
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Generic Library of Problem Solving Methods for
Scheduling Applications
Thesis
How to cite:

Rajpathak, Dnyanesh (2005). A Generic Library of Problem Solving Methods for Scheduling Applications.
PhD thesis. The Open University.

For guidance on citations see FAQs.

c© 2005 Dnyanesh Rajpathak

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

K N O W L E D G E M E D I A

&='
I W

I N S T I T U T E

A Generic Library of Problem Solving

Methods for Scheduling Applications

Dnyanesh Rajpathak BEng. MSc.

Thesis submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

In Artificial Intelligence

Submitted - 30* September, 2004

ProQuest Number: C821664

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest C821664

Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

In this thesis we propose a generic library of scheduling problem-solving methods. As a

first approximation, scheduling can be defined as an assignment of jobs and activities to

resources and time ranges in accordance with a number of constraints and requirements.

In some cases optimisation criteria may also be included in the problem specification.

Although, several attempts have been made in the past at developing the libraries of

scheduling problem-solvers, these only provide limited coverage. Many lack generality,

as they subscribe to a particular scheduling domain. Others simply implement a

particular problem-solving technique, which may be applicable only to a subset of the

space of scheduling problems. In addition, most of these libraries fail to provide the

required degree of depth and precision, which is needed both to obtain a formal account

of scheduling problem solving and to provide effective support for development of

scheduling applications by reuse.

Our library subscribes to the Task-Method-Domain-Application (TMDA) knowledge

modelling framework, which provides a structured organisation for the different

components of the library. In line with the organisation proposed by TMDA, we first

developed a generic scheduling task ontology, which formalises the space of scheduling

problems independently of any particular application domain, or problem solving

method. Then we constructed a task-specific, but domain independent model of

scheduling problem-solving, which generalises from the variety of approaches to

scheduling problem-solving, which can be found in literature. The generic nature of this

model was demonstrated by constructing seven methods for scheduling, as alternative

specialisation of the model. Finally, we validated our library on a number of

applications to demonstrate its generic nature and effective support for the analysis and

development of scheduling applications.

To the memories of my father...

My family and Dr. Ashok Marathe,

with love and gratitude

Ill

Acknowledgements
The writing of a dissertation can be a lonely and isolating experience, yet it is obviously

not possible without the personal and practical support of the numerous people. Thus, I

am greatly indebted to my supervisors. Prof. Enrico Motta, Dr. Zdenek Zdrahal, and Dr.

Rajkumar Roy, for their advice and support throughout this work.

I would like to express my sincere thanks to Prof. Motta, who helped me at different

‘levels’. At an abstract level. Prof. Motta has been an excellent supervisor providing

insightful comments and constructive criticism throughout this research work. At a

theoretical level, all the discussions and intellectually stimulating ‘question answering’

that went through the PhD supervision meetings with Prof. Motta not only helped me in

clarifying my understanding of the fine-grained details of knowledge modelling, but

also helped me in formalising the scientific issues involved in scheduling in a more

structured and coherent way. At a personal level, all the support and encouragement that

Prof. Motta provided while completing this work is difficult to express in words.

Moreover, I would like to thank Prof. Motta for thoroughly reading and providing fine

grained comments on several drafts of this thesis. I would also like to thank my other

two supervisors Dr. Zdrahal and Dr. Roy for their continuous support, valuable advice,

continuous feedback, and stimulating discussions throughout this work. In particular,

working with Dr. Zdrahal on extending the Simple Time ontology was a great fun and I

would especially like to thank Dr. Roy for making the visits to the CORUS Strip

Products possible.

I would also like to take this opportunity to thank Prof. B. Chandrasekaran, Prof.

Masahiro Hori, and Prof. Riichiro Mizoguchi for providing useful research papers on

Generic Tasks, Job Assignment Library, and MULTIS and MULTIS-II system, which

were crucial in formalising this research in its earlier stages.

I would also like to thank all my colleagues and friends, in particular Prof. Marc

Eisenstadt at the Knowledge Media Institute for their advice, encouragement, and

friendship, which were valuable in completing this work.

Finally, I would like to take this opportunity to express my forever and greatest debts

to my mother and sisters for believing in me and in my dreams for all these years.

Without their love, support, and encouragement this work would never have been

completed. My special gratitude also goes to Siddharth and Santosh and to Anoushka

and Aarya for being continuous source of happiness. Finally, I would like to express my

deepest gratitude to Dr. Ashok Marathe for everything.

IV

List o f publications

Conference publications:

1) Rajpathak, D., Motta, E., and Roy, R. A Generic Task Ontology for Scheduling

Applications, in the proceedings of International Conference on Artificial

Intelligence'2001 (IC-Ar2001), Vol. II, (Ed.) H. R. Arabnia, CSREA press, June

25-28, 2001, Nevada, Las Vegas, USA, pp.1037-1043. ISBN: 1-892512-79-3.

2001 .

2) Motta, E., Rajpathak, D., Zdrahal, Z., and Roy, R. The Epistemology of

Scheduling Problems, in the proceedings of European Conference on Artificial

Intelligence (ECAP02), (Ed.) Frank van Harmelen, IQS press, 22nd to 26th July,

2002, Lyon, France, pp. 215-219. ISBN: 1 58603 257 7 (10S Press), ISBN: 4

274 90525 X C3055 (Ohmsha). 2002.

3) Rajpathak, D., Motta, E., Zdrahal, Z., and Roy, R. A Generic Library of Problem

Solving Methods for Scheduling Applications. In Proceedings of the Second

International Conference on Knowledge Capture (KCAP'2003). Florida, USA,

Oct. 23.25,2003, pp. 113-120.

4) Rajpathak, D. and Motta, E. Poster presentation: Intelligent scheduling, at 19‘̂

workshop of the UK Planning and Scheduling special interest group. Open

University, Milton Keynes, UK. 2000.

Technical reports:

1) Rajpathak, D. The Task Ontology Components for Scheduling Applications.

Knowledge Media Institute, The Open University, August 2001, KMI-TR-118,

Technical Report. 2001.

2) Rajpathak, D. Intelligent Scheduling - A Literature Review. Knowledge Media

Institute, The Open University, August 2001, KMI-TR-119, Technical Report.

2001.

Contents

1 INTRODUCTION 1
1.1 A CASE-STUDY IN A HIGH-PRECISION MANUFACTURING SHOP 2

1.2 QUICK REVIEW OF SCHEDULING RESEARCH 5

1.2.1 Operations research and artificial intelligence 5

1.2.2 Knowledge modelling approach 5

1.2.3 Limitations of existing libraries 6

1.3 RESEARCH APPROACH 7

1.4 THESIS CONTRIBUTIONS 8

1.5 THESIS ORGANISATION 10

2 APPROACHES TO SCHEDULING PROBLEM-SOLVING: 12

OPERATIONS RESEARCH AND ARTIFICIAL INTELLIGENCE
2.1 SCEHDULING PROBLEM TYPES 13

2.1.1 The pure scheduling problem 13

2.1.2 The resource allocation problem 15

2.2 OPERATIONS RESEARCH THREAD IN SCHEDULING 16

2.3 ARTIFICIAL INTELLIGENCE THREAD IN SCHEDULING 18

2.3.1 Basic concepts in scheduling 18

2.3.2 Constraints, preferences, and requirements 20

2.3.3 Thoery of time 22

2.4 TECHNIQUES IN ARTIFICIAL INTELLIGENCE 24

2.4.1 Constraint-based scheduling 24

2.4.2 Distributed AI: agents 25

2.4.3 Artificial neural network 26

2.4.4 Neighbourhood search methods 27

2.4.4.1 Tabu search 27

2.4.4.2 Simulated annealing 27

2.4.4.3 Genetic algorithm 28

2.4.4.4 Fuzzy logic 29

2.5 INTELLIGENT SCHEDULING SYSTEMS 30

2.5.1 ISIS 31

2.5.2 OPIS 31

2.5.3 SONIA 32

2.5.4 YAMS 33

2.5.5 FlyPast 34

VI

2.5.6 S2 35

2.5.7 DAS 35

2.5.8 REDS 36

2.5.9 BATTLE 37

2.5.10 Summary so-far 39

2.6 DISPATCHING RULES AND HEURISTICS FOR THE JOB SELECTION 39

2.7 SCHEDULING IN A NUTSHELL 41

3 KNOWLEDGE MODELLING APPROACHES TO SCHEDULING 43
3.1 ONTOLOGIES AND PROBLEM-SOLVING METHODS 43

3.1.1 Ontologies 44

3.1.2 Problem-solving methods 47

3.1.3 PSMs for the scheduling task 49

3.1.3.1 Propose and Revise 50

3.2 EXISTING LIBRARIES FOR SCHEDULING 51

3.2.1 Hori and Yoshida's library for production scheduling 51

3.2.2 CommmonKADS library 52

3.2.3 Constraint satisfaction approach for resource allocation scheduling 53

3.2.4 MULTIS-II 55

3.3 EXISTING SCHEDULING TASK ONTOLOGIES 56

3.3.1 Job assignment task ontology 56

3.3.2 OZONE 58

3.3.3 MULTIS 59

3.3.4 Summary so-far 61

3.4 LEGACY OF THE LITERATURE REVIEW; GAP ANALYSIS 62

3.4.1 Limitations in the existing scheduling libraries 62

3.4.1.1 Partial coverage of knowledge-intensive methods 62

3.4.1.2 Domain specificity 63

3.4.1.3 Partial coverage to validate different areas of the scheduling task 63

3.4.1.4 Unsuitability for KA 63

3.4.2 Limitations in the existing task ontologies of scheduling 64

3.4.2.1 Insufficient degree of formalisation 64

3.4.2.2 Domain specificity 65

3.4.2.3 Commitment to specific problem-solving technique 65

3.4.2.4 Incomplete characterisation of the scheduling task 65

3.4.2.5 Incomplete validation criteriafor the scheduling task 66

3.5 WHAT NEEDS TO BE DONE? 66

vu

4 ARCHITECTURE OF THE SCHEDULING LIBRARY 67
4.1 STATEMENT OF THE RESEARCH OBJECTIVES 67

4.2 RATIONALE FOR USING THE TMDA FRAMEWORK 68

4.3 LIBRARY ARCHITECTURE 71

4.3.1 The task component: a generic scheduling task ontology 72

4.3.2 Search as problem-solving paradigm 72

4.3.3 The method component 73

4.3.4 Development of scheduling applications from different domains 74

4.4 OCML AS A KNOWLEDGE MODELLING TOOL 75

4.5 CONCLUSION 76

5 THE EPISTEMOLOGY OF THE SCHEDULING TASK 77
5.1 A GENERIC SPECIFICATION OF THE SCHEDULING TASK 78

5.1.1 Validation criteria for a solution schedule 79

5.2 THE SCHEDULING TASK ONTOLOGY 79

5.2.1 Scheduling task and default schedule solution 80

5.2.2 Modelling the notion of a job 81

5.2.2.1 Relations and functions required to job assignments 82

5.2.2.2 Relations to specify the temporal ordering among jobs 83

5.2.2.3 Relations to specify the job criticality 84

5.2.3 Modelling the notion of a resource 85

5.2.3.1 Resource-capacity axiom 86

5.2.4 Modelling constraints and requirements 86

5.2.5 Representing time ranges 87

5.2.5.1 Representing job and activity time ranges 87

5.2.5.2 Representing the schedule horizon and the resource availability 87

5.2.6 Representing cost, cost function, and preference 87

5.2.7 Representing a schedule 89

5.3 COMPARISON WITH OTHER APPROACHES 89

5.3.1 Comparison with the job-assignment task ontology 90

5.3.2 Comparison with the MULTIS task ontology 90

5.3.3 Comparison with the OZONE ontology 91

5.4 CONCLUSION 92

6 A GENERIC MODEL OF SCHEDULING PROBLEM-SOLVING 93
6.1 SEARCH-BASED VS CONSTRAINT-BASED PROBLEM-SOLVING 93

6.2 A GENERIC SCHEDULING METHOD ONTOLOGY 94

6.2.1 Schedule space, schedule state, and schedule-state transition 94

Vl l l

6.2.2 Schedule operators 95

6.2.3 Job dependency network 96

6.3 A GENERIC PROBLEM-SOLVING MODEL OF SCHEDULING 97

6.3.1 The method independent control regime 97

63.1.1 Generation and evaluation of schedule states 99
6.3.1.2 Schedule state selection 100

6.3.2 Method specific control 101

6.3.3 Generation of a successor state: generate-new-state-successor task 103

6.3.4 Context based extension of a state: propose-schedule-from-context 104

6.3.5 Correct job selection: select-schedule-focus 105

6.3.6 Collecting and sorting the schedule operators 107

6.3.7 Resource assignment 108

6.3.8 Time-range assignment 109

6.4 COMPARISON WITH THE ALTERNATIVE APPROACHES 112

6.4.1 Comparison with the domain-specific library of production scheduling 112

6.4.2 Comparison with the constraint satisfaction approach 113

6.4.3 Comparison with CommonKADS 113

6.4.4 Comparison with MULTIS-11 114

6.5 CONCLUSION 115

7 THE PROBLEM-SOLVING METHODS IN THE LIBRARY 116
7.1 A GENERIC TEMPLATE TO COMPARE THE KNOWLEDGE 116

REQUIREMENTS OF THE PSMs

7.2 THE SCHEDULE MODIFICATION OPERATORS 118

7.3 ENGINEERING OF THE PROBLEM-SOLVING METHODS 119

7.3.1 Hill Climbing 119

7.3.2 Propose & Backtrack 121

7.3.3 Propose & Improve 123

7.3.3.1 Modelling the P&l method 123

7.3.3.2 The control regime of P&I 124

7.3.3.3 Foci collection and focus selection within the improve phase 125

7.3.3.4 Collection and selection of the improvement operators 126

7.3.4 Propose & Revise 127

7.3.4.1 Initial analysis of the method 128

7.3.4.2 Control regime of the P&R method 129

7.3.4.3 Schedule revision 130

7.3.4.4 Foci collection and a focus selection 131

7.3.4.5 Collecting and selecting the fixes 132

ix

7.3.5 Propose & Restore-feasibility 133

7.3.5.1 Modelling the P&Rf method 133

7.3.6 Propose & Exchange 136

7.3.6.1 Initial analysis of the method 136

7.3.6.2 The method specific control regime of P&E 137

7.3.6.3 Fixing the constraint violations 138

7.3.6.4 Foci collection and a focus selection in P&E 140

7.3.6.5 Collection and selection of the exchange operators 140

7.3.7 Propose & Genetical-Exchange (P&GE) 142

7.3.7.1 Initial analysis of the method 142

7.3.7.2 The method specific control regime of P& GE 143

7.3.7.3 Fixing the constraint violations in the genetical-exchange phase 144

7.3.7.4 Foci collection and a focus selection in P&GE 146

7.3.7.5 The operator collection and selection in P&GE 146

7.4 CATEGORISATION OF THE METHODS 148

7.5 CONCLUSION 149

8 EVALUATION STUDY OF THE LIBRARY 151
8.1 THE SATELLITE-SCHEDULING APPLICATION 152

8.1.1 Construction of a task model 152

8.1.2 Modelling constraints and requirements 153

8.1.3 Devising a complete schedule by using Propose & Backtrack 155

8.1.3.1 Construction of the operators 155

8.1.3.2 Focus selection knowledge and schedule construction 157

8.1.4 Trying to optimise a complete schedule by Hill Climbing 157

8.1.5 Optimising a complete schedule by P&I 158

8.1.5.1 Foci collection and focus selection in the improve phase 158

8.2 CIPHER - A RESOURCE ALLOCATION APPLICATION 160

8.2.1 Construction of a task model 160

8.2.2 Modelling constraints and preference 163

8.2.3 Construction of a complete schedule by Propose & Backtrack 166

8.2.3.1 Construction of the operators 166

8.2.3.2 Focus and operator selection, and schedule generation 167

8.3 THE DAILY SHIP-MAINTENANCE APPLICATION 168

8.3.1 Construction of a task model 168

8.3.1.1 Modelling constraints and requirements 170

8.3.2 Construction of a schedule by using Generic-Schedule 172

8.3.2.1 Operator construction for the daily-ship schedule 172

%

8.3.3 Focus and operator selection 172

8.3.4 Fixing the requirement violation by using the P&Rf method 174

8.3.4.1 Construction of the feasibility-restoraton operator 174

8.3.4.2 Construction of a feasible schedule 175

8.4 THE WEEKLY SHIP-MAINTENANCE APPLICATION 175

8.4.1 Construction of a task model 175

8.4.1.1 Modelling ship-maintenance jobs and resources 178

8.4.1.2 Modelling the constraints and requirements 178

8.4.2 Applying the Propose & Backtrack method 180

8.4.2.1 Construction of the operators 180

8.4.3 The focus and operator selection knowledge 181

8.4.4 Modelling the propose phase 182

8.4.5 Modelling the fixes 183

8.4.5.1 Fix application in the revise phase 183

8.5 THE BENCHMARK APPLICATION 185

8.5.1 Construction of a task model 188

8.5.1.1 Modelling the constraints 189

8.5.2 Applying the Propose & Backtrack method 190

8.5.2.1 Focus and operator selection 191

8.5.2.2 Analysis 191

8.6 EVALUATING THE STATIC AND DYNAMIC PROPERTIES 193

8.7 CONCLUSION 196

9 SUMMARY AND CONCLUDING REMARKS 199
9.1 Summary 199

9.2 Contributions 200

9.2.1 A generic scheduling task ontology 200

9.2.2 A generic model of scheduling problem solving 200

9.2.3 A comprehensive repertoire of scheduling problem solvers 201

9.2.4 Contribution to scheduling knowledge acquisition 202

9.2.5 Contribution to scheduling epistemology 202

9.2.6 Development of job selection heuristics 202

9.3 Future research directions 203

9.3.1 Extending the current technology to develop a plamiing library 203

9.3.2 Interactive scheduling component 203

9.3.3 Towards nano-planning 204

Glossary 206

XI

REFERENCES 210

Appendix 1. A complete specification o f the scheduling task ontology. 240

Appendix 2. A complete specification o f the generic model o f scheduling 252

problem-solving.

Appendix 3. A complete specification o f the simple time ontology. 274

Appendix 4. A reference guide to OCML. 283

Xl l

List of Figures

1.1 The framework of the scheduling library 8

1.2 The thesis organisation 10

2.1 Mathematical formulation of the assignment problem 17

2.2 Taxonomy of constraint, requirement, and preference 22

2.3 Architecture of OPIS (Smith, 1994) 32

2.4 Architecture of DAS 36

3.1 Taxonomy of the methods applicable to the synthesis tasks 49

4.1 Architecture of the scheduling library by instantaiting the 71

TMDA framework

4.2 The search-based problem space of scheduling 73

6.1 Classification of the schedule operators 96

6.2 The complete breakdown of the method independent control regime 99

6.3 The complete breakdown of the method specific control regime 102

6.4 The complete breakdown of propose-schedule-from-context 105

6.5 The complete breakdown of Generic-Schedule 111

7.1 The evaluation-function used to calculate the job tardiness 145

7.2 Categorisation of the methods in the library 149

8.1 The order in which satellites are selected for their assignment 157

8.2 Comparison between the average CPU times required to assign the satellites 160

xiii

List of Tables

2.1 Comparative analysis between Allen and Meng and Sullivan’s 23

time interval

2.2 Comprative analysis of different techniques in terms of their usability 29

2.3 Comparative analysis of intelligent scheduling systems 38

3.1 Attributes of the class job and its subclasses 57

3.2 Attributes of the class resource and its subclasses 57

3.3 Main components in the OZONE ontology 58

3.4 Comparison between different task ontologies - 62

5.1 The job-specific relations and functions 82

6.1 Different methods to select a schedule state 100

7.1 The knowledge requirements of Generic-Schedule 117

7.2 The knowledge requirements of the hill climbing method 120

7.3 The knowledge requirements of the P&B method 122

7.4 The knowledge requirements of the P&I method 126

7.5 The knowledge requirements of the P&R method 132

7.6 The knowledge requirements of the P&Rf method 135

7.7 The knowledge requirements of the P&E method 141

7.8 The knowledge requirements of the P&GE method 147

8.1 Properties of the scheduling applications 151

8.2 The capacity distribution of all the project-staffs 161

8.3 The resource requirement of each work-paekage 161

8.4 Data used to formalise the ship-maintenanee jobs 168

8.5 Maximum capacity of the ship-maintenanee resources 169

8.6 Data used to formalise the ship-maintenance jobs 176

8.7 The precedence relation among work-steps 186

8.8 The capacity of the zone and labour resources 187

8.9 The duration and resource requirement of all the work-steps 188

8.10 Comparison between the performance of scheduling applications 192

8.11 Summary of the evaluation of the static and dynamic properties 194

Chapter 1

INTRODUCTION

In this thesis we propose a library of reusable eomponents for building problem-solvers for

scheduling.

Scheduling is the central theme of our thesis. As a first ‘high-level’ approximation, we

can say that the scheduling task deals with the assignment o f jobs and activities to

resources within a specific time range in accordance with relevant constraints and

requirements. Scheduling is a decision making process in today’s industry. Typical

domains include: manufacturing scheduling, project scheduling, resource allocation

scheduling, transportation scheduling, mass transit scheduling, scheduling nurse shifts in

hospital, air gate assignment scheduling, hydropower scheduling, and so forth. This list is

by no means an exhaustive one, but gives an idea of the ubiquity of the scheduling task.

Each scheduling domain imposes its unique constraints and requirements, which must be

obeyed by a scheduler while devising a schedule, because they determine the space of a

valid solution. A process of constructing a schedule becomes even more challenging due to

the uncertain, dynamic, and unpredictable circumstances that occur in an environment

where the scheduling task has to be carried out (Fox and Kempf, 1985). For instance, in a

manufacturing scheduling environment new orders come continuously, which take priority

over the existing ones, and therefore, the existing schedule may need to be revised. To

come up with a good quality schedule in an uncertain environment is a highly creative

activity. A scheduler needs to acquire systematic knowledge about the various events that

might take place in a scheduling environment.

The term ‘knowledge’ that is used in the preceding paragraph and which will be

understood in this thesis can be conceived as having the following three implications

(Nickols, 2000): a) it represents the state of an agent (either human or artificial) which is

aware of the facts, methods, rules, axioms, and techniques of an environment within which

it operates; b) it indicates a competence like notion, the ability of an agent which is capable

of executing rational actions to reach a solution; and e) it can be captured and acquired

from experts and codified in a computational system. Nonaka and Takeuchi (1995)

emphasises that the collective intellectual knowledge of a firm can be considered as a

‘strategic resource’ of the firm.

Having briefly introduced the two main components of this thesis, in the following

section we describe a case study of a high precision machine shop, which aims at

Chapter 1

highlighting a need for considering the scheduling task as a serious activity in a complex

environment of a modem industry to smoothen its operation. Moreover, it also emphasises

the fact that wherever possible the system eomponents must be made as reusable as

possible to avoid their brittle nature. In section 1.2 we will provide a brief overview of

existing research in the scheduling area and highlight the limitations of the existing

scheduling libraries. In section 1.3, we will outline our approach to library construction

showing how we approach the limitations of the existing scheduling libraries. In section

1.4, we will then briefly describe the main contributions of our research. Finally, in section

1.5, we conclude the chapter by outlining the organisation of our thesis.

1.1 A case-study in a high-precision manufacturing shop
Here, we present a small case-study (McKay, Safayani, and Buzacott, 1988) that will

explicate the importance of the scheduling task.

The environment we describe here is a large machine shop that manufactures high-

precision components for the aerospace industry. Each high-precision component has

approximately 80 operations, which need to be performed over 300 different work-stations,

with an average of 5,000 open work orders. An initial complexity in this environment is

imposed by the size of the application alone, and thus the need for computational support is

significant. However, this is not the end of the story; there are various other factors that

add complexity to this environment.

The set-up and processing times for manufacturing each precision component vary in

time. That is to say, the time required to produce a component on the same machine with

the same resource can vary from 3 to 6 days. Therefore, the due date of all other

components that depend on the current component may need to be updated according to

the changes in the current operations. Moreover, the processing times of the components

within each batch change almost every time primarily due to unpredictable organisational

factors like unavailability of the resources or machine failure. Such unforeseen events

make the prediction and forecasting difficult.

The manufacturing of the components can be pre-empted at any time and can start

somewhere else on the time line. Naturally, the temporal order among components needs

to be amended in compliance with the changes introduced by a pre-empted component. At

times the importance of the components changes dynamically according to changes that

may occur in the manufacturing conditions in the aerospace industry. Consequently,

components with an increased importance need to be pushed forward to fulfil their new

due dates. Moreover, the top-level management may favour rush orders which must be

Chapter 1

accommodated in the existing batch for their accomplishment. These last minute orders

can make the existing components become late. The raw material may fail to arrive in time

because of the wrong forecasting performed by the inventory-management department.

Even when the resources arrive on time, the existing resources may become unavailable

during the critical stages of manufacturing. In some cases, the components have to be re

directed to alternative resources or in the worst-case scenario they cannot be executed and

therefore miss their dispatching dates. The final complexity is introduced by the shop’s

atmospheric conditions. Because these are high-precision components, the machines on

which the manufacturing of these components take place are high-preeision machines,

which are very sensitive to the atmospheric conditions. Even a small change of a few

degrees in the shop’s temperature may be enough to throw the eomponents out of

precision.

This particular shop works seven days a week in three shifts to meet the demand levels

placed by customers. Moreover, almost each member of personnel in each shift works

overtime. Nevertheless the shop often fails to meet the required throughput. In a nutshell,

this shop exhibits different types of complexities that can be observed in the real world. It

can be envisaged that a stable scheduling system that can take into consideration all the

intricacies in the manufacturing environment is necessary for the smooth operation of this

shop.

Analogous to the manufacturing shop discussed in this section, other domains of

scheduling also have their own complexities that differ in nature, and a sound scheduling

system is important for their smooth performance. A quote from the working research

papers of NASA exemplifies the importanee of the scheduling task in space operations:

“Operations on most U.S. manned space missions, including Space Shuttle/Spacelab

flights, are scheduled in great detail long before launch” (Maxwell and Howell, 1995).

Obviously, to eonstruct a scheduling system that deals with different issues involved in a

seheduling domain is a challenging task, which requires a substantial amount of

investment. Usually, a scheduler (here we refer to a scheduler as a human agent) acquires

his/her vast amount of expertise through years of experience and practice, and such a

repertoire of expertise forms his/her ‘knowledge-base’. This allows a scheduler to devise a

good quality schedule by tackling all the complexities that are involved in a scheduling

environment. Obviously, a natural goal here would be to determine the extent to which

such a high level dependeney on human expertise can be redueed by means of a

eomputational system.

Chapter 1

Having formalised a scheduler’s knowledge in a eomputational system in order to reduce

human dependency, another important issue needs to be tackled, which deals with

determining the level of reusability system components must attain. It is a serious question

because failing to tackle this question would result in developing a system that subscribes

to a specific scheduling domain that becomes obsolete quickly, mainly because of its

incapability of handling specifications from a different scheduling domain. Various

techniques can be used to elicit and acquire knowledge from human experts which in turn

help in constructing the reusable eomponents to tackle the scheduling task across different

domains. However, this very process of acquiring and representing expert knowledge has

traditionally been considered as a bottleneck activity (Gaines and Shaw, 1993). A

computational system which by making use of its knowledge-base reaches a solution to a

problem can then be referred to as a knowledge-based system (KBS).

Here, we need to make a decision about how to represent such acquired knowledge into

a computer system. The main reason why such a decision needs to be taken is because, as

has been pointed out by Steels (1990), there is an observable gap between the knowledge

and problem-solving expertise observed in the human experts and the implementation

level.. Newell (1982) in his cornerstone article ‘The Knowledge Level’ has already

proposed an answer to this question by formulating ‘the knowledge-level hypothesis

'"'Knowledge is to be characterised entirely functionally, in terms o f what it does and not

structurally, in terms o f physical objects with particular properties and relations'”.

In the same article, Newell proposed the ‘principle o f rationality \ which postulates the

rational problem-solving behaviour of an agent:

“I f the agent has the knowledge about choosing particular action among the several

available actions, which can lead towards the solution or goal state then the agent will

choose that particular action ”.

Consistently with Newell’s proposal, and in line with the work by Motta (1999), Steels

(1990), and Breuker and Wielinga (1985), etc. in this thesis we will follow ‘the knowledge

modelling approach’ to KBS construction. Thus knowledge will be systematically

represented at the knowledge level independently of its physical realisation in a

computational system. Another aspect of the knowledge modelling paradigm is that the

knowledge acquisition (KA) process is driven by pre-existing knowledge models, often

represented as ontologies (Gruber, 1995). More importantly, as pointed out by Motta

(2001), the KA approach to the system construction has following advantages: the discrete

pieces of knowledge can be elicited from a domain expert and encoded in a computational

Chapter 1

system and therefore a virtual domain expert can be constructed that can replicate the

problem-solving expertise of a human domain expert. Finally, the cognitive perspective of

the KA theory as suggested by Newell and Simon (1976) and Newell (1982), proposed a

production system to describe a general intelligent behaviour in a problem space.

In the following section, we provide a brief background of research in the field of

scheduling. More detailed literature review will be presented in Chapters 2 and 3.

1.2 Quick overview of scheduling research

1.2.1 Operations research and artificial intelligence

Scheduling is a meticulously researched area in Management Science and Operations

Research (OR) (Conway et ah, 1967; Baker, 1974; French, 1982). Although, the classical

techniques of OR have proposed sophisticated mathematical models and algorithms, these

efforts have shown limited applicability when implemented in real-life applications, as

they cannot handle heterogeneous resources and their rigid and static formulation fails to

provide enough leverage to handle the dynamicity present in the real-world.

Scheduling has also garnered serious attention from AI researchers. Fox and his group in

the 1980s started developing the first intelligent scheduling system called ISIS and in later

years several intelligent scheduling systems have emerged (Prosser and Buchanan, 1994)

to tackle scheduling problems in different domains. Although these systems have exploited

various techniques in AI suceessfully their major drawback was domain specificity, which

restricted the reusability of these systems within a single application domain.

Consequently, a new system had to be built from scratch for each domain.

1.2.2 Knowledge modelling approach
Reusability is the main concern of research in knowledge modelling. Here, the construction

of a KBS can be realised by applying libraries of problem-solving methods (PSMs) (Motta,

1999; Breuker and van de Velde, 1994). An Ontology (Gruber, 1995) and a PSM (Gomez-

Perez and Benjamins, 1999) are the two most central components in the construction of a

library. These two components are instrumental particularly because of their ability to

enhance the sharing and reusability of system components over wider domains. A PSM

ean either be task specific or task independent. Task specific PSMs are developed to tackle

specific types of Generic Tasks (Chandrasekaran, 1986), such as planning, parametric

design, diagnosis, assignment, and so on. Task independent PSMs do not subscribe to any

particular task, but rather provide reasoning steps in terms of a generic paradigm, such as

search (Newell and Simon, 1976).

Chapter 1

As discussed in Wielinga and Schreiber (1997) various knowledge-intensive PSMs’ have

been developed to tackle classes of synthesis tasks, such as design, planning, assignment,

scheduling. Some influential examples include Propose & Backtrack (Runkel et a l, 1996),

Propose & Improve (Motta, 1999), Propose & Revise (Marcus and McDermott, 1989),

Propose & Exchange (Poeck and Puppe, 1992), and so on.

A knowledge modelling framework provides a methodology to organise the different

building-blocks of a library. Moreover, it also specifies how the different components of a

library are related to each other. Some of the influential knowledge modelling frameworks

developed in the field are Generic Tasks Structures (Bylander and Chandrasekaran, 1988;

Chandrasekaran et a l, 1992), Role-Limiting Methods (Marcus, 1988), Protégé-II (Musen

et a l, 1993), CommonKADS (Schreiber et a l, 1994), MIKE (Angele et a l, 1998),

Components of Expertise (Steels, 1990), EXPECT (Swartout and Gil, 1995), GDM

(Terpstra et a l, 1993), and Task-Method-Domain-Application (TMDA) (Motta, 1999).

Based on the knowledge modelling frameworks enumerated above various task-specific

libraries have been constructed. Some examples of task-specific libraries include diagnosis

(Benjamins, 1995), parametric design (Motta and Zdrahal, 1996), planning (Valente et a l,

1998), assessment (Valente and Lockenhoff, 1993), etc. The research conducted in this

thesis subscribes to this stream where our aim is to construct a generic library o f

scheduling PSMs.

1.2.3 Limitations of existing libraries
In the field of scheduling, various attempts have been made in the past at constructing

libraries (Hori and Yoshida, 1998; Sundin, 1994; Tijerino and Mizoguchi, 1993; Le Pape,

1994). However, these earlier attempts have failed to provide comprehensive results

mainly because of the following reasons:

• Partial coverage of knowledge-intensive methods; Existing libraries for scheduling

provide either very little or no coverage at all for the knowledge-intensive PSMs to

tackle the scheduling task. For instance, the CommonKADS library for assignment and

scheduling tasks (Sundin, 1994) only comprises the Propose & Revise method.

' By “knowledge-intensive” we mean that these PSMs make heavy use of the application domain knowledge
in order to improve their reasoning efficiency. For instance, the Propose & Revise method (Marcus and
McDermott, 1989) relies on the application domain knowledge to determine how the constraints that are
violated while constructing a schedule can be fixed by proposing a new set of assignments for the jobs
involved in conflict.

Chapter 1

• Domain specificity: Existing libraries for seheduling subscribe to specific scheduling

domains, and therefore, the reusability of these libraries is limited. For instance, Hori

and Yoshida’s library (1998) subscribes to the domain of production scheduling.

Therefore, all the problem-solvers from their library are developed in such a way that

they can only be used to tackle production scheduling.

• Partial coverage to validate different areas of the scheduling task: As described in

the first bullet point, because the existing scheduling libraries fail to provide a

comprehensive coverage of the different knowledge-intensive PSMs, the problem-

solvers fi*om these libraries also fail to provide a comprehensive coverage of the

different types of scheduling tasks. Generally speaking, these libraries validate the

scheduling task only against completion and constraint violation, but they fail to cover

requirement violation and optimisation issues.

• Unsuitability for knowledge acquisition: Some of the existing libraries subscribe to a

specific problem-solving technique. For instance, ILOG SCHEDULER of Le Pape

(1994) subscribes to constraint-satisfaetion as its problem-solving technique. Given this

uniform approach to modelling as constraint-satisfaetion, it does not provide a good

enough ‘epistemologieal’ framework to analyse the different knowledge-intensive tasks

and methods that take place while constructing a schedule.

In the following section, we outline our research approach to construct a library of

scheduling PSMs.

1.3 Research approach
In order to bridge the aforementioned problems with existing libraries of scheduling, in this

thesis we aim to develop a task-specific, but domain independent library of scheduling

PSMs. In our approach, we subscribe to the TMDA knowledge modelling framework

(Motta, 1999), which provides a methodology to organise our library. A more detailed

discussion for subscribing to the TMDA knowledge modelling can be found in Chapter 4

(cf. Section 4.2). The entire library will be formalised by using the Operational Conceptual

Modelling Language (OCML) (Motta, 1999). Figure 1.1 depicts a simplified version of our

library architecture, the more detailed framework can be found in Chapter 4.

Chapter I

ISA

Probclin-Solving Methods - Hill
Climbing, P&B, P&I, P&R, P&Rf,
_________P&E, P&GE

Generic Task Ontology of
Scheduling

ISA

Domain and
application
component

Mapping Legend
Task Component

Method Component

Scheduling applications from
different domains

Generic Model of Scheduling
Problem Solving

Figure 1.1. The framework of the scheduling library.

The different building-blocks of our library are described in the following bullet points:

• Task component: It is the first building-block of our library where we formalise the

nature of the scheduling problem in terms of a generic task ontology. The task ontology

is generic because it does not subscribe to any particular application domain or

reasoning method.

• Method component: It is the second building-block of the library, which provides the

reasoning service of the library. As it can be observed from Figure 1.1, the method

component of our library is divided into two sub-components: a generic model of

scheduling problem-solving and the different PSMs. The former is a constructive

component of the library that takes as an input the scheduling task ontology and then

subscribes to the search problem-solving mechanism. It then provides a detailed

breakdown of the main subtasks and methods (PSMs) for building complete problem-

solvers for scheduling. At the next level we develop more specialised knowledge-

intensive PSMs by reusing and specialising the high-level tasks included in the generic

model of scheduling problem-solving. The PSMs in our library are constructed in such

a way that they cover and reason about all the validation areas of scheduling.

• Domain and application components: These are the last two components of our

library. At this stage, we validate the generic nature of our library by constructing

scheduling applications from different domains.

1.4 Thesis contributions
The following main contributions can be drawn from our thesis.

• A generic task ontology for scheduling: Existing scheduling task ontologies (Hama et

ah, 1992a, b; Mizoguchi et a l, 1995; Smith and Becker, 1997) provide limited results

Chapter 1

because in some cases they subscribe to a specific application domain or in some other

cases they subscribe to specific ‘problem-solving shells’. More importantly, crucial

ontological distinctions are typically missing from their underlying frameworks. Our

task ontology overcomes these shortcomings by providing a user with computational

model of scheduling that can be reused to acquire scheduling knowledge from a variety

of domains;

• A generic model o f scheduling problem-solving: Existing libraries of scheduling fail

to provide a clear separation between the reusable high-level components and the non-

reusable components. Consequently, it becomes difficult to realise how the reusability

of library components can be exploited to construct a new PSM. Our generic model of

scheduling problem-solving component overcomes this problem by providing a high-

level repertoire of reusable tasks and methods. As a result, it allows us to construct a

new PSM simply by its reuse and specialisation^;

• Comprehensive repertoire o f scheduling problem-solving methods: Ours is the first

library in the field that provides a comprehensive coverage of PSMs that can be used to

tackle the different types of scheduling task;

• Contribution to KA in scheduling domain: Throughout this thesis we will construct

various templates either in the form of different ontologies, such as task ontology and

method ontology, or as generic templates that can be used to compare and contrast the

knowledge requirements of different PSMs. These generic templates can be used to

acquire the relevant scheduling knowledge through their instantiation. Here, the term

‘knowledge acquisition’ is used to represent a theoretical knowledge engineering

activity necessary to acquire the problem-solving knowledge needed to execute the

reasoning process;

• Contribution to the epistemology o f the scheduling task: Our scheduling task

ontology is based on a clear theoretical model of the scheduling task. This theoretical

model distinguishes between components, such as constraints, requirements, and

 ̂For instance, as it will be shown in Chapter 7, a new PSM can be constructed quickly by subscribing to the
method specific control regime called expand-incomplete-state (cf. Chapter 6, section 6.3.2) of
Generic-Schedule and only those tasks will be newly defined that tackle the constraint and requirement
violations and optimisation issues. E.g., in Propose & Revise (Marcus and McDermott, 1989) a new task
called revise-schedule (cf. Section 7.3.4.2) is defined newly in expand-incomplete-state control
regime in order to tackle the constraint violations, or the foci (i.e., constraint violations) in the revise phase
are collected by defining a new method called collect-all-constraint-violations (cf. Section
7.3.4.4), which achieves the task collect-state-foci from Generic-Schedule.

Chapter 1

preferences, which play a crucial role in validating a solution schedule. They are rather

sloppily distinguished in the existing proposals (Hama et al., 1992a, b; Mizoguchi et

al, 1995; Smith and Becker, 1997), if distinguished at all. Moreover, at the method

level the generic model of scheduling problem-solving and the different PSMs provides

a useful insight into the various tasks and methods that are crucial for constructing a

schedule;

• Development o f new job-selection heuristics: While developing a generic model of

scheduling problem-solving, we also developed three new job-selection heuristics that

improve the selection of the correct candidate job and as a result improve the efficiency

of a schedule construction. These heuristics were derived from the real-life scheduling

scenario.

1.5 Thesis organisation
In this section, we describe how all the chapters in our thesis are organised. Figure 1.2

depicts the flow of the chapters in our thesis.

C hnpter 5

Chapter 4 Chapter 6 Chapter 8Chapter 1

Chapter 2

Chapter 3

Chapter 9

Introduction Literature
review

Library
architecture

and
methodology

Library
development

Evaluation
and

validation
study

Conclusion
and

summary

Figure 1.2. The thesis organisation.

Chapter 2 provides an overview of the different streams of research, such as OR and AI

involved in< the scheduling area. While talking about the AI approaches to scheduling we

first discuss the different techniques that can be used to tackle the scheduling task and then

provide a review of the different intelligent scheduling systems that were developed in the

1980s and 1990s. This chapter is particularly important in understanding the theoretical

foundation that underlies the scheduling task. In Chapter 3, we describe the knowledge

modelling approaches to library construction. This literature review is directly relevant to

our thesis, whereby first we acquaint ourselves with the two most central concepts for

constructing a library of knowledge-level components, i.e. ontology and PSM. Having

done this, we review the status of the existing scheduling libraries and the scheduling task

ontologies. Based on this part of the literature review, we highlight the major shortcomings

10

Chapter 1

in the existing approaches. These shortcomings allow us to formulate the specific

objectives of our research. Finally, we conclude this chapter by providing an insight into

how we will approach to overcome the shortcomings observed in existing scheduling

libraries.

In Chapter 4, we describe the architecture and organisation of our library. Our library

organisation can be understood by the TMDA knowledge modelling framework. Then we

describe how different components in our library are interrelated with each other. Finally,

we introduce the OCML knowledge modelling language, v/hich will be used to implement

our library.

In Chapter 5, we describe the first building-block of our library, which can be realised by

the generic scheduling task ontology. First, we describe a generic theoretical framework to

frame the scheduling task, and then we describe all the important modelling decisions

taken while developing the task ontology.

In Chapter 6, we describe the second building-block of our library, which is the generic

model of scheduling problem-solving. Here, we first describe a generic method ontology

necessary to characterise search based problem-solving behaviour of the scheduling task.

Then we describe all the tasks and methods developed to construct the generic model of

scheduling problem-solving. In Chapter 7, we describe the second part of the method

component by discussing how all the PSMs in our library have been engineered by reusing

high-level tasks and methods developed in a generic model of scheduling problem-solving.

In Chapter 8, we describe the evaluation study of our library conducted on five real-life

and benchmark scheduling applications in order to confirm its generic nature.

In Chapter 9, we conclude our thesis by first summarising the research conducted in our

thesis and then by discussing in further detail the main contributions that can be drawn

from our research. Finally, we conclude our thesis by providing an insight into our future

research directions.

11

Chapter 2

APPROACHES TO SCHEDULING PROBLEM-SOLVING:

OPERATIONS RESEARCH AND ARTIFICIAL INTELLIGENCE'

The literature review presented in this chapter highlights the research approaches that have

been evolved over the years in scheduling and related fields. In this chapter we will do

more than simply summarising these past efforts and we will provide a roadmap for i) the

different models that have been developed to characterise the scheduling task, ii) the

techniques that can be used to solve scheduling problems, and iii) different intelligent

scheduling systems that have been developed over the period of last two decades. Then we

also provide an overview of the various heuristics, which have been devised to select a

correct job to improve the efficiency of schedule construction.

To tackle the scheduling task various streams of research have emerged both in

Operations Research (OR) and Artificial Intelligence (AI), which will be reviewed in this

chapter. The content of the chapter is organised as follows. In the following section we will

review different problem types that have been developed to characterise the scheduling

task. Then in section 2.2 and 2.3, we will provide an overview of OR-based and Al-based

approaches to scheduling. In section 2.3.1, we will discuss commonly found concepts in

scheduling and then in section 2.3.2 we will highlight some key notions, such as

constraints, requirements, and preferences and their role in validating a solution schedule.

Then in section 2.3.3, we will analyse different formalisms that have been put forward to

conceptualise the time element in scheduling. Having reviewed the components of

scheduling, in section 2.4, we will review various techniques developed over the years to

tackle the scheduling task, and then in section 2.5 we will review various intelligent

scheduling systems which have been constructed by using the techniques from AI. In

section 2.6, we will review different dispatching rules and heuristics developed in OR and

AI for efficient job selection. Finally, in section 2.7 we conclude our chapter by

summarising main results from the review conducted here.

‘ Here we use the term Artificial Intelligence to refer to those approaches, which use the traditional AI
techniques, but do not subscribe to the knowledge modelling approach. Given that knowledge modelling
research can be seen as a part of AI, it is important to realise that this distinction is purely pragmatic and does
not carry any deep epistemological meaning.

Chapter 2

2.1 Scheduling problem types
At an abstract level the scheduling problem can be classified into the following three

problem types: the pure scheduling problem, the resource allocation problem, and the joint

scheduling problem. Analysis of these problem types is important for us as it enables us to

identify the unique features associated with these models, which we want to subsume in a

generie scheduling task ontology. Here, we will concentrate our discussion on the first two

problem types, mainly because these categories have become standard examples in the

scheduling community much like the blocks world has become a standard example in the

planning community. The third problem type can be easily constructed as the combination

of the pure scheduling problem and the resource allocation problem.

2.1.1 The pure scheduling problem

The pure scheduling problem characterises scheduling from the viewpoint of a

manufacturing scheduling environment. In this environment, the pure scheduling problem

is classified into three sub-groups: a | p | x (Lawler, 1983), where a indicates the number

of resources and also specifies a similarity feature among them (e.g., homogeneous

machines), P indicates the job characteristics (period, deadline, precedence constraints),

and X indicates the notion of optimality. The pure scheduling problem can further be

classified into the deterministic job-shop scheduling (JSS) model. JSS is the most classical

model of scheduling and the other models of scheduling, such as open-shop, flow-shop,

and mixed-shop can be derived from it.

Jackson (1956) generalised Johnson’s flow-shop algorithm (1954), which consists of n

jobs and m machines along with the temporal precedence relations among jobs. Over the

years it became a kind of standard format to represent the JSS model. JSS is one of the

widely studied areas in scheduling. Below we characterise the nature of JSS.

A JSS model can be represented by a set of jobs, J = {ji,, jn} and a given set of

physical resources R = {ri,, rn}. Each job ji consisted of a set of operations (also

referred to as activities) that can be indexed as Oj = {oji,, ojn}. For instance, in the

manufacturing environment, a drilling job could have operations such as: drilling-machine

set-up, loading of a drilling job on a drilling-maehine, actual drilling operation, and

unloading of a drilling job from a drilling-machine. The jobs and the operations ean be

assigned over resources in accordance with a process routing, which specifies a partial

ordering among them. For instance, the temporal precedence relations among any two jobs

can be of the form, jobi BEFORE job], job] AFTER job], etc. A job, say ji has a specific

release and due date associated with it, which can be represented by rdji, and ddji

13

Chapter 2

respectively. A job ji must complete its execution between these two dates. Each job also

has a fixed duration, dji, and a variable state time, stji, associated with it. The domain of all

such possible start times ean be constrained by specifying the release date of a job, which

can be represented as: (1 < stji < rdji). For the successful completion of a job and its

operations, jobs and operations can be assigned over ri different resourees (e.g., machines,

personnel, etc.), and the domain of all such resources can be represented by, Rÿ (1 < ji <

ri). Also, each job can have a pool of resources and a resource that needs to be assigned to

a job can be ehosen from this pool. Such a resource pool can be represented as, Oÿ = {rÿi,

...., rijn}, where rÿn E Rÿ. The following types of constraints can usually be found in JSS:

• Functional constraints: Limit the types of jobs and operations each resource can

process at any given time in a schedule depending upon the functionality of a resource.

For instance, the milling machines can perform only milling type of jobs;

• Capacity constraints: Restrict the number of jobs each unit capacity resource can

handle at any given time in a schedule. A capacity constraint of a unit capacity resource

can be translated into the following disjunefive constraint: (Vjj V j] (Rji ^ Rjz) V etji

< stj2 V etj2 < stji, where etji and etj2 represents the end time of the jobs ji and j]

respectively. This states that two jobs, say ji and j], cannot share the same resource for

their execution; otherwise, their time ranges cannot overlap with each other. A resource

capacity conflict among any two jobs can be avoided by imposing a precedence

relation among start and end times of eonflicting jobs;

• Availability constraints: Specify when a particular resource is available for

accomplishing the assigned jobs. All the jobs must obey the availability period of a

resource on which they are assigned;

• Precedence constraints: Specify a job processing routing among any two jobs. They

can be translated into linear inequality of the form: etji < stj2, then ji BEFORE j],

where etji = stji + dji.

A more detailed review of JSS can be found in Jain and Meeran (1998) and Jones and

Rabelo (1998). The open-shop scheduling (OSS) model (Domdorf et a l, 2000) can be

derived from JSS. The main difference between JSS and OSS is that the latter imposes no

specific ordering constraint over the execution of jobs and operations. On the other hand,

in the flow-shop scheduling model each job has exactly one operation associated with it

14

Chapter 2

that needs to be assigned to the resource. All the jobs and operations must go through all

the machines in the same order.

2.1.2 The resource allocation problem

In comparison with JSS, the resource allocation problem is more deterministic in nature

because a scheduler has prior knowledge about the demand for resources in order to

process jobs and operations. The problem subscribes to a resource-based scheduling

perspective (Brusoni et a l, 1996) by assigning resources to jobs in time. Usually, the

resource allocation problem can be formalised based on the factory scheduling perspective

(Fox and Sadeh, 1990). Talbot (1982) presents a general class of the non pre-emptive

resource-constrained scheduling problem, in which the quality of a schedule is measured

based on an evaluation function. Typical examples of an evaluation function include

maximisation of resource utilisation, minimisation of the consumption of critical resources,

minimisation of operational cost, and penalties, etc. Gudes et ah (1990) presents a general

paradigm for solving the family of resource allocation problems. Typical applications of

the resource allocation scheduling include air-gate assignment and room allocation (Smith

et a l, 2000). The resource allocation problem can further be classified into a single

resource scheduling and a multiple alternative resource scheduling.

Single resource scheduling involves a single indivisible resource that needs to be

assigned over time to ‘« ’ jobs and ‘o ’ operations. The jobs and operations have equal

duration and they are unrelated to each other, i.e., no precedence relation exists among

theni. The problem can be represented as follows: there exist «jobs (Ni,, Nnj and each

job can have o„ operations associated with it and they are represented as, Oni E (1,, n}.

The main aim of the problem is to assign a resource to each job and operation in

compliance with the following two constraints: Vij [(i ^ j) D (Ni Nj)] and over

operations Vij [(i 9 ̂j) D (Oni 9̂ Onj)]. The former constraint states that no two distinet jobs

can occupy the same type of resource at a same time, whereas the latter constraint imposes

the same condition on the assignment of operations. These two constraints are similar in

spirit to that of the capacity constraint from JSS.

The multiple alternative resource scheduling is more realistic in nature, compared to the

single resource problem. In this problem one or more resources can be assigned to jobs and

operations, and therefore, this problem augments the level of complexity of the

assignment. The problem can be described as follows: for « jobs and operations

associated with « jobs a schedule must choose one of the m resources that can be assigned

to accomplish the execution of jobs and operations. A formal representation of the

15

Chapter 2

assignment can be given as follows: Nj E {<Tj, Ri> | 1 < Ti < «, 1 < Ri < w}, where T|

and Ri represent a time range and a resource assigned to a job n. The similar representation

can be used to indicate an assignment of operations within each job. Each job has an

associated due date, say dn, which can be indexed as d„i E {1,, n}. Finally, all the jobs

must maintain a precedence relation say Pry among them, where Prÿ = 1 if ji precedes]y

The multiple alternative resource scheduling imposes the following types of constraints

(Fox and Sadeh, 1990):

• A job ji, must end on or before its due date represented by, Vji [Ti < dji], where Ti

represents the time interval of ji and dji represents the due date of ji. In other words

every time point, say Tpi in Ti is less than or equal to dji;

• Any two jobs ji and jk must maintain the precedence relation among them if imposed,

such that ji must be assigned before jk represented by, Vji jk [(Pik = 1) D (Ti < Tk)];

• No two jobs using the same resource may occupy the same time slot in a schedule,

which is represented as, Vji jj [((i 9^j) A (Ri = R,)) D (Ti 9 ̂Tj)].

Here, we conclude our discussion about the problem types for framing the scheduling

task. These problem types highlight the different features that need to be taken into account

while characterising the scheduling task. In the following section we discuss the research

involved in the OR domain.

2.2 Operations research thread in scheduling
In OR, the classical approaches to scheduling are characterised by a reduction of the

scheduling problem into the formulation of assignment and sequencing problem. However,

a few critical differences exist between these problem types as discussed below.

The fundamental difference between the assignment and the scheduling problem

concerns the allocation of resources to parameters. The assignment problem can be

characterised by two sets of objects: demand and supply, where each element of the former

set must be assigned over the latter set (Hillier and Libermann, 1974). In contrast with the

assignment problem, the scheduling problem not only assigns jobs to resources, but also

fixes a time range for its accomplishment. These two problem types can also be

distinguished based on the way they characterise the time line. While scheduling takes

place over a discrete time line (Bartak, 1999), the nature of a time line is usually

considered to be a continuous one in assignment problems (Hillier and Libermann, 1974).

In this sense, assignment problems are a particular case of scheduling problems, because in

16

Chapter 2

scheduling one can jump from one time point to another and this jumping is not allowed in

assignment. However, as argued by Liu (1988) and Lloyd (1982), in real-life domains it is

hardly possible to assure the continuous nature of a time line, because jobs often do get

perturbed during their execution and they start at some other point in time. Finally, an

additional problem with reducing scheduling problems to assignment ones is that the

techniques that have been developed to deal with the assignment problem fail to handle the

heterogeneity of the resources.

In comparison with the assignment problem, the sequencing problem simply determines

the order in which jobs need to be processed on a particular resource (French, 1982). De

Werra (1985) has proposed a new technique to derive a sehedule based on the formulation

of the sequencing problem, which is referred to as the time-tabling problem. The following

box represents a mathematical formulation of the assignment problem in OR (Sharma,

1998).

Minimise Total Cost: Z = ^ ^ Cij\Xij\ i = 1,2,..., n\ j = 1,2,..., n
i= \ 7=1

Xij = 1 if î ̂job is assigned to j ‘̂ resource, 0 otherwise;

” th^ Xij = 1 (one job is done by the i resource, / = 1, 2,..., «)
/=!

Xij = 1 (only one resource should be assigned the ĵ ̂job,y = 1 ,2 ,...,«).

Figure 2.1. Mathematical formulation of the assignment problem.

As it can be observed in the above definition, optimisation is the central theme in the

formulation of the problem in OR; however optimisation normally suffers from the

combinatorial complexity that can be proved NP-hard (Garey and Johnson, 1979). Not

surprising, Prosser (1989) argued that the optimisation aspect of assignment is difficult if

not impossible to achieve in real-life. Nevertheless, George Dantzing developed two

techniques: linear programming (LP) and the simplex method, which effectively tackled

optimisation. Other formulations, such as the closed loop, real-time, and two-level

hierarchy (Benders, 1962; Dantzig and Wolfe, 1960) have also been developed to tackle

the optimisation issue. In these approaches, a top-level scheduler determines the start and

end times of a job, which is subsequently refined by the lower-level scheduling modules.

In comparison with these other approaches, the LP and simplex are more tractable in

nature and have been used effectively to speed up the process of supplying time-staged

deployment, training, and logistical programs in military operations. These approaches

17

Chapter 2

were later generalised as the mixed integer programming and the stochastic programming

paradigm. The complexity of LP was unknown for a long time until in the 1970s Klee and

Minty (1972) created an example that showed the exponential time requirement of the

simplex method. To eontrol the possible exponential explosion of the search process, the

formulation of a correct objective function is a crucial task. Moreover, the correct objective

function also provides an exact optimisation criterion, particularly in those situations where

different organisational goals are conflicting with each other. Finally, Dantzig (1991)

formulated an explicit goal or objective function to show how to guide the search process

towards a feasible solution.

Other two popular techniques exist in OR, which tackles the integer-programming

problem: branch-and-bound (Agin, 1966; Lawler and Wood, 1966) and Lagrangian

relaxation. The former is an enumerative technique, whereas the latter was devised to

remove integer constraints (Shapiro, 1979). Other OR techniques, such as the Performance

Evaluation Review Technique was originally devised in 1958 for the POLARIS missile

program by the Program Evaluation Branch of the Special Projects office of the U.S.Navy,

in collaboration with the Lockheed Missile Systems division and the Consultant film of

Booz-Allen & Hamilton (Render and Stair, 1982; Freund, 1979). The Critical Path Method

technique was devised by M. R. Walker of E. I. Du Pont de Nemours & Co. and J. E. Kelly

of Remington Rand, circa 1957 (Render and Stair, 1982; Freund, 1979). In later years,

these two techniques have been used extensively in various industries, such as project

management, military domain, transportation industry, and supply chain management.

As argued by Ravidran, Philips, and Solberg (1987), all the techniques that have been

presented in the preceding paragraphs are suitable only when the problem space is well-

defined. Generally speaking, the OR techniques are restricted to rigid and static models

with limited expressive power. When implemented in real-life problems their sophisticated

mathematieal algorithms often result in intractability, mainly because the problem space of

the real-life scheduling problems is normally ill-structured. Therefore, the notion of

optimality can be troublesome when viewed globally.

In the following section we describe AI approaches to scheduling problem-solving,

which attempt to deal with ill-structured, complex real world scheduling problems.

2.3 Artificial Intelligence thread in scheduling

2.3.1 Basic concepts in scheduling

Increasing awareness of the recent developments in the AI community has paved the way

for the widespread use of knowledge-based techniques to solve the classic scheduling

18

Chapter 2

problem (Glover, 1986; Grant, 1986). This is due to three main reasons. Firstly, these

techniques encompass a rich collection of knowledge representation schemas to deal with

the wide range of real-world scheduling problems. Secondly, these techniques provide

flexibility, partly due to the use of efficient and flexible problem-solving mechanisms, such

as search-based or constraint-based engines, and also because of the use of mixed initiative

frameworks. These frameworks enable human experts to represent their problem more

systematically. Thirdly, various algorithms have been developed to reflect and deal with

the complexities that characterise real-life scheduling problems. Thus, in contrast with OR,

the scheduling task in AI has been defined from various perspectives. Below we present

some of the influential viewpoints that can be observed in the scheduling literature.

“Scheduling is the problem of assigning limited resources to tasks over time in order to

optimise one or more objectives” (Pinedo, 2001; Baker, 1974).

Although the above definition emphasises the need to validate a solution schedule

against completion and optimisation, it fails to tease out two other equally important

validation areas of scheduling: constraint violation and requirement violation.

“Scheduling selects among the alternative plans and assigns resources and times for

each job so that the assignments obey the temporal restrictions of jobs and the capacity

limitations of a set of shared resources ” (Fox, 1983).

Fox’s viewpoint takes into consideration the existence of the planning task. While the

main function of the planning task is to determine the sequence of actions that need to be

performed, the main function of the scheduling task is to allocate these actions over

resources and times ranges. This definition also state two types of constraints commonly

observed in scheduling - temporal precedence among jobs and limited resource capacity.

“Scheduling deals with the temporal assignment of jobs to limited resources where a set

of constraints has to be regarded” (Sathi et a l, 1985).

“Scheduling deals with the exact allocation of jobs over time, le. finding resources that

will process the job and time ofprocessing” (Brusoni et a l, 1996).

Both the above definitions emphasise that the main function of scheduling is to assign

jobs to resources by finding a correct time-slot to execute the jobs. While Sathi et al. point

out the importance of constructing a schedule in accordance with the constraints; Brusoni

et a l fail to tease out such a type of compliance. Both viewpoints fail to talk about

validation of a solution schedule against requirement violation and optimisation.

19

Chapter 2

“Production scheduling requires allocation of resources (e.g., machines, tools, and

human operators) over time to a set of jobs while attending to a variety of constraints and

objectives” 1994).

Sadeh’s viewpoint defines the scheduling task primarily from the manufacturing

perspective. In line with the earlier definitions his notion of scheduling also focuses on

validating a solution schedule against completion and constraint violation, but does not

consider requirement violation and optimisation.

In sum, we can say that while the above definitions characterise the scheduling task from

different perspectives, these proposals are partial in nature as they do not take into

consideration the notions of requirement and preference. In our perspective these are

important concepts as they help to define the spaee of valid solutions. To make our

viewpoint clearer, in the following section we describe the roles constraints, requirements,

and preferences play in constructing a schedule.

2.3.2 Constraints, preferences, and requirements

The notion of constraint is central to scheduling. Constraints specify the properties that

must not be violated by a solution schedule and therefore they restrict the space of a valid

solution. At an abstract level, constraints can be elassified into two main categories: hard

constraints and soft constraints (Zweben and Fox, 1994). While hard constraints are

prescriptive in nature and therefore they cannot be violated under any circumstances, the

soft constraints can be relaxed if required. For instance, in the CIPHER application (cf.

Section 8.2), the end-time-compliance constraint states that each work-package must

finish exactly on its end time and not prior to it, and a solution schedule that violates this

constraint is deemed to be an ineonsistent solution. This high-level classification can be

further synthesised into the organisational and physical types. Organisational constraints

are usually posed in such a way that they increase the profit of an organisation. Typical

examples of the organisational constraints include due dates of jobs, work-in-process

inventory, resource level maintenance, production levels, shop stability, etc. The physical

constraints on the other hand restrict the functionality of a schedule itself. Typical

examples of physical constraints include precedence relations among jobs, resource

requirements of jobs, resource availability, resource capacity, and so forth (Zweben and

Fox, 1994; Yox et a l, 1983).

While existing approaches to scheduling treat preferences as a kind of restriction (Smith

and Goodwin, 1995; Zweben et a l, 1992; Noronha and Sarma, 1991: Fox et a l, 1983), we

believe that they are rather choice points opted by a scheduler. They are more akin to a

2 0

Chapter 2

knowledge-level notion, than to the physical demands of a task, to be satisfied by a

schedule. Preferences originate from the different alternatives that are available while

constructing a schedule. The following example will clarify a need to distinguish between

eonstraints and preferences. For instance, in a manufacturing industry there is a machining

shop, which only executes the milling operations, then the obvious constraint is that this

shop can perform different types of milling operations that are required by the different

engineering components, but then a scheduler may prefer to opt for ‘milling-machine-A’ or

‘milling-machine-B’ in order to perform certain type of milling operation even when both

the machines are deemed to have a similar functionality. Because preferences are human-

specifie decisions, they usually affect the cost of a schedule. For these reasons in our

scheduling framework we do not involve soft constraints and we treat them as preferences

(cf. Section 5.2.6).

Requirements usually specify the properties that a solution schedule must satisfy to

become a feasible solution and usually the source of the requirements is a customer

specification. While constructing a schedule it is important to keep a elean distinction

between the notions of constraint and requirement whieh essentially are of different in

nature. The following example will clarify the necessity. For instance, if a customer

requires a machining component in which a hole needs to be drilled of diameter 10 and an

upper and a lower tolerance must be 0.5 (10"̂ '̂̂). In order to schedule this job first a

scheduler has to satisfy a customer requirement according to which a job needs to be

seheduled on the available drilling machines such that a hole can be drilled in a machining

component. Having satisfied this requirement, a scheduler must not violate an upper and

lower tolerance constraint of a hole of 0.5, and therefore a job must be seheduled only on

those drilling machines that can maintain this constraint. Liebowitz and Potter (1995)

represent a systematic categorisation of the requirements in terms of general requirements,

resource requirements, activity requirements, scheduling capability requirements,

rescheduling capability requirements, and output requirements.

The notions of constraint, requirement, and preference make possible to evaluate the

performance of a schedule either from a job-based (such as tardiness or due date)

perspective or a factory-based (such as throughput and utilisation) one. Figure 2.2 depicts a

taxonomy of these notions.

2 1

Chapter 2

Determine the properties
that a solution schedule

must not violate
I

Constraint
Type

N on-
Relaxable

Hard
Constraint

Components affecting
schedule solution

Determine the properties
that solution schedule

should satisfy

Requirements

Relaxable

Soft Constraint

Determine human-
specific decisions

Preferences

Originate from

Scheduler Customer Scheduling
environment

Constant Predicate Continuous Discrete

Figure 2.2. Taxonomy of constraint, requirement and preference.

In the following section we will discuss another central concept in scheduling, that of a

time element.

2.3.3 Theory of time
Time is the crucial factor which distinguishes the scheduling task from the assignment

problems. As described in Section 2.2, time is always considered to be discrete in

scheduling. Generally speaking, time can be represented in terms of the following

elements: time point, time interval, duration, calendar date, and so forth. Over the years, a

variety of formal models have been developed to represent time, and they are summarised

in Rescher and Urquhart (1971) in the field of philosophy.

A time point represents an instance of time over a time line (Allen, 1983). A time

interval or time range represents an amount of time that is elapsed between any two time

points. Allen (1983) defines a time range as follows:

“A period of time that elapsed between start of an event and end of an event, and start of

an event precedes end of an event” (Allen, 1983).

The notion of a time range in scheduling can be used to represent a schedule horizon and

a time window within which a job needs to be accomplished. A schedule horizon can be

represented in terms of a start and an end time, whereas a job time window can have a

more fine-grained representation in terms of the earliest and the latest start and end times.

Allen (1983) proposes 13 possible relationships between time events. However, as argued

by Zhou and Tikes (2000), Allen’s formalism to represent a time point does not provide

good enough granularity. In their framework, a time point is represented at different levels

of granularity, such as year, month, week, day, hour, minute, second, etc. They also claim

2 2

Chapter 2

the following advantages over Allen’s work - a) their framework provides a clean

distinction between open and close intervals; b) the level of granularity considered to

represent a time point facilitates more precise reasoning; c) their framework takes into

account the classes needed to represent calendar months, calendar days, and weekdays.

While constructing a constraint-directed reasoning shell for Operations Management

named LOGOS, Meng and Sullivan (1991) have observed that Allen’s temporal relations

are under-constrained and that a user might have additional knowledge about time events.

For instance, instead of simply stating “event a, BEFORE event aj”, a user may like to

tighten such a condition by stating “event a; BEFORE event aj by 3 hours”. Therefore they

extend Allen’s temporal relations by imposing a numeric constraint. Table 2.1 provides a

comparison between Allen’s temporal relations and Meng and Sullivan’s extended

relations. Meng and Sullivan’s numerical constraint is represented by ‘n’ in Table 2.1.

Table 2.1. Comparative analysis between Allen and Meng and Sullivan’s time intervals.

Allen’s

relations

Pictorial depiction Meng and Sullivan’s

relations

Translated

constraints

X before Y X X before Y (by n) x-end < y-begin or x-

end = y-begin + n

X equals Y X equals Y x-begin = y-begin

x-end = y-end

X meets Y X meets Y x-end = y-begin

X

overlaps

Y

X overlaps Y (lag n) x-begin > y-begin or

x-begin = y-begin + n

or x-end = y-begin + n

X during Y X X during Y X-begin < y-begin or

x-begin = y-begin + n

x-end > y-end or x-end

= y-begin + n

X starts Y X starts Y (by n) x-begin = y-begin

x-end < y-end or x-end

+ n = y-end

23

Chapter 2

X finishes Y X finishes Y (delay x-begin > y-begin or

n) x-begin = y-begin + n

x-end = y-end

These relations among time events can be particularly useful in scheduling to impose the

temporal constraints among the time ranges of jobs. In the following section, we describe

different models that have been developed to characterise the scheduling task.

2.4 Techniques In artificial intelligence
Starting from the early 80s various techniques have evolved which fall under a general

category of AI and more specifically into expert systems, KBSs, and several search-based

approaches. Based on these techniques several intelligent scheduling systems were

developed in 80s and 90s and a detailed review of these intelligent scheduling systems can

be found in section 2.5. Here, we discuss the techniques which can be used to tackle the

problem.

2.4.1 Constraint-based scheduling
Traditionally large numbers of AI problems have been seen as a special case of constraint

satisfaction. As described in section 2.3.2, the notion of a constraint is crucial to any

scheduling problem. They usually limit the space of a valid solution. Therefore, the

constraint-based approaches become quickly popular to tackle the scheduling problem

types (Beck and Fox, 1998; Dhar and Ranganathan, 1990; Fox, 1983; Petrie et a l, 1989;

Prosser, 1989). The constraint-based problem can be formulated by the constraint-

formalism (Fox, 1983) and general constraint programming. The constraint formalism

determines how the different constraints in a problem can be represented, while general

constraint programming actually solves a problem. The most widely used technique for

general constraint programming is the constraint-satisfaction problem. Generally

understood, the constraint satisfaction problem can be described as follows (Tsang, 1993).

There exists a set of variables (jobs), a finite and discrete set of domains (resources and

time slots) for a variable, and a set of constraints. The constraints are defined over a subset

of a original set of variables, which restricts the combination of values that the variables in

a subset can take. The goal is to find one assignment of value to each variable such that a

set of constraints are satisfied. The common formulation of the constraint satisfaction

problem can be found in (Freeman-Benson, Maloney, and Boming, 1990; Ricci, 1990;

Navinchandra and Marks, 1987). The constraint-satisfaction problem usually deals with

unary or binary constraints and most common formulation of binary constraints can be

depicted by a constraint graph, whereby each node represents a variable and each arc

24

Chapter 2

between two nodes represents a constraint imposed on variables by the end points of the

arc. In contrast with LP in which variables can only take the numerical form, in the

constraint-satisfaction problem variables can take numerative form as well, such as

milling-job-a, milling-job-b, etc. Because the domains of variables in constraint

satisfaction are finite, various lookahead techniques (Haralick and Elliot, 1980) have been

developed to improve the efficiency by exploring the features of the constraint satisfaction

problem. Gaschnig (1979) and Gaschnig (1993) developed intelligent backtracking

algorithms to analyse dead-ends to backtrack toward culprits. Traditionally most of the

research in constraint satisfaction has mainly been concentrated on the complete search

methods; however, some of the techniques, such as forward checking and fail first

(Haralick and Elliot, 1980) have proved to be efficient in the scheduling domain. The

constraint-directed search explores the problem space based on relationships,

dependencies, and limitations among the variables. The system stops when a first valid

solution (a solution that satisfies all the constraints) is found. Commonly found procedures

for the constraint-directed search are Generate & Test or Backtracking strategy without

constraint propagation. Kumar (1992) provides an excellent tutorial-based review of the

various algorithms that have been developed for the constraint-satisfaction problem,

whereas a generic framework for the constraint-directed search and scheduling is discussed

by Beck and Fox (1998). Finally, various intelligent scheduling systems, such as ISIS

(Fox, 1983), OPIS (Ow et a l, 1988; Smith et a l, 1990), SONIA (Collinot et a l, 1988),

DAS (Burke and Prossor, 1994) constructed by means of the constraint-based approach.

2.4.2 Distributed AI: agents
The research in distributed AI has begun to overcome the limited competence and

problem-solving ability exhibited by the single expert systems developed in the 80s.

Parunak et a l (1985) developed a distributed scheduling approach based on the well-

known ‘divide-and-conquer’ strategy. By using this strategy a problem can be decomposed

at various levels and various KBSs co-operate to solve a problem (Zhang and Zhang,

1995). An ‘agent’ is one of the central notions in distributed AI. An agent is a piece of

software that asynchronously co-operates with other agents (Jennings and Woolridge,

1998). Each agent can be seen as a complete KBS in itself. The set of agents may be

heterogeneous in terms of their knowledge, goal, languages, algorithms and a multi-agent

system can be constructed by selecting and integrating agents with different specifications.

The scheduling task usually comprises the following two types of agents - a task agent

and a resource agent. The former agent can be responsible for allocating tasks over

resources, whereas a resource agent can be represented in terms of a single resource or a

25

Chapter 2

class of resources to execute the task agents. During problem-solving a task agent sends its

request to a resource agent along with the set of operations a resource agent needs to

perform. Having received such request a resource agent generates a new schedule to

accomplish the assignment. To accomplish the assignment of tasks these agents can be

represented by adopting centralised or decentralised architectures. However, there is a

debate in the scheduling domain to determine the suitability of centralised or decentralised

approaches mainly due to the lack of support for coordination mechanism. Some of the

well known scheduling systems constructed by means of distributed AI techniques are

OPIS (Ow et a l, 1988), SONIA (Collinot et a l, 1988), YAMS (Parunak et a l, 1985).

2.4.3 Artificial neural network
Artificial neural networks try to mimic the learning and prediction ability of a human

being. They can be distinguished based on network topology, node characteristics, and

training or learning rules. The three-layer, feed-forward neural network is the most

simplistic model of artificial neural network. It consists of input layer, hidden layer, and

output layer. The supervised learning neural network uses historical data to capture the

relations between input and output layers. Back-propagation (Rumelhart et a l, 1986) is the

most popular strategy that subscribes to the gradient-descent technique in the feed-forward

network. Rabelo (1990) was the first to apply back-propagation neural nets to solve the

JSS problem. Rabelo’s JSS problem consisted of different job types and has shown various

arrival patterns, alternative process plans, precedence relations, and batch sizes. Another

type of model for constructing the artificial neural network is the Relaxation Model. It is

defined in terms of the energy functions and there is a pre-assembled system that relaxes

from input to output along a predefined energy contour. Hopfield Neural Network

(Hopfield and Tank, 1985) is the famous example that subscribes to the Relaxation Model.

Initially this model was used to solve some classic textbook scheduling problems by (Foo

and Takefuji, 1988), whereas 2-dimensional Hopfield network was used to solve 4-job, 3-

machine problems and 10-job, 10-machine problems (Zhou et a l, 1990). Finally, the

extended version of 2-dimensional Hopfield network is the 3-dimensional network (Lo and

Bavarian, 1991), which can be used to represents jobs, resources, and time ranges.

Because the scheduling problem usually consists of several variables, which need to be

taken into consideration when generating a schedule, both the aforementioned techniques

have suffered due to their computational inefficiency and frequent generation of infeasible

solutions. Therefore, they have shown limited applicability to solve real-world

applications.

26

Chapter 2

2.4.4 Neighbourhood search methods
Neighbourhood search is an efficient method. When combined with other heuristics it

offers good chances of improving the existing solution. These methods usually start by

introducing a little perturbation in a complete solution, where a complete solution can be

obtained by any greedy search or heuristics, and then, this technique keeps on perturbing a

complete solution, until an improvement is achieved in the objective function. In the

following section we discuss three such methods: tabu search, simulated annealing, and

genetic algorithm.

2.4.4.1 Tabu search

Glover (1989, 1990) has introduced the basic idea of the tabu search. It explores the search

space of all feasible schedules by the sequence of moves. The tabu search moves from one

schedule to another by evaluating all the candidate solutions, and it chooses the best

available candidate. The moves that can potentially get stuck in local optima and hence

result in a cycle are classified as tabu moves, i.e. they are forbidden. All such moves are

compiled into what is referred to as the tabu list. This list is built from the history of

previous moves. The tabu moves direct a search to leave the area which contains an old

solution and this freeing of search provides ‘strategic freeing’, which can be achieved by a

short term memory function.

Tabu search has been applied to solve the JSS and flow shop scheduling problem by

Nowicki and Smutnicki (1996) and Vaessens (1995) also showed that tabu search methods

are better compared with other neighbourhood search methods, such as simulated

annealing, and neural networks. Watson et al. (2003) represents a first attempt in the field

to quantitatively model the cost of tabu search for any NP-complete problem and

particularly for the JSS problem.

2.4.4.2 Simulated annealing

Simulated annealing is an extension of the hill climbing search that tries to escape local

minima. Kirkpatrick et al. (1983) have proposed this method which is a very general

optimization method that stochastically simulates the slow cooling of a physical system.

The main concept of simulated annealing is to initialise a temperature as a predetermined

starting value and which reduces gradually according to a cooling schedule and to 0

eventually. If the temperature is set a higher value then there are higher chances that

inferior moves will be accepted. This method has a cost function, say H (i.e., a

Hamiltonian) which associates a cost to a state in a system, say a temperature ‘T ’ , and

there are various ways by which a state of a system can be changed. A current state within

a thermodynamic system is analogous to a current solution and its energy equation is

27

Chapter 2

similar to an objective function. Finally, a ground state is equivalent to the global optima.

A global temperature ‘T’ is lowered as the iteration progresses. Similar to the hill climbing

method, this method also starts a search from a state that may be generated randomly and

in each cycle a random neighbour is examined. If a randomly examined neighbour is better

than a current one then it is made a current one; otherwise, a neighbour is accepted only

under a probability, which is related to the lowering of the temperature. Based on this

analogy Kirkpatrick et al. generates a new schedule randomly by sampling the probability

distribution of a system. In past, simulated annealing technique was applied to solve the

JSS problem. Vakharia and Chang (1990) developed a scheduling system for the

manufacturing cells and the resource-constrained scheduling problem was tackled by

Jeffcoat and Bulfin (1993).

2.4.4.3 Genetic algorithm

The Genetic Algorithm (GA) (Goldberg, 1989) search method is based on Darwinian

natural selection and mutation in the biological systems. It is an optimisation methodology

that encodes parallel search with the process of attempting coarse-grained hill climbing. At

an abstract level, GA requires the following five components:

1. A fixed length string of symbols for encoding a problem;

2. Evaluation function that could rate for each solution. A typical evaluation function

in scheduling can be minimisation of cost or maximisation of resource utilisation,

etc;

3. A way to initialise the population of solutions;

4. Genetic operators can be applied on the parent in order to alter their genetic

composition. Typical genetic operators are crossover (which randomly selects a

segment between parents), mutation (a modified gene), and other domain specific

operators;

5. Finally, a parameter setting for an algorithm and the operators, etc.

In the past, several JSS systems were developed by using the GA technique (Davis,

1985; Goldberg and Lingle, 1985; Starkweather et a l, 1993). Usually, in JSS problems a

GA with blind recombination operators was utilised. Much emphasis was also kept on the

relative ordering schema, cycles, and edges in the offspring that could give rise to

differences in the blind recombination operators. In contrast with earlier approaches,

Bagchi et a l (1991) argued that the nature of an evaluation function can be augmented by

using the problem-specific knowledge in order to gain more effective results. Uckun et al.

(1993) have pointed out that the approach adopted by Bagchi et a l produces better results

only in longer terms as compared with a simpler GA enhanced with local Hill climbing

2,$

Chapter 2

operator. Starkweather et a l (1993) were the first to tackle a dual-criteria scheduling

problem by using GA in a real production facility. Their evaluation function primarily

aimed at reducing the average inventory level in the plant along with the minimisation of

average waiting time of an order. More recently, Burke and Smith (2000) have proposed a

hybrid method that combines tabu search, simulated annealing, and GA for the planned

maintenance of the national grid.

2.4.4.4 Fuzzy logic

This technique is useful for solving scheduling problems which have uncertain processing

times, constraints, and set-up times. The fuzzy set logic theory has been used to develop

hybrid scheduling systems. Also, by using a concept of interval o f confidence, different

types of uncertainties can be represented more efficiently. However, these techniques are

usually combined with other methodologies, such as search procedure, constraint-based

approach, etc. Slany (1994) criticised the straight-forward methods from mathematics that

have been adopted to develop fuzzy set logic and he introduced a method called fuzzy

constraint relaxation. This method was later integrated with the knowledge-based

scheduling in a steel manufacturing plant (Dorn and Slany, 1994). Krucky (1994) focused

on a problem to minimise the setup times of the medium-to-high product mix production

line whereas Tsujimura et a l (1993) developed a hybrid system that could model the

processing times of the flow shop scheduling problem.

