings in literature that the effect of L/W is practically negligible for 

L/W ≥ 1 [120]. This figure also shows the FE SIF with the BCM solution. Both matches fairly 

closely for the different plate lengths. The percentage error between the FE solution (x1) 

and reference BCM solution (x2) were calculated using Equation 4 - 4. Uncertainties in the 

stress intensity factor evaluation are of the order ± 5% [151]. Figure 4 - 12 shows the error, 

which is slightly larger for the short plate, but very good agreement is shown for the longer 
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plates for values of a/W between 0.2 and 0.6. Although the errors varied as a function of 

cut length, the overall accuracy was acceptable as all the errors were lower than 5 %. 
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Figure 4 - 11: Comparison of the FE mode I stress intensity factor with the boundary 

collocation method for a single edge-cracked plate under tension loading for different plate 

lengths. 
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Figure 4 - 12: Percentage error between the FE SIF and boundary collocation method for a 

single edge-cracked plate under tension loading for different plate lengths. 

(b) Evaluation of the FE SIF for a sharp crack versus finite width slot 

This work evaluates how the SIF for the smallest and largest square slot sizes, i.e. 0.05 mm 

and 0.55 mm, deviates from the SIF for a sharp crack. Only the pure tension loading was 

evaluated using model shown in Figure 4 - 4 with a square slot and a remote uniform tensile 

stress of 10 MPa, a linear elastic material model with Youngs Modulus 71.1 GPa and 

Poisson’s ratio 0.33 and a plane stress condition. 
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Figure 4 - 13 compares the SIF for the finite width slots with the results from the previous 

study for the sharp crack. The SIF for the slot was stable after 10 contours. The percentage 

error between the square slot (x1) and sharp crack (x2) was calculated using Equation 4 – 4 

and the results are shown in Figure 4 - 14. As expected, the deviation in SIF for a square 

slot increases as the cut width increases. The error also increases as the cut length 

increases. The percentage error in SIF between the sharp crack and smallest slot (0.05 

mm) was negligible mostly below 0.5 %. The error for the largest cut width size (0.55 mm) 

was slightly more but mostly below 1.5 %.  
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Figure 4 - 13: Comparison of the FE mode I SIF for a sharp crack and slot widths 0.05 mm 

and 0.55 mm for a single edge-cracked plate under tension loading. 
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Figure 4 - 14: Percentage error between the FE SIF for a sharp crack versus slot widths 

0.05 mm and 0.55 mm for a single edge-cracked plate under tension loading. 
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Conclusion 

• There is good agreement between the FE SIF for a sharp crack and BCM solution for 

values of a/W ≤ 0.6. Therefore, the correlations are presented in this range. 

• The SIF for a sharp crack deviates as the slot width increases but even for the largest 

slot width 0.55 mm this variance is small, below 1.5 percent. To avoid any uncertainties 

in the SIF for the correlations it was decided to use the SIF results for the sharp crack. 

4.1.3 Correlation Results and Findings 

In this section the relationships between bulge displacements at the cut tip and the mode I 

SIF are investigated for the case of an edge-cracked plate. The main parameters 

considered are the plate geometry, plane stress and plane strain state, elastic material 

properties, cut widths and loading (pure tension and bending). Graphs of the raw data and 

the study findings are presented under each heading. 

Plate Geometry 

Figure 4 - 15 shows the results for cases 1 to 6, presented in the Appendix B, Table B - 1, 

to evaluate the influence of different plate lengths and the plane stress and plane strain 

stress states. 

• There is a linear relationship between the bulge displacement and SIF. 

• The bulge displacement is larger for the plane stress state than the plane strain state 

as indicated by the steeper slope of the lines. For a Young’s Modulus of 71.1 GPa the 

difference between the plane stress and plane strain state is 11 %. 

Elastic Material Properties 

Figure 4 - 16 shows the results for cases 7 to 12 for larger Young’s Modulus and Poisson’s 

ratio values. 

• The bulge displacement is inversely proportional to the elastic stiffness. 

• The difference between the plane stress and plane strain states reduced slightly. For a 

Young’s Modulus of 195.6 GPa the difference is 9 %. 
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Figure 4 - 15: SIF correlations for a single edge-cracked plate under tension loading for 

different plate lengths and the (a) plane stress and (b) plane strain stress states (i.e. cases 

1 to 6 presented in the Appendix B, Table B - 1). 
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Figure 4 - 16: SIF correlations for a single edge-cracked plate under tension loading with 

larger elastic stiffness properties and the (a) plane stress and (b) plane strain stress states 

(i.e. cases 7 to 12 presented in the Appendix B, Table B - 1). 

Cut Width Size 

Figure 4 - 17 and Figure 4 - 18 show the results for cases 13 to 36, presented in the 

Appendix B, Table B - 1, to evaluate different cut width sizes for the pure tension and 

bending loading respectively. 

• The bulge displacement is proportional to the SIF for any cut width in the range 50 µm 

to 550 µm for both tension and bending loads. 

• The bulge displacement increases with increasing cut width. 
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Figure 4 - 17: SIF correlations for a single edge-cracked plate under tension loading for 

different cut width sizes and the (a) plane stress and (b) plane strain stress states (i.e. cases 

13 to 24 presented in the Appendix B, Table B - 1). 
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Figure 4 - 18: SIF correlations for a single edge-cracked plate under bending loading for 

different cut width sizes and the (a) plane stress and (b) plane strain stress states (i.e. cases 

25 to 36 presented in the Appendix B, Table B - 1). 

To quantify the increase in bulge displacement with cut width, the bulge displacements were 

extracted at specific SIF values. Figure 4 - 19 shows the displacement for increasing cut 

width at 10 MPa.m0.5 and 5 MPa.m0.5 for the tension and bending loads respectively. The 

increase in bulge displacement was greater for narrower cut widths. The results gave the 

exact relationship described below. 

• The bulge displacement is proportional to the square root of the cut width. 
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Figure 4 - 19: Bulge displacements (bulge error) with increasing cut width at specific values 

of SIF for a single edge-cracked plate under tension and bending loading. 

4.2 Analytical Solution for Bulge Error 

The previous section has shown that the bulge effect is dependent on the stress state at 

the cut tip, which can be characterised by the SIF at the cut tip. In LEFM when the SIF is 

known, stresses and displacements near a crack tip can be calculated using standard 

equations. In this section a LEFM based displacements solution is explored to predict bulge 

errors in contour method measurements for cases of plane stress and plane strain.  

LEFM deals with the growth of sharp cracks in elastic bodies controlled by the stresses and 

deformations around the crack tip. There are three modes of fracture, mode I is identified 

as the opening mode, in which the crack surfaces move opposite and perpendicular to each 

other. This mode has been studied more extensively than modes II and III, which involve 

sliding and lateral tearing respectively. The displacement field ahead of a sharp crack in an 

infinite plane under remote tension can be expressed as an infinite series. However, only 

the first term is usually considered because the higher order terms have negligible influence 

on the solution. 

The Near-Tip Solution 

The near-tip solution for a sharp crack describes the stresses and deformations around the 

crack tip, were r and θ are polar coordinates from the crack tip shown in Figure 4 - 20 [127]. 

The mode I displacement field ahead of a crack which can be expressed in terms of the 

SIF, K, is shown in Equation 4 – 4 [124]. The equations for plane strain differ for plane stress 

because of the different versions of Hooke’s Law, i.e. the displacements are a factor (1 −
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 𝜈2) less for plane strain than for plane stress [152]. The crack opens into a parabola, and 

because a crack is regarded as a mathematical ‘cut’, 𝜃 must lie in the range ±𝜋. The 

displacements at a crack tip are non-singular and proportional to 𝐾𝐼√𝑟  and depend on the 

stress state [121]. 

 

Figure 4 - 20: Crack tip coordinates and the stress field components [127]. 

𝑢 =  
𝐾𝐼

𝐺
[𝑟/(2𝜋)]1/2 𝑐𝑜𝑠

𝜃

2
(1 − 2𝜈 + 2𝑠𝑖𝑛2 𝜃

2
)     Eqn. 4 - 4 (a) 

𝑣 =  
𝐾𝐼

𝐺
[𝑟/(2𝜋)]1/2  𝑠𝑖𝑛

𝜃

2
(2 − 2𝜈 − 2𝑐𝑜𝑠2 𝜃

2
)     Eqn. 4 - 4 (b) 

where 𝑢 and 𝑣 are the x-direction and y-direction displacements in mode I, G is the shear 

modulus and 𝜈 is Poisson’s ratio. Equation 4 - 4 has been written for the case of plane strain 

but can be changed to plane stress by replacing Poisson’s ratio, 𝜈, in the displacements 

with 𝜈/(1 + 𝜈). 

Crack Surface Displacement 

Under mode I deformation conditions, the crack surfaces open up, which is quantified by 

the surface displacement component 𝑢𝑦 [128]. The upper crack surface, shown in Figure 4 

- 21, corresponds to 𝜃𝑥 = 𝜋, 𝜃𝑦 = 0 and the lower surface is 𝜃𝑥 = −𝜋, 𝜃𝑦 = 0. Using 𝜃 = 𝜋 

in Equation 4 – 4 (b), the displacement of the upper crack surface is thus given by, 

For plane stress, 

𝑣 =  
4𝐾𝐼

𝐸
√

𝑟

2𝜋
         Eqn. 4 - 5 (a) 

And similarly, for plane strain, 
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𝑣 =  
2𝐾𝐼(2−2𝜈2)

𝐸
√

𝑟

2𝜋
         Eqn. 4 - 5 (b) 

For the special case of 𝜃 = 𝜋 , it can be deduced from these equations that the 

displacements for plane stress are independent of Poisson’s ratio , and that the 

displacements for plane strain are equal to (1 - 2) times those for plane stress [153]. 

 

Figure 4 - 21: Definition of the coordinate system for the crack surface displacement field. 

Application for bulge error estimation 

The bulge error, or deformation of material at the cut tip, is a result of the slot created during 

the wire EDM process. Assuming a narrow slot, linear elastic fracture mechanics can 

represent a slot as a mathematically sharp crack. Cheng and Finnie compared a square-

bottom slot with mathematical cracks and concluded that, for elastic behaviour, a slot could 

be considered a crack without significant errors (> ~10%) when the depth was more than 

five times the width [154]. The slot width created by wire EDM cutting is typically quite small 

(< 0.5 mm), therefore the error would only be significant for the first few millimetres (< 2.5 

mm) of a contour cut. Furthermore, FE mesh sensitivity studies were performed in section 

4.1.2 to evaluate how the SIF for a finite width crack deviates from a sharp crack. This work 

demonstrated that the SIF for a sharp crack deviates as the slot width increases but even 

for the largest slot width 0.55 mm this variance is small, below 1.5 percent.  

In the FE procedures used to predict the bulge error (see Chapter 3) a square slot is 

incrementally introduced by removing elements and measuring the displacement of the wire 

entry node shown in Figure 4 - 22. This represents the tangent point of the EDM wire which 

creates the final slot width, b. This location relates to the crack surface (θ = ±π) where the 

displacements can be described by Equation 4 -5. 
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Figure 4 - 22: Schematic diagram of an undeformed body discretised for FE simulation of 

the wire EDM cutting process. The distance from the cut tip node to the wire entry node is 

shown. 

The tangent distance, r, to the wire entry position node can be calculated using Pythagoras 

theorem, 

𝑟 =  √(
𝑏

2
)

2
+  (

𝑏

2
)

2
=  

𝑏√2

2
  

where b is the final slot width 

Substituting this into Equation 4 – 5 for the crack surface displacement where 𝜃 = 𝜋, the 

bulge displacements can be determined by, 

For plane stress, 

𝑈𝐵𝑢𝑙𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =  
4𝐾𝐼

𝐸
√𝑏√2

4𝜋
       Eqn. 4 - 6 (a) 

 And plane strain, 

𝑈𝐵𝑢𝑙𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =  
2𝐾𝐼(2−2𝜈2)

𝐸
√𝑏√2

4𝜋
                   Eqn. 4 - 6 (b) 

In the following sections the proposed analytical solution, Equation 4 – 6, is investigated to 

determine if and to what extent it can estimate the bulge error for idealised stress 

distributions and real residual stress measurements made with the contour method. 
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4.3 Validation studies for idealised stress distributions 

In this study the displacement field equations are validated using numerical SIFs obtained 

for idealised stress distributions. First for a finite plate subjected to remote tension loading 

in the plane stress and plane strain conditions. Then for a quenched cylinder to investigate 

if the analytical solution can be applied for 3D cases to estimate the bulge displacements 

along the crack front through the thickness of the specimen. 

4.3.1 2D edge crack in a plate under tension 

A single edge-cracked plate under tension loading has been evaluated for the SIF 

correlations presented in the previous section (Figure 4 - 1). FE analysis was used to obtain 

the SIF and calculate the bulge displacements for different cut width sizes (i.e. 0.05 mm, 

0.15 mm, 0.25 mm, 0.35 mm, 0.45 mm, 0.55 mm). Therefore, the data are available to 

compare the analytical and numerical bulge displacement predictions. 

The input required to be defined in the analytical solution, Equation 4 – 6, is the mode I SIF, 

elastic material properties and final cut width size. The SIF profile as a function of cut length 

for the edge-cracked plate under a tension load of 10 MPa is shown in Figure 4 - 11. To 

avoid any effect of the plate length, a constant plate length to width aspect ratio, L/W = 1, 

was chosen. The elastic material properties were Young’s modulus, E, and Poisson’s ratio, 

, of 71.1 GPa and 0.33 respectively. The analytical bulge displacements were estimated 

for the different cut width sizes, b, and the plane stress and plane strain stress states.  

