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Abstract

In this thesis we propose a generic library of scheduling problem-solving methods. As a 

first approximation, scheduling can be defined as an assignment of jobs and activities to 

resources and time ranges in accordance with a number of constraints and requirements. 

In some cases optimisation criteria may also be included in the problem specification.

Although, several attempts have been made in the past at developing the libraries of 

scheduling problem-solvers, these only provide limited coverage. Many lack generality, 

as they subscribe to a particular scheduling domain. Others simply implement a 

particular problem-solving technique, which may be applicable only to a subset of the 

space of scheduling problems. In addition, most of these libraries fail to provide the 

required degree of depth and precision, which is needed both to obtain a formal account 

of scheduling problem solving and to provide effective support for development of 

scheduling applications by reuse.

Our library subscribes to the Task-Method-Domain-Application (TMDA) knowledge 

modelling framework, which provides a structured organisation for the different 

components of the library. In line with the organisation proposed by TMDA, we first 

developed a generic scheduling task ontology, which formalises the space of scheduling 

problems independently of any particular application domain, or problem solving 

method. Then we constructed a task-specific, but domain independent model of 

scheduling problem-solving, which generalises from the variety of approaches to 

scheduling problem-solving, which can be found in literature. The generic nature of this 

model was demonstrated by constructing seven methods for scheduling, as alternative 

specialisation of the model. Finally, we validated our library on a number of 

applications to demonstrate its generic nature and effective support for the analysis and 

development of scheduling applications.
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Chapter 1

INTRODUCTION

In this thesis we propose a library of reusable eomponents for building problem-solvers for 

scheduling.

Scheduling is the central theme of our thesis. As a first ‘high-level’ approximation, we 

can say that the scheduling task deals with the assignment o f jobs and activities to 

resources within a specific time range in accordance with relevant constraints and 

requirements. Scheduling is a decision making process in today’s industry. Typical 

domains include: manufacturing scheduling, project scheduling, resource allocation 

scheduling, transportation scheduling, mass transit scheduling, scheduling nurse shifts in 

hospital, air gate assignment scheduling, hydropower scheduling, and so forth. This list is 

by no means an exhaustive one, but gives an idea of the ubiquity of the scheduling task. 

Each scheduling domain imposes its unique constraints and requirements, which must be 

obeyed by a scheduler while devising a schedule, because they determine the space of a 

valid solution. A process of constructing a schedule becomes even more challenging due to 

the uncertain, dynamic, and unpredictable circumstances that occur in an environment 

where the scheduling task has to be carried out (Fox and Kempf, 1985). For instance, in a 

manufacturing scheduling environment new orders come continuously, which take priority 

over the existing ones, and therefore, the existing schedule may need to be revised. To 

come up with a good quality schedule in an uncertain environment is a highly creative 

activity. A scheduler needs to acquire systematic knowledge about the various events that 

might take place in a scheduling environment.

The term ‘knowledge’ that is used in the preceding paragraph and which will be 

understood in this thesis can be conceived as having the following three implications 

(Nickols, 2000): a) it represents the state of an agent (either human or artificial) which is 

aware of the facts, methods, rules, axioms, and techniques of an environment within which 

it operates; b) it indicates a competence like notion, the ability of an agent which is capable 

of executing rational actions to reach a solution; and e) it can be captured and acquired 

from experts and codified in a computational system. Nonaka and Takeuchi (1995) 

emphasises that the collective intellectual knowledge of a firm can be considered as a 

‘strategic resource’ of the firm.

Having briefly introduced the two main components of this thesis, in the following 

section we describe a case study of a high precision machine shop, which aims at
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highlighting a need for considering the scheduling task as a serious activity in a complex 

environment of a modem industry to smoothen its operation. Moreover, it also emphasises 

the fact that wherever possible the system eomponents must be made as reusable as 

possible to avoid their brittle nature. In section 1.2 we will provide a brief overview of 

existing research in the scheduling area and highlight the limitations of the existing 

scheduling libraries. In section 1.3, we will outline our approach to library construction 

showing how we approach the limitations of the existing scheduling libraries. In section

1.4, we will then briefly describe the main contributions of our research. Finally, in section

1.5, we conclude the chapter by outlining the organisation of our thesis.

1.1 A case-study in a high-precision manufacturing shop
Here, we present a small case-study (McKay, Safayani, and Buzacott, 1988) that will 

explicate the importance of the scheduling task.

The environment we describe here is a large machine shop that manufactures high- 

precision components for the aerospace industry. Each high-precision component has 

approximately 80 operations, which need to be performed over 300 different work-stations, 

with an average of 5,000 open work orders. An initial complexity in this environment is 

imposed by the size of the application alone, and thus the need for computational support is 

significant. However, this is not the end of the story; there are various other factors that 

add complexity to this environment.

The set-up and processing times for manufacturing each precision component vary in 

time. That is to say, the time required to produce a component on the same machine with 

the same resource can vary from 3 to 6 days. Therefore, the due date of all other 

components that depend on the current component may need to be updated according to 

the changes in the current operations. Moreover, the processing times of the components 

within each batch change almost every time primarily due to unpredictable organisational 

factors like unavailability of the resources or machine failure. Such unforeseen events 

make the prediction and forecasting difficult.

The manufacturing of the components can be pre-empted at any time and can start 

somewhere else on the time line. Naturally, the temporal order among components needs 

to be amended in compliance with the changes introduced by a pre-empted component. At 

times the importance of the components changes dynamically according to changes that 

may occur in the manufacturing conditions in the aerospace industry. Consequently, 

components with an increased importance need to be pushed forward to fulfil their new 

due dates. Moreover, the top-level management may favour rush orders which must be
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accommodated in the existing batch for their accomplishment. These last minute orders 

can make the existing components become late. The raw material may fail to arrive in time 

because of the wrong forecasting performed by the inventory-management department. 

Even when the resources arrive on time, the existing resources may become unavailable 

during the critical stages of manufacturing. In some cases, the components have to be re

directed to alternative resources or in the worst-case scenario they cannot be executed and 

therefore miss their dispatching dates. The final complexity is introduced by the shop’s 

atmospheric conditions. Because these are high-precision components, the machines on 

which the manufacturing of these components take place are high-preeision machines, 

which are very sensitive to the atmospheric conditions. Even a small change of a few 

degrees in the shop’s temperature may be enough to throw the eomponents out of 

precision.

This particular shop works seven days a week in three shifts to meet the demand levels 

placed by customers. Moreover, almost each member of personnel in each shift works 

overtime. Nevertheless the shop often fails to meet the required throughput. In a nutshell, 

this shop exhibits different types of complexities that can be observed in the real world. It 

can be envisaged that a stable scheduling system that can take into consideration all the 

intricacies in the manufacturing environment is necessary for the smooth operation of this 

shop.

Analogous to the manufacturing shop discussed in this section, other domains of 

scheduling also have their own complexities that differ in nature, and a sound scheduling 

system is important for their smooth performance. A quote from the working research 

papers of NASA exemplifies the importanee of the scheduling task in space operations:

“Operations on most U.S. manned space missions, including Space Shuttle/Spacelab 

flights, are scheduled in great detail long before launch” (Maxwell and Howell, 1995).

Obviously, to eonstruct a scheduling system that deals with different issues involved in a 

seheduling domain is a challenging task, which requires a substantial amount of 

investment. Usually, a scheduler (here we refer to a scheduler as a human agent) acquires 

his/her vast amount of expertise through years of experience and practice, and such a 

repertoire of expertise forms his/her ‘knowledge-base’. This allows a scheduler to devise a 

good quality schedule by tackling all the complexities that are involved in a scheduling 

environment. Obviously, a natural goal here would be to determine the extent to which 

such a high level dependeney on human expertise can be redueed by means of a 

eomputational system.
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Having formalised a scheduler’s knowledge in a eomputational system in order to reduce 

human dependency, another important issue needs to be tackled, which deals with 

determining the level of reusability system components must attain. It is a serious question 

because failing to tackle this question would result in developing a system that subscribes 

to a specific scheduling domain that becomes obsolete quickly, mainly because of its 

incapability of handling specifications from a different scheduling domain. Various 

techniques can be used to elicit and acquire knowledge from human experts which in turn 

help in constructing the reusable eomponents to tackle the scheduling task across different 

domains. However, this very process of acquiring and representing expert knowledge has 

traditionally been considered as a bottleneck activity (Gaines and Shaw, 1993). A 

computational system which by making use of its knowledge-base reaches a solution to a 

problem can then be referred to as a knowledge-based system (KBS).

Here, we need to make a decision about how to represent such acquired knowledge into 

a computer system. The main reason why such a decision needs to be taken is because, as 

has been pointed out by Steels (1990), there is an observable gap between the knowledge 

and problem-solving expertise observed in the human experts and the implementation 

level.. Newell (1982) in his cornerstone article ‘The Knowledge Level’ has already 

proposed an answer to this question by formulating ‘the knowledge-level hypothesis

'"'Knowledge is to be characterised entirely functionally, in terms o f what it does and not 

structurally, in terms o f physical objects with particular properties and relations'”.

In the same article, Newell proposed the ‘principle o f rationality \  which postulates the 

rational problem-solving behaviour of an agent:

“I f  the agent has the knowledge about choosing particular action among the several 

available actions, which can lead towards the solution or goal state then the agent will 

choose that particular action ”.

Consistently with Newell’s proposal, and in line with the work by Motta (1999), Steels 

(1990), and Breuker and Wielinga (1985), etc. in this thesis we will follow ‘the knowledge 

modelling approach’ to KBS construction. Thus knowledge will be systematically 

represented at the knowledge level independently of its physical realisation in a 

computational system. Another aspect of the knowledge modelling paradigm is that the 

knowledge acquisition (KA) process is driven by pre-existing knowledge models, often 

represented as ontologies (Gruber, 1995). More importantly, as pointed out by Motta 

(2001), the KA approach to the system construction has following advantages: the discrete 

pieces of knowledge can be elicited from a domain expert and encoded in a computational
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system and therefore a virtual domain expert can be constructed that can replicate the 

problem-solving expertise of a human domain expert. Finally, the cognitive perspective of 

the KA theory as suggested by Newell and Simon (1976) and Newell (1982), proposed a 

production system to describe a general intelligent behaviour in a problem space.

In the following section, we provide a brief background of research in the field of 

scheduling. More detailed literature review will be presented in Chapters 2 and 3.

1.2 Quick overview of scheduling research

1.2.1 Operations research and artificial intelligence

Scheduling is a meticulously researched area in Management Science and Operations 

Research (OR) (Conway et ah, 1967; Baker, 1974; French, 1982). Although, the classical 

techniques of OR have proposed sophisticated mathematical models and algorithms, these 

efforts have shown limited applicability when implemented in real-life applications, as 

they cannot handle heterogeneous resources and their rigid and static formulation fails to 

provide enough leverage to handle the dynamicity present in the real-world.

Scheduling has also garnered serious attention from AI researchers. Fox and his group in 

the 1980s started developing the first intelligent scheduling system called ISIS and in later 

years several intelligent scheduling systems have emerged (Prosser and Buchanan, 1994) 

to tackle scheduling problems in different domains. Although these systems have exploited 

various techniques in AI suceessfully their major drawback was domain specificity, which 

restricted the reusability of these systems within a single application domain. 

Consequently, a new system had to be built from scratch for each domain.

1.2.2 Knowledge modelling approach
Reusability is the main concern of research in knowledge modelling. Here, the construction 

of a KBS can be realised by applying libraries of problem-solving methods (PSMs) (Motta, 

1999; Breuker and van de Velde, 1994). An Ontology (Gruber, 1995) and a PSM (Gomez- 

Perez and Benjamins, 1999) are the two most central components in the construction of a 

library. These two components are instrumental particularly because of their ability to 

enhance the sharing and reusability of system components over wider domains. A PSM 

ean either be task specific or task independent. Task specific PSMs are developed to tackle 

specific types of Generic Tasks (Chandrasekaran, 1986), such as planning, parametric 

design, diagnosis, assignment, and so on. Task independent PSMs do not subscribe to any 

particular task, but rather provide reasoning steps in terms of a generic paradigm, such as 

search (Newell and Simon, 1976).
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As discussed in Wielinga and Schreiber (1997) various knowledge-intensive PSMs’ have 

been developed to tackle classes of synthesis tasks, such as design, planning, assignment, 

scheduling. Some influential examples include Propose & Backtrack (Runkel et a l, 1996), 

Propose & Improve (Motta, 1999), Propose & Revise (Marcus and McDermott, 1989), 

Propose & Exchange (Poeck and Puppe, 1992), and so on.

A knowledge modelling framework provides a methodology to organise the different 

building-blocks of a library. Moreover, it also specifies how the different components of a 

library are related to each other. Some of the influential knowledge modelling frameworks 

developed in the field are Generic Tasks Structures (Bylander and Chandrasekaran, 1988; 

Chandrasekaran et a l, 1992), Role-Limiting Methods (Marcus, 1988), Protégé-II (Musen 

et a l, 1993), CommonKADS (Schreiber et a l, 1994), MIKE (Angele et a l, 1998), 

Components of Expertise (Steels, 1990), EXPECT (Swartout and Gil, 1995), GDM 

(Terpstra et a l, 1993), and Task-Method-Domain-Application (TMDA) (Motta, 1999).

Based on the knowledge modelling frameworks enumerated above various task-specific 

libraries have been constructed. Some examples of task-specific libraries include diagnosis 

(Benjamins, 1995), parametric design (Motta and Zdrahal, 1996), planning (Valente et a l, 

1998), assessment (Valente and Lockenhoff, 1993), etc. The research conducted in this 

thesis subscribes to this stream where our aim is to construct a generic library o f  

scheduling PSMs.

1.2.3 Limitations of existing libraries
In the field of scheduling, various attempts have been made in the past at constructing 

libraries (Hori and Yoshida, 1998; Sundin, 1994; Tijerino and Mizoguchi, 1993; Le Pape, 

1994). However, these earlier attempts have failed to provide comprehensive results 

mainly because of the following reasons:

• Partial coverage of knowledge-intensive methods; Existing libraries for scheduling 

provide either very little or no coverage at all for the knowledge-intensive PSMs to 

tackle the scheduling task. For instance, the CommonKADS library for assignment and 

scheduling tasks (Sundin, 1994) only comprises the Propose & Revise method.

' By “knowledge-intensive” we mean that these PSMs make heavy use of the application domain knowledge 
in order to improve their reasoning efficiency. For instance, the Propose & Revise method (Marcus and 
McDermott, 1989) relies on the application domain knowledge to determine how the constraints that are 
violated while constructing a schedule can be fixed by proposing a new set of assignments for the jobs 
involved in conflict.
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• Domain specificity: Existing libraries for seheduling subscribe to specific scheduling 

domains, and therefore, the reusability of these libraries is limited. For instance, Hori 

and Yoshida’s library (1998) subscribes to the domain of production scheduling. 

Therefore, all the problem-solvers from their library are developed in such a way that 

they can only be used to tackle production scheduling.

• Partial coverage to validate different areas of the scheduling task: As described in 

the first bullet point, because the existing scheduling libraries fail to provide a 

comprehensive coverage of the different knowledge-intensive PSMs, the problem- 

solvers fi*om these libraries also fail to provide a comprehensive coverage of the 

different types of scheduling tasks. Generally speaking, these libraries validate the 

scheduling task only against completion and constraint violation, but they fail to cover 

requirement violation and optimisation issues.

• Unsuitability for knowledge acquisition: Some of the existing libraries subscribe to a 

specific problem-solving technique. For instance, ILOG SCHEDULER of Le Pape 

(1994) subscribes to constraint-satisfaetion as its problem-solving technique. Given this 

uniform approach to modelling as constraint-satisfaetion, it does not provide a good 

enough ‘epistemologieal’ framework to analyse the different knowledge-intensive tasks 

and methods that take place while constructing a schedule.

In the following section, we outline our research approach to construct a library of 

scheduling PSMs.

1.3 Research approach
In order to bridge the aforementioned problems with existing libraries of scheduling, in this 

thesis we aim to develop a task-specific, but domain independent library of scheduling 

PSMs. In our approach, we subscribe to the TMDA knowledge modelling framework 

(Motta, 1999), which provides a methodology to organise our library. A more detailed 

discussion for subscribing to the TMDA knowledge modelling can be found in Chapter 4 

(cf. Section 4.2). The entire library will be formalised by using the Operational Conceptual 

Modelling Language (OCML) (Motta, 1999). Figure 1.1 depicts a simplified version of our 

library architecture, the more detailed framework can be found in Chapter 4.
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Figure 1.1. The framework of the scheduling library.

The different building-blocks of our library are described in the following bullet points:

• Task component: It is the first building-block of our library where we formalise the 

nature of the scheduling problem in terms of a generic task ontology. The task ontology 

is generic because it does not subscribe to any particular application domain or 

reasoning method.

• Method component: It is the second building-block of the library, which provides the 

reasoning service of the library. As it can be observed from Figure 1.1, the method 

component of our library is divided into two sub-components: a generic model of 

scheduling problem-solving and the different PSMs. The former is a constructive 

component of the library that takes as an input the scheduling task ontology and then 

subscribes to the search problem-solving mechanism. It then provides a detailed 

breakdown of the main subtasks and methods (PSMs) for building complete problem- 

solvers for scheduling. At the next level we develop more specialised knowledge- 

intensive PSMs by reusing and specialising the high-level tasks included in the generic 

model of scheduling problem-solving. The PSMs in our library are constructed in such 

a way that they cover and reason about all the validation areas of scheduling.

• Domain and application components: These are the last two components of our 

library. At this stage, we validate the generic nature of our library by constructing 

scheduling applications from different domains.

1.4 Thesis contributions
The following main contributions can be drawn from our thesis.

• A generic task ontology for scheduling: Existing scheduling task ontologies (Hama et 

ah, 1992a, b; Mizoguchi et a l, 1995; Smith and Becker, 1997) provide limited results
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because in some cases they subscribe to a specific application domain or in some other 

cases they subscribe to specific ‘problem-solving shells’. More importantly, crucial 

ontological distinctions are typically missing from their underlying frameworks. Our 

task ontology overcomes these shortcomings by providing a user with computational 

model of scheduling that can be reused to acquire scheduling knowledge from a variety 

of domains;

• A generic model o f scheduling problem-solving: Existing libraries of scheduling fail 

to provide a clear separation between the reusable high-level components and the non- 

reusable components. Consequently, it becomes difficult to realise how the reusability 

of library components can be exploited to construct a new PSM. Our generic model of 

scheduling problem-solving component overcomes this problem by providing a high- 

level repertoire of reusable tasks and methods. As a result, it allows us to construct a 

new PSM simply by its reuse and specialisation^;

• Comprehensive repertoire o f scheduling problem-solving methods: Ours is the first 

library in the field that provides a comprehensive coverage of PSMs that can be used to 

tackle the different types of scheduling task;

• Contribution to KA in scheduling domain: Throughout this thesis we will construct 

various templates either in the form of different ontologies, such as task ontology and 

method ontology, or as generic templates that can be used to compare and contrast the 

knowledge requirements of different PSMs. These generic templates can be used to 

acquire the relevant scheduling knowledge through their instantiation. Here, the term 

‘knowledge acquisition’ is used to represent a theoretical knowledge engineering 

activity necessary to acquire the problem-solving knowledge needed to execute the 

reasoning process;

• Contribution to the epistemology o f the scheduling task: Our scheduling task 

ontology is based on a clear theoretical model of the scheduling task. This theoretical 

model distinguishes between components, such as constraints, requirements, and

 ̂For instance, as it will be shown in Chapter 7, a new PSM can be constructed quickly by subscribing to the 
method specific control regime called expand-incomplete-state (cf. Chapter 6, section 6.3.2) of 
Generic-Schedule and only those tasks will be newly defined that tackle the constraint and requirement 
violations and optimisation issues. E.g., in Propose & Revise (Marcus and McDermott, 1989) a new task 
called revise-schedule (cf. Section 7.3.4.2) is defined newly in expand-incomplete-state control 
regime in order to tackle the constraint violations, or the foci (i.e., constraint violations) in the revise phase 
are collected by defining a new method called collect-all-constraint-violations (cf. Section 
7.3.4.4), which achieves the task collect-state-foci from Generic-Schedule.



Chapter 1

preferences, which play a crucial role in validating a solution schedule. They are rather 

sloppily distinguished in the existing proposals (Hama et al., 1992a, b; Mizoguchi et 

al, 1995; Smith and Becker, 1997), if distinguished at all. Moreover, at the method 

level the generic model of scheduling problem-solving and the different PSMs provides 

a useful insight into the various tasks and methods that are crucial for constructing a 

schedule;

• Development o f new job-selection heuristics: While developing a generic model of 

scheduling problem-solving, we also developed three new job-selection heuristics that 

improve the selection of the correct candidate job and as a result improve the efficiency 

of a schedule construction. These heuristics were derived from the real-life scheduling 

scenario.

1.5 Thesis organisation
In this section, we describe how all the chapters in our thesis are organised. Figure 1.2

depicts the flow of the chapters in our thesis.

C hnpter 5

Chapter 4 Chapter 6 Chapter 8Chapter 1

Chapter 2

Chapter 3

Chapter 9

Introduction Literature
review

Library
architecture

and
methodology

Library
development

Evaluation
and

validation
study

Conclusion
and

summary

Figure 1.2. The thesis organisation.

Chapter 2 provides an overview of the different streams of research, such as OR and AI 

involved in< the scheduling area. While talking about the AI approaches to scheduling we 

first discuss the different techniques that can be used to tackle the scheduling task and then 

provide a review of the different intelligent scheduling systems that were developed in the 

1980s and 1990s. This chapter is particularly important in understanding the theoretical 

foundation that underlies the scheduling task. In Chapter 3, we describe the knowledge 

modelling approaches to library construction. This literature review is directly relevant to 

our thesis, whereby first we acquaint ourselves with the two most central concepts for 

constructing a library of knowledge-level components, i.e. ontology and PSM. Having 

done this, we review the status of the existing scheduling libraries and the scheduling task 

ontologies. Based on this part of the literature review, we highlight the major shortcomings

10
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in the existing approaches. These shortcomings allow us to formulate the specific 

objectives of our research. Finally, we conclude this chapter by providing an insight into 

how we will approach to overcome the shortcomings observed in existing scheduling 

libraries.

In Chapter 4, we describe the architecture and organisation of our library. Our library 

organisation can be understood by the TMDA knowledge modelling framework. Then we 

describe how different components in our library are interrelated with each other. Finally, 

we introduce the OCML knowledge modelling language, v/hich will be used to implement 

our library.

In Chapter 5, we describe the first building-block of our library, which can be realised by 

the generic scheduling task ontology. First, we describe a generic theoretical framework to 

frame the scheduling task, and then we describe all the important modelling decisions 

taken while developing the task ontology.

In Chapter 6, we describe the second building-block of our library, which is the generic 

model of scheduling problem-solving. Here, we first describe a generic method ontology 

necessary to characterise search based problem-solving behaviour of the scheduling task. 

Then we describe all the tasks and methods developed to construct the generic model of 

scheduling problem-solving. In Chapter 7, we describe the second part of the method 

component by discussing how all the PSMs in our library have been engineered by reusing 

high-level tasks and methods developed in a generic model of scheduling problem-solving.

In Chapter 8, we describe the evaluation study of our library conducted on five real-life 

and benchmark scheduling applications in order to confirm its generic nature.

In Chapter 9, we conclude our thesis by first summarising the research conducted in our 

thesis and then by discussing in further detail the main contributions that can be drawn 

from our research. Finally, we conclude our thesis by providing an insight into our future 

research directions.

11
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APPROACHES TO SCHEDULING PROBLEM-SOLVING: 

OPERATIONS RESEARCH AND ARTIFICIAL INTELLIGENCE'

The literature review presented in this chapter highlights the research approaches that have 

been evolved over the years in scheduling and related fields. In this chapter we will do 

more than simply summarising these past efforts and we will provide a roadmap for i) the 

different models that have been developed to characterise the scheduling task, ii) the 

techniques that can be used to solve scheduling problems, and iii) different intelligent 

scheduling systems that have been developed over the period of last two decades. Then we 

also provide an overview of the various heuristics, which have been devised to select a 

correct job to improve the efficiency of schedule construction.

To tackle the scheduling task various streams of research have emerged both in 

Operations Research (OR) and Artificial Intelligence (AI), which will be reviewed in this 

chapter. The content of the chapter is organised as follows. In the following section we will 

review different problem types that have been developed to characterise the scheduling 

task. Then in section 2.2 and 2.3, we will provide an overview of OR-based and Al-based 

approaches to scheduling. In section 2.3.1, we will discuss commonly found concepts in 

scheduling and then in section 2.3.2 we will highlight some key notions, such as 

constraints, requirements, and preferences and their role in validating a solution schedule. 

Then in section 2.3.3, we will analyse different formalisms that have been put forward to 

conceptualise the time element in scheduling. Having reviewed the components of 

scheduling, in section 2.4, we will review various techniques developed over the years to 

tackle the scheduling task, and then in section 2.5 we will review various intelligent 

scheduling systems which have been constructed by using the techniques from AI. In 

section 2.6, we will review different dispatching rules and heuristics developed in OR and 

AI for efficient job selection. Finally, in section 2.7 we conclude our chapter by 

summarising main results from the review conducted here.

‘ Here we use the term Artificial Intelligence to refer to those approaches, which use the traditional AI 
techniques, but do not subscribe to the knowledge modelling approach. Given that knowledge modelling 
research can be seen as a part of AI, it is important to realise that this distinction is purely pragmatic and does 
not carry any deep epistemological meaning.
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2.1 Scheduling problem types
At an abstract level the scheduling problem can be classified into the following three 

problem types: the pure scheduling problem, the resource allocation problem, and the joint 

scheduling problem. Analysis of these problem types is important for us as it enables us to 

identify the unique features associated with these models, which we want to subsume in a 

generie scheduling task ontology. Here, we will concentrate our discussion on the first two 

problem types, mainly because these categories have become standard examples in the 

scheduling community much like the blocks world has become a standard example in the 

planning community. The third problem type can be easily constructed as the combination 

of the pure scheduling problem and the resource allocation problem.

2.1.1 The pure scheduling problem

The pure scheduling problem characterises scheduling from the viewpoint of a 

manufacturing scheduling environment. In this environment, the pure scheduling problem 

is classified into three sub-groups: a  | p | x (Lawler, 1983), where a  indicates the number 

of resources and also specifies a similarity feature among them (e.g., homogeneous 

machines), P indicates the job characteristics (period, deadline, precedence constraints), 

and X indicates the notion of optimality. The pure scheduling problem can further be 

classified into the deterministic job-shop scheduling (JSS) model. JSS is the most classical 

model of scheduling and the other models of scheduling, such as open-shop, flow-shop, 

and mixed-shop can be derived from it.

Jackson (1956) generalised Johnson’s flow-shop algorithm (1954), which consists of n 

jobs and m machines along with the temporal precedence relations among jobs. Over the 

years it became a kind of standard format to represent the JSS model. JSS is one of the 

widely studied areas in scheduling. Below we characterise the nature of JSS.

A JSS model can be represented by a set of jobs, J  = {ji, ...., jn} and a given set of 

physical resources R = {ri, ...., rn}. Each job ji consisted of a set of operations (also 

referred to as activities) that can be indexed as Oj = {oji, ...., ojn}. For instance, in the 

manufacturing environment, a drilling job could have operations such as: drilling-machine 

set-up, loading of a drilling job on a drilling-maehine, actual drilling operation, and 

unloading of a drilling job from a drilling-machine. The jobs and the operations ean be 

assigned over resources in accordance with a process routing, which specifies a partial 

ordering among them. For instance, the temporal precedence relations among any two jobs 

can be of the form, jobi BEFORE job], job] AFTER job], etc. A job, say ji has a specific 

release and due date associated with it, which can be represented by rdji, and ddji

13
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respectively. A job ji must complete its execution between these two dates. Each job also 

has a fixed duration, dji, and a variable state time, stji, associated with it. The domain of all 

such possible start times ean be constrained by specifying the release date of a job, which

can be represented as: (1 < stji < rdji). For the successful completion of a job and its 

operations, jobs and operations can be assigned over ri different resourees (e.g., machines, 

personnel, etc.), and the domain of all such resources can be represented by, Rÿ (1 < ji < 

ri). Also, each job can have a pool of resources and a resource that needs to be assigned to 

a job can be ehosen from this pool. Such a resource pool can be represented as, Oÿ = {rÿi,

...., rijn}, where rÿn E Rÿ. The following types of constraints can usually be found in JSS:

• Functional constraints: Limit the types of jobs and operations each resource can 

process at any given time in a schedule depending upon the functionality of a resource. 

For instance, the milling machines can perform only milling type of jobs;

• Capacity constraints: Restrict the number of jobs each unit capacity resource can 

handle at any given time in a schedule. A capacity constraint of a unit capacity resource

can be translated into the following disjunefive constraint: (Vjj V j] (Rji ^  Rjz) V etji

< stj2 V etj2 < stji, where etji and etj2 represents the end time of the jobs ji and j] 

respectively. This states that two jobs, say ji and j], cannot share the same resource for 

their execution; otherwise, their time ranges cannot overlap with each other. A resource 

capacity conflict among any two jobs can be avoided by imposing a precedence 

relation among start and end times of eonflicting jobs;

• Availability constraints: Specify when a particular resource is available for 

accomplishing the assigned jobs. All the jobs must obey the availability period of a 

resource on which they are assigned;

• Precedence constraints: Specify a job processing routing among any two jobs. They 

can be translated into linear inequality of the form: etji < stj2, then ji BEFORE j], 

where etji = stji + dji.

A more detailed review of JSS can be found in Jain and Meeran (1998) and Jones and 

Rabelo (1998). The open-shop scheduling (OSS) model (Domdorf et a l, 2000) can be 

derived from JSS. The main difference between JSS and OSS is that the latter imposes no 

specific ordering constraint over the execution of jobs and operations. On the other hand, 

in the flow-shop scheduling model each job has exactly one operation associated with it

14
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that needs to be assigned to the resource. All the jobs and operations must go through all 

the machines in the same order.

2.1.2 The resource allocation problem

In comparison with JSS, the resource allocation problem is more deterministic in nature 

because a scheduler has prior knowledge about the demand for resources in order to 

process jobs and operations. The problem subscribes to a resource-based scheduling 

perspective (Brusoni et a l, 1996) by assigning resources to jobs in time. Usually, the 

resource allocation problem can be formalised based on the factory scheduling perspective 

(Fox and Sadeh, 1990). Talbot (1982) presents a general class of the non pre-emptive 

resource-constrained scheduling problem, in which the quality of a schedule is measured 

based on an evaluation function. Typical examples of an evaluation function include 

maximisation of resource utilisation, minimisation of the consumption of critical resources, 

minimisation of operational cost, and penalties, etc. Gudes et ah (1990) presents a general 

paradigm for solving the family of resource allocation problems. Typical applications of 

the resource allocation scheduling include air-gate assignment and room allocation (Smith 

et a l, 2000). The resource allocation problem can further be classified into a single 

resource scheduling and a multiple alternative resource scheduling.

Single resource scheduling involves a single indivisible resource that needs to be 

assigned over time to ‘« ’ jobs and ‘o ’ operations. The jobs and operations have equal 

duration and they are unrelated to each other, i.e., no precedence relation exists among 

theni. The problem can be represented as follows: there exist «jobs (Ni, ...., Nnj and each

job can have o„ operations associated with it and they are represented as, Oni E (1, ...., n}. 

The main aim of the problem is to assign a resource to each job and operation in 

compliance with the following two constraints: Vij [(i ^  j) D (Ni Nj)] and over

operations Vij [(i 9  ̂j) D (Oni 9̂  Onj)]. The former constraint states that no two distinet jobs 

can occupy the same type of resource at a same time, whereas the latter constraint imposes 

the same condition on the assignment of operations. These two constraints are similar in 

spirit to that of the capacity constraint from JSS.

The multiple alternative resource scheduling is more realistic in nature, compared to the 

single resource problem. In this problem one or more resources can be assigned to jobs and 

operations, and therefore, this problem augments the level of complexity of the 

assignment. The problem can be described as follows: for « jobs and operations 

associated with « jobs a schedule must choose one of the m resources that can be assigned 

to accomplish the execution of jobs and operations. A formal representation of the
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assignment can be given as follows: Nj E {<Tj, Ri> | 1 < Ti < «, 1 < Ri < w}, where T| 

and Ri represent a time range and a resource assigned to a job n. The similar representation 

can be used to indicate an assignment of operations within each job. Each job has an

associated due date, say dn, which can be indexed as d„i E {1, ...., n}. Finally, all the jobs 

must maintain a precedence relation say Pry among them, where Prÿ = 1 if ji precedes ]y

The multiple alternative resource scheduling imposes the following types of constraints 

(Fox and Sadeh, 1990):

• A job ji, must end on or before its due date represented by, Vji [Ti < dji], where Ti 

represents the time interval of ji and dji represents the due date of ji. In other words 

every time point, say Tpi in Ti is less than or equal to dji;

• Any two jobs ji and jk must maintain the precedence relation among them if imposed, 

such that ji must be assigned before jk represented by, Vji jk [(Pik = 1) D (Ti < Tk)];

• No two jobs using the same resource may occupy the same time slot in a schedule, 

which is represented as, Vji jj [((i 9^j) A (Ri = R,)) D (Ti 9  ̂Tj)].

Here, we conclude our discussion about the problem types for framing the scheduling 

task. These problem types highlight the different features that need to be taken into account 

while characterising the scheduling task. In the following section we discuss the research 

involved in the OR domain.

2.2 Operations research thread in scheduling
In OR, the classical approaches to scheduling are characterised by a reduction of the 

scheduling problem into the formulation of assignment and sequencing problem. However, 

a few critical differences exist between these problem types as discussed below.

The fundamental difference between the assignment and the scheduling problem 

concerns the allocation of resources to parameters. The assignment problem can be 

characterised by two sets of objects: demand and supply, where each element of the former 

set must be assigned over the latter set (Hillier and Libermann, 1974). In contrast with the 

assignment problem, the scheduling problem not only assigns jobs to resources, but also 

fixes a time range for its accomplishment. These two problem types can also be 

distinguished based on the way they characterise the time line. While scheduling takes 

place over a discrete time line (Bartak, 1999), the nature of a time line is usually 

considered to be a continuous one in assignment problems (Hillier and Libermann, 1974). 

In this sense, assignment problems are a particular case of scheduling problems, because in
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scheduling one can jump from one time point to another and this jumping is not allowed in 

assignment. However, as argued by Liu (1988) and Lloyd (1982), in real-life domains it is 

hardly possible to assure the continuous nature of a time line, because jobs often do get 

perturbed during their execution and they start at some other point in time. Finally, an 

additional problem with reducing scheduling problems to assignment ones is that the 

techniques that have been developed to deal with the assignment problem fail to handle the 

heterogeneity of the resources.

In comparison with the assignment problem, the sequencing problem simply determines 

the order in which jobs need to be processed on a particular resource (French, 1982). De 

Werra (1985) has proposed a new technique to derive a sehedule based on the formulation 

of the sequencing problem, which is referred to as the time-tabling problem. The following 

box represents a mathematical formulation of the assignment problem in OR (Sharma, 

1998).

Minimise Total Cost: Z = ^  ^  Cij\Xij\ i = 1,2,..., n\ j  = 1,2,..., n
i= \ 7=1

Xij = 1 if î  ̂job is assigned to j ‘̂  resource, 0 otherwise;

” th^  Xij = 1 (one job is done by the i resource, / = 1, 2,..., «)
/=!

Xij = 1 (only one resource should be assigned the ĵ  ̂job,y = 1 ,2 ,...,«).

Figure 2.1. Mathematical formulation of the assignment problem.

As it can be observed in the above definition, optimisation is the central theme in the 

formulation of the problem in OR; however optimisation normally suffers from the 

combinatorial complexity that can be proved NP-hard (Garey and Johnson, 1979). Not 

surprising, Prosser (1989) argued that the optimisation aspect of assignment is difficult if 

not impossible to achieve in real-life. Nevertheless, George Dantzing developed two 

techniques: linear programming (LP) and the simplex method, which effectively tackled 

optimisation. Other formulations, such as the closed loop, real-time, and two-level 

hierarchy (Benders, 1962; Dantzig and Wolfe, 1960) have also been developed to tackle 

the optimisation issue. In these approaches, a top-level scheduler determines the start and 

end times of a job, which is subsequently refined by the lower-level scheduling modules. 

In comparison with these other approaches, the LP and simplex are more tractable in 

nature and have been used effectively to speed up the process of supplying time-staged 

deployment, training, and logistical programs in military operations. These approaches
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were later generalised as the mixed integer programming and the stochastic programming 

paradigm. The complexity of LP was unknown for a long time until in the 1970s Klee and 

Minty (1972) created an example that showed the exponential time requirement of the 

simplex method. To eontrol the possible exponential explosion of the search process, the 

formulation of a correct objective function is a crucial task. Moreover, the correct objective 

function also provides an exact optimisation criterion, particularly in those situations where 

different organisational goals are conflicting with each other. Finally, Dantzig (1991) 

formulated an explicit goal or objective function to show how to guide the search process 

towards a feasible solution.

Other two popular techniques exist in OR, which tackles the integer-programming 

problem: branch-and-bound (Agin, 1966; Lawler and Wood, 1966) and Lagrangian 

relaxation. The former is an enumerative technique, whereas the latter was devised to 

remove integer constraints (Shapiro, 1979). Other OR techniques, such as the Performance 

Evaluation Review Technique was originally devised in 1958 for the POLARIS missile 

program by the Program Evaluation Branch of the Special Projects office of the U.S.Navy, 

in collaboration with the Lockheed Missile Systems division and the Consultant film of 

Booz-Allen & Hamilton (Render and Stair, 1982; Freund, 1979). The Critical Path Method 

technique was devised by M. R. Walker of E. I. Du Pont de Nemours & Co. and J. E. Kelly 

of Remington Rand, circa 1957 (Render and Stair, 1982; Freund, 1979). In later years, 

these two techniques have been used extensively in various industries, such as project 

management, military domain, transportation industry, and supply chain management.

As argued by Ravidran, Philips, and Solberg (1987), all the techniques that have been 

presented in the preceding paragraphs are suitable only when the problem space is well- 

defined. Generally speaking, the OR techniques are restricted to rigid and static models 

with limited expressive power. When implemented in real-life problems their sophisticated 

mathematieal algorithms often result in intractability, mainly because the problem space of 

the real-life scheduling problems is normally ill-structured. Therefore, the notion of 

optimality can be troublesome when viewed globally.

In the following section we describe AI approaches to scheduling problem-solving, 

which attempt to deal with ill-structured, complex real world scheduling problems.

2.3 Artificial Intelligence thread in scheduling

2.3.1 Basic concepts in scheduling

Increasing awareness of the recent developments in the AI community has paved the way 

for the widespread use of knowledge-based techniques to solve the classic scheduling
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problem (Glover, 1986; Grant, 1986). This is due to three main reasons. Firstly, these 

techniques encompass a rich collection of knowledge representation schemas to deal with 

the wide range of real-world scheduling problems. Secondly, these techniques provide 

flexibility, partly due to the use of efficient and flexible problem-solving mechanisms, such 

as search-based or constraint-based engines, and also because of the use of mixed initiative 

frameworks. These frameworks enable human experts to represent their problem more 

systematically. Thirdly, various algorithms have been developed to reflect and deal with 

the complexities that characterise real-life scheduling problems. Thus, in contrast with OR, 

the scheduling task in AI has been defined from various perspectives. Below we present 

some of the influential viewpoints that can be observed in the scheduling literature.

“Scheduling is the problem of assigning limited resources to tasks over time in order to 

optimise one or more objectives” (Pinedo, 2001; Baker, 1974).

Although the above definition emphasises the need to validate a solution schedule 

against completion and optimisation, it fails to tease out two other equally important 

validation areas of scheduling: constraint violation and requirement violation.

“Scheduling selects among the alternative plans and assigns resources and times for  

each job so that the assignments obey the temporal restrictions of jobs and the capacity 

limitations of a set of shared resources ” (Fox, 1983).

Fox’s viewpoint takes into consideration the existence of the planning task. While the 

main function of the planning task is to determine the sequence of actions that need to be 

performed, the main function of the scheduling task is to allocate these actions over 

resources and times ranges. This definition also state two types of constraints commonly 

observed in scheduling - temporal precedence among jobs and limited resource capacity.

“Scheduling deals with the temporal assignment of jobs to limited resources where a set 

of constraints has to be regarded” (Sathi et a l, 1985).

“Scheduling deals with the exact allocation of jobs over time, le. finding resources that 

will process the job and time ofprocessing” (Brusoni et a l, 1996).

Both the above definitions emphasise that the main function of scheduling is to assign 

jobs to resources by finding a correct time-slot to execute the jobs. While Sathi et al. point 

out the importance of constructing a schedule in accordance with the constraints; Brusoni 

et a l fail to tease out such a type of compliance. Both viewpoints fail to talk about 

validation of a solution schedule against requirement violation and optimisation.
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“Production scheduling requires allocation of resources (e.g., machines, tools, and 

human operators) over time to a set of jobs while attending to a variety of constraints and 

objectives” 1994).

Sadeh’s viewpoint defines the scheduling task primarily from the manufacturing 

perspective. In line with the earlier definitions his notion of scheduling also focuses on 

validating a solution schedule against completion and constraint violation, but does not 

consider requirement violation and optimisation.

In sum, we can say that while the above definitions characterise the scheduling task from 

different perspectives, these proposals are partial in nature as they do not take into 

consideration the notions of requirement and preference. In our perspective these are 

important concepts as they help to define the spaee of valid solutions. To make our 

viewpoint clearer, in the following section we describe the roles constraints, requirements, 

and preferences play in constructing a schedule.

2.3.2 Constraints, preferences, and requirements

The notion of constraint is central to scheduling. Constraints specify the properties that 

must not be violated by a solution schedule and therefore they restrict the space of a valid 

solution. At an abstract level, constraints can be elassified into two main categories: hard 

constraints and soft constraints (Zweben and Fox, 1994). While hard constraints are 

prescriptive in nature and therefore they cannot be violated under any circumstances, the 

soft constraints can be relaxed if required. For instance, in the CIPHER application (cf. 

Section 8.2), the end-time-compliance constraint states that each work-package must 

finish exactly on its end time and not prior to it, and a solution schedule that violates this 

constraint is deemed to be an ineonsistent solution. This high-level classification can be 

further synthesised into the organisational and physical types. Organisational constraints 

are usually posed in such a way that they increase the profit of an organisation. Typical 

examples of the organisational constraints include due dates of jobs, work-in-process 

inventory, resource level maintenance, production levels, shop stability, etc. The physical 

constraints on the other hand restrict the functionality of a schedule itself. Typical 

examples of physical constraints include precedence relations among jobs, resource 

requirements of jobs, resource availability, resource capacity, and so forth (Zweben and 

Fox, 1994; Yox et a l, 1983).

While existing approaches to scheduling treat preferences as a kind of restriction (Smith 

and Goodwin, 1995; Zweben et a l, 1992; Noronha and Sarma, 1991: Fox et a l, 1983), we 

believe that they are rather choice points opted by a scheduler. They are more akin to a
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knowledge-level notion, than to the physical demands of a task, to be satisfied by a 

schedule. Preferences originate from the different alternatives that are available while 

constructing a schedule. The following example will clarify a need to distinguish between 

eonstraints and preferences. For instance, in a manufacturing industry there is a machining 

shop, which only executes the milling operations, then the obvious constraint is that this 

shop can perform different types of milling operations that are required by the different 

engineering components, but then a scheduler may prefer to opt for ‘milling-machine-A’ or 

‘milling-machine-B’ in order to perform certain type of milling operation even when both 

the machines are deemed to have a similar functionality. Because preferences are human- 

specifie decisions, they usually affect the cost of a schedule. For these reasons in our 

scheduling framework we do not involve soft constraints and we treat them as preferences 

(cf. Section 5.2.6).

Requirements usually specify the properties that a solution schedule must satisfy to 

become a feasible solution and usually the source of the requirements is a customer 

specification. While constructing a schedule it is important to keep a elean distinction 

between the notions of constraint and requirement whieh essentially are of different in 

nature. The following example will clarify the necessity. For instance, if a customer 

requires a machining component in which a hole needs to be drilled of diameter 10 and an 

upper and a lower tolerance must be 0.5 (10"̂ '̂̂ ). In order to schedule this job first a 

scheduler has to satisfy a customer requirement according to which a job needs to be 

seheduled on the available drilling machines such that a hole can be drilled in a machining 

component. Having satisfied this requirement, a scheduler must not violate an upper and 

lower tolerance constraint of a hole of 0.5, and therefore a job must be seheduled only on 

those drilling machines that can maintain this constraint. Liebowitz and Potter (1995) 

represent a systematic categorisation of the requirements in terms of general requirements, 

resource requirements, activity requirements, scheduling capability requirements, 

rescheduling capability requirements, and output requirements.

The notions of constraint, requirement, and preference make possible to evaluate the 

performance of a schedule either from a job-based (such as tardiness or due date) 

perspective or a factory-based (such as throughput and utilisation) one. Figure 2.2 depicts a 

taxonomy of these notions.
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Determine the properties 
that a solution schedule 
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Figure 2.2. Taxonomy of constraint, requirement and preference.

In the following section we will discuss another central concept in scheduling, that of a 

time element.

2.3.3 Theory of time
Time is the crucial factor which distinguishes the scheduling task from the assignment 

problems. As described in Section 2.2, time is always considered to be discrete in 

scheduling. Generally speaking, time can be represented in terms of the following 

elements: time point, time interval, duration, calendar date, and so forth. Over the years, a 

variety of formal models have been developed to represent time, and they are summarised 

in Rescher and Urquhart (1971) in the field of philosophy.

A time point represents an instance of time over a time line (Allen, 1983). A time 

interval or time range represents an amount of time that is elapsed between any two time 

points. Allen (1983) defines a time range as follows:

“A period of time that elapsed between start of an event and end of an event, and start of 

an event precedes end of an event” (Allen, 1983).

The notion of a time range in scheduling can be used to represent a schedule horizon and 

a time window within which a job needs to be accomplished. A schedule horizon can be 

represented in terms of a start and an end time, whereas a job time window can have a 

more fine-grained representation in terms of the earliest and the latest start and end times. 

Allen (1983) proposes 13 possible relationships between time events. However, as argued 

by Zhou and Tikes (2000), Allen’s formalism to represent a time point does not provide 

good enough granularity. In their framework, a time point is represented at different levels 

of granularity, such as year, month, week, day, hour, minute, second, etc. They also claim
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the following advantages over Allen’s work - a) their framework provides a clean 

distinction between open and close intervals; b) the level of granularity considered to 

represent a time point facilitates more precise reasoning; c) their framework takes into 

account the classes needed to represent calendar months, calendar days, and weekdays.

While constructing a constraint-directed reasoning shell for Operations Management 

named LOGOS, Meng and Sullivan (1991) have observed that Allen’s temporal relations 

are under-constrained and that a user might have additional knowledge about time events. 

For instance, instead of simply stating “event a, BEFORE event aj”, a user may like to 

tighten such a condition by stating “event a; BEFORE event aj by 3 hours”. Therefore they 

extend Allen’s temporal relations by imposing a numeric constraint. Table 2.1 provides a 

comparison between Allen’s temporal relations and Meng and Sullivan’s extended 

relations. Meng and Sullivan’s numerical constraint is represented by ‘n’ in Table 2.1.

Table 2.1. Comparative analysis between Allen and Meng and Sullivan’s time intervals.

Allen’s

relations

Pictorial depiction Meng and Sullivan’s 

relations

Translated

constraints

X before Y X X before Y (by n) x-end < y-begin or x- 

end = y-begin + n

X equals Y X equals Y x-begin = y-begin 

x-end = y-end

X meets Y X meets Y x-end = y-begin

X

overlaps

Y

X overlaps Y (lag n) x-begin > y-begin or 

x-begin = y-begin + n 

or x-end = y-begin + n

X during Y X X during Y X-begin < y-begin or 

x-begin = y-begin + n 

x-end > y-end or x-end 

= y-begin + n

X starts Y X starts Y (by n) x-begin = y-begin 

x-end < y-end or x-end 

+ n = y-end
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X finishes Y X finishes Y (delay x-begin > y-begin or

n) x-begin = y-begin + n

x-end = y-end

These relations among time events can be particularly useful in scheduling to impose the 

temporal constraints among the time ranges of jobs. In the following section, we describe 

different models that have been developed to characterise the scheduling task.

2.4 Techniques In artificial intelligence
Starting from the early 80s various techniques have evolved which fall under a general 

category of AI and more specifically into expert systems, KBSs, and several search-based 

approaches. Based on these techniques several intelligent scheduling systems were 

developed in 80s and 90s and a detailed review of these intelligent scheduling systems can 

be found in section 2.5. Here, we discuss the techniques which can be used to tackle the 

problem.

2.4.1 Constraint-based scheduling
Traditionally large numbers of AI problems have been seen as a special case of constraint 

satisfaction. As described in section 2.3.2, the notion of a constraint is crucial to any 

scheduling problem. They usually limit the space of a valid solution. Therefore, the 

constraint-based approaches become quickly popular to tackle the scheduling problem 

types (Beck and Fox, 1998; Dhar and Ranganathan, 1990; Fox, 1983; Petrie et a l, 1989; 

Prosser, 1989). The constraint-based problem can be formulated by the constraint- 

formalism (Fox, 1983) and general constraint programming. The constraint formalism 

determines how the different constraints in a problem can be represented, while general 

constraint programming actually solves a problem. The most widely used technique for 

general constraint programming is the constraint-satisfaction problem. Generally 

understood, the constraint satisfaction problem can be described as follows (Tsang, 1993). 

There exists a set of variables (jobs), a finite and discrete set of domains (resources and 

time slots) for a variable, and a set of constraints. The constraints are defined over a subset 

of a original set of variables, which restricts the combination of values that the variables in 

a subset can take. The goal is to find one assignment of value to each variable such that a 

set of constraints are satisfied. The common formulation of the constraint satisfaction 

problem can be found in (Freeman-Benson, Maloney, and Boming, 1990; Ricci, 1990; 

Navinchandra and Marks, 1987). The constraint-satisfaction problem usually deals with 

unary or binary constraints and most common formulation of binary constraints can be 

depicted by a constraint graph, whereby each node represents a variable and each arc

24



Chapter 2

between two nodes represents a constraint imposed on variables by the end points of the 

arc. In contrast with LP in which variables can only take the numerical form, in the 

constraint-satisfaction problem variables can take numerative form as well, such as 

milling-job-a, milling-job-b, etc. Because the domains of variables in constraint 

satisfaction are finite, various lookahead techniques (Haralick and Elliot, 1980) have been 

developed to improve the efficiency by exploring the features of the constraint satisfaction 

problem. Gaschnig (1979) and Gaschnig (1993) developed intelligent backtracking 

algorithms to analyse dead-ends to backtrack toward culprits. Traditionally most of the 

research in constraint satisfaction has mainly been concentrated on the complete search 

methods; however, some of the techniques, such as forward checking and fail first 

(Haralick and Elliot, 1980) have proved to be efficient in the scheduling domain. The 

constraint-directed search explores the problem space based on relationships, 

dependencies, and limitations among the variables. The system stops when a first valid 

solution (a solution that satisfies all the constraints) is found. Commonly found procedures 

for the constraint-directed search are Generate & Test or Backtracking strategy without 

constraint propagation. Kumar (1992) provides an excellent tutorial-based review of the 

various algorithms that have been developed for the constraint-satisfaction problem, 

whereas a generic framework for the constraint-directed search and scheduling is discussed 

by Beck and Fox (1998). Finally, various intelligent scheduling systems, such as ISIS 

(Fox, 1983), OPIS (Ow et a l, 1988; Smith et a l, 1990), SONIA (Collinot et a l, 1988), 

DAS (Burke and Prossor, 1994) constructed by means of the constraint-based approach.

2.4.2 Distributed AI: agents
The research in distributed AI has begun to overcome the limited competence and 

problem-solving ability exhibited by the single expert systems developed in the 80s. 

Parunak et a l (1985) developed a distributed scheduling approach based on the well- 

known ‘divide-and-conquer’ strategy. By using this strategy a problem can be decomposed 

at various levels and various KBSs co-operate to solve a problem (Zhang and Zhang, 

1995). An ‘agent’ is one of the central notions in distributed AI. An agent is a piece of 

software that asynchronously co-operates with other agents (Jennings and Woolridge, 

1998). Each agent can be seen as a complete KBS in itself. The set of agents may be 

heterogeneous in terms of their knowledge, goal, languages, algorithms and a multi-agent 

system can be constructed by selecting and integrating agents with different specifications.

The scheduling task usually comprises the following two types of agents - a task agent 

and a resource agent. The former agent can be responsible for allocating tasks over 

resources, whereas a resource agent can be represented in terms of a single resource or a
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class of resources to execute the task agents. During problem-solving a task agent sends its 

request to a resource agent along with the set of operations a resource agent needs to 

perform. Having received such request a resource agent generates a new schedule to 

accomplish the assignment. To accomplish the assignment of tasks these agents can be 

represented by adopting centralised or decentralised architectures. However, there is a 

debate in the scheduling domain to determine the suitability of centralised or decentralised 

approaches mainly due to the lack of support for coordination mechanism. Some of the 

well known scheduling systems constructed by means of distributed AI techniques are 

OPIS (Ow et a l, 1988), SONIA (Collinot et a l, 1988), YAMS (Parunak et a l, 1985).

2.4.3 Artificial neural network
Artificial neural networks try to mimic the learning and prediction ability of a human 

being. They can be distinguished based on network topology, node characteristics, and 

training or learning rules. The three-layer, feed-forward neural network is the most 

simplistic model of artificial neural network. It consists of input layer, hidden layer, and 

output layer. The supervised learning neural network uses historical data to capture the 

relations between input and output layers. Back-propagation (Rumelhart et a l, 1986) is the 

most popular strategy that subscribes to the gradient-descent technique in the feed-forward 

network. Rabelo (1990) was the first to apply back-propagation neural nets to solve the 

JSS problem. Rabelo’s JSS problem consisted of different job types and has shown various 

arrival patterns, alternative process plans, precedence relations, and batch sizes. Another 

type of model for constructing the artificial neural network is the Relaxation Model. It is 

defined in terms of the energy functions and there is a pre-assembled system that relaxes 

from input to output along a predefined energy contour. Hopfield Neural Network 

(Hopfield and Tank, 1985) is the famous example that subscribes to the Relaxation Model. 

Initially this model was used to solve some classic textbook scheduling problems by (Foo 

and Takefuji, 1988), whereas 2-dimensional Hopfield network was used to solve 4-job, 3- 

machine problems and 10-job, 10-machine problems (Zhou et a l, 1990). Finally, the 

extended version of 2-dimensional Hopfield network is the 3-dimensional network (Lo and 

Bavarian, 1991), which can be used to represents jobs, resources, and time ranges.

Because the scheduling problem usually consists of several variables, which need to be 

taken into consideration when generating a schedule, both the aforementioned techniques 

have suffered due to their computational inefficiency and frequent generation of infeasible 

solutions. Therefore, they have shown limited applicability to solve real-world 

applications.
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2.4.4 Neighbourhood search methods
Neighbourhood search is an efficient method. When combined with other heuristics it 

offers good chances of improving the existing solution. These methods usually start by 

introducing a little perturbation in a complete solution, where a complete solution can be 

obtained by any greedy search or heuristics, and then, this technique keeps on perturbing a 

complete solution, until an improvement is achieved in the objective function. In the 

following section we discuss three such methods: tabu search, simulated annealing, and 

genetic algorithm.

2.4.4.1 Tabu search

Glover (1989, 1990) has introduced the basic idea of the tabu search. It explores the search 

space of all feasible schedules by the sequence of moves. The tabu search moves from one 

schedule to another by evaluating all the candidate solutions, and it chooses the best 

available candidate. The moves that can potentially get stuck in local optima and hence 

result in a cycle are classified as tabu moves, i.e. they are forbidden. All such moves are 

compiled into what is referred to as the tabu list. This list is built from the history of 

previous moves. The tabu moves direct a search to leave the area which contains an old 

solution and this freeing of search provides ‘strategic freeing’, which can be achieved by a 

short term memory function.

Tabu search has been applied to solve the JSS and flow shop scheduling problem by 

Nowicki and Smutnicki (1996) and Vaessens (1995) also showed that tabu search methods 

are better compared with other neighbourhood search methods, such as simulated 

annealing, and neural networks. Watson et al. (2003) represents a first attempt in the field 

to quantitatively model the cost of tabu search for any NP-complete problem and 

particularly for the JSS problem.

2.4.4.2 Simulated annealing

Simulated annealing is an extension of the hill climbing search that tries to escape local 

minima. Kirkpatrick et al. (1983) have proposed this method which is a very general 

optimization method that stochastically simulates the slow cooling of a physical system. 

The main concept of simulated annealing is to initialise a temperature as a predetermined 

starting value and which reduces gradually according to a cooling schedule and to 0 

eventually. If the temperature is set a higher value then there are higher chances that 

inferior moves will be accepted. This method has a cost function, say H (i.e., a 

Hamiltonian) which associates a cost to a state in a system, say a temperature ‘T ’ , and 

there are various ways by which a state of a system can be changed. A current state within 

a thermodynamic system is analogous to a current solution and its energy equation is
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similar to an objective function. Finally, a ground state is equivalent to the global optima. 

A global temperature ‘T’ is lowered as the iteration progresses. Similar to the hill climbing 

method, this method also starts a search from a state that may be generated randomly and 

in each cycle a random neighbour is examined. If a randomly examined neighbour is better 

than a current one then it is made a current one; otherwise, a neighbour is accepted only 

under a probability, which is related to the lowering of the temperature. Based on this 

analogy Kirkpatrick et al. generates a new schedule randomly by sampling the probability 

distribution of a system. In past, simulated annealing technique was applied to solve the 

JSS problem. Vakharia and Chang (1990) developed a scheduling system for the 

manufacturing cells and the resource-constrained scheduling problem was tackled by 

Jeffcoat and Bulfin (1993).

2.4.4.3 Genetic algorithm

The Genetic Algorithm (GA) (Goldberg, 1989) search method is based on Darwinian 

natural selection and mutation in the biological systems. It is an optimisation methodology 

that encodes parallel search with the process of attempting coarse-grained hill climbing. At 

an abstract level, GA requires the following five components:

1. A fixed length string of symbols for encoding a problem;

2. Evaluation function that could rate for each solution. A typical evaluation function 

in scheduling can be minimisation of cost or maximisation of resource utilisation, 

etc;

3. A way to initialise the population of solutions;

4. Genetic operators can be applied on the parent in order to alter their genetic 

composition. Typical genetic operators are crossover (which randomly selects a 

segment between parents), mutation (a modified gene), and other domain specific 

operators;

5. Finally, a parameter setting for an algorithm and the operators, etc.

In the past, several JSS systems were developed by using the GA technique (Davis, 

1985; Goldberg and Lingle, 1985; Starkweather et a l, 1993). Usually, in JSS problems a 

GA with blind recombination operators was utilised. Much emphasis was also kept on the 

relative ordering schema, cycles, and edges in the offspring that could give rise to 

differences in the blind recombination operators. In contrast with earlier approaches, 

Bagchi et a l (1991) argued that the nature of an evaluation function can be augmented by 

using the problem-specific knowledge in order to gain more effective results. Uckun et al. 

(1993) have pointed out that the approach adopted by Bagchi et a l produces better results 

only in longer terms as compared with a simpler GA enhanced with local Hill climbing
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operator. Starkweather et a l (1993) were the first to tackle a dual-criteria scheduling 

problem by using GA in a real production facility. Their evaluation function primarily 

aimed at reducing the average inventory level in the plant along with the minimisation of 

average waiting time of an order. More recently, Burke and Smith (2000) have proposed a 

hybrid method that combines tabu search, simulated annealing, and GA for the planned 

maintenance of the national grid.

2.4.4.4 Fuzzy logic

This technique is useful for solving scheduling problems which have uncertain processing 

times, constraints, and set-up times. The fuzzy set logic theory has been used to develop 

hybrid scheduling systems. Also, by using a concept of interval o f confidence, different 

types of uncertainties can be represented more efficiently. However, these techniques are 

usually combined with other methodologies, such as search procedure, constraint-based 

approach, etc. Slany (1994) criticised the straight-forward methods from mathematics that 

have been adopted to develop fuzzy set logic and he introduced a method called fuzzy 

constraint relaxation. This method was later integrated with the knowledge-based 

scheduling in a steel manufacturing plant (Dorn and Slany, 1994). Krucky (1994) focused 

on a problem to minimise the setup times of the medium-to-high product mix production 

line whereas Tsujimura et a l (1993) developed a hybrid system that could model the 

processing times of the flow shop scheduling problem.

Table 2.2 shows a comparative analysis of the techniques discussed in this chapter.

Table 2.2. Comparative analysis of different techniques in terms of their usability.

Name of the 

technique

Overall usability aspect of a 

technique

T echnique-specillc 

remarks

Linear programming o It can be used for the 

optimisation with linear function 

o Intractable

o A problem must be 

specified in terms of the 

conjunctive set of equalities

Distributed AI o Global optimisation 

o Local perturbation is allowed 

o Continuous communication 

among agents is required in order 

to avoid the global effects made 

by the local scheduling decisions

o User needs to determine 

about centralised or 

decentralised representation

Neighbourhood search o Useful for both constraint 

satisfaction and optimisation

o In simulated annealing 

the neighbourhood functionTabu search
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Simulated annealing when near-optimal solutions can 

be accepted

o Reflects flexibility in terms of 

the computation time 

o Simulated annealing and tabu 

search tries to escape from the 

local optima

Chapter 2 

is crucial to escape from the 

local optima

o Determination of a rate at 

which schedule cools down 

is crucial

o The effectiveness of the 

tabu search mainly depends 

on a strategy used for tabu- 

list manipulation

Neural Network and 

Genetic Algorithm 

(GA)

o Both the techniques are useful 

for finding feasible or near- 

optimal solutions 

o GA can be implemented for 

parallel implementation and 

therefore useful in the real-time 

applications

o In Neural Network 

determining the network 

set-up and updating is 

crucial to gain effectiveness 

o In Neural Network 

customisable and

specialised networks can be 

expensive to build

Fuzzy logic o It can be useful in applications 

where uncertainty is high 

o It can be used to construct the 

hybrid systems

o The rules used to

combine conjunctive or

disjunctive clauses can be 

arbitrary

o Rules usually give same 

importance to all the factors

2.5 Intelligent scheduling systems
The scheduling task did not receive serious attention from AI researchers, until in the 

1980s’ Fox et aï. started developing the first intelligent scheduling system called ISIS. In 

later years, several intelligent scheduling systems were developed to tackle the scheduling 

problem from several domains. Here, we review the most influential intelligent scheduling 

systems developed over the last 20-year period: ISIS (Fox, 1983), OPIS (Ow et al., 1988; 

Smith et a l, 1990), SONIA (Collinot et a l, 1988), YAMS (Parunak et a l,  1985), FlyPast 

(Mott et a l, 1988), S2 (Elleby et a l, 1988), DAS (Burke and Prossor, 1994), REDS 

(Hadavi et aï., 1992), and BATTLE (Slagle and Hamburger, 1985).

Although, these intelligent scheduling systems exploited various techniques in AI 

successfully, they were hardwired in nature due to their domain specificity. In our review 

we explicitly focus on the following three aspects: the domain tackled by the system, the
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problem-solving technique adopted by the system, and the schedule validation area 

covered by the system.

2.5.1 ISIS

ISIS was developed by Mark S. Fox and his group at the Carnegie Mellon University for a 

turbine component plant. ISIS formalises the scheduling task by subscribing to JSS. ISIS 

uses a frame-based knowledge representation approach and its problem-solving strategy is 

based on the constraint-based beam search. Each constraint in ISIS is represented as a 

distinct unit and it has an associated utility factor. A utility factor measures an extent to 

which a particular constraint contributes in validating a solution schedule.

ISIS decomposes the scheduling task into the following four-tiers: lot selection, capacity 

analysis, resource analysis, and reservation selection. The lot selection module selects a 

candidate lot for its release on the shop floor. At the second level, the capacity analysis 

module determines the start time of each job within a selected lot. The actual scheduling 

operation is performed at the resource analysis level, where each candidate resource is 

checked against its availability and capacity such that it can accomplish an execution of 

assigned job. Finally, at the reservation selection level, a candidate resource is reserved for. 

assigning a job, such that the work in process inventory is reduced. ISIS subscribes to the 

job-based perspective to produce a schedule with minimal job lateness. ISIS deploys 

forward and backward scheduling strategies to assign the jobs. Initially, all the jobs are 

assigned by applying a forward scheduling strategy (i.e., starting from their start time) and 

then a backward scheduling strategy (i.e., starting from their due dates) is applied to assign 

outstanding jobs. During problem-solving the evaluation function is constructed 

dynamically within each state of a search space. As mentioned earlier, each constraint 

contributes both to the importance and utility factor in constructing a final schedule and a 

solution schedule is validated for the job lateness and the constraint satisfaction. However, 

ISIS fails to reason about requirement violation and optimisation aspects of scheduling.

2.5.2 OPIS
opportunistic Intelligent Scheduler (OPIS) is a successor of ISIS, but in contrast with ISIS 

it is a reactive scheduling system. OPIS implements the blackboard architecture (Corkill, 

1991; Nii, 1986), which is based on a multiple perspective assignment strategy. OPIS was 

designed to tackle the scheduling problem in a manufacturing domain. The scheduling is 

performed both on a job-based and a resource-based perspective (Brusoni et ah, 1996). 

OPIS is the first scheduling system that realises the existence of and deals with the 

bottleneck resources during schedule construction. Before problem-solving the bottleneck 

areas are detected, by analysing the candidate job and the state of the shop-floor, and jobs
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arc assigned from a resource-based perspective. These resources are checked against the 

following criteria: capacity, machine set-up requirements, and batching constraints. 

Initially, the assignment process anchors a search around the bottleneck areas and once the 

bottleneck resources are identified then a search is guided on a job-based perspective. 

Figure 2.3 depicts the blackboard architecture of OPIS.

Subtask
External

Event
Schedule 2Schedule 1 Schedule n

Schedule  m aintenance  
s u b s y s te m

TLM

Subtask

Analysis 1 Model
^update

Problem  
_ selection

Control
State

Figure 2.3. Architecture of OPIS (Smith, 1994).

OPIS implements an incremental and opportunistic strategy to solve the scheduling 

problem, which is the main philosophy of the blackboard architecture. The knowledge 

applied to solve the scheduling task is distributed across independent knowledge sources 

(KSs). The application of KSs is determined dynamically and opportunistically as the 

problem-solving evolves. The KSs executes a system within the blackboard architecture 

and as a new piece of knowledge becomes available it is augmented in the existing system. 

The top-level manager (TLM) component is responsible for coordinating different 

scheduling events. The predictive component of OPIS is more deterministic in nature as 

compared to the reactive component, because it has more static data available about the 

problem for its execution. A constraint violation within the reactive component is resolved 

by using one of the following revision strategies: order-scheduler, resource-scheduler, 

right-shifter, left-shifter, and demand-swapper. Because OPIS takes into account the notion 

of a constraint, the solution schedule is validated against constraint violation and also 

optimisation of a set of objectives to reduce the cost of a schedule.

2.5.3 SONIA

SONIA is a successor of SOJA (Le Pape and Sauvé, 1985) scheduling system and it is very 

similar to the OPIS system. It formulates the scheduling problem based on the JSS model. 

SONIA was designed to tackle the scheduling problem from the manufacturing domain. 

SONIA integrates both predictive and reactive scheduling components and works on the 

blackboard architecture. A predictive component of SONIA is similar in spirit to that of 

SOJA. It comprises of a job selection and an ordering component. A job selection 

component aims at selecting a job to be scheduled and binds it to the available resources.
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The binding process is carried out by subscribing to the operations resource reliance 

heuristic (Sadeh and Fox, 1996). The ordering component consists of an iterative 

constraint-satisfaction process (Le Pape, 1994), which imposes the temporal constraints on 

a selected job. If the ordering component encounters a failure, then a system enters into a 

reactive scheduling phase. The scheduling decisions are made through predictive 

component and the backtracking takes place via reactive component. The blackboard 

architecture of SONIA subscribes to the constraint propagation as its main problem

solving strategy. It consists of the following three components: KSs, blackboard data 

structure, and control cycle. First, SONIA subscribes to the micro-opportunistic scheduling 

(Sadeh and Fox, 1996) during which each module make a collection of decisions about 

whether to assign a complete manufacturing order or a complete set of resources (Smith et 

ah, 1990). Then a problem-solving strategy relies on the macro-opportunistic approach that 

allows selection and adaptation of the micro opportunistic strategy. A schedule is validated 

for completion and constraint violation, but it fails to reason about requirement violation 

and optimisation aspects of scheduling.

2.5.4 YAMS
YAMS (Yet Another Manufacturing Systems) is probably the first intelligent scheduling 

system that truly exploited the distributed AI in the manufacturing scheduling domain. 

YAMS subscribes to the contract net (Smith, 1980) as its main architecture. In contract net 

modules, a transfer of control is in a distributed fashion by using a metaphor of negotiation 

among the agents. The agents in YAMS’s contract net are categorised as being manager, 

bidder, and contractor. Each category of agent plays a specific role in the contract net. 

