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ABSTRACT

The graphic calculator offers an environment in which children can start to understand 

basic algebra. It acts as both a mediating physical tool and psychological sign in the sense 

Vygotsky described, shaping the higher mental processes of the students. The combination 

of a graphic calculator and two students is theorised as a zone of proximal development, a 

term used by Vygotsky to indicate the potential students have to achieve more when 

supported than they could do alone. The graphic calculator also acts as a focus for 

reflective discussion, providing students with language to enable them to articulate their 

ideas, and a locus for trying out those ideas. The immediate feedback provided enables 

students to challenge misconceptions they already hold, so enabling them to develop 

conceptions that are more appropriate.

The graphic calculator forms a learning environment by providing a model for a variable 

that is concrete and easily understood by even quite young children. The stores of the 

calculator are labelled with alphabetic letters, and so can be thought of as boxes into which 

numbers can be put. These stores can then be operated on in the same way as an algebraic 

variable. Although this model is not sufficient to explain a variable as a number that can 

change continuously, it is quite adequate to help children understand the concept of a

3  variable up to the stage of a generalised number.

Three case studies and a survey, using the graphic calculator model of a variable and 

teaching materials designed to exploit its affordances, are discussed in this thesis.

Instances were found of students making cognitive gains as a result. Statistical evidence 

indicating that the students improved both their understanding of the nature of variables, 

and their skills in working with simple algebraic expressions is also given.
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Chapter 1: Introduction

CHAPTER 1 in t r o d u c t io n

1 .1  St a t e m e n t  o f  t h e  p r o b l e m

3  In answer to a question asking what the a and in an expression like Aa + ?>b + 2a might

mean, one student (aged 12 or 13 years, and in Year 8 in a UK secondary school) wrote: “I 

think that a and b are only letters that don’t mean anything.” A second student of the same 

age wrote: “a and b are just fancy things at the end of a sum.” A third just put: “?” These 

students took part in a survey carried out during the classroom research reported in this 

thesis. They had studied some algebra previously, but had yet to see any meaning in the 

letters used. The findings of this research would suggest that this is not unusual in students 

of this age, despite the fact that they may well have studied algebraic topics several times 

during the previous year or two in their mathematics lessons.

The research described in this thesis originated in my desire to help students hke these to 

secure some understanding of what the mysterious letters used in algebra mean. In this 

thesis, I argue that use of the graphic calculator can enable students to improve their 

understanding of how letters are used in algebra, and their skill in working with algebraic 

expressions. I argue further that the calculator can facihtate the remediation of some 

common misconceptions. In support of these arguments, an analysis of data collected 

during classroom studies is described. These studies were carried out in five different 

schools, with students from four different year groups.

3



3 Chapter 1: Introduction

In this thesis, the role of the graphic calculator as a mediating tool for students in the early 

stages of working with algebraic variables is considered. The concept of the graphic 

calculator as a mediating tool for learning is based on Vygotsky’s concept of mediation: 

that the tools used to assist learning will structure that learning. The main research 

question I wished to explore was:

3  * Is the graphic calculator a useful mediating tool for students in the early stages of

forming a concept of a variable?

Sub-questions I also wished to investigate were:

• Does the model of a variable provided by the graphic calculator mediate successfully 

between students’ initial interpretations of letters and an interpretation which will help 

their progress in algebra?

• If graphic calculator use proves helpful, what are the attributes of the graphic calculator 

which make it a suitable tool for students learning algebra?
3

In my research, I carried out three case studies and a survey to investigate these questions.

I looked at how students worked with algebraic expressions, to see if and how the graphic 

calculator might facihtate their understanding of what letters mean and how they are used. 

From analyses of the data collected in these studies, I concluded that using the graphic 

3 calculator did indeed promote understanding. I also felt that it provided a means of

bridging the gap between the ideas students brought with them from everyday life and 

earlier school experiences and the knowledge they needed if they were to make significant 

progress in algebra.

Variables can be modelled with a graphic calculator using its 26 stores which are labelled 

with the letters of the alphabet. The students in my classroom studies put numbers into the

3



3

3

3

Chapter 1: Introduction 3

stores, and then operated on these stores in the same way that operations on a variable are 

carried out. This provided the letters used in algebra with meaning for the students, 

encouraging them to think of the letters as stores for numbers. It also helped them to 

realise that the letter used is arbitrary: that a given letter can represent any number, and a 

given number can be represented by any letter. Replicating ‘ screensnaps(graphic 

calculator screens) helped the students to begin to intemaUse common algebraic 

conventions, and to start learning the syntax of algebra.

Data from the classroom studies were examined to see if there was any evidence of 

cognitive change as a result of the teaching method. Examples of cognitive change in 

students were found, and these are discussed in detail, as are examples where cognitive 

change failed to occur. The data were also analysed to see if they supported the 

3  proposition that the students’ understanding of how to use letters improved, and whether

their skill in answering algebraic questions increased during that process. It was found that 

students made progress in both of these, particularly the younger students and those whose 

previous understanding of algebraic expressions was least secure. Using the data collected 

in the case studies and survey, I concluded that the graphic calculator could be used 

effectively to promote learning.

This research is grounded in Vygotsky’s theories, particularly that of the mediation of tools 

and signs in the development of children’s higher mental functions. Vygotsky’s theories 

were conceived against the background of the tumultuous changes the USSR experienced

* The word ‘screensnap’ to denote graphic calculator screens used in this type of work was coined by Alan 
Graham (Graham, 1998: 22).
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in the 1920s. He, like many others, wanted to improve education in the USSR very rapidly 

for as many children as possible. This led him to suggest many different theorisations of 

the learning process, which have attracted considerable attention in the last two or three 

decades since his work became more generally known in the West. His theorisations have 

provided a foundation for my own theoretical position. In particular, I have used his 

theory of the mediation of tools and signs in the formation of concepts to theorise how the 

graphic calculator might mitigate some of the difficulties students often experience in their 

early encounters with algebra.