The FE bulge displacements used to verify the analytical solution are shown in Figure 4 - 

17. The error in displacements as a function of cut length (𝑖) for the analytical solution (𝒙𝟏) 

and reference numerical FE prediction (𝒙𝟐) were evaluated using, 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =  |
𝑥1(𝑖)−𝑥2(𝑖)

𝑥2(𝑖)
|  ×  100%     Eqn. 4 - 7 

The percentage error for the different cut width sizes is shown in Figure 4 - 23. The error is 

less than 5 percent between 5 and 80 percent of the cut length (0.05 ≤ a/W ≤ 0.8). The finite 

element stress intensity factor was validated with the BCM solution in section 4.1.2 and 

found to be in very good agreement between 0.2 ≤ a/W ≤ 0.6. In this region the error is less 

than 1.5 percent. Beyond this the error rises sharply most likely due to the lack of restraint 

close to the cut end. The error also increases as the cut width increases. This is to be 

expected as section 4.1.2 showed that the SIF for a slot starts to deviate from a sharp crack 
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assumption as the slot width increases. However, the low error within the identified range 

is reasonable considering that the analytical solution is derived for a sharp crack.  

The average percentage error by which the different cut width sizes differ was evaluated 

using, 

𝑀𝑒𝑎𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑃𝐸) =   
1

𝑛
∑ (

𝑥1(𝑖)−𝑥2(𝑖)

𝑥2(𝑖)
)𝑛

𝑖=1 × 100   Eqn. 4 - 8 

Where i is computed for cut length range 0.05 ≤ a/W 0.8 and n is the total number of cut 

increments within this range. 

The mean percentage error for the different cut width sizes is shown in Figure 4 - 24. The 

error is less than 2 percent even for the largest cut width size 0.55 mm. The apparent 

inconsistency for the smallest cut width size in the plane stress state was carefully checked 

by refining the mesh but this did not improve the result. 

The small error for all cut width sizes indicates that the analytical solution is likely to be able 

to estimate the bulge displacements in residual stress measurements made by the contour 

method if the stress intensity factor is obtained. 
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Figure 4 - 23: Percentage error between the analytical and FE bulge displacements for a 

single edge-cracked plate under tension loading for different cut width sizes in the (a) plane 

stress and (b) plane strain stress states. 
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Figure 4 - 24: Mean percentage error between the analytical and FE bulge displacements 

for a single edge-cracked plate under tension loading for cut length range 0.05 ≤ a/W 0.8 

and different cut width sizes. 
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4.3.2 3D edge crack in a quenched cylinder 

A residual stress field was introduced into a cylinder made of stainless steel by simulating 

the quenching process using a sequentially coupled thermal-stress FE analysis. First a heat 

transfer analysis was performed to calculate the temperature history in the specimen during 

quenching. This temperature-time history was then used as input to an elastic-plastic 

mechanical analysis where the deformation and stress histories leading to the final residual 

stress state were determined. 

Subsequent to this, diametral edge cracks of various lengths were introduced to determine 

the mode I SIF through the thickness of the specimen. Special J-integral contour elements 

had to be introduced in each FE model at the sharp crack tip. Therefore, only a few cut 

lengths were selected to evaluate the stress intensity factor across the cylinder diameter at 

depths of 5 mm, 15 mm, 30 mm, 45 mm and 57 mm. A separate analysis simulating wire 

EDM cutting using a slot was performed to predict the numerical bulge displacements for 

comparison with the analytical solution. 

In this section the FE modelling is explained in more detail: (a) heat transfer analysis, (b) 

mechanical analysis, (c) SIF analysis and (d) bulge error analysis. 

(a) Heat Transfer Analysis 

A full model of a solid cylinder with diameter 60 mm and length 60 mm was created in 

ABAQUS as shown in Figure 4 - 25. Initially a mesh convergence study was performed for 

global mesh sizes 3 mm and 1.5 mm. The models consisted of quadratic heat transfer 

elements of type DC3D20 and a total number of elements 7 660 and 63 720 and total 

number of nodes 33 814 and 267 304 for models (a) and (b) respectively. The refined mesh 

in model (b) was the smallest possible element size for a practical solution time. 
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Figure 4 - 25: FE mesh for a solid cylinder, diameter 60 mm, length 60 mm, modelled with 

global mesh size (a) 3 mm and (b) 1.5 mm. 

The heat transfer analysis required the specific heat capacity, Cp, thermal conductivity, k, 

and density, ρ, to be defined for the material. There are several studies in literature that 

have performed quenching analysis for austenitic 316H stainless steel samples and provide 

the temperature dependent physical and mechanical material properties [155-157] shown 

in Table 4 - 1 and Table 4 - 2. A temperature invariant density of 7970 kg/m3 was specified 

together with a temperature invariant Poisson’s ratio of 0.294. The outer surface of the 

cylinder was heated to 850°C and cooled to room temperature 20°C. A heat transfer 

coefficient of 7 000 W/m2 K was used in the analysis [155].  

To ensure sufficient accuracy in the transient solution, a maximum allowable nodal 

temperature change of 5 °C and time period 4 x 106 seconds was prescribed. The initial 

increment size was set to 0.01 seconds and maximum number of increments to 4000. When 

second-order elements are used there is a relationship between the minimum usable time 

increment ∆tmin and the element length ∆l given by [119] 

∆𝑡𝑚𝑖𝑛 >
𝜌𝐶𝑝

6𝑘
∆𝑙2        Eqn. 4 - 9 

In this case the smallest element length is 1.5 mm, using material properties for 850°C in 

Table 4 - 1, this formula suggests a minimum time increment of at least 0.06785 seconds. 

In the case where surface temperature is changed suddenly, time increments that are 

smaller than this can cause spurious oscillations in the solution. The heat transfer analysis 

required a minimum time increment of 1 x 10-6 seconds to reach a converged solution. 

However, no irregularities were seen in the solution. 

z 

y x (a) (b) 
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The nodal temperatures were recorded in the field output data. The FE predicted 

temperature time curves during cooling at nodal points at the centre and surface of the 

cylinder are shown in Figure 4 - 26. The temperature profile showed good comparison with 

similar analysis in literature [155]. The results were not affected by refining the mesh. 

Table 4 - 1: Thermal properties of austenitic 316H stainless steel [155-157]. 

Temp (°C) 

Specific 
heat 

capacity  
(J/kg °C) 

Conductivity 
(W/m °C) 

Expansion 
coefficient  
(x 10-6  1/°C) 

Young’s 
modulus 

(GPa) 

20 488 14.12 14.56 195.6 

100 502 15.26 15.39 191.2 

200 520 16.69 16.21 185.7 

300 537 18.11 16.86 179.6 

400 555 19.54 17.37 172.6 

500 572 20.96 17.78 164.5 

600 589 22.38 18.12 155.0 

700 589 23.81 18.43 144.1 

800 589 25.23 18.72 131.4 

900 589 26.66 18.99 116.8 

1000 589 28.08 19.27 100.0 

1100 589 29.5 19.53 80.0 

1200 589 30.93 19.79 57.0 

1300 589 32.35 20.02 30.0 

1400 589 33.78 20.21 2.0 

 

Table 4 - 2: True stress (MPa) as a function of plastic strain and temperature for austenitic 

316H stainless steel [155-157]. 

Plastic 
strain 

(%)  

Temperature (°C) 

20 275 500 600 700 800 1100 

0 273.1 205.4 192.8 187.7 161.5 121.5 25.3 

0.2 284.2 215.0 202.1 197.1 167.5 123.5 25.7 

1 328.2 253.3 239.3 234.5 191.7 131.3 27.1 

2 356.7 280.1 266.2 260.0 205.2 133.5 28.0 

5 420.0 342.7 327.8 310.6 223.6 134.9 29.8 

10 504.6 425.3 408.2 356.8 232.7 136.1 31.4 
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Figure 4 - 26: FE predicted temperature time curve at the centre and surface in a quenched 

316H stainless steel solid cylinder, diameter 60 mm, length 60 mm, modelled with global 

mesh size (a) 3 mm and (b) 1.5 mm. 

(b) Stress Analysis 

The two mesh sizes for the solid cylinder shown in Figure 4 - 25 were used to determine 

the residual stresses during quenching. Quadratic hexahedral reduced integration elements 

of type C3D20R were required. Three nodal constraints were applied to the specimen to 

prevent rigid body motion shown in Figure 4 - 27. The cutting plane for the subsequent SIF 

analysis is also shown in this figure. The stress analysis required the temperature 

dependent elastic young’s modulus, thermal expansion and plastic stress at zero plastic 

strain (0.2 %) as shown in Table 4 - 1 and Table 4 - 2. 

The initial temperature of the cylinder was considered as uniform and equal to 850°C. The 

temperature-time history was then applied in a general step. A time period of 96 160 and 

minimum increment size 0.9616 was required to reach a converged solution. The initial 

increment size was set to 10 and maximum number of increments to 1000 000. A second 

general step was included to allow the stresses to equilibrate. The stresses and 

displacements were recorded in the field output data. 

The residual stresses predicted by the mechanical model are consistent with similar quench 

induced stresses [155], having peak magnitude of 410 MPa and a distribution that is tensile 

toward the centre of the specimen and compressive around the boundary. Figure 4 - 28 

shows a map of the hoop σx stresses on the cutting plane for the two mesh sizes. The 

results were not affected by refining the mesh. Figure 4 - 29 shows line profiles of all three 
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stress components through the thickness of the specimen at the different cut lengths chosen 

to evaluate the stress intensity factor in the next analysis. 

 

Figure 4 - 27: FE model constraints to prevent rigid body motion during the stress analysis 

and cutting plane for the subsequent stress intensity factor analysis. 

 

Figure 4 - 28: FE predicted residual hoop stresses in a quenched 316H stainless steel solid 

cylinder, diameter 60 mm, length 60 mm, modelled with global mesh size (a) 3 mm and (b) 

1.5 mm. 
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Figure 4 - 29: FE predicted residual stress distributions in a quenched 316H stainless steel 

solid cylinder, diameter 60 mm, length 60 mm, in (a) the axial direction at mid thickness and 

(b to f) the radial direction at different positions corresponding to cut lengths. 

(c) Stress Intensity Factor Analysis 

To simplify the FE cutting analysis, only one quarter of the solid cylinder was modelled in 

ABAQUS with two planes of symmetry which were located at mid thickness of the specimen 

and through the crack plane, i.e. the x and y planes respectively, shown in Figure 4 - 30. A 

linear elastic material model was used with Young’s modulus, E, and Poisson’s ratio, , of 

195.6 GPa and 0.294 respectively. Only one nodal constraint was applied to prevent rigid 

body motion. The conventional FE method to calculate the SIF typically requires conforming 

the mesh to the cracked geometry, to explicitly define the crack front, and to specify the 

crack extension direction.  For three-dimensional models, the SIFs are related to the J-
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integral and require special contour elements to manage the stress concentration at the 

sharp crack tip. In the FE model, each contour is a ring of elements completely surrounding 

the crack tip or the nodes along the crack line. The rings of elements are defined recursively 

to surround all previous contours and each ring provides an evaluation of the contour 

integral [119]. The number of contours used to calculate the stress intensity factors was 10, 

as shown in Figure 4 - 30. The model was meshed with 78 988 quadratic hexahedral and 

wedge elements of type C3D20R and C3D15 respectively and a total of 330 924 nodes. 

In the initial step the residual stresses from the previous mechanical analysis were mapped 

onto the new quarter model using the MAP SOLUTION function in ABAQUS and the 

stresses were allowed to redistribute to reach equilibrium. Figure 4 - 31 shows the mapped 

hoop σx stresses at the cutting plane. The crack was modelled by defining the crack tip and 

crack propagation direction. An edge crack was then inserted by removing the x-symmetry 

boundary condition on the crack face. The mode I SIF KI was evaluated at 0.5 mm 

increments through the thickness of the specimen to allow the through thickness variation 

of KI to be determined. The SIF was stable after the fifth contour, as shown in Figure 4 - 32 

for a node positioned at the very centre of the cylinder. The SIF results across the thickness 

of the specimen at different cut lengths are shown in Figure 4 - 33. 

The through thickness stress intensity factor corresponds with the redistributed quenching 

residual stresses at each cut increment. At the cut start the negative value of the residual 

SIF is due to the release of the compressive stress region and as the cut length increases 

the SIF distribution is due to the release of tensile stresses at the centre region and 

compressive stresses at the surface region. In the latter case, the calculated SIF is a 

minimum level from the cylinder surface region and rises to a maximum at the centre region 

of the cylinder. The maximum compressive stress intensity factor ( ~ -71.4 MPa.m0.5 at the 

cut depths of 15 mm and 30 mm) is observed near the surface of the cylinder. The maximum 

tensile value ( ~ 31.7 MPa.m0.5 at the cut depth of 45 mm) is found at the centre of the 

cylinder. For an edge crack and freely deformable configuration, the level of constraint gets 

lower as the crack length increases. Therefore, the calculated SIF at cut length 57 mm may 

have large errors. 
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Figure 4 - 30: Quarter FE model of the solid cylinder showing the symmetry constraints and 

J-integral contour elements at the sharp crack tip for cut length 30 mm, to calculate the 

stress intensity factor through the thickness. 

 

Figure 4 - 31: Mapped residual hoop stresses in a quenched 316H stainless steel solid 

cylinder, diameter 60 mm, length 60 mm, from a full model to a quarter model for the cutting 

analysis.    
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Figure 4 - 32: Variation of the FE mode I stress intensity factor for increasing number of 

contour regions surrounding the crack tip for a node at the centre of a quenched 316H 

stainless steel solid cylinder. 
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Figure 4 - 33: FE mode I stress intensity factor in a quenched 316H stainless steel solid 

cylinder, diameter 60 mm, length 60 mm, at different cut lengths and through the thickness. 