Initially, a manger agent identifies a work to be done and delegates it among agents 

through the negotiation process. Different bidder agents offer to perform a delegated work 

and a contractor agent is a successful bidder who wins a contract. The communications 

within different agents take place via message passing such that if there is any potential 

task to be performed a manager agent makes an announcement and broadcast a task to all 

other agents. The agents that have a potential to perform the task contact manager with a 

bid message and the highest bidder is awarded the contract which then becomes a 

contractor. Similar to the first approach, the contractor agent decomposes a task further 

into smaller subtasks and acts as a manager. An agent can both be contractor and manager 

at the same time. This style of problem-solving has been referred to as a fractal style 

(Parunak et a l, 1985). YAMS model the complete factory as hierarchical work-cells and 

an individual work-cell within a factory is considered as an agent in that contract net. A 

node at a particular level of hierarchy indicates a level of granularity associated with that
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particular level, whereas a leaf agent eorresponds to the discrete resources. Each node has a 

collection of plans associated with it, which represents its capabilities. A global schedule is 

initially performed by using an external system that is distributed across net and then a 

local schedule is devised by using the turnpike strategy (McKenzie, 1976). The problem

solving strategy perturbs a local schedule but the ultimate goal is always to return a global 

schedule whenever possible. The communication among a contract net takes place only 

between superior-to-subordinate and peer-to-peer communication is prohibited. A peer-to- 

peer communication is required to propagate the effect of constraints among agents. 

However, the main problem with this kind of architecture is that the local scheduling 

decisions can have global consequences that could make a global schedule obsolete. To 

overcome this problem the contract net is applied only when a problem is already 

decomposed into the sub-problems. This kind of strategy is referred to as a functionally 

accurate cooperative distributive strategy (Lesser and Corkill, 1981).

2.5.5 FlyPast
FlyPast (Mott et a l, 1988) is a resource allocation scheduling system that assigns aircrew 

to aircraft. To handle the dynamic environment in which FlyPast has to operator it 

subscribes to a reactive scheduling strategy. FlyPast uses constraint-based reasoning along 

with an assumption-based truth maintenance system (ATMS) (De Kleer, 1986) as its 

problem-solving strategy. Generally understood, a nature of the problem is simplified in 

FlyPast because the system performs an assignment once the timings of the fights are 

predetermined and only decision like allocation of the aircraft crew to the aircraft is 

considered as a constraint. This problem can be treated as one that of constraint satisfaction 

and therefore the problem is represented by the constraint-graph. FlyPast subscribes to a 

resource-based scheduling approach. Each node represents a flight and the domain of a 

node corresponds to the possible aircrew that can be assigned to it. The arcs between any 

two nodes represent constraints that exist among them. FlyPast problem-solving algorithm 

subscribes to the forward checking look ahead heuristic (Haralick and Elliot, 1980) to 

improve the search efficiency. ATMS nodes are generated for the domain reduction and a 

datum of an ATMS node is a reduction in a domain achieved from forward checking. If the 

forward checking strategy results in a total destruction of a domain, then a ‘no good’ 

solution is derived and the search gracefully descends to the dependency-directed 

backtracking. If no satisfactory result occurs then a ‘no good’ database is analysed and 

delivered to user. The user of the system can interact with the system by adding and 

retracting constraints or by forcing specific allocations. The final solution is validated 

against the number of constraints that has been satisfied by a schedule.
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2.5.6 S2
S2 is similar in spirit to that of FlyPast and it is developed to tackle the VLSI wafer 

fabrication. The problem domain of 82 can be considered similar to JSS. Because of the 

dynamicity and uncertainty of the domain S2 treat its problem as an open world and 

implements a reactive scheduling strategy. A reactive scheduling strategy of S2 also helps 

to address its domain-specific issues directly. The architecture of S2 is composed of the 

following three modules - constraint maintenance system (CMS), schedule generator, and 

request interpreter. The CMS module is used to represent the scheduling problem and 

constraint propagation is performed every time any constraints are imposed or retracted in 

CMS. Although, a final solution schedule in S2 is validated against constraint satisfaction, 

it is built on an assumption that no single performance measure can be used to measure a 

final schedule. The schedule generator then reacts to the addition or retraction of 

constraints by modifying the existing solution instead of having to schedule from scratch. 

The entire process of schedule construction, constraint satisfaction, problem modification, 

and problem-solving is referred to as an incremental constraint satisfaction. S2 uses the 

depth-first search with dependency-directed backtracking and to recover from the dead 

ends it keeps record of all the dead ends encountered along with their source of 

inconsistencies. A hard-wired ATMS is implemented and ‘no good’ database is distributed 

across the soft-constraints. Similar to FlyPast, S2 first delivers a satisfactory schedule and 

then allows its users to modify a schedule either by adding or retracting constraints via 

request interpreter. S2 is based on the funk box scheduling strategy (Elleby e/ ah, 1988). It 

assumes that user of a system has a prior knowledge about how a satisfactory schedule 

looks like, and therefore, user can guide the scheduling procedure towards a good 

schedule.

2.5.7 DAS
Distributed Asynchronous Scheduler (DAS) system is developed at the University of 

Strathclyde to tackle the problem from the manufacturing scheduling domain. It is a 

reactive scheduling system, which subscribes to a bottom-up approach of a schedule 

construction. The scheduling problem is distributed among three types of problem-solving 

agents: S-agents, T-agents, and 0-agents. Figure 2.4 depicts the three-tier architecture of 

DAS.
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Figure 2.4. Architecture of DAS.

At the operational level, the 0-agents are responsible for scheduling operations on 

individual resources. The 0-agent uses hybrid algorithm that consists of forward checking 

(Haralick and Elliot, 1980), shallow learning (Decthter et ah, 1990), and dependency- 

directed backtracking (Stallman and Sussman, 1977). At the tactical level, the T-agents are 

attached with the aggregate resources and the load-balance operations with the subordinate 

0-agents. Finally, at the strategic level, the S-agents are responsible for introducing a work 

into a schedule. The S-agents have unlimited control over the conflict resolution and they 

can relax a problem if and when required. All the three agents act asynchroiiously and 

constraint propagation takes place through message passing similar to YAMS (cf. Section 

2.5.4). DAS can also be seen as one of the functionally accurate communication 

architecture (Lesser and Corkill, 1981) as that of YAMS. The accuracy within 

communication architecture is achieved because of the locally accurate decisions made by 

the 0-agents and these local decisions are subsequently distributed among other agents to 

avoid having global effects.

2.5.8 REDS

The Real Time Distributed Scheduling (REDS) is developed by Hadavi et al. (1992), 

which can be seen as a logical successor of DAS. Because REDS is based on the 

assumption that the scheduling objectives conflict with each other and it is desirable to 

have a scheduling system that can observe its environment from different perspectives, it 

has subscribed to a distributed architecture for real time scheduling. REDS is developed for 

the VLSI fabrication in production scheduling domain. It is based on a philosophy that in 

scheduling it is not usually clear what exactly needs to be optimised and therefore by 

distributing the scheduling problem among group of agents it may allow to optimise a 

problem over various criteria. Most of the architecture of REDS is similar to that of DAS; 

however, the distributed structure of the scheduling problem among agents is fully 

exploited in REDS as opposed to DAS. REDS is deseribed to be an attempt to merge both 

AI and OR techniques in its design. The conceptual architecture of REDS divides the 

scheduling task into four subtasks: pre-processor, feasibility analysis, detailed scheduler,
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and sequencer. The pre-processor module pre-processes new orders arriving in system, the 

feasibility analysis module is responsible for critical resource scheduling and release 

control, the detailed scheduler module assures the validity of a schedule, and the sequencer 

dispatches module that works based on previous module’s perspective. REDS performs 

scheduling both from predictive and reactive perspectives by subscribing to the release 

control strategy (Hadavi et a l, 1992). This strategy helps to reduce the job waiting times, 

work-in-process, finished goods inventory, and also helps to meet due dates by reducing 

cycle times. Scheduling in REDS is performed both from job-based and resource-based 

perspective. In the predictive scheduling, the agents have specific problem-solving 

capability according to their position in a hierarchy and in the reactive scheduling each 

agent operates independently by identifying impact of disturbances. The final aim of 

REDS is to devise a schedule that does not violate any constraints.

2.5.9 BATTLE
BATTLE is a decision making expert system for the resource allocation problem in the 

military domain. Each military weapon in this domain is represented as a resource and 

each military target as a task. The objective function is an unexpected reduction in the 

value of targets. BATTLE uses the computation network, which is built beforehand to 

reason with the logical, Bayesian, and expert-defined operators. It is a rule based system, 

where rules are specified by the domain experts. This network resembles to the prospector 

inference network (Duda et a l, 1979), where information is propagated and combined by 

using Bayes’ rule and logic operators. The computation network is acyclic which contains 

a set of nodes and a set of directed links that connects two nodes. Moreover, each node is 

also associated with two kinds of information: datum function and assignment function. 

Each node has a default value associated with it, which is returned if  no specific 

information is supplied. The assignment function can be built from the family of evidence 

functions, which make assignments with a Subjective Bayesian method (Duda et a l, 

1976). BATTLE also acquires its information in order to reflect a current situation, such as 

the current situation in the battle field, which is acquired by finding those questions with a 

high ratio of probable importance to their difficulty. It is referred to as a merit system 

(Slagle et a l, 1984).

BATTLE invokes a two phase allocation algorithm. In the first phase effectiveness of 

each weapon against each target is analysed, where effectiveness is measured by the 

expected proportion of the target that would be destroyed if the weapon were fired at it. 

The second phase of algorithm uses individual effectiveness from the first phase to 

evaluate a plan. A good allocation plan is sought by optimising successive weapons.
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BATTLE also has the interactive scheduling component that allows its users to enter, 

augment, and alter data.

With the description of the BATTLE system, we conclude our review of the intelligent 

scheduling systems. Table 2.3 represents a comparative analysis of these intelligent 

scheduling systems.

Table 2.3. Comparative analysis of intelligent scheduling systems.

Name of 

the 

system

Domain

specificity

Problem

solving

technique

Scheduling

perspective

Scheduling

components

Exploits

ontologies

and

problem

solving

methods

ISIS JSS Constraint-

directed

search

Job-based Predictive No

OPIS Manufacturing

production

scheduling

Constraint- 

based 

• blackboard 

architecture

Job-based

and

resource-

based

Reactive No

SONIA JSS Iterative

constraint-

satisfaction

blackboard

architecture

Job-based Predictive 

and reactive

No

YAMS Manufacturing

scheduling

Distributed

AI

(fractal style)

Not clear Reactive No

FlyPast Air-gate

assignment

ATMS + 

constraint 

graph

Resource-

based

Completely

reactive

No

S2 VLSI wafer 

fabrication

Hardwired 

ATMS + 

constraint 

maintenance 

system

Not clear Reactive No
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DAS Manufacturing

scheduling

Distributed 

AI + 

constraint 

maintenance 

system

Job-based Reactive No

REDS VLSI

fabrication

production

scheduling

Distributed 

constraint 

satisfaction 

with A*

Job-based

and

Resource-

based

Predictive 

and reactive

No

BATTLE Military

domain

Prospector 

inference 

network = 

subjective 

Bayesian 

method and 

logic 

operators

Resource-

based

Predictive 

and reactive

No

2.5.10 Summary so-far

All the intelligent scheduling systems described in the previous sections failed to gain 

wider applicability mainly because they were subscribing to a specific scheduling domain. 

As a result, a new system had to be built from scratch every time the nature of the problem 

changed. As pointed out by Kruger (1992), such a brittle nature of the system components 

increases time and cost resources invested in a system construction. As we will discuss in 

the next chapter the research in the knowledge modelling domain has paved the way for 

making the system components reusable.

In the following section we will discuss different dispatching rules and heuristics 

developed to improve the efficiency of the job selection while constructing a schedule.

2.6 Dispatching rules and heuristics for the job selection
Constructing a valid schedule in accordance with the different constraints, requirements, 

and preferences that could emerge in real-world scenarios is a challenging enterprise. In 

such environments the selection of a correct job is a crucial activity because it improves 

the efficiency of a schedule construction by reducing unnecessary backtracking. Over the 

years, various dispatching rules, orders, and heuristics have been developed both in OR 

and AI, which will be discussed below.
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Panwalkar and Iskander (1977) discuss more than one hundred scheduling rules. In their 

approach the scheduling rules are classified into the following three types -  a) simple 

priority rules, combination of simple priority rules, and weighted priority indexes and b) 

heuristic scheduling rules. Wu (1987) proposed the three meta-categories in which the 

dispatching rules can be classified. The first category is based on simple priority rules 

which make use of the information relating to jobs. This is similar is spirit to the category 

‘a’ reported by Panwalkar and Iskander. It can further be subcategorised based on 

processing time (shortest processing time (SPT)), due date (earliest due date), arrival time 

(first in first out (FIFO)), and slack (minimum slack). The SPT rules were first studied in 

detail by Conway et a l (1967) and they pointed out that the application of SPT reduces the 

average mean flow time of jobs. Similar observations were carried out to determine the 

effect of dispatching rules to optimise the job properties, such as due date and tardiness and 

the shop properties, such as throughput and utilisation. The second category is based on the 

combination of rules from the first category. For instance, initially a job selection in this 

category can be achieved by using FIFO until a queue is 10 jobs long and then SPT can be 

used to select a job. The last category is referred to as a Weight Priority Indexes, which 

selects a job by assigning weights to the relative importance of jobs. The relative 

importance among jobs is usually represented by an objective function. This category is 

similar to the ‘weighted priority indexes’ category reported by Panwalkar and Iskander.

In comparison with OR, different heuristic commitment strategies have been developed 

in AI which belong to the constraint satisfaction community. Haralick and Elliot (1980) 

proposed the fail-first heuristic (FFH). According to this heuristic the next best variable 

(job) is the one which is most likely to fail in a schedule, i.e. most likely to be in dead end. 

In later years, Freuder (1982) subscribed to the notion of highly constrained variables and 

proposed the heuristics named minimal-width-ordering. This heuristic aims to instantiate 

variables (jobs) that are highly constrained, in the hope that backtracking will be reduced. 

For instance, if Va constrains Vb to value X and Vc to value Y, then this heuristic selects 

Va as a candidate because it would reduce the number of chances in Vb and Vc that 

otherwise create restriction elsewhere. On the other hand, if Vc is instantiated first then it 

naturally creates a conflict with Va- Dechter and Meiri (1989) have proposed the dynamic 

search rearrangement heuristic and which is similar in spirit to FFH. The dynamic search 

rearrangement heuristic suggests that if more than one job competing for the same 

resource, then the best candidate is the one that has least number of resources left for the 

assignment, and therefore, this job represents the least reliance available. Based on the 

notion of reliance, Sadeh (1991) have proposed an operation resource reliance-filtered
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survivable schedule (ORR-FSS) heuristic. Generally understood, ORR first identifies the 

most critical activity as the one that has maximum reliance on the available resources and 

time ranges for which there is a highest contention and then FSS rates a quality of all the 

possible start times that can be assigned to the critical activity. Finally, a start time with the 

highest quality is selected for the assignment. The Task-Interval-Entropy heuristic (Caseau 

and Laburthe, 1995) uses the notion of task intervals as a basis for estimating the resource 

contention. A similar notion that of a slack was also adopted by Cheng and Smith (1995) 

whereby they make use of the precedence constraint-posting slack along with the 

constraint-based analysis propagator. Baptiste, Le Pape, and Nuitjen (1995) also used the 

notion of a slack to find a minimum resource slack with highest average contention and 

they have examined the following three heuristics: choose first, choose last, and choose 

dynamically. Finally, the minconflicts (Minton et a l, 1992) is a local search heuristic that 

chooses an activity with the highest violations (i.e., an activity that relies on the most 

contended for resources and time slots), and for each of its possible start times the number 

of resulting violations is assessed. Finally, a start time with the least number of resource 

violations is chosen for assignment. A more detailed analysis of job selection strategies can 

be found in (Beck and Fox, 1998).

2.7 Scheduling in a nutshell
In this chapter we have reviewed and summarised different areas of scheduling research, 

which have emerged over the years. Based on this review of the field, in a nutshell, we can 

say that the scheduling task is “an assignment of time-constrained jobs to time-constrained 

resources within a pre-defined time framework, which represents the complete time 

horizon of a schedule. Normally an admissible schedule must not violate any of the 

constraints imposed on jobs or resources and must satisfy all the input requirements. More 

in general, the output of the scheduling task is a legal schedule in accordance with a given 

solution criterion (e.g., complete, admissible, feasible). Preference specific decisions can 

influence the cost of a schedule ”. Our definition of scheduling is consistent with the earlier 

definitions discussed in section 2.3, but it also emphasises the need for considering the 

notions of requirements and preferences to validate a solution schedule along with 

completion and constraint violation. Moreover, it also emphasises that preferences can 

affect the cost of a schedule.

Our review began by discussing the different problem types for formulating the 

scheduling task. Having discussed a formulation of the scheduling task, we reviewed an 

OR thread in scheduling research, and then we focused our review on scheduling research 

in AI. Initially, we have seen various viewpoints to define the scheduling task. To this end,
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we can say that at a generic level the scheduling task can be characterised by the following 

eight elements: job, activity, resource, time range, constraint, requirement, preference, and 

cost. A solution schedule has usually to satisfy a number of conditions, such as completion, 

constraint violation, requirement violation, and optimisation. As it has been pointed out in 

section 2.3.3, the notion of a time range can be used to represent a schedule horizon, which 

subsequently can be specialised to represent the time range of jobs. To highlight the 

various types of constraints in scheduling, our review presented different scheduling 

models, based on which we can say that the typical constraints that can be observed in 

scheduling are precedence constraints, limited capacity of resources, resource requirements 

of each job, and due dates of a job. In section 2.4, we focused on reviewing different 

techniques, which can be used to solve the scheduling task. These techniques have varying 

degrees of knowledge requirements, which affected their usability and implementations to 

tackle the scheduling task. Then in section 2.5, we reviewed various intelligent scheduling 

systems, which were constructed by successfully using the different AI techniques. Finally, 

we reviewed dispatching rules and heuristics developed to select a correct candidate job.

In sum we can say that, the OR approaches to scheduling have certain limitations due to 

their static formulation and insufficient expressiveness to tackle the complexities from the 

real-world scheduling problems. Moreover, their primary aim was to achieve an optimal 

solution schedule, which also was difficult if not impossible in real life. On the other hand, 

various intelligent scheduling systems have been constructed by using AI techniques. 

However, the domain specificity of these systems made them hardwired and inflexible in 

nature, and therefore, these systems had limited reusability. In the knowledge modelling 

domain system reusability was achieved by constructing the libraries to tackle the generic 

tasks (Motta, 1999; Valente et a l, 1998; Benjamins, 1995; Chandrasekaran, 1990).

In the next chapter, first we will review different components involved in constructing 

the libraries. Then we focus on reviewing different scheduling libraries and task ontologies 

that have been constructed. These past efforts allow us to formulate our research basis.
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KNOWLEDGE MODELLING APPROACHES TO SCHEDULING

In this chapter, we review the knowledge modelling approaches to scheduling problem

solving. This review is particularly important for us, because it allows us to formulate our 

research basis.

As described in Chapter 2 (cf. Section 2.5), all the intelligent scheduling systems 

developed over the last two decades were hardwired and inflexible in nature because they 

were subscribing to specific scheduling domain. Reusability was the main concern of 

research in knowledge modelling. Here, the construction of a KBS can be conceived by 

applying libraries of PSMs (Motta, 1999; Valente et a l, 1998; Benjamins, 1995; 

Chandrasekaran, 1990) to tackle the classes of generic tasks (Chandrasekaran, 1986), such 

as parametric design, planning, diagnosis, design, etc. Our research subscribes to this 

stream whereby we aim to construct a generic library of scheduling PSMs. Ontologies and 

PSMs are the two central components in the library construction process. These two 

components are reviewed in the following section. Then, in section 3.2 we will review the 

existing scheduling libraries and in section 3.3 we will review the existing scheduling task 

ontologies. The review presented in these two sections is particularly important for us 

because based on these past efforts we formulate our research basis. In section 3.4, we 

analyse the gaps in the existing approaches to the scheduling library construction and task 

ontologies. Finally, in section 3.5 we conclude the chapter by indicating what needs to be 

done in order to bridge the gaps in the existing scheduling libraries.

3.1 Ontologies and problem-solving methods
In the 1991, the ARPA knowledge sharing effort (Neches et al., 1991) proposed a novel 

perspective for knowledge sharing while constructing intelligent systems. Their proposal 

was as follows:

“Today’s development process of knowledge-based systems (KBSs) relies on building 

knowledge-bases from scratch. To avoid the brittle nature of these KBSs, the process of 

constructing KBSs will begin by assembling and subscribing to the existing reusable 

components. Therefore, the knowledge engineers can reuse the existing knowledge bases, 

thus leaving only with the worry of constructing their specialised reasoning patterns 

embodying in PSMs. This would facilitate constructing expanding and enriched systems 

much cheaply in terms of time and cost ”.
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In compliance with the above proposal, a system’s reusability can be augmented by the 

abstract reusable reasoning patterns underlying a KBS that are usually referred to as a 

PSM. Libraries of these reusable PSMs can be constructed to tackle different types of 

generic tasks. A formulation of the Generic Tasks approach (Chandrasekaran, 1986) was 

particularly instrumental because it highlighted a clear distinction between a task 

specification (the problem to be solved) and a method (that can be executed to solve a 

task). Each task can be solved by applying different methods, which can further be 

decomposed into several (-sub) tasks and (-sub) methods. A knowledge modelling 

framework provides a methodology to construct a library that systematically organises 

different building-bocks associated with a library. Some influential examples include. 

Generic Tasks Structures (Chandrasekaran et a l, 1992), Role-Limiting Methods (Marcus, 

1988), Protégé-II (Musen et a l, 1993), CommonKADS (Schreiber et a l, 1994), MIKE 

(Angele et a l, 1998), Components of Expertise (Steels, 1990), EXPECT (Swartout and 

Gil, 1995), GDM (Terpstra et a l, 1993), VITAL (Domingue et a l, 1993), and Task- 

Method-Domain-Application (TMDA) (Motta, 1999).

While constructing a library of reusable components one very important decision 

needing to be taken by knowledge engineers is how to represent the acquired knowledge 

within a system. Consistently with Newell’s proposal of ‘knowledge level hypothesis’ and 

‘principle of rationality’ (cf. Section 1.1), and in line with the work by Motta (1999), Steels 

(1990), and Breaker and Wielinga (1985), among others, knowledge can be systematically 

represented at the knowledge level independently of its physical realisation in a 

computational system that enables a scheduling agent to achieve its reasoning 

functionality. Another aspect of the knowledge modelling paradigm is that the KA process 

is driven by pre-existing knowledge models, often represented as ontologies (Gruber, 

1995). In the following section we review the current research on ontologies.

3.1.1 Ontologies
Ontologies primarily aim at capturing static domain knowledge. They allow knowledge 

engineers to represent a commonly agreed conceptualisation of domain knowledge, which 

can be shared and reused over wider applications and groups. Ontologies are usually 

organised in terms of taxonomies. They consist of the following modelling components: 

classes, relations, rules, functions, axioms, and instances (Gruber, 1993). The taxonomic 

organisation of the concepts provides a structure for the inheritance mechanism. Relations 

represent a specific interaction between different concepts. Functions can be seen as a 

special case of relations, where the n-th element of a relationship is unique for its n-1 

preceding elements (Gruber, 1993). Axioms are used to express the principles, the rules
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that are always true in the universe of discourse (Gruber, 1993). More importantly, axioms 

detennine the competence of ontologies. Finally, instances are used to represent individual 

elements.

According to Gruber (1993) the notion of an ontology can be defined as follows:

“An ontology is an explicit specification of a conceptualisation

Although, Gruber’s viewpoint is the most widely referred one, as argued by Guarino 

(1997) the main problem with this definition is that it relies on the notion of 

‘conceptualisation’ which is introduced by Genesereth and Nilsson (1987) to formalise the 

meanings, whereas in reality the notion of a conceptualisation can only be understood 

intuitively. Recently, Poli (2002) raises three questions which should be considered while 

constructing ontologies: “what are the boundaries of ontologies?”. That is, what problems 

are ontological rather than epistemological, logical, or linguistic, etc. “What are the types 

of ontologies?”. Poli proposes the following three types: descriptive, formal, and 

formalised, and each category can further be treated as domain specific and domain 

independent. Finally, “what is the structure of an ontology?”. Poli suggests that the 

structure of an ontology can be defined by the theory of items. Other definitions of 

ontologies can be found in (Motta, 1999; van Heijst et a l, 1997; Valente and Breuker, 

1996; Borst et a l, 1995; Guarino and Giaretta, 1995; Neches et a l, 1991).

Ontologies can be built by subscribing to the following principles: clarity, coherence, 

extendibility, minimal ontological commitments (Gruber, 1993), minimisation of the 

semantic distance between sibling concepts (Arpirez-Vega et a l, 1998), and finally 

ontological distinction (Borgo et a l, 1996). These principles are described below.

• Clarity: States that the intended meaning should be communicated effectively without 

any ambiguity by providing appropriate sufficient and necessary conditions;

• Coherence: States that the internal consistency must be maintained. At least axioms 

should maintain logical consistency because they determine the competency of an 

ontology;

• Extendibility: States that ontologies should leave scope open to extend the existing 

terms such that it does not require much revision of existing definitions;

• Minimal ontological commitments: States that as few claims as possible should be 

made while developing an ontology;

• Minimisation of semantic distance between sibling concepts: States that the similar 

concepts should be grouped together and represented as subclasses of one class and
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should be defined by using the same primitives. On the other hand the concepts that are 

different than each other should appear at a distance in a hierarchy;

• Ontological distinction: States that the classes corresponding to different identity 

criteria must be disjoint.

Different methodologies have been developed to construct ontologies, including: 

Enterprise Ontology (Uschold and King, 1995), TOVE (TOronto Virtual Enterprise) 

methodology (Grüninger and Fox, 1994). Bemaras et al. (1996) have presented a 

methodology in the domain of electrical networks as a part of ESPIRIT project named 

KACTUS. The METHONTOLOGY methodology (Fernandez et al, 1997) enables 

ontology building at the knowledge-level and their framework is supported by ODE 

(Blazquez et a l, 1998). Finally, the SENSUS methodology (Swartout et a l, 1997) arrived 

a year later than METHONTOLOGY.

Here, we do not discuss in detail the different categories and types of ontologies, but 

rather concentrate on their classification that is useful to represent the knowledge 

associated with a generic task during library constructing. A more detailed discussion 

about ontology classification can be found in (Gomez-Perez and Benjamins, 1999). 

Ontologies can be classified into the following four broad categories: task ontology, 

method ontology, domain ontology, and application ontology. These categories are 

described below.

• Task Ontology: Formalises the nature of a generic task by providing different 

concepts, relations, function, and axioms, which are associated with it ideally 

application domain independently. Motta (1999) defines a task ontology primarily from 

the knowledge modelling perspective, whereas Mizoguchi et al. (1995) conceptualises 

a task ontology as a result of their interview system named MULTIS (Tijerino and 

Mizoguchi, 1993);

• Method ontology: Provides the lexicon necessary to specify the problem-solving 

behaviour of a particular method (Musen et a l, 1994; Tijerino and Mizoguchi, 1993), 

whereas according to Coelho and Lapalme (1996) a method ontology specifies the 

declarative definition of inferences;

• Domain ontology: Represents the knowledge associated with a specific domain, either 

in a task-specific or a task-independent way. While a task-specific viewpoint of domain 

ontologies is mono-functional, the task-independent viewpoint is generic as it does not 

subscribe to any specific task (Motta, 1999). Typical examples of the task-independent 

domain ontologies are Cyc (Guha and Lenat, 1990), PhysSys ontology (Borst et al,
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1995), EngMath (Gruber and Oslen, 1994), time ontology (Pikes and Zhou, 2002), 

etc.;

• Application ontology: Contains a set of vocabulary for conceptualising a particular 

application (van Heijst et a l, 1997; Gennari et al., 1994). Because these ontologies 

concentrate on a specific application of a task they are non-reusable in nature.

Here, we conclude our discussion about the ontologies and in the following section we 

provide an overview of the notion of a PSM.

3.1.2 Problem-solving methods

A PSM can be used as a model-based template to direct the KA process (van Heijst et al, 

1992) and to support robust and maintainable applications by reuse (Motta, 1999; Marcus, 

1988). The notion of a PSM is present in all the knowledge modelling frameworks 

enumerated earlier. PSMs describe the inference process underlying a KBS in an 

implementation and domain-independent way (Fensel and Benjamins, 1998). For instance, 

Clancy (1986) abstracted the problem-solving behaviour exhibited by different rule-based 

systems into a common and generic inference pattern called “heuristic classification” at the 

knowledge-level.

PSMs can be classified into the following two categories: task-specific and task- 

independent, depending upon whether or not they subscribe to a specific class of generic 

tasks. McDermott (1988) refers to task-specific methods as strong methods because they 

tackle the specific classes of generic tasks. A systematic taxonomic representation of 

strong methods can be found in Marcus (1988). Task-independent methods on the other 

hand do not subscribe to any specific class of generic task and therefore are usually 

referred to as weak methods. The term '‘weak’ here indicates that these methods do not 

exhibit any assumptions about the type of task that can be solved by their application. They 

rather tackle a problem at a high-level of abstraction, such as search (Newell and Simon, 

1976). Fensel and Benjamins (1998) point out that a PSM makes an effective use of the 

domain knowledge in order to achieve the goal of a task and based on this viewpoint a 

PSM can be characterised as: 1) the specification of inference actions for solving the goal 

of a task, 2) the definition of one or more control structures over the actions, and 3) a set of 

knowledge roles indicating how domain knowledge is used during its execution.

The most influential stream of research in the field of PSMs is the development of  

libraries of PSMs and their reuse. Because PSMs are developed to tackle a specific task, it 

is useful to abstract and formulate them at a generic level such that they can be reused to 

construct a new PSM quickly. Gomez-Perez and Benjamins (1999) proposes the following
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categorisation for classifying libraries of PSMs: generality, fonnality, granularity, and size. 

We augment this classification by proposing a new category: ^domain specificity^ While 

the generality dimension determines whether a library is developed to tackle a specific 

generic task, the domain specificity adds another layer of granularity by pointing out 

whether an entire library or part of a library is defined to tackle a specific domain. Based 

on the domain specificity dimension one can determine whether a library is reusable within 

a single domain or the multiple domains of a generic task. For instance, the generality 

criterion would highlight a library for the scheduling task, while domain specificity would 

provide a more specific pointer stating that a library is in fact constructed to tackle the 

production scheduling task, e.g., Hori and Yoshida’s (1998) library. Based on the 

generality dimension one can state that a library has wider reusability whilst the reusability 

of a library can have reusability within a single domain according to the domain 

specificity. The categorisation proposed by Gomez-Perez and Benjamins (1999) is 

described below:

• Generality: Determines whether the PSMs are developed to tackle a specific task. The 

typical examples of task-specific libraries are diagnosis (Benjamins, 1995), parametric 

design (Motta and Zdrahal, 1996), planning (Valente et a l, 1998), assessment (Valente 

and Lockenhoff, 1993), and so on;

• Formality: Classifies a library into informal, formal, and implemented ones. Informal 

libraries provide a structured textual representation of PSMs (Chandrasekaran, 1990), 

formal libraries allows the verification of the properties of PSMs (Benjamins and 

Aben, 1997; ten Teije, 1997; Aben, 1993), and implemented libraries provide 

operational specification of PSMs (Gennari et a l, 1994; Puerta et a l, 1992);

• Granularity: Determines whether the libraries are developed to tackle a complete task, 

such as the parametric design library (Motta and Zdrahal, 1998) or the fine-grained 

parts of the task (Aben, 1993). However, many libraries comprise both the types and 

the former are built from the latter ones (Motta and Zdrahal, 1998; Barros et a l, 1996; 

Benjamins, 1993; Chandrasekaran, 1990);

• Size: Characterises a library based on the number of PSMs included in the library and 

determines how many types of tasks it tackles. CommonKADS (Breuker and van de 

Velde, 1994) is the most comprehensive library that tackles the following tasks: 

diagnosis, prediction of behaviour, assessment, design, planning, assignment and 

scheduling, and engineering modelling.
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Because the ultimate aim of this thesis is to construct a generic library of scheduling 

PSMs, it is essential to look at the different types of knowledge-intensive PSMs that can be 

applied to tackle the scheduling task.

3.1.3 PSMs for the scheduling task

According to Wielinga and Schreiber (1997) different types of configuration processes, 

such as assignment, planning, scheduling, configuration, etc. can be treated as synthesis 

tasks. The configuration process can be defined as a form of design where a set of 

predefined components are given and an assembly of selected components is sought that 

satisfies requirements and obeys a set of constraints (Mittal and Frayman, 1989). The 

configuration process often assumes a structure of components, where the components may 

be objects or processes, symbolic or physical, and the connections that are present among 

these components. In the same paper, Wielinga and Schreiber have proposed a taxonomic 

representation of the different knowledge-intensive PSMs that can be applied to tackle the 

synthesis task. Instances include: Propose and Backtraek (P&B) (Runkel et ah, 1996), 

Propose and Revise (P&R) (Marcus and McDermott, 1989), Propose and Exchange (P&E) 

(Poeck and Puppe, 1992), Propose and Improve (P&I) (Motta, 1999), Propose and 

Genetical-Exchnage (P&GE) (Poeck and Gappa, 1993), etc. At an abstract level, these 

PSMs follow the similar philosophy proposed by the Propose-Critique-Modify family of 

methods (PCM) (Chandrasekaran, 1990). Figure 3.1 depicts the taxonomic representation 

of PSMs proposed by Wielinga and Schreiber (1997).

Synthesis Tasks

Configuration
problem-solving

methods

Transformation- 
based methods

Model-based
methods

Uniform methods
Knowledge intensive 

methodsConstraint Linear
Programmingsatisfaction

H iera rch ica lCase-based methods PCM-type methods m eth ods

Heuristical Propose & Propose Propose &  Propose &
- , . .  classification Backtrack & Revise Exchange Im proveVenfy Verify

Figure 3.1. Taxonomy of the methods applicable to the synthesis task.

The PSMs depicted in Figure 3.1 can be classified into the knowledge-intensive ones and 

domain-independent uniform methods like, constraint-satisfaction and LP. We are not 

interested in the domain-independent methods, because they do not fully exploit domain- 

specific knowledge during their problem-solving. Constraint-satisfaction has a long history
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as a problem-solving technique to tackle the scheduling task (Cesta et a l, 1999; Beck et 

al, 1998; Beck and Fox, 1998; Cheng and Smith, 1995; Dorn and Slany, 1994; Kumar, 

1992; Fox and Sadeh, 1990; Fox, 1983). However this uniform approach to modelling fails 

to provide a fine-grained epistemological framework to analyse the different knowledge- 

intensive tasks take place in seheduling. It is essentially an implementation technique.

Although, the case-based methods can be used effectively to tackle the other types of 

tasks, in scheduling they can have limited applicability due to two main reasons. First, they 

aim to find the best candidate solution from the set of available solutions; however, in real- 

life dynamic and uncertain scheduling domains this issue can act as a bottleneck, because a 

scheduler may prefer to rely on the currently available knowledge instead of consulting 

past cases. Seeond, case-based methods rely on blame assignment to decide which aspect 

of the stored solutions that has caused the constraint violations (Wielinga and Schreiber, 

1997). However, in scheduling it is not always possible to find the exact source of 

knowledge associated with the culprit decisions, because a combination of several 

situations may have contributed to devise a poor solution. Therefore, a scheduler may have 

to retract several inter-linking decisions to reach the source of a conflict. Nevertheless, a 

scheduling system called CABINS (Miyashita and Sycara, 1994) presents a methodology 

for learning a control level model for selection of heuristic repair.

During our library construction we are mainly interested at comprising aforementioned 

knowledge-intensive PSMs, due to two main reasons. First, these methods make extensive 

use of the domain-specific knowledge during problem-solving. Second, the different 

phases involved in these methods can complementarily be used both to construct and repair 

a schedule. In this sense they exhibit the characteristics of both constructive and repair 

method (Zweben et a l, 1993).

In the following seetion, we review the Propose and Revise method in the context of 

scheduling. The development and description of other PSMs can be found in Chapter 7, 

where we engineer them as a part of a library.

3.1.3.1 Propose and Revise

The Propose and Revise (P&R) method was originally developed to tackle VT, a system 

for elevator configuration (Marcus and McDermott, 1989). Because one application could 

not prove the generic nature of this method, it was modified to tackle the production 

scheduling problem (Stout et a l, 1988). Later it was integrated with the KA tool called 

SALT (Marcus and McDermott, 1989). This method decomposes the scheduling task into 

three sub-tasks: 1) propose an extension to a sehedule by applying procedures, 2) check

50



Chapter 3

the currently extended schedule for constraint violations, and 3) revise a schedule in order 

to fix the constraint violations by applying appropriate fix strategy.

P&R does not rely on the explicit information about all the components and their 

connections. In the propose phase, the assignment of jobs to resources and time ranges is 

achieved by applying the procedures. The jobs can be selected based on the domain- 

specific and search-control knowledge. After an assignment of each job the verification 

phase is invoked to evaluate the constraint violations. Usually, the constraints are evaluated 

based on the domain-specific perspective. If constraint violations occur during the propose 

phase, then the revise phase is introduced to tackle the constraint violations by applying the 

fixes. Because of the antagonistic nature of the constraints in scheduling, the revise phase is 

invoked only after a complete schedule is devised (Stout et a l, 1988). However, Motta and 

Zdrahal (1998) and Zdrahal and Motta (1995) have proposed the following two strategies 

to fix constraint violations: extend-model-then-revise (EMR) and complete-model-then- 

revise (CMR) in the context of the parametric design. EMR fix the constraint violations as 

soon as they occur while constructing a solution, whereas the constraint violations are 

fixed in CMR only when a complete solution is devised. The order over application of 

different fixes can be determined based on the application specific knowledge. According 

to Wielinga and Schreiber (1997), the main limitation of the P&R method is that fix 

application usually relies on the heuristic knowledge and therefore it can be biased towards 

a specific solution types.

3.2 Existing libraries for scheduling
Here, we review the following scheduling libraries that were developed in the past: the 

production scheduling library (Hori and Yoshida, 1998), CommonKADS library for 

assignment and scheduling tasks (Sundin, 1994), Le Pape’s library of constraint-based 

scheduling (Le Pape, 1994), and MULTIS-II (Tijerino and Mizoguchi, 1993).

3.2.1 Hori and Yoshida’s library for production scheduling

Hori and Yoshida (1998) have proposed a domain-specific library for the production 

scheduling task. The library construction in their approach subscribes to a bottom-up 

approach, whereby the knowledge requirements of each problem-solver are realised based 

on the production scheduling domain. The library is organised into three main components 

- the task level, the problem-solving level, and the domain level. At the task level, the 

scheduling task is formalised by its task ontology. Because the task ontology component 

will be discussed separately in section 3.3, here, we describe the other two components.
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The problem-solving level consists of different tasks and methods and they are organised 

according to the data flow (i.e., eontrol knowledge) among them. The control knowledge 

among different problem-solving inferences is clarified based on a domain model of 

production scheduling. In our perspective, the main problem of this kind of commitment is 

that it makes difficult to identify the knowledge requirements of the different problem

solving tasks and methods independent of the domain. Thus, the cost of reuse is very high. 

In line with the earlier approaches to library construction (Motta and Zdrahal, 1996; 

Valenete et a l, 1998; and Valente and Lockenhoff, 1993), this library provides a clean 

separation between the problem-solving and domain knowledge. The scheduling engine 

consists of the two sub-systems: the dispatch method and the assignment method.

The dispatching method provides a high-level eontrol structure that determines the 

priority of each lot instead of concentrating on the assignment of individual units, which is 

achieved by the following three methods: reset, removeTop, and isEmpty. First, the reset 

method creates an initial queue of all the lots that are still unassigned in a schedule; then 

the removeTop method returns a lot with the highest priority; and finally the isEmpty 

method is invoked after eaeh cycle to check whether a queue is empty, otherwise it invokes 

a cycle.

The assignment method mainly has to do with the actual scheduling operation at a more, 

fine-grained level by subscribing to the forward seheduling strategy, which helps to 

prevent units being delayed. This method assigns units to resources by fixing their start and 

end times. The assignment is accomplished by the following three operations: reset, 

isDone, and doNext. The reset initialises the unit queue, the isDone checks whether all the 

units in a queue are assigned, and otherwise the doNext operation executes assignment of a 

focal unit to the selected resource. The method checkUnit is invoked to validate whether 

the focal unit assignment complies with the eonstraints, and in case of failing to maintain 

the constraints, it analyses how to fix them. The constraint violation associated with the 

assignment of a time range is dealt with the method modifyTime. All the outstanding units 

are then assigned by using the backward scheduling strategy based on their due dates, 

which help to reduce the in-process inventory. Although, this library validates a solution 

schedule against completion and constraint violation, it fails to reason about two other 

important schedule validation criteria, requirement violation and optimisation.

3.2.2 CommonKADS library
CommonKADS is a comprehensive methodology that supports the construction of libraries 

of the task specific PSMs. It also tackles assignment and scheduling tasks. However, it 

only consists of the P&R method (Marcus and McDermott, 1989). The detailed discussion
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on the KADS model of the scheduling task can be found in (Balder et a l, 1993). The 

CommonKADS library subscribes to a top-down approach of the library construction, 

whereby a high level task is decomposed into (-sub) tasks and (-sub) methods. This 

decomposition structure is similar in spirit to the generic tasks proposal (Chandrasekaran, 

1986).

The CommonKADS library consists of the following two variants of the P&R method: 

simple P&R and hierarchical P&R. The former one is similar to the original description of 

the P&R method (cf. Section 3.1.3.1). In the hierarchical P&R, first high-level units (jobs) 

are assigned to the high-level resources. In the propose phase first all the unassigned units 

are sequenced based on a certain ordering criteria, and then the function select unit selects 

a candidate-unit for its assignment. The funetion propose-assignment executes assignment 

of a selected candidate-unit to resources by two methods: one-step resource matching and 

step-wise resource matching. The former method matches the resource requirement of a 

unit directly against all the resources, whereas the latter method matches the resource 

requirement against one of the several resources assignable to a unit. The step-wise 

resource matching method is particularly useful when several resources can be assigned 

to a unit.

The revise phase is invoked if any constraint violation occurs while assigning the units. 

A flawed set of assignments are revised by the function modify. The constraint violations 

are fixed by using one of the following methods: re-try-the-Iast-assignment, local- 

exchange, global-exchange, generic-fixes, and scaling-of-constraints. The method re- 

try-the-last-assignment falls back to the last consistent assignment of a unit. The local- 

exchange (Poeck and Puppe, 1992) fixes the constraint violations by exchanging the 

assignment of the units in conflict. Finally, the global exchange strategy performs a series 

of exchanges to fix constraint violations.

Because each method in their library is realised by its direct association with the high- 

level task, it makes difficult to realise how the existing inferences can be reused or to 

construct a new PSM quickly. Moreover, because the CommonKADS library consists of 

the P&R method, the only schedule validation criteria that can be tackled are completion 

and constraint violation, but it fails to tackle requirement violation and optimisation.

3.2.3 Constraint satisfaction approach for resource allocation scheduling
As deseribed earlier, constraint satisfaction has long been used as problem-solving 

technique for scheduling (Domdorf et a l, 2000; Cesta et a l, 1999; Beck et a l,  1998; Beck 

and Fox, 1998; Cheng and Smith, 1995; Dorn and Slany, 1994; Fox and Sadeh, 1990; Fox,
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1983). In line with the traditional approaches, ILOG SCHEDULE also subseribes to the 

constraint satisfaction as its problem-solving strategy to tackle the resource allocation 

problem. ILOG SCHEDULE is built on top of the SOLVER, which is a generic software 

tool that provides the object-oriented programming environment.

The resource allocation problem exhibits the following characteristics: 1) the availability 

of each resource varies over time, independently of the availability of other resource-types, 

2) the resources can be aggregated into their more abstract forms, and 3) the resource 

availability at some point in time depends on the availability of other resources at other 

points .in time (Baptiste and Le Pape, 1995). To reconcile these three characteristics of the 

problem, ILOG SCHEDULE consists of a generic framework of the resource time-table. It 

maintains the information about resource utilisation and resource availability over time. 

Two types of implementations are proposed for representing the resource time table in 

ILOG SCHEDULE. The first implementation assumes a discrete representation of the 

time. It also keeps a history about maintaining the status of a variable at any instance of 

time over the complete time interval. The second implementation does not make any 

assumptions about the nature of time, whether discrete or dense, but simply maintains a 

history about the time when the status of a variable changed from unassigned to assigned 

one. These two implementations are referred to as the discrete array and the sequential 

table respectively. The assignment of an activity to resources is achieved by the second 

mechanism and by complying with a generic disjunctive constraint. A disjunctive 

constraint restricts the overlapping of incompatible activities in time. Finally, the third 

mechanism called edge-finding takes as an input arbitrary tuples of activities and makes 

sure that a certain activity must precede or succeed other activity. This mechanism is also 

responsible for assigning a precise earliest and latest start and end times to jobs and 

activities.

The nature of the resource allocation problem in ILOG SCHEDULE is formalised by the 

objeet model. The resources and activities are two central concepts in the resource 

alloeation problem. The notion of a schedule in the library is represented by the class 

Ctschedule. It is represented by a set of activities, a set of resourees, and a time interval 

covered by a sehedule. The notion of resource is formalised by defining the class 

CtResource. The resource capacity constraint is formulated by the following two 

methods: the cumulative formulation and the disjunctive formulation. The class 

ctActivity defines the notion of an activity. It is represented by a start time, end time, 

and duration. Finally, the duration of an aetivity is directly proportional to the amount of 

resource capaeity that is consumed by each activity during its execution.
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3.2.4 MULTIS-II

MULTIS-II proposes a conceptual programming environment called CLEPE, which allow 

its end-users to incorporate their problem-solving at the eoneeptual level with the problem

solving inferences of a system. The authors claim the following three advantages of the 

CLEPE environment: 1 ) it provides human-friendly primitives whereby the end-users can 

quickly describe their problem-solving process, 2) a task ontology within their system 

simulates a problem-solving process at an abstract level, and 3) it provides the environment 

for an ontology author to construct their own ontology. The CLEPE environment is built as 

the Generic Process Network (GPN), where each node in GPN represents a generic 

process and a link between any two generic processes represent a control flow among 

them. In the following paragraph we describe the problem-solving process adopted in 

MULTIS-II.

The domain specific problem-solving conceptualisation of the end users is translated at 

the task and problem-solving level by using the ‘task-domain binding mechanisms \  These 

mechanisms act as glue to integrate the domain speeiflc concepts of end users with the task 

speeific ones. Having translated the domain specific conceptualisations, the problem

solving process of MULTIS-II is invoked. Below we describe the problem-solving proeess 

of MULTIS-II during any k̂  ̂ iteration. The complete process is iterated until a complete 

schedule is devised.

1. Initially, all the unassigned jobs in a schedule are collected and grouped together based 

on their similarity measure;

2. All the resources are then elassifled by using the task classify-schedule-resource;

3. The jobs collected in step 1 are then sorted in a particular order by complying with the 

domain-specific specifications, such as a job with earliest due-date, etc.;

4. All the classified resourees are then sequeneed in a certain order. MULTIS-II classify 

resources based on their ineremental order from least to highest quantity of load 

handled by the resources;

5. The task take-job makes a certain job from the list of unassigned jobs as a focal job. A 

certain job is made a focal candidate aceording to the domain-specific knowledge (cf. 

point 3). Having made a certain job as a focal job, the task pickup-job is invoked to 

piekup a focal job;

6. Once a foeal job is selected then all the resources that can be assigned to a focal job are 

classified in an incremental order that represents the amount of load that can be 

handled by a resource. A candidate resouree from the list of classified resources is
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selected by the task pickup-RSC. This task subscribes to a default eriterion that selects 

a resource with the lowest load. The task pickup-RSC uses a causal relation named 

select to select a resource;

7. Finally, the task assign-RCP-to-RSC takes as an input a focal job and a selected 

resource and executes their assignment. The relation called consists-of represents a 

permanent assignment of a job to its resouree.

Once an assignment of the currently selected job is completed then the load over other 

resources is updated by the task update-load. The complete procedure is iterated in (k+l)‘*̂ 

iteration until all the jobs in a schedule are assigned to devise a complete schedule. Each 

newly assigned job is appended to the assignment-set, which represents a final solution.

In the following section we review the existing scheduling task ontologies.

3.3 Existing scheduling task ontologies
While reviewing the existing seheduling task ontologies we primarily focus on analysing 

the following characteristics: different concepts used to formalise the scheduling task, 

domain-specificity or independence of these task ontologies, and their subscription towards 

particular problem-solving technique. Here, we do not review generic enterprise resource 

ontology (Fadel et a l, 1994) and common ontology defined for the DARPA/Rome 

planning and scheduling initiative (Allen and Lehrer, 1992), because instead of providing a 

complete task ontological framework these initiatives rather concentrate on formalising 

specific scheduling components. Our review consists of the job assignment task ontology 

(Hori et a l, 1995; Hama et a l, 1992a; Hama et a l, 1992b), the MULTIS ontology 

(Mizoguchi et a l, 1995), and the OZONE ontology (Smith and Becker, 1997).

3.3.1 Job assignment task ontology

The job assignment task ontology was developed since 1987 under the project named 

CAKE (Hori et al., 1994). Currently, it is residing on the Ontolingua server^ (Farquhar et 

a l, 1997). The job assignment task can be defined as “assigning all given jobs to the 

available resources within the time range, while satisfying various constraints ”. In their 

framework the scheduling task can be realised by the following four components: job, 

resource, time-range, and constraint. The concepts job, resource, and time-range are 

represented as entities and the notions of assignment and constraints as relations.

' Please refer to the following URL: http://www-ksl.stanford.edu/knowledge-sharing/ontologies/html/iob- 

assignment-task/index.html
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The concept job  denotes an entity that can be assigned over resources and has a speeific 

time slot. It is further classified into unitary-job and aggregated-job. The class job  has the 

following types of subclasses: temporally-fixed-job-class, fixed-length-job-class, and 

unit-length-job-class. The function job.time-range is defined which allows to assign a 

time range to a job. To determine the temporal order among any two jobs the following 

relations are defined among any two jobs: unordered set, ordered set, and interval. Table 

3.1 report attributes of the class job  and its subclasses.

Table 3.1. Attributes of the class job and its subclasses.

Class Attributes

Job job-name, job-type, job-length, job-time-range

Unitary-job Job-member-of, job-assignable-resource

Aggregated-job job-member-set

The coneept resource defines an entity to which job can be assigned. The class resource 

is further specialised into two subelasses: unitary-resource and aggregated-resource. The 

former type of resource cannot be divided into smaller units, whereas the latter type of 

resource denotes a group of unitary and aggregated resources. Table 3.2 show the attributes 

of the class resource and its subclasses.

Table 3.2. Attributes of the class resource and its subclasses.

Class Attribute

Resource Resource-name, resource-type

Unitary-resource Resource-member-of, assignable-resource-of

Aggregate-resource Resource-member-set

The concept time-range denotes a certain period of time to which a job can be assigned. 

A job time range is represented in terms of start-time, end-time, and unit of time. This task 

ontology subscribes to Meng and Sullivan (1991) (cf. Section 2.3.3) to represent the 

temporal relations among jobs.

The class assignment represents an assignment of a unitary-job to resources and time 

ranges, which is achieved by the function assigned-resource and assigned-time-range 

respectively.

In their framework, the constraints are classified into direct constraint and indirect 

constraint. The former type of constraint is classified based on whether it restricts an 

assignment of a resource or a time range. The latter type of constraint is classified 

according to its characteristics in scheduling, sueh as job-speeific and timetable-specifie.
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This task ontology validates a solution schedule only against the completion and constraint 

violation, but it fails to take into account requirement violation and optimisation.

We see this task ontology as a straightforward framework that models the job assignment 

task. It formalises the job assignment task according to a job-based perspective (Fox, 

1983). This task ontology has limited reusability beeause it subseribes to the job 

assignment task. Moreover, the level of granularity of different concepts in this task 

ontology is very coarse and their fine-grained analysis is typically missing. Therefore, it 

does not provide an adequate framework to characterise the scheduling task precisely. 

Beeause the modelling definitions of the concepts do not include any slots, it is difficult to 

realise how application specification knowledge can be acquired by filling the slots of 

these definitions. Finally, a schedule validation criterion fails to reason about requirement 

violation and optimisation issues because the relevant concepts, such as requirements and 

cost that are required to validate them are missing from their framework.

3.3.2 OZONE
The OZONE ontology was developed at the Carnegie Mellon University for configuring a 

constraint-based scheduling system. It is a result of a prior experience in building planning 

and scheduling systems from the different domains, such as manufacturing production 

scheduling (Smith, 1994), space mission planning (Muscettola et al., 1992), military 

evacuation, and aero-medical evacuation (re)-planning (Lessila et a l, 1996). OZONE can 

be seen as a meta-model that defines the scheduling task as a process of feasibly 

synehronising the use of resources by activities to satisfy their demands over time. The 

OZONE ontology presumes the underlying constraint-directed search architecture (Lessila 

et a l, 1996; Smith, 1994) and provides the neeessary base concepts.

The OZONE ontology subscribes to the job-based seheduling perspeetive (Fox, 1983). It 

formalises the seheduling task based on the following concepts: demand, product, activity, 

resource, and constraint. Each concept is represented through the inclusion of properties 

and capabilities. While the former corresponds to the attributes of concepts and are further 

classified into static and dynamic properties, the latter one represents a problem-solving 

behaviour of the concepts. Table 3.3 define important coneepts along with their properties.

Table 3.3. Main components in the OZONE ontology.

Components Definition Properties

Demands It is a request for goods, 

services, or products

Product, release or due date, temporal 

relations, priority, and activities

Products It is goods or services provided Activities and resources
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by the system of interest

Resources It is defined as an entity that 

supports execution of activities

Resource capacity and resource 

availability

Activities It represents a process 

executed over a certain time 

interval

Start and end time, assigned resources, 

duration, resource-requirements, a set 

of temporal relations, demand, status

Constraints Constraint restricts the 

assignment of activities

The resource is a central concept in the OZONE ontology. It is further classified into 

capacitated-resources and discrete-state-resources. The former type is further divided 

into: reusable-resource and consumable-resource depending upon whether their capacity 

can be eonsumed by the activities. Based on the resource capacity, the resources are 

categorised into the physical structure, such as atomic-resource and aggregate-resource. 

The atomic-resource is divided into unit-capacity-resource, batch-capacity, and the 

aggregate-resource is classified into homogeneous-resource-pool, simple-capacity- 

pool, structure-capacity-pool, and heterogeneous-resource-pool. One of the main 

limitations of this ontology is that the similar type of analysis like that of the concept 

resource is missing to conceptualise other concepts.

The notion of constraint is classified into hard constraint and soft constraint depending 

upon whether it can be violated during schedule construction. Designation of the soft 

constraints is accompanied by a specification of objective or preference (e.g., relaxation of 

a due date).

This ontology subscribes to Allen’s (1983) temporal relations to represent the temporal 

relations among any two activities. The OZONE ontology provides only completion and 

constraint violation validation criteria to evaluate a solution schedule. However, because 

the concepts, such as requirement and cost are completely missing from their framework 

they do not hold any accountability to validate a solution schedule against requirement 

violation or optimisation.

3.3.3 MULTIS

The MULTIS task ontology was developed within MULTIS project at the Osaka 

University since 1987 by the group of Riichiro Mizoguchi. The MULTIS task ontology 

was developed through a task analysis interview system for the general class of scheduling 

problem. In their framework the notion of task ontology can be conceived in two ways: 1) 

task-subtask decomposition along with task categorisation and 2) an ontology to specify
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the problem solving process. MULTIS is a “generic vocabulary” that consists of generic 

nouns, generic verbs, and generic adjectives along with other task related concepts. The 

generic process is a combination of verbs and nouns that occur in scheduling. More than 

one generie process creates a network of processes referred to as GPN, whieh is a 

knowledge-level representation of the scheduling task. The MULTIS task ontology 

consists of the following four concepts:

• Generic nouns: Represent the objects that are necessary in the problem-solving 

process, such as schedule recipient (e.g., job, order, etc.), schedule resource (e.g., line, 

machine, etc.), and schedule representation.

• Generic verbs: Represent the primitive actions that are executed during problem

solving. Typical examples of the generic verbs include assign, classify, select, pick up, 

relax, and neglect.

• Generic adjectives: Modifies the pre-existing status of different objects in a schedule, 

such as assigned job, unassigned job, and the last (job).

• Others: These are the words which are specific for evaluating the scheduling task, e.g., 

strong constraint, weak constraint, constraint predicates and attributes.

MULTIS characterises the scheduling task based on the following four basic concepts: 

schedule recipient (RCP) (e.g., a job or an order), schedule resource (RSC), times lot, and 

constraint. RCP is a meta-level concept that denotes an entity that can be assigned to RSC 

and time slot. Different relations are defined over RCPs, such as assigned/unassigned RCP, 

previous, last, and next. These relations are useful to determine the status of a RCP while 

constructing a schedule, i.e. whether a RCP is assigned (unassigned) or to represent the 

temporal relations among them. The class RCP-GRP group different RCPs together based 

on their similarity measure. RSC indicates the entity on which RCP can be assigned, (e.g. a 

machine) for it accomplishment. RSCs of similar functionality are grouped together into 

the class RSC-GRP. The notion of a time-slot indicates a place where RCP can be assigned 

to RSC for its execution. Two relations are defined namely time available and assigned 

time which represents the status of a time-slot indicating whether it is available or assigned 

to RCP. The assignment of RCP to RSC and time-slot can be restricted by the constraints, 

which are classified into strong constraints (hard) and weak constraints (soft). MULTIS 

solution criterion tries to optimise the priority of RCPs in a schedule. A solution schedule 

is represented in terms of generic noun named schedule, which represents an assignment of 

RSP to RSC within a specific timeslot. The ftinction named assign-RSC schedule RCP
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executes an assignment of RCP to RSC. Finally, a solution sehedule in the MULTIS 

ontology is validated for the eompletion and constraint satisfaction.

The MULTIS ontology also provides vocabulary to characterise the problem-solving 

behaviour of the scheduling task. For instance, the task classify-schedule-resource 

classifies RSC according to its type, the task sequence-schedule-recipient sequence RCPs 

according to their earliest start time or earliest due date, the task pickup-RCP selects a 

candidate RCP, and finally the select-RSC selects a RSC for executing RCP.

In sum, this task ontology characterises the scheduling task at generic level without 

subscribing to any particular application domain of scheduling. However, MULTIS 

provides only a partial characterisation of the scheduling task, mainly because concepts 

such as activities, requirements, and cost are missing in their proposal. As a result, 

MULTIS framework fails to deal with requirement violations and optimisation issues. 

More importantly, because MULTIS framework comprises a vocabulary both for a task 

specification and for describing problem-solving, it blurs a clean distinction between the 

task ontology to formalise a generic task and method ontology to characterise its problem

solving behaviour. Consistently with other approaches to knowledge modelling, such as 

KADS (Breuker and Wielinga, 1985), Generic Tasks (Chandrasekaran, 1986), or 

Components of Expertise (Steels, 1990), we believe that maintaining a clean separation 

between task characterisation and problem-solving model facilitates the reusability of these 

components.

3.3.4 Summary so-far

Having discussed different proposals to formalise the scheduling task, in Table 3.4 we 

provide a comparative analysis of all task ontologies that are discussed. The comparison is 

performed on the following four dimensions: first, we compare these task ontologies based 

on the different components involved in them. The ‘V ’ sign in Table 3.4 indicate whether a 

specific concept is present in a task ontology while formalising the scheduling task; 

otherwise, it is indicated by the ‘X’ sign. Second, the domain specificity column indicates 

if a task ontology subscribes to a specific domain of scheduling. Third, the problem

solving specificity column indicates whether a task ontology subscribes to any problem

solving technique that can be used to solve the scheduling task. Finally, the schedule 

validity column indicates the different types of schedule tasks that can be validated by a 

task ontology. The abbreviations in Table 3.4 represent the following components: J (job). 

It (job-type), A (aetivity). At (aetivity-type), R (resource), Rt (resource-type), C 

(constraint), R (requirement), P (preference), Cs (cost).
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Table 3.4. Comparison between different task ontologies.

Task

ontology

Components in the task ontology

Jt R Rt R

Domain

specificity

Problem

solving

specificity

Schedule

validity

Job

Assignment

V V X X V V V X X X Job

assignment

task

Non

generic

Complete

and

consistent

OZONE X X V X V X V X V X Resource

allocation

Assumes

constraint-

based

framework

of

scheduling

Complete

and

consistent

MULTIS V X X X V X V X V X No Non

generic

Complete

and

consistent

The literature review presented in the previous two sections highlighted the strengths and 

v/eaknesses in the existing scheduling libraries and task ontologies. Based on this insight of 

the field, in the following section we establish our research objectives by analysing the 

weaknesses in the existing approaches.

3.4 Legacy of the literature review: gap analysis
The limitations that will be discussed in the following subsections will allow us to form the 

basis of our research. Our aim will be to tackle these limitations by developing a generic 

library of scheduling PSMs.

3.4.1 Limitations in the existing scheduling libraries
The limitations that we observed in the existing scheduling libraries can be classified into 

the following four categories: 1) partial coverage of knowledge-intensive PSMs, 2) domain 

specificity, 3) partial coverage to validate different areas of the scheduling task, and 4) 

unsuitability for KA.

3.4.1.1 Partial coverage of knowledge-intensive methods

The existing scheduling libraries fail to provide a comprehensive coverage to the different 

knowledge-intensive methods enumerated in section 3.1.3. For instance, CommonKADS 

(Sundin, 1994) is the only library that comprises of the P&R method, but it fails to provide 

any accountability for the other methods such as P&B (Runkel et ah, 1994), P&E (Poeck 

and Puppe, 1992), P&I (Motta, 1999), etc. Other libraries in the field (Hori and Yoshida,
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1998; Le Pape, 1994; Tijerino and Mizoguchi, 1993) fail to provide any coverage to these 

knowledge-intensive PSMs. Because these PSMs make heavy use of the knowledge during 

their construction, the knowledge roles^ associated with these libraries can be realised by 

the domain specific knowledge and it could facilitate KA. More importantly, different 

phases involved in these PSMs can cover and reason about different types of scheduling 

tasks, such as completion, constraint and requirement violation, and optimisation.

3A. 1.2 Domain specificity

Some of the existing scheduling libraries (Hori and Yoshida, 1998 and Le Pape, 1994) 

tackle the scheduling task in terms of a specific domain, which limits their reusability. For 

instance, Hori and Yoshida's library tackles the production scheduling task while Le 

Pape’s library deals with the resource allocation problem. Hence, these libraries cannot be 

reused over wider domains. The domain specific nature of a system also affects 

maintenance. As it has been pointed by (Tu et al., 1995), in the lifecycle of a system the 

task requirements and the available knowledge are likely to change over time, and 

therefore the maintenance of a monolithic system is difficult. Ideally, we would like to 

construct a library whose components can provide a wide ‘horizontal cover’ for the 

different scheduling domains.

3.4.1.3 Partiai coverage to validate different areas of the scheduling task

As described earlier in section 3.4.1.1, because all the existing scheduling libraries provide 

a partial coverage to the knowledge-intensive PSMs, they cannot cover and reason about 

all the validation areas crucial to scheduling. For instance, the problem-solvers from all the 

existing libraries primarily focus on validating the scheduling task against completion and 

constraint violation, but they do not provide any mechanism for dealing with requirement 

violation and optimisation issues.

3.4.1.4 Unsuitabiiity for KA

Some of the existing proposals (Le Papa, 1994) subscribe to a specific problem-solving 

technique, such as constraint satisfaction and therefore are unsuitable for KA. The 

constraint satisfaction approach to problem-solving mainly focuses on developing 

sophisticated but domain independent algorithms that could solve a problem quickly. 

Flowever, this domain independence makes it difficult to realise what roles the domain

 ̂ In compliance with the Generic Tasks approach (Chandrasekaran, 1986) a top-level task (which in our case 

is the scheduling task) can be decomposed into a small number of sub-tasks and sub-methods can be 

proposed to achieve these tasks. These tasks require the application domain specific static and dynamic 

knowledge for their execution. These knowledge pieces essentially represent the abstract names of data 

objects that represent the role o f these objects in the reasoning steps.
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knowledge play while executing the inference actions of PSMs. The knowledge roles for 

instance can efficiently be used to achieve the goals of tasks through the application of the 

domain knowledge (Fensel and Straatman, 1998). A PSM that makes effective use of the 

domain-knowledge can be used to achieve a crucial role in KA. Finally, the constraint 

satisfaction approach of problem solving does not provide a fine-grained analysis about the 

different knowledge-intensive tasks occur in scheduling. It is essentially an implementation 

technique.

In the following section we highlight the limitations of the existing task ontologies.

3.4.2 Limitations in the existing task ontologies of scheduling
In our viewpoint the scheduling task ontologies discussed in Section 3.3 fail to provide 

comprehensive results due to the following reasons: 1) insufficient degree of formalism, 2) 

domain specificity, 3) commitment to specific problem-solving technique, 4) incomplete 

characterisation of the scheduling task, and 5) incomplete validation criteria for the 

scheduling task.

3.4.2.1 Insufficient degree of formalisation

The definitions of the important concepts in existing task ontologies (Hama et a/., 1992a, 

b; Mizoguchi et a l, 1995; Smith and Becker, 1997) do not provide the required level of 

detail and formalism to conceptualise the scheduling task. More importantly, the properties 

of these concepts are represented often at a eoarse-grained level. For instance, in the 

satellite scheduling application (cf. Section 8.1) each satellite (i.e., jobs) has a specific 

requirement for the antennas (i.e., resources) on which they can be assigned to ensure 

earth-satellite communication activity, each satellite also has a specific time range within 

whieh these communication activities need to be completed, and a duration of these 

communication activities. And it is difficult to realise how this application-specific 

knowledge can be acquired if the class properties are coarse-grained in nature. To clarify 

this point, we will take a knowledge modelling definition of the concept job  and resource 

from the job assignment task ontology^, which is the Ontolingua specification (Farquhar et 

a l, 1997).

 ̂ These definitions are taken from the following URL: http://www-ksl.stanford.edu/knowledge- 

sharing/ontologies/html/iob-assignment-task/iob-assignment-task.lisp.html

64

http://www-ksl.stanford.edu/knowledge-


Chapter 3

(define-class JOB (?job)
:def (source ?job))

(define-class RESOURCE (?resource) 
:def (target ?resource))

It can be realised from the above definitions that such a type of conceptualisation does 

not provide enough expressiveness to capture a particular viewpoint over scheduling 

precisely. Moreover, because these definitions do not have any slots associated with them 

to represent the properties of the concepts, it becomes difficult to acquire the application 

specific knowledge by filling the slots of these definitions.

3.4.2.2 Domain specificity

As it can be observed from Table 3.4, some of the scheduling task ontologies (Hama et a l, 

1992a, b; Smith and Becker, 1997) subscribe to the specific scheduling domains. A domain 

specificity of these task ontologies restricts their reusability in a single domain. Therefore, 

new task ontological model has to be built from scratch every time the domain changes.

3.4.23 Commitment to specific problem-solving technique

Some of the existing task ontologies (Smith and Becker, 1997) assume the existence of a 

particular problem-solving technique while characterising the scheduling task. For 

instance, the OZONE framework assumes an underlying constraint-directed search as its 

problem-solving technique (cf. Table 3.4). The disadvantage of subscribing to a particular 

problem-solving technique is that while characterising the scheduling task the important 

conceptual distinctions are not considered, if they are not directly supported by the 

problem-solving environment. In line with the structured approaches to knowledge 

modelling, such as CommonKADS (Schreiber et a l, 1994), TMDA (Motta, 1999), etc., 

our aim is to provide a clean separation between the task analysis and problem-solving 

phases.

3.4.2.4 incomplete characterisation of the scheduiing task

As it can be observed from Table 3.4, the existing approaches (Hama et a l, 1992a, b; 

Mizoguchi et aï., 1995; Smith and Becker, 1997) fail to provide a comprehensive analysis 

of all the important eoncepts, such as activity, requirement, preference, cots, etc. necessary 

to characterise the scheduling task. In some cases, when they take into aecount most 

commonly observed eoncepts in scheduling, sueh as job, resource, etc., then their 

representation into specific forms, such as job-type, resource-type, etc. is typically missing. 

As a result, such task ontological frameworks fail to capture the scheduling task by teasing 

out important conceptual distinctions exits in different scheduling environments. For 

instance, in a manufacturing environment, the notion of a maehining operation can be 

represented by using a concept job, but a more specific type of machining operation, such
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as drilling machining can only be conceptualised if the concept like job-type is available in 

a task ontology.

3.4.2.5 Incomplete validation criteria for the scheduling task

The solution criteria of all the existing task ontologies validate a solution schedule only 

against completion and constraint violation (cf. Table 3.4), but they fail to deal with 

requirement violations or optimisation issues. These are important notions whieh provide a 

richer and more exhaustive evaluation basis for a sehedule to become a valid solution.

3.5 What needs to be done?
To overcome the limitations exhibited by the existing reusable library components of 

scheduling (cf. Section 3.4.1 and 3.4.2), in our approach we aim to construct a task-specific 

but application domain independent library of scheduling PSMs. Consistently with the 

earlier approaches to the library construction, such as parametric design (Motta, 1999), 

diagnosis (Benjamins, 1995), CommonKADS (Breuker and Van de Velde, 1994), which 

subscribe to the knowledge modelling framework, our library will be organised according 

to a knowledge modelling framework. In partieular, the TMDA framework (Motta, 1999) 

will allow us to organise our library systematically in terms of task coinponent, method 

component, domain component, and application component. In compliance with this 

organisation, we first construct a generic scheduling task ontology that aims at overcoming 

the limitations observed in the existing task ontologies (cf. Section 3.4.2). Then we 

develop a generic problem-solving model of scheduling that provides a high-level 

abstraction of all the knowledge-intensive tasks and methods necessary to construct more 

complete problem solvers for scheduling. These high-level tasks and methods will be 

reused to engineer more specialised PSMs. Our aim is to provide a comprehensive 

coverage to all the PSMs that are enumerated in Section 3.1.3. Finally to confirm its 

generic nature, our library will be validated on scheduling applications from different 

domains.