Table 2.2 shows a comparative analysis of the techniques discussed in this chapter.

Table 2.2. Comparative analysis of different techniques in terms of their usability.

Name of the

technique

Overall usability aspect of a

technique

T echnique-specillc

remarks

Linear programming o It can be used for the

optimisation with linear function

o Intractable

o A problem must be

specified in terms of the

conjunctive set of equalities

Distributed AI o Global optimisation

o Local perturbation is allowed

o Continuous communication

among agents is required in order

to avoid the global effects made

by the local scheduling decisions

o User needs to determine

about centralised or

decentralised representation

Neighbourhood search o Useful for both constraint

satisfaction and optimisation

o In simulated annealing

the neighbourhood functionTabu search

29

Simulated annealing when near-optimal solutions can

be accepted

o Reflects flexibility in terms of

the computation time

o Simulated annealing and tabu

search tries to escape from the

local optima

Chapter 2

is crucial to escape from the

local optima

o Determination of a rate at

which schedule cools down

is crucial

o The effectiveness of the

tabu search mainly depends

on a strategy used for tabu-

list manipulation

Neural Network and

Genetic Algorithm

(GA)

o Both the techniques are useful

for finding feasible or near-

optimal solutions

o GA can be implemented for

parallel implementation and

therefore useful in the real-time

applications

o In Neural Network

determining the network

set-up and updating is

crucial to gain effectiveness

o In Neural Network

customisable and

specialised networks can be

expensive to build

Fuzzy logic o It can be useful in applications

where uncertainty is high

o It can be used to construct the

hybrid systems

o The rules used to

combine conjunctive or

disjunctive clauses can be

arbitrary

o Rules usually give same

importance to all the factors

2.5 Intelligent scheduling systems
The scheduling task did not receive serious attention from AI researchers, until in the

1980s’ Fox et aï. started developing the first intelligent scheduling system called ISIS. In

later years, several intelligent scheduling systems were developed to tackle the scheduling

problem from several domains. Here, we review the most influential intelligent scheduling

systems developed over the last 20-year period: ISIS (Fox, 1983), OPIS (Ow et al., 1988;

Smith et a l, 1990), SONIA (Collinot et a l, 1988), YAMS (Parunak et a l, 1985), FlyPast

(Mott et a l, 1988), S2 (Elleby et a l, 1988), DAS (Burke and Prossor, 1994), REDS

(Hadavi et aï., 1992), and BATTLE (Slagle and Hamburger, 1985).

Although, these intelligent scheduling systems exploited various techniques in AI

successfully, they were hardwired in nature due to their domain specificity. In our review

we explicitly focus on the following three aspects: the domain tackled by the system, the

3 0

Chapter 2

problem-solving technique adopted by the system, and the schedule validation area

covered by the system.

2.5.1 ISIS

ISIS was developed by Mark S. Fox and his group at the Carnegie Mellon University for a

turbine component plant. ISIS formalises the scheduling task by subscribing to JSS. ISIS

uses a frame-based knowledge representation approach and its problem-solving strategy is

based on the constraint-based beam search. Each constraint in ISIS is represented as a

distinct unit and it has an associated utility factor. A utility factor measures an extent to

which a particular constraint contributes in validating a solution schedule.

ISIS decomposes the scheduling task into the following four-tiers: lot selection, capacity

analysis, resource analysis, and reservation selection. The lot selection module selects a

candidate lot for its release on the shop floor. At the second level, the capacity analysis

module determines the start time of each job within a selected lot. The actual scheduling

operation is performed at the resource analysis level, where each candidate resource is

checked against its availability and capacity such that it can accomplish an execution of

assigned job. Finally, at the reservation selection level, a candidate resource is reserved for.

assigning a job, such that the work in process inventory is reduced. ISIS subscribes to the

job-based perspective to produce a schedule with minimal job lateness. ISIS deploys

forward and backward scheduling strategies to assign the jobs. Initially, all the jobs are

assigned by applying a forward scheduling strategy (i.e., starting from their start time) and

then a backward scheduling strategy (i.e., starting from their due dates) is applied to assign

outstanding jobs. During problem-solving the evaluation function is constructed

dynamically within each state of a search space. As mentioned earlier, each constraint

contributes both to the importance and utility factor in constructing a final schedule and a

solution schedule is validated for the job lateness and the constraint satisfaction. However,

ISIS fails to reason about requirement violation and optimisation aspects of scheduling.

2.5.2 OPIS
opportunistic Intelligent Scheduler (OPIS) is a successor of ISIS, but in contrast with ISIS

it is a reactive scheduling system. OPIS implements the blackboard architecture (Corkill,

1991; Nii, 1986), which is based on a multiple perspective assignment strategy. OPIS was

designed to tackle the scheduling problem in a manufacturing domain. The scheduling is

performed both on a job-based and a resource-based perspective (Brusoni et ah, 1996).

OPIS is the first scheduling system that realises the existence of and deals with the

bottleneck resources during schedule construction. Before problem-solving the bottleneck

areas are detected, by analysing the candidate job and the state of the shop-floor, and jobs

31

Chapter 2

arc assigned from a resource-based perspective. These resources are checked against the

following criteria: capacity, machine set-up requirements, and batching constraints.

Initially, the assignment process anchors a search around the bottleneck areas and once the

bottleneck resources are identified then a search is guided on a job-based perspective.

Figure 2.3 depicts the blackboard architecture of OPIS.

Subtask
External

Event
Schedule 2Schedule 1 Schedule n

Schedule m aintenance
s u b s y s te m

TLM

Subtask

Analysis 1 Model
^update

Problem
_ selection

Control
State

Figure 2.3. Architecture of OPIS (Smith, 1994).

OPIS implements an incremental and opportunistic strategy to solve the scheduling

problem, which is the main philosophy of the blackboard architecture. The knowledge

applied to solve the scheduling task is distributed across independent knowledge sources

(KSs). The application of KSs is determined dynamically and opportunistically as the

problem-solving evolves. The KSs executes a system within the blackboard architecture

and as a new piece of knowledge becomes available it is augmented in the existing system.

The top-level manager (TLM) component is responsible for coordinating different

scheduling events. The predictive component of OPIS is more deterministic in nature as

compared to the reactive component, because it has more static data available about the

problem for its execution. A constraint violation within the reactive component is resolved

by using one of the following revision strategies: order-scheduler, resource-scheduler,

right-shifter, left-shifter, and demand-swapper. Because OPIS takes into account the notion

of a constraint, the solution schedule is validated against constraint violation and also

optimisation of a set of objectives to reduce the cost of a schedule.

2.5.3 SONIA

SONIA is a successor of SOJA (Le Pape and Sauvé, 1985) scheduling system and it is very

similar to the OPIS system. It formulates the scheduling problem based on the JSS model.

SONIA was designed to tackle the scheduling problem from the manufacturing domain.

SONIA integrates both predictive and reactive scheduling components and works on the

blackboard architecture. A predictive component of SONIA is similar in spirit to that of

SOJA. It comprises of a job selection and an ordering component. A job selection

component aims at selecting a job to be scheduled and binds it to the available resources.

32

Chapter 2

The binding process is carried out by subscribing to the operations resource reliance

heuristic (Sadeh and Fox, 1996). The ordering component consists of an iterative

constraint-satisfaction process (Le Pape, 1994), which imposes the temporal constraints on

a selected job. If the ordering component encounters a failure, then a system enters into a

reactive scheduling phase. The scheduling decisions are made through predictive

component and the backtracking takes place via reactive component. The blackboard

architecture of SONIA subscribes to the constraint propagation as its main problem

solving strategy. It consists of the following three components: KSs, blackboard data

structure, and control cycle. First, SONIA subscribes to the micro-opportunistic scheduling

(Sadeh and Fox, 1996) during which each module make a collection of decisions about

whether to assign a complete manufacturing order or a complete set of resources (Smith et

ah, 1990). Then a problem-solving strategy relies on the macro-opportunistic approach that

allows selection and adaptation of the micro opportunistic strategy. A schedule is validated

for completion and constraint violation, but it fails to reason about requirement violation

and optimisation aspects of scheduling.

2.5.4 YAMS
YAMS (Yet Another Manufacturing Systems) is probably the first intelligent scheduling

system that truly exploited the distributed AI in the manufacturing scheduling domain.

YAMS subscribes to the contract net (Smith, 1980) as its main architecture. In contract net

modules, a transfer of control is in a distributed fashion by using a metaphor of negotiation

among the agents. The agents in YAMS’s contract net are categorised as being manager,

bidder, and contractor. Each category of agent plays a specific role in the contract net.

Initially, a manger agent identifies a work to be done and delegates it among agents

through the negotiation process. Different bidder agents offer to perform a delegated work

and a contractor agent is a successful bidder who wins a contract. The communications

within different agents take place via message passing such that if there is any potential

task to be performed a manager agent makes an announcement and broadcast a task to all

other agents. The agents that have a potential to perform the task contact manager with a

bid message and the highest bidder is awarded the contract which then becomes a

contractor. Similar to the first approach, the contractor agent decomposes a task further

into smaller subtasks and acts as a manager. An agent can both be contractor and manager

at the same time. This style of problem-solving has been referred to as a fractal style

(Parunak et a l, 1985). YAMS model the complete factory as hierarchical work-cells and

an individual work-cell within a factory is considered as an agent in that contract net. A

node at a particular level of hierarchy indicates a level of granularity associated with that

23

Chapter 2

particular level, whereas a leaf agent eorresponds to the discrete resources. Each node has a

collection of plans associated with it, which represents its capabilities. A global schedule is

initially performed by using an external system that is distributed across net and then a

local schedule is devised by using the turnpike strategy (McKenzie, 1976). The problem

solving strategy perturbs a local schedule but the ultimate goal is always to return a global

schedule whenever possible. The communication among a contract net takes place only

between superior-to-subordinate and peer-to-peer communication is prohibited. A peer-to-

peer communication is required to propagate the effect of constraints among agents.

However, the main problem with this kind of architecture is that the local scheduling

decisions can have global consequences that could make a global schedule obsolete. To

overcome this problem the contract net is applied only when a problem is already

decomposed into the sub-problems. This kind of strategy is referred to as a functionally

accurate cooperative distributive strategy (Lesser and Corkill, 1981).

2.5.5 FlyPast
FlyPast (Mott et a l, 1988) is a resource allocation scheduling system that assigns aircrew

to aircraft. To handle the dynamic environment in which FlyPast has to operator it

subscribes to a reactive scheduling strategy. FlyPast uses constraint-based reasoning along

with an assumption-based truth maintenance system (ATMS) (De Kleer, 1986) as its

problem-solving strategy. Generally understood, a nature of the problem is simplified in

FlyPast because the system performs an assignment once the timings of the fights are

predetermined and only decision like allocation of the aircraft crew to the aircraft is

considered as a constraint. This problem can be treated as one that of constraint satisfaction

and therefore the problem is represented by the constraint-graph. FlyPast subscribes to a

resource-based scheduling approach. Each node represents a flight and the domain of a

node corresponds to the possible aircrew that can be assigned to it. The arcs between any

two nodes represent constraints that exist among them. FlyPast problem-solving algorithm

subscribes to the forward checking look ahead heuristic (Haralick and Elliot, 1980) to

improve the search efficiency. ATMS nodes are generated for the domain reduction and a

datum of an ATMS node is a reduction in a domain achieved from forward checking. If the

forward checking strategy results in a total destruction of a domain, then a ‘no good’

solution is derived and the search gracefully descends to the dependency-directed

backtracking. If no satisfactory result occurs then a ‘no good’ database is analysed and

delivered to user. The user of the system can interact with the system by adding and

retracting constraints or by forcing specific allocations. The final solution is validated

against the number of constraints that has been satisfied by a schedule.

34

Chapter 2

2.5.6 S2
S2 is similar in spirit to that of FlyPast and it is developed to tackle the VLSI wafer

fabrication. The problem domain of 82 can be considered similar to JSS. Because of the

dynamicity and uncertainty of the domain S2 treat its problem as an open world and

implements a reactive scheduling strategy. A reactive scheduling strategy of S2 also helps

to address its domain-specific issues directly. The architecture of S2 is composed of the

following three modules - constraint maintenance system (CMS), schedule generator, and

request interpreter. The CMS module is used to represent the scheduling problem and

constraint propagation is performed every time any constraints are imposed or retracted in

CMS. Although, a final solution schedule in S2 is validated against constraint satisfaction,

it is built on an assumption that no single performance measure can be used to measure a

final schedule. The schedule generator then reacts to the addition or retraction of

constraints by modifying the existing solution instead of having to schedule from scratch.

The entire process of schedule construction, constraint satisfaction, problem modification,

and problem-solving is referred to as an incremental constraint satisfaction. S2 uses the

depth-first search with dependency-directed backtracking and to recover from the dead

ends it keeps record of all the dead ends encountered along with their source of

inconsistencies. A hard-wired ATMS is implemented and ‘no good’ database is distributed

across the soft-constraints. Similar to FlyPast, S2 first delivers a satisfactory schedule and

then allows its users to modify a schedule either by adding or retracting constraints via

request interpreter. S2 is based on the funk box scheduling strategy (Elleby e/ ah, 1988). It

assumes that user of a system has a prior knowledge about how a satisfactory schedule

looks like, and therefore, user can guide the scheduling procedure towards a good

schedule.

2.5.7 DAS
Distributed Asynchronous Scheduler (DAS) system is developed at the University of

Strathclyde to tackle the problem from the manufacturing scheduling domain. It is a

reactive scheduling system, which subscribes to a bottom-up approach of a schedule

construction. The scheduling problem is distributed among three types of problem-solving

agents: S-agents, T-agents, and 0-agents. Figure 2.4 depicts the three-tier architecture of

DAS.

35

Chapter 2

Introduces operation
in schedule

Aggregates
resources and load

balance

Performs allocation
of operations on

individual machines

DAS

strategic Level

Tactical Level

Operational Level

S-Agents

T-Agents

0-Agents

Figure 2.4. Architecture of DAS.

At the operational level, the 0-agents are responsible for scheduling operations on

individual resources. The 0-agent uses hybrid algorithm that consists of forward checking

(Haralick and Elliot, 1980), shallow learning (Decthter et ah, 1990), and dependency-

directed backtracking (Stallman and Sussman, 1977). At the tactical level, the T-agents are

attached with the aggregate resources and the load-balance operations with the subordinate

0-agents. Finally, at the strategic level, the S-agents are responsible for introducing a work

into a schedule. The S-agents have unlimited control over the conflict resolution and they

can relax a problem if and when required. All the three agents act asynchroiiously and

constraint propagation takes place through message passing similar to YAMS (cf. Section

2.5.4). DAS can also be seen as one of the functionally accurate communication

architecture (Lesser and Corkill, 1981) as that of YAMS. The accuracy within

communication architecture is achieved because of the locally accurate decisions made by

the 0-agents and these local decisions are subsequently distributed among other agents to

avoid having global effects.

2.5.8 REDS

The Real Time Distributed Scheduling (REDS) is developed by Hadavi et al. (1992),

which can be seen as a logical successor of DAS. Because REDS is based on the

assumption that the scheduling objectives conflict with each other and it is desirable to

have a scheduling system that can observe its environment from different perspectives, it

has subscribed to a distributed architecture for real time scheduling. REDS is developed for

the VLSI fabrication in production scheduling domain. It is based on a philosophy that in

scheduling it is not usually clear what exactly needs to be optimised and therefore by

distributing the scheduling problem among group of agents it may allow to optimise a

problem over various criteria. Most of the architecture of REDS is similar to that of DAS;

however, the distributed structure of the scheduling problem among agents is fully

exploited in REDS as opposed to DAS. REDS is deseribed to be an attempt to merge both

AI and OR techniques in its design. The conceptual architecture of REDS divides the

scheduling task into four subtasks: pre-processor, feasibility analysis, detailed scheduler,

56

Chapter 2

and sequencer. The pre-processor module pre-processes new orders arriving in system, the

feasibility analysis module is responsible for critical resource scheduling and release

control, the detailed scheduler module assures the validity of a schedule, and the sequencer

dispatches module that works based on previous module’s perspective. REDS performs

scheduling both from predictive and reactive perspectives by subscribing to the release

control strategy (Hadavi et a l, 1992). This strategy helps to reduce the job waiting times,

work-in-process, finished goods inventory, and also helps to meet due dates by reducing

cycle times. Scheduling in REDS is performed both from job-based and resource-based

perspective. In the predictive scheduling, the agents have specific problem-solving

capability according to their position in a hierarchy and in the reactive scheduling each

agent operates independently by identifying impact of disturbances. The final aim of

REDS is to devise a schedule that does not violate any constraints.

2.5.9 BATTLE
BATTLE is a decision making expert system for the resource allocation problem in the

military domain. Each military weapon in this domain is represented as a resource and

each military target as a task. The objective function is an unexpected reduction in the

value of targets. BATTLE uses the computation network, which is built beforehand to

reason with the logical, Bayesian, and expert-defined operators. It is a rule based system,

where rules are specified by the domain experts. This network resembles to the prospector

inference network (Duda et a l, 1979), where information is propagated and combined by

using Bayes’ rule and logic operators. The computation network is acyclic which contains

a set of nodes and a set of directed links that connects two nodes. Moreover, each node is

also associated with two kinds of information: datum function and assignment function.

Each node has a default value associated with it, which is returned if no specific

information is supplied. The assignment function can be built from the family of evidence

functions, which make assignments with a Subjective Bayesian method (Duda et a l,

1976). BATTLE also acquires its information in order to reflect a current situation, such as

the current situation in the battle field, which is acquired by finding those questions with a

high ratio of probable importance to their difficulty. It is referred to as a merit system

(Slagle et a l, 1984).

BATTLE invokes a two phase allocation algorithm. In the first phase effectiveness of

each weapon against each target is analysed, where effectiveness is measured by the

expected proportion of the target that would be destroyed if the weapon were fired at it.

The second phase of algorithm uses individual effectiveness from the first phase to

evaluate a plan. A good allocation plan is sought by optimising successive weapons.

57

Chapter 2

BATTLE also has the interactive scheduling component that allows its users to enter,

augment, and alter data.

With the description of the BATTLE system, we conclude our review of the intelligent

scheduling systems. Table 2.3 represents a comparative analysis of these intelligent

scheduling systems.

Table 2.3. Comparative analysis of intelligent scheduling systems.

Name of

the

system

Domain

specificity

Problem

solving

technique

Scheduling

perspective

Scheduling

components

Exploits

ontologies

and

problem

solving

methods

ISIS JSS Constraint-

directed

search

Job-based Predictive No

OPIS Manufacturing

production

scheduling

Constraint-

based

• blackboard

architecture

Job-based

and

resource-

based

Reactive No

SONIA JSS Iterative

constraint-

satisfaction

blackboard

architecture

Job-based Predictive

and reactive

No

YAMS Manufacturing

scheduling

Distributed

AI

(fractal style)

Not clear Reactive No

FlyPast Air-gate

assignment

ATMS +

constraint

graph

Resource-

based

Completely

reactive

No

S2 VLSI wafer

fabrication

Hardwired

ATMS +

constraint

maintenance

system

Not clear Reactive No

5,5

Chapter 2

DAS Manufacturing

scheduling

Distributed

AI +

constraint

maintenance

system

Job-based Reactive No

REDS VLSI

fabrication

production

scheduling

Distributed

constraint

satisfaction

with A*

Job-based

and

Resource-

based

Predictive

and reactive

No

BATTLE Military

domain

Prospector

inference

network =

subjective

Bayesian

method and

logic

operators

Resource-

based

Predictive

and reactive

No

2.5.10 Summary so-far

All the intelligent scheduling systems described in the previous sections failed to gain

wider applicability mainly because they were subscribing to a specific scheduling domain.

As a result, a new system had to be built from scratch every time the nature of the problem

changed. As pointed out by Kruger (1992), such a brittle nature of the system components

increases time and cost resources invested in a system construction. As we will discuss in

the next chapter the research in the knowledge modelling domain has paved the way for

making the system components reusable.

In the following section we will discuss different dispatching rules and heuristics

developed to improve the efficiency of the job selection while constructing a schedule.

2.6 Dispatching rules and heuristics for the job selection
Constructing a valid schedule in accordance with the different constraints, requirements,

and preferences that could emerge in real-world scenarios is a challenging enterprise. In

such environments the selection of a correct job is a crucial activity because it improves

the efficiency of a schedule construction by reducing unnecessary backtracking. Over the

years, various dispatching rules, orders, and heuristics have been developed both in OR

and AI, which will be discussed below.

59

Chapter 2

Panwalkar and Iskander (1977) discuss more than one hundred scheduling rules. In their

approach the scheduling rules are classified into the following three types - a) simple

priority rules, combination of simple priority rules, and weighted priority indexes and b)

heuristic scheduling rules. Wu (1987) proposed the three meta-categories in which the

dispatching rules can be classified. The first category is based on simple priority rules

which make use of the information relating to jobs. This is similar is spirit to the category

‘a’ reported by Panwalkar and Iskander. It can further be subcategorised based on

processing time (shortest processing time (SPT)), due date (earliest due date), arrival time

(first in first out (FIFO)), and slack (minimum slack). The SPT rules were first studied in

detail by Conway et a l (1967) and they pointed out that the application of SPT reduces the

average mean flow time of jobs. Similar observations were carried out to determine the

effect of dispatching rules to optimise the job properties, such as due date and tardiness and

the shop properties, such as throughput and utilisation. The second category is based on the

combination of rules from the first category. For instance, initially a job selection in this

category can be achieved by using FIFO until a queue is 10 jobs long and then SPT can be

used to select a job. The last category is referred to as a Weight Priority Indexes, which

selects a job by assigning weights to the relative importance of jobs. The relative

importance among jobs is usually represented by an objective function. This category is

similar to the ‘weighted priority indexes’ category reported by Panwalkar and Iskander.

In comparison with OR, different heuristic commitment strategies have been developed

in AI which belong to the constraint satisfaction community. Haralick and Elliot (1980)

proposed the fail-first heuristic (FFH). According to this heuristic the next best variable

(job) is the one which is most likely to fail in a schedule, i.e. most likely to be in dead end.

In later years, Freuder (1982) subscribed to the notion of highly constrained variables and

proposed the heuristics named minimal-width-ordering. This heuristic aims to instantiate

variables (jobs) that are highly constrained, in the hope that backtracking will be reduced.

For instance, if Va constrains Vb to value X and Vc to value Y, then this heuristic selects

Va as a candidate because it would reduce the number of chances in Vb and Vc that

otherwise create restriction elsewhere. On the other hand, if Vc is instantiated first then it

naturally creates a conflict with Va- Dechter and Meiri (1989) have proposed the dynamic

search rearrangement heuristic and which is similar in spirit to FFH. The dynamic search

rearrangement heuristic suggests that if more than one job competing for the same

resource, then the best candidate is the one that has least number of resources left for the

assignment, and therefore, this job represents the least reliance available. Based on the

notion of reliance, Sadeh (1991) have proposed an operation resource reliance-filtered

40

Chapter 2

survivable schedule (ORR-FSS) heuristic. Generally understood, ORR first identifies the

most critical activity as the one that has maximum reliance on the available resources and

time ranges for which there is a highest contention and then FSS rates a quality of all the

possible start times that can be assigned to the critical activity. Finally, a start time with the

highest quality is selected for the assignment. The Task-Interval-Entropy heuristic (Caseau

and Laburthe, 1995) uses the notion of task intervals as a basis for estimating the resource

contention. A similar notion that of a slack was also adopted by Cheng and Smith (1995)

whereby they make use of the precedence constraint-posting slack along with the

constraint-based analysis propagator. Baptiste, Le Pape, and Nuitjen (1995) also used the

notion of a slack to find a minimum resource slack with highest average contention and

they have examined the following three heuristics: choose first, choose last, and choose

dynamically. Finally, the minconflicts (Minton et a l, 1992) is a local search heuristic that

chooses an activity with the highest violations (i.e., an activity that relies on the most

contended for resources and time slots), and for each of its possible start times the number

of resulting violations is assessed. Finally, a start time with the least number of resource

violations is chosen for assignment. A more detailed analysis of job selection strategies can

be found in (Beck and Fox, 1998).

2.7 Scheduling in a nutshell
In this chapter we have reviewed and summarised different areas of scheduling research,

which have emerged over the years. Based on this review of the field, in a nutshell, we can

say that the scheduling task is “an assignment of time-constrained jobs to time-constrained

resources within a pre-defined time framework, which represents the complete time

horizon of a schedule. Normally an admissible schedule must not violate any of the

constraints imposed on jobs or resources and must satisfy all the input requirements. More

in general, the output of the scheduling task is a legal schedule in accordance with a given

solution criterion (e.g., complete, admissible, feasible). Preference specific decisions can

influence the cost of a schedule ”. Our definition of scheduling is consistent with the earlier

definitions discussed in section 2.3, but it also emphasises the need for considering the

notions of requirements and preferences to validate a solution schedule along with

completion and constraint violation. Moreover, it also emphasises that preferences can

affect the cost of a schedule.

Our review began by discussing the different problem types for formulating the

scheduling task. Having discussed a formulation of the scheduling task, we reviewed an

OR thread in scheduling research, and then we focused our review on scheduling research

in AI. Initially, we have seen various viewpoints to define the scheduling task. To this end,

41

Chapter 2

we can say that at a generic level the scheduling task can be characterised by the following

eight elements: job, activity, resource, time range, constraint, requirement, preference, and

cost. A solution schedule has usually to satisfy a number of conditions, such as completion,

constraint violation, requirement violation, and optimisation. As it has been pointed out in

section 2.3.3, the notion of a time range can be used to represent a schedule horizon, which

subsequently can be specialised to represent the time range of jobs. To highlight the

various types of constraints in scheduling, our review presented different scheduling

models, based on which we can say that the typical constraints that can be observed in

scheduling are precedence constraints, limited capacity of resources, resource requirements

of each job, and due dates of a job. In section 2.4, we focused on reviewing different

techniques, which can be used to solve the scheduling task. These techniques have varying

degrees of knowledge requirements, which affected their usability and implementations to

tackle the scheduling task. Then in section 2.5, we reviewed various intelligent scheduling

systems, which were constructed by successfully using the different AI techniques. Finally,

we reviewed dispatching rules and heuristics developed to select a correct candidate job.

In sum we can say that, the OR approaches to scheduling have certain limitations due to

their static formulation and insufficient expressiveness to tackle the complexities from the

real-world scheduling problems. Moreover, their primary aim was to achieve an optimal

solution schedule, which also was difficult if not impossible in real life. On the other hand,

various intelligent scheduling systems have been constructed by using AI techniques.

However, the domain specificity of these systems made them hardwired and inflexible in

nature, and therefore, these systems had limited reusability. In the knowledge modelling

domain system reusability was achieved by constructing the libraries to tackle the generic

tasks (Motta, 1999; Valente et a l, 1998; Benjamins, 1995; Chandrasekaran, 1990).

In the next chapter, first we will review different components involved in constructing

the libraries. Then we focus on reviewing different scheduling libraries and task ontologies

that have been constructed. These past efforts allow us to formulate our research basis.

42

Chapter 3

KNOWLEDGE MODELLING APPROACHES TO SCHEDULING

In this chapter, we review the knowledge modelling approaches to scheduling problem

solving. This review is particularly important for us, because it allows us to formulate our

research basis.

As described in Chapter 2 (cf. Section 2.5), all the intelligent scheduling systems

developed over the last two decades were hardwired and inflexible in nature because they

were subscribing to specific scheduling domain. Reusability was the main concern of

research in knowledge modelling. Here, the construction of a KBS can be conceived by

applying libraries of PSMs (Motta, 1999; Valente et a l, 1998; Benjamins, 1995;

Chandrasekaran, 1990) to tackle the classes of generic tasks (Chandrasekaran, 1986), such

as parametric design, planning, diagnosis, design, etc. Our research subscribes to this

stream whereby we aim to construct a generic library of scheduling PSMs. Ontologies and

PSMs are the two central components in the library construction process. These two

components are reviewed in the following section. Then, in section 3.2 we will review the

existing scheduling libraries and in section 3.3 we will review the existing scheduling task

ontologies. The review presented in these two sections is particularly important for us

because based on these past efforts we formulate our research basis. In section 3.4, we

analyse the gaps in the existing approaches to the scheduling library construction and task

ontologies. Finally, in section 3.5 we conclude the chapter by indicating what needs to be

done in order to bridge the gaps in the existing scheduling libraries.

3.1 Ontologies and problem-solving methods
In the 1991, the ARPA knowledge sharing effort (Neches et al., 1991) proposed a novel

perspective for knowledge sharing while constructing intelligent systems. Their proposal

was as follows:

“Today’s development process of knowledge-based systems (KBSs) relies on building

knowledge-bases from scratch. To avoid the brittle nature of these KBSs, the process of

constructing KBSs will begin by assembling and subscribing to the existing reusable

components. Therefore, the knowledge engineers can reuse the existing knowledge bases,

thus leaving only with the worry of constructing their specialised reasoning patterns

embodying in PSMs. This would facilitate constructing expanding and enriched systems

much cheaply in terms of time and cost ”.

Chapter 3

In compliance with the above proposal, a system’s reusability can be augmented by the

abstract reusable reasoning patterns underlying a KBS that are usually referred to as a

PSM. Libraries of these reusable PSMs can be constructed to tackle different types of

generic tasks. A formulation of the Generic Tasks approach (Chandrasekaran, 1986) was

particularly instrumental because it highlighted a clear distinction between a task

specification (the problem to be solved) and a method (that can be executed to solve a

task). Each task can be solved by applying different methods, which can further be

decomposed into several (-sub) tasks and (-sub) methods. A knowledge modelling

framework provides a methodology to construct a library that systematically organises

different building-bocks associated with a library. Some influential examples include.

Generic Tasks Structures (Chandrasekaran et a l, 1992), Role-Limiting Methods (Marcus,

1988), Protégé-II (Musen et a l, 1993), CommonKADS (Schreiber et a l, 1994), MIKE

(Angele et a l, 1998), Components of Expertise (Steels, 1990), EXPECT (Swartout and

Gil, 1995), GDM (Terpstra et a l, 1993), VITAL (Domingue et a l, 1993), and Task-

Method-Domain-Application (TMDA) (Motta, 1999).

While constructing a library of reusable components one very important decision

needing to be taken by knowledge engineers is how to represent the acquired knowledge

within a system. Consistently with Newell’s proposal of ‘knowledge level hypothesis’ and

‘principle of rationality’ (cf. Section 1.1), and in line with the work by Motta (1999), Steels

(1990), and Breaker and Wielinga (1985), among others, knowledge can be systematically

represented at the knowledge level independently of its physical realisation in a

computational system that enables a scheduling agent to achieve its reasoning

functionality. Another aspect of the knowledge modelling paradigm is that the KA process

is driven by pre-existing knowledge models, often represented as ontologies (Gruber,

1995). In the following section we review the current research on ontologies.

3.1.1 Ontologies
Ontologies primarily aim at capturing static domain knowledge. They allow knowledge

engineers to represent a commonly agreed conceptualisation of domain knowledge, which

can be shared and reused over wider applications and groups. Ontologies are usually

organised in terms of taxonomies. They consist of the following modelling components:

classes, relations, rules, functions, axioms, and instances (Gruber, 1993). The taxonomic

organisation of the concepts provides a structure for the inheritance mechanism. Relations

represent a specific interaction between different concepts. Functions can be seen as a

special case of relations, where the n-th element of a relationship is unique for its n-1

preceding elements (Gruber, 1993). Axioms are used to express the principles, the rules

4 4

Chapter 3

that are always true in the universe of discourse (Gruber, 1993). More importantly, axioms

detennine the competence of ontologies. Finally, instances are used to represent individual

elements.

According to Gruber (1993) the notion of an ontology can be defined as follows:

“An ontology is an explicit specification of a conceptualisation

Although, Gruber’s viewpoint is the most widely referred one, as argued by Guarino

(1997) the main problem with this definition is that it relies on the notion of

‘conceptualisation’ which is introduced by Genesereth and Nilsson (1987) to formalise the

meanings, whereas in reality the notion of a conceptualisation can only be understood

intuitively. Recently, Poli (2002) raises three questions which should be considered while

constructing ontologies: “what are the boundaries of ontologies?”. That is, what problems

are ontological rather than epistemological, logical, or linguistic, etc. “What are the types

of ontologies?”. Poli proposes the following three types: descriptive, formal, and

formalised, and each category can further be treated as domain specific and domain

independent. Finally, “what is the structure of an ontology?”. Poli suggests that the

structure of an ontology can be defined by the theory of items. Other definitions of

ontologies can be found in (Motta, 1999; van Heijst et a l, 1997; Valente and Breuker,

1996; Borst et a l, 1995; Guarino and Giaretta, 1995; Neches et a l, 1991).

Ontologies can be built by subscribing to the following principles: clarity, coherence,

extendibility, minimal ontological commitments (Gruber, 1993), minimisation of the

semantic distance between sibling concepts (Arpirez-Vega et a l, 1998), and finally

ontological distinction (Borgo et a l, 1996). These principles are described below.

• Clarity: States that the intended meaning should be communicated effectively without

any ambiguity by providing appropriate sufficient and necessary conditions;

• Coherence: States that the internal consistency must be maintained. At least axioms

should maintain logical consistency because they determine the competency of an

ontology;

• Extendibility: States that ontologies should leave scope open to extend the existing

terms such that it does not require much revision of existing definitions;

• Minimal ontological commitments: States that as few claims as possible should be

made while developing an ontology;

• Minimisation of semantic distance between sibling concepts: States that the similar

concepts should be grouped together and represented as subclasses of one class and

45

Chapter 3

should be defined by using the same primitives. On the other hand the concepts that are

different than each other should appear at a distance in a hierarchy;

• Ontological distinction: States that the classes corresponding to different identity

criteria must be disjoint.

Different methodologies have been developed to construct ontologies, including:

Enterprise Ontology (Uschold and King, 1995), TOVE (TOronto Virtual Enterprise)

methodology (Grüninger and Fox, 1994). Bemaras et al. (1996) have presented a

methodology in the domain of electrical networks as a part of ESPIRIT project named

KACTUS. The METHONTOLOGY methodology (Fernandez et al, 1997) enables

ontology building at the knowledge-level and their framework is supported by ODE

(Blazquez et a l, 1998). Finally, the SENSUS methodology (Swartout et a l, 1997) arrived

a year later than METHONTOLOGY.

Here, we do not discuss in detail the different categories and types of ontologies, but

rather concentrate on their classification that is useful to represent the knowledge

associated with a generic task during library constructing. A more detailed discussion

about ontology classification can be found in (Gomez-Perez and Benjamins, 1999).

Ontologies can be classified into the following four broad categories: task ontology,

method ontology, domain ontology, and application ontology. These categories are

described below.

• Task Ontology: Formalises the nature of a generic task by providing different

concepts, relations, function, and axioms, which are associated with it ideally

application domain independently. Motta (1999) defines a task ontology primarily from

the knowledge modelling perspective, whereas Mizoguchi et al. (1995) conceptualises

a task ontology as a result of their interview system named MULTIS (Tijerino and

Mizoguchi, 1993);

• Method ontology: Provides the lexicon necessary to specify the problem-solving

behaviour of a particular method (Musen et a l, 1994; Tijerino and Mizoguchi, 1993),

whereas according to Coelho and Lapalme (1996) a method ontology specifies the

declarative definition of inferences;

• Domain ontology: Represents the knowledge associated with a specific domain, either

in a task-specific or a task-independent way. While a task-specific viewpoint of domain

ontologies is mono-functional, the task-independent viewpoint is generic as it does not

subscribe to any specific task (Motta, 1999). Typical examples of the task-independent

domain ontologies are Cyc (Guha and Lenat, 1990), PhysSys ontology (Borst et al,

4 6

Chapter 3

1995), EngMath (Gruber and Oslen, 1994), time ontology (Pikes and Zhou, 2002),

etc.;

• Application ontology: Contains a set of vocabulary for conceptualising a particular

application (van Heijst et a l, 1997; Gennari et al., 1994). Because these ontologies

concentrate on a specific application of a task they are non-reusable in nature.

Here, we conclude our discussion about the ontologies and in the following section we

provide an overview of the notion of a PSM.

3.1.2 Problem-solving methods

A PSM can be used as a model-based template to direct the KA process (van Heijst et al,

1992) and to support robust and maintainable applications by reuse (Motta, 1999; Marcus,

1988). The notion of a PSM is present in all the knowledge modelling frameworks

enumerated earlier. PSMs describe the inference process underlying a KBS in an

implementation and domain-independent way (Fensel and Benjamins, 1998). For instance,

Clancy (1986) abstracted the problem-solving behaviour exhibited by different rule-based

systems into a common and generic inference pattern called “heuristic classification” at the

knowledge-level.

PSMs can be classified into the following two categories: task-specific and task-

independent, depending upon whether or not they subscribe to a specific class of generic

tasks. McDermott (1988) refers to task-specific methods as strong methods because they

tackle the specific classes of generic tasks. A systematic taxonomic representation of

strong methods can be found in Marcus (1988). Task-independent methods on the other

hand do not subscribe to any specific class of generic task and therefore are usually

referred to as weak methods. The term '‘weak’ here indicates that these methods do not

exhibit any assumptions about the type of task that can be solved by their application. They

rather tackle a problem at a high-level of abstraction, such as search (Newell and Simon,

1976). Fensel and Benjamins (1998) point out that a PSM makes an effective use of the

domain knowledge in order to achieve the goal of a task and based on this viewpoint a

PSM can be characterised as: 1) the specification of inference actions for solving the goal

of a task, 2) the definition of one or more control structures over the actions, and 3) a set of

knowledge roles indicating how domain knowledge is used during its execution.

The most influential stream of research in the field of PSMs is the development of

libraries of PSMs and their reuse. Because PSMs are developed to tackle a specific task, it

is useful to abstract and formulate them at a generic level such that they can be reused to

construct a new PSM quickly. Gomez-Perez and Benjamins (1999) proposes the following

4 7

Chapter 3

categorisation for classifying libraries of PSMs: generality, fonnality, granularity, and size.

We augment this classification by proposing a new category: ^domain specificity^ While

the generality dimension determines whether a library is developed to tackle a specific

generic task, the domain specificity adds another layer of granularity by pointing out

whether an entire library or part of a library is defined to tackle a specific domain. Based

on the domain specificity dimension one can determine whether a library is reusable within

a single domain or the multiple domains of a generic task. For instance, the generality

criterion would highlight a library for the scheduling task, while domain specificity would

provide a more specific pointer stating that a library is in fact constructed to tackle the

production scheduling task, e.g., Hori and Yoshida’s (1998) library. Based on the

generality dimension one can state that a library has wider reusability whilst the reusability

of a library can have reusability within a single domain according to the domain

specificity. The categorisation proposed by Gomez-Perez and Benjamins (1999) is

described below:

• Generality: Determines whether the PSMs are developed to tackle a specific task. The

typical examples of task-specific libraries are diagnosis (Benjamins, 1995), parametric

design (Motta and Zdrahal, 1996), planning (Valente et a l, 1998), assessment (Valente

and Lockenhoff, 1993), and so on;

• Formality: Classifies a library into informal, formal, and implemented ones. Informal

libraries provide a structured textual representation of PSMs (Chandrasekaran, 1990),

formal libraries allows the verification of the properties of PSMs (Benjamins and

Aben, 1997; ten Teije, 1997; Aben, 1993), and implemented libraries provide

operational specification of PSMs (Gennari et a l, 1994; Puerta et a l, 1992);

• Granularity: Determines whether the libraries are developed to tackle a complete task,

such as the parametric design library (Motta and Zdrahal, 1998) or the fine-grained

parts of the task (Aben, 1993). However, many libraries comprise both the types and

the former are built from the latter ones (Motta and Zdrahal, 1998; Barros et a l, 1996;

Benjamins, 1993; Chandrasekaran, 1990);

• Size: Characterises a library based on the number of PSMs included in the library and

determines how many types of tasks it tackles. CommonKADS (Breuker and van de

Velde, 1994) is the most comprehensive library that tackles the following tasks:

diagnosis, prediction of behaviour, assessment, design, planning, assignment and

scheduling, and engineering modelling.

4^

Chapter 3

Because the ultimate aim of this thesis is to construct a generic library of scheduling

PSMs, it is essential to look at the different types of knowledge-intensive PSMs that can be

applied to tackle the scheduling task.

3.1.3 PSMs for the scheduling task

According to Wielinga and Schreiber (1997) different types of configuration processes,

such as assignment, planning, scheduling, configuration, etc. can be treated as synthesis

tasks. The configuration process can be defined as a form of design where a set of

predefined components are given and an assembly of selected components is sought that

satisfies requirements and obeys a set of constraints (Mittal and Frayman, 1989). The

configuration process often assumes a structure of components, where the components may

be objects or processes, symbolic or physical, and the connections that are present among

these components. In the same paper, Wielinga and Schreiber have proposed a taxonomic

representation of the different knowledge-intensive PSMs that can be applied to tackle the

synthesis task. Instances include: Propose and Backtraek (P&B) (Runkel et ah, 1996),

Propose and Revise (P&R) (Marcus and McDermott, 1989), Propose and Exchange (P&E)

(Poeck and Puppe, 1992), Propose and Improve (P&I) (Motta, 1999), Propose and

Genetical-Exchnage (P&GE) (Poeck and Gappa, 1993), etc. At an abstract level, these

PSMs follow the similar philosophy proposed by the Propose-Critique-Modify family of

methods (PCM) (Chandrasekaran, 1990). Figure 3.1 depicts the taxonomic representation

of PSMs proposed by Wielinga and Schreiber (1997).

Synthesis Tasks

Configuration
problem-solving

methods

Transformation-
based methods

Model-based
methods

Uniform methods
Knowledge intensive

methodsConstraint Linear
Programmingsatisfaction

H iera rch ica lCase-based methods PCM-type methods m eth ods

Heuristical Propose & Propose Propose & Propose &
- , . . classification Backtrack & Revise Exchange Im proveVenfy Verify

Figure 3.1. Taxonomy of the methods applicable to the synthesis task.

The PSMs depicted in Figure 3.1 can be classified into the knowledge-intensive ones and

domain-independent uniform methods like, constraint-satisfaction and LP. We are not

interested in the domain-independent methods, because they do not fully exploit domain-

specific knowledge during their problem-solving. Constraint-satisfaction has a long history

49

Chapter 3

as a problem-solving technique to tackle the scheduling task (Cesta et a l, 1999; Beck et

al, 1998; Beck and Fox, 1998; Cheng and Smith, 1995; Dorn and Slany, 1994; Kumar,

1992; Fox and Sadeh, 1990; Fox, 1983). However this uniform approach to modelling fails

to provide a fine-grained epistemological framework to analyse the different knowledge-

intensive tasks take place in seheduling. It is essentially an implementation technique.

Although, the case-based methods can be used effectively to tackle the other types of

tasks, in scheduling they can have limited applicability due to two main reasons. First, they

aim to find the best candidate solution from the set of available solutions; however, in real-

life dynamic and uncertain scheduling domains this issue can act as a bottleneck, because a

scheduler may prefer to rely on the currently available knowledge instead of consulting

past cases. Seeond, case-based methods rely on blame assignment to decide which aspect

of the stored solutions that has caused the constraint violations (Wielinga and Schreiber,

1997). However, in scheduling it is not always possible to find the exact source of

knowledge associated with the culprit decisions, because a combination of several

situations may have contributed to devise a poor solution. Therefore, a scheduler may have

to retract several inter-linking decisions to reach the source of a conflict. Nevertheless, a

scheduling system called CABINS (Miyashita and Sycara, 1994) presents a methodology

for learning a control level model for selection of heuristic repair.

During our library construction we are mainly interested at comprising aforementioned

knowledge-intensive PSMs, due to two main reasons. First, these methods make extensive

use of the domain-specific knowledge during problem-solving. Second, the different

phases involved in these methods can complementarily be used both to construct and repair

a schedule. In this sense they exhibit the characteristics of both constructive and repair

method (Zweben et a l, 1993).

In the following seetion, we review the Propose and Revise method in the context of

scheduling. The development and description of other PSMs can be found in Chapter 7,

where we engineer them as a part of a library.

3.1.3.1 Propose and Revise

The Propose and Revise (P&R) method was originally developed to tackle VT, a system

for elevator configuration (Marcus and McDermott, 1989). Because one application could

not prove the generic nature of this method, it was modified to tackle the production

scheduling problem (Stout et a l, 1988). Later it was integrated with the KA tool called

SALT (Marcus and McDermott, 1989). This method decomposes the scheduling task into

three sub-tasks: 1) propose an extension to a sehedule by applying procedures, 2) check

50

Chapter 3

the currently extended schedule for constraint violations, and 3) revise a schedule in order

to fix the constraint violations by applying appropriate fix strategy.

P&R does not rely on the explicit information about all the components and their

connections. In the propose phase, the assignment of jobs to resources and time ranges is

achieved by applying the procedures. The jobs can be selected based on the domain-

specific and search-control knowledge. After an assignment of each job the verification

phase is invoked to evaluate the constraint violations. Usually, the constraints are evaluated

based on the domain-specific perspective. If constraint violations occur during the propose

phase, then the revise phase is introduced to tackle the constraint violations by applying the

fixes. Because of the antagonistic nature of the constraints in scheduling, the revise phase is

invoked only after a complete schedule is devised (Stout et a l, 1988). However, Motta and

Zdrahal (1998) and Zdrahal and Motta (1995) have proposed the following two strategies

to fix constraint violations: extend-model-then-revise (EMR) and complete-model-then-

revise (CMR) in the context of the parametric design. EMR fix the constraint violations as

soon as they occur while constructing a solution, whereas the constraint violations are

fixed in CMR only when a complete solution is devised. The order over application of

different fixes can be determined based on the application specific knowledge. According

to Wielinga and Schreiber (1997), the main limitation of the P&R method is that fix

application usually relies on the heuristic knowledge and therefore it can be biased towards

a specific solution types.

3.2 Existing libraries for scheduling
Here, we review the following scheduling libraries that were developed in the past: the

production scheduling library (Hori and Yoshida, 1998), CommonKADS library for

assignment and scheduling tasks (Sundin, 1994), Le Pape’s library of constraint-based

scheduling (Le Pape, 1994), and MULTIS-II (Tijerino and Mizoguchi, 1993).

3.2.1 Hori and Yoshida’s library for production scheduling

Hori and Yoshida (1998) have proposed a domain-specific library for the production

scheduling task. The library construction in their approach subscribes to a bottom-up

approach, whereby the knowledge requirements of each problem-solver are realised based

on the production scheduling domain. The library is organised into three main components

- the task level, the problem-solving level, and the domain level. At the task level, the

scheduling task is formalised by its task ontology. Because the task ontology component

will be discussed separately in section 3.3, here, we describe the other two components.

51

Chapter 3

The problem-solving level consists of different tasks and methods and they are organised

according to the data flow (i.e., eontrol knowledge) among them. The control knowledge

among different problem-solving inferences is clarified based on a domain model of

production scheduling. In our perspective, the main problem of this kind of commitment is

that it makes difficult to identify the knowledge requirements of the different problem

solving tasks and methods independent of the domain. Thus, the cost of reuse is very high.

In line with the earlier approaches to library construction (Motta and Zdrahal, 1996;

Valenete et a l, 1998; and Valente and Lockenhoff, 1993), this library provides a clean

separation between the problem-solving and domain knowledge. The scheduling engine

consists of the two sub-systems: the dispatch method and the assignment method.

The dispatching method provides a high-level eontrol structure that determines the

priority of each lot instead of concentrating on the assignment of individual units, which is

achieved by the following three methods: reset, removeTop, and isEmpty. First, the reset

method creates an initial queue of all the lots that are still unassigned in a schedule; then

the removeTop method returns a lot with the highest priority; and finally the isEmpty

method is invoked after eaeh cycle to check whether a queue is empty, otherwise it invokes

a cycle.

The assignment method mainly has to do with the actual scheduling operation at a more,

fine-grained level by subscribing to the forward seheduling strategy, which helps to

prevent units being delayed. This method assigns units to resources by fixing their start and

end times. The assignment is accomplished by the following three operations: reset,

isDone, and doNext. The reset initialises the unit queue, the isDone checks whether all the

units in a queue are assigned, and otherwise the doNext operation executes assignment of a

focal unit to the selected resource. The method checkUnit is invoked to validate whether

the focal unit assignment complies with the eonstraints, and in case of failing to maintain

the constraints, it analyses how to fix them. The constraint violation associated with the

assignment of a time range is dealt with the method modifyTime. All the outstanding units

are then assigned by using the backward scheduling strategy based on their due dates,

which help to reduce the in-process inventory. Although, this library validates a solution

schedule against completion and constraint violation, it fails to reason about two other

important schedule validation criteria, requirement violation and optimisation.

3.2.2 CommonKADS library
CommonKADS is a comprehensive methodology that supports the construction of libraries

of the task specific PSMs. It also tackles assignment and scheduling tasks. However, it

only consists of the P&R method (Marcus and McDermott, 1989). The detailed discussion

52

Chapter 3

on the KADS model of the scheduling task can be found in (Balder et a l, 1993). The

CommonKADS library subscribes to a top-down approach of the library construction,

whereby a high level task is decomposed into (-sub) tasks and (-sub) methods. This

decomposition structure is similar in spirit to the generic tasks proposal (Chandrasekaran,

1986).

The CommonKADS library consists of the following two variants of the P&R method:

simple P&R and hierarchical P&R. The former one is similar to the original description of

the P&R method (cf. Section 3.1.3.1). In the hierarchical P&R, first high-level units (jobs)

are assigned to the high-level resources. In the propose phase first all the unassigned units

are sequenced based on a certain ordering criteria, and then the function select unit selects

a candidate-unit for its assignment. The funetion propose-assignment executes assignment

of a selected candidate-unit to resources by two methods: one-step resource matching and

step-wise resource matching. The former method matches the resource requirement of a

unit directly against all the resources, whereas the latter method matches the resource

requirement against one of the several resources assignable to a unit. The step-wise

resource matching method is particularly useful when several resources can be assigned

to a unit.

The revise phase is invoked if any constraint violation occurs while assigning the units.

A flawed set of assignments are revised by the function modify. The constraint violations

are fixed by using one of the following methods: re-try-the-Iast-assignment, local-

exchange, global-exchange, generic-fixes, and scaling-of-constraints. The method re-

try-the-last-assignment falls back to the last consistent assignment of a unit. The local-

exchange (Poeck and Puppe, 1992) fixes the constraint violations by exchanging the

assignment of the units in conflict. Finally, the global exchange strategy performs a series

of exchanges to fix constraint violations.

Because each method in their library is realised by its direct association with the high-

level task, it makes difficult to realise how the existing inferences can be reused or to

construct a new PSM quickly. Moreover, because the CommonKADS library consists of

the P&R method, the only schedule validation criteria that can be tackled are completion

and constraint violation, but it fails to tackle requirement violation and optimisation.

3.2.3 Constraint satisfaction approach for resource allocation scheduling
As deseribed earlier, constraint satisfaction has long been used as problem-solving

technique for scheduling (Domdorf et a l, 2000; Cesta et a l, 1999; Beck et a l, 1998; Beck

and Fox, 1998; Cheng and Smith, 1995; Dorn and Slany, 1994; Fox and Sadeh, 1990; Fox,

53

Chapter 3

1983). In line with the traditional approaches, ILOG SCHEDULE also subseribes to the

constraint satisfaction as its problem-solving strategy to tackle the resource allocation

problem. ILOG SCHEDULE is built on top of the SOLVER, which is a generic software

tool that provides the object-oriented programming environment.

The resource allocation problem exhibits the following characteristics: 1) the availability

of each resource varies over time, independently of the availability of other resource-types,

2) the resources can be aggregated into their more abstract forms, and 3) the resource

availability at some point in time depends on the availability of other resources at other

points .in time (Baptiste and Le Pape, 1995). To reconcile these three characteristics of the

problem, ILOG SCHEDULE consists of a generic framework of the resource time-table. It

maintains the information about resource utilisation and resource availability over time.

Two types of implementations are proposed for representing the resource time table in

ILOG SCHEDULE. The first implementation assumes a discrete representation of the

time. It also keeps a history about maintaining the status of a variable at any instance of

time over the complete time interval. The second implementation does not make any

assumptions about the nature of time, whether discrete or dense, but simply maintains a

history about the time when the status of a variable changed from unassigned to assigned

one. These two implementations are referred to as the discrete array and the sequential

table respectively. The assignment of an activity to resources is achieved by the second

mechanism and by complying with a generic disjunctive constraint. A disjunctive

constraint restricts the overlapping of incompatible activities in time. Finally, the third

mechanism called edge-finding takes as an input arbitrary tuples of activities and makes

sure that a certain activity must precede or succeed other activity. This mechanism is also

responsible for assigning a precise earliest and latest start and end times to jobs and

activities.

The nature of the resource allocation problem in ILOG SCHEDULE is formalised by the

objeet model. The resources and activities are two central concepts in the resource

alloeation problem. The notion of a schedule in the library is represented by the class

Ctschedule. It is represented by a set of activities, a set of resourees, and a time interval

covered by a sehedule. The notion of resource is formalised by defining the class

CtResource. The resource capacity constraint is formulated by the following two

methods: the cumulative formulation and the disjunctive formulation. The class

ctActivity defines the notion of an activity. It is represented by a start time, end time,

and duration. Finally, the duration of an aetivity is directly proportional to the amount of

resource capaeity that is consumed by each activity during its execution.

54

Chapter 3

3.2.4 MULTIS-II

MULTIS-II proposes a conceptual programming environment called CLEPE, which allow

its end-users to incorporate their problem-solving at the eoneeptual level with the problem

solving inferences of a system. The authors claim the following three advantages of the

CLEPE environment: 1) it provides human-friendly primitives whereby the end-users can

quickly describe their problem-solving process, 2) a task ontology within their system

simulates a problem-solving process at an abstract level, and 3) it provides the environment

for an ontology author to construct their own ontology. The CLEPE environment is built as

the Generic Process Network (GPN), where each node in GPN represents a generic

process and a link between any two generic processes represent a control flow among

them. In the following paragraph we describe the problem-solving process adopted in

MULTIS-II.

The domain specific problem-solving conceptualisation of the end users is translated at

the task and problem-solving level by using the ‘task-domain binding mechanisms \ These

mechanisms act as glue to integrate the domain speeiflc concepts of end users with the task

speeific ones. Having translated the domain specific conceptualisations, the problem

solving process of MULTIS-II is invoked. Below we describe the problem-solving proeess

of MULTIS-II during any k̂ ̂ iteration. The complete process is iterated until a complete

schedule is devised.

1. Initially, all the unassigned jobs in a schedule are collected and grouped together based

on their similarity measure;

2. All the resources are then elassifled by using the task classify-schedule-resource;

3. The jobs collected in step 1 are then sorted in a particular order by complying with the

domain-specific specifications, such as a job with earliest due-date, etc.;

4. All the classified resourees are then sequeneed in a certain order. MULTIS-II classify

resources based on their ineremental order from least to highest quantity of load

handled by the resources;

5. The task take-job makes a certain job from the list of unassigned jobs as a focal job. A

certain job is made a focal candidate aceording to the domain-specific knowledge (cf.

point 3). Having made a certain job as a focal job, the task pickup-job is invoked to

piekup a focal job;

6. Once a foeal job is selected then all the resources that can be assigned to a focal job are

classified in an incremental order that represents the amount of load that can be

handled by a resource. A candidate resouree from the list of classified resources is

55

Chapter 3

selected by the task pickup-RSC. This task subscribes to a default eriterion that selects

a resource with the lowest load. The task pickup-RSC uses a causal relation named

select to select a resource;

7. Finally, the task assign-RCP-to-RSC takes as an input a focal job and a selected

resource and executes their assignment. The relation called consists-of represents a

permanent assignment of a job to its resouree.

Once an assignment of the currently selected job is completed then the load over other

resources is updated by the task update-load. The complete procedure is iterated in (k+l)‘*̂

iteration until all the jobs in a schedule are assigned to devise a complete schedule. Each

newly assigned job is appended to the assignment-set, which represents a final solution.

In the following section we review the existing scheduling task ontologies.

3.3 Existing scheduling task ontologies
While reviewing the existing seheduling task ontologies we primarily focus on analysing

the following characteristics: different concepts used to formalise the scheduling task,

domain-specificity or independence of these task ontologies, and their subscription towards

particular problem-solving technique. Here, we do not review generic enterprise resource

ontology (Fadel et a l, 1994) and common ontology defined for the DARPA/Rome

planning and scheduling initiative (Allen and Lehrer, 1992), because instead of providing a

complete task ontological framework these initiatives rather concentrate on formalising

specific scheduling components. Our review consists of the job assignment task ontology

(Hori et a l, 1995; Hama et a l, 1992a; Hama et a l, 1992b), the MULTIS ontology

(Mizoguchi et a l, 1995), and the OZONE ontology (Smith and Becker, 1997).

3.3.1 Job assignment task ontology

The job assignment task ontology was developed since 1987 under the project named

CAKE (Hori et al., 1994). Currently, it is residing on the Ontolingua server^ (Farquhar et

a l, 1997). The job assignment task can be defined as “assigning all given jobs to the

available resources within the time range, while satisfying various constraints ”. In their

framework the scheduling task can be realised by the following four components: job,

resource, time-range, and constraint. The concepts job, resource, and time-range are

represented as entities and the notions of assignment and constraints as relations.

' Please refer to the following URL: http://www-ksl.stanford.edu/knowledge-sharing/ontologies/html/iob-

assignment-task/index.html

5 6

http://www-ksl.stanford.edu/knowledge-sharing/ontologies/html/iob-

Chapter 3

The concept job denotes an entity that can be assigned over resources and has a speeific

time slot. It is further classified into unitary-job and aggregated-job. The class job has the

following types of subclasses: temporally-fixed-job-class, fixed-length-job-class, and

unit-length-job-class. The function job.time-range is defined which allows to assign a

time range to a job. To determine the temporal order among any two jobs the following

relations are defined among any two jobs: unordered set, ordered set, and interval. Table

3.1 report attributes of the class job and its subclasses.

Table 3.1. Attributes of the class job and its subclasses.

Class Attributes

Job job-name, job-type, job-length, job-time-range

Unitary-job Job-member-of, job-assignable-resource

Aggregated-job job-member-set

The coneept resource defines an entity to which job can be assigned. The class resource

is further specialised into two subelasses: unitary-resource and aggregated-resource. The

former type of resource cannot be divided into smaller units, whereas the latter type of

resource denotes a group of unitary and aggregated resources. Table 3.2 show the attributes

of the class resource and its subclasses.

Table 3.2. Attributes of the class resource and its subclasses.

Class Attribute

Resource Resource-name, resource-type

Unitary-resource Resource-member-of, assignable-resource-of

Aggregate-resource Resource-member-set

The concept time-range denotes a certain period of time to which a job can be assigned.

A job time range is represented in terms of start-time, end-time, and unit of time. This task

ontology subscribes to Meng and Sullivan (1991) (cf. Section 2.3.3) to represent the

temporal relations among jobs.

The class assignment represents an assignment of a unitary-job to resources and time

ranges, which is achieved by the function assigned-resource and assigned-time-range

respectively.

In their framework, the constraints are classified into direct constraint and indirect

constraint. The former type of constraint is classified based on whether it restricts an

assignment of a resource or a time range. The latter type of constraint is classified

according to its characteristics in scheduling, sueh as job-speeific and timetable-specifie.

57

Chapter 3

This task ontology validates a solution schedule only against the completion and constraint

violation, but it fails to take into account requirement violation and optimisation.

We see this task ontology as a straightforward framework that models the job assignment

task. It formalises the job assignment task according to a job-based perspective (Fox,

1983). This task ontology has limited reusability beeause it subseribes to the job

assignment task. Moreover, the level of granularity of different concepts in this task

ontology is very coarse and their fine-grained analysis is typically missing. Therefore, it

does not provide an adequate framework to characterise the scheduling task precisely.

Beeause the modelling definitions of the concepts do not include any slots, it is difficult to

realise how application specification knowledge can be acquired by filling the slots of

these definitions. Finally, a schedule validation criterion fails to reason about requirement

violation and optimisation issues because the relevant concepts, such as requirements and

cost that are required to validate them are missing from their framework.

3.3.2 OZONE
The OZONE ontology was developed at the Carnegie Mellon University for configuring a

constraint-based scheduling system. It is a result of a prior experience in building planning

and scheduling systems from the different domains, such as manufacturing production

scheduling (Smith, 1994), space mission planning (Muscettola et al., 1992), military

evacuation, and aero-medical evacuation (re)-planning (Lessila et a l, 1996). OZONE can

be seen as a meta-model that defines the scheduling task as a process of feasibly

synehronising the use of resources by activities to satisfy their demands over time. The

OZONE ontology presumes the underlying constraint-directed search architecture (Lessila

et a l, 1996; Smith, 1994) and provides the neeessary base concepts.

The OZONE ontology subscribes to the job-based seheduling perspeetive (Fox, 1983). It

formalises the seheduling task based on the following concepts: demand, product, activity,

resource, and constraint. Each concept is represented through the inclusion of properties

and capabilities. While the former corresponds to the attributes of concepts and are further

classified into static and dynamic properties, the latter one represents a problem-solving

behaviour of the concepts. Table 3.3 define important coneepts along with their properties.

Table 3.3. Main components in the OZONE ontology.

Components Definition Properties

Demands It is a request for goods,

services, or products

Product, release or due date, temporal

relations, priority, and activities

Products It is goods or services provided Activities and resources

5,5

Chapter 3

by the system of interest

Resources It is defined as an entity that

supports execution of activities

Resource capacity and resource

availability

Activities It represents a process

executed over a certain time

interval

Start and end time, assigned resources,

duration, resource-requirements, a set

of temporal relations, demand, status

Constraints Constraint restricts the

assignment of activities

The resource is a central concept in the OZONE ontology. It is further classified into

capacitated-resources and discrete-state-resources. The former type is further divided

into: reusable-resource and consumable-resource depending upon whether their capacity

can be eonsumed by the activities. Based on the resource capacity, the resources are

categorised into the physical structure, such as atomic-resource and aggregate-resource.

The atomic-resource is divided into unit-capacity-resource, batch-capacity, and the

aggregate-resource is classified into homogeneous-resource-pool, simple-capacity-

pool, structure-capacity-pool, and heterogeneous-resource-pool. One of the main

limitations of this ontology is that the similar type of analysis like that of the concept

resource is missing to conceptualise other concepts.

The notion of constraint is classified into hard constraint and soft constraint depending

upon whether it can be violated during schedule construction. Designation of the soft

constraints is accompanied by a specification of objective or preference (e.g., relaxation of

a due date).

This ontology subscribes to Allen’s (1983) temporal relations to represent the temporal

relations among any two activities. The OZONE ontology provides only completion and

constraint violation validation criteria to evaluate a solution schedule. However, because

the concepts, such as requirement and cost are completely missing from their framework

they do not hold any accountability to validate a solution schedule against requirement

violation or optimisation.

3.3.3 MULTIS

The MULTIS task ontology was developed within MULTIS project at the Osaka

University since 1987 by the group of Riichiro Mizoguchi. The MULTIS task ontology

was developed through a task analysis interview system for the general class of scheduling

problem. In their framework the notion of task ontology can be conceived in two ways: 1)

task-subtask decomposition along with task categorisation and 2) an ontology to specify

59

Chapter 3

the problem solving process. MULTIS is a “generic vocabulary” that consists of generic

nouns, generic verbs, and generic adjectives along with other task related concepts. The

generic process is a combination of verbs and nouns that occur in scheduling. More than

one generie process creates a network of processes referred to as GPN, whieh is a

knowledge-level representation of the scheduling task. The MULTIS task ontology

consists of the following four concepts:

• Generic nouns: Represent the objects that are necessary in the problem-solving

process, such as schedule recipient (e.g., job, order, etc.), schedule resource (e.g., line,

machine, etc.), and schedule representation.

• Generic verbs: Represent the primitive actions that are executed during problem

solving. Typical examples of the generic verbs include assign, classify, select, pick up,

relax, and neglect.

• Generic adjectives: Modifies the pre-existing status of different objects in a schedule,

such as assigned job, unassigned job, and the last (job).

• Others: These are the words which are specific for evaluating the scheduling task, e.g.,

strong constraint, weak constraint, constraint predicates and attributes.

MULTIS characterises the scheduling task based on the following four basic concepts:

schedule recipient (RCP) (e.g., a job or an order), schedule resource (RSC), times lot, and

constraint. RCP is a meta-level concept that denotes an entity that can be assigned to RSC

and time slot. Different relations are defined over RCPs, such as assigned/unassigned RCP,

previous, last, and next. These relations are useful to determine the status of a RCP while

constructing a schedule, i.e. whether a RCP is assigned (unassigned) or to represent the

temporal relations among them. The class RCP-GRP group different RCPs together based

on their similarity measure. RSC indicates the entity on which RCP can be assigned, (e.g. a

machine) for it accomplishment. RSCs of similar functionality are grouped together into

the class RSC-GRP. The notion of a time-slot indicates a place where RCP can be assigned

to RSC for its execution. Two relations are defined namely time available and assigned

time which represents the status of a time-slot indicating whether it is available or assigned

to RCP. The assignment of RCP to RSC and time-slot can be restricted by the constraints,

which are classified into strong constraints (hard) and weak constraints (soft). MULTIS

solution criterion tries to optimise the priority of RCPs in a schedule. A solution schedule

is represented in terms of generic noun named schedule, which represents an assignment of

RSP to RSC within a specific timeslot. The ftinction named assign-RSC schedule RCP

60

Chapter 3

executes an assignment of RCP to RSC. Finally, a solution sehedule in the MULTIS

ontology is validated for the eompletion and constraint satisfaction.

The MULTIS ontology also provides vocabulary to characterise the problem-solving

behaviour of the scheduling task. For instance, the task classify-schedule-resource

classifies RSC according to its type, the task sequence-schedule-recipient sequence RCPs

according to their earliest start time or earliest due date, the task pickup-RCP selects a

candidate RCP, and finally the select-RSC selects a RSC for executing RCP.

In sum, this task ontology characterises the scheduling task at generic level without

subscribing to any particular application domain of scheduling. However, MULTIS

provides only a partial characterisation of the scheduling task, mainly because concepts

such as activities, requirements, and cost are missing in their proposal. As a result,

MULTIS framework fails to deal with requirement violations and optimisation issues.

More importantly, because MULTIS framework comprises a vocabulary both for a task

specification and for describing problem-solving, it blurs a clean distinction between the

task ontology to formalise a generic task and method ontology to characterise its problem

solving behaviour. Consistently with other approaches to knowledge modelling, such as

KADS (Breuker and Wielinga, 1985), Generic Tasks (Chandrasekaran, 1986), or

Components of Expertise (Steels, 1990), we believe that maintaining a clean separation

between task characterisation and problem-solving model facilitates the reusability of these

components.

3.3.4 Summary so-far

Having discussed different proposals to formalise the scheduling task, in Table 3.4 we

provide a comparative analysis of all task ontologies that are discussed. The comparison is

performed on the following four dimensions: first, we compare these task ontologies based

on the different components involved in them. The ‘V ’ sign in Table 3.4 indicate whether a

specific concept is present in a task ontology while formalising the scheduling task;

otherwise, it is indicated by the ‘X’ sign. Second, the domain specificity column indicates

if a task ontology subscribes to a specific domain of scheduling. Third, the problem

solving specificity column indicates whether a task ontology subscribes to any problem

solving technique that can be used to solve the scheduling task. Finally, the schedule

validity column indicates the different types of schedule tasks that can be validated by a

task ontology. The abbreviations in Table 3.4 represent the following components: J (job).

It (job-type), A (aetivity). At (aetivity-type), R (resource), Rt (resource-type), C

(constraint), R (requirement), P (preference), Cs (cost).

61

Chapter 3
Table 3.4. Comparison between different task ontologies.

Task

ontology

Components in the task ontology

Jt R Rt R

Domain

specificity

Problem

solving

specificity

Schedule

validity

Job

Assignment

V V X X V V V X X X Job

assignment

task

Non

generic

Complete

and

consistent

OZONE X X V X V X V X V X Resource

allocation

Assumes

constraint-

based

framework

of

scheduling

Complete

and

consistent

MULTIS V X X X V X V X V X No Non

generic

Complete

and

consistent

The literature review presented in the previous two sections highlighted the strengths and

v/eaknesses in the existing scheduling libraries and task ontologies. Based on this insight of

the field, in the following section we establish our research objectives by analysing the

weaknesses in the existing approaches.

3.4 Legacy of the literature review: gap analysis
The limitations that will be discussed in the following subsections will allow us to form the

basis of our research. Our aim will be to tackle these limitations by developing a generic

library of scheduling PSMs.

3.4.1 Limitations in the existing scheduling libraries
The limitations that we observed in the existing scheduling libraries can be classified into

the following four categories: 1) partial coverage of knowledge-intensive PSMs, 2) domain

specificity, 3) partial coverage to validate different areas of the scheduling task, and 4)

unsuitability for KA.

3.4.1.1 Partial coverage of knowledge-intensive methods

The existing scheduling libraries fail to provide a comprehensive coverage to the different

knowledge-intensive methods enumerated in section 3.1.3. For instance, CommonKADS

(Sundin, 1994) is the only library that comprises of the P&R method, but it fails to provide

any accountability for the other methods such as P&B (Runkel et ah, 1994), P&E (Poeck

and Puppe, 1992), P&I (Motta, 1999), etc. Other libraries in the field (Hori and Yoshida,

62

Chapter 3

1998; Le Pape, 1994; Tijerino and Mizoguchi, 1993) fail to provide any coverage to these

knowledge-intensive PSMs. Because these PSMs make heavy use of the knowledge during

their construction, the knowledge roles^ associated with these libraries can be realised by

the domain specific knowledge and it could facilitate KA. More importantly, different

phases involved in these PSMs can cover and reason about different types of scheduling

tasks, such as completion, constraint and requirement violation, and optimisation.

3A. 1.2 Domain specificity

Some of the existing scheduling libraries (Hori and Yoshida, 1998 and Le Pape, 1994)

tackle the scheduling task in terms of a specific domain, which limits their reusability. For

instance, Hori and Yoshida's library tackles the production scheduling task while Le

Pape’s library deals with the resource allocation problem. Hence, these libraries cannot be

reused over wider domains. The domain specific nature of a system also affects

maintenance. As it has been pointed by (Tu et al., 1995), in the lifecycle of a system the

task requirements and the available knowledge are likely to change over time, and

therefore the maintenance of a monolithic system is difficult. Ideally, we would like to

construct a library whose components can provide a wide ‘horizontal cover’ for the

different scheduling domains.

3.4.1.3 Partiai coverage to validate different areas of the scheduling task

As described earlier in section 3.4.1.1, because all the existing scheduling libraries provide

a partial coverage to the knowledge-intensive PSMs, they cannot cover and reason about

all the validation areas crucial to scheduling. For instance, the problem-solvers from all the

existing libraries primarily focus on validating the scheduling task against completion and

constraint violation, but they do not provide any mechanism for dealing with requirement

violation and optimisation issues.

3.4.1.4 Unsuitabiiity for KA

Some of the existing proposals (Le Papa, 1994) subscribe to a specific problem-solving

technique, such as constraint satisfaction and therefore are unsuitable for KA. The

constraint satisfaction approach to problem-solving mainly focuses on developing

sophisticated but domain independent algorithms that could solve a problem quickly.

Flowever, this domain independence makes it difficult to realise what roles the domain

 ̂ In compliance with the Generic Tasks approach (Chandrasekaran, 1986) a top-level task (which in our case

is the scheduling task) can be decomposed into a small number of sub-tasks and sub-methods can be

proposed to achieve these tasks. These tasks require the application domain specific static and dynamic

knowledge for their execution. These knowledge pieces essentially represent the abstract names of data

objects that represent the role o f these objects in the reasoning steps.

63

Chapter 3

knowledge play while executing the inference actions of PSMs. The knowledge roles for

instance can efficiently be used to achieve the goals of tasks through the application of the

domain knowledge (Fensel and Straatman, 1998). A PSM that makes effective use of the

domain-knowledge can be used to achieve a crucial role in KA. Finally, the constraint

satisfaction approach of problem solving does not provide a fine-grained analysis about the

different knowledge-intensive tasks occur in scheduling. It is essentially an implementation

technique.

In the following section we highlight the limitations of the existing task ontologies.

3.4.2 Limitations in the existing task ontologies of scheduling
In our viewpoint the scheduling task ontologies discussed in Section 3.3 fail to provide

comprehensive results due to the following reasons: 1) insufficient degree of formalism, 2)

domain specificity, 3) commitment to specific problem-solving technique, 4) incomplete

characterisation of the scheduling task, and 5) incomplete validation criteria for the

scheduling task.

3.4.2.1 Insufficient degree of formalisation

The definitions of the important concepts in existing task ontologies (Hama et a/., 1992a,

b; Mizoguchi et a l, 1995; Smith and Becker, 1997) do not provide the required level of

detail and formalism to conceptualise the scheduling task. More importantly, the properties

of these concepts are represented often at a eoarse-grained level. For instance, in the

satellite scheduling application (cf. Section 8.1) each satellite (i.e., jobs) has a specific

requirement for the antennas (i.e., resources) on which they can be assigned to ensure

earth-satellite communication activity, each satellite also has a specific time range within

whieh these communication activities need to be completed, and a duration of these

communication activities. And it is difficult to realise how this application-specific

knowledge can be acquired if the class properties are coarse-grained in nature. To clarify

this point, we will take a knowledge modelling definition of the concept job and resource

from the job assignment task ontology^, which is the Ontolingua specification (Farquhar et

a l, 1997).

 ̂ These definitions are taken from the following URL: http://www-ksl.stanford.edu/knowledge-

sharing/ontologies/html/iob-assignment-task/iob-assignment-task.lisp.html

64

http://www-ksl.stanford.edu/knowledge-

Chapter 3

(define-class JOB (?job)
:def (source ?job))

(define-class RESOURCE (?resource)
:def (target ?resource))

It can be realised from the above definitions that such a type of conceptualisation does

not provide enough expressiveness to capture a particular viewpoint over scheduling

precisely. Moreover, because these definitions do not have any slots associated with them

to represent the properties of the concepts, it becomes difficult to acquire the application

specific knowledge by filling the slots of these definitions.

3.4.2.2 Domain specificity

As it can be observed from Table 3.4, some of the scheduling task ontologies (Hama et a l,

1992a, b; Smith and Becker, 1997) subscribe to the specific scheduling domains. A domain

specificity of these task ontologies restricts their reusability in a single domain. Therefore,

new task ontological model has to be built from scratch every time the domain changes.

3.4.23 Commitment to specific problem-solving technique

Some of the existing task ontologies (Smith and Becker, 1997) assume the existence of a

particular problem-solving technique while characterising the scheduling task. For

instance, the OZONE framework assumes an underlying constraint-directed search as its

problem-solving technique (cf. Table 3.4). The disadvantage of subscribing to a particular

problem-solving technique is that while characterising the scheduling task the important

conceptual distinctions are not considered, if they are not directly supported by the

problem-solving environment. In line with the structured approaches to knowledge

modelling, such as CommonKADS (Schreiber et a l, 1994), TMDA (Motta, 1999), etc.,

our aim is to provide a clean separation between the task analysis and problem-solving

phases.

3.4.2.4 incomplete characterisation of the scheduiing task

As it can be observed from Table 3.4, the existing approaches (Hama et a l, 1992a, b;

Mizoguchi et aï., 1995; Smith and Becker, 1997) fail to provide a comprehensive analysis

of all the important eoncepts, such as activity, requirement, preference, cots, etc. necessary

to characterise the scheduling task. In some cases, when they take into aecount most

commonly observed eoncepts in scheduling, sueh as job, resource, etc., then their

representation into specific forms, such as job-type, resource-type, etc. is typically missing.

As a result, such task ontological frameworks fail to capture the scheduling task by teasing

out important conceptual distinctions exits in different scheduling environments. For

instance, in a manufacturing environment, the notion of a maehining operation can be

represented by using a concept job, but a more specific type of machining operation, such

65

Chapter 3

as drilling machining can only be conceptualised if the concept like job-type is available in

a task ontology.

3.4.2.5 Incomplete validation criteria for the scheduling task

The solution criteria of all the existing task ontologies validate a solution schedule only

against completion and constraint violation (cf. Table 3.4), but they fail to deal with

requirement violations or optimisation issues. These are important notions whieh provide a

richer and more exhaustive evaluation basis for a sehedule to become a valid solution.

3.5 What needs to be done?
To overcome the limitations exhibited by the existing reusable library components of

scheduling (cf. Section 3.4.1 and 3.4.2), in our approach we aim to construct a task-specific

but application domain independent library of scheduling PSMs. Consistently with the

earlier approaches to the library construction, such as parametric design (Motta, 1999),

diagnosis (Benjamins, 1995), CommonKADS (Breuker and Van de Velde, 1994), which

subscribe to the knowledge modelling framework, our library will be organised according

to a knowledge modelling framework. In partieular, the TMDA framework (Motta, 1999)

will allow us to organise our library systematically in terms of task coinponent, method

component, domain component, and application component. In compliance with this

organisation, we first construct a generic scheduling task ontology that aims at overcoming

the limitations observed in the existing task ontologies (cf. Section 3.4.2). Then we

develop a generic problem-solving model of scheduling that provides a high-level

abstraction of all the knowledge-intensive tasks and methods necessary to construct more

complete problem solvers for scheduling. These high-level tasks and methods will be

reused to engineer more specialised PSMs. Our aim is to provide a comprehensive

coverage to all the PSMs that are enumerated in Section 3.1.3. Finally to confirm its

generic nature, our library will be validated on scheduling applications from different

domains.

In the following chapter, we provide a detailed discussion about our library architecture.

6 6

Chapter 4

ARCHITECTURE OF THE SCHEDULING LIBRARY

This chapter presents the architecture of our library, which is constructed by instantiating

the TMDA (Motta, 1999) knowledge modelling framework. This approach enables us to

explicitly specify the principles and assumptions underlying our library (van Heijst, 1995),

which provides both analytical and engineering foundations for scheduling. Analytically, it

exhibits a nice integration of various techniques that have been developed in scheduling

research and also provides an insight into the various components necessary to scheduling

systems. From the engineering perspective, our library offers support for the rapid

construction of scheduling applications in different domains.

The content of the chapter is organised as follows. In the following section we provide a

brief overview of the research issues which the library aims to address. Then in section 4.2,

we describe our rationale for subscribing to the TMDA knowledge modelling framework.

In section 4.3, we discuss the different components of our library: the task, method,

domain, and application level. In section 4.4, we characterise scheduling in terms of search

problem-solving. In section 4.5, we introduce the OCML (Motta, 1999) language, which

will be used as our knowledge modelling language to specify the library. Finally, in section

4.6 we summarise the main points from this chapter.

4.1 Statement of the research objectives
Here, we state the key objectives that our library is designed to achieve to overcome the

limitations observed in existing approaches to the construction of reusable components for

scheduling problem-solving (cf. Sections 3.4.1 and 3.4.2).