I have further formulated a new theoretical model to explain how this might occur. 

Vygotsky introduced the concept of the zone of proximal development (ZPD). He defined 

this as what a student can accomphsh when assisted by a teacher or more able peer, that is 

3  over and above what s/he might be able to accomplish unaided. In my theoretical model, I

suggest that the graphic calculator, when used by a pair of students, is part of a ZPD in 

which both students are enabled to reach a higher level of understanding than would 

otherwise be the case.

The misconceptions students brought with them before doing the classroom studies, and 

those they still held afterwards, are also examined. It is a fallacy to think that students 

come to a new area of learning like ‘blank slates’; certainly it was apparent from this 

research that the students who participated in the case studies and survey made many 

conjectures about the nature of algebraic variables on the basis of previous learning both in 

mathematics and elsewhere. Some of their misconceptions were susceptible to the graphic 

calculator teaching modules, others less so. In addition to ideas which the students brought

3
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with them, some students were also found to develop new misconceptions which appeared 

to result from their misunderstanding things said to them in class. This is also investigated.

1 . 2  O r ig in s  o f  t h is  r e s e a r c h

This research has developed through the interaction of three different strands. The first 

strand originated in my work as a teacher of mathematics in three English secondary 

schools over a period of 15 years. At the time I started this research at the beginning of 

1998,1 had been teaching for some 12 years. I felt that I had become a relatively 

successful classroom teacher, and yet I was concerned that throughout that time I had 

failed some of my students. These students were bright, articulate and keen to learn, yet 

found it difficult to make any sense of algebra despite coping well enough with other 

mathematical topics. They could see a purpose for arithmetic and statistical work; 

diagrams and mathematical software helped them to see what was happening in 

geometrical problems. In algebra, however, they had no idea what the equations and 

expressions meant, and were only able to answer questions by following rules learnt by 

rote. Such rote learning meant that they did not recognise when they were using these 

rules inappropriately, and this often led to errors.

3  A turning-point came during the spring term of 1998 with a Year 10 Higher Level GCSE

groupé, who were very high achievers, both mathematically and otherwise. I was looking 

for ways to challenge them so that they acquired a deeper understanding, rather than 

simply learning yet more techniques. To this end, I introduced the students to graphic

3

 ̂Year 10 students are aged 14-15 years in English schools. The General Certificate of Secondary Education 
is an examination sat by 16 year-olds in England and Wales, at the end of Year 11.
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3 Chapter 1: Introduction 6

calculators as tools to facilitate an exploration of functions represented as formulae, graphs 

and tables. Some very exciting work resulted from this, with many of the students 

showing remarkable insights. At this point, I reahsed two things; that the lack of 

understanding of algebraic expressions so common even among bright students was not 

inevitable, but that using unfamiliar approaches hke this involved a degree of risk.

3
We were all affected by the changing emotional temperature which accompanied this 

project. The students lurched from acute anxiety to the enjoyment of new discovery. “[It 

was] really scary initially” one said, while another told me “[I] didn’t know what to do -  

panic!” It was high risk work for all of us. They were new to the instruments, new to the 

mathematical ideas, with a new teacher with high expectations. I was afraid my 

expectations of them, the graphic calculators, and, indeed, myself, were too great (Gage,

3  1999a).

I knew the risk had paid off, however, when I heard a voice ringing across the classroom; 

“Oh! Wow! I never knew... !” This was a key moment, when it became apparent that the 

students’ anxiety was being transformed by the excitement they felt at creating their own 

mathematics in an area which was quite new to them. Comments made by students 

afterwards included; “the research [was] really enjoyable and the trial and error was a 

strong point”. Another student said that she felt “more self-motivated and so leamt more”, 

while a third said that; “[it] had its own momentum -  it all fell into place”. Yet another 

told me; “[I] hked owning my own discoveries”. The remark that best exemphfied my 

hopes in doing this project with them was;

3

My investigation from the start kept leading me onto new ideas... I feel I have leamt 
an incredible amount about a subject I never knew before.

0
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I could see that algebraic topics did not need to be full of tedious exercises in which 

students implemented poorly understood rules. One significant result of this project was 

that I reahsed how important it was for students to retain ownership of their work, and to 

make their own discoveries. It was also clear that if I was going to use this kind of 

teaching method in the future, I needed to reduce the initial level of uncertainty.

3

This was the point at which the second strand started to interact with this practical 

classroom experience. By then, I had become aware of the radical constructivist paradigm, 

particularly as expressed by von Glasersfeld (1991; 1995). Reading his work while I was 

engaged in the project described above made me think about what sort of teacher I wanted 

to be: I knew I wanted to enable my students to construct their own learning more, and to 

lead from the front less. I wanted them to feel excited about learning new things, but I did 

3  not want them to feel quite so anxious about the outcomes as the Year 10 students did at

the start of their investigations.

I felt I needed to investigate the graphic calculator as a tool to help students bring together 

graphic and algebraic models of functions, as in the Year 10 project described above, and 

therefore decided to see if I could design a research study in which students would use the 

graphic calculator as a microworld in which to build up knowledge. This would use many 

of the features of the Year 10 study, but this time I wanted to help the students to feel more 

supported during the early stages, without taking away their excitement at making their 

own discoveries.