(d) Bulge Error Analysis 

Analytical method: 

The analytical bulge displacement Equation 4 – 6 (a & b) is used here with the 3D stress 

intensity factor results (Figure 4 - 33) to estimate the plane stress and plane strain bulge 

estimates with a Young’s modulus, E, and Poisson’s ratio, , of 195.6 GPa and 0.294. Two 

cut width sizes, 0.1 mm and 0.3 mm, were evaluated for comparison with the FE method. 
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FE method: 

One quarter of the solid cylinder, shown in Figure 4 - 34, was modelled and wire EDM 

cutting simulated by element removal in order to quantify bulge displacements along the 

crack front across the thickness of the specimen. The model was meshed with quadratic 

hexahedral and wedge elements of type C3D20R and C3D15 respectively. For a cut width 

size 0.1 mm the model was meshed with a total of 50 560 elements and 213 921 nodes. 

For a cut width size 0.3 mm the model had 26 560 elements and 113 681 nodes. A linear 

elastic material model was used with Young’s modulus, E, and Poisson’s ratio, , of 195.6 

GPa and 0.294 respectively. Only one nodal constraint was applied to prevent rigid body 

motion. 

In the initial step the residual stresses from the previous mechanical analysis were mapped 

onto the quarter model using the MAP SOLUTION function in ABAQUS and the stresses 

were allowed to redistribute to reach equilibrium. Cutting was then performed by 

sequentially removing rows of elements along the cut edge.  The bulge displacements at 

the wire entry node locations were recorded at 1 mm increments through the thickness of 

the specimen. 

 

Figure 4 - 34: Quarter FE model of the solid cylinder showing the symmetry constraints and 

elements at the cut tip for the cutting analysis to estimate the bulge displacements across 

the thickness for cut width sizes 0.1 mm and 0.3 mm. 
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Comparison of the analytical and FE bulge displacement results: 

Figure 4 - 35 and Figure 4 - 36 compare the analytical bulge displacements with the 

measured FE bulge displacements at different cut lengths for cut width sizes 0.1 mm and 

0.3 mm respectively. It can be seen that the FE bulge displacements match more closely 

with the analytical plane strain solution across the thickness of the specimen. Also, the 

bulge displacements followed the through-thickness stress intensity factor in form and 

distribution. The absolute error in bulge displacements between the analytical plane strain 

solution (𝑥1) and reference numerical FE prediction (𝑥2) were normalised with the cut width 

and evaluated through the thickness using, 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =  
|𝑥1−𝑥2|

𝑐𝑢𝑡 𝑤𝑖𝑑𝑡ℎ
 ×  100    Eqn. 4 - 10 

Figure 4 - 37 shows that the error is fairly small across the thickness of the specimen and 

at different cut lengths. The error is the greatest at the outer surface of the cylinder. 

Neglecting the final 2 mm from the outer surface, the normalised error is under 0.1 % for all 

cases.  
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Figure 4 - 35: Comparison between the analytical plane stress and plane strain bulge 

displacement estimate and numerical FE calculation in a quenched 316H stainless steel 

solid cylinder, diameter 60 mm, length 60 mm, for cut width size 0.1 mm at different cut 

lengths. 
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Figure 4 - 36: Comparison between the analytical plane stress and plane strain bulge 

displacement estimate and numerical FE prediction in a quenched 316H stainless steel 

solid cylinder, diameter 60 mm, length 60 mm, for cut width size 0.3 mm at different cut 

lengths. 
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Figure 4 - 37: Normalized absolute error between the analytical and FE bulge displacement 

predictions in a quenched 316H stainless steel solid cylinder, diameter 60 mm, length 60 

mm, for cut width size (a) 0.1 mm and (b) 0.3 mm, at different cut lengths. 

4.4 Validation studies for residual stress measurements 

In this section the analytical solution is implemented using SIFs for real residual stress 

distributions measured with the contour method. The cross-weld C(T) specimen in Chapter 

3 and bent beam sample [3] were selected because the contour method stresses have been 

previously corrected for the bulge error using the iterative FE procedure. 

4.4.1 Case study 1: Esshete 1250 cross-weld C(T) specimen 

The C(T) welded specimen details and previous measurement results can be found in 

Chapter 3, section 3.3. The transverse residual stresses measured by the contour method 

were previously corrected for the bulge error using 2D and 3D iterative FE procedures in 

sections 3.2.3 and 3.2.4 respectively.   
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In this study the SIF previously measured by the slitting measurement [4] and a newly 

calculated FE SIF for the contour method stresses at mid thickness of the specimen is 

implemented in the analytical solution to estimate the bulge displacements at mid thickness 

of the specimen. The analytical bulge displacement solution, Equation 4 – 6 (b) with a plane 

strain condition was assumed based on the C(T) specimen dimensions. The elastic material 

properties were Young’s modulus, E, and Poisson’s ratio, , of 205 GPa and 0.29 

respectively [146]. A final cut width, b, of 0.3 mm was chosen for the 250 µm diameter wire 

used for cutting. The contour method SIF was calculated using a 2D model of one half of 

the specimen with the measured stresses at mid thickness applied directly to the cut face 

as surface tractions during incremental cutting performed for a sharp crack. The slitting and 

contour method SIFs are shown in Figure 4 - 38 as a function of cut length. There is a spatial 

shift in the contour method SIF profile, towards the C(T) specimen front face, because the 

measured contour method stresses contain effects of bulging and/or plasticity. These 

results highlight the importance of using the SIF as it can indicate the positional error or 

shift in contour method measurements. 

The analytical bulge displacements are shown in Figure 4 - 39 and are compared with the 

FE bulge displacements quantified in Chapter 3 section 3.1.4.  The analytical solution 

provides a fairly good estimation of the bulge displacement but is slightly lower in magnitude 

in the tensile region and larger in magnitude in the compressive region when using the 

slitting SIF. In the slitting method the part is clamped on side to allow it to freely deform 

during the cutting (see section 3.1.2 for the previous measurement procedure). Also, the 

contour method SIF was calculated using a 2D model of one half of the specimen with 

constraints only to prevent rigid body motion. Whereas the FE procedure to estimate the 

bulge displacements used a full 2D model of the specimen with constraints applied to one 

half of the specimen to represent the clamping conditions for the slitting measurement. 

These inconsistencies might have influenced the magnitude of the analytical prediction. 

To calculate the corrected contour method stresses, the simplified FE bulge correction 

procedure, described in Chapter 3 section 3.2, was implemented. The analytical bulge 

displacements were applied as boundary conditions to the cut surface of the 2D FE model 

shown in Figure 3 - 10 to calculate the stress error. The error was then combined with the 

initial contour method stresses at mid thickness to give the corrected stresses. Figure 4 - 

40 shows the initial and corrected contour method stresses. The corrected stresses using 

the iterative FE procedure are also shown. Only one iteration was performed since the 

previously corrected stresses converged after the second iteration. The stresses corrected 

with the analytical bulge displacements using the contour method SIF gave a reasonably 
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good correction compared with the iterative FE correction. Whereas the analytical bulge 

displacements using the slitting SIF did not improve the stresses at mid thickness, although 

the stress distribution was slightly shifted away from the front face of the specimen. The 

unchanged peak tensile stress region (from the original profile) could be explained by the 

spatial shift in the slitting SIF and associated bulge correction location along the cut length. 

The graph comparing the initially measured stresses using neutron diffraction, slitting and 

contour method techniques (Figure 3 - 3), is revised in Figure 4 - 41 to include the corrected 

contour method stresses using the 2D analytical approach and 2D and 3D iterative FE 

procedure for the first iteration. The corrected contour method stresses using the different 

approaches showed closer agreement with the neutron diffraction and slitting results, 

although detailed comparisons along the measurement line revealed some local 

discrepancies. Nonetheless, the proposed analytical approach using 2D FE analysis gave 

a reasonably good correction and is a simple method to correct complex contour method 

residual stress measurements for bulge error. 
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Figure 4 - 38: Mode I stress intensity factor (SIF) measured by the slitting method and the 

contour method SIF for the stresses at mid thickness of the specimen calculated using 2D 

FE analysis. 
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Figure 4 - 39: Comparison of the bulge displacements for the C(T) specimen estimated 

using the analytical solution with the slitting and contour method stress intensity factors and 

the previous iterative FE prediction for the first iteration. 
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Figure 4 - 40: Line profile of the transverse stress along the mid-thickness of the contour 

cut plan showing the initially measured stresses, corrected stresses using the analytical 

solution with the contour method SIF and corrected stresses using the 2D and 3D iterative 

FE procedure for the first iteration. 
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Figure 4 - 41: Line profile of the transverse stress along the mid-thickness of the contour 

cut plan showing the previously measured by neutron diffraction and slitting, and the 

corrected contour method stresses for bulge error using the 2D analytical approach and 2D 

and 3D iterative FE procedure for the first iteration. 

4.4.2 Case study 2: Stainless steel bent beam sample 

The previous work on this specimen was performed by Prime and Kastengren [3] involved 

characterising the residual stresses in a bent beam sample using the contour method 

technique and from the measured strain data. A slight shift and reduced stresses were found 

in the contour method results which were corrected for bulge error using 2D iterative FE 

procedure. The previous measurement results can be found in Chapter 2, section 2.7.2.  In 

this section the initial contour method stresses for the bent beam are corrected for bulge 

error using the new analytical approach proposed.  

First the specimen details and previous measurement procedure are given. Next the initial 

contour method results [118] are used in a 2D FE analysis to calculate the mode I SIF. Then 

bulge correction is performed using the analytical solution and alternative stress correction 

method explained in Chapter 3 section 3.2. Finally, a comparison is made between the 

corrected contour method stresses using the analytical approach and Prime and 

Kastengren’s iterative FE procedure results. 
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Specimen details and previous measurement  

The stainless-steel beam dimensions and bending setup are shown in Figure 4 - 42. The 

elastic material properties were Young’s modulus, E, and Poisson’s ratio, , of 194 GPa 

and 0.3 respectively. Residual stresses were introduced in the beam using four-point 

bending by loading it into the plastic range and then unloading. Strain gauges were attached 

on the 30mm cross-section and strain measurements recorded during bending. The 

residual stress profile was then calculated from the measured strain data using the stress-

strain curve identification method [158]. 

The stresses in the beam were then measured with the contour method technique. During 

EDM cutting the beam was clamped on both sides of the cut. The EDM wire was a 100 µm 

diameter zinc-coated brass wire and gave a final cut width of 140 µm [3]. The contours of 

the two halves of the beam were averaged and used in a 2D FE analysis to back calculate 

the stresses as in the conventional contour method procedure. 

The initial contour method stresses (see Figure 2 - 25) showed evidence of bulge error, i.e. 

reduced peak stresses and a shift towards the cut start, when compared with the stresses 

predicted in the bend test. Prime and Kastengren then corrected the contour method 

stresses for the bulge error using the 2D iterative FE procedure. The corrected stresses 

(shown in Figure 2 - 25) moved the contour method results closer to the bend test prediction. 

The initial contour method measurement data were obtained from Mike Prime [118] to 

estimate the SIF for analytical prediction of the bulge displacements. 

 

Figure 4 - 42: Stainless steel beam dimensions and four-point bending setup. 
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linear elastic material model was used with Young’s modulus, E, and Poisson’s ratio, , of 

194 GPa and 0.3 respectively. The model was meshed with 44 160 quadratic plane stress 

elements of type CPS8 and contained 133 397 nodes. During EDM cutting, the specimen 

was clamped on both sides of the cut and at the top and bottom of the specimen. This was 

modelled by constraining the nodes at the top and bottom to prevent any lateral movement 

in the x-direction and one nodal constraint in the y-direction to prevent rigid body motion 

during cutting. The positions of the clamps were obtained via communication with Mike 

Prime [118]. 

 

Figure 4 - 43: The 2D FE model of the beam used to calculate the mode I stress intensity 

factor showing the applied loading and constraints for clamping and to prevent rigid body 

motion. 

Cutting was performed for a sharp crack by incrementally removing the symmetry boundary 

condition along the cut line. The measured contour method stresses were applied to the cut 

face as surface tractions using the analytical field function in ABAQUS. The mode I contour 

integral SIF was evaluated using the J-integral method. The crack was modelled by defining 

the crack tip and crack propagation direction. The stress singularity at the crack tip was 

controlled by defining quarter point node positions at the crack tip. The predicted mode I 

SIF, shown in Figure 4 - 44, was stable after 5 contours. The stress intensity factor is iterated 

every time the stresses are corrected until a converged stress solution is reached. 

Correcting for the bulge error 

Following this the SIF as a function of cut length was defined in the analytical bulge 

displacement solution, Equation 4 – 6 (a), as a plane stress condition was assumed based 

on the specimen dimensions. The elastic material properties were Young’s modulus, E, and 

S
y
m

m
e

tr
y
 B

C
 

Applied load on 
cut surface 

C
u

tt
in

g
 D

ir
e

c
ti

o
n

 

y 

x 

15 mm 

15 mm 

1.5 mm 

4 mm 

Constraint for 
clamping 



Chapter 4: An analytical approach for bulge error estimation 

132 

 

Poisson’s ratio, , of 194 GPa and 0.3 respectively. A final cut width, b, of 0.14 mm was 

specified for the 100 µm diameter wire used for cutting. 

Once the analytical bulge displacements were obtained the alternative bulge correction 

procedure, described in Chapter 3 section 3.2, was used to calculate the corrected stresses. 

The analytical bulge displacements were applied as boundary conditions to the cut surface 

of the 2D FE model shown in Figure 4 - 43 to calculate the stress error. The error was then 

combined with the initial contour method stresses to give the corrected stresses. Only two 

iterations were necessary to reach a converged stress solution as the correction was small. 

Figure 4 - 45 shows the analytical bulge displacements for the first and second iterations. 

Figure 4 - 46 shows the revised graph of the contour method stress results to include the 

corrected stresses using the analytical bulge displacements. The stresses corrected with 

the analytical bulge displacement prediction showed good agreement with the iterative FE 

correction. 
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Figure 4 - 44: FE mode I stress intensity factor for the bent beam specimen calculated using 

the contour method stresses for first and second iterations. 
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Figure 4 - 45: Bulge displacements for the bent beam specimen estimated using the 

analytical solution with the contour method stress intensity factor for the first and second 

iterations. 
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Figure 4 - 46: Contour method residual stress results showing the initially measured 

stresses, published correction using the iterative FE procedure and new correction using 

the analytical method compared with the prediction from the bend test. 