• The ultimate aim of our thesis is to construct a task specific and domain independent

library of scheduling PSMs. Because our library is domain independent, it not only

overcomes the inflexibility associated with the existing domain specific approaches

(Hori and Yoshida, 1998; Le Pape, 1994) but is also easier to maintain (Tu et a l,

1995);

• To overcome the limitations pointed out in section 3.4.2 in the existing scheduling task

ontologies (Hama et a l, 1992a, b; Mizoguchi et a l, 1995; Smith and Becker, 1997) our

task ontology obeys the following eriteria: i) it is reusable across scheduling domains

and independent of any problem-solving technique that can be used to tackle the

scheduling task; ii) it provides a detailed specification of all the components that are

Chapter 4

essential to formalise the scheduling task; and iii) it provides a comprehensive set of

notions to be able to characterise the different types of schedules;

• At the method level, in line with several earlier proposals (Motta, 1999; Musen et al,

1994; Runkel and Birmingham, 1993; Chandrasekaran et a l, 1992; Wielinga et al.,

1992; Steels, 1990) our aim is to construct a reasoning component of a library, whereby

first a generic model of scheduling problem-solving will be constructed. A generic

model of scheduling problem-solving abstracts from the various specific techniques

and provides a detailed breakdown of the various tasks and methods carried out in

scheduling problem-solving. Our aim is to re-engineer several knowledge-intensive

PSMs, such as Propose & Improve (Motta, 1999), Propose & Backtrack (Runkel et al,

1994), Propose & Revise (Marcus and McDermott, 1989), Propose & Exchange (Poeck

and Puppe, 1992), Propose & Genetical-Exchange (Poeck and Gappa, 1993) simply by

reusing and specialising the small-grained tasks and methods defined in generic model

of scheduling problem-solving. Because our library aims at providing a comprehensive

coverage of different scheduling PSMs, it can cover and reason about all the validation

areas crucial to scheduling, such as completion, constraint violation, requirement

violation, and optimisation; •

• We also aim to facilitate the KA in a way similar to that provided by role-limiting

methods (McDermott, 1988). However, we aim to overcome their restrictive nature

(Musen, 1992) by providing a flexible and comprehensive framework for assembling

scheduling systems from reusable components.

4.2 Rationale for using the TMDA framework
As pointed out in Chapter 3 (cf. Section 3.1), various knowledge modelling frameworks,

such as Generic Tasks Structures (Chandrasekaran et al., 1992), Role-Limiting Methods

(Marcus, 1988), Protégé-II (Musen, et a l, 1993), CommonKADS (Wielinga et a l, 1992;

Sclireiber et a l, 1994), MIKE (Angele et a l, 1998), Components of Expertise (Steels,

1990), EXPECT (Swartout and Gil, 1995), GDM (Terpstra et a l, 1993), VITAL

(Domingue et a l, 1993), and Task-Method-Domain-Application (TMDA) (Motta, 1999)

have been proposed to provide a structured organisation for a library of problem-solving

components. For instance, the CommonKADS framework (Wielinga et a l, 1992) proposes

the following three epistemological categories: task knowledge, inference knowledge, and

domain knowledge. Components of Expertise (Steels. 1990) distinguishes between

application task, information sources, and problem-solving methods while Protégé-II

(Musen et a l, 1993) considers task knowledge, method knowledge, domain knowledge,

and application knowledge.

63

Chapter 4

In line with the earlier approaches to knowledge modelling, such as CommonKADS and

Components of Expertise, the TMDA framework introduces a clean separation between

task knowledge, method knowledge, and domain knowledge. However it then extends this

partition by introducing an ‘application ’ component. The application component provides

a systematic separation between a mapping knowledge and application-specific

knowledge. The former is used to interpret a task and method components with multi

dimensional domain models. The need for the mapping knowledge is associated with the

domain independence of PSMs. In other words, if there is a mismatch between a domain

model and the knowledge requirements of a PSM then it is bridged by defining appropriate

mapping mechanisms (Gennari et a l, 1994).

Similarly with the CommonKADS and Components of Expertise knowledge modelling

frameworks, RLM (Marcus, 1988) is one of the influential approaches for constructing

generic models. RLM not only facilitates knowledge acquisition, knowledge

representation, and efficient inference, but it also provides a clean separation among them.

RLM requires a certain domain model organisation and then it provide the control

mechanisms, which can be applied on the domain model for making efficient inferences.

Generally understood, RLM makes the following three basic claims: 1) there exists a

family of tasks that can be solved by the application of methods and the control knowledge

of these methods can be abstracted independent of their family specific characteristics, 2) if

any of the methods whose control knowledge is task-independent then such methods can

make effective use of the task-specific knowledge to achieve the identification, selection,

and implementation of actions, and 3) the reasoning efficiency of PSMs can be improved

by separating the representation of the control regimes from the task knowledge.

RLM subscribes to a problem-solving as a basis for identifying, selecting, and

implementing the sequences of actions to accomplish a task from a specific domain. A

selected method provides a way to identify the seleetion of a potential action at any given

time and it also provides one or more mechanisms to select among the candidate actions.

The control knowledge in RLM consists of an algorithm which specifies when to use a

particular type of knowledge, and it emphasises that the knowledge that method requires

for selecting among candidate actions is not the eontrol knowledge. Therefore, it maintains

a clean separation between the control knowledge and the problem-solving knowledge.

In summary, RLM is important historically because it was one the approaehes, whieh for

the first time implemented Clancey’s role differentiation principle (Clancey, 1992).

However, in RLM a notion of a PSM is “an algorithm which determines how domain-

specific knowledge is used for solving problems”, and therefore, a PSM is a hardwired one

69

Chapter 4

which provides a specific functionality that reduces their reusability. In contrast with this,

in TMDA a PSM defines a class of problem-solvers that can be used to solve a task and it

exploits the unique functionalities of these problem-solvers. Finally, one of the

shortcomings of the RLM approach is that it failed to exploit the notion of application

ontology in order to formalise the application specific knowledge.

The notion of application ontology was first introduced in the Protégé-II framework

(Gennari et ah, 1994). However, as it has been pointed out by Guarino (1997), in the

Protégé-II approach the application ontology is mainly used to construct a tool that can be

used to instantiate the application knowledge base and in the work by van Heijst et al.

(1997) the use of application ontology is realised to update the ontology library. In both

approaches the construction of application ontology is a creative process with very limited

support for explaining what concern the actual content of application ontology itself. In

contrast with both the earlier proposals, the notion of application ontology in TMDA

provides a systematic organisation of the concepts that may be present in an application

knowledge base. Figure 4.1 shows the organisation of our library in terms of the TMDA

framework.

70

Chapter 4

Task level Generic Scheduling |
Task Ontology

SEARCH

(def-class schedule-space)
(def-class schedule-state)
(def-class schedule-operator)
(def-function state-transition)
(def-class job-depends-on)

Method Ontology

(Scheduling-task)

Generic-PSM Generate-space

□ □
A Generic Model of

Scheduling Problem-Solving

Method level

Propose &
Backtrack

Propose &
Revise

Propose &
Genetical-
Exchange

Domain level

Application
level

(def-class nimbus-1-job (job))

(def-class low-range-antenna (resource))

(def-instance nimbus-1 nimbus-1-job
((has-activities '(communication-1))
(requires-resources '(low-range-antenna)))

(def-instance low-range-antenna low-range-antenna
((has-j ob-belonging nimbus-1)
(has-availability nimbus-availability)))__________

I
Mapping Makes-use-of Legend

Figure 4.1. Architecture of the scheduling library by instantiating the TMDA framework.

In the following section, we deseribe the arehiteeture of our library defined in terms of

the TMDA framework.

4.3 Library architecture
As depleted in Figure 4.1, the construetion of our library can be seen as a four-tier

hierarchy, whereby we first fonnalise the seheduling task by defining its task ontology, and

then, we define a generic model of seheduling problem-solving. More speeifie knowledge-

intensive PSMs are defined simply by reusing and specialising the high-level tasks and

methods defined in the generic model of seheduling problem-solving. Finally, to eonfirm

7/

Chapter 4

its generic nature and to evaluate its performance we apply our library to taekle scheduling

applications from different domains. In the following sections, we describe each level of

our library construction process.

4.3.1 The task component: a generic scheduling task ontology

At this level, we develop a generic scheduling task ontology, which takes as input all the

input parameters neeessary to formalise the scheduling task and generates as an output a

schedule. Our task ontology is generic because it does not subscribe to any particular

application domain or problem-solving paradigms.

4.3.2 Search as problem-solving paradigm

The space of scheduling problem-solving can be represented by means of a state-space and

operators. The former indicates a problem space associated with the scheduling task. A

problem space can be conceived as a constellation of states, where each state is uniquely

represented by a schedule associated with it. In an initial state a schedule is incomplete

because all the jobs and activities are still unassigned while in the solution state it satisfies

all solution criteria. For a schedule to be a valid solution various conditions can be

imposed, such as it should be complete, should not violate any constraints, should maintain

all the requirements, and should be cheaper than other states. In a problem space, a

transition from an initial state to a solution state can be achieved by means of operators,

where each operator is responsible for assigning jobs and activities to resources and time

ranges. As depicted in Figure 4.2, to construct a schedule, a search proceeds in a top-down

manner: in each state transition a new job is selected, the relevant operators applicable to a

job are added, and the assignment of a job is performed. Finally, a deadend state is a state

from which no solution can be achieved.

A comparative discussion between the search-based and constraint-based approach to

scheduling problem-solving can be found in Chapter 6.

72

Chapter 4

operator

Ssol-1 Ssol-2 Ssol-3

o

Initial State

Deadend
State

State-
transition

Partial
schedule

Solution
state

Legend

Figure 4.2. The search-based problem space of scheduling.

4.3.3 The method component

The method component is the second building-block of our library and is divided into the

following two components: a generic model of scheduling problem-solving and different

knowledge-intensive PSMs.

First, we develop a generic model of scheduling problem-solving. This model takes as an

input the appropriate concepts from the scheduling task ontology and the ‘search’ problem

solving paradigm (Newell and Simon, 1976). A generic method ontology (Musen et ah,

1994; Coelho and Lapalme, 1996) provides vocabulary necessary to characterise the

search-based behaviour of generic schedulers. In contrast with the more specific problem-

solvers of scheduling, such as Propose and Exchange (Poeck and Puppe, 1992), which

imposes additional ontological commitment to model the different phases involved in their

framework, a generic model imposes minimal ontological commitment by abstracting only

those high-level tasks which are embedded in the specialised PSMs and are essential to

construct a complete schedule. Moreover, the generic model of scheduling subscribes to

the top-down approach of problem-solving, whereby the top-level scheduling task is

decomposed into finite number (sub-) tasks and (sub-) methods are proposed to achieve

these tasks. These tasks and methods represent the inferences that are necessary to execute

the reasoning actions for constructing a schedule. Such a breakdown is not only

instrumental in identifying all the generic tasks required to characterise the scheduling

task, but also provides a generic base structure for the entire library. The schedule

73

Chapter 4

construction in generic model is achieved in terms of the following two control regimes’:

method independent and method specific. The former is a generic control regime and all

the PSMs in our library subscribe to it, whereas the latter is a more specific control

structure whose ultimate aim is to construct a complete schedule by assigning jobs to

resources and time ranges.

By reusing and specialising the high-level tasks and methods defined in the generic

model of scheduling problem-solving more specialised PSMs can then be constructed. This

uniform engineering approach allows us to compare and contrast the knowledge

requirements of these PSMs. All the PSMs in our library are constructed by specialising

the control regimes and generic notions, such as context, focus, state selection, and

operator selection defined in the generic model of scheduling problem-solving. Here, the

notion of context speeifies the primary function of each problem-solving phase of a PSM

that needs to be earried out to eonstruct a solution. The notion of focus exemplifies those

variables in the problem formulation which are under scrutiny during each problem

solving phase of a PSM, and these variables must be grounded to eonstruet a valid

solution. For instance, the Propose & Exchange method (Poeck and Puppe, 1992)

distinguishes between the propose phase and the exchange phase. The context in the

former phase is to extend a schedule and a focus is on one of the unassigned jobs, whereas

in the latter phase a context is to revise a schedule by fixing the constraint violations and a

focus is on the violated eonstraints. A schedule extension in the propose phase is aehieved

by the schedule-extension-operator, which assign jobs to resources and time

ranges, whereas the eonstraint violations are fixed by defining an exchange-operator.
Because our library aims at providing a comprehensive framework for defining

knowledge-intensive PSMs, it ean cover and reason about all the validation areas erueial to

scheduling, such as completion, constraint violation, requirement violation, and

optimisation.

4.3.4 Development of scheduling applications from different domains

To confirm the generie nature of our library we develop applications from different

scheduling domains. The applications that will be used for validating our library will be

chosen to cover the three major categories of scheduling: pure scheduling, resource

' Modelling the problem-solving behaviour involves more than making statements and describing entities in

the world. Control regimes are required to specify actions and describe the order in which these are executed.

OCML supports the specification of sequential, iterative, and conditional control structures by means of a

number o f control term constructors such as repeat, loop, do, if and cond, among others.

74

Chapter 4

allocation, and joint scheduling (cf. Section 2.1). The validation process will involve the

following three stages: 1) instantiating the task ontology with the application-specific

knowledge to formalise the nature of an application; 2) selecting and configuring domain-

independent PSMs from the library with respect to various domains and applications; and

3) evaluating the performance of the resulting application systems as well as an extent to

which a selected PSM satisfies the needs of an application.

4 . 4 O C M L a s a k n o w l e d g e m o d e l l i n g t o o l

Here, we introduce the knowledge modelling language used to implement our library, i.e.

the Operational Conceptual Modelling Language (OCML)^ (Motta, 1999). OCML can be

used to support different knowledge modelling approaches, such as CommonKADS

(Wielinga et a l, 1992; Schreiber et a l, 1994) or Components of Expertise (Steels, 1990), it

is primarily developed to provide a concrete modelling support for the TMDA framework.

Moreover, because our library has been implemented by using OCML it provides a support

for executing the definitions as well as export mechanism to other representations,

including Ontolingua (Farquhar et a l, 1997) and OWL (McGuinness and van Harmelen,

2004).

The OCML knowledge modelling language was originally developed in the context of

the VITAL project to provide an operational modelling capability for the VITAL

workbench (Domingue et a l, 1993). OCML supports knowledge-level modelling

specification of (Newell, 1982; Fensel and van Harmelen, 1994) by supporting the classes,

relations, instances, functions, rules, etc. A base ontology provides a basic foundation for

ontology development and it includes the following modules:

• Meta: It defines the concepts necessary to describe the OCML language, such as

expressions, functional term, rule, relation, function, assertion, etc.

• Functions: It defines the concepts associated with function specification, such as

domain, range, unary and binary-relations.

• Relations: It defines the concepts associated with relation specification, such as the

universe and the extension of a relation, partial and total order.

• Sets: It defines the constructs associated with and necessary to define sets, e.g., empty

set, union, intersection, exhaustive-subclass-partition, cardinality.

A reference guide to OCML can be found in Appendix 4.

75

Chapter 4

• Numbers: It defines the concepts and mathematical operations required to model

mathematical calculations with numbers.

• List: It defines the concepts necessary to represent and manipulate lists, e.g., list, atom,

first, rest, append.

• Strings: It defines the concepts associated with strings, e.g., string append.

• Mapping: It describes the concepts necessary to specify mapping mechanisms, e.g.,

maps-to, meta-reference, domain-reference, and so forth.

• Frames: It defines the concepts associated with a frame-based representation of

constructs. It includes classes such as class and instance, functions like direct-instances

and all-slot-values, and relations like has-one, has-at-most.

• Inferences: It supports all the inference mechanisms to define functions and relations.

« Environment: It provides an environmental support to construct OCML models and

includes special operators like exec, which invokes a procedure from a rule and a

procedure such as output to print a message.

• Task-Method: It provides an ontology necessary to specify tasks and PSMs.

4.5 Conclusion
In this chapter we have described the architecture of our library which can be realised as a

four-level hierarchy by instantiating the TMDA knowledge modelling framework. At the

task level, we formalise the nature of the scheduling task by constructing a generic task

ontology, and then at the method level we construct a generic model of scheduling

problem-solving, which takes as the input appropriate concepts from the task ontology and

the search as a problem-solving paradigm. While constructing a generic model of

scheduling problem-solving we develop a method ontology that provides a lexicon

necessary to characterise search based problem-solving for the scheduling task. A generic

model of scheduling problem-solving abstracts high-level tasks and methods that can be

used to construct more specific scheduling problem-solvers. By reusing and specialising

high-level tasks and methods different knowledge-intensive PSMs can be constructed. In

this chapter we also introduced the knowledge modelling language that will be used to

implement our library, i.e. OCML.

In the following chapter, we describe in detail the first building-block of our library: the

scheduling task ontology.

76

Chapter 5

THE EPISTEMOLOGY OF THE SCHEDULING TASK

In this chapter we describe the first building block of our library: a generic task ontology

specifying the space of scheduling problems.

As discussed in Chapter 2 (cf. Section 2.3.1), as a first approximation we can say that

scheduling deals with the temporally bound assignment of jobs to resources and time

ranges. This time-centric dimension distinguishes scheduling from other synthesis tasks,

such as planning, design, configuration, etc. (Wielinga and Schreiber, 1997; Mittal and

Frayman, 1987). A more complete definition of the scheduling task can be given as

follows:

“An assignment of time-constrained jobs to time-constrained resources within a pre

defined time framework, which represents the complete time horizon of a schedule.

Normally an admissible schedule must not violate any of the constraints imposed on jobs

or resources and must satisjy all the input requirements. More in general, the output of the

scheduling task is a legal schedule in accordance with a given solution criterion (e.g.,

complete, admissible, feasible). Preference specific decisions can influence the cost of a

schedule ”.

According to this definition the notions of constraint and requirement are central to

scheduling (cf. Section 2.3.2). Constraints restrict the space of admissible solutions and are

often of organisational or technological nature - e.g. in an airport gate scheduling (Jo et a l,

1997) limitations may be enforced on the priority among flights, compatibility of gates

with aircrafts, area restrictions, etc. Requirements specify desired properties of a schedule.

For instance, one of the requirements in the satellite-scheduling application (cf. Chapter 8)

called ‘number-of-communication-slots’ states that each satellite must have at least four

communication slots each day with the allocated antennas. In addition, a cost criterion may

also play a vital role, as multiple solutions can be admissible for a particular problem, and

some of them can be deemed to be more ‘cost-effective’ than others. For instance, in a

manufacturing scenario, we may privilege solutions which maximise the throughput, or, in

some other cases we may prefer solutions that minimise the ‘idle time’ of the resources.

As discussed in section 3.3, several attempts have been made in the past at developing

scheduling task ontologies (Ikeda et a l, 1998; Smith and Becker, 1997; and Hama et a l,

1992a, b). These attempts have provided limited results (cf. Section 3.4.2), as in some

cases they subscribe to specific scheduling domains, algorithms, or ‘scheduling shells’, or

Chapter 5

in some other cases fail to provide the level of detail and formalisation required to

characterise the scheduling task precisely. Moreover, important ontological distinctions are

also missing from these proposals. In a nutshell, no comprehensive analysis exists, which

provides a formal account of the scheduling problem, independently of the way scheduling

problems can be approached. Thus, our main aim here is to put the scheduling task on firm

ontological foundations and provide both an adequate theoretical analysis of the problem

and a concrete engineering resource, which can be used to model specific scheduling

problems. Our task ontology is generic because it does not subscribe to any particular

application domain or problem solving approach. Finally, while developing a task ontology

we also take into account characteristics that are unique to the different problem types of

scheduling (cf. Section 2.1).

This chapter is organised as follows. In the following section, we provide a generic

specification of the scheduling task and also formulate different criteria to validate

solutions to a task. In section 5.2, we provide a more detailed specification of the ontology.

In section 5.3, we compare our work with existing proposals in the field, and finally in

section 5.4 we draw the main conclusions from this chapter.

5.1 A generic specification of the scheduling task
In our framework, the scheduling task is formally represented as a mapping from a nine

dimensional space: J[, A, R, Tr , C, Req, Pr, Cf, Cr}to a sche dule, S. These parameters are

described below.

• Jobs, J =j(1, -r j m } A set of jobs to be assigned to a set of resources for their

execution.

• Activities, A. For each job, j., there are n uniquely consisted of activities. The set of all

such activities is denoted as Ai =4 n, a in}

• Resources, R ^ i , .^r p} A set of resources to which the jobs and activities can be

assigned for their execution.

• Constraints, C =4 i, .^.c i} A set of constraints that must not be violated by a

solution schedule.

• Requirements, Req =^eq i, . req k} A set of requirements that describe the

necessary properties of a solution schedule.

• Schedule time range, Tr. The time horizon in which the schedule takes place. It is

represented in terms of a start time and an end time.

7̂

Chapter 5

• Preferences, P =ÿ i, -rP t} A set of criteria for choos ing among competing solution

schedules. Each preference defines a partial order over the set of solution schedules.

• Cost function. Cf. A function, which computes the cost of a solution schedule.

• Solution criterion, Cr. A mapping from a schedule S to Jrue, False} which

determines whether a candidate schedule is a solution. A solution criterion normally

requires S to be correct, complete, consistent, and feasible - see the following section

for the definitions of these properties. More restrictive solution criteria may introduce

an optimality condition based on the applicable preferences and cost-function.

• Schedule, S = 4 i> -r s w } A schedule is a set of qua druples of the form, jf m, amn, rk,

jtrm,n,k }>where j m is a job, amn is an activity associated with jm, rk is a resource, and

jtrm,n,k is the job time range associated with the assignment of jm and amn to resource rk.

The job time range is represented in terms of the earliest and latest start and end times

and is a sub-interval of Tr.

5.1.1 Validation criteria for a solution schedule

• S is correct, if for every job jm and activity amn, the pair j ̂m amn^ppears no more than

once in S. This criterion is also referred to as an occurrence constraint (Talbot, 1982).

• S is complete, if for each job jm and activity amn in A, there exists a quadruple q in S,

such that q ÿ m, amn, rk, jtrm,n,k >

• S is consistent, if it does not violate any applicable constraints in C.

• S is feasible, if it satisfies all the requirements in Req.

• S is optimal if it is a solution schedule and no other solution schedule has a lower cost

than S.

In the following section we describe the important concepts in the task ontology by

providing relevant definitions in OCML.

5.2 The scheduling task ontology
Our scheduling ontology consists of about 106 definitions, and in addition, it relies on two

underlying ontologies. Base Ontology and Simple Time’. The Base Ontology provides the

definitions for basic modelling concepts, such as tasks, relations, functions, roles, numbers,

and sets. Initial versions of the Simple Time ontology used Allen’s (1983) representation

of standard time relations to define notions, such as time point, time range, duration,

calendar date. We augmented it with Ebu and Fikes (2000) re presentation of a time point

' The OCML version o f the complete Simple Time ontology can be found in Appendix 3.

7 9

Chapter 5

to provide different levels of granularity, such as year, month, week, day, hour, minute,

second, etc. Our Simple Time ontology also takes into account the classes needed to

represent calendar months, calendar days, etc. As described in Chapter 4, the scheduling

task ontology is modelled by using the OCML knowledge modelling language^, which

provides support for executing the definitions in the ontology as well as export

mechanisms to other representations, including Ontolingua (Farquhar et a l, 1997) and

OWL (McGuinness and Harmelen, 2004). The OCML version of the task ontology is

publicly available and can be browsed by using the WebOnto (Domingue, 1998)

environment at the following URL: httD:Xvebonto.onen.ac.uk .

5.2.1 Scheduling task and default schedule solution

Our task modelling framework characterises a generic task in terms of input and output

roles, preconditions and a goal expression (Fensel and Motta, 2001; Motta, 1999). Having

already described the input and output roles for the scheduling task -see section 5.1, here

we limit ourselves to specifying the precondition and the goaf. The precondition states that

jobs and resources are required for a meaningful specification. If no solution criterion is

provided, then a default one is applied. The goal expression simply states that the solution

criterion must hold for the output schedule.

(def-class SCHEDULING-TASK (goal-specification-task) ?task
((has-precondition :value (kappa (?task)

(exists (?x ?y)
(and (member ?x (role-value

?task 'has-jobs))
(member ?y

(role-value
?task 'has-

resources))))))

(has-goal-expression : type binary-kappa-expression
:default-value (kappa (?task ?schedule-model)

(default-schedule-solution
?schedule-model ?task)))))

The default solution criterion is represented as follows:

 ̂The OCML version of the complete task ontology can be found in Appendix 1.

 ̂ A precondition specifies what must be true before executing a goal-specification-task, whereas a goal-

expression specifies the goal associated with a goal-specification-task, e.g. a goal associated with the

scheduling task is to construct a valid solution schedule.

^0

Chapter 5

(def-relation DEFAULT-SCHEDULE-SOLUTION (?sc ?task)
: constraint (and (schedule-model ?sc)

(scheduling-task ?task))
: iff-def (and (schedule-is-correct ?sc)

(schedule-minimally-complete ?sc
(role-value ?task has-jobs))

(maximally-admissible-schedule ?sc
(role-value ?task

has-hard-constraints))
(schedule-is-feasible ?sc

(role-value ?task has-requirements))))

More restrictive validation criteria may specify an optimality condition on a solution

schedule, but we refrain from including an optimality notion. Due to the unique

specification of the optimality criterion in different seheduling domains, such as

maximisation of resource utilisation or minimisation of cost, we believe that it’s better to

specialise the optimality criterion according to the specific scheduling domains instead of

providing a single optimality criterion to evaluate a solution schedule in all the domains.

5.2.2 Modelling the notion of a job

The class j ob represents an entity that has a list of activities and can be assigned over

available resources and time ranges for its execution. The class job has the following

attributes.

Has-activity: This slot epitomises the fact that every job ean have a list of activities that

need to be performed in order to accomplish a job. For instance, in the manufacturing

environment, a drilling job could have activities sueh as: drilling-machine set-up, loading

of a drilling job on a drilling-machine, actual drilling operation, unloading of a drilling job

from a drilling-machine, etc. The attributes of activities are basically the same as those for

jobs, except that activities are not further refined into sub-activities.

Requires-resource: Each job requires a number of resources on which it can be assigned

for their execution. This representation is similar to the one used to characterise alternative

resource seheduling problems (Saucer, 1997; and Fox and Sadeh, 1990) in whieh each job

has a set of resources to whieh it ean be assigned, instead of having a pre-determined

unique resource for its execution.

Requires-resource-type: In some cases we do not need to specify concrete resources for a

job, but we simply want to constrain the speeifie type of resources that are needed to carry

out a job - e.g., a machine type, a vehicle type, a specific category of personnel, etc.

Has-time-range: It represents a time range assigned to each job within which a job must

complete its execution. A job time range is represented by the earliest and the latest start

and finish times. It is represented by the slot has-time-range, whieh inherits the values

of the class job-time-range (cf. Section 5.2.5.1).

81

Chapter 5

Has-due-date: The calendar date by which a job must be dispatched to a customer. The

violation of a due-date can have direct or indirect impact on a business, such as loss of

business. The due-date of a job can also be used to determine the job priority, and a job with

the earliest due-date can be given priority for its assignment.

Has-duration: It represents the total amount of time that has elapsed between the start and

end of a job.

Has-load: It represents the total number of resources each job requires for its successful

completion. The default value is 1.

The following box shows the OCML definition of the class job .

(def-class JOB () ?j
((has-activity : type list)
(requires-resource : type resource :min-cardinality 1)
(requires-resource-type : type resource-type :min-cardinality 1)
(has-time-range : type job-time-range :max-cardinality 1)
(has-due-date : type calendar-date :max-cardinality 1)
(has-duration : type duration :max-cardinality 1)
(has-load : type integer :default-value 1)))

: iff-def (exists ?task (and (scheduling-task ?task)
(member ?j (role-value ?task has-jobs)))))

In the following section we discuss those relations and functions that are neeessary to

represent a job assignment.

5.2.2.7 Relations and functions required to job assignments

In our task ontology various relations and functions are defined to accomplish the

assignment of jobs to resources and time ranges. These are shown in Table 5.1.

Table 5.1. The job-specific relations and functions.

Relation Name Explanation
Assigned-to-resource
(job resource schedule)

A ternary relation between a job, a resource, and a

sehedule. It states that a job is assigned to a particular

resource in a partieular sehedule.
Assigned-t o -resource-
type
(job resource-type
schedule)

A ternary relation between a job, a resouree-type, and a

schedule. It states that a job is assigned to a partieular

resource type in a partieular schedule.

Assigned-to-job-time-
range
(job job-time-range
schedule)

A ternary relation between a job, a job time range, and a

schedule. It states that a job is assigned to a particular

time range in a partieular schedule.

Assigned-job This checks whether a job is already assigned to a

resource and a time range.

Unassigned-job The opposite of assigned-job.

82

Chapter 5

Function Name Explanation
Resources-assigned-to-
job

This function retrieves all the resources assigned to a job

Resource-types-
assigned-to-job

This function retrieves all the resouree-types assigned to

a job
Time-range-assigned-
to-job

This function retrieves a time range assigned to a job

Earliest-Start-time-
of-a-job

This function retrieves the earliest start time of a job

Latest-start-time-of-
a-job

This function retrieves the latest start time of a job

Earliest-end-time-of-
a-job

This function retrieves the earliest end time of a job

Latest-end-time-of-a-
job

This function retrieves the latest end time of a job

5.2.2.2 Relations to specify the temporal ordering among jobs

In our task ontology we take into account the following five eases that can be used to

impose a temporal ordering among any two jobs that are contending for the same resource.

These relations ean be applied on any unordered pair of jobs. The following relations can

be realised on the same lines with the relations depicted in Table 2.1 (cf. Chapter 2).

• Finishes-before (jobi job]): This is a binary relation between any two jobs, say ji and

}2 , which is true if the latest end time of j, precedes the earliest start time of jz. The

relation precedes is inherited from the Simple Time Ontology. It is a binary relation

between any two time points, say tpi and tp2 , whieh states that a time point, tpi is

earlier than a time point tp2 ;

• Jobl-before-job2 (jobi job]): This is a binary relation between any two jobs, say ji

and j 2 . It states that if the sum of the durations of a job ji and a job j 2 is greater than the

difference between the latest end of a job ji and the latest start time of a job j 2 , and if it

is less than the difference between the latest end time of a job j 2 and the earliest start

time of a job ji, then a job ji is assigned before a job j 2. The arithmetic equation that is

used in this relation is indicated as: (latest-end-time of ji -earliest-start-time of j 2)

duration-of-jobi Hduration-of-job2 < (latest-end-time of j 2 -earliest-start-time of j 1);

• Job2-before-jobl (jobi job]): This is a binary relation between any two jobs, say j l

and j2. It is the inverse of the relation jobl-bef ore-job2;

• No-feasible-ordering-possible (jobi jobi): This is a binary relation between any two

jobs, say jl and j 2 . It states that if the sum of durations of a job ji and a job j 2 is greater

Chapter 5

than the difference between the latest end time of a job ji and earliest start time of a job

j], and it is greater than the difference between the latest end time of a job j: and the

earliest start time of a job ji, then no feasible ordering is possible between the jobs ji

and]2 . The arithmetic equation that is used in the relation is indicated as: (duration-of-

jobl +duration-of-job2) > (latest-end-time of ji -earliest-start-time of j 2) and

(duration-of-jobl Hduration-of-job2) > (latest-end-time of j 2 -earliest-start-time of j 1);

• Any-ordering-is-possible (jobi jobi): This is a binary relation between any two jobs,

say jl and jl. It states that if the sum of the durations of a job ji and a job ji is less than

or equal to the difference between the latest end time of a job ji and the earliest start

time of a job ji, and if it is less than or equal to the difference between the latest end

time of a job ji and the earliest start time of a job ji, then any ordering is possible

between jl and ji. The arithmetic equation that is used in the relation is indicated as:

(duration-of-jobl Hduration-of-job2) < (latest-end-time of j 1 -earliest-start-time of j 2)

and (duration-of-jobl -fduration-of-job2) < (latest-end-time of ji -earliest-start-time

of j i) .

5.2.2.3 Relations to specify the job criticality

The seleetion of a correct job is the most important task in scheduling because it improves

the efficiency of the schedule constructions process. The following relations ean be used to

specify a job criticality.

® Job-precedes (jobi jobk): This is a binary relation between any two jobs, say ji and jk,

whieh states that a job j, precedes a job jk, if ji finishes-before jk. It is indicated by

the notation (ji < jk);

• Criticality-based-on-due-date (job; jobk): This is a binary relation between any two

jobs, say ji and jk, which states that a job ji is more critical than a job jk, if the due-date

ofji is before the due-date of jk;

• Earliest-start-time-of-a-job (jobi jobk): This is a binary relation between any two

jobs, say ji and jk, which states that a job ji is more critical than a job jk, if the earliest

start time ofji precedes the earliest start of jk;

• Higher-priority-job (jobi jobk): This is a binary relation between any two jobs, say ji

and jk, whieh states that a job ji is more critical than a job jk, if the duration of ji is

larger than the duration of jk;

Chapter 5

• Higher-priority-job-based-on-activities (jobi jobk): This is a binary relation between

any two jobs, say ji and jk, which states that a job ji is more critical than a job jk, if ji has

more activities than jk-

5.2.3 Modelling the notion of a resource

The class resource represents an entity on whieh jobs can be assigned for their

execution. The class resource is considered as a finite supply entity in our task ontology

and it is represented by the following attributes:

Handles-job: It represents the speeifie jobs each resource can handle for its execution, e.g.

jobi;

Handles-activity: It represents the specific activities each resource is capable of handling;

Has-availability: It represents the time interval during which a resource is available to

accomplish jobs. The job assignment must be performed by complying with the resource

availability period. For instance, a transmitter may have to be switched off periodically for

maintenance purposes.

Has-capacity: It represents the maximum number of jobs each resource can handle in

parallel at any given time during a sehedule. The aggregate capacity of a resource is

represented as an integer.

The following box shows the OCML definition of class resource.

(def-class RESOURCE () ?r
((handles-job : type job : cardinality 1)
(handles-activity : type activity : cardinality 1)
(has-availability : type time-range : cardinality 1)
(has-capacity : type number :default-value 1))

: iff-def (exists ?task (and (scheduling-task ?task)
(member ?r (role-value ?cask has-resources)))

: constraint (or (exists ?j (and (job ?j)
(handles-job ?r ?j)))

(exists ?a (and (activity ?a)
(handles-activity ?r ?a)))))

The class unary-resource represents a resource whose maximum aggregate capacity

at any given time in a schedule is at most one job. It is modelled as a subclass of the class

resource with the additional condition that constrains the maximum capacity of a

resource.

The relation j ob - and - resource-t ime - range, states that all the jobs assigned over a

resource, say, r,, must be completed within the availability period of t\. Finally, the function

maximum-capacity-of-resource retrieves all the jobs that a resource ean handle at

any given time in a schedule.

85

Chapter 5

5.2.3.1 Resource-capacity axiom

In scheduling, any two jobs that share the same unary resource may generate a conflicting

situation if the time ranges of these two jobs overlap. To avoid such a type of inconsistency

we define an axiom named, resource-capacity, which states that for a given unary

capacitated resource ‘rj’ with capacity ‘Uj’ in schedule ‘s’, there should not exist two jobs, ji

and jk, such that ji and jk require n and the time ranges of ji and jk are overlapping with each

other. The following box shows the OCML definition of resource-capacity axiom.

(def-axiom RESOURCE-CAPACITY
(forall (?ri ?sc)

(=> (unary-resource ?ri has-capacity ?ni)
(not (exists ?j (and (element-of (?j ?ri ?a ?jtr) ?sc)

(= ?all (setofall ?j2
(and (element-of

(?j2 ?ri ?a2 ?jtr2) ?sc)
(job-time-ranges-overlap
(?jtr ?jtr2))

(not (= (?j ?j2))))))
(> (length (cons ?j ?all2)) ?ni)))))))

5.2.4 Modelling constraints and requirements

In our task ontology we distinguish between constraints and requirements, even though

existing approaches (Smith and Becker, 1997; Hori et a l, 1995; Mizoguchi et a l, 1995)

fail to identify such a distinction. In our approach, constraints define a property that must

not be violated by a consistent solution, while requirements specify properties that a

feasible solution has to satisfy. In general, not all problem constraints are necessarily

applicable to a schedule, so a solution may be admissible even if some constraints are not

satisfied, they simply may not be relevant. The following box shows the OCML definition

of class constraint.
(def-class CONSTRAINT () ?c
((applicability-condition : default:-value (kappa (?schedule-task) (true)

: type unary-relation))
(has-expression : type unary-relation : cardinality 1)))

(def-class REQUIREMENT () ?req
((applicability-condition : default-value (kappa (?schedule-task) (true)

: type unary-relation))
(has-expression : type unary-relation : cardinality 1)))

The slot applicability-condition in the definition of class constraint specifies

a logical expression which has to be true for the constraint to be satisfied.

Many approaches in the literature usually distinguish between soft and hard constraints.

While hard constraints must not be violated, soft constraints can be relaxed if necessary to

reach a solution. In our model, constraints define prescriptive properties, while

requirements describe proscriptive ones. Soft constraints in that sense are neither

prescriptive nor proscriptive, but in reality what normally happens is that soft constraints

are used to determine the quality of different solution schedules (Saucer, 1997; Dorn and

Chapter 5

Slany, 1994). A solution schedule that satisfies a maximum number of soft constraints is

treated as a better solution than other competing solutions. Hence, soft constraints do not

concur to define the space of admissible solutions, but they instead can be used to rank

solutions. For this reason we prefer to use the notion of preference, which is discussed in

section 5.2.6.

5.2.5 Representing time ranges

In our task ontology time ranges are distinguished into the following two types: 1) a time

range to represent the period in which a job or activity can be executed and 2) a time

range to represent a schedule horizon and a resource availability period.

5.2.5.1 Representing job antd activity time ranges

The time range of a job or an activity represents a time window within which a job or

activity has to be executed. It is represented by the following attributes:

Has-earliest-start-time: It represents the earliest time a particular job can start its

execution;

Has-latest-start-time: It represents the latest time a particular job must start;

Has-earliest-end-time; It represents the earliest time a particular job can finish;

Has-latest-end-time: It represents the latest time a particular job must finish;

Has-unit-of-time: It simply represents the unit used to specify the time, such as second,

minute, hour, etc.

5.2.5.2 Representing the schedule horizon and the resource availability

The schedule horizon and a resource availability period are represented by the following

attributes:

Has-start-time: It represents the time by which a scheduling task must start;

Has-end-time: It represents the time by which a scheduling task must end;

Has-unit-of-time: It represents the unit in which the time is specified.

5.2.6 Representing cost, cost function, and preference

The scheduling task not only deals with the satisfaction of constraints or maintenance of

requirements, but it can also be seen as a combinatorial optimisation problem (Kempf et

ah, 1991), where the evaluation function of a schedule, such as maximisation of

throughput or minimisation of resource idle time, should be optimised. Our task ontology

provides two constructs that allow us to capture the knowledge needed to rank solutions:

preferences and cost-function. Preferences allow us to describe task knowledge that can be

used to assess whether a solution can be regarded as better than another. For instance, in

6'7

Chapter 5

sonne cases we may prefer to use one resource rather than another, even when both are

suitable for a particular job. The role of preferences is primarily to do with KA. They allow

us to capture important task knowledge, which is clearly of a different nature from

requirements and constraints. Once the relevant preferences are acquired we use the notion

of a cost-function to develop an optimisation criterion for a given scheduling problem.

Generally speaking, this is a non-trivial effort, as preferences tend to be heterogeneous and

they have different costs associated - e.g., it may be acceptable to violate any number of

‘less important’ preferences, but it may be unacceptable to violate even one ‘critical’

preference. Therefore, it is important to emphasise that a cost function may not necessarily

be numeric and often some non-Archimedean criterion maybe applied (Motta, 1999).

Our task ontology models preferences as binary relations, which define a partial order

over schedules. The class cost-function is defined as a mapping from schedules to

costs. A cost is modelled either as a real-number or as an n-dimensional vector. We have

pointed out that the role of a cost-function is to define a single optimisation criterion,

which is both consistent with and subsumes the various criteria expressed by the various

preferences. In our task ontology these requirements are specified by two axioms: \) cost-

subsumes-preferences, 2) cost-preference-consistency. The first axiom states that the cost-

function should enforce the partial order expressed by any relevant preference. The second

axiom states that the cost function should not violate any preference. The above definitions

make use of the association between a cost-function and a cost-order relation, vAiich.

expresses the partial order defined by the cost function. The following box shows the

OCML definition of class preference and the axioms.

Chapter 5

(def-class PREFERENCE () ?p
"A preference gives the order over two schedules."
((has-expression : cardinality 1 : type prefer-expression)))
(def-axiom COST-SUBSUMES-PREFERENCES
(forall (?schedule-taskl ?schedule-task2)

(= >
(and (scheduling-task ?task has-preferences ?prs

has-cost-function ?cf)
(has-cost-order-relation ?task ?rel)
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp "(prefer ?schedule-taskl ?schedule-task2)))

(cheaper-schedule ?rel ?schedule-taskl ?schedule-task2))))
(def-axiom COST-PREFERENCE-CONSISTENCY
(forall (?schedule-taskl ?schedule-task2)

(=> (and (scheduling-task ?task has-preferences ?prs
has-cost-funetion ?cf)

(has-cost-order-relation ?task ?rel)
(cheaper-schedule ?rel ?schedule-taskl ?schedule-task2))

(not (exists ?pr
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp " (prefer

?schedule-task2 ?schedule-taskl)))))))

5.2.7 Representing a schecJule

The class schedule represents the actual mapping of a job and its activities to resources

within a time range. The class schedule is represented in terms of a set of job-
assignment quadruples.

The class job-assignment models a quadruple of the form <?job ? activity
Presource ?job-time-range>. The following box shows the OCML definitions of

class schedule and class job-assignment.

(def-class SCHEDULE (set) Pschedule-task
: iff-def (and (- ?quadruples (setofall ?quadruple

(element-of ?quadruple ?schedule-task)))
(every ?quadruples job-assignment)))

(def-class JOB-ASSIGNMENT () ?quadruple
: iff-def (and (== ?quadruple (?j ?r ?a ?jtr))

(job ?j)
(member ?a (has-activities ?j ?list))
(resource ?r) (job-time-range ?jtr)))

With these definitions, we conclude our description of the task ontology. In the next

section we compare our scheduling task ontology with other proposals in the literature.

5.3 Comparison with other approaches
In Chapter 3 (cf. Section 3.3) we reviewed the following scheduling task ontologies: job-

assignment task ontology (Hori et a l, 1995; Hama et a l, 1992a, b), MULTIS task

ontology (Mizoguchi et a l, 1995), and O0NE ontology (Smith and Becker, 1997). Here,

we highlight the main differences between our task ontology and these proposals.

Chapter 5

5.3.1 Comparison with the job-assignment task ontology

The job-assignment task ontology was developed in the context of the CAKE project by

Hama et al. The primary difference between their task ontology and ours is that their task

ontology mainly focuses on the job-assignment task, which is a sub-domain of scheduling,

and therefore has limited applicability. In contrast with their task ontology, our aim is to

characterise the scheduling task at a generic level such that it can be used to formalise all

types of scheduling problems in different domains. Another major difference between

these two approaches is that of the level of detail and formalisation in characterising the

scheduling task. In their framework different concepts required to characterise the

scheduling task are specified at a very coarse-grained level. For instance, letk consider

their definitions of class j ob and class resource.

(define-class JOB (?job)
:def (source ?job))

(define-class RESOURCE (?resource)
:def (target ?resource))

If we compare these definitions, with the ones presented in our task ontology (cf.

Sections 5.2.2 and 5.2.3) it is clear that the main building blocks in their ontology are

heavily under-specified. More importantly, as shown in Table 3.4, important concepts such

as activity, requirement, preference and cost are missing from their task ontology. Finally,

our task ontology provides a more comprehensive set of definitions for validating a

solution schedule (cf. Section 5.1.1) whereas the job-assignment ontology does not deal

with requirement violations or optimisation.

5.3.2 Comparison with the MULTIS task ontology

The MULTIS task ontology was developed through a task analysis interview system for a

general class of scheduling tasks. The MULTIS task ontology characterises the scheduling

task without subscribing to any particular application domain and in this sense it is similar

to our approach. However, a few differences still exist between these two task ontologies.

The primary difference is that while our task ontology provides a fine-grained

characterisation of the scheduling task, the MULTIS task ontology fails to provide a

complete characterisation of the scheduling task. For instance, as shown in Table 3.4, some

of the important concepts, such as activity, requirement and cost are missing from

MULTIS. For instance, as pointed out by a number of authors (Le Pape, 1995; Smith 1994;

Fox and Sadeh, 1990) resource-capacity (cf. Section 5.2.3.1) is a crucial concept in

scheduling, and is needed to avoid job overlapping for the utilisation of a unary capacity

resource. Because such an important concept is missing from the MULTIS task ontology,

it is not very clear how their framework would deal with the job overlapping situation in

90

Chapter 5

scheduling. Moreover, because our task ontology clearly distinguishes between constraints,

requirements, and preferences, our framework provides a detailed set of validation criteria.

In MULTIS a solution schedule is validated only against completion and constraint

violation. Finally, it is also not very clear how the notion of ‘job criticality’ is tackled in

MULTIS because no indication is given about this.

5.3.3 Comparison with the OZONE ontology

The GONE ontology assumes a constraint-dir ected search architecture (Lessila et al.,

1996; Smith, 1994). GONE also provides a m odel of the scheduling task, which is

defined in terms of five base concepts: demand, activity, resource, product and constraint.

In terms of our framework the concept product does not directly contribute to the

specification of the scheduling problem, but it can be seen as an external environmental

factor. In contrast with G0NE, we are mainly interested in investigating the core issues

involved in the scheduling task. The concept activity in G0NE has attributes such as time

range and assigned-resource, but they do not deal explicitly with the load factor indicating

the number of resources that are required by each activity. The load factor is particularly

crucial in scheduling as it indicates how many resources can be required by an activity for

its execution. Like the other two task ontologies we have examined in this Section, the

GDNE ontology does not explicitly deal with the cost issues. As shown in Table 3.4,

although they make use of the preferences in conjunction with soft constraints, no

indication is given about how they can affect the cost of a schedule. Moreover, the lack of

a cost function means that no mechanism is provided to integrate different preferences in

order to discuss their relative importance and this also makes it difficult to assess the

impact of preference-specific decisions on the cost of a schedule. In addition, no notion of

requirement is included either.

The G0NE framework is built to support a constraint-based scheduling ‘shell’.

Therefore, most of the definitions are geared to support the constraint-based problem

solving approach. In contrast with this approach we do not make any assumptions about

the type of problem-solving approaches that can be used to solve the problem. The

disadvantage of subscribing to a particular problem solving approach is that important

conceptual distinctions are not considered, if they are not directly supported by the

problem solving environment - e.g. there is no distinction in G0NE between constraints

and requirements.

91

Chapter 5

5.4 Conclusion
In this chapter we have proposed a generic scheduling task ontology, which characterises

the scheduling task independently of a particular application domain or problem-solving

approach. This work is situated as a first building block in our scheduling library. Our task

ontology aims to put the scheduling task on firm ontological and engineering foundations.

On the one hand it helps us to understand the ontological nature of an important class of

KB applications. At the same time it provides us with a reusable resource that can be used

to acquire relevant scheduling knowledge in different domains. As discussed throughout

this chapter, our task ontology includes and formally characterises a number of important

conceptual distinctions that are missing from the existing approaches to formalising the

scheduling task. Because our task ontology does not subscribe to any specific problem

solving technique, it provides a sound ontological foundation that can be used by

alternative problem-solvers to tackle the scheduling task. It can also be used to support task

modelling independently of any target shell or computational method. Our approach to

formalising the scheduling task is generic with respect to the different classes of

scheduling problems, which have been identified in the literature. This is an important

feature, as our main goal here is to provide a generic reference model for a// the major

classes of scheduling problems, such as pure scheduling, resource allocation, and joint

scheduling (cf. Section 2.1). In Chapter 8 we will prove this claim about by showing how

scheduling applications from different domains can be modelled successfully by our task

ontology.

In the following chapter we will describe the second building-block of our library: a

generic model of scheduling problem-solving.

P2

Chapter 6

A GENERIC MODEL OF SCHEDULING PROBLEM-SOLVING

In this chapter we describe the first part of the method component of our library’: a generic

model of scheduling problem-solving (henceforth Generic-Schedule).

Generic-Schedule^ takes as input appropriate concepts from the scheduling task

ontology and search (Newell and Simon, 1976) as a problem-solving technique.

Generic-Schedule subscribes to a top-down approach of schedule construction,

whereby the top-level scheduling task is decomposed into a finite number of (-sub) tasks

and (-sub) methods. Our main claim here is that these tasks and methods provide a generic

problem solving structure for the entire library. As it will be shown in Chapter 7 a number

of knowledge-intensive PSMs can be constructed simply by reusing or specialising these

tasks and methods.

This chapter is organised as follows. In the following section we describe why we have

chosen ‘search’ as our main problem-solving technique, rather than constraint-satisfaction.

In section 6.2, we describe a generic method ontology for scheduling, which provides a

vocabulary to characterise the search-based problem solving behaviour of scheduling. In

section 6.3, we discuss the key tasks and methods in Generic-Schedule. In section 6.4,

we compare our work with other proposals in the literature. Finally, in section 6.5 we draw

the main conclusions from this chapter.

6.1 Search-based vs. constraint-based problem-solving
Traditionally, the scheduling task is solved by using constraint satisfaction (Domdorf et

al, 2000; Cesta et a l, 1999; Beck et a l, 1998; Beck and Fox, 1998; Cheng and Smith,

1995; Dorn and Slany, 1994; Fox and Sadeh, 1990; and Fox, 1983). In contrast with these

approaches, our library subscribe to a search model of problem solving. In what follows we

justify our selection.

One of the main drawbacks of the constraint-satisfaction problem formulation, such as

the finite constraint-satisfaction problem (Macworth, 1977) and its other instances, like

dual constraint graphs or joint graphs (Kumar, 1992; Dechter and Pearl, 1985), is that

' As described earlier (cf. Section 4.3.3), the method component o f our library is divided into the following

two components: a generic model of scheduling problem-solving and a number o f knowledge-intensive

PSMs.

 ̂The complete OCML specification of Generic-Schedule can be found in Appendix 2.

Chapter 6

these characterisations model the problem solving as a set of binary constraints (Bacchus et

a l, 2002). In our viewpoint, this is a very restrictive representation because it blurs

important distinctions, e.g. between constraints, requirements, and preferences.

Another shortcoming of the constraint satisfaction approach is its static formulation of

the problem as a constraint network. This network requires a prior knowledge of all the

jobs, activities, or constraints involved in a problem. But the space of real-life scheduling

domains is dynamic, where new jobs arrive without prior notice and must be

accommodated in the existing batch for their accomplishment. The static formulation of

constraint satisfaction faces the same level of inflexibility as experienced by Operations

Research approaches (cf. Section 2.2) and therefore cannot deal with the dynamic nature of

real-life scheduling.

Finally, as pointed out by Kumar (1992), although constraint-satisfaction algorithms are

sophisticated in nature, they do not consider domain-specific knowledge while

constructing a solution. Therefore, these algorithms provide very little insights into how

domain knowledge can be used to improve the efficiency of the problem-solving process

and quality of a solution.

6.2 A generic scheduling method ontology
Here, we describe the important concepts and relations in our generic method ontology.

6.2.1 Schedule space, schedule state, and schedule-state transition

As described in Chapter 4 (cf. Section 4.3.2), the space of scheduling problem-solving can

be represented by means of a state-space and operators. The former indicates a problem

space associated with the scheduling task and is represented by the class schedule-
space. A schedule space is composed of a set of schedule states and each schedule state

associated with a schedule space is represented by the class schedule-state. A

schedule state is uniquely represented by a schedule, say Ssch, associated with it. In an

initial state a schedule is incomplete because all the jobs are still unassigned while in the

solution state it satisfies all the solution criteria. The following box shows the OCML

definition of classes’ schedule-space and schedule-state.

(def-class SCHEDULE-SPACE () ?x
((associated-with-task : type scheduling-task .-cardinality 1)
(has-states : type set : cardinality 1 :default-value nil))

: constraint (= > (member ?s (the ?set (has-states ?x ?set)))
(schedule-state ?s)))

(def-class SCHEDULE-STATE () ?s
((has-schedule-model : type schedule-model)))

The notion of a state transition is crucial while constructing a schedule, because it

enables a scheduling agent to transit from an initial state to the solution state. The state

94

Chapter 6

transition is achieved by applying the schedule operators, which assign jobs to resources

and time ranges. The following box shows the OCML definition of state-transition.

(def-relation STATE-TRANSITION (?sl ?schedule-op ?s2)
: iff-def (and (schedule-state ?sl has-schedule-model ?schedule-mode11)

(schedule-state ?s2 has-schedule-model ?schedule-model2)
(schedule-operator ?schedule-op has-body ?fun)
(= ?schedule-mode12 (call ?fun ?schedule-model1))
(not (= ?schedule-model1 ?schedule-model2))))

The functions predecessor-state and successor-state retrieve respectively the

predecessor and successor schedule states of a current schedule state.

6.2.2 Scheidule operators

Each schedule operator extends a partial schedule state by assigning jobs to resources and

time ranges. The class schedule-operator represents the most abstract type of operator

in our method ontology. The basic type of schedule-operator, schedule-extension-
operator decomposes into two sub-types, schedule-extension-resource-
operator and schedule - ext ens ion -1 ime - range - operator. The former type of

operator takes as input unassigned jobs and generates as output a list of assignments of

jobs to resources, whereas the latter type of operator takes as input unassigned jobs and

generates as output a list of assignments of jobs to time ranges in a single state transition.

Both schedule-extension-resource-operatior and schedule-extension
time-range-operator are further specialised into multiple-schedule-
extension-resource-operator and multiple-schedule-extension-time-
range-operator. These two operators assign jobs to resources and time ranges

respectively by searching through multiple schedule states. Figure 6.1 depicts the

classification of the schedule operators.

95

Chapter 6

Schedule-Operator

Schedule-
Extension-Operator

■X-

Multiple-Schedule-
Extension-

Resource-Operator

Multiple-Schedule-
Extension-Time-
Range-Operator

Schedule-
Extension-

Resource-Operator

Schedule-
Extension-Time-
Range-Operator

Figure 6.1 Classification of the schedule operators.

The relation schedule-opera tor-order determines the order in which different

operators can be applied to accomplish a job assignment. The following box shows the

OCML definition of schedule-extension-resource-operator.
(def-class SCHEDULE-EXTENSION-RESOURCE-OPERATOR (schedule-operator)
((applicable-to-jobs :default-value '(setofall ?x (job ?x))

: type function-expression)
(has-precondition :default-value (kappa (?schedule-task) (true))

: type relation-expression)
(has-body : type schedule-extension-resource-operator-body)))

(def-class SCHEDULE-EXTENSION-RESOURCE-OPERATOR-BODY (latnbda-expression) ?x
:no-op (: constraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (requires-resource ?j Presource)
(resource ?z))))))

6.2.3 Job depen(dency network

While constructing a schedule, a job assignment normally depends on other job

assignments. To make such a job dependency explicit we construct a job dependency

network. As pointed out by Fox (1981a) a job dependency network makes the problem

solving process of scheduling more of a ‘tightly coupled’ one, because it allows us to

analyse the effects on other jobs derived from one particular job assignment. The following

bullet points describe the relations and functions needed to describe a job dependency

network.

• Job-depends-on (jobl, job2): This is used to state that the assignment of a job, ji,

depend on another job, ji;

• Job-affects (jobl, job2): This is the inverse of the j ob-depends-on relation;

Chapter 6

• Job-assignable (job, schedule): This binary relation holds for a job, ji, and a schedule,

S, if ji is an unassigned job in S, and all other jobs on which the assignment of ji

depends on are already assigned;

• All-assignable-jobs: This function retrieves all the unassigned jobs in a schedule;

• Relevant-operators: This function retrieves all the operators that can be applied to

assign a particular job.

The following box shows the OCML definition of relations job-depends-on and

job-affects, and function all-assignable-jobs.

(def-relation JOB-DEPENDS-ON (?jl ?j2)
: constraint (and (job ?jl) (job ?j2)))
(def-relation JOB-AFFECTS (?jl ?j2)
: constraint (and (job ?jl) (job ? j 2))
: iff-def (job-depends-on ?j1 ?j2))

(def-function ALL-ASSIGNABLE-JOBS (?js ?sc)
:body (setofall ?x (and (member ?x ?js)

(unassigned-job ?x ?sc)
(job-assignable ?x ?sc))))

6.3 A generic problem-solving model of scheduling
As mentioned earlier, in Generic-Schedule the top-level scheduling task is decomposed

into a number of (sub-) tasks with different (sub-) methods defined to achieve these tasks.

This breakdown identifies the key knowledge-intensive tasks that are carried out when

constructing a schedule. At the same time, it also provides a structure for constructing

more specialised PSMs. The problem-solving process in Generic-Schedule uses a

method independent control regime. This is described in the following section.

6.3.1 The method independent control regime

The method independent control regime, Gen-Schedule-Control is a high-level control

loop that takes as input a list of schedule operators and a scheduling task specification, and

generates as output a complete schedule. The following box shows an informal

specification of Gen-Schedule-Control.

97

Chapter 6

Generic-Task: Gen-Schedule-Control
Input: Schedule-Operators, Scheduling-Task
Output: Schedule-State
Control: Schedule-Space
Goal; "The output is to devise a solution-state"
Subtasks: Generate-Schedule-Space, Choose-Schedule-State, Schedule-from-State
Body: Generate-Schedule-Space (scheduling-task) -> Schedule-Space

Repeat
Choose-Schedule-State (schedule-space) -> Schedule-State
IF "Choose-Schedule-State = -.Nothing"
then Return () -> ;Nothing
else
IF "Schedule-state satisfies the goal of a scheduling task"
then Return () -> Schedule-State
else
do
Schedule-from-State (schedule-state)

As shown in the above box, the body of Gen-Schedule-Control first invokes the task

Generate-Schedule-Space, which takes as input the scheduling task and returns either

a schedule state, which satisfies the goal condition or rnothing. Having generated a

schedule space, the task new-schedule-state is invoked to create a root node

associated with a schedule space. A detailed discussion of the task new-schedule-
state can be found in section 6.3.1.1. Once a root node associated with a schedule space

is generated, then the task choose-schedule-state is invoked next, to select an

appropriate schedule state for expansion. The task choose-schedule-state is

discussed in section 6.3.1.2. Finally, schedule-from-state is invoked , which takes as

input the schedule state selected by task choose-schedule-state and expands this

schedule state by applying the relevant schedule operators. The task schedule-f rom-
state acts as a bridge between the method independent control regime of Gen-
Schedule-Control and method specific control regimes defined inside schedule-
from-state. Figure 6.2 depicts the breakdown of Gen-Schedule-Control.

Chapter 6

S chedu ling-T ask

G enenc-PSM
for-Schedulin

Generate-Schedule-
Space

N ew-Schedule-State

Gen-Schedule-
Control

Choose-Schedule- Schedule-from

Consistent-M aximal
State-Selection

Evaluate-Schedule
State

Evaluate-
Future-Job-
Consistency

Evaluate-
Current-Job-
Consistency

Evaluate-
Completion

Evaluate-
Consistency

Evaluate
Feasibility

Evaluât
Cost

Goal-
Specification

Task
D ecom position Composite

method Task
Task-subtask

decom position
Prim itive
M ethod

P nim tive
Task

Legend

Apply-Downstream
.Consistency-M echanism

Figure 6.2. The complete breakdown of the method independent control regime.

6.3.1.1 Generation and evaluation of schedule states

Task new-schedule-state creates a root node associated with a schedule space. In each

newly created schedule state we first apply the downstream consistency enforcement

heuristic (Sadeh, 1994) by using the task apply-downstream-consistency-
mechanism. This heuristic propagates the earliest start times of jobs to avoid downstream

cascading constraints. The overall complexity of this heuristic is linear and in the absence

of resource capacity conflict it guarantees backtrack free search.

Having applied the downstream consistency enforcement heuristic, the task evaluate-
schedule-state is invoked in the body of new-schedule-state. The main purpose

of this task is to evaluate each newly generated schedule state. We propose five different

criteria to evaluate a schedule state and it is important to remember that these criteria are

independent of each other. For instance, a PSM that does not deal with cost issues will

ignore a schedule state evaluation criterion that analyses costs. The schedule state

evaluation criteria are described in the following bullet points.

• Evaluate-completion: It checks whether a schedule associated with a state is a

complete one;

• Evaluate-hard-consisteney; It checks whether any of the constraints associated with a

state are violated;

99

Chapter 6

• Evaluate-feasibility: It checks whether all the requirements associated with a state are

maintained;

• Evaluate-cost: It calculates the cost of a state by using the cost function (cf. Section

5.2.6);

• Evaluate-admissibility: Evaluating admissibility is the most difficult task in the

context of a schedule state evaluation. It deals with checking whether a correct and

consistent schedule state lay on a solution path. To evaluate admissibility we

implemented two look ahead heuristics: full looking ahead and partial looking ahead

(Haralick and Elliot, 1980). These two heuristics act as an oracle to anticipate the dead

ends that may be encountered while constructing a schedule. The former heuristic

checks the compatibility between any two unassigned jobs as well as the compatibility

between the currently selected job and other assigned and unassigned jobs to ensure

that the value requirements in terms of resources and time ranges of these jobs do not

conflict with each other. The latter heuristic checks the value requirements

compatibility between any two unassigned jobs.

6.3.1.2 Schedule state selection

While constructing a schedule, a scheduling agent has several schedule states that can be

extended to reach a solution. The main task of a scheduling agent is to select one correct

schedule state from all the available schedule states such that a schedule is constructed

with minimal interruptions. To this purpose, the library includes task choose-schedule-
state and four different methods have been defined to achieve this task. These methods

are described in Table 6.1.

Table 6.1 Different methods to select a schedule state.

Method for selecting a schedule

state

Description of the method

Consistent-Maximal-
Cheapest -State -Select ion

This method selects a schedule state that does

not violate constraints, provide maximal

extension to a schedule, and has the least cost as

compared to any other schedule states
Consistent-Feasible-
Maximal- State -Select ion

This method selects a schedule state that does

not violate constraints, maintain all the

requirements, and provide maximal extension to

a schedule
Consistent-Cheapest-
Maximal- State -Select ion

This method selects a schedule state that does

700

Chapter 6

not violate any constraints, has the least cost, and

provide maximal extension to a schedule
Feasible-State-Selection This method selects a schedule state that

maintain all the requirements

In Generic-Schedule, the method consistent-feasible-maximal-state-
selection is used as a default schedule state selection strategy. It is important to keep in

mind that although a schedule state is selected by using the default method, it does not

affect the generic nature of Generic-Schedule. The main reason behind this is that, if a

scheduling agent does not have access to additional domain knowledge, then any

scheduling agent will still select a schedule state that does not violate constraints, satisfy

all the requirements, and provide maximal extension to a schedule. This default method

ignores all cost related issues. The following box shows the OCML definition of ch o o se-

schedule-state and the default method that achieves this task.

(def-class CHOOSE-SCHEDULE-STATE (goal-specification-task)
((has-input-role :value has-schedule-space)
(has-output-role :value has-schedule-state)
(has-schedule-space : type schedule-space)
(has-schedule-state : type schedule-state)
(has-goal-expression :value (kappa (?task ?s)

(exists ?s
(and (schedule-state ?s)

(has-schedule-state ?task ?s))))))

(def-class CONSISTENT-FEASIBLE-MAXIMAL-STATE-SELECTION (primitive-method)
((has-body :value (lambda (?psm)

(in-environment
((?cost-algebra . (role-value ?psm has-cost-algebra))
(?cost-rel-. (third ?cost-algebra))
(?space . (role-value ?psm has-schedule-space))
(?states . (schedule-space-state ?space)))

(filter-maximal-states
(filter-feasible-consistent-states Pstates))))))

:own-slots ((tackles-task-type choose-schedule-state)))

6.3.2 Method specific control

The task schedule-from-state is a straightforward control regime, which takes as

input a schedule state selected by the task choose-schedule-state and then expands it

iteratively until a solution state is reached. The task schedule - from- state is achieved

by the default decomposition method expand-incomplete-state. This is one of the

most important methods in Generic-Schedule because all the PSMs in our library are

constructed by specialising this method. The primary aim of the method expand-
incomplete-schedule is to construct a complete schedule and therefore it does not deal

with constraint or requirement violations or schedule optimisation issues. As a result, this

method determines the required functionality (Fensel and Straatman, 1998) of Generic-
Schedule. Also, because this method does not reason about constraint or requirement

violations or schedule optimisation issues, it exhibits limited intelligence. However, as it

101

Chapter 6

will be shown in Chapter 7 it is very easy to construct new knowledge-intensive PSMs,

which specialises expand-incomplete-state and take into account additional types of

knowledge. Figure 6.3 depicts the complete breakdown of task schedule-from-state.

Schedulmg-Task

Genenc-PSM-for
Scheduling

Generate-Schedule-
Space

Gen-Schedule-
Control

New-Schedule-State

Resume-state

Schedule-from-
State

H .
Expand

^com pletc-S tate

Generate-N ew-State
Successor

Choose-Schedule-
State

Propose-Schdeule-from
Context Collect-state-foci

Goal-
Specification-Task

Decomposition
method

Composite
Task

I ask-subtask
decomposition

Legend

Figure 6.3. The complete breakdown of the method specific control regime.

Expand-incomplete-state takes as input the schedule state selected by choose-
schedule-state and generates the successor of a current schedule state. If a successor

schedule state is complete then the method returns such a schedule state as a solution state.

Otherwise if the schedule state is inconsistent or infeasible then a message is issued stating

that a particular schedule state is a deadend-state^. This control regime is the one that

imposes minimal commitments and only uses those knowledge constructs that are defined

in the scheduling task ontology.

A schedule construction in Generic-Schedule is achieved by using the notions of the

context and focus (Motta, 1999). The context in Generic-Schedule is to extend a

schedule and the focus is one of the unassigned jobs. However, it is important to

The deadend-state is a problem-solving specific concept, which represents a schedule state from which

a consistent solution cannot be derived.

792

Chapter 6

remember that different PSMs in our library specialise the notions of context and focus.

For instance, the Propose & Exchange method (Poeck and Gappa, 1993) comprises of the

following two phases - the propose phase and the exchange phase. The context in the

propose phase is to construct a complete schedule and the focus is one of the unassigned

jobs that needs to be assigned to construct a schedule. The context in the exchange phase is

to fix the constraint violations that are occurred while constructing a schedule and the

focus is one of the constraint violations that need to be fixed to construct a consistent

solution schedule. The following box shows an informal specification of expand-
incomplete-state - see Appendix 2 for its OCML definition.

Decomposition-Method Expand-Incomplete-State
Input-Role: Schedule-State
Output-Role: Generates-Schedule-State
Goal: "To extend a given input schedule state."
Subtasks: Generate-New-Successor-State
Tackles-Task: Schedule-from-State
Body: If "Schedule-State violates constraints

tell (deadend-state ?schedule-state))
then Return () -> :Nothing
else
If "Schedule-State violates requirements
tell (deadend-state ?schedule-state)
then Return () -> :Nothing
else
If "Schedule-State is minimally-complete"
tell (solution-state ?schedule-state)
then Return () -> Success
else
achieve-generic-subtask
Generate-New-State-Successor
(Schedule-State
Schedule-Context = :Extend)

6.3.3 Generation of a successor state: generate-new-state-successor task

Task generate-new-state-successor, which is the main one invoked in the body of

expand-incomplete-state and decomposes into three subtasks: resume-state,
collect-state-foci, and propose-schedule-from-context.

Task resume-state is invoked in a situation where a schedule state is already

extended partially and a schedule construetion process needs to be resumed from this

sehedule state. We use a search-control-record to determine whether a partieular

schedule state has already been visited. This structure maintains dynamic problem-solving

information associated with a schedule state, consisting of the schedule foci (i.e., all the

unassigned jobs), currently selected schedule focus (i.e., a selected job), and all the

schedule operators that can be applied to assign a focus, but still have not been used.

703

Chapter 6

In a problem-solving situation, where a schedule state has not been extended yet,

schedule construction is started by invoking task collect-state-foci. The main

purpose of this task is to colleet all the foci (i.e., unassigned jobs) that can be assigned to

resources and time ranges. The following box shows the definition of task collect-
state-foci.
(def-class COLLECT-STATE-FOCI (goal-specification-task) ?task
((has-input-role :value has-schedule-context

:value has-schedule-state)
(has-output-role :value has-schedule-foci)
(has-schedule-foci : type list)
(has-schedule-context : type schedule-context)
(has-schedule-state : type schedule-state)))

(def-class COLLECT-ASSIGNABLE-JOBS (primitive-method) ?psm
((has-body :value (lambda (?psm)

(all-assignable-jobs
(role-value ?psm has-jobs)
(the ?sc (has-schedule-model

(role-value ?psm has-schedule-state) ?sc))))))
:own-slots ((tackles-task-type collect-state-foci)))

6.3.4 Context based extension of a state: propose-scheduie-from-context

Having collected all the foci, the task propose-schedule-from-context is invoked in

the body of generate-new-state-successor. This task is a high-level control regime

that takes as an input all the foci collected by the task collect-state-foci and then

invokes the following tasks: select-schedule-focus, append-search-control-
record-on-focus-selection, collect-focus-operators, sort-focus-
operators, append-search-control-record-on-focus-failure, generate-
value-from-focus, and propose-schedule-from-focus to assign the jobs from

the list of foci. We will discuss these tasks through sections 6.3.5 to 6.3.8. Figure 6.4

depicts the complete breakdown of task propose-schedule-from-context.

764

Chapter 6

Scheduling-Task

Gen-Schedule-
Control

Schedule-from-
StateGenerate-Schedule-

Space
Choose-Schedule-

State

New-Schedule-State

Generate-New-State-
Successor

Propose-Schdeule-from-
Context

Collect-State-Foci Resume-State

/ Select-Schedule-
V Focus

Collect-Focus-
Operators

Amend-Search-
Control-Record-on-
^Focus-Selection .

'"’Amend-Search-
Control-Record-on-

Focus-Failure ^

Generate-
Activities-from-

Focus

Propose-
Schedule-from-

Focus

Generate-Value-
from-Focus

o o Î
Goal- Decomposition Composite Primitive Task-subtask

Specification-T ask method Task Task decomposition Legend

Figure 6.4. The complete breakdown of propose-schedule-from-context.

6.3.5 Correct job selection: seiect-scheduie-focus

Selection of a eorrect job is the most important task while constructing a schedule, because

it improves the effieiency of schedule construction by reducing unnecessary backtracking.

The job selection in Generic-Schedule is achieved by the task select-schedule-
focus, which takes as input all the foci and selects a correct focus (i.e., a candidate job).

We have defined nine different methods for judieiously seleeting a correct job. These

methods are constructed by using job selection heuristics that were elicited both from the

scheduling literature and from real-life domains. The following bullet points describe the

job selection methods.

Chapter 6

Job-selection-based-on-lowest-degrees-of-freedom: This method subscribes to the

dynamic search rearrangement heuristic (Dechter and Meiri, 1989). According to this

heuristic a job that has the least number of resources and time ranges left for its

assignment is selected as a eandidate focus. Such a job is assumed to exhibit least

reliance^ on its resources and time ranges. If they are unavailable, then this job

becomes the most likely candidate for failure;

Job-selection-based-on-due-date: This method selects a job that has the earliest due

date of unassigned jobs. Panwalkar and Iskander (1977) lists more than hundred job

selection rules and one of the rules from their list selects a job based on its earliest due

date. The fundamental differenee between their rule and ours is that, in our heuristic, a

job with the earliest due date is selected only when this job is competing with some

other jobs for the same resource, whereas no sueh eondition is imposed in their rule;

Job-selection-based-on-latest-end-time: This method sort all the unassigned jobs

based on their latest end time and then the first unassigned job from the sorted list

seleeted as a foeus;

Job-selection-based-on-start-time: This method selects a job that has the earliest stait

time of all unassigned jobs. The method sorts all the unassigned jobs based on their

earliest start times and the first job from the sorted list is selected as a focus;

Job-selection-based-on-precedence: This method sorts all the unassigned jobs

according to the precedence relation among them and then the first job in the sorted list

is selected as a focus. We use the relation job-precedes (cf. Section 5.2.2.3) to

impose the precedence relation among jobs;

Job-selection-based-on-minimal-job-dependency: This method subscribes to the

minimal-width-ordering heuristic (Freuder, 1982). According to this heuristic a highly

constrained job is instantiated first beeause sueh a job is assumed to reduce future

backtracking;

Job-selection-based-on-bottleneck-resources: This method always gives priority to a

job that consumes the ‘bottleneck resources’̂ for its accomplishment. Such a job is

assumed to provide a better control in maintaining the global stability of a schedule.

Because the bottleneck resources have limited capacity to execute the jobs and if the

Reliance is the extent to which a particular variable must be assigned to its value such that the overall

solution is formed (Beck and Fox, 1998).

 ̂The bottleneck resources are the ones whose individual capacity determines the overall productive capacity

of the scheduling process.

106

Chapter 6

jobs that are using the bottleneck resources are not given priority, then it may cause

such jobs to miss their due dates, whieh in turn requires lot of rescheduling;

• Job-selection-based-on-number-of-activities: This method selects a job that has the

highest number of activities assoeiated with it;

• Job-selection-based-on-least-number-of-activities: This method seleets a job that has

least number of activities associated with it.

If a scheduling application does not provide any explicit information to select a

candidate focus, then the method job-selection-based-on-lowest-degrees-of-
freedom is used as a default method to seleet a foeus. The following box shows the

OCML definition of task select-schedule-focus and the default job selection

method.

(def-class SELECT-SCHEDULE-FOCUS (goal-specification-task) ?cask
((has-input-role -.value has-schedule-foci)
(has-output-role :value has-schedule-focus)
(has-schedule-foci : type list)
(has-schedule-focus : type schedule-focus)
(has-goal-expression :value (kappa (?task ?focus)

(has-schedule-focus ?task ?focus)))))
(def-class'JOB-SELECTION-BASED-ON-LOWEST-DEGREES-OF-FREEDOM (primitive-method)
((has-input-role :value has-schedule-focus-order-relation

:value has-possible-resources-relation)
(has-schedule-focus-order-relation : default-value schedule-focus-order)
(has-possible-resources-relation :default-value possible-resources-for-job)
(has-body rvalue (lambda (?psm)

(if (= ?foci (role-value ?psm has-schedule-foci))
(select-most-preferred-focus
(collect-most-restrieted-jobs
?foci
(role-value ?psm

has-possible-resources-relation))
(role-value
?psm has-schedule-focus-order-relation))))))

: own-slots ((tackles-task-type select-schedule-focus)))

(def-function COLLECT-MOST-RESTRICTED-JOBS (?1 ?rel)
rbody (in-environment

((?quadruples . (sort (map '(lambda (?j)
(list-of
?j (setofall ?r (holds ?rel ?j ?r))))

?1)
'(kappa (?x ?y)

(< (length (second ?x))
(length (second ?y)))))))

(map first (filter
?quadruples
'(kappa (?quadruple)

(= (first ?quadruple)
(first (first ?quadruples))))))))

6.3.6 Collecting and sorting the schedule operators

Having selected the candidate focus, the tasks collect-focus-operators and sort-
fecus-operators are invoked in the body of propose-schedule-from-context.
The main aim of the former task is to collect all the schedule operators that are applicable

to assign resources and time ranges to the selected focus, while the latter task is used to

/07

Chapter 6

sort all the collected schedule operators to determine the order in which these operators are

applied. The task sort-focus-operators make use of application-specific knowledge

to prioritise the collected operators. For instance, in the satellite scheduling application (cf.

Chapter 8) satellites have a fixed requirement for the antennas on which they can be

assigned to perform their communication activities. All the schedule operators are sorted in

such a way that only the correct antenna is assigned to establish the communication

activities with a selected satellite. The following box shows the OCML definition of task

collect-focus-operators and the method that achieves it.

(def-class COLLECT-FOCUS-OPERATORS (goal-specification-task) ?task
((has-input-role :value has-schedule-focus)
(has-schedule-focus : type schedule-focus)))

(def-class DEFAULT-OPERATOR-COLLECTION (primitive-method) ?psm
((has-body :value (lambda (?psm)

(setofall ?op
(and (schedule-operator ?op

applicable-to-jobs ?1)
(member (role-value ?psm ’has-schedule-focus)

(eval ?1)))))))
:own-slots ((tackles-task-type collect-focus-operators)))

In the following two sections we describe the resource and time range assignment of a

seleeted foeus.

6.3.7 Resource assignment

Once the correct focus is selected and all the operators are collected and sorted, then the

task generate-value-from-focus is invoked in the body of propose-schedule-
from-context. The main aim of this task is to assign resourees to the selected focus. In

order to aceomplish this assignment, the task generate-value-from-focus takes as

input a seleeted focus, collected and sorted schedule operators, and generates as output a

job to which resources are assigned. The job assignment is aehieved by the following two

tasks: select-resource-operator and try - schedule - resource -operator. The

task select-resource-operator takes as input all the sorted operators and selects the

first operator from the sorted list. The selected operator and foeus aet as an input to the task

try-schedule-resource-operator, which physically binds a selected focus to its

resources to establish an assignment. The following box shows the OCML definition of

task try-resource-assignment and function apply-schedule-extension-
resource-operator, which is used to perform an assignment.

70^

Chapter 6

(def-class TRY-RESOURCE-ASSIGNMENT (goal-specifleafion-task)
((has-input-role :value has-schedule-operator

:value has-schedule-focus
:value has-schedule-model)

(has-output-role :value has-schedule-value)
(has-schedule-operator : type schedule-operator)
(has-schedule-focus : type schedule-focus)
(has-schedule-model : type schedule-model)
(has-schedule-value : type schedule-value)
(has-goal-expression :value (kappa (?task ?value)

(and (has-schedule-value ?task ?value)
(schedule-value ?value))))))

(def-class TRY-SCHEDULE-EXTENSION-RESOURCE-0PERATOR (primitive-method)
((has-body :value (lambda (?psm)

(in-environment
((?sc . (role-value ?psm 'has-schedule-model))
(?focus . (role-value ?psm ’has-schedule-focus))
(?value . (apply-schedule-extension-resource-operator

?focus ?sc
(role-value ?psm 'has-schedule-operator))))

(if (not (= ?value : nothing))
(return ?value))))))

:own-slots ((tackles-task-type try-schedule-resource-operator)))
(def-function APPLY-SCHEDULE-EXTENSION-RESOURCE-OPERATOR (?j ?sc ?op)
: constraint (and (job ?j)

(schedule-model ?sc)
(schedule-extension-resource-operator ?op))

:body (call (the Pbody (has-body Pop Pbody)) Pj Psc))

6.3.8 Time-range assignment

Propose-schedule-from-focus is the last task that is invoked in body of the task

propose-schedule-from-context. The main purpose of this task is to assign a

coiTect time range to the selected focus. The assignment of a time range is accomplished

by using the following two tasks: select-schedule-operator and try-
assignment. Select-schedule-operator takes as input all the sorted operators that

can be applied to assign a time range to the selected focus and the first operator from the

sorted list is selected. The selected operator and focus act as an input to the task try-
assignment, which generates as output a job with an assigned time range. The time range

assignment is accomplished by the function called apply-schedule-extension
time-range-operator. The following box shows the OCML definition of task

propose-schedule-from-focus and function apply-schedule-ext ension-
time-range-operator.