In the following chapter, we provide a detailed discussion about our library architecture.
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ARCHITECTURE OF THE SCHEDULING LIBRARY

This chapter presents the architecture of our library, which is constructed by instantiating 

the TMDA (Motta, 1999) knowledge modelling framework. This approach enables us to 

explicitly specify the principles and assumptions underlying our library (van Heijst, 1995), 

which provides both analytical and engineering foundations for scheduling. Analytically, it 

exhibits a nice integration of various techniques that have been developed in scheduling 

research and also provides an insight into the various components necessary to scheduling 

systems. From the engineering perspective, our library offers support for the rapid 

construction of scheduling applications in different domains.

The content of the chapter is organised as follows. In the following section we provide a 

brief overview of the research issues which the library aims to address. Then in section 4.2, 

we describe our rationale for subscribing to the TMDA knowledge modelling framework. 

In section 4.3, we discuss the different components of our library: the task, method, 

domain, and application level. In section 4.4, we characterise scheduling in terms of search 

problem-solving. In section 4.5, we introduce the OCML (Motta, 1999) language, which 

will be used as our knowledge modelling language to specify the library. Finally, in section 

4.6 we summarise the main points from this chapter.

4.1 Statement of the research objectives
Here, we state the key objectives that our library is designed to achieve to overcome the 

limitations observed in existing approaches to the construction of reusable components for 

scheduling problem-solving (cf. Sections 3.4.1 and 3.4.2).

• The ultimate aim of our thesis is to construct a task specific and domain independent 

library of scheduling PSMs. Because our library is domain independent, it not only 

overcomes the inflexibility associated with the existing domain specific approaches 

(Hori and Yoshida, 1998; Le Pape, 1994) but is also easier to maintain (Tu et a l, 

1995);

• To overcome the limitations pointed out in section 3.4.2 in the existing scheduling task 

ontologies (Hama et a l, 1992a, b; Mizoguchi et a l, 1995; Smith and Becker, 1997) our 

task ontology obeys the following eriteria: i) it is reusable across scheduling domains 

and independent of any problem-solving technique that can be used to tackle the 

scheduling task; ii) it provides a detailed specification of all the components that are
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essential to formalise the scheduling task; and iii) it provides a comprehensive set of 

notions to be able to characterise the different types of schedules;

• At the method level, in line with several earlier proposals (Motta, 1999; Musen et al, 

1994; Runkel and Birmingham, 1993; Chandrasekaran et a l, 1992; Wielinga et al., 

1992; Steels, 1990) our aim is to construct a reasoning component of a library, whereby 

first a generic model of scheduling problem-solving will be constructed. A generic 

model of scheduling problem-solving abstracts from the various specific techniques 

and provides a detailed breakdown of the various tasks and methods carried out in 

scheduling problem-solving. Our aim is to re-engineer several knowledge-intensive 

PSMs, such as Propose & Improve (Motta, 1999), Propose & Backtrack (Runkel et al, 

1994), Propose & Revise (Marcus and McDermott, 1989), Propose & Exchange (Poeck 

and Puppe, 1992), Propose & Genetical-Exchange (Poeck and Gappa, 1993) simply by 

reusing and specialising the small-grained tasks and methods defined in generic model 

of scheduling problem-solving. Because our library aims at providing a comprehensive 

coverage of different scheduling PSMs, it can cover and reason about all the validation 

areas crucial to scheduling, such as completion, constraint violation, requirement 

violation, and optimisation; •

• We also aim to facilitate the KA in a way similar to that provided by role-limiting 

methods (McDermott, 1988). However, we aim to overcome their restrictive nature 

(Musen, 1992) by providing a flexible and comprehensive framework for assembling 

scheduling systems from reusable components.

4.2 Rationale for using the TMDA framework
As pointed out in Chapter 3 (cf. Section 3.1), various knowledge modelling frameworks, 

such as Generic Tasks Structures (Chandrasekaran et al., 1992), Role-Limiting Methods 

(Marcus, 1988), Protégé-II (Musen, et a l, 1993), CommonKADS (Wielinga et a l, 1992; 

Sclireiber et a l, 1994), MIKE (Angele et a l, 1998), Components of Expertise (Steels, 

1990), EXPECT (Swartout and Gil, 1995), GDM (Terpstra et a l, 1993), VITAL 

(Domingue et a l, 1993), and Task-Method-Domain-Application (TMDA) (Motta, 1999) 

have been proposed to provide a structured organisation for a library of problem-solving 

components. For instance, the CommonKADS framework (Wielinga et a l, 1992) proposes 

the following three epistemological categories: task knowledge, inference knowledge, and 

domain knowledge. Components of Expertise (Steels. 1990) distinguishes between 

application task, information sources, and problem-solving methods while Protégé-II 

(Musen et a l, 1993) considers task knowledge, method knowledge, domain knowledge, 

and application knowledge.
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In line with the earlier approaches to knowledge modelling, such as CommonKADS and 

Components of Expertise, the TMDA framework introduces a clean separation between 

task knowledge, method knowledge, and domain knowledge. However it then extends this 

partition by introducing an ‘application ’ component. The application component provides 

a systematic separation between a mapping knowledge and application-specific 

knowledge. The former is used to interpret a task and method components with multi

dimensional domain models. The need for the mapping knowledge is associated with the 

domain independence of PSMs. In other words, if there is a mismatch between a domain 

model and the knowledge requirements of a PSM then it is bridged by defining appropriate 

mapping mechanisms (Gennari et a l, 1994).

Similarly with the CommonKADS and Components of Expertise knowledge modelling 

frameworks, RLM (Marcus, 1988) is one of the influential approaches for constructing 

generic models. RLM not only facilitates knowledge acquisition, knowledge 

representation, and efficient inference, but it also provides a clean separation among them. 

RLM requires a certain domain model organisation and then it provide the control 

mechanisms, which can be applied on the domain model for making efficient inferences. 

Generally understood, RLM makes the following three basic claims: 1) there exists a 

family of tasks that can be solved by the application of methods and the control knowledge 

of these methods can be abstracted independent of their family specific characteristics, 2) if 

any of the methods whose control knowledge is task-independent then such methods can 

make effective use of the task-specific knowledge to achieve the identification, selection, 

and implementation of actions, and 3) the reasoning efficiency of PSMs can be improved 

by separating the representation of the control regimes from the task knowledge.

RLM subscribes to a problem-solving as a basis for identifying, selecting, and 

implementing the sequences of actions to accomplish a task from a specific domain. A 

selected method provides a way to identify the seleetion of a potential action at any given 

time and it also provides one or more mechanisms to select among the candidate actions. 

The control knowledge in RLM consists of an algorithm which specifies when to use a 

particular type of knowledge, and it emphasises that the knowledge that method requires 

for selecting among candidate actions is not the eontrol knowledge. Therefore, it maintains 

a clean separation between the control knowledge and the problem-solving knowledge.

In summary, RLM is important historically because it was one the approaehes, whieh for 

the first time implemented Clancey’s role differentiation principle (Clancey, 1992). 

However, in RLM a notion of a PSM is “an algorithm which determines how domain- 

specific knowledge is used for solving problems”, and therefore, a PSM is a hardwired one
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which provides a specific functionality that reduces their reusability. In contrast with this, 

in TMDA a PSM defines a class of problem-solvers that can be used to solve a task and it 

exploits the unique functionalities of these problem-solvers. Finally, one of the 

shortcomings of the RLM approach is that it failed to exploit the notion of application 

ontology in order to formalise the application specific knowledge.

The notion of application ontology was first introduced in the Protégé-II framework 

(Gennari et ah, 1994). However, as it has been pointed out by Guarino (1997), in the 

Protégé-II approach the application ontology is mainly used to construct a tool that can be 

used to instantiate the application knowledge base and in the work by van Heijst et al. 

(1997) the use of application ontology is realised to update the ontology library. In both 

approaches the construction of application ontology is a creative process with very limited 

support for explaining what concern the actual content of application ontology itself. In 

contrast with both the earlier proposals, the notion of application ontology in TMDA 

provides a systematic organisation of the concepts that may be present in an application 

knowledge base. Figure 4.1 shows the organisation of our library in terms of the TMDA 

framework.
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(def-class nimbus-1-job (job))

(def-class low-range-antenna (resource))

(def-instance nimbus-1 nimbus-1-job 
((has-activities '(communication-1 )) 
(requires-resources '(low-range-antenna)))

(def-instance low-range-antenna low-range-antenna 
((has-j ob-belonging nimbus-1)
(has-availability nimbus-availability)))__________

I
Mapping Makes-use-of Legend

Figure 4.1. Architecture of the scheduling library by instantiating the TMDA framework.

In the following section, we deseribe the arehiteeture of our library defined in terms of 

the TMDA framework.

4.3 Library architecture
As depleted in Figure 4.1, the construetion of our library can be seen as a four-tier 

hierarchy, whereby we first fonnalise the seheduling task by defining its task ontology, and 

then, we define a generic model of seheduling problem-solving. More speeifie knowledge- 

intensive PSMs are defined simply by reusing and specialising the high-level tasks and 

methods defined in the generic model of seheduling problem-solving. Finally, to eonfirm
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its generic nature and to evaluate its performance we apply our library to taekle scheduling 

applications from different domains. In the following sections, we describe each level of 

our library construction process.

4.3.1 The task component: a generic scheduling task ontology

At this level, we develop a generic scheduling task ontology, which takes as input all the 

input parameters neeessary to formalise the scheduling task and generates as an output a 

schedule. Our task ontology is generic because it does not subscribe to any particular 

application domain or problem-solving paradigms.

4.3.2 Search as problem-solving paradigm

The space of scheduling problem-solving can be represented by means of a state-space and 

operators. The former indicates a problem space associated with the scheduling task. A 

problem space can be conceived as a constellation of states, where each state is uniquely 

represented by a schedule associated with it. In an initial state a schedule is incomplete 

because all the jobs and activities are still unassigned while in the solution state it satisfies 

all solution criteria. For a schedule to be a valid solution various conditions can be 

imposed, such as it should be complete, should not violate any constraints, should maintain 

all the requirements, and should be cheaper than other states. In a problem space, a 

transition from an initial state to a solution state can be achieved by means of operators, 

where each operator is responsible for assigning jobs and activities to resources and time 

ranges. As depicted in Figure 4.2, to construct a schedule, a search proceeds in a top-down 

manner: in each state transition a new job is selected, the relevant operators applicable to a 

job are added, and the assignment of a job is performed. Finally, a deadend state is a state 

from which no solution can be achieved.

A comparative discussion between the search-based and constraint-based approach to 

scheduling problem-solving can be found in Chapter 6.
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Figure 4.2. The search-based problem space of scheduling.

4.3.3 The method component

The method component is the second building-block of our library and is divided into the 

following two components: a generic model of scheduling problem-solving and different 

knowledge-intensive PSMs.

First, we develop a generic model of scheduling problem-solving. This model takes as an 

input the appropriate concepts from the scheduling task ontology and the ‘search’ problem

solving paradigm (Newell and Simon, 1976). A generic method ontology (Musen et ah, 

1994; Coelho and Lapalme, 1996) provides vocabulary necessary to characterise the 

search-based behaviour of generic schedulers. In contrast with the more specific problem- 

solvers of scheduling, such as Propose and Exchange (Poeck and Puppe, 1992), which 

imposes additional ontological commitment to model the different phases involved in their 

framework, a generic model imposes minimal ontological commitment by abstracting only 

those high-level tasks which are embedded in the specialised PSMs and are essential to 

construct a complete schedule. Moreover, the generic model of scheduling subscribes to 

the top-down approach of problem-solving, whereby the top-level scheduling task is 

decomposed into finite number (sub-) tasks and (sub-) methods are proposed to achieve 

these tasks. These tasks and methods represent the inferences that are necessary to execute 

the reasoning actions for constructing a schedule. Such a breakdown is not only 

instrumental in identifying all the generic tasks required to characterise the scheduling 

task, but also provides a generic base structure for the entire library. The schedule
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construction in generic model is achieved in terms of the following two control regimes’: 

method independent and method specific. The former is a generic control regime and all 

the PSMs in our library subscribe to it, whereas the latter is a more specific control 

structure whose ultimate aim is to construct a complete schedule by assigning jobs to 

resources and time ranges.

By reusing and specialising the high-level tasks and methods defined in the generic 

model of scheduling problem-solving more specialised PSMs can then be constructed. This 

uniform engineering approach allows us to compare and contrast the knowledge 

requirements of these PSMs. All the PSMs in our library are constructed by specialising 

the control regimes and generic notions, such as context, focus, state selection, and 

operator selection defined in the generic model of scheduling problem-solving. Here, the 

notion of context speeifies the primary function of each problem-solving phase of a PSM 

that needs to be earried out to eonstruct a solution. The notion of focus exemplifies those 

variables in the problem formulation which are under scrutiny during each problem

solving phase of a PSM, and these variables must be grounded to eonstruet a valid 

solution. For instance, the Propose & Exchange method (Poeck and Puppe, 1992) 

distinguishes between the propose phase and the exchange phase. The context in the 

former phase is to extend a schedule and a focus is on one of the unassigned jobs, whereas 

in the latter phase a context is to revise a schedule by fixing the constraint violations and a 

focus is on the violated eonstraints. A schedule extension in the propose phase is aehieved 

by the schedule-extension-operator, which assign jobs to resources and time 

ranges, whereas the eonstraint violations are fixed by defining an exchange-operator. 
Because our library aims at providing a comprehensive framework for defining 

knowledge-intensive PSMs, it ean cover and reason about all the validation areas erueial to 

scheduling, such as completion, constraint violation, requirement violation, and 

optimisation.

4.3.4 Development of scheduling applications from different domains 

To confirm the generie nature of our library we develop applications from different 

scheduling domains. The applications that will be used for validating our library will be 

chosen to cover the three major categories of scheduling: pure scheduling, resource

' Modelling the problem-solving behaviour involves more than making statements and describing entities in 

the world. Control regimes are required to specify actions and describe the order in which these are executed. 

OCML supports the specification of sequential, iterative, and conditional control structures by means of a 

number o f control term constructors such as repeat, loop, do, if and cond, among others.
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allocation, and joint scheduling (cf. Section 2.1). The validation process will involve the 

following three stages: 1) instantiating the task ontology with the application-specific 

knowledge to formalise the nature of an application; 2) selecting and configuring domain- 

independent PSMs from the library with respect to various domains and applications; and 

3) evaluating the performance of the resulting application systems as well as an extent to 

which a selected PSM satisfies the needs of an application.

4 . 4  O C M L  a s  a  k n o w l e d g e  m o d e l l i n g  t o o l

Here, we introduce the knowledge modelling language used to implement our library, i.e. 

the Operational Conceptual Modelling Language (OCML)^ (Motta, 1999). OCML can be 

used to support different knowledge modelling approaches, such as CommonKADS 

(Wielinga et a l, 1992; Schreiber et a l, 1994) or Components of Expertise (Steels, 1990), it 

is primarily developed to provide a concrete modelling support for the TMDA framework. 

Moreover, because our library has been implemented by using OCML it provides a support 

for executing the definitions as well as export mechanism to other representations, 

including Ontolingua (Farquhar et a l, 1997) and OWL (McGuinness and van Harmelen, 

2004).

The OCML knowledge modelling language was originally developed in the context of 

the VITAL project to provide an operational modelling capability for the VITAL 

workbench (Domingue et a l, 1993). OCML supports knowledge-level modelling 

specification of (Newell, 1982; Fensel and van Harmelen, 1994) by supporting the classes, 

relations, instances, functions, rules, etc. A base ontology provides a basic foundation for 

ontology development and it includes the following modules:

• Meta: It defines the concepts necessary to describe the OCML language, such as 

expressions, functional term, rule, relation, function, assertion, etc.

• Functions: It defines the concepts associated with function specification, such as 

domain, range, unary and binary-relations.

• Relations: It defines the concepts associated with relation specification, such as the 

universe and the extension of a relation, partial and total order.

• Sets: It defines the constructs associated with and necessary to define sets, e.g., empty 

set, union, intersection, exhaustive-subclass-partition, cardinality.

A reference guide to OCML can be found in Appendix 4.
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• Numbers: It defines the concepts and mathematical operations required to model 

mathematical calculations with numbers.

• List: It defines the concepts necessary to represent and manipulate lists, e.g., list, atom, 

first, rest, append.

• Strings: It defines the concepts associated with strings, e.g., string append.

• Mapping: It describes the concepts necessary to specify mapping mechanisms, e.g., 

maps-to, meta-reference, domain-reference, and so forth.

• Frames: It defines the concepts associated with a frame-based representation of 

constructs. It includes classes such as class and instance, functions like direct-instances 

and all-slot-values, and relations like has-one, has-at-most.

• Inferences: It supports all the inference mechanisms to define functions and relations.

« Environment: It provides an environmental support to construct OCML models and

includes special operators like exec, which invokes a procedure from a rule and a 

procedure such as output to print a message.

• Task-Method: It provides an ontology necessary to specify tasks and PSMs.

4.5 Conclusion
In this chapter we have described the architecture of our library which can be realised as a 

four-level hierarchy by instantiating the TMDA knowledge modelling framework. At the 

task level, we formalise the nature of the scheduling task by constructing a generic task 

ontology, and then at the method level we construct a generic model of scheduling 

problem-solving, which takes as the input appropriate concepts from the task ontology and 

the search as a problem-solving paradigm. While constructing a generic model of 

scheduling problem-solving we develop a method ontology that provides a lexicon 

necessary to characterise search based problem-solving for the scheduling task. A generic 

model of scheduling problem-solving abstracts high-level tasks and methods that can be 

used to construct more specific scheduling problem-solvers. By reusing and specialising 

high-level tasks and methods different knowledge-intensive PSMs can be constructed. In 

this chapter we also introduced the knowledge modelling language that will be used to 

implement our library, i.e. OCML.

In the following chapter, we describe in detail the first building-block of our library: the 

scheduling task ontology.

76



Chapter 5

THE EPISTEMOLOGY OF THE SCHEDULING TASK

In this chapter we describe the first building block of our library: a generic task ontology 

specifying the space of scheduling problems.

As discussed in Chapter 2 (cf. Section 2.3.1), as a first approximation we can say that 

scheduling deals with the temporally bound assignment of jobs to resources and time 

ranges. This time-centric dimension distinguishes scheduling from other synthesis tasks, 

such as planning, design, configuration, etc. (Wielinga and Schreiber, 1997; Mittal and 

Frayman, 1987). A more complete definition of the scheduling task can be given as 

follows:

“An assignment of time-constrained jobs to time-constrained resources within a pre

defined time framework, which represents the complete time horizon of a schedule. 

Normally an admissible schedule must not violate any of the constraints imposed on jobs 

or resources and must satisjy all the input requirements. More in general, the output of the 

scheduling task is a legal schedule in accordance with a given solution criterion (e.g., 

complete, admissible, feasible). Preference specific decisions can influence the cost of a 

schedule ”.

According to this definition the notions of constraint and requirement are central to 

scheduling (cf. Section 2.3.2). Constraints restrict the space of admissible solutions and are 

often of organisational or technological nature - e.g. in an airport gate scheduling (Jo et a l, 

1997) limitations may be enforced on the priority among flights, compatibility of gates 

with aircrafts, area restrictions, etc. Requirements specify desired properties of a schedule. 

For instance, one of the requirements in the satellite-scheduling application (cf. Chapter 8) 

called ‘number-of-communication-slots’ states that each satellite must have at least four 

communication slots each day with the allocated antennas. In addition, a cost criterion may 

also play a vital role, as multiple solutions can be admissible for a particular problem, and 

some of them can be deemed to be more ‘cost-effective’ than others. For instance, in a 

manufacturing scenario, we may privilege solutions which maximise the throughput, or, in 

some other cases we may prefer solutions that minimise the ‘idle time’ of the resources.

As discussed in section 3.3, several attempts have been made in the past at developing 

scheduling task ontologies (Ikeda et a l, 1998; Smith and Becker, 1997; and Hama et a l, 

1992a, b). These attempts have provided limited results (cf. Section 3.4.2), as in some 

cases they subscribe to specific scheduling domains, algorithms, or ‘scheduling shells’, or
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in some other cases fail to provide the level of detail and formalisation required to 

characterise the scheduling task precisely. Moreover, important ontological distinctions are 

also missing from these proposals. In a nutshell, no comprehensive analysis exists, which 

provides a formal account of the scheduling problem, independently of the way scheduling 

problems can be approached. Thus, our main aim here is to put the scheduling task on firm 

ontological foundations and provide both an adequate theoretical analysis of the problem 

and a concrete engineering resource, which can be used to model specific scheduling 

problems. Our task ontology is generic because it does not subscribe to any particular 

application domain or problem solving approach. Finally, while developing a task ontology 

we also take into account characteristics that are unique to the different problem types of 

scheduling (cf. Section 2.1).

This chapter is organised as follows. In the following section, we provide a generic 

specification of the scheduling task and also formulate different criteria to validate 

solutions to a task. In section 5.2, we provide a more detailed specification of the ontology. 

In section 5.3, we compare our work with existing proposals in the field, and finally in 

section 5.4 we draw the main conclusions from this chapter.

5.1 A generic specification of the scheduling task
In our framework, the scheduling task is formally represented as a mapping from a nine

dimensional space: J[, A, R, Tr , C, Req, Pr, Cf, Cr}to a sche dule, S. These parameters are 

described below.

• Jobs, J =j( 1, -r j  m } A set of jobs to be assigned to a set of resources for their

execution.

• Activities, A. For each job, j., there are n uniquely consisted of activities. The set of all 

such activities is denoted as Ai =4 n, a in}

• Resources, R ^  i ,  .^r p} A set of resources to which the jobs and activities can be 

assigned for their execution.

• Constraints, C =4 i, .^.c i} A set of constraints that must not be violated by a

solution schedule.

• Requirements, Req =^eq i, . req k} A set of requirements that describe the

necessary properties of a solution schedule.

• Schedule time range, Tr. The time horizon in which the schedule takes place. It is

represented in terms of a start time and an end time.
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• Preferences, P =ÿ i, -rP t} A set of criteria for choos ing among competing solution 

schedules. Each preference defines a partial order over the set of solution schedules.

• Cost function. Cf. A function, which computes the cost of a solution schedule.

• Solution criterion, Cr. A mapping from a schedule S to Jrue, False} which

determines whether a candidate schedule is a solution. A solution criterion normally

requires S to be correct, complete, consistent, and feasible - see the following section

for the definitions of these properties. More restrictive solution criteria may introduce 

an optimality condition based on the applicable preferences and cost-function.

•  Schedule, S = 4  i> -r  s  w }  A schedule is a set of qua druples of the form, jf m, amn, rk, 

jtrm,n,k }>where j m is a job, amn is an activity associated with jm, rk is a resource, and 

jtrm,n,k is the job time range associated with the assignment of jm and amn to resource rk. 

The job time range is represented in terms of the earliest and latest start and end times 

and is a sub-interval of Tr.

5.1.1 Validation criteria for a solution schedule

• S is correct, if for every job jm and activity amn, the pair j  ̂m amn^ppears no more than

once in S. This criterion is also referred to as an occurrence constraint (Talbot, 1982).

• S is complete, if for each job jm and activity amn in A, there exists a quadruple q in S, 

such that q ÿ  m, amn, rk, jtrm,n,k >

• S is consistent, if it does not violate any applicable constraints in C.

• S is feasible, if it satisfies all the requirements in Req.

• S is optimal if it is a solution schedule and no other solution schedule has a lower cost

than S.

In the following section we describe the important concepts in the task ontology by 

providing relevant definitions in OCML.

5.2 The scheduling task ontology
Our scheduling ontology consists of about 106 definitions, and in addition, it relies on two 

underlying ontologies. Base Ontology and Simple Time’. The Base Ontology provides the 

definitions for basic modelling concepts, such as tasks, relations, functions, roles, numbers, 

and sets. Initial versions of the Simple Time ontology used Allen’s (1983) representation 

of standard time relations to define notions, such as time point, time range, duration, 

calendar date. We augmented it with Ebu and Fikes (2000) re presentation of a time point

' The OCML version o f the complete Simple Time ontology can be found in Appendix 3.
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to provide different levels of granularity, such as year, month, week, day, hour, minute, 

second, etc. Our Simple Time ontology also takes into account the classes needed to 

represent calendar months, calendar days, etc. As described in Chapter 4, the scheduling 

task ontology is modelled by using the OCML knowledge modelling language^, which 

provides support for executing the definitions in the ontology as well as export 

mechanisms to other representations, including Ontolingua (Farquhar et a l, 1997) and 

OWL (McGuinness and Harmelen, 2004). The OCML version of the task ontology is 

publicly available and can be browsed by using the WebOnto (Domingue, 1998) 

environment at the following URL: httD:Xvebonto.onen.ac.uk .

5.2.1 Scheduling task and default schedule solution

Our task modelling framework characterises a generic task in terms of input and output 

roles, preconditions and a goal expression (Fensel and Motta, 2001; Motta, 1999). Having 

already described the input and output roles for the scheduling task -see section 5.1, here 

we limit ourselves to specifying the precondition and the goaf. The precondition states that 

jobs and resources are required for a meaningful specification. If no solution criterion is 

provided, then a default one is applied. The goal expression simply states that the solution 

criterion must hold for the output schedule.

(def-class SCHEDULING-TASK (goal-specification-task) ?task 
((has-precondition :value (kappa (?task)

(exists (?x ?y)
(and (member ?x (role-value

?task 'has-jobs))
(member ?y

(role-value 
?task 'has-

resources ) ) ) ) ) )

(has-goal-expression : type binary-kappa-expression
:default-value (kappa (?task ?schedule-model)

(default-schedule-solution 
?schedule-model ?task)))))

The default solution criterion is represented as follows:

 ̂The OCML version of the complete task ontology can be found in Appendix 1.

 ̂ A precondition specifies what must be true before executing a goal-specification-task, whereas a goal- 

expression specifies the goal associated with a goal-specification-task, e.g. a goal associated with the 

scheduling task is to construct a valid solution schedule.
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(def-relation DEFAULT-SCHEDULE-SOLUTION (?sc ?task)
: constraint (and (schedule-model ?sc)

(scheduling-task ?task))
: iff-def (and (schedule-is-correct ?sc)

(schedule-minimally-complete ?sc
(role-value ?task has-jobs)) 

(maximally-admissible-schedule ?sc
(role-value ?task

has-hard-constraints))
(schedule-is-feasible ?sc

(role-value ?task has-requirements))))

More restrictive validation criteria may specify an optimality condition on a solution 

schedule, but we refrain from including an optimality notion. Due to the unique 

specification of the optimality criterion in different seheduling domains, such as 

maximisation of resource utilisation or minimisation of cost, we believe that it’s better to 

specialise the optimality criterion according to the specific scheduling domains instead of 

providing a single optimality criterion to evaluate a solution schedule in all the domains.

5.2.2 Modelling the notion of a job

The class j ob represents an entity that has a list of activities and can be assigned over 

available resources and time ranges for its execution. The class job has the following 

attributes.

Has-activity: This slot epitomises the fact that every job ean have a list of activities that 

need to be performed in order to accomplish a job. For instance, in the manufacturing 

environment, a drilling job could have activities sueh as: drilling-machine set-up, loading 

of a drilling job on a drilling-machine, actual drilling operation, unloading of a drilling job 

from a drilling-machine, etc. The attributes of activities are basically the same as those for 

jobs, except that activities are not further refined into sub-activities.

Requires-resource: Each job requires a number of resources on which it can be assigned 

for their execution. This representation is similar to the one used to characterise alternative 

resource seheduling problems (Saucer, 1997; and Fox and Sadeh, 1990) in whieh each job 

has a set of resources to whieh it ean be assigned, instead of having a pre-determined 

unique resource for its execution.

Requires-resource-type: In some cases we do not need to specify concrete resources for a 

job, but we simply want to constrain the speeifie type of resources that are needed to carry 

out a job - e.g., a machine type, a vehicle type, a specific category of personnel, etc.

Has-time-range: It represents a time range assigned to each job within which a job must 

complete its execution. A job time range is represented by the earliest and the latest start 

and finish times. It is represented by the slot has-time-range, whieh inherits the values 

of the class job-time-range (cf. Section 5.2.5.1).
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Has-due-date: The calendar date by which a job must be dispatched to a customer. The 

violation of a due-date can have direct or indirect impact on a business, such as loss of 

business. The due-date of a job can also be used to determine the job priority, and a job with 

the earliest due-date can be given priority for its assignment.

Has-duration: It represents the total amount of time that has elapsed between the start and 

end of a job.

Has-load: It represents the total number of resources each job requires for its successful 

completion. The default value is 1.

The following box shows the OCML definition of the class job .

(def-class JOB () ?j 
((has-activity : type list)
(requires-resource : type resource :min-cardinality 1) 
(requires-resource-type : type resource-type :min-cardinality 1) 
(has-time-range : type job-time-range :max-cardinality 1)
(has-due-date : type calendar-date :max-cardinality 1)
(has-duration : type duration :max-cardinality 1)
(has-load : type integer :default-value 1)))

: iff-def (exists ?task (and (scheduling-task ?task)
(member ?j (role-value ?task has-jobs)))))

In the following section we discuss those relations and functions that are neeessary to 

represent a job assignment.

5.2.2.7 Relations and functions required to job assignments

In our task ontology various relations and functions are defined to accomplish the

assignment of jobs to resources and time ranges. These are shown in Table 5.1.

Table 5.1. The job-specific relations and functions.

Relation Name Explanation
Assigned-to-resource 
(job resource schedule)

A ternary relation between a job, a resource, and a 

sehedule. It states that a job is assigned to a particular 

resource in a partieular sehedule.
Assigned-t o -resource- 
type
(job resource-type 
schedule)

A ternary relation between a job, a resouree-type, and a 

schedule. It states that a job is assigned to a partieular 

resource type in a partieular schedule.

Assigned-to-job-time- 
range
(job job-time-range 
schedule)

A ternary relation between a job, a job time range, and a 

schedule. It states that a job is assigned to a particular 

time range in a partieular schedule.

Assigned-job This checks whether a job is already assigned to a 

resource and a time range.

Unassigned-job The opposite of assigned-job.
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Function Name Explanation
Resources-assigned-to- 
job

This function retrieves all the resources assigned to a job

Resource-types- 
assigned-to-job

This function retrieves all the resouree-types assigned to 

a job
Time-range-assigned- 
to-job

This function retrieves a time range assigned to a job

Earliest-Start-time- 
of-a-job

This function retrieves the earliest start time of a job

Latest-start-time-of- 
a-job

This function retrieves the latest start time of a job

Earliest-end-time-of- 
a-job

This function retrieves the earliest end time of a job

Latest-end-time-of-a- 
job

This function retrieves the latest end time of a job

5.2.2.2 Relations to specify the temporal ordering among jobs 

In our task ontology we take into account the following five eases that can be used to 

impose a temporal ordering among any two jobs that are contending for the same resource. 

These relations ean be applied on any unordered pair of jobs. The following relations can 

be realised on the same lines with the relations depicted in Table 2.1 (cf. Chapter 2).

• Finishes-before (jobi job]): This is a binary relation between any two jobs, say ji and 

}2 , which is true if the latest end time of j, precedes the earliest start time of jz. The 

relation precedes is inherited from the Simple Time Ontology. It is a binary relation 

between any two time points, say tpi and tp2 , whieh states that a time point, tpi is 

earlier than a time point tp2 ;

• Jobl-before-job2 (jobi job]): This is a binary relation between any two jobs, say ji 

and j 2 . It states that if the sum of the durations of a job ji and a job j 2 is greater than the 

difference between the latest end of a job ji and the latest start time of a job j 2 , and if it 

is less than the difference between the latest end time of a job j 2 and the earliest start 

time of a job ji, then a job ji is assigned before a job j 2. The arithmetic equation that is 

used in this relation is indicated as: (latest-end-time of ji -earliest-start-time of j 2)

duration-of-jobi Hduration-of-job2 < (latest-end-time of j 2 -earliest-start-time of j 1);

• Job2-before-jobl (jobi job]): This is a binary relation between any two jobs, say j l  

and j2. It is the inverse of the relation jobl-bef ore-job2;

• No-feasible-ordering-possible (jobi jobi): This is a binary relation between any two 

jobs, say jl and j 2 . It states that if the sum of durations of a job ji and a job j 2 is greater
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than the difference between the latest end time of a job ji and earliest start time of a job 

j], and it is greater than the difference between the latest end time of a job j: and the 

earliest start time of a job ji, then no feasible ordering is possible between the jobs ji 

and ]2 . The arithmetic equation that is used in the relation is indicated as: (duration-of-

jobl +duration-of-job2) > (latest-end-time of ji -earliest-start-time of j 2) and 

(duration-of-jobl Hduration-of-job2) > (latest-end-time of j 2 -earliest-start-time of j 1);

• Any-ordering-is-possible (jobi jobi): This is a binary relation between any two jobs, 

say jl and jl. It states that if the sum of the durations of a job ji and a job ji is less than 

or equal to the difference between the latest end time of a job ji and the earliest start 

time of a job ji, and if it is less than or equal to the difference between the latest end 

time of a job ji and the earliest start time of a job ji, then any ordering is possible 

between jl and ji. The arithmetic equation that is used in the relation is indicated as:

(duration-of-jobl Hduration-of-job2) < (latest-end-time of j 1 -earliest-start-time of j 2)

and (duration-of-jobl -fduration-of-job2) < (latest-end-time of ji -earliest-start-time 

of j i ) .

5.2.2.3 Relations to specify the job criticality

The seleetion of a correct job is the most important task in scheduling because it improves 

the efficiency of the schedule constructions process. The following relations ean be used to 

specify a job criticality.

® Job-precedes (jobi jobk): This is a binary relation between any two jobs, say ji and jk, 

whieh states that a job j, precedes a job jk, if ji finishes-before jk. It is indicated by 

the notation (ji < jk);

• Criticality-based-on-due-date (job; jobk): This is a binary relation between any two 

jobs, say ji and jk, which states that a job ji is more critical than a job jk, if the due-date 

ofji is before the due-date of jk;

• Earliest-start-time-of-a-job (jobi jobk): This is a binary relation between any two 

jobs, say ji and jk, which states that a job ji is more critical than a job jk, if the earliest 

start time ofji precedes the earliest start of jk;

• Higher-priority-job (jobi jobk): This is a binary relation between any two jobs, say ji 

and jk, whieh states that a job ji is more critical than a job jk, if the duration of ji is 

larger than the duration of jk;
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• Higher-priority-job-based-on-activities (jobi jobk): This is a binary relation between 

any two jobs, say ji and jk, which states that a job ji is more critical than a job jk, if ji has 

more activities than jk-

5.2.3 Modelling the notion of a resource

The class resource represents an entity on whieh jobs can be assigned for their 

execution. The class resource is considered as a finite supply entity in our task ontology 

and it is represented by the following attributes:

Handles-job: It represents the speeifie jobs each resource can handle for its execution, e.g. 

jobi;

Handles-activity: It represents the specific activities each resource is capable of handling;

Has-availability: It represents the time interval during which a resource is available to 

accomplish jobs. The job assignment must be performed by complying with the resource 

availability period. For instance, a transmitter may have to be switched off periodically for 

maintenance purposes.

Has-capacity: It represents the maximum number of jobs each resource can handle in 

parallel at any given time during a sehedule. The aggregate capacity of a resource is 

represented as an integer.

The following box shows the OCML definition of class resource.

(def-class RESOURCE () ?r 
((handles-job : type job : cardinality 1)
(handles-activity : type activity : cardinality 1)
(has-availability : type time-range : cardinality 1)
(has-capacity : type number :default-value 1))

: iff-def (exists ?task (and (scheduling-task ?task)
(member ?r (role-value ?cask has-resources))) 

: constraint (or (exists ?j (and (job ?j)
(handles-job ?r ?j)))

(exists ?a (and (activity ?a)
(handles-activity ?r ?a)))))

The class unary-resource represents a resource whose maximum aggregate capacity 

at any given time in a schedule is at most one job. It is modelled as a subclass of the class 

resource with the additional condition that constrains the maximum capacity of a 

resource.

The relation j ob - and - resource-t ime - range, states that all the jobs assigned over a 

resource, say, r,, must be completed within the availability period of t\. Finally, the function 

maximum-capacity-of-resource retrieves all the jobs that a resource ean handle at 

any given time in a schedule.
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5.2.3.1 Resource-capacity axiom

In scheduling, any two jobs that share the same unary resource may generate a conflicting 

situation if the time ranges of these two jobs overlap. To avoid such a type of inconsistency 

we define an axiom named, resource-capacity, which states that for a given unary 

capacitated resource ‘rj’ with capacity ‘Uj’ in schedule ‘s’, there should not exist two jobs, ji 

and jk, such that ji and jk require n and the time ranges of ji and jk are overlapping with each 

other. The following box shows the OCML definition of resource-capacity axiom.

(def-axiom RESOURCE-CAPACITY 
(forall (?ri ?sc)

(=> (unary-resource ?ri has-capacity ?ni)
(not (exists ?j (and (element-of (?j ?ri ?a ?jtr) ?sc)

(= ?all (setofall ?j2
(and (element-of

(?j2 ?ri ?a2 ?jtr2) ?sc) 
(job-time-ranges-overlap 
(?jtr ?jtr2))

(not (= (?j ?j2))))))
(> (length (cons ?j ?all2)) ?ni)))))))

5.2.4 Modelling constraints and requirements

In our task ontology we distinguish between constraints and requirements, even though 

existing approaches (Smith and Becker, 1997; Hori et a l, 1995; Mizoguchi et a l, 1995) 

fail to identify such a distinction. In our approach, constraints define a property that must 

not be violated by a consistent solution, while requirements specify properties that a 

feasible solution has to satisfy. In general, not all problem constraints are necessarily 

applicable to a schedule, so a solution may be admissible even if some constraints are not 

satisfied, they simply may not be relevant. The following box shows the OCML definition 

of class constraint.
(def-class CONSTRAINT () ?c 
( (applicability-condition : default:-value (kappa (?schedule-task) (true)

: type unary-relation))
(has-expression : type unary-relation : cardinality 1)))

(def-class REQUIREMENT () ?req 
((applicability-condition : default-value (kappa (?schedule-task) (true)

: type unary-relation))
(has-expression : type unary-relation : cardinality 1)))

The slot applicability-condition in the definition of class constraint specifies 

a logical expression which has to be true for the constraint to be satisfied.

Many approaches in the literature usually distinguish between soft and hard constraints. 

While hard constraints must not be violated, soft constraints can be relaxed if necessary to 

reach a solution. In our model, constraints define prescriptive properties, while 

requirements describe proscriptive ones. Soft constraints in that sense are neither 

prescriptive nor proscriptive, but in reality what normally happens is that soft constraints 

are used to determine the quality of different solution schedules (Saucer, 1997; Dorn and
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Slany, 1994). A solution schedule that satisfies a maximum number of soft constraints is 

treated as a better solution than other competing solutions. Hence, soft constraints do not 

concur to define the space of admissible solutions, but they instead can be used to rank 

solutions. For this reason we prefer to use the notion of preference, which is discussed in 

section 5.2.6.

5.2.5 Representing time ranges

In our task ontology time ranges are distinguished into the following two types: 1) a time 

range to represent the period in which a job or activity can be executed and 2) a time 

range to represent a schedule horizon and a resource availability period.

5.2.5.1 Representing job antd activity time ranges

The time range of a job or an activity represents a time window within which a job or 

activity has to be executed. It is represented by the following attributes:

Has-earliest-start-time: It represents the earliest time a particular job can start its 

execution;

Has-latest-start-time: It represents the latest time a particular job must start;

Has-earliest-end-time; It represents the earliest time a particular job can finish;

Has-latest-end-time: It represents the latest time a particular job must finish;

Has-unit-of-time: It simply represents the unit used to specify the time, such as second, 

minute, hour, etc.

5.2.5.2 Representing the schedule horizon and the resource availability

The schedule horizon and a resource availability period are represented by the following 

attributes:

Has-start-time: It represents the time by which a scheduling task must start;

Has-end-time: It represents the time by which a scheduling task must end; 

Has-unit-of-time: It represents the unit in which the time is specified.

5.2.6 Representing cost, cost function, and preference

The scheduling task not only deals with the satisfaction of constraints or maintenance of 

requirements, but it can also be seen as a combinatorial optimisation problem (Kempf et 

ah, 1991), where the evaluation function of a schedule, such as maximisation of 

throughput or minimisation of resource idle time, should be optimised. Our task ontology 

provides two constructs that allow us to capture the knowledge needed to rank solutions: 

preferences and cost-function. Preferences allow us to describe task knowledge that can be 

used to assess whether a solution can be regarded as better than another. For instance, in
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sonne cases we may prefer to use one resource rather than another, even when both are 

suitable for a particular job. The role of preferences is primarily to do with KA. They allow 

us to capture important task knowledge, which is clearly of a different nature from 

requirements and constraints. Once the relevant preferences are acquired we use the notion 

of a cost-function to develop an optimisation criterion for a given scheduling problem. 

Generally speaking, this is a non-trivial effort, as preferences tend to be heterogeneous and 

they have different costs associated - e.g., it may be acceptable to violate any number of 

‘less important’ preferences, but it may be unacceptable to violate even one ‘critical’ 

preference. Therefore, it is important to emphasise that a cost function may not necessarily 

be numeric and often some non-Archimedean criterion maybe applied (Motta, 1999).

Our task ontology models preferences as binary relations, which define a partial order 

over schedules. The class cost-function is defined as a mapping from schedules to 

costs. A cost is modelled either as a real-number or as an n-dimensional vector. We have 

pointed out that the role of a cost-function is to define a single optimisation criterion, 

which is both consistent with and subsumes the various criteria expressed by the various 

preferences. In our task ontology these requirements are specified by two axioms: \) cost- 

subsumes-preferences, 2) cost-preference-consistency. The first axiom states that the cost- 

function should enforce the partial order expressed by any relevant preference. The second 

axiom states that the cost function should not violate any preference. The above definitions 

make use of the association between a cost-function and a cost-order relation, vAiich. 

expresses the partial order defined by the cost function. The following box shows the 

OCML definition of class preference and the axioms.
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(def-class PREFERENCE () ?p
"A preference gives the order over two schedules."
((has-expression : cardinality 1 : type prefer-expression)))
(def-axiom COST-SUBSUMES-PREFERENCES 
(forall (?schedule-taskl ?schedule-task2)

( =  >
(and (scheduling-task ?task has-preferences ?prs

has-cost-function ?cf)
(has-cost-order-relation ?task ?rel)
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp "(prefer ?schedule-taskl ?schedule-task2)))

(cheaper-schedule ?rel ?schedule-taskl ?schedule-task2))))
(def-axiom COST-PREFERENCE-CONSISTENCY 
(forall (?schedule-taskl ?schedule-task2)

(=> (and (scheduling-task ?task has-preferences ?prs
has-cost-funetion ?cf)

(has-cost-order-relation ?task ?rel)
(cheaper-schedule ?rel ?schedule-taskl ?schedule-task2))

(not (exists ?pr
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp " (prefer

?schedule-task2 ?schedule-taskl)))))))

5.2.7 Representing a schecJule

The class schedule represents the actual mapping of a job and its activities to resources 

within a time range. The class schedule is represented in terms of a set of job- 
assignment quadruples.

The class job-assignment models a quadruple of the form <?job ? activity 
Presource ?job-time-range>. The following box shows the OCML definitions of 

class schedule and class job-assignment.

(def-class SCHEDULE (set) Pschedule-task 
: iff-def (and (- ?quadruples (setofall ?quadruple

(element-of ?quadruple ?schedule-task))) 
(every ?quadruples job-assignment)))

(def-class JOB-ASSIGNMENT () ?quadruple 
: iff-def (and (== ?quadruple (?j ?r ?a ?jtr))

(job ?j)
(member ?a (has-activities ?j ?list))
(resource ?r) (job-time-range ?jtr)))

With these definitions, we conclude our description of the task ontology. In the next 

section we compare our scheduling task ontology with other proposals in the literature.

5.3 Comparison with other approaches
In Chapter 3 (cf. Section 3.3) we reviewed the following scheduling task ontologies: job- 

assignment task ontology (Hori et a l, 1995; Hama et a l, 1992a, b), MULTIS task 

ontology (Mizoguchi et a l, 1995), and O0NE ontology (Smith and Becker, 1997). Here, 

we highlight the main differences between our task ontology and these proposals.
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5.3.1 Comparison with the job-assignment task ontology

The job-assignment task ontology was developed in the context of the CAKE project by 

Hama et al. The primary difference between their task ontology and ours is that their task 

ontology mainly focuses on the job-assignment task, which is a sub-domain of scheduling, 

and therefore has limited applicability. In contrast with their task ontology, our aim is to 

characterise the scheduling task at a generic level such that it can be used to formalise all 

types of scheduling problems in different domains. Another major difference between 

these two approaches is that of the level of detail and formalisation in characterising the 

scheduling task. In their framework different concepts required to characterise the 

scheduling task are specified at a very coarse-grained level. For instance, letk consider 

their definitions of class j ob and class resource.

(define-class JOB (?job)
:def (source ?job))

(define-class RESOURCE (?resource)
:def (target ?resource))

If we compare these definitions, with the ones presented in our task ontology (cf. 

Sections 5.2.2 and 5.2.3) it is clear that the main building blocks in their ontology are 

heavily under-specified. More importantly, as shown in Table 3.4, important concepts such 

as activity, requirement, preference and cost are missing from their task ontology. Finally, 

our task ontology provides a more comprehensive set of definitions for validating a 

solution schedule (cf. Section 5.1.1) whereas the job-assignment ontology does not deal 

with requirement violations or optimisation.

5.3.2 Comparison with the MULTIS task ontology

The MULTIS task ontology was developed through a task analysis interview system for a 

general class of scheduling tasks. The MULTIS task ontology characterises the scheduling 

task without subscribing to any particular application domain and in this sense it is similar 

to our approach. However, a few differences still exist between these two task ontologies. 

The primary difference is that while our task ontology provides a fine-grained 

characterisation of the scheduling task, the MULTIS task ontology fails to provide a 

complete characterisation of the scheduling task. For instance, as shown in Table 3.4, some 

of the important concepts, such as activity, requirement and cost are missing from 

MULTIS. For instance, as pointed out by a number of authors (Le Pape, 1995; Smith 1994; 

Fox and Sadeh, 1990) resource-capacity (cf. Section 5.2.3.1) is a crucial concept in 

scheduling, and is needed to avoid job overlapping for the utilisation of a unary capacity 

resource. Because such an important concept is missing from the MULTIS task ontology, 

it is not very clear how their framework would deal with the job overlapping situation in
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scheduling. Moreover, because our task ontology clearly distinguishes between constraints, 

requirements, and preferences, our framework provides a detailed set of validation criteria. 

In MULTIS a solution schedule is validated only against completion and constraint 

violation. Finally, it is also not very clear how the notion of ‘job criticality’ is tackled in 

MULTIS because no indication is given about this.

5.3.3 Comparison with the OZONE ontology

The GONE ontology assumes a constraint-dir ected search architecture (Lessila et al., 

1996; Smith, 1994). GONE also provides a m odel of the scheduling task, which is 

defined in terms of five base concepts: demand, activity, resource, product and constraint. 

In terms of our framework the concept product does not directly contribute to the 

specification of the scheduling problem, but it can be seen as an external environmental 

factor. In contrast with G0NE, we are mainly interested in investigating the core issues 

involved in the scheduling task. The concept activity in G0NE has attributes such as time 

range and assigned-resource, but they do not deal explicitly with the load factor indicating 

the number of resources that are required by each activity. The load factor is particularly 

crucial in scheduling as it indicates how many resources can be required by an activity for 

its execution. Like the other two task ontologies we have examined in this Section, the 

GDNE ontology does not explicitly deal with the cost issues. As shown in Table 3.4, 

although they make use of the preferences in conjunction with soft constraints, no 

indication is given about how they can affect the cost of a schedule. Moreover, the lack of 

a cost function means that no mechanism is provided to integrate different preferences in 

order to discuss their relative importance and this also makes it difficult to assess the 

impact of preference-specific decisions on the cost of a schedule. In addition, no notion of 

requirement is included either.

The G0NE framework is built to support a constraint-based scheduling ‘shell’. 

Therefore, most of the definitions are geared to support the constraint-based problem 

solving approach. In contrast with this approach we do not make any assumptions about 

the type of problem-solving approaches that can be used to solve the problem. The 

disadvantage of subscribing to a particular problem solving approach is that important 

conceptual distinctions are not considered, if they are not directly supported by the 

problem solving environment - e.g. there is no distinction in G0NE between constraints 

and requirements.
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5.4 Conclusion
In this chapter we have proposed a generic scheduling task ontology, which characterises 

the scheduling task independently of a particular application domain or problem-solving 

approach. This work is situated as a first building block in our scheduling library. Our task 

ontology aims to put the scheduling task on firm ontological and engineering foundations. 

On the one hand it helps us to understand the ontological nature of an important class of 

KB applications. At the same time it provides us with a reusable resource that can be used 

to acquire relevant scheduling knowledge in different domains. As discussed throughout 

this chapter, our task ontology includes and formally characterises a number of important 

conceptual distinctions that are missing from the existing approaches to formalising the 

scheduling task. Because our task ontology does not subscribe to any specific problem

solving technique, it provides a sound ontological foundation that can be used by 

alternative problem-solvers to tackle the scheduling task. It can also be used to support task 

modelling independently of any target shell or computational method. Our approach to 

formalising the scheduling task is generic with respect to the different classes of 

scheduling problems, which have been identified in the literature. This is an important 

feature, as our main goal here is to provide a generic reference model for a// the major 

classes of scheduling problems, such as pure scheduling, resource allocation, and joint 

scheduling (cf. Section 2.1). In Chapter 8 we will prove this claim about by showing how 

scheduling applications from different domains can be modelled successfully by our task 

ontology.

In the following chapter we will describe the second building-block of our library: a 

generic model of scheduling problem-solving.
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A GENERIC MODEL OF SCHEDULING PROBLEM-SOLVING

In this chapter we describe the first part of the method component of our library’: a generic 

model of scheduling problem-solving (henceforth Generic-Schedule).

Generic-Schedule^ takes as input appropriate concepts from the scheduling task 

ontology and search (Newell and Simon, 1976) as a problem-solving technique. 

Generic-Schedule subscribes to a top-down approach of schedule construction, 

whereby the top-level scheduling task is decomposed into a finite number of (-sub) tasks 

and (-sub) methods. Our main claim here is that these tasks and methods provide a generic 

problem solving structure for the entire library. As it will be shown in Chapter 7 a number 

of knowledge-intensive PSMs can be constructed simply by reusing or specialising these 

tasks and methods.

This chapter is organised as follows. In the following section we describe why we have 

chosen ‘search’ as our main problem-solving technique, rather than constraint-satisfaction. 

In section 6.2, we describe a generic method ontology for scheduling, which provides a 

vocabulary to characterise the search-based problem solving behaviour of scheduling. In 

section 6.3, we discuss the key tasks and methods in Generic-Schedule. In section 6.4, 

we compare our work with other proposals in the literature. Finally, in section 6.5 we draw 

the main conclusions from this chapter.

6.1 Search-based vs. constraint-based problem-solving
Traditionally, the scheduling task is solved by using constraint satisfaction (Domdorf et 

al, 2000; Cesta et a l, 1999; Beck et a l, 1998; Beck and Fox, 1998; Cheng and Smith, 

1995; Dorn and Slany, 1994; Fox and Sadeh, 1990; and Fox, 1983). In contrast with these 

approaches, our library subscribe to a search model of problem solving. In what follows we 

justify our selection.

One of the main drawbacks of the constraint-satisfaction problem formulation, such as 

the finite constraint-satisfaction problem (Macworth, 1977) and its other instances, like 

dual constraint graphs or joint graphs (Kumar, 1992; Dechter and Pearl, 1985), is that

' As described earlier (cf. Section 4.3.3), the method component o f our library is divided into the following 

two components: a generic model of scheduling problem-solving and a number o f knowledge-intensive 

PSMs.

 ̂The complete OCML specification of Generic-Schedule can be found in Appendix 2.
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these characterisations model the problem solving as a set of binary constraints (Bacchus et 

a l, 2002). In our viewpoint, this is a very restrictive representation because it blurs 

important distinctions, e.g. between constraints, requirements, and preferences.

Another shortcoming of the constraint satisfaction approach is its static formulation of 

the problem as a constraint network. This network requires a prior knowledge of all the 

jobs, activities, or constraints involved in a problem. But the space of real-life scheduling 

domains is dynamic, where new jobs arrive without prior notice and must be 

accommodated in the existing batch for their accomplishment. The static formulation of 

constraint satisfaction faces the same level of inflexibility as experienced by Operations 

Research approaches (cf. Section 2.2) and therefore cannot deal with the dynamic nature of 

real-life scheduling.

Finally, as pointed out by Kumar (1992), although constraint-satisfaction algorithms are 

sophisticated in nature, they do not consider domain-specific knowledge while 

constructing a solution. Therefore, these algorithms provide very little insights into how 

domain knowledge can be used to improve the efficiency of the problem-solving process 

and quality of a solution.

6.2 A generic scheduling method ontology
Here, we describe the important concepts and relations in our generic method ontology.

6.2.1 Schedule space, schedule state, and schedule-state transition 

As described in Chapter 4 (cf. Section 4.3.2), the space of scheduling problem-solving can 

be represented by means of a state-space and operators. The former indicates a problem 

space associated with the scheduling task and is represented by the class schedule- 
space. A schedule space is composed of a set of schedule states and each schedule state 

associated with a schedule space is represented by the class schedule-state. A 

schedule state is uniquely represented by a schedule, say Ssch, associated with it. In an 

initial state a schedule is incomplete because all the jobs are still unassigned while in the 

solution state it satisfies all the solution criteria. The following box shows the OCML 

definition of classes’ schedule-space and schedule-state.

(def-class SCHEDULE-SPACE () ?x 
( (associated-with-task : type scheduling-task .-cardinality 1) 
(has-states : type set : cardinality 1 :default-value nil))

: constraint ( = > (member ?s (the ?set (has-states ?x ?set))) 
(schedule-state ?s)))

(def-class SCHEDULE-STATE () ?s 
((has-schedule-model : type schedule-model)))

The notion of a state transition is crucial while constructing a schedule, because it 

enables a scheduling agent to transit from an initial state to the solution state. The state
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transition is achieved by applying the schedule operators, which assign jobs to resources 

and time ranges. The following box shows the OCML definition of state-transition.

(def-relation STATE-TRANSITION (?sl ?schedule-op ?s2)
: iff-def (and (schedule-state ?sl has-schedule-model ?schedule-mode11) 

(schedule-state ?s2 has-schedule-model ?schedule-model2) 
(schedule-operator ?schedule-op has-body ?fun)
(= ?schedule-mode12 (call ?fun ?schedule-model1))
(not (= ?schedule-model1 ?schedule-model2))))

The functions predecessor-state and successor-state retrieve respectively the 

predecessor and successor schedule states of a current schedule state.

6.2.2 Scheidule operators

Each schedule operator extends a partial schedule state by assigning jobs to resources and 

time ranges. The class schedule-operator represents the most abstract type of operator 

in our method ontology. The basic type of schedule-operator, schedule-extension- 
operator decomposes into two sub-types, schedule-extension-resource- 
operator and schedule - ext ens ion -1 ime - range - operator. The former type of 

operator takes as input unassigned jobs and generates as output a list of assignments of 

jobs to resources, whereas the latter type of operator takes as input unassigned jobs and 

generates as output a list of assignments of jobs to time ranges in a single state transition.

Both schedule-extension-resource-operatior and schedule-extension
time-range-operator are further specialised into multiple-schedule- 
extension-resource-operator and multiple-schedule-extension-time- 
range-operator. These two operators assign jobs to resources and time ranges 

respectively by searching through multiple schedule states. Figure 6.1 depicts the 

classification of the schedule operators.
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Figure 6.1 Classification of the schedule operators.

The relation schedule-opera tor-order determines the order in which different 

operators can be applied to accomplish a job assignment. The following box shows the 

OCML definition of schedule-extension-resource-operator.
(def-class SCHEDULE-EXTENSION-RESOURCE-OPERATOR (schedule-operator)
( (applicable-to-jobs :default-value '(setofall ?x ( job ?x))

: type function-expression)
(has-precondition :default-value (kappa (?schedule-task) (true))

: type relation-expression)
(has-body : type schedule-extension-resource-operator-body)))

(def-class SCHEDULE-EXTENSION-RESOURCE-OPERATOR-BODY (latnbda-expression) ?x 
:no-op (: constraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (requires-resource ?j Presource)
(resource ?z) ) ) ) ) )

6.2.3 Job depen(dency network

While constructing a schedule, a job assignment normally depends on other job 

assignments. To make such a job dependency explicit we construct a job dependency 

network. As pointed out by Fox (1981a) a job dependency network makes the problem

solving process of scheduling more of a ‘tightly coupled’ one, because it allows us to 

analyse the effects on other jobs derived from one particular job assignment. The following 

bullet points describe the relations and functions needed to describe a job dependency 

network.

• Job-depends-on (jobl, job2): This is used to state that the assignment of a job, ji, 

depend on another job, ji;

• Job-affects (jobl, job2): This is the inverse of the j ob-depends-on relation;
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• Job-assignable (job, schedule): This binary relation holds for a job, ji, and a schedule, 

S, if ji is an unassigned job in S, and all other jobs on which the assignment of ji 

depends on are already assigned;

• All-assignable-jobs: This function retrieves all the unassigned jobs in a schedule;

• Relevant-operators: This function retrieves all the operators that can be applied to 

assign a particular job.

The following box shows the OCML definition of relations job-depends-on and 

job-affects, and function all-assignable-jobs.

(def-relation JOB-DEPENDS-ON (?jl ?j2)
: constraint (and (job ?jl) (job ?j2)))
(def-relation JOB-AFFECTS (?jl ?j2)
: constraint (and (job ?jl) (job ? j 2) )
: iff-def (job-depends-on ?j1 ?j2))

(def-function ALL-ASSIGNABLE-JOBS (?js ?sc)
:body (setofall ?x (and (member ?x ?js)

(unassigned-job ?x ?sc) 
(job-assignable ?x ?sc))))

6.3 A generic problem-solving model of scheduling
As mentioned earlier, in Generic-Schedule the top-level scheduling task is decomposed 

into a number of (sub-) tasks with different (sub-) methods defined to achieve these tasks. 

This breakdown identifies the key knowledge-intensive tasks that are carried out when 

constructing a schedule. At the same time, it also provides a structure for constructing 

more specialised PSMs. The problem-solving process in Generic-Schedule uses a 

method independent control regime. This is described in the following section.

6.3.1 The method independent control regime

The method independent control regime, Gen-Schedule-Control is a high-level control 

loop that takes as input a list of schedule operators and a scheduling task specification, and 

generates as output a complete schedule. The following box shows an informal 

specification of Gen-Schedule-Control.
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Generic-Task: Gen-Schedule-Control 
Input: Schedule-Operators, Scheduling-Task 
Output: Schedule-State 
Control: Schedule-Space
Goal; "The output is to devise a solution-state"
Subtasks: Generate-Schedule-Space, Choose-Schedule-State, Schedule-from-State 
Body: Generate-Schedule-Space (scheduling-task) -> Schedule-Space 

Repeat
Choose-Schedule-State (schedule-space) -> Schedule-State 
IF "Choose-Schedule-State = -.Nothing" 
then Return () -> ;Nothing 
else
IF "Schedule-state satisfies the goal of a scheduling task" 
then Return () -> Schedule-State 
else 
do
Schedule-from-State (schedule-state)

As shown in the above box, the body of Gen-Schedule-Control first invokes the task 

Generate-Schedule-Space, which takes as input the scheduling task and returns either 

a schedule state, which satisfies the goal condition or rnothing. Having generated a 

schedule space, the task new-schedule-state is invoked to create a root node 

associated with a schedule space. A detailed discussion of the task new-schedule- 
state can be found in section 6.3.1.1. Once a root node associated with a schedule space 

is generated, then the task choose-schedule-state is invoked next, to select an 

appropriate schedule state for expansion. The task choose-schedule-state is 

discussed in section 6.3.1.2. Finally, schedule-from-state is invoked , which takes as 

input the schedule state selected by task choose-schedule-state and expands this 

schedule state by applying the relevant schedule operators. The task schedule-f rom- 
state acts as a bridge between the method independent control regime of Gen- 
Schedule-Control and method specific control regimes defined inside schedule- 
from-state. Figure 6.2 depicts the breakdown of Gen-Schedule-Control.



Chapter 6

S chedu ling-T ask

G enenc-PSM
for-Schedulin

Generate-Schedule-
Space

N ew-Schedule-State

Gen-Schedule-
Control

Choose-Schedule- Schedule-from

Consistent-M aximal 
State-Selection

Evaluate-Schedule 
State

Evaluate-
Future-Job-
Consistency

Evaluate-
Current-Job-
Consistency

Evaluate-
Completion

Evaluate-
Consistency

Evaluate
Feasibility

Evaluât
Cost

Goal- 
Specification 

Task
D ecom position Composite 

method Task
Task-subtask

decom position
Prim itive
M ethod

P nim tive
Task

Legend

Apply-Downstream  
.Consistency-M echanism

Figure 6.2. The complete breakdown of the method independent control regime.

6.3.1.1 Generation and evaluation of schedule states

Task new-schedule-state creates a root node associated with a schedule space. In each 

newly created schedule state we first apply the downstream consistency enforcement 

heuristic (Sadeh, 1994) by using the task apply-downstream-consistency- 
mechanism. This heuristic propagates the earliest start times of jobs to avoid downstream 

cascading constraints. The overall complexity of this heuristic is linear and in the absence 

of resource capacity conflict it guarantees backtrack free search.

Having applied the downstream consistency enforcement heuristic, the task evaluate- 
schedule-state is invoked in the body of new-schedule-state. The main purpose 

of this task is to evaluate each newly generated schedule state. We propose five different 

criteria to evaluate a schedule state and it is important to remember that these criteria are 

independent of each other. For instance, a PSM that does not deal with cost issues will 

ignore a schedule state evaluation criterion that analyses costs. The schedule state 

evaluation criteria are described in the following bullet points.

• Evaluate-completion: It checks whether a schedule associated with a state is a 

complete one;

• Evaluate-hard-consisteney; It checks whether any of the constraints associated with a 

state are violated;
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• Evaluate-feasibility: It checks whether all the requirements associated with a state are 

maintained;

• Evaluate-cost: It calculates the cost of a state by using the cost function (cf. Section 

5.2.6);

• Evaluate-admissibility: Evaluating admissibility is the most difficult task in the 

context of a schedule state evaluation. It deals with checking whether a correct and 

consistent schedule state lay on a solution path. To evaluate admissibility we 

implemented two look ahead heuristics: full looking ahead and partial looking ahead 

(Haralick and Elliot, 1980). These two heuristics act as an oracle to anticipate the dead 

ends that may be encountered while constructing a schedule. The former heuristic 

checks the compatibility between any two unassigned jobs as well as the compatibility 

between the currently selected job and other assigned and unassigned jobs to ensure 

that the value requirements in terms of resources and time ranges of these jobs do not 

conflict with each other. The latter heuristic checks the value requirements 

compatibility between any two unassigned jobs.

6.3.1.2 Schedule state selection

While constructing a schedule, a scheduling agent has several schedule states that can be 

extended to reach a solution. The main task of a scheduling agent is to select one correct 

schedule state from all the available schedule states such that a schedule is constructed 

with minimal interruptions. To this purpose, the library includes task choose-schedule- 
state and four different methods have been defined to achieve this task. These methods 

are described in Table 6.1.

Table 6.1 Different methods to select a schedule state.

Method for selecting a schedule 

state

Description of the method

Consistent-Maximal- 
Cheapest -State -Select ion

This method selects a schedule state that does 

not violate constraints, provide maximal 

extension to a schedule, and has the least cost as 

compared to any other schedule states
Consistent-Feasible- 
Maximal- State -Select ion

This method selects a schedule state that does 

not violate constraints, maintain all the 

requirements, and provide maximal extension to 

a schedule
Consistent-Cheapest- 
Maximal- State -Select ion

This method selects a schedule state that does
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not violate any constraints, has the least cost, and 

provide maximal extension to a schedule
Feasible-State-Selection This method selects a schedule state that 

maintain all the requirements

In Generic-Schedule, the method consistent-feasible-maximal-state- 
selection is used as a default schedule state selection strategy. It is important to keep in 

mind that although a schedule state is selected by using the default method, it does not 

affect the generic nature of Generic-Schedule. The main reason behind this is that, if a 

scheduling agent does not have access to additional domain knowledge, then any 

scheduling agent will still select a schedule state that does not violate constraints, satisfy 

all the requirements, and provide maximal extension to a schedule. This default method 

ignores all cost related issues. The following box shows the OCML definition of ch o o se- 

schedule-state and the default method that achieves this task.

(def-class CHOOSE-SCHEDULE-STATE (goal-specification-task)
((has-input-role :value has-schedule-space)
(has-output-role :value has-schedule-state)
(has-schedule-space : type schedule-space)
(has-schedule-state : type schedule-state)
(has-goal-expression :value (kappa (?task ?s)

(exists ?s 
(and (schedule-state ?s)

(has-schedule-state ?task ?s ) ) ) ) ) )

(def-class CONSISTENT-FEASIBLE-MAXIMAL-STATE-SELECTION (primitive-method)
((has-body :value (lambda (?psm)

(in-environment 
((?cost-algebra . (role-value ?psm has-cost-algebra)) 
(?cost-rel-. (third ?cost-algebra))
(?space . (role-value ?psm has-schedule-space))
(?states . (schedule-space-state ?space))) 

(filter-maximal-states 
(filter-feasible-consistent-states Pstates ) ) ) ) ) )  

:own-slots ((tackles-task-type choose-schedule-state)))

6.3.2 Method specific control

The task schedule-from-state is a straightforward control regime, which takes as 

input a schedule state selected by the task choose-schedule-state and then expands it 

iteratively until a solution state is reached. The task schedule - from- state is achieved 

by the default decomposition method expand-incomplete-state. This is one of the 

most important methods in Generic-Schedule because all the PSMs in our library are 

constructed by specialising this method. The primary aim of the method expand- 
incomplete-schedule is to construct a complete schedule and therefore it does not deal 

with constraint or requirement violations or schedule optimisation issues. As a result, this 

method determines the required functionality (Fensel and Straatman, 1998) of Generic- 
Schedule. Also, because this method does not reason about constraint or requirement 

violations or schedule optimisation issues, it exhibits limited intelligence. However, as it
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will be shown in Chapter 7 it is very easy to construct new knowledge-intensive PSMs, 

which specialises expand-incomplete-state and take into account additional types of 

knowledge. Figure 6.3 depicts the complete breakdown of task schedule-from-state.
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Control

New-Schedule-State

Resume-state

Schedule-from- 
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Figure 6.3. The complete breakdown of the method specific control regime.

Expand-incomplete-state takes as input the schedule state selected by choose- 
schedule-state and generates the successor of a current schedule state. If a successor 

schedule state is complete then the method returns such a schedule state as a solution state. 

Otherwise if the schedule state is inconsistent or infeasible then a message is issued stating 

that a particular schedule state is a deadend-state^. This control regime is the one that 

imposes minimal commitments and only uses those knowledge constructs that are defined 

in the scheduling task ontology.

A schedule construction in Generic-Schedule is achieved by using the notions of the 

context and focus (Motta, 1999). The context in Generic-Schedule is to extend a 

schedule and the focus is one of the unassigned jobs. However, it is important to

The deadend-state is a problem-solving specific concept, which represents a schedule state from which 

a consistent solution cannot be derived.
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remember that different PSMs in our library specialise the notions of context and focus. 

For instance, the Propose & Exchange method (Poeck and Gappa, 1993) comprises of the 

following two phases - the propose phase and the exchange phase. The context in the 

propose phase is to construct a complete schedule and the focus is one of the unassigned 

jobs that needs to be assigned to construct a schedule. The context in the exchange phase is 

to fix the constraint violations that are occurred while constructing a schedule and the 

focus is one of the constraint violations that need to be fixed to construct a consistent 

solution schedule. The following box shows an informal specification of expand- 
incomplete-state - see Appendix 2 for its OCML definition.

Decomposition-Method Expand-Incomplete-State 
Input-Role: Schedule-State
Output-Role: Generates-Schedule-State
Goal: "To extend a given input schedule state."
Subtasks: Generate-New-Successor-State
Tackles-Task: Schedule-from-State
Body: If "Schedule-State violates constraints

tell (deadend-state ?schedule-state)) 
then Return () -> :Nothing 
else
If "Schedule-State violates requirements 
tell (deadend-state ?schedule-state) 
then Return () -> :Nothing 
else
If "Schedule-State is minimally-complete" 
tell (solution-state ?schedule-state) 
then Return () -> Success 
else
achieve-generic-subtask 
Generate-New-State-Successor 
(Schedule-State 
Schedule-Context = :Extend)

6.3.3 Generation of a successor state: generate-new-state-successor task

Task generate-new-state-successor, which is the main one invoked in the body of 

expand-incomplete-state and decomposes into three subtasks: resume-state, 
collect-state-foci, and propose-schedule-from-context.