3

I then encountered a paper by Margot Berger (1998) which stimulated my thinking about 

graphic calculator research more generally. A particular claim she made, that there was a

3
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scarcity of research about how the graphic calculator might function as a tool for learning, 

encouraged me to move the focus of my thoughts away from the details of the algebraic 

teaching to the way in which the graphic calculator could mediate between the students and 

the mathematics. She had based her research on Vygotsky’s work on the mediation of 

tools, a theory which seemed particularly interesting in the light of my work with the Year 

10 students. One particular quotation she cited set in motion the research project that 

followed:

If one changes the tools of thinking available to a child, his mind will have a radically
different structure. (Berg, 1970: 164, cited in the, Afterword, Vygotsky, 1978: 126)

This sentence stayed with me for a long time. For a while, I thought this encapsulated 

what I wanted to do in my research, until I realised that it would be extremely difficult to 

demonstrate that a child’s mind had a ‘radically different structure’ as a result of using the 

graphic calculator.

However, Berger also emphasised the difference between ‘amplification’ and ‘cognitive 

reorganisation’ as metaphors for how the graphic calculator might act as a tool for learning 

(cf. Pea, 1985, 1987). She carried out a study, looking for cognitive reorganisation, but 

failed to find much evidence for it. As it seemed to me that this was due more to the 

limitations of her experimental method than to the fact that such evidence could not be 

found, I decided to do some studies of my own to see if evidence could be found to support 

either or both of these as a metaphor to describe how the graphic calculator might function 

as a tool for learning. As a result of my experience with the Year 10 group, I was sure that 

it would be possible to find evidence for cognitive change caused by using the graphic 

calculator.

3
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The third strand which brought my research topic into even closer focus, occurred in the 

spring term of 1999, when I started working during the lunch hour with a particular 

student, Sally ,̂ who was preparing for the forthcoming Key Stage 3 SATs'’ examinations. 

Sally found all mathematics difficult, and algebra was still virtually a closed book to her. 

We started by looking at a revision paper her class had done during the previous week, 

which contained equations of varying degrees of difficulty to solve. Gradually we worked 

backwards through less and less demanding questions as I tried to find a level at which 

Sally was comfortable. Eventually, I asked her what 2 x - x  was. “2!” she replied, thankful 

at last to find a question she knew she could answer (this is discussed in more detail in 

Gage, 2002a).

At this point, we went right back to basic ideas about what the letters in simple expressions 

3  such as 7x meant. I used a model for a variable which I had discovered in Graham’s work

(Graham, 1998; Graham and Thomas, 1998). He suggested that the stores of the graphic 

calculator, which are labelled with letters, could be used to provide students with a 

physical model of a variable, and could also be used to show them how to work with 

variables. This was ideal for Sally. She could understand the idea of boxes or stores with 

numbers in them, and that you could add to them, subtract from them, multiply them by 

other numbers, and so on. We started with pictures of boxes with numbers (both known 

and unknown) in them and from there graduated to using the graphic calculator. Sally 

found the calculator method straightforward to understand, and she operated the calculator 

easily. We started to make progress, with Sally gaining in confidence.

3

 ̂All student names used in this thesis are pseudonyms.

* Standard Assessment Tests set at the end of Key Stages in English schools. This particular girl was aged 13 
or 14 and was in Year 9, which is the end of Key Stage 3.
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The success of this approach led to a pilot study with Sally’s class during the summer term 

of 1999. I was still searching for a specific mathematical focus for my research, although I 

knew by this stage that I wanted to look at using graphic calculators as mediating tools for 

students to use in learning algebra. The work with Sally, followed by the pilot study, 

brought home to me how crucial it is to students’ further progress that they gain an early 

understanding of how letters should be interpreted and what simple expressions mean. I 

therefore focused my research question on this issue.

The question I decided I wanted to answer was two fold. Firstly, I wanted to find out if 

and how Graham’s model might mediate between the ideas students brought with them 

when they began to study algebra and the more formal instruction they encountered in 

school. Secondly, I wanted to see if and how the use of a physical tool, such as the graphic 

3  calculator, would help students in developing understanding of basic algebraic operations.

1 . 3  O u t l in e  o f  t h is  t h e s is

This thesis discusses a theoretical model for how the graphic calculator can act as a 

mediator between a student and the concept of a variable, and an evaluation of this model 

based on three case studies and a survey. The graphic calculator model of a variable,

3  devised by Graham, was further developed by Graham and Thomas (Graham, 1998;

Graham and Thomas, 1998, 2000a). They used the labelled stores of the graphic calculator 

as a physical instantiation for variables in work they carried out with 14 to 15 year-old 

students in the UK and New Zealand. The calculator stores can be operated on in the same 

way as the letters used in algebraic expressions, giving students practice and a means to 

understand how letters are used in algebra. Their model is extended in this thesis into a 

theoretical model grounded in Vygotsky’s theories.

3
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The classroom method used in the studies reported in this thesis involved students working 

together in pairs with a graphic calculator between them to enable them to make and test 

conjectures about how letters used in algebraic expressions function. Students were asked 

to copy ‘screensnaps’ (graphic calculator screens) requiring the evaluation of simple 

expressions, or checking which of various alternative expressions were equivalent to each 

^  other. The exercises the students did introduced them to the main conventions of algebraic

expressions, such as omitting the multiphcation sign in products, and using the ‘/ ’ sign for 

division. Many students were quite surprised to discover that, for instance, 8B means 8 

multiplied by the number in the B store. Many expected that this would equal 84, if 4 had 

been put into the B store, or even 82̂ . The screensnap shown in Figure 1 illustrates this 

example:

Figure 1: Screensnap showing how students can test their ideas about the meaning of 
2) expressions like 8B using the graphic calculator

3

4->B
4

8B
32

Even a simple example hke this shows how the graphic calculator can help students. 