709

Chapter 6

(def-class PROPOSE-SCHEDULE-FROM-FOCUS (composite-task)
((has-input-role :value has-schedule-state

:value has-schedule-value
:value has-schedule-activity-value)

(has-output-role :value has-output-schedule-state)
(has-control-role :value has-schedule-model

:value has-schedule-operator)
(has-schedule-state : type schedule-state)
(has-schedule-value : type schedule-value)
(has-schedule-activity-value : type activity-value)
(has-output-schedule-state : type schedule-state)
(has-body :value (lambda (?task)

(REPEAT
(in-environment
((?state . (role-value ?task has-schedule-state))
(Precord . (the-state-search-control-record Pstate))
(Pfocus . (the-slot-value Precord 'has-schedule-focus))
(Pops . (the-slot-value Precord

'has-schedule-operators))
(Pvalue . (role-value Ptask has-schedule-value))
(Pactivity-value . (role-value

Ptask has-schedule-activity-value))
(Psub . (instantiate-generic-subtask

Ptask select-schedule-operator
has-schedule-focus Pfocus
has-schedule-operators Pops))

(Pop . (solve-task Psub)))
(set-slot-value Precord has-current-operator Pop)
(if (achieved Psub Pop)

(DO
(set-slot-value Precord

has-schedule-operators
(remove Pop Pops))

(in-environment
((Psub2 . (instantiate-generic-subtask

Ptask try-schedule-operator
has-schedule-operator Pop
has-schedule-focus Pfocus
has-schedule-value Pvalue
has-schedule-activity-value
Pactivity-value
has-schedule-model
(the-slot-value
Pstate 'has-schedule-model)))

(Presuit . (solve-task Psub2)))
(if (achieved Psub2 Presuit)

(return Presuit))))
(return : nothing)))))))

:own-slots ((has-generic-subtasks ' (select-'schedule-operator
try-schedule-operator))))

(def-function APPLY-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR (Pj Psc Pop)
: constraint (and (job Pj)

(schedule-model Psc)
(schedule-extension-time-range-operator Pop))

:body (call (the Pbody
(has-body Pop Pbody)) Pj Psc))

Once the assignment of a eurrently seleeted focus is completed then the task t r y -

s c h e d u le -o p e ra to r invokes the task n e w -sc h e d u le -s ta te (cf. Section 6.3.1.1).

This task repeats the complete problem-solving cycle in order to assign the remaining jobs

from the list of collected foci. Once all the jobs from the collected foei are assigned then a

eomplete schedule is returned as a solution. Finally, Figure 6.5 depiets the complete

breakdown of G eneric-S chedu le .

110

Chapter 6

Scheduling-Task

O enenc-PSM -
lor-Schcduling

Gen-Schedule-
Control

Generate-Schedule
Space

Schedule-from-
State

Choose-Schedule-
State

Expand’-
Incomplete-Stale

New-Schedule-Stat

Generate-New-State
Successor

Propose-SchdeuIe-from
Context

Collect-State-Foci Resume-State

Select-
Schedule-Focus

Co ect-Focus-
Operators

Amend-Search- Amend-Search-
Control-Record-on

Focus-Failuare
Control-Record-on-

Focus-Selection
Propose-

Schedule-from-
Focus Generate-

Activities-from-
Focus

Sort-Focus
Operators

Generate-Value
trom-Focus

Try-Schedule-
Select- \

Activity
Operator

Se ect- OperatorTry-Schedule- Select-
Schedule
Operator

Resource- Resource-
Operator Operator

New-Schedule-State
^ Try-Schedule-
^ Activity-Operator

Evaluate-Schedule-
State

Evaluate- ■ Evaluate- ■ Evaluate- ■ Evaluate-Current- ■
Consistency 1 Completion 1 Feasibility 1 Job-Consistency 1

Evaluate-Future-
Job-Consistency

Eva mate

G oa l-S p ec ifica tio i D eco m p o sitio n C om p osite
Task -m ethod T ask

Prim itive
T ask

T ask -su btask
d eco m p o sitio n

L e g e n d

Figure 6.5. The complete breakdown of Generlc-Schedule.

It is important to remember that all the tasks and methods in Generic-Schedule can

be instantiated by using domain or application-specific knowledge, as with role-limiting

methods (cf. Section 4.2) (Marcus, 1988). Therefore, Generic-Schedule provides a

strong guidance for KA. However, compared to role-limiting methods. Generic-
Schedule offers a more comprehensive and flexible framework which is not restricted by

I I I

Chapter 6

a pre-determined sequence of questions. Thus our approach overcomes the restrictive

nature of role-limiting methods (cf. Section 4.2) (Musen, 1992). Generic-Schedule
now consists of 135 reusable definitions, which can be reused or specialised to construct

alternative PSMs. In the next section we compare our framework with other proposals in

the literature.

6.4 Comparison with the alternative approaches
In Chapter 3 (cf. Section 3.2) we reviewed the following scheduling libraries: production

scheduling library (Hori and Yoshida, 1998), constraint-satisfaction approach (Le Pape,

1994), CommonKADS library of assignment and scheduling (Sundin, 1994), and

MULTIS-II (Tijerino and Mizoguchi, 1993). Here, we highlight the main differences

between our approach and these proposals.

6.4.1 Comparison with the domain-specific library of production scheduling

The primary difference between Hori and Yoshida’s library and our approach is that we

subscribe to a top-down approach of schedule construction. We start with a generic

template whose components can be reused or refined to construct more specialised PSMs.

In contrast with our approach, Hori and Yoshida’s library subscribes to a bottom-up

approach, where the knowledge requirement of all the PSMs in their library are realised

entirely on the basis of processes of the production scheduling domain. This type of

domain specificity restricts the reusability of their library.

In addition, in contrast with our approach, Hori and Yoshida’s library fails to distinguish

between method specific and method independent components. This makes it very difficult

to identify how the reusability of their components can be achieved to construct new PSMs

quickly. In our fi-amework, different high-level components, such as state selection

knowledge, operator construction and selection knowledge, and context and focus selection

knowledge can be reused effectively for constructing new PSMs. In Chapter 7, we will

prove our claim by illustrating seven PSMs constructed by specialising Generic-
Schedule.

Our library follows a structured development approach and all the PSMs in our

framework are constructed by subscribing to the same task and method ontology. This

uniformity gives a semantic consistency to the entire library, which allows us to compare

the knowledge requirements of different PSMs in the library. In contrast with our

approach, different tasks in Hori and Yoshida’s library use different vocabularies. For

instance, the dispatching method (cf. Section 3.2.1) uses the notion of ‘isEmpty’ to check

whether the list of unassigned jobs is empty while a similar kind of problem-solving action

112

Chapter 6

in the assignment method is performed by using the notion of ‘isDone’. This type of

semantic inconsistency makes it difficult to compare and contrast the knowledge

requirements of alternative methods.

From a scheduling perspective Hori and Yoshida’s library discusses only two job

selection criteria, i.e., earliest start time and down to the due-date, as compared to the

broad range of job-selection criteria proposed in Generic-Schedule (cf. Section 6.3.5).

Finally, our framework offers more exhaustive criteria to validate a solution schedule,

whereby a solution schedule is validated against completion, constraint and requirement

violation, and optimisation issues. In contrast with our approach a solution schedule in

their library is validated only against completion and constraint violation.

6.4.2 Comparison with the constraint satisfaction approach

The main difference between the ILOG library (Le Pape, 1994) and ours is that their

library focuses on solving the resource allocation problem, whereas our library addresses

all types of scheduling problems.

Another major difference between these two approaches is that the ILOG frarriework

uses constraint satisfaction (CS) as the main problem-solving technique, in contrast with

the knowledge-intensive approach of our library. Because of this uniform approach to

modelling, CS fails to provide the fine-grained epistemological framework required to

analyse the various knowledge-intensive tasks that are involved in the schedule

construction process. It is essentially an implementation technique. Moreover, as discussed

earlier (cf. Section 6.1) the domain-independent nature of CS techniques fails to tease out

the different roles that domain knowledge plays while constructing a solution. As pointed

out by Fensel and Straatman (1998), these knowledge roles provide effective means to

achieve problem-solving goals and to support KA. Nevertheless, different heuristics from

CS, e.g., to select a correct job (cf. Section 2.6) or to improve the search efficiency,

provide important problem solving mechanisms and they have been included in our library.

6.4.3 Comparison with CommonKADS

CommonKADS provides a comprehensive set of libraries, which also includes the

assignment and scheduling tasks (Sundin, 1994). Analogously to the Hori and Yoshida’s

library (1998), the CommonKADS library also fails to provide a clean distinction between

reusable and non-reusable components. Therefore, it becomes very difficult to realise how

a new PSM can be constructed simply by reusing existing tasks and methods.

More importantly, the CommonKADS library comprises only one method, i.e. Propose

and Revise (Marcus and McDermott, 1989). As a result, the CommonKADS library tackles

113

Chapter 6

only the completion and constraint violation issues, but cannot reason about requirement

violation and optimisation issues. In contrast with the CommonKADS library, our

framework provides a comprehensive coverage to tackle different schedule types.

Another limitation is that the library framework of CommonKADS is opaque, because it

fails to provide the required level of detail to construct a new PSM. For instance, a job

selection task in the CommonKADS library is achieved simply by sequencing all the

unassigned jobs, but the knowledge sources used to sequence these jobs are not detailed. In

contrast with CommonKADS, our library provides a wide range of methods for selecting

and evaluating a schedule state and various job selection heuristics (cf. Section 6.3.5).

Finally, our library offers a much richer framework to construct a new PSM simply by

reusing the generic tasks and by specialising the notions of context, focus, operator

construction, and state selection knowledge.

6.4.4 Comparison with MULTIS-ll

The MULTIS-II library also tackles the scheduling task at a generic level and in this sense

is similar to our approach. However, some significant differences exist between these two

approaches. Because a component such as Generic-Schedule is absent in the MULTIS-

II framework, this fails to abstract high-level, reusable tasks and methods from specialised

PSMs. Therefore the construction of new PSMs is very difficult in their framework.

Generic-Schedule overcomes this problem by providing a clean separation between the

method-specific and method independent components.

While our approach allows us to validate different types of schedules, a solution

schedule in the MULTIS-II library is validated only against completion and constraint

violation.

From a scheduling perspective. Generic-Schedule provides a wide range of job

selection methods (cf. Section 6.3.5) to improve the efficiency of schedule construction. In

contrast with our library, job selection in MULTIS-II is achieved entirely on the basis of

domain specific requirements, which is not a very effective way to execute such an

important problem-solving activity. The main reason for this is that if wrong or partial

domain knowledge is used to select a job, then the job selection component may end up

selecting the wrong job, which could cause heavy backtracking. In some other cases,, if a

scheduling domain fails to provide adequate knowledge for the job selection, then a job

selection method may trivially end up selecting a first job in a queue and this job may not

necessarily be the best candidate. As a result, this could deteriorate the overall quality of a

schedule.

114

Chapter 6

6.5 Conclusion
In this chapter we proposed a generic model of scheduling problem-solving called

Generic-Schedule and a method ontology. The latter provides the vocabulary necessary

to characterise the search-based problem-solving behaviour of scheduling engines.

Generic-Schedule provides a firm theoretical and engineering foundation to scheduling

problem-solving. From the theoretical perspective, Generic - Schedule exhibits a nice

integration of the various techniques that can be used while constructing a schedule.

Moreover, it also provides an insight into the different knowledge-intensive activities that

take place in scheduling. From the engineering perspective, it provides a systematic

abstraction of the different high-level tasks and methods, which can be reused to construct

specialised PSMs.

In the next chapter we will show how different PSMs can be constructed by reusing

Generic-Schedule.

775

Chapter 7

THE PROBLEM-SOLVING METHODS IN THE LIBRARY

Our library consists of seven PSMs: hill climbing, Propose & Backtrack (P&B) (Runkel et

al., 1996), Propose & Improve (P&I) (Motta, 1999), Propose & Revise (P&R) (Marcus and

McDermott, 1989), Propose & Restore-feasibility (P&Rf), Propose & Exchange (P&E)

(Poeck and Gappa, 1993), and Propose & Genetical-Exchange. These methods were

constructed by specialising the generic model of scheduling problem solving described in

Chapter 6.

The rest of the chapter is organised as follows. In the following section we describe a

generic template that will be used to compare and contrast the knowledge requirements of

different PSMs in our library. In section 7.2, we introduce a schedule modification

operator, which deals with constraint and requirement violations and schedule optimisation

issues. In section 7.3, we describe how all the PSMs in our library are constructed. Then in

section 7.4, we will describe how these PSMs in our library are categorised based on the

different types of schedules tackled by them. Finally, in section 7.5 we draw the main

conclusions from this chapter.

7.1 A generic template to compare the knowledge requirements

of the PSMs
In this section we describe a generic template which will be used to compare and contrast

the knowledge requirements of all the PSMs in our library and which uses the generic

method description framework which is discussed in Chapter 6. This generic template

highlights the main types of application-specific knowledge required by a problem-solving

method, say PSMi as well as different problem-solving strategies, such as context and focus

specialisation, operator and state selection, and operator configuration that are specific to

each PSMi and at the same time used by PSM, to carry out the knowledge-intensive tasks

presented while discussing Generic-Schedule (cf. Chapter 6).

• Inference knowledge: This determines what type of application-specific knowledge is

required to achieve the problem-solving fiinctionality of a PSM. For instance, a PSM

that deals with requirement violations may need application-specific knowledge about

how to fix them;

• Additional subtasks: This determines whether any new tasks or methods are required

to be defined to characterise a PSM in addition to those that already exist in Generic-
Schedule;

Chapter 7

Method-specifîc-control-regime: This describes how the method specific control

regime of Generic-Schedule (cf. Section 6.3.2) is specialised in the new PSM;

Schedule-context: This determines how the notion of context (Motta, 1999) from

Generic-Schedule is specialised according to the different phases involved in the

PSMs. For instance, the Propose & Revise method consists of the propose phase and

the revise phase, and the context in the propose phase is to extend an incomplete

schedule, whereas the context in the revise phase is to fix the current constraint

violations;

Schedule-focus: This determines how the notion of a focus (Motta, 1999) from

Generic-Schedule is specialised according to the different phases involved in the

PSMs. For instance, the Propose & Revise method comprises of two phases: the

propose phase and the revise phase. The focus in the former phase is on the unassigned

jobs that needs to be assigned to construct a complete schedule, whereas the focus in

the latter phase is on the constraint violations, which need to be fixed to construct a

consistent schedule;

Schedule focus selection strategy: This determines how the candidate focus is

selected in different PSMs;

Schedule operator type: This describes which new types of operators are defined to

tackle constraint and requirement violations, and optimisation issues;

Schedule operator order: This determines what type of knowledge is required to rank

the operators, which are applicable at any one time;

Schedule state selection knowledge: This determines how the default schedule state

selection policy defined in Generic-Schedule is specialised in different PSMs;

Global properties: This field states the types of scheduling tasks that are tackled by

the PSMs. For instance, whether a PSM attempts to produce optimal schedules.

Table 7.1 shows how this generic template is instantiated for Generic-Schedule.

Table 7.1. The knowledge requirements of Generic-Schedule.
Knowledge Roles Generic-Schedule

Inference knowledge Schedule state selection knowledge

Job selection knowledge

Knowledge required to determine the order

in which schedule extension operators can be

applied

117

Chapter 7

Additional subtasks None

Method specific control regime Expand-incomplete-state
Schedule-context Extend

Schedule-focus Job

Schedule focus selection strategy A correct focus is selected by using the

application-specific knowledge; otherwise

the default focus selection method called
j ob-selection-based-on-lowest-
degrees - of - freedom (cf. Section 6.3.5)

from Generic-Schedule is used

Schedule operator type Schedule-extension-resource-
operator
Schedule-extension-time-range-
operator

Schedule operator order Based on the focus selection

Schedule state selection knowledge Violated constraints: No

Violated requirements: No

Schedule extension: Maximal

Global properties Complete

7.2 The schedule modification operators
In Generic-Schedule a complete schedule is constructed by assigning jobs to resources

and time ranges and it is achieved by using schedule-extension-resource-
operators and schedul e - ext ens ion -1 ime - range - operators respectively. In

order to deal with constraint or requirement violations we introduce a new type of operator

called schedule-modification-operator. This operator is further specialised into

schedule-modification-resource-operator and schedule-modification
time- range -operator. The former type of operator deals with the constraint or

requirement violations occurred due to inconsistent resource assignments of jobs, whereas

the latter type of operator deals with the constraint or requirement violations occurred due

to conflicting time range assignments of jobs. Both types of operators can also be used to

optimise a job assignment. The following box shows the OCML definition of schedule-
modification-operator.

77,$

Chapter 7

(def-class SCHEDULE-MODIFICATION-OPERATOR (schedule-operator)
((applicable-to-jobs :default-value ' (setofall ?x (job ?x))

: type function-expression)
(has-body : type schedule-modification-operator-body)))

(def-class SCHEDULE-MODIFICATION-0PERATOR-BODY (lambda-expression) ?x
:no-op (: constraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 schedule-model)
(=> (= ?z (call ?x ?j ?schedule-task))

(or (and (schedule-model ?z)
(assigned-to-resource
?j ?r ?schedule-task)
(not (assigned-to-resource

?j ?r ?schedule-task)))
(and (schedule-model ?z)

(assigned-to-job-time-range
?j ?jtr ?schedule-task)
(not (assigned-1o-j ob-1 ime-range

?j ?jtr ?schedule-task))))))))

7.3 Engineering of the problem-solving methods
Here, we describe how all the PSMs in our library have been constructed by reusing

Generic-Schedule.

7.3.1 Hill Climbing

The hill climbing method is constructed as a straightforward refinement of Gener ic-
Schedule and no additional tasks are needed. The primaiy difference between the hill

climbing method and Generic-Schedule is based on the way these two methods

generate a successor schedule state of a current schedule state to construct a complete

schedule. While constructing a schedule, the control regime of Generic-Schedule
generates only a single successor state of the current schedule state, whereas the hill

climbing search strategy generates all the possible successors. The slot genera tes-
schedule-state in the definition of the control regime of the hill climbing method

states this information, which generates as an output a list of schedule states. The hill

climbing method generates first a ‘good’ ̂ schedule and then it tries to optimise it. In

contrast with Generic-Schedule, the hill climbing method performs a local exhaustive

search and checks all the possible successor schedule states before selecting the next best

state. The relation locally-best-schedule-state in the goal-expression of hill-
climbing-for-scheduling represents the notion of locally optimal schedule state.

This relation states that all the resources and time ranges that can be assigned to a job to

generate an optimal assignment have already been tried, and no more optimisation is

possible. As a result, the schedule state produced is the one that represents the locally

optimal assignment. Finally, as in the case of Generic-Schedule, the hill climbing

' By ‘good’ schedule we mean that a solution that does not violate any constraints and maintains all the

requirements.

119

Chapter 7

method selects a schedule state that does not violate any constraints, maintains all the

requirements, and provides maximal extension to a schedule. The following box shows the

OCML definition of the method specific control regime of the hill climbing method.

(def-class HILL-CLIMBING-FOR.-SCHEDULING (decomposition-method) ?psm
((has-input-role :value has-schedule-state)
(has-output-role : value generates-schedule-states)
(has-schedule-state : type schedule-state)
(generates-schedule-states : type list

:default-value nil)
(has-goal-expression : value (kappa (?task ?s)

(locally-best-schedule-state
(role-value ?task has-schedule-state))))

(has-body :value '(lambda (?psm)
(in-environment
((?state . (role-value ?psm has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(Pconstraints . (role-value

?psm has-hard-constraints))
(?requirements . (role-value ?psm has-requirements))
(?jobs . (role-value ?psm has-jobs)))

(if (deadend-state Pstate)
: nothing

(if (constraint-violations ?state ?constraints)
(tell (deadend-state ?state))

(if (requirement-violations ?state Prequirements)
(tell (deadend-state Pstate))

(if (state-complete Pstate ?jobs)
(tell (complete-state Pstate))

(do
(achieve-generic-subtask
?psm
generate-new-state-successors
has-schedule-state Pstate
has-schedule-context : extend))))))))))

: own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks generate-new-state-successors)))

Table 7.2 represents the knowledge requirements of the hill climbing method.

Table 7.2. The knowledge requirements of the hill climbing method.

Knowledge Roles Hill Climbing

Inference knowledge The hill climbing method does not require

any additional inference knowledge, but

exploits a cost fimction in more detail.

Additional subtasks None

Method specific control regime Hi11-Climbing-for-Scheduling
Schedule-context Extend

Schedule-focus Job

Schedule focus selection strategy Application-specific knowledge is used to

select a focus; otherwise the default job

selection method from Generic-Schedule
called i ob-selection-based-on-
lowest-degrees-of -freedom (cf.

Section 6.3.5) is used

720

Chapter 7

Schedule operator type Schedule-extension-resource-
operator
Schedule-extension-time-range-
operator

Schedule operator order Based on the focus selection

Schedule state selection knowledge Violated constraint: No

Violated requirements: No

Schedule extension: Maximal

Cost: Minimal

Global properties Complete and locally optimal

7.3.2 Propose and Backtrack

The Propose & Backtrack (P&B) method was proposed by Runkel et al. (1994) to solve

the VT elevator configuration problem (Runkel et a l, 1996). This method is a simple

refinement of Generic-Schedule and, in line with Runkel’s proposal the P&B method

in our library incrementally constructs a schedule by assigning jobs to resources and time

ranges until an inconsistency is detected. Then it backtracks to the last consistent schedule

state, where different sets of resources and time ranges are tried in order to generate a

consistent assignment. This process is iterated until all the jobs are assigned without any

inconsistency. The following points describe the knowledge requirements of the P&B

method.

• Inference knowledge: This makes use of the preference knowledge to rank all the

resources and time ranges that can be assigned to a job. This ranking mechanism can be

seen as a special case of the operator preference knowledge from Generic-
Schedule;

• Additional subtasks: No additional subtasks are defined;

• Method-specific-control-regime: When encountered with an inconsistent or infeasible

schedule state (i.e., a schedule state violating constraints or requirements), the P&B

control regime backtracks to the last consistent schedule state;

• Schedule-context: The schedule context is to extend a schedule until all the jobs are

assigned;

• Schedule-focus: The schedule focus is one of the unassigned jobs that can be assigned

to generate a complete schedule;

• Schedule focus selection strategy: The focus is selected by using application-specific

knowledge. However, if an application fails to provide adequate knowledge to select a

candidate focus, then the default focus selection method job-selection-based-

121

Chapter 7

on-lowest-degrees- o f-freedom (cf. Section 6.3.5) from Generic-Schedule is
used;

Schedule operator type: The jobs are assigned by using schedule-extension-
resource-operator and schedule-ext ens ion-time-range-operator (cf.

Section 6.2.2);

Schedule operator order: The operators are ordered according to the selected focus

and also by taking into account preference knowledge;

Schedule state selection knowledge: This method selects a schedule state that does

not violate any constraints, maintains all the requirements, and provides maximal

extension to a schedule to generate a consistent solution;

Global properties: The P&B method guarantees to find a complete schedule, if one

exists in the problem space. It also tries to find a locally optimal solution by using

preference knowledge, but because the P&B method is a greedy algorithm it is

susceptible to the horizon effect.

Table 7.3 summarises the knowledge requirements of the P&B method.

Table 7.3. The knowledge requirements of the P&B method.

Knowledge Roles Propose and Backtrack

Inference knowledge The preference knowledge is used to rank the

resources and time ranges that can be

assigned to a job

Additional subtasks None

Method specific control regime Expand-incomplete-state
Schedule-context Extend

Schedule-focus Job

Schedule focus selection strategy Focus selection is achieved by using the

application-specific knowledge. Alternatively

the method called job-selection-based-
on-lowest-degrees- o f-freedom (cf.

Section 6.3.5) is used

Schedule operator type Schedule-extension-resource-
operator and schedule-extension-
time-range-operator

Schedule operator order It is determined based on the selected focus

722

Chapter 7

Schedule state selection knowledge Violated constraint: No

Violated requirements: No

Schedule extension: Maximal

Global properties Complete

7.3.3 Propose and Improve

The main focus of both PSMs described in the previous two sections is to construct a

complete schedule. However, as pointed out by Saucer (2001) and Baker (1974), in

addition to the construction of a complete schedule, another important objective of the

scheduling task is to optimise a complete solution over its evaluation function. To deal

with optimisation issues we have included the Propose and Improve method (P&l) (Motta,

1999) in our library.

The P&l method divides a schedule construction process into the following two phases:

the propose phase and the improve phase. The context in the former phase is to extend an

incomplete schedule and the focus is on the unassigned jobs, which needs to be assigned to

resources and time ranges. The context in the improve phase is to optimise a schedule and

the focus is on the most expensive job whose assignment needs to be optimised. The

propose phase of the method is constructed straightforwardly from Generic-Schedule,
and therefore, in the following section we focus only on the improve phase.

7.3.3.1 Modelling the P&l method

As shown in the definition of P&l in the box below, the P&l method refines generic-
psm-for-scheduling in two ways - 1) a new slot called has-job-cost:-function is
added to represent the cost associated with the assignment of each job and 2) the goal-

expression is specialised by introducing an optimality criterion. A function called job-
cost-function is used to calculate the cost associated with a job assignment so that the

P&l method can identify the most expensive job while optimising a complete solution. The

relation P&i-Optimal in the goal-expression represents the notion of a schedule state

optimality. This relation states that a schedule state is an optimal one if it is a completely

expanded one, i.e. all the resources and time ranges that can be assigned to generate an

optimal assignment have been tried and no more improvement is possible in the cost of the

state. The relation also states that there is no other schedule state which has a lower cost

than the selected schedule state. The former condition is modelled by using the relation

state-fully-expanded from Generic-Schedule, whereas the latter condition is

modelled by using the relation state-is-optimal. The following box shows the OCML

definitions of propos e - and - improve - schedul ing, relation p&i- optimal, and job-
cost-function.

725

Chapter 7

(def-class PROPOSE-AND-IMPROVE-SCHEDULING (generic-psm-for-scheduling) ?psm
((has-input-role :value has-job-cost-function)
(has-job-cost-function : type job-cost-function)
(has-goal-expression :value (kappa (?psm ?state)

(and (tackles-task ?psm ?task)
(p&i-optimal ?state ?task))))

(has-output-mapping :value '(lambda (?psm ?state)
(the ?sc (has-schedule-model ?state ?sc))))

(has-body :value '(lambda (?psm)
(in-environment
((?s . (achieve-generic-subtask

?psm gen-schedule-control
has-current-scheduling-task
(the Ptask (tackles-task ?psm ?task)))))

(if (schedule-state ?s) ?s)))))
:own-slots ((has-generic-subtasks '(gen-schedule-control))))

(def-relation P&I-OPTIMAL (Pstate Ptask)
: iff-def (and (has-schedule-model Pstate Psc)

(achieved Ptask Psc)
(state-fully-expanded Pstate) (state-is-optimal Pstate Ptask)))

(def-class JOB-COST-FUNCTION (binary-function) Pfun
: constraint (and (nthdomain Pfun 1 Pjob)

(nthdomain Pfun 2 Pschedule-model)
(range Pfun Pcost)))

To optimise the cost of a complete schedule the following two types of improvement

operators are used: schedule-improvement-resource-operator and schedule-
improvement -1 ime - range - operator. Both the operators are defined uniformly based

on schedule-modification-resource-operator and schedule-
modif ication-time-range-operator (cf. Section 7.2).

7.3.3.2 The control regime of P&l

To optimise a complete solution schedule, the method specific control regime of

Generic-Schedule is modified. The control regime of P&l is very similar to the method

specific control regime of Generic-Schedule^ The primary difference between these

two control regimes is that the P&I control regime first invokes the task generate-new-
state-successor (cf. Section 6.3.3) in the extend context, to construct a complete

schedule. Having encountered a complete schedule state, instead of returning such a

schedule state as a successor state, the task generate-new-state-successor is

invoked again in the improve context to optimise a complete schedule state. The following

box shows the OCML definition of the control regime of P&L

724

Chapter 7

(def-class PROPOSE-AND-IMPROVE-STATE (decomposition-method) ?psm
((has-input-role :value has-schedule-state)
(has-output-role :value generates-schedule-state)
(has-schedule-state : type schedule-state)
(generates-schedule-state : type schedule-state)
(has-body :value (lambda (?psm)

(in-environment
((Pstate . (role-value Ppsm has-schedule-state))
(Pschedule-model . (the Psc (has-schedule-model

Pstate Psc)))
(Pconstraints . (role-value Ppsm has-hard-constraints))
(Prequirements . (role-value Ppsm has-requirements))
(Pjobs . (role-value Ppsm has-jobs)))

(if (deadend-state Pstate)
;nothing

(if (constraint-violations Pstate Pconstraints)
(tell (deadend-state Pstate))

(if (deadend-state Pstate)
:nothing

(if (requirement-violations Pstate Prequirements)
(tell (deadend-state Pstate))

(if (state-complete Pstate Pjobs)
(do

(tell (complete-state Pstate))
(achieve-generic-subtask
Ppsm
generate-new-state-successor
has-schedule-state Pstate
has-schedule-context : improve))

(achieve-generic-subtask
Ppsm
generate-new-state-successor
has-schedule-state
Pstate
has-schedule-context : extend))))))))))

:own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks '(generate-new-state-successor))))

7.3.3.3 Foci collection and focus selection within the improve phase

In the improve phase, first all the assigned jobs are collected so that the cost of their

assignment can be optimised. Having collected the foci, the correct focus (i.e., a job with

the highest cost) is selected by using a method select-most-expensive-job, which

achieves the task select-schedule-focus (cf. Section 6.3.5) from Generlc-
Schedule. In order to determine the cost associated with each job, this method makes use

of job-cost-function (cf. Section 7.3.3.1) and the cost of a job assignment is

calculated by using the function the-most-expensive-job. The following box shows

the OCML definitions of method select-most-expensive-job and the function the-
most-expensive-j ob.

725

Chapter 7

(def-class SE L E C T -M O ST -E X P E N SIV E -JO B (primitive-method) ?psm
((has-body :value (lambda (?psm)

(the-most-expensive-job
(role-value Ppsm has-schedule-foci)
(the Psc (has-schedule-model

(role-value Ppsm has-schedule-state) Psc))
(role-value Ppsm has-job-cost-function)))))

:own-slots ((tackles-task-type '(select-schedule-focus))
(applicability-condition
(kappa (Ptask)

(= (role-value Ptask has-schedule-context) : improve)))))
(def-function T H E -M O ST -E X P E N SIV E -JO B (Pfoci Psc Pfun) -> Pfocus
: constraint (and (list Pfoci)

(every Pfoci job)
(schedule-model Psc)
(job Pfocus)
(job-cost-function Pfun))

:body (the Pfocus
(and (member Pfocus Pfoci)

(= (call Pfun Pfocus Psc) Pfocus-cost)
(not (exists Pfocus2

(and (member Pfocus2 Pfoci)
(= (call Pfun Pfocus2 Psc) Pfocus2-cost)
(<> PfO C U S 2 Pfocus)
(> Pfocus2-cost Pfocus-cost)))))))

7.3.3.4 Collection and seiection of the improvement operators

Once the candidate focus is selected then all schedul e - improvement: - operators that

can be applied to optimise the cost of a selected job are collected by using a method called

collect-improvable-operators. This method achieves the task collect - focus-
operators (cf. Section 6.3.6) from Generic-Schedule. All the collected schedule-
improvement-operators are then sorted by using the relation schedule - operator-
order (cf. Section 6.2.2) and the first improvement operator from the sorted list is selected

to optimise the cost of the most expensive job.

Once the cost of a currently selected focus is improved, then task new-schedule-
state is invoked again. This task invokes the top-level problem-solving loop again to

optimise the cost of the other jobs and if no further improvement is possible to the overall

cost of a schedule then the currently optimal schedule is returned as a solution.

In total five new definitions are needed to model the P&I method. Table 7.4 summarises

the knowledge requirements of the P&l method.

Table 7.4. The knowledge requirements of the P&I method.

Knowledge Roles Propose and Improve

Inference knowledge The schedule operator selection knowledge

in both the phases

The focus selection knowledge in both the

phases

The knowledge required to achieve the job

assignment in the propose phase

726

Chapter 7

Makes a detailed use of the cost function

Additional subtasks P&I-Optimal, job-cost-function,
collect-improvable-jobs, select-
most-expensive-job, collect-
improvable -operators

Method specific control regime Propose-and-Improve-State
Schedule-context Extend, Improve

Schedule-focus Job, most expensive job

Schedule focus selection strategy In the propose phase, the focus is selected by

using the application-specific knowledge or

by using one of the job selection methods

from Generic-Schedule (cf. Section

6.3.5)

The most expensive job is selected as a focus

in the improve phase

Schedule operator type Schedule-extension-operator
Schedule-improvement-operator

Schedule operator order It is determined according to a selected focus

Schedule state selection knowledge Violated constraint: No

Violated requirements: No

Schedule extension: Maximal

Cost: Minimum

Global properties Complete, locally and globally optimal

7.3.4 Propose and Revise

The P&R method (McDermott, 1988; Marcus and McDermott, 1989) was originally

developed to tackle the VT system for elevator configuration (Marcus and McDermott,

1989) and was later extended to solve the production scheduling problem (Stout et a l,

1988). The method was then integrated with the SALT knowledge acquisition tool (Marcus

and McDermott, 1989). Several researchers (Fensel and Straatman, 1998; Wielinga et a l,

1995; Zdrahal and Motta, 1995; Motta, 1999) have studied the P&R method. Fensel and

Straatman’s (1998) work mainly aimed at analysing the competency of the P&R method.

Wielinga et a l (1995) enumerated different assumptions and limitations of P&R in the

context of the VT elevator problem. Zdrahal and Motta (1995) and Motta (1999) provide a

much richer analysis of the P&R method than the two aforementioned studies and they

applied the P&R method to solve parametric design problems. Their study also relates the

P&R method to different constraint satisfaction techniques. Our aim here is also to provide

727

Chapter 7

a uniform support for constructing the P&R method by reusing Generic-schedule, while

at the same time trying to tease out the characteristics that are unique to scheduling.

7.3.4.1 Initial analysis of the method

The P&R method divides the problem-solving process into two phases: the propose phase

and the revise phase. The following bullet points identify the relation between these two

phases:

• The propose phase constructs a complete schedule by assigning jobs to resources and

time ranges, and while constructing a schedule, it checks whether any of the constraints

imposed on the schedule are violated;

• While constructing a schedule if any of the constraints imposed on the schedule are

violated then the revise phase of the method is invoked to fix the constraint violations.

The constraint violations are fixed by applying the least costly fix that has not been

tried yet (Marcus and McDermott, 1989). However, in our approach the fixes are

selected in compliance with the selected focus (i.e., constraint violation) in the revise

phase;

• After the fixes are applied, the current schedule is revised tentatively to see the effects

of fix application on the remaining constraint violations;

• If the constraint violations persist then the next fix from the list, which has not been

tried yet, is selected;

• Finally, if no more constraints are violated then a complete and consistent schedule is

established as a final solution.

In contrast with the schedule state selection policy of Generic-Schedule and the

methods discussed in the previous three sections, the schedule state selection policy of the

P&R method takes into account all those schedule states that violate constraints instead of

simply ignoring such schedule states. The P&R method also specialises the notions of

schedule operator and inference structure from Generic-Schedule :

• Schedule operators: The P&R method specialises the notion of a schedule operator

according to the two phases involved in the method. In the propose phase schedule-

procedure is used to assign jobs to resources and time ranges. The schedule-

procedure is defined uniformly based on schedule-ext ension-operator (cf.

Section 6.2.2). In the revise phase schedule-fixes are used to fix the constraint

violations. The schedule-fixes are defined uniformly based on schedule-
modif icat ion-operator (cf. Section 7.2). The following box shows the OCML

definition of schedule-fix.

728

Chapter 7

(def-class SCHEDULE-FIX (schedule-modification-operator)
((applicable-to-constraints : type function-expression

: documentation "This expression returns the set of
constraints that can be resolved
by the application of this fix)))

• Inference structure; The P&R method subscribes to a knowledge-based backtracking

schema (Marcus et a l, 1988) rather than the depth-first search with chronological

backtracking search strategy of Generic-Schedule.

7.3A .2 Control regime of the P&R method

The method specific control regime of the P&R method, propose -and- revise -
control-structure, is constructed by modifying the method specific control regime of

Generic-Schedule (cf. Section 6.3.2) to deal with constraint violations. According to

the original description of the method (Marcus and McDermott, 1989) the constraint

violations are fixed as soon as they arise. However, in scheduling the constraints are

antagonistic in nature (Stout et a l, 1988) mainly due to the dynamic nature of the job

assignments and their inter-dependencies. As a result, in our approach the constraint

violations are fixed only when a complete schedule is constructed because these violations

can be dealt with simultaneously, which gives us more control to analyse the effect of

fixing one constraint violation on the remaining constraint violations. Propose-and-
revise-control-structure specialises the method specific control regime of

Generic-Schedule by adding a new task revise-schedule to deal with the

constraint violations.

Propose-and-revise-control-structure first invokes the task generate-
new-state-successor in the extend context to construct a complete schedule. If any of

the constraints are violated then they are ignored until a complete schedule is constructed.

Once a complete schedule is constructed then the task revise-schedule is invoked in

the revise context to fix all the ignored constraint violations. The following box shows the

OCML definition of propose - and- revise - control - structure.

729

Chapter 7

(def-class PROPOSE-AND-REVISE-CONTROL-STRCUTURE (decomposition-method) ?psm
((has-input-role :value has-schedule-state)
(has-output-role :value generates-schedule-state)
(has-schedule-state : type schedule-state)
(generates-schedule-state : type schedule-state)
(has-body :value (lambda (?psm)

(in-environment
((?state . (role-value ?psm has-schedule-state))
(?sc . (the ?sc (has-schedule-model ?state ?sc)))
(Pconstraints . (role-value Ppsm has-hard-constraints))
(Pjobs . (role-value Ppsm has-jobs)))

(if (deadend-state Pstate)
:nothing

(if (requirement-violations Pstate Prequirements)
(tell (deadend-state Pstate))

(if (state-complete Pstate Pjobs)
(tell (complete-state Pstate))

(achieve-generic-subtask
Ppsm generate-new-state-successor
has-schedule-state Pstate
has-schedule-context : extend)
(if (constraint-violations Pstate Pconstraints)

(achieve-generic-subtask
Ppsm revise-schedule
has-schedule-state Pstate)))))))))

:own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks '(generate-new-state-successor

revise-schedule))))

7.3.4.3 Schedule revision

The following two methods are defined in order to achieve the task revise-schedule:
one-step-revision-for-constraint and fix-constraint-monotonically.

The method one-step-revision-for-constraint takes as an input an

inconsistent schedule state (i.e., a schedule state violating constraints) and then invokes the

task generate-new-state-successor in the revise context. This method can be used

in those situations where only a single constraint is violated and therefore it has limited

applicability because to fix more than one constraint violations the problem space needs to

be searched in more detail so that alternative assignments can be tried for a job in conflict.

Because only a single constraint is fixed by using this method no special knowledge is

required to select a candidate focus. Having selected a focus, all schedule-fixes that

can be applied to fix the selected constraint violation are collected and then sorted by the

relation schedule-operator-order (cf. Section 6.2.2). Finally, the first schedule-
fix from the sorted list is selected and applied to fix the constraint violation.

:To deal with more then one constraint violation, the method fix-constraint-
monotonically is included in the library. This method takes as an input a schedule state

that has a number of constraint violations and then it invokes the task generate-new-
state-successor in the revise context. The method f ix-constraint-
monotonically first collects all the constraint violations and then the candidate focus

(i.e., constraint violation) is selected according to the relevant application-specific

knowledge. Once a correct focus is selected then all the schedule-fixes that are

applicable to fix a focus are collected and then sorted as described earlier. Having fixed a

759

Chapter 7

currently selected constraint violation, this method iterates the problem-solving cycle again

until all the constraint violations have been fixed. After each cycle, the task evaluate-
hard-consistency (cf. Section 6.3.1.1) is invoked to check whether any new

constraints are violated while fixing the existing ones. In both methods, application-

specific knowledge is used to determine how the constraint violation can be fixed. The

following box shows the OCML definitions of method revise-schedule and method

one-step-revision-for-constraint.

(def-class R E V IS E -SCHEDULE (goal-specification-task) ?tsk
((has-input-role :value has-schedule-state)
(has-output-role :value has-output-state)
(has-schedule-state : type schedule-state)
(has-output-state : type schedule-state)
(has-goal-expression rvalue (kappa (Ptask Ps)

(and (schedule-state Ps)
(not (constraint-violations

Ps Pany)))))))
(def-class O N E -S T E P -R E V IS IO N -F O R -C O N S T R A IN T (primitive-method) Ppsm
((has-body rvalue (lambda (Ppsm)

(repeat
(in-environment
((Pinput . (role-value Ppsm has-schedule-state))
(Poutput . (achieve-generic-subtask

Ppsm generate-new-state-successor
has-schedule-state Pinput
has-schedule-context rrevise)))

(if (achieved Ppsm Poutput)
(return Poutput)))))))

rown-slots ((has-generic-subtasks generate-new-state-successor)
(tackles-task-type revise-schedule)
(A P P L IC A B IL IT Y -C O N D IT IO N
(kappa (Ptask)

(in-environment
((Pinput . (role-value.Ptask 'has-schedule-state)))
(= (cardinality

(the Pconstraints (constraint-violations
Pinput Pconstraints))) 1))))))

7.3.4.4 Foci collection and a focus seiection

All the constraint violations are collected as the candidate foci by rising a method called

collect-all-constraint-violât ions. This method achieves the task collect-
state-foci (cf. Section 6.3.3) from Generic-Schedule.

A candidate focus (i.e., a constraint violation) is selected by using a method called

select-candidate-constraint-violât ion. This method achieves the task

select-schedule-focus (cf. Section 6.3.5) from Generic-Schedule. The candidate

focus is selected by using application-specific knowledge, but if an application fails to

provide such knowledge, then the first constraint violation from the list of collected foci is

selected as a focus. The following box shows the OCML definition of method collect-
all-constraint-violât ions.

131

Chapter 7

(def-class COLLECT-ALL-CONSTRAINT-VIOLATIONS (primitive-method) Ppsm
((has-body : value (lambda (Ppsm)

(setofall Pcv
(and (fixable-constraint Pcv)

(member Pcv
(the PCS (constraint-violations

(role-value
Ppsm
has-schedule-state)
Pcs))))))))

:own-slots ((tackles-task-type '(collect-state-foci))
(applicability-condition
(kappa (Ptask)

(= (role-value Ptask has-schedule-context) : revise)))))

7.3.4.5 Collecting and selecting the fixes

Once a correct focus is selected then all the fixes that are applicable to fix the selected

focus are collected by using a method called collection-of-applicable-fixes.
This method achieves the task collect-focus-operators (cf. Section 6.3.6) from

Generic-Schedule. Finally, all the collected fixes are sorted and the first fix from the

list of sorted fixes is selected. The following box shows the OCML definition of method

collection-of-applicable-fixes.

(def-class COLLECTION-OF-APPLICABLE-FIXES (primitive-method) Ppsm
((has-body :value (lambda (Ppsm)

(setofall Pop (and (schedule-fix
Pop applicable-to-constraints PI)
(member (role-value Ppsm

'has-schedule-focus)
(eval PI)))))))

:own-slots ((tackles-task-type '(collect-focus-operators))
(applicability-condition
(kappa (Ptask)

(and (= (role-value Ptask has-schedule-context) : revise)
(fixable-constraint
(role-value Ptask has-schedule-focus)))))))

In order to model the P&R method only six new definitions have been defined by

specialising Generic-Schedule. Table 7.5 summarises the knowledge requirements of

the P&R method.

Table 7.5. The knowledge requirements of the P&R method.

Knowledge Roles Propose and Revise

Inference knowledge The knowledge required to select

schedule-procedure and schedule-
fix
The focus selection knowledge in both the

phases

The knowledge required to select resources

and time ranges for the job assignment

The knowledge required to fix the constraint

violations

752

Chapter 7

Additional subtasks Revise-schedule.
One-step-revision-for-constraint.
Fix-constraints-monotonically.
Collect-all-constraint-
violations.
Select-candidate-constraint-
violation,
Collection-of-applicable-fixes

Method specific control regime Propose-and-revise-control-
structure

Schedule-context Extend, revise

Schedule-focus Job, constraint violation

Schedule focus selection strategy One of the job selection methods from

Generic-Schedule (cf. Section 6.3.5) is

used to select a candidate job in the propose

phase

Application-specific knowledge is used to

select a candidate constraint violation

Schedule operator type Schedule-procedure
Schedule-fix

Schedule operator order It is determined according to a selected focus

in both the phases

Schedule state selection knowledge Violated constraint: Minimal

Schedule extension: Maximal

Cost: Minimum

Global properties Complete and consistent

7.3.5 Propose and Restore-feasibility

The Propose and Restore-feasibility method (P&Rf) is included in our library to deal with

the requirement violations that occur while constructing a schedule. This method is similar

in spirit to the Propose & Revise method, and therefore, in the following section we

quickly describe how the P&Rf method is modelled by providing the pointers to the

appropriate definitions in P&R.

7.3.5.1 Modelling the P&Rf method

• The P&Rf method divides a schedule construction process into the propose phase and

the restore-feasibility phase. The propose phase constructs a complete schedule by

assigning jobs to resources and time ranges and if any of the requirements imposed on

133

Chapter 7
a schedule are violated then the restore-feasibility phase is invoked to fix these

violations;

• Context, focus, and operators: The context in the propose phase is to extend a

schedule and the focus is on the unassigned jobs, whereas the context in the restore-

feasibility phase is to fix all the requirement violations and the focus is on the

requirement violations. In the propose phase the jobs are assigned by using

schedule-extension-operator (cf. Section 6.2.2) and in the restore-feasibility

phase a feasibility-restoration-operator is used to fix the violated

requirements;

• Method specific control regime of P&Rf: The method specific control regime of

P&Rf, called propose-and-res tore-feasibility-state, can be realised along

the same lines as propose-and-revise-control-structure (cf. Section 7.3.4.2)

of P&R. The main difference between these two control regimes is that in contrast with

propose-and-revise-control-structure, which checks for the constraint

violations by using the relation constraint -violations, propose-and-
restore-feasibility-state checks for requirement violations by using the

relation requirement-violations. When encountered with a schedule state that

violates requirements the task restore-feasibility is invoked to fix the.

requirement violations. This task can be realised along the same lines as revise-
schedule (cf. Section 7.3.4.3);

• Foci collection and a focus selection: All the requirements that are violated while

constructing a schedule are collected as the candidate foci by using the method

collect-the-requirement-violât ions. This method is isomorphic to

collect-all-constraint-violâtions (cf. Section 7.3.4.4). Having collected all

the requirement violations, the first requirement violation from the list of collected foci

is selected as a candidate focus by using a method called select-candidate-
requirement-violâtion. This method can be realised on the same lines as

select-candidate-constraint-violât ion (cf. Section 7.3.4.4);

• Operator collection and selection: All the f easibili ty-res torat ion-
operators that can be applied to fix the selected requirement violation are collected

by using a method collection-of-f easibili ty-res torat ion-operator.
This method is similar to collect-focus-operators (cf. Section 7.3.4.5), and the

first operator from the list of collected operators is selected.

Table 7.6 summarises the knowledge requirements of the P&Rf method.

754

Chapter 7

Table 7.6. The knowledge requirements of the P&Rf method.

Knowledge Roles Propose and Restore-feasibility

Inference knowledge The knowledge required to select

schedule-extension-operator and
feasibility-restoration-operator
The focus selection knowledge in both the

phases

The schedule state selection knowledge

The knowledge required to select resources

and time ranges that can be assigned to jobs

in the propose phase

The knowledge required to fix the

requirement violations

Additional subtasks Restore-feasibility, Focus-based-
feasibility-restoration. Collect-
the-requirement-violâtions,
Select-candidate-requirement-
violation, Collection-of-
feasibility-restoration-operator

Method specific control regime Propose-and-restore-feasibility-
state

Schedule-context Extend, feasibility-restoration

Schedule-focus Job, requirement violation

Schedule focus selection strategy One of the job selection methods from

Generic-Schedule (cf. Section 6.3.5) are

used in the propose phase to select a job

In the restore-feasibility phase the

application-specific knowledge is used to

select a candidate requirement violation

Schedule operator type Schedule-extension-operator
Feasibility-restoration-operator

Schedule operator order Application-specific knowledge

Schedule state selection knowledge Requirement violations: Minimal

Schedule extension: Maximal

Cost: Minimum

Global properties Complete and feasible

135

Chapter 7

7.3.6 Propose and Exchange

The Propose and Exehange (P&E) method was developed by Poeek and Gappa (1993) to

tackle the assignment problem with a corresponding shell called COKE (Poeek and Puppe,

1992). The assignment problem is characterised by two types of objects: the demand object

and the supply object (Baker, 1974; Sharma, 1998). The main aim of the assignment task is

to map each member from the demand object set (i.e., a job) to the supply object set (i.e., a

resource). Scheduling can be seen as a more complex ease of the assignment task, which

not only deals with the assignment of jobs to resources, but also determines the time

window within which each assignment needs to take place. Therefore, we modified the

original description of the P&E method to tackle the time element in scheduling.

The basic idea of the P&E method is to make locally consistent assignments until any of

the constraints imposed on a schedule are violated. Once constraint violations are detected,

the assignments of the conflicting jobs involved in conflict are exchanged to construct a

consistent solution. Although, both the P&R and P&E methods deal with the constraint

violations, the main difference between these two methods can be characterised based on

how these two methods fix the constraint violations. When encountered with a constraint

violation, the revise phase of P&R proposes new assignments for the jobs in conflict,

whereas the exchange phase of P&E simply exchanges the assignment of the jobs involved

in the constraint violations at the same depth of a search tree. If the constraint violations

cannot be fixed locally then the relatively best constellation of assignments is established,

and then more effort is invested to fix the remaining constraint violations.

7.3.6.7 Initial analysis of the method

The P&E method divides the schedule construction process in the following two phases:

the propose phase and the exchange phase. The following bullet points describe how these

two phases are related with each other.

• The propose phase of the method constmcts a complete schedule by assigning jobs to

resources and time ranges by applying schedule-extension-operators (cf.

Section 6.2.2). The context in this phase is to extend a schedule and the focus is on the

unassigned jobs;

• If any of the constraints imposed on a schedule are violated while constructing a

schedule, then the exchange phase of the method is invoked to fix these violations

locally by exchanging the conflicting job assignments by applying exchange-
operators. An exchange - operator is defined unifonnly based on the definition

736

Chapter 7
of schedule-modification-operator (cf. Section 7.2). The context in this phase

is to exchange a schedule and the focus is on the constraint violations.

If the constraint violations persist then first a complete schedule is constructed and then

more effort is invested to fix the remaining constraint violations by performing global

exchanges among the job assignments.

The following box shows the informal schema of the P&E method.

Input: Jobs, Resources, Time ranges
Output: To devise a complete and a consistent schedule
Until all the jobs are assigned, REPEAT through steps 1-3.
1. Select a job with lowest degrees of freedom;
2. Proposes a valid assignment for a selected job;
3. If the constraints are violated, then try exchanging the assignments of jobs

that are in conflict to remove or minimise constraint violations ;
4. If constraints are still violated, then try exchanges from a global point of

view and with more effort;
5. Show the final assignment and remaining constraint violations if any.

7.3.6.2 The method specific control regime of P&E

Propose&Exchange-state represents the method specific control regime of P&E,

whieh is constructed by specialising the method specific control regime of Generic-
Schedule (ef. Section 6.3.2).

The propose phase begins the sehedule eonstruction process by invoking the task

generate-new-state-successor in the extend eontext. It constructs a complete

schedule by assigning jobs to resources and time ranges. If any of the constraints are

violated while constructing a schedule then the task local-exchange-of-schedule is

invoked in the exchange context to fix these constraint violations. Because the constraint

violations are fixed as soon as they occur while constructing a solution, this strategy is

similar in spirit to extend-model-then-revise (Motta, 1999). If not all the constraint

violations can be fixed locally, then they are ignored until a complete schedule is devised.

Once a complete schedule is constmcted then task exchange-schedule is invoked,

which tries to fix all the outstanding constraint violations by globally exchanging the job

assignments involved in eonfliet. This type of eonstraint violation removal strategy is

similar in spirit to complete-model-then-revise (Motta, 1999). The following box shows the

GCML definition of propose&exchange-state.

737

Chapter 7

(def-class PROPOSE&EXCHANGE-STATE (decomposition-method) ?psm
((has-input-role :value has-schedule-state)
(has-output-role :value generates-schedule-state)
(has-schedule-state : type schedule-state)
(generates-schedule-state : type schedule-state)
(has-body :value '(lambda (?psm)

(in-environment
((?state . (role-value ?psm has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(?constraints . (role-value ?psm has-hard-constraints))
(?requirements . (role-value ?psm has-requirements))
(?jobs . (role-value ?psm has-jobs)))

(if (deadend-state Pstate)
: nothing

(if (requirement-violations ?state ?requirements)
(tell (deadend-state ?state))

(if (constraint-violations ?state ?constraints)
(achieve-generic-subtask
?psm local-exchange-of-schedule
has-schedule-state ?state)

(if (state-complete ?state ?jobs)
(tell (complete-state ?state))

(achieve-generic-subtask
?psm generate-new-state-successor
has-schedule-state ?state
has-schedule-context : extend)
(if (constraint-violations

?state Peonstraints)
(achieve-generic-subtask
Ppsm exchange-schedule
has-schedule-state Pstate))))))))))

: own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks '(generate-new-state-successor

local-exchange-of-schedule
exchange-schedule))))

7.3.6.3 Fixing the constraint vioiations

Task local-exchange-of-schedule is invoked to fix the constraint violations locally

that occurred while constructing a schedule. This task is achieved by defining a method

called exchange-locally. The body of this method takes as input a schedule state, say

Ssi, which has a number of constraint violations and then it invokes a task generate-
new-state-successor in the exchange context. The body of this task collects all the

constraint violations, as the current foci, and then selects the first constraint violation as a

focus. Having selected a candidate focus, the assignments of the two conflicting jobs are

exchanged. If a schedule state, say Ss2 , is reached which has fewer constraint violations

then such a schedule state is retuned as an output. After each cycle, the task evaluate-
hard-consistency (cf. Section 6.3.1.1) is invoked to check whether all the constraint

violations have been fixed through local exchanges among the job assignments. The

following box shows the OCML definitions of local-exchange-of-schedule and

exchange-locally.

733

Chapter 7

(def-class LOCAL-EXCHANGE-OF-SCHEDULE (goal-specification-task) ?task
((has-input-role :value has-schedule-state)
(has-output-role :value has-output-state)
(has-schedule-state : type schedule-state)
(has-output-state : type schedule-state)
(has-goal-expression :value (kappa (?task ?s)

(and (schedule-state ?s)
(has-output-state ?task ?s))))))

(def-class EXCHANGE-LOCALLY (primitive-method) ?psm
((has-body :value (lambda (?psm)

(repeat
(in-environment
((? input . (role-value ?psm has-schedule-state))
(?output . (achieve-generic-subtask

?psm generate-new-state-successor
has-schedule-state ?input
has-schedule-context : exchange)))

(if (schedule-state ?output)
(do (achieve-generic-subtask

?psm evaluate-hard-consistency
has-schedule-state ?output
has-schedule-context : exchange)
(if (< (cardinality

(the ?cs (constraint-violations
Poutput Pcs)))

(cardinality
(the Pcs (constraint-violations

Pinput Pcs))))
(return Poutput)))))))))

:own-slots ((tackles-task-type local-exchange-of-schedule)
(has-generic-subtasks '(generate-new-state-successor

evaluate-hard-consistency))))

If the constraint violations cannot be fixed locally then the task generate-new-
state-successor is invoked again in the extend context and the schedule construction

process is resumed. Once a complete schedule is devised then the task exchange-
schedule is invoked to fix all the outstanding constraint violations through global

exchanges. This task is achieved by defining a method called focus-based-schedule-
exchange. The body of this method is an exhaustive control loop that calls itself until all

the constraint violations are fixed. The method collects all the outstanding constraint

violations, selects the first constraint violation from this list, retrieves all exchange-
operators applicable to fix the selected violation, sorts them, and then applies the first

exchange-operator from the sorted list to exchange the assignment of the jobs

involved in the constraint violation. After each cycle, relation schedule-satisfies-
constraints (cf. Appendix 1) is used to check whether all the constraint violations are

fixed. The following box shows the OCML definitions of task exchange - schedule and

method focus -based- schedule - exchange.

73P

Chapter 7

(def-class EXCHANGE-SCHEDULE (goal-specificabion-task) ?task
((has-input-role rvalue has-schedule-state)
(has-output-role rvalue has-output-state)
(has-schedule-state rtype schedule-state)
(has-output-state rtype schedule-state)
(has-goal-expression rvalue (kappa (?task ?s)

(and (schedule-state ?s)
(not
(constraint-violations ?s ?any))))))

(def-class FOCUS-BASED-SCHEDULE-EXCHANGE (primitive-method) ?psm
((has-body rvalue (lambda (?psm)

(REPEAT
(in-environment
((?input . (role-value ?psm has-schedule-state))
(Poutput . (achieve-generic-subtask

Ppsm generate-new-state-successor
has-schedule-state Pinput
has-schedule-context rexchange)))

(if (schedule-state Poutput)
(in-environment
((Precord . (the-state-search-control-record

Poutput))
(Pfocus . (the-slot-value Precord

'has-schedule-focus))
(Psc . (the-slot-value Poutput

has-schedule-model)))
(if (schedule-satisfies-constraint Psc Pfocus)

(return Poutput)))))))))
rown-slots ((tackles-task-type exchange-schedule)

(has-generic-subtasks '(generate-new-state-successor))))

7.3.6.4 Foci coilection and a focus seiection in P&E

As described by the informal schema of the P&E method (cf. Section 7.3.6.1), in the

propose phase a job with the lowest degrees of freedom (i.e., a job with the least number of

resources and time ranges left for the assignment) is selected as a focus. The default job

selection method job-selected-based-on-lowest-degrees-of-freedom (cf.

Section 6.3.5) from Generic-Schedule is used to select a focus, and therefore, no

configuration is required to select a focus in the propose phase.

During the exchange phase, first all the constraint violations are collected as foci by

using a method called collect-all-culprit-violations. This method achieves task

collect-state-foci (cf. Section 6.3.3) from Generic-Schedule. Having collected

the foci, the first constraint violation from the list of collected foci is selected as a focus by

using a method called select-the-violation, which achieves task select-
schedule-focus (cf. Section 6.3.5) from Generic-Schedule.

7.3.6.5 Collection and seiection of the exchange operators

All the exchange-operators that can be applied to fix a selected focus are collected by

using a method def ault-exchange-operator-col lection, which achieves the task

collect-focus-operators (cf. Section 6.3.6) from Generic-Schedule. All the

collected exchange - operators are then sorted by using relation schedule-
operator-order (cf. Section 6.2.2) and the first operator from the sorted list is selected

to fix the constraint violation. Having fixed the currently selected focus, the entire

problem-solving cycle is repeated to fix the remaining constraint violations and if no more

740

Chapter 7

constraints are violated then a consistent schedule is returned as an output. The following

box shows the OCML definition of method default-exchange-operator-
collection.

(def-class DEFAULT-EXCHANGE-OPERATOR-COLLECTION (primitive-method) Ppsm
((has-body rvalue (lambda (Ppsm)

(setofall Pop
(and (exchange-operator

Pop applicable-to-constraints PI)
(member (role-value Ppsm

'has-schedule-focus)
(eval PI)))))))

rown-slots ((tackles-task-type '(collect-focus-operators))
(applicability-condition
(kappa (Ptask)

(= (role-value Ptask has-schedule-context) rexchange)))))

In total seven new definitions have been defined to model the P&E method by

specialising Generic-Schedule. Table 7.7 summarises the knowledge requirements of

the P&E method.

Table 7.7. The knowledge requirements of the P&E method.

Knowledge Roles Propose and Exchange

Inference knowledge The knowledge required to select the

operators in both the phases of method

A schedule focus selection knowledge in

both the phases

A schedule state selection knowledge

The knowledge required to select the

resources and time ranges that can be

assigned to jobs in the propose phase

The knowledge required to exchange the job

assignments involved in conflict

Additional subtasks Local-exchange-of-schedule,
Exchange-schedule, Collect-all-
culprit-violâtions. Default-
exchange -operator- col lection

Method specific control regime Propose&Exchange-state
Schedule-context Extend, exchange

Schedule-focus Job, eonstraint violation

Schedule focus selection strategy A eandidate focus in the propose phase of the

method is selected by using the method jo b -
selected-based-on-lowest-degrees-
of-freedom (cf. Section 6.3.5)

141

Chapter 7

The first constraint violation from the list of

collected foci is selected as a focus in the

exchange phase

Schedule operator type Schedule-extension-operator
Exchange-operator

Schedule operator order It is determined based on a selected focus

Schedule state selection knowledge Violated constraints: No or minimal

Schedule extension: Maximal

Cost: Minimum

Global properties Complete

Locally and globally consistent

7.3.7 Propose and Genetical-Exchange (P&GE)
This method was proposed by Poeek and Gappa (1993) to solve the assignment task by

using the genetic algorithm schema (Goldberg, 1989). As in the case of the P&E method,

we modified the original description of the P&GE method to tackle the time element as

well as the assignment of jobs to resources.

7.3.7.1 Initial analysis of the method

The P&GE method initially constructs a complete and consistent schedule, and then it tries

to optimise a solution. The method uses a notion of optimality based on the minimisation

of the constraint violations. The following bullet points analyse the P&GE method.

• The propose phase constructs a complete schedule by assigning jobs to resources and

time ranges by applying schedule-extension-operators (ef. Section 6.2.2). The

set of a schedule quadruples generated as a eomplete solution represents an initial

population;

• If any of the constraints imposed on a schedule are violated, then they are ignored until

a complete schedule is devised. Once a complete schedule is devised then the

genetical-exchange phase is invoked to fix these constraint violations. The

constraint violations are fixed by invoking the following two tasks: initial-
crossover and final-crossover. A new type of schedule modification operator

called genetic-operator is defined to fix the constraint violations. This operator is

defined as a subclass of schedule-modification-operator (cf. Section 7.2);

• Finally, if no more constraints are violated then a complete and consistent solution is

returned as an output.

742

Chapter 7

The following box shows an informal schema of the P&GE method (Poeek and Puppe,

1993).

Population: Initial population set generated by any greedy technique
REPEAT
Select the parents from the initial population
New solution = initial crossover
Optimise a new solution for constraint violations = final crossover
Survival of the fittest solution (i.e., a complete and consistent schedule)

7.3.7.2 The method specific control regime of P&GE

The method generation-of-P&GE define the method-specific control regime of P&GE,

which is constructed by modifying the method-specific control regime of Generic-
Schedule (cf. Section 6.3.2) to fix the constraint violations. This control regime first

invokes the task generate-new-state-successor in the extend context to devise a

complete schedule. In line with P&R (cf. Section 7.3.4), if the constraints are violated

while constructing a schedule then they are ignored until a complete schedule is

constructed. Once a complete schedule is constructed, then the task initial-crossover
is invoked to fix the constraint violations by exchanging randomly the conflicting jobs so

that a schedule with none or fewer constraint violations is generated.

If the constraint violations carmot be fixed by applying the task initial-crossover
then the task final-crossover is invoked, which applies a more exhaustive strategy to

fix the constraint violations. This task takes as input a partially corrected set of

assignments (i.e., a population), which are generated by the task initial-crossover
and then it iteratively exchanges the job assignments involved in a conflict to construct a

consistent schedule. The following box shows the OCML definition of generation-of-
P&GE.

J43

Chapter 7

(def-class GENERATION-OF-P&GE (decomposition-method) ?psm
((has-input-role :value has-schedule-state)
(has-output-role :value generates-schedule-state)
(has-schedule-state : type schedule-state)
(generates-schedule-state : type schedule-state)
(has-body :value (lambda (?psm)

(in-environment
((?state . (role-value ?psm has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(?constraints (role-value ?psm has-hard-constraints))
(?requirements . (role-value ?psm has-requirements))
(?jobs . (role-value ?psm has-jobs)))

(if (deadend-state ?state)
:nothing

(if (requirement-violations ?state ?requirements)
(tell (deadend-state ?state))

(if (state-complete ?state ?jobs)
(achieve-generic-subtask
?psm generate-new-state-successor
has-schedule-state Pstate
has-schedule-context : extend)

(if (constraint-violations Pstate Peonstraints)
(achieve-generic-subtask
Ppsm initial-crossover
has-schedule-state Pstate)

(if (constraint-violations Pstate constraints)
(achieve-generic-subtask
Ppsm final-crossover
has-schedule-state Pstate))))))))))

:own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks '(generate-new-state-successor

initial-crossover final-crossover))))

7.3.7.3 Fixing the constraint violations in the geneticai-exchange phase

The task initial-crossover is achieved by using a method called default-
initial-crossover. This method takes as an input a schedule state, which has a

number of constraint violations and then it first collects all the constraint violations as the

candidate foci. The first constraint violation from the list of collected foci is selected as a

focus by using the task select-schedule-focus. Having selected a candidate; focus,

all genetic-operators that can be applied to fix the selected focus are collected and

then sorted to determine the order of their application. The operator collection and sorting

operations are performed by invoking the tasks collect-focus-operators and

sort-focus-operators respectively. After each cycle, the task evaluate-hard-
consistency (cf. Section 6.3.1.1) is invoked to cheek whether an offspring (i.e., a set of

new assignments) has fewer constraint violations than the initial set. If all the constraint

violations are fixed by using the task initial-crossover then this consistent schedule

state is returned as an output, otherwise the task final-crossover is invoked. The task

final-crossover is achieved by using a method called default-crossover. This

method takes as input a partially corrected set of assignments generated by the task

initial-crossover and then performs a focus-based exchange among the

assignments of the jobs that are involved in conflict. The method default-crossover
is similar in spirit to the method focus-based-schedule-exchange (cf. Section

T.3.6.4). Having fixed all the constraint violations, the body of method default -

744

Chapter 7
crossover invokes a new task called evaluate-f itness-function, which is used

to check the schedule quality. A schedule quality is evaluated based on the amount of

time by which the jobs fails to meet their deadlines in a final solution. In scheduling, the

evaluation function is usually constructed by using optimisation criteria, such as jo b

tardiness, maximisation o f the resource utilisation, or work-in-progress (Davis, 1985;

Bagchi et a l , 1991; Starkweather et a l , 1993). In line with these proposals, in our

approach the evaluation function is constructed to check the job tardiness in a final

solution. The job tardiness is calculated by using the following equation shown in Figure

7.1.

^ jtardi = (0.1 / maximum lateness) * 100

Figure 7.1. The evaluation-function used to calculate the job tardiness.

The ‘maximum lateness’ in the above equation indicates the time by which a particular

job is delayed in a schedule. A tardiness of a job, say ji, can be represented by the time by

which a job ji fails to meet its due date, or otherwise it is considered as zero. The lateness

function is represented by the time by which the latest end time of a job, ji exceeds its due

date and it is represented as follows: L, = Letji - Ddji, where Letji and Ddj, represents the

latest end time and the due date of a job ji respectively (Baker, 1974). The following box

shows the OCML definitions of task final-crossover, method def aulf-crossover,
and task evaluate-fitness-function.

74.9

Chapter 7

(def-class FINAL-CROSSOVER (goal-specification-bask) Ptask
((has-input-role :value has-schedule-state)
(has-output-role :value has-output-state)
(has-schedule-state : type schedule-state)
(has-output-state : type schedule-state)
(has-goal-expression :value (kappa (Ptask Ps)

(and (schedule-state Ps)
(not (constraint-violations

Ps Pany)))))))
(def-class DEFAULT-CROSSOVER (primitive-method) Ppsm
((has-body :value (lambda (Ppsm)

(REPEAT
(in-environment
((Pinput . (role-value Ppsm has-schedule-state))
(Poutput . (achieve-generic-subtask

Ppsm generate-new-state-successor
has-schedule-state Pinput
has-schedule-context :geneticai-exchange)))

(if (schedule-state Poutput)
(in-environment
((Precord . (the-state-search-control-record

Poutput))
(Pfocus . (the-slot-value

Precord 'has-schedule-focus))
(Psc . (the-slot-value Poutput

’has-schedule-model)))
(if (schedule-satisfies-constraint Psc Pfocus)

(return Poutput)
(do

(achieve-generic-subtask
Ppsm evaluate-fitness-function
has-schedule-state Poutput))))))))))

:own-slots ((tackles-task-type final-crossover)
(has-generic-subtasks '(generate-new-state-successor

evaluate-fitness-function))))
(def-class EVALUATE-FITNESS-FUNCTION (primitive-task) Ptask
((has-input role : value has-output-state)
(has-output-state : type schedule-state)
(has-body : value (lambda (Ptask)

((Poutput . (role-value Ptask has-output-state))
(Pschedule-model . (the Psc (has-schedule-model

Poutput Psc)))
(Pjobs . (role-value Ptask has-jobs)))

(if (fitness-function-for-tardiness Poutput Pjobs)
(tell (state-not-tardy Poutput)))))))

7.3.7.4 Foci coiiection and a focus selection in P&GE

All the constraint violations in the geneticai-exchange phase are collected as the foci by

using a method called collect-all-violations. This method achieves the task

collect-state-foci (cf. Section 6.3.3) from Generic-Schedule.

Having collected all the foci, the first constraint violation from the list of collected foci is

selected as a candidate focus by using a method called select-candidate-
constraint.

7.3.7.5 The operator collection and seiection in P&GE

Once a candidate focus is selected then all the genetic-operators are collected by

using a method called default-genetical-operator-collection, which achieves

the task collect-focus-operators (cf. Section 6.3.6) from Generic-Schedule. All

the collected genetic-operators are then sorted by using the relation schedule-
operator-order (cf. Section 6.2.2) to determine the order of their application and the

first operator from the sorted list is selected and applied to fix the constraint violation. The

746

Chapter 7

following box shows the OCML definition of method def ault-genetical-operator-
collection.

(def-class DEFAULT-GENETICAL-OPERATOR-COLLECTION (primitive-method) Ppsm
((has-body :value (lambda (Ppsm)

(setofall Pop
(and (genetic-operator

Pop applicable-to-constraints Pi)
(member (role-value

Ppsm 'has-schedule-focus)
(eval PI)))))))

:own-slots ((tackles-task-type '(collect-focus-operators))
(applicability-condition
(kappa (Ptask)

(and (= :genetical-exchange
(role-value Ptask has-schedule-context))

(genetically-exchangeable
(role-value Ptask 'has-schedule-focus)))))))

In total eight new definitions are defined in order to model the P&GE method by

specialising Generic-Schedule. Table 7.8 summarises the knowledge requirements of

P&GE.

Table 7.8. The knowledge requirements of the P&GE method.

Knowledge Roles Propose and Genetical-Exchange

Inference knowledge The operator selection knowledge in both the

phases

The sehedule state selection knowledge

The foeus seleetion knowledge in both the

phases

In the propose phase the knowledge required

to assign resources and time ranges to jobs

In the genetical-exehange phase the

knowledge required to fix the constraint

violations and to optimise a consistent

schedule in terms of constraint violations

Additional subtasks Initial-crossover, Default-
initial -crossover, Final-
crossover, Default-crossover,
Evaluate-fitness-function.
Collect-all-violations, Select-
candidate-constraint, Default-
genetical-operator-collection

Method specific control regime Generation-of-P&GE
Schedule-context Extend, geneticai-exchange

747

Chapter 7

Schedule-focus Job, constraint violation

Schedule focus selection strategy In the propose phase one of the job selection

methods (cf. Section 6.3.5) from Generic-
Schedule is used to select a job

In the geneticai-exchange phase the first

constraint violation from the list of eollected

foci is selected

Schedule operator type Schedule-extension-operator
Genetic-operator

Schedule operator order It is determined based on a selected foeus

Schedule state seleetion knowledge Violated constraints: No

Schedule extension: Maximal

Cost: Minimum

Global properties Complete, consistent, and globally optimal

(optimality is considered by minimising the

number of constraint violations)

With the description of the P&GE method, we conclude our presentation of all the PSMs

in our library. In the following section we describe how these PSMs ean be categorised.

7.4 Categorisation of the methods
All the PSMs in our library ean be categorised based on the way they cover and solve the

different types of schedules. For instance, the P&R method can be used to devise a

complete schedule and fix the constraint violations, which occur while constructing a

schedule. The following bullet points describe the categorisation of the methods from our

library:

• Schedule completeness: The methods from this category are eonstruetive in nature

beeause they ean be used to construct a complete solution sehedule. To devise a

complete solution schedule, these methods select a schedule state that does not violate

any constraints or requirements, and when eneountered with an inconsistent sehedule

state such a schedule state is either ignored or the search backtracks to the last

consistent schedule state to resume the schedule construction process. Generic-
Schedule and P&B methods fall into this category.

• Schedule consistency and feasibility: The methods from this category ean be used to

repair different types of inconsistencies, such as constraint or requirement violations

that occur while constructing a schedule. In contrast with the methods that deal with

743

Chapter 7
schedule eompleteness, the sehedule state seleetion poliey of these methods takes into

aecount all those schedule states that violate constraints or requirements such that these

inconsistencies can be fixed by applying the methods. The P&R, P&Rf, P&E, and

P&GE methods fall into this category.

• Schedule optimisation: The methods from this category try to optimise a complete

schedule. The hill climbing and P&I methods from our library fall into this category.

Figure 7.2 depicts the categorisation of the methods as discussed in the above bullet

points.

SCHEDULING LIBRARY

Can-reason-about Legend

Schedule Completion
E.g., Generio-Schedule
Propose & Backtrack

Schedule Optimisation
E.g., Propose & Improve

Hill Climbing

Schedule Consistency
E.g., Propose & Revise
Propose & Exchange

Propose & Genetical-Exchange

Schedule Feasibility
E.g., Propose & Restorefeasibility

Figure 7.2. Categorisation of the methods in the library.

7.5 Conclusion
In this chapter we have described how different PSMs in our library have been constructed

uniformly by reusing Generic-Schedule. All the PSMs in our library have been defined

by reusing or specialising schedule state selection knowledge, operator construction and

selection knowledge, method-specific control regime, and the notions of context and focus.

This uniform approach allows us to compare and contrast the knowledge requirements of

these PSMs. On average, less than a dozen definitions were required to be defined to

engineer a new PSM. In contrast with existing proposals (Hori and Yoshida, 1998; Sundin,

1994; Le Pape, 1994; Tijerino and Mizoguchi, 1993), our library provides a comprehensive

coverage to solve the different schedule types. Moreover, in contrast with some of the

749

Chapter 7

existing proposals (Hori and Yoshida, 1998), because our library does not subscribe to any

particular application or scheduling domain it has a wider applicability.

In the next chapter, we describe the validation of our library which has been carried out

to confirm the generic nature of our library.

Chapter 8

EVALUATION STUDY OF THE LIBRARY

In this chapter, we describe the validation of our library carried out on a number of

scheduling applications to confirm its generic nature and its applicability to real-world

problems. In particular, we validate the following claims: a) the overall framework

provides appropriate distinctions necessar)' to support rapid KBS development by reuse, b)

the scheduling task ontology can be effectively used to characterise the different types of

scheduling problems, and c) different methods in the library can be effectively applied to

construct scheduling applications. Our library has been validated on five scheduling

domains: satellite-scheduling, the CIPHER project schedule application, daily ship-

maintenance, weekly ship-maintenance, and a benchmark application used in the

scheduling area. Our evaluation study helps in validating the static and dynamic properties

of KBS (Preece et a l, 1996) and in doing so it validates our library framework. Table 8.1

describe the different types of scheduling problem types, solution criteria covered by the

applications, and at the same time it also states the nature of the application data, i.e.

whether it is from a real-life, a non real-life, or a benchmark.
Table 8.1. Properties of the scheduling applications.

Application name Scheduling

problem types

Schedule solution

criteria

Nature of the

application data

The satellite-

scheduling

application

Space scheduling Complete, optimal Non real-life

CIPHER- a resource

allocation

application

Resource allocation

problem

Complete Real-life

The daily ship-

maintenance

application

Joint scheduling

problem

Complete, feasible

(no requirement

violation)

Real-life

The weekly ship-

maintenance

application

Joint scheduling

problem

Complete, consistent

(no constraint

violation)

Real-life

The benchmark

application

Variant of the job-

shop scheduling

problem

Complete Benchmark data

Chapter 8

8.1 The satellite-scheduling application
The satellite-scheduling application can be characterised as the assignment of satellites to

the available antennas to ensure earth-satellite communication at different times during a

24 hr. scheduling horizon. The satellite-scheduling application is rather complex due to its

dynamic environment, non-monotonic nature of the various constraints, and the varying

degrees of satellite-antenna communication patterns. It is crucial that all the constraints and

requirements must be maintained at all times while devising a schedule for this application.

8.1.1 Construction of a task model

In accordance with the task ontology, satellites are represented as jobs and antennas as

limited supply resources to which satellites can be assigned to perform communications.

The communications within each satellite are represented as activities. The following

bullet points describe the satellite-scheduling application in further detail.

• The application comprises of five satellites: Nimbus-1, Nimbus-2, Chandra-1,

Meteorological-1, and Meteorlogical-2. Each satellite requires four 15 minute long

communication activities that need to be performed within a specific time range;

• There are three antennas: L,ow-Range-Antenna, Wide-Range-Antenna, and

Meteorological-Antemia. Each antenna has a fixed capacity that represents the total

number of satellites it can handle at any given time. For instance, Low-Range-Aiitenna

and Wide-Range-Antenna can handle two satellites at any given time, whereas

Meteorological-Antenna can only handle one at a time. Each antenna also has a limited

visibility period and therefore it can communicate with a specific satellite only at

certain times.

The notion of a satellite and an antenna is formalised by defining application-specific

classes, such as satellite-job and antenna-resource. These classes are defined as

subclasses of class job (cf. Section 5.2.2) and resource (cf. Section 5.2.3) respectively.

The following box shows the OCML definitions of the Nimbus-1 satellite and Low-Range-

Antenna. The representation of other satellites and antennas can be realised in the same

way.