Task resume-state is invoked in a situation where a schedule state is already 

extended partially and a schedule construetion process needs to be resumed from this 

sehedule state. We use a search-control-record to determine whether a partieular 

schedule state has already been visited. This structure maintains dynamic problem-solving 

information associated with a schedule state, consisting of the schedule foci (i.e., all the 

unassigned jobs), currently selected schedule focus (i.e., a selected job), and all the 

schedule operators that can be applied to assign a focus, but still have not been used.
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In a problem-solving situation, where a schedule state has not been extended yet, 

schedule construction is started by invoking task collect-state-foci. The main 

purpose of this task is to colleet all the foci (i.e., unassigned jobs) that can be assigned to 

resources and time ranges. The following box shows the definition of task collect- 
state-foci.
(def-class COLLECT-STATE-FOCI (goal-specification-task) ?task 
((has-input-role :value has-schedule-context 

:value has-schedule-state)
(has-output-role :value has-schedule-foci)
(has-schedule-foci : type list)
(has-schedule-context : type schedule-context)
(has-schedule-state : type schedule-state)))

(def-class COLLECT-ASSIGNABLE-JOBS (primitive-method) ?psm 
((has-body :value (lambda (?psm)

(all-assignable-jobs 
(role-value ?psm has-jobs)
(the ?sc (has-schedule-model

(role-value ?psm has-schedule-state) ?sc)))))) 
:own-slots ((tackles-task-type collect-state-foci)))

6.3.4 Context based extension of a state: propose-scheduie-from-context 

Having collected all the foci, the task propose-schedule-from-context is invoked in 

the body of generate-new-state-successor. This task is a high-level control regime 

that takes as an input all the foci collected by the task collect-state-foci and then 

invokes the following tasks: select-schedule-focus, append-search-control- 
record-on-focus-selection, collect-focus-operators, sort-focus-
operators, append-search-control-record-on-focus-failure, generate- 
value-from-focus, and propose-schedule-from-focus to assign the jobs from 

the list of foci. We will discuss these tasks through sections 6.3.5 to 6.3.8. Figure 6.4 

depicts the complete breakdown of task propose-schedule-from-context.
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Figure 6.4. The complete breakdown of propose-schedule-from-context.

6.3.5 Correct job selection: seiect-scheduie-focus

Selection of a eorrect job is the most important task while constructing a schedule, because 

it improves the effieiency of schedule construction by reducing unnecessary backtracking. 

The job selection in Generic-Schedule is achieved by the task select-schedule- 
focus, which takes as input all the foci and selects a correct focus (i.e., a candidate job). 

We have defined nine different methods for judieiously seleeting a correct job. These 

methods are constructed by using job selection heuristics that were elicited both from the 

scheduling literature and from real-life domains. The following bullet points describe the 

job selection methods.
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Job-selection-based-on-lowest-degrees-of-freedom: This method subscribes to the 

dynamic search rearrangement heuristic (Dechter and Meiri, 1989). According to this 

heuristic a job that has the least number of resources and time ranges left for its 

assignment is selected as a eandidate focus. Such a job is assumed to exhibit least 

reliance^ on its resources and time ranges. If they are unavailable, then this job 

becomes the most likely candidate for failure;

Job-selection-based-on-due-date: This method selects a job that has the earliest due 

date of unassigned jobs. Panwalkar and Iskander (1977) lists more than hundred job 

selection rules and one of the rules from their list selects a job based on its earliest due 

date. The fundamental differenee between their rule and ours is that, in our heuristic, a 

job with the earliest due date is selected only when this job is competing with some 

other jobs for the same resource, whereas no sueh eondition is imposed in their rule;

Job-selection-based-on-latest-end-time: This method sort all the unassigned jobs 

based on their latest end time and then the first unassigned job from the sorted list 

seleeted as a foeus;

Job-selection-based-on-start-time: This method selects a job that has the earliest stait 

time of all unassigned jobs. The method sorts all the unassigned jobs based on their 

earliest start times and the first job from the sorted list is selected as a focus;

Job-selection-based-on-precedence: This method sorts all the unassigned jobs 

according to the precedence relation among them and then the first job in the sorted list 

is selected as a focus. We use the relation job-precedes (cf. Section 5.2.2.3) to 

impose the precedence relation among jobs;

Job-selection-based-on-minimal-job-dependency: This method subscribes to the 

minimal-width-ordering heuristic (Freuder, 1982). According to this heuristic a highly 

constrained job is instantiated first beeause sueh a job is assumed to reduce future 

backtracking;

Job-selection-based-on-bottleneck-resources: This method always gives priority to a 

job that consumes the ‘bottleneck resources’̂  for its accomplishment. Such a job is 

assumed to provide a better control in maintaining the global stability of a schedule. 

Because the bottleneck resources have limited capacity to execute the jobs and if the

Reliance is the extent to which a particular variable must be assigned to its value such that the overall 

solution is formed (Beck and Fox, 1998).

 ̂The bottleneck resources are the ones whose individual capacity determines the overall productive capacity 

of the scheduling process.
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jobs that are using the bottleneck resources are not given priority, then it may cause 

such jobs to miss their due dates, whieh in turn requires lot of rescheduling;

• Job-selection-based-on-number-of-activities: This method selects a job that has the 

highest number of activities assoeiated with it;

• Job-selection-based-on-least-number-of-activities: This method seleets a job that has 

least number of activities associated with it.

If a scheduling application does not provide any explicit information to select a 

candidate focus, then the method job-selection-based-on-lowest-degrees-of- 
freedom is used as a default method to seleet a foeus. The following box shows the 

OCML definition of task select-schedule-focus and the default job selection 

method.

(def-class SELECT-SCHEDULE-FOCUS (goal-specification-task) ?cask 
((has-input-role -.value has-schedule-foci)
(has-output-role :value has-schedule-focus)
(has-schedule-foci : type list)
(has-schedule-focus : type schedule-focus)
(has-goal-expression :value (kappa (?task ?focus)

(has-schedule-focus ?task ?focus)))))
(def-class'JOB-SELECTION-BASED-ON-LOWEST-DEGREES-OF-FREEDOM (primitive-method) 
((has-input-role :value has-schedule-focus-order-relation 

:value has-possible-resources-relation)
(has-schedule-focus-order-relation : default-value schedule-focus-order)
(has-possible-resources-relation :default-value possible-resources-for-job) 
(has-body rvalue (lambda (?psm)

(if (= ?foci (role-value ?psm has-schedule-foci))
(select-most-preferred-focus 
(collect-most-restrieted-jobs 
?foci
(role-value ?psm

has-possible-resources-relation))
(role-value
?psm has-schedule-focus-order-relation))))))

: own-slots ((tackles-task-type select-schedule-focus)))

(def-function COLLECT-MOST-RESTRICTED-JOBS (?1 ?rel) 
rbody (in-environment

((?quadruples . (sort (map '(lambda (?j)
(list-of
?j (setofall ?r (holds ?rel ?j ?r))))

?1)
'(kappa (?x ?y)

(< (length (second ?x))
(length (second ?y)))))))

(map first (filter
?quadruples 
'(kappa (?quadruple)

(= (first ?quadruple)
(first (first ?quadruples))))))))

6.3.6 Collecting and sorting the schedule operators

Having selected the candidate focus, the tasks collect-focus-operators and sort- 
fecus-operators are invoked in the body of propose-schedule-from-context. 
The main aim of the former task is to collect all the schedule operators that are applicable 

to assign resources and time ranges to the selected focus, while the latter task is used to
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sort all the collected schedule operators to determine the order in which these operators are 

applied. The task sort-focus-operators make use of application-specific knowledge 

to prioritise the collected operators. For instance, in the satellite scheduling application (cf. 

Chapter 8) satellites have a fixed requirement for the antennas on which they can be 

assigned to perform their communication activities. All the schedule operators are sorted in 

such a way that only the correct antenna is assigned to establish the communication 

activities with a selected satellite. The following box shows the OCML definition of task 

collect-focus-operators and the method that achieves it.

(def-class COLLECT-FOCUS-OPERATORS (goal-specification-task) ?task 
((has-input-role :value has-schedule-focus)
(has-schedule-focus : type schedule-focus)))

(def-class DEFAULT-OPERATOR-COLLECTION (primitive-method) ?psm 
((has-body :value (lambda (?psm)

(setofall ?op
(and (schedule-operator ?op

applicable-to-jobs ?1) 
(member (role-value ?psm ’has-schedule-focus) 

(eval ?1)))))))
:own-slots ((tackles-task-type collect-focus-operators)))

In the following two sections we describe the resource and time range assignment of a 

seleeted foeus.

6.3.7 Resource assignment

Once the correct focus is selected and all the operators are collected and sorted, then the 

task generate-value-from-focus is invoked in the body of propose-schedule- 
from-context. The main aim of this task is to assign resourees to the selected focus. In 

order to aceomplish this assignment, the task generate-value-from-focus takes as 

input a seleeted focus, collected and sorted schedule operators, and generates as output a 

job to which resources are assigned. The job assignment is aehieved by the following two 

tasks: select-resource-operator and try - schedule - resource -operator. The 

task select-resource-operator takes as input all the sorted operators and selects the 

first operator from the sorted list. The selected operator and foeus aet as an input to the task 

try-schedule-resource-operator, which physically binds a selected focus to its 

resources to establish an assignment. The following box shows the OCML definition of 

task try-resource-assignment and function apply-schedule-extension- 
resource-operator, which is used to perform an assignment.
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(def-class TRY-RESOURCE-ASSIGNMENT (goal-specifleafion-task)
((has-input-role :value has-schedule-operator 

:value has-schedule-focus 
:value has-schedule-model)

(has-output-role :value has-schedule-value)
(has-schedule-operator : type schedule-operator)
(has-schedule-focus : type schedule-focus)
(has-schedule-model : type schedule-model)
(has-schedule-value : type schedule-value)
(has-goal-expression :value (kappa (?task ?value)

(and (has-schedule-value ?task ?value) 
(schedule-value ?value))))))

(def-class TRY-SCHEDULE-EXTENSION-RESOURCE-0PERATOR (primitive-method)
((has-body :value (lambda (?psm)

(in-environment 
((?sc . (role-value ?psm 'has-schedule-model))
(?focus . (role-value ?psm ’has-schedule-focus)) 
(?value . (apply-schedule-extension-resource-operator 

?focus ?sc
(role-value ?psm 'has-schedule-operator)))) 

(if (not (= ?value : nothing))
(return ?value))))))

:own-slots ((tackles-task-type try-schedule-resource-operator)))
(def-function APPLY-SCHEDULE-EXTENSION-RESOURCE-OPERATOR (?j ?sc ?op)
: constraint (and (job ?j )

(schedule-model ?sc)
(schedule-extension-resource-operator ?op))

:body (call (the Pbody (has-body Pop Pbody)) Pj Psc))

6.3.8 Time-range assignment

Propose-schedule-from-focus is the last task that is invoked in body of the task 

propose-schedule-from-context. The main purpose of this task is to assign a 

coiTect time range to the selected focus. The assignment of a time range is accomplished 

by using the following two tasks: select-schedule-operator and try-
assignment. Select-schedule-operator takes as input all the sorted operators that 

can be applied to assign a time range to the selected focus and the first operator from the 

sorted list is selected. The selected operator and focus act as an input to the task try- 
assignment, which generates as output a job with an assigned time range. The time range 

assignment is accomplished by the function called apply-schedule-extension
time-range-operator. The following box shows the OCML definition of task 

propose-schedule-from-focus and function apply-schedule-ext ension- 
time-range-operator.
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(def-class PROPOSE-SCHEDULE-FROM-FOCUS (composite-task)
((has-input-role :value has-schedule-state 

:value has-schedule-value 
:value has-schedule-activity-value)

(has-output-role :value has-output-schedule-state)
(has-control-role :value has-schedule-model

:value has-schedule-operator)
(has-schedule-state : type schedule-state)
(has-schedule-value : type schedule-value)
(has-schedule-activity-value : type activity-value)
(has-output-schedule-state : type schedule-state)
(has-body :value (lambda (?task)

(REPEAT 
(in-environment 
((?state . (role-value ?task has-schedule-state))
(Precord . (the-state-search-control-record Pstate)) 
(Pfocus . (the-slot-value Precord 'has-schedule-focus)) 
(Pops . (the-slot-value Precord

'has-schedule-operators))
(Pvalue . (role-value Ptask has-schedule-value)) 
(Pactivity-value . (role-value

Ptask has-schedule-activity-value)) 
(Psub . (instantiate-generic-subtask

Ptask select-schedule-operator 
has-schedule-focus Pfocus 
has-schedule-operators Pops))

(Pop . (solve-task Psub)))
(set-slot-value Precord has-current-operator Pop)
(if (achieved Psub Pop)

(DO
(set-slot-value Precord

has-schedule-operators 
(remove Pop Pops))

(in-environment 
((Psub2 . (instantiate-generic-subtask 

Ptask try-schedule-operator 
has-schedule-operator Pop 
has-schedule-focus Pfocus 
has-schedule-value Pvalue 
has-schedule-activity-value 
Pactivity-value 
has-schedule-model 
(the-slot-value 
Pstate 'has-schedule-model)))

(Presuit . (solve-task Psub2)))
(if (achieved Psub2 Presuit)

(return Presuit))))
(return : nothing)))))))

:own-slots ( (has-generic-subtasks ' (select-'schedule-operator
try-schedule-operator))))

(def-function APPLY-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR (Pj Psc Pop)
: constraint (and (job Pj)

(schedule-model Psc)
(schedule-extension-time-range-operator Pop))

:body (call (the Pbody
(has-body Pop Pbody)) Pj Psc))

Once the assignment of a eurrently seleeted focus is completed then the task t r y -  

s c h e d u le -o p e ra to r  invokes the task n e w -sc h e d u le -s ta te  (cf. Section 6.3.1.1). 

This task repeats the complete problem-solving cycle in order to assign the remaining jobs 

from the list of collected foci. Once all the jobs from the collected foei are assigned then a 

eomplete schedule is returned as a solution. Finally, Figure 6.5 depiets the complete 

breakdown of G eneric-S chedu le .
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Figure 6.5. The complete breakdown of Generlc-Schedule.

It is important to remember that all the tasks and methods in Generic-Schedule can 

be instantiated by using domain or application-specific knowledge, as with role-limiting 

methods (cf. Section 4.2) (Marcus, 1988). Therefore, Generic-Schedule provides a 

strong guidance for KA. However, compared to role-limiting methods. Generic- 
Schedule offers a more comprehensive and flexible framework which is not restricted by
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a pre-determined sequence of questions. Thus our approach overcomes the restrictive 

nature of role-limiting methods (cf. Section 4.2) (Musen, 1992). Generic-Schedule 
now consists of 135 reusable definitions, which can be reused or specialised to construct 

alternative PSMs. In the next section we compare our framework with other proposals in 

the literature.

6.4 Comparison with the alternative approaches
In Chapter 3 (cf. Section 3.2) we reviewed the following scheduling libraries: production 

scheduling library (Hori and Yoshida, 1998), constraint-satisfaction approach (Le Pape, 

1994), CommonKADS library of assignment and scheduling (Sundin, 1994), and 

MULTIS-II (Tijerino and Mizoguchi, 1993). Here, we highlight the main differences 

between our approach and these proposals.

6.4.1 Comparison with the domain-specific library of production scheduling

The primary difference between Hori and Yoshida’s library and our approach is that we 

subscribe to a top-down approach of schedule construction. We start with a generic 

template whose components can be reused or refined to construct more specialised PSMs. 

In contrast with our approach, Hori and Yoshida’s library subscribes to a bottom-up 

approach, where the knowledge requirement of all the PSMs in their library are realised 

entirely on the basis of processes of the production scheduling domain. This type of 

domain specificity restricts the reusability of their library.

In addition, in contrast with our approach, Hori and Yoshida’s library fails to distinguish 

between method specific and method independent components. This makes it very difficult 

to identify how the reusability of their components can be achieved to construct new PSMs 

quickly. In our fi-amework, different high-level components, such as state selection 

knowledge, operator construction and selection knowledge, and context and focus selection 

knowledge can be reused effectively for constructing new PSMs. In Chapter 7, we will 

prove our claim by illustrating seven PSMs constructed by specialising Generic- 
Schedule.

Our library follows a structured development approach and all the PSMs in our 

framework are constructed by subscribing to the same task and method ontology. This 

uniformity gives a semantic consistency to the entire library, which allows us to compare 

the knowledge requirements of different PSMs in the library. In contrast with our 

approach, different tasks in Hori and Yoshida’s library use different vocabularies. For 

instance, the dispatching method (cf. Section 3.2.1) uses the notion of ‘isEmpty’ to check 

whether the list of unassigned jobs is empty while a similar kind of problem-solving action
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in the assignment method is performed by using the notion of ‘isDone’. This type of 

semantic inconsistency makes it difficult to compare and contrast the knowledge 

requirements of alternative methods.

From a scheduling perspective Hori and Yoshida’s library discusses only two job 

selection criteria, i.e., earliest start time and down to the due-date, as compared to the 

broad range of job-selection criteria proposed in Generic-Schedule (cf. Section 6.3.5). 

Finally, our framework offers more exhaustive criteria to validate a solution schedule, 

whereby a solution schedule is validated against completion, constraint and requirement 

violation, and optimisation issues. In contrast with our approach a solution schedule in 

their library is validated only against completion and constraint violation.

6.4.2 Comparison with the constraint satisfaction approach

The main difference between the ILOG library (Le Pape, 1994) and ours is that their 

library focuses on solving the resource allocation problem, whereas our library addresses 

all types of scheduling problems.

Another major difference between these two approaches is that the ILOG frarriework 

uses constraint satisfaction (CS) as the main problem-solving technique, in contrast with 

the knowledge-intensive approach of our library. Because of this uniform approach to 

modelling, CS fails to provide the fine-grained epistemological framework required to 

analyse the various knowledge-intensive tasks that are involved in the schedule 

construction process. It is essentially an implementation technique. Moreover, as discussed 

earlier (cf. Section 6.1) the domain-independent nature of CS techniques fails to tease out 

the different roles that domain knowledge plays while constructing a solution. As pointed 

out by Fensel and Straatman (1998), these knowledge roles provide effective means to 

achieve problem-solving goals and to support KA. Nevertheless, different heuristics from 

CS, e.g., to select a correct job (cf. Section 2.6) or to improve the search efficiency, 

provide important problem solving mechanisms and they have been included in our library.

6.4.3 Comparison with CommonKADS

CommonKADS provides a comprehensive set of libraries, which also includes the 

assignment and scheduling tasks (Sundin, 1994). Analogously to the Hori and Yoshida’s 

library (1998), the CommonKADS library also fails to provide a clean distinction between 

reusable and non-reusable components. Therefore, it becomes very difficult to realise how 

a new PSM can be constructed simply by reusing existing tasks and methods.

More importantly, the CommonKADS library comprises only one method, i.e. Propose 

and Revise (Marcus and McDermott, 1989). As a result, the CommonKADS library tackles
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only the completion and constraint violation issues, but cannot reason about requirement 

violation and optimisation issues. In contrast with the CommonKADS library, our 

framework provides a comprehensive coverage to tackle different schedule types.

Another limitation is that the library framework of CommonKADS is opaque, because it 

fails to provide the required level of detail to construct a new PSM. For instance, a job 

selection task in the CommonKADS library is achieved simply by sequencing all the 

unassigned jobs, but the knowledge sources used to sequence these jobs are not detailed. In 

contrast with CommonKADS, our library provides a wide range of methods for selecting 

and evaluating a schedule state and various job selection heuristics (cf. Section 6.3.5). 

Finally, our library offers a much richer framework to construct a new PSM simply by 

reusing the generic tasks and by specialising the notions of context, focus, operator 

construction, and state selection knowledge.

6.4.4 Comparison with MULTIS-ll

The MULTIS-II library also tackles the scheduling task at a generic level and in this sense 

is similar to our approach. However, some significant differences exist between these two 

approaches. Because a component such as Generic-Schedule is absent in the MULTIS- 

II framework, this fails to abstract high-level, reusable tasks and methods from specialised 

PSMs. Therefore the construction of new PSMs is very difficult in their framework. 

Generic-Schedule overcomes this problem by providing a clean separation between the 

method-specific and method independent components.

While our approach allows us to validate different types of schedules, a solution 

schedule in the MULTIS-II library is validated only against completion and constraint 

violation.

From a scheduling perspective. Generic-Schedule provides a wide range of job 

selection methods (cf. Section 6.3.5) to improve the efficiency of schedule construction. In 

contrast with our library, job selection in MULTIS-II is achieved entirely on the basis of 

domain specific requirements, which is not a very effective way to execute such an 

important problem-solving activity. The main reason for this is that if wrong or partial 

domain knowledge is used to select a job, then the job selection component may end up 

selecting the wrong job, which could cause heavy backtracking. In some other cases,, if  a 

scheduling domain fails to provide adequate knowledge for the job selection, then a job 

selection method may trivially end up selecting a first job in a queue and this job may not 

necessarily be the best candidate. As a result, this could deteriorate the overall quality of a 

schedule.
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6.5 Conclusion
In this chapter we proposed a generic model of scheduling problem-solving called 

Generic-Schedule and a method ontology. The latter provides the vocabulary necessary 

to characterise the search-based problem-solving behaviour of scheduling engines. 

Generic-Schedule provides a firm theoretical and engineering foundation to scheduling 

problem-solving. From the theoretical perspective, Generic - Schedule exhibits a nice 

integration of the various techniques that can be used while constructing a schedule. 

Moreover, it also provides an insight into the different knowledge-intensive activities that 

take place in scheduling. From the engineering perspective, it provides a systematic 

abstraction of the different high-level tasks and methods, which can be reused to construct 

specialised PSMs.

In the next chapter we will show how different PSMs can be constructed by reusing 

Generic-Schedule.
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THE PROBLEM-SOLVING METHODS IN THE LIBRARY

Our library consists of seven PSMs: hill climbing, Propose & Backtrack (P&B) (Runkel et 

al., 1996), Propose & Improve (P&I) (Motta, 1999), Propose & Revise (P&R) (Marcus and 

McDermott, 1989), Propose & Restore-feasibility (P&Rf), Propose & Exchange (P&E) 

(Poeck and Gappa, 1993), and Propose & Genetical-Exchange. These methods were 

constructed by specialising the generic model of scheduling problem solving described in 

Chapter 6.

The rest of the chapter is organised as follows. In the following section we describe a 

generic template that will be used to compare and contrast the knowledge requirements of 

different PSMs in our library. In section 7.2, we introduce a schedule modification 

operator, which deals with constraint and requirement violations and schedule optimisation 

issues. In section 7.3, we describe how all the PSMs in our library are constructed. Then in 

section 7.4, we will describe how these PSMs in our library are categorised based on the 

different types of schedules tackled by them. Finally, in section 7.5 we draw the main 

conclusions from this chapter.

7.1 A generic template to compare the knowledge requirements 

of the PSMs
In this section we describe a generic template which will be used to compare and contrast 

the knowledge requirements of all the PSMs in our library and which uses the generic 

method description framework which is discussed in Chapter 6. This generic template 

highlights the main types of application-specific knowledge required by a problem-solving 

method, say PSMi as well as different problem-solving strategies, such as context and focus 

specialisation, operator and state selection, and operator configuration that are specific to 

each PSMi and at the same time used by PSM, to carry out the knowledge-intensive tasks 

presented while discussing Generic-Schedule (cf. Chapter 6).

• Inference knowledge: This determines what type of application-specific knowledge is 

required to achieve the problem-solving fiinctionality of a PSM. For instance, a PSM 

that deals with requirement violations may need application-specific knowledge about 

how to fix them;

• Additional subtasks: This determines whether any new tasks or methods are required 

to be defined to characterise a PSM in addition to those that already exist in Generic- 
Schedule;
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Method-specifîc-control-regime: This describes how the method specific control 

regime of Generic-Schedule (cf. Section 6.3.2) is specialised in the new PSM;

Schedule-context: This determines how the notion of context (Motta, 1999) from 

Generic-Schedule is specialised according to the different phases involved in the 

PSMs. For instance, the Propose & Revise method consists of the propose phase and 

the revise phase, and the context in the propose phase is to extend an incomplete 

schedule, whereas the context in the revise phase is to fix the current constraint 

violations;

Schedule-focus: This determines how the notion of a focus (Motta, 1999) from 

Generic-Schedule is specialised according to the different phases involved in the 

PSMs. For instance, the Propose & Revise method comprises of two phases: the 

propose phase and the revise phase. The focus in the former phase is on the unassigned 

jobs that needs to be assigned to construct a complete schedule, whereas the focus in 

the latter phase is on the constraint violations, which need to be fixed to construct a 

consistent schedule;

Schedule focus selection strategy: This determines how the candidate focus is 

selected in different PSMs;

Schedule operator type: This describes which new types of operators are defined to 

tackle constraint and requirement violations, and optimisation issues;

Schedule operator order: This determines what type of knowledge is required to rank 

the operators, which are applicable at any one time;

Schedule state selection knowledge: This determines how the default schedule state 

selection policy defined in Generic-Schedule is specialised in different PSMs;

Global properties: This field states the types of scheduling tasks that are tackled by 

the PSMs. For instance, whether a PSM attempts to produce optimal schedules.

Table 7.1 shows how this generic template is instantiated for Generic-Schedule.

Table 7.1. The knowledge requirements of Generic-Schedule.
Knowledge Roles Generic-Schedule

Inference knowledge Schedule state selection knowledge

Job selection knowledge

Knowledge required to determine the order

in which schedule extension operators can be

applied
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Additional subtasks None

Method specific control regime Expand-incomplete-state
Schedule-context Extend

Schedule-focus Job

Schedule focus selection strategy A correct focus is selected by using the 

application-specific knowledge; otherwise 

the default focus selection method called 
j ob-selection-based-on-lowest- 
degrees - of - freedom (cf. Section 6.3.5) 

from Generic-Schedule is used

Schedule operator type Schedule-extension-resource- 
operator
Schedule-extension-time-range- 
operator

Schedule operator order Based on the focus selection

Schedule state selection knowledge Violated constraints: No 

Violated requirements: No 

Schedule extension: Maximal

Global properties Complete

7.2 The schedule modification operators
In Generic-Schedule a complete schedule is constructed by assigning jobs to resources 

and time ranges and it is achieved by using schedule-extension-resource- 
operators and schedul e - ext ens ion -1 ime - range - operators respectively. In 

order to deal with constraint or requirement violations we introduce a new type of operator 

called schedule-modification-operator. This operator is further specialised into 

schedule-modification-resource-operator and schedule-modification
time- range -operator. The former type of operator deals with the constraint or 

requirement violations occurred due to inconsistent resource assignments of jobs, whereas 

the latter type of operator deals with the constraint or requirement violations occurred due 

to conflicting time range assignments of jobs. Both types of operators can also be used to 

optimise a job assignment. The following box shows the OCML definition of schedule- 
modification-operator.
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(def-class SCHEDULE-MODIFICATION-OPERATOR (schedule-operator)
( (applicable-to-jobs :default-value ' (setofall ?x (job ?x))

: type function-expression)
(has-body : type schedule-modification-operator-body)))

(def-class SCHEDULE-MODIFICATION-0PERATOR-BODY (lambda-expression) ?x 
:no-op (: constraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 schedule-model)
(=> (= ?z (call ?x ?j ?schedule-task))

(or (and (schedule-model ?z)
(assigned-to-resource 
?j ?r ?schedule-task)
(not (assigned-to-resource

?j ?r ?schedule-task)))
(and (schedule-model ?z)

(assigned-to-job-time-range 
?j ?jtr ?schedule-task)
(not (assigned-1o-j ob-1 ime-range

?j ?jtr ?schedule-task))))))))

7.3 Engineering of the problem-solving methods
Here, we describe how all the PSMs in our library have been constructed by reusing 

Generic-Schedule.

7.3.1 Hill Climbing

The hill climbing method is constructed as a straightforward refinement of Gener ic- 
Schedule and no additional tasks are needed. The primaiy difference between the hill 

climbing method and Generic-Schedule is based on the way these two methods 

generate a successor schedule state of a current schedule state to construct a complete 

schedule. While constructing a schedule, the control regime of Generic-Schedule 
generates only a single successor state of the current schedule state, whereas the hill 

climbing search strategy generates all the possible successors. The slot genera tes- 
schedule-state in the definition of the control regime of the hill climbing method 

states this information, which generates as an output a list of schedule states. The hill 

climbing method generates first a ‘good’  ̂ schedule and then it tries to optimise it. In 

contrast with Generic-Schedule, the hill climbing method performs a local exhaustive 

search and checks all the possible successor schedule states before selecting the next best 

state. The relation locally-best-schedule-state in the goal-expression of hill- 
climbing-for-scheduling represents the notion of locally optimal schedule state. 

This relation states that all the resources and time ranges that can be assigned to a job to 

generate an optimal assignment have already been tried, and no more optimisation is 

possible. As a result, the schedule state produced is the one that represents the locally 

optimal assignment. Finally, as in the case of Generic-Schedule, the hill climbing

' By ‘good’ schedule we mean that a solution that does not violate any constraints and maintains all the 

requirements.
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method selects a schedule state that does not violate any constraints, maintains all the 

requirements, and provides maximal extension to a schedule. The following box shows the 

OCML definition of the method specific control regime of the hill climbing method.

(def-class HILL-CLIMBING-FOR.-SCHEDULING (decomposition-method) ?psm 
((has-input-role :value has-schedule-state)
(has-output-role : value generates-schedule-states)
(has-schedule-state : type schedule-state)
(generates-schedule-states : type list

:default-value nil)
(has-goal-expression : value (kappa (?task ?s)

(locally-best-schedule-state 
(role-value ?task has-schedule-state))))

(has-body :value '(lambda (?psm)
(in-environment 
((?state . (role-value ?psm has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(Pconstraints . (role-value

?psm has-hard-constraints))
(?requirements . (role-value ?psm has-requirements)) 
(?jobs . (role-value ?psm has-jobs)))

(if (deadend-state Pstate)
: nothing

(if (constraint-violations ?state ?constraints)
(tell (deadend-state ?state))

(if (requirement-violations ?state Prequirements) 
(tell (deadend-state Pstate))

(if (state-complete Pstate ?jobs)
(tell (complete-state Pstate))

(do
(achieve-generic-subtask 
?psm
generate-new-state-successors
has-schedule-state Pstate
has-schedule-context : extend))))))))))

: own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks generate-new-state-successors)))

Table 7.2 represents the knowledge requirements of the hill climbing method.

Table 7.2. The knowledge requirements of the hill climbing method.

Knowledge Roles Hill Climbing

Inference knowledge The hill climbing method does not require 

any additional inference knowledge, but 

exploits a cost fimction in more detail.

Additional subtasks None

Method specific control regime Hi11-Climbing-for-Scheduling
Schedule-context Extend

Schedule-focus Job

Schedule focus selection strategy Application-specific knowledge is used to 

select a focus; otherwise the default job 

selection method from Generic-Schedule 
called i ob-selection-based-on- 
lowest-degrees-of -freedom (cf. 

Section 6.3.5) is used
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Schedule operator type Schedule-extension-resource- 
operator
Schedule-extension-time-range- 
operator

Schedule operator order Based on the focus selection

Schedule state selection knowledge Violated constraint: No 

Violated requirements: No 

Schedule extension: Maximal 

Cost: Minimal

Global properties Complete and locally optimal

7.3.2 Propose and Backtrack

The Propose & Backtrack (P&B) method was proposed by Runkel et al. (1994) to solve 

the VT elevator configuration problem (Runkel et a l, 1996). This method is a simple 

refinement of Generic-Schedule and, in line with Runkel’s proposal the P&B method 

in our library incrementally constructs a schedule by assigning jobs to resources and time 

ranges until an inconsistency is detected. Then it backtracks to the last consistent schedule 

state, where different sets of resources and time ranges are tried in order to generate a 

consistent assignment. This process is iterated until all the jobs are assigned without any 

inconsistency. The following points describe the knowledge requirements of the P&B 

method.

• Inference knowledge: This makes use of the preference knowledge to rank all the 

resources and time ranges that can be assigned to a job. This ranking mechanism can be 

seen as a special case of the operator preference knowledge from Generic- 
Schedule;

• Additional subtasks: No additional subtasks are defined;

• Method-specific-control-regime: When encountered with an inconsistent or infeasible 

schedule state (i.e., a schedule state violating constraints or requirements), the P&B 

control regime backtracks to the last consistent schedule state;

• Schedule-context: The schedule context is to extend a schedule until all the jobs are 

assigned;

• Schedule-focus: The schedule focus is one of the unassigned jobs that can be assigned 

to generate a complete schedule;

• Schedule focus selection strategy: The focus is selected by using application-specific 

knowledge. However, if an application fails to provide adequate knowledge to select a 

candidate focus, then the default focus selection method job-selection-based-
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on-lowest-degrees- o f-freedom (cf. Section 6.3.5) from Generic-Schedule is 
used;

Schedule operator type: The jobs are assigned by using schedule-extension- 
resource-operator and schedule-ext ens ion-time-range-operator (cf. 

Section 6.2.2);

Schedule operator order: The operators are ordered according to the selected focus 

and also by taking into account preference knowledge;

Schedule state selection knowledge: This method selects a schedule state that does 

not violate any constraints, maintains all the requirements, and provides maximal 

extension to a schedule to generate a consistent solution;

Global properties: The P&B method guarantees to find a complete schedule, if one 

exists in the problem space. It also tries to find a locally optimal solution by using 

preference knowledge, but because the P&B method is a greedy algorithm it is 

susceptible to the horizon effect.

Table 7.3 summarises the knowledge requirements of the P&B method.

Table 7.3. The knowledge requirements of the P&B method.

Knowledge Roles Propose and Backtrack

Inference knowledge The preference knowledge is used to rank the 

resources and time ranges that can be 

assigned to a job

Additional subtasks None

Method specific control regime Expand-incomplete-state
Schedule-context Extend

Schedule-focus Job

Schedule focus selection strategy Focus selection is achieved by using the 

application-specific knowledge. Alternatively 

the method called job-selection-based- 
on-lowest-degrees- o f-freedom (cf. 

Section 6.3.5) is used

Schedule operator type Schedule-extension-resource- 
operator and schedule-extension- 
time-range-operator

Schedule operator order It is determined based on the selected focus
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Schedule state selection knowledge Violated constraint: No 

Violated requirements: No 

Schedule extension: Maximal

Global properties Complete

7.3.3 Propose and Improve

The main focus of both PSMs described in the previous two sections is to construct a 

complete schedule. However, as pointed out by Saucer (2001) and Baker (1974), in 

addition to the construction of a complete schedule, another important objective of the 

scheduling task is to optimise a complete solution over its evaluation function. To deal 

with optimisation issues we have included the Propose and Improve method (P&l) (Motta, 

1999) in our library.

The P&l method divides a schedule construction process into the following two phases: 

the propose phase and the improve phase. The context in the former phase is to extend an 

incomplete schedule and the focus is on the unassigned jobs, which needs to be assigned to 

resources and time ranges. The context in the improve phase is to optimise a schedule and 

the focus is on the most expensive job whose assignment needs to be optimised. The 

propose phase of the method is constructed straightforwardly from Generic-Schedule, 
and therefore, in the following section we focus only on the improve phase.

7.3.3.1 Modelling the P&l method

As shown in the definition of P&l in the box below, the P&l method refines generic- 
psm-for-scheduling in two ways - 1) a new slot called has-job-cost:-function is 
added to represent the cost associated with the assignment of each job and 2) the goal- 

expression is specialised by introducing an optimality criterion. A function called job- 
cost-function is used to calculate the cost associated with a job assignment so that the 

P&l method can identify the most expensive job while optimising a complete solution. The 

relation P&i-Optimal in the goal-expression represents the notion of a schedule state 

optimality. This relation states that a schedule state is an optimal one if it is a completely 

expanded one, i.e. all the resources and time ranges that can be assigned to generate an 

optimal assignment have been tried and no more improvement is possible in the cost of the 

state. The relation also states that there is no other schedule state which has a lower cost 

than the selected schedule state. The former condition is modelled by using the relation 

state-fully-expanded from Generic-Schedule, whereas the latter condition is 

modelled by using the relation state-is-optimal. The following box shows the OCML 

definitions of propos e - and - improve - schedul ing, relation p&i- optimal, and job- 
cost-function.
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(def-class PROPOSE-AND-IMPROVE-SCHEDULING (generic-psm-for-scheduling) ?psm 
((has-input-role :value has-job-cost-function)
(has-job-cost-function : type job-cost-function)
(has-goal-expression :value (kappa (?psm ?state)

(and (tackles-task ?psm ?task)
(p&i-optimal ?state ?task))))

(has-output-mapping :value '(lambda (?psm ?state)
(the ?sc (has-schedule-model ?state ?sc)))) 

(has-body :value '(lambda (?psm)
(in-environment 
((?s . (achieve-generic-subtask

?psm gen-schedule-control
has-current-scheduling-task
(the Ptask (tackles-task ?psm ?task)))))

(if (schedule-state ?s) ?s)))))
:own-slots ((has-generic-subtasks '(gen-schedule-control))))

(def-relation P&I-OPTIMAL (Pstate Ptask)
: iff-def (and (has-schedule-model Pstate Psc)

(achieved Ptask Psc)
(state-fully-expanded Pstate) (state-is-optimal Pstate Ptask)))

(def-class JOB-COST-FUNCTION (binary-function) Pfun 
: constraint (and (nthdomain Pfun 1 Pjob)

(nthdomain Pfun 2 Pschedule-model)
(range Pfun Pcost)))

To optimise the cost of a complete schedule the following two types of improvement 

operators are used: schedule-improvement-resource-operator and schedule- 
improvement -1 ime - range - operator. Both the operators are defined uniformly based 

on schedule-modification-resource-operator and schedule- 
modif ication-time-range-operator (cf. Section 7.2).

7.3.3.2 The control regime of P&l

To optimise a complete solution schedule, the method specific control regime of 

Generic-Schedule is modified. The control regime of P&l is very similar to the method 

specific control regime of Generic-Schedule^ The primary difference between these 

two control regimes is that the P&I control regime first invokes the task generate-new- 
state-successor (cf. Section 6.3.3) in the extend context, to construct a complete 

schedule. Having encountered a complete schedule state, instead of returning such a 

schedule state as a successor state, the task generate-new-state-successor is 

invoked again in the improve context to optimise a complete schedule state. The following 

box shows the OCML definition of the control regime of P&L
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(def-class PROPOSE-AND-IMPROVE-STATE (decomposition-method) ?psm 
((has-input-role :value has-schedule-state)
(has-output-role :value generates-schedule-state)
(has-schedule-state : type schedule-state)
(generates-schedule-state : type schedule-state)
(has-body :value (lambda (?psm)

(in-environment 
((Pstate . (role-value Ppsm has-schedule-state))
(Pschedule-model . (the Psc (has-schedule-model

Pstate Psc)))
(Pconstraints . (role-value Ppsm has-hard-constraints))
(Prequirements . (role-value Ppsm has-requirements))
(Pjobs . (role-value Ppsm has-jobs)))

(if (deadend-state Pstate)
;nothing

(if (constraint-violations Pstate Pconstraints)
(tell (deadend-state Pstate))

(if (deadend-state Pstate)
:nothing

(if (requirement-violations Pstate Prequirements) 
(tell (deadend-state Pstate))

(if (state-complete Pstate Pjobs)
(do

(tell (complete-state Pstate))
(achieve-generic-subtask 
Ppsm
generate-new-state-successor 
has-schedule-state Pstate 
has-schedule-context : improve)) 

(achieve-generic-subtask 
Ppsm
generate-new-state-successor
has-schedule-state
Pstate
has-schedule-context : extend))))))))))

:own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks '(generate-new-state-successor))))

7.3.3.3 Foci collection and focus selection within the improve phase 

In the improve phase, first all the assigned jobs are collected so that the cost of their 

assignment can be optimised. Having collected the foci, the correct focus (i.e., a job with 

the highest cost) is selected by using a method select-most-expensive-job, which 

achieves the task select-schedule-focus (cf. Section 6.3.5) from Generlc- 
Schedule. In order to determine the cost associated with each job, this method makes use 

of job-cost-function (cf. Section 7.3.3.1) and the cost of a job assignment is 

calculated by using the function the-most-expensive-job. The following box shows 

the OCML definitions of method select-most-expensive-job and the function the- 
most-expensive-j ob.
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(def-class SE L E C T -M O ST -E X P E N SIV E -JO B  (primitive-method) ?psm 
((has-body :value (lambda (?psm)

(the-most-expensive-job 
(role-value Ppsm has-schedule-foci)
(the Psc (has-schedule-model

(role-value Ppsm has-schedule-state) Psc)) 
(role-value Ppsm has-job-cost-function)))))

:own-slots ((tackles-task-type '(select-schedule-focus))
(applicability-condition 
(kappa (Ptask)

(= (role-value Ptask has-schedule-context) : improve)))))
(def-function T H E -M O ST -E X P E N SIV E -JO B  (Pfoci Psc Pfun) -> Pfocus 
: constraint (and (list Pfoci)

(every Pfoci job)
(schedule-model Psc)
(job Pfocus)
(job-cost-function Pfun))

:body (the Pfocus
(and (member Pfocus Pfoci)

(= (call Pfun Pfocus Psc) Pfocus-cost)
(not (exists Pfocus2

(and (member Pfocus2 Pfoci)
(= (call Pfun Pfocus2 Psc) Pfocus2-cost) 
(<> PfO C U S 2  Pfocus)
(> Pfocus2-cost Pfocus-cost)))))))

7.3.3.4 Collection and seiection of the improvement operators 

Once the candidate focus is selected then all schedul e - improvement: - operators that 

can be applied to optimise the cost of a selected job are collected by using a method called 

collect-improvable-operators. This method achieves the task collect - focus- 
operators (cf. Section 6.3.6) from Generic-Schedule. All the collected schedule- 
improvement-operators are then sorted by using the relation schedule - operator- 
order (cf. Section 6.2.2) and the first improvement operator from the sorted list is selected 

to optimise the cost of the most expensive job.

Once the cost of a currently selected focus is improved, then task new-schedule- 
state is invoked again. This task invokes the top-level problem-solving loop again to 

optimise the cost of the other jobs and if no further improvement is possible to the overall 

cost of a schedule then the currently optimal schedule is returned as a solution.

In total five new definitions are needed to model the P&I method. Table 7.4 summarises 

the knowledge requirements of the P&l method.

Table 7.4. The knowledge requirements of the P&I method.

Knowledge Roles Propose and Improve

Inference knowledge The schedule operator selection knowledge 

in both the phases

The focus selection knowledge in both the 

phases

The knowledge required to achieve the job 

assignment in the propose phase

726



Chapter 7

Makes a detailed use of the cost function

Additional subtasks P&I-Optimal, job-cost-function, 
collect-improvable-jobs, select- 
most-expensive-job, collect- 
improvable -operators

Method specific control regime Propose-and-Improve-State
Schedule-context Extend, Improve

Schedule-focus Job, most expensive job

Schedule focus selection strategy In the propose phase, the focus is selected by 

using the application-specific knowledge or 

by using one of the job selection methods 

from Generic-Schedule (cf. Section 

6.3.5)

The most expensive job is selected as a focus 

in the improve phase

Schedule operator type Schedule-extension-operator 
Schedule-improvement-operator

Schedule operator order It is determined according to a selected focus

Schedule state selection knowledge Violated constraint: No 

Violated requirements: No 

Schedule extension: Maximal 

Cost: Minimum

Global properties Complete, locally and globally optimal

7.3.4 Propose and Revise

The P&R method (McDermott, 1988; Marcus and McDermott, 1989) was originally 

developed to tackle the VT system for elevator configuration (Marcus and McDermott, 

1989) and was later extended to solve the production scheduling problem (Stout et a l, 

1988). The method was then integrated with the SALT knowledge acquisition tool (Marcus 

and McDermott, 1989). Several researchers (Fensel and Straatman, 1998; Wielinga et a l, 

1995; Zdrahal and Motta, 1995; Motta, 1999) have studied the P&R method. Fensel and 

Straatman’s (1998) work mainly aimed at analysing the competency of the P&R method. 

Wielinga et a l (1995) enumerated different assumptions and limitations of P&R in the 

context of the VT elevator problem. Zdrahal and Motta (1995) and Motta (1999) provide a 

much richer analysis of the P&R method than the two aforementioned studies and they 

applied the P&R method to solve parametric design problems. Their study also relates the 

P&R method to different constraint satisfaction techniques. Our aim here is also to provide
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a uniform support for constructing the P&R method by reusing Generic-schedule, while 

at the same time trying to tease out the characteristics that are unique to scheduling.

7.3.4.1 Initial analysis of the method

The P&R method divides the problem-solving process into two phases: the propose phase 

and the revise phase. The following bullet points identify the relation between these two 

phases:

• The propose phase constructs a complete schedule by assigning jobs to resources and 

time ranges, and while constructing a schedule, it checks whether any of the constraints 

imposed on the schedule are violated;

• While constructing a schedule if any of the constraints imposed on the schedule are 

violated then the revise phase of the method is invoked to fix the constraint violations. 

The constraint violations are fixed by applying the least costly fix that has not been 

tried yet (Marcus and McDermott, 1989). However, in our approach the fixes are 

selected in compliance with the selected focus (i.e., constraint violation) in the revise 

phase;

• After the fixes are applied, the current schedule is revised tentatively to see the effects 

of fix application on the remaining constraint violations;

• If the constraint violations persist then the next fix from the list, which has not been 

tried yet, is selected;

• Finally, if no more constraints are violated then a complete and consistent schedule is 

established as a final solution.

In contrast with the schedule state selection policy of Generic-Schedule and the 

methods discussed in the previous three sections, the schedule state selection policy of the 

P&R method takes into account all those schedule states that violate constraints instead of 

simply ignoring such schedule states. The P&R method also specialises the notions of 

schedule operator and inference structure from Generic-Schedule :

• Schedule operators: The P&R method specialises the notion of a schedule operator 

according to the two phases involved in the method. In the propose phase schedule- 

procedure is used to assign jobs to resources and time ranges. The schedule- 

procedure is defined uniformly based on schedule-ext ension-operator (cf. 

Section 6.2.2). In the revise phase schedule-fixes are used to fix the constraint 

violations. The schedule-fixes are defined uniformly based on schedule- 
modif icat ion-operator (cf. Section 7.2). The following box shows the OCML 

definition of schedule-fix.
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(def-class SCHEDULE-FIX (schedule-modification-operator)
((applicable-to-constraints : type function-expression

: documentation "This expression returns the set of 
constraints that can be resolved 
by the application of this fix)))

• Inference structure; The P&R method subscribes to a knowledge-based backtracking 

schema (Marcus et a l, 1988) rather than the depth-first search with chronological 

backtracking search strategy of Generic-Schedule.

7.3A .2 Control regime of the P&R method

The method specific control regime of the P&R method, propose -and- revise - 
control-structure, is constructed by modifying the method specific control regime of 

Generic-Schedule (cf. Section 6.3.2) to deal with constraint violations. According to 

the original description of the method (Marcus and McDermott, 1989) the constraint 

violations are fixed as soon as they arise. However, in scheduling the constraints are 

antagonistic in nature (Stout et a l, 1988) mainly due to the dynamic nature of the job 

assignments and their inter-dependencies. As a result, in our approach the constraint 

violations are fixed only when a complete schedule is constructed because these violations 

can be dealt with simultaneously, which gives us more control to analyse the effect of 

fixing one constraint violation on the remaining constraint violations. Propose-and- 
revise-control-structure specialises the method specific control regime of 

Generic-Schedule by adding a new task revise-schedule to deal with the 

constraint violations.

Propose-and-revise-control-structure first invokes the task generate- 
new-state-successor in the extend context to construct a complete schedule. If any of 

the constraints are violated then they are ignored until a complete schedule is constructed. 

Once a complete schedule is constructed then the task revise-schedule is invoked in 

the revise context to fix all the ignored constraint violations. The following box shows the 

OCML definition of propose - and- revise - control - structure.
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(def-class PROPOSE-AND-REVISE-CONTROL-STRCUTURE (decomposition-method) ?psm 
((has-input-role :value has-schedule-state)
(has-output-role :value generates-schedule-state)
(has-schedule-state : type schedule-state)
(generates-schedule-state : type schedule-state)
(has-body :value (lambda (?psm)

(in-environment 
((?state . (role-value ?psm has-schedule-state))
(?sc . (the ?sc (has-schedule-model ?state ?sc))) 
(Pconstraints . (role-value Ppsm has-hard-constraints)) 
(Pjobs . (role-value Ppsm has-jobs)))

(if (deadend-state Pstate)
:nothing

(if (requirement-violations Pstate Prequirements)
(tell (deadend-state Pstate))

(if (state-complete Pstate Pjobs)
(tell (complete-state Pstate))

(achieve-generic-subtask 
Ppsm generate-new-state-successor 
has-schedule-state Pstate 
has-schedule-context : extend)
(if (constraint-violations Pstate Pconstraints)

(achieve-generic-subtask 
Ppsm revise-schedule 
has-schedule-state Pstate)))))))))

:own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks '(generate-new-state-successor

revise-schedule))))

7.3.4.3 Schedule revision

The following two methods are defined in order to achieve the task revise-schedule: 
one-step-revision-for-constraint and fix-constraint-monotonically.

The method one-step-revision-for-constraint takes as an input an 

inconsistent schedule state (i.e., a schedule state violating constraints) and then invokes the 

task generate-new-state-successor in the revise context. This method can be used 

in those situations where only a single constraint is violated and therefore it has limited 

applicability because to fix more than one constraint violations the problem space needs to 

be searched in more detail so that alternative assignments can be tried for a job in conflict. 

Because only a single constraint is fixed by using this method no special knowledge is 

required to select a candidate focus. Having selected a focus, all schedule-fixes that 

can be applied to fix the selected constraint violation are collected and then sorted by the 

relation schedule-operator-order (cf. Section 6.2.2). Finally, the first schedule- 
fix from the sorted list is selected and applied to fix the constraint violation.

:To deal with more then one constraint violation, the method fix-constraint- 
monotonically is included in the library. This method takes as an input a schedule state 

that has a number of constraint violations and then it invokes the task generate-new- 
state-successor in the revise context. The method f ix-constraint- 
monotonically first collects all the constraint violations and then the candidate focus 

(i.e., constraint violation) is selected according to the relevant application-specific 

knowledge. Once a correct focus is selected then all the schedule-fixes that are 

applicable to fix a focus are collected and then sorted as described earlier. Having fixed a
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currently selected constraint violation, this method iterates the problem-solving cycle again 

until all the constraint violations have been fixed. After each cycle, the task evaluate- 
hard-consistency (cf. Section 6.3.1.1) is invoked to check whether any new 

constraints are violated while fixing the existing ones. In both methods, application- 

specific knowledge is used to determine how the constraint violation can be fixed. The 

following box shows the OCML definitions of method revise-schedule and method 

one-step-revision-for-constraint.

(def-class R E V IS E -SCHEDULE (goal-specification-task) ?tsk 
((has-input-role :value has-schedule-state)
(has-output-role :value has-output-state)
(has-schedule-state : type schedule-state)
(has-output-state : type schedule-state)
(has-goal-expression rvalue (kappa (Ptask Ps)

(and (schedule-state Ps)
(not (constraint-violations 

Ps Pany)))))))
(def-class O N E -S T E P -R E V IS IO N -F O R -C O N S T R A IN T  (primitive-method) Ppsm 
((has-body rvalue (lambda (Ppsm)

(repeat 
(in-environment 
((Pinput . (role-value Ppsm has-schedule-state))
(Poutput . (achieve-generic-subtask

Ppsm generate-new-state-successor
has-schedule-state Pinput
has-schedule-context rrevise)))

(if (achieved Ppsm Poutput)
(return Poutput))))))) 

rown-slots ((has-generic-subtasks generate-new-state-successor)
(tackles-task-type revise-schedule)
(A P P L IC A B IL IT Y -C O N D IT IO N  
(kappa (Ptask)

(in-environment 
((Pinput . (role-value.Ptask 'has-schedule-state)))
(= (cardinality

(the Pconstraints (constraint-violations
Pinput Pconstraints))) 1 ) )))))

7.3.4.4 Foci collection and a focus seiection

All the constraint violations are collected as the candidate foci by rising a method called 

collect-all-constraint-violât ions. This method achieves the task collect- 
state-foci (cf. Section 6.3.3) from Generic-Schedule.

A candidate focus (i.e., a constraint violation) is selected by using a method called 

select-candidate-constraint-violât ion. This method achieves the task 

select-schedule-focus (cf. Section 6.3.5) from Generic-Schedule. The candidate 

focus is selected by using application-specific knowledge, but if an application fails to 

provide such knowledge, then the first constraint violation from the list of collected foci is 

selected as a focus. The following box shows the OCML definition of method collect- 
all-constraint-violât ions.
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(def-class COLLECT-ALL-CONSTRAINT-VIOLATIONS (primitive-method) Ppsm 
((has-body : value (lambda (Ppsm)

(setofall Pcv
(and (fixable-constraint Pcv)

(member Pcv
(the PCS (constraint-violations 

(role-value 
Ppsm
has-schedule-state) 
Pcs))))))))

:own-slots ((tackles-task-type '(collect-state-foci))
(applicability-condition 
(kappa (Ptask)

(= (role-value Ptask has-schedule-context) : revise)))))

7.3.4.5 Collecting and selecting the fixes

Once a correct focus is selected then all the fixes that are applicable to fix the selected 

focus are collected by using a method called collection-of-applicable-fixes. 
This method achieves the task collect-focus-operators (cf. Section 6.3.6) from 

Generic-Schedule. Finally, all the collected fixes are sorted and the first fix from the 

list of sorted fixes is selected. The following box shows the OCML definition of method 

collection-of-applicable-fixes.

(def-class COLLECTION-OF-APPLICABLE-FIXES (primitive-method) Ppsm 
((has-body :value (lambda (Ppsm)

(setofall Pop (and (schedule-fix
Pop applicable-to-constraints PI) 
(member (role-value Ppsm

'has-schedule-focus) 
(eval PI)))))))

:own-slots ((tackles-task-type '(collect-focus-operators))
(applicability-condition 
(kappa (Ptask)

(and (= (role-value Ptask has-schedule-context) : revise) 
(fixable-constraint 
(role-value Ptask has-schedule-focus)))))))

In order to model the P&R method only six new definitions have been defined by 

specialising Generic-Schedule. Table 7.5 summarises the knowledge requirements of 

the P&R method.

Table 7.5. The knowledge requirements of the P&R method.

Knowledge Roles Propose and Revise

Inference knowledge The knowledge required to select

schedule-procedure and schedule- 
fix
The focus selection knowledge in both the 

phases

The knowledge required to select resources 

and time ranges for the job assignment 

The knowledge required to fix the constraint 

violations
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Additional subtasks Revise-schedule.
One-step-revision-for-constraint. 
Fix-constraints-monotonically. 
Collect-all-constraint- 
violations.
Select-candidate-constraint- 
violation,
Collection-of-applicable-fixes

Method specific control regime Propose-and-revise-control-
structure

Schedule-context Extend, revise

Schedule-focus Job, constraint violation

Schedule focus selection strategy One of the job selection methods from 

Generic-Schedule (cf. Section 6.3.5) is 

used to select a candidate job in the propose 

phase

Application-specific knowledge is used to 

select a candidate constraint violation

Schedule operator type Schedule-procedure 
Schedule-fix

Schedule operator order It is determined according to a selected focus 

in both the phases

Schedule state selection knowledge Violated constraint: Minimal 

Schedule extension: Maximal 

Cost: Minimum

Global properties Complete and consistent

7.3.5 Propose and Restore-feasibility

The Propose and Restore-feasibility method (P&Rf) is included in our library to deal with 

the requirement violations that occur while constructing a schedule. This method is similar 

in spirit to the Propose & Revise method, and therefore, in the following section we 

quickly describe how the P&Rf method is modelled by providing the pointers to the 

appropriate definitions in P&R.

7.3.5.1 Modelling the P&Rf method

• The P&Rf method divides a schedule construction process into the propose phase and 

the restore-feasibility phase. The propose phase constructs a complete schedule by 

assigning jobs to resources and time ranges and if any of the requirements imposed on
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a schedule are violated then the restore-feasibility phase is invoked to fix these 

violations;

• Context, focus, and operators: The context in the propose phase is to extend a 

schedule and the focus is on the unassigned jobs, whereas the context in the restore- 

feasibility phase is to fix all the requirement violations and the focus is on the 

requirement violations. In the propose phase the jobs are assigned by using 

schedule-extension-operator (cf. Section 6.2.2) and in the restore-feasibility 

phase a feasibility-restoration-operator is used to fix the violated 

requirements;

• Method specific control regime of P&Rf: The method specific control regime of 

P&Rf, called propose-and-res tore-feasibility-state, can be realised along 

the same lines as propose-and-revise-control-structure (cf. Section 7.3.4.2) 

of P&R. The main difference between these two control regimes is that in contrast with 

propose-and-revise-control-structure, which checks for the constraint 

violations by using the relation constraint -violations, propose-and- 
restore-feasibility-state checks for requirement violations by using the 

relation requirement-violations. When encountered with a schedule state that 

violates requirements the task restore-feasibility is invoked to fix the. 

requirement violations. This task can be realised along the same lines as revise- 
schedule (cf. Section 7.3.4.3);

• Foci collection and a focus selection: All the requirements that are violated while 

constructing a schedule are collected as the candidate foci by using the method 

collect-the-requirement-violât ions. This method is isomorphic to 

collect-all-constraint-violâtions (cf. Section 7.3.4.4). Having collected all 

the requirement violations, the first requirement violation from the list of collected foci 

is selected as a candidate focus by using a method called select-candidate- 
requirement-violâtion. This method can be realised on the same lines as 

select-candidate-constraint-violât ion (cf. Section 7.3.4.4);

• Operator collection and selection: All the f easibili ty-res torat ion- 
operators that can be applied to fix the selected requirement violation are collected 

by using a method collection-of-f easibili ty-res torat ion-operator. 
This method is similar to collect-focus-operators (cf. Section 7.3.4.5), and the 

first operator from the list of collected operators is selected.

Table 7.6 summarises the knowledge requirements of the P&Rf method.
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Table 7.6. The knowledge requirements of the P&Rf method.

Knowledge Roles Propose and Restore-feasibility

Inference knowledge The knowledge required to select 

schedule-extension-operator and 
feasibility-restoration-operator 
The focus selection knowledge in both the 

phases

The schedule state selection knowledge 

The knowledge required to select resources 

and time ranges that can be assigned to jobs 

in the propose phase

The knowledge required to fix the 

requirement violations

Additional subtasks Restore-feasibility, Focus-based- 
feasibility-restoration. Collect- 
the-requirement-violâtions,
Select-candidate-requirement- 
violation, Collection-of- 
feasibility-restoration-operator

Method specific control regime Propose-and-restore-feasibility- 
state

Schedule-context Extend, feasibility-restoration

Schedule-focus Job, requirement violation

Schedule focus selection strategy One of the job selection methods from 

Generic-Schedule (cf. Section 6.3.5) are 

used in the propose phase to select a job 

In the restore-feasibility phase the 

application-specific knowledge is used to 

select a candidate requirement violation

Schedule operator type Schedule-extension-operator 
Feasibility-restoration-operator

Schedule operator order Application-specific knowledge

Schedule state selection knowledge Requirement violations: Minimal 

Schedule extension: Maximal 

Cost: Minimum

Global properties Complete and feasible

135



Chapter 7

7.3.6 Propose and Exchange

The Propose and Exehange (P&E) method was developed by Poeek and Gappa (1993) to 

tackle the assignment problem with a corresponding shell called COKE (Poeek and Puppe,

1992). The assignment problem is characterised by two types of objects: the demand object 

and the supply object (Baker, 1974; Sharma, 1998). The main aim of the assignment task is 

to map each member from the demand object set (i.e., a job) to the supply object set (i.e., a 

resource). Scheduling can be seen as a more complex ease of the assignment task, which 

not only deals with the assignment of jobs to resources, but also determines the time 

window within which each assignment needs to take place. Therefore, we modified the 

original description of the P&E method to tackle the time element in scheduling.

The basic idea of the P&E method is to make locally consistent assignments until any of 

the constraints imposed on a schedule are violated. Once constraint violations are detected, 

the assignments of the conflicting jobs involved in conflict are exchanged to construct a 

consistent solution. Although, both the P&R and P&E methods deal with the constraint 

violations, the main difference between these two methods can be characterised based on 

how these two methods fix the constraint violations. When encountered with a constraint 

violation, the revise phase of P&R proposes new assignments for the jobs in conflict, 

whereas the exchange phase of P&E simply exchanges the assignment of the jobs involved 

in the constraint violations at the same depth of a search tree. If the constraint violations 

cannot be fixed locally then the relatively best constellation of assignments is established, 

and then more effort is invested to fix the remaining constraint violations.

7.3.6.7 Initial analysis of the method

The P&E method divides the schedule construction process in the following two phases: 

the propose phase and the exchange phase. The following bullet points describe how these 

two phases are related with each other.

• The propose phase of the method constmcts a complete schedule by assigning jobs to 

resources and time ranges by applying schedule-extension-operators (cf. 

Section 6.2.2). The context in this phase is to extend a schedule and the focus is on the 

unassigned jobs;

• If any of the constraints imposed on a schedule are violated while constructing a 

schedule, then the exchange phase of the method is invoked to fix these violations 

locally by exchanging the conflicting job assignments by applying exchange- 
operators. An exchange - operator is defined unifonnly based on the definition
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of schedule-modification-operator (cf. Section 7.2). The context in this phase 

is to exchange a schedule and the focus is on the constraint violations.

If the constraint violations persist then first a complete schedule is constructed and then 

more effort is invested to fix the remaining constraint violations by performing global 

exchanges among the job assignments.

The following box shows the informal schema of the P&E method.

Input: Jobs, Resources, Time ranges
Output: To devise a complete and a consistent schedule 
Until all the jobs are assigned, REPEAT through steps 1-3.
1. Select a job with lowest degrees of freedom;
2. Proposes a valid assignment for a selected job;
3. If the constraints are violated, then try exchanging the assignments of jobs 

that are in conflict to remove or minimise constraint violations ;
4. If constraints are still violated, then try exchanges from a global point of 

view and with more effort;
5. Show the final assignment and remaining constraint violations if any.

7.3.6.2 The method specific control regime of P&E

Propose&Exchange-state represents the method specific control regime of P&E, 

whieh is constructed by specialising the method specific control regime of Generic- 
Schedule (ef. Section 6.3.2).

The propose phase begins the sehedule eonstruction process by invoking the task 

generate-new-state-successor in the extend eontext. It constructs a complete 

schedule by assigning jobs to resources and time ranges. If any of the constraints are 

violated while constructing a schedule then the task local-exchange-of-schedule is 

invoked in the exchange context to fix these constraint violations. Because the constraint 

violations are fixed as soon as they occur while constructing a solution, this strategy is 

similar in spirit to extend-model-then-revise (Motta, 1999). If not all the constraint 

violations can be fixed locally, then they are ignored until a complete schedule is devised. 

Once a complete schedule is constmcted then task exchange-schedule is invoked, 

which tries to fix all the outstanding constraint violations by globally exchanging the job 

assignments involved in eonfliet. This type of eonstraint violation removal strategy is 

similar in spirit to complete-model-then-revise (Motta, 1999). The following box shows the 

GCML definition of propose&exchange-state.
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(def-class PROPOSE&EXCHANGE-STATE (decomposition-method) ?psm 
((has-input-role :value has-schedule-state)
(has-output-role :value generates-schedule-state)
(has-schedule-state : type schedule-state)
(generates-schedule-state : type schedule-state)
(has-body :value '(lambda (?psm)

(in-environment 
((?state . (role-value ?psm has-schedule-state)) 
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(?constraints . (role-value ?psm has-hard-constraints)) 
(?requirements . (role-value ?psm has-requirements)) 
(?jobs . (role-value ?psm has-jobs)))

(if (deadend-state Pstate)
: nothing

(if (requirement-violations ?state ?requirements)
(tell (deadend-state ?state))

(if (constraint-violations ?state ?constraints)
(achieve-generic-subtask 
?psm local-exchange-of-schedule 
has-schedule-state ?state)

(if (state-complete ?state ?jobs)
(tell (complete-state ?state))

(achieve-generic-subtask 
?psm generate-new-state-successor 
has-schedule-state ?state 
has-schedule-context : extend)
(if (constraint-violations 

?state Peonstraints)
(achieve-generic-subtask 
Ppsm exchange-schedule 
has-schedule-state Pstate))))))))))

: own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks '(generate-new-state-successor

local-exchange-of-schedule 
exchange-schedule))))

7.3.6.3 Fixing the constraint vioiations

Task local-exchange-of-schedule is invoked to fix the constraint violations locally 

that occurred while constructing a schedule. This task is achieved by defining a method 

called exchange-locally. The body of this method takes as input a schedule state, say 

Ssi, which has a number of constraint violations and then it invokes a task generate- 
new-state-successor in the exchange context. The body of this task collects all the 

constraint violations, as the current foci, and then selects the first constraint violation as a 

focus. Having selected a candidate focus, the assignments of the two conflicting jobs are 

exchanged. If a schedule state, say Ss2 , is reached which has fewer constraint violations 

then such a schedule state is retuned as an output. After each cycle, the task evaluate- 
hard-consistency (cf. Section 6.3.1.1) is invoked to check whether all the constraint 

violations have been fixed through local exchanges among the job assignments. The 

following box shows the OCML definitions of local-exchange-of-schedule and 

exchange-locally.
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(def-class LOCAL-EXCHANGE-OF-SCHEDULE (goal-specification-task) ?task 
((has-input-role :value has-schedule-state)
(has-output-role :value has-output-state)
(has-schedule-state : type schedule-state)
(has-output-state : type schedule-state)
(has-goal-expression :value (kappa (?task ?s)

(and (schedule-state ?s)
(has-output-state ?task ?s))))))

(def-class EXCHANGE-LOCALLY (primitive-method) ?psm 
((has-body :value (lambda (?psm)

(repeat 
(in-environment 
((? input . (role-value ?psm has-schedule-state))
(?output . (achieve-generic-subtask

?psm generate-new-state-successor
has-schedule-state ?input
has-schedule-context : exchange)))

(if (schedule-state ?output)
(do (achieve-generic-subtask

?psm evaluate-hard-consistency 
has-schedule-state ?output 
has-schedule-context : exchange)
(if (< (cardinality

(the ?cs (constraint-violations 
Poutput Pcs))) 

(cardinality 
(the Pcs (constraint-violations 

Pinput Pcs))))
(return Poutput)))))))))

:own-slots ((tackles-task-type local-exchange-of-schedule)
(has-generic-subtasks '(generate-new-state-successor

evaluate-hard-consistency))))

If the constraint violations cannot be fixed locally then the task generate-new- 
state-successor is invoked again in the extend context and the schedule construction 

process is resumed. Once a complete schedule is devised then the task exchange- 
schedule is invoked to fix all the outstanding constraint violations through global 

exchanges. This task is achieved by defining a method called focus-based-schedule- 
exchange. The body of this method is an exhaustive control loop that calls itself until all 

the constraint violations are fixed. The method collects all the outstanding constraint 

violations, selects the first constraint violation from this list, retrieves all exchange- 
operators applicable to fix the selected violation, sorts them, and then applies the first 

exchange-operator from the sorted list to exchange the assignment of the jobs 

involved in the constraint violation. After each cycle, relation schedule-satisfies- 
constraints (cf. Appendix 1) is used to check whether all the constraint violations are 

fixed. The following box shows the OCML definitions of task exchange - schedule and 

method focus -based- schedule - exchange.
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(def-class EXCHANGE-SCHEDULE (goal-specificabion-task) ?task 
((has-input-role rvalue has-schedule-state)
(has-output-role rvalue has-output-state)
(has-schedule-state rtype schedule-state)
(has-output-state rtype schedule-state)
(has-goal-expression rvalue (kappa (?task ?s)

(and (schedule-state ?s)
(not
(constraint-violations ?s ?any))))))

(def-class FOCUS-BASED-SCHEDULE-EXCHANGE (primitive-method) ?psm 
((has-body rvalue (lambda (?psm)

(REPEAT 
(in-environment 
((?input . (role-value ?psm has-schedule-state))
(Poutput . (achieve-generic-subtask

Ppsm generate-new-state-successor
has-schedule-state Pinput
has-schedule-context rexchange)))

(if (schedule-state Poutput)
(in-environment 
((Precord . (the-state-search-control-record

Poutput))
(Pfocus . (the-slot-value Precord

'has-schedule-focus))
(Psc . (the-slot-value Poutput

has-schedule-model)))
(if (schedule-satisfies-constraint Psc Pfocus)

(return Poutput))))))))) 
rown-slots ((tackles-task-type exchange-schedule)

(has-generic-subtasks '(generate-new-state-successor))))

7.3.6.4 Foci coilection and a focus seiection in P&E

As described by the informal schema of the P&E method (cf. Section 7.3.6.1), in the 

propose phase a job with the lowest degrees of freedom (i.e., a job with the least number of 

resources and time ranges left for the assignment) is selected as a focus. The default job 

selection method job-selected-based-on-lowest-degrees-of-freedom (cf. 

Section 6.3.5) from Generic-Schedule is used to select a focus, and therefore, no 

configuration is required to select a focus in the propose phase.

During the exchange phase, first all the constraint violations are collected as foci by 

using a method called collect-all-culprit-violations. This method achieves task 

collect-state-foci (cf. Section 6.3.3) from Generic-Schedule. Having collected 

the foci, the first constraint violation from the list of collected foci is selected as a focus by 

using a method called select-the-violation, which achieves task select- 
schedule-focus (cf. Section 6.3.5) from Generic-Schedule.

7.3.6.5 Collection and seiection of the exchange operators

All the exchange-operators that can be applied to fix a selected focus are collected by 

using a method def ault-exchange-operator-col lection, which achieves the task 

collect-focus-operators (cf. Section 6.3.6) from Generic-Schedule. All the 

collected exchange - operators are then sorted by using relation schedule- 
operator-order (cf. Section 6.2.2) and the first operator from the sorted list is selected 

to fix the constraint violation. Having fixed the currently selected focus, the entire 

problem-solving cycle is repeated to fix the remaining constraint violations and if no more
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constraints are violated then a consistent schedule is returned as an output. The following 

box shows the OCML definition of method default-exchange-operator- 
collection.

(def-class DEFAULT-EXCHANGE-OPERATOR-COLLECTION (primitive-method) Ppsm 
((has-body rvalue (lambda (Ppsm)

(setofall Pop
(and (exchange-operator

Pop applicable-to-constraints PI)
(member (role-value Ppsm

'has-schedule-focus) 
(eval PI)))) ) ) )

rown-slots ((tackles-task-type '(collect-focus-operators))
(applicability-condition 
(kappa (Ptask)

(= (role-value Ptask has-schedule-context) rexchange)))))

In total seven new definitions have been defined to model the P&E method by 

specialising Generic-Schedule. Table 7.7 summarises the knowledge requirements of 

the P&E method.

