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A b s t r a c t  o f  t h e  D is s e r t a t io n

M utation—selection models of sequence evolution  
in population genetics

by

Dipl.-Phys. Tini Garske

Doctor of Philosophy in Applied Mathematics,
Faculty of Mathematics and Computing, The Open University, 2004

The equilibrium properties of a number of deterministic m utation- 
selection models of sequence evolution are investigated. Both two- and 
four-state sequences are considered, the mutation model is a single-step 
mutation model. Two types of fitness functions are studied, namely 
permutation-invariant fitness functions, where the fitness of a sequence 
depends only on the number of mutations, not on their location within 
the sequence, and Hopfield-type fitness functions, where the fitness of 
a sequence is determined by its similarity to a number of predefined 
patterns.

Maximum principles to determine the population mean fitness in 
equilibrium are derived, where the maximiser gives also the ancestral 
mean genotype. These maximum principles are used to investigate the 
error threshold phenomenon, i.e., the phenomenon th a t for certain fit
ness functions the population changes at a critical m utation rate from a 
well localised to a delocalised distribution in sequence space.

The error threshold phenomenon is investigated for a  four-state model 
with permutation-invariant fitness functions and for a two-state model 
with Hopfield-type fitness functions. Both models yield ordered and 
disordered as well as partially ordered phases.
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C H A PTER  1 

Introduction

Population genetics is concerned with the investigation of the genetic structure of popu

lations. This structure is influenced by evolutionary factors such as mutation, selection, 

recombination, migration, and genetic drift. Hence the investigation of interactions be

tween these processes lies at the heart of research in population genetics. For an excellent 

review of the theoretical aspects of this field see [BGOO] or [CK70, Ewe04].

Treating biological evolution theoretically involves, as a first step, the configuration of 

a model, i.e., abstracting from reality and capturing only the essential features in a m ath

ematically tractable formulation. Incorporating all of the evolutionary factors mentioned 

above into the model leads to a model that is too complex to be of practical use. One 

approach to further the understanding of evolution is therefore to use simpler models that 

restrict the number of evolutionary factors to a subset, excluding others. In this thesis 

the antagonistic interplay of mutation and selection shall be investigated, with mutation 

generating the genetic variation upon which selection can act, and thereby tending to 

reduce it.

Pure mutation-selection models exclude genetic drift and therefore are deterministic 

models, and accurate only in the limit of an infinite population size; for a review see 

[BiirOO]. A further simplification taken here is to consider only haploid populations, i.e., 

asexually reproducing populations, where the genetic code exists in one copy only in 

each cell, in contrast to diploid populations that reproduce sexually, with each individual 

having two copies of the genome, one stemming from the mother and one from the father. 

However, if one considers a diploid population neglecting the effects of dominance, the 

resulting equations are actually the same as in the haploid case [BiirOO].



The evolution of a population under the forces of mutation and selection can be de

scribed mathematically by a set of differential equations, the evolution equations. If one 

is interested in equilibrium properties, the problem reduces to an eigenvalue problem of a 

matrix of dimension given by the number of genotypes allowed for in the model.

In the early works on population genetics (e.g. [Fis30, Hal27]), the concept of genes 

or genotypes was a rather abstract one. W ith the discovery of the structure of the DNA 

[WC53], however, genotypes could be identified with sequences written in the four-letter 

alphabet AGCT (denominating the four nitrogenous bases adenine, guanine, cytosine and 

thymine), which is the basis of the sequence space approach, introduced in the seminal 

paper by Eigen [Eig71].

This class of models gets its name from the sequence space which is the set of all possible 

sequences and thus genotypes. As there are 4^  different sequences of a given length N, 

the number of possible genotypes is very large, especially compared to classical m utation- 

selection models, where in the simplest cases only two different types are considered. 

This large number of types makes the mathematical treatment of the evolution equation 

enormously harder as the dimension of the problem grows with the number of types 

considered.

Most works using the sequence space approach do not use the full four-letter alphabet, 

but a simplified two-letter version, which can for instance be interpreted as purines and 

pyrimidines. Results concerning the full four-state model are scarce, but those that are 

available show a considerably richer behaviour.

In the sequence space approach, the model is based on the microscopic level, at which 

mutation occurs. Consequently, mutation is straightforward to model. However, the 

appropriate modelling of selection is a more challenging task, as selection acts on the 

phenotype, and the mapping from sequence to phenotype is by no means simple. To 

this end, the concept of the fitness landscape [KL87] is introduced as a function on the 

sequence space, assigning a fitness value, which determines the reproduction rate, to each 

possible genotype. Apart from the problem that a realistic fitness landscape would have to



be highly complex (too complex for a mathematical treatm ent) there is also very limited 

information available concerning the nature of realistic fitness functions.

Since the 1980’s, one aspect driving the scientific progress has been the discovery of the 

equivalence of some types of sequence space models with certain models used in statistical 

physics, such as Ising models and quantum spin chains [Leu86, BBW97]. This has made 

the methods from theoretical physics, that are well adapted to dealing with large numbers 

of particles (or types), available for use in population genetics. However, the application 

of the methods from physics to biology is not completely straightforward due to subtle 

differences in the normalisation of the relevant observables.

One result that was obtained influenced by methods from statistical physics is a sim

ple scalar maximum principle to determine the population mean fitness in equilibrium 

for a two-state model with permutation-invariant fitness function, where the fitness of a 

sequence depends only on the number of mutations it carries compared to a reference 

sequence, not on their location within the sequence. This is an immense simplification 

compared to the solution of a high-dimensional eigenvalue problem which previously was 

required to find the population mean fitness in equilibrium. The analogon of this maximum 

principle is the principle of minimal free energy in statistical physics.

The general behaviour of a deterministic mutation-selection model is such that, for a 

fixed fitness function, at low mutation rates the population will be clustered around the 

highest peak of the fitness landscape, and with increasing m utation rate this cluster will 

broaden, until in the limit of infinite m utation rates, the population will be equally dis

tributed over the whole sequence space, as selection can no longer counteract the dispersing 

effect of mutation. Using the sequence space approach, this behaviour shows however an 

interesting twist: While for some (predominantly simple, smooth) fitness landscapes, the 

broadening of the population distribution occurs in a smooth fashion, there are other 

fitness functions for which the population distribution shows a radical change at a criti

cal mutation rate. This phenomenon is known as the error threshold, and has attracted 

considerable interest ever since it has first been observed [Eig71]. It has been long de-



bated whether this was just an artefact of the model employed or whether it described a 

behaviour tha t is relevant to real populations. Today, there exists however ample experi

mental evidence for the occurrence of error thresholds in viral populations [DH97, CCAOl].

This thesis is organised as follows. Chapters 2 and 3 give an introduction to the models 

employed in this work. Chapter 2 gives the general set-up of the mutation-selection model. 

Chapter 3 focuses on the sequence space approach and the adaptations of the general model 

to this approach, specifying the particular mutation models for both two- and four-state 

sequences and discussing some types of fitness functions, in particular the permutation- 

invariant fitness and the Hopfield-type fitness, where the fitness of a sequence is determined 

by the similarity to a number of given sequences.

In chapter 4 the problem of the large number of genotypes that is inherent in the 

sequence space approach is addressed by lumping together types with identical fitness 

values into classes, and considering a coarser process that keeps track of the classes, rather 

than individual types. Furthermore, this lumping is an essential step toward the derivation 

of the maximum principle, which is pursued in chapter 5. Both lumping and maximum 

principle are obtained for two- and four-state models with permutation-invariant and 

Hopfield-type fitness functions.

Chapter 6 uses the maximum principles derived in chapter 5 to investigate the phe

nomenon of the error threshold for examples of permutation-invariant and Hopfield-type 

fitness functions.

The results of this thesis are summarised in chapter 7.



CH A PTER  2 

General m utation-selection m odels

In a deterministic mutation-selection model, the only evolutionary forces tha t are con

sidered are mutation and selection. Usually, one is interested in questions concerning the 

mutation-selection balance, means and variances and the m utation load, i.e., the loss of 

population mean fitness due to the action of mutation.

The subject under investigation is a population, which can be considered as a set of 

individuals. These individuals have a type, and in the case of a pure mutation-selection 

model, this type is identified with the genotype, neglecting any environmental effects. The 

set of possible types is referred to as the type space 6 .  This type space can be finite; in 

the simplest case one considers only one gene or locus tha t occurs in two different forms, 

called alleles, and the type space © contains only two types, having cardinality |6 | =  2. 

However, the type space © can as well be infinite as in the continuum-of-alleles model, 

describing the possible genotypes by real numbers, see for instance [BiirOO, Red03].

Whatever the type space is, as long as it is finite, the population at any time t  can be 

described as a vector p{t) of dimension |©|. An entry pi{t) determines the fraction of the 

population tha t is of type i. The population is normalised such tha t ~  ^

therefore is a probability distribution. Alternatively, the population can be described by 

the numbers 7ii{t) of each type, collected in the vector n{t),  which is not normalised.

In the setting of a deterministic, haploid mutation-selection model (or a diploid model 

without dominance effects), there are various ways to model the evolutionary processes. 

One way is to consider time as a discrete quantity, tha t is measured in (non-overlapping) 

generations, where mutations occur at reproduction. An example for this approach can 

be found in [Leu86].



If one decides to model time as a continuous quantity, mutation can still be modelled as 

coupled to the reproduction process as it is done in the original quasispecies model [Eig71], 

or, alternatively, as a process that occurs independently from reproduction. Models follow

ing the latter approach have been termed para-muse models (parallel mwtation-selection 

models) [Baa95]. The mutation-selection equation for the parallel model has been given 

in [CK70] and investigated in [Aki79, Wag98, BWOl] and others.

For organisms with short replication periods, like bacteria or viruses, it makes sense to 

assume that most of the mutations occur as replication errors and therefore the coupled 

model seems to be more realistic. For organisms with longer generations, however, repli

cation errors are not the only source of mutations, but mutations also occur during the 

lifetime of an individual, a process tha t is correctly modelled by the decoupled version. 

Which of these one deems to be more realistic depends on whether one considers mutation 

rates to be constant per generation or per year. The latter is assumed for the molecular 

clock hypothesis, which forms a basis of some im portant approaches in fitting molecular 

phylogenies. The very existence of the molecular clock has been challenged [Gil91], but 

studies investigating the generation-time effect on the molecular clock only measure mod

erate dependence on generation length [Kim87, Oth93]. As so often, reality lies somewhere 

in between these two extremes.

In [WBS95], both versions, the coupled and decoupled mutation-selection schemes, 

have been compared. For small mutation rates, they are equivalent in first approximation, 

and even for large mutation rates, both models were found to behave very similarly. The 

mathematically simpler model is the para-muse model, which will be the focus in this 

work.

In this model, the evolutionary processes are births, deaths and mutations. The birth 

process describes the event tha t one individual in the population gives rise to an identical 

copy of itself. In the case of a bacterial population, this would be a cell division. The 

death process describes the event of an individual dying and therefore vanishing from the 

population. The births and deaths happen with rate b{ and respectively, which depend



on the type i. Taken together, these two processes determine the effective reproduction 

rate n  =  b{ — di. The type-dependence of the reproductive process is how selection 

enters this model: A type with high effective reproduction rate, or fitness, has a selective 

advantage.

A mutation event is a type change of an individual, which happens with a rate 

rriji{= depending on both the initial type i and final type j .  At this level, the

modelling of the population is straightforward, the meat lies in the choice of values for the 

m utation and reproduction rates.

Both reproduction and mutation rates can conveniently be collected in square matrices 

TZ and M.. The reproduction m atrix IZ is diagonal with entries whereas the off-diagonal 

entries of the mutation matrix M. contain the mutation rates. As the pure mutation 

process does not change the number of individuals, the diagonal entries are chosen such 

tha t M ii  =  — M ji ,  specifying the rate at which individuals m utate away from
j^i

type i to any other type. This makes the m utation m atrix M. a Markov generator. The 

time-evolution operator Ti is given by the sum of reproduction and m utation matrix, 

TZ = 7Z + A4.

In the deterministic limit, the evolution of the population is governed by a differential 

equation

p(t) = [?{-  f ( t) l]  p(t)  . (2.1)

Here, f( t)  is the population mean fitness, defined as f( t)  = nPi(^)? and 1 is the identity

matrix. For the connection to the corresponding stochastic model, see section 2.1, and 

equation (2.8) in particular. Note tha t equation (2.1) is non-linear, due to the population 

mean fitness, which depends on p(t). This term  is required to preserve the normalisation 

of the population distribution Y^iPi(t) =  1.

The non-linearity of equation (2.1) can easily be remedied by using a transformation 

from the frequencies p{t) to absolute numbers of individuals, normalised by the population



size at time t = 0, y{t) = • One gets [TM74]

y{t) := p{t) exp

with reverse transformation

f  r(r)dT
Jo

(2.2)

-  e!S*) ■

y(t)  now fulfils the linearised evolution equation

&f(<) = . (2.4)

Defining

T{t)  :=  expltH] , (2.5)

which is given via the Taylor expansion exp[tH] =  the solution of this equation

is clearly given by

y{t) = T{t)y{0)  , (2.6)

and thus we have for the frequencies

The main interest focuses on the equilibrium, i.e., the behaviour if p  =  0, which is 

attained for t oo. All equilibrium quantities shall be denoted by omitting the argu

ment t, for instance p  is the equilibrium population distribution and f  the equilibrium

mean fitness. In equilibrium, equation (2.1) reduces to an eigenvalue equation for 71 with 

leading eigenvalue Amax =  r. If A4 is irreducible, as shall be assumed throughout (unless 

otherwise specified), Perron-Frobenius theory ([Per07], [Kar66, appendix]) applies, which 

guarantees tha t the leading eigenvalue f  of “H is non-degenerate, and the corresponding 

right eigenvector p  is strictly positive, which implies that it can be normalised as a prob

ability distribution.

The continuous-time model is connected to a discrete-time mutation-selection model 

with a time-evolution operator given by T{t), where t is the generation time. The pure 

m utation process in continuous time is a Markov process with J2j ^ j i  — 0, whereas the
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Figure 2.1: Schematic population: lineages symbolise individuals, colours indicate types. Colour 
changes mark mutation events, whereas branching lines represent births and ending lines stand for 
deaths. The thickness of a line at any time denotes the number of offspring of the individual at 
time t + T.

pure mutation process in discrete time is given by the corresponding Markov chain with 

E j(e x p [ t^ ]) jz  =  1.

2.1 R elative reproductive success and the ancestral d istribution

Similarly to the population distribution, there is another distribution th a t will prove im

portant in this model, namely the ancestral distribution, which has been introduced in 

[HRWB02] via considering a stochastic model tha t corresponds to the deterministic model 

in question. The stochastic model is a multi-type branching process in continuous time 

with birth, death and mutation events with rates hi, d* and mji, respectively. As in the 

deterministic model, mutation and reproduction are modelled as decoupled, the multi-type 

branching process in the corresponding stochastic model is such tha t mutations never oc

cur at birth  events, i.e., the offspring is always of the same type as the parent. Figure 2.1 

shows schematically the evolution of a population according to such a branching process.

This stochastic model corresponds to the deterministic model in the following sense. 

In the limit of an infinite population size, the numbers of individuals Y ( t ) ,  which are 

random variables in the stochastic model, divided by the initial population size, converge 

almost surely to the solution y(t)  of equation (2.4), see [EK86, chapter 11]. Also, for finite 

population size, the time evolution of the expectation values F7[y‘(t)|2/(0)] (with some



initial population 2/(0)) is governed by

^S[r(«)|y(0)] = %g[y(()|y(0)] , (2.8)

such tha t % is the infinitesimal generator of this process [HRWB02].

In particular, consider a population that was started at time 0 by a single type-j 

individual. Clearly, the expected number of type-% offspring at time r  is given by Tij(r) 

with T  from (2.5). Due to independence of individuals, this is also the expected number 

of type-2 offspring at time t -f r  of a type-j individual at time t  tha t is part of a population 

distributed according to p{t). Note that due to the Markov property of the process, this 

depends only on the time increment r ,  not on the time of founding t. The expected total 

number of offspring of this individual, i.e., the expected clone size, after evolution for time 

period r  is then

Comparing the expected clone size of a j-clone after evolution for time r  with the 

expected mean clone size of the population, distributed according to p{t), Ylk£Tke{T)pe{t), 

the relative reproductive success Z j ( r , t )  is given by

The concept of the ancestral distribution was introduced in the context of sequence 

space models in [HRWB02], and, maybe more importantly, recognised for its relevance, as 

shall be seen later. However, ideas using the concept of the relative reproductive success 

can already be found in [Fis30], and they have been used in matrix population models. 

These models are formally very similar to the sequence space models, but the types are not 

interpreted as genotypes but rather as age stages in a plant population, and the change 

from one class to another is not due to mutation but due to growth, see [CE92] or [CasOl, 

chapter 4.6].

Picking at random an individual at time t +  r  and tracing its ancestry back in time 

until t ,  we are interested in the probability distribution of the ancestral type at time t ,  

irrespective of the type at time t +  r .  This is denoted by the ancestral distribution a{r,t). 

As the relative reproductive success of type j ,  Z j { r , t ) ,  determines the frequency of the

10



lines ai t + r,  which originate from each type-j individual a t t, the ancestral distribution 

a ( r , t) is given by

üj{T,t) : =  Z j { r , t)pj{t) . (2.10)

The ancestral distribution can not only be interpreted backward in time, as explained 

above, but also admits an interpretation in forward time as the population distribution at 

time t, weighted by the number of offspring each type produces at time t - \-r  (irrespective 

of the offspring’s type).

2.1.1 Asymptotics

It is well known (e.g. [Kar66, appendix]), tha t in the limit t —>• oo the operator 

exp m u  — Amaxl)] converges to a m atrix P  with Pij =  piZj, where pi and Zj are ele

ments of the right and left Perron-Frobenius (PF) eigenvectors, respectively, normalised 

such that z p  = 1 , and that P  is a projector onto p.

From this and the definition of the relative reproductive success (2.9), it can be seen 

tha t in equilibrium (t, r  -4- oo) the Zj{T, t) converge to the elements of the left PF  eigenvec

tor z  of using the identity exp [t(7{ — Amaxl)] =  e“ ^™^^T(t). The ancestral frequency 

of type i in equilibrium is then given by a* =  zipi, and is normalised as a probability 

distribution, i.e., =  1.

2.2 M eans

In this model, there are two im portant probability distributions, the population and an

cestral distributions. Hence, any property (for instance, the fitness) can be averaged with 

respect to either distribution. The population mean of a quantity o, tha t is assigned to 

each type in the sequence space, is given by

ô ( t )  =  ' ^ O i P i ( t )  , (2 .11)
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whereas the ancestral mean is

0 {r,t) = '^ O ia i ( r , t )  . (2.12)
i

Note tha t the value of Oi for any type i is taken to be constant in time; the time dependence 

of the means only comes in through the time dependent distributions. The values of the 

means in equilibrium shall be denoted as before by omitting the time arguments t  and r .

The difference between the population mean and the ancestral mean is rather subtle: 

Both the population and ancestral distributions are normalised as probability distribu

tions, YliPi = YliO-i = 1. However, in terms of the eigenvectors of the time-evolution 

matrix the population mean can be thought of as a mean with respect to an Li-norm, 

because in the mean of any function the functional values are weighted linearly with the 

entries of the eigenvectors. This is different for the ancestral distribution, as it is given 

by the product of the left and right eigenvectors of the time-evolution matrix a* =  ZiPi, 

which, after symmetrisation of the time-evolution matrix, corresponds to the square of 

the eigenvectors, as then the left and right eigenvectors coincide (cf. chapter 5). This 

means tha t in the ancestral mean the functional values are weighted with the square of 

the entries of the eigenvectors, and thus this can be interpreted as a mean with respect to 

an ^ 2-norm.

This difference has made the application of methods from physics to biology more 

dijfficult, as in the biological models, the natural observables are the population means, 

whereas in the physical models, one works with the Tg-norms such as the ancestral mean. 

However, it has turned out tha t also in biology, the ancestral mean plays an important 

role, as shall be seen in chapters 5 and 6.
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C H A PTER  3 

M utation-selection  models in the sequence space approach

3.1 Sequences as genotypes

In the previous chapter, a general haploid mutation-selection model in continuous time 

was set up without any restrictions of the types considered, apart from the fact tha t they 

were assumed to be genotypes of some form, i.e., inheritable and not influenced by the 

environment. Here, the notion of types shall be filled with a particular concept. Genotypes 

are modelled as sequences inspired by the structure of the DNA and RNA.

The DNA and RNA are sequences composed of four different nucleotides, which differ 

in the nitrogenous base. In DNA, we find adenine, guanine, cytosine and thymine (AGCT), 

whereas in the RNA, uracil (U) replaces thymine. These nitrogenous bases can be classified 

as purines (AG) and pyrimidines (CTU). The genetic information stored in the DNA is given 

by the succession of the different nucleotides.

The simplest approach is to model the sequential structure of the DNA, but neglect the 

full complexity of the four-letter alphabet, by modelling genotypes as two-state sequences. 

This is the oldest sequence space approach [Eig71], and up to date by far the most common 

in population genetics, see [NS89, FPS93, BBN96, LTP03], to name but a few. Here, these 

two states can be identified as purines and pyrimidines. Alternatively, one can identify 

one reference sequence, commonly chosen as the wild-type, which is the sequence with 

highest fitness and the one usually found most abundant in natural populations. Then, 

the two states can be taken to indicate whether a given sequence matches the wild-type 

at a particular site or not.