752

Chapter 8

(def-class SATELLITE-JOB (job))
(def-class NIMBUS-1-JOB (satellite-job))
(def-class NIMBUS-1-JOB-TIME-RANGE (job-time-range))
(def-instance NIMBUS-1 nimbus-1-job
((requires-resource '(low-range-antenna))
(has-activities '(nimbus-1-communication-1 nimbus-1-communication-2

nimbus-1-communication-2 nimbus-1-communication-4))
(has-1ime-range nimbus-1-1ime-range)
(has-duration 60-minute-duration)))

(def-class ANTENNA-RESOURCE (resource))
(def-class LOW-RANGE-ANTENNA-RESOURCE (antenna-resource))
(def-instance LOW-RANGE-ANTENNA low-range-ant enna-re source
((has-job-belonging nimbus-1)
(has-availability generic-antenna-1ime-range)
(has-capacity 2)))

(def-instance NIMBUS-1-TIME-RANGE nimbus-1-job-time-range
((has-earliest-start-time (new-instance 'time-point '((hour-of 00)

(minute-of 00))))
(has-latest-end-time (new-instance 'time-point '((hour-of 09)

(minute-of 00))))))
(def-instance GENERIC-ANTENNA-TIME-RANGE time-range
((has-start-time (new-instance 'time-point '((hour-of 15)

(minute-of 01))))
(has-end-time (new-instance 'time-point '((hour-of 13)

(minute-of 59))))))

In the following section we describe the different constraints and requirements

associated with the satellite-scheduling application.

8.1.2 Mo(Jelling constraints and requirements

The satellite-scheduling application is formulated based on the following constraints and

requirements.

1. Antenna-visibility-constraint: Each antenna has a fixed limited visibility period

during which all the communication activities of the satellites must be completed. A set

of five antenna visibility constraints are defined to impose this constraint between

satellites and their respective antennas. The following box shows the OCML definition

of one such antenna visibility constraint imposed between the Nimbus-1 satellite and

Low-Range-Antenna. The antenna-visibility-constraint for other satellites

and antennas can be realised analogously.

7.55

Chapter

(def-class ANTENNA-VISIBILITY-CONSTRAINT (constraint)
(def-instance NIMBUS-1-TO-LOW-RANGE-ANTENNA antenna-visibility-constraint
((applicable-to-jobs '(setofall ?x (nimbns-l-job ?x)))
(has-expression
(kappa (?sc)

(forall (?a ?jtr)
(=> (and (member (nimbus-1 ?a low-range-antenna ?nimbus-l-job-

time-range) ?SC)
(not
(TIME-RANGES-INTERSECT
'?nimbus-l-job-time-range
no-nimbus-1-to-low-range-antenna-visibility)))))))))

Nimbus-1-to-low-range-antenna constraint states that the Nimbus-1 satellite

cannot communicate with Low-Range-Antenna between the time-window of 12:31 to

23:59, which is the non-visibility period of Low-Range-Antenna; otherwise an

inconsistency is reported;

2. Communication-duration: This constraint is again common to all the satellites, which

states that each communication slot within each satellite must be of 15 minutes

duration. In total, a set of five constraints are defined to impose the communication

duration constraint on the five satellites;

3. Number-of-communication-slots: This requirement is common to all the satellites

and states that each satellite must have four communication slots per day with its

antenna. The following box shows the OCML definition of this requirement.

(def-class SATELLITE-JOB-REQUIREMENT (requirement))
(def-instance FOUR-COMMUNICATIONS-PER-DAY-PER-SATELLITE

satellite-job-requirement
((applicable-to-jobs '(setofall ?x (satellite-job ?x)))
(has-expression (kappa (?sc)

(exists ?x
(and (satellite-job ?x)

(has-activities
?x ?satellite-communication)
(= (number-of-activities-within-job

?x) 4)))))))

As it can be seen in the above box, in order to check whether all the satellites have four

communication slots we used the function number-of-activities-within-job
(cf. Appendix 1), which retrieved all the communication activities associated with each

satellite and then an equality condition is imposed stating that number of

communication activities of satellites must be equal to four;

4. Communication-gaps: This requirement is also common to all the satellites and states

that the gap between any two communication slots within each satellite should not be

greater than five hours. The following box shows the OCML definition of this

requirement.

754

Chapter 8

(def-instance NO-COMMUNICATION-GAPS-GREATER-THAN-FIVE-HOURS
satellite-job-requirement

((applicable-to-jobs '{setofall ?x (satellite-job ?x)))
(has-expression
(kappa (?sc)

(exists ?x
(and (has-activities ?x ?list)

(exists ?al
(and (satellite-communication ?al)

(member ?list ?al)
(has-time-range ?al ?jtr)
(has-earliest-start-time ?jtr ?tl)
(exists ?a2

(and (satellite-communication ?a2)
(member ?list ?a2)
(has-time-range ?a2 ?jtr2)
(has-earliest-start-time
?jtr2 ?t2)
(durâtion-is-less-than
(time-entity-difference
'?t2 '?tl)
(5 hour))))))))))))

In order to check whether the communication gap between any two communication

activities, say Ci and C2, associated with the same satellite is less than five hours, we first

calculated the time entity difference between the earliest start times of Ci and C2, and then

a relation called durât i o n - i s - l e s s - t h a n is used to state that the effective time

difference between time points t2 and ti (which represents the earliest start time of C2 and

Cl respectively) is less than five hours.

In summary, we did not encounter any particular problem while formalising the satellite-

scheduling application. Only a few additional application-specific relations and functions

were defined to model constraints and requirements. More importantly, the key classes

from the task ontology, such as job, resource, activity, and job-time-range have

provided an adequate level of detail to capture the application-specific knowledge

precisely. In a nutshell, our task ontology has provided an adequate modelling leverage to

formalise the satellite-scheduling problem. In the following section we describe how a

schedule for this application was constructed by using the different PSMs from our library.

8.1.3 Devising a complete schedule by using Propose & Backtrack

The main solution requirement for this application is to construct a complete schedule, and

therefore, we first used the Propose & Backtrack (P&B) method from the library. In the

following section we describe how P&B was configured to tackle this application.

8.1.3.1 Construction of the operators

The P&B method can be configured by defining the following two types of application-

specific operators, which are used to assign satellites to antennas and to their respective

time ranges: satellite-schedule-operator and satellite-schedule-time-
range-operator. Satellite-schedule-operator is defined by complying with the

‘number-of-communication-slots’ requirement. In other words while assigning the

755

Chapter 8

satellites, satellite-schedule-operator makes sure that each satellite has four

communication slots with its assigned antennas. Satellite-schedule - time-range-
operator is defined in such a way that a correct start and end time is assigned to each

satellite. The following box shows the OCML definitions of these operators defined for the

Nimbus-1 satellite.

(def-class SATELLITE-SCHEDULE-OPERATOR (schedule-extension-resource-operator))
(def-class SATELLITE-SCHEDULE-TIME-RANGE-OPERATOR

(schedule-extension-time-range-operator))
(def-instance NIMBUS-1-TO-LOW-RANGE-ANTENNA satellite-schedule-operator
((applicable-to-jobs '(setofall ?x (nimbus-1-job ?x)))
(has-costs 6)
(has-body (lambda (?x ?sc)

(the ?low-range-antenna-resource
(and (handles-job ?low-range-antenna-resource ?x)

(has-activities ?x nimbus-1-comm)
(= (length ?nimbus-1-comm) 4))))))))

(def-instance NIMBUS-1-TO-TIME-RANGE satellite-schedule-time-range-operator
f(applicable-to-jobs '(setofall ?x (nimbus-l-job ?x)))
(has-costs 6)
(has-body (lambda (?x ?sc)

(the ?nimbus-1-job-time-range
(and (schedule-model ?sc)

{nimbus-1-job-time-range ?nimbus-1-job-1ime-range)))))))

Each operator also has a specific cost associated with it, which represents the cost

incurred by the assignment of each satellite. To represent the cost of each satellite

assignment, a new slot called has-costs is added to schedule-extension-
resource-operator and schedule - ext ens ion- time - range - operator (cf.

Section 6.2.2). A new function called satellite-state-cost-function is defined in

order to calculate the cost of a satellite schedule. The following box shows the OCML

definition of satellite-state-cost-function.

(def-function SATELLITE-STATE-COST-FUNCTION (?sc)
:body (in-environment

((?input-state . (the ?input-state
(schedule-state ?input-state

has-schedule-model ?sc))))
(if (state-trasition ?sl ?op Pinput-state)

(get-sum-of-all-cost
(satellite-state-cost-function
(the ?sl-sc

(has-schedule-model ?sl ?sl-sc)))
(the ?c (has-costs Pop Pc)))

' (0 0 0 0 0 0 0 0 0))))

(def-function GET-SUM-OF-ALL-COST (Pvect Pop-cost)
:body (in-environment

((Pv-pos . (- 9 Pop-cost)))
(if (= Pop-cost 0)

Pvect
(append (sublist Pvect Pv-pos)

(list-of (+ 1 (elt Pv-pos Pvect)))
(nthrest Pvect (+ 1 Pv-pos))))))

Having defined all the operators, the relation schedule-operator-order (cf. Section

6.2.2) is instantiated to determine the order in which these operators are applied to assign

756

Chapter 8

satellites to antennas and time ranges. The following box shows how the order of operators

for assigning Nimbus-1 satellite is determined.

(tell (schedule-operator-order nimbus-1-to-low-range-antenna
nimbus-1-to-time-range))

8.1.3.2 Focus selection knowledge and schedule construction

Because the satellite-scheduling application did not impose any particular condition for

selecting a correct focus, the focus in this application is selected by using the default focus

selection method j ob-selection-based-on-lowest-degrees-of-freedom (cf.

Section 6.3.5). This method subscribes to the DSR heuristic (Dechter and Meiri, 1989),

which in this case ensures that a satellite with the least number of antennas left for its

assignment is selected as a candidate focus. Figure 8.1 shows the order in which satellites

are selected for their assignment.

Meteorological-2 —►Meteorological-1 —► Chandra-1 —► Nimbus-2 —► Nimbus-]

Figure 8.1. The order in which satellites are selected for their assignment.

By determining how a correct focus can be selected, the configuration of P&B is

completed and then the satellite-scheduling application is executed to construct a complete

schedule. Hence little configuration effort is required to configure the P&B method in

order to tackle the satellite-scheduling application. Only one new slot, h a s - c o s ts was

added to the definition of operators to represent the cost of satellite assignments, while two

application-specific functions were defined to calculate the cost of an assignment.. The

complete schedule for the satellite-schedule application was constructed by generating 464

schedule states. Moreover, thanks to the correct focus selection knowledge no backtracking

was required, and therefore, 100% efficiency was achieved during schedule construction.

The function, satellite-state-cost-function calculated the total cost of a

schedule, which was represented in terms of a 9-place vector. Initially, no satellites were

assigned and therefore the cost of the empty satellite schedule was 9-place vector with all

zeros, subsequently each time a new satellite was assigned, the cost of the satellite

schedule was calculated by adding the cost associated with the currently assigned satellite

to the cost of the previously assigned satellites. The total cost of a complete schedule was

(000000120).

8.1.4 Trying to optimise a complete schedule by Hill climbing

Although, the schedule generated by the P&B method was of a ‘good’ quality (i.e., a

solution did not violate any constraints and maintained all the requirements), it was not an

optimal one. The main reason for this is that the assignment of the last two satellites, i.e.

757

Chapter 8

Nimbus-2 and Nimbus-1, were leading towards a state with the same cost. In order to find

an optimal solution we used the hill climbing method. As in the case of the P&B method,

the hill climbing method also failed to find an optimal solution, because this method does

not have enough discriminating knowledge to break the tie between the costs of these two

assignments. Moreover, the hill climbing method not only failed to devise an optimal

solution but it also reduced the overall efficiency of a schedule construction by 20% in

comparison with the P&B method. The primary reason for this is that the state selection

policy of the hill climbing method generates all the possible successor schedule states of a

current schedule state before selecting the locally best state, whereas the P&B method

generates only a single successor schedule state.

8.1.5 Optimising a complete schedule by P&I
Because the previous two methods failed to devise an optimal solution, we finally applied

the P&I method from our library. The propose phase of the method is configured

straightforwardly from Generic-Schedule without any further refinement and therefore

here we focus on describing how we configured the improve phase of the method.

The basic idea of the P&I method is to construct a complete solution quickly and then in

a second stage the improve phase chooses the best possible improvement to the solution.

The improve phase is configured by defining a new type of application-specific

improvement operator called satellite-schedule-improvement-operator. This

operator is used to break the tie between the assignment of Nimbus-1 and Nimbus-2

satellites. In particular, because the assignments of these two satellites are competing with

each other we decided to change the order of their assignment by swapping their time

range assignments. Essentially the swapping of the time range assignment changed the

order in which these two satellites performed their communication. This change in position

effectively optimised the ‘locking period performance’* between a satellite and its

respective antenna.

8.1.5.1 Foci collection and focus selection in the improve phase

Once a complete schedule is constructed by using the propose phase, all the assigned

satellites are collected as foci as they are potential candidates for improvement, and a

satellite with the highest cost of assignment is selected as the candidate focus. Because the

assignment of Nimbus-1 has a higher cost over Nimbus-2, it is selected as a focus.

' The ‘locking period performance’ represents the time-span of each satellite to establish a communication

with antennas. By optimising this period it helps to reduce the cost spent on carrying out the communication

activities.

75^

Chapter 8

Having completed the configuration of the P&I method, the satellite-scheduling

application is executed. As it can be seen in the following box the cost of a solution

generated by swapping Nimbus-1 and Nimbus-2 satellites is now (000000108). In other

words, a 10% improvement in the cost of a complete solution is achieved simply by

swapping the time range assignments of these two satellites. The following box shows the

synoptic trace of the behaviour of the P&I method for the satellite-scheduling application.

An optimal schedule is constructed by generating 512 schedule states.

-------------------- Enter task EVALUATE-COMPLETENESS515 with arguments (HAS-SCHEDULE-
STATE SCHEDULE-STATES 0 9)
-------------------- Exit task EVALUATE-C0MPLETENESS515 -> (STATE-COMPLETE SCHEDULE-
STATES09)
--------------------Enter task DEFAULT-COST-EVALATION517 with arguments (I IAS-SCHEDULE-
STATE SCHEDULE-STATES09)
-------------------- Exit task DEFAULT-C0ST-EVALATI0NS17 -> (000000120)

OCML 16 : 1 > (describe-instance 'schedule-stateS09)
Instance SCHEDULE-STATES09 of class SCHEDULE-STATE
HAS-SCHEDULE-MODEL: ((NIMBUS-1 LOW-RANGE-ANTENNA NIMBUS-1-COMMUNICATION-4 NIMBUS-1-TIME-
RANGE) (NIMBUS-2 WIDE-RANGE-ANTENNA NIMBUS-2-COMMUNICATION-4 NIMBUS-2-TIME-RANGE)
(CHANDRA-1 WIDE-RANGE-ANTENNA CHANDRA-1-COMMUNICATION-4 CHANDRA-1-TIME-RANGE)
(METEOROLOGICAL-1 METEOROLOGICAL-ANTENNA METEOROLOGICAL-l-COMMUNICATION-4 METEOROLOGICAL-
1-TIME-RANGE) (METEOROLOGICAL-2 LOW-RANGE-ANTENNA METEOROLOGICAL-2-COMMUNICATION-4
METEOROLOGICAL-2-TIME-RANGE))
We improve a schedule from here....
----------- Enter task PROPOSE-AND-IMPROVE-STATES24 with arguments (HAS-SCHEDULE-SPACE
SCHEDULE-SPACE287) (HAS-SCHEDULE-STATE SCHEDULE-STATES12)
--------------Enter task GENERATE-NEW-STATE-SUCCESSORS26 with arguments (HAS-SCHEDULE-
STATE SCHEDULE-STATES12) (HAS-SCHEDULE-CONTEXT : IMPROVE)
--------------- Enter task COLLECT-IMPROVABLE-JOBSS28 with arguments (HAS-SCHEDULE-STATE
SCHEDULE-STATES12) (HAS-SCHEDULE-CONTEXT : IMPROVE)
--------------- Exit task COLLECT-IMPROVABLE-JOBSS28 -> (NIMBUS-1 NIMBUS-2 CHANDRA-1
METEOROLOGICAL-1 METEOROLOGICAL-2)
--------------- Enter.task PROPOSE-SCHEDULE-FROM-CONTEXTS30 with arguments
(HAS-SCHEDULE-STATE SCHEDULE-STATES12) (HAS-SCHEDULE-CONTEXT :IMPROVE)
---------------- Enter task SELECT-MOST-EXPENSIVE-JOBS32 with arguments (HAS-SCHEDULE-FOCI
(NIMBUS-2 NIMBUS-1 CHANDRA-1 METEOROLOGICAL-1 METEOROLOGICAL-2))
--------------- Exit task SELECT-MOST-EXPENSIVE-J0BS32 -> NIMBUS-1
The cost of a schedule after swapping the assignments of satellites
-------------------- Enter task DEFAULT-COST-EVALATIONSS8 with arguments (HAS-SCHEDULE-
STATE SCHEDULE-STATES12)
-------------------- Exit task DEFAULT-COST-EVALATIONSS8 -> (000000108)

Figure 8.2 shows a comparison between the average CPU times required to assign each

satellite by using all the three methods. It can be observed in the following graph that the

assignment of the Nimbus-1 and Nimbus-2 satellites consumed the maximum CPU time

while using all the three methods mainly because the assignment of these two satellites are

competing with each other throughout the schedule construction.

759

Chapter 8

Comparison between average CPU time

29 -,
Avg. CPU time
by P&B

—E— Avg. CPU time
by Hill Climbing25 -

Avg. CPU time
by P&I

Meteorological-l Chandra-1 Nimbus-2 Nimbus-1

Satellites

Figure 8.2. Comparison between the average CPU times required to assign the satellites.

8.2 CIPHER - a resource allocation application
CIPHER is a real-life collaborative project among six academic and industrial partners. To

maintain the anonymity of the academic and industrial organisations involved in the

project, we will refer to them as co-ordinator-1, contraetor-2, contractor-3, contractor-4,

contractor-5, and eontractor-6. The project comprises twelve work-paekages, and each of

them includes a number of tasks, which must be achieved in order to complete the work-

package. Each organisation has a limited number of people available to carry out the work

prescribed by the various work-paekages, and therefore, all project members are treated as

limited capacity resources. The goal of the CIPHER application is to construct a complete

schedule by allocating all the work-paekages and related tasks to the available project

members in accordance with a number of constraints.

8.2.1 Construction of a task model
In accordance with the task ontology work-paekages are treated as jobs, project members

as resources, and all the tasks within work-paekages as activities. The schedule is

constructed for a period of 30 months.

Each project member is assumed to be a unary capacitated resource. This capacity

constraint must be maintained at all time in the scheduling horizon. Moreover, the total

capacity of each organisation must be distributed among relevant work packages in

accordance with the distribution given in the project specification. For instance, co

ordinator-1 includes the following three people: co-ordinator-1-person-1, co-ordinator-1-

person-2, and co-ordinator-1-person-3, for a total capacity of 75 person-months. Obviously

given that CIPHER is a 2 14 years project no staff member can provide more than 30

person-months to the project. Therefore, the total capacity of 75 person-months of co

ordinator-1 is distributed as follows:

160

Chapter 8

Co-ordinator-1-person-1 = 30 person-months, Co-ordinator-1-person-2 = 30 person-

months, Co-ordinator-1-person-3 = 15 person-months.

A set of 30 instances are associated with co-ordinator-1-person-1 and co-ordinator-1-

person-2 to represent their capacity of 30 person-months while 15 instances are defined to

represent the capacity of co-ordinator-1-person-3. The capacity distribution of all project

members is shown in Table 8.2. In total 330 instances were defined to represent the total

capacity of all project members.

Table 8.2. The capacity distribution of all the project-staffs.

Name of the partner

= total capacity

Person-1 -capacity

(person-months)

Person-2-capacity

(person-months)

Person-3-capacity

(person-months)

Co-ordinator-1 = 75 30 30 15

Contractor-2 = 60 30 30 -

Contractor-3 = 60 30 30 -

Contractor-4 = 30 30 - -

Contractor-5 = 75 30 30 15

Contractor-6 = 30 30 - -

Each work-package in CIPHER also has a specific requirement for the total number of

project-months required for its completion. This requirement must be taken into account

while assigning the work-packages. Table 8.3 shows the project-staff requirement of all the

twelve work-packages. In Table 8.3, the abbreviations CO and CR represent co-ordinator

and contractor respectively.

Table 8.3. The resource requirement of each work-package.

^Prqkct-staffs

Work-package^x.

CO-1 CR-2 CR-3 CR-4 CR-5 CR-6

Work-package-1 15 2 2 1 2 1

Work-package-2 7 13 7 3 6 2

Work-package-3 6 3 18 - 6 -

Work-package-4 6 4 3 - 12 -

Work-package-5 6 4 3 - 14 -

Wprk-package-6 10 4 3 1 5 -

Work-package-7 2 14 2 1 3 -

Work-package-8 6 6 6 7 5 5

161

Chapter 8

Work-package-9 6 6 6 7 7 5

W ork-package-10 7 7 7 7 8 5

Work-package-11 2 1 1 1 1 7

Work-package-12 2 3 3 2 3 3

The notion of a work-package is represented by defining the application-specific class

called cipher-wp, which is mapped to the class job (cf. Section 5.2.2) in the task

ontology. All twelve work-packages are then defined as a subclass of class cipher-wp
and they are instantiated to represent their application-specific values.

The following box shows how the work-package-1 is formalised in OCML. The

representation of other work-packages can be realised along the same lines.

/62

Chapter 8

(def-class CIPHER-WP (job))
(def-class WORK-PACKAGE-1 (cipher-wp) ?wp-l
)

(def-class WORK-PACKAGE-1-ACTIVITY (activity) ?wp-l-activity
)

(def-class WORK-PACKAGE-1-TIME-RANGE (job-time-range) ?wp-l-time-range
)

(def-instance WP-1 work-package-1
((has-activities project-management-1)
(requires-resource COl-PERSON-1-MONTH-1 COl-PERSON-1-MONTH-2

COl-PERSON-1-MONTH-3 COl-PERSON-1-MONTH-4
COl-PERSON-1-MONTH-5 COl-PERSON-1-MONTH-6
COl-PERSON-1-MONTH-7 COl-PERSON-1-MONTH-8
COl-PERSON-1-MONTH-9 COl-PERSON-1-MONTH-10
COl-PERSON-1-MONTH-11 COl-PERSON-1-MONTH-12
COl-PERSON-1-MONTH-13 COl-PERSON-1-MONTH-14
COl-PERSON-1-MONTH-15 CR2-PERSON-1-MONTH-1
CR2-PERSON-1-MONTH-2 CR3-PERSON-1-MONTH-1
CR3-PERSON-1-MONTH-2 CR4-PERSON-1-MONTH-1
CR5-PERSON-1-MONTH-1 CR5-PERSON-1-MONTH-2
CR6-PERSON-1-MONTH-1)

(has-time-range wp-l-time-range)
(has-load 24)))
(def-instance PROJECT-MANAGEMENT-1 work-package-1-activity
((has-time-range project-management-1-1ime-range)
(requires-resource COl-PERSON-1-MONTH-1 COl-PERSON-1-MONTH-2

COl-PERSON-1-MONTH-3 COl-PERSON-1-MONTH-4
COl-PERSON-1-MONTH-5 COl-PERSON-1-MONTH-6
COl-PERSON-1-MONTH-7 COl-PERSON-1-MONTH-8
COl-PERSON-1-MONTH-9 COl-PERSON-1-MONTH-1C
COl-PERSON-1-MONTH-11 COl-PERSON-1-MONTH-12
COl-PERSON-1-MONTH-13 COl-PERSON-1-MONTH-14
COl-PERSON-1-MONTH-15 CR2-PERSON-1-MONTH-1
CR2-PERSON-1-MONTH-2 CR3-PERSON-1-MONTH-1
CR3-PERSON-1-MONTH-2 CR4-PERSON-1-MONTH-1
CR5-PERSON-1-MONTH-1 CR5-PERSON-1-MONTH-2
CR6-PERSON-1-MONTH-1)

(has-durâtion project-management-l-duration)
(has-load 24)))

(def-instance PROJECT-MANAGEMENT-1-DURATION duration
((has-magnitude 2 9)
(has-unit-of-measure month)))

(def-instance WP-l-TIME-RANGE work-package-1-1ime-range
((has-earliest-start-time (new-instance 'time-point '((year-of 2000)

(month-of 1))))
(has-latest-end-time (new-instance 'time-point '((year-of 2002)

(month-of 6))))))
(def-class CO-ORDINATOR-1-PERSON-1 (resource))
(def-instance COl-PERSON-1-MONTH-1 co-ordinator-1-person-1
((has-availability col-person-availability)
(has-capacity 1)))

8.2.2 Modelling constraints and preference
The CIPHER application is formulated based on the following constraints and a

preference.

• End-time-compliance: This constraint is common to all the twelve work-packages

stating that each work-package must finish exactly on its end time and not earlier. A set

of twelve end-time-compliance constraints are defined to impose this constraint.

The following box shows the OCML definition of this constraint imposed on work-

package-1.

763

Chapter 8

(def-class CIPHER-JOB-CONSTRAINT (constraint))
(def-instance END-TIME-COMPLIANCE-WORK-PACKAGE-1 cipher-job-constraint
((applicable-to-jobs '(setofall ?x (work-package-1 ?x))
(has-expression (kappa (?sc)

(and (schedule-model ?sc)
(has-time-range ?x ?wp-l-time-range)
(has-latest-end-time ?wp-l-time-range ?let)
(= (the-last-time-point-in-time-range

?wp-l-time-range) ?ltp)
(time-points-equal ?let ?ltp))))))

In order to check whether each work-package finishes on its end time, an application-

specific function called the - last -1 ime -point - in- time - range was defined. This

function is used to retrieve the last time point from the time interval of each work-

package and then the relation called time-points-equal is used to state that the last

time point in a work-package interval must be equal to the latest end time of a work-

package.

Coverage-constraint: This constraint is also common to all the work-packages, stating

that the ‘idle time’ ought to be minimised and every month of every work-package

must be covered by at least one resource. The following two application-specific

functions are defined to formalise this constraint: all-time-points-in-interval
and fetch-next-time-point. The former function is used to retrieve all the time

points from the work-package time interval such that it can be checked whether each

time point is occupied by a resource. The latter function fetch-next-time-point is
used in order to retrieve the next time point of a currently retrieved time point from the

work-package interval, such that each next time point is parsed to all-time-
points-in-interval to check its occupancy. The following box shows the OCML

definitions of coverage-constraint and the two fonctions used to formalise this

constraint.

764

Chapter 8

(def-instance COVERAGE-CONSTRAINT cipher-job-constraint
((applicable-to-jobs '(setofall ?x (cipher-job ?x)))
(has-expression (kappa (?sc)

(forall (?j ?a)
(=> (and (cipher-job ?j has-activities ?ca)

(has-time-range ?ca ?jtr)
(has-earliest-start-time ?jtr ?est)
(has-latest-end-time ?jtr ?let)
(month-in-time ?mit)
(= (all-time-points-in-interval

?jtr ?mit) ?all))))
(forall (?tp)

(=> (and (member ?tp ?all)
(member (cipher-job ?ca ?r ?jtr2)

?sc)
(time-point-within-interval
?tp ?jtr))))

(forall (?all)
(=> (not (= (the-slot-value

?ca requires-resource) 0))))))))
(def-function ALL-TIME-POINTS-IN-INTERVAL (?interval ?unit-of-measure)
: constraint (and (job-time-range ?interval)

(unit-of-measure ?unit-of-measure))
:body (and (has-earliest-start-time ?interval ?estl)

(has-unit-of-measure ?estl ?uoml)
(has-latest-end-time ?interval Pletl)
(has-unit-of-measure ?letl ?uom2)
(cons ?uoml (FETCH-NEXT-TIME-POINT Puoml ?interval ?uom2 Pletl))))

(def-function FETCH-NEXT-TIME-POINT (Pcurrent-tp Ptime-interval Punit-of-measure
Plast-tp)
"This function retrives the next time point of an existing time point."
: constraint (and (unit-of-measure Punit-of-measure)

(time-point Pcurrent-tp has-unit-of-measure Punit-of-measure)
(job-time-range Ptime-interval)
(time-point Plast-tp has-unit-of-measure Punit-of-measure))

:body (in-environment
((Pnext-tp . (has-earliest-start-time Ptime-interval Pcurrent-tp)))
(if

(time-points-equal Pnext-tp Plast-tp)
Plast-tp

(cons Pnext-tp
(fetch-next-time-point Pnext-tp Ptime-interval

Punit-of-measure Plast-tp)))))

Resource-availability-constraint: This states that the correct numbers of project

persons are required by each work-package for its successful completion. The project

staff requirement of each work-package is imposed by complying with the data given

in Table 8.3. A set of 73 constraints were defined to specify the staff requirements of

all the work-packages. The following box shows the OCML definition of one such

constraint imposed on work-package-1. The resource availability constraint for other

work-packages can be realised analogously.

(def-instance COl-RESOURCE-FOR-WP-1 cipher-job-constraint
((applicable-to-jobs '(setofall Px (work-package-1 Px))
(has-expression (kappa (Psc)

(exists Pr
(and
(col-resource Pr)
(member (Pwork-package-1 Pr

Pwp-1-activity Pwp-1-1ime-range) Psc)
(= (length Pr) 15)))))))

Competence-matching-preference: Some people are better at certain tasks than

others, so a schedule should satisfy this competence matching criterion.

766

Chapter 8

Although, the CIPHER application represented quite a complex distribution of the

project personnel over work-packages, our task ontology has provided an adequate

leverage to capture this knowledge precisely. Moreover, the resource-capacity axiom

(cf. Section 5.2.3.1) from the task ontology allowed us to maintain the unary capaeity

associated with every staff member. Different classes from the task ontology, such as j ob,

activity, resource, duration, and jo b -time-range also provided the required

level of detail and formalism to model the application-specific knowledge precisely.

Nevertheless, a few new application-specific functions were defined to formalise the

‘end-time-compliance’ constraint and ‘coverage-constraint’. In the following

section, we describe how a complete schedule for the CIPHER application was

constructed.

8.2.3 Construction of a complete schedule by Propose & Backtrack
The primary goal of the CIPHER application was to construct a complete schedule quickly

to see whether the project could be completed in a given period. As described in Section

7.4, because the Propose & Backtrack method can be used to construct a complete

schedule, we applied this method to construct a schedule for CIPHER. This method was

configured by defining the application-specific operators to assign resources to work-

packages and by providing the application-specific knowledge to select a correct focus.

8.2.3.1 Construction of the operators

Two types of operators, cipher-resource-operator and c ipher-time-range-
operator, were defined to assign work-packages to project staff and time ranges.

The cipher-resource-operator is defined in such a way that the staff requirements

of each work-package are maintained throughout the schedule construction in accordance

with Table 8.3. As described earlier one of the primary requirement of the CIPHER project

is to assign the correct number of project-months for the timely completion of the work-

packages. Therefore while defining cipher-resource-operator we also complied

with resource-availability-constraint to make sure that the correct numbers of

project members were available for executing the work-packages. Cipher-time-range-
operator is defined in such a way that the work-packages can be finished exactly on their

end times and not earlier. The following box shows the OCML definitions of the operators

defined for work-paekage-1.

766

Chapter 8

(def-class CIPHER-RESOURCE-0PERATOR
(multiple-schedule-extension-resource-operator))

(def-class CIPHER-TIME-RANGE-OEPRATOR
(multiple-schedule-extension-time-range-operator))

(def-instance COl-RESOURCE-FOR-WORK-PACKAGE-1 cipher-resource-operator
((applicable-to-jobs '(setofall ?x (work-package-1-j ob ?x)))
(has-body (lambda (?x ?sc)

(the ?col-resource
(and (col-resource ?col-resource)

(= (length ?col-resource) 15)))))))
(def-instance WORK-PACKAGE-1-TIME-RANGE-OPERATOR cipher-time-range-operator
((applicable-to-jobs '(setofall ?x (work-package-1-job ?x)))
(has-body (lambda (?x ?sc)

(the ?wp-l-time-range
(work-package-1-1ime-range ?wp-l-time-range))))))

(tell (SCHEDULE-OPERATOR-ORDER col-resource-for-work-package-1
work-package-1-time-range-operator))

Finally, the relation schedule-operator-order (cf. Section 6.2.2) is instantiated to

determine the order in which different operators are applied to assign each work-package.

8.2.3.2 Focus and operator selection, and schedule generation

Because the CIPHER application required all its work-packages to finish exactly on their

end time, while selecting a correct focus we complied with this application-specific

knowledge. The job selection method j ob-select ion-based-on-latest-end-time
(cf. Section 6.3.5) is used in order to select a focus based on this knowledge. According to

this method first all the work-packages are sorted according to their latest end time and

then the first work-package from the sorted list is selected as a focus in each cycle.

Having completed the configuration of Propose & Backtrack, we ran the application

until all the work-packages were assigned to the required number of person-months and

time ranges. Solving this application by using Propose & Backtrack turned out to be very

efficient because the solution space was very dense. Therefore, very little search was

required to reach a solution state. A complete schedule for the CIPHER application was

constructed by generating 1342 schedule states. According to our focus selection strategy

all the work-packages were instantiated according to their latest end time, which helped to

complete all the work-packages successfully within their latest end time. As a result, the

application of our method satisfied one of the important solution criteria of the CIPHER

application. Also once the work-packages were sorted based on their latest end time then

they were selected almost linearly, and therefore, a solution state was reached without any

backtracking which resulted in 100% efficiency. More importantly, no other constraints

were violated while constructing a schedule. Therefore, a complete and consistent solution

was returned once all the work-packages were assigned.

767

Chapter 8

8.3 The daily ship-maintenance application

8.3.1 Construction of a task model

The daily ship-maintenance application is a real world problem consisting of thirteen ship-

maintenance jobs, which have to be assigned to thirteen ship-maintenance resources. The

ship-maintenance resources are categorised into two groups: maintenance personnel and

maintenance machinery. A schedule for this application is constructed on a daily basis and

the working hours of each day are from 9:00am to 18:00pm.

Each ship-maintenance job has a number of ship-maintenance activities associated with

it, which need to be accomplished to complete the job. All the activities must be completed

within the fixed duration of the job. Each ship-maintenance job also has a specific

requirement for the ship-maintenance resources on which it must be assigned for its

completion. Finally the ship-maintenance jobs require a specific number of ship-

maintenance resources to complete the maintenance activities. Table 8.3 represents a data

used to formalise the ship-maintenance jobs. The column labelled Toad’ in Table 8.4

represents the number of ship-maintenance resources required by each ship-maintenance

job for its completion.

Table 8.4. Data used to formalise the ship-maintenance jobs.

Sliip-maintcnance

jobs

Description of the

activities

Resource

requirement

Duration

(Minutes)

Load

C4B9UQN Inspect-citric-acid

Inspect-urinal-to-ensure-

citric-acid

AN/FN/SN 48 2

A4C2DCN Inspect-balance-pressure-

proportional

Inspect-gauge-level

Inspect-the-level-of-

cooler-in-degasser

AN/FN/SN 60 1

A4GDBHN T est-mode-control FC2 24 1

A4GDBHN-1-1 T est-LCP-keyboard-entry FC2-1 10 1

A4GDBHN-2-1 T est-ship-heading-

readout

FC2-2 10 1

A4GDBHN-3 T est-audible-alarm-and-

mount-safety

FC2-3 10 1

A4GDBHN-4 Perform-system- FC2-4 10 1

76g

Chapter 8

operability-test

26N45CN Clean-galley-or-pantry-

vent

FN/SN 40 1

C5DVYGN Inspect-all-periferral-

ammnunition-equipments

GMG3 36 1

51GEPVN Perform-daily-ability-test GMG3-2 48 1

B24FDXN Inspect-water-level-in-

bilge

MM/EN3 35 1

B24FDXN-1 Inspect-oil-level-in-

upper-gravity-tan

MM/EN3 24 1

40KL83N Conduet-lamp-and-

alarm-test

RMSN 48 1

Each ship-maintenance resource has a special competence, which indicates the specific

types of ship-maintenance jobs it can handle. The ship-maintenance resources also have a

fixed availability period and the ship-maintenance jobs must be executed only within this

period. Finally, all the ship-maintenanee resources have a fixed capacity, which determines

the total number of ship-maintenance jobs each ship-maintenance resource can handle at

any one time. Table 8.5 represents the maximum capacity of each ship-maintenance

resource.

Table 8.5. Maximum capacity of the ship-maintenance resources.

Dally shlp-malntcnancc resource Capacity

AN/FN/SN 2

DC/HT2 2

FC2 1

FC2-1 1

FC2-2

FC2-3 1

FC2-4 1

FN/SN 2

GMG3 3

GMG3-2 3

MM/EN3 1

MM/EN3-2 1

RMSN 2

769

Chapter S

As an example the following box shows the OCML definitions representing how the

ship-maintenance job called C4B9UQN and its attributes are represented in the task model.

(def-class DAILY-SHIP-MAINTENANCE-JOB (job))
(def-class DAILY-SHIP-MAINTENANCE-RESOURCE (resource))
(def-class DAILY-SHIP-MAINTENANCE-ACTIVITY (activity))
(def-class SHIP-MAINTENANCE-JOB-TIME-RANGE (job-time-range))
(def-class C4B9UQN-JOB (daily-ship-maintenance-job))
(def-class C4B9UQN-ACTIVITY (daily-ship-maintenance-activity))

(def-class C4B9UQN-JOB-TIME-RANGE (ship-maintenance-job-time-range))
(def-instance C4B9UQN C4B9UQN-JOB
((has-activities inspect-citric-acid inspect-urinal-to-ensure-citrie-acid)
(requires-resource AN/FN/SN)
(has-1ime-range C4B9UQN-time-range)
(has-load 2)))

(def-instance INSPECT-URINAL-TO-ENSURE-CITRIC-ACID C4B9UQN-activity
((has-durâtion inspect-urinal-to-ensure-citric-acid-duration)
(requires-resource AN/FN/SN)
(has-time-range inspect-urinal-to-ensure-citrie-acid-time-range)))

(def-instance C4B9UQN-TIME-RANGE C4B9UQN-job-time-range
((has-latest-start-time (new-instance 'time-point '(hour-of 09)

(minute-of 00))))
(has-latest-end-time (new-instance 'time-point '((hour-of 09)

(minute-of 48))))))
(def-instance INSPECT-CITRIC-ACID duration
((has-magnitude 18)
(has-unit-of-measure minute)))

(def-instance INSPECT-URINAL-TO-ENSURE-CITRIC-ACID-DURATION duration
((has-magnitude 30)
(has-unit-of-measure minute)))

8.3.7.7 Modelling constraints and requirements

The following constraints and requirements were elicited in the context of the ship-

maintenanee application.

• Job precedence constraint: This constraint is common to all the ship-maintenance

jobs, and imposes a strict precedence ordering among all the jobs. A set of thirteen job

precedence constraints have been defined to apply this constraint to all the ship-

maintenanee jobs. In order to impose the precedence ordering among any two ship-

maintenance jobs the relation called job-precedes (cf. Section 5.2.2.3) is used from

the task ontology, which states that if the latest end time of ship-maintenance job, say

Si is before the earliest start time of ship-maintenance job, say S2, then Si precedes S2 .

The following box shows the OCML definition of the job precedence constraint

imposed between ship-maintenance jobs C4B9UQN and A4C2DCN.

770

Chapter 8

(def-class DAILY-SHIP-CONSTRAINT (constraint))
(def-instance PRECEDENCE-AMONG-C4B9UQN-A4C2DCN daily-ship-constraint
((applicable-to-jobs '(C4B9UQN A4C2DCN))
(has-expression (kappa (?sc)

(exists 7C4B9UQN-job
(and (C4B9UQN-job 7C4B9UQN-job)

(has-time-range
?C4B9UQN-job 7C4B9UQN-job-time-range)
(= the ?letl (has-latest-end-time

? C4 B 9UQN-job-time-range
Pletl))

(exists PA4C2DCN-job
(and (A4C2DCN-job PA4C2DCN-job)

(has-time-range
?A4C2DCN-job
?A4 C2DCN-job-time-range)
(= the Plet2 (has-latest-end-

time PA4C2DCN-job-time-range Plet2))
(if (precedes Pletl Plet2)

(job-precedes
PC4B9UQN-job
PA4C2DCN-job))))))))))

Daily frequency of ship maintenance jobs: This constraint is common to all the

thirteen ship-maintenance jobs, which states that all the ship-maintenanee jobs must

finish within their daily working hours, i.e. between 9:00am to 18:00pm. The following

box shows the OCML definition of one such constraint imposed on a ship-maintenance

job called, 40KL83N.

(def-instance DAILY-FREQUENCY-OF-40KL83N-job daily-ship-constraint
((applicable-to-jobs '(setofall Px (40KL83N-job Px)))
(has-expression (kappa (Psc)

(exists P40KL83N-job
(and (40KL83N-job P40KL83N-job)

(has-time-range P40KL83N-job P40KL83Njtr)
(daily-schedule-horizon Pdaily-sc-horizon)
(time-ranges-not-exceed
P40KL83Njtr Pdaily-sc-horizon)))))))

• Job priority requirement: This requirement states that if more than one ship-

maintenance job is eonsuming the same ship-maintenance resouree then the ship-

maintenanee job with the higher number of aetivities needs to be given priority for its

execution. In order to specify the job priority requirement, we used the function called

number-of-activities-within-job (cf. Appendix 1), which retrieved all the

ship-maintenance aetivities assoeiated with each ship-maintenance job, and then the

higher-priority-job-based-on-activities relation (cf. Section 5.2.2.3) is

used to state a condition according to which the ship-maintenance job with the higher

number of activities is given priority. The following box shows the OCML definition

of one sueh requirement associated with the ship-maintenance jobs C4B9UQN and

A4C2DCN. The job priority requirement for the other two ship-maintenanee jobs can

be realised analogously.

171

Chapter 8

(def-class DAILY-SHIP-REQUIREMENT (requirement))

(def- instance JOB-PRIORITY-AMONG-C4B9UQN-AND-A4C2DCN daily-ship-requirement
((applicable-to-jobs '(C4B9UQN A4C2DCN))
(has-expression (kappa (?sc)

(= (number-of-activities-within-j ob
?C4B9UQN-job) ?C4B9UQN-activity)

(= (number-of-activities-within-job
?A4C2DCN-job) ?A4C2DCN-activity)

(if (> (length PC4B9UQN-activity)
(length ?A4C2DCN-activity))

(higher-priority-job-based-on-activities
?C4B9UQN-job ?A4C2DCN-job))))))

This concludes our discussion about how the task model for the daily ship-maintenance

application is constructed. In the following section, we describe how we constructed a

schedule for the application.

8.3.2 Construction of a schedule by using Generic-Schedule

In order to eonstruct a complete schedule for this applieation the Generic-Schedule
method from our library was applied.

8.3.2.1 Operator construction for the daiiy-ship schedule

The Generic-Schedule method was configured by defining the following two types of

application-specific operators: daily-resource-operator and daily-time-range-
operator. The daily-resource-operator is used to assign ship-maintenance jobs to

their respective ship-maintenance resources. This operator is construeted by complying

with the ship-maintenance resource requirement of eaeh ship-maintenance job as given in

Table 8.3, and also by maintaining the total number of resources required by each ship-

maintenance job as given by the column Toad’ in Table 8.3. The daily-time-range-
operator is defined in such a way that a correct time range can be assigned to the ship-

maintenance jobs. The following box shows the OCML definitions of the operators defined

for assigning the ship-maintenance job called C4B9UQN.

(def-instance C4B9UQN-to-AN/FN/SN-RESOURCE daily-resource-operator
((applicable-to-jobs '(setofall ?x (C4B9UQN-job ?x)))
(has-body (lambda (?x ?s)

(the ?AN/FN/SN-resource
(and (AN/FN/SN-resource ?AN/FN/SN-resource)

(= (number-of-resources-for-job 7C4B9UQN-job) 1)))))))
(def-instance C4B9UQN-to-C4B9UQN-TIME-RANGE daily-time-range-operator
((applicable-to-jobs '(setofall ?x (C4B9UQN-job ?x)))
(has-body (lambda (?x ?s)

(the ?04B9UQN-job-time-range
(C4B9UQN-job-time-range 7C4B9UQN-job-time-range))))))

(tell (schedule-operator-order C4B9UQN-to-AN/FN/SN-resource
C4B9UQN-to-C4B9UQN-time-range))

8.3.3 Focus and operator selection

This application requires all the ship-maintenance jobs to be completed within their daily

frequency. To comply with this requirement we use the job selection method called jo b -

772

Chapter 8

selection-based-on-start-time (cf. Section 6.3.5), which first sorts all the ship-

maintenance jobs on the basis of their earliest start time, and then selects the first job. Once

the focus is selected then all the operators necessary to assign the selected focus are

collected and then sorted by instantiating the relation schedule-operator-order (cf.

Section 6.2.2).

A complete schedule for this application was constructed by generating 852 schedule

states. While constructing a complete schedule the search backtracked five time because

the ‘ job-priority-requirement’ imposed on the ship-maintenance jobs: C4B9UQN

and A4C2DCN was violated. Therefore, the overall efficiency of schedule construction by

using Generic-Schedule was 75%. The efficiency is calculated as the ratio between the

size of the minimal search space required to solve the application to that of the effective

search space navigated to reach a solution. The main reason why job-priority-
requirement was violated was because, according to our focus selection strategy, a ship-

maintenance job with the earliest start time gets assigned first. However this focus

selection strategy conflicted with j ob -priority- requirement, which required the

ship-maintenance job with highest number of activities to be assigned first. It means that

A4C2DCN-job should have been assigned before assigning C4B9UQN-job because the

former job has three activities associated with it while only two activities are associated

with the latter job. The following box shows the synoptic trace of the behaviour of

Generic-Schedule while constructing a complete schedule for this application. The box

below also shows how the complete schedule looks like once all the daily ship-

maintenance jobs are assigned.

---------------------------------- Enter task EVALUATE-SCHEDULE-STATES55 with arguments{HAS-SCHEDULE-STATE SCHEDULE-STATE852)
------------------------------------Enter task EVALUATE-HARD-CONSISTENCY856 witharguments (HAS-SCHEDULE-STATE SCHEDULE-STATE852)

Exit task EVALUATE-HARD-CONSISTENCY856 -> NIL
------------------------------------- Enter task EVALUATE-COMPLETENESS857 with arguments
(HAS-SCHEDULE-STATE SCHEDULE-STATES 52)
------------------------------------- Exit task EVALUATE-COMPLETENESS857 > (STATE-COMPLETE
SCHEDULE-STATES 5 2)

OCML 18 : 1 > (describe-instance 'schedule-state852)
Instance SCHEDULE-STATE852 of class SCHEDULE-STATE
HAS-SCHEDULE-MODEL: ((A4GDBHN FC2 TEST-MODE-CONTROL A4GDBHN-1-TIME-RANGE) (A4GDBHN-1-1
FC2-1 TEST-LCP-KEYBOARD-ENTRY A4GDBHN-1-1-TIME-RANGE) (A4GDBHN-2-1 FC2-2 TEST-SHIP-
HEADING- READOUT A4GDBHN-2-1-TIME-RANGE) (A4GDBHN-3 FC2-3 TEST-AUDIBLE-ALARM-AND-MOUNT-
SAFETY A4GDBHN-3-TIME-RANGE) (A4GDBHN-4 FC2-4 PERFORM-SYSTEM-OPERABILITY-TEST A4GDBHN-4-
TIME-RANGE) (26N45CN FN/SN CLEAN-GALLEY-OR-PANTRY-VENT 26N45CN-TIME-RANGE) (C5DVYGN GMG3
INSPECT-ALL-PERIFERRAL-AMMNUNITION-EQUIPMENTS C5DVYGN-TIME-RANGE) (51GEPVN GMG3-2 PERFORM-
DAILY-ABILITY-TEST 5IGEPVN-TIME-RANGE) (B24FDXN MM/EN3 INSPECT-WATER-LEVEL-IN-BILGE
B24FDXN-TIME-RANGE) (B24FDXN-1 MM/EN3 INSPECT-OIL-LEVEL-IN-UPPER-GRAVITY-TANK B24FDXN-1-
TIME-RANGE) (40KL83N RMSN CONDUCT-LAMP-AND-ALARM-TEST 40KL83N-TIME-RANGE) (A4C2DCN
AN/FN/SN INSPECT-BALANCE-PRESSURE-PROPORTIONER A4C2DCN-TIME-RANGE) (C4B9UQN AN/FN/SN
INSPECT-URINAL-TO-ENSURE-CITRIC-ACID C4B9UQN-TIME-RANGE))

773

Chapter 8

In order to fix the requirement violation that occurred while constructing a complete

schedule we applied the P&Rf method from the library.

8.3.4 Fixing the requirement violation by using the P&Rf method

The propose phase of the P&Rf method is configured straightforwardly from Generic-
Schedule. The only difference between the configuration process of Generic-
Schedule and the propose phase is that a job dependency network is constructed

explicitly to represent the dependencies between assignments. The job dependency

network is modelled by using the relations job-depends-on and job-affects (cf.

Section 6.2.3), which are part of the method ontology.

8.3.4.1 Construction of the feasibiiity-restoration operator

In order to fix the requirement violation that occurred while constructing a schedule a new

type of application-specific operator called ship-restoration-operator was defined

while configuring the restore-feasibility phase of the method. This operator is constructed

in such a way that the requirement violations which occurred while constructing a schedule

can be fixed by changing the assignment strategy of the jobs involved in the conflict. By

using ship-restoration-operator the priority of the culprit jobs can be changed by

ranking them on the basis of the highest number of activities. The function called number-
of-act ivities-within-job is used to retrieve all the activities associated with the

ship-maintenance jobs, and then the relation called higher-priority-job-based-on-
activities (cf. Section S.2.2.3) is used to determine the priority of the jobs based on the

number of activities. The following box shows the OCML definitions of feasibility-
restoration-operator defined to fix the requirement violation, which occurred

between jobs C4B9UQN and A4C2DCN.

(def-class SHIP-RESTORATION-OPERATOR (feasibility-restoration-operator))
(def-instance JOB-PRIORITY-BASED-ON-ACTIVITIES ship-restoration-operator
((applicable-to-requirements ' (JOB-PRIORITY-AMONG-C4B9UQN-and-A4C2DCN))
(applicable-to-jobs '(C4B9UQN A4C2DCN))
(has-body '(lambda (?daily-ship-maintenance-job ?sc)

(the ?A4C2DCN-job
(exists 7A4C2DCN-job

(and (A4C2DCN-job 7A4C2DCN-job)
(= (number-of-activities-within-job

?A4C2DCN-job) ?ll)
(exists 7C4B9UQN-job

(and (C4B9UQN-job 7C4B9UQN-job)
(= (number-of-activities-within-

job
?C4B9UQN-job) ?12)

(if (> ?11 ?12)
(higher-priority-job-based-on-

activities
?A4C2DCN-job 7C4B9UQN-

job)))))))))))

774

Chapter 8

8.3.4.2 Construction of a feasible schedule

Once the configuration of the P&Rf method was completed then we ran this application to

construct a schedule. Once a complete schedule is constructed by executing the propose

phase then in the restore-feasibility phase the violated requirement job-priority-
among-C4B9UQN-and-A4C2DCN is selected as a candidate focus. Having selected a

focus, then the operator called job-priority-based-on-activities is selected to

fix this violated requirement.

It was observed that the new operator job-priority-based-on-activities
successfully fixed the requirement violation occurred between the ship-maintenance jobs

C4B9UQN and A4C2DCN. In the new solution generated by applying job-priority-
based-on-activities, the ship-maintenance job A4C2DCN was assigned before the

ship-maintenance job C4B9UQN. It was observed that a solution constructed by using the

P&Rf method was more robust as compared to the one constructed by Generic-
Schedule, because no other part of a complete schedule was affected while fixing the

existing requirement violation. Moreover, other constraints and requirements imposed on

the daily ship-maintenance application were also maintained throughout the schedule

construction. As a result, a complete and feasible solution schedule for this application was

constructed by generating 949 schedule states.

8.4 The weekly ship-maintenance application
Here we describe the validation of the libraiy on the weekly ship-maintenance application,

which is again a real-life scheduling application. As in the case of the daily ship-

maintenance application, a schedule for the weekly ship-maintenanee application is also

constructed to perform different types of ship-maintenance activities. However, the weekly

ship-maintenance application is more complex in nature compared to the daily ship-

maintenance application due to the more complex nature of the relevant constraints and

requirements.

8.4.1 Construction of a task model

The weekly ship-maintenance application can be described as an assignment of the ship-

maintenance jobs to the ship-maintenance resources within specific time ranges such that a

complete and a consistent schedule is constructed. The working hours for each day are

from 9:00am to 18:00pm.

This application consists of twenty one ship-maintenance jobs, which have to be

assigned on nineteen ship-maintenance resources. The ship-maintenance jobs have a

specific requirement for the ship-maintenance resources and they can be assigned only on

776

Chapter 8

these ship-maintenance resources for their execution. All the ship-maintenance jobs also

have a number, of activities associated with it, which must be executed to accomplish the

ship-maintenance jobs. Each ship-maintenance resource has a specific competence, which

determines the specific types of ship-maintenance jobs it can handle for their execution.

The ship-maintenance resources also have a fixed capacity, which determines the total

number of ship-maintenance jobs they can handle at any one time. Finally, each ship-

maintenance resource is available only during a restricted period. Table 8.6 shows the data

used to formalise the weekly ship-maintenance jobs.

Table 8.6. Data used to formalise the ship-maintenance jobs.

Ship-

maintcnance

jobs

Description of

the activities

Resource

requirement

Activity

Duration

(Minutes)

Load Resource

capacity

12B3HTN Tum-pump-

shaft-by-hand

ABF/BT/EN2-

resource

48 1 2

63A2TFN Strip-JP5-

service-tank

ABF/EN/GSM/M

M2-resource

144 1 3

36A2RDN Inspect-seal-

tank-water-level

ABF/EN/MM3-

resource

48 1 3

44B9URN Test-operate-

and-inspect-

flushometer

AN/FN/SN-

resource

48 1 1

C23HZAN Inspect-gearcase-

oil-level-idle-

winch

BM3-resource 240 1 2

359BZUN Flush-hellan-

seawater-strainer

BT/EN/GSM/M

M3-resource

48 1 1

47K78GM Lubricate-pump BT/EN/MM3-

resource

96 1 4

17A8UBN Inspect-bubbler-

liquid-level

BT/MM3-

resource

48 1 5

64M44EN Test-clean-and-

inspect-flame-

scanner

BT2-resource 240 1 3

B2B7TCN Visually-inspect-

pump-unit

DC/HT3 -resource 100 1 . 2

776

Chapter 8

B2A7SAN Visually-inspect-

pump-unit-2

DC/HT3-1-

resource

100 1 1

A4C2EHN Test-and-

operate-AFFF-

concrete-pump-

assembly

DC/HT3-2-

resource

100 1 3

34A1JWN Inspect-

differential-

pressure/pressure

-drop

DCPO-resource 90 1 2

36A1JVN Inspect-and-test-

relay-operated-

lantem

DCPO-1 -resource 90 1 1

36W29WN Inventory-and-

inspect-fire-

hose-stalion-

eqmt

DCPO-2-resource 90 1 1

36W29XN Accomplish-

functional-test-

of-portable-

lantem

DCPO-3-resource 90 1 2

36W31CN Inspect-and-test-

relay-operated-

lantem2

DCPO-4-resource 90 1 2

482YTTN Test-signal-and-

navigation-lights

EM3-resource 144 1 3

628URAN Test-running-

light-telltale-

panel

EM3-1-resource 144 1 1

51A1BNN Inspect-

microwave-oven

DCPO-4-resource 96 1 2

266TFEN Accomplish-

flinctional-test-

of-engine-battery

EM3-3-resource 48 1 3

1 7 7

Chapter S

8.4.1.1 Modelling ship-maintenance Jobs and resources

The following box shows how the weekly ship-maintenance job 12B3HTN is represented

in the application. The formalisation of the other weekly ship-maintenance jobs can be

realised analogously.

(def-class WEEKLY-SHIP-MAINTENANCE-JOB (job))
(def-class WEEKLY-SHIP-MAINTENANCE-ACTIVITY (activity))
(def-class SHIP-MAINTENANCE-JOB-TIME-RANGE (job-time-range))
(def-class 12B3HTN-JOB (weekly-ship-maintenance-job))
(def-class 12B3HTN-ACTIVITY (weekly-ship-maintenance-activity))
(def-class 12B3HTN-JOB-TIME-RANGE (ship-maintenance-job-time-range))
(def-instance 12B3HTN 12B3HTN-job
((has-activities turn-pump-shaft-by-hand)
(requires-resource ABF-BT-EN2)
(has-1 i me-range 12B3HTN-1 ime-range)
(has-load 1)))

(def-instance turn-pump-shaft-by-hand 12B3HTN-activity
((has-durâtion turn-pump-shaft-by-hand-durâtion)
(requires-resource ABF-BT-EN2)
(has-time-range turn-pump-shaft-by-hand-1ime-range)))

(def-instance 12B3HTN-time-range 12B3HTN-job-time-range
((has-latest-start-time (new-instance 'time-point '(hour-of 09)

(minute-of 10))))
(has-latest-end-time (new-instance 'time-point '((hour-of 9)

(minute-of 58))))))

As in the case of the weekly ship-maintenance jobs, an application-specific class called

weekly-ship-maintenance-resource is defined to represent the weekly ship-

maintenance resources. The following box shows how ABF/BT/EN2-resource is

formalised in the application.

(def-class WEEKLY-SHIP-MAINTENANCE-RESOURCE (resource))
(def-class ABF-BT-EN2-RESOURCE (weekly-ship-maintenance-resource))
(def-instance ABF-BT-EN2 ABF-BT-EN2-resource
((has-job-belonging 12B3HTN)
(has-availability ABF-BT-EN2-availability)
(has-capacity 1)))

(def-instance ABF-BT-EN2-AVAILABILITY time-range
((has-start-time (new-instance 'time-point '((hour-of 09)

(minute-of 00))))
(has-end-time (new-instance 'time-point '((hour-of 17)

(minute-of 00))))))

8.4.1.2 Modelling the constraints and requirements

The weekly ship-maintenance application includes the following constraints and

requirements:

• Resource capacity constraint: This constraint is common to all the ship-maintenance

resources. It states that each ship-maintenance resource has a fixed capacity as

described in Table 8.5, which determines the total number of ship-maintenance jobs

each ship-maintenance resource can handle. A set of nineteen resource eapacity

778

Chapter 8

constraints are defined to impose resource-capacity-constraint on all the

nineteen ship-maintenance resources. To formalise these constraints, we used the

function called maximum-capacity-of-resource (cf. Section 5.2.3), which

retrieved all the weekly ship-maintenance jobs associated with a resource, and then an

equality condition is imposed to limit the total number of weekly ship-maintenance

jobs each ship-maintenance resource can handle according to the data given in Table

8.5. The following box shows the OCML definition of one such constraint imposed on

the ABF/BT/EN2-resource.

(def-instance ABF-BT-EN2-RESOURCE-CAPACITY-CONSTRAINT weekly-ship-constraint
((applicable-to-resources '(setofall ?x (ABF-BT-EN2-resource ?x)))
(has-expression (kappa (?sc)

(exists 7ABF-BT-EN2-resource
(and (ABF-BT-EN2-resource 7ABF-BT-EN2-resource)

(member (?weekly-ship-maintenance-job
?weekly-ship-maintenance-activity
7ABF-BT-EN2-resource
?ship-maintenance-job-time-range)

?sc)
(= (the Pel (maximum-capacity-of-resource

PABF-BT-EN2-resource))
2)))))))

• Daily frequency of ship maintenance jobs: This constraint is common to all the

twenty one ship-maintenance jobs, and states that all the ship-maintenance jobs must

finish exactly within their daily working hours. In order to check whether all the ship-

maintenance jobs comply with their daily time frequency, we used the relation time-
points-equal from the Simple Time ontology, which states that the latest end time

of each weekly ship-maintenance job must be equal to the end time of the daily

working hour of a schedule. The following box shows the OCML definition of this

constraint imposed on the 266TFEN ship-maintenance job. The daily frequency

constraint for other weekly ship-maintenanee jobs ean be realised analogously.

(def-instance DAILY-FREQUENCY-OF-266TFEN-JOB weekly-ship-constraint
((applicable-to-jobs '(setofall ?x (266TFEN-job ?x)))
, (has-expression (kappa (Psc)

(exists P266TFEN-job
(and (266TFEN-job P266TFEN-job)

(has-1ime- range
P266TFEN-job P266TFEN-jtr)
(= Pthe Piet (has-latest-end-time

?266TFEN-jtr Piet))
(daily-time-range Pdaily-time-range)
(= the Pet (has-end-time

Pdaily-time-range Pet))
(time-points-equal Piet Pet)))))))

Job working hour constraint: This constraint is again common to all the ship-

maintenance jobs, and states that in the worse case scenario a ship-maintenanee job

may exceed its duration, by not more than 10 minutes as long as this does not violate

the daily frequency of a schedule. The following box shows the OCML definition of

this constraint.

779

Chapter 8

(def-instance JOB-WORKING-HOUR weekly-ship-constraint
((applicable-to-jobs '(setofall ?x (weekly-ship-maintenance-job ?x)))
(has-expression (kappa (?sc)

(exists ?x
(and (weekly-ship-maintenance-job ?x)

(has-time-range ?x ?xtr)
(= (exceeded-duration-of-job ?xtr) ?dur-e)
(duration-is-less-than-or-equal
?dur-e (10 minute))
(exists ?dftr

(and (daily-working-hours ?dftr)
(= (time-range-duration

?dftr) ?dur-dftr)
(not (durâtion-is-less-than-

or-equal ?dur-e ?dur-dftr))))))))))

Job priority requirement: This requirement is also eommon to all the weekly ship-

maintenance jobs, and states that if any two ship-maintenance jobs share a same ship-

maintenance resource for their exeeution, then a weekly ship-maintenance job with

higher duration gets priority. To formalise this requirement, we used the function jo b

time-range-durât ion, which retrieved the duration of the ship-maintenance jobs

and then the retrieved durations of the jobs are compared by using the relation jo b -

with-higher-priority to determine their priority. The following box shows the

OCML definition of this requirement.

(def-instance JOB-PRIORITY-BASED-ON-HIGHER-DURATION weekly-ship-requirement
((applicable-to-jobs '(setofall ?x (weekly-ship-maintenance-job ?x)))
(has-expression (kappa (?sc)

(exists ?wm-job
■ (and (member ?wm-job ?x)

(member (?wm-job ?al ?rl ?jtrl) ?sc)
(requires-resource ?wm-job ?rl)
(= (j ob-1 ime-range-durat ion

?wm-job ?jtrl) ?dl)
(exists
?wm-job2
(and (member ?wm-job2 ?x)

(member (?wm-job2 ?a2 ?rl ?jtr2)
?sc)

(requires-resource ?wm-job2 ?rl)
(= (j ob-1 ime-range-durat ion

?wm-job2 ?jtr2) ?d2)
(if (> ?dl ?d2)

(job-with-higher-priority
?wm-job ?wm-job2))))))))))

This concludes our description of the task model of the weekly ship-maintenance

application. In the following section, we will describe how a solution schedule for this

application was constructed.

8.4.2 Applying the Propose & Backtrack method

As described earlier one of the main goals of this application is to construct a complete

schedule and therefore we first applied the Propose & Backtrack method from our library.

8.4.2.1 Construction of the operators

The Propose & Backtrack method was configured by defining two types of application-

specific operators - weekly-ship-resource-operator and weekly-ship-time-
range-operator. The former operator is defined in order to assign weekly ship-

788

Chapter 8

maintenance jobs to weekly ship-maintenance resources by maintaining the resource

requirement of all the weekly ship-maintenance jobs as described in Table 8.5. Weekly-
ship-re source-operator is defined in such a way that a correct time range can be

assigned to all the weekly ship-maintenance jobs. The following box shows the OCML

definitions of weekly - ship - resource - operator and weekly-ship-time-range-
operator defined for the 482YTTN-job. The operators for the other weekly ship-

maintenance jobs can be realised along the same lines.

(def-class WEEKLY-SHIP-RESOURCE-OPERATOR
(multiple-schedule-extension-resource-operator))

(def-class WEEKLY-SHIP-TIME-RANGE-OPERATOR
(multiple-schedule-extension-time-range-operator))

(def-instance 4 82YTTN-job-to-EM3-resource weekly-ship-resource-operator
((applicable-to-jobs '(setofall ?x (482YTTN-job ?x)))
(has-body (lambda (?x ?s)

(the ?EM3-resource
(EM3-resource ?EM3-resource))))))

(def-instance 482YTTN-j ob-4 8 2YTTN-1 ime-range weekly-ship-time-range-operator
((applicable-to-jobs '(setofall ?x (482YTTN-job ?x)))
(has-body (lambda (?x ?s)

(the ?482YTTN-job-time-range
(482YTTN-job-time-range ?4 82YTTN-job-time-range))))))

(tell (schedule-operator-order 4 8 2YTTN-j ob-to-EM3-re source
4 82YTTN-job-482YTTN-time-range))

Finally, the relation schedule-operator-order (cf. Section 6.2.2) is instantiated to

determine the order in which different operators are applied to assign a weekly ship-

maintenance job.

8.4.3 The focus and operator selection knowledge

The focus selection task in this application is carried out by using the method job-
selection-based-on-least-number-of-activities (cf. Section 6.3.5). In

accordance with this method in each cycle a weekly ship-maintenance job with the least

number of activities is selected as a focus. Once a correct focus is selected then all the

operators are collected and sorted by instantiating the relation schedule-operator-
order (cf. Section 6.2.2).

Once the configuration of the Propose & Backtrack is completed by determining how the

focus can be selected, then we ran the weekly ship-maintenance application to construct its

complete schedule. The following box shows the synoptic trace of the behaviour of the

application. As it can be seen in the following box the complete schedule for the weekly

ship-maintenance application was constructed by generating 1245 schedule states. We

achieved 65% efficiency while constructing a schedule for this application. It was observed

that while constructing a solution the search backtracked six times because the ‘daily

frequency of ship-maintenance job constraint’ imposed on the following four weekly ship-

787

Chapter 8

maintenance jobs - 482YTTN, 628URAN, 51A1BNN, and 266TFEN was violated as they

violated their latest end time. In other words, the schedule was a complete but was not a

consistent.

-- Enter task EVALUATE-COMPLETENESS1250
with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1245)
-- Exit task EVALUATE-COMPLETENESS!250 -
> (STATE-COMPLETE SCHEDULE-STATE1245)
-- Enter task EVALUATE-FEASIBILITY1251
with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1245)
-- Exit task EVALUATE-FEASIBILITY1251 ->
NIL
-- -------- Exit task EVALUATE-SCHEDULE-STATE1248
-> NIL

OCML 27 : 1 > (describe-instance 'schedule-statel245)
Instance SCHEDULE-STATE1245 of class SCHEDULE-STATE
HAS-SCHEDULE-MODEL: ((12B3HTN ABF/BT/EN2 TURN-PUMP-SHAFT-BY-HAND 12B3HTN-TIME-RANGE)■
(63A2TFN ABF/EN/GSM/MM2 STRIP-JP5-SERVICE-TANK 63A2TFN-TIME-RANGE) (36A2RDN ABF/EN/MM3
INSPECT-SEAL-TANK-WATER-LEVEL 36A2RDN-TIME -RANGE) (44B.9URN AN/FN/SN TEST-OPERATE-AND-
INSPECT-FLUSHOMETER 44B9URN-TIME-RANGE) (C23HZAN BM3 INSPECT-GEARCASE-OIL-LEVEL-IDLE-WINCH
C23HZAN-TIME-RANGE) (359BZUN BT/EN/GSM/MM3 FLUSH-HELLAN-SEAWATER-STRAINER 359BZUN-TIME-
RANGE) (47K78GM Bt /eN/MM3 LUBRICATE-PUMP 47K78GM-TIME-RANGE) (17A8UBN BT/MM3 INSPECT-
BUBLER-LIQUID-LEVEL 17A8UBN-TIME- RANGE) (64M44EN BT2 TEST-CLEAN-AND-INSPECT-FLAME-SCANNER
64M44EN-TIME-RANGE) (B2B7TCN DC/HT3 VISUALLY-INSPECT-PUMP-UNIT B2B7TCN-TIME-RANGE)
(B2A7SAN DC/HT3-1 VISUALLY-INSPECT-PUMP-UNIT-2 B2A7SAN-TIME-RANGE) (A4C2EHN DC/HT3-2 TEST-
AND-OPERATE-AFFF-CONCRETE-PUMP-ASSEMBLY A4C2EHN-TIME-RANGE) (34A1JWN DCPO INSPECT-
DIFFERENTIAL-PRESSURE/PRESURE-DROP 34A1JWN-TIME-RANGE) (36A1JVN DCPO-1 INSPECT-AND-TEST-
RELAY-OPERATED-LANTERN 36A1JVN-TIME-RANGE) (36W29WN DCPO-2 INVENTORY-AND-INSPECT-FIRE-
HOSE-STATION-EQMT 36W29WN-TIME-RANGE) (36W29XN DCPO-3 ACCOMPLISH-FUNCTIONAL-TEST-OF-
PORTABLE-LANTERN 36W29XN-TIME-RANGE) (36W31CN DCPO-4 INSPECT-AND-TEST-RELAY-OPERATED-
LANTERN2 36W31CN-TIME-RANGE) (266TFEN EM3-3 ACCOMPLISH-FUNCTIONAL-TEST-OF-ENGINE-BATTERY
266TFEN-TIME-RANGE) (51A1BNN EM3-2 INSPECT-MICROWAVE-OVEN 51A1BNN-TIME-RANGE) (628URAN
EM3-1 TEST-RUNNING-LIGHT-TELLTALE-PANEL 628URAN-TIME-RANGE) (482YTTN EM3 TEST-SIGNAL-AND-
NAVIGATION-LIGHTS 482YTTN-TIME-RANGE))

In order to fix the violated constraints we applied the P&R method from our library:

8.4.4 Modelling the propose phase

The propose phase of the P&R method is configured straightfbrwardly from Generic-
Schedule. The only main difference in the configuration process of Generic-Schedule
and the propose phase is that the application-specific schedule-procedures (cf.

Section 7.3.4.1) are defined in order to assign weekly ship-maintenance jobs to weekly

ship-maintenance resources and time ranges. Also, the slot depends-on in the definition

of schedule-procedure is instantiated in order to construct the dependencies between

weekly ship-maintenance jobs. As an example the following box shows the OCML

definition of the schedule procedures defined for 266TFEN job.

782

Chapter 8

(def-class WEEKLY-RESOURCE-PROCEDURE (weekly-ship-resource-operator))
(def-class WEEKLY-TIME-RANGE-PROCEDURE (weekly-ship-time-range-operator))
(def-instance 266TFEN-JOB-TO-EM3-3-RESOURCE weekly-resource-procedure
((applicable-to-jobs '(setofall ?x (266TFEN-job ?x)))
(depends-on '(51A1BNN)
(has-body (lambda (?x ?s)

(the ?EM3-3-RESOURCE
(EM3-3-RESOURCE ?EM3-3-RESOURCE))))))

(def-instance 266TFEN-JOB-266TFEN-TIME-RANGE weekly-time-range-procedure
((applicable-to-jobs '(setofall ?x (266TFEN-job ?x)))
(depends-on '(51A1BNN)
(has-body (lambda (?x ?s)

(the ?266TFEN-job-time-range
(266TFEN-job-time-range ?266TFEN-job-time-range))))))

(tell (schedule-operator-order 266TFEN-job-to-EM3-3-resource
266 TFEN-job-266TFEN-1ime-range))

8.4.5 Modelling the fixes

In the revise phase application-specific fixes called ship-maintenance -1 ime - range -
fixes are defined in order to fix the constraint violations occurred while constructing a

schedule. As described earlier the weekly ship-maintenance jobs, 482YTTN, 628URAN,

51A1BNN, and 266TFEN failed to comply with their latest end time, and the fixes are

defined in such a way that these weekly ship-maintenance jobs can be shifted exactly by

the same time (i.e. 10 minutes) by which they violated their latest end time. In scheduling

this type of shift policy is referred to as the left-shift strategy (Smith, 1994). The following

box shows the OCML definitions of two such fixes defined for the weekly ship-

maintenance jobs 266TFEN and 628URAN. The fixes for the other jobs can be realised

analogously.

(def-class SHIP-MAINTENANCE-TIME-RANGE-FIX (schedule-fix-for-time-range))
(def-instance 266TFEN-TO-NEW-TIME-RANGE ship-maintenance-time-range-fix
((applicable-to-jobs '(setofall ?x (266TFEN-job ?x)))
(depends-on '(51A1BNN))
(applicable-to-constraints '(DAILY-FREQUENCY-OF-266TFEN-job))
(has-body (?x ?jtr ?sc)

(cons ?x (and (has-time-range ?x ?266EFEN-job-time-range)
(- (the ?let (= (latest-end-time-of-a-job

?x P266EFEN-job-time-range) ?let))
10))))))

(def-instance 628URAN-T0-NEW-TIME-RANGE ship-maintenance-time-range-fix
((applicable-to-jobs '(setofall ?x (628URAN-job ?x)))
(depends-on '(482YTTN))
(applicable-to-constraints '(end-time-compliance-of-628URAN))
(has-body (?x ?j tr ?sc)

(cons ?x (and (has-time-range ?x ?628URAN-job-time-range)
(- (the ?let (= (latest-end-time-of-a-job

?x ?628URAN-job-time-range) ?let))
10))))))

8.4.5.1 Fix application in the revise phase

Once the configuration of the P&R method is completed then we again ran the weekly

ship-maintenance application by using the P&R method. By the completion of the revise

phase it was observed that our fixes successfully shifted all the weekly ship-maintenance

jobs exactly by the same time towards their latest end time. As a result a complete and

783

Chapter 8

consistent schedule for this application was constructed by generating 1401 schedule

states. It was also observed that the precedence relation imposed among all the jobs also

helped to maintain the daily frequency constraint imposed on the other weekly ship-

maintenance jobs, which did not participate in the constraint violations. Therefore, a

solution for this application was constructed linearly without any backtracking. However,

on the negative side, the same precedence relation did not allow us to improve the overall

cycle time of a schedule, because the earliest start time and the latest end time of each

weekly ship-maintenance job was constrained by the earliest start time and the latest end

time of the preceding weekly ship-maintenance job.

The following box represents the synoptic trace of the behaviour of the P&R method

applied to the weekly ship-maintenance application. This trace particularly shows how all

the constraint violations are collected as the foci in the revise context, and it also shows

how the first constraint violation, i.e. daily-frequency-of-4 82YTTN-jo b from the

list of foci is selected. Finally the box below also shows how a complete and consistent

schedule looks like after fixing all the violations.

784

Chapter 8

-- Enter task CONSISTENT-MAXIMAL-STATE-
SELECTION1253 with arguments (HAS-SCHEDULE-SPACE SCHEDULE-SPACE424)
-- Exit task CONSISTENT-MAXIMAL-STATE-
SELECTION1253 -> SCHEDULE-STATE1284
------ ------------------------------------- Enter task PROPOSE-AND-REVISE-CONTROL-
STRUCTURE1255 with arguments (HAS-SCHEDULE-SPACE SCHEDULE-SPACE424) (HAS-SCHEDULE-STATE '
SCHEDULE-STATE1284)
-- Enter task ONE-STEP-REVISION-FGR-
CONSTRAINT1256 with arguments (HAS-SCHEDULE-SPACE SCHEDULE-SPACE424) (HAS-SCHEDULE-STATE
S CHEDULE-STATE1284)
 -- Enter task GENERATE-NEW-STATE-SUCCESS0R1257
with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1284) (HAS-SCHEDULE-CONTEXT : REVISE)
-- Enter task COLLECT-ALL-CONSTRAINT-
VIOLATIONS1258 with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1284) (HAS-SCHEDULE-
CONTEXT :REVISE)
----------------- ----------------------------- Exit task COLLECT-ALL-CONSTRAINT-
VIOLATIONS1258 -> (DAILY-FREQUENCY-OF-482YTTN-JOB DAILY-FREQUENCY-OF-628URAN-JOB DAILY-
FREQUENCY-OF -51AIBNN-JOB DAILY-FREQUENCY-OF-2 66TFEN-JOB)
--------------- -------------------------------Enter task PROPOSE-SCHEDULE-FROM-CONTEXT!260
with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1206) (HAS-SCHEDULE-CONTEXT : REVISE)
--- Enter task SELECT-CANDIDATE-CONSTRAINT-
VIOLATION1262 with arguments (HAS-SCHEDULE-FOCI (DAILY-FREQUENCY-OF-482YTTN-JOB DAILY-
FREQUENCY-OF-628URAN-JOB DAILY-FREQUENCY-OF-51A1BNN-JOB DAILY-FREQUENCY-OF-266TFEN-JOB))
(HAS-SCHEDULE-FOCUS-ORDER-RELATION SCHEDULE-FOCUS-ORDER)
--- Exit task SELECT-CANDIDATE-CONSTRAINT-
VIOLATION1262 -> DAILY-FREQUENCY-0F-482YTTN-JOB
--- Enter task DEFAULT-SEARCH-CONTROL-RECORD-
ON-FOCUS-SELECTION-UPDATE1264 with arguments (HAS-SCHEDULE-FOCUS DAILY-FREQUENCY-OF-
482YTTN-JOB) (HAS-SEARCH-CONTROL-RECORD STATE-SEARCH-CONTROL-RECORD!259)
----- ---------------- ------------------------- Exit task DEFAULT-SEARCH-CONTROL-RECORD-ON-
FOCUS-SELECTION-UPDATE!264 -> (HAS-SCHEDULE-FOCUS STATE-SEARCH-CONTROL-RECORD!259 DAILY-
FREQUENCY-OF -4 82YTTN-JOB)
..... --- Enter task COLLECTION-OF-APPLICABLE-
FIXES1266 with arguments (HAS-SCHEDULE-FOCUS DAILY-FREQUENCY-OF-482YTTN-JOB)
----- --- Exit task COLLECTION-OF-APPLICABLE-
FIXES1266 -> (482YTTN-TO-NEW-TIME-RANGE)
OCML 31 : 1 > (describe-instance 'schedule-statel401)
Instance SCHEDULE-STATE1401 of class SCHEDULE-STATE
HAS-SCHEDULE-MODEL: ((12B3HTN ABF/BT/EN2 TURN-PUMP-SHAFT-BY-HAND 12B3HTN-TIME-RANGE)
(63A2TFN ABF/EN/GSM/MM2 STRIP-JP5-SERVICE-TANK 63A2TFN-TIME-RANGE) (36A2RDN ABF/EN/MM3
INSPECT-SEAL-TANK-WATER-LEVEL 36A2RDN-TIME-RANGE) (44B9URN AN/FN/SN TEST-OPERATE-AND-
INSPECT-FLUSHOMETER 44B9URN-TIME-RANGE) (C23HZAN BM3 INSPECT-GEARCASE-OIL-LEVEL-IDLE- WINCH
C23HZAN-TIME-RANGE) (359BZUN BT/EN/GSM/MM3 FLUSH-HELLAN-SEAWATER-STRAINER 359BZUN-TIME-
RANGE) (47K78GM BT/EN/MM3 LUBRICATE-PUMP 47K78GM-TIME-RANGE) (17A8UBN BT/MM3 INSPECT-
BUBLER-LIQUID-LEVEL 17A8UBN-TIME-RANGE) (64M44EN BT2 TEST-CLEAN-AND-INSPECT-FLAME-SCANNER
64M44EN-TIME-RANGE) (B2B7TCN DC/HT3 VISUALLY-INSPECT-PUMP-UNIT B2B7TCN-TIME-RANGE)
(B2A7SAN DC/HT3-1 VISUALLY-INSPECT-PUMP-UNIT-2 B2A7SAN-TIME-RANGE) (A4C2EHN DC/HT3-2 TEST-
AND-OPERATE-AFFF-CONCRETE-PUMP-ASSEMBLY A4C2EHN-TIME-RANGE) (34A1JWN DCPO INSPECT-
DIFFERENTIAL-PRESSURE/PRESURE-DROP 34A1JWN-TIME-RANGE) (36A1JVN DCPO-1 INSPECT-AND-TEST-
RELAY-OPERATED-LANTERN 36A1JVN-TIME-RANGE) (36W29WN DCPO-2 INVENTORY-AND-INS PECT-FIRE-
HOSE-STATION-EQMT 36W29WN-TIME-RANGE) (36W29XN DCPO-3 ACCOMPLISH-FUNCTIONAL-TEST-OF-
PORTABLE-LANTERN 36W29XN-TIME-RANGE) (36W31CN DCPO-4 INSPECT-AND-TEST-RELAY-OPERATED-
LANTERN2 36W31CN-TIME-RANGE) (266TFEN EM3-3 ACCOMPLISH-FUNCTIONAL-TEST-OF-ENGINE-BATTERY
266TFEN-TIME-RANGE) (51A1BNN EM3-2 INSPECT-MICROWAVE-OVEN 51A1BNN-TIME-RANGE) (628URAN
EM3-1 TEST-RUNNING-LIGHT-TELLTALE-PANEL 628URAN-TIME-RANGE) (482YTTN EM3 TEST-SIGNAL-AND-
NAVIGATION-LIGHTS 482YTTN-TIME-RANGE))

8.5 The benchmark application
This is the last application used to validate our library. The data-set for this application was

acquired from the following URL - http://www.neosoft.com/~benchmrx/rcps.doc. This

series of benchmark tests consists of twelve different applications. Although these

applications are based on a large scale assembly, they can be applied to other scheduling

domains, such as engineering, construction, and manufacturing. Generally speaking, this

786

http://www.neosoft.com/~benchmrx/rcps.doc

Chapter 8

application can be understood as a resource constrained projeet scheduling problem

{Bmcker et aL, 1999).