Table 7.7. The knowledge requirements of the P&E method.

Knowledge Roles Propose and Exchange

Inference knowledge The knowledge required to select the 

operators in both the phases of method 

A schedule focus selection knowledge in 

both the phases

A schedule state selection knowledge 

The knowledge required to select the 

resources and time ranges that can be 

assigned to jobs in the propose phase 

The knowledge required to exchange the job 

assignments involved in conflict

Additional subtasks Local-exchange-of-schedule, 
Exchange-schedule, Collect-all- 
culprit-violâtions. Default- 
exchange -operator- col lection

Method specific control regime Propose&Exchange-state
Schedule-context Extend, exchange

Schedule-focus Job, eonstraint violation

Schedule focus selection strategy A eandidate focus in the propose phase of the 

method is selected by using the method jo b -  
selected-based-on-lowest-degrees- 
of-freedom (cf. Section 6.3.5)
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The first constraint violation from the list of 

collected foci is selected as a focus in the 

exchange phase

Schedule operator type Schedule-extension-operator 
Exchange-operator

Schedule operator order It is determined based on a selected focus

Schedule state selection knowledge Violated constraints: No or minimal 

Schedule extension: Maximal 

Cost: Minimum

Global properties Complete

Locally and globally consistent

7.3.7 Propose and Genetical-Exchange (P&GE)
This method was proposed by Poeek and Gappa (1993) to solve the assignment task by 

using the genetic algorithm schema (Goldberg, 1989). As in the case of the P&E method, 

we modified the original description of the P&GE method to tackle the time element as 

well as the assignment of jobs to resources.

7.3.7.1 Initial analysis of the method

The P&GE method initially constructs a complete and consistent schedule, and then it tries 

to optimise a solution. The method uses a notion of optimality based on the minimisation 

of the constraint violations. The following bullet points analyse the P&GE method.

• The propose phase constructs a complete schedule by assigning jobs to resources and 

time ranges by applying schedule-extension-operators (ef. Section 6.2.2). The 

set of a schedule quadruples generated as a eomplete solution represents an initial 

population;

• If any of the constraints imposed on a schedule are violated, then they are ignored until 

a complete schedule is devised. Once a complete schedule is devised then the 

genetical-exchange phase is invoked to fix these constraint violations. The 

constraint violations are fixed by invoking the following two tasks: initial- 
crossover and final-crossover. A new type of schedule modification operator 

called genetic-operator is defined to fix the constraint violations. This operator is 

defined as a subclass of schedule-modification-operator (cf. Section 7.2);

• Finally, if no more constraints are violated then a complete and consistent solution is 

returned as an output.
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The following box shows an informal schema of the P&GE method (Poeek and Puppe,

1993).

Population: Initial population set generated by any greedy technique 
REPEAT
Select the parents from the initial population 
New solution = initial crossover
Optimise a new solution for constraint violations = final crossover 
Survival of the fittest solution (i.e., a complete and consistent schedule)

7.3.7.2 The method specific control regime of P&GE

The method generation-of-P&GE define the method-specific control regime of P&GE, 

which is constructed by modifying the method-specific control regime of Generic- 
Schedule (cf. Section 6.3.2) to fix the constraint violations. This control regime first 

invokes the task generate-new-state-successor in the extend context to devise a 

complete schedule. In line with P&R (cf. Section 7.3.4), if the constraints are violated 

while constructing a schedule then they are ignored until a complete schedule is 

constructed. Once a complete schedule is constructed, then the task initial-crossover 
is invoked to fix the constraint violations by exchanging randomly the conflicting jobs so 

that a schedule with none or fewer constraint violations is generated.

If the constraint violations carmot be fixed by applying the task initial-crossover 
then the task final-crossover is invoked, which applies a more exhaustive strategy to 

fix the constraint violations. This task takes as input a partially corrected set of 

assignments (i.e., a population), which are generated by the task initial-crossover 
and then it iteratively exchanges the job assignments involved in a conflict to construct a 

consistent schedule. The following box shows the OCML definition of generation-of- 
P&GE.
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(def-class GENERATION-OF-P&GE (decomposition-method) ?psm 
((has-input-role :value has-schedule-state)
(has-output-role :value generates-schedule-state)
(has-schedule-state : type schedule-state)
(generates-schedule-state : type schedule-state)
(has-body :value (lambda (?psm)

(in-environment 
((?state . (role-value ?psm has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(?constraints (role-value ?psm has-hard-constraints)) 
(?requirements . (role-value ?psm has-requirements)) 
(?jobs . (role-value ?psm has-jobs)))

(if (deadend-state ?state)
:nothing

(if (requirement-violations ?state ?requirements)
(tell (deadend-state ?state))

(if (state-complete ?state ?jobs)
(achieve-generic-subtask 
?psm generate-new-state-successor 
has-schedule-state Pstate 
has-schedule-context : extend)

(if (constraint-violations Pstate Peonstraints) 
(achieve-generic-subtask 
Ppsm initial-crossover 
has-schedule-state Pstate)

(if (constraint-violations Pstate constraints)
(achieve-generic-subtask 
Ppsm final-crossover 
has-schedule-state Pstate))))))))))

:own-slots ((tackles-task-type schedule-from-state)
(has-generic-subtasks '(generate-new-state-successor

initial-crossover final-crossover))))

7.3.7.3 Fixing the constraint violations in the geneticai-exchange phase 

The task initial-crossover is achieved by using a method called default- 
initial-crossover. This method takes as an input a schedule state, which has a 

number of constraint violations and then it first collects all the constraint violations as the 

candidate foci. The first constraint violation from the list of collected foci is selected as a 

focus by using the task select-schedule-focus. Having selected a candidate; focus, 

all genetic-operators that can be applied to fix the selected focus are collected and 

then sorted to determine the order of their application. The operator collection and sorting 

operations are performed by invoking the tasks collect-focus-operators and 

sort-focus-operators respectively. After each cycle, the task evaluate-hard- 
consistency (cf. Section 6.3.1.1) is invoked to cheek whether an offspring (i.e., a set of 

new assignments) has fewer constraint violations than the initial set. If all the constraint 

violations are fixed by using the task initial-crossover then this consistent schedule 

state is returned as an output, otherwise the task final-crossover is invoked. The task 

final-crossover is achieved by using a method called default-crossover. This 

method takes as input a partially corrected set of assignments generated by the task 

initial-crossover and then performs a focus-based exchange among the 

assignments of the jobs that are involved in conflict. The method default-crossover 
is similar in spirit to the method focus-based-schedule-exchange (cf. Section 

T.3.6.4). Having fixed all the constraint violations, the body of method default -
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crossover invokes a new task called evaluate-f itness-function, which is used 

to check the schedule quality. A schedule quality is evaluated based on the amount of 

time by which the jobs fails to meet their deadlines in a final solution. In scheduling, the 

evaluation function is usually constructed by using optimisation criteria, such as jo b  

tardiness, maximisation o f  the resource utilisation, or work-in-progress (Davis, 1985; 

Bagchi et a l , 1991; Starkweather et a l , 1993). In line with these proposals, in our 

approach the evaluation function is constructed to check the job tardiness in a final 

solution. The job tardiness is calculated by using the following equation shown in Figure 

7.1.

^  jtardi = (0.1 / maximum lateness ) * 100 

Figure 7.1. The evaluation-function used to calculate the job tardiness.

The ‘maximum lateness’ in the above equation indicates the time by which a particular 

job is delayed in a schedule. A tardiness of a job, say ji, can be represented by the time by 

which a job ji fails to meet its due date, or otherwise it is considered as zero. The lateness 

function is represented by the time by which the latest end time of a job, ji exceeds its due 

date and it is represented as follows: L, = Letji - Ddji, where Letji and Ddj, represents the 

latest end time and the due date of a job ji respectively (Baker, 1974). The following box 

shows the OCML definitions of task final-crossover, method def aulf-crossover, 
and task evaluate-fitness-function.
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(def-class FINAL-CROSSOVER (goal-specification-bask) Ptask 
((has-input-role :value has-schedule-state)
(has-output-role :value has-output-state)
(has-schedule-state : type schedule-state)
(has-output-state : type schedule-state)
(has-goal-expression :value (kappa (Ptask Ps)

(and (schedule-state Ps)
(not (constraint-violations 

Ps Pany)))))))
(def-class DEFAULT-CROSSOVER (primitive-method) Ppsm 
((has-body :value (lambda (Ppsm)

(REPEAT 
(in-environment 
((Pinput . (role-value Ppsm has-schedule-state))
(Poutput . (achieve-generic-subtask

Ppsm generate-new-state-successor 
has-schedule-state Pinput
has-schedule-context :geneticai-exchange))) 

(if (schedule-state Poutput)
(in-environment 
((Precord . (the-state-search-control-record 

Poutput))
(Pfocus . (the-slot-value

Precord 'has-schedule-focus))
(Psc . (the-slot-value Poutput

’has-schedule-model)))
(if (schedule-satisfies-constraint Psc Pfocus)

(return Poutput)
(do

(achieve-generic-subtask 
Ppsm evaluate-fitness-function 
has-schedule-state Poutput))))))))))

:own-slots ((tackles-task-type final-crossover)
(has-generic-subtasks '(generate-new-state-successor

evaluate-fitness-function))))
(def-class EVALUATE-FITNESS-FUNCTION (primitive-task) Ptask 
( (has-input role : value has-output-state)
(has-output-state : type schedule-state)
(has-body : value (lambda (Ptask)

((Poutput . (role-value Ptask has-output-state))
(Pschedule-model . (the Psc (has-schedule-model

Poutput Psc)))
(Pjobs . (role-value Ptask has-jobs)))

(if (fitness-function-for-tardiness Poutput Pjobs)
(tell (state-not-tardy Poutput)))))))

7.3.7.4 Foci coiiection and a focus selection in P&GE

All the constraint violations in the geneticai-exchange phase are collected as the foci by 

using a method called collect-all-violations. This method achieves the task 

collect-state-foci (cf. Section 6.3.3) from Generic-Schedule.

Having collected all the foci, the first constraint violation from the list of collected foci is 

selected as a candidate focus by using a method called select-candidate- 
constraint.

7.3.7.5 The operator collection and seiection in P&GE

Once a candidate focus is selected then all the genetic-operators are collected by 

using a method called default-genetical-operator-collection, which achieves 

the task collect-focus-operators (cf. Section 6.3.6) from Generic-Schedule. All 

the collected genetic-operators are then sorted by using the relation schedule- 
operator-order (cf. Section 6.2.2) to determine the order of their application and the 

first operator from the sorted list is selected and applied to fix the constraint violation. The
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following box shows the OCML definition of method def ault-genetical-operator- 
collection.

(def-class DEFAULT-GENETICAL-OPERATOR-COLLECTION (primitive-method) Ppsm 
((has-body :value (lambda (Ppsm)

(setofall Pop
(and (genetic-operator

Pop applicable-to-constraints Pi) 
(member (role-value

Ppsm 'has-schedule-focus) 
(eval PI)) ) ) ) ) )

:own-slots ((tackles-task-type '(collect-focus-operators)) 
(applicability-condition 
(kappa (Ptask)

(and (= :genetical-exchange
(role-value Ptask has-schedule-context)) 

(genetically-exchangeable 
(role-value Ptask 'has-schedule-focus)))))))

In total eight new definitions are defined in order to model the P&GE method by 

specialising Generic-Schedule. Table 7.8 summarises the knowledge requirements of 

P&GE.

Table 7.8. The knowledge requirements of the P&GE method.

Knowledge Roles Propose and Genetical-Exchange

Inference knowledge The operator selection knowledge in both the 

phases

The sehedule state selection knowledge 

The foeus seleetion knowledge in both the 

phases

In the propose phase the knowledge required 

to assign resources and time ranges to jobs

In the genetical-exehange phase the 

knowledge required to fix the constraint 

violations and to optimise a consistent 

schedule in terms of constraint violations

Additional subtasks Initial-crossover, Default- 
initial -crossover, Final- 
crossover, Default-crossover, 
Evaluate-fitness-function.
Collect-all-violations, Select- 
candidate-constraint, Default- 
genetical-operator-collection

Method specific control regime Generation-of-P&GE
Schedule-context Extend, geneticai-exchange
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Schedule-focus Job, constraint violation

Schedule focus selection strategy In the propose phase one of the job selection 

methods (cf. Section 6.3.5) from Generic- 
Schedule is used to select a job 

In the geneticai-exchange phase the first 

constraint violation from the list of eollected 

foci is selected

Schedule operator type Schedule-extension-operator 
Genetic-operator

Schedule operator order It is determined based on a selected foeus

Schedule state seleetion knowledge Violated constraints: No 

Schedule extension: Maximal 

Cost: Minimum

Global properties Complete, consistent, and globally optimal 

(optimality is considered by minimising the 

number of constraint violations)

With the description of the P&GE method, we conclude our presentation of all the PSMs 

in our library. In the following section we describe how these PSMs ean be categorised.

7.4 Categorisation of the methods
All the PSMs in our library ean be categorised based on the way they cover and solve the 

different types of schedules. For instance, the P&R method can be used to devise a 

complete schedule and fix the constraint violations, which occur while constructing a 

schedule. The following bullet points describe the categorisation of the methods from our 

library:

• Schedule completeness: The methods from this category are eonstruetive in nature 

beeause they ean be used to construct a complete solution sehedule. To devise a 

complete solution schedule, these methods select a schedule state that does not violate 

any constraints or requirements, and when eneountered with an inconsistent sehedule 

state such a schedule state is either ignored or the search backtracks to the last 

consistent schedule state to resume the schedule construction process. Generic- 
Schedule and P&B methods fall into this category.

• Schedule consistency and feasibility: The methods from this category ean be used to 

repair different types of inconsistencies, such as constraint or requirement violations 

that occur while constructing a schedule. In contrast with the methods that deal with
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schedule eompleteness, the sehedule state seleetion poliey of these methods takes into 

aecount all those schedule states that violate constraints or requirements such that these 

inconsistencies can be fixed by applying the methods. The P&R, P&Rf, P&E, and 

P&GE methods fall into this category.

• Schedule optimisation: The methods from this category try to optimise a complete 

schedule. The hill climbing and P&I methods from our library fall into this category.

Figure 7.2 depicts the categorisation of the methods as discussed in the above bullet 

points.

SCHEDULING LIBRARY

Can-reason-about Legend

Schedule Completion
E.g., Generio-Schedule 
Propose & Backtrack

Schedule Optimisation
E.g., Propose & Improve 

Hill Climbing

Schedule Consistency
E.g., Propose & Revise 
Propose & Exchange 

Propose & Genetical-Exchange

Schedule Feasibility
E.g., Propose & Restorefeasibility

Figure 7.2. Categorisation of the methods in the library.

7.5 Conclusion
In this chapter we have described how different PSMs in our library have been constructed 

uniformly by reusing Generic-Schedule. All the PSMs in our library have been defined 

by reusing or specialising schedule state selection knowledge, operator construction and 

selection knowledge, method-specific control regime, and the notions of context and focus. 

This uniform approach allows us to compare and contrast the knowledge requirements of 

these PSMs. On average, less than a dozen definitions were required to be defined to 

engineer a new PSM. In contrast with existing proposals (Hori and Yoshida, 1998; Sundin, 

1994; Le Pape, 1994; Tijerino and Mizoguchi, 1993), our library provides a comprehensive 

coverage to solve the different schedule types. Moreover, in contrast with some of the
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existing proposals (Hori and Yoshida, 1998), because our library does not subscribe to any 

particular application or scheduling domain it has a wider applicability.

In the next chapter, we describe the validation of our library which has been carried out 

to confirm the generic nature of our library.



Chapter 8

EVALUATION STUDY OF THE LIBRARY

In this chapter, we describe the validation of our library carried out on a number of 

scheduling applications to confirm its generic nature and its applicability to real-world 

problems. In particular, we validate the following claims: a) the overall framework 

provides appropriate distinctions necessar)' to support rapid KBS development by reuse, b) 

the scheduling task ontology can be effectively used to characterise the different types of 

scheduling problems, and c) different methods in the library can be effectively applied to 

construct scheduling applications. Our library has been validated on five scheduling 

domains: satellite-scheduling, the CIPHER project schedule application, daily ship- 

maintenance, weekly ship-maintenance, and a benchmark application used in the 

scheduling area. Our evaluation study helps in validating the static and dynamic properties 

of KBS (Preece et a l, 1996) and in doing so it validates our library framework. Table 8.1 

describe the different types of scheduling problem types, solution criteria covered by the 

applications, and at the same time it also states the nature of the application data, i.e. 

whether it is from a real-life, a non real-life, or a benchmark.
Table 8.1. Properties of the scheduling applications.

Application name Scheduling 

problem types

Schedule solution 

criteria

Nature of the 

application data

The satellite-

scheduling

application

Space scheduling Complete, optimal Non real-life

CIPHER- a resource

allocation

application

Resource allocation 

problem

Complete Real-life

The daily ship-

maintenance

application

Joint scheduling 

problem

Complete, feasible 

(no requirement 

violation)

Real-life

The weekly ship-

maintenance

application

Joint scheduling 

problem

Complete, consistent 

(no constraint 

violation)

Real-life

The benchmark 

application

Variant of the job- 

shop scheduling 

problem

Complete Benchmark data
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8.1 The satellite-scheduling application
The satellite-scheduling application can be characterised as the assignment of satellites to 

the available antennas to ensure earth-satellite communication at different times during a 

24 hr. scheduling horizon. The satellite-scheduling application is rather complex due to its 

dynamic environment, non-monotonic nature of the various constraints, and the varying 

degrees of satellite-antenna communication patterns. It is crucial that all the constraints and 

requirements must be maintained at all times while devising a schedule for this application.

8.1.1 Construction of a task model

In accordance with the task ontology, satellites are represented as jobs and antennas as 

limited supply resources to which satellites can be assigned to perform communications. 

The communications within each satellite are represented as activities. The following 

bullet points describe the satellite-scheduling application in further detail.

• The application comprises of five satellites: Nimbus-1, Nimbus-2, Chandra-1, 

Meteorological-1, and Meteorlogical-2. Each satellite requires four 15 minute long 

communication activities that need to be performed within a specific time range;

• There are three antennas: L,ow-Range-Antenna, Wide-Range-Antenna, and

Meteorological-Antemia. Each antenna has a fixed capacity that represents the total 

number of satellites it can handle at any given time. For instance, Low-Range-Aiitenna 

and Wide-Range-Antenna can handle two satellites at any given time, whereas 

Meteorological-Antenna can only handle one at a time. Each antenna also has a limited 

visibility period and therefore it can communicate with a specific satellite only at 

certain times.

The notion of a satellite and an antenna is formalised by defining application-specific 

classes, such as satellite-job and antenna-resource. These classes are defined as 

subclasses of class job (cf. Section 5.2.2) and resource (cf. Section 5.2.3) respectively. 

The following box shows the OCML definitions of the Nimbus-1 satellite and Low-Range- 

Antenna. The representation of other satellites and antennas can be realised in the same 

way.
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(def-class SATELLITE-JOB (job))
(def-class NIMBUS-1-JOB (satellite-job))
(def-class NIMBUS-1-JOB-TIME-RANGE (job-time-range))
(def-instance NIMBUS-1 nimbus-1-job 
((requires-resource '(low-range-antenna))
(has-activities '(nimbus-1-communication-1 nimbus-1-communication-2

nimbus-1-communication-2 nimbus-1-communication-4))
(has-1ime-range nimbus-1-1ime-range)
(has-duration 60-minute-duration)))

(def-class ANTENNA-RESOURCE (resource))
(def-class LOW-RANGE-ANTENNA-RESOURCE (antenna-resource))
(def-instance LOW-RANGE-ANTENNA low-range-ant enna-re source 
((has-job-belonging nimbus-1)
(has-availability generic-antenna-1ime-range)
(has-capacity 2)))

(def-instance NIMBUS-1-TIME-RANGE nimbus-1-job-time-range 
((has-earliest-start-time (new-instance 'time-point '((hour-of 00)

(minute-of 00))))
(has-latest-end-time (new-instance 'time-point '((hour-of 09)

(minute-of 00))))))
(def-instance GENERIC-ANTENNA-TIME-RANGE time-range 
((has-start-time (new-instance 'time-point '((hour-of 15)

(minute-of 01))))
(has-end-time (new-instance 'time-point '((hour-of 13)

(minute-of 59))))))

In the following section we describe the different constraints and requirements 

associated with the satellite-scheduling application.

8.1.2 Mo(Jelling constraints and requirements

The satellite-scheduling application is formulated based on the following constraints and 

requirements.

1. Antenna-visibility-constraint: Each antenna has a fixed limited visibility period 

during which all the communication activities of the satellites must be completed. A set 

of five antenna visibility constraints are defined to impose this constraint between 

satellites and their respective antennas. The following box shows the OCML definition 

of one such antenna visibility constraint imposed between the Nimbus-1 satellite and 

Low-Range-Antenna. The antenna-visibility-constraint for other satellites 

and antennas can be realised analogously.
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(def-class ANTENNA-VISIBILITY-CONSTRAINT (constraint)
(def-instance NIMBUS-1-TO-LOW-RANGE-ANTENNA antenna-visibility-constraint 
((applicable-to-jobs '(setofall ?x (nimbns-l-job ?x)))
(has-expression 
(kappa (?sc)

(forall (?a ?jtr)
(=> (and (member (nimbus-1 ?a low-range-antenna ?nimbus-l-job-

time-range) ?SC)
(not
(TIME-RANGES-INTERSECT 
'?nimbus-l-job-time-range
no-nimbus-1-to-low-range-antenna-visibility)))))))))

Nimbus-1-to-low-range-antenna constraint states that the Nimbus-1 satellite 

cannot communicate with Low-Range-Antenna between the time-window of 12:31 to 

23:59, which is the non-visibility period of Low-Range-Antenna; otherwise an 

inconsistency is reported;

2. Communication-duration: This constraint is again common to all the satellites, which 

states that each communication slot within each satellite must be of 15 minutes 

duration. In total, a set of five constraints are defined to impose the communication 

duration constraint on the five satellites;

3. Number-of-communication-slots: This requirement is common to all the satellites 

and states that each satellite must have four communication slots per day with its 

antenna. The following box shows the OCML definition of this requirement.

(def-class SATELLITE-JOB-REQUIREMENT (requirement))
(def-instance FOUR-COMMUNICATIONS-PER-DAY-PER-SATELLITE 

satellite-job-requirement 
((applicable-to-jobs '(setofall ?x (satellite-job ?x)))
(has-expression (kappa (?sc)

(exists ?x
(and (satellite-job ?x)

(has-activities 
?x ?satellite-communication)
(= (number-of-activities-within-job 

?x) 4)))))))

As it can be seen in the above box, in order to check whether all the satellites have four 

communication slots we used the function number-of-activities-within-job 
(cf. Appendix 1), which retrieved all the communication activities associated with each 

satellite and then an equality condition is imposed stating that number of 

communication activities of satellites must be equal to four;

4. Communication-gaps: This requirement is also common to all the satellites and states 

that the gap between any two communication slots within each satellite should not be 

greater than five hours. The following box shows the OCML definition of this 

requirement.
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(def-instance NO-COMMUNICATION-GAPS-GREATER-THAN-FIVE-HOURS 
satellite-job-requirement 

((applicable-to-jobs '{setofall ?x (satellite-job ?x)))
(has-expression 
(kappa (?sc)

(exists ?x
(and (has-activities ?x ?list)

(exists ?al
(and (satellite-communication ?al)

(member ?list ?al)
(has-time-range ?al ?jtr) 
(has-earliest-start-time ?jtr ?tl)
(exists ?a2

(and (satellite-communication ?a2) 
(member ?list ?a2)
(has-time-range ?a2 ?jtr2) 
(has-earliest-start-time 
?jtr2 ?t2)
(durâtion-is-less-than 
(time-entity-difference 
'?t2 '?tl)
(5 hour))))))))))))

In order to check whether the communication gap between any two communication 

activities, say Ci and C2, associated with the same satellite is less than five hours, we first 

calculated the time entity difference between the earliest start times of Ci and C2, and then 

a relation called durât i o n - i s - l e s s - t h a n  is used to state that the effective time 

difference between time points t2 and ti (which represents the earliest start time of C2 and 

Cl respectively) is less than five hours.

In summary, we did not encounter any particular problem while formalising the satellite- 

scheduling application. Only a few additional application-specific relations and functions 

were defined to model constraints and requirements. More importantly, the key classes 

from the task ontology, such as job, resource, activity, and job-time-range have 

provided an adequate level of detail to capture the application-specific knowledge 

precisely. In a nutshell, our task ontology has provided an adequate modelling leverage to 

formalise the satellite-scheduling problem. In the following section we describe how a 

schedule for this application was constructed by using the different PSMs from our library.

8.1.3 Devising a complete schedule by using Propose & Backtrack

The main solution requirement for this application is to construct a complete schedule, and 

therefore, we first used the Propose & Backtrack (P&B) method from the library. In the 

following section we describe how P&B was configured to tackle this application.

8.1.3.1 Construction of the operators

The P&B method can be configured by defining the following two types of application- 

specific operators, which are used to assign satellites to antennas and to their respective 

time ranges: satellite-schedule-operator and satellite-schedule-time- 
range-operator. Satellite-schedule-operator is defined by complying with the 

‘number-of-communication-slots’ requirement. In other words while assigning the
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satellites, satellite-schedule-operator makes sure that each satellite has four 

communication slots with its assigned antennas. Satellite-schedule - time-range- 
operator is defined in such a way that a correct start and end time is assigned to each 

satellite. The following box shows the OCML definitions of these operators defined for the 

Nimbus-1 satellite.

(def-class SATELLITE-SCHEDULE-OPERATOR (schedule-extension-resource-operator))
(def-class SATELLITE-SCHEDULE-TIME-RANGE-OPERATOR

(schedule-extension-time-range-operator))
(def-instance NIMBUS-1-TO-LOW-RANGE-ANTENNA satellite-schedule-operator 
((applicable-to-jobs '(setofall ?x (nimbus-1-job ?x)))
(has-costs 6)
(has-body (lambda (?x ?sc)

(the ?low-range-antenna-resource
(and (handles-job ?low-range-antenna-resource ?x)

(has-activities ?x nimbus-1-comm)
(= (length ?nimbus-1-comm) 4))))))))

(def-instance NIMBUS-1-TO-TIME-RANGE satellite-schedule-time-range-operator 
f(applicable-to-jobs '(setofall ?x (nimbus-l-job ?x)))
(has-costs 6)
(has-body (lambda (?x ?sc)

(the ?nimbus-1-job-time-range 
(and (schedule-model ?sc)

{nimbus-1-job-time-range ?nimbus-1-job-1ime-range)))))))

Each operator also has a specific cost associated with it, which represents the cost 

incurred by the assignment of each satellite. To represent the cost of each satellite 

assignment, a new slot called has-costs is added to schedule-extension- 
resource-operator and schedule - ext ens ion- time - range - operator (cf. 

Section 6.2.2). A new function called satellite-state-cost-function is defined in 

order to calculate the cost of a satellite schedule. The following box shows the OCML 

definition of satellite-state-cost-function.

(def-function SATELLITE-STATE-COST-FUNCTION (?sc)
:body (in-environment

((?input-state . (the ?input-state
(schedule-state ?input-state

has-schedule-model ?sc)))) 
(if (state-trasition ?sl ?op Pinput-state)

(get-sum-of-all-cost 
(satellite-state-cost-function 
(the ?sl-sc

(has-schedule-model ?sl ?sl-sc)))
(the ?c (has-costs Pop Pc)))

' ( 0 0 0 0 0 0 0 0 0 ) ) ) )

(def-function GET-SUM-OF-ALL-COST (Pvect Pop-cost)
:body (in-environment

((Pv-pos . (- 9 Pop-cost)))
(if (= Pop-cost 0)

Pvect
(append (sublist Pvect Pv-pos)

(list-of (+ 1 (elt Pv-pos Pvect)))
(nthrest Pvect (+ 1 Pv-pos))))))

Having defined all the operators, the relation schedule-operator-order (cf. Section 

6.2.2) is instantiated to determine the order in which these operators are applied to assign
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satellites to antennas and time ranges. The following box shows how the order of operators 

for assigning Nimbus-1 satellite is determined.

(tell (schedule-operator-order nimbus-1-to-low-range-antenna
nimbus-1-to-time-range))

8.1.3.2 Focus selection knowledge and schedule construction 

Because the satellite-scheduling application did not impose any particular condition for 

selecting a correct focus, the focus in this application is selected by using the default focus 

selection method j ob-selection-based-on-lowest-degrees-of-freedom (cf. 

Section 6.3.5). This method subscribes to the DSR heuristic (Dechter and Meiri, 1989), 

which in this case ensures that a satellite with the least number of antennas left for its 

assignment is selected as a candidate focus. Figure 8.1 shows the order in which satellites 

are selected for their assignment.

Meteorological-2 —►Meteorological-1 —► Chandra-1 —► Nimbus-2 —► Nimbus-]

Figure 8.1. The order in which satellites are selected for their assignment.

By determining how a correct focus can be selected, the configuration of P&B is 

completed and then the satellite-scheduling application is executed to construct a complete 

schedule. Hence little configuration effort is required to configure the P&B method in 

order to tackle the satellite-scheduling application. Only one new slot, h a s - c o s ts  was 

added to the definition of operators to represent the cost of satellite assignments, while two 

application-specific functions were defined to calculate the cost of an assignment.. The 

complete schedule for the satellite-schedule application was constructed by generating 464 

schedule states. Moreover, thanks to the correct focus selection knowledge no backtracking 

was required, and therefore, 100% efficiency was achieved during schedule construction. 

The function, satellite-state-cost-function calculated the total cost of a 

schedule, which was represented in terms of a 9-place vector. Initially, no satellites were 

assigned and therefore the cost of the empty satellite schedule was 9-place vector with all 

zeros, subsequently each time a new satellite was assigned, the cost of the satellite 

schedule was calculated by adding the cost associated with the currently assigned satellite 

to the cost of the previously assigned satellites. The total cost of a complete schedule was 

(000000120).

8.1.4 Trying to optimise a complete schedule by Hill climbing

Although, the schedule generated by the P&B method was of a ‘good’ quality (i.e., a 

solution did not violate any constraints and maintained all the requirements), it was not an 

optimal one. The main reason for this is that the assignment of the last two satellites, i.e.
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Nimbus-2 and Nimbus-1, were leading towards a state with the same cost. In order to find 

an optimal solution we used the hill climbing method. As in the case of the P&B method, 

the hill climbing method also failed to find an optimal solution, because this method does 

not have enough discriminating knowledge to break the tie between the costs of these two 

assignments. Moreover, the hill climbing method not only failed to devise an optimal 

solution but it also reduced the overall efficiency of a schedule construction by 20% in 

comparison with the P&B method. The primary reason for this is that the state selection 

policy of the hill climbing method generates all the possible successor schedule states of a 

current schedule state before selecting the locally best state, whereas the P&B method 

generates only a single successor schedule state.

8.1.5 Optimising a complete schedule by P&I
Because the previous two methods failed to devise an optimal solution, we finally applied 

the P&I method from our library. The propose phase of the method is configured 

straightforwardly from Generic-Schedule without any further refinement and therefore 

here we focus on describing how we configured the improve phase of the method.

The basic idea of the P&I method is to construct a complete solution quickly and then in 

a second stage the improve phase chooses the best possible improvement to the solution. 

The improve phase is configured by defining a new type of application-specific 

improvement operator called satellite-schedule-improvement-operator. This 

operator is used to break the tie between the assignment of Nimbus-1 and Nimbus-2 

satellites. In particular, because the assignments of these two satellites are competing with 

each other we decided to change the order of their assignment by swapping their time 

range assignments. Essentially the swapping of the time range assignment changed the 

order in which these two satellites performed their communication. This change in position 

effectively optimised the ‘locking period performance’* between a satellite and its 

respective antenna.

8.1.5.1 Foci collection and focus selection in the improve phase 

Once a complete schedule is constructed by using the propose phase, all the assigned 

satellites are collected as foci as they are potential candidates for improvement, and a 

satellite with the highest cost of assignment is selected as the candidate focus. Because the 

assignment of Nimbus-1 has a higher cost over Nimbus-2, it is selected as a focus.

' The ‘locking period performance’ represents the time-span of each satellite to establish a communication 

with antennas. By optimising this period it helps to reduce the cost spent on carrying out the communication 

activities.
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Having completed the configuration of the P&I method, the satellite-scheduling 

application is executed. As it can be seen in the following box the cost of a solution 

generated by swapping Nimbus-1 and Nimbus-2 satellites is now (000000108). In other 

words, a 10% improvement in the cost of a complete solution is achieved simply by 

swapping the time range assignments of these two satellites. The following box shows the 

synoptic trace of the behaviour of the P&I method for the satellite-scheduling application. 

An optimal schedule is constructed by generating 512 schedule states.

-------------------- Enter task EVALUATE-COMPLETENESS515 with arguments (HAS-SCHEDULE-
STATE SCHEDULE-STATES 0 9)
-------------------- Exit task EVALUATE-C0MPLETENESS515 -> (STATE-COMPLETE SCHEDULE-
STATES09)
--------------------Enter task DEFAULT-COST-EVALATION517 with arguments ( I IAS-SCHEDULE-
STATE SCHEDULE-STATES09)
--------------------  Exit task DEFAULT-C0ST-EVALATI0NS17 -> (000000120)

OCML 16 : 1 > (describe-instance 'schedule-stateS09)
Instance SCHEDULE-STATES09 of class SCHEDULE-STATE
HAS-SCHEDULE-MODEL: ((NIMBUS-1 LOW-RANGE-ANTENNA NIMBUS-1-COMMUNICATION-4 NIMBUS-1-TIME-
RANGE) (NIMBUS-2 WIDE-RANGE-ANTENNA NIMBUS-2-COMMUNICATION-4 NIMBUS-2-TIME-RANGE)
(CHANDRA-1 WIDE-RANGE-ANTENNA CHANDRA-1-COMMUNICATION-4 CHANDRA-1-TIME-RANGE) 
(METEOROLOGICAL-1 METEOROLOGICAL-ANTENNA METEOROLOGICAL-l-COMMUNICATION-4 METEOROLOGICAL- 
1-TIME-RANGE) (METEOROLOGICAL-2 LOW-RANGE-ANTENNA METEOROLOGICAL-2-COMMUNICATION-4 
METEOROLOGICAL-2-TIME-RANGE))
We improve a schedule from here....
-----------  Enter task PROPOSE-AND-IMPROVE-STATES24 with arguments (HAS-SCHEDULE-SPACE
SCHEDULE-SPACE287) (HAS-SCHEDULE-STATE SCHEDULE-STATES12)
--------------Enter task GENERATE-NEW-STATE-SUCCESSORS26 with arguments (HAS-SCHEDULE-
STATE SCHEDULE-STATES12) (HAS-SCHEDULE-CONTEXT : IMPROVE)
---------------  Enter task COLLECT-IMPROVABLE-JOBSS28 with arguments (HAS-SCHEDULE-STATE
SCHEDULE-STATES12) (HAS-SCHEDULE-CONTEXT : IMPROVE)
--------------- Exit task COLLECT-IMPROVABLE-JOBSS28 -> (NIMBUS-1 NIMBUS-2 CHANDRA-1
METEOROLOGICAL-1 METEOROLOGICAL-2)
--------------- Enter.task PROPOSE-SCHEDULE-FROM-CONTEXTS30 with arguments
(HAS-SCHEDULE-STATE SCHEDULE-STATES12) (HAS-SCHEDULE-CONTEXT :IMPROVE)
---------------- Enter task SELECT-MOST-EXPENSIVE-JOBS32 with arguments (HAS-SCHEDULE-FOCI
(NIMBUS-2 NIMBUS-1 CHANDRA-1 METEOROLOGICAL-1 METEOROLOGICAL-2))
---------------  Exit task SELECT-MOST-EXPENSIVE-J0BS32 -> NIMBUS-1
The cost of a schedule after swapping the assignments of satellites
-------------------- Enter task DEFAULT-COST-EVALATIONSS8 with arguments (HAS-SCHEDULE-
STATE SCHEDULE-STATES12)
-------------------- Exit task DEFAULT-COST-EVALATIONSS8 -> (000000108)

Figure 8.2 shows a comparison between the average CPU times required to assign each 

satellite by using all the three methods. It can be observed in the following graph that the 

assignment of the Nimbus-1 and Nimbus-2 satellites consumed the maximum CPU time 

while using all the three methods mainly because the assignment of these two satellites are 

competing with each other throughout the schedule construction.
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Comparison between average CPU time

29 -,
Avg. CPU time 
by P&B

—E— Avg. CPU time 
by Hill Climbing25 -

Avg. CPU time 
by P&I

Meteorological-l Chandra-1 Nimbus-2 Nimbus-1

Satellites

Figure 8.2. Comparison between the average CPU times required to assign the satellites.

8.2 CIPHER -  a resource allocation application
CIPHER is a real-life collaborative project among six academic and industrial partners. To 

maintain the anonymity of the academic and industrial organisations involved in the 

project, we will refer to them as co-ordinator-1, contraetor-2, contractor-3, contractor-4, 

contractor-5, and eontractor-6. The project comprises twelve work-paekages, and each of 

them includes a number of tasks, which must be achieved in order to complete the work- 

package. Each organisation has a limited number of people available to carry out the work 

prescribed by the various work-paekages, and therefore, all project members are treated as 

limited capacity resources. The goal of the CIPHER application is to construct a complete 

schedule by allocating all the work-paekages and related tasks to the available project 

members in accordance with a number of constraints.

8.2.1 Construction of a task model
In accordance with the task ontology work-paekages are treated as jobs, project members 

as resources, and all the tasks within work-paekages as activities. The schedule is 

constructed for a period of 30 months.

Each project member is assumed to be a unary capacitated resource. This capacity 

constraint must be maintained at all time in the scheduling horizon. Moreover, the total 

capacity of each organisation must be distributed among relevant work packages in 

accordance with the distribution given in the project specification. For instance, co

ordinator-1 includes the following three people: co-ordinator-1-person-1, co-ordinator-1- 

person-2, and co-ordinator-1-person-3, for a total capacity of 75 person-months. Obviously 

given that CIPHER is a 2 14 years project no staff member can provide more than 30 

person-months to the project. Therefore, the total capacity of 75 person-months of co

ordinator-1 is distributed as follows:
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Co-ordinator-1-person-1 = 30 person-months, Co-ordinator-1-person-2 = 30 person- 

months, Co-ordinator-1-person-3 = 15 person-months.

A set of 30 instances are associated with co-ordinator-1-person-1 and co-ordinator-1- 

person-2 to represent their capacity of 30 person-months while 15 instances are defined to 

represent the capacity of co-ordinator-1-person-3. The capacity distribution of all project 

members is shown in Table 8.2. In total 330 instances were defined to represent the total 

capacity of all project members.

Table 8.2. The capacity distribution of all the project-staffs.

Name of the partner 

= total capacity

Person-1 -capacity 

(person-months)

Person-2-capacity

(person-months)

Person-3-capacity

(person-months)

Co-ordinator-1 = 75 30 30 15

Contractor-2 = 60 30 30 -

Contractor-3 = 60 30 30 -

Contractor-4 = 30 30 - -

Contractor-5 = 75 30 30 15

Contractor-6 = 30 30 - -

Each work-package in CIPHER also has a specific requirement for the total number of 

project-months required for its completion. This requirement must be taken into account 

while assigning the work-packages. Table 8.3 shows the project-staff requirement of all the 

twelve work-packages. In Table 8.3, the abbreviations CO and CR represent co-ordinator 

and contractor respectively.

Table 8.3. The resource requirement of each work-package.

^Prqkct-staffs

Work-package^x.

CO-1 CR-2 CR-3 CR-4 CR-5 CR-6

Work-package-1 15 2 2 1 2 1

Work-package-2 7 13 7 3 6 2

Work-package-3 6 3 18 - 6 -

Work-package-4 6 4 3 - 12 -

Work-package-5 6 4 3 - 14 -

Wprk-package-6 10 4 3 1 5 -

Work-package-7 2 14 2 1 3 -

Work-package-8 6 6 6 7 5 5
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Work-package-9 6 6 6 7 7 5

W ork-package-10 7 7 7 7 8 5

Work-package-11 2 1 1 1 1 7

Work-package-12 2 3 3 2 3 3

The notion of a work-package is represented by defining the application-specific class 

called cipher-wp, which is mapped to the class job (cf. Section 5.2.2) in the task 

ontology. All twelve work-packages are then defined as a subclass of class cipher-wp 
and they are instantiated to represent their application-specific values.

The following box shows how the work-package-1 is formalised in OCML. The 

representation of other work-packages can be realised along the same lines.
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(def-class CIPHER-WP (job))
(def-class WORK-PACKAGE-1 (cipher-wp) ?wp-l 
)

(def-class WORK-PACKAGE-1-ACTIVITY (activity) ?wp-l-activity 
)

(def-class WORK-PACKAGE-1-TIME-RANGE (job-time-range) ?wp-l-time-range 
)

(def-instance WP-1 work-package-1 
((has-activities project-management-1)
(requires-resource COl-PERSON-1-MONTH-1 COl-PERSON-1-MONTH-2 

COl-PERSON-1-MONTH-3 COl-PERSON-1-MONTH-4 
COl-PERSON-1-MONTH-5 COl-PERSON-1-MONTH-6 
COl-PERSON-1-MONTH-7 COl-PERSON-1-MONTH-8 
COl-PERSON-1-MONTH-9 COl-PERSON-1-MONTH-10 
COl-PERSON-1-MONTH-11 COl-PERSON-1-MONTH-12 
COl-PERSON-1-MONTH-13 COl-PERSON-1-MONTH-14 
COl-PERSON-1-MONTH-15 CR2-PERSON-1-MONTH-1 
CR2-PERSON-1-MONTH-2 CR3-PERSON-1-MONTH-1 
CR3-PERSON-1-MONTH-2 CR4-PERSON-1-MONTH-1 
CR5-PERSON-1-MONTH-1 CR5-PERSON-1-MONTH-2 
CR6-PERSON-1-MONTH-1)

(has-time-range wp-l-time-range)
(has-load 24)))
(def-instance PROJECT-MANAGEMENT-1 work-package-1-activity 
((has-time-range project-management-1-1ime-range)
(requires-resource COl-PERSON-1-MONTH-1 COl-PERSON-1-MONTH-2 

COl-PERSON-1-MONTH-3 COl-PERSON-1-MONTH-4 
COl-PERSON-1-MONTH-5 COl-PERSON-1-MONTH-6 
COl-PERSON-1-MONTH-7 COl-PERSON-1-MONTH-8 
COl-PERSON-1-MONTH-9 COl-PERSON-1-MONTH-1C 
COl-PERSON-1-MONTH-11 COl-PERSON-1-MONTH-12 
COl-PERSON-1-MONTH-13 COl-PERSON-1-MONTH-14 
COl-PERSON-1-MONTH-15 CR2-PERSON-1-MONTH-1 
CR2-PERSON-1-MONTH-2 CR3-PERSON-1-MONTH-1 
CR3-PERSON-1-MONTH-2 CR4-PERSON-1-MONTH-1 
CR5-PERSON-1-MONTH-1 CR5-PERSON-1-MONTH-2 
CR6-PERSON-1-MONTH-1)

(has-durâtion project-management-l-duration)
(has-load 24)))

(def-instance PROJECT-MANAGEMENT-1-DURATION duration 
((has-magnitude 2 9)
(has-unit-of-measure month)))

(def-instance WP-l-TIME-RANGE work-package-1-1ime-range 
((has-earliest-start-time (new-instance 'time-point '((year-of 2000)

(month-of 1))))
(has-latest-end-time (new-instance 'time-point '((year-of 2002)

(month-of 6))))))
(def-class CO-ORDINATOR-1-PERSON-1 (resource))
(def-instance COl-PERSON-1-MONTH-1 co-ordinator-1-person-1 
((has-availability col-person-availability)
(has-capacity 1) ) )

8.2.2 Modelling constraints and preference
The CIPHER application is formulated based on the following constraints and a 

preference.

• End-time-compliance: This constraint is common to all the twelve work-packages 

stating that each work-package must finish exactly on its end time and not earlier. A set 

of twelve end-time-compliance constraints are defined to impose this constraint. 

The following box shows the OCML definition of this constraint imposed on work- 

package-1.
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(def-class CIPHER-JOB-CONSTRAINT (constraint))
(def-instance END-TIME-COMPLIANCE-WORK-PACKAGE-1 cipher-job-constraint 
((applicable-to-jobs '(setofall ?x (work-package-1 ?x))
(has-expression (kappa (?sc)

(and (schedule-model ?sc)
(has-time-range ?x ?wp-l-time-range)
(has-latest-end-time ?wp-l-time-range ?let)
(= (the-last-time-point-in-time-range 

?wp-l-time-range) ?ltp)
(time-points-equal ?let ?ltp))))))

In order to check whether each work-package finishes on its end time, an application- 

specific function called the - last -1 ime -point - in- time - range was defined. This 

function is used to retrieve the last time point from the time interval of each work- 

package and then the relation called time-points-equal is used to state that the last 

time point in a work-package interval must be equal to the latest end time of a work- 

package.

Coverage-constraint: This constraint is also common to all the work-packages, stating 

that the ‘idle time’ ought to be minimised and every month of every work-package 

must be covered by at least one resource. The following two application-specific 

functions are defined to formalise this constraint: all-time-points-in-interval 
and fetch-next-time-point. The former function is used to retrieve all the time 

points from the work-package time interval such that it can be checked whether each 

time point is occupied by a resource. The latter function fetch-next-time-point is 
used in order to retrieve the next time point of a currently retrieved time point from the 

work-package interval, such that each next time point is parsed to all-time- 
points-in-interval to check its occupancy. The following box shows the OCML 

definitions of coverage-constraint and the two fonctions used to formalise this 

constraint.
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(def-instance COVERAGE-CONSTRAINT cipher-job-constraint 
((applicable-to-jobs '(setofall ?x (cipher-job ?x)))
(has-expression (kappa (?sc)

(forall (?j ?a)
(=> (and (cipher-job ?j has-activities ?ca)

(has-time-range ?ca ?jtr) 
(has-earliest-start-time ?jtr ?est)
(has-latest-end-time ?jtr ?let)
(month-in-time ?mit)
(= (all-time-points-in-interval 

?jtr ?mit) ?all))))
(forall (?tp)

(=> (and (member ?tp ?all)
(member (cipher-job ?ca ?r ?jtr2)

?sc)
(time-point-within-interval 
?tp ?jtr))))

(forall (?all)
(=> (not (= (the-slot-value

?ca requires-resource) 0))))))))
(def-function ALL-TIME-POINTS-IN-INTERVAL (?interval ?unit-of-measure)
: constraint (and (job-time-range ?interval)

(unit-of-measure ?unit-of-measure))
:body (and (has-earliest-start-time ?interval ?estl)

(has-unit-of-measure ?estl ?uoml)
(has-latest-end-time ?interval Pletl)
(has-unit-of-measure ?letl ?uom2)
(cons ?uoml (FETCH-NEXT-TIME-POINT Puoml ?interval ?uom2 Pletl))))

(def-function FETCH-NEXT-TIME-POINT (Pcurrent-tp Ptime-interval Punit-of-measure 
Plast-tp)
"This function retrives the next time point of an existing time point."
: constraint (and (unit-of-measure Punit-of-measure)

(time-point Pcurrent-tp has-unit-of-measure Punit-of-measure) 
(job-time-range Ptime-interval)
(time-point Plast-tp has-unit-of-measure Punit-of-measure)) 

:body (in-environment
((Pnext-tp . (has-earliest-start-time Ptime-interval Pcurrent-tp)))
(if

(time-points-equal Pnext-tp Plast-tp)
Plast-tp 

(cons Pnext-tp
(fetch-next-time-point Pnext-tp Ptime-interval

Punit-of-measure Plast-tp)))))

Resource-availability-constraint: This states that the correct numbers of project 

persons are required by each work-package for its successful completion. The project 

staff requirement of each work-package is imposed by complying with the data given 

in Table 8.3. A set of 73 constraints were defined to specify the staff requirements of 

all the work-packages. The following box shows the OCML definition of one such 

constraint imposed on work-package-1. The resource availability constraint for other 

work-packages can be realised analogously.

(def-instance COl-RESOURCE-FOR-WP-1 cipher-job-constraint 
((applicable-to-jobs '(setofall Px (work-package-1 Px))
(has-expression (kappa (Psc)

(exists Pr
(and
(col-resource Pr)
(member (Pwork-package-1 Pr

Pwp-1-activity Pwp-1-1ime-range) Psc) 
(= (length Pr) 15)))))))

Competence-matching-preference: Some people are better at certain tasks than 

others, so a schedule should satisfy this competence matching criterion.
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Although, the CIPHER application represented quite a complex distribution of the 

project personnel over work-packages, our task ontology has provided an adequate 

leverage to capture this knowledge precisely. Moreover, the resource-capacity axiom 

(cf. Section 5.2.3.1) from the task ontology allowed us to maintain the unary capaeity 

associated with every staff member. Different classes from the task ontology, such as j ob, 

activity, resource, duration, and jo b -time-range also provided the required 

level of detail and formalism to model the application-specific knowledge precisely. 

Nevertheless, a few new application-specific functions were defined to formalise the 

‘end-time-compliance’ constraint and ‘coverage-constraint’. In the following 

section, we describe how a complete schedule for the CIPHER application was 

constructed.

8.2.3 Construction of a complete schedule by Propose & Backtrack 
The primary goal of the CIPHER application was to construct a complete schedule quickly 

to see whether the project could be completed in a given period. As described in Section

7.4, because the Propose & Backtrack method can be used to construct a complete 

schedule, we applied this method to construct a schedule for CIPHER. This method was 

configured by defining the application-specific operators to assign resources to work- 

packages and by providing the application-specific knowledge to select a correct focus.

8.2.3.1 Construction of the operators

Two types of operators, cipher-resource-operator and c ipher-time-range- 
operator, were defined to assign work-packages to project staff and time ranges.

The cipher-resource-operator is defined in such a way that the staff requirements 

of each work-package are maintained throughout the schedule construction in accordance 

with Table 8.3. As described earlier one of the primary requirement of the CIPHER project 

is to assign the correct number of project-months for the timely completion of the work- 

packages. Therefore while defining cipher-resource-operator we also complied 

with resource-availability-constraint to make sure that the correct numbers of 

project members were available for executing the work-packages. Cipher-time-range- 
operator is defined in such a way that the work-packages can be finished exactly on their 

end times and not earlier. The following box shows the OCML definitions of the operators 

defined for work-paekage-1.
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(def-class CIPHER-RESOURCE-0PERATOR
(multiple-schedule-extension-resource-operator))

(def-class CIPHER-TIME-RANGE-OEPRATOR
(multiple-schedule-extension-time-range-operator))

(def-instance COl-RESOURCE-FOR-WORK-PACKAGE-1 cipher-resource-operator 
((applicable-to-jobs '(setofall ?x (work-package-1-j ob ?x)))
(has-body (lambda (?x ?sc)

(the ?col-resource
(and (col-resource ?col-resource)

(= (length ?col-resource) 15)))))))
(def-instance WORK-PACKAGE-1-TIME-RANGE-OPERATOR cipher-time-range-operator 
((applicable-to-jobs '(setofall ?x (work-package-1-job ?x)))
(has-body (lambda (?x ?sc)

(the ?wp-l-time-range
(work-package-1-1ime-range ?wp-l-time-range))))))

(tell (SCHEDULE-OPERATOR-ORDER col-resource-for-work-package-1
work-package-1-time-range-operator))

Finally, the relation schedule-operator-order (cf. Section 6.2.2) is instantiated to 

determine the order in which different operators are applied to assign each work-package.

8.2.3.2 Focus and operator selection, and schedule generation 

Because the CIPHER application required all its work-packages to finish exactly on their 

end time, while selecting a correct focus we complied with this application-specific 

knowledge. The job selection method j ob-select ion-based-on-latest-end-time 
(cf. Section 6.3.5) is used in order to select a focus based on this knowledge. According to 

this method first all the work-packages are sorted according to their latest end time and 

then the first work-package from the sorted list is selected as a focus in each cycle.

Having completed the configuration of Propose & Backtrack, we ran the application 

until all the work-packages were assigned to the required number of person-months and 

time ranges. Solving this application by using Propose & Backtrack turned out to be very 

efficient because the solution space was very dense. Therefore, very little search was 

required to reach a solution state. A complete schedule for the CIPHER application was 

constructed by generating 1342 schedule states. According to our focus selection strategy 

all the work-packages were instantiated according to their latest end time, which helped to 

complete all the work-packages successfully within their latest end time. As a result, the 

application of our method satisfied one of the important solution criteria of the CIPHER 

application. Also once the work-packages were sorted based on their latest end time then 

they were selected almost linearly, and therefore, a solution state was reached without any 

backtracking which resulted in 100% efficiency. More importantly, no other constraints 

were violated while constructing a schedule. Therefore, a complete and consistent solution 

was returned once all the work-packages were assigned.
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8.3 The daily ship-maintenance application

8.3.1 Construction of a task model

The daily ship-maintenance application is a real world problem consisting of thirteen ship- 

maintenance jobs, which have to be assigned to thirteen ship-maintenance resources. The 

ship-maintenance resources are categorised into two groups: maintenance personnel and 

maintenance machinery. A schedule for this application is constructed on a daily basis and 

the working hours of each day are from 9:00am to 18:00pm.

Each ship-maintenance job has a number of ship-maintenance activities associated with 

it, which need to be accomplished to complete the job. All the activities must be completed 

within the fixed duration of the job. Each ship-maintenance job also has a specific 

requirement for the ship-maintenance resources on which it must be assigned for its 

completion. Finally the ship-maintenance jobs require a specific number of ship- 

maintenance resources to complete the maintenance activities. Table 8.3 represents a data 

used to formalise the ship-maintenance jobs. The column labelled Toad’ in Table 8.4 

represents the number of ship-maintenance resources required by each ship-maintenance 

job for its completion.

Table 8.4. Data used to formalise the ship-maintenance jobs.

Sliip-maintcnance

jobs

Description of the 

activities

Resource

requirement

Duration

(Minutes)

Load

C4B9UQN Inspect-citric-acid

Inspect-urinal-to-ensure-

citric-acid

AN/FN/SN 48 2

A4C2DCN Inspect-balance-pressure-

proportional

Inspect-gauge-level

Inspect-the-level-of-

cooler-in-degasser

AN/FN/SN 60 1

A4GDBHN T est-mode-control FC2 24 1

A4GDBHN-1-1 T est-LCP-keyboard-entry FC2-1 10 1

A4GDBHN-2-1 T est-ship-heading- 

readout

FC2-2 10 1

A4GDBHN-3 T est-audible-alarm-and- 

mount-safety

FC2-3 10 1

A4GDBHN-4 Perform-system- FC2-4 10 1
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operability-test

26N45CN Clean-galley-or-pantry-

vent

FN/SN 40 1

C5DVYGN Inspect-all-periferral-

ammnunition-equipments

GMG3 36 1

51GEPVN Perform-daily-ability-test GMG3-2 48 1

B24FDXN Inspect-water-level-in-

bilge

MM/EN3 35 1

B24FDXN-1 Inspect-oil-level-in-

upper-gravity-tan

MM/EN3 24 1

40KL83N Conduet-lamp-and-

alarm-test

RMSN 48 1

Each ship-maintenance resource has a special competence, which indicates the specific 

types of ship-maintenance jobs it can handle. The ship-maintenance resources also have a 

fixed availability period and the ship-maintenance jobs must be executed only within this 

period. Finally, all the ship-maintenanee resources have a fixed capacity, which determines 

the total number of ship-maintenance jobs each ship-maintenance resource can handle at 

any one time. Table 8.5 represents the maximum capacity of each ship-maintenance 

resource.

Table 8.5. Maximum capacity of the ship-maintenance resources.

Dally shlp-malntcnancc resource Capacity

AN/FN/SN 2

DC/HT2 2

FC2 1

FC2-1 1

FC2-2

FC2-3 1

FC2-4 1

FN/SN 2

GMG3 3

GMG3-2 3

MM/EN3 1

MM/EN3-2 1

RMSN 2
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As an example the following box shows the OCML definitions representing how the 

ship-maintenance job called C4B9UQN and its attributes are represented in the task model.

(def-class DAILY-SHIP-MAINTENANCE-JOB (job))
(def-class DAILY-SHIP-MAINTENANCE-RESOURCE (resource))
(def-class DAILY-SHIP-MAINTENANCE-ACTIVITY (activity))
(def-class SHIP-MAINTENANCE-JOB-TIME-RANGE (job-time-range))
(def-class C4B9UQN-JOB (daily-ship-maintenance-job))
(def-class C4B9UQN-ACTIVITY (daily-ship-maintenance-activity))

(def-class C4B9UQN-JOB-TIME-RANGE (ship-maintenance-job-time-range))
(def-instance C4B9UQN C4B9UQN-JOB 
((has-activities inspect-citric-acid inspect-urinal-to-ensure-citrie-acid) 
(requires-resource AN/FN/SN)
(has-1ime-range C4B9UQN-time-range)
(has-load 2)))

(def-instance INSPECT-URINAL-TO-ENSURE-CITRIC-ACID C4B9UQN-activity 
((has-durâtion inspect-urinal-to-ensure-citric-acid-duration)
(requires-resource AN/FN/SN)
(has-time-range inspect-urinal-to-ensure-citrie-acid-time-range)))

(def-instance C4B9UQN-TIME-RANGE C4B9UQN-job-time-range 
((has-latest-start-time (new-instance 'time-point '(hour-of 09)

(minute-of 00))))
(has-latest-end-time (new-instance 'time-point '((hour-of 09)

(minute-of 48))))))
(def-instance INSPECT-CITRIC-ACID duration 
((has-magnitude 18)
(has-unit-of-measure minute)))

(def-instance INSPECT-URINAL-TO-ENSURE-CITRIC-ACID-DURATION duration 
((has-magnitude 30)
(has-unit-of-measure minute)))

8.3.7.7 Modelling constraints and requirements

The following constraints and requirements were elicited in the context of the ship- 

maintenanee application.

• Job precedence constraint: This constraint is common to all the ship-maintenance 

jobs, and imposes a strict precedence ordering among all the jobs. A set of thirteen job 

precedence constraints have been defined to apply this constraint to all the ship- 

maintenanee jobs. In order to impose the precedence ordering among any two ship- 

maintenance jobs the relation called job-precedes (cf. Section 5.2.2.3) is used from 

the task ontology, which states that if the latest end time of ship-maintenance job, say 

Si is before the earliest start time of ship-maintenance job, say S2, then Si precedes S2 . 

The following box shows the OCML definition of the job precedence constraint 

imposed between ship-maintenance jobs C4B9UQN and A4C2DCN.
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(def-class DAILY-SHIP-CONSTRAINT (constraint))
(def-instance PRECEDENCE-AMONG-C4B9UQN-A4C2DCN daily-ship-constraint 
((applicable-to-jobs '(C4B9UQN A4C2DCN))
(has-expression (kappa (?sc)

(exists 7C4B9UQN-job
(and (C4B9UQN-job 7C4B9UQN-job)

(has-time-range
?C4B9UQN-job 7C4B9UQN-job-time-range)
(= the ?letl (has-latest-end-time

? C4 B 9UQN-job-time-range 
Pletl))

(exists PA4C2DCN-job
(and (A4C2DCN-job PA4C2DCN-job)

(has-time-range 
?A4C2DCN-job 
?A4 C2DCN-job-time-range)
(= the Plet2 (has-latest-end-

time PA4C2DCN-job-time-range Plet2))
(if (precedes Pletl Plet2) 

(job-precedes 
PC4B9UQN-job 
PA4C2DCN-job))))))))))

Daily frequency of ship maintenance jobs: This constraint is common to all the

thirteen ship-maintenance jobs, which states that all the ship-maintenanee jobs must 

finish within their daily working hours, i.e. between 9:00am to 18:00pm. The following 

box shows the OCML definition of one such constraint imposed on a ship-maintenance 

job called, 40KL83N.

(def-instance DAILY-FREQUENCY-OF-40KL83N-job daily-ship-constraint 
((applicable-to-jobs '(setofall Px (40KL83N-job Px)))
(has-expression (kappa (Psc)

(exists P40KL83N-job
(and (40KL83N-job P40KL83N-job)

(has-time-range P40KL83N-job P40KL83Njtr) 
(daily-schedule-horizon Pdaily-sc-horizon) 
(time-ranges-not-exceed 
P40KL83Njtr Pdaily-sc-horizon)))))))

• Job priority requirement: This requirement states that if more than one ship- 

maintenance job is eonsuming the same ship-maintenance resouree then the ship- 

maintenanee job with the higher number of aetivities needs to be given priority for its 

execution. In order to specify the job priority requirement, we used the function called 

number-of-activities-within-job (cf. Appendix 1), which retrieved all the 

ship-maintenance aetivities assoeiated with each ship-maintenance job, and then the 

higher-priority-job-based-on-activities relation (cf. Section 5.2.2.3) is 

used to state a condition according to which the ship-maintenance job with the higher 

number of activities is given priority. The following box shows the OCML definition 

of one sueh requirement associated with the ship-maintenance jobs C4B9UQN and 

A4C2DCN. The job priority requirement for the other two ship-maintenanee jobs can 

be realised analogously.
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(def-class DAILY-SHIP-REQUIREMENT (requirement))

(def- instance JOB-PRIORITY-AMONG-C4B9UQN-AND-A4C2DCN daily-ship-requirement 
((applicable-to-jobs '(C4B9UQN A4C2DCN))
(has-expression (kappa (?sc)

(= (number-of-activities-within-j ob 
?C4B9UQN-job) ?C4B9UQN-activity)

(= (number-of-activities-within-job 
?A4C2DCN-job) ?A4C2DCN-activity)

(if (> (length PC4B9UQN-activity)
(length ?A4C2DCN-activity))

(higher-priority-job-based-on-activities 
?C4B9UQN-job ?A4C2DCN-job))))))

This concludes our discussion about how the task model for the daily ship-maintenance 

application is constructed. In the following section, we describe how we constructed a 

schedule for the application.

8.3.2 Construction of a schedule by using Generic-Schedule

In order to eonstruct a complete schedule for this applieation the Generic-Schedule 
method from our library was applied.

8.3.2.1 Operator construction for the daiiy-ship schedule

The Generic-Schedule method was configured by defining the following two types of 

application-specific operators: daily-resource-operator and daily-time-range- 
operator. The daily-resource-operator is used to assign ship-maintenance jobs to 

their respective ship-maintenance resources. This operator is construeted by complying 

with the ship-maintenance resource requirement of eaeh ship-maintenance job as given in 

Table 8.3, and also by maintaining the total number of resources required by each ship- 

maintenance job as given by the column Toad’ in Table 8.3. The daily-time-range- 
operator is defined in such a way that a correct time range can be assigned to the ship- 

maintenance jobs. The following box shows the OCML definitions of the operators defined 

for assigning the ship-maintenance job called C4B9UQN.

(def-instance C4B9UQN-to-AN/FN/SN-RESOURCE daily-resource-operator 
((applicable-to-jobs '(setofall ?x (C4B9UQN-job ?x)))
(has-body (lambda (?x ?s)

(the ?AN/FN/SN-resource
(and (AN/FN/SN-resource ?AN/FN/SN-resource)

(= (number-of-resources-for-job 7C4B9UQN-job) 1)))))))
(def-instance C4B9UQN-to-C4B9UQN-TIME-RANGE daily-time-range-operator 
((applicable-to-jobs '(setofall ?x (C4B9UQN-job ?x)))
(has-body (lambda (?x ?s)

(the ?04B9UQN-job-time-range
(C4B9UQN-job-time-range 7C4B9UQN-job-time-range))))))

(tell (schedule-operator-order C4B9UQN-to-AN/FN/SN-resource
C4B9UQN-to-C4B9UQN-time-range))

8.3.3 Focus and operator selection

This application requires all the ship-maintenance jobs to be completed within their daily 

frequency. To comply with this requirement we use the job selection method called jo b -

772



Chapter 8

selection-based-on-start-time (cf. Section 6.3.5), which first sorts all the ship- 

maintenance jobs on the basis of their earliest start time, and then selects the first job. Once 

the focus is selected then all the operators necessary to assign the selected focus are 

collected and then sorted by instantiating the relation schedule-operator-order (cf. 

Section 6.2.2).

A complete schedule for this application was constructed by generating 852 schedule 

states. While constructing a complete schedule the search backtracked five time because 

the ‘ job-priority-requirement’ imposed on the ship-maintenance jobs: C4B9UQN 

and A4C2DCN was violated. Therefore, the overall efficiency of schedule construction by 

using Generic-Schedule was 75%. The efficiency is calculated as the ratio between the 

size of the minimal search space required to solve the application to that of the effective 

search space navigated to reach a solution. The main reason why job-priority- 
requirement was violated was because, according to our focus selection strategy, a ship- 

maintenance job with the earliest start time gets assigned first. However this focus 

selection strategy conflicted with j ob -priority- requirement, which required the 

ship-maintenance job with highest number of activities to be assigned first. It means that 

A4C2DCN-job should have been assigned before assigning C4B9UQN-job because the 

former job has three activities associated with it while only two activities are associated 

with the latter job. The following box shows the synoptic trace of the behaviour of 

Generic-Schedule while constructing a complete schedule for this application. The box 

below also shows how the complete schedule looks like once all the daily ship- 

maintenance jobs are assigned.

----------------------------------  Enter task EVALUATE-SCHEDULE-STATES55 with arguments{HAS-SCHEDULE-STATE SCHEDULE-STATE852)
------------------------------------Enter task EVALUATE-HARD-CONSISTENCY856 witharguments (HAS-SCHEDULE-STATE SCHEDULE-STATE852)

Exit task EVALUATE-HARD-CONSISTENCY856 -> NIL
-------------------------------------  Enter task EVALUATE-COMPLETENESS857 with arguments
(HAS-SCHEDULE-STATE SCHEDULE-STATES 52)
-------------------------------------  Exit task EVALUATE-COMPLETENESS857 > (STATE-COMPLETE
SCHEDULE-STATES 5 2)

OCML 18 : 1 > (describe-instance 'schedule-state852)
Instance SCHEDULE-STATE852 of class SCHEDULE-STATE
HAS-SCHEDULE-MODEL: ((A4GDBHN FC2 TEST-MODE-CONTROL A4GDBHN-1-TIME-RANGE) (A4GDBHN-1-1 
FC2-1 TEST-LCP-KEYBOARD-ENTRY A4GDBHN-1-1-TIME-RANGE) (A4GDBHN-2-1 FC2-2 TEST-SHIP- 
HEADING- READOUT A4GDBHN-2-1-TIME-RANGE) (A4GDBHN-3 FC2-3 TEST-AUDIBLE-ALARM-AND-MOUNT- 
SAFETY A4GDBHN-3-TIME-RANGE) (A4GDBHN-4 FC2-4 PERFORM-SYSTEM-OPERABILITY-TEST A4GDBHN-4- 
TIME-RANGE) (26N45CN FN/SN CLEAN-GALLEY-OR-PANTRY-VENT 26N45CN-TIME-RANGE) (C5DVYGN GMG3 
INSPECT-ALL-PERIFERRAL-AMMNUNITION-EQUIPMENTS C5DVYGN-TIME-RANGE) (51GEPVN GMG3-2 PERFORM- 
DAILY-ABILITY-TEST 5IGEPVN-TIME-RANGE) (B24FDXN MM/EN3 INSPECT-WATER-LEVEL-IN-BILGE 
B24FDXN-TIME-RANGE) (B24FDXN-1 MM/EN3 INSPECT-OIL-LEVEL-IN-UPPER-GRAVITY-TANK B24FDXN-1- 
TIME-RANGE) (40KL83N RMSN CONDUCT-LAMP-AND-ALARM-TEST 40KL83N-TIME-RANGE) (A4C2DCN 
AN/FN/SN INSPECT-BALANCE-PRESSURE-PROPORTIONER A4C2DCN-TIME-RANGE) (C4B9UQN AN/FN/SN 
INSPECT-URINAL-TO-ENSURE-CITRIC-ACID C4B9UQN-TIME-RANGE))
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In order to fix the requirement violation that occurred while constructing a complete 

schedule we applied the P&Rf method from the library.

8.3.4 Fixing the requirement violation by using the P&Rf method

The propose phase of the P&Rf method is configured straightforwardly from Generic- 
Schedule. The only difference between the configuration process of Generic- 
Schedule and the propose phase is that a job dependency network is constructed 

explicitly to represent the dependencies between assignments. The job dependency 

network is modelled by using the relations job-depends-on and job-affects (cf. 

Section 6.2.3), which are part of the method ontology.

8.3.4.1 Construction of the feasibiiity-restoration operator

In order to fix the requirement violation that occurred while constructing a schedule a new 

type of application-specific operator called ship-restoration-operator was defined 

while configuring the restore-feasibility phase of the method. This operator is constructed 

in such a way that the requirement violations which occurred while constructing a schedule 

can be fixed by changing the assignment strategy of the jobs involved in the conflict. By 

using ship-restoration-operator the priority of the culprit jobs can be changed by 

ranking them on the basis of the highest number of activities. The function called number- 
of-act ivities-within-job is used to retrieve all the activities associated with the 

ship-maintenance jobs, and then the relation called higher-priority-job-based-on- 
activities (cf. Section S.2.2.3) is used to determine the priority of the jobs based on the 

number of activities. The following box shows the OCML definitions of feasibility- 
restoration-operator defined to fix the requirement violation, which occurred 

between jobs C4B9UQN and A4C2DCN.