The more complex approach to allow for four different states at each site as it occurs in
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actual DNA has only been considered in very few works to date [HWBOl, GG04b, GG04a]. 

The results of these studies show however a considerably more complex structure that is 

worthwhile investigating.

Although the two- and four-letter alphabets are the natural choice to model the 

structure of DNA, the sequence space approach is by no means limited to these alpha

bets. One could just as well consider proteins, which are sequences of amino acids, see 

[WGOl, WLGOl]. Although the alphabet size is increased to 20 in this case, the number of 

types actually decreases, because an amino acid sequence has only one third of the length 

of the corresponding nucleotide sequence.

Mathematically spoken, consider sequences of fixed length N  written in an alphabet 

A.  For two-state models the alphabet is commonly chosen as A =  {+, —}, but A  = 

{0,1} is useful in some instances as well. In four-state models, one uses A  = {A, G, C, T}, 

A  =  {+ + , H— , —}-, — }, or A  =  {0,1,2,3}. Each sequence <r G 6  has N  sites ctq, e  A, 

O' e  { 1 ,. . . ,  N }.  Hence the sequence space is the power set of the alphabet, 6  =  A ^ ,  with 

the number of different sequences |6 | =  \A\^.

If one generalises the alphabet such tha t sites are not identified with nucleotides, but 

with general loci, i.e., any genes tha t contribute to the character in question, the sequence 

space models are equivalent to multilocus models with complete linkage, i.e., the case of 

a multilocus model evolving free from recombination. The multilocus and sequence space 

models have been developed independently from each other, and their equivalence has 

only been noticed later [Hig94], for a discussion see [BWOl].

3.2 M utation m odels

The choice of m utation model defines a “neighbourhood” within the sequence space [RS02], 

and therefore a structure is imposed on the sequence space. Sequences that can mutate 

into one another in one mutational step are considered to be neighbours.

In a rather simple form, the modelling of mutation is straightforward in the sequence
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space approach. Disregarding more complex mechanisms th a t change the length of a 

sequence, like deletions, insertions or duplications, only single point mutations are taken 

into account, i.e., replacements of one nucleotide by another. This is known as the single 

step mutation model, introduced in [OK73]. Of course this is a severe simplification, 

as insertions or deletions in coding regions can shift the reading frame and therefore a 

single mutation of tha t type may render the whole sequence infunctional. Furthermore, 

duplications are known to occur in evolution, and are thought to  be one mechanism how 

new functions evolve: After a duplication of a gene, there is a spare copy of tha t gene, 

which evolves free from purifying selection and can therefore “try  out” different other 

versions without loosing the initial functionality which is maintained by the original copy 

of the gene. However, in the framework of this model, even the simplified single step 

m utation model is better justified than the fitness functions th a t are currently tractable.

3.2.1 Two-state models

Assuming equal mutation rates at each site, which clearly is a simplification of reality 

[Yan96, CL04], for a two state model there are two possible m utation rates, governing 

the process +  —>■ — and p~  governing — —> + . If the two states are taken to mean 

purines and pyrimidines, =  /z“ is a natural assumption, if they are to  symbolise wild- 

type/m utant site, a ratio of p '^/p~ = 3 allows for the fact tha t there is only one wild-type 

state, but three mutant states. Here, the choice of m utation rates in the two-state model 

shall be restricted to the symmetric case =  p~  = : p, as this is necessary to fulfil the 

requirement of reversibility, which is needed later, cf. equation (5.2). The m utation rates 

are meant to denominate rates taken over the whole sequence, such th a t a m utation at 

one particular site happens with a rate p /N .

Whatever the choice of mutation rates, simply by focusing on single point mutations, 

the neighbourhood in the sequence space is defined. Each sequence has N  neighbours, 

which match the sequence in AT — 1 sites and differ in one. This structure in the se

quence space becomes obvious by considering the Hamming distance djj{o',a‘') between
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two sequences <r and <r' [Ham50, vL82]. It is defined as the number of sites at which 

the two sequences differ. W ith the single step mutation model, two sequences cr and 

<t' are neighbours, if and only if d^((T, <r') =  1. Consider, for instance, the sequences 

<Ti =  0110, <72 =  0100 and <73 =  0101. (Ti and <72 are neighbours as are ct2 and <73 with 

<72) =  diy(o’25 <73) =  1, but dff(cri, 0 -3 ) = 2 and thus <ti and (73 are not neighbours.

W ith the definition of the Hamming distance dji, the mutation matrix M  reads ex

plicitly

II/N  if d/f(cr', or) =  1,

=  —jji if cr' =  <7 , (3 1)

0 otherwise.

Again, the factor 1/AT is chosen such tha t fi is the overall mutation rate, and scales 

intensively with the sequence length. Alternatively, one could choose 11 as the per-site 

mutation rate, with overall mutation rate Nfi, leading to —N fi  as diagonal entries. It 

is, however, im portant tha t the mutation rate and fitness function are chosen with a 

consistent scaling, i.e., either both intensive or extensive. For a more detailed discussion 

of scaling issues, see [BWOl]. Note tha t the diagonal entries are chosen such that the 

mutation matrix is a Markov generator, as postulated in chapter 2.

3.2.2 Four-state models

In the case of a four letter alphabet, the situation is a little more complex. Here, there are 

in principle twelve different m utation rates to account for, even under the assumption of 

homogeneous rates across sites, because for each of the four bases there are three possible 

mutations. A good account of established mutation schemes is given in [SOWH96], see 

also [Ewe04, chapter 12]. The model that shall be used here is the Kimura 3ST mutation 

scheme [KimSl], see Figure 3.1, where there are only three difierent mutation rates out of 

the possible twelve. In particular, the forward and backward mutation rates are assumed 

to be identical.

The three different m utation rates correspond to transitions and two types of transver-
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Figure 3.1: The Kimura 3ST mutation scheme.

sions. The transitions are the replacements of one purine by the other (A -H- G) or one 

pyrimidine by the other (C T), which happen with rate fi2 - The transversions are the 

replacements of a purine by a pyrimidine and vice versa, which occur at rates fii or as 

specified in figure 3.1.

It has been observed tha t the mutation rate for the transitions 112 is considerably 

higher than the rates for the transversions, which in tu rn  are rather similar fii % 

This justifies a simplification of the Kimura 3ST mutation scheme using only two different 

mutation rates, {12 and fi := ii\ = 113. The resulting scheme is known as Kimura 2 

parameter model [KimBO].

A further specialisation is obtained by the assumption tha t all m utation rates coincide, 

so p := fii = p 2 = which is known as the Jukes Cantor mutation scheme [JC69].

In the four-state sequence space models, each sequence has 3 N  neighbours, as there are 

three different possible mutations at each site. Hence, here it is not sufficient to describe 

the distance between sequences a  and cr' by the total Hamming distance djf (o', cr'), which 

just determines the number of sites at which the sequences differ, but it is necessary to ob

serve the type of mismatch (i.e., with which mutation rate the corresponding m utation oc

curs). Thus a generalised three-dimensional Hamming distance dH{cr,a') =  {dH,k)k=i,2,3 

is required, which counts the number of mutations of each type between sequences a  and 

cr'. Of course the total Hamming distance is related to the generalised Hamming distance 

via du = Ylk=i ^H,k‘
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The m utation m atrix M. for the four-state model is given by

P i /N  if dff(cr', cr) =  (1, 0 , 0)^,

/12/ N  if dff(o-', O') = (0,1,0)^,

■̂ (T'tT =   ̂ f i^ /N  if dff(cr% cr) =  (0, 0, 1)^, (3-2)

— {H\ +  /i2 +  Hz) if <t' =  <T,

0 otherwise,

where the factor 1 /N  in the single site mutation rates is used in order to obtain the pk as 

overall m utation rates, as in section 3.2.1.

3.3 F itness functions

Whereas in the sequence space approach, mutation is straightforward to model and well 

justified on the molecular level, this is less so with with the selection process. This lies 

in the very nature of the model, as it is based on the genotype structure, which is the 

level at which m utation actually happens. In contrast, selection acts on the phenotype; 

and the mapping from genotype to phenotype is highly complex. In the alternative phe

notypic approach [TLK96, BBOO], the modelling is based on the phenotype rather than 

the genotype, but there, the mutation model is fairly arbitrary.

The phenotype tha t is connected to a piece of DNA depends on its function. It is 

useful to  classify the DNA into coding and non-coding regions.

If a region codes for a protein, the genetic code applies: Every three nucleotides form 

a codon th a t codes for one amino acid, thus creating 4^ =  64 different codons for the 20 

amino acids. Hence not all point-mutations in the DNA result in a change of amino acid 

and therefore a changed phenotype. The general picture is that the second codon position 

has the most impact on the amino acid and the third codon position the least, with the 

vast majority of transitions at the third position being silent. In addition to this, it is 

expected tha t those bits of DNA tha t code for the active centre of the protein have more 

impact on its functioning and therefore on fitness than the ones coding for the bulk part
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of the protein.

For DNA regions coding for functional RNA such as t-RNA for instance, the phenotype 

is essentially the shape of the RNA. This shape arises by the sequence folding back onto 

itself and thus creating loop structures, tha t are mainly determined by the possible base 

pairing within the sequence itself. The prediction of RNA structure has been a wide area 

of research, and continues to be an active field, see for instance [HFS+94, FFHSOO, KB03], 

for a review see [HigOO].

In particular, it has been shown tha t the mapping from genotype to structure is highly 

complex [FS98a, FS98b]. For instance, there are extended networks in the genotype space 

tha t fold into the same structures, in fact, any typical structure can be reached from 

any random structure in only a few mutational steps. On the other hand, the genotype- 

structure map also shows discontinuous behaviour.

The function of the so-called non-coding regions of the DNA is not entirely clear. 

Some parts of it certainly have some regulatory functions, the mechanisms of which are 

however not (or only partly) known, some parts might actually be just “junk” without 

any function, evolving free from selection. Due to the lack of selection, these areas of the 

DNA are particularly useful for determining mutation rates or for phylogenetic inference 

[Kon98].

Measuring the fitness experimentally is a very tricky business. To this end, muta

tion accumulation experiments have been performed since the 1960s [Muk64], where some 

population, for instance of the fruit fiy Drosophila, is reproduced for a large number of gen

erations under relaxed selection. Comparing the fitness of this population with a control 

population tha t has evolved under normal conditions yields information on the average 

eflfect of a mutation. For a review, see [Kon98].

So although there are some hints as to the general features one would expect, only 

little is known about the nature of realistic fitness functions. This means th a t the choice 

of the fitness function is a rather difiicult business, and often driven by feasibility rather 

than reality.
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3.3.1 Permutation-invariant fitness functions

A very common assumption, often made implicitly, is the assumption of a permutation- 

invariant fitness function. This means tha t the fitness of a sequence depends only on 

the number of mutations tha t it has compared to the wild-type, not on the location of 

the mutations, which is expressed by the Hamming distance to the wild-type. This is 

of course an over-simplistic assumption that by no means refiects the complexity of real 

fitness functions. However, in the permutation-invariant framework, the accumulation of 

a large number of minor deleterious mutations is described surprisingly well.

As mentioned previously, the models considered here also have an interpretation in 

physics, where they are mainly used to model magnetism. However, in tha t use, per

mutation-invariant interactions between sites are considered a very crude approximation, 

because the short range interactions, for instance next-neighbour interactions, are dom

inant. In contrast, in the biological setting the permutation-invariant fitness is a better 

approximation than a next-neighbour interaction, because here long-range interactions are 

incorporated, which are intrinsic in biology, since the three-dimensional structure of an 

RNA or protein sequence brings distant elements of the chain close together.

Permutation-invariant fitness functions come in a variety of fiavours. The trivial fitness 

function is fiat across the entire type space. As this corresponds to the case of no selection, 

one can tackle more complex models tha t also incorporate evolutionary factors other than 

mutation and selection; in the stochastic framework, for instance, Kimura’s neutral theory 

of molecular evolution [Kim83] has been developed on the assumption of a flat fitness 

function to a considerable degree of sophistication.

Things get a little more complicated with a fitness function that depends linearly 

on the number of mutations. This is often termed additive fitness, because the effects 

of several mutations simply add up. In a discrete-time set-up, this corresponds to a 

multiplicative fitness. Under additive fitness, every mutation has the same effect, and 

there is no interaction between sites.
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In principle, in the permutation-invariant setup, the fitness can be any function of 

the number of mutations. In any non-linear fitness function, there is some interaction 

between sites, called epistasis, albeit due to the permutation-invariance the interactions 

taken into account here are only average interactions. The strength of this interaction 

is given by the curvature of the fitness function, i.e., its second derivative. If the second 

derivative is negative, one speaks of positive or synergistic epistasis. Here, the effect of 

a mutation is stronger if there are already more mutations present in the genome. For 

negative, antagonistic or diminishing returns epistasis, i.e., a fitness function with positive 

second derivative, the opposite is true: a m utation tha t occurs on a mutant tha t is close 

to the wild-type will have a larger effect than one tha t occurs on a genome tha t already 

carries a lot of mutations.

Which of the two types of epistasis, synergistic or antagonistic, plays a more im

portant role in nature is still not clear; there are arguments and studies supporting 

both hypotheses, see the discussion in [WAOl]. It has also been argued tha t in the 

permutation-invariant set-up, the type of epistasis depends on the chosen reference se

quence [GdJ93, HWOl, WAOl]: If this sequence lies in the centre of a cluster of high-fitness 

sequences, the average direction of epistasis will be synergistic, whereas choosing a refer

ence sequence on the outskirts of such a cluster leads to antagonistic epistasis [WLA03].

The simplest example of a non-linear fitness function is quadratic (corresponding to 

a Gaussian fitness in discrete time), which is an example of a smooth function of the 

Hamming distance to the wild-type. This is different for the so-called truncation selection, 

a popular model in biology, see for instance [Kon88, Muk69, Gha88]. Here, the fitness is 

assumed to be constantly high for any number of mutations tha t is smaller than a critical 

value, and beyond that critical number it is typically assumed to be constant at a lower 

level. One special case of truncation selection is Eigen’s single peaked landscape [Eig71], 

where the only type with high fitness is the wild-type, whereas all other types are equally 

unfit. It has been proposed as a model of prebiotic evolution, but even there it should 

only be considered as a toy model.
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Figure 3.2: Examples of different types of permutation-invariant fitness functions. 

Examples of the above mentioned types of fitness functions are visualised in Figure

3.2.

3.3.2 Spin glass models

Due to their simplicity, the permutation-invariant fitness functions have proved very pop

ular. However, despite the possibility for using step functions, the permutation-invariant 

functions are still rather smooth. It is now generally believed [BGOO] that due to complex 

interactions within and among genes, realistic fitness functions contain a certain degree 

of “ruggedness” tha t cannot be achieved by a permutation-invariant fitness function. The 

term ruggedness is used to describe the surface of the fitness function in sequence space, 

and in particular the number of saddle points and extrema as well as characteristics such 

as deep valleys and high ridges. Although I am not aware of a formal definition, the 

ruggedness of a fitness landscape has been characterised in [KL87] by considering proper

ties such as the number of global and local optima or the expected length of an adaptive 

walk. How rugged the fitness landscapes in reality are is however unknown.

One possibility to incorporate ruggedness is to use the so-called spin glass models 

tha t have been used in statistical physics to model systems that contain a high degree 

of frustration, which means tha t the system is unable to find a state in which all local 

preferences are satisfied [MPV87]. In the context of molecular evolution, they have been 

suggested by KauflTman and Levin [KL87] under the name of N K  landscapes, and used 

for instance in [CAW02]. Here, the N  stands for the length of the sequence, and each spin
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interacts with K  other spins.

Using an alphabet A  = {+, —}, the N K  fitness landscape has the form

^  • (3*3)
Ofl

Here, the coupling constants Jai,...,aK+\ &re independent, identically distributed random 

variables. This class of fitness landscapes is tunably rugged through FT, i.e., by varying the 

number of spins K  that interact with any given spin, the ruggedness can be tuned. The 

larger ÜC, the more rugged the fitness landscape is. For K  = 1, one has the Sherrington- 

Kirkpatrick spin glass [SK75], see also [Tal03], which has first been suggested in the 

evolutionary context by Anderson [And83].

A special case of the Sherrington-Kirkpatrick spin glass is the Hopfield Hamiltonian 

[Hop82], which has first been suggested as a model for neural networks. It can be obtained 

by choosing the couplings as

JaP =  5 (3-4)
9=0

where the with g =  0, . . .  ,p  axe predefined sequences, or patterns^ and the fitness of a 

particular sequence depends on its overlap with these patterns. Note th a t in the set-up as 

described in equation (3.3) with (3.4), the global maxima of the fitness landscape coincide 

with the patterns and their complementary sequences.

Usually, the patterns are chosen randomly. However, once they are chosen, the sys

tem is kept fixed at this choice, which is sometimes called the case of “quenched” ran

domness. The statistical properties of this landscape have been studied in detail in 

[AGS85a, AGS85b], see also [Tal03]. In the thermodynamic limit N  oo w ith finitely 

many patterns, there are 2(p -f 1) global maxima, perfectly correlated with the patterns 

{^^}, and their complements In addition to that, the number of local maxima

and saddle points grows exponentially with the number of the patterns p  +  1. Hence the 

ruggedness of the Hopfield-fitness can be tuned by varying the number of patterns.

Using only one pattern, one is again in a permutation-invariant set-up with a  quadratic 

fitness, where the wild-type is given by the pattern, as in this case the fitness can be w ritten
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as ^

^   ̂ — I ^   ̂Cq<̂ q I • (3.5)
a,/3 V a  /

This thesis investigates permutation-invariant fitness function alongside generalised 

Hopfield-type fitness functions, which are introduced in section 4.2. The reason for inves

tigating the Hopfield-type fitness is that it can be treated within the framework set out 

here, but it does display a certain degree of ruggedness that is thought to be im portant in 

biologically realistic fitness functions.
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C H A PT E R  4 

Lumping: Reduction of the sequence space

One problem of the sequence space approach is the large number of types, which grows 

exponentially with the sequence length N ,  |6 | =  |«4|^. The time-evolution operator H  is 

a m atrix of size |0 | x |0 |, and in this set-up one is interested in its leading eigenvalue f  

and the corresponding right and left eigenvectors p  and z.

The relevant sequence length depends on the particular application one has in mind, 

but it is typically rather long. If one aims to model the whole genome of a virus or a 

bacterium, N  has to be in the region of AT % 10®, but even a single gene has of the order 

of N  7Ü 10® base pairs. These values lead to matrices of a size th a t makes the eigenvalues 

and eigenvectors inaccessible.

For some types of fitness functions, this problem can be reduced by lumping together 

types into classes of types, and considering the new process on a  reduced sequence space, 

which contains the classes rather than the individual types. Under certain circumstances, 

mutation is described as a Markov process in the emerging lumped process as well, such 

tha t this process is accessible to Markov process methods, and the theory developed in 

chapter 2 can also be applied to the lumped system.

The lumping of the mutation process is a standard procedure in the theory of Markov 

chains, [KS60, chapter 6], see also [BBBK05] for an application to mutation-selection 

models. This lumping leads to a meaningful mutation-selection model on the reduced 

type space, if all sequences lumped together into one class have the same fitness.

It is possible to lump the Markov chain given by the m utation m atrix M  w ith state 

space 0  with respect to a particular partition 0  =  (j^_Q0 jk, if and only if for each pair 

0 fc, &£ the cumulative mutation rates from type i e  &k into 0 ,̂ are
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Figure 4.1: Visualisation of the compatibility with lumping: Consider two classes Bk and The 
mutation rates from the types in &k to the types in (given next to the arrows) are compatible 
with a lumping with respect to &k and &£, because the sum of the mutation rates from type 
il to all types in &e is given by = 1  + 1 + 2 = 4, which is identical with those from %2,
^©<,12 = 3 +  0 +  1 = 4.

identical for all i G 6 *, cf. the example shown in figure 4.1. In this case, the lumped 

process, with r  +  1 states 6 q, . . . ,  6 r and mutation rates is again a Markov chain

[KS60, theorem 6.3.2].

In what follows, the lumping procedure shall be performed for permutation-invariant 

and Hopfield-type fitness functions, both for two- and four-state models, using a consistent 

notation. A two-state model with permutation-invariant fitness has been considered in 

[HRWB02], as an effectively lumped system, but since in this case the lumping is fairly 

simple, it has been done implicitly. Here, it shall be included as a simple example merely 

to demonstrate the method, which is essential for the more complex cases. The lumping 

for a four-state model with permutation-invariant fitness has been done in [GG04bj.

Lumping for a two-state model with Hopfield fitness has been performed in [BABG03, 

BBBK05], and this shall be applied here to a generalised Hopfield-type fitness. A model 

with more than two states has been used in [Gay92], but this has a different symmetry 

than the one induced by the Kimura 3ST mutation scheme. The approach taken here goes 

in line with the permutation-invariant case performed in this work and differs from the 

method used in [Gay92j.
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4.1 Permutation-invariant fitness

4.1.1 The two-state model with permutation-invariant fitness

The alphabet A  = {0,1} shall be used throughout for the two-state model. The mutation 

m atrix is given in equation (3.1). An arbitrary sequence is chosen as reference sequence 

<Tref, and represented by the string 0 0 ...  0. Usually (but not necessarily) the reference 

sequence coincides with the wild-type, i.e., the sequence with maximal fitness. Here, the 

terms reference sequence and wild-type shall be used synonymously.