For validating our library, the application from the category 3 of this series was selected

mainly because this application required using looking ahead heuristics while constructing

a schedule. As described in Chapter 6 (cf. Section 6.3.1.1), Generic-Schedule deploys

two types of looking ahead heuristics: full looking ahead and partial looking ahead, and

this application provided an opportunity to evaluate the performance of these two

heuristics.

This application consists of ten discrete work-steps (i.e., jobs that need to be executed to

construct a large assembly) and each work-step entails the performance of a specific work

document in the formal process plan. Each work-step has a fixed duration during which all

the activities associated with a work-step have to be completed. The schedule horizon of

one shift is 7.5 hours, which must be maintained by all the work-steps.

Each work-step requires either one or more resources (which are referred to as

individuals in the data set) for its completion, which can be drawn from the four different

labour pools. The labour pools are named anonymously as Px, Py, Pz, and Pw. While

constructing a schedule, the appropriate labour types must be assigned for the successful

completion of each work-step. There are thirteen different work-zones available around the

assembly which are used by the work-steps for their completion. The available work-zones

are named anonymously as Za, Zb, Zc, and so on. The execution of the work-steps depends

on the availability of the work-zones, and therefore they are treated as a spatial type of

resources. Moreover, all the work-steps must be completed from start to finish without any

perturbation. Finally, this application imposes a strict precedence ordering among all the

work-steps. Table 8.7 represents a data set obtained from the above mentioned URL, which

is used to impose the precedence ordering among the work-steps.

Table 8.7. The precedence relation among work-steps.

Predecessor Successor

asm_l .step_394 new.stepOOl

new.stepOOl new.step_002

new.step_002 new.step_003

new.step_003 new.step_004

new.step_004 new.step_005

new.step_005 new.step_006

new.step_006 new.step_007

Chapter 8

new.stepOO? new.step_008

new.step_008 new.step_009

new.step_009 new.stepOlO

new.stepOlO asm_l.step_518

Both the zone and labour resources have a fix capacity which determines the maximum

number of work-steps they can handle at any one time. Table 8.8 represents the capacity of

the zone and labour resources.

Table 8.8. The capacity of the zone and labour resources.

Assembly zone Maximum capacity Labour Pool Maximum

capacity

Zone.Za 2 Labour.Px 3

Zone.Zb 1 Labour.Py 4

Zone.Zc 1 Labour.Pz 4

Zone.Zd 2 Labour.Pw 5

Zone.Ze 1

Zone.Zf 2

Zone.Zg 1

Zone.Zh 2

Zone.Zi 5

Zone.Zj 2

Zone.Zk 1

Zone.Zi 4

Zone.Zm 3

Table 8.9 shows the duration and a resource requirement of all the work-steps obtained

from the above mentioned URL.

7,̂ 7

Chapter 8
Table 8.9. The duration and resource requirement of all the work-steps.

Work-Step Duration i l l Ü Î1Ï P Z Z i l l Wt z iZi Wê m z Z z
(lirimin) X 0 z w a b III i l l •ill B i l l H i l i i k M m

new.stepOOl 03:30 2 1 1

new.step_002 01:00 1 1

new.step_003 02:30 1 1 1

new.step_004 01:30 1 1

new.step_005 00:30 2 1 1

new.step_006 01:20 1 1 1 1

new.step_007 03:04 1 1

new.stepOOS 06:25 1 1

new.step_009 00:10 1 1

new.stepOlO 03:20 1 1

8.5.1 Construction of a task model

In accordance with the task ontology the notion of a work-step is modelled by defining the

application-specific class called assem b ly -jo b and this notion is mapped to the task

level notion of a job (cf. Section 5.2.2). Each work-step has the following attributes:

number of activities, resource requirement, a time range, duration, and a load. The

following box shows the OCML definitions of the job work- s t ep_0 01-1.

(def-class new.step_001-l (assembly-job))
(def-class new.step_001-l-TIME-RANGE (job-time-range))
(def-class new.step_001-l-ACTIVITY (activity))
(def-instance new.step_001-1 new.step_001-l-l
((has-activities new.step_001-1-activity)
(requires-resource pz-resource)
(has-time-range new.step_001-l-time-range)
(has-duration new.step_001-l-duration)
(has-load 2)))

Both the types of resources, labour and zone have the following attributes: specific types

of jobs they can handle, availability period, and a capacity. The following box shows the

OCML definitions of the labour resource called px-labour-resource and the zone-

resource called za-zone-resource.

Chapter 8

(def-class LABOUR-RESOURCE (resource))
(def-class ZONE-RESOURCE (resource))
(def-class px-labour-resource (labour-resource))
(def-instance PX-RESOURCE px-labour-resource
((has-job-belonging '(new.step_003-l new.step_007-l))
(has-availability resource-availability-period)
(has-capacity 4)))

(def-class za-zone-resource (zone-resource))
(def-instance za-resource za-zone-resource
((has-job-belonging '(new.step_001-2))
(has-availability resource-availability-period)
(has-capacity 2)))

8.5.7.7 Modelling the constraints

The benchmark application includes the following two types of constraints:

• The work-step precedence constraint: This constraint is common to all the work-

steps, and imposes a strict precedence ordering among all the work-steps. According to

this constraint a work-step, say Wi precedes a work-step, say W2, if the latest end time

of W] is before the earliest start time of W2 . This precedence constraint is imposed by

using the data given in Table 8.7. A set of ten precedence constraints are defined

between the work-steps. The following box shows the OCML definition of one such

constraint imposed among the work-steps ‘new-step_001_l’ and 'new-step_001_2\

(def-instance PRECEDNCE-AMONG-NEW-STEP_001_1-NEW-STEP_001_2
assembly-job-constraint

((has-expression (kappa (?sc)
(exists ?new-step_001_l

(and (has-time-range
?new-step_001_l
?new.step_001-1-time-range)
(has-latest-end-time
?new-step_001-1-1ime-range ?let)
(exists ?new-step_001_2

(and
(has-time-range
?new-step_001_2
?new-step_001-2-time-range)
(has-earliest-start-time
?new-step_001-2-time-range ?est)
(precedes ?let ?est)
(JOB-PRECEDES
?new-step_001_l
?new-step_001 2)))))))))

• The labour and zone resource constraint: The labour capacity constraint imposes

a restriction on the number of work-steps each labour and zone resource can handle

at any one time while eonstructing a schedule. This constraint is imposed by using

the resource capacity data given in Table 8.8. A set of four resource constraints are

defined to impose capacity constraint on the four labour resources and a set of

thirteen constraints are defined to impose the capacity constraint on all the zone

resources. In order to impose this constraint on the labour and zone resources, we

first used the function called maximum-capacity-of-resource (cf. Section

7,̂ 9

Chapter S

5.2.3), which retrieves the maximum number of work-steps each labour and zone

resource can handle, and then an equality condition is imposed to constrain the

maximum number of work-steps each resource can handle according to the data

given in Table 8.8. The following box shows the OCML definitions of the capacity

constraints imposed on the labour resource ‘px-labour-resource’ and the work-zone

resource ‘za-zone-resource’.

(def-class ASSEMBLY-LABOUR-CONSTRAINT (hard-constraint))

(def-class ASSEMBLY-ZONE-CONSTRAINT (hard-constraint))

(def-instance PX-LABOUR-CAPACITY assembly-labour-constraint
((applicable-to-resources '(setofall ?x (px-labour-resource ?x)))
(has-body (lambda (?x ?sc)

(exists ?x
(= (the ?xl (maximum-capacity-of-resource ?x))

3))))))
(def-instance ZA-ZONE-CAPACITY assembly-zone-constraint
((applicable-to-resources '(setofall ?x (za-zone-resource)))
(has-body (lambda (?x ?sc)

(exists ?x
(= (the ?xl (maximum-capacity-of-resource ?x))

2))))))

While formalising this application, no additional definitions were needed in addition to

those already exists in the scheduling task ontology. All the key classes from the task

ontology such as job, resource, activity, time range, etc. provide the required level of detail

and precision to capture the application-specific knowledge precisely. In the following

section, we will discuss how the schedule for this application was constructed.

8.5.2 Applying the Propose & Backtrack method

To configure the Propose & Backtrack method, two types of application-speeific operators,

benchmark-resource-operator and benchmark -1 ime - range - ope rat or were

defined. The former type of operator is used to assign the work-steps to their required zone

and labour resources as given in Table 8.8. The latter type of operator is defined in such a

way that the correct time range can be assigned to all the work-steps for their in time

completion. In total ten operators were defined. The following box shows the OCML

definitions of the operators defined for work-step new-step_001-l.

790

Chapter 8

(def-class benchmark-resource-operator (schedule-extension-resource-operator))
(def-class benchmark-1ime-range-operator

(schedule-extension-time-range-operator))
(def- instance new-step-001-1-to-pz-labour-resource benchmark-resource-operator
((applicable-to-jobs '(setofall ?x (new-step_001_l ?x)))
(has-body (lambda (?x ?sc)

(the ?pz-resource
(pz-resource ?pz-resource

has-j ob-belonging ?x))))))
(def-instance new-step-001-1-to-new-step-001-1-time-range benchmark-time-range-
operator
((applicable-to-jobs '(setofall ?x (new-step_001_l ?x)))
(has-body (lambda (?x ?sc)

(the ?new-step_001-1-1ime-range
(new-step_001-1-time-range ?new-step_001-1-time-range))))))

(tell (schedule -operator-order new;-step-001-1-to-pz-labour-resource
new-step-001-1-to-new-step-001-1-time-range))

8.5.2.1 Focus and operator selection

As described earlier this application imposed a strict precedence among all the work-steps

and while selecting a correct focus we complied with this application-specific knowledge.

The method called job-selection-based-on-precedence (cf. Section 6.3.5) is used

to select the focus. To represent the precedence among different work-steps we instantiated

the relation job-precedes (cf. Section 5.2.2.3) from the scheduling task ontology and

then this relation is used by the method job-select ion-based-on-precedence to

sort the work-steps. Once a correct focus is selected then the order of operator application

is determined by instantiating the relation schedule-operator-order.

8.5.2.2 Analysis

Having configured the P&B method, we first ran our experiment focusing on the full

looking ahead heuristic. The basic idea of this heuristic is that when a value is assigned to a

variable the problem is reduced through constraint propagation.

Because this application imposed a tight precedence constraint on all the work-steps, the

solution space of this application was very well structured. This helped to improve the

performance of the full looking ahead heuristic because this heuristic usually performs well

on problems with tight constraints. However, while constructing a schedule by using full

looking heuristic it was realised that this heuristic was computationally very expensive. In

comparison with the partial looking ahead heuristic this heuristic required almost one

hundred more schedule states to reach a solution state. One of the main reasons for the

computational cost of this heuristic was that each time a new work-step was selected for its

assignment this heuristic imposed a full consistency check of the value requirement (i.e.,

resources and time ranges) of the current work-step. In other words, the system was

performing a value requirement consistency between a currently instantiated work-step and

other unassigned work-steps, as well as between all unassigned work-steps. It was

797

Chapter 8

observed that these checks did not discover any new inconsistencies often enough to justify

the large number of consistency checks performed. On the positive side, such type of

consistency checks removed all those values from the domain of the future work-steps

which were not compatible with the current assignment. This essentially helped to detect

all dead-ends beforehand and therefore the search reached the solution state without any

backtracking. As a result, 100% efficiency was achieved while constructing a schedule.

The complete schedule for this application was constructed by generating 805 schedule

states.

Then we ran the same application by using the partial looking ahead heuristic to analyse

the performance of this heuristic. In comparison with the full looking ahead heuristic, the

partial looking ahead heuristic proved to be computationally more efficient. The main

reason why the partial looking ahead heuristic took less time to reach the solution state was

because it made about half the consistency checks as compared to the full looking ahead

heuristic. The partial looking ahead heuristic checked the value requirement consistency

between the current work-step with all the unassigned work-steps, which directly or

indirectly depend on it. As a result, by using the partial looking ahead heuristic, the

complete schedule was constructed by generating 705 schedule states. Although this

heuristic reached a solution state much more quickly compared to the full looking ahead

one, the conflict detection policy of the full looking ahead heuristic is more robust and

exhaustive, and has a higher chances of avoiding conflicts between the assigned and

unassigned jobs.

Finally, our focus selection strategy helped to accomplish all the work-step jobs within

their single shift. Because no constraints and requirements were violated while

constructing a schedule, a complete and consistent schedule was returned.

Table 8.10 summarises the performance of our library on all the applications that are

used to validate our library.

Table 8.10. Comparison between the performances of scheduling applications.

Application name Problem-solving

method used to

solve the

application

Joh-selection

heuristic used to

select a job

Nuniher of

schedule states

required to

generate a solution

schedule

The satellite-

scheduling

Propose &

Backtrack, Hill

Job-selection-
based-on-

464

792

Chapter 8

application Climbing, Propose

& Improve

lowest-degrees-
of-freedom

512

CIPHER- a resource

allocation

application

Propose &

Backtrack

Job-selection-
based-on-
latest-end-time

1342

The daily ship-

maintenance

application

Generic-
Schedule,

Propose & Restore-

feasibility

Job-selection-
based- on- start -
time

852

949

The weekly ship-

maintenance

application

Propose &

Backtrack,

Propose & Revise

Job-selection-
based -on- least -
number-of-
activities

1245

1401

The benchmark

application

Propose &

Backtrack

Job-selection-
based-on-
precedence

805

705

8.6 Evaluating the static and dynamic properties
As described by Preece e/ al. (1996), when we consider the validation and verification

problem, it is useful to distinguish between the static and dynamic properties of a; rule-

based system. The static properties are those characteristics of a rule-based system that can

be evaluated without its execution, while the dynamic properties can be evaluated only by

examining how the system operates at run time. The following bullet points describe the

different characteristics that we have validated to evaluate the performance of our library.

• The goal requirements of each application that needs to be achieved by the PSMs in

our library;

• The quality of the goal specifies whether a selected PSM from our library has

successfully achieved the goals specified by the application;

• The relation between the application-specific data and the way it has influenced to

achieve the goals proposed by the applications.

Table 8.11 summarises the results of our study.

793

Chapter 8
Table 8.11. Summary of the evaluation of the static and dynamic properties.

Application

name

Goal requirements Quality of the goal Relation between

data and goals

achieved

The satellite-

scheduling

application

To generate a

complete and optimal

schedule.

The P&B method

has successfully

constructed a

complete solution

schedule, but it was

not an optimal one.

The hill climbing

method not only

failed to produce an

optimal solution, but

it took higher

number of schedule

states to generate a

complete schedule.

The P&I method

successfully devised

a complete and

optimal schedule.

The data of this

application was

good enough to

construct a

complete schedule,

but while using the

hill climbing

method it did not

provide enough

discriminating

knowledge to break

the tie between the

assignments of

Nimbus-1 and

Nimbus-2 satellites.

However, while

using P&I, the data

allowed us to swap

the time slots of

these two satellites

to generate an

optimal assignment.

CIPHER

resource

allocation

application

To generate a

complete schedule.

The P&B method

has successfully

constructed a

complete schedule.

The data provided

by this application

was well specified.

Therefore, solving

this application by

using P & B turned

out to be efficient

as the solution

space was very

794

Chapter 8

dense. As a result,

very little search

was required to

construct a

complete solution

schedule.

The daily ship-

maintenance

application

To generate a

complete and feasible

schedule.

Generic-
Schedule has

successfully devised

a complete schedule,

but it was not a

feasible one.

The P&Rf method

has successfully

devised a feasible

schedule by fixing

the requirement

violation.

The data provided

by this application

was contradictory

in nature. This

application required

all the jobs to

complete within

their daily

frequency, which

led us to use a job

selection heuristic

that selected the

jobs based on their

earliest start time.

However, this job

selection violated a

‘job priority

requirement’, which

essentially needed

to give priority to

those jobs which

have higher number

of activities for

their selection.

The weekly ship-

maintenance

application

To generate a

complete and

consistent schedule.

The P&B method

has successfully

devised a complete

schedule, but it was

not a consistent one.

1) In compliance

with the data, a job

with the least

number of activities

793

The P&R method

successfully devised

a consistent schedule

by fixing all the

constraint violations.

Chapter 8

was selected as a

focus in P&B, but it

violated the ‘daily

frequency of ship-

maintenance job’

constraint.

2) A strict

precedence

constraint imposed

by the application

data allowed us to

maintain the daily

frequency

constraint of other

jobs that were not

part of the

constraint violation,

but it did not allow

us to improve the

overall cycle time.

The benchmark

application

To generate a

complete schedule

The P&B method

has successfully

devised a complete

schedule.

The data of this

application was

very well

structured, which

helped to improve

the performance of

the full looking

ahead heuristic, as

this heuristic

performs well on

problems with tight

constraints.

8.7 Conclusion
In this chapter we have described the validation study of our library, which has been

carried out on a number of scheduling applications. The applications used to validate our

79d

Chapter 8

library covered a wide range of scheduling domains, such as space scheduling, resource

allocation, and manufacturing. Despite the fact that these applications come from different

domains, the methods in our library performed successfully.

As described in Section 1.4, because our task ontology formalised the scheduling task

without subscribing to any application domain of scheduling, it allowed us to formalise all

the heterogeneous scheduling applications successfully. In contrast with our task ontology

some of the existing task ontologies (Hama et a l, 1992a, b and Smith and Becker, 1997)

subscribed to the specific domain of scheduling and therefore it is difficult to realise how

these task ontologies could have formalised the scheduling applications coming from

different domains. Moreover, the existing scheduling task ontologies (Hama et aï., 1992a,

b; Mizoguchi et a l, 1995; Smith and Becker, 1997) have only provided an incomplete

coverage to the different concepts necessary' to characterise the scheduling task. For

instance, the MULTIS task ontology (Mizoguchi et a l, 1995) failed to take into account a

crucial concept like r e s o u rc e -c a p a c i ty (cf. Section 5.2.3.1), and therefore this task

ontology would have failed to provide a support to avoid job overlapping in the CIPHER

application. Also in contrast with the job assignment task ontology (cf. Sections 3.4.2.1,

5.3.1), all the concepts from our scheduling task ontology have provided an appropriate

level of detail to formalise the application-specific knowledge. Finally, because our task

ontology has provided an unequivocal distinction between constraints, requirements, and

preferences, it helped us to formulate the application-specific knowledge without having to

compromise with their meaning as shown in all the applications.

At the problem-solving level, the search acted as a fundamental problem-solving

paradigm, which enabled a strong coupling^ between the scheduling task specification and

the method specification. As described in Section 1.4, Generic-Schedule subscribed to

the knowledge-intensive approach to schedule construction, which has abstracted different

tasks, methods, heuristics, and also taken into account the domain-specific knowledge.

And as shown throughout this chapter, these tasks and methods were reused to effectively

to reason about different scheduling applications. Moreover, different heuristics from

Generic- Schedule, such as dynamic consistency enforcement, full looking ahead and

 ̂ In our library, the problem-solving methods are developed to perform an efficient problem-solving to solve

a specific type o f generic task, i.e. scheduling. This close association between a generic task specification and

a method represents a strong coupling of the library. This coupling can be further strengthened by using a

choice of a problem-solving paradigm (which is search in our library) as a mechanism for providing a

principled approach for developing a generic problem-solving model and a method ontology for a given

problem type.

797

Chapter 8

partial looking ahead improved the overall efficiency of schedule construction. Also, in

contrast with the existing libraries (Hori and Yoshida, 1998; Sundin, 1994; Tijerino and

Mizoguchi, 1993; Le Pape, 1994), which have provided only a limited support for a job

selection, our library have provided a wide-range of job selection heuristics (cf. Section

6.3.5), which not only selected a focus correctly, but also avoided unneeessary

backtracking while constructing a schedule in all the applications.

Because our library consisted of a wide-range of PSMs, it allowed us to tackle the

different types of inconsistencies, such as constraint or requirement violations, which

occurred in different applications. In contrast with the comprehensive coverage provided

by our library, none of the existing libraries (Hori and Yoshida, 1998; Sundin, 1994;

Tijerino and Mizoguchi, 1993; Le Pape, 1994) have included the problem-solving methods

which can reason about the requirement violation and optimisation issues of scheduling.

Moreover, because our library did not subscribe to any scheduling domain all the PSMs

were reused to construct heterogeneous applications with either very little or in some cases

no configuration effort.

Chapter 9

SUMMARY AND CONCLUDING REMARKS

In this chapter, we conclude our work by summarising the research carried out in this

thesis, highlighting the main contributions of this work and suggesting future research

directions.

9.1 Summary
In this thesis, we have proposed a generic library of scheduling problem-solving methods.

Our library subscribes to the TMDA knowledge modelling framework (Motta, 1999),

which provides the key epistemological distinetions required to model scheduling

engineering knowledge-based applications by reuse.

In compliance with the TMDA framework, we first formalised the space of scheduling

problems by developing a generic task ontology (cf. Chapter 5). The task ontology is

generic in the sense that it does not subscribe to any application domain or problem solving

method. Then at the method level, we proposed a generic problem solving model.

Generic-Schedule component of the library (cf. Chapter 6), which provides a

comprehensive collection of tasks and methods, which cover the space of knowledge-based

activities carried out during scheduling problem-solving. These tasks and methods can be

specialised to construct more specific scheduling problem-solvers. As described in Chapter

7, seven different knowledge-intensive methods. Hill Climbing, Propose & Backtrack

(Runkel et a l, 1996), Propose & Improve (Motta, 1999), Propose & Revise (Marcus and

McDermott, 1989), Propose & Restore-feasibility, Propose & Exchange (Poeck and

Gappa, 1993), and Propose & Genetical-Exchange were constructed by reusing and

specialising the tasks defined in Generic-Schedule. This uniform approach to method

construction allowed us to compare and contrast the knowledge requirements of these

PSMs. Moreover, these PSMs cover a wide range of scheduling task specifications with

respect to criteria such as completion, constraint violation, requirement violation, and

optimisation. Finally, as described in Chapter 8, our library has been validated on a number

of scheduling applications, which confirmed its generic nature.

Our work contributes to scheduling research both from an analytical and an engineering

perspective. Analytically, it provides both a novel integration of the various techniques that

have been developed for seheduling and provides an insight into the various knowledge-

intensive tasks that are carried out during scheduling problem solving. From an

engineering perspective, our library offers comprehensive support for the rapid

Chapter 9

construction of scheduling applications in different domains. Finally, ours is the first

library in the field that provides a eomprehensive eoverage of a variety of knowledge-

intensive PSMs.

In the following section we discuss the major contributions of our research.

9.2 Contributions

9.2.1 A generic scheduling task ontology

As discussed in Chapter 3 (cf. Section 3.4.2) existing scheduling task ontologies - the job-

assignment task ontology (Hori et a l, 1995; Hama et a l, 1993a, b), MULTIS (Mizoguchi

et a l, 1995), and OZONE (Smith and Becker, 1997), have provided limited results. In

some cases (Hama et a l, 1992a, b; Smith and Becker, 1997) these proposals focused on a

speeific scheduling domain, which restricted their reusability. In contrast with such

domain-specific approaches, our task ontology formalises the scheduling task without

subscribing to any specific domain, and therefore, it provides wider coverage and better

support for application development by reuse. Other task ontologies (Smith and Becker,

1997) subscribed to a specific ‘problem-solving shelf. As a result, they only cover a subset

of the space of scheduling tasks. In contrast with these approaches, our task ontology is

independent of any specific problem-solving shell, and therefore, the concepts from our

task ontology can be mapped to different problem-solving shells, tackling different types

of scheduling tasks. Moreover, as described in Chapter 3 (cf. Section 3.4.2.4) existing task

ontologies fail to address some of the important concepts that are necessary to characterise

the scheduling task precisely. In particular, concepts such as requirements and preferences

are typically missing. In contrast with these proposals, our task ontology provides a more

sophisticated set of ontological distinctions separating constraints from requirements and

preferences. The utility of these distinctions was shown in Chapter 8, where we

demonstrated the importance of these distinctions for a correct modelling of task

knowledge. Moreover, as shown in Chapter 8, the practical contribution of oui* task

ontology is that it can be used as an ‘off the shelf resource to perform knowledge

acquisition and formalise scheduling knowledge.

9.2.2 A generic model of scheduling problem solving

One of the main limitations of the existing scheduling libraries (Hori and Yoshida, 1998;

Sundin, 1994; Le Pape, 1994; Tijerino and Mizoguchi, 1993) is that these proposals fail to

provide a clean distinction between highly reusable generic components and non-reusable

components. Therefore, it becomes very difficult to realise how the different components

from these libraries can be reused to construct new PSMs. In contrast with the existing

200

Chapter 9

proposals, our generic problem solving model. Generic-Schedule provides a

comprehensive and generic framework, which can be easily specialised to produces

different PSMs. At the same time, these tasks and methods provide an insight into the

various knowledge-intensive activities that take place during scheduling problem solving.

Because a component like Generic-Schedule is missing from existing proposals (Hori

and Yoshida, 1998; Sundin, 1994; Le Pape, 1994; Tijerino and Mizoguchi, 1993), these

fail to offer the same degree of reusability.

Another important contribution at the method level was provided by the specification of

a generic method ontology. This method ontology offers a highly generic vocabulary to

characterise the search-based problem-solving behaviour of our scheduling PSMs.

Moreover, Generic-Schedule exhibits a nice integration of the results from the

constraint satisfaction community. For instance, heuristics such as downstream consistency

enforcement (Sadeh, 1994),^// looking ahead, partial looking ahead (Haralick and Elliot,

1980) are included in Generic-Schedule. From a search perspective. Generic-
Schedule proposes a wide range of job selection methods (cf. Section 6.3.5), which can

improve the efficiency of schedule construction by reducing unnecessary backtracking.

Finally, Generic-Schedule itself can be used as a reusable and operational scheduling

component to construct scheduling applications.

9.2.3 A comprehensive repertoire of scheduling problem solvers
Our library improves existing proposals (Hori and Yoshida, 1998; Sundin, 1994; Le Pape,

1994; Tijerino and Mizoguchi, 1993) in terms of three dimensions: size o f the library,

coverage of the PSMs with respect to different types of scheduling problems, and

reusability. In contrast with the existing libraries (Hori and Yoshida, 1998; Sundin, 1994;

Le Pape, 1994; Tijerino and Mizoguchi, 1993), our library provides a comprehensive and

rich repertoire of the knowledge-intensive PSMs to tackle the scheduling task. For

instance, the CommonKADS library (Sundin, 1994) only takes into account the Propose &

Revise method (Marcus and McDermott, 1989), while other libraries (Hori and Yoshida,

1998; Le Pape, 1994; Tijerino and Mizoguchi, 1993) provide very limited set of PSMs. In

addition our PSMs are very heterogeneous dealing with constraint and requirement

violations as well as schedule optimisation issues. Because existing libraries provide only a

limited set of scheduling PSMs, they fail to tackle the different types of scheduling

problems. Finally, some of the existing libraries (Hori and Yoshida, 1998) tackle the

scheduling task only from the perspective of a specific domain, such as production

scheduling, and therefore, they have limited reusability. As shown in Chapter 8, the

207

Chapter 9

domain independent nature of our library allows us to solve scheduling applications in

different domains.

9.2.4 Contribution to scheduling knowledge acquisition

Throughout the construction of our library, we have developed different types of templates

either to construct the ontologies or to compare and contrast the knowledge requirements

of different PSMs (cf. Section 7.1). These generic templates and the ontologies can be used

to acquire the relevant scheduling knowledge. Here, the term ‘knowledge acquisition’ can

be understood both in analytical and practical terms, given that this acquired knowledge is

directly used to obtain concrete problem solvers.

9.2.5 Contribution to scheduling epistemology

Our scheduling task ontology is based on a clear theoretical model of the scheduling task

(cf. Section 5.1), which distinguishes between different components such as constraints,

requirements, and preferences. Moreover it also provides an adequate level of detail to

specify all the components necessary to characterise a scheduling problem. As a result, it

acts as a clear reference point to frame the space of scheduling problems.

At the method level. G en eric-S ch ed u le and other PSMs in our library provide a

theoretical insight into the various knowledge-intensive activities needed for constructing a

schedule.

9.2.5 Development of job selection heuristics

Another contribution made by this thesis to the seheduling domain is provided by the three

job selection heuristics (cf. Section 6.3.5). As discussed in Chapter 2 (cf. Section 2.6),

several rules and heuristics have been developed both in OR and Al to select a correct job.

The selection of a correct job is an important activity in scheduling because it improves the

efficieney of the schedule construction process. These heuristies are as follows:

a) Job-selection-based-on-due-date: if any two jobs are competing with each other for the

usage of the same resource, then a job with the earliest due date is always given priority

for its execution. Panwalkar and Iskander (1977) list more than one hundred job selection

rules and one of the rules from their list selects a job based on a due date. The fundamental

difference between their rule and our heuristic is that, in our heuristic a job with the earliest

due date is selected only when this job is competing with some other jobs for the same

resource, while no such condition is imposed in their rule;

b) Job-selection-based-on-bottleneck-resources: the jobs that are using the bottleneck

resources are always given priority. Sueh jobs are assumed to provide better control in

maintaining the global stability of a schedule;

202

Chapter 9

c) Job-selection-based-on-number-of-activities: a job with the highest number of activities

is given priority.

These heuristics are particularly important as they reduce unnecessary backtracking

during schedule construction by selecting a correct job.

Having described the main contributions of our research, in the following section we will

discuss future research directions.

9.3 Future research directions

9.3.1 Extending the current technology to develop a planning library
Our existing technology can be extended to address the planning domain. Like scheduling,

planning can be seen as a synthesis task, which involves formulating a sequence of actions

to achieve a desired goal. Although, at a theoretical-level the planning and scheduling tasks

can be distinguished on the basis of their goal criteria, in real-life this distinction often gets

blurred. The planning task determines how the actions can be sequenced to achieve the

desired goal, whereas the scheduling task allocates these actions on the available resources

within a specific time range. Over the years, various planning paradigms have emerged in

Al, such as Classical Planning (Pikes and Nilson, 1971), Decision Theoretic Planning

(Blythe, 1999), and Hierarchical Task Network (HTN) (Erol et a l, 1994). However, as

pointed out by Smith et a l (2000) all the planning systems which have been developed for

the practical applications subscribe to the HTN planning paradigm (Nau et a l, 1999).

Some attempts have been made in the past at developing a library of PSMs to solve the

planning task (Blythe and Gil, 1999; Valente et a l, 1998; Tu and Musen, 1996). These

libraries can be taken as a starting point for our research and our ultimate aim is to

amalgamate the different planning paradigms to construct a truly generic planning system.

9.3.2 Interactive scheduling component

Because our library uses different specialised knowledge modelling techniques, the

existing version of our system requires a certain level of expertise from its end users to

produce scheduling applications. For instance, a scheduling application needs to be

formalised by constructing its application ontology and a user needs to have enough

knowledge to formalise his/her application by using the appropriate knowledge modelling

language. As a result, these are high-end technological barriers for any non-technical users

who wish to use our library. In future, we aim to lower this technical barrier by developing

an interactive component to facilitate the use of our library.

203

Chapter 9

The following points deseribe the main features that will be included in our envisaged

interactive scheduling component:

1) Construction of the KA forms: The main purpose behind the development of the KA

forms is to accelerate the process of representing different types of applications. The

user should be able to represent his/her applications simply by populating the slots of

the existing classes by using the KA forms. Moreover, we also envisage a certain level

of flexibility that will enable end users to change other properties of the existing

definitions. Having represented an application, a user can simply select one of the

existing PSMs from our library to construct a solution schedule. At this stage we would

like to take advantage of some of the existing in-house technologies, such as IRS-II

. (Motta et a l, 2003), which offers these types of functionalities;

2) Schedule manipulation in a semi-automatic or manual mode: This would allow a

human scheduler to interact with the system to update the status of an existing schedule

in compliance with the dynamic changes that occur in the scheduling environment.

This mode is aimed to provide a seheduler with an overview of a schedule at any given

time by displaying the current allocation status of the resources in a clear and

systematic manner. Furthermore, a scheduler should also be able to enter new changes

in the existing schedule such as interrupting a job during its execution, starting a job

somewhere else on a time-line, or changing a sequence of job executions to improve

the performance of a schedule. The remaining part of a schedule should adapt

dynamically according to the changes introduced by a scheduler;

3) Schedule representation in familiar formats: Once a schedule is constructed then

this component is expected to supervise a scheduler by displaying the status of a

schedule and job processing in terms of a Bar Chart. According to the status and

urgency of the jobs they cover be displayed by using different colour schema. Based on

the status of the jobs a scheduler can then enter into the semiautomatic or manual mode

to update a schedule. Due to this type of continuous feedback from the system, a

scheduler is expected to gain more control over the entire scheduling process. Finally, a

solution schedule can be represented by using familiar formats, such as Gantt Charts.

9.3.3 Towards Nano-Planning

Nanotechnology proposes a fundamental breakthrough to both biological and non-

biological problems. The idea of atomic scale engineering originated from the cornerstone

204

Chapter 9

talk given by Richard Feynman on December 1959* at the annual meeting of the

American Physical Society. The notion of atomie engineering resides at the core of nano

scale engineering whereby the atoms themselves can be seen as pre-fabricated components

(Merkle, 1997). Today’s manufacturing process is rather crude at the atomic level, but

according to the envisaged vision of nanotechnology in the future it will become possible

to arrange these primary building-blocks precisely in accordance with the laws of physics.

The environment in which this process takes place is referred to as the eutectic

environment (Drexler, 1992). The cost effectiveness of this process is a crucial factor that

can be achieved by automating the molecular manufacturing process (Drexler, 1992). The

engineering process of the molecular size products can be achieved by nano-scale robots,

which are referred to as the assemblers (Merkle, 1996).

The planning and scheduling paradigms^ will be key methods to detennine the atomic

assembly sequences in the eutectic environment (Drexler, 1992; Kandikjan and Dukovski,

1995). The automated planning in particular can be envisaged to be crucial for the

development of the nano-scale components and has the following components - knowledge

representation and domain modelling, traditional planning, scheduling and constraint

satisfaction, machine learning and adaptive planning, nano-robotic fine motor control,

computer-aided economic analysis, and advanced graphical simulation. Along with the

planning techniques, the issue of time optimal schedules will be particularly important in

the molecular manufacturing process, because time will be one of the major determinants

for the cost-effectiveness of the molecular engineered components. Finally, different

techniques from the constraint satisfaction literature will be particularly important when

the manufacturing is carried out interactively by a large group of assemblers, given that it

will be essential to optimise the organisation of these large groups of assemblers, each of

which subject to energy and spatial constraints.

In sum it is likely that, the development of efficient and cost-effective assemblers will

bring a revolution in various industrial seetors, such as medicine, manufacturing, energy

efficient processes, space and aeronautical research. Our library provides an initial

component of the technology required to achieve this vision.

This talk can be found on the following URL: http://www.zwex.com/nanoteclVfevnman.html

 ̂(Czam and MacNish: http://citeseer.ni.nec.eom/104691.html)

203

http://www.zwex.com/nanoteclVfevnman.html
http://citeseer.ni.nec.eom/104691.html

Glossary

Reusability:

Our library is generic in the sense that it does not subscribe to any specific

domain of scheduling, while our task ontology is reusable because it

formalises the scheduling task without subscribing to any application

domain of scheduling or the way scheduling problem can be solved.

Ontology:

An ontology is an explicit specification of a conceptualisation. It provides

a shared and common understanding of a domain that can be

communicated across people and computation systems dealing with

applications within a specific domain.

Problem-solving methods (PSM):

A PSM describes the inference process underlying a KBS in an

implementation and domain-independent way.

Task/Generic Task:

The notion of a task specifies a goal for a problem solver, such as

producing a valid schedule for the satellite-antenna communication. The

notion of task is crucial to knowledge modeling because the knowledge-

based systems are characterised and evaluated on task-specific criteria.

The notion of a Generic Task specifies a knowledge level, application-

independent description of a goal, which has to be achieved by the

problem solver.

Knowledge modelling approach:

The notion of a knowledge modelling approach can be understood as

follows: 1) knowledge engineering is not a cognitive modelling, i.e.

reproducing expert reasoning, but it is about developing systems that

perform knowledge-based problem solving and its performance can be

evaluated in a task-specific way, 2) heterogeneous classes of applications

has similar features that can be reasoned about by constructing generic

models of problem solving, 3) the process of knowledge acquisition

should not be characterised as a process of mapping expert knowledge to

a computational representation, but it is an intelligent model-building

process in which the application specific knowledge is configured

according to available problem-solving technique, and 4) such intelligent

Glossaiy

models can be described at a level, which abstracts from implementation

considerations.

Knowledge acquisition approach:

The notion of knowledge acquisition can be realised by the following two

ways: knowledge acquisition as mining and knowledge acquisition as a

modelling. The ‘knowledge acquisition as mining’ can be characterised in

terms of the earlier expert systems, which refers to the fact that discrete

and distinct expertise knowledge can be elicited systematically from the

domain experts.

In this thesis we subscribe to the ‘knowledge acquisition as a modelling’

approach. The crucial features of this approach can be realised based on

knowledge modelling approach described earlier.

Control regime:

Modelling the problem-solving behaviour involves more than making

statements and describing entities in the world. Control regimes are

required to specify actions and describe the order in which these are

executed. OCML supports the specification of sequential, iterative, and

conditional control structures by means of a number of control term

constructors such as repeat, loop, do, if and cond, among others.

Slot:

Context:

The slots, say Sd of a class, say ci has a unique binding with ci, which

represent the attributes of ci. For instance, if there is a class called job,

which has attributes, such as it requires certain resources for its execution,

has a time range within which a job must be accomplished, etc. then these

attributes can be represented by the following slots - requires-
resource and h a s-time-range.

The notion of a context specifies the primary function of the problem

solving method within each problem-solving phase that has to be carried

out to achieve a solution. For instance, the Propose & Exchange method

(Poeck and Puppe, 1992) has two problem-solving phases - the propose

phase and the exchange phase, and the context in the propose phase is to

extend an incomplete schedule such that a complete solution schedule is

generated, whereas if any of the constraints are violated while

207

Glossary

constructing a complete sehedule then the context in the exchange phase

is to revise an inconsistent schedule to fix the constraint violations.

Focus:

The notion of a focus exemplifies those variables in the problem

formulation which are under scrutiny during each phase of the problem

solving method and these variables must be grounded in order to construct

a solution. For instance, the Propose & Exchange method (Poeck and

Puppe, 1992) has the following two problem-solving phases: the propose

phase and the exchange phase. Because the main function of the propose

phase is to construct a complete schedule, and therefore, in this phase the

focus is on one of the unassigned jobs, which must be assigned to

construct a complete solution schedule. And if any of the constraints are

violated while constructing a complete schedule then the exchange phase

is invoked to fix the constraint violations and the focus in this phase on

those constraint violations which must be fixed.

Knowledge-roles:

In compliance with the Generic Tasks approach (Chandrasekaran, 1986) a

top-level task (which in our case is the scheduling task) can be

decomposed into a small number of sub-tasks and sub-methods can be

proposed to achieve these tasks. These tasks specify the application

domain specific static and dynamic knowledge for their execution. These

knowledge pieces essentially represent the abstract names of data objects

that represent the role of these objects in the reasoning steps.

Strong and weak coupling:

In our library the problem-solving methods are developed to perform an

efficient problem-solving to solve the specific type of generic task, i.e.

scheduling. This close association between a generic task specification

and a method represents a strong coupling of the library. This coupling

can be further strengthened by using a choice of a problem-solving

paradigm (which is search in our library) as a mechanism for providing a

principled approach to developing a generic problem-solving model and a

method ontology for a given problem type.

In our library the domain-specific knowledge is multi-functional in nature

such that this knowledge charaeterizes the task independent aspects of a

domain. As a result, this domain-speeifie knowledge can be used in many

Glossary

ways. However, this domain-specific knowledge can be used in order to

improve the efficiency of problem-solving, and this association between

multi-functional domain knowledge and its utilization within problem

solving method represents a weak coupling.

Knowledge-intensive PSMs:

Knowledge-intensive problem-solving methods are the ones that make

heavy use of the application domain specific knowledge during problem

solving. For instance, in our library the operators that are used to assign

jobs to resources and time ranges are constructed and selected in

compliance with the applieation specific knowledge. Different job

selection heuristics used to select a correct job make effective use of the

domain specific knowledge while executing this problem-solving action.

Constraint and requirement:

Constraints represent those properties which a solution schedule must not

violate under any circumstances throughout a schedule construction.

Requirements represent those properties which a solution schedule should

satisfy in order to become a feasible solution.

Precondition:

The preconditions -are associated with a goal-specification task and they

are used to specify what must be true before executing a goal-

specification task.

Goal-expression:

The goal-expression is used to specify the goal associated with a goal-

specification-task. For instance, in our library the scheduling task is a

goal-specification task and a goal associated with this task is to generate a

valid schedule.

Job/activities:

The notion of a job represents an entity that has a list of activities and can

be assigned over available resources and time ranges for its execution.

Each job can have a list of activities that need to be performed in order to

accomplish a job. For instance, in the manufacturing environment, a

drilling job could have activities such as: drilling-machine set-up, loading

of a drilling job on a drilling-machine, actual drilling operation, unloading

of a drilling job from a drilling-machine, etc.

209

References

[Aben, 1993]

Aben, M. Formally Specifying Re-usable Knowledge Model Components.

Knowledge Acquisition, 5 (2), pp. 119-141. 1993.

[Allen and Lehrer, 1992]

Allen, J. and Lehrer, N. D ARP A/Rome Laboratory Planning and

Scheduling Initiative Knowledge Representation Specification Language

(KRSL). Reference Manual, Version 2.0.1, ISX Corporation. 1992.

[Agin, 1966]

[Allen, 1983]

Agin, N. Optimum seeking with branch and bound. Management Science,

13, pp. 176-185.1966.

Allen, J. Maintaining Knowledge about Temporal Intervals.

Communications of the ACM, 26 {\\) , pp. \9%2>.

[Angele e/ûf/., 1998]

Angele, J., Fensel, D., Landes, D., and Studer, R. Developing knowledge-

based system with MIKE. Automated software engineering, 5 (4), pp.

389-418. 1998.

[Arpirez-Vegae/a/., 1998]

Arpirez-Vega, J. C., Gomez-Perez, A., Lozano-Tello, A., and Pinto, H. S.

(ONTO)^ Agent: an ontology-based WWW broker to select ontologies. In

A. Gomez-Perez and V. R. Benjamins (Eds.) Proceedings of Workshop on

Applications of Ontologies and Problem-Solving Methods of the 13̂ ̂

European Conference on Artificial Intelligence (ECAP98), Brighton, UK.

1998.

[Bacchus et al., 2002]

Bacchus, F., Chen, X., Beek, P. V., and Walsh, T. Binary vs. non-binary

consimmis. Artificial Intelligence, 140 (1-2), pp. 1-37. 2002.

[Bagchi et a l, 1991]

Bagchi, S., Uckun, S., Miyabe, Y., and Kawamura, K. Exploring problem-

specific re-combination operators for job shop scheduling. In R. K. Belew

and L. B. Booker (Eds.) Proceedings of the International Conference

on Genetic Algorithms, San Mateo, Morgan Kaufmann, pp. 10-17. 1991.

[Baker, 1974]

References

Baker, K. R. Introduction to sequencing and scheduling. John Wiley and

Sons. 1974.

[Balder e/a/., 1993]

Balder, J., van Harmelen, F., and Aben, M. A. KADS/(ML)2 Model of a

Scheduling Task. In J. Treur and Th. Wetter (Eds.) Formal Specification

of Complex Reasoning system, Workshop series, Ellis Horwood, pp. 15-44.

19%k

[Baptiste and Le Pape, 1995]

Baptiste, P. and Le Pape, C. Disjunctive Constraints for Manufacturing

Scheduling: Principles and Extensions. In Proceedings of the 3̂ ̂

International Conference on Computer Integrated Manufacturing,

Singapore. 1995.

[Baptiste, Le Pape, and Nuitjen, 1995]

Baptiste, P., Le Pape, C., and Nuijten, W. Constraint-Based Optimization

and Approximation for Job-Shop Scheduling. In Proceedings of the AAAI-

SIGMAN Workshop on Intelligent Manufacturing Systems, IJCAI-95,

Canada. 1995.

[Barros e/a/., 1996]

Barros L. Nunes de, Valente, A., and Benjamins, V. R. Modelling

planning tasks. In Proceedings of the 3̂ ̂ International Conference on

Artificial Intelligence Planning Systems (AIPS’96), pp. 11-18. American

Association of Artificial Intelligence (AAAI). 1996.

[Bartak, 1999]

Bartak, R. On the boundary of Planning and Scheduling: A study. In

Proceedings of the 18̂ ̂ Workshop of the UK Planning and Scheduling

Special Interest Group (PLANSIG'99), pp. 28-39, Manchester, UK. 1999.

[Beck e/a/., 1998]

Beck, J. C., Davenport, A. J., Davis, E. D., and Fox, M. S. The ODO

Project: Toward a Unified Basis for Constraint-Directed Scheduling.

Journal of Scheduling, 1 (2), pp. 89-125. 1998.

[Beck and Fox, 1998]

Beck, J. C. and Fox, M. S. A Generic Framework for Constraint-Directed

Search and Scheduling. ^7 19(4), pp. 101-130. 1998.

[Benders, 1962]

27/

References

Benders, J. F. Partitioning procedures for solving mixed-variable

mathematical programming problems. Numerische Mathematik, 4, pp.

238-252. 1962.

[Benjamins, 1993]

Benjamins, V. R. Problem Solving Methods for Diagnosis. PhD Thesis,

University of Amsterdam, Amsterdam, The Netherlands. 1993.

[Benjamins, 1995]

Benjamins, V. R. Problem solving methods for diagnosis and their role in

knowledge acquisition. International Journal of Expert Systems: Research

& Applications, 2 (8), pp. 93-120, 1995.

[Benjamins and Aben, 1997]

Benjamins, V. R. and Aben, M. Structuie-preserving KBS Development

Through Reusable Libraries: A Case-study in Diagnosis. International

Journal of Human-Computer Studies, 47 (2), pp. 259-288. 1997.

[Bemaras e/a/., 1996]

Bemaras, A., Laresgooiti, L, Corers, J. Building and Reusing Ontologies

for Electrical Network Applications. In W. Wahlster (Ed.) Proceedings of

the 72' ̂ European Conference on Artificial Intelligence (ECAI'96),

Budapest, Hungary, pp. 298-302, John Wiley. 1996.

[Blazquez e/a/., 1998]

Blazquez, M., Femandez-Lopez, M., Garcia-Pinar, J. M., and Gomez-

Perez, A. Building Ontologies at the Knowledge Level using the Ontology

Design Environment. In Proceedings of the I Workshop on Knowledge

Acquisition, Modeling and Management, Voyager Inn, Banff, Alberta,

Canada, April. 1998.

[Blythe, 1999]

Blythe, J. Decision-Theoretic Planning. AI Magazine, 20 (2), pp. 37-54,.

1999.

[Blythe and Gil, 1999]

Blythe, J. and Gil, Y. Problem-Solving Method for Plan Evaluation and

Critiquing. In Proceedings of the Banff Knowledge Acquisition for

Knowledge-Based Systems Workshop (KAW’99), Voyager Inn, Banff,

Alberta, Canada, 16**̂ -21®‘, October. 1999.

[Borgo et a l, 1996]

272

References

Borgo, S., Guarino, N., and Masolo, C. Stratified ontologies: the case of

physical objects. In Proceedings of the workshop on Ontological

Engineering at the 12'̂ European Conference on Artificial Intelligence

(ECAr96), Budapest, pp. 5-15. 1996.

[Borst e/a/., 1995]

Borst, P., Akkermans, J., Pos, A., and Top, J. The PhysSys ontology for

physical systems. In B. Bredeweg (Ed.) Working Papers of the 9̂ ̂

International Workshop on Qualitative Reasoning (QR’95), pp. 11-21.

University of Amsterdam. 1995.

[Breuker and Wielinga, 1985]

Breuker, J. A. and Wielinga, B. J. KADS: Structured knowledge

acquisition for expert systems. In Proceedings o f the International

Workshop on Expert Systems and their Applications, Avignon, France.

1985.

[Breuker and van de Velde, 1994]

Breuker, J. A. and van de Velde, W. CommonKADS Library for

Expertise Modelling: Reusable problem solving components. Netharlands,

lOS Press. 1994.

[Brucker e/a/., 1999]

Brucker, P., Drexl, A., Mohring, R., Neumann, K., and Pesch, E.

Resource-constrained project scheduling: notation, classification, models

and methods. European Journal of Operations Research, 112 (1), pp. 3-

41.1999.

[Brusoni É?/a/., 1996]

Brusoni, V., Console, L., Lamma, E., Mello, P., Milano, M., and

Terenziani, P. Resource-based vs. Task-based Approaches for Scheduling

Problems. In Proceedings of the 9̂ ̂ International Symposium on

Methodologies for Intelligent Systems (ISMIS’96), Zakopane, Poland,

June 9-13, pp. 325-334. 1996.

[Burke and Prossor, 1994]

Burke, P. and Prosser, P. A Distributed Asynchronous Scheduler. In M.

Zweben and M. S. Fox (Eds.) Intelligent Scheduling, Chapter 11, pp. 309-

339. Morgan Kauffman, San Francisco, California. 1994.

[Burke and Smith, 2000]

2 /j

References

Burke, E. K. and Smith, A. J. Hybrid evolutionary techniques for the

maintenance scheduling problem. IEEE Power Engineering Society

Transactions, 15 (1), pp. 122-128. 2000.

[Bylander and Chandrasekaran, 1988]

Bylander, T. and Chandrasekaran, B. Generic tasks in knowledge-based

reasoning: The right level of abstraction for knowledge acquisition. In B.

Gaines and J. Boose (Eds.) Knowledge Acquisition for Knowledge Based

Systems, 1, pp. 65-77. Academic Press, London, 1988.

[Caseau and Laburthe, 1995]

Caseau, Y. and Laburthe, F. Improving Branch and Bound for Job-Shop

Scheduling with Constraint Propogation. In Proceedings of the 8̂ ̂

Franco-Japanese Conference CCS'95, France. 1995.

[Cesta e/a/., 1999]

Cesta, A., Oddi, A., and Smith, S. F. An Iterative Sampling Procedure for

Resource Constrained Project Scheduling with Time Windows. In

Proceedings o f the 16̂ ̂ International Joint Conference on Artificial

7«/e///ge«ce (Z7C/4/'PP ,̂ pp. 1022-1029, Stockholm. 1999.

[Chandrasekaran, 1986]

Chandrasekaran, B. Generic tasks in knowledge-based reasoning: High-

level building blocks for expert system design. IEEE Expert, 1, pp. 23-30.

1986.

[Chandrasekaran, 1990]

Chandrasekaran, B. Design Problem Solving: A Task Analysis. AI

Magazme, 11(4), pp. 59-71. 1990.

[Chandrasekaran g/a/., 1992]

Chandrasekaran, B., Johnson T. R., and Smith J. W. Task-Structure

Analysis for Knowledge Modelling. Communications of the ACM, 35 (9),

pp. 124-137. 1992.

[Cheng and Smith, 1995]

Cheng, C. and Smith, S. Applying Constraint Satisfaction Techniques to

Job Shop Scheduling. Technical Report, CMU-RI-TR-95-03, Robotics

Institute, Carnegie Mellon University. 1995.

[Clancy, 1986]

Clancey, W. J. Heuristic Classification. Artificial Intelligence, 27 (3), pp.

289-350. 1986.

2/4

References

[Clancey, 1992]

Clancey, W. J. Model construction operators. Artificial Intelligence, 53

(1), pp. 1-135. 1992.

[Coelho and Lapalme, 1996]

Coelho, E. and Lapalme, G. Describing Reusable Problem-Solving

Methods with a Method Ontology. In B. R. Gaines and M. Musen (Eds.)

Proceedings of the I(f^ Knowledge Acquisition for Knowledge-Based

Systems Workshop, Banff, Alberta, Canada, pp. 3-1-3-20. 1996.

[Collinot et ah, 1988]

Collinot A., Le Pape C., and Pinoteau, G. SONIA: a knowledge-based

scheduling system. Artificial Intelligence in Engineering, 3 (2), pp. 86-94.

1988.

[Conway et a l, 1967]

Conway, R. W., Maxwell, W. L., and Miller, L. W. Theory o f Scheduling.

Addison Wesley, Reading, MA. 1967. .

[Corkill, 1991]

Corkill, D. Blackboard systems. AI Expert, 6 (9), pp. 40-47. 1991.

[Dantzig and Wolfe, 1960]

Dantzig, G. B. and Wolfe, P. Decomposition principle for linear

programs. 8 (1), pp. 101-111. 1960.

[Dantzig, 1991]

Dantzig, G. B. Linear Programming. In J. Lenstra and R. Kan (Eds.)

History of Mathematical Programming: A collection of Reminiscences.

CWI, Amsterdam. 1991.

[Davis, 1985]

Davis, L. Job shop scheduling with genetic algorithm. In Proceedings of

the International conference on Genetic Algorithms and Their

Applications, Carnegie Mellon University, pp. 136-140. 1985.

[De Kleer, 1986]

De Cleer, J. An assumption-based truth maintenance system. Artificial

Intelligence, 28 (2), pp. 127-162. 1986.

[DeWerra, 1985]

Werra, D. de. Introduction to time tabling. European Journal of

Operations Research, 19 (2), pp. 151-162. 1985.

[Decthter et a l, 1990]

275

References

Dechter, R., Dechter, A., and Pearl, J. Optimization in constraint network.

R. Oliver and J. Smith (Eds.) Influence Diagrams, Belief Nets, and

Decision Analysis, Chicester, UK, Wiley, pp. 411-425. 1990.

[Dechter and Pearl, 1985]

Dechter, R. and Pearl, J. The Anatomy of Easy Problems: A Constraint-

Satisfaction Formulation. In A. K. Joshi (Ed.) Proceedings of the 9̂ ̂

International Joint Conference on Artificial Intelligence (IJCAI’85), Los

Angeles, CA, Morgan Kaufmann. 1985.

[Dechter and Meiri, 1989]

Dechter, R. and Meiri, I. Experimental Evaluation of Preprocessing

Techniques in Constraint Satisfaction Problems. In Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAF89),

San Meteo, CA, Morgan-Kaufman, pp. 217-277. 1989.

[Dhar and Ranganathan, 1990]

Dhar, V. and Ranganathan, N. Integer Programming versus Expert

Systems: An Experimental Comparison. Communications of the ACM, 33

(3), pp. 323-336. 1990.

[Domingue et al., 1993]

Domingue, J., Motta, E., and Watt, S. The emerging VITAL workbench.

In N. Aussenac, G. Boy, B. R. Gaines, M. Lins ter, J. -G. Ganascia ̂and Y.

Kodratoff (Eds.) Proceedings of the European Workshop on

Knowledge Acquisition for Knowledge-based systems, Sept. 6-10, pp.

320-339. 1993.

[Domingue, 1998]

Domingue, J. Tadzebao and WebOnto: Discussing, Browsing, and

Editing Ontologies on the Web. In B. R. Gaines and M. A. Musen (Eds.)

Proceedings of the if^ Knowledge Acquisition for Knowledge-Based

Systems Workshop, Banff, Canada, 18̂ -̂23̂ ^̂ April. 1998.

[Domdorf et a l, 2000]

Domdorf, U., Pesch, E., and Phan-Huy, T. Constraint propagation

techniques for the disjunctive scheduling problem. Artificial Intelligence,

122(1-2), pp. 189-240. 2000.

[Dom and Slany, 1994]

Dorn, J. and Slany, W. A Flow Shop Compatibility Constraints in a Steel

Manufacturing Plant. In M. Zweben and M. S. Fox (Eds.) Intelligent

2/6

References

Scheduling, Chapter 22, pp. 629-654, Morgan Kauffman, San Francisco,

California. 1994.

[Drexler, 1992]

Drexler, E. K. Nanosystems: Molecular Machinery, Manufacturing, and

Computation. John Wiley and Sons, Inc. Palo Alto, California. 1992.

[Dudag/a/., 1976]

Duda, R. O., Hart, P. E., and Nilsson, N. J. Subjective Bayesian Methods

for Rule Based Inference Systems. Technical Note 124, Stanford Research

Institute, Artificial Intelligence Center, Menlo Park, CA, January, 1976.

[Duda g/fl/., 1979]

Duda, R. O., Hart, P. E., Konolige, K., and Reboh, R. A computer-based

consultant for mineral exploration. Annual Report, Artificial Intelligence

Centre, SRI International, Menlo Park, California. 1979.

[Elleby g/a/., 1988]

Elleby, P., Fargher, H. E., and Addis, T. R. Reactive constraint-based

scheduling. lEE Colloquium on Artificial Intelligence in Planning of

Production Control. London, UK. 1988.

[Erol g/a/., 1994]

Erol, K., Hendler, J., and Nau, D. S. Semantics for Hierarchical Task-

Network Planning. Technical report CS-TR-3239, University of Maryland

at College Park, 1994.

[Fadel g/a/., 1994]

Fadel, F. G., Fox, M. S., and Gruninger, M. A Generic Enterprise

Resource Ontology. In Proceedings of the 3̂ ̂ IEEE Workshop on

Enabling Technologies: Infrastructure for Collaborative Enterprises,

Morgantown, West Virginia. 1994.

[Farquhar g/a/., 1997]

Farquhar, A., Fikes, R., and Rice, J. The Ontolingua server: a tool for

collaborative ontology construction. International Journal of Human-

Computer Studies, 46 (6), pp. 707-728. 1997.

[Fatikow and Mounassypov, 1997]

Fatikow, S. and Mounassypov, R. Assembly sequence planning for

manufacturing by microrobots. In Proceedings of the IEEE International

Symposium on Assembly and Task Planning (ISATP’97): Towards Flexile

2/7

References

and Agile Assembly and Manufacturing, pp. 269-274, New York, NY,

USA. 1997.

[Fensel and van Harmelen, 1994]

Fensel, D. and van Harmelen, F. A Comparison of Languages which

Operationalize and Formalize KADS Models of Expertise. The

Knowledge Engineering Review, 9 (2), pp. 105-146. 1994.

[Fensel and Benjamins, 1998]

Fensel, D. and Benjamins, V. R. Key Issues for Automated Problem-

Solving Method Reuse. In Proceedings of the 13̂ ̂European Conference

on Artificial Intelligence (ECAPÇS), Brighton, UK. John Wiley & Sons,

Ltd. 1998.

[Fensel and Straatman, 1998]

Fensel, D. and Straatman, R. The essence of problem-solving methods:

making assumptions to gain efficiency. International Journal o f Human-

Computer Studies, 4 ̂{2), pp. \M -2\5. \99S.

[Fensel and Motta, 2001]

Fensel, D. and Motta, E. Structured Development of Problem-Solving

Methods. IEEE Transaction on Knowledge and Data Engineering, 13 (6),

pp. 913-932.2001.

[Fernandez e/a/., 1997]

Fernandez, M., Gomez-Perez, A., and Juristo, N. METHONTOLOGY:

From Ontological Art Towards Ontological Engineering. In Proceedings

of the symposium on Ontological Engineering of AAAI. Stanford,

California. 1997.

[Foo and Takefuji, 1988]

Foo, Y. and Takefuzi, Y. Stocahstic neural networks for solving job-shop

scheduling: Architecture and simulations (Part 2). In Proceedings o f the

IEEE International Conference on Neural Networks, IEEE TAB. 1988.

[Fox, 1981a]

[Fox, 1983]

Fox, M. S. An Organisation View of Distributed Systems. IEEE

Transaction on Systems, Man, and Cybernetics, 11, pp. 70-80. 1981a.

Fox, M. S. Constraint-directed search: a case study of job-shop

scheduling. Technical Report, CMU-RI-TR-83-22, Computer Science

Department, Camegie-Mellon University, Pittsburgh, Pennsylvania. 1983.

2/^

References

[Fox et a l, 1983]

Fox, M. S., Allen, B. P., Smith, S., and Strohm, G. A. Future knowledge-

based systems for factory scheduling. In Proceedings of the 12̂ ̂Annual

Technical CAMI Conference, Dallas, Texas. 1983.

[Fox and Kempf, 1985]

Fox, B. R. and Kempf, K. G. Complexity, uncertainty, and opportunistic

scheduling. In Proceedings of the IEEE Conference Artificial Intelligence

Applications, Computer Society, 10662 Los Vaqueros Circle, Los

Alamitos, California, 90720, pp. 487-492. 1985

[Fox and Sadeh, 1990]

Fox, M. S. and Sadeh, N. Why Scheduling is Difficult? A CSP

Perspective. In Proceedings of the 9̂ ̂European Conference on Artificial

Intelligence (ECAI’90), Stockholm, Sweden, pp. 754-767. 1990.

[French, 1982]

French, S. Sequencing and Scheduling: An Introduction to the

Mathematics of the Job-shop. Ch\QhQsXQx\E\[\?>YioTWOQ)6.A9%2.

[Freund, 1979]

Freund, J. E. Modem Elementary Statistics. Prentice-Hall of India Private

Limited, New Delhi. 1979.

[Freuder, 1982]

Freuder, E. C. A Sufficient Condition for Backtrack-Free Search. Journal

ofACM, 29 (1), pp. 24-32. 1982.

[Freeman-Benson, Maloney, and Boming, 1990]

Freeman-Benson, B. N., Maloney, J., and Boming, A. An Incremental

Constraint Solver. Communications of the ACM, 33 (1), pp. 54-63. 1990.

[Fikes and Nilson, 1971]

Fikes, R. and Nilson, N. J. STRIPS: A New Approach to the Application

of Theorem Proving and Problem Solving. Artificial Intelligence, 2 (3-4),

pp. 189-208. 1971.

[Fikes and Zhou, 2002]

Fikes, R. and Zhou, Q. A Reusable Time Ontology. In Proceedings of the

AAAI-2002 Workshop on Ontologies and the Semantic Web, Edmonton,

Canada. 2002.

[Gaines and Shaw, 1993]

2/P

References

Gaines, B. R. and Shaw, M. L. G. Eliciting Knowledge and Transferring It

Effectively to a Knowledge-Based System. IEEE Transactions on

Knowledge and Data Engineering, 5 (1), pp. 4-14. 1993.

[Garey and Johnson, 1979]

Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to

the Theory ofNP-Completeness. Freeman, New York. 1979.

[Gaschnig, 1979]

Gaschnig, J. A problem similarity approach to devising heuristics: first

results. In Proceedings of the 6̂ ̂ International Joint Conference on

Artificial Intelligence (IJCAI’JÇ), Tokyo, pp. 301-307. 1979.

[Gaschnig, 1993]

Gaschnig, M. Dynamic backtracking. Journal of Artificial Intelligence

Research, 1, pp. 25-46. 1993.

[Genesereth and Nilsson, 1987]

Genesereth, M. R. and Nilsson, N. J. Logical Foundation of Artificial

/«/g//zge«cg. Los Altos, CA, Morgan Kaufmann. 1987.

[Gennari e/a/., 1994]

Gennari, J., Tu, S., Rothenfluh, T., and Musen, M. Mapping domains to

methods in support of reuse. In B. R. Gaines and M. A. Musen (Eds.)

Proceedings of the 8̂ ̂Banff Knowledge Acquisition for Knowledge-Based

6y.y/ew5 lfarA:y/2a/7, pp. 24:1-24:20, Banff, Canada. 1994.

[Glover, 1986]

Glover, F. Future paths for integer programming and links to artificial

intelligence. Computers and Operations Research, 13 (5), pp. 533-549.

1986.

[Glover, 1989]

Glover, F. Tabu Search - Part I. ORSA, Journal on Computing, 1, pp. 190-

206. 1989.

[Glover, 1990]

Glover, F. Tabu search - Part II. ORSA, Journal of Computing, 2, pp. 4-

32.1990.

[Goldberg and Lingle, 1985]

Goldberg, D. and Lingle, R. Alleles, loci, and the travelling salesman

problem. International Conference on Genetic Algorithms and Their

Applications, Carnegie Mellon University. 1985.

220

References

[Goldberg, 1989]

Goldberg, D. E. Genetic Algorithms in Search Optimization and Machine

Learning. Addison-Wesley. 1989.

[Gomez-Perez and Benjamins, 1999]

Gomez-Perez, A. and Benjamins, V. R. Overview of Knowledge Sharing

and Reuse: Ontologies and Problem Solving Methods. Workshop on

Ontologies and Problem-Solving Methods: Lessons Learned and Future

Trends, International Joint Conference on Artificial Intelligence

(IJCAF99), 2 de Agosto. Estocolmo. 1999.

[Grant, 1986]

[Gruber, 1993]

[Gruber, 1995]

Grant, T. J. Lessons for OR from AI: A Scheduling Case Study. Journal

of Operations Research Society, 37 (1), pp. 41-57. 1986.

Gruber, T. R. Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition, 5 (f), pp. \99-22t).\99?>.

Gruber, T. R. Towards principles for the design of ontologies used for

knowledge sharing. International Journal of Human-Computer Studies,

43 (5-6), pp. 907-928. 1995.

[Gruber and Oslen, 1994]

Gruber, T. R. and Olsen, G. R. An ontology for engineering mathematics.

In Doyle, J., Torasso, P., and Sandewall, E. (Eds.) Proceedings of the

International Conference on Principles o f Knowledge Representation and

Reasoning, pp. 258-269, San Mateo, CA. Morgan Kaufmann. 1994.

[Gruninger and Fox, 1994]

Gruninger, M. and Fox, M. S. The Role of Competency Question in

Enterprise Engineering. In Proceedings o f the IFIP WG 5.7 Workshop on

Benchmarking: Theory and Practice, Trondheim, Norway. 1994.

[Guarino, 1997]

Guarino, N. Understanding, building and using ontologies. International

Journal of Human-Computer Studies, 46 (2-3), pp. 293-310. 1997.

[Guarino and Giaretta, 1995]

Guarino, N. and Giaretta, P. Ontologies and knowledge bases: Towards a

terminological clarification. In N. Mars (Ed.) Towards Very Large

22/

References

Knowledge Bases: Knowledge Building and Knowledge Sharing, pp. 25-

32, lOS Press: Amsterdam, The Netherlands. 1995.

[Glides et a l, 1990]

Glides, E., Knflik,T., and Meisels, A. On resource allocation by an expert

system. Engineering Applications of Artificial Intelligence, 3 (2), pp. 101-

109. 1990.

[Guha and Lenat, 1990]

Guha, R. V. and Lenat, D. B. Cyc: A midterm report. AI Magazine, 11 (3),

pp. 32-59. 1990.

[Hadavi et a l, 1992]

Hadavi, K., Hsu, W-L., Chen, T., Lee, C-N. An Architecture for Real-

Time Distributed Scheduling. AI Magazine, 13 (3), pp. 46-56. 1992.

[Hama et a l, 1992a]

Hama, T., Hori, M., and Nakamura, Y. Modelling Job Assignment

Problems Based on Task Ontology. In Proceedings o f the 2”̂ Japanese

Knowledge Acquisition for Knowledge-Based Systems Workshop (JKAW’

92), pp. 199-213, Kobe and Hatoyama, Japan. 1992.

[Hama e/a/., 1992b]

Hama, T., Hori, M., and Nakamura, Y. Task-Specific Language

Constructs for Describing Constraints in Job Assignment Problems.

Research Reporl RT0084, IBM. 1992.

[Haralick and Elliot, 1980]

Haralick, R. M. and Elliott, G. L. Increasing Tree Search Efficiency for

Constraint Satisfaction Problems. Artificial Intelligence, 14 (3), pp. 263-

313.1980.

[Hillier and Libermann, 1974]

Hillier, F. S. and Libermann, G. Introduction to Operations Research.

Holden-Day, San Francisco, USA. 1974.

[Hopfield and Tank, 1985]

Hopfield, J. and Tank, D. Neural computation of decisions in optimisation

problems. Biological Cybernetics, 52, pp. 141-152. 1985.

[Hori et a l, 1994]

Hori, M., Nakamura, Y., and Hama, T. Configuring problem-solving

methods: a CAKE perspective. Knowledge Acquisition, 6 (4), pp. 461-

488. 1994.

222

References

[Hori et a i, 1995]

Hori, M., Nakamura, Y., Satoh, H., Maruyama, K., Hama, T., Honda, S.,

Takenaka, T., and Sekine, F. Knowledge-level analysis for eliciting

composable scheduling knowledge. Artificial Intelligence in Engineering,

9 (4), pp. 253-264. 1995.

[Hori and Yoshida, 1998]

Hori, M. and Yoshida, T. Domain-oriented library of scheduling methods:

design principles and real-life applications. International Journal of

Human-Computer Studies, 49 (4), pp. 601-626. 1998.

[Ikeda e/a/., 1998]

Ikeda, M., Seta, K., Kakusho, 0., and Mizoguchi, R. An Ontology for

building conceptual Problem Solving Model. In Proceedings of the 13̂ ̂

European Conference on Artificial Intelligence (ECAI’98), Brighton,

England. 1998.

[Jackson, 1956]

Jackson, J. R. An Extension of Johnson’s Result on Job Lot Scheduling.

Naval Research Logistics Quarterly, 3 (3), pp. 201-203. 1956.

[Jain and Meeran, 1998]

Jain, A. S. and Meeran, S. A state-of-the-art review of job-shop

scheduling techniques. Technical Report, Department of Applied Physics,

Electronic and Mechanical Engineering, University of Dundee, Dundee.

1998.

[Jeffcoat and Bulfm, 1993]

Jeffcoat, D. and Bulfin, R. Simulated annealing for resource-constrained

scheduling. European Journal of Operational Research, 70, pp. 43-51.

1983.

[Jennings & Woolridge, 1998]

Jennings, N. R. and Woolridge, M. Applications of intelligent agents.

Agent Technology: Foundations, Applications, and Markets. N. R.

Jennings, M. Woolridge (Eds.), 1998.

[Jo e/a/., 1997]

Jo, Geun-Sik, Jung, Jong-Jin, and Yang, Chang-Yoon. Expert Systems for

Scheduling in an Airline Gate Allocation. Expert Systems with

Applications, 13 (4), pp. 275-282. 1997.

[Johnson, 1954]

223

References

Johnson, S. M. Optimal two and three-stage production schedules with

set-up times included. Naval Research Logistics Quarterly, 1, pp. 61-68.

1954.

[Jones and Rabelo, 1998]

Jones, A. and Rabelo, J. C. Survey of Job Shop Scheduling Techniques.

Gaithersburg, MD, NISTIR, National Institute of Standards and

Technology. 1998.

[Kandikjan and Dukovski, 1995]

Kandikjan, T. and Dukovski, V. Automated planning and evaluation of

product assembly sequences. In Proceedings of the International

METADOR Conference, San Mateo, CA, USA, pp. 541-548. 1995.

[Kempf er a/., 1991]

Kempf, K., Le Pape, C., Smith, S. F., and Fox, B. R. Issues in the Design

of AI-Based Schedulers: A Workshop Report. AI Magazine, 11 (5), pp.

37-46. 1991.

[Kirkpatrick É?/a/., 1983]

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by

simulated annealing. Science, 220 (4598), pp. 671-680. 1983.

[Klee and Minty, 1972]

Klee, V. and Minty, G. J. How good is the simplex algorithm? O.

Shisha (Ed.) Inequalities, III, Academic Press, New York, NY, pp. 159-

175.1972.

[Krucky, 1994]

Krucky, J. Fuzzy family setup assignment and machine balancing.

Hewlett-Packard Journal, 45 (3), pp. 51-64. 1994.

[Kruger, 1992]

Kruger, C. Software reuse. Computing Surveys, 24 (2), pp. 131-183.

1992.

[Kumar, 1992]

Kumar, V. Algorithms for Constraint Satisfaction Problems: A Survey. AI

Magazine, 13 (1), pp. 32-44. 1992.

[Lawler and Wood, 1966]

Lawler, E. and Wood, D. Branch and bound methods: a survey.

Operations Research, 14, pp. 699-719. 1966.

[Lawler, 1983]

224

References

Lawler, E. L. (Ed,). Recent results in the theory of machine scheduling.

Mathematical Programming: the state-of-the-art. Springier-Verlag. 1983.

[Lee et al., 1995]

Lee, J. K., Lee, K. J., Hong, J. S., Kim, W., Kim, E. Y., Choi, S. Y., Kim,

H. D., Yang, O. R., and Choi, H. R. DAS: Intelligent Scheduling Systems

for Shipbuilding. AI Magazine, 16 (2), pp. 78-94. 1995.

[Lessila et al., 1996]

Lassila, O., Becker, M., and Smith, S. An exploratory prototype for aero-

medical evacuation planning. Technical Report, CMU-RI-TR-96-02,

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. 1996.

[Le Pape and Sauvé, 1985]

Le Pape, C. and Sauvé, B. SOJA: an expert system for workshop daily

planning. In Proceedings of the Avignon-85, Avignon, France, pp. 849-

867. 1985.

[Le Pape, 1994]

Le Pape, C. Implementation of Resource Constraints in ILOG

SCHEDULE: A. library for the development of Constraint-Based

Scheduling Systems. Intelligent Systems Engineering, 3 (2), pp. 55-66.

1994.

[Le Pape, 1995]

Le Pape, C. Three Mechanisms for Managing Resource Constraints in a

Library for Constraint-Based Scheduling. In Proceedings o f the

INRIA/IEEE Conference on Emerging Technologies and Factory

Paris, France. 1995.

[Lesser and Corkill, 1981]

Lesser, V. and Corkill, D. Functionally Accurate, Cooperative

Distributive Systems. IEEE Transaction on Man, Systems, and

Cybernetics, 11 (1), pp. 81-98. 1981.

[Liebowitz and Potter, 1995]

Liebowitz, J. and Potter, W. E. Scheduling Objectives, Requirements,

Resources, Constraints, and Processes: Implications for a Generic Expert

Scheduling System Architecture and Toolkit. Expert Systems with

Applications, 9 (3), pp. 423-432. 1995.

[Liu, 1988]

225

References

Liu, B. Scheduling via reinforcement. Artificial Intelligence in

Engineering, 3 (2), pp. 76-85. 1988.

[Lloyd, 1982]

Llyod, E. L. Critical path scheduling with resource and processor

constraints. Journal of ACM, 29 (3), pp. 781-811. 1982.

[Lo and Bavarian, 1991]

Lo, Z. and Bavarian, B. Scheduling with neural networks for flexible

manufacturing systems. In Proceedings of the IEEE International

Conference on Robotics and Automation, Sacramento, California. 1991.

[Macworth, 1977]

Macworth, A. K. Consistency in Networks of Relations. Artificial

Intelligence, 8, pp. 99-118. 1977.

[Marcus, 1988]

Marcus, S. Automating Knowledge Acquisition for Expert Systems.

Kluwer Academic Publishers. 1988.

[Marcus e/a/., 1988]

Marcus, S., Stout, J., and McDermott, J. VT: an expert elevator designer

that uses knowledge-based backtracking. AI Magazine, 9 (1), pp. 95-111.

1988.

[Marcus and McDermott, 1989]

Marcus, S. and McDermott, J. SALT: A Knowledge Acquisition

Language for Propose-and-Revise Systems. Artificial Intelligence, 39 (1),

pp. 1-37. 1989.

[Maxwell and Howell, 1995]

Maxwell, T. and Howell, E. Planning as a Precursor to Scheduling for

Space Station Payload Operations. In Proceedings of the American

Institute of Aeronautics and Astronautics (AIAA '95) Space Programs and

Technologies Conference, Huntsville, Alabama, USA. 1995.

[McDermott, 1988]

McDermott, J. Towards a taxonomy of problem solving methods. In S.

Marcus (Ed.) Automating Knowledge Acquisition for Expert Systems,

Kluwer Academic. 1988.

[McGuinness and Harmelen, 2004]

226

References

McGuinness, D. L. and Harmelen, F. van. OWL Web Ontology Language

Overview. Editors, W3C Recommendation, 10 February, 2004,

http://www.w3c.Org/TR/2004/REC-owl-guide-20040210/.

[McKay, Safayani, and Buzacott, 1988]

McKay, K. N., Safayani, F. R., and Buzacott, J. A. Job-Shop Scheduling

Theory: What is Relevant? Interfaces, 18 (4), pp. 84-90. 1988.

[McKenzie, 1976]

McKenzie, L. Turnpike theory. Econometrics, 44 (5), pp. 841-865. 1976.