4.5 Discussion 

The initial work in this chapter demonstrated the relationship between the bulge error and 

the local stress state at the cut tip which can be characterised by the mode-I SIF. Extensive 

FE simulations were performed to develop SIF correlations using plane stress and plane 

strain analysis for a single edge-cracked plate with far field tension and bending loading. 
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Several parameters i.e. plate geometries, material properties and cut width sizes, were 

chosen to develop robust correlations.  

The correlations showed a linear relationship and approximate proportionality between the 

bulge displacements and stress intensity factor. This confirms Prime and Kastengren 

suggestion that the bulge error is approximately proportional to the stress intensity factor, 

K, at the cut tip from the accumulated effect of releasing residual stress [3]. For linear elastic 

material behaviour, the bulge displacements were inversely proportional to the elastic 

stiffness. The bulge displacements for the plane stress state were approximately 10 % 

larger than the plane strain state. This is a fairly small difference, therefore a 2D 

approximation of the bulge displacements might be suitable for 3D cases (i.e. contour 

measurements of real components). 

The bulge displacements were found to be directly proportional to the square root of the cut 

width. Prime and Kastengren previously examined the effect of slot width on the bulge error 

and found that the peak bulge error increases with slot width and the error was greater for 

narrow slots [3]. Using a smaller wire diameter shows a significant reduction in the bulge 

error although Prime has mentioned that using a smaller wire diameter below 100μm may 

introduce other difficulties in the cutting process such as wire breakage [3]. 

Additionally, the mesh size study revealed that there was no change in the calculated bulge 

displacements when the mesh used to represent the cut width was refined. This confirms 

that the current practice of using one element to represent the cut width is sufficient to 

estimate the bulge displacements at the cut tip. However, the mesh size close to the cut 

can have a large effect on the measured displacements and should be sufficiently refined 

(see the mesh sensitivity study in Chapter 3 section 3.1.3). A study of the geometry 

idealisation showed a significant error (overestimate) of up to 10 percent using a 0.25 mm 

square end slot rather than a semi-circular slot end: This suggests that bulge errors may be 

slightly overestimated using a square end idealisation. A general correction factor, example 

10 percent reduction, could be applied when using a square slot, however, more work is 

needed because the error will depend on the local stress state at the cut tip, cut length, 

material properties, slot width and restraint conditions.  

The parameters that have not been taken into consideration to develop the SIF correlations 

include additional restraint close to the cut plane, orientation and direction of the cut, non-

linear effects at the cut tip such as plasticity, strain hardening etc, complex geometrical 

shapes and 3D cases. 
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Following this work an analytical solution, based on LEFM, has been presented to predict 

bulge displacements in contour method measurements for cases of plane stress and plane 

strain. The displacement equations rely on knowledge of the mode I SIF. The equations 

have been verified for an edge crack in a finite width plate under tension loading and showed 

good agreement with the numerical prediction for both the plane stress and plane strain 

states. The suitability of the equations to predict the bulge displacements across the 

thickness of a 3D body was investigated for a cylinder with residual stresses introduced by 

quenching. In this case, the plane strain analytical solution showed better agreement with 

the numerical prediction along the crack front across the thickness diameter of the cylinder.  

The equations were then used to predict the bulge displacements in real contour method 

measurements for a C(T) welded specimen and bent beam sample. In both cases, the SIF 

was obtained for a line profile of stresses at mid thickness of the specimen using 2D FE 

analysis. The stresses corrected with the analytical bulge displacement prediction showed 

good agreement with the iterative FE correction method. 

Accurate prediction of the SIF due to the residual stresses being measured is essential 

when using the analytical solution. Many SIF solutions are available in literature but are 

typically for two-dimensional idealizations and simple loading scenarios. Whereas, in real 

specimens the residual stress fields are three dimensional and more complex, such as 

welded specimens, and will most likely require FE analysis to obtain the SIF. When using 

FE analysis, it is important to apply the equilibrated contour method stresses to ensure a 

correct prediction of the SIF. Sometimes a slitting residual stress measurement is performed 

together with the contour method and this can provide direct information about the mode I 

SIF. However, this is for the averaged stresses across the thickness which might under 

predict the bulge error in specimens with large stress variances across the thickness. In 

such cases SIF estimates based on initial contour method measurement is required. 

Since the analytical solution assumes linear elastic material behaviour, it does not account 

for any non-linear effects such as plasticity in contour method measurements. Also, any 

effect of clamping is not taken into consideration in the analytical solution. In practice the 

specimen is firmly clamped on both sides during cutting to prevent the cut plane from 

moving as the stresses relax. Depending on how close the clamping arrangement is to the 

cut, it may influence the magnitude of the stresses at the cut tip and should be carefully 

considered when determining the stress intensity factor. 
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4.6 Conclusion 

The stress intensity factor correlations revealed the following features about the bulge error: 

• There is a linear relationship between the bulge error and mode I SIF. 

• The bulge error is larger for the plane stress state than plane strain state by 

approximately 10 percent. 

• The bulge error is inversely proportional to the elastic stiffness of the material. 

• The bulge error is directly proportional to the square root of the cut width size. 

An analytical solution, Equation 4 – 6, derived using standard displacement field equations 

in LEFM, provides a simple alternative method for estimating bulge displacement errors in 

contour method residual stress measurements. The mode I SIF as a function of cut length 

(and along the cut tip) due to the residual stresses in the specimen must be known with the 

elastic properties of the material and the final cut width size created during the wire EDM 

process. 

Accurate prediction of the mode I SIF is essential because it directly influences the 

magnitude of the bulge error. In specimens with large variances in the residual stresses 

across the thickness, the SIF from the slitting measurement technique may not be suitable 

to use in the analytical solution. In such cases, the stress intensity factor must be 

determined from initial contour method measurement stress results. 

The analytical approach has been successfully applied to estimate the bulge error in real 

contour method measurements. Once the bulge displacements are obtained, the alternative 

method described in section 3.2 can be used to calculate the corrected stresses. The 

analytical solution is found to be within a few percent of the numerical predictions. 

Correcting for the bulge error will help to improve the accuracy and reliability of 

measurements made by the contour method. The iterative FE procedure and alternative 

analytical solution can estimate the bulge error. In the next chapter stress error correlations 

are developed to set a threshold for correcting for the bulge error. 
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Chapter 5: Evaluating the local stress error due to 

bulging 

The bulge error can have significant effects on residual stress measurements made with 

the contour method. The magnitude of the bulge displacements in contour measurements 

can be estimated using a contour cutting FE simulation or the proposed analytical approach 

that requires knowledge of the stress intensity factor. However, this cannot tell us when the 

bulge error becomes apparent in contour method residual stress results. Further analysis 

is required to correct the initially measured surface contours and calculate the new stresses 

using finite element analysis. The procedure is iterative and time-consuming, and the 

outcome of bulge correction on the measured residual stresses is only evident after a 

converged solution has been reached.  

The aim of this chapter is to determine the stress error magnitude due to bulging in contour 

method results to enable the practitioner to decide whether to correct for it. To do this, the 

stress error due to bulging is first evaluated for the simple case of a self-equilibrated cosine 

residual stress profile and then for a more real case of a complex weld stress profile in the 

plane stress and plane strain conditions. The objective is to develop correlations of the 

normalised stress error with the mode I stress intensity factor. The analysis is then extended 

to evaluate the stress error through the thickness of a solid cylinder with a residual stress 

distribution introduced by quenching. 

5.1 Bulge errors introduced by a cosine form residual stress 

profile 

The stress error due to bulging was studied by considering an idealised cosine residual 

stress profile in the plane stress condition. The bulge error was estimated using the mode I 

stress intensity factor solution for a centre-crack plate in a periodic cosine residual stress 

distribution [145]. The corresponding stresses including the bulge error were calculated in 

a finite element analysis. The magnitude of the stress error was evaluated relative to the 

idealised cosine profile for different cut width sizes and stress wavelengths.  

Idealised stress profile 

A one-dimensional cosine stress profile acting across a finite width plate is self-equilibrated 

and can be taken to represent an idealised form of residual stress distribution most 
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commonly seen in quenched samples [46, 48, 159] and some types of welded specimens 

[160, 161].  

A previous study of the data analysis parameters for the contour method showed, using a 

2D FE stress analysis, that an idealised one dimensional cosine surface deformation profile 

(defined by Equation 5 -1) applied normal to the edge of a wide plate having a wavelength 

w, and peak amplitude M, results in a stress profile along the edge that has a similar cosine 

form [162]. Similarly, for this case the stress distribution at the surface of a finite plate is 

calculated for a cosine surface deformation with 𝑤 = 50 mm and 𝑀 = 0.02 mm (see Figure 

5 - 1), using symmetric boundary conditions and assuming plane stress conditions. A linear 

elastic material model was defined to obtain the residual stress distribution with a Young’s 

modulus, E, and Poisson’s ratio, , of 71.1 GPa and 0.33 respectively. 

𝑦(𝑥) = 𝑀 𝑐𝑜𝑠(𝑛𝜙)        Eqn. 5 - 1 

Where, 𝑦(𝑥) represents the surface deformation profile, 𝑀 the maximum amplitude, and 

𝑛 is the order of the function and 𝜙 =
2𝜋𝑥

𝑤
, where 𝑤 is the wavelength of the surface profile 

distribution. 

Figure 5 - 2 shows the FE model dimensions, boundary conditions and stress results. The 

cosine stress empirical formula can be derived from the FE results and is defined by 

Equation 5 – 2 for this case. The FE predicted cosine stress profile is compared with the 

empirical fit in Figure 5 - 3. 

𝜎 (
𝑥

𝑤
) = 3.52 𝐸 (

𝑀

𝑤
) 𝑐𝑜𝑠 (

2𝜋𝑥

𝑤
)       Eqn. 5 - 2 
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Figure 5 - 1: Idealised cosine displacement profile as a function of x/w. 



Chapter 5: Evaluating the local stress error due to bulging 

139 

 

 

Figure 5 - 2: Finite element model of a finite plate with dimensions 50 mm x 100 mm, the 

boundary conditions and normal stress results along the edge (for displacement M = 0.02 

mm). 
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Figure 5 - 3: Predicted cosine stress profile and the derived empirical fit as a function of x/w. 

Approximating the stress intensity factor 

A Fourier series approach which provides a simple means of determining the stress 

intensity factor for an arbitrary residual stress field along a proposed crack path is available 

in the literature [145]. The study is based on the linear elastic analysis of stress surrounding 

a crack in an ideal material having isotropic elastic properties.  

The mode I stress intensity factor for a centre-crack plate loaded by a periodic cosine 

residual stress function can be defined in terms of the Bessel function, J0, of the first kind 

and order zero: 
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𝐾𝐼 = 𝜎0 √𝜋𝑎  𝐽0 (
𝜋𝑛𝑎

𝑤/2
)          Eqn. 5 - 3 

Where 𝐽0(0)  =  1, 𝜎0 is the peak stress located at mid-length of the crack, 2𝑎 is the length 

of the crack and 𝑤 is the interval over which the cosine function of order 𝑛 is acting, where 

𝑤/2 > 𝑎, see Figure 5 - 4. 

This Fourier based equation is derived for the plane stress and plane strain condition and 

gives reliable SIF results over the entire crack length range.  

The stress intensity factor as a function of crack length for the cosine stress profile (that is 

𝜎0 = 100𝑀𝑃𝑎, 𝑛 = 1 & 𝑤 = 50 𝑚𝑚) is shown in Figure 5 - 5. 

 

Figure 5 - 4: Single crack in a cosine residual stress field spanning length 𝑤 of order n = 1. 
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Figure 5 - 5: Mode I stress intensity factor for a centre-crack plate subjected to a cosine 

stress field (𝜎0 = 100𝑀𝑃𝑎, n = 1) 
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Calculating the bulge displacements 

The bulge displacements due to the cosine residual stress profile were estimated using the 

stress intensity factor in the analytical displacement field solution, Equation 4 - 6(a) (see 

Chapter 4 section 4.2), for the plane stress condition and several cut width sizes (b). 

Figure 5 - 6 shows the calculated bulge displacements as a function of crack length. As 

expected, the bulge displacements scale with the square root of the cut width. 
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Figure 5 - 6: Analytically estimated bulge displacements for a centre-crack plate subjected 

to a cosine stress field (𝜎0 = 100𝑀𝑃𝑎, n = 1). 

Furthermore, the stress intensity factor solution in terms of the Bessel function (see 

Equation 5 – 3) can be combined with the analytical bulge displacement solution (see 

Equation 4 – 6 in section 4.2) to give a general solution to calculate the bulge displacements 

as a function of crack half-length, a, for a centre-crack in a periodic cosine residual stress 

field within a large plate, 

For plane stress, 

𝑈𝐵𝑢𝑙𝑔𝑒 𝐸𝑟𝑟𝑜𝑟(𝑎) =  
4𝜎0

𝐸
√𝑏𝑎√2

4
  𝐽0 (

𝜋𝑛𝑎

𝑤/2
)        Eqn. 5 - 4 (a) 

And plane strain, 

𝑈𝐵𝑢𝑙𝑔𝑒 𝐸𝑟𝑟𝑜𝑟(𝑎) =  
2𝜎0(2−2𝜈2)

𝐸
√𝑏𝑎√2

4
  𝐽0 (

𝜋𝑛𝑎

𝑤/2
)                   Eqn. 5 - 4 (b) 
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Where 𝐽0(0)  =  1, 𝜎0 is the peak stress located at mid-length of the crack, 𝑏 is the final EDM 

slot width, 2𝑎 is the length of the crack and 𝑤 is the interval over which the cosine function 

of order 𝑛 is acting. 