Firstly, the calculator provides a physical model of a variable through the action of putting 

a number into a store. Every time the students put a number into a store, the screen display 

reinforces the idea that the letter represents a number. Secondly, the graphic calculator 

allows students to test out their ideas. Finding that 8B is neither 84 nor 82 challenges the 

students to rethink their understanding of the expression 8B: it soon becomes obvious that

 ̂Equating a with 1, b with 2, c with 3, ..., was a common initial misconception among the students.
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the value in the B store is to be multiphed by the 8. As the number of examples like this 

grows, the student gradually internalises the correct interpretation of such expressions.

Rather than trying to use rules which they do not understand, students can verify their 

conjectures using the graphic calculator to tell them if they are correct. For example,

2̂  consider the question cited in the opening sentences of this thesis: 4a + 36 + 2a = .

Confronted with this question, a student might be very unsure what the answer should be. 

The data showed that many of them tried to add up the coefficients first, a familiar 

operation, giving a value of 9. The question then was what to do about the letters. Some 

students just ignored them, putting down ‘9’ as their answer. Some decided that an ‘a’ and 

a ‘6’ and another ‘a’ gave ‘<7’; others that ‘a’ and ‘6’ should be put together to make ‘c’ or 

‘a6’. Experimenting with the graphic calculator meant that students could try all these 

3  (plus anything else they thought of) to find out which, if any, were correct. The screensnap

below shows how they might proceed:

Figure 2: Screensnap illustrating how students might go about testing equivalent 
expressions for 4a + 3b + 2a

D

4fl+3B+2fl
39

90
27

9C
63

9RB

In the teaching method used in this research, learning took place within pairs and groups of 

students as much as on an individual basis. Discussions between students gave them 

opportunities to elaborate their thoughts and to clarify new insights. The graphic calculator 

also provided language with which students could discuss their ideas. The role of the

D
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teacher is then to challenge the students with questions and examples which will open up 

their thinking, and to involve the whole class in discussion when an important point occurs.

1.3.1 First part of the thesis

This thesis can be divided into two major parts. The first part establishes the ground on 

3  which the rest depends, and is described in this section. It starts with a description of the

relevant literature. Chapter 2: Review of the literature, which provides a basis for the 

theoretical model developed in the second part of the thesis, and for the varieties of 

analysis reported there. This is followed by Chapter 3: Research methodology and 

methods in which the mixed methodology used in the classroom research is justified, and 

the methods of data collection and analysis used in the case studies and survey described.

3

3

The Review of the literature commences with a discussion of theories of learning in 

mathematics. The position taken in this thesis is that mathematics is constructed by human 

endeavour, rather than already in existence and ‘out there’ waiting to be discovered. 

Constructivist learning theories are considered, including those of Vygotsky. The 

theoretical model developed later in the thesis depends on certain of Vygotsky’s theoretical 

foci which are reviewed in this chapter. These include:

• Mediation of tools -  the use of appropriate tools to carry out practical activities.

•  Mediation of signs -  the role of psychological ‘signs’ in enabling humans to develop 

higher mental functions, for instance, putting a knot in a handkerchief to aid the 

memory.

•  Concept formation -  occurring through the interaction of everyday ideas (such as 

putting numbers into stores) and taught ‘scientific’ ideas (such as an algebraic 

variable).

3
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• Key role of speech -  the facihtation of such interaction by language and discussion.

• Zone of proximal development -  the gap between what a student can do unaided and 

what s/he can do when supported.

Vygotsky’s model of concept formation is referred to frequently in this thesis. He 

considered that stable concepts are formed when everyday and scientific (or school) 

knowledge interact. In my theorisation, the graphic calculator acts as a mediating tool by 

providing a locus in which the everyday and scientific forms of knowledge that students 

have about variables can combine. More recent ideas on instrumentation, the process by 

which an artefact such as a calculator becomes a useful tool, are also considered. These 

processes are all facilitated by discussion between pairs of students, and larger groups, 

supported as necessary by the teacher.

As well as looking at the mediating action of practical tools, Vygotsky considered the 

mediating action of psychological signs'̂ . Examples of such signs are language, both 

written and verbal, arithmetic, and algebra. Signs are equivalent to tools, but enable us to 

amplify our mental capabilities as opposed to our physical capabilities. They are invented 

by us, to enable us to extend our higher mental functions. The graphic calculator also acts 

as such a sign by changing the way the students think about algebraic variables: it 

increases their capacity to work with them in the same way that words increase our 

capacity to remember objects.

3
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Such changes are not one-way, however. Vygotsky saw both mediating tools and 

mediating signs as causes of dialectical change; we modify our environment, using 

physical tools and psychological signs, and such modification changes us. Changing the 

learning environment can lead to cognitive development in students, the exact nature of 

which is at least in part a consequence of the tools and signs used. Evidence is presented 

in this thesis to show that the graphic calculator does indeed cause cognitive development 

in students, and thus acts as a tool and a sign in this way.

In Research methodology and methods, there is a detailed description of the classroom 

studies described in this thesis, which were carried out between the summer (April-July) 

terms of 1999 and 2002. These consisted of three case studies and a survey, designed to 

test the proposition that using the graphic calculator would help students in the 10 to 14

3  year age range in developing an understanding of how letters are used in algebra. In all,

some 400 students were involved from five different schools, across four different year 

groups. A range of different data forms were collected, including audio and videotapes of 

classroom discussions, interview data and questionnaires. These data were used with the 

literature survey to develop the theoretical model of how the graphic calculator acts in the 

learning environment. The data were also used to judge the extent to which cognitive 

change occurred, and students made progress in their understanding and skills.