For each sequence cr, the Hamming distance to the wild-type is of particular inter

est and termed the mutational distance da- to the wild-type, with da := djjio'reuo') =  

X ) a = i T h e  mutational distance takes values As the permutation-invariant

fitness does not depend on the order of the sequence, but only on the number of mutations, 

it is a function of the mutational distance only, TZa = TZ(da)- This suggests a lumping 

with respect to the mutational distance.

•  N
The relevant partition of the sequence space is given by 6  =  (Jd=o®<  ̂ with &d =  

{(r\da = d}, and the reduced sequence space, or mutational distance space S ,  contains 

the classes «S =  { 0 ,1 , . . . ,  N }.  The number of sequences tha t are lumped into class d is 

given by the binomial coefficients,

( r f j  “ rf!(A T -d )r

Table 4.1 shows as an example all sequences of length N  = 4, which are lumped into the 

classes specified by the mutational distance d.

In the single step mutation model, the only neighbours of a sequence a  w ith mutational 

distance d lie in the classes d ±  1. Thus the only non-zero cumulative m utation rates are

'^d±.l,a- ~  '^d ~  ^  V Ado-'o- • (4*2)
fr'E&d±l

Consider, for instance, the sequence a  =  1000 G © i. This sequence has three neighbours 

in ©2, as indicated by the arrows in table 4.1, because a m utation a t each of its 0-sites 

creates a different sequence with mutational distance d =  2. Thus the cumulative m utation
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1 2 3
1100 

1000 ^ 1 0 1 0  
0100 V 1001

1110
1101

0010 \  0110 1011
0 0 0 1 - ^ 0 1 0 1 0111

0011

0000 i i i i

nd

Table 4.1: Enumeration of all two-state sequences of length N  = 4 and their lumping into muta
tional distance classes d. The arrows point to the neighbours of two selected sequences within one 
neighbouring class.

rate from sequence <r into ©2 is given by = 3/J./4 (as the single site mutation rates 

M a 'a  =  for neighbouring sequences). This is in fact true for any sequence in ©1, 

fulfilling the criterion for lumping; the only differences between the sequences within ©1 

are the particular sequences in ©2, which are their neighbours. Similarly, a sequence in 

©2, say cr =  0101, has two neighbours in ©1, as it has two 1-sites at which it can mutate to 

become a sequence in © 1, which is the case for any sequence in ©2. Hence, the backward 

cumulative mutation rate from ©2 to ©1 is given by Ug =  2///4.

More generally, any fixed sequence a  in ©^ has d entries 1, so there are d different 

sequences cr' in © d-i such tha t d^(<r, =  1 and thus M a 'a  =  ^/AT. Hence the cu

mulative m utation rate from any cr G ©d into ©d±i is, independently of the order of the 

sequence <r, given by

Ud '=  i,(T — p d / N ,

u \  :=  Ud-f-1,0- =  Â (A' -  d ) ! N , (4.3)

where is obtained by an equivalent argument for d ^  d +  1. As these cumulative 

m utation rates are the same for any sequence <r G ©d, independently of its order, the 

Markov chain describing the mutation matrix is lumpable with respect to the partition of 

© induced by the permutation-invariant fitness, and the number of types can be reduced 

from |©| =  2 ^  to |5 | =  AT +  1.

The mutation-selection process on the mutational distance space S  is described by the 

time-evolution operator H  = R-\- M ,  with lumped reproduction and mutation matrices
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R  and M  of dimension |«S| x j«S|. These can be obtained from the original matrices R  and 

M. by the means of a transformation L, which is an |G| x |«S| dimensional m atrix that 

specifies how the sequences are lumped into the mutational distance classes. To this end, 

label the columns of L  with the mutational distance d, the rows with the actual sequence 

<T. The entries of L  are given by

Lgrd — ^
1/rid if dor — d,

(4.4)
0 otherwise.

Thus Yla-^trd =  1, which ensures tha t the Markov property is preserved. This is not the 

only possible choice of L; an alternative would be to have entries 1 in each column only in 

the first row where d^ = d, but it seems more natural to superimpose all sequences that 

contribute to a class as done above.

Although only square matrices are invertible, by abuse of notation, the m atrix L~^ 

shall denote an |«S| x |©[-dimensional matrix such tha t L ~ ^L  =  l | j |  and L L~^  is block- 

diagonal, where each block corresponds to all sequences th a t share the same mutational 

distance, and =  Zlo-'(-^-^~^)<ro-' =  1- This can be fulfilled by

 ̂ (4.5)
0 otherwise.

Here again, the choice of jL  ̂ is not unique, even for fixed L ,  but this choice is convenient. 

W ith this, the reduced time-evolution operator is given by

H  = R  +  M  = L ~ ^ { n  + M ) L . (4.6)

Performing this transformation, of course the off-diagonal entries of M  match the cumu

lative mutation rates given in equation (4.3), whereas the diagonal entries of both R  and 

M  are unchanged in the sense that {R  +  M)d^dtr =  ( ^  +  M)a<T for any sequence <r with
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CTref =  . . .  AGCCATA.. .  -+ . . . 0 0 0 0 0 0 0 . . .  

(T — . . .  AACGATA. . .  —̂ . . .  0203000. . .

Figure 4.2: Sequence <r is mapped from the natural alphabet {A,G, C,T} to .4 = {0,1,2,3} by 
comparing it to a given reference sequence CTref and assigning 0 at sites where they match and 
1,2,3 at sites where they differ, depending on the type of mutation given by the Kimura 3ST 
mutation scheme from figure 3.1.

mutational distance da, and thus

< \i d' = d -\-1 ,

'^d \i d' = d — 1 ,

if d' =  d.

0 otherwise.

(4.7)

Note tha t iT  is a time-evolution operator acting on S, and describes the evolution of a 

population under mutation and selection determined by the evolution equation (2 .1), and 

thus the theory developed in chapter 2 applies.

4.1.2 T he four-state m odel w ith  perm utation-invariant fitness

In the four-state model, it is convenient to deviate from the natural alphabet (A, G, C, T} 

and use A =  {0 ,1, 2,3} with o-ref =  0 0 ... 0 chosen as the wild-type. The mapping of any 

other sequence a  from the natural alphabet into A  can be obtained by assigning 0 at each 

site where it matches the reference sequence cTref, and assigning 1, 2, or 3 at any other 

site, depending on the type of mutation by which it differs. For an example, see figure 4.2.

Because in the four-state model a generalised three-dimensional Hamming distance is 

used, it is also necessary to use a vectorial mutational distance d  of sequence cr to the 

wild-type, d  = (dt)&=i,2,3 G Z® with

N

dk :=  dH,k{cTx&U <r) =  Y ]  ^i^h k G ( 1, 2 ,3} , (4.8)
o:=l
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Figure 4.3: Visualisation of the structure of the mutational distance space S. 

using the Kronecker symbol ^ (.,.). One has

3
0 < dk  and ^  dk < N , (4.9)

fc=i

and thus there are |«5| =  {N  +  1){N  +  2)(iV +  3)/6 different m utational distances. The 

number of wild-type sites do is given by do =  X)a=i <̂ (0? <̂ a) =  iV -  Ylk=i

As in the two-state case, the permutation-invariant fitness is a function of the muta

tional distance d  only, and again, the lumping shall be performed with respect to d. The 

mutational distance space S  contains all mutational distances d  G Z® tha t fulfil (4.9). 

Thus «S is a simplex in Z®, cf. figure 4.3. The partition induced on the original sequence 

space is 6  =  with 6 d =  {<r|do- =  d}.  The number of sequences Ud in each

mutational distance class d  is given by the multinomial coefficients

^do ,d i,d2,do ) do!di!d2!d3! ’  ̂ ^

where do +  di +  d2 +  ds =  N.

In this case, the structure of the neighbourhood is more complicated than in the two- 

state model. A sequence with mutational distance d  has all its neighbours in the classes 

d ±  €k and d ±  e k T  k < £ e  {1,2,3}, where the ek and e£ are the Cartesian unit 

vectors e\  =  (1, 0 , 0)^, 62 =  (0, 1, 0)^ and 63 =  (0 , 0 , 1)^, because these are the only 

mutations tha t can be obtained by changing a single site. The Sk and — S£ (with 

k < t)  shall collectively be called the unit vectors of mutation e^. As there are six unit 

vectors of mutation, each of which can be applied in forward and backward direction, each 

mutational distance d  has twelve neighbouring mutational distances ddoe^  (except those
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Figure 4.4: Sketch of the possible mutational directions in the permutation-invariant four-state 
model. The blue lines show the cubic lattice of the mutational distance space S, the central dot is 
the mutational distance d  under consideration, and the smaller dots are its neighbours.

on the borders of the mutational distance space S), cf. the sketch in figure 4.4.

The cumulative mutation rate from a sequence a  with dg- into class d  ±  is indeed 

independent of the particular sequence: For instance a mutation from d to d  +  is a 

mutation tha t increases dk by one and thus is the mutation of a wild-type site into type k, 

which happens with rate As there are do different wild-type sites in the sequence

cr, all of which can m utate with the desired effect, the cumulative mutation rate is given 

by =  pkdo/N, independently of the order of the sequence. Similarly, we get for all 

cumulative mutation rates

u Ÿ  =  Pkdo/N

—  P k d k f^

U+k,—£ _
d —

for d  -> d +  ek, 

for d  —y d  — ek, 

for d —y d ek ~ (4.11)

with {k ,£ ,m } = {1,2,3}. This notation is a short way to denote that the k ,£ ,m  are 

distinct numbers in {1,2,3}. Note that the mutation rate from a mutational distance 

at the border of the mutational distance space S  to the outside vanishes with equation 

(4.11), as required. Hence, the evolution process is lumpable with respect to the partition 

induced by the mutational distances, i.e., the lumped process is again Markovian, and the 

lumped mutation rates are given in equation (4.11).

The lumped time-evolution operator H  can be obtained in the same way as in the 

two-state model, with equations (4.4), (4.5) and (4.6) applying in the four-state case if
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three-dimensional mutational distances d  and the rid from equation (4.10) are used. This 

leads to a lumped m utation matrix M  given as

d'd (4.12)

i îd'  =  d-\-e^,

\ i d ’ =  d -

- E x ( ^ d ^  +  ^ d ^ ) '̂ d̂' =  d,

0 otherwise,

with the from equation (4.11).

4.2 H opfield-type fitness

The Hopfield Hamiltonian as described in section 3.3.2 was first introduced in [Hop82] 

as a model for neural networks. It is a special case of the Sherrington-Kirkpatrick spin 

glass, which was first suggested in the context of molecular evolution by [And83]. In 

the works of [Leu87, Tar92], the Hopfield Hamiltonian was used as an example of a non

permutation-invariant fitness in a discrete-time formulation of a mutation-selection model 

in the sequence space approach.

Formulated for a two-state model for sequences cr of length N  w ritten in an alphabet 

A  =  {+1, —1}, the Hopfield Hamiltonian in its usual form reads

^  E  E  , (4.13)
9=0 a,)3=l

where the are p +  1 (usually) randomly chosen, but fixed sequences tha t serve as

predefined patterns, similarly to the single wild-type in the permutation-invariant case. 

In fact, in the case of a single pattern, p  =  0, one is in the permutation-invariant setting 

with the pattern as wild-type.

If it is used in the evolutionary context, the Hopfield Hamiltonian serves as fitness 

function, R g  =  Writing equation (4.13) as

=  2^ E  f E = & E (4.14)
9=0 \ q=1 /  9=0
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with the overlaps (<r) of sequence a  with pattern given as scalar product

N

oP{(t ) ;=  . (T =  ^  , (4.15)
a = l

it is clear tha t the original Hopfield Hamiltonian is a quadratic function of these overlaps 

with the chosen patterns.

It is not im portant, which particular alphabet is used, as one can transform from one 

notation to the other via a linear transformation. In order to have a consistent notation, 

here we shall deviate from the alphabet { + ,—}, which is used in wide part of the literature 

on spin glass models, and use alphabets A  =  {0 , 1} and A  =  {0 ,1 ,2 ,3} for the two- and 

four-state case, respectively. Instead of the overlaps, the model shall be formulated in 

terms of the specific distances which are the Hamming distances with respect to 

pattern

w^(a)  ;=  cr). (4.16)

For two-state models, the are scalars, whereas for four-state models, they have three 

components like the mutational distances for the four-state set-up as in section 4.1.2.

As the lumping procedure for the Hopfield fitness does not depend on the quadratic 

nature of the Hopfield Hamiltonian, it is possible to generalise the approach to a Hopfield- 

type fitness function, which is any function that depends on the sequence only through 

the specific distances w^, i.e., IZg =  7^(u;^(<T)), an approach that has also been taken in 

[Pel02], using a truncation selection of Hopfield-type.

4.2.1 T he tw o-state m odel w ith  H opfield-type fitness

For the Hopfield-type fitness, the same alphabet A  = {0,1} and mutation models (3.1) 

as in the permutation-invariant set-up are used. One major difference is, however, that 

with a permutation-invariant fitness function, there is one reference sequence chosen and 

mapped onto the string 0 0 ...  0, whereas with a Hopfield-type fitness one has to deal with 

p + 1 patterns. However, without loss of generality, one pattern, say can always be 

chosen as =  0 0 ...  0. As an example, consider a case with sequence length N  = 12 and
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three patterns, p = 2, where the patterns and are given by =  (101101011100) and 

=  (100011111110).

In order to express the specific distances in terms of the mutational distance to 

pattern consider the (p +  1) x  N  matrix which collects the patterns such that the 

gth row of ^ is pattern The m atrix ^ corresponding to the example given above is

^ 0 0 0 0 0 0 0 0 0 0 0 0 ^
1 0 1 1 0 1 0 1 1 1 0 0

1 0 0 0 1 1 1 1 1 1 1 0

(4.17)

Considering the columns of there are only 2^ different possible columns, because 

is chosen as 0 0 ...  0 and thus the top entry is always 0. These distinct column vectors 

are collected in a (p +  1) x 2^ m atrix p. In the case p =  2, this m atrix is given by

^ 0 0 0 0 ^

V /

(4.18)0 0 1 1  

0 1 0  1

Using the column vectors of the m atrix p, the patterns given in equation (4.17) can 

alternatively be expressed as

^ — (P4j P li P3i PZi P2i P4j P2’> P4i PAt Pa  ̂P2’> P i)  , (4.19)

classifying the sites into 2^ classes according to which of the column vectors of p  

coincides with the column vector of the patterns ^ at site o;. Let A =  { 1 , . . . ,  N }  be

the index set of sites, with a partition into 2^ subsets Ay induced by the patterns ^ such

that
. 2P

A =  M ,A „, (4.20)

with

a e  Ky 4=^ ioc = Pv' (4.21)

Patterns can be characterised by the number of sites Ny = |A„| in each subset.
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The example patterns (4.17) can therefore be described by

Ai =  {2 , 12}, A2 =  {5,7,11}, A3 =  {3,4}, A4 =  {1, 6 ,8 ,9 ,10},

iVi =  2, A/2 =  3, Ns =  2, A 4 =  5. (4.22)

Defining the 2^ partial distances dy, where î; =  1 , . . . ,  2^, with respect to pattern as 

dy :=  ^  ô{l,aa) with 0 < d„ < A„ , (4.23)
aÇAt)

the partial distances d% with respect to any other pattern are given by

dy if pi =  0 ,
4  =  ^  S { l-p l ,cT a )  = (4.24)

Ny -  dy if pl = l,

using the m atrix elements pi of p. The specific distance to any pattern can be 

expressed as
2P

=  E  E  ^(4 E  +  E  -  * )  - (4.25)
v = l a£Av veV^

where the index set V  = { 1 ,...  ,2^} of the vectors e„ is partitioned into two subsets, 

V  = V^U  with = {v\pi =  0} and V / =  {v\pt = 1}.

For any cirbitrary sequence of length iV =  12, say

c r = ( l 0 1 1 0 1 0 0 0 1 1 1 J ,  (4.26)

the partial distances dy with respect to pattern are just given by the number of I ’s in 

the respective partition Ay, such tha t for the partition given by (4.22), they are given by

di =  1, c?2 =  1 5 ds = 2, c?4 =  3, (4.27)

whereas the partial distances to pattern are given by

d\ = di = 1, d\ = d2 = 1, d\ = Ns — ds = 0, d\ = N 4 — d^ = 2, (4.28)

because in Ai and A2, coincides with whereas in A3 and A4, and are com

plementary to each other, i.e., where one pattern has entry 0 , the other has entry 1. 

For pattern the index set of 0-sites is Vq =  {Ai, A2} and the index set of 1-sites is
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Vi = {A3, A4} such tha t the specific distance vfi of sequence <r from equation (4.26) to 

pattern from equation (4.17) is given by vfi = d \ d 2 (A3 -  ^3) +  (A4 -  ^4) = 4 .

Hence, by specifying the 2^ partial distances dy with respect to pattern  the specific 

distances with respect to any pattern are determined, which in tu rn  determine 

the fitness. Thus the dy, collected in a distance vector d  =  (dy)y=\...2P, shall be the 

quantities tha t label the sequences in the lumped system. To check whether this lumping 

is compatible with the mutation model, consider a sequence with distance d. The only 

sequences tha t can be reached with a single m utation are those with d ±  Cy, where the 

= i^vw)w=i...2P are the unit vectors of mutation. As a sequence with d  has {Ny — dy) 

0-sites and dy 1-sites in A„, the cumulative m utation rates are given by

U j” =  fjL {Ny — dy)/N  foT d  d  + Sy and

=  p d y /N  for d  —>• d  — e„, (4.29)

irrespective of the particular order within the subsequences cry =  (cra)aGAr- Therefore the 

cumulative mutation rates are the same for all sequences <r with the same d, which 

is the condition for lumping.

Considering the sequence a  given in equation (4.26), and, for instance, a mutation in 

A4, the cumulative mutation rates are

,+4—  Uj =  p(5 - 3 ) / A  =  /i/ 6  and =  p  3 /A  = / i /4 ,

because of the five sites in A4, cr has three entries 1, which, if they m utate, lead to a 

sequence with d —64, and thus the corresponding mutation rate is whereas a m utation

at one of the remaining two 0-entries leads to a m utation to d  +  64, which happens at rate 

The same result is obtained for any other sequence with the same partial distances 

dy given in equation (4.27).

To establish the transformation L, tha t lumps the original sequence space © onto the 

lumped sequence space S,  the number of different mutational distances d, and the number 

of different sequences a  that are lumped onto each d  are required.
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To this end, consider the subsequences <r„: There are Ny + 1 possible different dy 

(as dy takes values from 0 to Ny) ,  and there are (^ j) sequences (Ty for each dy. Hence, 

considering all sites, there are
2P

15| =  %%(% +  1) (4.31)

different d, and
U=1

2P

V = 1

sequences a  tha t are mapped onto each d. For the patterns ^ chosen as example (4.17), we 

have |«S| =  3 4 3 6 =  216, while the full sequence space has dimension |©| =  2^̂  =  4096. 

The mutation rates can be calculated from equation (4.29).

W ith this, the transformations L  and L~^ and the lumped time evolution operator H  

are given as in equations (4.4), (4.5) and (4.6), respectively, using the from equation 

(4.32), with a lumped m utation matrix as

^ d 'd  =

« r if d ' =  d +  e,

if d ' =  d  — e.

- p if d ' =  d.

0 otherwise.

V,
(4.33)

where the cumulative m utation rates are given in equation (4.29).

4.2.2 T he four-state m odel w ith  H opfield-type fitness

As in the two-state model, in the four-state model the general set-up from the permutation- 

invariant model shall be adopted with alphabet A  =  {0 , 1, 2 ,3} and mutation matrix 

(3.2). The lumping procedure is very similar to the one used for the two-state model with 

Hopfield-type fitness. Here again, the pattern shall be chosen as =  GO. . .  0, and the 

m atrix £ collecting the patterns is of dimension (p +  1) x N .  However, in the four-state 

model the m atrix p  collecting the possible column vectors has dimension (p +  1) x 4^, 

and thus the sites are classified into 4^ classes Ky. For the case with two patterns, p  =  1,
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the matrix p  reads explicitly

/
P =

V
0 0 0 0 .

(4.34)
0 1 2  3 '

As in the four-state model the Hamming distance has three components, there are 

3 • 4P partial distances dy^k with respect to pattern where the first index, v, refers to 

the subset Ay, whereas the second index, k, indicates the type of mutation. The partial 

distances are given by

dv,k S { k , a a ) , (4.35)

k e  {1,2,3}, with dyfi = J^aeAv = Ny -  J2k=idv,k as the number of wild-type

sites in A„. The partial distances d^ ĵ  with respect to pattern are given by

dy^k if pi = 0 ,

4,0 i f p l  =  k ,  (4.36)

4 ,£ if p i — m  with {k. I, m} =  {1, 2 ,3}.

For instance, consider the partial distances d^ 2 of type /? =  2 to pattern  in the case 

of two patterns. In subset Ai (with p i = (0,0)^), the partial distance of type A; =  2 to 

pattern d} 2 is given by the partial distance of type A: =  2 to pattern  d} 2 =  ^1,2* In 

subset A3 (where p^ = (0,2)^), the partial distance of type A; =  2 to pattern  is given 

by the number of wild-type sites in tha t partition, and hence dg 2 =  4 ,0- In subset A 2 , 

has entries 1 due to P2 =  (0, 1)^, and thus the type-2 mutations are those sites tha t have 

entries 3, hence dg 2 =  4 ,3- Similarly, dj g =  d4,i.