Calculating the stress including the bulge error 

To calculate the stress including effects of bulge error, the bulge displacements were 

subtracted from the cosine surface displacements and applied in the finite element model 

(see Figure 5 - 2). The revised surface displacements, normalised with the peak 

displacement amplitude (M = 0.02 mm), are shown in Figure 5 - 7. The resultant-back 

calculated stresses are shown in Figure 5 - 8. The stress results towards the ends of the 𝑤 

domain was unstable (for the periodic stress function in an infinite plate) and therefore 

neglected for 2 percent (0.02 𝑥/𝑤) of the domain at both the ends. There is a phase 

difference and reduced peak amplitude in the predicted stresses including the bulge error. 

The maximum errors occur in three positions; 0.15, 0.63 and 0.98 𝑥/𝑤. Neglecting the error 

at 0.98, the far end of the 𝑤 domain, where the stresses were more unstable, the other two 

positions correspond to the position of the maximum SIF (see Figure 5 - 5). 

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
lis

e
d
 D

is
p
la

c
e
m

e
n
t

x/w

Idealised

b = 50 µm

b = 150 µm

b = 250 µm

b = 350 µm

b = 450 µm

b = 550 µm

 

Figure 5 - 7: Normalised cosine surface displacement over domain 𝑤 including the bulge 

displacements for various cut width sizes for a centre-crack plate subjected to a cosine 

stress field (𝜎0 = 100𝑀𝑃𝑎, n = 1). 
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Figure 5 - 8: Normalised cosine stresses and predicted stresses including the bulge error 

for various cut width sizes for a centre-crack plate subjected to a cosine stress field (𝜎0 =

100𝑀𝑃𝑎, n = 1), acting over domain 𝑤. 

Stress error correlations 

The percentage stress error was calculating, using Equation 5 - 5, defined as the difference 

between the predicted stress including the bulge error and the known idealised cosine 

profile, normalised by the maximum of the known stresses. 

�̃�𝑒𝑟𝑟𝑜𝑟(𝑥) =
|𝜎𝑖𝑛𝑐𝑙.  𝑏𝑢𝑙𝑔𝑒(𝑥)  − 𝜎𝑖𝑑𝑒𝑎𝑙𝑖𝑠𝑒𝑑(𝑥)|

𝑚𝑎𝑥 (𝜎𝑖𝑑𝑒𝑎𝑙𝑖𝑠𝑒𝑑(𝑥))
× 100%    Eqn. 5 - 5 

The root-mean-square (RMS) average stress error calculated over the entire cut, using 

Equation 5 - 6, quantifies the average error in the predicted stresses, where 𝑚 is the total 

crack lengths. 

�̅�𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 =  √
1

𝑚
 ∑ (�̃�𝑒𝑟𝑟𝑜𝑟(𝑥𝑖))2𝑚

𝑖=1       Eqn. 5 - 6 

To develop the correlations, the normalised stress error is plotted against the absolute value 

of the stress intensity factor normalised with the maximum SIF. Figure 5 - 9 shows a linear 

relationship from 9.4 mm (𝑥/𝑤 = 0.188) to 31.8 mm (𝑥/𝑤 = 0.636). Outside of this range 

the correlation is unreliable and has been neglected. The stress error also scales with the 

square root of the cut width. 

For the same crack length range, the normalised stress error can be plotted against the 

absolute value of the bulge displacements normalised with the peak displacement 

amplitude M. Figure 5 - 10 shows a common linear trend for the different cut width sizes. 
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Figure 5 - 11 shows the RMS average stress error calculated over crack length 0.05 ≤ 𝑥/𝑤 

0.95, (i.e. neglecting the first and last 5 % crack length) with the maximum normalised bulge 

for each slot size. Also included in this figure is the equation for a line of best fit to the data 

set and R2 value indicating the accuracy of the trend line to the data points. The R2 value is 

one, therefore it is a perfect fit with the line passing through all the data points. The average 

error in the predicted stress is up to 19 percent.  
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Figure 5 - 9: Correlation of the normalised stress error due to bulging with the normalised 

mode I stress intensity factor for a centre-crack plate subjected to a cosine stress field (𝜎0 =

100𝑀𝑃𝑎, n = 1) and different cut width sizes. For cut lengths 0.188 ≤ 𝑥/𝑤 ≤ 0.636. 
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Figure 5 - 10: Correlation of the normalised stress error due to bulging and the bulge 

displacements normalised with the peak surface displacement M for each cut width size for 

a centre-crack plate subjected to a cosine stress field (𝜎0 = 100𝑀𝑃𝑎, n = 1). For cut lengths 

0.188 ≤ 𝑥/𝑤 0.636. 
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Figure 5 - 11: RMS average stress error calculated over cut lengths 0.05 ≤ 𝑥/𝑤 0.95 and 

the maximum bulge displacement normalised with the peak surface displacement M for 

each cut width size for a centre-crack plate subjected to a cosine stress field (𝜎0 =

100𝑀𝑃𝑎, n = 1). 

Systematic studies for varied stress parameters 

This study investigates the influence of decreased stress wavelength on the stress error 

correlations to evaluate the bulge error in contour method measurements. The work 

performed in the previous analysis is repeated for a centre-crack plate loaded by an even 

cosine residual stress function of increasing order, n = 2 and 4. 

Increasing the order of the cosine function, 𝑛, results in a decrease in the wavelength 𝑤. 

According to Equation 5 - 1, to achieve a reduced wavelength but maintain the same peak 

stress 𝜎0, the cosine surface deformation amplitude M must be decreased as shown in the 

table below. 

order n peak amplitude M peak stress 𝝈𝟎 

1 0.02 100 

2 0.01 100 

4 0.005 100 

The idealised cosine stress profiles, for, n = 1, 2 & 4, calculated using the empirical formula 

Equation 5 - 2, normalised with the peak stress is shown in Figure 5 - 12. The corresponding 

Fourier based stress intensity factors are shown in Figure 5 - 13. As the order of the cosine 

function increases, the magnitude of KI decreases. This is in agreement with the literature 
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which shows that KI decreases with the inverse of the square root of n and the peak SIF for 

any value of n can be approximated by Equation 5 - 7 [145]. 

|𝐾𝐼|𝑚𝑎𝑥 = 0.8𝜎0√
𝑤/2

𝑛
        Eqn. 5 - 7 

Figure 5 - 14 shows a similar trend for the predicted bulge displacements, for cut width size 

b = 0.25 mm, because the bulge error is directly proportional to the stress intensity factor. 

Therefore, the magnitude of the bulge error decreases with the square root of the 

wavelength of a cosine function. 

-150

-100

-50

0

50

100

150

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
lis

e
d
 R

e
si

d
u
a
l 

S
tr

e
ss

x/w

n=1

n=2

n=4

 

Figure 5 - 12: Predicted cosine residual stress functions of increasing order, n. 
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Figure 5 - 13: Mode I stress intensity factors for a centre-crack plate loaded by cosine 

residual stress functions of increasing order, n. 
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Figure 5 - 14: Analytical bulge displacements for a centre-crack plate subjected to a cosine 

stress field (𝜎0 = 100𝑀𝑃𝑎, n = 1, 2 & 4) and cut width size 0.25 mm. 

The stress error correlations for a periodic cosine residual stress field of order n = 2 and 4 

are shown in Figure 5 - 15. For the decreased stress wavelength, the correlations of the 

normalised stress error to the normalised absolute stress intensity factor shows a linear 

relationship within cut lengths 0.188 ≤ 𝑥/𝑤 ≤ 0.636. However, the level of error, that is the 

slope of the line, increases slightly as the crack progresses through the period cosine stress 

profile. That is, the stress error is slightly larger for the same value of the stress intensity 

factor at increased cut length.  

The normalised stress error is plotted against the bulge displacements normalised with the 

peak displacement amplitude, M, in Figure 5 - 16.   This figure shows a common linear trend 

for all three cosine stress fields of order n = 1, 2 & 4 and the different cut width sizes. The 

R2 value is close to unity, therefore an acceptable fit has been made to the data. Figure 5 - 

17 shows the RMS average stress error calculated over crack length 0.05 ≤ 𝑥/𝑤 0.95 for n 

= 1, 2 & 4, with the maximum normalised bulge for each cut width. The average error in the 

predicted stress is up to 40 percent for n = 4. The decreased surface deformation 

wavelengths resulted in larger stress errors from bulging.  

The positional error or effective shift of the peak stress was calculating, using Equation 5 - 

8, defined as the difference between the location of the peak stress including the bulge error 

and the idealised cosine profile, normalised by the wavelength 𝑤. Figure 5 - 18 shows the 

positional error for n = 1, 2 & 4, for each cut width size. 

𝑥𝑒𝑟𝑟𝑜𝑟 =
|𝑥 𝑖𝑛𝑐𝑙.  𝑏𝑢𝑙𝑔𝑒  − 𝑥 𝑖𝑑𝑒𝑎𝑙𝑖𝑠𝑒𝑑|

𝑤
× 100%     Eqn. 5 - 8 
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Figure 5 - 15: Correlation of the normalised stress error due to bulging and the normalised 

mode I stress intensity factor for a centre-crack plate subjected to a cosine stress field (𝜎0 =

100𝑀𝑃𝑎) of order (a) n = 2 and (b) n = 4 and different cut width sizes. For cut lengths 0.188 

≤ 𝑥/𝑤 ≤ 0.636. 
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Figure 5 - 16: Correlation of the normalised stress error due to bulging and the normalised 

bulge displacements with the peak surface displacement M for each cut width size for a 

centre-crack plate subjected to a cosine stress field (𝜎0 = 100𝑀𝑃𝑎) of order n = 1, 2, 4. 

For cut lengths 0.188 ≤ 𝑥/𝑤 ≤ 0.636. 
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Figure 5 - 17: RMS average stress error calculated over cut lengths 0.05 ≤ 𝑥/𝑤 0.95 and 

the maximum bulge displacement normalised with the peak surface displacement M for a 

centre-crack plate subjected to a cosine stress fields 𝜎0 = 100𝑀𝑃𝑎 of order n = 1, 2 & 4 

and slot widths 50 µm and 550 µm. A best-fit trendline is also included. 
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Figure 5 - 18: Positional error of the peak stress location normalised by the wavelength 𝑤 

and the maximum bulge displacement normalised with the peak surface displacement M 

for a centre-crack plate subjected to a cosine stress fields 𝜎0 = 100𝑀𝑃𝑎 of order n = 1, 2 

& 4 and slot widths 50 µm and 550 µm. A best-fit trendline is also included. 

The developed Fourier correlations can be used to determine the normalised stress error 

due to bulging for an idealised periodic cosine residual stress distribution instead of using 

FE analysis to determine the stress error. Figure 5 - 9 and Figure 5 - 15 can be used to 

calculate the stress due to bulging for cosine stress functions of order, n = 1, 2 and 4 based 

on knowledge of the cut width ‘b’ and the mode I stress intensity factor, which can be 

determined using a simple Fourier series solution [145]. Alternatively, Figure 5 - 16 can be 

used to calculate the stress error due to bulging for any order of cosine stress function 

based on knowledge of the bulge displacement normalised with the peak displacement 

amplitude. A general solution, Equation 5 - 4, is provided to calculate the bulge 

displacement for a periodic cosine stress field.  

5.2 Bulge errors in a complex weld stress profile 

This work considers the stress error due to bulging for more realistic residual stress 

measurements. The aim is to determine if a similar linear trend in the stress error 

correlations, as for the centre-crack in an idealised periodic cosine stress distribution, may 

be found for generic residual stress fields then the stress error correlations will be valid for 

actual contour method residual stress measurements. The chosen case study is a butt-

welded plate with complex residual stress field [58]. In the previous work, the residual stress 

profiles were idealised with several fitted polynomials (n = 1 to 20) and the associated 

Fourier based stress intensity factors calculated. The bulge error could therefore be 
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evaluated by the stress intensity factor solutions at various levels of detail. The stresses 

due to bulge error were calculated using finite element analysis. The magnitude of the stress 

error was evaluated by calculating the error relative to the fitted polynomial residual stresses 

and producing correlations of normalised stress error. 

Fourier based residual stresses and SIF solutions 

The specimen consists of two aluminium alloy butt-weld plates, approximately 140 mm wide 

and 240 mm long and 12 mm thick, joined by a variable polarity plasma-arc (VPPA) welding 

technique. The bulk longitudinal residual stress field across the mid-width cross-sectional 

plane of the welded plate was measured using neutron diffraction, synchrotron x-ray 

diffraction [58], laboratory x-ray diffraction [163] and the contour method [59]. Figure 5 - 19 

shows a schematic illustration of the welded plate and cutting arrangement for the contour 

method. Figure 5 - 20 shows the analytical representation of the measured longitudinal 

stress profile from the Fourier series analysis fits for n = 1, 5, 10 and 20. The measured 

data cover a sub-domain [-60, 60] mm of the 278 mm wide cross-section but only one half 

of this is evaluated as the stress distribution is essentially symmetric about the weld centre-

line. The analysis for n = 20 matched the measured data (averaged through the thickness) 

closely as it captured the measured peaks. The resultant SIF solution for a through-

thickness crack symmetrically emanating from the centre of the weld is shown in Figure 5 - 

21. 

 

Figure 5 - 19: Schematic illustration of the aluminium alloy butt-welded plate joined by a 

VPPA welding technique and cut arrangement for the contour method [59]. 
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Figure 5 - 20: Four Fourier series analysis fits, for n = 1, 5, 10 and 20, of the measured 

longitudinal residual stress data (thickness averaged) for an aluminium alloy butt-weld plate 

joined by a variable polarity plasma-arc (VPPA) welding technique [59]. 
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Figure 5 - 21: Associated Fourier-based SIF results, for n = 20, for the aluminium alloy butt-

welded plate.  