3

® According to Vygotsky, a sign system, such as language, writing, or a number system, is created by a 
society over the course of human history and changes with the nature of the society and the level of its 
cultural development. “The use of signs leads humans to a specific structure of behavior that breaks away 
from biological development and creates new forms of a culturally-based psychological process.” 
(Vygotsky, 1978: 40).

3
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1.3.2 Second part of the thesis

In the second major part of this thesis, the findings of the classroom studies are discussed. 

The findings are presented thematically, with four major themes explored: the graphic 

calculator as a cognitive technology (Chapter 4); cognitive change in the students mediated 

by the graphic calculator (Chapter 5); development facilitated by the graphic calculator in 

the students’ understanding and skills (Chapter 6); and misconceptions shown by the 

students, and the effect of the graphic calculator on these (Chapter 7). The first of these 

themes is a theoretical analysis of the way in which the graphic calculator mediated in the 

learning process as both tool and sign. The other three discuss the effects of this 

mediation.

Before presenting these themes in a little more detail, it is worth reviewing the features of 

the graphic calculator that make it a suitable instrument for use in the classroom with 

students in the 10-14 year age group. First, the small screen of the graphic calculator 

allows privacy to the student(s) working with a particular instrument: no one else needs to 

see what is on a student’s screen if they would rather not. This means they can try out any 

conjectures they hke without having to explain them, or risk embarrassment, if others 

disagree. Secondly, the graphic calculator gives immediate feedback. If students try to 

rephcate a screen, they know straight away if they have done it correctly or not. The 

graphic calculator provides a private learning environment in which students can discuss 

their ideas, verbahsing their insights, and negotiating a consensus where there is 

disagreement. Thirdly, a class set of graphic calculators can be available to a teacher 

during every lesson, so that the calculators are always there to support the students. Using 

computers instead may be more difficult, since gaining access to them on a regular basis 

with a whole class is often problematic.

0
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3

All of the above features of the graphic calculator are reasons why its use might be 

advantageous in the classroom. However, there is more to it than that. The graphic 

calculator is a technological tool, and these form a significant part of students’ cultural 

backgrounds today. Consider, for instance, students’ use of mobile phones for sending text 

messages, and of games machines for recreation. Wertsch’s (1988) analysis of Vygotsky's 

work identified higher mental functioning mediated by socioculturally evolved tools and 

signs as a major strand in Vygotsky’s theory. In this thesis, the graphic calculator is 

identified as a sociocultural tool. The graphic calculator acts as a mediating tool: students 

carry out practical activities using the calculator. It also acts as a mediating sign: students’ 

understanding is changed by the results of their actions with the calculator. This theme is 

then extended to a consideration of metaphors for how such tools might mediate learning. 

Chapter 4: The graphic calculator: Mediating in a learning environment presents a 

3  detailed discussion of this theme.

According to Vygotsky, the whole point of such sociocultural tools is that they enable 

higher mental functioning, and this is discussed further in Chapter 5: Evidence of cognitive 

change. The interpretation of cognitive change used in this chapter is defined, and then 

examples are given. These examples show that the graphic calculator was indeed 

instrumental in causing such change on a number of occasions. These are compared with 

other examples where cognitive change failed to occur, and reasons for this failure are 

discussed. Transcripts from the classroom case studies carried out are used to support 

these examples. Chapter 6: Developments in students’ understanding and skills presents 

an analysis of data collected to demonstrate students’ progress both in understanding and 

in skill. It was found that students with little previous experience and/or understanding of 

algebra made excellent progress both in understanding and in skill. The final theme is

3
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presented in Chapter 7; Misconceptions, which is an investigation into the misconceptions 

students brought with them prior to doing this work, and the effect of the graphic calculator 

on these misconceptions. This chapter also includes an examination of misconceptions not 

initially obvious but which became apparent during the teaching process.

Following these two major sections of the thesis. Chapter 8; Conclusions and 

recommendations summarises the thesis, presents its major conclusions and gives 

recommendations for further research. This is then followed by the Annexes and the 

References.

3
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CHAPTER 2 REVIEW OF THE LITERATURE

2 . 1  In t r o d u c t io n

2) In this thesis, I wish to address the following research question:

• Is the graphic calculator a useful mediating tool for students in the early stages of 

learning algebra?

I argue that it is such a tool for the following reasons:

• The graphic calculator is a suitable cultural tool and cognitive technology for 10-14 

3  year-old students.

• The graphic calculator provides an interface between the student and the algebra by 

providing both a model of a variable and a cognitive tool.

• The graphic calculator used by a pair of students can contribute to a zone of proximal 

development (ZPD).

The graphic calculator has the potential to enable learning to occur in students working 

with it on algebraic tasks which exploit both the model of a variable provided by the 

calculator, and its attributes as a cognitive tool. The model of how the calculator 

participates in forming a ZPD is heavily dependent on Vygotsky’s theory of the mediating 

action of tools and his social theory of learning.

This chapter reviews the literature in relevant areas. It starts by briefly considering the 

nature of mathematics and mathematics education (section 2.2). In section 2.3, the

3
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constructivist theories of learning of Vygotsky and Piaget are discussed. Although the 

major theoretical positions of this thesis are dependent on the work of Vygotsky, it is 

impossible to ignore Piaget’s contribution to theories of learning, particularly to the 

development of the various forms of constructivism. Vygotsky’s work is then examined in 

more detail in section 2.4, together with developments of his work by the socioculturahsts 

who followed him. In section 2.5, the mediating role of tools is considered. Section 2.6 

then moves on to consider issues in the teaching and learning of algebra, looking at 

children’s difficulties in learning algebra, and some responses to these. In section 2.7, the 

contribution to the teaching and learning of algebra that the graphic calculator can make is 

considered. The final section, 2.8, summarises this chapter.