The specific distances =  {wl)kz=i,2,3 read

4P

<  = Y . < k -  (4-37)
V = 1

Because here again, the specific distances w \  can be expressed by the partial distances dy^k 

with respect to pattern these determine the fitness, and therefore the lumping is done

with respect to the partial distances dy k, collected in the distance vector d  =  {dy k) v = i , . . . ,a p  .
’ ’ fc = l,2 ,3
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To get the cumulative mutation rates, each subset Ay is considered separately and 

treated like a four-state model with permutation-invariant fitness. To this end, the defini

tion of the mutational directions ± x  for the permutation-invariant four-state model from 

section 4.1.2 given by k and +k, —£ with k , i  £ {1,2,3} and k < i,  has to be generalised 

to X =  (u. A:) or X =  (u, +A:, —£) to specify the subset v in question. Hence a mutation in 

Ay can be described by the cumulative mutation rates where the sign acts only on 

the type of mutation specified by k, I, and not on the subset v in question.

A mutation at a site in Ay from 0 to A; happens at a rate Pkdv,o/A  and leads to a change

d -y d  + €yk with the unit vector of mutation Syk = (4 ,w4 ,£)w=i. ,4P, and similarly for
’ < = 1 ,2 ,3

the other types of mutation. Hence the cumulative mutation rates are given by

It =  f j > k d v , o Ibr d   ̂d  +  Gŷ k, 

u ’ =  p>kdv,k/^ for d y d Gv,k,

yv,+k,-l _  ^^dy^ t/N  for d  -> d +  ey^k ~  (4.38)

The number of different d  in this model is given by

4P
l<5| =  n  +  ! ) (%  +  2)(1V„ +  3)/6] , (4.39)

V = \

and there are

n  C  d d )  (4.40)\dv,o, 4 ,1, 4 ,2, 4 ,3/
different sequences a  mapped onto each d. This immediately determines the transfor

mation L  th a t yields the lumped time-evolution operator H  like in the previous sections

according to equations (4.4), (4.5) and (4.6) with the na given in equation (4.40), and the

lumped mutation matrix is given by

u

^ d 'd  — *'

^  if d  ̂=  d  ±  Ex,

i i d '  = d, (4-41)

0 otherwise

with the from equation (4.38).
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4.3 Summary: Com m on notation in the different m odels

In this chapter, the original model for sequence evolution has been lumped into an effective 

model tha t disregards the particular order of the sequences and therefore works with 

considerably less types than the original model, making it easier to handle. Depending on 

how complicated a fitness function is chosen, this lumping can be done with more or less 

efficiency.

In the case of a two-state model with permutation-invariant fitness function, which 

completely disregards the order of the sequences, the sequences are lumped into classes 

tha t are labelled by the mutational distance d, which is a scalar. For a permutation- 

invariant four-state model, a three-dimensional mutational distance d  =  {dk)k=i,2,3 is 

required.

In a model with Hopfield-type fitness, the distance of sequences to a number p 4-1  

of patterns is considered. Here, the N  sites are divided into 2^ or 4P subsets, in the 

two-state or four-state case, respectively, and in each of these subsets, the subsequences 

are described by mutational distances like in the permutation-invariant case, such that 

the mutational distance in the two-state model with Hopfield-type fitness is given by 

a 2^-dimensional d  = and in the four-state model by a 3 • 4^-dimensional

d  = {dv,k) r=i 4P. The connection between a model with Hopfield-type fitness and one
fc = l,2 ,3

with permutation-invariant fitness is twofold. Firstly, the permutation-invariant fitness 

can in fact be considered as a special case of the Hopfield-type fitness with only one 

pattern, p  =  0. Secondly, the subsequences corresponding to the partition induced by 

the patterns ^ behave effectively permutation-invariant in the sense th a t the order within 

each subsequence does not influence the fitness.

In the original model for the two-state case, the sequence space © contains |6 | =  2^ 

types. For a permutation-invariant fitness, these 2^ different sequences are lumped into 

|<S| = N - \- l  different classes labelled by d, thus the number of types grows linearly instead 

of exponentially with N .  For the four-state permutation-invariant model, the number of

41



types is reduced from |6 | =  4^  to |5 | = (N  + l ) ( N  +  2){N  +  3)/6, and thus grows only 

with N^.

For the Hopfield-type fitness, the number of classes in the lumped system is given by 

|5 | =  Hl=i{Ny  +  1) and \S\ = [i^v  +  1) W  +  2)(A^ +  3)/6], for the two- and four- 

state model, respectively. Now consider the case where the patterns are chosen randomly 

with equal probability for each letter at each site. This results in a multinomial probability 

distribution for the number of sites Ny in each subset [Whi76],

W
V {{N u  . . . ,N „ } )  = „ , (4.42)

where n =  \A^\, thus n  =  2^ or n  =  4^ in the two- or four-state model, respectively. 

The means are given by Ny = N / n  and the variance = N {n  — l)/n ^  such that = 

N / n  +  0 { V N ) .  This leads to a scaling with or respectively, instead of the

behaviour exponential in N  as in the original model based on the sequence space 6 . 

Note however, that with a Hopfield-type fitness function, the number of classes scales 

exponentially with the complexity of the fitness function given by the number of predefined 

patterns p + 1.

The original mutation m atrix M  containing the single site mutation rates p/iV or 

H kl^ i  k =  1,2,3, is symmetric as forward and back mutation rates are identical in the 

microscopic model. To describe mutation as a Markov process, the diagonal entries of 

M  are given by —p or — X)fc=i in the two-state or four-state case, respectively. The 

mutation m atrix M  governing the lumped process contains the cumulative mutation rates 

as given in equations (4.3), (4.11), (4.29) and (4.38) as where % determines the

direction of mutation, and the sign specifies forward and backward direction. In the 

lumped process described by M , forward and backward mutation rates differ in general 

due to different numbers of sequences being lumped together into classes.

In the two-state permutation-invariant case, there is only one direction, % =  1, whereas 

in the four-state permutation-invariant case, the possible directions are % =  A; or % =  

with e  {1,2,3} and k < L  The latter is required to distinguish between 

forward and backward mutations. In the Hopfield-type model, for each direction from the
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permutation-invariant case, additionally, the subset Av of sites has to be specified, yielding 

as possible directions in the two-state model % =  u, and in the four-state model % =  (u. A;) 

and X =  (^5 4-A;, —i). By using the same diagonal entries as for M ,  the Markov property 

of M  is guaranteed.
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C H A PTER  5 

The maximum principle

Although the lumping procedure reduces the number of types very efficiently, especially in 

the simpler permutation-invariant case, the evaluation of the eigenvalues and eigenvectors 

of the time-evolution operator H  still remains a difficult problem for many applications, 

due to the size of the eigenvalue problem. If one is interested solely in the equilibrium 

behaviour of the system, however, it is possible to determine the population mean fitness 

(at least asymptotically for large sequence length N),  given by the leading eigenvalue of 

H .  This can be done by a simple maximum principle that can be derived from Rayleigh’s 

general maximum principle, which specifies that the leading eigenvalue Amax of a square 

matrix H  of dimension n can be obtained via a maximisation over R” ,

,  v '^H v
Amax — sup rp . (o.l)

The vector v  for which the supremum is attained is the eigenvector corresponding to 

the eigenvalue Amax- The simple maximum principle derived from this guarantees that 

the population mean fitness f  can be obtained by maximising a function on the muta

tional distance space S.  It can be shown that the maximiser itself is the ancestral mean 

mutational distance x.

The results obtained via the maximum principle are exact in three special cases, namely

(i) the case oî N  —)• oo, (ii) the case of linear fitness functions and mutation rates, and 

(iii) the case of unidirectional mutation rates. For any other case, they are often a good 

approximation. The most im portant of these special cases is the case N  oo, because 

even for rather short sequence lengths, it is usually a good approximation and thus is 

applicable for any system.
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This maximum principle has first been derived for a two-state model with permutation- 

invariant fitness in [HRWB02], treating all three special cases mentioned above. In this 

simple version, the mutational distance space «S is a subset of Z, and the mutational 

distances are given by scalars. The first generalisation of this scalar maximum principle to 

a case with multidimensional mutational distances was given in [GG04b], treating the four- 

state model with permutation-invariant fitness for all three special cases. Subsequently, 

for the case N  —> oo, the restriction to a permutation-invariant fitness has been relaxed 

in [BBBK05], yielding the maximum principle in a general form tha t is applicable to all 

models considered in this thesis.

The aim of this chapter is to derive explicitly maximum principles for two- and four- 

state models with both permutation-invariant and Hopfield-type fitness functions. To this 

end, in section 5.1, the mutation m atrix is symmetrised to provide a common starting 

point for the case of infinite sequence length and the case of linear fitness functions and 

m utation rates. In section 5.2, the case of infinite sequence length is considered. For 

this case, the maximum principle for all models and fitness functions considered here is 

given by the Theorems 1 and 2 from [BBBK05]. The proof of these theorems shall not be 

reiterated here. For the original proofs of the two- or four-state model with permutation- 

invariant fitness, the reader is referred to [HRWB02] or [GG04b], respectively. Section 

5.3 contains the proof of the maximum principle for the linear model, whereas the case 

of unidirectional mutation rates is considered in section 5.4. Although the proofs shown 

here are not long, they are rather technical.

5 .1  S y m m e tr is a t io n  o f  M

Although the original mutation matrices M. as given in the equations (3.1) and (3.2) for 

the two- and four-state models are symmetric, with forward and backward m utation rates 

being identical, the lumped mutation matrices M  of equations (4.7), (4.12), (4.33) and

(4.41) are non-symmetric. They are however reversible, i.e.,

■^dd'^d' =  ^ d 'd A d , (5.2)

45



where tt =  (7Td)de5 is the stationary distribution of the pure mutation process. This is the 

equidistribution of types on 6 ,  and thus on S  given by the number of sequences Ud that 

are lumped onto the same mutational distance d, i^d ~  The reversibility implies that 

the mutation m atrix M  can be symmetrised by the means of a diagonal transformation 

n  :=  diag{7Td}, which yields the symmetrised mutation matrix as

M  =  (5.3)

with off-diagonal entries

^dd! =  ^dd! =  Md'dV'̂ d/'̂ d' = y/^dd'^d’d =  ^d’d • (5.4)

Using the cumulative m utation rates this reads

^ d 'd  •= ~  \/^d ^^d icx  '^^d' = d ± e -^  and 0 otherwise, (5.5)

as can be seen by using the explicit version of the number of sequences mapped onto 

the same mutational distance d, given in the equations (4.1), (4.10), (4.32) and (4.40) 

for permutation-invariant and Hopfield-type fitness in the two- and four-state models, 

respectively. Because I I  is diagonal, the diagonal entries of the mutation matrix are 

unchanged,

for the two-state model.
^ d d  — ^ d d  — ^ (5.6)

-  X)fc=i for the four-state model.

As R  is diagonal as well, it is not changed by the transformation 11^/^, and thus this 

transformation also symmetrises the time-evolution operator such that

H  = n - ^ /2 f r n i /2  = r  + m  (5.7)

is symmetric.

Before symmetrisation, H  was expressed as the sum of a Markov generator M  and a 

diagonal remainder R .  As the transformation I I  does not preserve the Markov property, 

this is not the case for the symmetrised time-evolution operator in (5.7). It is however 

useful to split it up this way. To this end, let

H  = E  + F ,  (5.8)
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where F  is a (symmetric) Markov generator and E  is the (diagonal) remainder. The 

off-diagonal entries of F  are given by those of M  (5.5), for d' ^  d, whereas

the Markov property requires as diagonal entries

J  (5-9)
d! X X

The remainder E  is given by

(5.10)
Ed = Rd + Afdd -  Fdd

= «7 ) + E  J
X X

5.2 The limit of infinite sequence length

In the case of infinite sequence length, the maximum principle has been shown to hold 

exactly for a two-state model with permutation-invariant fitness; this has been generalised 

to a four-state model with permutation-invariant fitness in [GG04b] and finally generalised 

even further to include also a Hopfield-type fitness in [BBBK05]. For finite sequence 

lengths N ,  it is exact up to d  (;^).

To deal with the case of infinite sequence length, it will prove useful to use intensively 

scaled normalised versions of the extensively scaled variables like the mutational distances. 

The pattern in the Hopfield model, previously characterised by the n u m b e r  of sites Ny in 

each subset Ay, will now be described by the f r a c t i o n  of sites in A„, given by :=  N y / N .

Similarly, we use normalised mutational distances

Xy I— d y jN y  , (5.11)

with Xy 6 [0,1] for the two-state model, and for the four-state model

^V,k dy^k/^V (5.12)

with 0 < Xy^k and Y^k=\ ^v,k < 1. Furthermore, the fraction of wild-type sites in subset 

Ay is given by Xy^ — 1 -  ^v,k- The permutation-invariant model is obtained in the

case p =  0. For the Xy or Xŷ k̂  the scaling is chosen differently for each A„ (namely with
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Ny rather than with N ),  because this yields values of Xy G [0,1] or J2k=i^v,k G [0,1], 

respectively, independently of the pattern determined by the Ny. Furthermore, this is the 

convention used in the literature on the Hopfield model.

For finite N , x  takes rational values in a normalised version of the mutational distance 

space ‘ S  C T>, where %) is a compact domain in R"', with n =  2^ or n  =  3 • 4^ for the

two- or four-state model, respectively. For N  oo, the vectors x  become dense in V.

Assume tha t the entries of iT  = E-\-F  can be approximated by functions e and /  from 

C l(V ,  R), i.e., twice continuously differentiable functions with bounded second derivatives 

that map V  onto R such that

E i  = e (x i)  + o ( ^  , (5.13)

F i'd  = U ( x i )  + o ( ^ ^ ^  , (5.14)

where A  = d' — d  and the notation xa  is used to emphasise that the normalised mutational 

distance x  corresponding to a particular d  is meant. Then Theorem 1 from [BBBK05] 

applies here, giving the leading eigenvalue Amax of H ,  which coincides with the population 

mean fitness in equilibrium, f  =  Amax- For S  C Z”, the slightly abusive notation S  — d  := 

{d' — d\d' G 5} shall be used.

Theorem 1 (from [BBBK05]). Assume that Ed and Fd'd are as in equations (5.13) 

and (5.14)- Assume further that the R) function e assumes its absolute maximum 

in the interior and that f  satisfies

Y ,  /A (® d)|A „|A 2, < C  (5.15)
—d

for some constant C, uniformly for all d E S  and 1 < w,w ' < n. Then, there exist 

constants 0 <  C ', C"' <  oo such that

e{x*) -  —  < Amax < o(æ*) +  —  , (5.16)

where x* is a point where e{x) assumes its maximum.

Remark. For the proof of Theorem 1, it is actually sufficient that the functions e and
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/ a  are locally, in a neighbourhood of x*. This means th a t also fitness functions with 

finitely many jumps are possible.

As the mutation rates are given explicitly, for F ,  the validity of assumption (5.14) can 

immediately be verified. Let the functions / a  ( x )  be given by

u ^ { x d )  if A  =  e^ ,

/ a (®) =  < —2Y),u^(xd)  if A  =  0, (5-17)

0 otherwise.

The functions ïï^(æ) are given by

u^(x)  :=  \/u + x (æ )u -x (æ ), (5.18)

with the cumulative mutation rates u^^{xd) = from equations (4.3), (4.11), (4.29)

and (4.38), respectively. Thus they read explicitly for the two-state model

u'^ {x) = p{l — x) u~{x) = fj,x (5.19)

U^^{x) = fjLXy{l — Xy) U~'"{x) =  pXyXy (5.20)

with permutation-invariant fitness (5.19) and Hopfield-type fitness (5.20), and for the 

four-state model

(®) — U (®) =  P'kXk ’ (®) — (5.21)

u^'+^(æ) =  pkXyXyfi vP~^{x) = pkXyXy^k vP''^^~^{x) =  flrnXyXy/ (5.22)

with {/?, m} =  {1,2,3}, for permutation-invariant fitness (5.21) and Hopfield-type fitness 

(5.22). Using a Taylor approximation, it can be shown tha t the differences between the 

exact entries of F  as given in equations (5.5) and (5.9), and their approximations from 

equation (5.17), are indeed of O

Equation (5.15) is a condition about how fast the off-diagonal entries of H  have to 

decay, when one moves further away from the diagonal. The / a  from equation (5.17) fulfil 

this condition, because they are bounded functions, and for each d  there are only finitely
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many A with / a  ^ 0, given by the unit vectors of mutation and finally the possible

entries Ay,  of A are limited to 0, ±1.

Assuming tha t also the reproduction rates Ra  can be approximated by a function

r{x) as

%  =  +  , (5.23)

then from equation (5.10), the matrix E  is approximated by

e(x)  =  r(x)  — ^  ^u^^(x)  +  u~^{x) — 2^ /u+%{x)u~^(æ)^ , (5.24)
X

fulfilling equation (5.13). W ith the definition of the mutational loss function as

g{x) := ^  ^«■•■̂ (a;) +  u~^{x) — 2y/u+'>^{x)u-^{xŸj (5.25)
X

i.e.,
2P

g{x) == Xy (5.26)
U=1

and
4P 3

g{x^ =  ^  ^   ̂fJ'kXy [l — 2,fXy^QXy^k ~  ‘̂y/Xy l̂Xy f̂ri  ̂ (5.27)
u = l k=l

with {k ,£ ,m } =  {1,2,3}, for the two- and four-state model, respectively, this reads ex

plicitly

e{x) = r{x)  -  g { x ) , (5.28)

and thus equation (5.16) can be written for the case considered here as

f  =  sup (r(œ) -  p(æ)) - fO  . (5.29)
xev  V ^ /

Theorem 2 of [BBBK05] is concerned with the localisation of the ancestral distribution 

a  (from section 2.1).

T h e o re m  2 (from  [B B B K 05]). Let Ed and Fdjd satisfy the hypotheses of Theorem 1. 

Assume that e assumes its maximum at a unique point x* G int(D), and that the Hessian

of e at X* is negative definite. Then, for every 0 < P < 1, there is a p > 0, independent
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o f N , so that, fo r  N  large enough:

^  d d < P ,  (5.30)
deS:

= * I > V

where a — (aa) is the ancestral distribution.

deS: ____

This means tha t the ancestral distribution is concentrated around the maximum x* 

with a width of the order of 1/VÏV. In the limit of AT -> oo, the ancestral distribution ap

proaches a point measure located at x*. Hence, in this limit the ancestral mean mutational 

distance converges toward the maximum position, x  = Y ^des^d^d  x*.

Let us now summarise the results of Theorems 1 and 2 applied to the m utation- 

selection model used here.

T h e o re m  3 (T h e  m ax im u m  p rin c ip le  for N  —> oo). (i) Assume that for the 

lumped mutation-selection model as set up in chapter 4  it is possible to approximate the 

reproduction rates Rd by a function r(xd) as specified in equation (5.23), and that the 

function e assumes its global maximum in int{V). Then the population mean fitness 

in equilibrium is given by

f  = sup [r(œ) -  g{x)] +  . (5.31)
xev  y

(ii) Assume furthermore that e assumes its maximum at a unique point x* in int(D), 

and that the Hessian of e at x* is negative definite. Then in the limit of N  —)■ oo, the 

maximiser x* is given by the mean ancestral mutational distance x ,  and in particular

f  =  r{x) — g ( x ) . (5.32)

Proof. This follows from Theorems 1 and 2, which have been shown to apply in 

the two- and four-state models with both permutation-invariant and Hopfield-type fitness 

functions in the preceding discussion. In particular, the cumulative m utation rates as given 

in equations (5.19) to (5.22) have been shown to fulfil condition (5.15) from Theorem 1.
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Remark. Note tha t for the model with Hopfield-type fitness in the limit of N  oo, it 

is not required tha t all Ny oo. Should an Ny remain finite in the limit, then -> 0 

and thus the corresponding subset of sites does not contribute to the properties of the 

system.

5.3 The linear model

In the linear model, it is assumed tha t both the fitness function and the mutation rates 

depend linearly on functions yy^k of the genotype components Xŷ k̂  i.e., they are sums of 

functions that depend on only one of the Xy k̂ each, and thus can be written as

r{x) =  ro -  ^  Oiy^kyv,k{^y,k) and =  Uq ^ ^  Py^Vv,k{xv,k) (5.33)
v,k v,k

with parameters ay^k and where for the two-state model v == 1 , . . .  2^ and k = 1 

and thus the summation over k is skipped. In the four-state model, v — 1 , . . .  ,4^ and 

k =  1,2,3. The permutation-invariant case is again obtained with p =  0, i.e., v = 1, and 

thus skipping the sum over v. Note that in equation (5.33) the same functions yy^k occur 

in both fitness function and m utation rates. The simplest and most common case is the 

case where yy,k{xy,k) = Xŷ k̂  i.e., a directly linear model. This type of model has been used 

e.g., in [vHB86, GH02] in a permutation-invariant two-state version. As the cumulative 

mutation rates given in equations (5.19) to (5.22) are linear, one is in the linear set-up 

when choosing a linear fitness function. Then the following applies:

Theorem 4 (The maximum principle for the linear model). Let the fitness 

function and mutation rates be given as in equation (5.33). Then the population mean 

fitness is given by

f  = sup [r{y{x)) -  g{y{x))] = r{y) -  g { y ) . (5.34)
xev

Remark. In the case of a directly linear model, yy^k{xv,k) = Xŷ k-, which is the one
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resulting from mutation model considered here, this simplifies to

f  =  sup [r(æ) -  g{x)] =  r  -  g ( x ) . (5.35)
xev

For the two-state model with permutation-invariant fitness, this result has been shown 

in [HRWB02]. The generalisation to a multidimensional m utational distance for a four- 

state model with permutation-invariant fitness was obtained in [GG04b], and this proof is 

applicable with minimal changes also for the Hopfield-type fitness.