Calculating the bulge displacements 

The bulge displacements for n = 20 Fourier series fit were estimated using the analytical 

solution Equation 4 - 6 (see Chapter 4 section 4.2). The Young’s modulus, E, and Poisson’s 

ratio, , were found from the literature to be 72.4 GPa and 0.33 respectively.  For the contour 

method residual stress measurement, the specimen was cut into two halves using a 0.1 

mm diameter brass wire. The final slot width was taken to be 0.15 mm. The predominant 
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stress state ahead of the cut path was evaluated using fracture mechanics criteria which 

states that for plane strain conditions,  

𝑇 ≥ 2.5 ∗ (
𝐾𝐼

𝜎0
)

2

 

where T is the specimen thickness, KI is the stress intensity factor and σ0 is the material 

yield stress. 

For this case, KI, max ≈ 38 MPa.m0.5 and σ0 = 270MPa, gives T = 49.5 mm which is greater 

than the 12 mm plate thickness and a plane stress state can be assumed. The bulge 

displacements can be evaluated using Equation 4 - 6 (a). Figure 5 - 22 shows the bulge 

displacements for n = 20. 
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Figure 5 - 22: Analytical plane stress bulge displacements, for Fourier analysis fit with n = 

20, for the aluminium alloy butt-welded plate.  

Calculating the stress error due to bulge 

The stresses associated with the bulge error were calculated by directly applying the bulge 

displacements as boundary conditions along the sub-domain region of the plate, i.e. 60 mm, 

in a 2D FE analysis. The resultant stresses were then subtracted from the idealised Fourier 

stresses to predict the residual stresses including the effects of the bulge error. Figure 5 - 

23 compares the Fourier stresses and the stresses including bulge error for n = 20. As 

expected, the bulge error results in reduced peak stresses and a slight shift in the residual 

stress profile.  



Chapter 5: Evaluating the local stress error due to bulging 

154 

 

-150

-100

-50

0

50

100

150

200

250

0 10 20 30 40 50 60
R
e
s
id
u
a
l 
S
tr
e
s
s
 (
M
P
a
)

Distance from centre of weld (mm)

Fourier-based (n=20)

Fourier-based (n=20)

inlc. bulge

 

Figure 5 - 23: Comparison of the Fourier residual stresses and stresses including the effects 

of bulge error, for n = 20, for the aluminium alloy butt-welded plate.  

Stress error correlations 

Figure 5 - 24 shows correlations of the normalised stress error, calculated using Equation 

5 - 5, with the absolute stress intensity factor, normalised with the maximum SIF, along the 

distance from the centre of the weld. The correlations show no obvious trend, however there 

is an apparent linear trend in the peak SIF region. The varying residual stress distribution 

did not provide any meaningful correlations and would be unreliable to predict the stress 

errors due to bulging. 
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Figure 5 - 24: Correlation of the normalised stress error due to bulging and the absolute 

mode I stress intensity factor for Fourier analysis fit with n = 20, for the aluminium alloy butt-

weld plate.  
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5.3 Radial thickness bulge errors in quenching stresses 

This study investigates the significance of the bulge error for 3-dimensional distributions of 

residual stress and explores correlations for the normalised stress error with the mode I 

stress intensity factor. The stainless-steel solid cylinder (60mm diameter x 60mm long) 

studied by 3D FE analyses in Chapter 4 section 4.3.2, to validate the analytical bulge 

displacement solution is further examined here as the case study.  

In the previous work, a residual stress distribution was introduced by simulating the 

quenching process using a sequentially coupled thermal-stress FE analysis. The mode I 

stress intensity factor was evaluated across the diameter at a few cut lengths (5, 15, 30, 45 

and 57 mm) using special J-integral elements at the tip of a sharp edge crack. The analytical 

bulge displacements, for the plane stress and plane strain conditions, were calculated by 

means of the stress intensity factor and compared with the bulge displacements extracted 

during a contour cutting simulation for two cut width sizes, 0.1 mm and 0.3 mm. It was found 

that the analytical plane strain bulge solution matched closely with the FE bulge 

displacements across the thickness of the specimen. Also, the bulge error followed the 

through-thickness stress intensity factor in form and distribution. 

Calculating the stress including the bulge error 

To calculate the stresses including effects of bulge error, the finite element bulge 

displacements were applied as boundary conditions on the cut plane of a quarter model of 

the solid cylinder to back-calculate the associated stresses error (see Figure 4 - 34). A linear 

elastic material model was used with Young’s modulus, E, and Poisson’s ratio, , of 195.6 

GPa and 0.294 respectively. It was necessary to first interpolate the displacements for all 

node locations on the cut plane as the FE bulge displacements were calculated at the wire 

entry node locations in the cutting simulation. This interpolation was performed in MATLAB 

with the scatter interpolation [150] function by specifying nearest neighbour extrapolation. 

Then the back-calculated stresses were subtracted from the initial simulated hoop residual 

stresses to give the stresses including the bulge error. Figure 5 - 24 compares the initial 

quenching residual stresses with the stresses including bulge error at several cut lengths. 

A significantly large difference (~ 100 MPa) can be seen for the 5 mm cut length where the 

edge crack is introduced into compressive stresses.  



Chapter 5: Evaluating the local stress error due to bulging 

156 

 

-350

-300

-250

-200

-150

-100

-50

0

0 5 10 15 20 25 30

R
e
s
id

u
a
l 

S
tr

e
s
s
 (
M

P
a
)

Radial distance from centre towards outer surface (mm)

Cut length 5mm

σ11 (hoop)

σ11 (hoop) incl. bulge

  
-300

-200

-100

0

100

200

300

400

0 5 10 15 20 25 30

R
e
s
id

u
a
l 

S
tr

e
s
s
 (
M

P
a
)

Radial distance from centre towards outer surface (mm)

Cut length 15mm

σ11 (hoop)

σ11 (hoop) incl. bulge

 

-300

-200

-100

0

100

200

300

400

0 5 10 15 20 25 30

R
e
s
id

u
a
l 

S
tr

e
s
s
 (
M

P
a
)

Radial distance from centre towards outer surface (mm)

Cut length 30mm

σ11 (hoop)

σ11 (hoop) incl. bulge

   
-300

-200

-100

0

100

200

300

400

0 5 10 15 20 25 30

R
e
s
id

u
a
l 

S
tr

e
s
s
 (
M

P
a
)

Radial distance from centre towards outer surface (mm)

Cut length 45mm

σ11 (hoop)

σ11 (hoop) incl. bulge

 

-350

-300

-250

-200

-150

-100

-50

0

0 5 10 15 20 25 30

R
e
s
id

u
a
l 

S
tr

e
s
s
 (
M

P
a
)

Radial distance from centre towards outer surface (mm)

Cut length 57mm

σ11 (hoop)

σ11 (hoop) incl. bulge

 

Figure 5 - 25: Comparison between the initial hoop residual stresses and stresses including 

bulge error for a quenched 316H stainless steel solid cylinder, diameter 60 mm, length 60 

mm, for a cut width of 0.3 mm at different cut lengths. 

Stress error correlations 

Figure 5 - 26 shows a 2D plot of the normalised stress error across the cut surface. 

Significantly larger errors can be seen close to the cut start and outer surface of the cylinder. 

Figure 5 - 27 shows correlations of the normalised stress error, calculated using Equation 

5 - 5, through the thickness of one quarter of the solid cylinder with the absolute through-

thickness mode I stress intensity factor, normalised with the maximum SIF, at several cut 

lengths. The results near the outer surface of the cylinder (for roughly 2 mm) were unstable 

and therefore excluded. The correlations show no obvious trend, but the normalised stress 

error is less than ~ 15 % for most of the results.  
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Figure 5 - 26: 2D plot of the percent normalised stress error (%) due to bulging across the 

cut surface of a quenched 316H stainless steel solid cylinder, diameter 60 mm, length 60 

mm, for cut width size 0.3 mm. 
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Figure 5 - 27: Correlation of the normalised stress error due to bulging and the absolute 

mode I stress intensity factor for a quenched 316H stainless steel solid cylinder, diameter 

60 mm, length 60 mm, for cut width size 0.3 mm at different cut lengths. 

The root-mean-square average stress error was calculated, using Equations 5-6, through 

the thickness of one quarter of the solid cylinder at 1.5 mm cut length increments. To 

evaluate the effect of the cut width size, the stress error analysis was repeated for cut width 
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0.1 mm, since the bulge displacements were also measured in the previous work. Figure 5 

- 28 shows the RMS average stress error along the cut length, a, normalised with the 

cylinder length, L. The stress error is fairly constant (< ~ 1 % difference) between 0.2 ≤ a/L 

≤ 0.7 but is larger at the start of the cut with obvious outliers. The stress error scales with 

the square root of the cut width which is consistent with previous findings. 
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Figure 5 - 28: Diametral RMS average stress error at each cut length (a) normalised with 

the cylinder length (L) for a quenched 316H stainless steel solid cylinder, diameter 60 mm, 

length 60 mm, for cut width sizes 0.1 mm and 0.3 mm. 

5.4 Discussion 

In this chapter stress error correlations have been developed to predict the magnitude of 

stress error due to bulging in contour method measurement results using the mode I stress 

intensity factor. The initial correlations were based on a centre-cracked plate loaded by an 

idealised cosine residual stress profile in the plane stress condition. The bulge error was 

estimated analytically with the mode I stress intensity factor found using a Fourier-based 

solution for a centre-crack plate in a periodic cosine residual stress distribution [145]. The 

corresponding stresses including the bulge error were calculated in a finite element 

analysis. Systematic studies were performed for different cut width sizes and varied stress 

wavelength. The relationship between the normalised stress error and SIF was linear 

between 0.2 and 0.6 percent of the cut length but was unpredictable outside of this range. 

The root-mean-square average stress error in the cosine stress field (𝜎0 = 100𝑀𝑃𝑎) of 

order n = 1 was up to 19 % for a 0.55 mm cut width and up to 40 % for n = 4. Shorter surface 

deformation wavelengths resulted in larger stress errors from bulging. The stress error also 
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scales with the square root of the cut width. This implies that using a smaller wire in the 

cutting procedure for the contour method, will give smaller bulging errors. 

Similar stress error correlations were developed for a centre-crack in a butt-welded plate 

with more complex residual stresses. The correlations were developed for idealised 

longitudinal residual stress profiles based on Fourier series analysis. The stresses due to 

bulge error were calculated using finite element analysis. The aim was to determine if a 

similar linear trend in the stress error correlations is found for rapidly varying stresses then 

the correlations, for the centre-crack in an idealised periodic cosine stress distribution, will 

be valid for actual contour method residual stress measurements. However, the stress error 

correlations did not show a definite linear trend.  

The stress error analysis was extended to evaluate the bulge error for 3D geometries. The 

specimen studied was a stainless-steel solid cylinder with residual stresses introduced by 

quenching using finite element analysis. The bulge error and associated stresses including 

bulge error were calculated using finite element analysis. Correlations of the stress error 

along the length of the cut tip and the associated stress intensity factor did not show a 

definite linear trend, even for the stresses at mid thickness of the specimen which are close 

to a cosine profile. The one-dimensional idealised cosine residual stress profile appears to 

be a unique case showing a linear correlation to obtain a precise estimation of the stress 

error due to bulging in contour method measurements. 

The 3D analysis of the quenched cylinder showed that the bulge error caused significantly 

larger errors in the hoop stresses close to the cut start (< 10 mm) where the edge crack 

was introduced into compressive stresses and near the outer surfaces (~ 2 mm). The root-

mean-square diametral average stress error was roughly the same magnitude along the cut 

length 0.2 ≤ a/L ≤ 0.7 and provides a more robust evaluation of the stress error. In this 

region, the error was roughly 10 % for the 0.3 mm cut width and 5 % for the 0.1 mm cut 

width. The stress error scales with the square root of the cut width, therefore the RMS 

average stress error due to bulging can be predicted for any cut width size for this case 

study.  

5.5 Conclusion 

• Stress error correlations have been developed to predict the magnitude of stress error 

due to bulging in contour method measurements for a one-dimensional idealised cosine 

residual stress profile. The correlations rely on knowledge of the mode I stress intensity 
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factor due to the residual stresses in the specimen and can be determined using a simple 

Fourier series solution [145]. 

• A general analytical solution based on the Bessel function, Equation 5-4, provides a 

simple method for estimating bulge displacement errors as a function of cut length for a 

centre-crack in a periodic cosine residual stress field. 

• Smaller length scale surface displacements result in larger stress errors from bulging (see 

Figure 5 - 17). In the cutting procedure for the contour method, using a smaller wire will help 

to capture the smaller displacements and bulge error. 

• The approach to develop correlations for stress errors due to bulging showed linear trends 

for the idealised cosine form of residual stress but no obvious trend was observed for the 

other two cases containing a more generic residual stress field.  

The bulge error occurs in all residual stress measurements made with the contour method. 

There are different levels of complexity that can be used to correct for the bulge error. In 

the next chapter the bulge correction procedures are reviewed and guidelines are provided 

to assist practitioners of the contour method to decide on a suitable approach.  
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Chapter 6: Discussion and guidelines for bulge 

correction in the contour method 

The aim of this PhD project was to understand the origins and influence of the bulge error 

in residual stress measurements made with the contour method. The scope of bulge error 

studies was to evaluate application of an iterative FE based (2D) correction procedure first 

published by Prime [3] and extend its application to 3D cases (Chapter 3). A new analytical 

bulge error estimation solution based on the linear elastic fracture mechanics mode I SIF is 

proposed (Chapter 4) instead of the cumbersome iterative FE procedure. This solution is 

used to develop a set of stress error correlations for periodic stress functions that have the 

potential to be used for estimating stress errors due to bulging in a contour method 

measurement (Chapter 5). The present chapter provides a general discussion of the 

methods used in this thesis and a set of guidelines to help contour method measurement 

practitioners estimate the magnitude of stress error due to bulging and, if necessary, correct 

the residual stress measurements made with the contour method. 