2 . 2  E p is t e m o l o g y  o f  aaatheaaatics u n d e r l y in g  t h i s  t h e s is

Vergnaud (1990) argued that all mathematics education research and teaching has an

implicit underlying epistemology, even if this is not acknowledged. Epistemology is

concerned with questions such as “What is knowledge?” and “How is knowledge to be

acquired?” A focus on such questions is fundamental to an understanding of how new

technologies enable knowledge to be constructed:

... new technologies -  all technologies -  inevitably alter how knowledge is 
constmcted and what it means to any individual. This is as true for the computer as it 

2) is for the pencil, but the newness of the computer forces our recognition of die fact.
There is no such thing as unmediated description: knowledge acquired through new 
tools is new knowledge. (Noss and Hoyles, 1996: 106)

The most common epistemology of mathematics education has been Platonic: 

“mathematical activity consists in the discovery of timeless truths ... independent of 

culture, and ... is mainly a matter of logical reasoning” (Vergnaud, 1990: 28). In this

3
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epistemology, mathematical objects exist independently of us: they are ‘given’, and are 

unchanging in their nature.

However, there is a long tradition of viewing knowledge as a human construct, dating back

to Giambattista Vico (1668-1744) in the eighteenth century, and earlier. Contrary to the

dominant Platonic and Cartesian view of mathematics, that it exists a priori outside the

individual, Vico believed that:

... arithmetic, geometry, and their offspring, mechanics, are human faculties, since in 
them we demonstrate a truth because we make it. (Vico, 1710/1988: 94).

We can see the origins of the constructivist view of education here (cf. von Glasersfeld,

1995). Vico sought for an alternative to Cartesianism, which claimed that knowledge is

formed and exists outside of the human mind, instead arguing that the construction of all

rational knowledge is human:

... we do not just discover the truth, but make it. ... the physical things will be true 
only for whoever has made them, just as geometrical [proofs] are tme for men just 
because men make them. (Vico, 1710/1988: 104)

During the latter half of the twentieth century, this alternative epistemology has gained 

ground: mathematics is viewed as a human construct, which is therefore inherently fallible 

(e.g. Ernest, 1994; Hersh, 1994; TriadafiUidis, 1998). Proponents argue that it can be 

changed at any time according to the circumstances of the human minds constructing it; 

others maintain that it is socially negotiable (Lerman, 1996a). Mathematics is what 

mathematicians do; it is the tool of scientific enquiry (Taylor, 1996). This is the view of 

mathematics and mathematics education which underpins the research described in this 

thesis. An active, constmctivist view of how children learn is assumed throughout.

3
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2 . 3  C o n s t r u c t iv is t  t h e o r ie s  o f  l e a r n in g

2.3.1 Vygotsky and Piaget

Both Vygotsky and Piaget created theories of learning which have been of considerable 

relevance to the theoretical underpinning of mathematics education over the last few 

decades. Theirs are among the most significant names of the twentieth century in the field 

of the psychology of educational development, and their work has been inunensely 

important for the construction of current learning theories. Both had what would now be 

termed a constructivist epistemology, beheving that human knowledge is constructed, not 

discovered. Whereas Piaget can be considered the forerunner of the constructivism of the 

late twentieth century, however, those working in a Vygotskian tradition tend to emphasise 

2) other aspects of his thought.

Piaget was active from the 1920s throughout the twentieth century, whereas Vygotsky’s 

contributions in the areas of psychology and educational theory were mainly written 

between 1924 and his death in 1934. In 1936, Stalin suppressed Vygotsky’s work, and it 

only became accessible again in 1956 in the USSR, and in 1962 in the West when the first 

translations into English were made. Much of his published work has only become 

available since the 1980s, so he has been far more influential in the development of late 

twentieth century thought than might otherwise have been the case. Neither Piaget nor 

Vygotsky produced a unified body of work, continuing to formulate ideas as they worked 

on them, but major themes which recurred or were developed throughout their work can be 

identified.
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Vygotsky and Piaget both knew each other’s work, and valued each other’s contribution,

having more in common than is often supposed (Brown, Metz and Campione, 1996a;

Smith, 1996). Both had a view of the nature of knowledge and learning which is

constructivist; they saw learning as actively constructed by the child, purposeful, adaptive,

and relevant to the child’s situation (Gruber and Voneche, 1977; xxiif; Vygotsky, 1987:

170). Vygotsky has not been as strongly identified with the recent constructivist

movement as Piaget, who has been identified as a direct precursor of radical constructivism

(von Glasersfeld, 1995), but an examination of Vygotsky’s writings shows that he also

beheved that children construct their knowledge, rather than receiving it passively. In his

discussion of the formation of concepts, he emphasised repeatedly that:

... scientific concepts are not simply acquired or memorized by the child and 
assimilated by his memory but arise and are formed through an extraordinary effort of 
his own thought (Vygotsky, 1987: 176, original itahcs)

Although Piaget and Vygotsky both beheved that knowledge is actively constructed, their

explanations for this were different. Piaget claimed that development is the result of

disequihbrium between the child and her/his environment. Resolution of this

disequihbrium (adaptation) leads to the child acquiring new knowledge. Vygotsky, on the

other hand, argued that development is essentially a social phenomenon, asserting that

“higher psychological processes” have their origin in social or cultural processes (van der