Proof. The starting point for the derivation of the maximum principle is an eigenvalue 

equation for the symmetrised time-evolution operator H .  From equation (5.7) it is ev

ident tha t both time-evolution operators, H  and H  have the same eigenvalues, but the 

eigenvectors differ. The left and right eigenvectors z  and p  oî H  for the largest eigenvalue 

f  are related to the corresponding eigenvectors z  and p  oî H  hy

z  = zU ^^^  and p  = U -^^^p  (5.36)

with the diagonal transformation I I  from equation (5.3). The relation between the ances

tral distribution a  and the symmetrised population p  is given by

ai = ZiPi = ( « n - '/2 ) ; ( n i /2 p ) i  L z iP i  = c - f i ,  (5.37)

with the proportionality constant c being independent of the type i, because z  oa p  due to 

the symmetry of H .  W ith the relation p  oc y/E, the eigenvalue equation of H  in ancestral 

formulation becomes H y /a  = fy /a ,  which reads explicitly

'V â d  =  ^  4- ^-  y -  ^  V “ ^ /  y V -
' ________        (5.38)

+  ( \ / ^ d - e x ^ d ^  \ / “ d - e x  +  \ / ^ d + e x )  ’
X

for some value of the distance d. For the ad an ansatz is made such tha t

=  (5.39)

This is consistent for all directions of m utation % due to the reversibility of M  (5.2). To 

determine the constants Cy., equation (5.39) is multiplied by its denominators and summed
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over all d, which yields the ancestral means of the mutation rates

Û+X (5.40)
d d

Now, equation (5.38) is divided by i/ü j ,  and the ansatz (5.39) is inserted.

= ' ^ d - Y  +  “ d^ ) +  Y  "d'^ +
+x
d (5.41)

X X w ^ x  y

Multiplication by aa and summation over all d  yields, using the explicit form (5.40) of 

the C%,

f  =  f  -  ^  -  2Vû+xû-x^  . (5.42)
X

So far, linearity has not been used. W ith the definition of the mutational loss function 

from equation (5.25) and r = r{y) due to linearity of r, this yields

r  = r{y) -  g{y) , (5.43)

o = E
v,k

the right part of the maximum principle (5.34).

In order to obtain the supremum condition of (5.34), consider equation (5.41) for two 

different sequences d  and d' and take the difference, using the explicit representation of 

fitness and mutation functions given in equation (5.33),

C (ftk  +

^ {yv,k{Xv,k) ~  yv,k{Xy^k)) * (5.44)

This is just the condition

0 =  ^  - ^ l ' ^ ( y ) - 9 { y ) ] y ^ ÿ  (yv,k{^v,k) -  yv,k{^v,k))  ̂ (5.45)
v,k J

which has to be fulfilled for arbitrary x  and x'. Hence,

d
0 =

9yv,k
[r{y) -  9 {v)]y=y Vu,fc (5.46)

This is a necessary condition for the existence of an extremum at y. A sufficient condition 

for the existence of a maximum of the function r — g in y  is tha t the Hessian

'8 “̂ (r{y) -  g(y))
^(v,k){w,£){y) "■

8yv,k8yw,£
(5.47)

y=y
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of the second derivatives in the point p  is a negative definite matrix. The Hessian can be 

written in the form

^iy) = -Y'^ iy ' i^xivW xiy) , (5-48)
X

with c^{y) = ^(W^^{y)u~^(y))~^^^  and the column vector U ^{y)  =  (U^,v,k) with 

Ux,v,k{y) — l^î,k'^~^{y) ~  l^v,k'^^^(y)- t^st the Hessian for negative definiteness, eval

uate the quadratic form for an arbitrary vector z ,

= ~ Y l ^ x i y )  [ '^ZkU^,v,k{y)  I , (5.49)
X \ v , k  J

which is non-positive for all z ,  and generically negative unless all terms in the sum vanish. 

Hence, there is a maximum at y.  As the Hessian is negative definite on the whole muta

tional distance space, there can be no minima or saddle points. Hence, the maximum in 

y  is the only maximum, because two different maxima must be divided by saddle points 

or minima, and therefore it is the global maximum. This proves the extremum condition 

of the maximum principle (5.34). □

5 .4  U n id ir e c tio n a l m u ta tio n  ra tes

Up to now, only models where the underlying m utation rates for the process on 6  in for

ward and backward direction are the same were considered. The extreme case of direction- 

dependent m utation is the case of unidirectional mutation, meaning th a t only such mu

tations tha t increase the total mutational distance d = Y v k ^ v ,k  happen, the m utation 

rates toward types with smaller or equal d are zero, i.e.,

u^'^{x) > 0 u~'"{x) =  0 , (5.50)

u'’'+‘ (æ) > 0 «” -*(æ) =  =  0 , (5.51)

for the two- and four-state model, respectively, with distinct E {1,2,3}. This mutation 

scheme does not go in line with the mutation rates for the DNA system as given in 

equations (5.19) to (5.22).
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In the permutation-invariant model, however, unidirectional mutation rates still are a 

reasonable approximation. If in the DNA model, selection is sufficiently strong and the 

fitness function is monotonically decreasing, such that the reference sequence is in fact 

the sequence with maximal fitness, most individuals present in the population will have 

a genotype with a small mutational distance from the wild-type. The mutations that 

leave d constant (they only occur in the four-state model, — e/t), and those that

decrease d (e^ =  —e^), which in the case of a decreasing fitness function are neutral and 

advantageous, respectively, occur with rates proportional to Xk, and therefore are rare for 

individuals with small mutational distances x  = Y ,k ^k  = d /N ,  which form the main part 

of the population. In contrast, the mutations tha t increase d (ê .̂ =  e^) happen with rates 

proportional to 1 — a;, which are of order 1 for small x.  Therefore, it is reasonable to 

approximate the m utation rates of the DNA model by unidirectional mutation rates, i.e.,

=  0 or =  0. This is the well known infinite sites limit (see [Kim69],

[Ewe79, chapter 8]).

Unidirectional mutation rates have to be defined with respect to one sequence; in the 

permutation-invariant model this is the wild-type. In the Hopfield-type fitness, there are 

however a number of patterns, none of which should be considered as special, and thus the 

notion of unidirectional m utation rates is less meaningful. This is why here only the cases 

of permutation-invariant fitness shall be treated, although the method for the four-state 

model generalises immediately to the Hopfield-type fitness.

For unidirectional mutation, the mutation matrix M  is no longer irreducible. Hence, 

in this case, the Perron-Frobenius theorem does not apply. The equilibrium is not unique, 

but depends on initial conditions. Once the wild-type is lost in the population, it can 

never occur again, because the mutation rates back to types with smaller d are zero.

The two-state model with permutation-invariant fitness is treated in [HRWB02], and 

this has been generalised to the four-state model in [GG04b].
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5.4.1 T he tw o-state  m odel w ith  perm utation-invariant fitness

As the mutation m atrix is not irreducible for unidirectional mutation, the population 

distribution in equilibrium is not unique, but depends on the initial conditions. The 

equilibrium with the highest mean fitness is always assumed if the wild-type initially 

occurs with non-zero frequency, or if one considers the case of unidirectional mutation 

rates as an approximation to the limit of small, but non-vanishing back mutations.

The eigenvalue equation for H  in the two-state model with permutation-invariant 

fitness and unidirectional mutation takes the simple form

{r -  Xd)Pd =  Ud-iPd-i with Xd = r d ~  g{xd) =  -  u J  , (5.52)

where the diagonal entries are the eigenvalues A ,̂ because JT is a lower triangular matrix.

In this case, the situation is particularly simple, and some properties of the population

distribution p  can be inferred directly, which allow to show th a t the maximum principle 

holds in this case in the following form.

Theorem  5 (T he m axim um  principle for th e  tw o-state m odel w ith  unidirec

tional m utation  rates). Let the mutation rates he as in equation (5.50), and letdpam 

the minimal mutational distance that is present in the initial population p(0). Then, the 

equilibrium population mean fitness is given by

r = sup [r{xd) -  g(xd)] . (5.53)
d̂ d,xim

If, additionally, the maximum in (5.53) is taken at a unique mutational distance d, it is 

furthermore

f  = r(x) — g ( x ) , (5.54)

where x  = x^.

Proof. Consider first the case where the wild-type is initially present in the population, 

i.e., dmin =  0. Suppose there is one d* such tha t pd* > 0, but pd*-i =  0. This can only 

happen if f  =  A^*, and it directly yields tha t Pd =  0 for all d < d*. Indeed, if there was a
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sequence d+ > d* with Ad+ > Xd*, Pd+ would be negative, in contradiction to the condition 

tha t Pd > 0 for all d. If A^+ =  Ad*, Pd =  0 for all d < d+, including d*. Thus in this case, 

the population consists only of the sequences with d > dA. This yields the first part of 

the maximum principle (5.53) with dmin =  0-

If, however, the wild-type is not present in the initial population p(0), only the part 

of the mutational distance space with d > dmin has to be considered, where dmin is the 

minimal mutational distance tha t is present initially, Pd^in (0) > 0. Now, the mean fitness 

assumes the highest possible value in this subspace, which is assumed for at least one 

sequence d*, yielding the maximum principle (5.53) for arbitrary initial conditions.

If this maximum is unique, the equilibrium population is given by the right eigenvector 

corresponding to this eigenvalue Ad*, which has non-zero entries only for sequences d > d*. 

The left eigenvector corresponding to Ad* has non-zero entries only for sequences d < d*, 

so tha t the only d with ad ^  0 is d*, and hence d* =  d is the only ancestor. This yields 

the second part of the maximum principle (5.54). □

5.4.2 T he four-state m odel w ith  perm utation-invariant fitness

The argument in the four-state model goes very much along the lines of the two-state 

model, but due to the more complex structure of the mutational distance space (being 

a subset of rather than Z), there are additional points to consider. The hierarchical 

structure of the mutational distance space in the four-state model is shown in figure 5.1, 

where the wild-type on the top corner of the mutational distance space “feeds” all mutants 

underneath.

The mutational distance space S  can be divided into three domains with respect to 

each sequence d, namely the ancestral cone, the offspring cone and the sibling domain. 

Here, all sequences tha t can mutate to d  lie in the ancestral cone AC{d), all sequences 

to which d  can mutate lie in the offspring cone OC{d), whereas the sequences that are 

not connected to d  via a mutational path form the sibling domain SD{d), which is the 

remainder of the mutational distance space.
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Figure 5.1: Structure of the mutational distance space S  for the four-state model with unidirectional 
mutation.

The eigenvalue equation of H  for unidirectional m utation in the four-state model is 

given by

3 3

{r -  Ad) Pd = J 2  '^d-Bk Pd-sk with Ad =  rd -  gixa) = r d ~ ' ^ u ^ , (5.55)
A := l k=l

with eigenvalues Ad as diagonal entries, because H  is again a lower triangular matrix. In

this case, the maximum principle can be written as

T heorem  6 (T he m axim um  principle for th e  four-state m odel w ith  unidi

rectional m utation  rates). Let the mutation rates be as in equation (5.51), and let

«$in :=  {d|pd(0) > 0} be the initially populated part of the mutational distance space.

Then, the equilibrium population mean fitness is given by

r = sup [r(ajd) -  9 {xd)] • (5.56)

If, additionally, the maximum in (5.56) is taken at a unique mutational distance d, it is 

furthermore

f  =  r(x)  -  g { x ) , (5.57)

where x  =  x^ .

Proof. Suppose again there is one d* such tha t pa* > 0, but pa* — e* =  0 for all

k G {1,2,3}. According to equation (5.55), this can only happen if f  =  Ad*. An evaluation
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of equation (5.55) for d* — and for other sequences in the ancestral cone yields that 

no sequence in the ancestral cone can contribute to the population, i.e., Pd =  0 for all 

d  e  AC(d*).

If there was a sequence d+ in the offspring cone of d* with A^+ > Ad*, Pd+ would be

negative, thus this is impossible. Hence, Ad < Ad* for all d  G OC(d*), which corresponds

to the first part of the maximum principle (5.56) as

r = ^ max [r{xd) -  g(xd)] . (5.58)aECyC(a )

If now Aj+ =  Ad* =  f, then pd =  0 for all d  G AC{d'^), including d*, so tha t in this 

case the offspring cone OC{d'^) spans the population rather than OC{d*). Evaluating the 

eigenvalue equation for the sequences in the offspring cone yields Pd > 0 for all d  G OC{d*) 

if Ad* > Aj+, or for all d  G OC{d'^) if Ad* =  A^+.

All sequences in the sibling domain SD{d*) descend originally from the ancestors of d* 

which are not present in the population. Thus, their frequencies must vanish, unless there 

is a sequence G SD{d*) with A^+ =  Ad*. In this case, if p^+ > 0, the sequences in 

both offspring cones have non-vanishing frequency, Pd > 0 for all d  G OC{d*) U OC(d+); 

the frequencies of all other sequences vanish.

Due to the reducibility of the mutation matrix in the case of unidirectional mutation, 

the equilibrium population is not unique, but it is always the distribution assumed that 

has the highest possible population mean fitness f , considering the given initial conditions. 

To find this equilibrium one has to take into account the offspring cones of all initially 

present sequences din, and f  =  supuoc(din) [^(®d) ~  9 {xd)]j which is assumed for at least 

one sequence d*.

If this maximum is unique, the equilibrium population has non-zero entries only for 

the sequences in the offspring cone OC{d*), whereas the relative reproductive success z  

corresponding to Ad* has non-zero entries only for the ancestors of d*, so that the only 

d  with Ud 7̂  0 is d*, and hence d* =  d  is the only ancestor, which again yields equation 

(5.32). □
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An interesting case arises, however, if the maximum is not unique, but attained at 

two (or even more) sequences d* and in the subspace under consideration. In this 

degenerate case, the ancestral distribution cannot be obtained as easily as shown above, 

as the left and right eigenvectors have no non-zero overlap and thus it is not possible to 

normalise z  such tha t Y i  =  1-

There are now two cases to distinguish. If the sequences lie in parent-offspring relation, 

i.e., d^  G OC{d*), d* is the single ancestor, whereas the population is formed by the 

offspring cone of d"*", i.e., pd >  0 if and only if d  G OC(dfi'). Note tha t equation (5.57) 

still holds, although in this special case the only ancestor d* has zero frequency in the 

population.

If, however, d* and d^  lie in sibling relation to each other, the population is formed 

by the union of their offspring cones OC{d*) U OC{d'^)-, and d* and d^  both may have 

non-vanishing ancestral frequency, which are then determined by the initial conditions.
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CH A PTER  6 

Error thresholds and phase diagrams

The maximum principle (5.31) and (5.32) is a powerful tool to calculate the population 

mean fitness f  in equilibrium for arbitrary fitness functions of the permutation-invariant 

or Hopfield type, for any range of mutation rates. Also, the ancestral mean genotype x  

is available. The general method to identify f  and x  is to consider the partial derivatives 

0 Î r — g with respect to the components Xy^k of the mutational distance x .  A necessary 

condition for the function r  — g to have a maximum at a value x* is that its derivatives 

at this X* vanish,

^ [r(æ) -  g(x)]^^^. =  0 Vu, A;. (6.1)
8 Xŷ k

The global maximum of the function r  — g must lie on one of the points x* that fulfil 

equation (6.1) or on the border of the mutational distance space. Thus by comparing the 

values of r  — p on these possible points, the global maximum can be identified.

Apart from the general possibility to investigate the dependence of the population mean 

fitness r on the mutation rate fi, this yields the opportunity to investigate the phenomenon 

of the error threshold, which has interested scientists ever since it was first conceived in 

[Eig71].

In the quasispecies model [Eig71], which was the first mutation-selection model using 

the sequence space as type space, the phenomenon occurs that the maximum sequence 

length tha t can be maintained in a population is limited by the mutation rate, or copy

ing fidelity, i.e., the probability tha t at replication the nucleotide in question is copied 

accurately. At short sequence lengths and low mutation rates, or high copying fidelities, 

the population consists predominantly of sequences that are very similar to the wild-type; 

the population distribution is well localised in sequence space. However, the probabil
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ity to make an error-free copy of an original decreases exponentially with the sequence 

length, such tha t for a fixed mutation rate, longer sequences will accumulate a high num

ber of mutations compared to  the wild-type, leading ultimately to the delocalisation of the 

population in sequence space, thus the genetic information cannot be maintained in the 

population. Therefore, the phenomenon of the error threshold as described by Eigen can 

be expressed as a maximum possible sequence length tha t can be maintained at a given 

mutation rate; or alternatively, as a maximum possible m utation rate at a given sequence 

length.

This phenomenon has attracted considerable interest in the scientific community (e.g. 

[MS95, chapter 4.3], for a review see [BGOO]), not the least because the original model 

was set up to explain the origin of life. In prebiotic evolution, the sequences were not part 

of a cell with all its machinery for reproduction, but rather copying “by chance” , serving 

as templates for the synthesis of new sequences. Under these circumstances, the copying 

fidelity is very limited, and hence only populations of short sequences can bequeath the 

information they contain to subsequent generations. These sequences are in fact so short, 

tha t they cannot possibly contain the genetic information to code for proteins tha t are 

required to enhance the copying fidelity, which only would make longer sequences feasible 

and thus allow for the creation of the very proteins. Hence “catch 22 of the origin of life: 

No large genome without proteins, and no proteins without large genome” [May83].

One problem is tha t there is no generally accepted definition of an error threshold. 

The criterion used in the original quasispecies model [Eig71] is the disappearance of the 

wild-type from the population, which under the single peaked landscape goes in line with 

the complete delocalisation of the population in sequence space. However, these two effects 

do not necessarily coincide for other fitness landscapes.

A number of works have exploited the equivalence of the biological model with models 

from statistical mechanics. Leuthausser [Leu86] has established the equivalence of a dis

crete time version of the quasispecies model with a two-dimensional classical Ising model 

which has been used in [Leu87, Tar92, FPS93, FP97, Pel02]; in [GGZ96, Gal97], the sys-
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tern was mapped onto a model for elastic polymers; and in [BBW97], the equivalence of 

the para-muse model, used here, with a one-dimensional quantum spin chain has been 

identified.

The benefit of these equivalences is that they make available the well developed tools 

and methods from statistical mechanics in the biological context. For instance, in the 

framework of these models, the error thresholds have been identified with phase transitions 

in the analogous physical systems, a route that shall be followed here.

Adopted to the mutation-selection model used here, error thresholds are characterised 

by non-analytic behaviour of the population mean fitness f  and the ancestral mean muta

tional distance x ,  which acts as the order parameter, at a critical mutation rate pc- One 

can distinguish between first and second order error thresholds.

D efin ition  (F irs t a n d  second  o rd e r  e r ro r  th re sh o ld ). A first order error threshold 

exists at a critical mutation rate pc, if the ancestral mean mutational distance as a func

tion of the mutation rate x(p)  shows a discontinuity at this pc, which is also reflected by 

a kink in the population mean fitness r{p).

A second order error threshold exists at at critical mutation rate /ic, if the derivative of

the ancestral mean mutational distance with respect to the mutation rate #  is
L "  J

discontinuous at this mutation rate pc-

In the examples shown later in this thesis, the second order error threshold always 

show an infinite derivative at the critical mutation rates. Note that, like phase transitions 

in physics, these definitions of the error thresholds apply in the strict sense only to a 

system with infinite sequence length (AT —)■ oo), for finite sequence lengths, the thresholds 

are smoothed out due to the lack of non-analyticities.

If error thresholds are considered as phase transitions, their existence not only hinges 

on the limit of an infinite sequence length. It is also required that even for mutation rates 

below the threshold the sequence space is explored fully. Because for infinite sequence 

length, the number of types becomes infinite too, |«S| -4- oo, this is only possible in the
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lim it o f an infinite population size.

In [HRWB02], a finer classification of different error threshold phenomena was given. 

The first order error threshold they called “fitness threshold” . Here, this term  shall include 

also the second order error threshold, making all error thresholds as defined above fitness 

thresholds. Furthermore, the concept of the “degradation threshold” was introduced.

D efin itio n  (D e g ra d a tio n  th re sh o ld ) . A degradation threshold is an error threshold of 

first or second order, where the population distribution beyond the critical mutation rate 

Pc is given by the equidistribution in sequence space 6 .

Thus here the degradation threshold is a special case of a fitness threshold, going in 

line with the total delocalisation of the population in sequence space. Note tha t in the 

limit of infinite sequence length {N  -> oo), for which the error threshold definitions apply 

exactly, this equidistribution is reached immediately above /ic, and beyond the threshold 

the population is insensitive to any further increase in m utation rates. In the case of finite 

sequence lengths, where the thresholds are smoothed out, the equidistribution is of course 

only reached asymptotically.