(def-class SHIP-RESTORATION-OPERATOR (feasibility-restoration-operator))
(def-instance JOB-PRIORITY-BASED-ON-ACTIVITIES ship-restoration-operator 
((applicable-to-requirements ' (JOB-PRIORITY-AMONG-C4B9UQN-and-A4C2DCN) ) 
(applicable-to-jobs '(C4B9UQN A4C2DCN))
(has-body '(lambda (?daily-ship-maintenance-job ?sc)

(the ?A4C2DCN-job
(exists 7A4C2DCN-job

(and (A4C2DCN-job 7A4C2DCN-job)
(= (number-of-activities-within-job 

?A4C2DCN-job) ?ll)
(exists 7C4B9UQN-job

(and (C4B9UQN-job 7C4B9UQN-job)
(= (number-of-activities-within-

job
?C4B9UQN-job) ?12)

(if (> ?11 ?12)
(higher-priority-job-based-on-

activities
?A4C2DCN-job 7C4B9UQN-

job)))))))))))
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8.3.4.2 Construction of a feasible schedule

Once the configuration of the P&Rf method was completed then we ran this application to 

construct a schedule. Once a complete schedule is constructed by executing the propose 

phase then in the restore-feasibility phase the violated requirement job-priority- 
among-C4B9UQN-and-A4C2DCN is selected as a candidate focus. Having selected a 

focus, then the operator called job-priority-based-on-activities is selected to 

fix this violated requirement.

It was observed that the new operator job-priority-based-on-activities 
successfully fixed the requirement violation occurred between the ship-maintenance jobs 

C4B9UQN and A4C2DCN. In the new solution generated by applying job-priority- 
based-on-activities, the ship-maintenance job A4C2DCN was assigned before the 

ship-maintenance job C4B9UQN. It was observed that a solution constructed by using the 

P&Rf method was more robust as compared to the one constructed by Generic- 
Schedule, because no other part of a complete schedule was affected while fixing the 

existing requirement violation. Moreover, other constraints and requirements imposed on 

the daily ship-maintenance application were also maintained throughout the schedule 

construction. As a result, a complete and feasible solution schedule for this application was 

constructed by generating 949 schedule states.

8.4 The weekly ship-maintenance application
Here we describe the validation of the libraiy on the weekly ship-maintenance application, 

which is again a real-life scheduling application. As in the case of the daily ship- 

maintenance application, a schedule for the weekly ship-maintenanee application is also 

constructed to perform different types of ship-maintenance activities. However, the weekly 

ship-maintenance application is more complex in nature compared to the daily ship- 

maintenance application due to the more complex nature of the relevant constraints and 

requirements.

8.4.1 Construction of a task model

The weekly ship-maintenance application can be described as an assignment of the ship- 

maintenance jobs to the ship-maintenance resources within specific time ranges such that a 

complete and a consistent schedule is constructed. The working hours for each day are 

from 9:00am to 18:00pm.

This application consists of twenty one ship-maintenance jobs, which have to be 

assigned on nineteen ship-maintenance resources. The ship-maintenance jobs have a 

specific requirement for the ship-maintenance resources and they can be assigned only on
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these ship-maintenance resources for their execution. All the ship-maintenance jobs also 

have a number, of activities associated with it, which must be executed to accomplish the 

ship-maintenance jobs. Each ship-maintenance resource has a specific competence, which 

determines the specific types of ship-maintenance jobs it can handle for their execution. 

The ship-maintenance resources also have a fixed capacity, which determines the total 

number of ship-maintenance jobs they can handle at any one time. Finally, each ship- 

maintenance resource is available only during a restricted period. Table 8.6 shows the data 

used to formalise the weekly ship-maintenance jobs.

Table 8.6. Data used to formalise the ship-maintenance jobs.

Ship-

maintcnance

jobs

Description of 

the activities

Resource

requirement

Activity

Duration

(Minutes)

Load Resource

capacity

12B3HTN Tum-pump-

shaft-by-hand

ABF/BT/EN2-

resource

48 1 2

63A2TFN Strip-JP5- 

service-tank

ABF/EN/GSM/M

M2-resource

144 1 3

36A2RDN Inspect-seal-

tank-water-level

ABF/EN/MM3-

resource

48 1 3

44B9URN Test-operate-

and-inspect-

flushometer

AN/FN/SN-

resource

48 1 1

C23HZAN Inspect-gearcase-

oil-level-idle-

winch

BM3-resource 240 1 2

359BZUN Flush-hellan-

seawater-strainer

BT/EN/GSM/M 

M3-resource

48 1 1

47K78GM Lubricate-pump BT/EN/MM3-

resource

96 1 4

17A8UBN Inspect-bubbler-

liquid-level

BT/MM3-

resource

48 1 5

64M44EN Test-clean-and-

inspect-flame-

scanner

BT2-resource 240 1 3

B2B7TCN Visually-inspect- 

pump-unit

DC/HT3 -resource 100 1 . 2
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B2A7SAN Visually-inspect-

pump-unit-2

DC/HT3-1-

resource

100 1 1

A4C2EHN Test-and-

operate-AFFF-

concrete-pump-

assembly

DC/HT3-2-

resource

100 1 3

34A1JWN Inspect-

differential-

pressure/pressure

-drop

DCPO-resource 90 1 2

36A1JVN Inspect-and-test-

relay-operated-

lantem

DCPO-1 -resource 90 1 1

36W29WN Inventory-and-

inspect-fire-

hose-stalion-

eqmt

DCPO-2-resource 90 1 1

36W29XN Accomplish-

functional-test-

of-portable-

lantem

DCPO-3-resource 90 1 2

36W31CN Inspect-and-test-

relay-operated-

lantem2

DCPO-4-resource 90 1 2

482YTTN Test-signal-and-

navigation-lights

EM3-resource 144 1 3

628URAN Test-running-

light-telltale-

panel

EM3-1-resource 144 1 1

51A1BNN Inspect-

microwave-oven

DCPO-4-resource 96 1 2

266TFEN Accomplish-

flinctional-test-

of-engine-battery

EM3-3-resource 48 1 3
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8.4.1.1 Modelling ship-maintenance Jobs and resources

The following box shows how the weekly ship-maintenance job 12B3HTN is represented 

in the application. The formalisation of the other weekly ship-maintenance jobs can be 

realised analogously.

(def-class WEEKLY-SHIP-MAINTENANCE-JOB (job))
(def-class WEEKLY-SHIP-MAINTENANCE-ACTIVITY (activity))
(def-class SHIP-MAINTENANCE-JOB-TIME-RANGE (job-time-range))
(def-class 12B3HTN-JOB (weekly-ship-maintenance-job))
(def-class 12B3HTN-ACTIVITY (weekly-ship-maintenance-activity))
(def-class 12B3HTN-JOB-TIME-RANGE (ship-maintenance-job-time-range))
(def-instance 12B3HTN 12B3HTN-job 
((has-activities turn-pump-shaft-by-hand)
(requires-resource ABF-BT-EN2)
(has-1 i me-range 12B3HTN-1 ime-range)
(has-load 1)))

(def-instance turn-pump-shaft-by-hand 12B3HTN-activity 
((has-durâtion turn-pump-shaft-by-hand-durâtion)
(requires-resource ABF-BT-EN2)
(has-time-range turn-pump-shaft-by-hand-1ime-range)))

(def-instance 12B3HTN-time-range 12B3HTN-job-time-range 
((has-latest-start-time (new-instance 'time-point '(hour-of 09)

(minute-of 10)))) 
(has-latest-end-time (new-instance 'time-point '((hour-of 9)

(minute-of 58))))))

As in the case of the weekly ship-maintenance jobs, an application-specific class called 

weekly-ship-maintenance-resource is defined to represent the weekly ship- 

maintenance resources. The following box shows how ABF/BT/EN2-resource is 

formalised in the application.

(def-class WEEKLY-SHIP-MAINTENANCE-RESOURCE (resource))
(def-class ABF-BT-EN2-RESOURCE (weekly-ship-maintenance-resource))
(def-instance ABF-BT-EN2 ABF-BT-EN2-resource 
((has-job-belonging 12B3HTN)
(has-availability ABF-BT-EN2-availability)
(has-capacity 1)))

(def-instance ABF-BT-EN2-AVAILABILITY time-range 
((has-start-time (new-instance 'time-point '((hour-of 09)

(minute-of 00) ) ) ) 
(has-end-time (new-instance 'time-point '((hour-of 17)

(minute-of 00))))))

8.4.1.2 Modelling the constraints and requirements

The weekly ship-maintenance application includes the following constraints and 

requirements:

• Resource capacity constraint: This constraint is common to all the ship-maintenance 

resources. It states that each ship-maintenance resource has a fixed capacity as 

described in Table 8.5, which determines the total number of ship-maintenance jobs 

each ship-maintenance resource can handle. A set of nineteen resource eapacity
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constraints are defined to impose resource-capacity-constraint on all the 

nineteen ship-maintenance resources. To formalise these constraints, we used the 

function called maximum-capacity-of-resource (cf. Section 5.2.3), which 

retrieved all the weekly ship-maintenance jobs associated with a resource, and then an 

equality condition is imposed to limit the total number of weekly ship-maintenance 

jobs each ship-maintenance resource can handle according to the data given in Table

8.5. The following box shows the OCML definition of one such constraint imposed on 

the ABF/BT/EN2-resource.

(def-instance ABF-BT-EN2-RESOURCE-CAPACITY-CONSTRAINT weekly-ship-constraint 
((applicable-to-resources '(setofall ?x (ABF-BT-EN2-resource ?x)))
(has-expression (kappa (?sc)

(exists 7ABF-BT-EN2-resource
(and (ABF-BT-EN2-resource 7ABF-BT-EN2-resource) 

(member (?weekly-ship-maintenance-job
?weekly-ship-maintenance-activity 
7ABF-BT-EN2-resource 
?ship-maintenance-job-time-range) 

?sc)
(= (the Pel (maximum-capacity-of-resource 

PABF-BT-EN2-resource))
2 )))))))

• Daily frequency of ship maintenance jobs: This constraint is common to all the

twenty one ship-maintenance jobs, and states that all the ship-maintenance jobs must 

finish exactly within their daily working hours. In order to check whether all the ship- 

maintenance jobs comply with their daily time frequency, we used the relation time- 
points-equal from the Simple Time ontology, which states that the latest end time 

of each weekly ship-maintenance job must be equal to the end time of the daily 

working hour of a schedule. The following box shows the OCML definition of this 

constraint imposed on the 266TFEN ship-maintenance job. The daily frequency 

constraint for other weekly ship-maintenanee jobs ean be realised analogously.

(def-instance DAILY-FREQUENCY-OF-266TFEN-JOB weekly-ship-constraint 
((applicable-to-jobs '(setofall ?x (266TFEN-job ?x)))
, (has-expression (kappa (Psc)

(exists P266TFEN-job
(and (266TFEN-job P266TFEN-job)

(has-1ime- range 
P266TFEN-job P266TFEN-jtr)
(= Pthe Piet (has-latest-end-time 

?266TFEN-jtr Piet)) 
(daily-time-range Pdaily-time-range) 
(= the Pet (has-end-time

Pdaily-time-range Pet)) 
(time-points-equal Piet Pet)))))))

Job working hour constraint: This constraint is again common to all the ship- 

maintenance jobs, and states that in the worse case scenario a ship-maintenanee job 

may exceed its duration, by not more than 10 minutes as long as this does not violate 

the daily frequency of a schedule. The following box shows the OCML definition of 

this constraint.
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(def-instance JOB-WORKING-HOUR weekly-ship-constraint 
((applicable-to-jobs '(setofall ?x (weekly-ship-maintenance-job ?x))) 
(has-expression (kappa (?sc)

(exists ?x
(and (weekly-ship-maintenance-job ?x)

(has-time-range ?x ?xtr)
(= (exceeded-duration-of-job ?xtr) ?dur-e) 
(duration-is-less-than-or-equal 
?dur-e (10 minute))
(exists ?dftr

(and (daily-working-hours ?dftr)
(= (time-range-duration 

?dftr) ?dur-dftr)
(not (durâtion-is-less-than-

or-equal ?dur-e ?dur-dftr))))))))))

Job priority requirement: This requirement is also eommon to all the weekly ship- 

maintenance jobs, and states that if any two ship-maintenance jobs share a same ship- 

maintenance resource for their exeeution, then a weekly ship-maintenance job with 

higher duration gets priority. To formalise this requirement, we used the function jo b 

time-range-durât ion, which retrieved the duration of the ship-maintenance jobs 

and then the retrieved durations of the jobs are compared by using the relation jo b -  

with-higher-priority to determine their priority. The following box shows the 

OCML definition of this requirement.

(def-instance JOB-PRIORITY-BASED-ON-HIGHER-DURATION weekly-ship-requirement 
((applicable-to-jobs '(setofall ?x (weekly-ship-maintenance-job ?x))) 
(has-expression (kappa (?sc)

(exists ?wm-job
■ (and (member ?wm-job ?x)

(member (?wm-job ?al ?rl ?jtrl) ?sc) 
(requires-resource ?wm-job ?rl)
(= (j ob-1 ime-range-durat ion 

?wm-job ?jtrl) ?dl)
(exists
?wm-job2
(and (member ?wm-job2 ?x)

(member (?wm-job2 ?a2 ?rl ?jtr2) 
?sc)

(requires-resource ?wm-job2 ?rl)
(= (j ob-1 ime-range-durat ion 

?wm-job2 ?jtr2) ?d2)
(if (> ?dl ?d2)

(job-with-higher-priority 
?wm-job ?wm-job2))))))))))

This concludes our description of the task model of the weekly ship-maintenance 

application. In the following section, we will describe how a solution schedule for this 

application was constructed.

8.4.2 Applying the Propose & Backtrack method

As described earlier one of the main goals of this application is to construct a complete 

schedule and therefore we first applied the Propose & Backtrack method from our library.

8.4.2.1 Construction of the operators

The Propose & Backtrack method was configured by defining two types of application- 

specific operators - weekly-ship-resource-operator and weekly-ship-time- 
range-operator. The former operator is defined in order to assign weekly ship-
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maintenance jobs to weekly ship-maintenance resources by maintaining the resource 

requirement of all the weekly ship-maintenance jobs as described in Table 8.5. Weekly- 
ship-re source-operator is defined in such a way that a correct time range can be 

assigned to all the weekly ship-maintenance jobs. The following box shows the OCML 

definitions of weekly - ship - resource - operator and weekly-ship-time-range- 
operator defined for the 482YTTN-job. The operators for the other weekly ship- 

maintenance jobs can be realised along the same lines.

(def-class WEEKLY-SHIP-RESOURCE-OPERATOR
(multiple-schedule-extension-resource-operator))

(def-class WEEKLY-SHIP-TIME-RANGE-OPERATOR
(multiple-schedule-extension-time-range-operator))

(def-instance 4 82YTTN-job-to-EM3-resource weekly-ship-resource-operator 
((applicable-to-jobs '(setofall ?x (482YTTN-job ?x)))
(has-body (lambda (?x ?s)

(the ?EM3-resource
(EM3-resource ?EM3-resource))))))

(def-instance 482YTTN-j ob-4 8 2YTTN-1 ime-range weekly-ship-time-range-operator 
((applicable-to-jobs '(setofall ?x (482YTTN-job ?x)))
(has-body (lambda (?x ?s)

(the ?482YTTN-job-time-range
(482YTTN-job-time-range ?4 82YTTN-job-time-range))))))

(tell (schedule-operator-order 4 8 2YTTN-j ob-to-EM3-re source
4 82YTTN-job-482YTTN-time-range))

Finally, the relation schedule-operator-order (cf. Section 6.2.2) is instantiated to 

determine the order in which different operators are applied to assign a weekly ship- 

maintenance job.

8.4.3 The focus and operator selection knowledge

The focus selection task in this application is carried out by using the method job- 
selection-based-on-least-number-of-activities (cf. Section 6.3.5). In 

accordance with this method in each cycle a weekly ship-maintenance job with the least 

number of activities is selected as a focus. Once a correct focus is selected then all the 

operators are collected and sorted by instantiating the relation schedule-operator- 
order (cf. Section 6.2.2).

Once the configuration of the Propose & Backtrack is completed by determining how the 

focus can be selected, then we ran the weekly ship-maintenance application to construct its 

complete schedule. The following box shows the synoptic trace of the behaviour of the 

application. As it can be seen in the following box the complete schedule for the weekly 

ship-maintenance application was constructed by generating 1245 schedule states. We 

achieved 65% efficiency while constructing a schedule for this application. It was observed 

that while constructing a solution the search backtracked six times because the ‘daily 

frequency of ship-maintenance job constraint’ imposed on the following four weekly ship-
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maintenance jobs - 482YTTN, 628URAN, 51A1BNN, and 266TFEN was violated as they 

violated their latest end time. In other words, the schedule was a complete but was not a 

consistent.

------------------------------------------------------  Enter task EVALUATE-COMPLETENESS1250
with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1245)
------------------------------------------------------  Exit task EVALUATE-COMPLETENESS!250 -
> (STATE-COMPLETE SCHEDULE-STATE1245)
------------------------------------------------------  Enter task EVALUATE-FEASIBILITY1251
with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1245)
------------------------------------------------------  Exit task EVALUATE-FEASIBILITY1251 ->
NIL
-------------------------------------------- -------- Exit task EVALUATE-SCHEDULE-STATE1248
-> NIL

OCML 27 : 1 > (describe-instance 'schedule-statel245)
Instance SCHEDULE-STATE1245 of class SCHEDULE-STATE
HAS-SCHEDULE-MODEL: ((12B3HTN ABF/BT/EN2 TURN-PUMP-SHAFT-BY-HAND 12B3HTN-TIME-RANGE)■
(63A2TFN ABF/EN/GSM/MM2 STRIP-JP5-SERVICE-TANK 63A2TFN-TIME-RANGE) (36A2RDN ABF/EN/MM3 
INSPECT-SEAL-TANK-WATER-LEVEL 36A2RDN-TIME -RANGE) (44B.9URN AN/FN/SN TEST-OPERATE-AND-
INSPECT-FLUSHOMETER 44B9URN-TIME-RANGE) (C23HZAN BM3 INSPECT-GEARCASE-OIL-LEVEL-IDLE-WINCH 
C23HZAN-TIME-RANGE) (359BZUN BT/EN/GSM/MM3 FLUSH-HELLAN-SEAWATER-STRAINER 359BZUN-TIME- 
RANGE) (47K78GM Bt /eN/MM3 LUBRICATE-PUMP 47K78GM-TIME-RANGE) (17A8UBN BT/MM3 INSPECT- 
BUBLER-LIQUID-LEVEL 17A8UBN-TIME- RANGE) (64M44EN BT2 TEST-CLEAN-AND-INSPECT-FLAME-SCANNER
64M44EN-TIME-RANGE) (B2B7TCN DC/HT3 VISUALLY-INSPECT-PUMP-UNIT B2B7TCN-TIME-RANGE)
(B2A7SAN DC/HT3-1 VISUALLY-INSPECT-PUMP-UNIT-2 B2A7SAN-TIME-RANGE) (A4C2EHN DC/HT3-2 TEST- 
AND-OPERATE-AFFF-CONCRETE-PUMP-ASSEMBLY A4C2EHN-TIME-RANGE) (34A1JWN DCPO INSPECT- 
DIFFERENTIAL-PRESSURE/PRESURE-DROP 34A1JWN-TIME-RANGE) (36A1JVN DCPO-1 INSPECT-AND-TEST- 
RELAY-OPERATED-LANTERN 36A1JVN-TIME-RANGE) (36W29WN DCPO-2 INVENTORY-AND-INSPECT-FIRE- 
HOSE-STATION-EQMT 36W29WN-TIME-RANGE) (36W29XN DCPO-3 ACCOMPLISH-FUNCTIONAL-TEST-OF- 
PORTABLE-LANTERN 36W29XN-TIME-RANGE) (36W31CN DCPO-4 INSPECT-AND-TEST-RELAY-OPERATED-
LANTERN2 36W31CN-TIME-RANGE) (266TFEN EM3-3 ACCOMPLISH-FUNCTIONAL-TEST-OF-ENGINE-BATTERY 
266TFEN-TIME-RANGE) (51A1BNN EM3-2 INSPECT-MICROWAVE-OVEN 51A1BNN-TIME-RANGE) (628URAN 
EM3-1 TEST-RUNNING-LIGHT-TELLTALE-PANEL 628URAN-TIME-RANGE) (482YTTN EM3 TEST-SIGNAL-AND- 
NAVIGATION-LIGHTS 482YTTN-TIME-RANGE))

In order to fix the violated constraints we applied the P&R method from our library:

8.4.4 Modelling the propose phase

The propose phase of the P&R method is configured straightfbrwardly from Generic- 
Schedule. The only main difference in the configuration process of Generic-Schedule 
and the propose phase is that the application-specific schedule-procedures (cf. 

Section 7.3.4.1) are defined in order to assign weekly ship-maintenance jobs to weekly 

ship-maintenance resources and time ranges. Also, the slot depends-on in the definition 

of schedule-procedure is instantiated in order to construct the dependencies between 

weekly ship-maintenance jobs. As an example the following box shows the OCML 

definition of the schedule procedures defined for 266TFEN job.
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(def-class WEEKLY-RESOURCE-PROCEDURE (weekly-ship-resource-operator))
(def-class WEEKLY-TIME-RANGE-PROCEDURE (weekly-ship-time-range-operator))
(def-instance 266TFEN-JOB-TO-EM3-3-RESOURCE weekly-resource-procedure 
((applicable-to-jobs '(setofall ?x (266TFEN-job ?x)))
(depends-on '(51A1BNN)
(has-body (lambda (?x ?s)

(the ?EM3-3-RESOURCE
(EM3-3-RESOURCE ?EM3-3-RESOURCE))))))

(def-instance 266TFEN-JOB-266TFEN-TIME-RANGE weekly-time-range-procedure 
((applicable-to-jobs '(setofall ?x (266TFEN-job ?x)))
(depends-on '(51A1BNN)
(has-body (lambda (?x ?s)

(the ?266TFEN-job-time-range
(266TFEN-job-time-range ?266TFEN-job-time-range))))))

(tell (schedule-operator-order 266TFEN-job-to-EM3-3-resource
266 TFEN-job-266TFEN-1ime-range))

8.4.5 Modelling the fixes

In the revise phase application-specific fixes called ship-maintenance -1 ime - range - 
fixes are defined in order to fix the constraint violations occurred while constructing a 

schedule. As described earlier the weekly ship-maintenance jobs, 482YTTN, 628URAN, 

51A1BNN, and 266TFEN failed to comply with their latest end time, and the fixes are 

defined in such a way that these weekly ship-maintenance jobs can be shifted exactly by 

the same time (i.e. 10 minutes) by which they violated their latest end time. In scheduling 

this type of shift policy is referred to as the left-shift strategy (Smith, 1994). The following 

box shows the OCML definitions of two such fixes defined for the weekly ship- 

maintenance jobs 266TFEN and 628URAN. The fixes for the other jobs can be realised 

analogously.

(def-class SHIP-MAINTENANCE-TIME-RANGE-FIX (schedule-fix-for-time-range))
(def-instance 266TFEN-TO-NEW-TIME-RANGE ship-maintenance-time-range-fix 
((applicable-to-jobs '(setofall ?x (266TFEN-job ?x)))
(depends-on '(51A1BNN))
(applicable-to-constraints '(DAILY-FREQUENCY-OF-266TFEN-job))
(has-body (?x ?jtr ?sc)

(cons ?x (and (has-time-range ?x ?266EFEN-job-time-range)
(- (the ?let (= (latest-end-time-of-a-job

?x P266EFEN-job-time-range) ?let))
10))))))

(def-instance 628URAN-T0-NEW-TIME-RANGE ship-maintenance-time-range-fix 
((applicable-to-jobs '(setofall ?x (628URAN-job ?x)))
(depends-on '(482YTTN))
(applicable-to-constraints '(end-time-compliance-of-628URAN))
(has-body (?x ?j tr ?sc)

(cons ?x (and (has-time-range ?x ?628URAN-job-time-range)
(- (the ?let (= (latest-end-time-of-a-job

?x ?628URAN-job-time-range) ?let))
10 ) ) ) ) ) )

8.4.5.1 Fix application in the revise phase

Once the configuration of the P&R method is completed then we again ran the weekly 

ship-maintenance application by using the P&R method. By the completion of the revise 

phase it was observed that our fixes successfully shifted all the weekly ship-maintenance 

jobs exactly by the same time towards their latest end time. As a result a complete and
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consistent schedule for this application was constructed by generating 1401 schedule 

states. It was also observed that the precedence relation imposed among all the jobs also 

helped to maintain the daily frequency constraint imposed on the other weekly ship- 

maintenance jobs, which did not participate in the constraint violations. Therefore, a 

solution for this application was constructed linearly without any backtracking. However, 

on the negative side, the same precedence relation did not allow us to improve the overall 

cycle time of a schedule, because the earliest start time and the latest end time of each 

weekly ship-maintenance job was constrained by the earliest start time and the latest end 

time of the preceding weekly ship-maintenance job.

The following box represents the synoptic trace of the behaviour of the P&R method 

applied to the weekly ship-maintenance application. This trace particularly shows how all 

the constraint violations are collected as the foci in the revise context, and it also shows 

how the first constraint violation, i.e. daily-frequency-of-4 82YTTN-jo b  from the 

list of foci is selected. Finally the box below also shows how a complete and consistent 

schedule looks like after fixing all the violations.
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--------------------------------------------  Enter task CONSISTENT-MAXIMAL-STATE-
SELECTION1253 with arguments (HAS-SCHEDULE-SPACE SCHEDULE-SPACE424)
--------------------------------------------  Exit task CONSISTENT-MAXIMAL-STATE-
SELECTION1253 -> SCHEDULE-STATE1284
------ ------------------------------------- Enter task PROPOSE-AND-REVISE-CONTROL-
STRUCTURE1255 with arguments (HAS-SCHEDULE-SPACE SCHEDULE-SPACE424) (HAS-SCHEDULE-STATE ' 
SCHEDULE-STATE1284)
--------------------------------------------  Enter task ONE-STEP-REVISION-FGR-
CONSTRAINT1256 with arguments (HAS-SCHEDULE-SPACE SCHEDULE-SPACE424) (HAS-SCHEDULE-STATE
S CHEDULE-STATE1284)
 ---------------------------------------- Enter task GENERATE-NEW-STATE-SUCCESS0R1257
with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1284) (HAS-SCHEDULE-CONTEXT : REVISE)
----------------------------------------------  Enter task COLLECT-ALL-CONSTRAINT-
VIOLATIONS1258 with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1284) (HAS-SCHEDULE- 
CONTEXT :REVISE)
----------------- -----------------------------  Exit task COLLECT-ALL-CONSTRAINT-
VIOLATIONS1258 -> (DAILY-FREQUENCY-OF-482YTTN-JOB DAILY-FREQUENCY-OF-628URAN-JOB DAILY- 
FREQUENCY-OF -51AIBNN-JOB DAILY-FREQUENCY-OF-2 66TFEN-JOB)
--------------- -------------------------------Enter task PROPOSE-SCHEDULE-FROM-CONTEXT!260
with arguments (HAS-SCHEDULE-STATE SCHEDULE-STATE1206) (HAS-SCHEDULE-CONTEXT : REVISE)
----------------------------------------------- Enter task SELECT-CANDIDATE-CONSTRAINT-
VIOLATION1262 with arguments (HAS-SCHEDULE-FOCI (DAILY-FREQUENCY-OF-482YTTN-JOB DAILY- 
FREQUENCY-OF-628URAN-JOB DAILY-FREQUENCY-OF-51A1BNN-JOB DAILY-FREQUENCY-OF-266TFEN-JOB)) 
(HAS-SCHEDULE-FOCUS-ORDER-RELATION SCHEDULE-FOCUS-ORDER)
-----------------------------------------------  Exit task SELECT-CANDIDATE-CONSTRAINT-
VIOLATION1262 -> DAILY-FREQUENCY-0F-482YTTN-JOB
-----------------------------------------------  Enter task DEFAULT-SEARCH-CONTROL-RECORD-
ON-FOCUS-SELECTION-UPDATE1264 with arguments (HAS-SCHEDULE-FOCUS DAILY-FREQUENCY-OF- 
482YTTN-JOB) (HAS-SEARCH-CONTROL-RECORD STATE-SEARCH-CONTROL-RECORD!259)
----- ---------------- ------------------------- Exit task DEFAULT-SEARCH-CONTROL-RECORD-ON-
FOCUS-SELECTION-UPDATE!264 -> (HAS-SCHEDULE-FOCUS STATE-SEARCH-CONTROL-RECORD!259 DAILY- 
FREQUENCY-OF -4 82YTTN-JOB)
..... ----------------------------------------- Enter task COLLECTION-OF-APPLICABLE-
FIXES1266 with arguments (HAS-SCHEDULE-FOCUS DAILY-FREQUENCY-OF-482YTTN-JOB)
----- ----------------------------------------- Exit task COLLECTION-OF-APPLICABLE-
FIXES1266 -> (482YTTN-TO-NEW-TIME-RANGE)
OCML 31 : 1 > (describe-instance 'schedule-statel401)
Instance SCHEDULE-STATE1401 of class SCHEDULE-STATE
HAS-SCHEDULE-MODEL: ((12B3HTN ABF/BT/EN2 TURN-PUMP-SHAFT-BY-HAND 12B3HTN-TIME-RANGE)
(63A2TFN ABF/EN/GSM/MM2 STRIP-JP5-SERVICE-TANK 63A2TFN-TIME-RANGE) (36A2RDN ABF/EN/MM3 
INSPECT-SEAL-TANK-WATER-LEVEL 36A2RDN-TIME-RANGE) (44B9URN AN/FN/SN TEST-OPERATE-AND- 
INSPECT-FLUSHOMETER 44B9URN-TIME-RANGE) (C23HZAN BM3 INSPECT-GEARCASE-OIL-LEVEL-IDLE- WINCH 
C23HZAN-TIME-RANGE) (359BZUN BT/EN/GSM/MM3 FLUSH-HELLAN-SEAWATER-STRAINER 359BZUN-TIME- 
RANGE) (47K78GM BT/EN/MM3 LUBRICATE-PUMP 47K78GM-TIME-RANGE) (17A8UBN BT/MM3 INSPECT- 
BUBLER-LIQUID-LEVEL 17A8UBN-TIME-RANGE) (64M44EN BT2 TEST-CLEAN-AND-INSPECT-FLAME-SCANNER 
64M44EN-TIME-RANGE) (B2B7TCN DC/HT3 VISUALLY-INSPECT-PUMP-UNIT B2B7TCN-TIME-RANGE)
(B2A7SAN DC/HT3-1 VISUALLY-INSPECT-PUMP-UNIT-2 B2A7SAN-TIME-RANGE) (A4C2EHN DC/HT3-2 TEST- 
AND-OPERATE-AFFF-CONCRETE-PUMP-ASSEMBLY A4C2EHN-TIME-RANGE) (34A1JWN DCPO INSPECT- 
DIFFERENTIAL-PRESSURE/PRESURE-DROP 34A1JWN-TIME-RANGE) (36A1JVN DCPO-1 INSPECT-AND-TEST- 
RELAY-OPERATED-LANTERN 36A1JVN-TIME-RANGE) (36W29WN DCPO-2 INVENTORY-AND-INS PECT-FIRE- 
HOSE-STATION-EQMT 36W29WN-TIME-RANGE) (36W29XN DCPO-3 ACCOMPLISH-FUNCTIONAL-TEST-OF- 
PORTABLE-LANTERN 36W29XN-TIME-RANGE) (36W31CN DCPO-4 INSPECT-AND-TEST-RELAY-OPERATED- 
LANTERN2 36W31CN-TIME-RANGE) (266TFEN EM3-3 ACCOMPLISH-FUNCTIONAL-TEST-OF-ENGINE-BATTERY 
266TFEN-TIME-RANGE) (51A1BNN EM3-2 INSPECT-MICROWAVE-OVEN 51A1BNN-TIME-RANGE) (628URAN 
EM3-1 TEST-RUNNING-LIGHT-TELLTALE-PANEL 628URAN-TIME-RANGE) (482YTTN EM3 TEST-SIGNAL-AND- 
NAVIGATION-LIGHTS 482YTTN-TIME-RANGE))

8.5 The benchmark application
This is the last application used to validate our library. The data-set for this application was 

acquired from the following URL - http://www.neosoft.com/~benchmrx/rcps.doc. This 

series of benchmark tests consists of twelve different applications. Although these 

applications are based on a large scale assembly, they can be applied to other scheduling 

domains, such as engineering, construction, and manufacturing. Generally speaking, this
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application can be understood as a resource constrained projeet scheduling problem 

{Bmcker et aL, 1999).

For validating our library, the application from the category 3 of this series was selected 

mainly because this application required using looking ahead heuristics while constructing 

a schedule. As described in Chapter 6 (cf. Section 6.3.1.1), Generic-Schedule deploys 

two types of looking ahead heuristics: full looking ahead and partial looking ahead, and 

this application provided an opportunity to evaluate the performance of these two 

heuristics.

This application consists of ten discrete work-steps (i.e., jobs that need to be executed to 

construct a large assembly) and each work-step entails the performance of a specific work 

document in the formal process plan. Each work-step has a fixed duration during which all 

the activities associated with a work-step have to be completed. The schedule horizon of 

one shift is 7.5 hours, which must be maintained by all the work-steps.

Each work-step requires either one or more resources (which are referred to as 

individuals in the data set) for its completion, which can be drawn from the four different 

labour pools. The labour pools are named anonymously as Px, Py, Pz, and Pw. While 

constructing a schedule, the appropriate labour types must be assigned for the successful 

completion of each work-step. There are thirteen different work-zones available around the 

assembly which are used by the work-steps for their completion. The available work-zones 

are named anonymously as Za, Zb, Zc, and so on. The execution of the work-steps depends 

on the availability of the work-zones, and therefore they are treated as a spatial type of 

resources. Moreover, all the work-steps must be completed from start to finish without any 

perturbation. Finally, this application imposes a strict precedence ordering among all the 

work-steps. Table 8.7 represents a data set obtained from the above mentioned URL, which 

is used to impose the precedence ordering among the work-steps.

Table 8.7. The precedence relation among work-steps.

Predecessor Successor

asm_l .step_394 new.stepOOl

new.stepOOl new.step_002

new.step_002 new.step_003

new.step_003 new.step_004

new.step_004 new.step_005

new.step_005 new.step_006

new.step_006 new.step_007
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new.stepOO? new.step_008

new.step_008 new.step_009

new.step_009 new.stepOlO

new.stepOlO asm_l.step_518

Both the zone and labour resources have a fix capacity which determines the maximum 

number of work-steps they can handle at any one time. Table 8.8 represents the capacity of 

the zone and labour resources.

Table 8.8. The capacity of the zone and labour resources.

Assembly zone Maximum capacity Labour Pool Maximum

capacity

Zone.Za 2 Labour.Px 3

Zone.Zb 1 Labour.Py 4

Zone.Zc 1 Labour.Pz 4

Zone.Zd 2 Labour.Pw 5

Zone.Ze 1

Zone.Zf 2

Zone.Zg 1

Zone.Zh 2

Zone.Zi 5

Zone.Zj 2

Zone.Zk 1

Zone.Zi 4

Zone.Zm 3

Table 8.9 shows the duration and a resource requirement of all the work-steps obtained 

from the above mentioned URL.
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Table 8.9. The duration and resource requirement of all the work-steps.

Work-Step Duration i l l Ü Î1Ï P Z Z i l l Wt z iZi Wê m z Z z
(lirimin) X 0 z w a b III i l l •ill B i l l H i l i i k M m

new.stepOOl 03:30 2 1 1

new.step_002 01:00 1 1

new.step_003 02:30 1 1 1

new.step_004 01:30 1 1

new.step_005 00:30 2 1 1

new.step_006 01:20 1 1 1 1

new.step_007 03:04 1 1

new.stepOOS 06:25 1 1

new.step_009 00:10 1 1

new.stepOlO 03:20 1 1

8.5.1 Construction of a task model

In accordance with the task ontology the notion of a work-step is modelled by defining the 

application-specific class called assem b ly -jo b  and this notion is mapped to the task 

level notion of a job (cf. Section 5.2.2). Each work-step has the following attributes: 

number of activities, resource requirement, a time range, duration, and a load. The 

following box shows the OCML definitions of the job work- s t  ep_0 01-1.

(def-class new.step_001-l (assembly-job))
(def-class new.step_001-l-TIME-RANGE (job-time-range))
(def-class new.step_001-l-ACTIVITY (activity))
(def-instance new.step_001-1 new.step_001-l-l 
((has-activities new.step_001-1-activity)
(requires-resource pz-resource)
(has-time-range new.step_001-l-time-range) 
(has-duration new.step_001-l-duration)
(has-load 2)))

Both the types of resources, labour and zone have the following attributes: specific types 

of jobs they can handle, availability period, and a capacity. The following box shows the 

OCML definitions of the labour resource called px-labour-resource and the zone- 

resource called za-zone-resource.
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(def-class LABOUR-RESOURCE (resource))
(def-class ZONE-RESOURCE (resource))
(def-class px-labour-resource (labour-resource))
(def-instance PX-RESOURCE px-labour-resource 
((has-job-belonging '(new.step_003-l new.step_007-l)) 
(has-availability resource-availability-period)
(has-capacity 4)))

(def-class za-zone-resource (zone-resource))
(def-instance za-resource za-zone-resource 
((has-job-belonging '(new.step_001-2))
(has-availability resource-availability-period) 
(has-capacity 2)))

8.5.7.7 Modelling the constraints

The benchmark application includes the following two types of constraints:

• The work-step precedence constraint: This constraint is common to all the work- 

steps, and imposes a strict precedence ordering among all the work-steps. According to 

this constraint a work-step, say Wi precedes a work-step, say W2, if the latest end time 

of W] is before the earliest start time of W2 . This precedence constraint is imposed by 

using the data given in Table 8.7. A set of ten precedence constraints are defined 

between the work-steps. The following box shows the OCML definition of one such 

constraint imposed among the work-steps ‘new-step_001_l’ and 'new-step_001_2\

(def-instance PRECEDNCE-AMONG-NEW-STEP_001_1-NEW-STEP_001_2 
assembly-job-constraint 

((has-expression (kappa (?sc)
(exists ?new-step_001_l

(and (has-time-range 
?new-step_001_l 
?new.step_001-1-time-range)
(has-latest-end-time 
?new-step_001-1-1ime-range ?let)
(exists ?new-step_001_2 

(and
(has-time-range 
?new-step_001_2 
?new-step_001-2-time-range)
(has-earliest-start-time 
?new-step_001-2-time-range ?est) 
(precedes ?let ?est)
(JOB-PRECEDES 
?new-step_001_l 
?new-step_001 2)))))))) )

• The labour and zone resource constraint: The labour capacity constraint imposes 

a restriction on the number of work-steps each labour and zone resource can handle 

at any one time while eonstructing a schedule. This constraint is imposed by using 

the resource capacity data given in Table 8.8. A set of four resource constraints are 

defined to impose capacity constraint on the four labour resources and a set of 

thirteen constraints are defined to impose the capacity constraint on all the zone 

resources. In order to impose this constraint on the labour and zone resources, we 

first used the function called maximum-capacity-of-resource (cf. Section
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5.2.3), which retrieves the maximum number of work-steps each labour and zone 

resource can handle, and then an equality condition is imposed to constrain the 

maximum number of work-steps each resource can handle according to the data 

given in Table 8.8. The following box shows the OCML definitions of the capacity 

constraints imposed on the labour resource ‘px-labour-resource’ and the work-zone 

resource ‘za-zone-resource’.

(def-class ASSEMBLY-LABOUR-CONSTRAINT (hard-constraint))

(def-class ASSEMBLY-ZONE-CONSTRAINT (hard-constraint))

(def-instance PX-LABOUR-CAPACITY assembly-labour-constraint 
((applicable-to-resources '(setofall ?x (px-labour-resource ?x)))
(has-body (lambda (?x ?sc)

(exists ?x
(= (the ?xl (maximum-capacity-of-resource ?x)) 

3))))))
(def-instance ZA-ZONE-CAPACITY assembly-zone-constraint 
((applicable-to-resources '(setofall ?x (za-zone-resource)))
(has-body (lambda (?x ?sc)

(exists ?x
(= (the ?xl (maximum-capacity-of-resource ?x)) 

2 ))))))

While formalising this application, no additional definitions were needed in addition to 

those already exists in the scheduling task ontology. All the key classes from the task 

ontology such as job, resource, activity, time range, etc. provide the required level of detail 

and precision to capture the application-specific knowledge precisely. In the following 

section, we will discuss how the schedule for this application was constructed.

8.5.2 Applying the Propose & Backtrack method

To configure the Propose & Backtrack method, two types of application-speeific operators, 

benchmark-resource-operator and benchmark -1 ime - range - ope rat or were 

defined. The former type of operator is used to assign the work-steps to their required zone 

and labour resources as given in Table 8.8. The latter type of operator is defined in such a 

way that the correct time range can be assigned to all the work-steps for their in time 

completion. In total ten operators were defined. The following box shows the OCML 

definitions of the operators defined for work-step new-step_001-l.
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(def-class benchmark-resource-operator (schedule-extension-resource-operator))
(def-class benchmark-1ime-range-operator

(schedule-extension-time-range-operator))
(def- instance new-step-001-1-to-pz-labour-resource benchmark-resource-operator 
((applicable-to-jobs '(setofall ?x (new-step_001_l ?x)))
(has-body (lambda (?x ?sc)

(the ?pz-resource
(pz-resource ?pz-resource

has-j ob-belonging ?x))))))
(def-instance new-step-001-1-to-new-step-001-1-time-range benchmark-time-range- 
operator
((applicable-to-jobs '(setofall ?x (new-step_001_l ?x)))
(has-body (lambda (?x ?sc)

(the ?new-step_001-1-1ime-range
(new-step_001-1-time-range ?new-step_001-1-time-range))))))

(tell (schedule -operator-order new;-step-001-1-to-pz-labour-resource
new-step-001-1-to-new-step-001-1-time-range))

8.5.2.1 Focus and operator selection

As described earlier this application imposed a strict precedence among all the work-steps 

and while selecting a correct focus we complied with this application-specific knowledge. 

The method called job-selection-based-on-precedence (cf. Section 6.3.5) is used 

to select the focus. To represent the precedence among different work-steps we instantiated 

the relation job-precedes (cf. Section 5.2.2.3) from the scheduling task ontology and 

then this relation is used by the method job-select ion-based-on-precedence to 

sort the work-steps. Once a correct focus is selected then the order of operator application 

is determined by instantiating the relation schedule-operator-order.

8.5.2.2 Analysis

Having configured the P&B method, we first ran our experiment focusing on the full 

looking ahead heuristic. The basic idea of this heuristic is that when a value is assigned to a 

variable the problem is reduced through constraint propagation.

Because this application imposed a tight precedence constraint on all the work-steps, the 

solution space of this application was very well structured. This helped to improve the 

performance of the full looking ahead heuristic because this heuristic usually performs well 

on problems with tight constraints. However, while constructing a schedule by using full 

looking heuristic it was realised that this heuristic was computationally very expensive. In 

comparison with the partial looking ahead heuristic this heuristic required almost one 

hundred more schedule states to reach a solution state. One of the main reasons for the 

computational cost of this heuristic was that each time a new work-step was selected for its 

assignment this heuristic imposed a full consistency check of the value requirement (i.e., 

resources and time ranges) of the current work-step. In other words, the system was 

performing a value requirement consistency between a currently instantiated work-step and 

other unassigned work-steps, as well as between all unassigned work-steps. It was
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observed that these checks did not discover any new inconsistencies often enough to justify 

the large number of consistency checks performed. On the positive side, such type of 

consistency checks removed all those values from the domain of the future work-steps 

which were not compatible with the current assignment. This essentially helped to detect 

all dead-ends beforehand and therefore the search reached the solution state without any 

backtracking. As a result, 100% efficiency was achieved while constructing a schedule. 

The complete schedule for this application was constructed by generating 805 schedule 

states.

Then we ran the same application by using the partial looking ahead heuristic to analyse 

the performance of this heuristic. In comparison with the full looking ahead heuristic, the 

partial looking ahead heuristic proved to be computationally more efficient. The main 

reason why the partial looking ahead heuristic took less time to reach the solution state was 

because it made about half the consistency checks as compared to the full looking ahead 

heuristic. The partial looking ahead heuristic checked the value requirement consistency 

between the current work-step with all the unassigned work-steps, which directly or 

indirectly depend on it. As a result, by using the partial looking ahead heuristic, the 

complete schedule was constructed by generating 705 schedule states. Although this 

heuristic reached a solution state much more quickly compared to the full looking ahead 

one, the conflict detection policy of the full looking ahead heuristic is more robust and 

exhaustive, and has a higher chances of avoiding conflicts between the assigned and 

unassigned jobs.

Finally, our focus selection strategy helped to accomplish all the work-step jobs within 

their single shift. Because no constraints and requirements were violated while 

constructing a schedule, a complete and consistent schedule was returned.

Table 8.10 summarises the performance of our library on all the applications that are 

used to validate our library.

Table 8.10. Comparison between the performances of scheduling applications.

Application name Problem-solving 

method used to 

solve the 

application

Joh-selection 

heuristic used to 

select a job

Nuniher of 

schedule states 

required to 

generate a solution 

schedule

The satellite- 

scheduling

Propose & 

Backtrack, Hill

Job-selection- 
based-on-

464
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application Climbing, Propose 

& Improve

lowest-degrees- 
of-freedom

512

CIPHER- a resource

allocation

application

Propose & 

Backtrack

Job-selection-
based-on-
latest-end-time

1342

The daily ship-

maintenance

application

Generic-
Schedule,

Propose & Restore- 

feasibility

Job-selection- 
based- on- start - 
time

852

949

The weekly ship-

maintenance

application

Propose & 

Backtrack,

Propose & Revise

Job-selection- 
based -on- least - 
number-of- 
activities

1245

1401

The benchmark 

application

Propose & 

Backtrack

Job-selection-
based-on-
precedence

805

705

8.6 Evaluating the static and dynamic properties
As described by Preece e/ al. (1996), when we consider the validation and verification 

problem, it is useful to distinguish between the static and dynamic properties of a; rule- 

based system. The static properties are those characteristics of a rule-based system that can 

be evaluated without its execution, while the dynamic properties can be evaluated only by 

examining how the system operates at run time. The following bullet points describe the 

different characteristics that we have validated to evaluate the performance of our library.

• The goal requirements of each application that needs to be achieved by the PSMs in 

our library;

• The quality of the goal specifies whether a selected PSM from our library has

successfully achieved the goals specified by the application;

• The relation between the application-specific data and the way it has influenced to

achieve the goals proposed by the applications.

Table 8.11 summarises the results of our study.
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Table 8.11. Summary of the evaluation of the static and dynamic properties.

Application

name

Goal requirements Quality of the goal Relation between 

data and goals 

achieved

The satellite-

scheduling

application

To generate a 

complete and optimal 

schedule.

The P&B method 

has successfully 

constructed a

complete solution 

schedule, but it was 

not an optimal one.

The hill climbing 

method not only 

failed to produce an 

optimal solution, but 

it took higher 

number of schedule 

states to generate a 

complete schedule.

The P&I method 

successfully devised 

a complete and 

optimal schedule.

The data of this 

application was 

good enough to 

construct a

complete schedule, 

but while using the 

hill climbing

method it did not 

provide enough 

discriminating 

knowledge to break 

the tie between the 

assignments of 

Nimbus-1 and 

Nimbus-2 satellites. 

However, while 

using P&I, the data 

allowed us to swap 

the time slots of 

these two satellites 

to generate an 

optimal assignment.

CIPHER

resource

allocation

application

To generate a 

complete schedule.

The P&B method 

has successfully 

constructed a

complete schedule.

The data provided 

by this application 

was well specified. 

Therefore, solving 

this application by 

using P & B  turned 

out to be efficient 

as the solution 

space was very
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dense. As a result, 

very little search 

was required to

construct a

complete solution 

schedule.

The daily ship-

maintenance

application

To generate a 

complete and feasible 

schedule.

Generic- 
Schedule has 

successfully devised 

a complete schedule, 

but it was not a 

feasible one.

The P&Rf method 

has successfully

devised a feasible 

schedule by fixing 

the requirement

violation.

The data provided 

by this application 

was contradictory 

in nature. This 

application required 

all the jobs to 

complete within 

their daily

frequency, which 

led us to use a job 

selection heuristic 

that selected the 

jobs based on their 

earliest start time. 

However, this job 

selection violated a 

‘job priority

requirement’, which 

essentially needed 

to give priority to 

those jobs which 

have higher number 

of activities for 

their selection.

The weekly ship-

maintenance

application

To generate a 

complete and

consistent schedule.

The P&B method 

has successfully 

devised a complete 

schedule, but it was 

not a consistent one.

1) In compliance 

with the data, a job 

with the least 

number of activities
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The P&R method 

successfully devised 

a consistent schedule 

by fixing all the 

constraint violations.

Chapter 8 

was selected as a 

focus in P&B, but it 

violated the ‘daily 

frequency of ship- 

maintenance job’ 

constraint.

2) A strict 

precedence 

constraint imposed 

by the application 

data allowed us to 

maintain the daily 

frequency

constraint of other 

jobs that were not 

part of the 

constraint violation, 

but it did not allow 

us to improve the 

overall cycle time.

The benchmark 

application

To generate a 

complete schedule

The P&B method 

has successfully 

devised a complete 

schedule.

The data of this 

application was 

very well

structured, which 

helped to improve 

the performance of 

the full looking 

ahead heuristic, as 

this heuristic

performs well on 

problems with tight 

constraints.

8.7 Conclusion
In this chapter we have described the validation study of our library, which has been 

carried out on a number of scheduling applications. The applications used to validate our
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library covered a wide range of scheduling domains, such as space scheduling, resource 

allocation, and manufacturing. Despite the fact that these applications come from different 

domains, the methods in our library performed successfully.

As described in Section 1.4, because our task ontology formalised the scheduling task 

without subscribing to any application domain of scheduling, it allowed us to formalise all 

the heterogeneous scheduling applications successfully. In contrast with our task ontology 

some of the existing task ontologies (Hama et a l, 1992a, b and Smith and Becker, 1997) 

subscribed to the specific domain of scheduling and therefore it is difficult to realise how 

these task ontologies could have formalised the scheduling applications coming from 

different domains. Moreover, the existing scheduling task ontologies (Hama et aï., 1992a, 

b; Mizoguchi et a l, 1995; Smith and Becker, 1997) have only provided an incomplete 

coverage to the different concepts necessary' to characterise the scheduling task. For 

instance, the MULTIS task ontology (Mizoguchi et a l, 1995) failed to take into account a 

crucial concept like r e s o u rc e -c a p a c i ty  (cf. Section 5.2.3.1), and therefore this task 

ontology would have failed to provide a support to avoid job overlapping in the CIPHER 

application. Also in contrast with the job assignment task ontology (cf. Sections 3.4.2.1, 

5.3.1), all the concepts from our scheduling task ontology have provided an appropriate 

level of detail to formalise the application-specific knowledge. Finally, because our task 

ontology has provided an unequivocal distinction between constraints, requirements, and 

preferences, it helped us to formulate the application-specific knowledge without having to 

compromise with their meaning as shown in all the applications.

At the problem-solving level, the search acted as a fundamental problem-solving 

paradigm, which enabled a strong coupling^ between the scheduling task specification and 

the method specification. As described in Section 1.4, Generic-Schedule subscribed to 

the knowledge-intensive approach to schedule construction, which has abstracted different 

tasks, methods, heuristics, and also taken into account the domain-specific knowledge. 

And as shown throughout this chapter, these tasks and methods were reused to effectively 

to reason about different scheduling applications. Moreover, different heuristics from 

Generic- Schedule, such as dynamic consistency enforcement, full looking ahead and

 ̂ In our library, the problem-solving methods are developed to perform an efficient problem-solving to solve 

a specific type o f generic task, i.e. scheduling. This close association between a generic task specification and 

a method represents a strong coupling of the library. This coupling can be further strengthened by using a 

choice of a problem-solving paradigm (which is search in our library) as a mechanism for providing a 

principled approach for developing a generic problem-solving model and a method ontology for a given 

problem type.
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partial looking ahead improved the overall efficiency of schedule construction. Also, in 

contrast with the existing libraries (Hori and Yoshida, 1998; Sundin, 1994; Tijerino and 

Mizoguchi, 1993; Le Pape, 1994), which have provided only a limited support for a job 

selection, our library have provided a wide-range of job selection heuristics (cf. Section 

6.3.5), which not only selected a focus correctly, but also avoided unneeessary 

backtracking while constructing a schedule in all the applications.

Because our library consisted of a wide-range of PSMs, it allowed us to tackle the 

different types of inconsistencies, such as constraint or requirement violations, which 

occurred in different applications. In contrast with the comprehensive coverage provided 

by our library, none of the existing libraries (Hori and Yoshida, 1998; Sundin, 1994; 

Tijerino and Mizoguchi, 1993; Le Pape, 1994) have included the problem-solving methods 

which can reason about the requirement violation and optimisation issues of scheduling. 

Moreover, because our library did not subscribe to any scheduling domain all the PSMs 

were reused to construct heterogeneous applications with either very little or in some cases 

no configuration effort.
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SUMMARY AND CONCLUDING REMARKS

In this chapter, we conclude our work by summarising the research carried out in this 

thesis, highlighting the main contributions of this work and suggesting future research 

directions.

9.1 Summary
In this thesis, we have proposed a generic library of scheduling problem-solving methods. 

Our library subscribes to the TMDA knowledge modelling framework (Motta, 1999), 

which provides the key epistemological distinetions required to model scheduling 

engineering knowledge-based applications by reuse.

In compliance with the TMDA framework, we first formalised the space of scheduling 

problems by developing a generic task ontology (cf. Chapter 5). The task ontology is 

generic in the sense that it does not subscribe to any application domain or problem solving 

method. Then at the method level, we proposed a generic problem solving model. 

Generic-Schedule component of the library (cf. Chapter 6), which provides a 

comprehensive collection of tasks and methods, which cover the space of knowledge-based 

activities carried out during scheduling problem-solving. These tasks and methods can be 

specialised to construct more specific scheduling problem-solvers. As described in Chapter 

7, seven different knowledge-intensive methods. Hill Climbing, Propose & Backtrack 

(Runkel et a l, 1996), Propose & Improve (Motta, 1999), Propose & Revise (Marcus and 

McDermott, 1989), Propose & Restore-feasibility, Propose & Exchange (Poeck and 

Gappa, 1993), and Propose & Genetical-Exchange were constructed by reusing and 

specialising the tasks defined in Generic-Schedule. This uniform approach to method 

construction allowed us to compare and contrast the knowledge requirements of these 

PSMs. Moreover, these PSMs cover a wide range of scheduling task specifications with 

respect to criteria such as completion, constraint violation, requirement violation, and 

optimisation. Finally, as described in Chapter 8, our library has been validated on a number 

of scheduling applications, which confirmed its generic nature.

Our work contributes to scheduling research both from an analytical and an engineering 

perspective. Analytically, it provides both a novel integration of the various techniques that 

have been developed for seheduling and provides an insight into the various knowledge- 

intensive tasks that are carried out during scheduling problem solving. From an 

engineering perspective, our library offers comprehensive support for the rapid
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construction of scheduling applications in different domains. Finally, ours is the first 

library in the field that provides a eomprehensive eoverage of a variety of knowledge- 

intensive PSMs.

In the following section we discuss the major contributions of our research.

9.2 Contributions

9.2.1 A generic scheduling task ontology

As discussed in Chapter 3 (cf. Section 3.4.2) existing scheduling task ontologies - the job- 

assignment task ontology (Hori et a l, 1995; Hama et a l, 1993a, b), MULTIS (Mizoguchi 

et a l, 1995), and OZONE (Smith and Becker, 1997), have provided limited results. In 

some cases (Hama et a l, 1992a, b; Smith and Becker, 1997) these proposals focused on a 

speeific scheduling domain, which restricted their reusability. In contrast with such 

domain-specific approaches, our task ontology formalises the scheduling task without 

subscribing to any specific domain, and therefore, it provides wider coverage and better 

support for application development by reuse. Other task ontologies (Smith and Becker, 

1997) subscribed to a specific ‘problem-solving shelf. As a result, they only cover a subset 

of the space of scheduling tasks. In contrast with these approaches, our task ontology is 

independent of any specific problem-solving shell, and therefore, the concepts from our 

task ontology can be mapped to different problem-solving shells, tackling different types 

of scheduling tasks. Moreover, as described in Chapter 3 (cf. Section 3.4.2.4) existing task 

ontologies fail to address some of the important concepts that are necessary to characterise 

the scheduling task precisely. In particular, concepts such as requirements and preferences 

are typically missing. In contrast with these proposals, our task ontology provides a more 

sophisticated set of ontological distinctions separating constraints from requirements and 

preferences. The utility of these distinctions was shown in Chapter 8, where we 

demonstrated the importance of these distinctions for a correct modelling of task 

knowledge. Moreover, as shown in Chapter 8, the practical contribution of oui* task 

ontology is that it can be used as an ‘off the shelf resource to perform knowledge 

acquisition and formalise scheduling knowledge.

9.2.2 A generic model of scheduling problem solving

One of the main limitations of the existing scheduling libraries (Hori and Yoshida, 1998; 

Sundin, 1994; Le Pape, 1994; Tijerino and Mizoguchi, 1993) is that these proposals fail to 

provide a clean distinction between highly reusable generic components and non-reusable 

components. Therefore, it becomes very difficult to realise how the different components 

from these libraries can be reused to construct new PSMs. In contrast with the existing
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proposals, our generic problem solving model. Generic-Schedule provides a 

comprehensive and generic framework, which can be easily specialised to produces 

different PSMs. At the same time, these tasks and methods provide an insight into the 

various knowledge-intensive activities that take place during scheduling problem solving. 

Because a component like Generic-Schedule is missing from existing proposals (Hori 

and Yoshida, 1998; Sundin, 1994; Le Pape, 1994; Tijerino and Mizoguchi, 1993), these 

fail to offer the same degree of reusability.

Another important contribution at the method level was provided by the specification of 

a generic method ontology. This method ontology offers a highly generic vocabulary to 

characterise the search-based problem-solving behaviour of our scheduling PSMs.

Moreover, Generic-Schedule exhibits a nice integration of the results from the 

constraint satisfaction community. For instance, heuristics such as downstream consistency 

enforcement (Sadeh, 1994),^// looking ahead, partial looking ahead (Haralick and Elliot, 

1980) are included in Generic-Schedule. From a search perspective. Generic- 
Schedule proposes a wide range of job selection methods (cf. Section 6.3.5), which can 

improve the efficiency of schedule construction by reducing unnecessary backtracking. 

Finally, Generic-Schedule itself can be used as a reusable and operational scheduling 

component to construct scheduling applications.

9.2.3 A comprehensive repertoire of scheduling problem solvers 
Our library improves existing proposals (Hori and Yoshida, 1998; Sundin, 1994; Le Pape, 

1994; Tijerino and Mizoguchi, 1993) in terms of three dimensions: size o f the library, 

coverage of the PSMs with respect to different types of scheduling problems, and 

reusability. In contrast with the existing libraries (Hori and Yoshida, 1998; Sundin, 1994; 

Le Pape, 1994; Tijerino and Mizoguchi, 1993), our library provides a comprehensive and 

rich repertoire of the knowledge-intensive PSMs to tackle the scheduling task. For 

instance, the CommonKADS library (Sundin, 1994) only takes into account the Propose & 

Revise method (Marcus and McDermott, 1989), while other libraries (Hori and Yoshida, 

1998; Le Pape, 1994; Tijerino and Mizoguchi, 1993) provide very limited set of PSMs. In 

addition our PSMs are very heterogeneous dealing with constraint and requirement 

violations as well as schedule optimisation issues. Because existing libraries provide only a 

limited set of scheduling PSMs, they fail to tackle the different types of scheduling 

problems. Finally, some of the existing libraries (Hori and Yoshida, 1998) tackle the 

scheduling task only from the perspective of a specific domain, such as production 

scheduling, and therefore, they have limited reusability. As shown in Chapter 8, the
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domain independent nature of our library allows us to solve scheduling applications in 

different domains.

9.2.4 Contribution to scheduling knowledge acquisition

Throughout the construction of our library, we have developed different types of templates 

either to construct the ontologies or to compare and contrast the knowledge requirements 

of different PSMs (cf. Section 7.1). These generic templates and the ontologies can be used 

to acquire the relevant scheduling knowledge. Here, the term ‘knowledge acquisition’ can 

be understood both in analytical and practical terms, given that this acquired knowledge is 

directly used to obtain concrete problem solvers.

9.2.5 Contribution to scheduling epistemology

Our scheduling task ontology is based on a clear theoretical model of the scheduling task 

(cf. Section 5.1), which distinguishes between different components such as constraints, 

requirements, and preferences. Moreover it also provides an adequate level of detail to 

specify all the components necessary to characterise a scheduling problem. As a result, it 

acts as a clear reference point to frame the space of scheduling problems.

At the method level. G en eric-S ch ed u le  and other PSMs in our library provide a 

theoretical insight into the various knowledge-intensive activities needed for constructing a 

schedule.

9.2.5 Development of job selection heuristics

Another contribution made by this thesis to the seheduling domain is provided by the three 

job selection heuristics (cf. Section 6.3.5). As discussed in Chapter 2 (cf. Section 2.6), 

several rules and heuristics have been developed both in OR and Al to select a correct job. 

The selection of a correct job is an important activity in scheduling because it improves the 

efficieney of the schedule construction process. These heuristies are as follows:

a) Job-selection-based-on-due-date: if any two jobs are competing with each other for the 

usage of the same resource, then a job with the earliest due date is always given priority 

for its execution. Panwalkar and Iskander (1977) list more than one hundred job selection 

rules and one of the rules from their list selects a job based on a due date. The fundamental 

difference between their rule and our heuristic is that, in our heuristic a job with the earliest 

due date is selected only when this job is competing with some other jobs for the same 

resource, while no such condition is imposed in their rule;

b) Job-selection-based-on-bottleneck-resources: the jobs that are using the bottleneck 

resources are always given priority. Sueh jobs are assumed to provide better control in 

maintaining the global stability of a schedule;
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c) Job-selection-based-on-number-of-activities: a job with the highest number of activities 

is given priority.

These heuristics are particularly important as they reduce unnecessary backtracking 

during schedule construction by selecting a correct job.

Having described the main contributions of our research, in the following section we will 

discuss future research directions.

9.3 Future research directions

9.3.1 Extending the current technology to develop a planning library
Our existing technology can be extended to address the planning domain. Like scheduling, 

planning can be seen as a synthesis task, which involves formulating a sequence of actions 

to achieve a desired goal. Although, at a theoretical-level the planning and scheduling tasks 

can be distinguished on the basis of their goal criteria, in real-life this distinction often gets 

blurred. The planning task determines how the actions can be sequenced to achieve the 

desired goal, whereas the scheduling task allocates these actions on the available resources 

within a specific time range. Over the years, various planning paradigms have emerged in 

Al, such as Classical Planning (Pikes and Nilson, 1971), Decision Theoretic Planning 

(Blythe, 1999), and Hierarchical Task Network (HTN) (Erol et a l, 1994). However, as 

pointed out by Smith et a l (2000) all the planning systems which have been developed for 

the practical applications subscribe to the HTN planning paradigm (Nau et a l, 1999).

Some attempts have been made in the past at developing a library of PSMs to solve the 

planning task (Blythe and Gil, 1999; Valente et a l, 1998; Tu and Musen, 1996). These 

libraries can be taken as a starting point for our research and our ultimate aim is to 

amalgamate the different planning paradigms to construct a truly generic planning system.

9.3.2 Interactive scheduling component

Because our library uses different specialised knowledge modelling techniques, the 

existing version of our system requires a certain level of expertise from its end users to 

produce scheduling applications. For instance, a scheduling application needs to be 

formalised by constructing its application ontology and a user needs to have enough 

knowledge to formalise his/her application by using the appropriate knowledge modelling 

language. As a result, these are high-end technological barriers for any non-technical users 

who wish to use our library. In future, we aim to lower this technical barrier by developing 

an interactive component to facilitate the use of our library.
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The following points deseribe the main features that will be included in our envisaged

interactive scheduling component:

1) Construction of the KA forms: The main purpose behind the development of the KA 

forms is to accelerate the process of representing different types of applications. The 

user should be able to represent his/her applications simply by populating the slots of 

the existing classes by using the KA forms. Moreover, we also envisage a certain level 

of flexibility that will enable end users to change other properties of the existing 

definitions. Having represented an application, a user can simply select one of the 

existing PSMs from our library to construct a solution schedule. At this stage we would 

like to take advantage of some of the existing in-house technologies, such as IRS-II

. (Motta et a l, 2003), which offers these types of functionalities;

2) Schedule manipulation in a semi-automatic or manual mode: This would allow a 

human scheduler to interact with the system to update the status of an existing schedule 

in compliance with the dynamic changes that occur in the scheduling environment. 

This mode is aimed to provide a seheduler with an overview of a schedule at any given 

time by displaying the current allocation status of the resources in a clear and 

systematic manner. Furthermore, a scheduler should also be able to enter new changes 

in the existing schedule such as interrupting a job during its execution, starting a job 

somewhere else on a time-line, or changing a sequence of job executions to improve 

the performance of a schedule. The remaining part of a schedule should adapt 

dynamically according to the changes introduced by a scheduler;

3) Schedule representation in familiar formats: Once a schedule is constructed then 

this component is expected to supervise a scheduler by displaying the status of a 

schedule and job processing in terms of a Bar Chart. According to the status and 

urgency of the jobs they cover be displayed by using different colour schema. Based on 

the status of the jobs a scheduler can then enter into the semiautomatic or manual mode 

to update a schedule. Due to this type of continuous feedback from the system, a 

scheduler is expected to gain more control over the entire scheduling process. Finally, a 

solution schedule can be represented by using familiar formats, such as Gantt Charts.

9.3.3 Towards Nano-Planning

Nanotechnology proposes a fundamental breakthrough to both biological and non-

biological problems. The idea of atomic scale engineering originated from the cornerstone
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talk given by Richard Feynman on December 1959* at the annual meeting of the 

American Physical Society. The notion of atomie engineering resides at the core of nano

scale engineering whereby the atoms themselves can be seen as pre-fabricated components 

(Merkle, 1997). Today’s manufacturing process is rather crude at the atomic level, but 

according to the envisaged vision of nanotechnology in the future it will become possible 

to arrange these primary building-blocks precisely in accordance with the laws of physics. 

The environment in which this process takes place is referred to as the eutectic 

environment (Drexler, 1992). The cost effectiveness of this process is a crucial factor that 

can be achieved by automating the molecular manufacturing process (Drexler, 1992). The 

engineering process of the molecular size products can be achieved by nano-scale robots, 

which are referred to as the assemblers (Merkle, 1996).

The planning and scheduling paradigms^ will be key methods to detennine the atomic 

assembly sequences in the eutectic environment (Drexler, 1992; Kandikjan and Dukovski, 

1995). The automated planning in particular can be envisaged to be crucial for the 

development of the nano-scale components and has the following components - knowledge 

representation and domain modelling, traditional planning, scheduling and constraint 

satisfaction, machine learning and adaptive planning, nano-robotic fine motor control, 

computer-aided economic analysis, and advanced graphical simulation. Along with the 

planning techniques, the issue of time optimal schedules will be particularly important in 

the molecular manufacturing process, because time will be one of the major determinants 

for the cost-effectiveness of the molecular engineered components. Finally, different 

techniques from the constraint satisfaction literature will be particularly important when 

the manufacturing is carried out interactively by a large group of assemblers, given that it 

will be essential to optimise the organisation of these large groups of assemblers, each of 

which subject to energy and spatial constraints.

In sum it is likely that, the development of efficient and cost-effective assemblers will 

bring a revolution in various industrial seetors, such as medicine, manufacturing, energy 

efficient processes, space and aeronautical research. Our library provides an initial 

component of the technology required to achieve this vision.

This talk can be found on the following URL: http://www.zwex.com/nanoteclVfevnman.html 

 ̂(Czam and MacNish: http://citeseer.ni.nec.eom/104691.html)
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Reusability:

Our library is generic in the sense that it does not subscribe to any specific 

domain of scheduling, while our task ontology is reusable because it 

formalises the scheduling task without subscribing to any application 

domain of scheduling or the way scheduling problem can be solved.

Ontology:

An ontology is an explicit specification of a conceptualisation. It provides 

a shared and common understanding of a domain that can be 

communicated across people and computation systems dealing with 

applications within a specific domain.

Problem-solving methods (PSM):

A PSM describes the inference process underlying a KBS in an 

implementation and domain-independent way.

Task/Generic Task:

The notion of a task specifies a goal for a problem solver, such as 

producing a valid schedule for the satellite-antenna communication. The 

notion of task is crucial to knowledge modeling because the knowledge- 

based systems are characterised and evaluated on task-specific criteria.

The notion of a Generic Task specifies a knowledge level, application- 

independent description of a goal, which has to be achieved by the 

problem solver.

Knowledge modelling approach:

The notion of a knowledge modelling approach can be understood as 

follows: 1) knowledge engineering is not a cognitive modelling, i.e. 

reproducing expert reasoning, but it is about developing systems that 

perform knowledge-based problem solving and its performance can be 

evaluated in a task-specific way, 2) heterogeneous classes of applications 

has similar features that can be reasoned about by constructing generic 

models of problem solving, 3) the process of knowledge acquisition 

should not be characterised as a process of mapping expert knowledge to 

a computational representation, but it is an intelligent model-building 

process in which the application specific knowledge is configured 

according to available problem-solving technique, and 4) such intelligent
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models can be described at a level, which abstracts from implementation 

considerations.

Knowledge acquisition approach:

The notion of knowledge acquisition can be realised by the following two 

ways: knowledge acquisition as mining and knowledge acquisition as a 

modelling. The ‘knowledge acquisition as mining’ can be characterised in 

terms of the earlier expert systems, which refers to the fact that discrete 

and distinct expertise knowledge can be elicited systematically from the 

domain experts.