3  Veer and Valsiner, 1994:138).

An interpersonal process is transformed into an intrapersonal one. Every function in 
the child’s cultural development appears twice: first, on the social level, and after, on 
the individual level; first, between people (interpsychological), and then inside the 
child (intrapsychological) \  ... All the higher functions originate as actual relations 
between human individuals. (Vygotsky, 1978: 57, original italics)

 ̂The words translated here as “interpsychological” and “intrapsychological” are translated by some writers 
as “intermental” and “intramental”, e.g. Minick (1996).
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Vygotsky further argued that socially evolved and socially organised cultural tools,

particularly language, mediate all learning (Wertsch and Tulviste, 1996). It is a common

misconception that Piaget ignored such social processes, but this is too facile:

... the human being is immersed right from birth in a social environment which affects 
him just as much as his physical environment... (Piaget, 1947/1950: 156).

Indeed, Piaget claimed that “conceptual thought is collective thought obeying common 

3  laws” {The Construction of Reality in the Child, 1937/54, cited in Gruber and Voneche,

1977: 279). However, where Vygotsky believed the social environment of the child was 

all-important in her/his development, Piaget saw it as one influence amongst many, as 

often arguing against the significance of social factors as for them.

2.3.2 Later constructivist paradigms

^  Several epistemological positions given the label ‘constructivist’ were advanced during the

1980s and 1990s. Significant among these were radical constructivism (e.g. von 

Glasersfeld, 1990; 1991; 1995) and, in reaction to it, socioconstructivism (e.g. Bauersfeld, 

1992; Cobb, 1991; Ernest, 1991). Such epistemologies have replaced behaviourist models 

of rote learning, and have had considerable impact on teaching and learning during the last 

two decades (Zevenbergen, 1996).

Radical constructivists based their position on that of Piaget, that knowledge acquisition

2) has an adaptive function for the individual:

... knowledge is not passively received but built up by the cognising subject; the 
function of cognition is adaptive and serves the organisation of the experiential world, 
not the discovery of ontological reality, (von Glasersfeld, 1995: 18)

The individual learns something, not because it is there to be learnt, but because it helps 

them to cope with the world they experience. In the mathematics classroom, students need 

to find their own way to solve problems, hence building up knowledge which helps them to 

organise what they experience. ‘Reahty’ is thus a dynamic process of continual
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construction, rather than an accumulation of ready-made structures (von Glasersfeld, 1991,

1995).

Reacting to this very individualistic mechanism for learning, socioconstructivists looked 

for a stronger role for social interaction (Bauersfeld, 1992; cf. Lerman, 1996b). If we all 

^  construct our own reahty, how is successful conununication possible? “[H]ow is it that the

teacher and the children manage to achieve at least temporary states of intersubjectivity^ 

when they talk about mathematics?” Cobb, Wood, et a l{ \9 9 \\  162) asked, if all 

knowledge is acquired on an individual basis in response to individual needs. To the active 

construction of knowledge by the individual, Ernest (1991) added an essential role for 

experience and interaction in the physical and social worlds. This led to a third principle 

being added to the two quoted above from von Glasersfeld: reality is constructed 

3  intersubjectively (that is between individuals, as well as within them) and socially

negotiated with significant others, with language playing a central role (Jaworski, 1994). 

Socioconstructivism focuses on the construction of human knowledge in and through 

communication, but it is still a constructivist paradigm (Lerman, 1996a). The basic 

premise is Piagetian, that knowledge is constructed by the individual first, but social 

interaction is seen as much more significant than in the radical constructivist position, fri 

the socioconstructivist epistemology, language is central to a child’s development, 

providing tools of thought and carrying the cultural inheritance of that child’s community. 

Resolution of conflict and agreement on meaning are rooted in social interaction, but 

cognitive conflict is still seen as the prime cause of learning (Cobb, Wood and Yackel,

3

 ̂ ‘Intersubjectivity’ was the word used by socioconstructivists during the early and mid 1990s, to indicate 
understanding between individuals, not just within individuals.
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1990). Despite the general individuahty of constructivist epistemologies, in the 

socioconstructivist paradigm the child is obliged to construct knowledge which ‘fits’ with 

that of the classroom consensus (Bauersfeld, 1988). This also has imphcations for the 

teacher: s/he may no longer be the sole arbiter and controller of meaning, but may also 

need to modify her/his own knowledge as a result of discussion (Cobb, 1997, 1992; Taylor,

1996).

2 . 4  T h e  im p a c t  o f  V y g o t s k y

Vygotsky’s work forms the foundation on which the theoretical positions taken in this 

thesis depend. This section contains a discussion of the circumstances in which he worked 

and his major theories. It starts with a brief overview of his life and work.

2.4.1 L. S. Vygotsky (1896 - 1934)

Vygotsky came to public notice with a lecture in 1924 .̂ According to his future colleague, 

Luria'*, this had an “electrifying effect” (Wertsch, 1988: 82) on his audience, not only 

changing the direction of Vygotsky’s own hfe, but also that of Soviet psychology. Luria 

claimed that this lecture made Vygotsky “an intellectual force who would have to be 

2) listened to” (cited in Wertsch, 1988: 82), despite his lack of formal training in psychology.

Vygotsky felt that none of the current frameworks would do as currently constituted, and 

that a new way of looking at psychological phenomena was needed, which would provide

 ̂The Methodology o f Reflexological and Psychological Studies, delivered on 6 January 1924 at the Second 
Psychoneurological Congress in Leningrad.