One reason tha t this characterisation of error thresholds as phase transitions has not 

found a wider acceptance might be tha t the order parameter, which in the models of physics 

is the magnetisation, was lacking a biological interpretation until recently, due to subtle 

differences in the normalisation [BBW98]. For instance, for the one-dimensional quantum 

chain [BBW97], which is the equivalent model of the para-muse model used here, the order 

parameter is the quantum mechanical magnetisation, which obeys an ^ 2-normalisation, 

whereas the natural observables in the mutation-selection model are the population av

erages, which are normalised in Li.  Only recently [HRWB02], the ^ 2-normalisation has 

found an interpretation as the ancestral mean and thus the order param eter has been 

identified with the ancestral mean mutational distance x.

The original error threshold was observed for the single peaked fitness landscape, where 

a single sequence is attributed a high fitness value, all other sequences are equally disad

65



vantageous. This is clearly an oversimplification and should not be regarded as anything 

but a toy model. A large amount of the literature concerning the error threshold phe

nomenon is very closely related to the model where it was originally reported [EigTl] 

and thus uses the single peaked landscape. This literature (up to 1989) has been re

viewed in [EMS89]. Other fitness landscapes tha t have been investigated comprise, in 

the permutation-invariant case, linear and quadratic fitness functions, general functions 

showing epistasis, and as examples lacking permutation-invariance the Onsager landscape 

[BBW97, BWOl], which has nearest neighbour interactions within the sequence, as well as 

various spin glass landscapes like the Hopfield landscape [Leu87, Tar92], the Sherrington- 

Kirkpatrick spin glass [BS93], the NK spin glass [CAW02], and the random energy model 

[FPS93, FP97], assigning random fitness values to each sequence.

One fitness landscape where an analytical solution can be obtained is the linear fitness, 

cf. [Rum87, Hig94, BBW97]. Note tha t this corresponds to a multiplicative landscape in 

a set-up using discrete time. For a linear fitness function, there is no error threshold, but 

the population changes smoothly from localised to delocalised with an increasing mutation 

rate.

For quadratic fitness functions, error thresholds only exist for antagonistic epistasis; 

they are absent for quadratic fitness functions with synergistic epistasis [BBW97, HWBOl, 

GG04a]. These results go in line with those for general epistatic fitness functions [Wie97]. 

Studies using non-permutation-invariant fitness functions generally report the presence of 

error thresholds.

Like phase transitions in physics, error thresholds occur in the strict sense of non- 

analyticity of the observables only in the thermodynamic limit, which here corresponds 

to the limit of infinite sequence length AT —> oo. Hence with the maximum principle, 

which is exact in tha t very limit, they can be detected. However, for finite sequences, the 

phenomenon does not vanish altogether, but the jumps or kinks in the population mean 

fitness f  and the ancestral mean genotype x  are smoothed out. Also the critical mutation 

rates are shifted for finite sequence length somewhat to smaller mutation rates, as shall
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be seen later.

The definition of the error threshold as phase transition not only hinges on the assump

tion of an infinite sequence length, but as well on the deterministic nature of the model in 

question, which is granted by the assumption of an infinite population size, a case in which 

the sequence space is explored fully {jpi >  0 Vi, according to Perron-Probenius theory). 

However, there have been a number of studies investigating systems with finite popula

tion size, mainly employing simulation methods. [NS89] investigated the single peaked 

landscape and found similar results as in the infinite population case, only with critical 

mutation rates being shifted to lower values as compared to the infinite population case. 

[BS93] used complex correlated fitness landscapes such as the Sherrington-Kirkpatrick spin 

glass, whereas [CAW02] studied NK spin glass landscapes. In these works, three ‘phases’ 

are identified: for low mutation rates, the population is clustered around the maximum of 

the fitness landscape; for high mutation rates, the population is given by the equidistri- 

bution in sequence space. At intermediate m utation rates, however, the population drifts 

through sequence space exploring the secondary maxima of the fitness landscape without 

being localised. The existence of this phase hinges on the finite population size, as with 

an infinite population the whole sequence space is explored even for small (but finite) 

mutation rates and thus there can be no drifting through the space.

Further extensions of the original error threshold phenomenon comprise the investiga

tion of diploid models [Hig94, WBS95], the incorporation of recombination in the model 

[BBN96], or the analysis of pleiotropy efiects, i.e., the effect tha t one m utation might 

infiuence a number of traits. Also, systems where there are more than one genotype in 

the fittest class have been investigated [HSF96, RFSOl], coining the notion of the phe

notypic error threshold. These models have been inspired by fitness landscapes for RNA 

molecules, where the fitness is determined by the secondary structure, and the mapping 

from sequence to  structure is many-to-one.

Of course the discussion of the error threshold phenomenon is academic if the threshold 

is an artefact of the model rather than a real biological phenomenon. This issue has been
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subject to numerous debates, especially because it has first been predicted by a model 

using the over-simplistic single peaked landscape. However, over the years biologists have 

accumulated evidence tha t particularly RNA viruses naturally thrive at very high muta

tion rates [DH88, EB88] (of the order of 10“ '̂  to 10“  ̂ per base per replication [DES+96], 

corresponding to a genomic mutation rate of about 0.1 to 10 mutations per replication 

[DH97]), and a number of studies have reported that populations of RNA viruses only 

survive a moderate increase of their mutation rate, whereas if the mutation rate is in

creased further, the populations become extinct [HDdlTS90, LEK+99, SDLDOO, CCAOl], 

for reviews see [DES"^96, DH97]. This corresponds to the population being pushed beyond 

the error threshold. It has been suggested to use the error threshold for antiviral therapies 

[Eig93], and in fact, recent experimental results indicate that this is the mechanism via 

which the broad-spectrum antiviral drug ribavirin works [CCAOl].

This clearly warrants some further investigation of the error threshold phenomenon, 

which shall be done in the remainder of this chapter. For permutation-invariant fitness 

functions, section 6.1 investigates the four-state model, where results have been scarce 

[HWBOl, CC04aj. As examples of fitness functions, quadratic fitness and truncation 

selection are considered. The phase structure is investigated and the results for infinite 

sequence length obtained via the maximum principle are compared with results for finite 

sequence lengths from direct calculations. For fitness functions of the Hopfield type, 

the investigations performed in section 6.2 are restricted to the two-state model in order 

to keep the number of variables limited. There, the investigations focus on quadratic 

Hopfield-type fitness functions in the cases of two and three patterns.

6.1 The four-state m odel w ith  perm utation-invariant fitness

Although the sequence space model has clearly been developed with the structure of DNA 

sequences in mind, which are written in a four-letter alphabet, the vast majority of ap

plications to date has been concerned with two-state models. The few investigations of 

four-state models [HWBOl, CC04a] have however revealed more complex behaviour in
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this case, including the emergence of partially ordered phases tha t hinge on the multidi

mensional mutational distance used in the four-state model. The results for the four-state 

model with permutation-invariant fitness published in [GG04a] shall be presented here.

6.1.1 Choice of fitness functions

As mentioned above, error thresholds do not occur for all permutation-invariant fitness 

functions. For two-state models, a number of criteria for fitness functions to give rise to 

error thresholds has been given in [HRWB02]. For the four-state model, it is plausible to 

assume tha t the situation is similar.

It is easy to verify the absence of error thresholds for linear fitness functions in the 

four-state model. For error thresholds to exist, one needs at least the complexity of a 

quadratic function. In the following, two examples of fitness functions displaying error 

thresholds shall be investigated, namely a quadratic fitness function and a truncation 

selection, where all genotypes with less than a critical number of mutations are equally fit 

and all others equally unfit.

For simplicity, the mutation schemes used here are limited to the Kimura 2 parameter 

(K2P) and Jukes-Cantor (JC) mutation schemes as simplifications of the full Kimura 

3ST mutation scheme, and the choice of fitness functions is restricted to those tha t are 

symmetric with respect to permutations of the mutational distances a;*, k  6  {1,2,3}.

6.1.2 Quadratic symmetric fitness function

It can be shown that for quadratic fitness functions with positive epistasis, i.e., fitness 

functions with negative second derivatives, no phase transitions (or error thresholds) ex

ist (cf. [HWBOl]). Looking only at quadratic symmetric fitness functions with negative 

epistasis (or positive second derivative), a fairly general form is

3 3
r{x) =  ^  XkXi , (6 .2 )

A=1 ,̂<=1k<t
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Figure 6.1: The quadratic symmetric fitness function (6.2) for c = —1 as a projection onto the 
relevant subspace with xi = X3 .

where the parameter c is used to tune the linear part relative to the quadratic term. 

The only possible generalisation within this restricted setup would be to give different 

coefficients for the pure quadratic terms and the mixed quadratic terms XkX£ with 

k ^  L Here, the focus lies however on the fitness given in equation (6.2). Using one 

additional parameter to scale the overall quadratic term  compared to the linear term 

would only result in a rescaling of the parameter c and the mutation rates. Note however 

that, because no care is taken here to obtain a realistic scaling of the fitness function, the 

absolute values of the m utation rates bear no meaning and should not be compared to 

any experimentally measured mutation rates. The ratio between the mutation rates p /112 

is meaningful though.

In general, this fitness is symmetric with respect to permutation of the A: G {1,2,3}. 

For c =  — 1, the symmetry of the fitness function is even higher and includes the fraction 

of the wild-type-sites, xq =  1 — Y/X=i

As the K2P m utation model has an inherent symmetry between x\  and 2:3, and between 

X2 and 370, respectively, and due to the symmetry of the fitness function (6 .2) for arbitrary 

c, it is evident tha t the equilibrium solution for the ancestral mean mutational distance 

mirrors tha t symmetry with x \  =  Æ3 (and in the case of c =  —1, also ^2 =  ^0). Figure 6.1 

shows the quadratic symmetric fitness function (6 .2) for c =  —1 as a projection onto the 

relevant subspace where x\  = X3 . The additional symmetry in the case c =  — 1 is reflected
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in the fact tha t there are two equally high maxima at (xi ,X 2 ) =  (0 , 0) and (x i ,X2 ) =  (0 , 1).

6 .1 .2.1  P h a se  d ia g ra m s

Phase diagrams are a convenient way to show the locations of phase transitions depending 

on the model parameters. Regions of the parameter space th a t are completely separated 

by phase transitions form distinct phases, in which the behaviour of the system differs.

The phase diagrams for the K2P mutation model with the quadratic symmetric fitness 

function (6 .2) have been examined for the possible combinations of mutation rates and the 

parameter c. This has been done as described at the beginning of chapter 6 by considering 

the derivatives of the function r — g. Using the symmetry of the K2P m utation model, 

tha t is also inherent in the fitness function (6.2), we know th a t xs = x \  and therefore 

the dimension of the equations can be reduced. W ith this, the fitness and mutational loss 

functions read explicitly

r{x\xs = xi)  = c  {2xi +  X2) +  3a;f +  2 x\X2 +  x^ (6.3)

g{x\xs = ^ i) =  2/i [1 -  2y/xoXi -  2 y/xiX2\ +  //2 [1 -  2 y/xoX2 -  2x\] (6.4)

with æo =  1 — 2xi — X2 - Thus as necessary conditions for a maximum we get 

1 d
2 9X1 =

c +  3x\ X2 p

C -}- 2 x i  -j- 2372 “b  2 / i

’Xo IXi 1x2 
xi  y  xo V xi +  P2 - J ^ + 1

Xq
=  0

=  0

Using the parametrisation p = f p 2 , the difference between (6.5) and (6 .6) yields

(Xl -  X2)y/XlX2
P2 =

(6.5)

(6.6)

(6.7)
y/XQXi -  y/XiX2 +  f { 2 xi  -  372 -  V ^O ^) *

Inserting this back into equation (6 .6), and considering only the numerator, one gets

Ay/xQXi +  B ^ x \ X 2 =  - /  (Cy/XQX2 +  D)  (6 .8)
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with

A =  - X 2 [c +  2(x\ +  X2 )] (6.9)

B  = CXo +  X2 {X2 -  37i) +  370(3æi +  372) (6.10)

C  =  2 c 3 7 i  +  6 3 7 j  — C372 — 237g (6.11)

D  = -372 {c37q +  2 [371(371 -  372) +  370 (371 +  372)]} . (6.12)

To eliminate the square roots in equation (6.8), we need to square twice, yielding

G^xqX2 =  (6.13)

with

G = - 2 C D f  +  2A B xi  (6.14)

J  =  — A^xqxi  +  Ĉ f^XQX2 -  B ‘̂ x\X2 . (6.15)

Equation (6.13) is a polynomial of order 10, and it can be solved , for instance using the 

algebraic computing package M athematica with the function “NSolve” , yielding 372 for any 

input values of c, /  and 371. The obtained solutions have then to be checked whether they 

are a maximum of r  — Using equation (6.7), the corresponding mutation rate can be 

determined.

The phase diagram for any fixed c is obtained by considering fixed ratios oi p / p 2 =  /? 

and finding the solutions of equation (6.13) for 372, using 371 as an input value (ranging 

from 0 to 1/2 in steps of typically 0.001). An example of the data obtained tha t way is 

shown in figure 6.2. Other Phase diagrams shown later on were obtained in a similar way.

For the case c =  —1, the phase diagram is shown in Figure 6.3, cf. [HWBOl], where a 

different notation, but the same fitness and mutation model are used. Here, three different 

phases can be identified:

• The AGCT phase. The population is essentially ordered, i.e., the population distribu

tion is localised in sequence space.
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Figure 6.2: And example of the data used to generate the phase diagrams. Here, c =  —0.99 and 
/  =  0.339. The data consists of 4-tuples {xi, a:2,//2, r —p), which are shown in various combinations. 
As the global maximum of r  — 5» is the desired solution, this is given by right most branch in the top 
right graph. For low mutation rates the solution is given by the green branch (which corresponds 
to small x\ and large 2:2), whereas for high mutation rates the solution is given by the red branch. 
The error threshold occurs where these two branches cross (indicated by the dashed line in the top 
left graph).

• The disordered phase. The population is completely random, the population dis

tribution is the equidistribution in sequence space, the ancestral mean mutational 

distance is given by æo =  =  ^2 =  ^3 =  1/4.

• The P P  phase. A partially ordered phase, which only differentiates between purines 

and pyrimidines. In the ancestral distribution, there are two peaks tha t are equidis- 

tributions with respect to x \ ^x ^ -  and aro, X2-direction, respectively, but localised in 

the other directions. This phase only exists in the case c =  — 1.

For large ratios /.f//22, the phase transition is a first order transition from the AGCT 

phase into the disordered phase, and thus it can be classified both as a fitness and a 

degradation threshold. For smaller ratios where the transition is from the AGCT to

the PP  phase, this is only a fitness threshold, of first or second order, depending on the 

exact ratio /i//i2j whereas the threshold from the PP  into the disordered phase is a second 

order fitness and degradation threshold.
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Figure 6.3; Phase diagram for the K2P mutation model and the quadratic symmetric fitness 
function (6.2) with c = — 1. At the first order phase transition (solid line) the ancestral mean 
mutational distance x  jumps and the population mean fitness f  has a kink, whereas at the second 
order phase transitions (dashed lines) this kink in f  is smoothed out and the jump in x  is reduced 
to an infinite derivative at the critical mutation rate.
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Figure 6.4: Phase diagram for the K2P mutation model and the quadratic symmetric fitness 
function (6.2) with c < — 1.

If the symmetry between xq and X2 is broken, i. e., c 7  ̂ —1, the P P  phase disappears, 

see the phase diagrams shown in figures 6.4 and 6.5 with fitness function (6.2) for c <  —1 

and c > — 1, respectively.

For c <  —1, cf. Figure 6.4, the second order phase transitions disappear immediately 

with the broken symmetry, the first order phase transition line shrinks with decreasing 

c while shifting to slightly higher mutation rates and disappear for any c < —1.06. The 

disappearance of the second order transitions implies a disappearance of the disordered 

and the PP  phase, leaving only an AGCT phase with varying degrees of order, and hence 

the remaining thresholds are only fitness thresholds, not degradation thresholds.

In the case c > —1, cf. Figure 6.5, the P P  phase merges with the disordered phase, 

such that only the AGCT and disordered phases remain. The second order phase transition 

between AGCT and P P  phase, tha t exists in the case c =  —1, is transformed to a first 

order transition, in this case it is simultaneously a fitness and a degradation threshold. 

If c > —0.96, even the AGCT and disordered phases merge as the phase transition line
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Figure 6.5: Phase diagram for the K2P mutation model and the quadratic symmetric fitness 
function (6.2) with c > — 1.

does not reach to small values of fi2 , and thus the remaining phase transition lines can be 

characterised as fitness, but not as degradation thresholds.

6.1.2.2 Finite size effects

Using the maximum principle (equations (5.31) and (5.32)), only the population mean 

fitness f  and the ancestral mutational distance x  are accessible, which is sufficient to 

detect phase transitions. For small sequence lengths, it is however feasible to calculate f  

as largest eigenvalue and the population and ancestral distributions p  and a  through the 

corresponding eigenvector of H .

Figure 6.6 shows results obtained in this way for different finite sequence lengths using 

the quadratic fitness function (6.2) with parameter c =  — 1 compared with the results 

obtained via the maximum principle (5.31), which are exact for an infinite system. On the 

left, the JC mutation model was used, and consequently, the mean mutational distances 

in all three directions coincide. On the right, the K2P mutation model with p = 0.3/i2
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Figure 6.6: Comparison of population mean fitness f, ancestral mean mutational distance x  and 
population mean mutational distance x  for different sequence lengths N  and the infinite system 
{N = g o )  with fitness function (6.2) for c = —1. Left: JC mutation scheme, right: K2P mutation 
scheme with /x = 0.3/X2* The locations of the phase transitions in the case of an infinite sequence 
length are marked as vertical dotted lines.
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was used. Here, the mean mutational distances in x\  and X3 direction coincide, but differ 

from those in X2 direction.

In Figure 6.6 one can clearly see how the phase transitions, which are sharp in the 

infinite system, are smoothed out for finite sequence lengths. Especially the second order 

phase transition in the K2P model cannot be detected at the sequence lengths considered 

here.

6.1.2.3 Distributions

The results in Figure 6.6 have been obtained by calculating the population and ancestral 

distributions explicitly, again using Mathematica. Examples of these are visualised in 

Figures 6.7 to 6.9. Although for the mean mutational distance x\  =  ^ 3, and therefore one 

can reduce the sequence space to the 2-dimensional subspace, sequences with x\  7  ̂X3 do 

occur in the equilibrium distributions with non-zero frequency, and thus the full three- 

dimensional mutational distance space S  is needed for the visualisation. In Figures 6.7 to 

6.9, the frequency of each point d  is visualised as a cube of proportional size. For easier 

recognition, each cube corresponds to a block of 8 data points. The colours of the cubes 

indicate their position along the X2 direction.

Figure 6.7 shows the ancestral distribution of the JC mutation model with the quadratic 

symmetric fitness function (6.2) with parameter c =  —1. The phase transition, which 

happens around a mutation rate of /x «  0.16, is clearly visible. For lower mutation rates, 

the population is in the AGCT phase and the ancestral distribution is localised. For mutation 

rates above the threshold, the population is in the disordered phase and the ancestral 

distribution is the equidistribution in sequence space. Note that the term equidistribution 

refers to the 4^-dimensional sequence space 6 , and thus the ancestral distribution is a 

multinomial distribution in the depicted mutational distance space S.

In Figure 6.8 , the population distributions for the same model and parameter values 

as in Figure 6.7 are shown. The population distribution goes through the same stages as 

the ancestral distribution, but at lower mutation rates, and in contrast to the ancestral
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=  0.1

= 0.15 |Li = 0.16

1-1 = 0.17 [i = 0.3

Figure 6.7: Ancestral distribution a for the JC mutation model with quadratic symmetric fitness 
(6.2) and c = — 1 for selected mutation rates and a sequence length of = 20. The frequency of 
each type d  is symbolised by a cube of proportional size. Colours indicate the position along the 
X2 direction. For easier recognition, each cube corresponds to a block of 8 data points.
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[X = 0.08 1̂ = 0.095

p, = 0.11 fx = 0.125

^  = 0.14 1̂ = 0.155

Figure 6.8: Population distribution p  for the JC mutation model with fitness (6.2) and c =  — 1 
for selected mutation rates and a sequence length of = 20. For easier recognition, each cube 
corresponds to a block of 8 data points.
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distribution, the transition is smooth, as can also be seen in Figure 6.6.

Figure 6.9 shows the ancestral distribution for the K2P m utation model with p  =  0.3/i2 

and fitness function (6.2) with c =  — 1. Here, the population starts in the AGCT phase 

(mutation rates /i2 <  0.3) and goes through the P P  phase (at fj,2 ~  0.325), where the 

distribution consists of two “rods” , which are each an equidistribution with respect to 

the X2 ,xo or the x s ,x \  direction, respectively, and localised with respect to the remaining 

directions. For high mutation rates, the equidistribution of the disordered phase (p2 ^  0.4) 

can be found again.

6.1.3 Truncation selection

Another interesting fitness is the truncation selection, a case of extreme epistasis, both 

positive and negative. Here, it shall be used in the form

1 if T>k < 3æc 
r{x)  = < (6.16)

0 i î ^ k X k >  3xc ,

which again shows the symmetry between the Xk, k € {1,2,3}, as demanded in section 

6.1.1. Figure 6.10 shows a projection of the truncation selection (6.16) with Xc =  0.1 onto 

the subspace xi  — x^.