[Meng and Sullivan, 1991]

Meng, C-C. and Sullivan, M. LOGOS: A Constraint-Directed Reasoning

Shell for Operations Management. IEEE Expert, 6 (1), pp. 20-28. 1991.

[Merkle, 1997]

Merkle, R. C. Convergent assembly. Nanotechnology, 8 (1), pp. 18-22.

1997.

[Merkle, 1996]

Merkle, R. C. Design considerations for an assembler. Nanotechnology^ 1,

pp. 210-215. 1996.

[Minton e/a/., 1992]

Minton, S., Johnston, M., Philips, A., and Laird, P. Minimizing Conflicts:

A Heuristic Repair Method for Constraint-Satisfaction and Scheduling

VvohX^ms. Artificial Intelligence, S'èilA), pp. \6\-2X)5. 1992.

[Mittal and Frayman, 1989]

Mittal, S. and Frayman. F. Towards a generic model of configuration

tasks. In Proceedings of the if^ International Joint Conference on

Artificial Intelligence (IJCAESÇ), pp. 1395-1401, San Mateo, CA,

Morgan Kaufman. 1989.

[Miyashita and Sycara, 1994]

Miyashita, K. and Sycara, K. Adaptive case-based control of schedule

revision. In M. Zweben and M. S. Fox (Eds.) Intelligent Scheduling,

Chapter 10, pp. 291-308, Morgan Kauffman, San Francisco, California.

1994.

[Mizoguchi et al., 1995]

Mizoguchi. R., Vanwelkenhuysen. J., and Ikeda, M. Task Ontology for

Reuse of Problem Solving Knowledge. Towards Very Large Knowledge

Bases, pp. 46-57. IQS Press. 1995.

227

http://www.w3c.Org/TR/2004/REC-owl-guide-20040210/

References

[Mott et a i, 1988]

Mott, D. H., Cunningham, J., Kelleher, G., Gadsden, J. A. Constraint-

Based Reasoning for Generating Naval Flying Programmes. Expert

systems, 3 (2), pp. 226-246. 1988.

[Motta and Zdrahal, 1996]

Motta, E. and Zdrahal, Z. Parametric Design Problem Solving. In B. R.

Gaines and M. Musen (Eds.) Proceedings of the lOf̂ Banff Knowledge

Acquisition for Knowledge-Based Systems Workshop, Banff, Canada.

1996.

[Motta and Zdrahal, 1998]

Motta, E. and Zdrahal, Z. A library of problem-solving components based

on the integration of the search paradigm with task and method

ontologies. International Journal of Human-Computer Studies, 49 (4), pp.

437-470. 1998.

[Motta, 1999]

Motta, E. Reusable Components for Knowledge Modelling - Principles

and Case Studies in Parametric Design Problem Solving. lOS Press,

Amsterdam, The Netherlands. 1999.

[Motta, 2001]

Motta, E. The knowledge modeling paradigm in knowledge engineering.

In S.K. Chang (Ed.) Handbook of Software Engineering and Knowledge

Engineering, World Scientific Pub. Co. ISBN: 981-02-4973-X. 2001.

[Motta e/a/., 2003]

Motta, E., Domingue, J., Cabral, L., and Gaspari, M. IRS-II: A

Framework and Infrastructure for Semantic Web Services. In Proceedings

of the 2" ̂International Semantic Web Conference (ISWC'03), 20̂ -̂23̂ ̂

October, Sundial Resort, Sanibel Island, Florida. USA. 2003.

[Muscettola et a l, 1992]

Muscettola, N., Smith, S., Cesta, A., and D’Aloisi, D. Coordinating Space

Telescope Operations in an Integrated Planning and Scheduling

Framework. IEEE Control Systems, 12 (1), pp. 28-37. 1992.

[Musen, 1992]

Musen, M. Overcoming the limitations of role-limiting methods.

Knowledge Acquisition, 4 (2), pp. 165-170. 1992.

[Musen et a l, 1993]

22,ÿ

References

Musen, M., Tu, S. W., Eriksson, H., Gennari, J. H., and Puerta, A. R.

PROTÉGÉ-!!: An Environment for Reusabte Problem-Solving Methods

and Domain Ontologies. In Proceedings of the If^ International Joint

Conference on Artificial Intelligence (IJCAI’ÇS), Chambery, Savoie,

France. 1993.

[Musen et a l, 1994]

Musen, M., Gennari, J., Eriksson, H., Tu, S., and Puerta, A. PROTÉGÉ-!!:

Computer Support for Development of Intelligent Systems from Libraries

of Components. Technical Report, KSL-94-60, Stanford University,

Knowledge Systems Laboratory. 1994.

[Nau e/a/., 1999]

Nau, D. S., Cao, Y., Lotem, A., Munoz-Avila, H. SHOP: Simple

Hierarchical Ordered Planner. In Proceedings of the 6̂ ̂ International

Joint Conference on Artificial Intelligence, (IJCAI’99), Stockholm, Seden,

pp. 968-975. 1999.

[Navinchandra and Marks, 1987]

Navinchandra, D. and Marks, D. H. Layout Planning as Constraint

Labelling Optimization Problem. In Proceedings of the 4̂ ̂ International

Symposium on Robotics and AI in Construction, Haifa, Israel. 1987.

[Neches a/., 1991]

Neches, R., Fikes, R. E., Finin, T., Gruber, T. R., Senator, T:, and

Swartout, W. R. Enabling technology for knowledge sharing. AI

Magazine, 12 (3), pp. 36-56. 1991.

[Newell and Simon, 1976]

Newell, A. and Simon, H. A. Computer science as empirical enquiry:

Symbols and Search. Communications of the ACM, 19 (3), pp. 113-126.

1976.

[Newell, 1982]

Newell, A. The Knowledge Level. Artificial Intelligence, 18 (1), pp. 87-

127. 1982.

[Nickols, 2000]

Nickols, F. The knowledge in knowledge management. In J. W. Cortada

and J. A. Woods (Eds.) The knowledge management yearbook 2000-2001,

pp. 12-22. Butterworth-Heinemann. 2000.

[Nii, 1986]

22P

References

Nii, H. P. Blackboard systems: the blackboard model of problem solving

and the evolution of blackboard architecture. AI Magazine, 1 (2), pp. 38-

53.1986.

[Nonaka and Takeuchi, 1995]

Nonaka, I. and Takeuchi, H. The knowledge creating company. Oxford

University Press, Oxford, New York. 1995.

[Noronha and Sarma, 1991]

Noronha, S. J. and Sarma, V. V. S. Knowledge-Based Approaches for

Scheduling Problems: A Survey. IEEE Transaction on Knowledge and

Data Engineering, 3 (2), pp. 160-171. 1991.

[Nowicki and Smutnicki, 1996]

Nowicki, E. and Smutnicki. C. A fast taboo search algorithm for the job

shop problem. Management Science, 42 (6), pp. 797-813. 1996.

[Ow e/a/., 1988]

Ow, P. S., Smith, S. F., and Thiriez, A. Reactive plan revision. In

Proceedings of the National Conference on Artificial Intelligence, pp.

77-82, Menlo Park, California. AAAI Press. 1988.

[Panwalkar and Iskander, 1977]

Panwalkar, S. S. and Iskander, W. A Survey of Scheduling Rules.

Operations Research, 25 {\), pp. 45-6\.\911.

[Parunak e/a/., 1985]

Parunak, H., Irish, B., Kindrick, J., and Lozo, P. Fractal actors for

distributed manufacturing control. In Proceedings o f the 2"̂ IEEE

Conference on Artificial Intelligence Applications, Washington: IEEE

Computer Society, pp. 653-660. 1985.

[Petrie et a l, 1989]

Petrie, C., Causey, R., Steiner, D., and Dhar, V. A Planning Problem:

Révisable Academic Course Scheduling. Technical Report, AI-020-89,

MCC Corp., Austin, Texas. 1989.

[Pinedo, 2001]

Pinedo, M. Scheduling. Theory, Algorithms and Systems. 3"̂ ̂ Edition,

Prentice Hall. 2001.

[Poeck and Puppe, 1992]

Poeck, K. and Puppe, F. COKE: Efficient solving of complex assignment

problems with the propose-and-exchange method. In Proceedings of the

230

References

International Conference on Tools with Artificial Intelligence, pp. 136-

143, Arlington, Virginia, USA. 1992.

[Poeck and Gappa, 1993]

Poeck, K. and Gappa, U. Making Role-Limiting Shells More Flexible. In

Proceedings of the Workshop on Knowledge Acquisition for

Knowledge-Based Systems, pp. 103-122, Toulouse and Caylus. 1993.

[Poli, 2002]

Poli, R. Ontological Methodology. International Journal of Human-

Computer Studies, 56 (6), pp. 639-664. 2002.

[Preece e/a/., 1996]

Preece, A. D., Groosner, C., and Radhakrishnan, T. Validating dynamic

properties of rule-based systems. International Journal of Human-

Computer Studies, 44 (2), pp. 145-169. 1996.

[Prosser, 1989]

Prosser, P. A. Reactive Scheduling Agent. In Proceedings of the if^

International Joint Conference on Artificial Intelligence, (IJCAHSÇ),

Detroit, USA, pp. 1004-1009. 1989.

[Prosser and Buchanan, 1994]

Prosser, P. and Buchanan, I. Intelligent scheduling; past, present, and

future. Intelligent Systems Engineering, 3 (2), pp. 67-78. 1994.

[Puerta e/a/., 1992]

Puerta, A. R., Egar, J., Tu, S., and Musen, M. A. Multiple-method shell

for the automatic generation of knowledge acquisition tools. Knowledge

Acquisition, 4 {2), pp. 171-196. 1992.

[Rescher and Urquhart, 1971]

Rescher, N. and Urquhart, A. Temporal Logic. New York, Spinger-

Verlag. 1971.

[Rabelo, 1990]

Rabelo, L. Hybrid Artificial Neural Networks and Knowledge-Based

Expert Systems Approach to Flexible Manufacturing Systems Scheduling.

University of Missouri-Rolla. 1990.

[Ravidran, Philips, and Solberg, 1987]

Ravidran, A., Philips, D. T., and Solberg, J. J. Operations Research

Principles and Practice. John Wiley & Sons Inc. 1987.

[Render and Stair, 1982]

23/

References

Render, B. and Stair, R. M. Qualitative Analysis for Management. Allyn

& Bacon Inc., Massachusetts. 1982.

[Ricci, 1990]

Ricci, F. Equilibrium Theory and Constraint Networks. Technical Report,

9007-08, Instituto per la Ricerca Scientificae Technologica, Povo, Italy.

1990.

[Rumelhart et a l, 1986]

Rumelhart, D. and McClellanad, J. Parallel Distributed Processing:

Explorations in Microstructure of Cognition. MIT Press, Cambrdige,

Massachusetts. 1986.

[Runkel and Birmingham, 1993]

Runkel, J. T. and Birmingham, W. B. Knowledge acquisition in the small:

building knowledge acquisition tools from pieces. Knowledge Acquisition,

5 (2), pp. 221-243. 1993.

[Runkel e/a/., 1994]

Runkel, J. T., Birmingham, W. B., and Balkany, A. Separation of

Knowledge: A Key to Reusability. In B. R. Gaines and M. Musen (Eds.)

Proceedings of the 8̂ ̂Banff Knowledge Acquisition for Knowledge-Based

Systems Workshop, 2 (3), pp. 36:1-36:19, Banff, Canada. SRDG

Publications. 1994.

[Runkel e/a/., 1996]

Runkel, J. T., Birmingham, W. B., and Balkany, A. Solving VT by Reuse.

International Journal of Human-Computer Studies, 44 (3-4), pp. 403-433.

1996.

[Sadeh and Fox, 1996]

Sadeh, N. and Fox, M. S. Variable and value ordering heuristics for the

job shop scheduling constraint satisfaction problem. Artificial

Intelligence, 86 (1), pp. 1-41. 1996.

[Sadeh, 1991]

Sadeh, N. M. Lookahead Techniques for Micro-opportunistic Job-Shop

Scheduling. PhD Thesis, CMU-CS-9I-I02, Computer Science

Department, Camegie-Mellon University, Camegie-Mellon. 1991.

[Sadeh, 1994]

Sadeh, N. Micro-Opportunistic Scheduling: The Micro-Boss Factory

Scheduler. In M. Zweben and M. S. Fox (Eds.) Intelligent Scheduling,

232

References

Chapter 4, pp. 99-135, Morgan Kauffman, San Francisco, California.

1994.

[Sathi e/a/., 1985]

Sathi, A., Fox, M. S., and Greenberg, M. Representation of Activity

Knowledge for Project Management. IEEE Transaction on Pattern

Analysis and Machine Intelligence, 1 (5), pp. 531-552. 1985.

[Saucer, 1997]

Saucer, J. Knowledge-Based Systems Techniques and Applications in

Scheduling. In T. L. Leondes (Ed.) Knowledge-Based Systems Techniques

and Applications, 1 (4). Academic Press, San Diego. 1997.

[Saucer, 2001]

Saucer, J. Knowledge-Based Design of Scheduling Systems. An

International Journal of Intelligent Automation and Soft Computing, 7 (1),

pp. 55-62. 2001.

[Sclireibere/a/., 1994]

Schreiber, G., Wielinga, B., Hogg, R. de, Akkermans, H., and Van de

Velde, W. CommonKADS: A Comprehensive Methodology for KBS

Development. TEEvG Exper/, 9 (6), pp. 28-37. 1994.

[Sharma, 1998]

Sharma, S. D. Operations Research. Kedamath - Ramnath & Co.,

Meerut, India. 1996.

[Shapiro, 1979]

Shapiro, J. F. A survey of lagrangian techniques for discrete

optimization. Annals of Discrete Mathematics, 5, pp. 113-138. 1979.

[Slagle et al., 1984]

Slagle, J. R., Gaynor, M. W., and Halpem, E. H. An intelligent control

strategy for computer consultation. IEEE Transaction on Pattern Analysis

and Machine Intelligence, 6 (2), pp. 129-136. 1984.

[Slagle and Hamburger, 1985]

Slagle, J. R. and Hamburger, H. An expert system for a resource

allocation problem. Communications o f ACM, 28 (9), pp. 994-1004. 1985.

[Slany, 1994]

Slany, W. Fuzzy scheduling. PhD Thesis, Technical University of Vienna,

Vienna. 1994.

[Smith, 1980]

233

References

Smith, R. G. The Contract Net Protocol: High-Level Communication and

Control in a Distributed Problem Solver. IEEE Transactions on

Computers, 29 (12), pp. 1104-1113. 1980.

[Smith et a l, 1990]

Smith, S., Ow, P. S., Muscettola, N., Potvin, J. Y., and Matthys, D. OPIS:

An Opportunistic Factory Scheduling System. In Proceedings of the 3'̂ ̂

International Conference on Industrial and Engineering Applications of

Artificial Intelligence and Expert Systems, vol. 1, 15̂ -̂18̂ ̂ July, pp. 268-

274. 1990.

[Smith, 1994]

Smith, S. F. OPIS: A Methodology and Architecture for Reactive

Scheduling. In M. Zweben and M. S. Fox (Eds.) Intelligent Scheduling,

Chapter 2, pp. 29-66. Morgan Kauffman, San Francisco, California. 1994.

[Smith and Becker, 1997]

Smith, S. and Becker, M. A. An Ontology for Constructing Scheduling

Systems. In working Notes of AAAI Symposium on Ontological

Engineering, Stanford, CA. 1997.

[Smith and Goodwin, 1995]

Smith, D. and Goodwin, S. D. Constraint-Based Intelligent Scheduling.

Technical report, CS-95-02, University of Regina, Regina, Saskatchewan,

S4S0A2. 1995.

[Smith et a l, 2000]

Smith, D., Frank, J., and Jonsson, A. K. Bridging the gap between

planning and scheduling. The Knowledge Engineering Review, 15 (1), pp.

47-83. 2000.

[Starkweather et a l, 1993]

Strakweather, T., Whitley, D., and Cookson, B. A Genetic Algorithm for

Scheduling with Resource Consumption. In Proceedings of the Joint

German/US Conference on Operations Research in Production Planning

and Control, pp. 567-583. 1993.

[Stallman and Sussman, 1977]

Stallman, R. M. and Sussman, G. J. Forward Reasoning and Dependency

Directed Backtracking in a System for Computer-Aided Circuit Analysis.

Artificial Intelligence, 9 (2), pp. 135-196. 1977.

[Steels, 1990]

234

References

Steels, L. Components of Expertise. Al Magazine, 11 (2), pp. 30-49. 1990.

[Stout e/a/., 1988]

Stout, J., Caplain, G., Marcus, S., and McDermott, J. Towards automating

recognition of differing problem-solving demands. International Journal

of Man Machine Studies, 29 (5), pp. 599-611. 1988.

[Sundin, 1994]

Sundin, U. Assignment and Scheduling. In J. Breuker and W. van de

Velde (Eds.) CommonKADS Library for Expertise Modelling, pp. 231-

263. lOS Press, Amsterdam, The Netherlands. 1994.

[Swartout and Gil, 1995]

Swartout, B. and Gil, Y. EXPECT: Explicit Representations for Flexible

Acquisition. In B. R. Gaines and M. A. Musen (Eds.) Proceedings of the

Knowledge Acquisition for Knowledge-Based Systems Workshop,

Banff, Alberta, Canada. 1995.

[Swartout e/a/., 1997]

Swartout, B., Ramesh, P., Knight, K., and Russ, T. Toward Distributed

Use of Large-Scale Ontologies. In AAAI-97 Spring Symposium Series on

Ontological Engineering, Stanford, California. 1997.

[Tate, 1994]

Austin Tate. Plan Ontology - A Working Document. In Proceedings o f the

Workshop on Ontology Development and Use, Le Jolie, CA. 1994.

[Tsang, 1993]

Tsang, E. P. K. Foundations of constraint satisfaction. Academic Press.

1993.

[Talbot, 1982]

Talbot, F. B. Resource-constrained project scheduling with time-resource

tradeoff: the nonpreemptive case. Management Science, 28 (10), pp.

1197-1210.1982.

[ten Teije, 1997]

ten Teije, A. Automated Configuration of Problem Solving Methods in

Diagnosis. PhD Thesis, University of Amsterdam, Amsterdam, The

Netherlands. 1997.

[Terpstrae/a/., 1993]

Terpstra, P., van Heijst, G., Wielinga, B., and Shadbolt, N. Knowledge

acquisition support through generalised directive models. In J. M. David,

235

References

J. P. Krivine, and R. Simmons (Eds.) Second Generation Expert Systems.

Springer-Verlag, pp. 428-455. 1993.

[Tijerino and Mizoguchi, 1993]

Tijerino, Y. A. and Mizoguchi, R. MULTIS II: enabling end-users to

design problem-solving engines via two-level task ontologies. In N.

Aussenac-Gilles, G. A. Boy, B. R. Gaines, J. Ganascia, Y. Kodratoff, and

M. Linster (Eds.) European Workshop on Knowledge Acquisition for

Knowledge-Based Systems (EKAWV3), Lecture Notes in Computer

Science, Springer, pp. 340-359, Toulouse and Caylus, France. 1993.

[Tsujimura et a l, 1993]

Tsujjimura, Y., Park, S., Chang, S., and Gen, M. An effective method for

solving flow shop scheduling problems with fuzzy processing times.

Computers and Industrial Engineering, 25 (1-4), pp. 239-242. 1993.

[Tu e/a/., 1995]

Tu, S. W., Eriksson, H., Gennari, J., Shahar, Y., and Musen, M. A.

Ontology-Based Configuration of Problem-Solving Methods and

Generation of Knowledge-Acquisition Tools: Application of PROTÉGÉ-

II to Protocol-Based Decision Support. Artificial Intelligence in Medicine,

7 (3), pp. 257-289. 1995.

[Tu and Musen, 1996]

Tu, S. W. and Musen, M. A. Episodic Refinement of Episodic Skeletal

Plan Refinement. Technical Report, SMI-96-0647, Stanford, Stanford

University School of Medicines. 1996.

[Uckun et a l, 1993]

Uckun, S., Bagchi, S., Kawamura, K., and Miyabe, Y. Managing genetic

search in job shop scheduling. IEEE Expert, 8 (5), pp. 15-24. 1993.

[Uschold and King, 1995]

Uschold, M. and King, M. Towards a methodology for building

ontologies. In Proceedings of the workshop on Basic Ontological Issues in

Knowledge Sharing, International Joint Conference on Artificial

Intelligence (IJCAEOS), Motreal. 1995.

[Vaessens, 1995]

Vaessens, R. J. M. Generalized Job Shop Scheduling: Complexity and

Local Search. Ph.D. thesis, Eindhoven University of Technology. 1995.

[Vakharia and Chang, 1990]

236

References

Vakharia, A. and Chang, Y. A simulated annealing approach to

scheduling a manufacturing cell. Naval Research Logistics, 37, pp. 559-

577. 1990.

[Valente and Breuker, 1996]

Valente, A. and Breuker, J. A. Towards Principled Core Ontologies. In B.

R. Gaines and M. A. Musen (Eds.) Proceedings of the 10̂ ̂ Banff

Knowledge Acquisition for Knowledge-based Systems Workshop, Banff,

Alberta, Canada. 1996.

[Valente et al., 1998]

Valente, A., Benjamins, V. R., and Nunes De Barros, L. A library of

system-derived problem-solving methods for planning. International

Journal of Human-Computer Studies, 48 (4), pp. 417-447. 1998.

[Valente and Lockenhoff, 1993]

Valente, A. and Lockenhoff, C. Organization as guidance: A library of

assessment models. In Proceedings of the European Knowledge

Acquisition Workshop (EKAW'93), pp. 243-262. \993.

[van Heijst c/o/., 1992]

van Heijst, G., Terpstra, P., Wielinga, B. J., Shadbolt, N. Using

Generalised Directive Models in Knowledge Acquisition. In Proceedings

of the 6̂ ̂ European Knowledge Acquisition Workshop, Heidelberg and

Kaiserslautern, Germany, pp. 112-132. 1992.

[van Heijst, 1995]

van Heijst, G. The Role of Ontologies in Knowledge Engineering. PhD

thesis. University of Amsterdam. 1995.

[van Heij st et al., 1997]

van Heijst, G., Schreiber, A. Th., and Wielinga, B. J. Using explicit

ontologies in KBS development. International Journal of Human-

Computer Studies, 46 (1), pp. 183-292. 1997.

[Watson et a l, 2003]

Watson, Jean-Paul, Beck, J. C., Howe, A. E., and Whitley, L. D. Problem-

difficulty for tabu search in job-shop scheduling. Artificial Intelligence,

143 (2), pp. 189-217. 2003.

[Wielinga et a l, 1992]

Wielinga, B. J., van de Velde, W., and Schreiber, A. T. The Common

KADS framework for knowledge modelling. In Proceedings of the

237

References

Banff Knowledge Acquisition for Knowledge-Based Systems Workshop,

Banff, Canada, pp. 31:1-31:29. 1992.

[Wielinga et a l, 1995]

Wielinga, B., Akkermans, J. M., and Schreiber, A. Th. A Formal Analysis

of Parametric Design Problem Solving. In B. R. Gaines and M. A. Musen

(Eds.) Proceedings of the 9'̂ Banff Knowledge Acquisition Workshop for

Knowledge-Based System Workshop (KAW’94), Banff, Canada. 1995.

[Wielinga and Schreiber, 1997]

Wielinga, B. and Schreiber, G. Configuration-Design Problem Solving.

IEEE Expert, 12 (2), pp. 49-56. 1997.

[Wu, 1987]

Wu, ~D. An Expert Systems Approach for the Control and Scheduling of

Flexible Manufacturing Systems. Pennsylvania State University,

Pennsylvania. 1987.

[Zhang and Zhang, 1995]

Zhang, M. and Zhang, C. The consensus of uncertainties in distributed

expert systems. In Proceedings of the P* International Conference on

Multi-Agent Systems. MIT Press, Massachusetts. 1995.

[Zhou e? a/., 1990]

Zhou, D., Cherkassky, T., Baldwin, T., and Hong, D. Scaling neural

networks for job shop scheduling. In Proceedings of the International

Conference on Neural Network, San Diego, CA, pp. 889-894. 1990.

[Zhou and Fikes, 2000]

Zhou, Q. and Fikes, R. A Reusable Time Ontology. Technical Report,

KSL-00-01, Knowledge Systems Laboratory, Stanford University. 2000.

[Zdrahal and Motta, 1995]

Zdrahal, Z. and Motta, E. An In-depth Analysis of Propose & Revise

Problem Solving Method. In B. R. Gaines and M. A. Musen (Eds.)

Proceedings of the 9̂ ̂ Knowledge Acquisition for Knowledge-Based

Systems Workshop, Banff, Canada, pp. 38:1-38:20. 1995.

[Zweben et a l, 1992]

Zweben, M., Davis, E., Daun, B., Drascher, E., Deale, M., and Eskey, M.

Learning to improve constraint-based scheduling. Artificial Intelligence,

58(1-3), pp. 271-296. 1992.

[Zweben c/a/., 1993]

References

Zweben, M., Daun, B., Davis, E., and Deale, M. Scheduling and

Rescheduling with Iterative Repair. IEEE Transactions on System, Man,

and Cybernetics, 23 (6), pp. 1588-1595. 1993.

[Zweben and Fox, 1994]

Zweben, M. and Fox, M. S. (Eds.). Intelligent Scheduling. Morgan

Kaufmann, San Francisco, California, USA. 1994.

239

Appendix 1

A COMPLETE SPECIFICATION OF THE

SCHEDULING TASK ONTOLOGY

-*- Mode: LISP; Syntax: Common-lisp; Base: 10; Package: OCML; -*-
THE OPEN UNIVERSITY
Author: Dnyanesh Rajpathak

(in-ontology scheduling!)

(def-class SCHEDULING-TASK (goal-specification-task) ?task
"Scheduling task is defined as an assignment of time constrained jobs to time constrained
resources within a given time frame, which indicates the total time-horizon of a schedule.
An admissible schedule will have to satisfy all the constraints imposed on jobs or
resources while maintaining the requirements. The output to the scheduling task is a legal
schedule in accordance with the solution criteria such as, complete, admissible and
feasible."
((has-input-role :value has-jobs

:value has-activities
:value has-resources
:value has-hard-constraints
:value has-requirements
:value has-schedule-1ime-range
:value has-preferences
:value has-cost-function
:value has-cost-algebra)

(has-output-role :value has-schedule-model :max-cardinality 1)
(has-schedule-model :type schedule-model :max-cardinality 1)
(has-jobs : type list :min-cardinality 1)
(has-activities : type list :min-cardinality 1)
(has-resources :type list :min-cardinality 1)
(has-hard-constraints : type hard-constraint)
(has-requirements : type requirement)
(has-schedule-time-range : type time-range :max-cardinality 1)
(has-preferences :type preference : cardinality 1)
(has-cost-function : type cost-function :max-cardinality 1)
(has-cost-algebra : default-value '(+-<) : cardinality 1)
(has-precondition : documentation "Scheduling task must have a job and a

resource in order to generate schedule."
:value (kappa (?task)

(exists (?x ?y)
(and (member ?x (role-value

?task 'has-jobs))
(member ?y (role-value

?task
'has-resources))))))(has-goal-expression : type binary-kappa-expression

; ; ; The goal is to generate a schedule
:default-value (kappa (?task ?schedule-model)

(default-schedule-solution
?schedule-model ?task))))

; ; there has to be at least one job and one resource to generate a schedule.
: constraint (and (> (length (role-value ?task 'has-jobs)) 0)

(> (length (role-value ?task 'has-resources)) 0)))

Appendix 1
(def-class JOB () ?j
"A job is an entity that can be assigned to resources and time ranges and has a list of
activities."
((has-activities ; type list

: documentation "Each job can have list of activities
in order to accomplish the job.")

(requires-resource : type resource :min-cardinality 1
: documentation "It says that each job requires resources

on which it can be assigned.")
(requires-resource-type : type resource-type :min-cardinality 1)
(has-time-range : type job-time-range :max-cardinality 1

: documentation "It represents the time range of a job
within which job must finish.")

(has-due-date : type calendar-date :max-cardinality 1
: documentation "It represents the calendar date of

each job by which it has to dispatch.")
(has-duration : type duration :max-cardinality 1)
(has-load : type integer :default-value 1

: documentation "It represents the number of resources that are
needed by each job."))

: iff-def (exists ?task (and (scheduling-task ?task)
(member ?j (role-value ?task has-jobs)))))

(def-relation ASSIGNED-TO-RESOURCE (?j ?r ?sc)
: iff-def (and (job ?j)

(resource ?r)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: constraint (or (member ?r (setofall ?r2 (requires-resource ?j ?r2)))
(empty-set (setofall ?r (requires-resource ?j ?r)))))

(def-relation ASSIGNED-TO-RESOURCE-TYPE (?j ?rtype ?sc)
: iff-def (and (job ?j)

(resource-type ?rtype)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: constraint (or (and (member ?rtype
(setofall ?rtype2 (requires-resource-type

?j ?rt]/pe2)))
(holds ?rtype ?r))

(empty-set ?rtype (requires-resource-type ?j ?rtype))))

(def-relation ASSIGNED-TO-JOB-TIME-RANGE (?j ?jtr ?sc)
: iff-def (and (job ?j)

(job-time-range ?jtr)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: constraint (or (member '? jtr (the ?jtr2 (has-time-range ?j ?jtr2)))
(empty-set (the ?jtr (has-time-range ?j ?jtr)))))

(def-relation ASSIGNED-TO-ACTIVITY (?j ?a ?sc)
: iff-def (and (job ?j)

(activity ?a)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: constraint (or (member ?a (setofall ?a2 (has-activities ?j ?a2)))
(empty-set (setofall ?a (has-activities ?j ?a)))))

(def-relation ASSIGNED-JOB (?x ?sc)
"The job is said to be an assigned job if it is assigned to the resource and has a time
range."
: iff-def (and (exists ?r (and (resource ?r)

(assigned-to-resource ?x ?r ?sc)))
(exists ?a (and (activity ?a)

(assigned-to-activity ?x ?a ?sc)))
(exists ?jtr (and (job-time-range ?jtr)

(assigned-to-job-time-range ?x ?jtr ?sc)))))

(def-relation UNASSIGNED-JOB (?x ?sc)
"It is true if the job is not assigned-job."
: iff-def (not (assigned-job ?x ?sc)))

(def-function RESOURCE-ASSIGNED-TO-A-JOB (?x ?sc) -> ?r
"This function gives the resource assigned to the job in a schedule."
: constraint (and (schedule-model ?sc)

(resource ?r)
(job ?x))

:body (the ?r (assigned-to-resource ?x ?r ?sc)))

247

Appendix I
(def-function RESOURCE-TYPE-ASSIGNED-TO-A-JOB (?x ?sc) -> ?rtype
"This function gives the resource-type assigned to the job in a schedule.
: constraint (and (resource-type ?rtype)

(schedule-model ?sc)
(job ?x))

:body (the ?rtype (assigned-to-resource-type ?x ?rtype ?sc)))

(def-function TIME-RANGE-ASSIGNED-TO-A-JOB (?x ?sc) -> ?jtr
"This function gives a time-range assigned to the job in a schedule."
: constraint (and (schedule-model ?sc)

(job-time-range ?jtr)
(job ?x))

:body (the ?jtr (assigned-to-job-time-range ?x ?jtr ?sc)))

(def-function ACTIVITY-ASSIGNED-TO-A-JOB (?x ?sc) -> ?a
: constraint (and (schedule-model ?sc)

(activity ?a)
(job ?x))

zbody (the ?a (assigned-to-activity ?x ?a ?sc)))

(def-class JOB-TIME-RANGE () ?jtr.
"It represents the time range of each job in terms of its earliest and latest start and end
time."
((has-earliest-start-time : type time-point :min-cardinality 1)
(has-latest-start-time : type time-point :min-cardinality 1)
(has-earliest-end-time : type time-point :min-cardinality 1)
(has-latest-end-time : type time-point :min-cardinality 1))

: constraint (or (precedes (the ?est (has-earliest-start-time ?jtr ?est))
(the ?eet (has-earliest-end-time ?jtr ?eet)))

(precedes (the ?lst (has-latest-start-time ?jtr ?lst))
(the ?let (has-latest-end-time ?jtr ?let)))))

(def-relation JOB-START-TIME-EARLIER-THAN (?estl ?est2)
"This relation states that if the earliest start time of job-time-range-1 is earlier than
that of the other."
: constraint (and (time-point ?estl)

(time-point ?est2))
: iff-def (exists ?job (and (job ?job has-time-range ?jtrl)

(has-earliest-start-time ?jtrl ?estl)
(exists.?job2 (and (job ?job2 has-time-range ?jtr2)

(has-earliest-start-time
?jtr2 ?est2)
(precedes ?esl ?est2))))))

(def-relation JOB-TIME-RANGES-OVERLAP (?jtr-l ?jtr-2)
"This overlapping relation is exclusively defined for the job time ranges."
: constraint (and (job-time-range ?jtr-l)

(job-time-range ?jtr-2))
: iff-def (and (and (precedes (the ?est-l (has-earliest-start-time

?jtr-1 ?est-l))
(the ?est-2 (has-earliest-start-time

?jtr-2 ?est-2)))
(precedes (the ?lst-l (has-latest-start-time ?jtr-1 ?lst-l))

(the ?lst-2 (has-latest-start-time
?jtr-2 ?lst-2))))

(and (follows (the ?eet-l
(the ?est-2

(follows (the ?eet-l
(follows

(has-earliest-end-time ?jtr-l ?eet-l)1
(has-earliest-start-time ?jtr-2 ?est-2)))
(has-earliest-end-time ?jtr-l ?eet-l))

(the ?lst-2 (has-latest-start-time ?jtr-2 ?lst-2))) (the ?let-l (has-latest-end-time ?jtr-l ?let-D)
(the ?est-2 (has-earliest-start-time ?jtr-2 ?est-2)))

(follows (the ?let-l (has-latest-end-time ?jtr-l ?let-D)
(the ?lst-2 (has-latest-start-time ?jtr-2 ?lst-2]
(the ?eet-l (has-earliest-end-time ? jtr-1 ?eet-D) (the ?eet-2 (has-earliest-end-time ?jtr-2 ?eet-2)))
(the ?let-l (has-latest-end-time ?jtr-l ?let-D)
(the ?let-2 (has-latest-end-time ?jtr-2 ?let-2))))))

(and (precedes
(precedes

)))

(def-function START-TIME-OF-A-JOB (?j ?jtr) -> ?est
"This function retrieves the earliest start time of each job."
: constraint (and (job ?j has-time-range ?jtr)

(time-point ?est))
-.body (the ?est (has-earliest-start-time ? jtr ?est)))

(def-function LATEST-START-TIME-OF-A-JOB (?j ?jtr) -> ?let
"This function retrieves the latest start time of each job."
: constraint (and (job ?j has-time-range ?jtr)

(time-point ?let))
:body (the ?let (has-latest-end-time ?jtr ?let)))

242

Appendix I
(def-function EARLIEST-END-TIME-OF-A-JOB (?j ?jtr) -> ?eet
"This function retrives an earliest end time of each job."
: constraint (and (job ?j has-time-range ?jtr)

(time-point ?eet))
:body (the ?eet (has-earliest-end-time ?jtr ?eet)))

(def-function LATEST-END-TIME-OF-A-JOB (?j ?jtr) -> ?let
"This function retrieves the latest end time of each job."
: constraint (and (job ?j has-time-range ?jtr)

(time-point ?let))
:body (the ?let (has-latest-end-time ?jtr ?let)))

(def-function JOB-TIME-RANGE-DURATION (?j ?jtr) -> ?time-point
"This function calculates the duration of a job."
: constraint (and (job ?j)

(has-time-range ?j ?jtr)
(job-time-range ?jtr))

zbody (- (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?jtr has-earliest-start-time)))

(def-class JOB-TYPE (job) ?jt
((has-activity-type : type activity-type

: documentation "It specialises an activity
: iff-def (subclass-of ?jt job))

in its more specific types."))

(def-function DUE-DATE-OF-A-JOB (?j) -> ?due-date
"This function returns a due-date of a job."
: constraint (and (calendar-date ?due-date)

(job ?j))
zbody (the ?due-date (has-due-date ?j ?due-date)))

(def-relation JOB-PRECEDES (?jl ?j2)
"This relation expresses the temporal constraint among any two jobs says that, if the ,
latest-end-time of jl is less than or equal to the earliest-start-time of j2 then j1 „ ‘
precedes j 2."
: constraint (and (job ?jl)

(job ?j2))
: iff-def (and (has-time-range ?jl ?]tr-l)

(has-time-range ?j2 ?jtr-2)
(not (= (?jl ?j2)))
(<= (the-slot-value ?jtr-1 has-latest-end-time)

(the-slot-value ?jtr-2 has-earliest-start-time))))

(def-relation CRITICAL-JOB (?jl ?j2)
"The job-1 is a critical job as that of job-2, if the due-date of job-1 is earlier than
due-date job-2."
: iff-def (and (job ?jl has-due-date ?ddl)

(job ?j2 has-due-date ?dd2)
(not (= (?jl ?j2)))
(due-date-earlier-than-other ?ddl ?dd2)))

(def-relation HIGHER-PRIORITY-JOB (?jl ?j2)
"This relation states that if a j ob-1 ime-range-durât ion of one job is less than that of a
other job then the job is a higher priority job."
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
: iff-def (and (= (job-time-range-durâtion ?j1 ?jtrl) ?jdl)

(= (j ob-1 ime-range-durat ion ?j2.?jtr2) ?jd2)
(< ?jdl ?jd2)))

(def-relation HIGHER-PRIORITY-JOB-BASED-ON-ACTIVITIES (?jl ?j2)
"This relation states that a job that has a least number of activities is a high priority
j ob. "
: constraint (and (job ?jl has-activities ?al)

(job ?j2 has-activities ?a2)
; iff-def (and (number-of-activities-within-job ?jl) ?listl)

(number-of-activities-within-job ?j2) ?list2)
(length ?listl) ?ll)
(length ?list2) ?12)
?11 ?1 2)))

(def-relation EARLIER-START-TIME-OF-A-JOB (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
: iff-def (and (has-earliest-start-time ?jtrl ?estl)

(has-earliest-start-time ?jtr2 ?est2)
(<> ?jl ?j2)
(job-Start-time-earlier-than ?estl ?est2)))

243

Appendix 1
(def-relation ACTIVITY-PRECEDES (?al ?a2)
: constraint (and (activity ?al)

(activity ?a2))
: iff-def (and (has-time-range ?al ?jtr-al)

(has-time-range ?a2 ?jtr-a2)
(has-duration ?al ?dl)
(<= (time-point-sum (the-slot-value

?jtr-al has-earliest-start-time)
(magnitude-of-duration ?dl))

(the-slot-value ?jtr-a2 has-earliest-start-time)))
:axiom-def (defines-partial-order activity-precedes))

; Temporal relations among jobs

(def-relation FINISHES-BEFORE (?jl ?j2)
"This relation says that if earliest end time of of job-1 precedes the earliest start time
of job-2, then job-1 finishes-before job-2."
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
: iff-def (precedes (the-slot-value ?jtrl has-earliest-end-time)

(the-slot-value ?jtr2 has-latest-start-time)))

(def-relation JOBl-SCHEDULED-BEFORE-JOB2 (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2)
{= ?jdl (j ob-1 ime-range-durat ion ?jl ?jtrl))
(= ?jd2 (j ob-1 ime-range-durat ion ?j2 ?jtr2)))

: iff-def (and (< (+ ?jdl ?jd2)
(- (latest-end-time ?jtrl ?letl)

(earliest-start-time ?jtr2 ?estl)))
(<= (+ ?jdl ?jd2)

(- (latest-end-time ?jtr2 ?let2)
(earliest-start-time ?jtrl ?estl)))))

(def-relation J0B2-SCHEDULED-BEF0RE-JOBl (?j2 ?jl)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2)
{= ?jdl (job-time-range-durâtion ?j1 ?jtrl))
(= ?jd2 (j ob-1 ime-range-dura t ion ?j2 ?jtr2)))

: iff-def (and (< (+ ?jdl ?jd2)
(- (latest-end-time ?jr2 ?let2)

(earliest-start-time ?jtrl ?estl)))
(<= (+ ?jdl ?jd2)

(- (latest-end-time ?j trl ?letl)
(earliest-start-time ?jtr2 ?est2)))))

(def-relation NO-FEASIBLE-ORDERING-POSSIBLE (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2)
(= ?jdl (job-time-range-durâtion ?jl ?jtrl))
(= ?jd2 (job-time-range-durâtion ?j2 ?jtr2)))

: iff-def (and (> (+ ?jdl ?jd2)
(- (latest-end-time ?jtrl ?letl)

(earliest-start-time ?jtr2 ?est2)))
(> (+ ?jdl ?jd2)

(- (latest-end-time ?jtr2 ?let2)
(earliest-start-time ?jtrl ?estl)))))

(def-relation ANY-ORDERING-IS-ALLOWED (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2)
(= ?jdl (job-time-range-durâtion ?jl ?jtrl))
(= ?jd2 (j ob-1 ime-range-durât ion ?j2 ?jtr2)))

: iff-def (and (<= (+ ?jdl ?jd2)
(- (latest-end-time ?jtrl ?jl)

(earliest-start-time ?jtr2 ?j2)))
(<= (+ ?jdl ?jd2)

(- (latest-end-time ?jtr2 ?j2)
(earliest-start-time ?jtrl ?jl)))))

(def-function NUMBER-OF-ACTIVITIES-WITHIN-JOB (?j) -> ?list
"This function retrieves the list of activities within each job.
: constraint (and (job ?j)

(list ?list))
zbody (the ?list (has-activities ?job ?list)))

244

Appendix 1
(def-relation JOB-FINISHES-IN-TIME (?j ?sc)
: constraint (and (job ?j has-time-range ?jtr)

(has-due-date ?j ?dd)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: iff-def (or (< (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?dd day-of))

(< (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?dd month-of))

(< (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?dd year-of))))

(def-relation JOB-NOT-FINISHES-IN-TIME (?job ?sc)
: constraint (and (job ?job)

(schedule-model ?sc))
: iff-def (not (job-finishes-in-time ?job ?sc)))

(def-function LATENESS-OF-A-JOB-BY-DAY (?j) -> ?tp
: constraint (and (job ?j)

(has-time-range ? j ?.jtr)
(has-due-date ?j ?ddj)
(time-point ?tp))

zbody (the ?tp (- (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?ddj day-of))))

(def-function LATENESS-OF-A-JOB-BY-MONTH (?j) -? ?tp
zconstraint (and (job ?j)

(has-time-range ?j ?jtr)
(has-due-date ?j ?ddj)
(time-point ?tp))

zbody (the ?tp (- (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?ddj month-of))))

(def-function LATENESS-OF-A-JOB-BY-YEAR (?j) -> ?tp
zconstraint (and (job ?j)

(has-1ime-range ?j ?jtr)
(has-due-date ?j ?ddj)
(time-point ?tp))

zbody (the ?tp (- (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?ddj year-of))))

(def-function JOB-TARDINESS (?j) -> ?tp
zconstraint (and (job ?j)

(time-point ?tp))
zbody (the ?tp (lateness-of-a-job-by-day ?j)))

(def-function JOB-TARDINESS-FOR-A-MONTH (?j) -> ?tp
zconstraint (and (job ?j)

(time-point ?tp))
zbody (the ?tp (lateness-of-a-job-by-month ?j)))

(def-function JOB-TRADINESS-FOR-A-YEAR (?j) -> ?tp
zconstraint (and (job ?j)

(time-point ?tp))
zbody (the ?tp (lateness-of-a-job-by-year ?j)))

(def-class ACTIVITY () ?a
"It represents the list of activities within a job."
((has-duration ztype duration zmax-cardinality 1

zdocumentation "This represents a duration of
an individual activity.")

(requires-resource z type resource zcardinality 1)
(requires-resource-type z type resource-type zcardinality 1)
(has-job-belonging ztype job zcardinality 1

zdocumentation "This represents a job to which an
activity belongs.")

(has-time-range ztype job-time-range zmax-cardinality 1
zdocumentation "It represents the time range

of each activity.")
(has-load ztype integer zdefault-value 1))

ziff-def (exists ?j (and (job ?j)
(member ?a (has-activities ?j ?list))))

zconstraint (exists ?task (and (scheduling-task ?task)
(member ?a (role-value ?task has-activities)))))

243

Appendix I
(def-class RESOURCE () ?r
"The resource is an entity to which the jobs can be assigned for their execution."
((handles-job-type : type job-type : cardinality 1

: documentâtion "It represents the type of jobs
each resource is capable of handling.")

(handles-job : type job : cardinality 1
: documentation "It represents the kind of jobs each

resource is capable of handling.")
(handles-activity ztype activity zcardinality 1

zdocumentation "It represents the kind of activities
each resource is capable of handling.")

(has-availability ztype time-range zmin-cardinality 1
zdocumentâtion "It represents the availability period

of each resource within which resource
can execute the jobs.")

(has-capacity ztype number zdefault-value 1
zdocumentâtion "It represents the number of jobs each

resource can handle in parallel."))
ziff-def (exists ?task (and (scheduling-task ?task)

(member ?r (role-value ?task has-resources))))
zconstraint (or (exists ?jtype (and (job-type ?jtype)

(handles-job-type ?r ?jtype)))
(exists ?j (and (job ?j)

(handles-job ?r ?j)))
(exists ?a (and (activity ?a)

(handles-activity ?r ?a)))))

(def-class UNARY-RESOURCE (resource) ?ur
zconstraint (exists ?r (and (resource ?r)

(= (MAXIMUM-CAPACITY-OF-RESOURCE ?r) 1))))

(def-axiom RESOURCE-CAPACITY .
"This axiom says that if there is a resource ri which has capacity ni, then schedule cannot
have more than ni jobs whose time ranges are overlapping with each other."
(forall (?ri ?sc)

(=> (unary-resource ?ri has-capacity ?ni)
(not (exists ?j (and (element-of (?j ?ri ?a ?jtr) ?sc)

(= ?all (setofall ?j2
(and (element-of (?j2 ?ri ?a2 ?jtr2) ?sc)

(job-time-ranges-overlap
(?jtr ?jtr2))
(not (= (?j ?j2))))))

(> (length (cons ?j ?all2)) ?ni)))))))

(def-class RESOURCE-TYPE () ?rt
ziff-def (subclass-of ?rt resource))

(def-relation JOB-AND-RESOURCE-TIME-RANGE (?j ?r)
"This relation states that a time range of a job should be during or equal to the
availability period of a resource."
zconstraint (and (job ?j requires-resource ?r)

(has-time-range ?j ?jtr)
(resource ?r has-availability ?tr))

ziff-def (job-time-range-during-or-equal ?jtr ?tr))

(def-function RESOURCE-HANDLES-JOB (?r ?sc) -> ?j
"This function retrieves the jobs that a resource can handle in a schedule."
zconstraint (and (resource ?r)

(schedule-model ?sc)
(job ? j))

zbody (the ?j (handles-job ?r ?j ?sc)))

(def-function RESOURCE-TIME-AVAILABILITY (?r) -> ?tr
"This function retrieves the time-availability of a resource."
zconstraint (time-range ?tr)
zbody (the ?tr (resource ?r has-availability ?tr)))

(def-function MAXIMUM-CAPACITY-OF-RESOURCE (?r) -> ?number
"This function gives the maximum capacity of a resource."
zconstraint (and (resource ?r)

(number ?number))
zbody (the ?number (has-capacity ?r ?number)))

246

Appendix 1
(def-class CONSTRAINT () ?c
"This definition of constraint is common to the hard constraint as well."
((applicability-condition :default-value (kappa (?sc) (true)) : type unary-relation)
(has-expression : cardinality 1 ; type unary-relation

: documentation "This argument is a schedule")))

(def-class HARD-CONSTRAINT (constraint))

(def-class REQUIREMENT ()
"A requirement express the properties which has to be satisfied by a solution schedule.
((applicability-condition rdefault-value (kappa (?sc) (true))

: type unary-relation)
(has-expression : cardinality 1 : type unary-relation

: documentation "The argument must be a schedule")))

(def-relation REQUIREMENT-APPLICABLE (?r ?sc)
: constraint (requirement ?r)
: iff-def (holds (the ?x (applicability-condition ?r ?x)) ?sc))

(def-relation CONSTRAINT-APPLICABLE (?c ?sc)
: constraint (constraint ?c)
: iff-def (holds (the ?x (applicability-condition ?c ?x)) ?sc))

(def-relation HARD-CONSTRAINT-APPLICABLE (?hc ?sc)
: constraint (hard-constraint ?hc)
: iff-def (holds (the ?x (applicability-condition ?hc ?x)) ?sc))

;NOTE : Classes Time-Range, Duration are defined in the Simple-Time ontology.

(def-class SCHEDULE-MODEL (set.) ? schedule-task
"The schedule is defined in terms of a quadruple of the form (job resource activity job
time -range) which is modelled by the class job-assignment. The schedule is true for any ■
element of class job-assignment and false for any other quadruple."
: iff-def (and (= ?quadruples (setofall ?quadruple

(element-of ?quadruple ?schedule-task)))
(every ?quadruples job-assignment)))

(def-class JOB-ASSIGNMENT () ?quadruple
"The job assignment models a quadruple of the form (job resource activity job-time-range)
: iff-def (and (== ?quadruple (?j ?r ?a ?jtr))

(job ?j)
(member ?a (has-activities ?j ?list))
(resource ?r)
(job-time-range ?jtr)))

(def-class SCHEDULE-TYPE () ?c
: iff-def (subclass-of ?c schedule-model))

(def-relation DEFAULT-SCHEDULE-SOLUTION (?sc ?task)
: constraint (and (schedule-model ?sc)

(scheduling-task ?task))
: iff-def (and (schedule-is-correct ?sc)

(schedule-minimally-complete ?sc
(role-value ?task has-jobs))

(maximally-admissible-schedule ?sc
(role-value
?task has-hard-constraints)

(schedule-is-feasible ?sc
(role-value ?task has-requirements))))

(def-relation SCHEDULE-IS-CORRECT (?sc)
"It says that if no pair <j . a> appears in more than one quadruple in a schedule."
: iff-def (and (schedule-model ?sc)

(= (setofall (?j . ?a)
(element-of (?j ?r ?a ?jtr) ?sc)) ?quadruplel)

(not (exists ?quadruplez
(and (element-of ?quadruplez ?sc)
(member (?j . ?a) ?quadrupleZ))))))

(def-relation SCHEDULE-MINIMALLY-COMPLETE (?sc ?jobs)
"The schedule is complete when each job is assigned to a resource and has a time range."

: iff-def (not (exists ?x
(and (member ?x ?jobs)

(unassigned-job ?X ?sc)))))

247

Appendix 1
(def-relation SCHEDULE-MINIMALLY-INCOMPLETE (?sc ?jobs)
: iff-def (exists ?x (and (member ?x ?jobs)

(unassigned-job ?X ?sc))))

(def-relation SCHEDULE-IS-FEASIBLE (?sc ?requirements)
"The schedule is feasible if it satisfies all the requirements by the completion of a
schedule."
: constraint (and (list ?requirements)

(every ?requirements requirement)
(schedule-model ?sc))

: iff-def (not (exists ?x (and (member ?x ?requirements)
(schedule-violates-requirement ?sc ?x)))))

(def-relation SCHEDULE-VIOLATES-REQUIREMENT (?sc ?requirements)
; constraint (and (list ?requirements)

(every ?requirements requirement)
(schedule-model ?sc))

: iff-def (and (requirement-applicable ?requirements ?sc)
(not (holds (the ?x (has-expression ?requirements ?x)) ?sc))))

(def-relation SCHEDULE-SATISFIES-REQUIREMENT (?sc ?requirements)
: constraint (and (list ?requirements)

(every ?requirements requirement)
(schedule-model ?sc))

: iff-def (and (requirement-applicable ?requirements ?sc)
(holds (the ?x (has-expression ?requirements ?x)) ?sc)))

(def-relation IIINIMALLY-ADMISSIBLE-SCHEDULE (?sc ?hard-constraints)
"The schedule is minimally admissible if none of the hard constraints are violated."
: constraint (and (list ?hard-constraints)

(every ?hard-constraints hard-constraint).
(schedule-model ?sc))

: iff-def (not (exists ?x
(and (member ?x ?hard-constraints)

(schedule-violates-constraint ?sc ?x)))))

(def-relation MAXIMALLY-ADMISSIBLE-SCHEDULE (?sc ?hard-constraints) '
"The schedule is maximally admissible if it satisfies all the hard as well as soft
constraints by the completion of a schedule."

: constraint (and (list ?hard-constraints)
(every ?hard-constraints hard-constraint)
(schedule-model ?sc))

: iff-def (not (exists ?x
(and (member ?x ?hard-constraints)

(schedule-violâtes-constraint ?sc ?x)))))

(def-relation SCHEDULE-VIOLATES-CONSTRAINT (?sc Pconstraints) /i
: constraint (and (list Tconstraints)

(every ?constraints constraint))
(schedule-model ?sc))

: iff-def (and (constraint-applicable ?constraints ?sc)
(not (holds (the ?x (has-expression ?constraints ?x)) ?sc))))

(def-relation SCHEDULE-SATISFIES-CONSTRAINT (?sc ?constraints)
: constraint (and (list ?constraints)

(every ?constraints constraint)
(schedule-model ?sc))

: iff-def (and (constraint-applicable ?constraints ?sc)
(holds (the ?x (has-expression Tconstraints ?x)) ?sc)))

(def-relation SCHEDULE-SATISFIES-HARD-CONSTRAINT (?sc ?hard-constraints)
: constraint (and (list ?hard-constraints)

(every ?hard-constraints hard-constraint)
(schedule-model ?sc))

: iff-def (and (hard-constraint-applicable ?hard-constraints ?sc)
(holds (the ?x (has-expression ?hard-constraints ?x)) ?sc)))

(def-relation ADMISSIBLE-SCHEDULE (?js ?as)
"This relation says that the time range of each activity within a job has to be DURING the
time range of a job."
: constraint (and (list ?js)

(every ?js job)
(list ?as)
(every ?as activity)
(has-time-range ?js ?jtr)
(has-time-range ?as ?jtra))

: iff-def (job-activity-time-range-during ?jtra ?jtr))

Appendix 1
(def-relation OPTIMAL-SCHEDULE-SOLUTION (?scl ?task)
"The schedule-solution Ssol is an optimal if there is no other schedule solution which has
a lower cost than Ssol."
: constraint (scheduling-task ?task)
: iff-def (and (default-schedule-solution ?scl ?task)

(not (exists ?sc2
(and (default-schedule-solution ?sc2 ?task)

(has-cost-order-relation ?task ?rel)
(cheaper-schedule ?rel ?scl ?sc2))))))

(def-relation CHEAPER-SCHEDULE (?rel ?scl ?sc2)
: constraint (and (order-relation ?rel)

(schedule-model ?scl)
(schedule-model ?sc2))

: iff-def (holds ?rell ?scl ?sc2))

(def-relation SCHEDULE-EXTENDS (?scl ?sc2)
: iff-def (and (forall ?j

(=> (assigned-job ?j ?sc2)
(assigned-job ?j ?scl)))

(exists ?j2 (and (assigned-job ?j2 ?scl)
(unassigned-job ?j2 ?sc2)))))

(def-class PREFERENCE () ?p
"A preference gives the order over two schedules."
((has-expression : cardinality 1 ztype prefer-expression)))

(def-class PREFER-EXPRESSION (proof - expression) ?,exp
((proves-relation zvalue prefer))

zconstraint (and (== ?exp (?tail if . ?rest))
(== ?tail (prefer ?schedule-taskl ?schedule-task2))))

(def-relation PREFER (?schedule-taskl ?schedule-taskZ)
"This relation expresses the preferences between two schedules."
zconstraint (and (schedule-model ?schedule-taskl)

(schedule-model ?schedule-task2))
zaxiom-def (defines-partial-order prefer))

(def-axiom COST-SUBSUMES-PREFERENCES
"This axiom tells that the cost function subsumes each preference."
(forall (?schedule-taskl ? schedule-taskZ)

(= >(and (scheduling-task ?task has-preferences ?prs
has-cost-function ?cf)

(has-cost-order-relation ?task ?rel)
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp '(prefer ?schedule-taskl ?schedule-task2)))

(cheaper-schedule ?rel ?schedule-taskl ?schedule-task2))))

(def-axiom COST-PREFERENCE-CONSISTENCY
"This axiom states that the cost function should not contradict any partial order expressed
by preferences."
(forall (?schedule-taskl ?schedule-taskZ)

(=> (and (scheduling-task ?task has-preferences ?prs
has-cost-function ?cf)

(has-cost-order-relation ?task ?rel)
(cheaper-schedule ?rel ?schedule-taskl ?schedule-taskZ))

(not (exists ?pr
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp "(prefer

?schedule-task2 ?schedule-taskl)))))))

(def-class COST () ?x
"The cost is represented as a Real-Number or Vector."
zsufficient (or (real-number ?x)

(vector ?x)))

(def-class COST-FUNCTION (unary-function) ?cf
"This function takes a schedule as an input and returns its cost."
ziff-def (and (domain ?cf schedule-model)

(range ?cf cost)))

(def-relation HAS-COST-ORDER-RELATION (?scheduling-task ?rel)
ziff-def (= ?rel (third (has-cost-algebra ?scheduling-task ?alg))))

(def-relation HAS-COST-DIFFERENCE-FUNCTION (?scheduling-task ?rel)
z iff-def (= ?rel (second (has-cost-algebra ?scheduling-task ?alg))))

249

Appendix 1
{def-relation HAS-COST-SUM-FUNCTION (? scheduling-task ?rel)
: iff-def (= ?rel (first (has-cost-algebra ?scheduling-task ?alg))))

(def-function ADD-VECTOR-COSTS (?cl &rest ?rest-costs)
: constraint (and (= (length ?cl) ?n)

(every ?rest-costs (kappa (?c)
{= (length ?c) ?n))))

zbody (if (null ?cl)
nil
(cons (apply + (map first (cons (?cl ?rest-costs)))

(apply add-vector-costs
(map rest (cons ?cl ?rest-costs)))))))

(def-function SUBTRACT-VECTOR-COSTS (?cl &rest ?rest-costs)
zconstraint (and (= (length ?cl) ?n)

(every ?rest-costs (kappa (?c)
{= (length ?c) ?n))))

zbody (if (null ?cl)
nil
(cons (apply - (map first (cons (?cl ?rest-costs)))

(apply add-vector-costs
(map rest (cons ?cl ?rest-costs)))))))

(def-relation CHEAPER-VECTOR-COST (?cl ?c2)
z iff-def (and (not (null ?cl))

(not (null ?c2))
(or (< (first ?cl)

(first ?c2))
(cheaper-vector-cost (rest ?c2) (rest ?c2)))))

; Rather loosely constrained job precedence relations;

(def-relation STARTS-AFTER (?jl ?j2)
"This relation is opposite of finishes-before, it implies, if earliest start time of job-2
follows the latest end time of job-1, then job-2 starts-after job-2."
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
ziff-def (follows (the-slot-value ?jtr2 has-earliest-start-time)

(the-slot-value ?jtrl has-latest-end-time)))

(def-relation EQUALS (?jl ?j2)
"This relation says that both jobs job-1 and job-2 are equal to each other, if they start
simultaneously and finish simultaneously. "
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
ziff-def (and (time-points-equal (the-slot-value ?jtrl has-earliest-start-time) >

(the-slot-value ?jtr2 has-earliest-start-cime))
(time-points-equa1 (the-slot-value ?jtrl has-latest-end-time)

(the-slot-value ?jtr2 has-latest-end-time))))

(def-relation JOB-MEETS (?jl ?j2)
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
ziff-def (time-points-equal (the-slot-value ?jtrl has-latest-end-time)

(the-slot-value ?jtr2 has-earliest-start-time)))

(def-relation JOBS-OVERLAP (?jl ?j2)
zconstraint (and (job ?j1 has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
ziff-def (and (precedes (the-slot-value ?jtrl has-latest-start-time)

(the-slot-value ?jtr2 has-earliest-start-time))
(follows (the-slot-value ?jtrl has-earliest-end-time)

(the-slot-value ??jtr2 has-earliest-start-time))
(precedes (the-slot-value ?j trl has-earliest-end-time)

(the-slot-value ?jtr2 has-earliest-end-time))))

(def-relation JOB-IS-DURING (?jl ?j2)
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
z iff-def (and (follows (the-slot-value ?jl has-earliest-start-time)

(the-slot-value ?j2 has-latest-start-time))
(precedes (the-slot-value ?j1 has-latest-end-time)

(the-slot-value ?j2 has-earliest-end-time))))

(def-relation JOBS-START-SIMULTANEOUSLY (?jl ?j2)
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
z iff-def (time-points-equal (the-slot-value ?jtrl has-earliest-start-time)

(the-slot-value ?jtr2 has-earliest-start-time)))

230

Appendix J
{def-relation JOBS-FINISH-SIMULTANEOUSLY (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
: iff-def (time-points-equal (the-slot-value ?jtrl has-latest-end-time)

(the-slot-value ?jtr2 has-latest-end-time)))

251

Appendix 2

A COMPLETE SPECIFICATION OF A GENERIC

MODEL OF SCHEDULING PROBLEM-SOLVING

-*- Mode: LISP; Syntax: Common-lisp; Base: 10; Package: OCML; -*-
THE OPEN UNIVERSITY
Author: Dnyanesh Rajpathak

(in-package "OCML")

(in-ontology generic-schedule)

(def-class SCHDULE-SPACE () ?x
"The schedule space is composed of set of schedule states and it is associated with the
scheduling task."
((associated-with-task ztype scheduling-task zcardinality 1)
(has-states ztype set zcardinality 1 zdefault-value nil))

zconstraint (=> (member ?s (the ?set (has-states ?x ?set)))
(schedule-state ?s)))

(def-class SCHEDULE-STATE () ?c
"Each schedule state has a unique association with a schedule model."
((has-schedule-model zcardinality 1 ztype schedule-model)))

(def-relation STATE-TRANSITION (?sl ?schedule-op ?s2)
"This relation is essential to achieve the state transition within a schedule space."
ziff-def (and (schedule-state ?sl has-schedule-model ?schedule-taskl)

(schedule-state ?s2 has - schedule-model ?schedule-task2)
(schedule-operator ?schedule-op has-body ?fun)
(= ?schedule-task2 (call ?fun ?schedule-taskl))
(not (= ?schedule-taskl ?schedule-task2))))

(def-function PREDECESSOR (?s)
"This function retrieves the predecessor state of a current state."

zconstraint (schedule-state ?s)
zbody (the ?sl (state-transition ?sl ?op ?s)))

(def-function SUCCESSOR (?s)
"This function retrieves the successor state of a current state."

zconstraint (schedule-state ?s)
zbody (the ?sl (state-transition ?s ?op ?sl)))

(def-function COMPUTE-STATE-COST (?s ?task)
zconstraint (and (schedule-state ?s)

(scheduling-task ?task))
zbody (call (the ?f (has-cost-function ?task ?f))

(the ?schedule-task (has-schedule-model ?s ?schedule-task))))

(def-class SCHEDULE-OPERATOR ()
"A state transition in the problem-space specifies a link between
two schedule states, that is to say between two schedules. State transitions
are carried out by means of schedule operators."
((assumption zdefault-value (true)

ztype relation-express!on
zdocumentation
"This slot can be used to specify a statement that is expected
to hold for the application domain in which the operator is
applied. The difference between assumptions and preconditions
is that while the former are static and the latter are dynamic.
The truth value of a precondition might change during the schedule
generation. Assumptions may or are expected to remain (un-) satisfied
during the scheduling process")

(has-precondition z def ault-value (triie)
z type relation-expression)

(has-body z type schedule-operator-body)))

Appendix 2
(def-class SCHEDULE-OPERATOR-BODY (unary-function) ?fun
"A body of a schedule operator is a unary function that takes as input a schedule-model,
says schedule-taski, and produces as an output a schedule-model schedule-taskj"

: no-op (: constraint (and (domain ?fun schedule-model)
(range ?fun schedule-model)
(<=> (= (call ?fun ?schedule-taski) ?schedule-taskj)

(not (= ?schedule-taski ?schedule-taskj))))))

(def-class BASIC-OPERATOR (schedule-operator)
)

(def-class MULTIPLE-OPERATOR (schedule-operator)

(def-relation 3CHEDULE-0PERAT0R-0RDER (?x ?c)
: constraint (and (schedule-operator ?x)

(schedule-operator ?c)
(not (= ?x ?c))))

(tell (defines-partial-order schedule-operator-order))

(def-function COMPUTE-OPERATOR-COST (?op ?task)
: constraint (and (schedule-operator ?op)

(scheduling-task ?task))
zbody (if (and (has-cost-difference-function ?task ?fun)

(state-transition ?sl ?op ?s2))
(call ?fun ?s2 ?sl)))

(def-class SCHEDULE-EXTENSION-RESOURCE-OPERATOR (schedule-operator)
"This operator can be used to assign a job to its resources."
((applicable-to-jobs zdefault-value '(setofall ?x (job ?x))

ztype funetion-expression
zdocumentation "An expression which returns the set

of jobs whose resources can be assigned
by means of this operator")

(has-precondition zdefault-value (kappa (?schedule-task) (true))
ztype relation-expression
zdocumentation "This is an expression which can be used to check

if an opeiator is applicable in the current
state - i.e. schedule-model. This expression
should not depend on a particular job")

(has-body z type schedule-extension-resource-operator-body)))

(def-class SCHEDULE-EXTENSION-RESOURCE-OPERATOR-BODY (lambda-expression) ?x
"A basic schedule extension operator body is a unary function which takes an
unassigned job, say ?j, and returns a resource, ?r, which is assigned to ?j
in the successor schedule state"
zno-op (zconstraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (requires-resource ?j ?resource)
(resource ?z))))))

(def-class SCHEDULE-EXTENSION-RESOURCE-TYPE-OPERATOR (schedule-operator)
"This operator can be used to assign a job to its more specific resource types."
((applicable-to-jobs zdefault-value '(setofall ?x (job ?x))

z type function-expression
zdocumentation "An expression which returns the set

of jobs whose resource-types can be
assigned by means of this operator")

(has-precondition zdefault-value (kappa (?schedule-task) (true))
ztype relation-expression
zdocumentation "This is an expression which can be used to check

if an operator is applicable in the current
state - i.e. schedule. This expression
should not depend on a particular job")

(has-body ztype schedule-extension-resource-type-operator-body)))

(def-class SCHEDULE-EXTENSION-RESOURCE-TYPE-OPERATOR-BODY (lambda-expression) ,?x
"A basic schedule extension operator body is a unary function which takes an
unassigned job, say ?j and produces a result, ?z, which belongs to the
resource-type. ?z is taken as the new resource-type of ?j in the successor
schedule state"
zno-op (zconstraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (requires-resource-type ?j ?resource-type)
(resource-type ?z))))))

233

Appendix 2
(def-class SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR (schedule-operator)
"This operator can be used to assign a job to its time range."
{(applicable-to-jobs ;default-value '(setofall ?x (job ?x))

ztype function-expression
: documentation "An expression which returns the set

of jobs whose resources can be assigned
by means of this operator")

(has-precondition zdefault-value (kappa (?schedule-task) (true))
z type relation-expression
zdocumentation "This is an expression which can be used to check

if an operator is applicable in the current
state - i.e. schedule. This expression
should not depend on a particular job")

(has-body ztype schedule-extension-time-range-operator-body)))

(def-class SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR-BODY (lambda-expression) ?x
"A basic schedule extension operator body is a unary function which takes an
unassigned job, say ?j and produces a result, ?z, which belongs to the
resource. ?z is taken as the new resource of ?j in the successor
schedule state"
zno-op (zconstraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (has-time-range ?j ?jtr)
(job-time-range ?z))))))

(def-class SCHEDULE-EXTENSION-ACTIVITY-OPERATOR (schedule-operator)
((applicable-to-jobs zdefault-value '(setofall ?x (job ?x))

z type function-expression)
(has-precondition zdefault-value (kappa (?schedule-task) (true))

z type relation-expression)
(has-body ztype schedule-extension-activity-operator-body)))

(def-class SCHEDULE-EXTENSION-ACTIVITY-OPERATOR-BODY (lambda-expression) ?x
zno-op (zconstraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (has-activities ?j ?list)
(member ?z ?list))))))

(def-class MULTIPLE-SCHEDULE-EXTENSION-RESOURCE-OPERATOR
(SCHEDULE- EXTENSION-RESOURCE-OPERATOR multiple-operator)

((has-body ztype nultiple-schedule-extension-resource-operator-body)))

(def-class MULTIPLE- SCHEDULE-EXTENSION-RESOURCE-OPERATOR-BODY
(lambda-expression) ?x

"A multiple schedule extension operator body is a binary function which takes a job, say
?j, and a list of resources, say ?resources, and produces a result, ?z, which belongs to
the resource range of ?j but is not a member of the list resources ? z is taken as the new
resource of ?j in the successor schedule state."

zno-op (zconstraint (and (nth-domain ?x 1 job)
(nth-domain ?x 2 ?y)
(=> (= ?z (call ?x ?j ?resources))

(and (requires-resource ?j ?resource)
(forall ?r (-> (member ?r ?resources)

(member ?r ?resource)))
(member ?z ?resource)
(not (member ?z Presources)))))))

(def-class MULTIPLE- S CHEDULE- EXTENSION- RESOUP CE- TYPE-OPERATOR
(SCHEDULE-EXTENSION-RESOURCE-TYPE-OPERATOR multiple-operator)

((has-body zt̂ -pe mu 11 ipl a - schedule - extension-resource-type-operator-body)))

(def-class MULTIPLE-SCHEDULE-EXTENSION-RESOURCE-TYPE-OPERATOR-BODY
(lambda-expression) ?x

"A multiple schedule extension operator body is a binary function which takes a job, say
?j, and a list of resource-types, say Presource-types, and produces a result, Pz, which
belongs to the resource-type of Pj but is not a member of the list Presource-types.Pz is
taken as the new resource-type of Pj in the successor schedule state."

zno-op (zconstraint (and (nth-domain Px 1 job)
(nth-domain Px 2 Py)
(=> (= Pz (call Px Pj Presource-types))

(and (requires-resource-type Pj Presource-type)
(forall Prtype (=> (member

Pr Presource-types)
(member
Prtype
Presource-type)))

(member Pz Presource-t^q^e)
(not (member Pz Presource-types)))))))

234

Appendix 2
(def-class MULTIPLE-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR

(SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR multiple-operator)
((has-body ztype multiple-schedule-extension-time-range-operator-body)))

(def-class MULTIPLE-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR-BODY
(lambda-expression) ?x

zno-op (zconstraint (and (nth-domain ?x 1 job)
(nth-domain ?x 2 ?y)
(= > (= ?z (call ?x ?j ? j ob-1 ime-range s))

(and (has-time-range ?j ?job-time-range)
(forall ?jtr (=> (member

?jtr ?job-time-ranges)
(member
?jtr Pjob-time-range)))

(member ?z ?job-time-range)
(not (member ?z ?job-time-ranges)))))))

(def-class MULTIPLE-SCHEDULE-EXTENSION-ACTIVITY-OPERATOR
(schedule-extension-activity-operator multiple-operator)

((has-body ztype multiple-schedule-extension-activity-operator-body)))

(def-class MULTIPLE-SCHEDULE-EXTENSION-ACTIVITY-OPERATOR-BODY
(lambda-expression) ?x

zno-op (zconstraint (and (nth-domain ?x 1 job)(nth-domain ?x 2 ?y)
(=> (= ?z (call ?x ?j Pactivities))

(and (has-activities Pj Plist)
(forall Pa (=> (member Pa Pactivities)

(member Pa Plist))) (member Pz Plist)
(not (member Pz Pactivities)))))))

(def-relation PRECONDITION-HOLDS (Pop Psc)
zconstraint (and (schedule-operator Pop)

(schedule-model Psc))
ziff-def (and (has-precondition Pop Pexp)

(holds Pexp Psc)))

Job dependency network

(def-relation JOB-DEPENDS-ON ;(Pj1 Pj2)
"This relation states that an assignment of one job, jl, depend on other job, j2."
zconstraint (and (job Pjl)(job Pj2)))

(def-relation JOB-AFFECTS (Pjl-Pj2)
"This relation is an inverse of the relation job-depends-on."
zconstraint (and (job Pjl)(job Pj2))
z iff-def (j ob-depends-on Pj2 Pj1))

(def-relation JOB-ASSIGNABLE (Pj Psc)
"A job is assignable if it is an unassigned job in a schedule and all other jobs that
depend on it are already assigned."
ziff-def (and (job Pj)

(schedule-model Psc)
(= PI (setofall Px (job-depends-on Pj PX)))(every PI (kappa (Px)

(assigned-job Px Psc)))))

(def-function ALL-ASSIGNABLE-JOBS (Pjs Psc)
"This function retrieves all the unassigned jobs while constructing a schedule."

zbody (setofall Px (and (member Px Pjs)
(unassigned-job Px Psc)
(job-assignable Px Psc))))

(def-function RELEVANT-OPERATORS (Pj)
"This function retrieves all the relevant operators that are necessary to assign a job."

zconstraint (job Pj)
zbody (setofall Pop (and (schedule-operator Pop)

(member Pj
(the PI (applicable-to-jobs Pop PI))))))

(def-relation APPLICABLE-TO-JOBS (Px PI)
"A relation which associates an object such as a constraint or a schedule operator to a

set of jobs to which the object is 'applicable'"
zconstraint (and (set PI)

(every PI job)))

233

Appendix 2
(def-function RELEVANT-CONSTRAINTS (?j)
: constraint (job ?j)
zbody (setofall ?c (and (psm-constraint ?c)(member ?j

(the ?1 (applicable-to-jobs ?c 71))))))

(def-class PSM-CONSTRAINT (constraint)
((applicable-to-jobs ztype function-expression

zdocumentation "An expression which returns the set
of jobs to which this constraint is applicable")(has-expression zcardinality 1

ztype unary-relation)
(has-precondition zdefault-value '(kappa (?j ?schedule-task) (true))

ztype kappa-expression
zdocumentation "This is an expression which can be used to determine

whether a constraint makes sense for a given job
assignment")))

(def-class PSM-HARD-CONSTRAINT (PSM-CONSTRAINT))

(def-class PSM-REQUIREMENT (requirement) '
((applicable-to-jobs ztype function-expression

zdocumentation "An expression which returns the set of jobs
to which this requirement is applicable")(has-expression zcardinality 1

z type unary-relation)
(has-precondition zdefault-value '(kappa (?j ?schedule-task) (true))

ztype kappa-expression
zdocumentation "This is an expression which can be used to

determine whether a requirement makes sense for a given job assignment")))

(def-function COLLECT-HARD-CONSTRAINT-VIOLATIONS (?s ?task)"Takes a state and a scheduling task and returns
the set of task hard-constraints which are violated by the
schedule associated with the state"
zconstraint (and (schedule-state ?s)

(scheduling-task ?task))
zbody (setofall ?hc (and (has-schedule-model ?s ?schedule-task)

(member ?hc (the ?1 (has-hard-constraints
?task ?1)))

(schedule-violates-constraint
?schedule-task ?constraints)
(list ?constraints)
(every ?constraints constraint))))

(def-class PSM-SPECIFIC-JOB () ?j
"A job is an entity that can be assigned to the resource and has a list of activities:: "((has-activities ztype list

zdocumentation "Each job can have list of activities
in order to accomplish the job.")

(has-activity-type ztype activity-type
zdocumentation "It specialises an activity in

more specific types.")(requires-resource z type resource zmin-cardinality 1
zdocumentation "It says that each job require resources

on which it can be assigned.")
(requires-resource-type ztype resource-type zmin-cardinality 1)
(has-time-range ztype job-time-range zmax-cardinality 1zdocumentation "It represents the time range of a

job, within which job must finish.")
(has-due-date zt̂ -pe calendar-date z max-cardinal ity 1

zdocumentation "It represents the calendar date for
each job by which it has to dispatch.")(has-load ztype integer zdefault-value 1

zdocumentation "It represents the number of resources
requires by each job.")

(j ob-depends-on z type job)
(job-affects ztype job)
(precedes-job ztype job))
ziff-def (exists ?task (and (scheduling-task ?task)

(member ?j (role-value ?task has-jobs)))))

(def-relation POSSIBLE-RESOURCES-FOR-JOB (?j ?r)
zconstraint (job ?j))

(def-relation POSSIBLE-RESOURCE-TYPES-FOR-JOB (?j ?rtype)
zconstraint (job ?j))

(def-relation POSSIBLE-TIME-RANGES-FOR-JOB (?j ?jtr) zconstraint (job ?j))

236

Appendix 2
(def-relation POSSIBLE-ACTIVITIES-FOR-JOB (?j ?a)
: constraint (job ?j))

(def-relation job-precedence-relation (?j ?jl] : constraint (job ?j))

237

Appendix 2

;The Generic Model of Scheduling Problem Solving;

(def-class PROBLEM-SOLVING-METHOD-FOR-SCHEDULING (problem-solving-method) ;own-slots ((tackles-task-type scheduling-task)))

(def-class GENERIC-PSM-FOR-SCHEDULING
(problem-solving-method-for-scheduling decomposition-method)((has-input-role :value has-schedule-operators)

(has-output-role :value has-solution-state)
(has-solution-state : type schedule-state)
(has-schedule-operators : type schedule-operator)
(has-output-mapping :value '(lambda (?psm ?state)

(the ?sc (has-schedule-model ?state ?sc)))) (has-body rvalue '(lambda (?psm)
(in-environment
((?s . (achieve-generic-subtask

?psm gen-schedule-control
has-current-scheduling-task
(the ?task (tackles-task ?psm ?task)))))

(if (schedule-state ?s)?s)))))
rowTi-slots ((has-generic-subtasks '(gen-schedule-control))))

(def-class GEN-SCHEDULE-CONTROL (composite-task)
((has-input-role rvalue has-schedule-operators

rvalue has-current-scheduling-task)(has-output-role rvalue has-solution-state)
(has-solution-state rtype schedule-state)
(has-schedule-operators rtype schedule-operator)
(has-current-scheduling-task : type scheduling-task)
(has-body rvalue '(lambda (?psm)

(in-environment
((?schedule-space . (achieve-generic-subtask

?psm generate-schedule-space
has-current-scheduling-task (role-value
?psm
has-current-scheduling-task))))(REPEAT

(in-environment
((?state . (achieve-generic-subtask

?psm choose-schedule-state
has-schedule-space ?schedule-space))) (if (= ?state :nothing)

(return :nothing)
(if (achieved (the-current-method) ?state)

(return ?state)
(do

(achieve-generic-subtask
?psm schedule-from-state

has-schedule-state ?state
has-schedule-space ?schedule-space))))))))))

: own-slots ((has-generic-subtasks '(generate-schedule-space
choose-schedule-state
schedule-from-state))))

(def-class GENERATE-SCHEDULE-SPACE (composite-task) ?psm
((has-input-role rvalue has-current-scheduling-task)(has-output-role -.value has-schedule-space)
(has-control-role rvalue has-schedule-model)
(has-current-scheduling-task : type scheduling-task)
(has-schedule-space : type schedule-space)
(has-body rvalue (lambda (?psm)

(in-environment
((?name . (new-symbol 'schedule-space)))
(tell (schedule-space

?name has-states nil
associated-with-task (role-value
?psm has-current-scheduling-task)))

(achieve-generic-subtask
?psm
new-schedule-state
has-schedule-model nil
has-schedule-space ?name)
?name))))

rown-slots ((has-generic-subtasks '(new-schedule-state))))

23,̂

Appendix 2
(def-relation STATE-FULLY-EXPANDED (?state)
: iff-def (and (= ?record (the-state-search-control-record ?state))

(has-schedule-foci ?record nil)
(has-schedule-operators ?record nil)))

(def-function SCHEDULE-SPACE-STATE (?space)
: constraint (schedule-space ?space)
:body (the ?states (has-states ?space ?states)))

(def-class CHOOSE-SCHEDULE-STATE (goal-spec if icat ion-taslc) ?task
((has-input-role rvalue has-schedule-space)
(has-output-role rvalue has-schedule-state)
(has-goal-expression rvalue (kappa (?task)

(exists ?s (and (schedule-state ?s)
(has-schedule-state
?task ?s)))))(has-schedule-space r type schedule-space)

(has-schedule-state rtype schedule-state)))

(def-class CONSISTENT-MAXIMAL-CHEAPEST-STATE-SELECTION (primitive-method)((has-body rvalue (lambda (?psm)
(in-environment
((?cost-algebra . (role-value ?psm has-cost-algebra))
(?cost-rel . (third ?cost-algebra))
(Pspace . (role-value ?psm has-schedule-space))
(Pstates . (schedule-space-states Pspace)))(first
(filter-cheapest-states
(filter-maximal-states
(filter-feasible-consistent-states Pstates)) Pcost-rel))))))

rown-slots ((tackles-task-type choose-schedule-state)))

(def-class CONSISTENT-MAXIMAL-STATE-SELECTION (primitive-method)((has-body rvalue (lambda (Ppsm)
(in-environment;
((Pcost-algebra . (role-value Ppsm has-cost-algebra))
(Pcost-rel . (third Pcost-algebra))
(Pspace . (role-value Ppsm has-schedule-space))
(Pstates . (schedule-space-states Pspace)))(first
(filter-maximal-states
(filter-feasible-consistent-states Pstates)))))))

rown-slots ((tackles-task-type choose-schedule-state)).)