The contour method determines residual stress by carefully cutting a component into two 

halves which allows the residual stresses in the material to redistribute and results in 

distortion of the cut surfaces. This distortion is then measured and used to back calculate 

the residual stresses using an elastic FE analysis. Wire electro-discharge machining (EDM) 

is the most effective cutting technique to satisfy the requirements for the contour method 

where one of the main assumptions is that the cut removes a constant width of material 

when measured relative to the original state of the body. However, the width of cut material 

removed is affected by the stress concentration at the cut tip that elastically stretches or 

contracts the material about to be cut. This causes the width of material removed to vary 

along the cut length which creates deformation errors that bias the back-calculated 

stresses. Bulge errors tend to shift the stress distribution towards the origin of the cut and 

reduce tensile peak stresses.  

6.1 The iterative FE bulge correction procedure 

The present study evaluated the 2D bulge correction approach of Prime and Kastengren [3] 

before adapting the approach to correct a 3-dimensional residual stress field in a stainless 

steel compact tension specimen containing a weld. A new approach is proposed for 

calculating the bulge stress error once the deformation error has been estimated by a 

contour cutting simulation using either 2D or 3D analyses. The new approach simplifies the 
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bulge correction procedure to some extent but still requires FE cutting simulation which can 

be time-consuming and complex (requiring ABAQUS scripting) for three-dimensional cases. 

The most important modelling factors for the cutting simulation are the shape of the slot and 

the geometric locations used to estimate the bulge error. For mesh design convenience a 

square slot bottom was used for most of the studies. It was established that the material 

position at the outer edge of the slot (i.e. lateral tangent of the cutting wire), has a greater 

ability to correct contour method measurements. The slot corner node position (that is the 

material point about to be cut) gave a reasonable estimation of the bulge error but this 

position does not physically model the approximately semi-circular shape of the cut tip. A 

drawback with using the slot tangent position is that a denser mesh ideally using second 

order elements is required. 

Nonetheless, the square slot shape assumption could cause inaccuracies in the FE 

prediction of the bulge error. An FE idealisation study in this work (see Chapter 4 section 

4.1.2) indicated a significant decrease in the estimated bulge error (10 % for a 0.25 mm cut 

width) when using a semi-circular slot bottom compared with the square slot bottom 

assumption. The effect of the slot shape could significantly improve the accuracy of the 

bulge prediction but would be difficult to implement for FE analysis since re-meshing would 

be required at each cut increment.  

Further inaccuracies in the cutting simulation could result from the assumption that the final 

slot width is 120 % of the EDM wire size based on advise in the literature [28]. For example, 

for a 250 µm wire size a 300 µm final slot width was chosen. The slot width correlations 

(see Figure 4 - 17 and Figure 4 - 18) have shown that the significance of the final slot width 

to predict the bulge displacements is more important for narrower slots.  

Nevertheless, numerical predictions are based on theory and experimental validation of the 

elastic deformation at the cut tip, or change in slot width, as a function of cut depth could 

provide valuable information about the conditions and behaviour of the material at the cut 

tip during the cutting process. This could help to improve the assumptions used for the FE 

cutting simulation to more precisely predict the bulge error. Also, it has been shown that the 

SIF for a square slot up to 0.55 mm wide does not deviate significantly from that of a sharp 

crack (see Figure 4 - 14). A blunt notch is expected to reduce the stress concentration at 

the cut tip and therefore could show a larger deviation from the SIF for a sharp crack. These 

effects could be investigated using experimental methods by relating different stress 

conditions at the cut tip, or the associated SIF, to the deformation or change in the cut width. 
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However, experimentally measuring the change in cut width could be challenging due to the 

interference from features at the cut such as surface roughness and the recast layer.  

The bulge error in a complex residual stress distribution measured by the contour method 

has been investigated using 2D and 3D FE simulations. The case study was a stainless 

steel compact tension weld specimen where residual stresses were measured using 

neutron diffraction, incremental slitting and the contour method [4]. Figure 3 - 3 shows the 

contour method results which showed possible evidence of bulge error, that is a spatial shift 

in the distribution towards the origin of the cut and slightly reduced peak stresses. Applying 

the FE correction procedure showed that bulge effects introduced a negligible spatial error 

(~ 1 mm) but a significant increase (20 %) in the peak tensile stress. This level of error is 

larger than desirable for a residual stress measurement technique and emphasizes the 

importance of estimating and correcting for deformation errors in the measured residual 

stresses to improve the accuracy and reliability of contour method measurements. 

6.2 Analytical bulge error estimation 

One of the aims of this research was to develop a simpler approach for bulge error 

correction. This has been achieved based on the hypothesis that the bulge error is 

dependent on the local stress state at the cut tip, which can be characterised by the mode 

I SIF. This was demonstrated by developing numerical correlations for a finite plate with a 

uniform far field tension loading in the plane stress and plane strain conditions, for a series 

of different geometries, material properties and cut width sizes. The correlations proved that 

the bulge error is approximately proportional to the SIF and the square root of the cut width 

size and inversely proportional to the material stiffness. The bulge error for plane stress 

conditions was approximately 10 % larger than for plane strain.  

The effects of the bulge error can be minimised during the cutting procedure by controlling 

the change in the stress state at the cut tip, that is by controlling the stress intensity as 

cutting progresses across the component of interest. This can be achieved by restraining 

(clamping) the component close to the cut and by carefully choosing the cut propagation 

pathway [101, 102]. The same measures will minimise the amount of plasticity-induced 

stress errors in the contour method. The bulge error can also be reduced by using a smaller 

EDM wire diameter as the error scales with the square root of the slot width. This finding is 

of high practical significance because it tells us that bulge errors can be minimised simply 

by choosing the smallest diameter of wire that delivers a stable cut (i.e. minimises wire 

breaks) in the component of interest.  
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FE studies have shown that the displacements at a crack tip are non-singular and 

proportional to 𝐾𝐼√𝑟 and depend on the stress state [121]. The magnitude of the bulge error 

(elastic displacement) can be estimated analytically by setting the radius, r, equal to the 

distance from the slot tip to the outer edge of the slot (tangent of a circular wire of diameter 

equal to the slot width) for both plane stress and plane strain stress conditions. This 

represents the lateral displacements of the crack faces and validates the choice of mid side 

node location used in FE cutting models to estimate bulge displacements. Extensive 2D 

and 3D modelling was performed to validate the analytical solution for idealised stress 

distributions and real residual stress measurements. The analytical bulge was estimated 

using FE predictions of the SIF and compared with the actual FE displacements at the cut 

tip. The bulge error followed the SIF in form and distribution, even across the thickness of 

the specimen. The analytical approach can replace the cumbersome FE cutting simulation 

stage and provides a much quicker method to estimate the bulge error. For 2D 

approximations and 3D cases it is recommended to estimate the bulge error using the plane 

strain assumption.  

The difficulty in using the analytical solution is the need to know the SIF associated with the 

residual stress of interest for cut lengths spanning the component cross section. The SIF 

depends on the size and geometry of the component, crack shape, the loading condition 

and the boundary conditions. SIFs can be determined using analytical handbook solutions 

[120, 133, 134] for typical geometries but for more complicated geometry and loading, 

numerical methods are used which have been proven for their accuracy in establishing SIF 

[164-166]. However, there is still a lack of information on SIFs for irregular cracks in complex 

three-dimensional shapes. It is worthwhile to mention here that the concept of the SIF is 

applied to critical design and failure calculations in structural integrity assessments [8, 167]. 

An important limitation of the analytical approach is that the there is no SIF at the start of a 

cut (zero crack length) and end of a cut. The workaround is to extrapolate the bulge error 

from deeper cut lengths back to the starting and far edge. It would be valuable to determine 

what factors influence the discrepancies seen at the edges and whether a simple correction 

is possible for more accurate corrections. However, it has been shown that a shallow cut 

does not behave like a “sharp crack” [154] and therefore the SIF characterisation completely 

breaks down. A more classical stress concentration factor measure could be used to deal 

with the results at the edges. 

Finally, the analytical solution does not account for non-linear (plasticity) effects at the crack 

tip. Interestingly it has been shown that the SIF can be used to indicate the risk of plasticity 
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errors in contour measurements [2]. This suggests the possibility of developing a common 

estimation method that can distinguish and combine plastic and elastic (bulge) errors in 

contour measurements. 

6.3 Evaluation of the stress error due to bulging 

A simple FE investigation of the stress error due to bulging in the contour method has been 

conducted in this research based on a centre crack in a finite plate subjected to a cosine 

residual stress profile in the plane stress state. A one-dimensional cosine stress profile is 

self-equilibrated, having zero resultant force and moment, and can therefore be taken to 

represent an idealised residual stress profile. The objective was to develop a criterion to 

predict the magnitude of stress error due to bulging for the contour method to help 

practitioners decide whether to correct for it. This work provides correlations of the 

normalised stress error due to bulging and the mode I SIF for several cut width sizes. The 

stresses including the bulge error clearly show reduced peak stresses and a spatial shift in 

the stress distribution. The root-mean-square (RMS) average stress errors were determined 

to provide a more robust comparison and were in the order of ~ 20 % (for a 550 µm cut 

width). A significant finding was that the stress error was larger ~ 40 % for smaller surface 

deformation wavelengths. Therefore, a smaller wire should be used for the cutting 

procedure to capture the smaller resolution surface displacements to increase the accuracy 

of correcting for the bulge error in contour method measurements. The stress error 

correlations in this work can only be used for an idealised cosine distribution of the residual 

stresses since the SIF depends on the applied load. 

This work was extended to develop similar stress error correlations for a complex welding 

residual stress distribution in the plane stress state and to evaluate the variation in the stress 

error through the thickness of a solid cylinder with quenching residual stresses. The 

correlations for both varying stress profiles were random and could not be used to estimate 

the stress error in contour method measurements. The RMS stress errors averaged across 

the thickness for the quenched cylinder were < ~ 5 % (for a 100 µm cut width) and < ~ 10 

% (for a 300 µm cut width). As the stress errors are normalised with the maximum stress, 

the errors could be more significant for stress distributions with larger magnitude peak 

stresses. 

6.4 Guidelines for bulge error correction 

As explained previously, the stress errors due to bulging in the contour method are directly 

related to the stress concentration at the cut tip during the specimen cutting process. In 
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Chapter 5 it has been demonstrated that for an idealised one-dimensional cosine stress 

profile the stress error due to bulging can be estimated and corrected for using knowledge 

of the mode I SIF. Correlations were developed to estimate the level of stress error in 

contour method measurements for any idealised cosine stress profile. The stress magnitude 

can be approximated before contour cut and the SIF estimated using a Fourier approach, 

weight functions, FE analysis or commercial software, for example R-code [139].  

However, in contour method measurements for more generic stress fields it is necessary to 

estimate and correct for the bulge error. There are two methods that can be used to estimate 

the bulge displacement error which results from elastic deformation in contour 

measurements. The first is an analytical approach based on the mode I SIF and the second 

is an FE approach to perform simulations of the cutting procedure. Once the bulge 

displacements have been estimated, the associated stress error is calculated using an 

elastic FE analysis. The procedure is repeated until a converged stress solution is reached. 

Both methods can be applied using simplified 2D correction for a line profile of the contour 

method residual stresses on the cut plane e.g. at mid-thickness or 3D correction which is 

more time-consuming but provides a more robust correction for all the contour method 

stresses on the cut plane. Figure 6 - 1 shows a flowchart of the proposed procedure for 

correcting contour method measurements for bulge error.  

An incremental change of ≤ 5 % of the peak tensile stress has been used in the present 

studies to indicate convergence. The stresses converged after only two to three iterations 

(see section 3.1.3, 3.1.6 and 4.4.2). Therefore, it is suggested to use a convergence criteria 

of ≤ 1 % variance for the peak stresses to improve the accuracy of the bulge correction. 

When using the analytical approach, accurate prediction of the mode I SIF is essential 

because it directly influences the magnitude of the predicted elastic deformation. In 

specimens with large variances in the residual stresses across the cut plane, the SIF from 

the slitting measurement technique may not be suitable to use in the analytical solution. In 

such cases, the stress intensity factor must be determined from initial contour method 

measurement stress results.  

Another important factor is the constraint applied to represent the clamping condition in the 

FE analysis either to perform contour cutting simulation or to determine the stress intensity 

factor. Depending on how close the clamping arrangement is to the cut, it may influence the 

magnitude of the stresses at the cut tip and the predicted results. Finally, these bulge 
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correction procedures can give large errors at the edges of the specimen and any unstable 

stress results at the edges should be neglected.  

 

Figure 6 - 1: Flowchart illustrating the proposed procedure for estimating and correcting for 

bulge errors in residual stress measurements made with the contour method.  
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Chapter 7: Conclusions and future work 

7.1 Conclusions 

Bulge error can have a significant effect on the accuracy of residual stress measurements 

made by the contour method, as illustrated below in very recent work, but there is little 

published knowledge about its influence.  

 

Figure 7 - 1:  Contour and bulge-corrected measurements of residual stress for the NeT 

TG5 edge-welded ferritic steel beam round robin compared with slitting, neutron and 

synchrotron diffraction measurements [168].   

The aim of this PhD project was to improve the understanding of bulge errors and 

investigate existing and new procedures to correct for it in contour method measurements. 

The hypothesis put forward was that a simple bulge error correction approach could be 

developed and integrated within the standard data analysis steps of the contour method. 

In this research an alternative finite element procedure, compared to the FE procedure 

proposed by Prime and Kastengren [3], and a new analytical solution have been proposed 

to simplify the process of correcting for bulge error in contour method measurements. Finite 

element studies of the relationship between the stress state at the tip of a contour cut, 

characterised by the SIF, and the bulge error or “varying” cut width have helped improve 

the understanding of the factors that influence the bulge error and ways to control bulging 

effects during the cutting process of the contour method. Furthermore, a parametric study 

of the magnitude of the bulge error for a one-dimensional idealised cosine residual stress 
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profile has been investigated.  The research has shown that there are different levels of 

complexity that can be used to correct for the bulge error. Therefore, guidelines have been 

proposed to assist practitioners of the contour method to decide on a suitable approach. 