This is a generalisation of the single peaked landscape, as used in the original quasis

pecies model [EigTl]. The single peaked landscape corresponds to rCc =  0 in our setting, 

but it should only by used as a toy model. Truncation selection with non-zero Xc, however, 

is a standard model in biology, see e.g. [Kon88j.

6.1.3.1 Phase diagram

Similarly to the case of the quadratic symmetric fitness, the phase diagram for the trunca

tion selection (6.16) has been determined by using the method described a t the beginning 

of chapter 6. However, the case of truncation selection is easier to treat.

As the derivative of a constant function is zero, to find the maximum of r  — p for a
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\i2 = 0.175 \i2 = 0.25 \i2 = 0.275

\i2 = 0.3 H2 = 0.325 -  0.35

|i2 = 0.375 H2 = 0.45

Figure 6.9: Ancestral distribution a for the K2P mutation model with /z = 0.3/Z2 with fitness (6.2) 
and c = — 1 for selected mutation rates and a sequence length of = 20. For easier recognition, 
each cube corresponds to a block of 8 data points.
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Figure 6.10: Truncation selection (6.16) for Xc = 0.1 as a projection onto the relevant subspace 
with Xl = X3 .

truncation selection, which is constant over the sequence space apart from the truncation 

line, we only have to consider gf, and tha t only at the m utation equilibrium, and on the 

truncation line.

Using K2P mutation model, g is given as in equation (6.4), and the mutation equilib

rium, which is always assumed for high m utation rates, at least asymptotically, is given 

by aîeq =  (a;i,eq, ^2,eq) =  (1/4,1/4) (implying tha t also æo,eq =  X2,eq =  1/4).

If the mutation equilibrium lies in the high plateau of the fitness function, the system 

is in m utation equilibrium for any values of m utation rates. However, more interesting is 

the non-trivial case of the mutation equilibrium lying in the area with low fitness.

The global maximum of r  — p lies either at the mutation equilibrium, where g{xeq = 0), 

or at the minimum of g along the truncation line, which is determined by X2 =  Sxc — 2 x i . 

Along this line, a;o =  1 — 3xc is constant. Thus the problem is reduced to finding the 

minimum x* of a one-dimensional function g{xi) / f i2 for given values of Xc and / ,  using 

again the parametrisation g = fg.2  ̂ In  Mathematica, this can be done with the function 

“FindRoot” .

Now we have to compare ( r -g)(x*)  = l  — g{x*) with (r —p)(a:eq) =  r(zeq) =  0. For low 

mutation rates, the global maximum o i r  — g always lies in x*, whereas for large m utation
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Figure 6.11: Left: Phase diagram for truncation selection (6.16) with different values of Xc. Right: 
Critical mutation rate fic against Xc for truncation selection (6.16) and the JC mutation model.

rates, it is in a;eq. As there is no continuous path from one to the other, inevitably there 

is a jum p at a critical set of mutation rates. To find these mutation rates, we have to 

find the mutation rates for which^(a;*) =  1, or g{x*)/fi2 = I / /22, which gives as critical 

mutation rate fi2,c = g(x*]/,i2 '

On the left. Figure 6.11 shows the phase diagram for truncation selection (6.16) with 

different values of Xc. Here, one finds error thresholds for all values of rcc < 1/4. For values 

of > 1/4, the point of the m utation equilibrium jCeq is included in the high plateau and 

thus the population is in m utation equilibrium and at optimal fitness simultaneously for 

any mutation rate. On the right. Figure 6.11 shows the dependence of the critical mutation 

rate on Xc in the JC m utation model. At Xc = 1/4, the critical mutation rate diverges.

6.1.3.2 F in ite  size effects

Figure 6.12 compares the results for truncation selection obtained via the maximum prin

ciple (5.31) and (5.32) {N = 00) with those obtained by calculating the largest eigenvalue 

and corresponding eigenvector of the symmetrised time-evolution operator H  for finite 

sequence lengths analogously to the data shown in Figure 6.6 for the quadratic symmetric 

fitness (6.2). On the left, one finds the data for the JC mutation scheme, whereas on 

the right, the results for the K2P model with 11 = O.S(j,2 are shown. Here, it is obvious
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Figure 6.12: Comparison of population mean fitness f, ancestral mean mutational distance x  and 
population mean mutational distance x  for different sequence lengths N  and the infinite system 
{N = oo) with truncation selection (6.16) for Xc = 0.1. Left: JC mutation scheme, right: K2P 
mutation scheme with = 0.3//2- The locations of the error thresholds in the case of an infinite 
sequence length are marked as vertical dotted lines.
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tha t even for rather small sequence lengths, the error thresholds are very sharp. However, 

keeping in mind the discontinuity of the truncation selection, this is not too surprising. 

One can see tha t the location of the error threshold does depend on the sequence length: 

The smaller the sequence length N,  the more the error threshold is shifted to lower muta

tion rates. So although the sequence lengths considered here are large enough to warrant 

a sharp error threshold, they are too small to predict the location of the error threshold 

in the infinite system.

6.1.3.3 Distributions

In the same way as for the quadratic symmetric fitness function (6.2), the ancestral and 

population distributions have been calculated for the truncation selection (6.16) and are 

shown in Figures 6.13 and 6.14. In contrast to Figures 6.7 to 6.9, which are the equivalent 

diagrams for the quadratic symmetric fitness function, every point in the sequence space 

is displayed as a separate cube, whose size is proportional to the fraction of individuals 

having tha t type in the ancestral and population distributions, respectively.

Figure 6.13 shows the ancestral distribution of a system with truncation selection (6.16) 

and Æc =  0.1 at a sequence length AT =  20 for the JC mutation scheme for mutation rates 

close to the error threshold. For mutation rates below the threshold {/i < 0.86), the an

cestral distribution is an equidistribution in the “fit” part of the sequence space, where 

12k and thus r  =  1. For mutation rates above the threshold (// >  0.95), the

ancestral distribution is the equidistribution in the whole sequence space. The transition 

at the threshold is however interesting. Here, the distribution does not move smoothly 

from one equidistribution to the other, but in the intermediate states, the ancestral dis

tribution is a superposition of the two equidistributions with an increasing proportion of 

the equidistribution on the whole sequence space.

Figure 6.14 shows the population distribution for a system with the same parameters as 

shown in Figure 6.13, i.e., JC mutation model and truncation selection (6.16) with Xc = 0.1 

and sequence length N  = 20. Here, the transition from a localised distribution for small
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Figure 6.13: Ancestral distribution a for the JC mutation model with truncation selection (6.16) 
and arc = 0.1 for mutation rates // close to the error threshold and a sequence length of AT =  20 .
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Figure 6.14: Population distribution p  for the JC mutation model with truncation selection (6.16) 
and Xc =  0.1 for varying mutation rates p and a sequence length oî N  = 20.



m utation rates to the equidistribution in sequence space looks far smoother (even apart 

from the far broader range of m utation rates over which it happens). The distribution as 

a whole shifts its centre until it reaches the equidistribution.

As the situation is very similar for general K2P mutation model (apart from a difference 

in m utation rates, cf. Figure 6.11, left), no distributions for a case with different mutation 

rates are shown.

6.1.4 Summary of the results for permutation-invariant fitness

For the four-state model with permutation-invariant fitness, two types of fitness functions 

tha t display error thresholds were investigated, namely a quadratic symmetric fitness 

function with negative epistasis and a truncation selection. The results obtained via the 

maximum principle, which are exact for infinite sequence length {N  = oo), were compared 

with results for (small) finite sequence lengths tha t were obtained by direct calculation of 

the leading eigenvalue and corresponding eigenvector.

For the quadratic fitness function, three different phases were identified, such as the 

ordered AGCT phase, the disordered phase and the partially ordered P P  phase. Whereas 

the AGCT and disordered phases can also be found in two-state models, the existence of a 

partially ordered phase hinges on the multidimensional m utational distance tha t is used in 

the four-state model. However, it only occurs if the fitness function shows a high symmetry, 

which is not normally to be expected in natural populations. Yet it is not surprising to find 

a phase with a certain symmetry, like the PP  phase tha t shows a symmetry between X2 

and Xq, only if the underlying mutation and selection models exhibit the same symmetry. 

For finite sequence lengths, the behaviour of the infinite system can already be recognised; 

however, the error thresholds are smoothed out.

For the truncation selection considered here, only the AGCT phase and the disordered 

phases occur, because this fitness function lacks the symmetry required for the P P  phase. 

Here, the error thresholds for small finite sequence lengths are already very sharp, but 

their location does not coincide with the location predicted for infinite sequence length:
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it is shifted toward lower m utation rates.

6.2 The tw o-state m odel w ith  H opfield-type fitness

The original Hopfield fitness [Hop82] is quadratic in the overlaps with patterns q = 

0 , . . .  ,p. In the original form, these overlaps vary from —N  to N  with N  meaning perfect 

match with the pattern and —N  meaning perfect match with the complementary sequence 

to the pattern in question, i.e., the sequence tha t differs at each site from the pattern. The 

original fitness is a pure quadratic function of the original overlaps (4.15), r  ~  ^^(o^)^. 

In the notation used here, the specific distances to a pattern q, as given in equation 

(4.16), vary from 0 to N,  with 0 as perfect match and N  as complementary sequence. 

This means tha t the original Hopfield fitness in the notation used here reads

p p
r  ~  ^  +  ^ (w ^ )^  , (6.17)

q=0 q=0

apart from a constant, which does not infiuence the dynamics. Note the similarity to the 

permutation-invariant fitness (6.2) with higher symmetry (c =  —1).

Most works that have studied a Hopfield-type fitness used the original Hopfield model 

[Leu87, Tar92], a generalisation was however treated in [Pel02], where a Hopfield-type 

truncation selection with two patterns was used.

6.2.1 Error thresholds and different Hopfield-type fitness functions

The Hopfield fitness has always been put forward as a realistic fitness landscape in the sense 

tha t it displays a reasonable and tunable amount of ruggedness, as well as correlations 

between closely related sequences. In the debate about the relevance of the error threshold 

phenomenon, it has been cited as an example for a complex fitness function, which displays 

the threshold behaviour. However, most applications have only been concerned with 

the original Hopfield fitness, rather than the generalised Hopfield-type fitness considered 

here. Thus it may be interesting and instructive to investigate the threshold behaviour of 

different kinds of Hopfield-type fitness functions.
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To this end, consider first the shape of the mutational loss function for the two-state 

model with Hopfield-type fitness as given in equation (5.26). This is simply a superposition 

9 — H v9v  of terms Qv ^1 -  2 y/xv( l  — in the partial distances Xy, hence

these terms vary independently from each other. The Xy  characterise the patterns as 

defined in section 5.2. The contributions Qy to the mutational loss functions have the same 

form as the mutational loss function in the two-state model with permutation-invariant 

fitness. If the fitness function is also decoupled with respect to the Xy, i.e., it can be 

written as a superposition of functions that depend only on one of the partial distances 

Xy, r = Ylyfv(xy)-, the threshold criteria obtained in [HRWB02] apply directly. This is 

however a strong constraint which can only be obtained in the Hopfield-type setting for 

fitness functions tha t depend linearly on the specific distances w^, or, in the case of only 

two patterns, if the fitness depends only on the sum and difference of the specific distances 

and w^. For linear Hopfield-type fitness there can be no thresholds, as follows from 

the threshold criteria in [HRWB02].

One step toward more complex fitness functions is to consider quadratic fitness func

tions. Here, the analysis shall be restricted to a symmetry with respect to the specific 

distances to the patterns

r  =  d ^ ( î /9 )2   ̂ (6.18)
q= 0  9 = 0

using the specific distances in normalised form :=  w^/N ,  in analogy to the symmetry 

with respect to the Xk, k  G {1,2,3} in the permutation-invariant four-state case. Here, 

only the ratio c/d  matters, as the absolute value only influences the scaling with respect 

to the m utation rates. W ithout loss of generality, d can thus be chosen as d =  ±1. The 

original Hopfield fitness (6.17) is obtained in the case d =  1 and c =  —1.

In the Hopfield-type fitness, epistasis can be defined with respect to each variable Xy 

as the sign of the second derivative of the fitness with respect to th a t variable: If <  0, 

epistasis with respect to rc^;-direction is positive or synergistic; if >  0, epistasis is 

negative or antagonistic. In the quadratic symmetric Hopfield-type fitness from equation

(6.18), d =  — 1 corresponds to positive epistasis for all Xy, whereas in the case d =  1,
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epistasis is negative w ith  respect to all Xy.

6.2.2 The case of two patterns

In the case of two patterns, p  =  1, the first pattern can be chosen without loss of generality 

as =  00 . . .  0, such tha t there is only one pattern to be chosen, usually randomly. The 

matrix p  containing the possible types of sites is then given by

(6.19)
1 /

and thus the index set of sites is partitioned into two subsets, A =  Ai U A2, where A% 

contains all sites at which both patterns have entry 0, whereas A2 corresponds to the sites 

where the two patterns have entries 0 and 1, respectively. The only quantities character

ising the patterns are now the fractions of sites in each partition, X i  = |Ai|/jV =  N i / N  

and X 2 — N 2 / N  = 1 — X i .  Thus the pattern can be characterised by a single parameter.

Each sequence is characterised with respect to the pattern by the partial Hamming 

distances to pattern (in normalised form), xi  and X2 . These vary from 0 (all entries 0 

in Au) to 1 (all entries 1 in A„), completely independently from each other. The specific 

distances with respect to the patterns are linear combinations of the Xy and given in 

normalised form by

=  w ^ / N  — XiX i  -f X 2X2 ,

=  w ^ /N  =  X i x i  -f %2(1 -  X2) . (6.20)

The Hopfield-type fitness is defined as an arbitrary function of these patterns, r =

f{y^,y^) .  Due to the small number of variables, for the case of two patterns, a lot can be

done by analytical treatment.

For the quadratic symmetric Hopfield-type fitness (6.18) with positive epistasis {d = 

— 1) and c =  1, there are no phase transitions, going in line with the results for 

permutation-invariant fitness functions. As an example for negative epistasis, consider
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Figure 6.15: Original Hopfield fitness in the case of two patterns with Xi  =  X2 =  1/2 (left) and 
Xi =1 — X 2 = 0.65 (right).

first the original Hopfield fitness (6.17).

6.2.2.1 The original Hopfield fitness with two patterns

Since for two patterns there are only two variables, it is possible to visualise the fitness 

landscape in this case. Figure 6.15 shows the fitness landscape for the cases X \  = X 2 = 1/2 

and X i  = 1 — X 2 = 0.65. In the corners of the mutational distance space S,  one can see 

the four maxima. The secondary maxima and saddle points tha t exist in the full sequence 

space 6  do not show here, as the mapping from 0  to «S is done such tha t many matching 

ones are mapped onto the same mutational distances.

The ancestral mean partial distances Xy, a t which the maxima o i r  — g are positioned, 

are obtained by considering the derivatives of r  — p. They are given by

x„ = (6 .21)
i  ±  for fi < Xy,

for g  >  Xy.

For the symmetric case with X i =  X 2 =  1/2, the ancestral mean partial distances Xy are 

shown in figure 6.16 on the left, alongside the ancestral mean specific distances =  y^{xy). 

For low mutation rates, there are two possible solutions for each of the ancestral mean 

partial distances Xy, and as the maxima are degenerate, in equilibrium, the population 

will be centred equally around all of them. However, in the approach to equilibrium, the 

population might well be predominantly concentrated around one of them, depending on
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Figure 6.16: Ancestral mean partial distances Xy (top) and specific distances (bottom) depending 
on mutation rates. The original Hopfield fitness (6.17) for two patterns has been used. Results 
correspond to a symmetric choice of patterns Xi = X2 = 1/2 (left) and an asymmetric choice with 
Xi  = 1 — X 2 = 0.65 (right).
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initial conditions. For high mutation rates, the population is in the mutation equilibrium 

with x \ =  X2 = 1/2 forming a disordered phase. The specific distances tha t are shown 

correspond to the combination of x \  and ^2, where both are given by the lower branch. 

Other combinations yield similar results. In the limit of low m utation rates, /i —>■ 0, the 

population is always in the vicinity of one of the patterns (or its complement), such that 

one of the % 0 (1), which is completely random with respect to the other pattern, 

and thus the other y^ = 1/2. This is the ordered phase. At the critical mutation rate 

He = 1/ 2 , there is a second order phase transition between these two phases, which is a 

fitness as well as a degradation threshold, corresponding to the infinite derivative of both 

Xy a t this mutation rate. As the specific distances y^ are simply superpositions of the 

partial distances Xy, the phase transitions are also visible in the y^.

In the asymmetric case X \  7  ̂X 2 (figure 6.16, right), two second order transitions can 

be identified. At // =  X i, changes from the ordered phase into the disordered phase, 

whereas at // =  X2, ^2 has its phase transition. The threshold occurring a t the lower 

mutation rate is only a fitness threshold, whereas the one happening a t the higher mutation 

rate is both a fitness and degradation threshold, leading to a totally random population. 

For 0 <  // <  m in(X i,X 2), the population is in an ordered phase, for m in (X i,X 2) <  /2 < 

m ax(X i,X 2), it is in a partially ordered phase, which is ordered with respect to one of 

the variables, but random with respect to the other. This phase is similar to the PP  

phase in the permutation-invariant four-state model. Finally for /i >  m ax(X i,X 2), the 

population is the equidistribution in sequence space. Here again, for low mutation rates 

the population is close to one of the patterns, but due to the asymmetry in the chosen 

pattern, this leads to a non-random overlap with the other pattern. In the symmetric case 

with X i =  X 2 =  1/ 2 , the two error thresholds coincide, and the partially ordered phase 

vanishes.
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r - 0 .3

Figure 6.17: Quadratic Hopfield-type fitness functions (6.18) with negative epistasis and c =  -0 .9  
(top) and c =  —1.1 (bottom) for a symmetric pattern X i =  X 2  =  1 /2  (left) and an asymmetric 
pattern with X i =  1 — X 2  =  0.65 (right).

6.2.2.2 D eviations from  th e original Hopfield m odel

Now turn to the question how these phase transitions depend on the particular degeneracy 

of the fitness functions and consider the quadratic fitness function (6.18) with negative 

epistasis {d = 1) for values of c 7  ̂ —1.

Figure 6.17 shows the fitness landscapes for values of c =  —0.9 and c =  —1.1 for 

symmetric pattern X i =  X 2 =  1/2  and an asymmetric pattern with X% =  1 — X2 =  0.65. 

As the pictures indicate, the fitness functions (and thus the behaviour of the system) with 

the same |c - |-1| are related by symmetry under x \ ^  1 — x \ (apart from a constant term, 

which does not influence the dynamics). Note that in X2-direction, the fitness function is 

independent of c. This is because in the sum of the specific distances, the term with X2 

cancels out, which happens generally in the case of an even number of patterns (i.e., odd 

p) for different variables.
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Figure 6.18: Ancestral mean partial distance x± (top) and specific distances (solid lines) and 
(dashed lines, bottom) depending on mutation rates. The quadratic Hopfield-type fitness (6.18) 
with negative epistasis for two patterns and different values of c has been used. Results corre
spond to a symmetric choice of patterns Xi =  X2 =  1/2 (left) and an asymmetric choice with

=  1 — -X'2 =  0.65 (right). For clarity, only specific distances y^ corresponding to c > —1 are 
shown.

Because in rc2-direction, the fitness is independent of c, the solution for the ancestral 

mean mutational distance X2 is identical with the solution for the original Hopfield fitness 

as given in equation (6.21). For the solution becomes more complicated, but the inverse 

function is simpler. It is given by

_  2 [1 +  c -f X i{ 2 x \ — 1)]
(6 .22)

So for all values of c, the phase transition with respect to X2 happens at // =  X 2. The 

dependence of x \  on the mutation rate is shown in figure 6.18 (top). For c 7̂  — 1, the 

second order phase transition is smoothed out and thus vanishes. Note tha t the ambiguity
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in the solutions tha t exists in the case c =  —1 (cf. figure 6.16), does not exist here, due 

to the lacking degeneracy of the maxima of the fitness function at æi =  0 and x i = 1 

(cf. figure 6.17). At the bottom, figure 6.18 shows the specific distances y^, using the 

lower branch of the solution for X2 (as shown in figure 6.16), which show the second order 

transition in &2, a fitness threshold. W ith this combination of solutions, for low mutation 

rates the population is centred around the sequence complementary to pattern The 

general picture for the symmetric and asymmetric choice of patterns is very similar, apart 

from issues like the exact location of the thresholds.

6.2.3 The case of three patterns

For three patterns, the m atrix p  reads

^0 0 0 0 ^
(6.23)0 0 1 1  

\  0 1 0 1 y

thus there are four describing the patterns fulfilling =  1, and four variables

Xy 6 [0,1], describing each sequence. The specific distances with respect to pattern are 

given by

= X ix i  +  X 2X2 +  X sxs  +  X 4X4 , (6.24)

y^ — X \x i  +  X 2X2 +  % s(l ~  ^3) +  -^4(1 ~  ^4) 5 (6.25)

y^ = X \x i  +  %2(1 ~  ^2) +  X^3^3 d" -^4(1 ~  3:4) . (6.26)

Similarly to the case of two patterns, the original Hopfield fitness (6.17) shall be consid

ered first, and then variations (6.18) with negative epistasis, but c 7  ̂ — 1. The investigation 

is done by means of numerical calculations.