(def-class CONSISTENT-CHEAPEST-MAXIMAL-STATE-SELECTION (primitive-method)((has-body -.value (lambda (Ppsm)
(in-environment
((Pcost-algebra . (role-value Ppsm has-cost-algebra))
(Pcost-rel . (third Pcost-algebra))
(Pspace . (role-value Ppsm has-schedule-space)) (Pstates . (schedule-space-states Pspace)))
(first
(filter-maximal-states
(filter-cheapest-states
(filter-feasible-consistent-states Pstates)
Pcost-rel)))))))

rown-slots ((tackles-task-type choose-schedule-state)))

(def-function FILTER-CHEAPEST-STATES (Pstates Pcost-order-rel)
rbody (setofall Pstate (and (member Pstate Pstates)'

(state-cost Pstate Pcost)
(not (exists Pstate2

(and (member Pstate2 Pstates)
(state-cost .Pstate2 Pcost2)
(holds Pcost-order-rel Pcost2 Pcostj))))))

(def-function FILTER-MAXIMAL-STATES (Pstates)
rbody (setofall Pstate (and (member Pstate Pstates)

(has-schedule-model Pstate Psc)(= PI (length Psc))
(not (exists ?state2

(and (member Pstate2 Pstates)
(has-schedule-model
Pstate2 Psc2)
(- P12 (length Psc2))
(> P12 PI)))))))

23P

Appendix 2
(def-function FILTER-FEASIBLE-CONSISTENT-STATES (Pstates) rbody (setofall Pstate (and (member Pstate Pstates)

(not (deadend-state Pstate))
(not (constraint-violations Pstate))
(not (requirement-violâtions Pstate)))))

(def-class NEW-SCHEDULE-STATE (composite-task) Ppsm
((has-input-role rvalue has-schedule-model

rvalue has-schedule-space)
(has-output-role rvalue has-schedule-state)
(has-schedule-space rtype schedule-space)
(has-schedule-state rtype schedule-state)
(has-schedule-model rtype schedule-model)
(has-body rvalue (lambda (Ppsm)

(in-environment
((Psc . (the Psc2 (has-schedule-model Ppsm Psc2)))
(Pschedule-space . (role-value

Ppsm has-schedule-space))
(Pname . (new-symbol 'schedule-state)))(tell (schedule-state Pname

has-schedule-model Psc))
(append-slot-value Pschedule-space has-states Pname)
(achieve-generic-subtask
Ppsm apply-downstream-consistency-enforcement-mechanism has-schedule-state Pname)
(achieve-generic-subtask Ppsm evaluate-schedule-state

has-schedule-state Pname)Pname))))
rown-slots ((has-generic-subtasks

'(apply-downstream-consistency-enforcement-mechanism evaluate-schedule- S t ate))))

(def-class APPLY-DOWNSTREAM-CONSISTENCY-ENFORCEMENT-MECHANISM
(goal-specification-task)

"This is a simple heuristics which propagates the earliest start time of job-1 such that
all the jobs that has later start time than job-1 precedes the job-1. The complexity of
this heuristics is linear and in the absence of the Resource-capacity it ensures backtrack- free search."
((has-input-role rvalue has-schedule-state)
(has-output-role
rvalue has-schedule-state-with-enforced-downstream-consistency)
(has-schedule-state-with-enforced-downstream-consistency rtype schedule-state)(has-schedule-state rtype schedule-state)
(has-goal-expression
rvalue (kappa (Ptask Pstate)

(and (has-schedule-State-with-enforced-downstream-consistency Ptask Pstate)
(schedule-state Pstate))))))

(def-class APPLICATION-OF-DOWNSTREAM-CONSISTENCY-MECHANISM (primitive-method)
((has-input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)(has-body rvalue

'(lambda (Ppsm)
(in-environment
((Pstate . (role-value Ppsm has-schedule-state))
(Pschedule-mode1 . (the Pschedule-model

(has-s chedule-model
Pstate Pschedule-model)))(Pjobs . (role-value Ppsm has-jobs)))

(downstream-consistency-enforced-schedule-state Pstate Pjobs)))))
rovm-slots ((tackles-task-type

'apply-downstream-consistency-enforcement-mechanism)))

(def-function DOWNSTREAM-CONSISTENCY-ENFORCED-SCHEDULE-STATE (Pstate Pjobs)
rconstraint (and (list Pjobs)

(every Pjobs job)
(schedule-state Pstate))

rbody (setofall Pjob
(and (has-schedule-model Pstate Pschedule-model)

(has-jobs Pschedule-model Pjobs)(member Pjob Pjobs)
(has-time-range Pjob Pj tr)
(= (start-time-of-a-job Pjob Pjtr) Pest)
(exists Pjob2 (and (member Pjob2 Pjobs)

(has-time-range Pjob2 Pjtr2)
(= (start-time-of-a-job Pjob2 Pjtr2)Pest2)
(job-start-time-earlier-than Pest Pest2)
(job-precedes Pjob Pjob2))))))

260

Appendix 2
(def-relation DEADEND-STATE (?state)
" A deadend state is the one from which solution cannot be derived."
: constraint (schedule-state ?state))

(def-relation STATE-COMPLETE (?state ?jobs)
"A state is complete is a schedule associated with a state is a complete one.": iff-def (and (has-schedule-model ?state ?schedule-model)

(schedule-minimally-complete ?schedule-model ?jobs)))

(def-relation SOLUTION-STATE (?state)
"A state is a solution state if a schedule associated with this state is a complete one,
i.e. all the jobs are assigned to the resources and have the correct time ranges."
: constraint (state-complete ?state))

(def-relation CONSTRAINT-VIOLATIONS (?state ?cs)
: constraint (and (schedule-state ?state)

(list ?cs)
(every ?cs constraint)))

(def-relation REQUIREMENT-VIOLATIONS (?state ?requirements)
: constraint (and (schedule-state ?state)

(list ?requirements)
(every ?requirements requirement)))

(def-relation STATE-FEASIBLE (?state)
"A state is feasible if it does not violate any requirements imposed on a schedule associated with it."
: iff-def (and (has-schedule-model ?state ?schedule-model)

(not (requirement-violâtions ?state ?requirements))))

(def-relation STATE-COST (?state ?cost)
: constraint (and (schedule-state ?state)(cost ?cost)))

(def-class EVALUATE-SCHEDULE-STATE (composite-task) ?task
((has-input-role :value has-schedule-state)
(has-schedule-state : type schedule-state)(has-body rvalue (lambda (?taskj

(in-environment
((?state . (role-value ?task has-schedule-state)))(achieve-generic-subtask
?task evaluate-hard-consistency

has-schedule-state ?state)
(achieve-generic-subtask ?task evaluate-completeness

has-schedule-state ?state) (achieve-generic-subtask ?task evaluate-cost
has-schedule-state ?state)(achieve-generic-subtask

?task evaluate-current-job-consistency has-schedule-state ?state)
(achieve-generic-subtask
?task evaluate-future-job-consistencyhas-schedule-state ?state)
(achieve-generic-subtask ?task evaluate-feasibility

has-schedule-state ?state))))))

(def-class EVALUATE-COST (goal-specification-task) ?task
((has-input-role -.value has-schedule-state)
(has-output-role rvalue has-cost)(has-schedule-state rtype schedule-state) .
(has-cost rtype cost)
(has-goal-expression rvalue (kappa (?task ?cost)

(and (cost ?cost.)
(has-cost ?task ?cost))))))

(def-class DEFAULT-COST-EVALUATION (primitive-method) ?psm
((has-body rvalue (lambda (?psm)

(in-environment
((?state . (role-value ?psm has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(?cost-fun . (role-value ?psm has-cost-function))
(?cost . (call ?cost-fun ?schedule-model)))(do

(tell (state-cost ?state ?cost))
?cost)))))

rown-slots ((tackles-task-type evaluate-cost)))

267

Appendix 2
(def-class EVALUATE-HARD-CONSISTENCY (primitive-task) ?task
((has- input- role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue (lambda (?task)

(in-environment
((?state . (role-value ?task has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(?hard-constraints . (role-value

?task has-hard-constraints))
(?hcv . (setofall ?hc (and (member ?hc ?hard-constraints)

(every ?hard-constraints
hard-constraint)(schedule-violates-constraint

?schedule-model ?constraints)
(every ?constraints

constraint)))))
(if (not (null ?hcv))

(tell (constraint-violations ?state ?hcv)))?hcv)))))

(def-class EVALUATE-FEASIBILITY (primitive-task) ?task ((ha s- input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue (lambda (?task)

(in-environment
((?state . (role-value ?task has-schedule-state))
(?schedule-mode1 . (the ?sc (has-schedule-model

?state ?sc)))
(?requirements . (role-value ?task has-requirements))
(?reqv . (setofall ?req

(and (member ?req ?requirements)
(every ?requirements requirement)
(schedule-violates-requirement
?schedule-model ?requirements)))))

(if (not (null ?reqv))
(tell (requirement-violâtions ?state ?reqv)))?reqv)))))

(def-class EVALUATE-COMPLETENESS (primitive-task) ?task •
((has-input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue (lambda (?task)

(in-environment
((?state . (role-value ?task has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))(?jobs . (role-value ?task has-jobs)))
(if (schedule-minimally-complete ?schedule-model ?jobs)

(tell (state-complete ?state))))))))

(def-class EVALUATE-CURRENT-JOB-CONSISTENCY (primitive-task)
"This method checks the consistency of the jobs by comparing the compatibility of resource requirement between assigned jobs and yet-to-be assigned jobs. If the resource requirements
of these jobs are not consistent then it gives all those inconsistent jobs within a schedule-state."
((has-input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue

'(lambda (?taskj
(in-environment
((?state . (role-value ?task has-schedule-state))
(?schedule-model . (the ?schedule-model (has-schedule-model

?state ?schedule-model)))(?jobs . (role-value ?task has-jobs)))
(if (job-consistency-in-schedule-state ?state ?jobs)(tell (schedule-state-consistent ?state))))))))

262

Appendix 2
(def-relation JOB-CONSISTENCY-IN-SCHEDULE-STATE (?state ?jobs)
"This relation says that the resource assigned to any of the jobs (i.e. assigned-job) is
not equal to the possible resource requirement of any other jobs (i.e. assignable job) in a
schedule. And these jobs are dependent on each other."
: constraint (and (schedule-state ?state has-schedule-model ?schedule-model)

(has-jobs ?schedule-model ?jobs)
(every ?jobs job))

: iff-def (or (exists ?jl (and
(member ?jl ?jobs)
(assigned-job ?jl ?schedule-model)
(= (resource-assigned-to-a-job

?jl ?schedule-model) ?rl)
(not (exists ?j2 (and (member ?j2 ?jobs)

(unassigned-job
?j2 ?schedule-model)
(= (expected-resources-for-job

?j2 ?schedule-model) ?r2)(= ?rl ?r2))))))
(exists ?jl (and (member ?jl ?jobs)

(assigned-job ?jl Tschedule-model)
(= (resource-assigned-to-a-job

?jl ?schedule-model) ?rl)
(not (exists ?j2 (and (member ?j2 ?jobs)(assigned-job

?j2 ?schedule-model)(= (resource-assigned-to-a-job
?j2 ?schedule-model) ?r2)

(= ?rl ?r2))))))))

(def-function EXPECTED-RESOURCES-FOR-JOB (?job ?sc) -> ?r
: constraint (and (job ?job)(schedule-model ?sc)

(resource ?r)
(requires-resource ?job ?r))

ibody (setofall ?r (assigned-to-resource ?job ?r ?sc)))

(def-class EVALUATE-FUTURE-JOB-CONSISTENCY (primitive-task)
"This method checks the consistency of all yet-to-be assigned jobs (i.e., future jobs) in terms of the compatibility between their resource requirements. If the resource requirement
conflicts with each other then it returns all those inconsistent jobs within a schedule-
state."
((has-input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue

'(lambda (?task)(in-environment
((?state . (role-value ?task has-schedule-state))
(?schedule-model . (the ?schedule-model (has-schedule-model

?state ?schedule-model)))
(?jobs . (role-value ?task has-jobs)))

(if (future-job-consistency-in-schedule-state ?state ?jobs)
(tell (schedule-state-consistent ?state))))))))

(def-relation FUTURE-JOB-CONSISTENCY-IN-SCHEDULE-STATE (?state ?jobs)
"This relation says that the.resource requirement of assignable job jl is not equal to another assignable job j2 in a schedule. And both these jobs are dependent on each other
and are affected by each other."
rconstraint (and (schedule-state ?state has-schedule-model ?schedule-model)

(has-jobs ?schedule-model ?jobs)
(every ?jobs job))

r iff-def (exists ?jl (and (member ?jl ?jobs)(unas s igned-j ob ?jl ?schedule-model)
(= (expected-resources-for-job ?jl ?schedule-model)
?rl)(not (exists ?j2

(and (member ?j2 ?jobs)
(unassigned-job
?j2 ? schedule-model)
(- (expected-resources-for-job

?j2 ?schedule-model) ?r2)
(= ?rl ?r2)))))))

262

Appendix 2
(def-class SCHEDULE-FROM-STATE (goal-specification-task) ?task
((has-input-role rvalue has-schedule-state

rvalue has-schedule-space)(has-output-role rvalue has-output-state)
(has-output-state r type schedule-state)
(has-schedule-state r type schedule-state)
(has-schedule-space rtype schedule-space)
(has-goal-expression rvalue (kappa (?task ?s)

(schedule-state ?s)))) rconstraint (and (has-schedule-state ?task ?s)
(has-schedule-model ?s ?sc)
(= ?scheduling-problem (role-value

?task has-current-scheduling-task)) (not (achieved ?scheduling-problem ?sc))))

(def-class EXPAND-INCOMPLETE-STATE (decompositioh-method)
((has-input-role rvalue has-schedule-state)
(has-output-role rvalue generates-schedule-state)
(has-schedule-state .r type schedule-state)
(generates-schedule-state rtype schedule-state)
(has-goal-expression rvalue (kappa (?task ?s)

(schedule-extends
(the ?sc (has-schedule-model ?s ?sc))
(the ?sc (has-schedule-model

(role-value
?task has-schedule-state)
?sc)))))(has-body rvalue '(lambda (?psm)

(in-environment
((?state . (role-value ?psm has-schedule-state))
(?schedu1e-mode1 . (the ?sc (has-schedule-model

?state ?sc)))(?hard-constraint8 . (role-value
?psm has-hard-constraints)) (?requirements . (role-value ?psm has-requirements))(?jobs . (role-value ?psm has-jobs)))

(if (deadend-state ?state)
rnothing

(if (constraint-violâtions ?state ?constraints)
(tell (deadend-state ?state))

(if (deadend-state ?state)
rnothing

(if (requirement-violâtions ?state ?requirements)
(tell (deadend-state ?state))(if (solution-state ?state)
(return ?state)
(do
(achieve-generic-subtask?psm
generate-new-state-successor
has-schedule-state ?state
has-schedule-context rextend))))))))))) rown-slots ((tackles-task-type schedule-from-state)

(has-generic-subtasks generate-new-state-successor)))

26^

Appendix 2
(def-class GENERATE-NEW-STATE-SUCCESSOR (composite-task)
((has-input-role rvalue has-schedule-state

rvalue has-schedule-context)
(has-output-role rvalue generates-schedule - state)
(has-schedule-context rtype schedule-context)
(has-schedule-state rtype schedule-state)
(generates-schedule-state rtype schedule-state)(has-body rvalue (lambda (?task)

(in-environment
((?state . (role-value ?task has-schedule-state))
(?js . (role-value ?task has-jobs))
(?context . (role-value ?task has-schedule-context)))
(if (search-control-record

?record has-schedule-state ?state)(in-environment
((?result . (achieve-generic-subtask ?task

resume-state has-schedule-state Pstate
has-schedule-context
?context)))(if (schedule-state Presuit)

Presuit
(achieve-generic-subtask
Ptask propose-schedule-from-context has-schedule-state Pstate

has-schedule-context Pcontext)))(in-environment
((Pfoci . (achieve-generic-subtask

Ptask collect-state-foci
has-schedule-state Pstate
has-schedule-context Pcontext)))(new-search-control-record Pstate Pfoci)

(achieve-generic-subtask
Ptask propose-schedule-from-context

has-schedule-state Pstate
has-schedule-context Pcontext)))))))

:own-slots ((has-generic-subtasks '(resume-state
propose-schedule-from-context
collect-State-foci))))

(def-class COLLECT-STATE-FOCI (goal-specification-task) Ptask
((has-input-role : value has-schedule-context

:value has-schedule-state)
(has-output-role rvalue has-schedule-foci)
(has-schedule-foci rtype list)
(has-schedule-state rtype schedule-state)
(has-schedule-context rtype schedule-context)))

(def-class COLLECT-ASSIGNABLE-JOBS (primitive-method)((has-body rvalue (lambda (Ppsm)
(all-assignable-jobs
(role-value Ppsm has-jobs)
(the Psc (has-schedule-model

(role-value Ppsm has-schedule-state)
Psc))))))rown-slots ((tackles-task-type collect-state-foci)))

26J

Appendix 2
(def-class PROPOSE-SCHEDULE-FROM-CONTEXT (composite-task) Ptask
((has-input-role rvalue has-schedule-state

rvalue has-schedule-context)
(has-output-role rvalue generates-schedule-state)
(has-control-role rvalue has-schedule-focirvalue has-search-control-record)
(has-schedule-context rtype schedule-context)
(has-schedule-state rtype schedule-state)
(generates-schedule-state rtype schedule-state)
(has-body rvalue (lambda (Ptask)

(repeat
(in-environment
((Pstate . (role-value Ptask has-schedule-state))
(Precord . (the-state-search-control-record Pstate))
(Pfoci . (the-slot-value Precord 'has-schedule-foci))
(Psub . (instantiate-generic-subtask

Ptask select-schedule-focus
has-schedule-foci Pfoci))

(Pfocus . (solve-task Psub)))
(if (achieved Psub Pfocus)

(do
(achieve-generic-subtask
Ptask
amend-search-control-record-on-focus-selection has-search-control-record Precord
has-schedule-focus Pfocus)
(in-environment
((Pops . (achieve-generic-subtask

Ptask collect-focus-operators has-schedule-focus Pfocus))
(Psorted-ops . (achieve-generic-subtask

Ptask sort-schedule-operators
has-schedule-operators Pops)))

(if (null Psorted-ops)
(achieve-generic-subtask
Ptask
amend-search-control-record-on-focus-failuare
has-search-control-record Precord has-schedule-focus Pfocus)

(do
(set-slot-value Precord

has-schedule-operators
Psorted-ops)(in-environment

((Pvalue . (achieve-generic-subtask
Ptask
generate-value-from-focus
has-schedule-state Pstate)))

(if (not (= Pvalue : nothing))
(in-environment
((?activity-value . (achieve-generic-subtask

focus
Ptask
generate-activities-from-
has-schedule-state Pstate)))

(if (not (= Pactivity-value :nothing)) (in-environment
((Presuit . (achieve-generic-subtask

Ptask propose-schedule-from-focus
has-schedule-state
Pstate
has-schedule-value
Pvalue
has-schedule-activity-value
Pactivity-value)))(if (schedule-state Presuit)

(return Presuit)))))))))))(do
(tell (deadend-state Pstate))
(return : nothing))))))))

: own-slots ((has-generic-subtasks
'(select-schedule-focus collect-focus-operators
sort-schedule-operators
amend-search-control-record-on-focus-selection
amend-search-control-record-on-focus-failuare
generate-value-from-focus generate-activities-from-focus
propose-schedule-f rom-f ocus))))

266

Appendix 2
(def-class SELECT-SCHEDULE-FOCUS (goal-specifleafion-task) Ptask
((has-input-role -.value has-schedule-foci)
(has-output - role : value has-schedule-focus)
(has-schedule-foci : type list)
(has-schedule-focus : type schedule-focus)
(has-goal-expression -.value (kappa (Ptask Pfocus)

(has-schedule-focus Ptask Pfocus)))))

(def-class DEFAULT-JOB-SELECTION (primitive-method) Ppsm
((has-input-role : value has-schedule-focus-order-relation

: value has-possible-resources-relation)
(has-schedule-focus-order-relation :default-value schedule-focus-order)
(has-possible-resources-relation : default-value possible-resources-for-job) (has-body :value (lambda (Ppsm)

(if (= Pfoci (role-value Ppsm has-schedule-foci))
(select-most-preferred-focus
(collect-most-restricted-jobs Pfoci
(role-value Ppsm has-possible-resources-relation))

(role-value
Ppsm has-schedule-focus-order-relation)))))):own-slots ((tackles-task-type select-schedule-focus)))

(def-function COLLECT-MOST-RESTRICTED-JOBS (PI Prel)
:body (in-environment

((Pquadruples . (sort (map '(lambda (Pj)
(list-of

Pj (setofall ?r (holds Prel Pj lie))))
PI)'(kappa (Px Py)

(< (length (second Px))
(length (second Py)))))))

(map first (filter
Pquadruples
'(kappa (Pquadruple)

(= (first Pquadruple)
(first (first Pquadruples))))))))

(def-class AMEND-SEARCH-CONTROL-RECORD-ON-FOCUS-SELECTION (goal-specification-task)
((has-input-role :value has-search-control-record

:value has-schedule-focus)
(has-schedule-focus :type schedule-focus)
(has-search-control-record rtype search-control-record)))

(def-class DE FAULT-SEARCH-CONTROL-RECORD-ON-FOCUS-SELECTION-UPDATE
(primitive-method) Ppsm

((has-body rvalue (lambda (Ppsm)
(in-environment
((Pfocus . (role-value Ppsm has-schedule-focus))(Precord . (role-value

Ppsm has-search-control-record)))
(set-slot-value Precord has-schedule-foci (remove Pfocus

(the-slot-value
Precord has-schedule-foci)))(set-slot-value Precord has-schedule-focus Pfocus)))))

rown-slots ((tackles-task-type amend-search-control-record-on-focus-selection)))

(def-class AMEND-SEARCH-CONTROL-RECORD-ON-FOCUS-FAILUARE
(goal-specification-task) Ptask

((has-input-role rvalue has-search-control-record
rvalue has-schedule-focus)

(has- schedule-focus rtype schedule-focus)
(has-search-control-record r type search-control-record)))

(def-class DEFAULT-SEARCH-CONTROL-RECORD-ON-FOCUS -FAILUARE-UPDATE
(primitive-method) Ppsm

((has-body rvalue (lambda (Ppsm) rnothing)))
rown-slots ((tackles-task-type amend-search-control-record-on-focus-failuare)))

267

Appendix 2
(def-class COLLECT-FOCUS-OPERATORS (goal-specification-task) Ptask
((has-input-role rvalue has-schedule-focus)
(has-schedule-focus rtype schedule-focus)))

(def-class DEFAULT-OPERATOR-COLLECTION (primitive-method) Ppsm
((has-body rvalue (lambda (Ppsm)

(setofall Pop
(and (schedule-operator Pop

applicable-to-jobs PI)
(member (role-value

Ppsm 'has-schedule-focus)
(eval PI))))))) rown-slots ((tackles-task-type collect-focus-operators)))

(def-class SORT-SCHEDULE-OPERATORS (primitive-task) Ptask
((has-input-role rvalue has-schedule-operators

rvalue has-operator-order-relation)(has-schedule-operators rtype list)
(has-operator-order-relation rdefault-value schedule-operator-order)(has-body rvalue (lambda (Ptask)

(sort (role-value
Ptask has-schedule-operators)
(role-value Ptask has-operator-order-relation))))))

(def-class RESUME-STATE (goal-specification-task) Ptask ((has-input-role rvalue has-schedule-state
rvalue has-schedule-context)(has-output-role rvalue has-output-schedule-state)

(has-schedule-state rtype schedule-state)
(has-schedule-context rtype schedule-context)
(has-output-schedule-state r type schedule-state)
(has-goal-expression rvalue (kappa (Ptask Ps)

(and (schedule-state Ps)
(not (= Ps (role-value

Ptask
has-schedule-state))))))))

(def-class TRY-DIFFERENT-STATE-OPERATOR (primitive-method) Ppsm
((has-body rvalue (lambda (Ppsm)

(achieve-generic-subtask
Ppsm propose-schedule-from-focus has-schedule-state (role-value

Ppsm has-schedule-state))))) rown-slots ((tackles-task-type resume-state)))

(def-class RETRY-SCHEDULE-STATE-OPERATOR (primitive-method) Ppsm
((has-body rvalue (lambda (Ppsm)

(in-environment
((Pstate . (role-value Ppsm has-schedule-state))
(Precord . (the-state-search-control-record Pstate))
(Pop . (the Pop2 (has-current-operator Precord Pop2))))
(if (has-schedule-focus Precord Pfocus).. (in-environment

((Psub . (instantiate-generic-subtask
Ppsm try-schedule-operator
has-schedule-operator Pop
has-schedule-focus Pfocus
has-schedule-model
(the-slot-value
Pstate 'has-schedule-model)))(Presuit . (solve-task Psub3)))

(if (achieved Psub3 Presuit)
Presuit

(achieve-generic-subtaskPpsm
propose-schedule-from-focus
has-schedule-state Pstate))))).)))

rown-slots ((tackles-task-type resume-state)))

(def-class SEARCH-CONTROL-RECORD ()
((has-schedule-state rtype schedule-state rcardinality 1)
(has-schedule-focus rtype schedule-focus rcardinality 1)
(has-current-operator rtype schedule-operator rmax-cardinality 1)
(has-schedule-operators rtype list rcardinality 1)
(has-schedule-foci rtype list rcardinality 1)))

(def-function THE-STATE-SEARCH-CONTROL-RECORD (Pstate)
rbody (the Precord (and (search-control-record Precord)

(has-schedule-state Precord Pstate))))

262

Appendix 2
(def-procedure NEW-SEARCH-CONTROL-RECORD (Pstate Pfoci)
rbody (tell

(search-control-record
(new-symbol 'state-search-control-record)
has-schedule-state Pstate
has-schedule-foci Pfoci)))

(def-class GENERATE-VALUE-FROM-FOCUS (composite-task)
((has-input-role rvalue has-schedule-state)
(has-output-role rvalue has-schedule-value)
(has-control-role rvalue has-schedule-model

rvalue has-schedule-operator)
(has-schedule-state rtype schedule-state)
(has-schedule-focus rtype schedule-focus)
(has-schedule-value rtype schedule-value)
(has-goal-expression rvalue (kappa (Ptask Pvalue)

(and (has-schedule-value Ptask Pvalue) (schedule-value Pvalue))))
(has-body rvalue (lambda (Ptask)

(REPEAT (in-environment
((Pstate . (role-value Ptask has-schedule-state))
(Precord . (the-state-search-control-record Pstate))
(Pfocus . (the-slot-value

Precord 'has-schedule-focus))(Pops . (the-slot-value
Precord 'has-schedule-operators))

(Psubl . (instantiate-generic-subtask Ptask
select-resource-operator
has-schedule-focus Pfocus
has-schedule-operators Pops))(Pop . (solve-task Psubl)))

(set-slot-value Precord has-current-operator Pop)(if (achieved Psubl Pop)(do
(set-slot-value Precord

has-schedule-operators
(remove Pop Pops))(in-environment

((Psub3 . (instantiate-generic-subtask Ptask
try-schedule-resource-operator
has-schedule-operator Pop
has-schedule-focus Pfocus
has-schedule-model (the-slot-value
Pstate
'has-schedule-model)))

(Pvalue . (solve-task Psub3)))
(if (achieved Pvalue Psub3)

(return Pvalue))))(return :nothing)))))))
:own-slots ((has-generic-subtasks '(select-resource-operator

try-schedule-resource-operator))))

(def-class SELECT-RESOURCE-OPERATOR (goal-specification-task)
((has-input-role :value has-schedule-focus

:value has-schedule-operators)
(has-output-role :value has-selected-resource-operator)
(has-schedule-focus rtype schedule-focus)(has-schedule-operators rtype list)
(has-selected-resource-operator rtype schedule-operator)
(has-goal-expression rvalue (kappa (Ptask Pop)

(and (schedule-operator Pop)
(has-selected-resource-operator Ptask Pop))))))

(def-class DEFAULT-RESOURCE-OPERATOR-SELECTION (primitive-method)
((has-body rvalue (lambda (Ppsm)

(first (role-value Ppsm
'has-schedule-operators)))))

rown-slots ((tackles-task-type select-resource-operator)))

26P

Appendix 2
(def-class TRY-SCHEDULE-RESOURCE-OPERATOR (goal-specification-task)
((has-input-role -.value has-schedule-operator

rvalue has-schedule-focus
rvalue has-schedule-model)

(has-output-role rvalue has-schedule-value)(has-schedule-operator rtype schedule-operator)
(has-schedule-focus rtype schedule-focus)(has-schedule-model rtype schedule-model)
(has-schedule-value rtype schedule-value)
(has-goal-expression rvalue (kappa (Ptask Pvalue)

(and (has-schedule-value Ptask Pvalue)
(schedule-value Pvalue))))))

(def-class TRY-SCHEDULE-EXTENSION-RESOURCE-OPERATOR (primitive-method)
((has-body rvalue (lambda (Ppsm)

(in-environment
((Psc . (role-value Ppsm 'has-schedule-model))
(Pfocus . (role-value Ppsm 'has-schedule-focus))
(Pvalue . (apply-schedule-extension-resource-operator Pfocus Psc

(role-value Ppsm 'has-schedule-operator)))) (if (not (= Pvalue rnothing))
(return Pvalue))))))

rown-slots ((tackles-task-type try-schedule-resource-operator)))

(def-function APPLY-SCHEDULE-EXTENSION-RESOURCE-OPERATOR (Pj Psc Pop)
rconstraint (and (job Pj)

(schedule-model Psc)
(schedule-extension-resource-operator Pop)) rbody (call (the Pbody
(has-body Pop Pbody)) Pj Psc))

(def-class GENERATE-ACTIVITIES-FROM-FOCUS (composite-task)
((has-input-role rvalue has-schedule-state)
(has-output-role rvalue has-schedule-activity-value)
(has-control-role rvalue has-schedule-model

rvalue has-schedule-operator)
(has-schedule-state rtype schedule-state)
(has-schedule-activity-value rtype activity-value)
(has-schedule-focus rtype schedule-focus)
(has-body rvalue (lambda (Ptask)

(REPEAT
(in-environment
((Pstate . (role-value Ptask has-schedule-state))
(Precord . (the-state-search-control-record Pstate))
(Pfocus . (the-slot-value

Precord 'has-schedule-focus))
(Pops . (the-slot-value

Precord 'has-schedule-operators))
(PsubB . (instantiate-generic-subtask

Ptask select-activity-operator
has-schedule-focus Pfocus
has-schedule-operators Pops))(Pop . (solve-task PsubB)))

(set-slot-value Precord has-current-operator Pop)(if (achieved PsubB Pop)
(do

(set-slot-value Precord
has-schedule-operators (remove Pop Pops))(in-environment

((Psub? . (instantiate-generic-subtask
Ptask
try-schedule-activity-operatorhas-schedule-operator Pop
has-schedule-focus Pfocus
has-schedule-model
(the-slot-value
Pstate
'has-schedule-model)))

(Pactivity-value . (solve-task Psub?)))
(if (achieved Pactivity-value Psub?)

(return Pactivity-value))))(return rnothing)))))))
rown-slots ((has-generic-subtasks '(select-activity-operator

try-schedule-activity-operator))))

270

Appendix 2
(def-class SELECT-ACTIVITY-OPERATOR (goal-specification-task)
((has-input-role rvalue has-schedule-focus

rvalue has-schedule-operators)
(has-output-role rvalue has-selected-activity-operator)
(has-schedule-focus rtype schedule-focus)
(has-schedule-operators rtype list)
(has-selected-activity-operator rtype schedule-operator)
(has-goal-expression rvalue (kappa (Ptask Pop)

(and (schedule-operator Pop)
(has-selected-activity-operator
Ptask Pop))))))

(def-class DEFAULT-ACTIVITY-OPERATOR-SELECTION (primitive-method)((has-body rvalue (lambda (Ppsm)
(first (role-value Ppsm

'has-schedule-operators)))))
rown-slots ((tackles-task-type select-activity-operator)))

(def-class TRY-SCHEDULE-ACTIVITY-OPERATOR (goal-specification-task)
((has-input-role rvalue has-schedule-operator.

rvalue has-schedule-focus
rvalue has-schedule-model)

(has-output-role rvalue has-schedule-activity-value)
(has-schedule-operator rtype schedule-operator)
(has-schedule-focus rtype schedule-focus)
(has-schedule-model rtype schedule-model)
(has-schedule-activity-value rtype activity-value)
(has-goal-expression rvalue (kappa (Ptask Pactivity-value)

. (and (has-schedule-activity-value
Ptask Pactivity-value)
(activity-value Pactivity-value))))))

(def-class TRY-SCHEDULE-EXTENSION-ACTIVITY-OPERATOR (primitive-method)((has-body rvalue (lambda (Ppsm)
(in-environment
((Psc . (role-value Ppsm has-schedule-model))
(Pfocus . (role-value Ppsm has-schedule-focus))
(Pactivity-value . (apply-schedule-extension-activity-operator

Pfocus Psc
(role-value
Ppsm 'has-schedule-operator))))(if (not (= Pactivity-value rnothing))

(return Pactivity-value))))))
rown-slots ((tackles-task-type try-schedule-activity-operator)))

(def-function APPLY-SCHEDULE-EXTENSION-ACTIVITY-OPERATOR (Pj Psc Pop) rconstraint (and (job Pj)
(schedule-model Psc)
(schedule-extension-activity-operator Pop)) rbody (call (the Pbody
(has-body Pop Pbody)) Pj Psc))

277

Appendix 2
(def-class PROPOSE-SCHEDULE-FROM-FOCUS (composite-task)
((has-input-role rvalue has-schedule-state

: value has-schedule-value
rvalue has-schedule-activity-value)

(has-output-role rvalue has-output-schedule-state)(has-control-role rvalue has-schedule-model
rvalue has-schedule-operator)(has-schedule-state rtype schedule-state)

(has-schedule-value rtype schedule-value)
(has-schedule-activity-value rtype activity-value)
(has-output-schedule-state rtype schedule-state)(has-body rvalue (lambda (Ptask)

(repeat
(in-environment
((Pstate . (role-value Ptask has-schedule-state))
(Precord . (the-state-search-control-record Pstate)) (Pfocus . (the-slot-value

Precord 'has-schedule-focus))
(Pops . (the-slot-value

Precord 'has-schedule-operators))
(Pvalue . (role-value Ptask has-schedule-value))
(Pactivity-value . (role-value

Ptask
has-schedule-activity-value))

(Psub . (instantiate-generic-subtask Ptask
select-schedule-operator
has-schedule-focus Pfocus
has-schedule-operators Pops))(Pop . (solve-task Psub)))

(set-slot-value Precord has-current-operator Pop)(if (achieved Psub Pop)
(DO

(set-slot-value Precord
has-schedule-operators
(remove Pop Pops)); ; ; Try adding same

(in-environment
((Psub2 . (instantiate-generic-subtask

Ptask try-schedule-operator
has-schedule-operator Pop
has-schedule-focus Pfocus
has-schedule-value Pvalue
has-schedule-activity-value
Pactivity-value
has-schedule-model (the-slot-value Pstate
'has-schedule-model)))(Presuit. . (solve-task ?sub2)))

(if (achieved Psub2 Presuit)
(return Presuit))))(return : nothing)))))))

:own-slots ((has-generic-subtasks '(select-schedule-operator
try-schedule-operator))))

(def-class SELECT-SCHEDULE-OPERATOR (goal-specification-task) Ptask ((has-input-role :value has-schedule-operators
rvalue has-schedule-focus)(has-output-role rvalue has-selected-operator)

(has-schedule-operators rtype list)
(has-schedule-focus rtype schedule-focus)
(has-selected-operator rtype schedule-operator)
(has-goal-expression rvalue (kappa (Ptask Pop)

(and (schedule-operator Pop)
(has-selected-operator Ptask Pop))))))

(def-class DEPAUI.T-OPERATOR-SELECTION (primitive-method) Ppsm
((has-body rvalue (lambda (Ppsm)

(first (role-value Ppsm
'has-schedule-operators))))) rown-slots ((tackles-task-type select-schedule-operator)))

272

Appendix 2
(def-class TRY-SCHEDULE-OPERATOR (goal-specification-task)((has-input-role -.value has-schedule-operator

: value has-schedule-focus
rvalue has - schedule-model
rvalue has-schedule-value
rvalue has-schedule-activity-value)

(has-output-role rvalue generates-schedule-state)(has-schedule-operator r type schedule-operator)
(has-schedule-focus rtype schedule-focus)
(has-schedule-model rtype schedule-model)
(has-schedule-value rtype schedule-value)
(has-schedule-activity-value r type activity-value)
(generates-schedule-state rtype schedule-state)
(has-goal-expression rvalue (kappa (Ptask Ps)

(and (schedule-state Ps)
(generates-schedule-state Ptask Ps))))))

(def-class TRY-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR (primitive-method)
((has-body rvalue (lambda (Ppsm)

(in-environment
((Psc . (role-value Ppsm 'has-schedule-model))
(Pfocus . (role-value Ppsm 'has-schedule-focus))(Pvalue . (role-value Ppsm 'has-schedule-value))
(Pactivity-value . (role-value

Ppsm 'has-schedule-activity-value))
(Pvaluel . (apply-schedule-extension-time-range-operator Pfocus Psc

(role-value Ppsm 'has-schedule-operator))))(if (not (= Pvaluel rnothing))
(achieve-generic-subtaskPpsm
new-schedule-state
has-schedule-model
(cons
(cons Pfocus '(Pvalue Pactivity-value Pvaluel))• Psc)))))))

rown-slots ((tackles-task-type try-schedule-operator)))

(def-function APPLY-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR (Pj Psc Pop) rconstraint (and (job Pj)
(schedule-model Psc)
(schedule-extension-time-range-operator Pop))

rbody (call (the Pbody
(has-body Pop Pbody)) Pj Psc))

(def-relation SCHEDULE-FOCUS-ORDER (Px Pc)
rconstraint (and (schedule-focus Px)

(schedule-focus Pc)
(not (= Px Pc))))

(tell (defines-partial-order schedule-focus-order))

(def-function SELECT-MOST-PREFERRED-FOCUS (PI Prel)
rbody (the Pfocus

(and (member Pfocus PI)
(not (exists Pfocus2

(and (member Pfocus2 PI)
(<> Pfocus2 Pfocus)
(holds Prel Pfocus2 Pfocus)))))))

(tell (use-method consistent-maximal-state-selection
choose-schedule-state
generic-psm-for-scheduling))

(def-class GENERIC-SCHEDULE-APPLICATION (application)
"This class needs to be instantiated for solving an application. This class explicitly
states, which task needs to be solved (which in the case of this library the scheduling
task) and which method to be used in order to solve the task.
)

(def-class SCHEDULE-METHOD (problem-solving-method)
((applicable-to-task-type rvalue scheduling-task)
(has-input-role rvalue has-schedule-operators)
(has-schedule-operators rtype schedule-operator)))

272

Appendix 3

A COMPLETE SPECIFICATION OF THE SIMPLE

TIME ONTOLOGY
; ; ; Mode: Lisp; Package: ocml ~ "
; ; ; The Open University
(in-package "OCML")
(in-ontology simple-time)

(def-class YEAR-IN-TIME ()?x
"A year-in-time must be an integer and integer can be a year-in-time": iff-def (integer ?x))

(def-class MONTH-IN-TIME ()?mit
"A month-in-time is an integer in the interval 1-12" riff-def (and (integer ?x)(< ?x 12) (> ?x 0)))

(def-class DAY-IN-TIME ()?x
"A day-in-time is an integer in the interval 1-31"
r iff-def (and (integer ?x) (< ?x 32) (or (> ?x 0) (= ?x 1))))

(def-class HOUR-IN-TIME ()?x
"A hour-in-time is an integer in the interval 0-23" ^
riff-def (and (integer ?x)(< ?x 24) (or (= ?X 0)(> ?x 0)))) ;

(def-class SECOND-IN-TIME ()?x
"A second-in-time is a integer in the interval 0-59"
riff-def (and (integer ?x)(< ?x 60) (or (= ?X 0)(> ?x 0))))

(def-class MINUTE-IN-TIME ()?x
"A minute-in-time is an integer in the interval 0-59"
riff-def (and (integer ?x)(< ?x 60). (or (= ?X 0)(> ?x 0)))) j

(def-class TIME-ENTITY () ?te
)

(def-class TIME-POINT () ?tp
((second-of r type second-in-time rmax-cardinality 1)
(minute-of rtype minute-in-time rmax-cardinality 1)(hour-of rtype hour-in-time rmax-cardinality 1)
(day-of rtype day-in-time rmax-cardinality 1)
(month-of rtype month-in-time rmax-cardinality 1)
(year-of rtype year-in-time rmax-cardinality 1)) rconstraint (and (not (and (month-of ?x 2)

(> (the ?day (day-of ?x ?day))
29)))

(not (and (member-of ?x (4 6 9 11))
{> (the ?day (day-of ?x ?day))30)))))

(def-relation IDLE-TIME-POINT (?tp) rconstraint (time-point ?tp)
riff-def (and (= (second-of-tp ?tp) 0)

(= (minute-of-tp ?tp) 0)
(= (hour-of-tp ?tp) 0)
(= (day-of-tp ?tp) 0)
(= (month-of-tp ?tp) 0)
(= (year-of-tp ?tp) 0)))

(def-function SECOND-OF-TP (?tp)
rconstraint (time-point ?tp)
rbody (the ?second (second-of ?tp ?second)))

(def-function MINUTE-OF-TP (?tp)
rconstraint (time-point ?tp)
rbody (the ?minute (minute-of ?tp ?minute)))

Appendix 3
{def-function HOUR-OF-TP (?tp)
: constraint (time-point ?tp)
rbody (the ?hour (hour-of ?tp ?hour)))

(def-function DAY-OF-TP (?tp)
: constraint (time-point ?tp)
rbody (the ?day (day-of ?tp ?day)))

(def-function MONTH-OF-TP (?tp)
rconstraint (time-point ?tp)
rbody (the ?month (month-of ?tp ?month)))

(def-function YEAR-OF-TP (?tp)
rconstraint (time-point ?tp)
rbody (the ?year (year-of ?tp ?year)))

(def-class INTERVAL () ?int
"An interval is a period of time elapsed between the start of an event and end of an

event.The start of an event is precedes the end of an event. (Ref. J.F.Allen (1983),
Maintaining knowledge about temporal intervals)."
((has-start-time r type time-point rmax-cardinal ity 1)
(has-end-time rtype time-point rmax-cardinality 1)
(has-unit-of-measure r type unit-of-measure))

rconstraint (precedes (the-slot-value ?int has-start-time)
(the-slot-value ?int has-end-time)))

(def-function TIME-INTERVAL-DURATION (?interval) -> ?durâtion
rconstraint (and (interval ?interval)(duration ?durâtion))
rbody (time-point-difference (the ?et (has-end-time ?interval ?et))

(the ?st (has-start-time ?interval ?st))))

(def-class TIME-RANGE (interval) ?tr

(def-function TIME-RANGE-DURATION (?tr) -> ?duration
rconstraint (and (time-range ?tr)(duration ?duration))
rbody (time-point-difference (the ?et (has-end-time ?tr ?et))

(the ?st (has-start-time ?tr ?st)'))
(def-class THING ()
)

(def-class INTANGIBLE-THING (thing)
"This comes from HPKB upper level. Th ecollection of things that are not physical--are not
made of, or encoded in, matter. Every collection is an intangibale (even if its instances
are tangible), and so are some Individual.Cautionr do not confuse 'tangibility' with
'perceivability'-- humans can perceive light even though it's intangible-- at least in a
sense.")

(def-class TANGIBLE (thing)
"Something which is not tangible.")

(def-axiom TANGIBLE-AND-INTANGIBLE-THINGS-ARE-DISJOINT
(exhaustive-subclass-partition (set-of tangible-thing intangible-thing)))

(def-class QUANTITY (intangible-thing) ?qun
((has-unit-of-measure rtype unit-of-measure)
(has-magnitude rtype number)))

(def-class UNIT-OF-MEASURE (intangible-thing)
"Any kind of unit of measure, meter, dollar, kilogram, a month, a day, a year etc..")

(def-class DURATION (quantity) ?d
)

(def-function MAGNITUDE-OF-DURATION (?dur) -> ?mag
: constraint (and (duration ?dur)

(number ?mag))
rbody (the ?mag (has-magnitude ?dur ?mag)))

(def-function UNIT-OF-DURATION (?dur) -> ?uom
rconstraint (and (duration ?dur)

(unit-of-measure ?uom)) rbody (the ?uom (has-unit-of-measure ?dur ?uom)))

272

Appendix 3
(def-class CALENDAR-DATE (time-point)
"A calendar date is a time point in which month, day and year have been specified"
((day-of : type day-in-time -.cardinality 1)
(month-of : type month-in-time : cardinality 1)
(year-of : type year-in-time : cardinality 1)))

(def-function UNIVERSAL-TIME-ENCODER (?tp)
"This function encodes the standard structure of time-point into universal-time structure.
: constraint (time-point ?tp)
:lisp-fun '(lambda (?tp)

(encode-universal-time (the-slot-value ?tp 'second-of)
(the-slot-value ?tp 'minute-of)
(the-slot-value ?tp 'hour-of)(the-slot-value ?tp 'day-of)
(the-slot-value ?tp 'month-of)(the-slot-value ?tp 'year-of))))

(def-class UNIVERSAL-TIME () ?x
: constraint (integer ?x))

(def-function DECODE-TIME-POINT-FROM-UNIVERSAL-TIME (?ut): constraint (universal-time ?ut)
:lisp-fun '(lambda (?ut)

(multiple-value-bind
(second minute hour day month year ignorel ignore2 ignores]
(decode-universal-time ?ut)

(name
(define-domain-instance (gentemp "TIME-POINT") 'time-point

"((second-of ,second)
(minute-of ,minute)
(hour-of ,hour)
(day-of ,day)
(month-of ,month)
(year-of ,year)))))))

(def-function TIME-POINT-DIFFERENCE (?tp-l ?tp-2)
"This function calculates the difference of two universal-time strctures."
: constraint (and (time-point ?tp-l)

(time-point ?tp-2))
:body (decode-time-point-from-universai-time

(- (universal-time-encoder ?tp-l) (universal-time-encoder ?tp-2))))

(def-function TIME-POINT-SUM (?tp-l ?tp-2)
"This function calculates the sum of two universal-time structures."
: constraint (and (time-point ?tp-l)

(time-point ?tp-2))
:body (decode-time-point-from-universai-time

(+ (universai-time-encoder ?tp-l) (universal-time-encoder ?tp-2))))

(def-relation DURATION-IS-LESS-THAN (?dl ?d2)
: constraint (and (duration ?dl)

(duration ?d2))
: iff-def (< (the ?magnitudel (has-magnitude ?dl ?magnitudel))

(the ?magnitude2 (has-magnitude ?d2 ?magnitude2))))

(def-class JOB-TIME-RANGE () ?jtr
"It represents the time range of each job in terms of its earliest and latest start and end time."
((has-earliest-start-time : type time-point :min-cardinality 1)(has-latest-start-time rtype time-point rmin-cardinality 1)
(has-earliest-end-time : type time-point :min-cardinality 1)
(has-latest-end-time : type time-point rmin-cardinality 1)
(has-unit-of-measure rtype unit-of-measure))

riff-def (or (precedes (the ?est (has-earliest-start-time ?jtr ?est))
(the ?eet (has-earliest-end-time ?jtr ?eet)))

(precedes (the ?lst (has-latest-start-time ?jtr ?lst))
(the ?let (has-latest-end-time ?jtr ?let)))))

(def-function JOB-TIME-RANGE-DURATION (?jtr) -> ?job-duration
rconstraint (and (job-time-range ?jtr)

(duration ?job-duration))
rbody (- (the-slot-value ?jtr has-latest-end-time)

(the-slot-value ?jtr has-earliest-start-time)))

(def-function JOB-DURATION-QUANTITY (?job-duration) -> ?magnitude
rconstraint (and (duration ?job-duration)

(number ?magnitude))
rbody (the ?magnitude (has-magnitude ?job-duration ?magnitude)))

276

Appendix 2
(def-instance second unit-of-measure)

(def-instance minute unit-of-measure)

(def-instance hour unit-of-measure)

(def-instance day unit-of-measure)

(def-instance month unit-of-measure)

(def-instance year unit-of-measure)
; ;; Following are the useful relations for the Time-Ranges
; ;
(def-relation PRECEDES (?time-point-l ?time-point-2)
"This relation states that a ?time-point-1 preceeds a time-point : constraint (and (time-point ?time-point-l)

(time-point ?time-point-2))
: iff-def (< (universal-time-encoder ?time-point-l)

(universal-time-encoder ?time-point-2)))

?time-point-2.

(def-relation FOLLOWS (?time-point-l ?time-point-2)
"This relation relation states that a time-point ?time-point-2 follows a time-point ?time-

point-1.": constraint (and (time-point ?time-point-1)(time-point ?time-point-2))
: iff-def (precedes ?time-point-2 ?time-point-1))

(def-relation TIME-POINTS-EQUAL (?time-point-l ?time-point-2)
: constraint (and (time-point ?time-point-l)

(time-point ?time-point-2))
: iff-def (and (= (minute-of ?time-point-l)

(minute-of ?time-point-2))
(second-of ?time-point-l)
(second-of ?time-point-2)).
(hour-of ?time-point-1)
(hour-of ?time-point-2))
(day-of ?time-point-l)
(day-of ?time-point-2))
(month-of ?time-point-l)
(month-of ?time-point-2))
(year-of ?time-point-1)
(year-of ?time-point-2))))

; ; ;These are BASIC relations ; ; ;
(def-relation BEFORE (?time-range-1 ?time-range-2)
"It means time-range-1 is before the time-range-2."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (precedes (the ?et (has-end-time ?time-range-1 ?et))

(the ?st (has-start-time ?time-range-2 ?st))))

(def-relation AFTER (?time-range-l ?time-range-2)
"It means time-range-1 is after the time-range-2."
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (precedes (the ?et (has-end-time ?time-range-2 ?et))

(the ?st (has-start-time ?time-range-l ?st))))

277

Appendix 3
(def-relation IS-AFTER (?time-range-2 ?time-range-1)
"It means that time-range-2 starts after the time-range-1 is finished."
; constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (follows (the ?st (has-start-time ?time-range-2 ?st))

(the ?et (has-end-time ?time-range-1 ?et))))

(def-relation MEETS (?time-range-1 ?time-range-2)
"It means that time-range-2 starts at the same time when time-range-1 ends."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (time-points-equal (the ?et (has-end-time ?time-range-l ?et))

(the ?st (has-start-time ?time-range-2 ?st))))

(def-relation OVERLAPS (?time-range-l ?time-range-2)
"It means that two time-ranges overlaps with each other."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (and (precedes (the ?st-l (has-start-time ?time-range-1 ?st-l))

(the ?st-2 (has-start-time ?time-range-2 ?st-2)))
(follows (the ?et-l (has-end-time ?time-range-1 ?et-l))

(the ?st-2 (has-start-time ?time-range-2 ?st-2)))
(precedes (the ?et-l (has-end-time ?time-range-1 ?et-l))(the ?et-2 (has-end-time ?time-range-2 ?et-2)))))

(def-relation ST.ARTS-SIMULTANEOUSLY (?time-range-1 ?time-range-2)
"It means that both the time-ranges starts at the same time."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (time-points-equal (the ?st-l (has-start-time ?time-range-1 ?st-l))

(the ?st-2 (has-start-time ?time-range-2 ?st-2))))

(def-relation FINISHES-SIMULTANEOUSLY (?time-range-l ?time-range-2)
"It means that both the time-ranges finishes at the same time but time-range-1 starts after
time-range-2."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (time-points-equal (the ?et-l (has-end-time ?time-range-1 ?et-l))

(the ?et-2 (has-end-time ?time-range-2 ?et)-2)))

(def-relation TIME-RANGE-EQUf &LS (?time-range-1 ?time-range-2)
"It means that both the time-ranges starts and finsihes at the same time.": constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: if f-def (and (time-point-equals (the ?st-l (has-start-time ? time-range-1 ?st-D)

(the ?st-2 (has-start-time ?time-range-2 ?st-2)))
(time-point-equals (the ?et-l (has-end-time ?time-range-l ?et-l))

(the ?et-2 (has-end-time ?time-range-2 ?et-2)))))

(def-relation TIME-POINT-WITHIN-INTERVAL (?tp ? interval)
: constraint (and (time-point ?tp)

(interval ?interval))
: iff-def (and (or (follows

(follows
(follows
(follows
(follows
(follows

(or (precedes
(precedes
(precedes
(precedes
(precedes
(precedes

(the-slot-value ? interval has-end-time)
(the-slot-value ?tp second-of))
(the-slot-value ? interval has-end-time)
(the-slot-value ?tp minute-of))
(the-slot-value ? interval has-end-time)
(the-slot-value ?tp hour-of))
(the-slot-value ? interval has-end-time) (the-slot-value ?tp day-of))
(the-slot-value ? interval has-end-time) (the-slot-value ?tp month-of))
(the-slot-value ? interval has-end-time)
(the-slot-value ?tp year-of))).
(the-slot-value ?interval has-start-time)
(the-slot-value ?tp second-of))
(the-slot-value ?interval has-start-time)
(the-slot-value ?tp minute-of))
(the-slot-value ?interval has-start-time)
(the-slot-value ?tp hour-of))
(the-slot-value ?interval has-start-time)
(the-slot-value ?tp day-of))
(the-slot-value ?interval has-start-time)
(the-slot-value ?tp month-of))
(the-slot-value ?interval has-start-time)
(the-slot-value ?tp year-of)))))

272

Appendix 3

; These are derived relations,-;;

(def-relation IS-DURING (?time-range-1 ?time-range-2)
"It means that time-range-2 is in between (during) the the start and end time of time-
range- 1 . "
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (and (precedes (the ?st-l (has-start-time ?time-range-l ?st-l))

(the ?st-2 (has-start-time ?time-range-2 ?st-2)))
(follows (the ?et-l (has-end-time ?time-range-1 ?et-l))

(the ?et-2 (has-end-time ?time-range-2 ?et-2)))))

(def-relation JOB-ACTIVITY-TIME-RANGE-IS-DURING (?jtr-l ?jtr-2): constraint (and (job-time-range ?jtr-1)
(time-range ?jtr-2))

: iff-def (and (precedes (the ?est-l (has-earliest-start-time ?jtr-l ?est-l))
(the ?est-2 (has-earliest-start-time ?jtr-2 ?est-2)))

(follows (the ?let-l (has-latest-end-time ?jtr-1 ?let-l))
(the ?let-2 (has-latest-end-time ?jtr-2 ?let-2)))))

(def-relation BEFORE-OR-EQUAL (?time-range-1 ?time-range-2)
"It says that either one time range is before the other or is equal to the other time range."
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (or (before ?time-range-l .?time-range-2)

(meets ?time-range-1 ?time-range2)))

(def-relation AFTER-OR-EQUAL (?time-range-1 ?time-range-2)
"It says that either one time range is after the other or is equal to the other time range."
: constraint (and (time-range ?time-range-l)

(time-range ?time-range-2))
: iff-def (or (after ?time-range-1 ?time-range-2)

(meets ?time-range-1 ?time-range-2)))

(def-relation IS-AFTER-THAN (?time-range-l ?time-range-2)
"It is true when one time range is after the otehr time range."
: constraint (and (time-range ?time-range-l)

(time-range ?time-range-2))
: iff-def (is-after ?time-range-2 ?time-range-1))

(def-relation DURING-OR-EQUAL (?time-range-l ?time-range-2)
"It is true when one time range is-during the other time range or both these time ranges
starts or finishes simultaneously or they are equal to each other."
: constraint (and (time-range ? time-range-1)

(time-range ?time-range-2))
: iff-def (or (is-during ?time-range-1 ?time-range-2)

(Starts-simultaneously ?time-range-I ?time-range-2)
(finishes-simultaneously ?time-range-1 ?time-range-2)
(time-range-equals ?time-range-1 ?time-range-2)))

(def-relation JOB-TIME-RANGE-DURING-OR-EQUAL (?jtr ?time-range): constraint (and (job-time-range ?jtr)
(time-range ?time-range))

: iff-def (or (and (< (has-earliest-start-time ?jtr ?est)
(has-start-time ?time-range ?st))

(< (has-latest-end-time ?jtr ?let)
(has-end-time ?time-range ?et)))(and (= (has-earliest-start-time ?jtr ?est)
(has-start-time ?time-range ?st))

(= (has-latest-end-time ?jtr ?let)
(has-end-time ?time-range ?et)))))

(def-relation EQUAL-LENGTH-TIME-RANGES (?time-range-1 ?time-range-2)
"The two time ranges are of equal
the same time as well."
: constraint (and (job-time-range

(job-time-range
: iff-def (and (time-points-equal

(time-points-equal
(time-points-equal
(time-points-equal

length if they both start at the ssame time and finsh at
?time
?time
(the-
(the-
(the-
(the-
(the-
(the-
(the-
(the-

-range-1)
-range-2))
slot-value
slot-value
slot-value
slot-value
slot-value
slot-value
slot-value
slot-value

?time-range-1 has-earliest-start-time)
?time-range-2 has-earliest-start-time))
?time- range-1 has-latest-start-time)
?time-range-2 has-latest-start-time))
?time-range-1 has-earliest-end-time)
?time-range-2 has-earliest-end-time))
?time-range-1 has-latest-end-time)
?time-range-2 has-latest-end-time))))

279

Appendix 3
(def-relation OVERLAPS-OR-MEETS (?time-range-l ?time-range-2)
"It is true when two time ranges either overlaps with each other or meets each other."
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (or (overlaps ?time-range-1 ?time-range-2)

(meets ?time-range-1 ?time-range-2)))

(def-relation OVERLAPS-OR-EQUALS (?time-range-1 ?time-range-2)
"It is true when two time ranges either overlaps with each other and are equal to each
other."
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (or (overlaps ?time-range-1 ?time-range-2)

(time-range-equals ?time-range-1 ?time-range-2)))

(def-relation STARTS-OR-EQUAL (?time-range-l ?time-range-2)
"It is true when two time ranges either starts simulataneously or are equal to each other."
: constraint (and (time-range ?time-range-l)

(time-range ?time-range-2))
: iff-def (or (starts-simultaneously ?time-range-1 ?time-range-2)

(time-range-equals ?time-range-l ?time-range-2)))

(def-relation FINISHES-OR-EQUALS (?time-range-l ?time-range-2)
"It is true when two time ranges finishes simultaneously or are equal to each other.": constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (or (finishes-simultaneously ?time-range-1 ?time-range-2)

(time-range-equa1s ?time-range-1 ?time-range-2)))

(def-relation DISJOINT-TIME-RANGES (?time-range-l ?time-range-2)
"It is true if either time-range-1 is before time-range-2 or time-range-2 is before time- range -1. "
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
; iff-def (or (before ?time-range-1 ?time-range-2)

(before ?time-ranga-2 ?time-range-1)))

(def-relation TIME-RANGES-NOT-EXCEED (?job-time-range ?time-range) i,
: constraint (and (exists ?j (job.?j has-time-range ?job-time-range))

(time-range ?tr))
: iff-def (and (precedes (the ?est (has-earliest-start-time ?job-time-range ?est))(the ?et (has-end-time ? time-range ?et)))

(follows (the ?let (has-latest-end-time ?job-time-range ?let))
(the ?st (has-start-time ?tr ?st)))

(precedes (the ?let (has-latest-end-time ?job-time-range ?let))
(the ?et (has-end-time ?time-range let)))))

(def-relation TIME-RANGES-INTERSECT (?jtr ?tr)
. : constraint (and (job-time-range ?jtr)

(time-range ?tr))
: iff-def (and (follows (the Test (has-earliest-start-time ?jtr Test))

(the Tst (has-start-time Ttr Tst)))(follows (the Tlst (has-latest-start-time Tjtr Tlst))
(the Tst (has-start-time Ttr Tst)))

(precedes (the Teet (has-earliest-end-time Tjtr Teet))
(the Tet (has-end-time Ttr Tet)))

(precedes (the Tlet (has-latest-end-time Tjtr Tlet))
(the Tet (has-end-time Ttr Tet)))))

(def-relation DUE-DATE-EARLIER-THAN-OTHER (Tddl Tdd2)
"It says that if each of the slot value of due-date-1 precedes every slot-value of due- date-2 then due-date-1 is earlier-than due-date-2."
: constraint (and (calendar-date Tddl)

(calendar-date Tdd2)): iff-def (and (predeces (the-slot-value Tddl day-of)
(the-slot-value Tdd2 day-of))

(precedes (the-slot-value Tddl month-of)
(the-slot-value Tdd2 month-of))

(precedes (the-slot-value Tddl year-of)
(the-slot-value Tdd2 year-of))))

(def-relation DUE-DATE-LATER-THAN-OTHER (Tdd2 Tddl)
"It says that is each of the slot value of due-date-2 follows every slot-value of due-date-
1 then due-date-2 is later than due-date-1."
: constraint (and (calendar-date Tddl)

(calendar-date Tdd2))
: iff-def (and (follows (the-slot-value Tdd2 day-of)

(the-slot-value Tddl day-of))
(follows (the-slot-value Tdd2 month-of)

(the-slot-value Tddl month-of))
(follows (the-slot-value Tdd2 year-of)

(the-slot-value Tddl year-of))))

220

Appendix 3
;;The following relations are defined for the time intervals exactly as it is described in J F Allen's paper.
(def-relation TIME-INTERVAL-BEFORE (?til ?ti2)
: constraint (and (interval ?til)

(interval ?ti2))
: iff-def (and (precedes (the-slot-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time))(precedes (the-slot-value ?til has-end-time)
(the-slot-value ?ti2 has-end-time))))

(def-relation TIME-INTERVAL-EQUAL (?til ?ti2)
: constraint (and (interval ?til)(interval ?ti2))
: iff-def (and (time-points-equal (the-slot-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time))
(time-points-equal (the-slot-value ?til has-end-time)

(the-slot-value ?ti2 has-end-time))))
(def-relation TIME-INTERVAL-MEETS (?til ?ti2)
: constraint (and (interval ?til)(interval ?ti2))
: iff-def (time-points-equal (the-slot-value ?ti2 has-end-time)

(the-slot-value ?til has-start-time)))

(def-relation TIME-INTERVAL-OVERLAPS (?til ?ti2)
: constraint (and (interval ?til)

(interval ?ti2))
: iff-def (and (precedes (the-slot-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time))(follows (the-slot-value ?til has-end-time)
(the-slot-value ?ti2 has-start-time))

(precedes (the-slot-value ?til has-end-time)
(the-slot-value ?ti2 has-end-time))))

(def-relation TIME-INTERVAL-DURING (?til ?ti2)
: constraint (and (interval ?til)(interval ?ti2))
: iff-def (and (precedes (the-slot-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time))
(follows (the-slot-value ?til has-end-time)

(the-slot-value ?ti2 has-end-time))))

(def-relation TIME-INTERVAL-STARTS (?til ?ti2)
: constraint (and (interval ?til)

(interval ?ti2))
: iff-def (time-points-equal (the-sict-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time)))

(def-relation TIME-INTERVAL-FINISHES (?til ?ti2)
: constraint (and (interval ?til)(interval ?ti2))
: iff-def (time-points-equal (the-slot-value ?til has-end-time)

(the-slot-value ?ti2 has-end-time)))

(Alex) Chao-Chiang Meng and Michael Sullivan (1991). Logos A Constraint-Directed;;;
Reasoning Sheel for Operations M;;anagem;;;ent, IEEE Expert, 6(1), pp.01-lS.; ; ; ; ; ; ;

(def-relation TIME-INTERVAL-ELAPSED-BY (?til ?ti2)
"This relation states, if one interval precedes another interval, then, it says, by how much time another interval succeeds the prior interval."
: constraint (and (interval ?til)

(interval ?ti2)
(has-start-time ?til ?stl)
(has-end-time ?til ?etl)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (or (precedes ?etl ?st2)
(= ?etl

(+ (?st2 (= ?diff-tp
(time-point-difference ?etl ?st2)))))))

227

Appendix 3
(def-relation TIME-INTERVAL-DURING-DELAY-AND-LAG (?til ?ti2)
"This relation states that if two intervals are during each other, and if one interval
delays or lag from the other interval, it states by how much margin the interval has
delayed or laged."
: constraint (and (interval ?til)(has-start-time ?til ?stl)

(has-end-time ?til ?etl)
(interval ?ti2)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (and (or (follows ?st2 ?stl)(= ?st2
(+ (?stl

(= ?diff-tp
(time-point-difference ?st2 ?stl))))))

(or (precedes ?st2 ?etl)(= ?etl
(+ (?et2

(= ?diff-tp
(time-point-difference ?etl ?et2))))))))

(def-relation TIME-INTERVAL-OVERLAP-OR-LAG (?til ?ti2)
"This relation states that if two intervals are overlapping each other, and if one interval
lags another interval, then it says by how much margin these intervals are laged."
: constraint (and (interval ?til)

(has-start-time ?til ?stl)
(has-end-time ?til ?etl)
(interval ?ti2)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (and (precedes ?stl ?st2)(or (and (precedes ?st2 ?etl)
(precedes ?etl ?et2))

(= ?etl
(+ (?stl

(= ?diff-tp
(time-point-difference ?etl ?st2))))))))

(def-relation TIME-INTERVAL-STARTS-BY (?til ?ti2)
"This relation states that if two intervals starts at the same time, and if one interval
finishes after another interval then it says by how much margin the interval finishes over
other.": constraint (and (interval ?til)

(has-start-time ?til ?stl)
(has-end-time ?til ?etl)(interval ?ti2)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (and (time-points-equal ?stl ?st2)
(or (precedes ?etl ?et2)

(= ?et2
(+ (?etl(= ?diff-tp

(time-point-difference ?et2 ?etl))))))))

(def-relation TIME-INTERVAL-FINISHES-DELAY (?til ?ti2)
"This relation stats that if two interval finishes at the same time, but they have
different start-time, then it says, by how much time these two intervals differ in terms of
thri start times."
: constraint (and (interval ?til)(has-start-time ?til ?stl)

(has-end-time ?til ?etl)
(interval ?ti2)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (and (or (follows ?stl ?st2)
(= ?stl(+ (?st2

(= ?diff-tp
(time-point-difference ??stl ?st2))))))

(time-points-equal ?etl ?et2)))

222

Appendix 4

A REFERENECE GUIDE TO OCML
Because our library is implemented by using the Operational Coneeptual Modelling

Language (OCML) (Motta, 1999), here we provide a reference guide to some of the

important modelling constructs and the basie modelling meehanism supported by OCML. .

4.1 Different types of constructs in OCML
In OCML the following three types of constructs are supported: functional terms, control

terms, and logieal expressions. These are discussed in the following bullet points.

• Functional terms: It is used to speeify an objeet in the cuirent domain of interest.

The ftinctional term can be a constant, a variable (it is represented as a Lisp symbol

with the question mark prefix, e.g. ?x), a string (it is represented by a double quote

"a g e n e r ic l i b r a r y of sch ed u lin g "), a funetion application (it is

represented by means of the Lisp macro d e f - fu n c tio n) , or it can be constructed

by special term constructor. The special term constructs can be one of the

following; i f , cond, th e , s e to f a l l , f in d a l l , quote , and i n -e n v i ronment;

• Control terms: Modelling the problem solving behaviour involves more than

making statements and describing entities in the world. Control regimes are

required to specify actions and describe the order in which these are executed.

OCML supports the specification of sequential, iterative, and conditional control

structures by means of a number of eontrol term constructors such as re p e a t,

loop, do, i f and cond, etc;

• Logical expressions: OCML also supports a mechanism for specifying the logical

expressions. Some of the typieal logieal operators that ean be used to construct the

logical expressions in OCML are the following ones: and, or, n o t, =>, <=>, and

quantifiers such as f o r a l l and e x is t s . The simplest type of logieal expression in

OCML is a relation expression which is specified by means of Lisp macro d ef -

r e la t io n .

4.2 Basic modelling in OCML
OCML provide mechanisms for describing various types of primitives for modelling whieh

are as follows: classes, instances, relations, functions, rules, proeedures, and axioms.

Appendix 4

4.2.1 OCML classes

OCML supports the specification of classes and instanees and the inheritance of slots and

values in terms of isa hierarchy. The classes in OCML are represented in terms of the Lisp

macro called, d e f - c la s s . It takes as an argumentation a name of a class, a list of

superclasses if the class is inheriting the specification from other classes, and a list of slot

specifications. In the case where the class is a goal-specification task (cf. Appendix 1) then

the input and output role specifies the input knowledge roles required by the class and

output role specifies what the class is expected to produce as an output to the class. The

following box shows the examples of the class specification in OCML.

(def-class JOB () ?j
((has-activity : type list : cardinality 1

: documentation "It states that each job has a list
of activities associated with it.")

(requires-resource : type resource :min-cardinality 1)
(requires-resource-type : type resource-type :min-cardinality 1)
(has-time-range : type job-time-range :max-cardinality 1)
(has-due-date : type calendar-date :max-cardinality 1)
(has-durâtion : type duration :max-cardinality 1)
(has-load : type integer zdefault-value 1)))

: iff-def (exists ?task (and (scheduling-task ?task)
(member ?j (role-value ?task has-jobs)))))

(def-class nimbus-1-job (job))

OCML provides a support for the usual slot specification that is found in frame-based

representation.

• lvalue: A value that is inherited by all instances of class;

• :default-value: A value that is inherited by all instances of a class unless

overridden by other values;

• :type: The value of this option should be another class, C and all values of the

associated slot should be instances of C.

• :max-cardinality: The maximum numbers of slot values allowed for a slot.

• :min-cardinality: The minimum numbers of slot values required for a slot.

• : cardinality: The number of slot values required for a slot. This option subsumes

both maximum and minimum cardinality values.

• :documentatioii: It represents a documentation describing a slot.

4.2.2 OCML instances

OCML instances are the members of a class and they are specified in terms of a Lisp

macro d e f - in s ta n c e . It takes as arguments the name of the instance, the parent of the

instance (i.e., the most specific class to which the instance belongs to), optional

documentation, and a number of slot-value pairs. As it has been shown in the following

box the slot of an instance can have multiple values, e.g. h a s - a c t i v i t i e s . The follows

box shows the example of OCML instance.

224

Appendix 4

(def-instance nimbus-1 nimbus-1-job
((has-activities '(nimbus-1-communication-1 nimbus-1-communication-2

nimbus-1-communication-3 nimbus-1-communication-4))
(requires-resource '(low-range-antenna))
(has-time-range nimbus-1-time-range)
(has-duration 60-minute-durâtion)))

4.2.3 OCML relations

In OCML relations allow the users to define labelled n-ary relationships between different

entities and the relations are specified in terms of a Lisp macro called d e f - r e la t io n . It

takes as an argument the name of a relation, its argument schema, optional documentation,

and a number of relation options. The relation options in particular not only specify the

formal semantics of a relation but it also provides operational nature of OCML. The

following bullet points discuss the relation options in OCML.

• :iff-def - It specifies both sufficient and necessary conditions for the relation to

hold for a given set of arguments. It provides a support for both constraint checking

as well as proof meehanism;

• :sufficient - It specifies a sufficient condition for the relation to hold for a given set

of arguments. It also provides, a support for the proof mechanism but does not

support constraint checking;

• : constraint - It specifies an expression which follows from the definition of the

relation and must be true for each instance of a relation. It provides a support for

constraint checking but does not provide a support for proof mechanism;

» :def - This is for the compatibility with Ontolingua. It specifies a constraint which

is also meant to provide a partial definition of a relation. It provides a support for

constraint checking but does not provide a support for proof mechanism;

• :axiom-def - A statement which mentions the relation to which it is associated. It

provides a mechanism to associate theory axioms with specific relation;

• :prove-by - It is used in order to provide a support for the proof mechanism but

does not support the constraint checking;

• :lisp-fun - It is used in order to provide a support for the proof mechanism but does

not support the constraint checking.

The following box shows the OCML definition to specify the relations.

226

Appendix 4

(def-relation ACTIVITY-PRECEDES (?al ?a2)
: constraint (and (activity ?al)

(activity ?a2))
:iff-def (and (has-time-range ?al ?jtr-al)

(has-time-range ?a2 ?jtr-a2)
(has-duration ?al ?dl)
(<= (time-point-sum (the-slot-value ?jtr-al has-earliest-start-

time)
(magnitude-of-durâtion ?dl))

(the-slot-value ?jtr-a2 has-earliest-start-time)))
:axiom-def (defines-partial-order activity-precedes))

In some cases we may want to use the a keyword only for specification and not

operationally and to deal with such kind of situations OCML provides a meta-keyword

called :no-op, which specifies that the enclosed relation only plays a specification role.

The following box shows the : no-op specification in OCML.

(def-class SCHEDULE-EXTENSION-ACTIVITY-OPERATOR-BODY (lambda-expression) ?x
:no-op (: constraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?]))

(and (has-activities ?j ?list)
(member ?z ?list))))))

4.2.4 OCML functions

The functions in general and in OCML in particular define a mapping between a list of

input arguments and its output argument. The functions are applied to ground terms to

generate function values. In OCML functions are specified by the Lisp macro called d e f -

fu n c tio n , which takes as an argument the name of a function, its argument list, an

optional variable indicating the output (it is represented as follows: -> ?c), optional

documentation, and function specification options such as -.def, - .c o n s tra in t, : body,

and ; l i s p - fu n . The most interesting function specification options are the :body and

: l i s p - fu n . The former specifies a functional term which is evaluated in an environment

in which the variables in the function are bound to the actual arguments, while the latter

makes it possible to evaluate an OCML function by means of a procedural attachment. The

following box shows an example of the OCML function.

(def-function ALL-ASSIGNABLE-JOBS (?js ?sc) -> ?x
: constraint (and (list ?js)

(every ?js job)
(schedule-model ?sc))

:body (setofall ?x (and (member ?x ?js)
(unassigned-job ?x ?sc)
(job-assignable ?x ?sc))))

(def-function JOB-TIME-RANGE-DURATION (?j ?jtr) -> ?time-point
: constraint (and (job ?j)

(has-time-range ?j ?jtr)
(job-time-range ?jtr))

zbody (- (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?jtr has-earliest-start-time)))

4.2.5 OCML rules; rule-based reasoning

OCML also supports the specification of backward and forward rules. The former consist

of number of backward clauses and each of these backward clauses specifies the different

2^6

Appendix 4

goal-subgoal decomposition. While carrying out a proof by means of a backward clause

OCML interpreter try to prove the relevant goal by firing the clauses in the order in which

they are listed in the rule definition. The following box shows the example of OCML

backwards rule.

(def-rule possible-resources-1
((possible-resources-for-job ?x ?r)
if
(nimbus-1-job ?x)
(low-range-antenna-resource ?r)
(handles-job ?r ?x)
(requires-resource ?x ?r)))

The forwards rule consists of zero or more antecedents and one or more consequents.

Antecedents are restricted to relation expressions, while any logical expression can be a

consequent. In OCML when the forward rule is executed then each consequent is treated as

a goal to be proven and tries to prove them until one fails. The following box shows a

representation of the forward rule in OCML.

(def-rule Nimbus-1-requires-low-range-antenna
(requires-resource ?nl ?ls)
then
(exec (tell (has-job-belonging ?ls ?nl)))
(exec (output "requires a resource -3 ~S" ?nl ?ls)))

4.2.6 OCML procedures

In OCML, procedures define actions or sequences of actions which cannot be characterised

as functions between input and output arguments. For instance, the example shown in the

following box is the Base Ontology definition specified to set the value of a slot. This

includes a u n a s s e r t statement, which first removes any existing values from the slot, and

uses a t e l l statement to add a new value. The t e l l and u n a s s e r t are OCML

procedures themselves, where the former takes a ground logical expression and adds it to

the current model and the latter takes a relation expression and removes from the current

model all assertions which match it.

(def-procedure set-slot-value (?i ?s ?v)
: constraint (and (instance-of ?i ?c)

(slot-of ?s ?c))
zbody (do (unassert (list-of ?s ?i ?any))

(tell (list-of ?s ?i ?v))))

4.3 Summary
The primary role of OCML language is to provide operational knowledge modelling

facilities. In a nutshell, it provides support for functional and control statements as well as

the proof system which integrates inheritance with backward chaining, function evaluation,

and procedural attachments. Because the main objective of OCML is to give operational

support, it aims to support different styles of knowledge modelling such as informal,

formal, and operational. Finally, OCML provides support for export mechanisms to other

2g7

Appendix 4

representations, including Ontolingua (Farquhar et a l, 1997) and OWL (McGuinness and

Harmclcn, 2004).

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