The results and conclusions for each study have been discussed in detail in the previous 

chapters. Therefore, this section provides the main conclusions from each study. Thereafter 

future work is suggested based on the challenges and improvements of the methods used 

in this research. 

➢ A 2D FE approach proposed by Prime and Kastengren [3] to correct complex (varying) 

stress fields for the bulge error did not improve the results. A 3D FE approach has been 

developed and applied to correct complex stress fields for the bulge error, but this 

procedure is very complex and time-consuming requiring bespoke scripts to extract the 

bulge error through the thickness of the specimen.  

➢ The 2D and 3D FE bulge correction approaches are based on predicted displacements 

near the tip of the idealised contour cut slot geometry; the sensitivity to the exact position 

of displacements in the model that should be used has been investigated throughout 

this thesis. The displacement at the outer edge of the slot, that is the lateral tangent 

position of the cutting wire (see Figure 2 - 23), is a better position to estimate the bulge 

error as it has a greater ability to correct contour method measurements. 

➢ A simpler procedure for calculating contour stress error directly from the bulge 

displacements has been proposed.  The new procedure allows stress line profiles from 

a contour measurement map to be corrected based upon stress errors estimated from 

a 2D FE model of the cutting process.  

➢ Numerical mode I SIF correlations have been developed for a finite plate with a uniform 

far field tension loading in the plane stress and plane strain conditions, for a series of 

different geometries, material properties and cut width sizes. The correlations proved 

that the bulge error is approximately proportional to the SIF and the square root of the 

cut width size and inversely proportional to the material stiffness. The bulge error for 

plane stress conditions was approximately 10 % larger than for plane strain.  

➢ The effects of the bulge error can be minimised during the cutting procedure by 

controlling the change in the stress state at the cut tip, that is by controlling the stress 

intensity factor as cutting progresses across the component of interest. The bulge error 
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can also be reduced by using a smaller EDM wire diameter as the error scales with the 

square root of the slot width. 

➢ An analytical solution, Equation 4 – 6, based on LEFM, provides a new simple 

alternative method for estimating bulge displacement errors in contour method residual 

stress measurements. The mode I SIF as a function of cut length (and along the cut tip) 

due to the residual stresses in the specimen must be known with the elastic properties 

of the material and the final cut width size created during the wire EDM process. The 

analytical solution is found to be within a few percent of the numerical predictions. For 

2D approximations and 3D cases it is recommended to estimate the bulge error using 

the plane strain assumption. 

➢ Stress error correlations have been developed to predict the magnitude of stress error 

due to bulging in contour method measurements for a one-dimensional idealised cosine 

residual stress profile. A general analytical solution based on the Bessel function, 

Equation 5-4, provides a simple method for estimating bulge displacement errors as a 

function of cut length for a centre-crack in a periodic cosine residual stress field. 

7.2 Suggested future work 

Although the goal of the thesis has been accomplished, there are improvements that could 

be done in order to achieve better estimates of bulge error in contour method 

measurements. Also, several interesting findings could not be explored further in this 

research due to the time constraint. Therefore, some of these topics are given as suggested 

future work in this section.  

7.2.1 Improvements in the iterative FE bulge correction procedure 

Modelling the slot geometry: One of the assumptions to simplify the bulge correction 

approach by Prime and Kastengren [3] is to use an idealised square slot bottom to estimate 

the bulge error in the finite element cutting simulation. However, in practice the wire EDM 

cutting process creates a semi-circular slot bottom which could introduce errors. A study of 

the geometry idealisation showed a significant error (overestimate) of up to 10 percent using 

a 0.25 mm square end slot rather than a semi-circular slot end: This suggests that bulge 

errors may be slightly overestimated using a square end idealisation. A general correction 

factor, example 10 percent reduction, could be applied when using a square slot, however, 

more work is needed because the error will depend on the local stress state at the cut tip, 

cut length, material properties, slot width and restraint conditions.  
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Applying the clamping constraint: Another factor that can greatly influence the bulge 

error estimation during the cutting simulation is the applied constraint to represent the 

clamping condition used during the EDM cutting procedure. The constraint applied in the 

FE model is representative of the perfect constraint, that is zero lateral displacement, which 

could be overly restrictive. Modelling clamping with perfect displacement constraint is only 

an approximation and more realistic simulation of clamping forces may help to quantify the 

bulge error more accurately [3]. Different types of clamping arrangements, such as finger 

clamping and fitted bolts, and different clamping distances from the cut plane can be 

investigated. 

Defining the initial stress: In this research two different approaches were used to define 

the initial stresses in the model for the cutting simulation. In the 2D analysis an ABAQUS 

user subroutine (SIGINI) provided by Prime [118] was used to define a uniform stress 

distribution along the length of the sample normal to the cut path. Whereas in the 3D 

analysis the contour method measured residual stresses across the cut surface were 

mapped directly in the model. Further investigation is required to assess how the stresses 

in the remainder of the model i.e. away from the cut plane influence the local bulge 

displacement required to be measured at the cut tip.  

Automating the procedure: It would be a valuable contribution to automate the finite 

element bulge correction processes so that a practitioner can correct for the bulge error as 

a standard practice. The proposed alternative procedure to calculate the stress error directly 

can be applied for a simplified 2D bulge correction approach, or a 3D approach when more 

robust contour method results are required. Programming in the ABAQUS Scripting 

Interface can be used to create a finite element bulge correction procedure that can be 

applied in a simple and practical way for different engineering components that are 

measured with the contour method.  

7.2.2 Experimental analysis of the bulge error: 

The bulge effect has so far only been demonstrated using finite element analysis. For 

avoidance of doubt the bulge displacement phenomenon and its prediction should be 

validated using experimental methods. One proposed method is to apply different amounts 

of load, e.g. a stepped increasing tensile load, to a test specimen during wire EDM cutting 

and evaluate the deviations of the cut width afterwards with suitable measurement 

techniques.  
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The deviations in cut width are likely to be a few microns ( ≤ 10  m) and the suitability of 

different techniques, such as digital image correlation, optical microscopes and SEM could 

be investigated. For example a study [33] has examined the wire EDM slot size along the 

cutting path on a stress-free material using an optical microscope. It would be particularly 

challenging to deal with interference from local features at the cut tip such as surface 

roughness and the recast layer, which could make the measurement particularly difficult. 

Ideally the test sample should be designed to magnify the deformation at the cut tip and 

avoid the occurrence of plasticity during cutting, this could be achieved by selecting a 

material with a low elastic modulus and high yield strength, such as aluminium or 

magnesium alloys.  

7.2.3 Determining how bulge and plasticity effects influence each other: 

The bulge error studies performed in this research are for linear elastic materials and have 

not accounted for non-linear (plasticity) effects at the cut tip. It is not known how the 

presence of plasticity at the cut tip will alter the bulge error estimation. Further studies are 

required for elastic plastic material behaviour to determine how bulge and plasticity effects 

influence each other. Interestingly it has been shown that the SIF can be used to indicate 

the risk of plasticity errors in contour measurements [2]. This suggests the possibility of 

developing a common estimation method that can distinguish and combine plastic and 

elastic (bulge) errors in contour measurements. 
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Appendix A – Characteristics of residual stress 
measurement techniques 

Table A - 1: Characteristics of commonly used residual stress measurement techniques. 

Technique Advantages Disadvantages 

Neutron 
Diffraction 

• Triaxial residual stress 
measurements. 

• Bulk residual stresses and 3D maps. 

• Useful for measuring stress 
gradients. 

• Non-destructive. 

• Requires specialised facilities. 

• Sensitive to grain size and texture. 

• Requires reliable zero stress reference. 

• Not suitable for surface measurements or 
thick samples. 

Synchrotron 
Diffraction 

• Fast data acquisition times. 

• Triaxial residual stress 
measurements. 

• Bulk residual stresses and 3D maps. 

• Useful for measuring stress 
gradients. 

• Non-destructive. 

• Requires specialized facilities. 

• Elongated gauge volume. 

• Sensitive to grain size and texture. 

• Requires reliable zero stress reference. 

X-ray 
Diffraction 

• Lab based and widely available.  

• Quick and easy to apply. 

• Bi-axial residual stress 
measurements. 

• Useful for measuring surface stress 
gradients. 

• Non-destructive. 

• Requires good surface finish. 

• Sensitive to grain size and texture. 

• Requires material removal to get 
subsurface stresses and not suitable for 
through thickness residual stress 
measurements. 

• Requires reliable stress-free reference. 

Hole Drilling 

• Lab based, portable and widely 
available.  

• Quick and easy to apply. 

• Bi-axial residual stress 
measurement.  

• Damage is often tolerable or 
repairable. 

• Not sensitive to microstructural 
variation. 

• Requires good surface preparation. 

• Limited depth capabilities. 

• Compromised by plasticity. 

• Application for complex shaped 
components is limited. 

Deep Hole 
Drilling (DHD) 

• Through-thickness bi-axial residual 
stress measurement. 

• Lab based and in-situ (can be 
portable). 

• Applicable for complex component 
shapes and large samples. 

• Not sensitive to microstructural 
variation. 

• Semi-destructive. 

• Standard DHD compromised by plasticity. 

• Not applicable for very thin components. 

Slitting 

• 1-D normal component of residual 
stress measurement. 

• Applied fairly easily with commonly 
available equipment. 

• Can calculate the stress intensity 
factor directly without prior 
knowledge of the residual stresses. 

• Not sensitive to microstructural 
variation. 

• Destructive. 

• Uni-axial residual stress measurements. 

• Analytical complexity and need for an 
inverse solution. 

• Cannot determine the stresses over the last 
few percent of the specimen thickness. 

• Limitations to measure stresses that are 
nonuniform across the width. 

• Compromised by plasticity. 
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Contour 
Method 

• 2-D cross-sectional map of normal 
component of residual stress 
measurement. 

• Applied easily with commonly 
available equipment. 

• Not sensitive to microstructural 
variation. 

• Can be used for large and complex 
shaped components. 

• Useful for complex (varying) residual 
stress fields. 
 

• Destructive. 

• Uni-axial residual stress measurements. 

• Difficult to resolve very small parts. 

• Difficult to resolve small magnitude and 
localized stress fields. 

• Least accurate near surfaces. 

• Compromised by plasticity and bulge error. 

Ultrasonic 

• Lab-based, portable and very quick. 

• Triaxial residual stress 
measurements possible. 

• Non-destructive. 

• Average stress measurement over whole 
volume. 

• Requires stress free reference 
measurement. 

• Sensitive to microstructural variations. 

• Requires good surface finish. 

• Not applicable to complex shaped 
components. 
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Appendix B – Simulation matrix for SIF correlations 

Table B - 1: Design of simulations to develop the stress intensity factor correlations. The 

parameter investigated for each group of experiments is shaded in grey. 

Study 
No. 

Plate Geometry 
Material 

properties Loading 

Cut 
width 
[µm] 

Plane 
stress/ 
strain 

analysis 
L 

[mm] 
W 

[mm] 
L/
W 

E 
[GPa] ν 

Pure 
tension/ 
bending Magnitude 

1 25 50 0.5 71.1 0.33 Tension 10 MPa 250 Stress 

2 50 50 1 71.1 0.33 Tension 10 MPa 250 Stress 

3 100 50 2 71.1 0.33 Tension 10 MPa 250 Stress 

4 25 50 0.5 71.1 0.33 Tension 10 MPa 250 Strain 

5 50 50 1 71.1 0.33 Tension 10 MPa 250 Strain 

6 100 50 2 71.1 0.33 Tension 10 MPa 250 Strain 

7 25 50 0.5 195.6 0.294 Tension 10 MPa 250 Stress 

8 50 50 1 195.6 0.294 Tension 10 MPa 250 Stress 

9 100 50 2 195.6 0.294 Tension 10 MPa 250 Stress 

10 25 50 0.5 195.6 0.294 Tension 10 MPa 250 Strain 

11 50 50 1 195.6 0.294 Tension 10 MPa 250 Strain 

12 100 50 2 195.6 0.294 Tension 10 MPa 250 Strain 

13 50 50 1 71.1 0.33 Tension 10 MPa 50 Stress 

14 50 50 1 71.1 0.33 Tension 10 MPa 150 Stress 

15 50 50 1 71.1 0.33 Tension 10 MPa 250 Stress 

16 50 50 1 71.1 0.33 Tension 10 MPa 350 Stress 

17 50 50 1 71.1 0.33 Tension 10 MPa 450 Stress 

18 50 50 1 71.1 0.33 Tension 10 MPa 550 Stress 

19 50 50 1 71.1 0.33 Tension 10 MPa 50 Strain 

20 50 50 1 71.1 0.33 Tension 10 MPa 150 Strain 

21 50 50 1 71.1 0.33 Tension 10 MPa 250 Strain 

22 50 50 1 71.1 0.33 Tension 10 MPa 350 Strain 

23 50 50 1 71.1 0.33 Tension 10 MPa 450 Strain 

24 50 50 1 71.1 0.33 Tension 10 MPa 550 Strain 

25 50 50 1 71.1 0.33 Bending 200 Nm 50 Stress 

26 50 50 1 71.1 0.33 Bending 200 Nm 150 Stress 

27 50 50 1 71.1 0.33 Bending 200 Nm 250 Stress 

28 50 50 1 71.1 0.33 Bending 200 Nm 350 Stress 

29 50 50 1 71.1 0.33 Bending 200 Nm 450 Stress 

30 50 50 1 71.1 0.33 Bending 200 Nm 550 Stress 

31 50 50 1 71.1 0.33 Bending 200 Nm 50 Strain 

32 50 50 1 71.1 0.33 Bending 200 Nm 150 Strain 

33 50 50 1 71.1 0.33 Bending 200 Nm 250 Strain 

34 50 50 1 71.1 0.33 Bending 200 Nm 350 Strain 

35 50 50 1 71.1 0.33 Bending 200 Nm 450 Strain 

36 50 50 1 71.1 0.33 Bending 200 Nm 550 Strain 
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