In this thesis we subscribe to the ‘knowledge acquisition as a modelling’ 

approach. The crucial features of this approach can be realised based on 

knowledge modelling approach described earlier.

Control regime:

Modelling the problem-solving behaviour involves more than making 

statements and describing entities in the world. Control regimes are 

required to specify actions and describe the order in which these are 

executed. OCML supports the specification of sequential, iterative, and 

conditional control structures by means of a number of control term 

constructors such as repeat, loop, do, if and cond, among others.

Slot:

Context:

The slots, say Sd of a class, say ci has a unique binding with ci, which 

represent the attributes of ci. For instance, if there is a class called job, 

which has attributes, such as it requires certain resources for its execution, 

has a time range within which a job must be accomplished, etc. then these 

attributes can be represented by the following slots - requires- 
resource and h a s-time-range.

The notion of a context specifies the primary function of the problem

solving method within each problem-solving phase that has to be carried 

out to achieve a solution. For instance, the Propose & Exchange method 

(Poeck and Puppe, 1992) has two problem-solving phases - the propose 

phase and the exchange phase, and the context in the propose phase is to 

extend an incomplete schedule such that a complete solution schedule is 

generated, whereas if any of the constraints are violated while
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constructing a complete sehedule then the context in the exchange phase 

is to revise an inconsistent schedule to fix the constraint violations.

Focus:

The notion of a focus exemplifies those variables in the problem 

formulation which are under scrutiny during each phase of the problem

solving method and these variables must be grounded in order to construct 

a solution. For instance, the Propose & Exchange method (Poeck and 

Puppe, 1992) has the following two problem-solving phases: the propose 

phase and the exchange phase. Because the main function of the propose 

phase is to construct a complete schedule, and therefore, in this phase the 

focus is on one of the unassigned jobs, which must be assigned to 

construct a complete solution schedule. And if any of the constraints are 

violated while constructing a complete schedule then the exchange phase 

is invoked to fix the constraint violations and the focus in this phase on 

those constraint violations which must be fixed.

Knowledge-roles:

In compliance with the Generic Tasks approach (Chandrasekaran, 1986) a 

top-level task (which in our case is the scheduling task) can be 

decomposed into a small number of sub-tasks and sub-methods can be 

proposed to achieve these tasks. These tasks specify the application 

domain specific static and dynamic knowledge for their execution. These 

knowledge pieces essentially represent the abstract names of data objects 

that represent the role of these objects in the reasoning steps.

Strong and weak coupling:

In our library the problem-solving methods are developed to perform an 

efficient problem-solving to solve the specific type of generic task, i.e. 

scheduling. This close association between a generic task specification 

and a method represents a strong coupling of the library. This coupling 

can be further strengthened by using a choice of a problem-solving 

paradigm (which is search in our library) as a mechanism for providing a 

principled approach to developing a generic problem-solving model and a 

method ontology for a given problem type.

In our library the domain-specific knowledge is multi-functional in nature 

such that this knowledge charaeterizes the task independent aspects of a 

domain. As a result, this domain-speeifie knowledge can be used in many
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ways. However, this domain-specific knowledge can be used in order to 

improve the efficiency of problem-solving, and this association between 

multi-functional domain knowledge and its utilization within problem

solving method represents a weak coupling.

Knowledge-intensive PSMs:

Knowledge-intensive problem-solving methods are the ones that make 

heavy use of the application domain specific knowledge during problem 

solving. For instance, in our library the operators that are used to assign 

jobs to resources and time ranges are constructed and selected in 

compliance with the applieation specific knowledge. Different job 

selection heuristics used to select a correct job make effective use of the 

domain specific knowledge while executing this problem-solving action.

Constraint and requirement:

Constraints represent those properties which a solution schedule must not 

violate under any circumstances throughout a schedule construction. 

Requirements represent those properties which a solution schedule should 

satisfy in order to become a feasible solution.

Precondition:

The preconditions -are associated with a goal-specification task and they 

are used to specify what must be true before executing a goal- 

specification task.

Goal-expression:

The goal-expression is used to specify the goal associated with a goal- 

specification-task. For instance, in our library the scheduling task is a 

goal-specification task and a goal associated with this task is to generate a 

valid schedule.

Job/activities:

The notion of a job represents an entity that has a list of activities and can 

be assigned over available resources and time ranges for its execution. 

Each job can have a list of activities that need to be performed in order to 

accomplish a job. For instance, in the manufacturing environment, a 

drilling job could have activities such as: drilling-machine set-up, loading 

of a drilling job on a drilling-machine, actual drilling operation, unloading 

of a drilling job from a drilling-machine, etc.
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Appendix 1

A COMPLETE SPECIFICATION OF THE  

SCHEDULING TASK ONTOLOGY

-*- Mode: LISP; Syntax: Common-lisp; Base: 10; Package: OCML; -*- 
THE OPEN UNIVERSITY 
Author: Dnyanesh Rajpathak 

(in-ontology scheduling!)

(def-class SCHEDULING-TASK (goal-specification-task) ?task
"Scheduling task is defined as an assignment of time constrained jobs to time constrained 
resources within a given time frame, which indicates the total time-horizon of a schedule. 
An admissible schedule will have to satisfy all the constraints imposed on jobs or 
resources while maintaining the requirements. The output to the scheduling task is a legal 
schedule in accordance with the solution criteria such as, complete, admissible and 
feasible."
((has-input-role :value has-jobs

:value has-activities 
:value has-resources 
:value has-hard-constraints 
:value has-requirements 
:value has-schedule-1ime-range 
:value has-preferences 
:value has-cost-function 
:value has-cost-algebra)

(has-output-role :value has-schedule-model :max-cardinality 1)
(has-schedule-model :type schedule-model :max-cardinality 1)
(has-jobs : type list :min-cardinality 1)
(has-activities : type list :min-cardinality 1)
(has-resources :type list :min-cardinality 1)
(has-hard-constraints : type hard-constraint)
(has-requirements : type requirement)
(has-schedule-time-range : type time-range :max-cardinality 1)
(has-preferences :type preference : cardinality 1)
(has-cost-function : type cost-function :max-cardinality 1)
(has-cost-algebra : default-value '(+-<) : cardinality 1)
(has-precondition : documentation "Scheduling task must have a job and a

resource in order to generate schedule."
:value (kappa (?task)

(exists (?x ?y)
(and (member ?x (role-value

?task 'has-jobs))
(member ?y (role-value 

?task
'has-resources) ) ) ) ) )(has-goal-expression : type binary-kappa-expression

; ; ; The goal is to generate a schedule
:default-value (kappa (?task ?schedule-model)

(default-schedule-solution 
?schedule-model ?task))))

; ; there has to be at least one job and one resource to generate a schedule.
: constraint (and (> (length (role-value ?task 'has-jobs)) 0)

(> (length (role-value ?task 'has-resources)) 0)))
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(def-class JOB () ?j
"A job is an entity that can be assigned to resources and time ranges and has a list of 
activities."
((has-activities ; type list

: documentation "Each job can have list of activities 
in order to accomplish the job.")

(requires-resource : type resource :min-cardinality 1
: documentation "It says that each job requires resources 

on which it can be assigned.")
(requires-resource-type : type resource-type :min-cardinality 1)
(has-time-range : type job-time-range :max-cardinality 1

: documentation "It represents the time range of a job 
within which job must finish.")

(has-due-date : type calendar-date :max-cardinality 1
: documentation "It represents the calendar date of

each job by which it has to dispatch.")
(has-duration : type duration :max-cardinality 1)
(has-load : type integer :default-value 1

: documentation "It represents the number of resources that are 
needed by each job."))

: iff-def (exists ?task (and (scheduling-task ?task)
(member ?j (role-value ?task has-jobs)))))

(def-relation ASSIGNED-TO-RESOURCE (?j ?r ?sc)
: iff-def (and (job ?j)

(resource ?r)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: constraint (or (member ?r (setofall ?r2 (requires-resource ?j ?r2)))
(empty-set (setofall ?r (requires-resource ?j ?r)))))

(def-relation ASSIGNED-TO-RESOURCE-TYPE (?j ?rtype ?sc)
: iff-def (and (job ?j)

(resource-type ?rtype)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: constraint (or (and (member ?rtype
(setofall ?rtype2 (requires-resource-type 

?j ?rt]/pe2) ) )
(holds ?rtype ?r))

(empty-set ?rtype (requires-resource-type ?j ?rtype))))

(def-relation ASSIGNED-TO-JOB-TIME-RANGE (?j ?jtr ?sc)
: iff-def (and (job ?j)

(job-time-range ?jtr)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: constraint (or (member '? jtr (the ?jtr2 (has-time-range ?j ?jtr2) ) )
(empty-set (the ?jtr (has-time-range ?j ?jtr)))))

(def-relation ASSIGNED-TO-ACTIVITY (?j ?a ?sc)
: iff-def (and (job ?j)

(activity ?a)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: constraint (or (member ?a (setofall ?a2 (has-activities ?j ?a2)))
(empty-set (setofall ?a (has-activities ?j ?a)))))

(def-relation ASSIGNED-JOB (?x ?sc)
"The job is said to be an assigned job if it is assigned to the resource and has a time 
range."
: iff-def (and (exists ?r (and (resource ?r)

(assigned-to-resource ?x ?r ?sc)))
(exists ?a (and (activity ?a)

(assigned-to-activity ?x ?a ?sc)))
(exists ?jtr (and (job-time-range ?jtr)

(assigned-to-job-time-range ?x ?jtr ?sc)))))

(def-relation UNASSIGNED-JOB (?x ?sc)
"It is true if the job is not assigned-job."
: iff-def (not (assigned-job ?x ?sc)))

(def-function RESOURCE-ASSIGNED-TO-A-JOB (?x ?sc) -> ?r
"This function gives the resource assigned to the job in a schedule."
: constraint (and (schedule-model ?sc)

(resource ?r)
(job ?x))

:body (the ?r (assigned-to-resource ?x ?r ?sc)))
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(def-function RESOURCE-TYPE-ASSIGNED-TO-A-JOB (?x ?sc) -> ?rtype 
"This function gives the resource-type assigned to the job in a schedule. 
: constraint (and (resource-type ?rtype)

(schedule-model ?sc)
(job ?x))

:body (the ?rtype (assigned-to-resource-type ?x ?rtype ?sc)))

(def-function TIME-RANGE-ASSIGNED-TO-A-JOB (?x ?sc) -> ?jtr
"This function gives a time-range assigned to the job in a schedule."
: constraint (and (schedule-model ?sc)

(job-time-range ?jtr)
(job ?x) )

:body (the ?jtr (assigned-to-job-time-range ?x ?jtr ?sc)))

(def-function ACTIVITY-ASSIGNED-TO-A-JOB (?x ?sc) -> ?a 
: constraint (and (schedule-model ?sc)

(activity ?a)
(job ?x) )

zbody (the ?a (assigned-to-activity ?x ?a ?sc)))

(def-class JOB-TIME-RANGE () ?jtr.
"It represents the time range of each job in terms of its earliest and latest start and end 
time."
((has-earliest-start-time : type time-point :min-cardinality 1)
(has-latest-start-time : type time-point :min-cardinality 1)
(has-earliest-end-time : type time-point :min-cardinality 1)
(has-latest-end-time : type time-point :min-cardinality 1))

: constraint (or (precedes (the ?est (has-earliest-start-time ?jtr ?est))
(the ?eet (has-earliest-end-time ?jtr ?eet)))

(precedes (the ?lst (has-latest-start-time ?jtr ?lst))
(the ?let (has-latest-end-time ?jtr ?let)))))

(def-relation JOB-START-TIME-EARLIER-THAN (?estl ?est2)
"This relation states that if the earliest start time of job-time-range-1 is earlier than 
that of the other."
: constraint (and (time-point ?estl)

(time-point ?est2))
: iff-def (exists ?job (and (job ?job has-time-range ?jtrl)

(has-earliest-start-time ?jtrl ?estl)
(exists.?job2 (and (job ?job2 has-time-range ?jtr2) 

(has-earliest-start-time 
?jtr2 ?est2)
(precedes ?esl ?est2))))))

(def-relation JOB-TIME-RANGES-OVERLAP (?jtr-l ?jtr-2)
"This overlapping relation is exclusively defined for the job time ranges."
: constraint (and (job-time-range ?jtr-l)

(job-time-range ?jtr-2))
: iff-def (and (and (precedes (the ?est-l (has-earliest-start-time

?jtr-1 ?est-l))
(the ?est-2 (has-earliest-start-time 

?jtr-2 ?est-2)))
(precedes (the ?lst-l (has-latest-start-time ?jtr-1 ?lst-l)) 

(the ?lst-2 (has-latest-start-time 
?jtr-2 ?lst-2))))

(and (follows (the ?eet-l 
(the ?est-2

(follows (the ?eet-l
(follows

(has-earliest-end-time ?jtr-l ?eet-l)1 
(has-earliest-start-time ?jtr-2 ?est-2)))
(has-earliest-end-time ?jtr-l ?eet-l)) 

(the ?lst-2 (has-latest-start-time ?jtr-2 ?lst-2))) (the ?let-l (has-latest-end-time ?jtr-l ?let-D)
(the ?est-2 (has-earliest-start-time ?jtr-2 ?est-2)))

(follows (the ?let-l (has-latest-end-time ?jtr-l ?let-D)
(the ?lst-2 (has-latest-start-time ?jtr-2 ?lst-2] 
(the ?eet-l (has-earliest-end-time ? jtr-1 ?eet-D) (the ?eet-2 (has-earliest-end-time ?jtr-2 ?eet-2))) 
(the ?let-l (has-latest-end-time ?jtr-l ?let-D) 
(the ?let-2 (has-latest-end-time ?jtr-2 ?let-2))))))

(and (precedes 
(precedes

)))

(def-function START-TIME-OF-A-JOB (?j ?jtr) -> ?est 
"This function retrieves the earliest start time of each job." 
: constraint (and (job ?j has-time-range ?jtr)

(time-point ?est))
-.body (the ?est (has-earliest-start-time ? jtr ?est)))

(def-function LATEST-START-TIME-OF-A-JOB (?j ?jtr) -> ?let 
"This function retrieves the latest start time of each job."
: constraint (and (job ?j has-time-range ?jtr)

(time-point ?let))
:body (the ?let (has-latest-end-time ?jtr ?let)))
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(def-function EARLIEST-END-TIME-OF-A-JOB (?j ?jtr) -> ?eet 
"This function retrives an earliest end time of each job."
: constraint (and (job ?j has-time-range ?jtr)

(time-point ?eet))
:body (the ?eet (has-earliest-end-time ?jtr ?eet)))

(def-function LATEST-END-TIME-OF-A-JOB (?j ?jtr) -> ?let 
"This function retrieves the latest end time of each job."
: constraint (and (job ?j has-time-range ?jtr)

(time-point ?let))
:body (the ?let (has-latest-end-time ?jtr ?let)))

(def-function JOB-TIME-RANGE-DURATION (?j ?jtr) -> ?time-point 
"This function calculates the duration of a job."
: constraint (and (job ?j)

(has-time-range ?j ?jtr)
(job-time-range ?jtr)) 

zbody (- (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?jtr has-earliest-start-time)))

(def-class JOB-TYPE (job) ?jt 
((has-activity-type : type activity-type

: documentation "It specialises an activity
: iff-def (subclass-of ?jt job))

in its more specific types."))

(def-function DUE-DATE-OF-A-JOB (?j) -> ?due-date 
"This function returns a due-date of a job."
: constraint (and (calendar-date ?due-date)

(job ?j))
zbody (the ?due-date (has-due-date ?j ?due-date)))

(def-relation JOB-PRECEDES (?jl ?j2)
"This relation expresses the temporal constraint among any two jobs says that, if the , 
latest-end-time of jl is less than or equal to the earliest-start-time of j2 then j1 „ ‘ 
precedes j 2."
: constraint (and (job ?jl)

(job ?j2) )
: iff-def (and (has-time-range ?jl ?]tr-l)

(has-time-range ?j2 ?jtr-2)
(not (= (?jl ?j2)))
(<= (the-slot-value ?jtr-1 has-latest-end-time)

(the-slot-value ?jtr-2 has-earliest-start-time))))

(def-relation CRITICAL-JOB (?jl ?j2)
"The job-1 is a critical job as that of job-2, if the due-date of job-1 is earlier than 
due-date job-2."
: iff-def (and (job ?jl has-due-date ?ddl)

(job ?j2 has-due-date ?dd2)
(not (= (?jl ?j2)))
(due-date-earlier-than-other ?ddl ?dd2)))

(def-relation HIGHER-PRIORITY-JOB (?jl ?j2)
"This relation states that if a j ob-1 ime-range-durât ion of one job is less than that of a
other job then the job is a higher priority job."
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
: iff-def (and (= (job-time-range-durâtion ?j1 ?jtrl) ?jdl)

(= (j ob-1 ime-range-durat ion ?j2.?jtr2) ?jd2)
(< ?jdl ?jd2)))

(def-relation HIGHER-PRIORITY-JOB-BASED-ON-ACTIVITIES (?jl ?j2)
"This relation states that a job that has a least number of activities is a high priority 
j ob. "
: constraint (and (job ?jl has-activities ?al)

(job ?j2 has-activities ?a2)
; iff-def (and (number-of-activities-within-job ?jl) ?listl) 

(number-of-activities-within-job ?j2) ?list2) 
(length ?listl) ?ll)
(length ?list2) ?12)
?11 ?1 2 )))

(def-relation EARLIER-START-TIME-OF-A-JOB (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
: iff-def (and (has-earliest-start-time ?jtrl ?estl) 

(has-earliest-start-time ?jtr2 ?est2)
(<> ?jl ?j2)
(job-Start-time-earlier-than ?estl ?est2)))
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(def-relation ACTIVITY-PRECEDES (?al ?a2)
: constraint (and (activity ?al)

(activity ?a2))
: iff-def (and (has-time-range ?al ?jtr-al)

(has-time-range ?a2 ?jtr-a2)
(has-duration ?al ?dl)
(<= (time-point-sum (the-slot-value

?jtr-al has-earliest-start-time) 
(magnitude-of-duration ?dl))

(the-slot-value ?jtr-a2 has-earliest-start-time))) 
:axiom-def (defines-partial-order activity-precedes))

; Temporal relations among jobs

(def-relation FINISHES-BEFORE (?jl ?j2)
"This relation says that if earliest end time of of job-1 precedes the earliest start time
of job-2, then job-1 finishes-before job-2."
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
: iff-def (precedes (the-slot-value ?jtrl has-earliest-end-time)

(the-slot-value ?jtr2 has-latest-start-time)))

(def-relation JOBl-SCHEDULED-BEFORE-JOB2 (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2)
{= ?jdl (j ob-1 ime-range-durat ion ?jl ?jtrl))
(= ?jd2 (j ob-1 ime-range-durat ion ?j2 ?jtr2)))

: iff-def (and (< (+ ?jdl ?jd2)
(- (latest-end-time ?jtrl ?letl)

(earliest-start-time ?jtr2 ?estl)))
(<= (+ ?jdl ?jd2)

(- (latest-end-time ?jtr2 ?let2)
(earliest-start-time ?jtrl ?estl)))))

(def-relation J0B2-SCHEDULED-BEF0RE-JOBl (?j2 ?jl)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2)
{= ?jdl (job-time-range-durâtion ?j1 ?jtrl))
(= ?jd2 (j ob-1 ime-range-dura t ion ?j2 ?jtr2)))

: iff-def (and (< (+ ?jdl ?jd2)
(- (latest-end-time ?jr2 ?let2)

(earliest-start-time ?jtrl ?estl)))
(<= (+ ?jdl ?jd2)

(- (latest-end-time ?j trl ?letl)
(earliest-start-time ?jtr2 ?est2)))))

(def-relation NO-FEASIBLE-ORDERING-POSSIBLE (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2)
(= ?jdl (job-time-range-durâtion ?jl ?jtrl))
(= ?jd2 (job-time-range-durâtion ?j2 ?jtr2)))

: iff-def (and (> (+ ?jdl ?jd2)
(- (latest-end-time ?jtrl ?letl)

(earliest-start-time ?jtr2 ?est2)))
(> (+ ?jdl ?jd2)

(- (latest-end-time ?jtr2 ?let2)
(earliest-start-time ?jtrl ?estl)))))

(def-relation ANY-ORDERING-IS-ALLOWED (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2)
(= ?jdl (job-time-range-durâtion ?jl ?jtrl))
(= ?jd2 (j ob-1 ime-range-durât ion ?j2 ?jtr2)))

: iff-def (and (<= (+ ?jdl ?jd2)
(- (latest-end-time ?jtrl ?jl)

(earliest-start-time ?jtr2 ?j2)))
(<= (+ ?jdl ?jd2)

(- (latest-end-time ?jtr2 ?j2)
(earliest-start-time ?jtrl ?jl)))))

(def-function NUMBER-OF-ACTIVITIES-WITHIN-JOB (?j) -> ?list 
"This function retrieves the list of activities within each job. 
: constraint (and (job ?j)

(list ?list)) 
zbody (the ?list (has-activities ?job ?list)))
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(def-relation JOB-FINISHES-IN-TIME (?j ?sc)
: constraint (and (job ?j has-time-range ?jtr) 

(has-due-date ?j ?dd)
(schedule-model ?sc)
(element-of (?j ?r ?a ?jtr) ?sc))

: iff-def (or (< (the-slot-value ?jtr has-latest-end-time) 
(the-slot-value ?dd day-of))

(< (the-slot-value ?jtr has-latest-end-time) 
(the-slot-value ?dd month-of))

(< (the-slot-value ?jtr has-latest-end-time) 
(the-slot-value ?dd year-of))))

(def-relation JOB-NOT-FINISHES-IN-TIME (?job ?sc) 
: constraint (and (job ?job)

(schedule-model ?sc))
: iff-def (not (job-finishes-in-time ?job ?sc)))

(def-function LATENESS-OF-A-JOB-BY-DAY (?j) -> ?tp 
: constraint (and (job ?j)

(has-time-range ? j ?.jtr)
(has-due-date ?j ?ddj)
(time-point ?tp)) 

zbody (the ?tp (- (the-slot-value ?jtr has-latest-end-time) 
(the-slot-value ?ddj day-of))))

(def-function LATENESS-OF-A-JOB-BY-MONTH (?j) -? ?tp 
zconstraint (and (job ?j)

(has-time-range ?j ?jtr)
(has-due-date ?j ?ddj)
(time-point ?tp)) 

zbody (the ?tp (- (the-slot-value ?jtr has-latest-end-time) 
(the-slot-value ?ddj month-of))))

(def-function LATENESS-OF-A-JOB-BY-YEAR (?j) -> ?tp 
zconstraint (and (job ?j)

(has-1ime-range ?j ?jtr)
(has-due-date ?j ?ddj)
(time-point ?tp)) 

zbody (the ?tp (- (the-slot-value ?jtr has-latest-end-time) 
(the-slot-value ?ddj year-of))))

(def-function JOB-TARDINESS (?j) -> ?tp 
zconstraint (and (job ?j)

(time-point ?tp)) 
zbody (the ?tp (lateness-of-a-job-by-day ?j)))

(def-function JOB-TARDINESS-FOR-A-MONTH (?j) -> ?tp 
zconstraint (and (job ?j)

(time-point ?tp)) 
zbody (the ?tp (lateness-of-a-job-by-month ?j)))

(def-function JOB-TRADINESS-FOR-A-YEAR (?j) -> ?tp 
zconstraint (and (job ?j)

(time-point ?tp)) 
zbody (the ?tp (lateness-of-a-job-by-year ?j)))

(def-class ACTIVITY () ?a 
"It represents the list of activities within a job."
((has-duration ztype duration zmax-cardinality 1

zdocumentation "This represents a duration of 
an individual activity.")

(requires-resource z type resource zcardinality 1)
(requires-resource-type z type resource-type zcardinality 1)
(has-job-belonging ztype job zcardinality 1

zdocumentation "This represents a job to which an 
activity belongs.")

(has-time-range ztype job-time-range zmax-cardinality 1
zdocumentation "It represents the time range 

of each activity.")
(has-load ztype integer zdefault-value 1)) 

ziff-def (exists ?j (and (job ?j)
(member ?a (has-activities ?j ?list)))) 

zconstraint (exists ?task (and (scheduling-task ?task)
(member ?a (role-value ?task has-activities)))))
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(def-class RESOURCE () ?r
"The resource is an entity to which the jobs can be assigned for their execution."
((handles-job-type : type job-type : cardinality 1

: documentâtion "It represents the type of jobs
each resource is capable of handling.")

(handles-job : type job : cardinality 1
: documentation "It represents the kind of jobs each 

resource is capable of handling.")
(handles-activity ztype activity zcardinality 1

zdocumentation "It represents the kind of activities
each resource is capable of handling.")

(has-availability ztype time-range zmin-cardinality 1
zdocumentâtion "It represents the availability period 

of each resource within which resource 
can execute the jobs.")

(has-capacity ztype number zdefault-value 1
zdocumentâtion "It represents the number of jobs each 

resource can handle in parallel.")) 
ziff-def (exists ?task (and (scheduling-task ?task)

(member ?r (role-value ?task has-resources)))) 
zconstraint (or (exists ?jtype (and (job-type ?jtype)

(handles-job-type ?r ?jtype)))
(exists ?j (and (job ?j)

(handles-job ?r ?j)))
(exists ?a (and (activity ?a)

(handles-activity ?r ?a)))))

(def-class UNARY-RESOURCE (resource) ?ur 
zconstraint (exists ?r (and (resource ?r)

(= (MAXIMUM-CAPACITY-OF-RESOURCE ?r) 1))))

(def-axiom RESOURCE-CAPACITY .
"This axiom says that if there is a resource ri which has capacity ni, then schedule cannot 
have more than ni jobs whose time ranges are overlapping with each other."
(forall (?ri ?sc)

(=> (unary-resource ?ri has-capacity ?ni)
(not (exists ?j (and (element-of (?j ?ri ?a ?jtr) ?sc)

(= ?all (setofall ?j2
(and (element-of (?j2 ?ri ?a2 ?jtr2) ?sc)

(job-time-ranges-overlap 
(?jtr ?jtr2))
(not (= (?j ?j2))))))

(> (length (cons ?j ?all2)) ?ni)))))))

(def-class RESOURCE-TYPE () ?rt 
ziff-def (subclass-of ?rt resource))

(def-relation JOB-AND-RESOURCE-TIME-RANGE (?j ?r)
"This relation states that a time range of a job should be during or equal to the 
availability period of a resource." 
zconstraint (and (job ?j requires-resource ?r)

(has-time-range ?j ?jtr)
(resource ?r has-availability ?tr)) 

ziff-def (job-time-range-during-or-equal ?jtr ?tr))

(def-function RESOURCE-HANDLES-JOB (?r ?sc) -> ?j
"This function retrieves the jobs that a resource can handle in a schedule." 
zconstraint (and (resource ?r)

(schedule-model ?sc)
(job ? j ) )

zbody (the ?j (handles-job ?r ?j ?sc)))

(def-function RESOURCE-TIME-AVAILABILITY (?r) -> ?tr 
"This function retrieves the time-availability of a resource." 
zconstraint (time-range ?tr)
zbody (the ?tr (resource ?r has-availability ?tr)))

(def-function MAXIMUM-CAPACITY-OF-RESOURCE (?r) -> ?number 
"This function gives the maximum capacity of a resource." 
zconstraint (and (resource ?r)

(number ?number)) 
zbody (the ?number (has-capacity ?r ?number)))
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(def-class CONSTRAINT () ?c
"This definition of constraint is common to the hard constraint as well."
((applicability-condition :default-value (kappa (?sc) (true)) : type unary-relation) 
(has-expression : cardinality 1 ; type unary-relation

: documentation "This argument is a schedule")))

(def-class HARD-CONSTRAINT (constraint))

(def-class REQUIREMENT ()
"A requirement express the properties which has to be satisfied by a solution schedule. 
((applicability-condition rdefault-value (kappa (?sc) (true))

: type unary-relation)
(has-expression : cardinality 1 : type unary-relation

: documentation "The argument must be a schedule")))

(def-relation REQUIREMENT-APPLICABLE (?r ?sc)
: constraint (requirement ?r)
: iff-def (holds (the ?x (applicability-condition ?r ?x)) ?sc))

(def-relation CONSTRAINT-APPLICABLE (?c ?sc)
: constraint (constraint ?c)
: iff-def (holds (the ?x (applicability-condition ?c ?x)) ?sc))

(def-relation HARD-CONSTRAINT-APPLICABLE (?hc ?sc)
: constraint (hard-constraint ?hc)
: iff-def (holds (the ?x (applicability-condition ?hc ?x)) ?sc))

;NOTE : Classes Time-Range, Duration are defined in the Simple-Time ontology.

(def-class SCHEDULE-MODEL (set.) ? schedule-task
"The schedule is defined in terms of a quadruple of the form (job resource activity job
time -range) which is modelled by the class job-assignment. The schedule is true for any ■ 
element of class job-assignment and false for any other quadruple."
: iff-def (and (= ?quadruples (setofall ?quadruple

(element-of ?quadruple ?schedule-task)))
(every ?quadruples job-assignment)))

(def-class JOB-ASSIGNMENT () ?quadruple
"The job assignment models a quadruple of the form (job resource activity job-time-range) 
: iff-def (and (== ?quadruple (?j ?r ?a ?jtr))

(job ?j)
(member ?a (has-activities ?j ?list))
(resource ?r)
(job-time-range ?jtr)))

(def-class SCHEDULE-TYPE () ?c
: iff-def (subclass-of ?c schedule-model))

(def-relation DEFAULT-SCHEDULE-SOLUTION (?sc ?task)
: constraint (and (schedule-model ?sc)

(scheduling-task ?task))
: iff-def (and (schedule-is-correct ?sc)

(schedule-minimally-complete ?sc
(role-value ?task has-jobs))

(maximally-admissible-schedule ?sc
(role-value
?task has-hard-constraints)

(schedule-is-feasible ?sc
(role-value ?task has-requirements))))

(def-relation SCHEDULE-IS-CORRECT (?sc)
"It says that if no pair <j . a> appears in more than one quadruple in a schedule."
: iff-def (and (schedule-model ?sc)

( =  (setofall (?j . ?a)
(element-of (?j ?r ?a ?jtr) ?sc)) ?quadruplel)

(not (exists ?quadruplez
(and (element-of ?quadruplez ?sc)
(member (?j . ?a) ?quadrupleZ))))))

(def-relation SCHEDULE-MINIMALLY-COMPLETE (?sc ?jobs)
"The schedule is complete when each job is assigned to a resource and has a time range."

: iff-def (not (exists ?x
(and (member ?x ?jobs)

(unassigned-job ?X ?sc)))))
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(def-relation SCHEDULE-MINIMALLY-INCOMPLETE (?sc ?jobs)
: iff-def (exists ?x (and (member ?x ?jobs)

(unassigned-job ?X ?sc))))

(def-relation SCHEDULE-IS-FEASIBLE (?sc ?requirements)
"The schedule is feasible if it satisfies all the requirements by the completion of a 
schedule."
: constraint (and (list ?requirements)

(every ?requirements requirement)
(schedule-model ?sc))

: iff-def (not (exists ?x (and (member ?x ?requirements)
(schedule-violates-requirement ?sc ?x)))))

(def-relation SCHEDULE-VIOLATES-REQUIREMENT (?sc ?requirements)
; constraint (and (list ?requirements)

(every ?requirements requirement)
(schedule-model ?sc))

: iff-def (and (requirement-applicable ?requirements ?sc)
(not (holds (the ?x (has-expression ?requirements ?x)) ?sc))))

(def-relation SCHEDULE-SATISFIES-REQUIREMENT (?sc ?requirements)
: constraint (and (list ?requirements)

(every ?requirements requirement)
(schedule-model ?sc))

: iff-def (and (requirement-applicable ?requirements ?sc)
(holds (the ?x (has-expression ?requirements ?x)) ?sc)))

(def-relation IIINIMALLY-ADMISSIBLE-SCHEDULE (?sc ?hard-constraints)
"The schedule is minimally admissible if none of the hard constraints are violated."
: constraint (and (list ?hard-constraints)

(every ?hard-constraints hard-constraint).
(schedule-model ?sc))

: iff-def (not (exists ?x
(and (member ?x ?hard-constraints)

(schedule-violates-constraint ?sc ?x)))))

(def-relation MAXIMALLY-ADMISSIBLE-SCHEDULE (?sc ?hard-constraints) '
"The schedule is maximally admissible if it satisfies all the hard as well as soft 
constraints by the completion of a schedule."

: constraint (and (list ?hard-constraints)
(every ?hard-constraints hard-constraint)
(schedule-model ?sc))

: iff-def (not (exists ?x
(and (member ?x ?hard-constraints)

(schedule-violâtes-constraint ?sc ?x)))))

(def-relation SCHEDULE-VIOLATES-CONSTRAINT (?sc Pconstraints) /i
: constraint (and (list Tconstraints)

(every ?constraints constraint))
(schedule-model ?sc))

: iff-def (and (constraint-applicable ?constraints ?sc)
(not (holds (the ?x (has-expression ?constraints ?x)) ?sc))))

(def-relation SCHEDULE-SATISFIES-CONSTRAINT (?sc ?constraints)
: constraint (and (list ?constraints)

(every ?constraints constraint)
(schedule-model ?sc))

: iff-def (and (constraint-applicable ?constraints ?sc)
(holds (the ?x (has-expression Tconstraints ?x)) ?sc)))

(def-relation SCHEDULE-SATISFIES-HARD-CONSTRAINT (?sc ?hard-constraints)
: constraint (and (list ?hard-constraints)

(every ?hard-constraints hard-constraint)
(schedule-model ?sc))

: iff-def (and (hard-constraint-applicable ?hard-constraints ?sc)
(holds (the ?x (has-expression ?hard-constraints ?x)) ?sc)))

(def-relation ADMISSIBLE-SCHEDULE (?js ?as)
"This relation says that the time range of each activity within a job has to be DURING the 
time range of a job."
: constraint (and (list ?js)

(every ?js job)
(list ?as)
(every ?as activity)
(has-time-range ?js ?jtr)
(has-time-range ?as ?jtra))

: iff-def (job-activity-time-range-during ?jtra ?jtr))
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(def-relation OPTIMAL-SCHEDULE-SOLUTION (?scl ?task)
"The schedule-solution Ssol is an optimal if there is no other schedule solution which has 
a lower cost than Ssol."
: constraint (scheduling-task ?task)
: iff-def (and (default-schedule-solution ?scl ?task)

(not (exists ?sc2
(and (default-schedule-solution ?sc2 ?task)

(has-cost-order-relation ?task ?rel)
(cheaper-schedule ?rel ?scl ?sc2))))))

(def-relation CHEAPER-SCHEDULE (?rel ?scl ?sc2)
: constraint (and (order-relation ?rel)

(schedule-model ?scl)
(schedule-model ?sc2))

: iff-def (holds ?rell ?scl ?sc2))

(def-relation SCHEDULE-EXTENDS (?scl ?sc2)
: iff-def (and (forall ?j

(=> (assigned-job ?j ?sc2)
(assigned-job ?j ?scl)))

(exists ?j2 (and (assigned-job ?j2 ?scl)
(unassigned-job ?j2 ?sc2)))))

(def-class PREFERENCE () ?p
"A preference gives the order over two schedules."
((has-expression : cardinality 1 ztype prefer-expression)))

(def-class PREFER-EXPRESSION (proof - expression) ?,exp 
((proves-relation zvalue prefer))

zconstraint (and (== ?exp (?tail if . ?rest))
(== ?tail (prefer ?schedule-taskl ?schedule-task2))))

(def-relation PREFER (?schedule-taskl ?schedule-taskZ)
"This relation expresses the preferences between two schedules." 
zconstraint (and (schedule-model ?schedule-taskl)

(schedule-model ?schedule-task2) ) 
zaxiom-def (defines-partial-order prefer))

(def-axiom COST-SUBSUMES-PREFERENCES
"This axiom tells that the cost function subsumes each preference."
(forall (?schedule-taskl ? schedule-taskZ)

( =  >(and (scheduling-task ?task has-preferences ?prs 
has-cost-function ?cf)

(has-cost-order-relation ?task ?rel)
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp '(prefer ?schedule-taskl ?schedule-task2)))

(cheaper-schedule ?rel ?schedule-taskl ?schedule-task2))))

(def-axiom COST-PREFERENCE-CONSISTENCY
"This axiom states that the cost function should not contradict any partial order expressed 
by preferences."
(forall (?schedule-taskl ?schedule-taskZ)

(=> (and (scheduling-task ?task has-preferences ?prs
has-cost-function ?cf)

(has-cost-order-relation ?task ?rel)
(cheaper-schedule ?rel ?schedule-taskl ?schedule-taskZ))

(not (exists ?pr
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp "(prefer

?schedule-task2 ?schedule-taskl)))))))

(def-class COST () ?x
"The cost is represented as a Real-Number or Vector." 
zsufficient (or (real-number ?x)

(vector ?x)))

(def-class COST-FUNCTION (unary-function) ?cf
"This function takes a schedule as an input and returns its cost." 
ziff-def (and (domain ?cf schedule-model)

(range ?cf cost)))

(def-relation HAS-COST-ORDER-RELATION (?scheduling-task ?rel) 
ziff-def (= ?rel (third (has-cost-algebra ?scheduling-task ?alg))))

(def-relation HAS-COST-DIFFERENCE-FUNCTION (?scheduling-task ?rel) 
z iff-def (= ?rel (second (has-cost-algebra ?scheduling-task ?alg))))
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{def-relation HAS-COST-SUM-FUNCTION (? scheduling-task ?rel)
: iff-def (= ?rel (first (has-cost-algebra ?scheduling-task ?alg))))

(def-function ADD-VECTOR-COSTS (?cl &rest ?rest-costs)
: constraint (and (= (length ?cl) ?n)

(every ?rest-costs (kappa (?c)
{= (length ?c) ?n))))

zbody (if (null ?cl) 
nil
(cons (apply + (map first (cons (?cl ?rest-costs)))

(apply add-vector-costs
(map rest (cons ?cl ?rest-costs)))))))

(def-function SUBTRACT-VECTOR-COSTS (?cl &rest ?rest-costs) 
zconstraint (and (= (length ?cl) ?n)

(every ?rest-costs (kappa (?c)
{= (length ?c) ?n))))

zbody (if (null ?cl) 
nil
(cons (apply - (map first (cons (?cl ?rest-costs)))

(apply add-vector-costs
(map rest (cons ?cl ?rest-costs)))))))

(def-relation CHEAPER-VECTOR-COST (?cl ?c2) 
z iff-def (and (not (null ?cl))

(not (null ?c2))
(or (< (first ?cl)

(first ?c2))
(cheaper-vector-cost (rest ?c2) (rest ?c2)))))

; Rather loosely constrained job precedence relations;

(def-relation STARTS-AFTER (?jl ?j2)
"This relation is opposite of finishes-before, it implies, if earliest start time of job-2 
follows the latest end time of job-1, then job-2 starts-after job-2." 
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2)) 
ziff-def (follows (the-slot-value ?jtr2 has-earliest-start-time)

(the-slot-value ?jtrl has-latest-end-time)))

(def-relation EQUALS (?jl ?j2)
"This relation says that both jobs job-1 and job-2 are equal to each other, if they start 
simultaneously and finish simultaneously. " 
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
ziff-def (and (time-points-equal (the-slot-value ?jtrl has-earliest-start-time) >

(the-slot-value ?jtr2 has-earliest-start-cime))
(time-points-equa1 (the-slot-value ?jtrl has-latest-end-time)

(the-slot-value ?jtr2 has-latest-end-time))))

(def-relation JOB-MEETS (?jl ?j2) 
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
ziff-def (time-points-equal (the-slot-value ?jtrl has-latest-end-time)

(the-slot-value ?jtr2 has-earliest-start-time)))

(def-relation JOBS-OVERLAP (?jl ?j2) 
zconstraint (and (job ?j1 has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
ziff-def (and (precedes (the-slot-value ?jtrl has-latest-start-time)

(the-slot-value ?jtr2 has-earliest-start-time))
(follows (the-slot-value ?jtrl has-earliest-end-time)

(the-slot-value ??jtr2 has-earliest-start-time))
(precedes (the-slot-value ?j trl has-earliest-end-time)

(the-slot-value ?jtr2 has-earliest-end-time))))

(def-relation JOB-IS-DURING (?jl ?j2) 
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
z iff-def (and (follows (the-slot-value ?jl has-earliest-start-time)

(the-slot-value ?j2 has-latest-start-time))
(precedes (the-slot-value ?j1 has-latest-end-time)

(the-slot-value ?j2 has-earliest-end-time))))

(def-relation JOBS-START-SIMULTANEOUSLY (?jl ?j2) 
zconstraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
z iff-def (time-points-equal (the-slot-value ?jtrl has-earliest-start-time)

(the-slot-value ?jtr2 has-earliest-start-time)))
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{def-relation JOBS-FINISH-SIMULTANEOUSLY (?jl ?j2)
: constraint (and (job ?jl has-time-range ?jtrl)

(job ?j2 has-time-range ?jtr2))
: iff-def (time-points-equal (the-slot-value ?jtrl has-latest-end-time)

(the-slot-value ?jtr2 has-latest-end-time)))
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A COMPLETE SPECIFICATION OF A GENERIC 

MODEL OF SCHEDULING PROBLEM-SOLVING

-*- Mode: LISP; Syntax: Common-lisp; Base: 10; Package: OCML; -*- 
THE OPEN UNIVERSITY 
Author: Dnyanesh Rajpathak

(in-package "OCML")

(in-ontology generic-schedule)

(def-class SCHDULE-SPACE () ?x
"The schedule space is composed of set of schedule states and it is associated with the 
scheduling task."
((associated-with-task ztype scheduling-task zcardinality 1)
(has-states ztype set zcardinality 1 zdefault-value nil)) 

zconstraint (=> (member ?s (the ?set (has-states ?x ?set)))
(schedule-state ?s)))

(def-class SCHEDULE-STATE () ?c
"Each schedule state has a unique association with a schedule model."
((has-schedule-model zcardinality 1 ztype schedule-model)))

(def-relation STATE-TRANSITION (?sl ?schedule-op ?s2)
"This relation is essential to achieve the state transition within a schedule space." 
ziff-def (and (schedule-state ?sl has-schedule-model ?schedule-taskl)

(schedule-state ?s2 has - schedule-model ?schedule-task2)
(schedule-operator ?schedule-op has-body ?fun)
(= ?schedule-task2 (call ?fun ?schedule-taskl))
(not (= ?schedule-taskl ?schedule-task2))))

(def-function PREDECESSOR (?s)
"This function retrieves the predecessor state of a current state." 

zconstraint (schedule-state ?s) 
zbody (the ?sl (state-transition ?sl ?op ?s) ))

(def-function SUCCESSOR (?s)
"This function retrieves the successor state of a current state." 

zconstraint (schedule-state ?s) 
zbody (the ?sl (state-transition ?s ?op ?sl)))

(def-function COMPUTE-STATE-COST (?s ?task) 
zconstraint (and (schedule-state ?s)

(scheduling-task ?task)) 
zbody (call (the ?f (has-cost-function ?task ?f))

(the ?schedule-task (has-schedule-model ?s ?schedule-task))))

(def-class SCHEDULE-OPERATOR ()
"A state transition in the problem-space specifies a link between 
two schedule states, that is to say between two schedules. State transitions 
are carried out by means of schedule operators."
((assumption zdefault-value (true)

ztype relation-express!on 
zdocumentation
"This slot can be used to specify a statement that is expected 
to hold for the application domain in which the operator is 
applied. The difference between assumptions and preconditions 
is that while the former are static and the latter are dynamic.
The truth value of a precondition might change during the schedule 
generation. Assumptions may or are expected to remain (un-) satisfied 
during the scheduling process")

(has-precondition z def ault-value (triie)
z type relation-expression)

(has-body z type schedule-operator-body)))
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(def-class SCHEDULE-OPERATOR-BODY (unary-function) ?fun
"A body of a schedule operator is a unary function that takes as input a schedule-model, 
says schedule-taski, and produces as an output a schedule-model schedule-taskj"

: no-op (: constraint (and (domain ?fun schedule-model)
(range ?fun schedule-model)
(<=> (= (call ?fun ?schedule-taski) ?schedule-taskj)

(not (= ?schedule-taski ?schedule-taskj))))))

(def-class BASIC-OPERATOR (schedule-operator)
)

(def-class MULTIPLE-OPERATOR (schedule-operator)

(def-relation 3CHEDULE-0PERAT0R-0RDER (?x ?c) 
: constraint (and (schedule-operator ?x) 

(schedule-operator ?c)
(not (= ?x ?c))))

(tell (defines-partial-order schedule-operator-order))

(def-function COMPUTE-OPERATOR-COST (?op ?task)
: constraint (and (schedule-operator ?op)

(scheduling-task ?task)) 
zbody (if (and (has-cost-difference-function ?task ?fun) 

(state-transition ?sl ?op ?s2))
(call ?fun ?s2 ?sl)))

(def-class SCHEDULE-EXTENSION-RESOURCE-OPERATOR (schedule-operator)
"This operator can be used to assign a job to its resources."
((applicable-to-jobs zdefault-value '(setofall ?x (job ?x)) 

ztype funetion-expression
zdocumentation "An expression which returns the set

of jobs whose resources can be assigned 
by means of this operator")

(has-precondition zdefault-value (kappa (?schedule-task) (true)) 
ztype relation-expression
zdocumentation "This is an expression which can be used to check 

if an opeiator is applicable in the current 
state - i.e. schedule-model. This expression 
should not depend on a particular job")

(has-body z type schedule-extension-resource-operator-body)))

(def-class SCHEDULE-EXTENSION-RESOURCE-OPERATOR-BODY (lambda-expression) ?x 
"A basic schedule extension operator body is a unary function which takes an
unassigned job, say ?j, and returns a resource, ?r, which is assigned to ?j
in the successor schedule state" 
zno-op (zconstraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (requires-resource ?j ?resource)
(resource ?z) ) ) ) ) )

(def-class SCHEDULE-EXTENSION-RESOURCE-TYPE-OPERATOR (schedule-operator)
"This operator can be used to assign a job to its more specific resource types."
( (applicable-to-jobs zdefault-value '(setofall ?x (job ?x)) 

z type function-expression
zdocumentation "An expression which returns the set 

of jobs whose resource-types can be 
assigned by means of this operator")

(has-precondition zdefault-value (kappa (?schedule-task) (true)) 
ztype relation-expression
zdocumentation "This is an expression which can be used to check 

if an operator is applicable in the current 
state - i.e. schedule. This expression 
should not depend on a particular job")

(has-body ztype schedule-extension-resource-type-operator-body)))

(def-class SCHEDULE-EXTENSION-RESOURCE-TYPE-OPERATOR-BODY (lambda-expression) ,?x 
"A basic schedule extension operator body is a unary function which takes an 
unassigned job, say ?j and produces a result, ?z, which belongs to the 
resource-type. ?z is taken as the new resource-type of ?j in the successor 
schedule state" 
zno-op (zconstraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (requires-resource-type ?j ?resource-type) 
(resource-type ?z))))))
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(def-class SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR (schedule-operator)
"This operator can be used to assign a job to its time range."
{(applicable-to-jobs ;default-value '(setofall ?x (job ?x)) 

ztype function-expression
: documentation "An expression which returns the set

of jobs whose resources can be assigned 
by means of this operator")

(has-precondition zdefault-value (kappa (?schedule-task) (true)) 
z type relation-expression
zdocumentation "This is an expression which can be used to check 

if an operator is applicable in the current 
state - i.e. schedule. This expression 
should not depend on a particular job")

(has-body ztype schedule-extension-time-range-operator-body)))

(def-class SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR-BODY (lambda-expression) ?x 
"A basic schedule extension operator body is a unary function which takes an
unassigned job, say ?j and produces a result, ?z, which belongs to the
resource. ?z is taken as the new resource of ?j in the successor 
schedule state"
zno-op (zconstraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (has-time-range ?j ?jtr)
(job-time-range ?z))))))

(def-class SCHEDULE-EXTENSION-ACTIVITY-OPERATOR (schedule-operator)
((applicable-to-jobs zdefault-value '(setofall ?x (job ?x)) 

z type function-expression)
(has-precondition zdefault-value (kappa (?schedule-task) (true)) 

z type relation-expression)
(has-body ztype schedule-extension-activity-operator-body)))

(def-class SCHEDULE-EXTENSION-ACTIVITY-OPERATOR-BODY (lambda-expression) ?x 
zno-op (zconstraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?j))

(and (has-activities ?j ?list)
(member ?z ?list))))))

(def-class MULTIPLE-SCHEDULE-EXTENSION-RESOURCE-OPERATOR
(SCHEDULE- EXTENSION-RESOURCE-OPERATOR multiple-operator)

((has-body ztype nultiple-schedule-extension-resource-operator-body)))

(def-class MULTIPLE- SCHEDULE-EXTENSION-RESOURCE-OPERATOR-BODY 
(lambda-expression) ?x

"A multiple schedule extension operator body is a binary function which takes a job, say 
?j, and a list of resources, say ?resources, and produces a result, ?z, which belongs to 
the resource range of ?j but is not a member of the list resources ? z  is taken as the new 
resource of ?j in the successor schedule state." 

zno-op (zconstraint (and (nth-domain ?x 1 job)
(nth-domain ?x 2 ?y)
(=> (= ?z (call ?x ?j ?resources))

(and (requires-resource ?j ?resource)
(forall ?r (-> (member ?r ?resources)

(member ?r ?resource)))
(member ?z ?resource)
(not (member ?z Presources)))))))

(def-class MULTIPLE- S CHEDULE- EXTENSION- RESOUP CE- TYPE-OPERATOR
(SCHEDULE-EXTENSION-RESOURCE-TYPE-OPERATOR multiple-operator)

( (has-body zt̂ -pe mu 11 ipl a - schedule - extension-resource-type-operator-body) ) )

(def-class MULTIPLE-SCHEDULE-EXTENSION-RESOURCE-TYPE-OPERATOR-BODY 
(lambda-expression) ?x

"A multiple schedule extension operator body is a binary function which takes a job, say 
?j, and a list of resource-types, say Presource-types, and produces a result, Pz, which 
belongs to the resource-type of Pj but is not a member of the list Presource-types.Pz is 
taken as the new resource-type of Pj in the successor schedule state." 

zno-op (zconstraint (and (nth-domain Px 1 job)
(nth-domain Px 2 Py)
(=> (= Pz (call Px Pj Presource-types))

(and (requires-resource-type Pj Presource-type)
(forall Prtype (=> (member

Pr Presource-types)
(member
Prtype
Presource-type)))

(member Pz Presource-t^q^e)
(not (member Pz Presource-types)))))))
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(def-class MULTIPLE-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR

(SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR multiple-operator)
((has-body ztype multiple-schedule-extension-time-range-operator-body)))

(def-class MULTIPLE-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR-BODY 
(lambda-expression) ?x 

zno-op (zconstraint (and (nth-domain ?x 1 job)
(nth-domain ?x 2 ?y)
( = > (= ?z (call ?x ?j ? j ob-1 ime-range s))

(and (has-time-range ?j ?job-time-range) 
(forall ?jtr (=> (member

?jtr ?job-time-ranges) 
(member
?jtr Pjob-time-range))) 

(member ?z ?job-time-range)
(not (member ?z ?job-time-ranges)))))))

(def-class MULTIPLE-SCHEDULE-EXTENSION-ACTIVITY-OPERATOR
(schedule-extension-activity-operator multiple-operator)

((has-body ztype multiple-schedule-extension-activity-operator-body)))

(def-class MULTIPLE-SCHEDULE-EXTENSION-ACTIVITY-OPERATOR-BODY 
(lambda-expression) ?x 

zno-op (zconstraint (and (nth-domain ?x 1 job)(nth-domain ?x 2 ?y)
(=> (= ?z (call ?x ?j Pactivities))

(and (has-activities Pj Plist)
(forall Pa (=> (member Pa Pactivities) 

(member Pa Plist))) (member Pz Plist)
(not (member Pz Pactivities)))))))

(def-relation PRECONDITION-HOLDS (Pop Psc) 
zconstraint (and (schedule-operator Pop)

(schedule-model Psc)) 
ziff-def (and (has-precondition Pop Pexp)

(holds Pexp Psc)))

Job dependency network

(def-relation JOB-DEPENDS-ON ;(Pj1 Pj2)
"This relation states that an assignment of one job, jl, depend on other job, j2." 
zconstraint (and (job Pjl)(job Pj2) ) )

(def-relation JOB-AFFECTS (Pjl-Pj2)
"This relation is an inverse of the relation job-depends-on." 
zconstraint (and (job Pjl)(job Pj2) ) 
z iff-def (j ob-depends-on Pj2 Pj1))

(def-relation JOB-ASSIGNABLE (Pj Psc)
"A job is assignable if it is an unassigned job in a schedule and all other jobs that 
depend on it are already assigned." 
ziff-def (and (job Pj)

(schedule-model Psc)
(= PI (setofall Px (job-depends-on Pj PX)))(every PI (kappa (Px)

(assigned-job Px Psc)))))

(def-function ALL-ASSIGNABLE-JOBS (Pjs Psc)
"This function retrieves all the unassigned jobs while constructing a schedule." 

zbody (setofall Px (and (member Px Pjs)
(unassigned-job Px Psc)
(job-assignable Px Psc))))

(def-function RELEVANT-OPERATORS (Pj)
"This function retrieves all the relevant operators that are necessary to assign a job." 

zconstraint (job Pj)
zbody (setofall Pop (and (schedule-operator Pop)

(member Pj
(the PI (applicable-to-jobs Pop PI))))))

(def-relation APPLICABLE-TO-JOBS (Px PI)
"A relation which associates an object such as a constraint or a schedule operator to a 

set of jobs to which the object is 'applicable'" 
zconstraint (and (set PI)

(every PI job)))
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(def-function RELEVANT-CONSTRAINTS (?j)
: constraint (job ?j)
zbody (setofall ?c (and (psm-constraint ?c)(member ?j

(the ?1 (applicable-to-jobs ?c 71))))))

(def-class PSM-CONSTRAINT (constraint)
((applicable-to-jobs ztype function-expression

zdocumentation "An expression which returns the set 
of jobs to which this constraint is applicable")(has-expression zcardinality 1

ztype unary-relation)
(has-precondition zdefault-value '(kappa (?j ?schedule-task) (true)) 

ztype kappa-expression
zdocumentation "This is an expression which can be used to determine 

whether a constraint makes sense for a given job 
assignment")))

(def-class PSM-HARD-CONSTRAINT (PSM-CONSTRAINT))

(def-class PSM-REQUIREMENT (requirement) '
((applicable-to-jobs ztype function-expression

zdocumentation "An expression which returns the set of jobs 
to which this requirement is applicable")(has-expression zcardinality 1

z type unary-relation)
(has-precondition zdefault-value '(kappa (?j ?schedule-task) (true)) 

ztype kappa-expression
zdocumentation "This is an expression which can be used to 

determine whether a requirement makes sense for a given job assignment")))

(def-function COLLECT-HARD-CONSTRAINT-VIOLATIONS (?s ?task)"Takes a state and a scheduling task and returns 
the set of task hard-constraints which are violated by the 
schedule associated with the state" 
zconstraint (and (schedule-state ?s)

(scheduling-task ?task)) 
zbody (setofall ?hc (and (has-schedule-model ?s ?schedule-task)

(member ?hc (the ?1 (has-hard-constraints 
?task ?1)))

(schedule-violates-constraint 
?schedule-task ?constraints)
(list ?constraints)
(every ?constraints constraint))))

(def-class PSM-SPECIFIC-JOB () ?j
"A job is an entity that can be assigned to the resource and has a list of activities:: "((has-activities ztype list

zdocumentation "Each job can have list of activities 
in order to accomplish the job.")

(has-activity-type ztype activity-type
zdocumentation "It specialises an activity in 

more specific types.")(requires-resource z type resource zmin-cardinality 1
zdocumentation "It says that each job require resources 

on which it can be assigned.")
(requires-resource-type ztype resource-type zmin-cardinality 1)
(has-time-range ztype job-time-range zmax-cardinality 1zdocumentation "It represents the time range of a

job, within which job must finish.")
(has-due-date zt̂ -pe calendar-date z max-cardinal ity 1

zdocumentation "It represents the calendar date for
each job by which it has to dispatch.")(has-load ztype integer zdefault-value 1

zdocumentation "It represents the number of resources 
requires by each job.")

(j ob-depends-on z type job)
(job-affects ztype job)
(precedes-job ztype job))
ziff-def (exists ?task (and (scheduling-task ?task)

(member ?j (role-value ?task has-jobs)))))

(def-relation POSSIBLE-RESOURCES-FOR-JOB (?j ?r) 
zconstraint (job ?j))

(def-relation POSSIBLE-RESOURCE-TYPES-FOR-JOB (?j ?rtype) 
zconstraint (job ?j))

(def-relation POSSIBLE-TIME-RANGES-FOR-JOB (?j ?jtr) zconstraint (job ?j))
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(def-relation POSSIBLE-ACTIVITIES-FOR-JOB (?j ?a) 
: constraint (job ?j))

(def-relation job-precedence-relation (?j ?jl] : constraint (job ?j))
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;The Generic Model of Scheduling Problem Solving;

(def-class PROBLEM-SOLVING-METHOD-FOR-SCHEDULING (problem-solving-method) ;own-slots ((tackles-task-type scheduling-task)))

(def-class GENERIC-PSM-FOR-SCHEDULING
(problem-solving-method-for-scheduling decomposition-method)((has-input-role :value has-schedule-operators)

(has-output-role :value has-solution-state)
(has-solution-state : type schedule-state)
(has-schedule-operators : type schedule-operator)
(has-output-mapping :value '(lambda (?psm ?state)

(the ?sc (has-schedule-model ?state ?sc)))) (has-body rvalue '(lambda (?psm)
(in-environment 
((?s . (achieve-generic-subtask 

?psm gen-schedule-control
has-current-scheduling-task 
(the ?task (tackles-task ?psm ?task))))) 

(if (schedule-state ?s)?s)))))
rowTi-slots ((has-generic-subtasks '(gen-schedule-control))))

(def-class GEN-SCHEDULE-CONTROL (composite-task)
((has-input-role rvalue has-schedule-operators

rvalue has-current-scheduling-task)(has-output-role rvalue has-solution-state)
(has-solution-state rtype schedule-state)
(has-schedule-operators rtype schedule-operator)
(has-current-scheduling-task : type scheduling-task)
(has-body rvalue '(lambda (?psm)

(in-environment 
((?schedule-space . (achieve-generic-subtask

?psm generate-schedule-space 
has-current-scheduling-task (role-value 
?psm
has-current-scheduling-task))))(REPEAT 

(in-environment 
((?state . (achieve-generic-subtask

?psm choose-schedule-state 
has-schedule-space ?schedule-space))) (if (= ?state :nothing)

(return :nothing)
(if (achieved (the-current-method) ?state) 

(return ?state)
(do

(achieve-generic-subtask 
?psm schedule-from-state

has-schedule-state ?state 
has-schedule-space ?schedule-space))))))))))

: own-slots ((has-generic-subtasks '(generate-schedule-space
choose-schedule-state 
schedule-from-state))))

(def-class GENERATE-SCHEDULE-SPACE (composite-task) ?psm 
((has-input-role rvalue has-current-scheduling-task)(has-output-role -.value has-schedule-space)
(has-control-role rvalue has-schedule-model)
(has-current-scheduling-task : type scheduling-task)
(has-schedule-space : type schedule-space)
(has-body rvalue (lambda (?psm)

(in-environment 
((?name . (new-symbol 'schedule-space)))
(tell (schedule-space

?name has-states nil 
associated-with-task (role-value
?psm has-current-scheduling-task)))

(achieve-generic-subtask 
?psm
new-schedule-state 
has-schedule-model nil 
has-schedule-space ?name)
?name))))

rown-slots ((has-generic-subtasks '(new-schedule-state))))
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(def-relation STATE-FULLY-EXPANDED (?state)
: iff-def (and (= ?record (the-state-search-control-record ?state))

(has-schedule-foci ?record nil)
(has-schedule-operators ?record nil)))

(def-function SCHEDULE-SPACE-STATE (?space)
: constraint (schedule-space ?space)
:body (the ?states (has-states ?space ?states)))

(def-class CHOOSE-SCHEDULE-STATE ( goal-spec if icat ion-taslc) ?task 
((has-input-role rvalue has-schedule-space)
(has-output-role rvalue has-schedule-state)
(has-goal-expression rvalue (kappa (?task)

(exists ?s (and (schedule-state ?s) 
(has-schedule-state 
?task ?s)))))(has-schedule-space r type schedule-space)

(has-schedule-state rtype schedule-state)))

(def-class CONSISTENT-MAXIMAL-CHEAPEST-STATE-SELECTION (primitive-method)((has-body rvalue (lambda (?psm)
(in-environment 
((?cost-algebra . (role-value ?psm has-cost-algebra)) 
(?cost-rel . (third ?cost-algebra))
(Pspace . (role-value ?psm has-schedule-space)) 
(Pstates . (schedule-space-states Pspace)))(first
(filter-cheapest-states 
(filter-maximal-states 
(filter-feasible-consistent-states Pstates)) Pcost-rel)))))) 

rown-slots ((tackles-task-type choose-schedule-state)))

(def-class CONSISTENT-MAXIMAL-STATE-SELECTION (primitive-method)((has-body rvalue (lambda (Ppsm)
( in-environment;
((Pcost-algebra . (role-value Ppsm has-cost-algebra)) 
(Pcost-rel . (third Pcost-algebra))
(Pspace . (role-value Ppsm has-schedule-space)) 
(Pstates . (schedule-space-states Pspace)))(first 
(filter-maximal-states 
(filter-feasible-consistent-states Pstates))))))) 

rown-slots ( (tackles-task-type choose-schedule-state) ).)