To this end, the derivatives of r  — p with respect to the different Xy are calculated. To 

eliminate the square roots, the equations are squared, such that instead of

^ ( r - s )  =  0 , (6.27)
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the equation

^ (r^-S^) =  0 (6.28)
dXy

is considered. This yields a system of four polynomials of 4th order, namely

4a;i(l — a î) [3c/2 +  3X \X i +  %2(1 +  3̂2) +  -^3(1 4- x3) +  %^(2 — 3:4)]^

- /i2(l -  2x i)2 =  0 (6.29)

43:2(1 — X2 )  [ c / 2  +  X i x i  +  %2(3a:2 — 1) +  % g(l — X3 )  +  X /^ x //^

-  I i ^ ( l - 2 x 2 f  = ^ (6.30)

43:3(1 — X3) [c/2 +  X iX i +  %2(1 — 3:2) +  X3(3a:3 — 1) +  %4a:4]̂

— /i^(l — 2 x 3)“̂ =  0 (6.31)

43:4(1 — 0:4) [c/2  +  X \X i +  %2(1 ~  3:2) +  %3(1 — 3:3) +  ^ 4(2 — 33:4)]^

- / i 2 ( l - 23:4)2 =  0 (6.32)

For any given values of c and (X i, X 2, X 3, X4), these can be evaluated using the Mathemat- 

ica function “FindRoot” , which finds the closest zero from a given starting configuration 

(371, 3:2, 3:3, 3:4). Because the closest zero is not necessarily identical with the global maxi

mum of r  — p, the equations (6.29) to (6.32) have been solved for multiple starting values, 

and only the solutions with maximal r — g have been retained. The starting values were 

spaced with a distance of 1/4 in each of the variable, yielding 4^ =  1024 different s ta rt

ing values. Of course this does not guarantee tha t the obtained solution is the global 

maximum. However, the results for a number of parameter values were calculated with 

different smaller mesh sizes, i.e., different smaller spacings of the starting values, and the 

solutions were found to be independent of the mesh size. This indicates th a t already with 

the mesh size of 1/4, the global maximum was found.

6.2.3.1 Variations of the pattern

If the patterns for p =  1, . . .  ,p  are chosen randomly (remember =  00 . . .  0), in the 

limit of infinite sequence length, iV 00, the Xy  are given by X y = 2“ (p+^) -f-C9 (cf.
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Figure 6.19: Ancestral mean partial distances Xv (left) and specific distances (right) depending 
on mutation rates. The original Hopfield fitness (6.17) for three patterns has been used. Results 
correspond to patterns for infinite sequence length.

section 4.3, equation (4.42)). So to simulate the case of infinite sequence length, in which 

the maximum principle is exact, one has to assume Xy =  for all u =  1 , . . .  ,2^+^.

However, the maximum principle can also be used to investigate the case of finite sequence 

length by simulating the finite sequence length through choosing pattern distributions 

tha t do not follow exactly the infinite distribution Xy = but vary around this

mean value with a variance according to the sequence length to be simulated. Practically, 

patterns corresponding to finite sequence length N  have been obtained by choosing for 

the SAT sites entries 0 or 1 with probability 1/2 at each site, and counting the number of 

sites Ny in each class A^, similarly to the example pattern given in equation (4.17).

As shall be seen in the following, the variations stemming from the simulated finite 

sequence length of the pattern do account for some interesting additional features. How

ever, focus first on the case of a genuinely infinite sequence length with Xy = for

all V.

6.2.3.2 T h e  case o f in fin ite  sequence le n g th

O rig ina l H opfield  fitness (c =  —1). Figure 6.19 (left) shows the possible solutions 

of the ancestral mean partial distances Xy in the case of three patterns with the original
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Figure 6.20: Ancestral mean partial distances Xy (top) and specific distances (bottom) depending
on mutation rates. The quadratic Hopfield-type fitness (6.18) with negative epistasis for three 
patterns and different values of c has been used. Results correspond to patterns for infinite sequence 
length.

Hopfield fitness (6.17) and symmetric patterns tha t correspond to an infinite sequence 

length, Xy = 1/4 for all u, which looks identical to the case of two patterns, cf. figure 

6.16. The solutions for the different Xy all coincide. For small m utation rates < 1/2, 

there are again two degenerate solutions for each Xy, which can be combined in multiple 

ways for the different Xy. At /i =  1/2, there is a second order phase transition, which is a 

fitness and degradation threshold. The plot of the specific distances (figure 6.19, right) 

reveals that for small mutation rates, the population is centred around one pattern, and 

random with respect to the others. In the case shown here, this one pattern  is as for 

all Xy, the lower of the two possible solutions has been chosen (cf. figure 6.19, left).
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Figure 6.21: The critical mutation rate depending on the value of c. The quadratic Hopfield-type 
fitness (6.18) with negative epistasis for three patterns has been used. Results correspond to 
patterns for infinite sequence length.

D ev ia tio n s  fro m  th e  o rig in a l H opfield  fitness (c ^  —1). Figure 6.20 shows the 

ancestral mean partial distances Xy and specific distances for the quadratic Hopfield- 

type fitness (6.18) with negative epistasis for different values of c. As c deviates from 

—1, the solutions for the Xy do not coincide, and the phase transition becomes a first 

order fitness threshold, at which all four partial distances Xy jump, but it is no more a 

degradation threshold. So contrary to the case of two patterns, where X2 is independent of 

c and the error threshold in x i  is smoothed out by c deviating from —1, here the threshold 

concerns all partial distances Xy and is sharpened to first order by c ^  —1.

For c ^  — 1, the degeneracy between the patterns and their complements is lifted, 

and thus for mutation rates below the threshold, there are only three different solutions, 

correlated with the patterns for c < —1, and with their complements for c >  — 1. For 

clarity, only one of the solutions is shown in figure 6.20.

Furthermore, the critical m utation rate decreases with increasing |c -I-1|. The depen

dence of the critical m utation rate y,c on the value of c is shown in figure 6.21. At c =  —5/4 

and c =  —3/4, the critical m utation rate is fic = 0, and for values of c ^ [—5 /4 ,—3/4], 

there are no error thresholds. This is an interesting result, as for all previously investi

gated Hopfield-type fitness functions (which to my knowledge are limited to the original 

Hopfield fitness and a Hopfield-type truncation selection), the existence of error thresholds
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has been reported,

6.2.3.3 The asymmetric case simulating a finite sequence length

Figure 6.22 shows some typical cases of the ancestral mean partial and specific distances, 

Xy and for the original Hopfield fitness (6.17) with three patterns, which are chosen 

randomly, with the Xy  varying such as to simulate different sequence lengths. The six 

cases of patterns shown here are typical examples for the sequence lengths considered. In 

the case of long sequences {N = 1000), the deviations of the patterns from the infinite 

sequence limit X i = X 2 = X s = X 4 are small, and grow with decreasing sequence length. 

This “disorder” tha t is introduced into the system has the same effect as an asymmetric 

choice of patterns in the case of two patterns, such tha t the single critical m utation rate 

in the case of infinite sequence length is split up into two critical m utation rates, at each 

of which two of the Xy show threshold behaviour. For short sequence length (N  =  100), 

it can be seen tha t particularly at the smaller of the critical m utation rates, the threshold 

is smoothed out.

In figure 6.23 the ancestral mean partial and specific distances, Xy and correspond

ing to the same patterns as in figure 6.22 are shown for the quadratic Hopfield-type fitness 

(6.18) with negative epistasis and c =  —1.1. For long sequence length, these look very 

similar to the results for infinite sequence length (cf. figure 6.20), showing clearly the single 

first order phase transition. For shorter sequence lengths, they become more and more 

smoothed out, such tha t at N  = 300, roughly only every other pattern  tha t was simulated 

shows an error threshold, whereas for N  = 100, in the vast m ajority of cases, there is no 

threshold. Note tha t this effect is present even though the finite sequence length was only 

simulated by by choosing the patterns accordingly, so it is a  feature of the model with 

asymmetric patterns.
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Figure 6.22: Ancestral mean partial and specific distances, Xy and y^, depending on mutation 
rates. The original Hopfield fitness (6.17) for three patterns has been used. Results correspond to 
two typical examples of random patterns chosen for sequences of lengths N  = 1000 (left), N  = 300 
(middle) and N  = 100 (right), specified at the top of each graph as (%i, Xg, X3, %4).

104



N =  1000
(0.252,0.242,0.243,0.263)

0.5

0.5

0.5

(0.263,0.246,0.247, 0.244)
1

0.5

0

0.5

0
0 0.5 1

N = 3 0 0
(0.223, 0.267, 0.267, 0.243)

N = 1 0 0
(0.23,0.37,0.17,0.23)

0 0.5 1

0.5

0.5

0
0 10.5

(0.23,0.273,0.246,0.25)

0.5

0.5

0.5 1 0.5

Figure 6.23: Ancestral mean partial and specific distances, and y^, depending on mutation 
rates. The Hopfield-type fitness (6.18) with negative epistasis for three patterns and c =  —1.1 has 
been used. Results correspond to the patterns used in figure 6.22.
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p = 1 symmetric patterns, Xy  =  1/2 asymmetric patterns, Xy ^  1/2

c = —1 one second order threshold for both
X y .

two second order thresholds, each for 
one of the X y .

c f  - 1 one second order threshold in X2 , the x \  threshold is smoothed out.

p = 2 symmetric patterns, Xy =  1/4 asymmetric patterns Xy ^ 1 / A

c = —1 one second order threshold for all X y . two second order thresholds, each for 
two of the X y .

c ^ - 1 one first order threshold for all X y  if 
c G [—5/4, —3/4], no threshold oth
erwise.

up to one first order threshold for 
all X y ,  but smoothed for shorter se
quence lengths (stronger asymme
try).

Table 6.1: Summary of the results for Hopfield-type fitness (6.18) with two (p = 1) and three 
(p = 2) patterns.

6.2.4 Summary of the results for Hopfield-type fitness

In this section, the quadratic symmetric Hopfield-type fitness given in equation (6.18) 

with negative epistasis {d =  1) was investigated for the cases of two and three patterns. 

The results for the original Hopfield fitness (c =  —1) have been compared with those 

for the generalised Hopfield-type fitness { c ^  1). Furthermore, both symmetric patterns 

{Xy =  for all v), corresponding to an infinite sequence length, and asymmetric

patterns (Xy ^  2“ P̂‘*'̂ )̂, simulating a finite sequence length, were considered. For two 

patterns, an analytical treatm ent was possible, making all values of the Xy  accessible, 

whereas the case of three patterns was treated numerically due to the larger number of 

variables. This means tha t apart from the symmetric choice of pattern {Xy = 1/4), only 

some asymmetric combinations with Xy ^  1/4 were investigated, some typical examples 

of which are shown in section 6.2.3.

The results obtained for Hopfield-type fitness with two and three patterns are sum

marised in table 6.1. It shows tha t for the original Hopfield fitness (c =  —1), the systems 

with two and three patterns behave very similar, showing two thresholds for asymmetric 

patterns, which coincide in the case of symmetric patterns. However, with a Hopfield-
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type fitness with c ^  — 1, the results for two and three patterns are quite different. For 

two patterns with c — 1, irrespective of whether symmetric or asymmetric patterns are 

chosen, the threshold in X2 is unafifected, because it cancels out in the linear part of the 

fitness, which is tuned by the parameter c; and therefore it stays a second order threshold, 

but the threshold in x \  is smoothed out when c deviates from —1.

For three patterns tha t are symmetric, the single second order threshold in all variables 

tha t exists in the original Hopfield fitness is sharpened to first order when c 7  ̂ — 1, going 

in line with a decrease in the critical mutation rate /ic- However, if c deviates too much, 

i.e., c ^  [—5/4, —3/4], there is no threshold as the critical mutation rate crosses //c =  0 and 

becomes negative. The effect of finite sequence length, obtained for asymmetric patterns, 

in this case is only to smooth out the single first order threshold, if the asymmetry (or 

disorder) becomes too strong, which happens for shorter sequence lengths.

The evaluation the Hopfield-type fitness was limited to the cases of two and three 

patterns, simply because an increase in the number of patterns makes the evaluation more 

complex. However, the Hopfield-type fitness was chosen as a potentially realistic fitness 

because of its ruggedness tha t can be tuned by the number of patterns chosen. The simple 

cases considered here probably do not show as high a degree of ruggedness as one would 

expect for realistic fitness functions. However, some of the features observed here might 

also occur for a higher number of patterns. It would thus be very interesting to investigate 

the system further with respect to a larger number of patterns, and to establish which 

of the features described for the two and three pattern case generalise to any number of 

patterns, and which may depend on whether the number of patterns is odd or even.

Furthermore, the concept of partitioning the set of sites into subsets, which was in

troduced to analyse the Hopfield-type fitness, is very interesting. One could imagine a 

different interpretation for this by classifying sites according to the selection strength they 

evolve under. Some of the behaviour identified for the Hopfield system could also occur in 

such a setting: At intermediate mutation rates there partially ordered phases could exist, 

such tha t sites tha t evolve under weak selection have passed their error threshold and the
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population is in a phase tha t is disordered with respect to these sites, whereas at sites 

that are subject to strong selection the order is still maintained.
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C H A PTER  7 

Conclusion

This thesis has been concerned with the investigation of a deterministic mutation-selection 

model in the sequence space approach. The particular model chosen in this work is the 

para-muse model, where time is treated as a continuous quantity, modelling generations 

as overlapping, in contrast to some other works drawing on the connection to statistical 

mechanics [Leu86, Tax92, Gal97]. Furthermore, in the para-muse model, m utation and 

selection are treated as two decoupled processes, going on in parallel. This differs from 

the original quasispecies model [Eig71], one of the first to use the sequence space approach 

in population genetics. However, it has been shown tha t these differences in models have 

relatively little impact on the outcomes; generally, the results obtained in any m utation- 

selection model in the sequence space approach are similar [WBS95, Biir98].

Im portant observables in mutation-selection models are means of quantities such as 

fitness and genotype with respect to the population and ancestral distributions. The 

population distribution p(t) gives the fraction of individuals of each type; in equilibrium it 

is given by the right PF-eigenvector p  of the time-evolution operator H .  As p  is normalised 

such tha t Y^iPi(t) =  1, the population mean of a quantity o, given by ô{t) — 

normalised with respect to an Li-norm.

The ancestral distribution a (r , t), a concept introduced only recently [HRWB02], is the 

population distribution at time t, but weighted with the number of offspring stemming 

from each individual at a later time t + t . In equilibrium, the ancestral distribution is 

given by both the left and right PF-eigenvectors z  and p  of H ,  =  zipi, such th a t the 

ancestral mean of a quantity o, o{r,t) = o*Ui(T, t) is normalised with respect to an

Z/2-norm.
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In the sequence space approach, genotypes are identified with sequences written in two- 

or four-letter alphabets to mimic the genetic code. The mutation process is modelled as 

a Markov process, with one m utation rate in the two-state case and three mutation rates 

according to the Kimura 3ST mutation scheme in the four-state case.

Modelling selection appropriately is however far more difiicult. One very common 

approach is to consider permutation-invariant fitness functions, which only depend on the 

number of mutations a sequence carries compared to the wild-type, i.e., the Hamming 

distance dn  to the wild-type, not on their location within the sequence. Although this 

is clearly an unrealistic assumption, it is a good starting point. Approaches using non

permutation-invariant fitness functions often draw on Hamiltonians of spin glass models 

in physics. In this thesis, fitness functions of the Hopfield type as an example of a spin 

glass fitness have been investigated alongside permutation-invariant fitness functions.

One problem in the sequence space approach is the large number of types, as there 

are 2 ^  or 4^  different sequences of length N  in the two- or four-state model, respectively. 

This problem was addressed in chapter 4 by lumping together sequences with the same 

Hamming distance into classes, creating a new coarser process acting on the classes rather 

than on individual types. To this end, the concept of the scalar Hamming distance, which 

is relevant in the two-state case with permutation-invariant fitness, was generalised to 

a vector quantity, used in the four-state case with permutation-invariant fitness and for 

models with Hopfield-type fitness.

A major advance for determining the population mean fitness in equilibrium was made 

in [HRWB02], where a simple scalar maximum principle was derived, applicable to a 

two-state model with permutation-invariant fitness. In chapter 5, this scalar maximum 

principle was generalised to a vectorial one for the four-state and Hopfield-type cases. The 

maximiser can be interpreted as the ancestral mean genotype x , lending importance to 

the ancestral mean.

In chapter 6, the maximum principles derived in chapter 5 were used to investigate 

the phenomenon of the error threshold. First discovered in [Eig71], the error threshold
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describes the transition of a population with a distribution th a t is well localised in sequence 

space to a less localised distribution or ultimately the equidistribution in sequence space 

tha t occurs at a critical mutation rate. These error thresholds can be detected with the 

maximum principle, because the delocalisation of the population distribution manifests 

itself as a jum p (or at least an infinite derivative with respect to the mutation rate) 

of the ancestral mean genotype x ,  the maximiser. Not all fitness functions give rise to 

error thresholds, and as the error thresholds were first described for a model with highly 

unrealistic fitness function, it has been argued tha t they might be an artefact of this rather 

than a biologically relevant phenomenon. It is therefore clearly necessary to investigate 

other fitness functions with respect to this phenomenon.

For permutation-invariant fitness functions, the four-state model was investigated. Mu

tation was modelled using the Kimura 2 parameter model, a simplification of the full 

Kimura 3ST mutation scheme, using only two different mutation rates and /i2- There 

are no error thresholds for linear fitness functions, and therefore the focus was on slightly 

more complex cases such as quadratic fitness functions and truncation selection. As far 

as quadratic fitness functions are concerned, it transpires th a t only those with negative 

epistasis, i.e., positive curvature, give rise to error thresholds.

Apart from the ordered and disordered phases, which also occur in two-state models, a 

partially ordered phase was observed [HWBOl], which differentiates only between purines 

and pyrimidines. This phase directly hinges on the multidimensional m utational distance 

tha t is employed in the four-state model. However, as this analysis has shown, it is also 

dependent on a certain symmetry of the fitness function which implies th a t transition- 

type mutations have no effect on the fitness or, in other words, tha t the fitness function is 

symmetric with respect to the fraction of wild-type sites xq and the fraction of transition- 

type sites X2- Whereas this symmetry comes naturally in the equivalent physical systems 

as ‘spin-fiip symmetry’, it seems rather artificial in the biological setting. If one considers 

only the third-codon positions in coding regions of the DNA though, the vast majority 

of the transition-type mutations is silent, i.e., they do not change the amino acid tha t
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is incorporated in the protein in question, with the result tha t these mutations influence 

the fitness only minimally. Consequently, one would not expect to find a global partially 

ordered phase in any organism, but among the sites at third-codon positions, partially 

ordered phases might occur.

Quadratic Hopfield-type fitness functions have been investigated for the two-state 

model with two and three patterns. The results for both differ if the fitness deviates 

from the original Hopfield fitness. This raises the question which of the differences ob

served can be attributed to whether the number of patterns is even or odd and therefore 

can be generalised to a higher number of patterns, and which may be particular to the 

two- or three-pattern case, respectively. Furthermore, in the original Hopfield fitness, er

ror thresholds were observed for all choices of patterns. This is not true for generalised 

Hopfield-type fitness. For instance, for a Hopfield-type fitness with positive epistasis no 

thresholds were observed, going in line with the results for permutation-invariant fitness. 

But also for Hopfield-type fitness functions with negative epistasis, there are not neces

sarily any thresholds, if the fitness deviates too much from the original Hopfield fitness, 

challenging the commonly held notion tha t more complex fitness functions all tend to 

display error threshold behaviour. The complexity and ruggedness of the original Hopfield 

fitness have been investigated [AGS85a, AGS85b] and found to be good candidates for re

alistic fitness functions [Leu87, Tar92]. However, these results do not necessarily transfer 

to the generalised Hopfield-type fitness functions, and therefore it would be very useful to 

study these properties of generalised Hopfield-type fitness functions to analyse which of 

these factors are responsible for generating the thresholds.

The main results of this thesis are the derivation of the maximum principles obtained 

in chapter 5 and their application to several examples pursued in chapter 6. The maximum 

principle for a four-state model with permutation-invariant fitness has already been pub

lished in [GG04b], its application to quadratic fitness and truncation selection is published 

in [GG04a]. The results concerning the Hopfield-type fitness have not been published yet.

The mutation-selection models considered here describe biological evolution clearly
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in a rather simplistic way, neglecting a number of biologically relevant factors such as, 

for instance, recombination or migration, and possibly most importantly, genetic drift. 

Furthermore, only the equilibrium properties were considered. However, a solid under

standing of the mutation-selection balance is a prerequisite to investigate the approach to 

equilibrium, and a good starting point for incorporation of other evolutionary factors.

7.1 Future work

Using the deterministic model as set out in this thesis, one could try  to generalise the 

criteria for fitness functions to give rise to error thresholds as obtained in [HRWB02] for 

a two-state model with permutation-invariant fitness to models with multidimensional 

mutational distances such as the four-state model or a model with Hopfield-type fitness. 

Furthermore, it would be interesting to investigate the Hopfield-type fitness with respect 

to a larger number of patterns.

In order to make the model biologically more realistic, it would be very interesting 

include genetic drift and consider a stochastic model such as a Moran model [Mor58, 

Ewe04] with selection.
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