(def-class CONSISTENT-CHEAPEST-MAXIMAL-STATE-SELECTION (primitive-method)( (has-body -.value (lambda (Ppsm)
(in-environment 
((Pcost-algebra . (role-value Ppsm has-cost-algebra)) 
(Pcost-rel . (third Pcost-algebra))
(Pspace . (role-value Ppsm has-schedule-space)) (Pstates . (schedule-space-states Pspace)))
(first 
(filter-maximal-states 
(filter-cheapest-states 
(filter-feasible-consistent-states Pstates) 
Pcost-rel))))))) 

rown-slots ((tackles-task-type choose-schedule-state)))

(def-function FILTER-CHEAPEST-STATES (Pstates Pcost-order-rel) 
rbody (setofall Pstate (and (member Pstate Pstates)'

(state-cost Pstate Pcost)
(not (exists Pstate2

(and (member Pstate2 Pstates)
(state-cost .Pstate2 Pcost2) 
(holds Pcost-order-rel Pcost2 Pcostj))))))

(def-function FILTER-MAXIMAL-STATES (Pstates) 
rbody (setofall Pstate (and (member Pstate Pstates)

(has-schedule-model Pstate Psc)(= PI (length Psc))
(not (exists ?state2

(and (member Pstate2 Pstates) 
(has-schedule-model 
Pstate2 Psc2)
(- P12 (length Psc2))
(> P12 PI)))))))
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(def-function FILTER-FEASIBLE-CONSISTENT-STATES (Pstates) rbody (setofall Pstate (and (member Pstate Pstates)

(not (deadend-state Pstate))
(not (constraint-violations Pstate))
(not (requirement-violâtions Pstate)))))

(def-class NEW-SCHEDULE-STATE (composite-task) Ppsm 
((has-input-role rvalue has-schedule-model 

rvalue has-schedule-space)
(has-output-role rvalue has-schedule-state)
(has-schedule-space rtype schedule-space)
(has-schedule-state rtype schedule-state)
(has-schedule-model rtype schedule-model)
(has-body rvalue (lambda (Ppsm)

( in-environment 
((Psc . (the Psc2 (has-schedule-model Ppsm Psc2))) 
(Pschedule-space . (role-value

Ppsm has-schedule-space))
(Pname . (new-symbol 'schedule-state)))(tell (schedule-state Pname

has-schedule-model Psc))
(append-slot-value Pschedule-space has-states Pname) 
(achieve-generic-subtask
Ppsm apply-downstream-consistency-enforcement-mechanism has-schedule-state Pname)
(achieve-generic-subtask Ppsm evaluate-schedule-state

has-schedule-state Pname)Pname)))) 
rown-slots ((has-generic-subtasks

'(apply-downstream-consistency-enforcement-mechanism evaluate-schedule- S t ate))))

(def-class APPLY-DOWNSTREAM-CONSISTENCY-ENFORCEMENT-MECHANISM 
(goal-specification-task)

"This is a simple heuristics which propagates the earliest start time of job-1 such that 
all the jobs that has later start time than job-1 precedes the job-1. The complexity of 
this heuristics is linear and in the absence of the Resource-capacity it ensures backtrack- free search."
((has-input-role rvalue has-schedule-state)
(has-output-role
rvalue has-schedule-state-with-enforced-downstream-consistency)
(has-schedule-state-with-enforced-downstream-consistency rtype schedule-state)(has-schedule-state rtype schedule-state)
(has-goal-expression 
rvalue (kappa (Ptask Pstate)

(and (has-schedule-State-with-enforced-downstream-consistency Ptask Pstate)
(schedule-state Pstate))))))

(def-class APPLICATION-OF-DOWNSTREAM-CONSISTENCY-MECHANISM (primitive-method)
((has-input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)(has-body rvalue

'(lambda (Ppsm)
(in-environment 
((Pstate . (role-value Ppsm has-schedule-state))
(Pschedule-mode1 . (the Pschedule-model 

(has-s chedule-model 
Pstate Pschedule-model)))(Pjobs . (role-value Ppsm has-jobs)))

(downstream-consistency-enforced-schedule-state Pstate Pjobs))))) 
rovm-slots ((tackles-task-type

'apply-downstream-consistency-enforcement-mechanism)))

(def-function DOWNSTREAM-CONSISTENCY-ENFORCED-SCHEDULE-STATE (Pstate Pjobs) 
rconstraint (and (list Pjobs)

(every Pjobs job)
(schedule-state Pstate)) 

rbody (setofall Pjob
(and (has-schedule-model Pstate Pschedule-model)

(has-jobs Pschedule-model Pjobs)(member Pjob Pjobs)
(has-time-range Pjob Pj tr)
(= (start-time-of-a-job Pjob Pjtr) Pest)
(exists Pjob2 (and (member Pjob2 Pjobs)

(has-time-range Pjob2 Pjtr2)
(= (start-time-of-a-job Pjob2 Pjtr2)Pest2)
(job-start-time-earlier-than Pest Pest2)
(job-precedes Pjob Pjob2))))))

260



Appendix 2
(def-relation DEADEND-STATE (?state)
" A deadend state is the one from which solution cannot be derived."
: constraint (schedule-state ?state))

(def-relation STATE-COMPLETE (?state ?jobs)
"A state is complete is a schedule associated with a state is a complete one.": iff-def (and (has-schedule-model ?state ?schedule-model)

(schedule-minimally-complete ?schedule-model ?jobs)))

(def-relation SOLUTION-STATE (?state)
"A state is a solution state if a schedule associated with this state is a complete one, 
i.e. all the jobs are assigned to the resources and have the correct time ranges."
: constraint (state-complete ?state))

(def-relation CONSTRAINT-VIOLATIONS (?state ?cs)
: constraint (and (schedule-state ?state)

(list ?cs)
(every ?cs constraint)))

(def-relation REQUIREMENT-VIOLATIONS (?state ?requirements)
: constraint (and (schedule-state ?state)

(list ?requirements)
(every ?requirements requirement)))

(def-relation STATE-FEASIBLE (?state)
"A state is feasible if it does not violate any requirements imposed on a schedule associated with it."
: iff-def (and (has-schedule-model ?state ?schedule-model)

(not (requirement-violâtions ?state ?requirements))))

(def-relation STATE-COST (?state ?cost)
: constraint (and (schedule-state ?state)(cost ?cost)))

(def-class EVALUATE-SCHEDULE-STATE (composite-task) ?task 
((has-input-role :value has-schedule-state)
(has-schedule-state : type schedule-state)(has-body rvalue (lambda (?taskj

(in-environment 
((?state . (role-value ?task has-schedule-state)))(achieve-generic-subtask 
?task evaluate-hard-consistency 

has-schedule-state ?state)
(achieve-generic-subtask ?task evaluate-completeness

has-schedule-state ?state) (achieve-generic-subtask ?task evaluate-cost
has-schedule-state ?state)(achieve-generic-subtask 

?task evaluate-current-job-consistency has-schedule-state ?state)
(achieve-generic-subtask
?task evaluate-future-job-consistencyhas-schedule-state ?state)
(achieve-generic-subtask ?task evaluate-feasibility

has-schedule-state ?state))))))

(def-class EVALUATE-COST (goal-specification-task) ?task 
( (has-input-role -.value has-schedule-state)
(has-output-role rvalue has-cost)(has-schedule-state rtype schedule-state) .
(has-cost rtype cost)
(has-goal-expression rvalue (kappa (?task ?cost)

(and (cost ?cost.)
(has-cost ?task ?cost))))))

(def-class DEFAULT-COST-EVALUATION (primitive-method) ?psm 
((has-body rvalue (lambda (?psm)

(in-environment 
((?state . (role-value ?psm has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(?cost-fun . (role-value ?psm has-cost-function))
(?cost . (call ?cost-fun ?schedule-model)))(do

(tell (state-cost ?state ?cost))
?cost)))))

rown-slots ((tackles-task-type evaluate-cost)))
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(def-class EVALUATE-HARD-CONSISTENCY (primitive-task) ?task 
((has- input- role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue (lambda (?task)

(in-environment 
((?state . (role-value ?task has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))
(?hard-constraints . (role-value

?task has-hard-constraints))
(?hcv . (setofall ?hc (and (member ?hc ?hard-constraints)

(every ?hard-constraints 
hard-constraint)(schedule-violates-constraint 

?schedule-model ?constraints)
(every ?constraints

constraint)))))
(if (not (null ?hcv))

(tell (constraint-violations ?state ?hcv)))?hcv)))))

(def-class EVALUATE-FEASIBILITY (primitive-task) ?task ((ha s- input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue (lambda (?task)

(in-environment 
((?state . (role-value ?task has-schedule-state))
(?schedule-mode1 . (the ?sc (has-schedule-model

?state ?sc)))
(?requirements . (role-value ?task has-requirements))
(?reqv . (setofall ?req

(and (member ?req ?requirements)
(every ?requirements requirement)
(schedule-violates-requirement 
?schedule-model ?requirements)))))

(if (not (null ?reqv))
(tell (requirement-violâtions ?state ?reqv)))?reqv)))))

(def-class EVALUATE-COMPLETENESS (primitive-task) ?task •
((has-input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue (lambda (?task)

(in-environment
((?state . (role-value ?task has-schedule-state))
(?schedule-model . (the ?sc (has-schedule-model

?state ?sc)))(?jobs . (role-value ?task has-jobs)))
(if (schedule-minimally-complete ?schedule-model ?jobs)

(tell (state-complete ?state))))))))

(def-class EVALUATE-CURRENT-JOB-CONSISTENCY (primitive-task)
"This method checks the consistency of the jobs by comparing the compatibility of resource requirement between assigned jobs and yet-to-be assigned jobs. If the resource requirements 
of these jobs are not consistent then it gives all those inconsistent jobs within a schedule-state."
((has-input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue

'(lambda (?taskj 
(in-environment 
( (?state . (role-value ?task has-schedule-state))
(?schedule-model . (the ?schedule-model (has-schedule-model

?state ?schedule-model)))(?jobs . (role-value ?task has-jobs)))
(if (job-consistency-in-schedule-state ?state ?jobs)(tell (schedule-state-consistent ?state))))))))
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(def-relation JOB-CONSISTENCY-IN-SCHEDULE-STATE (?state ?jobs)
"This relation says that the resource assigned to any of the jobs (i.e. assigned-job) is 
not equal to the possible resource requirement of any other jobs (i.e. assignable job) in a 
schedule. And these jobs are dependent on each other."
: constraint (and (schedule-state ?state has-schedule-model ?schedule-model)

(has-jobs ?schedule-model ?jobs)
(every ?jobs job))

: iff-def (or (exists ?jl (and
(member ?jl ?jobs)
(assigned-job ?jl ?schedule-model)
(= (resource-assigned-to-a-job 

?jl ?schedule-model) ?rl)
(not (exists ?j2 (and (member ?j2 ?jobs)

(unassigned-job 
?j2 ?schedule-model)
(= (expected-resources-for-job 

?j2 ?schedule-model) ?r2)(= ?rl ?r2))))))
(exists ?jl (and (member ?jl ?jobs)

(assigned-job ?jl Tschedule-model)
(= (resource-assigned-to-a-job 

?jl ?schedule-model) ?rl)
(not (exists ?j2 (and (member ?j2 ?jobs)(assigned-job 

?j2 ?schedule-model)(= (resource-assigned-to-a-job 
?j2 ?schedule-model) ?r2)

(= ?rl ?r2))))))))

(def-function EXPECTED-RESOURCES-FOR-JOB (?job ?sc) -> ?r 
: constraint (and (job ?job)(schedule-model ?sc)

(resource ?r)
(requires-resource ?job ?r)) 

ibody (setofall ?r (assigned-to-resource ?job ?r ?sc)))

(def-class EVALUATE-FUTURE-JOB-CONSISTENCY (primitive-task)
"This method checks the consistency of all yet-to-be assigned jobs (i.e., future jobs) in terms of the compatibility between their resource requirements. If the resource requirement 
conflicts with each other then it returns all those inconsistent jobs within a schedule- 
state."
((has-input-role rvalue has-schedule-state)
(has-schedule-state rtype schedule-state)
(has-body rvalue

'(lambda (?task)(in-environment 
( (?state . (role-value ?task has-schedule-state))
(?schedule-model . (the ?schedule-model (has-schedule-model

?state ?schedule-model)))
(?jobs . (role-value ?task has-jobs)))

(if (future-job-consistency-in-schedule-state ?state ?jobs)
(tell (schedule-state-consistent ?state))))))))

(def-relation FUTURE-JOB-CONSISTENCY-IN-SCHEDULE-STATE (?state ?jobs)
"This relation says that the.resource requirement of assignable job jl is not equal to another assignable job j2 in a schedule. And both these jobs are dependent on each other 
and are affected by each other." 
rconstraint (and (schedule-state ?state has-schedule-model ?schedule-model)

(has-jobs ?schedule-model ?jobs)
(every ?jobs job)) 

r iff-def (exists ?jl (and (member ?jl ?jobs)(unas s igned-j ob ?jl ?schedule-model)
(= (expected-resources-for-job ?jl ?schedule-model)
?rl)(not (exists ?j2

(and (member ?j2 ?jobs)
(unassigned-job 
?j2 ? schedule-model)
(- (expected-resources-for-job 

?j2 ?schedule-model) ?r2)
(= ?rl ?r2)))))))
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(def-class SCHEDULE-FROM-STATE (goal-specification-task) ?task 
((has-input-role rvalue has-schedule-state 

rvalue has-schedule-space)(has-output-role rvalue has-output-state)
(has-output-state r type schedule-state)
(has-schedule-state r type schedule-state)
(has-schedule-space rtype schedule-space)
(has-goal-expression rvalue (kappa (?task ?s)

(schedule-state ?s)))) rconstraint (and (has-schedule-state ?task ?s)
(has-schedule-model ?s ?sc)
(= ?scheduling-problem (role-value

?task has-current-scheduling-task)) (not (achieved ?scheduling-problem ?sc))))

(def-class EXPAND-INCOMPLETE-STATE (decompositioh-method)
((has-input-role rvalue has-schedule-state)
(has-output-role rvalue generates-schedule-state)
(has-schedule-state .r type schedule-state)
(generates-schedule-state rtype schedule-state)
(has-goal-expression rvalue (kappa (?task ?s)

(schedule-extends 
(the ?sc (has-schedule-model ?s ?sc)) 
(the ?sc (has-schedule-model 

(role-value
?task has-schedule-state) 
?sc)))))(has-body rvalue '(lambda (?psm)

(in-environment 
((?state . (role-value ?psm has-schedule-state))
(?schedu1e-mode1 . (the ?sc (has-schedule-model

?state ?sc)))(?hard-constraint8 . (role-value
?psm has-hard-constraints)) (?requirements . (role-value ?psm has-requirements))(?jobs . (role-value ?psm has-jobs)))

(if (deadend-state ?state) 
rnothing

(if (constraint-violâtions ?state ?constraints)
(tell (deadend-state ?state))

(if (deadend-state ?state) 
rnothing

(if (requirement-violâtions ?state ?requirements) 
(tell (deadend-state ?state))(if (solution-state ?state)
(return ?state)
(do
(achieve-generic-subtask?psm
generate-new-state-successor 
has-schedule-state ?state 
has-schedule-context rextend))))))))))) rown-slots ((tackles-task-type schedule-from-state)

(has-generic-subtasks generate-new-state-successor)))
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(def-class GENERATE-NEW-STATE-SUCCESSOR (composite-task)
((has-input-role rvalue has-schedule-state

rvalue has-schedule-context)
(has-output-role rvalue generates-schedule - state)
(has-schedule-context rtype schedule-context)
(has-schedule-state rtype schedule-state)
(generates-schedule-state rtype schedule-state)(has-body rvalue (lambda (?task)

(in-environment 
((?state . (role-value ?task has-schedule-state))
(?js . (role-value ?task has-jobs))
(?context . (role-value ?task has-schedule-context))) 
(if (search-control-record

?record has-schedule-state ?state)(in-environment 
((?result . (achieve-generic-subtask ?task

resume-state has-schedule-state Pstate 
has-schedule-context 
?context)))(if (schedule-state Presuit)

Presuit 
(achieve-generic-subtask 
Ptask propose-schedule-from-context has-schedule-state Pstate 

has-schedule-context Pcontext)))(in-environment 
((Pfoci . (achieve-generic-subtask 

Ptask collect-state-foci
has-schedule-state Pstate 
has-schedule-context Pcontext)))(new-search-control-record Pstate Pfoci) 

(achieve-generic-subtask 
Ptask propose-schedule-from-context 

has-schedule-state Pstate 
has-schedule-context Pcontext)))))))

:own-slots ((has-generic-subtasks '(resume-state
propose-schedule-from-context 
collect-State-foci))))

(def-class COLLECT-STATE-FOCI (goal-specification-task) Ptask 
((has-input-role : value has-schedule-context 

:value has-schedule-state)
(has-output-role rvalue has-schedule-foci)
(has-schedule-foci rtype list)
(has-schedule-state rtype schedule-state)
(has-schedule-context rtype schedule-context)))

(def-class COLLECT-ASSIGNABLE-JOBS (primitive-method)((has-body rvalue (lambda (Ppsm)
(all-assignable-jobs 
(role-value Ppsm has-jobs)
(the Psc (has-schedule-model

(role-value Ppsm has-schedule-state)
Psc))))))rown-slots ((tackles-task-type collect-state-foci)))
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(def-class PROPOSE-SCHEDULE-FROM-CONTEXT (composite-task) Ptask 
((has-input-role rvalue has-schedule-state

rvalue has-schedule-context)
(has-output-role rvalue generates-schedule-state)
(has-control-role rvalue has-schedule-focirvalue has-search-control-record)
(has-schedule-context rtype schedule-context)
(has-schedule-state rtype schedule-state)
(generates-schedule-state rtype schedule-state)
(has-body rvalue (lambda (Ptask)

(repeat 
(in-environment 
((Pstate . (role-value Ptask has-schedule-state))
(Precord . (the-state-search-control-record Pstate))
(Pfoci . (the-slot-value Precord 'has-schedule-foci))
(Psub . (instantiate-generic-subtask 

Ptask select-schedule-focus 
has-schedule-foci Pfoci))

(Pfocus . (solve-task Psub)))
(if (achieved Psub Pfocus)

(do
(achieve-generic-subtask 
Ptask
amend-search-control-record-on-focus-selection has-search-control-record Precord 
has-schedule-focus Pfocus)
(in-environment 
((Pops . (achieve-generic-subtask

Ptask collect-focus-operators has-schedule-focus Pfocus))
(Psorted-ops . (achieve-generic-subtask

Ptask sort-schedule-operators 
has-schedule-operators Pops)))

(if (null Psorted-ops)
(achieve-generic-subtask
Ptask
amend-search-control-record-on-focus-failuare 
has-search-control-record Precord has-schedule-focus Pfocus)

(do
(set-slot-value Precord

has-schedule-operators 
Psorted-ops)(in-environment 

((Pvalue . (achieve-generic-subtask 
Ptask
generate-value-from-focus 
has-schedule-state Pstate)))

(if (not (= Pvalue : nothing))
(in-environment 
((?activity-value . (achieve-generic-subtask

focus
Ptask
generate-activities-from-
has-schedule-state Pstate)))

(if (not (= Pactivity-value :nothing)) (in-environment 
((Presuit . (achieve-generic-subtask

Ptask propose-schedule-from-focus
has-schedule-state
Pstate
has-schedule-value
Pvalue
has-schedule-activity-value 
Pactivity-value)))(if (schedule-state Presuit)

(return Presuit)))))))))))(do
(tell (deadend-state Pstate))
(return : nothing))))))))

: own-slots ((has-generic-subtasks
'(select-schedule-focus collect-focus-operators 
sort-schedule-operators
amend-search-control-record-on-focus-selection 
amend-search-control-record-on-focus-failuare 
generate-value-from-focus generate-activities-from-focus 
propose-schedule-f rom-f ocus))))
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(def-class SELECT-SCHEDULE-FOCUS (goal-specifleafion-task) Ptask 
((has-input-role -.value has-schedule-foci)
(has-output - role : value has-schedule-focus)
(has-schedule-foci : type list)
(has-schedule-focus : type schedule-focus)
(has-goal-expression -.value (kappa (Ptask Pfocus)

(has-schedule-focus Ptask Pfocus)))))

(def-class DEFAULT-JOB-SELECTION (primitive-method) Ppsm 
((has-input-role : value has-schedule-focus-order-relation 

: value has-possible-resources-relation)
(has-schedule-focus-order-relation :default-value schedule-focus-order)
(has-possible-resources-relation : default-value possible-resources-for-job) (has-body :value (lambda (Ppsm)

(if (= Pfoci (role-value Ppsm has-schedule-foci))
(select-most-preferred-focus 
(collect-most-restricted-jobs Pfoci
(role-value Ppsm has-possible-resources-relation)) 

(role-value
Ppsm has-schedule-focus-order-relation)))))):own-slots ((tackles-task-type select-schedule-focus)))

(def-function COLLECT-MOST-RESTRICTED-JOBS (PI Prel)
:body (in-environment

((Pquadruples . (sort (map '(lambda (Pj)
(list-of

Pj (setofall ?r (holds Prel Pj lie))))
PI)'(kappa (Px Py)

(< (length (second Px))
(length (second Py)))))))

(map first (filter
Pquadruples 
'(kappa (Pquadruple)

(= (first Pquadruple)
(first (first Pquadruples))))))))

(def-class AMEND-SEARCH-CONTROL-RECORD-ON-FOCUS-SELECTION (goal-specification-task) 
((has-input-role :value has-search-control-record 

:value has-schedule-focus)
(has-schedule-focus :type schedule-focus)
(has-search-control-record rtype search-control-record)))

(def-class DE FAULT-SEARCH-CONTROL-RECORD-ON-FOCUS-SELECTION-UPDATE 
(primitive-method) Ppsm 

((has-body rvalue (lambda (Ppsm)
(in-environment 
((Pfocus . (role-value Ppsm has-schedule-focus))(Precord . (role-value

Ppsm has-search-control-record)))
(set-slot-value Precord has-schedule-foci (remove Pfocus

(the-slot-value 
Precord has-schedule-foci)))(set-slot-value Precord has-schedule-focus Pfocus))))) 

rown-slots ((tackles-task-type amend-search-control-record-on-focus-selection)))

(def-class AMEND-SEARCH-CONTROL-RECORD-ON-FOCUS-FAILUARE 
(goal-specification-task) Ptask 

((has-input-role rvalue has-search-control-record 
rvalue has-schedule-focus)

(has- schedule-focus rtype schedule-focus)
(has-search-control-record r type search-control-record)))

(def-class DEFAULT-SEARCH-CONTROL-RECORD-ON-FOCUS -FAILUARE-UPDATE 
(primitive-method) Ppsm 

((has-body rvalue (lambda (Ppsm) rnothing)))
rown-slots ((tackles-task-type amend-search-control-record-on-focus-failuare)))
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(def-class COLLECT-FOCUS-OPERATORS (goal-specification-task) Ptask 
((has-input-role rvalue has-schedule-focus)
(has-schedule-focus rtype schedule-focus)))

(def-class DEFAULT-OPERATOR-COLLECTION (primitive-method) Ppsm 
((has-body rvalue (lambda (Ppsm)

(setofall Pop
(and (schedule-operator Pop

applicable-to-jobs PI)
(member (role-value

Ppsm 'has-schedule-focus)
(eval PI))))))) rown-slots ((tackles-task-type collect-focus-operators)))

(def-class SORT-SCHEDULE-OPERATORS (primitive-task) Ptask 
((has-input-role rvalue has-schedule-operators

rvalue has-operator-order-relation)(has-schedule-operators rtype list)
(has-operator-order-relation rdefault-value schedule-operator-order)(has-body rvalue (lambda (Ptask)

(sort (role-value
Ptask has-schedule-operators)
(role-value Ptask has-operator-order-relation))))))

(def-class RESUME-STATE (goal-specification-task) Ptask ((has-input-role rvalue has-schedule-state
rvalue has-schedule-context)(has-output-role rvalue has-output-schedule-state)

(has-schedule-state rtype schedule-state)
(has-schedule-context rtype schedule-context)
(has-output-schedule-state r type schedule-state)
(has-goal-expression rvalue (kappa (Ptask Ps)

(and (schedule-state Ps)
(not (= Ps (role-value 

Ptask
has-schedule-state))))))))

(def-class TRY-DIFFERENT-STATE-OPERATOR (primitive-method) Ppsm 
((has-body rvalue (lambda (Ppsm)

(achieve-generic-subtask 
Ppsm propose-schedule-from-focus has-schedule-state (role-value

Ppsm has-schedule-state))))) rown-slots ((tackles-task-type resume-state)))

(def-class RETRY-SCHEDULE-STATE-OPERATOR (primitive-method) Ppsm 
((has-body rvalue (lambda (Ppsm)

(in-environment 
((Pstate . (role-value Ppsm has-schedule-state))
(Precord . (the-state-search-control-record Pstate))
(Pop . (the Pop2 (has-current-operator Precord Pop2)))) 
(if (has-schedule-focus Precord Pfocus).. (in-environment

((Psub . (instantiate-generic-subtask 
Ppsm try-schedule-operator 
has-schedule-operator Pop 
has-schedule-focus Pfocus 
has-schedule-model 
(the-slot-value 
Pstate 'has-schedule-model)))(Presuit . (solve-task Psub3)))

(if (achieved Psub3 Presuit)
Presuit

(achieve-generic-subtaskPpsm
propose-schedule-from-focus 
has-schedule-state Pstate) )))).))) 

rown-slots ((tackles-task-type resume-state)))

(def-class SEARCH-CONTROL-RECORD ()
((has-schedule-state rtype schedule-state rcardinality 1)
(has-schedule-focus rtype schedule-focus rcardinality 1)
(has-current-operator rtype schedule-operator rmax-cardinality 1)
(has-schedule-operators rtype list rcardinality 1)
(has-schedule-foci rtype list rcardinality 1)))

(def-function THE-STATE-SEARCH-CONTROL-RECORD (Pstate) 
rbody (the Precord (and (search-control-record Precord)

(has-schedule-state Precord Pstate))))
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(def-procedure NEW-SEARCH-CONTROL-RECORD (Pstate Pfoci) 
rbody (tell

(search-control-record 
(new-symbol 'state-search-control-record) 
has-schedule-state Pstate 
has-schedule-foci Pfoci)))

(def-class GENERATE-VALUE-FROM-FOCUS (composite-task)
((has-input-role rvalue has-schedule-state)
(has-output-role rvalue has-schedule-value)
(has-control-role rvalue has-schedule-model

rvalue has-schedule-operator)
(has-schedule-state rtype schedule-state)
(has-schedule-focus rtype schedule-focus)
(has-schedule-value rtype schedule-value)
(has-goal-expression rvalue (kappa (Ptask Pvalue)

(and (has-schedule-value Ptask Pvalue) (schedule-value Pvalue))))
(has-body rvalue (lambda (Ptask)

(REPEAT (in-environment 
((Pstate . (role-value Ptask has-schedule-state)) 
(Precord . (the-state-search-control-record Pstate)) 
(Pfocus . (the-slot-value

Precord 'has-schedule-focus))(Pops . (the-slot-value
Precord 'has-schedule-operators))

(Psubl . (instantiate-generic-subtask Ptask
select-resource-operator 
has-schedule-focus Pfocus 
has-schedule-operators Pops))(Pop . (solve-task Psubl)))

(set-slot-value Precord has-current-operator Pop)(if (achieved Psubl Pop)(do
(set-slot-value Precord

has-schedule-operators 
(remove Pop Pops))(in-environment 

((Psub3 . (instantiate-generic-subtask Ptask
try-schedule-resource-operator 
has-schedule-operator Pop 
has-schedule-focus Pfocus 
has-schedule-model (the-slot-value 
Pstate
'has-schedule-model)))

(Pvalue . (solve-task Psub3)))
(if (achieved Pvalue Psub3)

(return Pvalue))))(return :nothing)))))))
:own-slots ((has-generic-subtasks '(select-resource-operator

try-schedule-resource-operator))))

(def-class SELECT-RESOURCE-OPERATOR (goal-specification-task)
((has-input-role :value has-schedule-focus

:value has-schedule-operators)
(has-output-role :value has-selected-resource-operator)
(has-schedule-focus rtype schedule-focus)(has-schedule-operators rtype list)
(has-selected-resource-operator rtype schedule-operator)
(has-goal-expression rvalue (kappa (Ptask Pop)

(and (schedule-operator Pop)
(has-selected-resource-operator Ptask Pop))))))

(def-class DEFAULT-RESOURCE-OPERATOR-SELECTION (primitive-method)
((has-body rvalue (lambda (Ppsm)

(first (role-value Ppsm
'has-schedule-operators))))) 

rown-slots ((tackles-task-type select-resource-operator)))
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(def-class TRY-SCHEDULE-RESOURCE-OPERATOR (goal-specification-task) 
((has-input-role -.value has-schedule-operator 

rvalue has-schedule-focus 
rvalue has-schedule-model)

(has-output-role rvalue has-schedule-value)(has-schedule-operator rtype schedule-operator)
(has-schedule-focus rtype schedule-focus)(has-schedule-model rtype schedule-model)
(has-schedule-value rtype schedule-value)
(has-goal-expression rvalue (kappa (Ptask Pvalue)

(and (has-schedule-value Ptask Pvalue) 
(schedule-value Pvalue))))))

(def-class TRY-SCHEDULE-EXTENSION-RESOURCE-OPERATOR (primitive-method)
((has-body rvalue (lambda (Ppsm)

(in-environment 
((Psc . (role-value Ppsm 'has-schedule-model))
(Pfocus . (role-value Ppsm 'has-schedule-focus)) 
(Pvalue . (apply-schedule-extension-resource-operator Pfocus Psc

(role-value Ppsm 'has-schedule-operator)))) (if (not (= Pvalue rnothing))
(return Pvalue)))))) 

rown-slots ((tackles-task-type try-schedule-resource-operator)))

(def-function APPLY-SCHEDULE-EXTENSION-RESOURCE-OPERATOR (Pj Psc Pop) 
rconstraint (and (job Pj)

(schedule-model Psc)
(schedule-extension-resource-operator Pop)) rbody (call (the Pbody
(has-body Pop Pbody)) Pj Psc))

(def-class GENERATE-ACTIVITIES-FROM-FOCUS (composite-task)
((has-input-role rvalue has-schedule-state)
(has-output-role rvalue has-schedule-activity-value)
(has-control-role rvalue has-schedule-model

rvalue has-schedule-operator)
(has-schedule-state rtype schedule-state)
(has-schedule-activity-value rtype activity-value)
(has-schedule-focus rtype schedule-focus)
(has-body rvalue (lambda (Ptask)

(REPEAT 
(in-environment 
((Pstate . (role-value Ptask has-schedule-state)) 
(Precord . (the-state-search-control-record Pstate)) 
(Pfocus . (the-slot-value

Precord 'has-schedule-focus))
(Pops . (the-slot-value

Precord 'has-schedule-operators))
(PsubB . (instantiate-generic-subtask

Ptask select-activity-operator 
has-schedule-focus Pfocus 
has-schedule-operators Pops))(Pop . (solve-task PsubB)))

(set-slot-value Precord has-current-operator Pop)(if (achieved PsubB Pop)
(do

(set-slot-value Precord
has-schedule-operators (remove Pop Pops))(in-environment 

((Psub? . (instantiate-generic-subtask 
Ptask
try-schedule-activity-operatorhas-schedule-operator Pop
has-schedule-focus Pfocus
has-schedule-model
(the-slot-value
Pstate
'has-schedule-model)))

(Pactivity-value . (solve-task Psub?)))
(if (achieved Pactivity-value Psub?)

(return Pactivity-value))))(return rnothing))))))) 
rown-slots ((has-generic-subtasks '(select-activity-operator

try-schedule-activity-operator))))
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(def-class SELECT-ACTIVITY-OPERATOR (goal-specification-task)
((has-input-role rvalue has-schedule-focus

rvalue has-schedule-operators)
(has-output-role rvalue has-selected-activity-operator)
(has-schedule-focus rtype schedule-focus)
(has-schedule-operators rtype list)
(has-selected-activity-operator rtype schedule-operator)
(has-goal-expression rvalue (kappa (Ptask Pop)

(and (schedule-operator Pop)
(has-selected-activity-operator 
Ptask Pop))))))

(def-class DEFAULT-ACTIVITY-OPERATOR-SELECTION (primitive-method)((has-body rvalue (lambda (Ppsm)
(first (role-value Ppsm

'has-schedule-operators))))) 
rown-slots ((tackles-task-type select-activity-operator)))

(def-class TRY-SCHEDULE-ACTIVITY-OPERATOR (goal-specification-task)
((has-input-role rvalue has-schedule-operator.

rvalue has-schedule-focus 
rvalue has-schedule-model)

(has-output-role rvalue has-schedule-activity-value)
(has-schedule-operator rtype schedule-operator)
(has-schedule-focus rtype schedule-focus)
(has-schedule-model rtype schedule-model)
(has-schedule-activity-value rtype activity-value)
(has-goal-expression rvalue (kappa (Ptask Pactivity-value)

. (and (has-schedule-activity-value 
Ptask Pactivity-value)
(activity-value Pactivity-value))))))

(def-class TRY-SCHEDULE-EXTENSION-ACTIVITY-OPERATOR (primitive-method)((has-body rvalue (lambda (Ppsm)
(in-environment 
((Psc . (role-value Ppsm has-schedule-model))
(Pfocus . (role-value Ppsm has-schedule-focus)) 
(Pactivity-value . (apply-schedule-extension-activity-operator 

Pfocus Psc 
(role-value
Ppsm 'has-schedule-operator))))(if (not (= Pactivity-value rnothing))

(return Pactivity-value)))))) 
rown-slots ((tackles-task-type try-schedule-activity-operator)))

(def-function APPLY-SCHEDULE-EXTENSION-ACTIVITY-OPERATOR (Pj Psc Pop) rconstraint (and (job Pj)
(schedule-model Psc)
(schedule-extension-activity-operator Pop)) rbody (call (the Pbody
(has-body Pop Pbody)) Pj Psc))
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(def-class PROPOSE-SCHEDULE-FROM-FOCUS (composite-task)
((has-input-role rvalue has-schedule-state 

: value has-schedule-value 
rvalue has-schedule-activity-value)

(has-output-role rvalue has-output-schedule-state)(has-control-role rvalue has-schedule-model
rvalue has-schedule-operator)(has-schedule-state rtype schedule-state)

(has-schedule-value rtype schedule-value)
(has-schedule-activity-value rtype activity-value)
(has-output-schedule-state rtype schedule-state)(has-body rvalue (lambda (Ptask)

(repeat 
(in-environment 
((Pstate . (role-value Ptask has-schedule-state))
(Precord . (the-state-search-control-record Pstate)) (Pfocus . (the-slot-value

Precord 'has-schedule-focus))
(Pops . (the-slot-value

Precord 'has-schedule-operators))
(Pvalue . (role-value Ptask has-schedule-value)) 
(Pactivity-value . (role-value 

Ptask
has-schedule-activity-value))

(Psub . (instantiate-generic-subtask Ptask
select-schedule-operator 
has-schedule-focus Pfocus 
has-schedule-operators Pops))(Pop . (solve-task Psub)))

(set-slot-value Precord has-current-operator Pop)(if (achieved Psub Pop)
(DO

(set-slot-value Precord
has-schedule-operators 
(remove Pop Pops)); ; ; Try adding same 

(in-environment 
((Psub2 . (instantiate-generic-subtask 

Ptask try-schedule-operator 
has-schedule-operator Pop 
has-schedule-focus Pfocus 
has-schedule-value Pvalue 
has-schedule-activity-value 
Pactivity-value 
has-schedule-model (the-slot-value Pstate
'has-schedule-model)))(Presuit. . (solve-task ?sub2) ) )

(if (achieved Psub2 Presuit)
(return Presuit))))(return : nothing)))))))

:own-slots ((has-generic-subtasks '(select-schedule-operator
try-schedule-operator))))

(def-class SELECT-SCHEDULE-OPERATOR (goal-specification-task) Ptask ((has-input-role :value has-schedule-operators 
rvalue has-schedule-focus)(has-output-role rvalue has-selected-operator)

(has-schedule-operators rtype list)
(has-schedule-focus rtype schedule-focus)
(has-selected-operator rtype schedule-operator)
(has-goal-expression rvalue (kappa (Ptask Pop)

(and (schedule-operator Pop)
(has-selected-operator Ptask Pop))))))

(def-class DEPAUI.T-OPERATOR-SELECTION (primitive-method) Ppsm 
((has-body rvalue (lambda (Ppsm)

(first (role-value Ppsm
'has-schedule-operators))))) rown-slots ((tackles-task-type select-schedule-operator)))
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(def-class TRY-SCHEDULE-OPERATOR (goal-specification-task)((has-input-role -.value has-schedule-operator 

: value has-schedule-focus 
rvalue has - schedule-model 
rvalue has-schedule-value 
rvalue has-schedule-activity-value)

(has-output-role rvalue generates-schedule-state)(has-schedule-operator r type schedule-operator)
(has-schedule-focus rtype schedule-focus)
(has-schedule-model rtype schedule-model)
(has-schedule-value rtype schedule-value)
(has-schedule-activity-value r type activity-value)
(generates-schedule-state rtype schedule-state)
(has-goal-expression rvalue (kappa (Ptask Ps)

(and (schedule-state Ps)
(generates-schedule-state Ptask Ps))))))

(def-class TRY-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR (primitive-method)
((has-body rvalue (lambda (Ppsm)

(in-environment 
((Psc . (role-value Ppsm 'has-schedule-model))
(Pfocus . (role-value Ppsm 'has-schedule-focus))(Pvalue . (role-value Ppsm 'has-schedule-value)) 
(Pactivity-value . (role-value

Ppsm 'has-schedule-activity-value)) 
(Pvaluel . (apply-schedule-extension-time-range-operator Pfocus Psc

(role-value Ppsm 'has-schedule-operator))))(if (not (= Pvaluel rnothing))
(achieve-generic-subtaskPpsm
new-schedule-state 
has-schedule-model 
(cons
(cons Pfocus '(Pvalue Pactivity-value Pvaluel))• Psc)))))))

rown-slots ((tackles-task-type try-schedule-operator)))

(def-function APPLY-SCHEDULE-EXTENSION-TIME-RANGE-OPERATOR (Pj Psc Pop) rconstraint (and (job Pj)
(schedule-model Psc)
(schedule-extension-time-range-operator Pop)) 

rbody (call (the Pbody
(has-body Pop Pbody)) Pj Psc))

(def-relation SCHEDULE-FOCUS-ORDER (Px Pc) 
rconstraint (and (schedule-focus Px)

(schedule-focus Pc)
(not (= Px Pc))) )

(tell (defines-partial-order schedule-focus-order))

(def-function SELECT-MOST-PREFERRED-FOCUS (PI Prel) 
rbody (the Pfocus

(and (member Pfocus PI)
(not (exists Pfocus2

(and (member Pfocus2 PI)
(<> Pfocus2 Pfocus)
(holds Prel Pfocus2 Pfocus)))))))

(tell (use-method consistent-maximal-state-selection 
choose-schedule-state 
generic-psm-for-scheduling))

(def-class GENERIC-SCHEDULE-APPLICATION (application)
"This class needs to be instantiated for solving an application. This class explicitly 
states, which task needs to be solved (which in the case of this library the scheduling 
task) and which method to be used in order to solve the task.
)

(def-class SCHEDULE-METHOD (problem-solving-method)
((applicable-to-task-type rvalue scheduling-task)
(has-input-role rvalue has-schedule-operators)
(has-schedule-operators rtype schedule-operator)))
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A COMPLETE SPECIFICATION OF THE SIMPLE 

TIME ONTOLOGY
; ; ; Mode: Lisp; Package: ocml ~ "
; ; ; The Open University 
(in-package "OCML")
(in-ontology simple-time)

(def-class YEAR-IN-TIME ()?x
"A year-in-time must be an integer and integer can be a year-in-time": iff-def (integer ?x))

(def-class MONTH-IN-TIME ()?mit
"A month-in-time is an integer in the interval 1-12" riff-def (and (integer ?x)(< ?x 12) (> ?x 0)))

(def-class DAY-IN-TIME ()?x
"A day-in-time is an integer in the interval 1-31" 
r iff-def (and (integer ?x) (< ?x 32) (or (> ?x 0) (= ?x 1))))

(def-class HOUR-IN-TIME ()?x
"A hour-in-time is an integer in the interval 0-23" ^
riff-def (and (integer ?x)(< ?x 24) (or (= ?X 0)(> ?x 0)))) ;

(def-class SECOND-IN-TIME ()?x
"A second-in-time is a integer in the interval 0-59" 
riff-def (and (integer ?x)(< ?x 60) (or (= ?X 0)(> ?x 0))))

(def-class MINUTE-IN-TIME ()?x
"A minute-in-time is an integer in the interval 0-59" 
riff-def (and (integer ?x)(< ?x 60). (or (= ?X 0)(> ?x 0)))) j

(def-class TIME-ENTITY () ?te 
)

(def-class TIME-POINT () ?tp 
((second-of r type second-in-time rmax-cardinality 1)
(minute-of rtype minute-in-time rmax-cardinality 1)(hour-of rtype hour-in-time rmax-cardinality 1)
(day-of rtype day-in-time rmax-cardinality 1)
(month-of rtype month-in-time rmax-cardinality 1)
(year-of rtype year-in-time rmax-cardinality 1)) rconstraint (and (not (and (month-of ?x 2)

(> (the ?day (day-of ?x ?day))
29) ) )

(not (and (member-of ?x (4 6 9 11))
{> (the ?day (day-of ?x ?day))30)))))

(def-relation IDLE-TIME-POINT (?tp) rconstraint (time-point ?tp) 
riff-def (and (= (second-of-tp ?tp) 0)

(= (minute-of-tp ?tp) 0)
(= (hour-of-tp ?tp) 0)
(= (day-of-tp ?tp) 0)
(= (month-of-tp ?tp) 0)
(= (year-of-tp ?tp) 0)))

(def-function SECOND-OF-TP (?tp) 
rconstraint (time-point ?tp) 
rbody (the ?second (second-of ?tp ?second)))

(def-function MINUTE-OF-TP (?tp) 
rconstraint (time-point ?tp) 
rbody (the ?minute (minute-of ?tp ?minute)))
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{def-function HOUR-OF-TP (?tp)
: constraint (time-point ?tp)
rbody (the ?hour (hour-of ?tp ?hour)))

(def-function DAY-OF-TP (?tp)
: constraint (time-point ?tp) 
rbody (the ?day (day-of ?tp ?day)))

(def-function MONTH-OF-TP (?tp) 
rconstraint (time-point ?tp) 
rbody (the ?month (month-of ?tp ?month)))

(def-function YEAR-OF-TP (?tp) 
rconstraint (time-point ?tp) 
rbody (the ?year (year-of ?tp ?year)))

(def-class INTERVAL () ?int
"An interval is a period of time elapsed between the start of an event and end of an

event.The start of an event is precedes the end of an event. (Ref. J.F.Allen (1983),
Maintaining knowledge about temporal intervals)."
((has-start-time r type time-point rmax-cardinal ity 1)
(has-end-time rtype time-point rmax-cardinality 1)
(has-unit-of-measure r type unit-of-measure)) 

rconstraint (precedes (the-slot-value ?int has-start-time)
(the-slot-value ?int has-end-time)))

(def-function TIME-INTERVAL-DURATION (?interval) -> ?durâtion 
rconstraint (and (interval ?interval)(duration ?durâtion)) 
rbody (time-point-difference (the ?et (has-end-time ?interval ?et))

(the ?st (has-start-time ?interval ?st))))

(def-class TIME-RANGE (interval) ?tr

(def-function TIME-RANGE-DURATION (?tr) -> ?duration 
rconstraint (and (time-range ?tr)(duration ?duration)) 
rbody (time-point-difference (the ?et (has-end-time ?tr ?et))

(the ?st (has-start-time ?tr ?st)'))
(def-class THING ()
)

(def-class INTANGIBLE-THING (thing)
"This comes from HPKB upper level. Th ecollection of things that are not physical--are not 
made of, or encoded in, matter. Every collection is an intangibale (even if its instances 
are tangible), and so are some Individual.Cautionr do not confuse 'tangibility' with 
'perceivability'-- humans can perceive light even though it's intangible-- at least in a 
sense.")

(def-class TANGIBLE (thing)
"Something which is not tangible.")

(def-axiom TANGIBLE-AND-INTANGIBLE-THINGS-ARE-DISJOINT 
(exhaustive-subclass-partition (set-of tangible-thing intangible-thing)))

(def-class QUANTITY (intangible-thing) ?qun 
((has-unit-of-measure rtype unit-of-measure)
(has-magnitude rtype number)))

(def-class UNIT-OF-MEASURE (intangible-thing)
"Any kind of unit of measure, meter, dollar, kilogram, a month, a day, a year etc..")

(def-class DURATION (quantity) ?d 
)

(def-function MAGNITUDE-OF-DURATION (?dur) -> ?mag 
: constraint (and (duration ?dur)

(number ?mag)) 
rbody (the ?mag (has-magnitude ?dur ?mag)))

(def-function UNIT-OF-DURATION (?dur) -> ?uom 
rconstraint (and (duration ?dur)

(unit-of-measure ?uom)) rbody (the ?uom (has-unit-of-measure ?dur ?uom)))
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(def-class CALENDAR-DATE (time-point)
"A calendar date is a time point in which month, day and year have been specified"
( (day-of : type day-in-time -.cardinality 1)
(month-of : type month-in-time : cardinality 1)
(year-of : type year-in-time : cardinality 1)))

(def-function UNIVERSAL-TIME-ENCODER (?tp)
"This function encodes the standard structure of time-point into universal-time structure. 
: constraint (time-point ?tp)
:lisp-fun '(lambda (?tp)

(encode-universal-time (the-slot-value ?tp 'second-of)
(the-slot-value ?tp 'minute-of)
(the-slot-value ?tp 'hour-of)(the-slot-value ?tp 'day-of)
(the-slot-value ?tp 'month-of)(the-slot-value ?tp 'year-of))))

(def-class UNIVERSAL-TIME () ?x 
: constraint (integer ?x))

(def-function DECODE-TIME-POINT-FROM-UNIVERSAL-TIME (?ut): constraint (universal-time ?ut)
:lisp-fun '(lambda (?ut)

(multiple-value-bind
(second minute hour day month year ignorel ignore2 ignores] 
(decode-universal-time ?ut)

(name
(define-domain-instance (gentemp "TIME-POINT") 'time-point

"((second-of ,second)
(minute-of ,minute)
(hour-of ,hour)
(day-of ,day)
(month-of ,month)
(year-of ,year)))))))

(def-function TIME-POINT-DIFFERENCE (?tp-l ?tp-2)
"This function calculates the difference of two universal-time strctures."
: constraint (and (time-point ?tp-l)

(time-point ?tp-2))
:body (decode-time-point-from-universai-time

(- (universal-time-encoder ?tp-l) (universal-time-encoder ?tp-2))))

(def-function TIME-POINT-SUM (?tp-l ?tp-2)
"This function calculates the sum of two universal-time structures."
: constraint (and (time-point ?tp-l)

(time-point ?tp-2))
:body (decode-time-point-from-universai-time

(+ (universai-time-encoder ?tp-l) (universal-time-encoder ?tp-2))))

(def-relation DURATION-IS-LESS-THAN (?dl ?d2)
: constraint (and (duration ?dl)

(duration ?d2))
: iff-def (< (the ?magnitudel (has-magnitude ?dl ?magnitudel))

(the ?magnitude2 (has-magnitude ?d2 ?magnitude2))))

(def-class JOB-TIME-RANGE () ?jtr
"It represents the time range of each job in terms of its earliest and latest start and end time."
((has-earliest-start-time : type time-point :min-cardinality 1)(has-latest-start-time rtype time-point rmin-cardinality 1)
(has-earliest-end-time : type time-point :min-cardinality 1)
(has-latest-end-time : type time-point rmin-cardinality 1)
(has-unit-of-measure rtype unit-of-measure)) 

riff-def (or (precedes (the ?est (has-earliest-start-time ?jtr ?est))
(the ?eet (has-earliest-end-time ?jtr ?eet)))

(precedes (the ?lst (has-latest-start-time ?jtr ?lst))
(the ?let (has-latest-end-time ?jtr ?let)))))

(def-function JOB-TIME-RANGE-DURATION (?jtr) -> ?job-duration 
rconstraint (and (job-time-range ?jtr)

(duration ?job-duration)) 
rbody (- (the-slot-value ?jtr has-latest-end-time)

(the-slot-value ?jtr has-earliest-start-time)))

(def-function JOB-DURATION-QUANTITY (?job-duration) -> ?magnitude 
rconstraint (and (duration ?job-duration)

(number ?magnitude)) 
rbody (the ?magnitude (has-magnitude ?job-duration ?magnitude)))
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(def-instance second unit-of-measure) 

(def-instance minute unit-of-measure) 

(def-instance hour unit-of-measure) 

(def-instance day unit-of-measure) 

(def-instance month unit-of-measure)

(def-instance year unit-of-measure)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; Following are the useful relations for the Time-Ranges 
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
(def-relation PRECEDES (?time-point-l ?time-point-2)
"This relation states that a ?time-point-1 preceeds a time-point : constraint (and (time-point ?time-point-l)

(time-point ?time-point-2))
: iff-def (< (universal-time-encoder ?time-point-l)

(universal-time-encoder ?time-point-2)))

?time-point-2.

(def-relation FOLLOWS (?time-point-l ?time-point-2)
"This relation relation states that a time-point ?time-point-2 follows a time-point ?time- 

point-1.": constraint (and (time-point ?time-point-1)(time-point ?time-point-2))
: iff-def (precedes ?time-point-2 ?time-point-1))

(def-relation TIME-POINTS-EQUAL (?time-point-l ?time-point-2) 
: constraint (and (time-point ?time-point-l)

(time-point ?time-point-2))
: iff-def (and (= (minute-of ?time-point-l)

(minute-of ?time-point-2))
(second-of ?time-point-l)
(second-of ?time-point-2)).
(hour-of ?time-point-1)
(hour-of ?time-point-2))
(day-of ?time-point-l)
(day-of ?time-point-2))
(month-of ?time-point-l)
(month-of ?time-point-2))
(year-of ?time-point-1)
(year-of ?time-point-2))))

; ; ;These are BASIC relations ; ; ;
(def-relation BEFORE (?time-range-1 ?time-range-2)
"It means time-range-1 is before the time-range-2."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (precedes (the ?et (has-end-time ?time-range-1 ?et))

(the ?st (has-start-time ?time-range-2 ?st))))

(def-relation AFTER (?time-range-l ?time-range-2)
"It means time-range-1 is after the time-range-2."
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (precedes (the ?et (has-end-time ?time-range-2 ?et))

(the ?st (has-start-time ?time-range-l ?st))))
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(def-relation IS-AFTER (?time-range-2 ?time-range-1)
"It means that time-range-2 starts after the time-range-1 is finished."
; constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (follows (the ?st (has-start-time ?time-range-2 ?st))

(the ?et (has-end-time ?time-range-1 ?et))))

(def-relation MEETS (?time-range-1 ?time-range-2)
"It means that time-range-2 starts at the same time when time-range-1 ends."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (time-points-equal (the ?et (has-end-time ?time-range-l ?et))

(the ?st (has-start-time ?time-range-2 ?st))))

(def-relation OVERLAPS (?time-range-l ?time-range-2)
"It means that two time-ranges overlaps with each other."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (and (precedes (the ?st-l (has-start-time ?time-range-1 ?st-l))

(the ?st-2 (has-start-time ?time-range-2 ?st-2)))
(follows (the ?et-l (has-end-time ?time-range-1 ?et-l))

(the ?st-2 (has-start-time ?time-range-2 ?st-2)))
(precedes (the ?et-l (has-end-time ?time-range-1 ?et-l))(the ?et-2 (has-end-time ?time-range-2 ?et-2)))))

(def-relation ST.ARTS-SIMULTANEOUSLY (?time-range-1 ?time-range-2)
"It means that both the time-ranges starts at the same time."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (time-points-equal (the ?st-l (has-start-time ?time-range-1 ?st-l))

(the ?st-2 (has-start-time ?time-range-2 ?st-2))))

(def-relation FINISHES-SIMULTANEOUSLY (?time-range-l ?time-range-2)
"It means that both the time-ranges finishes at the same time but time-range-1 starts after
time-range-2."
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (time-points-equal (the ?et-l (has-end-time ?time-range-1 ?et-l))

(the ?et-2 (has-end-time ?time-range-2 ?et)-2)))

(def-relation TIME-RANGE-EQUf &LS (?time-range-1 ?time-range-2)
"It means that both the time-ranges starts and finsihes at the same time.": constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: if f-def (and (time-point-equals (the ?st-l (has-start-time ? time-range-1 ?st-D)

(the ?st-2 (has-start-time ?time-range-2 ?st-2)))
(time-point-equals (the ?et-l (has-end-time ?time-range-l ?et-l))

(the ?et-2 (has-end-time ?time-range-2 ?et-2)))))

(def-relation TIME-POINT-WITHIN-INTERVAL (?tp ? interval) 
: constraint (and (time-point ?tp)

(interval ?interval))
: iff-def (and (or (follows 

(follows 
(follows 
(follows 
(follows 
(follows 

(or (precedes 
(precedes 
(precedes 
(precedes 
(precedes 
(precedes

(the-slot-value ? interval has-end-time) 
(the-slot-value ?tp second-of))
(the-slot-value ? interval has-end-time) 
(the-slot-value ?tp minute-of))
(the-slot-value ? interval has-end-time) 
(the-slot-value ?tp hour-of))
(the-slot-value ? interval has-end-time) (the-slot-value ?tp day-of))
(the-slot-value ? interval has-end-time) (the-slot-value ?tp month-of))
(the-slot-value ? interval has-end-time) 
(the-slot-value ?tp year-of))).
(the-slot-value ?interval has-start-time) 
(the-slot-value ?tp second-of)) 
(the-slot-value ?interval has-start-time) 
(the-slot-value ?tp minute-of)) 
(the-slot-value ?interval has-start-time) 
(the-slot-value ?tp hour-of)) 
(the-slot-value ?interval has-start-time) 
(the-slot-value ?tp day-of)) 
(the-slot-value ?interval has-start-time) 
(the-slot-value ?tp month-of)) 
(the-slot-value ?interval has-start-time) 
(the-slot-value ?tp year-of)))))
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; These are derived relations,-;;

(def-relation IS-DURING (?time-range-1 ?time-range-2)
"It means that time-range-2 is in between (during) the the start and end time of time- 
range- 1 . "
: constraint (and (time-range ?time-range-l)(time-range ?time-range-2))
: iff-def (and (precedes (the ?st-l (has-start-time ?time-range-l ?st-l))

(the ?st-2 (has-start-time ?time-range-2 ?st-2)))
(follows (the ?et-l (has-end-time ?time-range-1 ?et-l))

(the ?et-2 (has-end-time ?time-range-2 ?et-2)))))

(def-relation JOB-ACTIVITY-TIME-RANGE-IS-DURING (?jtr-l ?jtr-2): constraint (and (job-time-range ?jtr-1)
(time-range ?jtr-2))

: iff-def (and (precedes (the ?est-l (has-earliest-start-time ?jtr-l ?est-l))
(the ?est-2 (has-earliest-start-time ?jtr-2 ?est-2)))

(follows (the ?let-l (has-latest-end-time ?jtr-1 ?let-l))
(the ?let-2 (has-latest-end-time ?jtr-2 ?let-2)))))

(def-relation BEFORE-OR-EQUAL (?time-range-1 ?time-range-2)
"It says that either one time range is before the other or is equal to the other time range."
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (or (before ?time-range-l .?time-range-2)

(meets ?time-range-1 ?time-range2)))

(def-relation AFTER-OR-EQUAL (?time-range-1 ?time-range-2)
"It says that either one time range is after the other or is equal to the other time range."
: constraint (and (time-range ?time-range-l)

(time-range ?time-range-2))
: iff-def (or (after ?time-range-1 ?time-range-2)

(meets ?time-range-1 ?time-range-2)))

(def-relation IS-AFTER-THAN (?time-range-l ?time-range-2)
"It is true when one time range is after the otehr time range."
: constraint (and (time-range ?time-range-l)

(time-range ?time-range-2))
: iff-def (is-after ?time-range-2 ?time-range-1))

(def-relation DURING-OR-EQUAL (?time-range-l ?time-range-2)
"It is true when one time range is-during the other time range or both these time ranges 
starts or finishes simultaneously or they are equal to each other."
: constraint (and (time-range ? time-range-1)

(time-range ?time-range-2))
: iff-def (or (is-during ?time-range-1 ?time-range-2)

(Starts-simultaneously ?time-range-I ?time-range-2)
(finishes-simultaneously ?time-range-1 ?time-range-2)
(time-range-equals ?time-range-1 ?time-range-2)))

(def-relation JOB-TIME-RANGE-DURING-OR-EQUAL (?jtr ?time-range): constraint (and (job-time-range ?jtr)
(time-range ?time-range))

: iff-def (or (and (< (has-earliest-start-time ?jtr ?est)
(has-start-time ?time-range ?st))

(< (has-latest-end-time ?jtr ?let)
(has-end-time ?time-range ?et)))(and (= (has-earliest-start-time ?jtr ?est)
(has-start-time ?time-range ?st))

(= (has-latest-end-time ?jtr ?let)
(has-end-time ?time-range ?et)))))

(def-relation EQUAL-LENGTH-TIME-RANGES (?time-range-1 ?time-range-2)
"The two time ranges are of equal 
the same time as well."
: constraint (and (job-time-range 

(job-time-range 
: iff-def (and (time-points-equal

(time-points-equal
(time-points-equal
(time-points-equal

length if they both start at the ssame time and finsh at
?time
?time
(the-
(the-
(the-
(the-
(the-
(the-
(the-
(the-

-range-1) 
-range-2)) 
slot-value 
slot-value 
slot-value 
slot-value 
slot-value 
slot-value 
slot-value 
slot-value

?time-range-1 has-earliest-start-time)
?time-range-2 has-earliest-start-time)) 
?time- range-1 has-latest-start-time) 
?time-range-2 has-latest-start-time))
?time-range-1 has-earliest-end-time)
?time-range-2 has-earliest-end-time))
?time-range-1 has-latest-end-time)
?time-range-2 has-latest-end-time))))
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(def-relation OVERLAPS-OR-MEETS (?time-range-l ?time-range-2)
"It is true when two time ranges either overlaps with each other or meets each other."
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (or (overlaps ?time-range-1 ?time-range-2)

(meets ?time-range-1 ?time-range-2)))

(def-relation OVERLAPS-OR-EQUALS (?time-range-1 ?time-range-2)
"It is true when two time ranges either overlaps with each other and are equal to each 
other."
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (or (overlaps ?time-range-1 ?time-range-2)

(time-range-equals ?time-range-1 ?time-range-2)))

(def-relation STARTS-OR-EQUAL (?time-range-l ?time-range-2)
"It is true when two time ranges either starts simulataneously or are equal to each other."
: constraint (and (time-range ?time-range-l)

(time-range ?time-range-2))
: iff-def (or (starts-simultaneously ?time-range-1 ?time-range-2)

(time-range-equals ?time-range-l ?time-range-2)))

(def-relation FINISHES-OR-EQUALS (?time-range-l ?time-range-2)
"It is true when two time ranges finishes simultaneously or are equal to each other.": constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
: iff-def (or (finishes-simultaneously ?time-range-1 ?time-range-2)

(time-range-equa1s ?time-range-1 ?time-range-2)))

(def-relation DISJOINT-TIME-RANGES (?time-range-l ?time-range-2)
"It is true if either time-range-1 is before time-range-2 or time-range-2 is before time- range -1. "
: constraint (and (time-range ?time-range-1)

(time-range ?time-range-2))
; iff-def (or (before ?time-range-1 ?time-range-2)

(before ?time-ranga-2 ?time-range-1)))

(def-relation TIME-RANGES-NOT-EXCEED (?job-time-range ?time-range) i,
: constraint (and (exists ?j (job.?j has-time-range ?job-time-range))

(time-range ?tr))
: iff-def (and (precedes (the ?est (has-earliest-start-time ?job-time-range ?est))(the ?et (has-end-time ? time-range ?et)))

(follows (the ?let (has-latest-end-time ?job-time-range ?let))
(the ?st (has-start-time ?tr ?st)))

(precedes (the ?let (has-latest-end-time ?job-time-range ?let))
(the ?et (has-end-time ?time-range let)))))

(def-relation TIME-RANGES-INTERSECT (?jtr ?tr)
. : constraint (and (job-time-range ?jtr)

(time-range ?tr))
: iff-def (and (follows (the Test (has-earliest-start-time ?jtr Test))

(the Tst (has-start-time Ttr Tst)))(follows (the Tlst (has-latest-start-time Tjtr Tlst))
(the Tst (has-start-time Ttr Tst)))

(precedes (the Teet (has-earliest-end-time Tjtr Teet))
(the Tet (has-end-time Ttr Tet)))

(precedes (the Tlet (has-latest-end-time Tjtr Tlet))
(the Tet (has-end-time Ttr Tet)))))

(def-relation DUE-DATE-EARLIER-THAN-OTHER (Tddl Tdd2)
"It says that if each of the slot value of due-date-1 precedes every slot-value of due- date-2 then due-date-1 is earlier-than due-date-2."
: constraint (and (calendar-date Tddl)

(calendar-date Tdd2)): iff-def (and (predeces (the-slot-value Tddl day-of)
(the-slot-value Tdd2 day-of))

(precedes (the-slot-value Tddl month-of)
(the-slot-value Tdd2 month-of))

(precedes (the-slot-value Tddl year-of)
(the-slot-value Tdd2 year-of))))

(def-relation DUE-DATE-LATER-THAN-OTHER (Tdd2 Tddl)
"It says that is each of the slot value of due-date-2 follows every slot-value of due-date- 
1 then due-date-2 is later than due-date-1."
: constraint (and (calendar-date Tddl)

(calendar-date Tdd2))
: iff-def (and (follows (the-slot-value Tdd2 day-of)

(the-slot-value Tddl day-of))
(follows (the-slot-value Tdd2 month-of)

(the-slot-value Tddl month-of))
(follows (the-slot-value Tdd2 year-of)

(the-slot-value Tddl year-of))))
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;;The following relations are defined for the time intervals exactly as it is described in J F Allen's paper.
(def-relation TIME-INTERVAL-BEFORE (?til ?ti2)
: constraint (and (interval ?til)

(interval ?ti2))
: iff-def (and (precedes (the-slot-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time))(precedes (the-slot-value ?til has-end-time)
(the-slot-value ?ti2 has-end-time))))

(def-relation TIME-INTERVAL-EQUAL (?til ?ti2)
: constraint (and (interval ?til)(interval ?ti2))
: iff-def (and (time-points-equal (the-slot-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time))
(time-points-equal (the-slot-value ?til has-end-time)

(the-slot-value ?ti2 has-end-time))))
(def-relation TIME-INTERVAL-MEETS (?til ?ti2)
: constraint (and (interval ?til)(interval ?ti2))
: iff-def (time-points-equal (the-slot-value ?ti2 has-end-time)

(the-slot-value ?til has-start-time)))

(def-relation TIME-INTERVAL-OVERLAPS (?til ?ti2)
: constraint (and (interval ?til)

(interval ?ti2))
: iff-def (and (precedes (the-slot-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time))(follows (the-slot-value ?til has-end-time)
(the-slot-value ?ti2 has-start-time))

(precedes (the-slot-value ?til has-end-time)
(the-slot-value ?ti2 has-end-time))))

(def-relation TIME-INTERVAL-DURING (?til ?ti2)
: constraint (and (interval ?til)(interval ?ti2))
: iff-def (and (precedes (the-slot-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time))
(follows (the-slot-value ?til has-end-time)

(the-slot-value ?ti2 has-end-time))))

(def-relation TIME-INTERVAL-STARTS (?til ?ti2)
: constraint (and (interval ?til)

(interval ?ti2))
: iff-def (time-points-equal (the-sict-value ?til has-start-time)

(the-slot-value ?ti2 has-start-time)))

(def-relation TIME-INTERVAL-FINISHES (?til ?ti2)
: constraint (and (interval ?til)(interval ?ti2))
: iff-def (time-points-equal (the-slot-value ?til has-end-time)

(the-slot-value ?ti2 has-end-time)))

(Alex) Chao-Chiang Meng and Michael Sullivan (1991). Logos A Constraint-Directed;;; 
Reasoning Sheel for Operations M;;anagem;;;ent, IEEE Expert, 6(1), pp.01-lS.; ; ; ; ; ; ;

(def-relation TIME-INTERVAL-ELAPSED-BY (?til ?ti2)
"This relation states, if one interval precedes another interval, then, it says, by how much time another interval succeeds the prior interval."
: constraint (and (interval ?til)

(interval ?ti2)
(has-start-time ?til ?stl)
(has-end-time ?til ?etl)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (or (precedes ?etl ?st2)
(= ?etl

(+ (?st2 (= ?diff-tp
(time-point-difference ?etl ?st2)))))))
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(def-relation TIME-INTERVAL-DURING-DELAY-AND-LAG (?til ?ti2)
"This relation states that if two intervals are during each other, and if one interval 
delays or lag from the other interval, it states by how much margin the interval has 
delayed or laged."
: constraint (and (interval ?til)(has-start-time ?til ?stl)

(has-end-time ?til ?etl)
(interval ?ti2)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (and (or (follows ?st2 ?stl)(= ?st2
(+ (?stl

(= ?diff-tp
(time-point-difference ?st2 ?stl))))))

(or (precedes ?st2 ?etl)(= ?etl
(+ (?et2

(= ?diff-tp
(time-point-difference ?etl ?et2))))))))

(def-relation TIME-INTERVAL-OVERLAP-OR-LAG (?til ?ti2)
"This relation states that if two intervals are overlapping each other, and if one interval 
lags another interval, then it says by how much margin these intervals are laged."
: constraint (and (interval ?til)

(has-start-time ?til ?stl)
(has-end-time ?til ?etl)
(interval ?ti2)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (and (precedes ?stl ?st2)(or (and (precedes ?st2 ?etl)
(precedes ?etl ?et2))

(= ?etl
(+ (?stl

(= ?diff-tp
(time-point-difference ?etl ?st2))))))))

(def-relation TIME-INTERVAL-STARTS-BY (?til ?ti2)
"This relation states that if two intervals starts at the same time, and if one interval 
finishes after another interval then it says by how much margin the interval finishes over 
other.": constraint (and (interval ?til)

(has-start-time ?til ?stl)
(has-end-time ?til ?etl)(interval ?ti2)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (and (time-points-equal ?stl ?st2)
(or (precedes ?etl ?et2)

(= ?et2
(+ (?etl(= ?diff-tp

(time-point-difference ?et2 ?etl))))))))

(def-relation TIME-INTERVAL-FINISHES-DELAY (?til ?ti2)
"This relation stats that if two interval finishes at the same time, but they have 
different start-time, then it says, by how much time these two intervals differ in terms of 
thri start times."
: constraint (and (interval ?til)(has-start-time ?til ?stl)

(has-end-time ?til ?etl)
(interval ?ti2)
(has-start-time ?ti2 ?st2)
(has-end-time ?ti2 ?et2))

: iff-def (and (or (follows ?stl ?st2)
(= ?stl(+ (?st2

(= ?diff-tp
(time-point-difference ??stl ?st2))))))

(time-points-equal ?etl ?et2)))

222



Appendix 4

A REFERENECE GUIDE TO OCML
Because our library is implemented by using the Operational Coneeptual Modelling 

Language (OCML) (Motta, 1999), here we provide a reference guide to some of the 

important modelling constructs and the basie modelling meehanism supported by OCML. .

4.1 Different types of constructs in OCML
In OCML the following three types of constructs are supported: functional terms, control 

terms, and logieal expressions. These are discussed in the following bullet points.

• Functional terms: It is used to speeify an objeet in the cuirent domain of interest. 

The ftinctional term can be a constant, a variable (it is represented as a Lisp symbol 

with the question mark prefix, e.g. ?x), a string (it is represented by a double quote 

"a g e n e r ic  l i b r a r y  of sch ed u lin g "), a funetion application (it is 

represented by means of the Lisp macro d e f - fu n c tio n ) , or it can be constructed 

by special term constructor. The special term constructs can be one of the 

following; i f ,  cond, th e , s e to f a l l ,  f  in d a l l ,  quote , and i n -e n v i ronment;

• Control terms: Modelling the problem solving behaviour involves more than 

making statements and describing entities in the world. Control regimes are 

required to specify actions and describe the order in which these are executed. 

OCML supports the specification of sequential, iterative, and conditional control 

structures by means of a number of eontrol term constructors such as re p e a t,  

loop, do, i f  and cond, etc;

• Logical expressions: OCML also supports a mechanism for specifying the logical 

expressions. Some of the typieal logieal operators that ean be used to construct the 

logical expressions in OCML are the following ones: and, or, n o t, =>, <=>, and 

quantifiers such as f o r a l l  and e x is t s .  The simplest type of logieal expression in 

OCML is a relation expression which is specified by means of Lisp macro d ef - 

r e la t io n .

4.2 Basic modelling in OCML
OCML provide mechanisms for describing various types of primitives for modelling whieh 

are as follows: classes, instances, relations, functions, rules, proeedures, and axioms.
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4.2.1 OCML classes

OCML supports the specification of classes and instanees and the inheritance of slots and 

values in terms of isa hierarchy. The classes in OCML are represented in terms of the Lisp 

macro called, d e f - c la s s .  It takes as an argumentation a name of a class, a list of 

superclasses if the class is inheriting the specification from other classes, and a list of slot 

specifications. In the case where the class is a goal-specification task (cf. Appendix 1) then 

the input and output role specifies the input knowledge roles required by the class and 

output role specifies what the class is expected to produce as an output to the class. The 

following box shows the examples of the class specification in OCML.

(def-class JOB () ?j 
((has-activity : type list : cardinality 1

: documentation "It states that each job has a list 
of activities associated with it.") 

(requires-resource : type resource :min-cardinality 1)
(requires-resource-type : type resource-type :min-cardinality 1)
(has-time-range : type job-time-range :max-cardinality 1)
(has-due-date : type calendar-date :max-cardinality 1)
(has-durâtion : type duration :max-cardinality 1)
(has-load : type integer zdefault-value 1)))

: iff-def (exists ?task (and (scheduling-task ?task)
(member ?j (role-value ?task has-jobs)))))

(def-class nimbus-1-job (job))

OCML provides a support for the usual slot specification that is found in frame-based 

representation.

• lvalue: A value that is inherited by all instances of class;

• :default-value: A value that is inherited by all instances of a class unless 

overridden by other values;

• :type: The value of this option should be another class, C and all values of the 

associated slot should be instances of C.

• :max-cardinality: The maximum numbers of slot values allowed for a slot.

• :min-cardinality: The minimum numbers of slot values required for a slot.

• : cardinality: The number of slot values required for a slot. This option subsumes 

both maximum and minimum cardinality values.

• :documentatioii: It represents a documentation describing a slot.

4.2.2 OCML instances

OCML instances are the members of a class and they are specified in terms of a Lisp 

macro d e f - in s ta n c e .  It takes as arguments the name of the instance, the parent of the 

instance (i.e., the most specific class to which the instance belongs to), optional 

documentation, and a number of slot-value pairs. As it has been shown in the following 

box the slot of an instance can have multiple values, e.g. h a s - a c t i v i t i e s .  The follows 

box shows the example of OCML instance.
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(def-instance nimbus-1 nimbus-1-job 
((has-activities '(nimbus-1-communication-1 nimbus-1-communication-2

nimbus-1-communication-3 nimbus-1-communication-4)) 
(requires-resource '(low-range-antenna))
(has-time-range nimbus-1-time-range)
(has-duration 60-minute-durâtion)))

4.2.3 OCML relations

In OCML relations allow the users to define labelled n-ary relationships between different 

entities and the relations are specified in terms of a Lisp macro called d e f - r e la t io n .  It 

takes as an argument the name of a relation, its argument schema, optional documentation, 

and a number of relation options. The relation options in particular not only specify the 

formal semantics of a relation but it also provides operational nature of OCML. The 

following bullet points discuss the relation options in OCML.

• :iff-def - It specifies both sufficient and necessary conditions for the relation to 

hold for a given set of arguments. It provides a support for both constraint checking 

as well as proof meehanism;

• :sufficient - It specifies a sufficient condition for the relation to hold for a given set 

of arguments. It also provides, a support for the proof mechanism but does not 

support constraint checking;

• : constraint - It specifies an expression which follows from the definition of the 

relation and must be true for each instance of a relation. It provides a support for 

constraint checking but does not provide a support for proof mechanism;

» :def - This is for the compatibility with Ontolingua. It specifies a constraint which 

is also meant to provide a partial definition of a relation. It provides a support for 

constraint checking but does not provide a support for proof mechanism;

• :axiom-def - A statement which mentions the relation to which it is associated. It 

provides a mechanism to associate theory axioms with specific relation;

• :prove-by - It is used in order to provide a support for the proof mechanism but 

does not support the constraint checking;

• :lisp-fun - It is used in order to provide a support for the proof mechanism but does 

not support the constraint checking.

The following box shows the OCML definition to specify the relations.
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(def-relation ACTIVITY-PRECEDES (?al ?a2)
: constraint (and (activity ?al)

(activity ?a2))
:iff-def (and (has-time-range ?al ?jtr-al)

(has-time-range ?a2 ?jtr-a2)
(has-duration ?al ?dl)
(<= (time-point-sum (the-slot-value ?jtr-al has-earliest-start-

time)
(magnitude-of-durâtion ?dl))

(the-slot-value ?jtr-a2 has-earliest-start-time)))
:axiom-def (defines-partial-order activity-precedes))

In some cases we may want to use the a keyword only for specification and not 

operationally and to deal with such kind of situations OCML provides a meta-keyword 

called :no-op, which specifies that the enclosed relation only plays a specification role. 

The following box shows the : no-op specification in OCML.

(def-class SCHEDULE-EXTENSION-ACTIVITY-OPERATOR-BODY (lambda-expression) ?x 
:no-op (: constraint (and (nth-domain ?x 1 job)

(nth-domain ?x 2 ?sc)
(=> (= ?z (call ?x ?]))

(and (has-activities ?j ?list)
(member ?z ?list))))))

4.2.4 OCML functions

The functions in general and in OCML in particular define a mapping between a list of 

input arguments and its output argument. The functions are applied to ground terms to 

generate function values. In OCML functions are specified by the Lisp macro called d e f - 

fu n c tio n , which takes as an argument the name of a function, its argument list, an 

optional variable indicating the output (it is represented as follows: -> ?c), optional 

documentation, and function specification options such as -.def, - .c o n s tra in t, : body, 

and ; l i s p - fu n .  The most interesting function specification options are the :body and 

: l i s p - fu n .  The former specifies a functional term which is evaluated in an environment 

in which the variables in the function are bound to the actual arguments, while the latter 

makes it possible to evaluate an OCML function by means of a procedural attachment. The 

following box shows an example of the OCML function.

(def-function ALL-ASSIGNABLE-JOBS (?js ?sc) -> ?x 
: constraint (and (list ?js)

(every ?js job)
(schedule-model ?sc))

:body (setofall ?x (and (member ?x ?js)
(unassigned-job ?x ?sc) 
(job-assignable ?x ?sc))))

(def-function JOB-TIME-RANGE-DURATION (?j ?jtr) -> ?time-point 
: constraint (and (job ?j)

(has-time-range ?j ?jtr)
(job-time-range ?jtr)) 

zbody (- (the-slot-value ?jtr has-latest-end-time)
(the-slot-value ?jtr has-earliest-start-time)))

4.2.5 OCML rules; rule-based reasoning

OCML also supports the specification of backward and forward rules. The former consist 

of number of backward clauses and each of these backward clauses specifies the different
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goal-subgoal decomposition. While carrying out a proof by means of a backward clause 

OCML interpreter try to prove the relevant goal by firing the clauses in the order in which 

they are listed in the rule definition. The following box shows the example of OCML 

backwards rule.

(def-rule possible-resources-1 
((possible-resources-for-job ?x ?r) 
if
(nimbus-1-job ?x)
(low-range-antenna-resource ?r) 
(handles-job ?r ?x)
(requires-resource ?x ?r)))

The forwards rule consists of zero or more antecedents and one or more consequents. 

Antecedents are restricted to relation expressions, while any logical expression can be a 

consequent. In OCML when the forward rule is executed then each consequent is treated as 

a goal to be proven and tries to prove them until one fails. The following box shows a 

representation of the forward rule in OCML.

(def-rule Nimbus-1-requires-low-range-antenna 
(requires-resource ?nl ?ls) 
then
(exec (tell (has-job-belonging ?ls ?nl)))
(exec (output "requires a resource -3 ~S" ?nl ?ls)))

4.2.6 OCML procedures

In OCML, procedures define actions or sequences of actions which cannot be characterised 

as functions between input and output arguments. For instance, the example shown in the 

following box is the Base Ontology definition specified to set the value of a slot. This 

includes a u n a s s e r t  statement, which first removes any existing values from the slot, and 

uses a t e l l  statement to add a new value. The t e l l  and u n a s s e r t  are OCML 

procedures themselves, where the former takes a ground logical expression and adds it to 

the current model and the latter takes a relation expression and removes from the current 

model all assertions which match it.

(def-procedure set-slot-value (?i ?s ?v)
: constraint (and (instance-of ?i ?c) 

(slot-of ?s ?c)) 
zbody (do (unassert (list-of ?s ?i ?any)) 

(tell (list-of ?s ?i ?v))))

4.3 Summary
The primary role of OCML language is to provide operational knowledge modelling 

facilities. In a nutshell, it provides support for functional and control statements as well as 

the proof system which integrates inheritance with backward chaining, function evaluation, 

and procedural attachments. Because the main objective of OCML is to give operational 

support, it aims to support different styles of knowledge modelling such as informal, 

formal, and operational. Finally, OCML provides support for export mechanisms to other
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representations, including Ontolingua (Farquhar et a l, 1997) and OWL (McGuinness and 

Harmclcn, 2004).
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