A.R. Luria (1902-1977).
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a “unified theory of human psychological processes” (Vygotsky, 1978: 5). He wanted to 

integrate a new theory of learning with a practical contribution to Soviet society, whose 

goal at the time was to develop the ‘new Soviet man’ (Graham, 1993; Wertsch, 1988).

However, Vygotsky never considered his conceptual scheme complete (Wertsch, 1985). 

Between 1924 and his death in 1934, he attempted to open up new lines of thought which 

would explain how “higher mental functions”® came into being, how they were related to 

each other, and the cultural context in which these events occurred (Vygotsky, 1978: 6).

He did not have the time before his early death to complete his theoretical framework, or to 

do the experimental work needed to support his ideas, but left this to his students and 

followers.

3  2.4.2 Background: the early twentieth century

Vygotsky and Piaget were both bom in 1896, and both began their work in psychology 

against the background of the so-called “crisis in psychology” (van der Veer and Valsiner, 

1991: 141) of the 1920s in Europe. Psychology was still a fairly new discipline, and it was 

not yet clear whether it was to be a natural science or the “science of the soul” (p 151). 

Vygotsky, hke many others at the time, thought that psychology lacked a clear theoretical 

basis to support its concepts and explanatory principles, and that it needed a methodology. 

He beheved that in the post-revolutionary USSR there was a unique opportunity to resolve 

this crisis, since society was starting anew from a “clean slate” (Rieber and Wollock, 

1997b: viii).

3

 ̂These included “voluntary attention, voluntary memory and rational volitional, goal-directed thought” 
(Vygotsky, 1987: 20).
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Vygotsky knew of the work of the behaviourists of his time, and of Piaget’s early work. 

He had a considerable respect for Piaget, writing: “[p]sychology owes a great deal to Jean 

Piaget.” (Vygotsky, 1986: 12). In Chapter 2 of Thinking and Speech (1987, written 

originally in 1932) Vygotsky gave a detailed critique of Piaget’s work. While agreeing 

with many of Piaget’s ideas, especially his experimental method and interpretation, he 

disagreed with Piaget’s developmental stage theory®, claiming that learning and 

development have a complex interrelationship, and that development does not lead to 

learning, as Piaget claimed. He also felt that what was missing in Piaget’s work was 

“reality”, and the child’s relationship with “reahty”, by which he meant the child’s 

practical activity (Vygotsky, 1987: 87).

In addition to the fragmented state of psychology in Europe at the time, another important 

3  factor in the development of Vygotsky's thought was the Russian revolution of October,

1917. The years 1917-1932 saw a major transformation in Soviet science. The immediate 

post-revolutionary period was one of great ferment, with many new ideas in the air, and 

intellectual control not yet the major hindrance it later became. Many areas were opened 

up in science which were applied to building up the new state (Wertsch, 1985). By the mid 

1920s, scientists wanted to build a new Marxist psychology, starting from the practical 

activity of human beings (Leont’ev in Rieber and Wollock, 1997a). With the rise of Stahn, 

however, ideological imperatives became much more important, and there was a growing 

suspicion of Western science resulting in the increasing isolation of Soviet science.

® Piaget claimed that all children develop through a succession of stages. The age at which they reached a 
new stage could vary, but the progression was invariant. It would not be possible for a child to develop in a 
way characteristic of a later stage than the stage they had reached.
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2.4.3 Marxist basis for Vygotsky's work

Vygotsky saw dialectical materialism’ as a coherent basis on which a new psychology

could be developed, agreeing that:

... the Marxist dialectic ... is a general orientation and culture of thought that helps 
each person to pose a problem with greater clarity and purpose and thereby helps him 
to solve the riddles of nature. (Semenov, 1968, cited in Graham, 1987)

2) He further believed that “the methods and principles of dialectical materialism [provided] a

solution to key scientific paradoxes” (Vygotsky, 1978: 6, Introduction), seeing “child 

development [as] a complex dialectical process” (Vygotsky, 1978: 73). Vygotsky’s views 

on the mediation of tools and the influence of the social environment are also characteristic 

of dialectical materiahsm; indeed, he used Marx’s writings as a source in developing his 

ideas:

3

3

Marx said long ago that “the use and creation of implements of labor, although present 
in embryonic form in some species of animals, are a specific characteristic of the 
human process of labor” (Marx, 1920, pl53). (Vygotsky, 1986: 90)

However, many of Vygotsky's references to Marxism were dropped in the first translations 

of his work into English (Vygotsky, 1934/1962), the translators and editors seeing these as 

unimportant rather than an essential foundation.

Vygotsky began his work in psychology in 1924 by dissenting from Kornilov’s approach. 

Kornilov was then Director of the Institute of Psychology in Moscow, to which Vygotsky 

had been invited in 1924. He was studying reactology, which was the interaction between 

organisms and their environments, hnking it to Marxism (van der Veer and Valsiner,

’ Dialectical materialism was a philosophical theory of science, deriving from Marx’s, Engel’s and Lenin’s 
writings. Materialism has at its roots the desire to seek a rational, scientific explanation for everything, and 
to explain all of nature in terms of matter and energy. In a dialectical approach, all phenomena are seen to be 
in a process of perpetual change. In Soviet Marxism, man and nature were seen as one, and any attempt to 
explain either had repercussions for the other, (e.g. Appighanesi, 1976; Graham, 1987,1993).

3



3 Chapter 2: Review o f the literature 30

1991). Vygotsky felt that Kornilov and others like him were using quotes from Marxist 

literature, but were not really using Marxist theory as a true foundation for their work. 

Vygotsky’s theoretical basis was to use Marxism as a scientific method, using the methods 

and principles of dialectical materialism (Vygotsky, 1978: 60f; Wertsch, 1996). All 

psychological functions were to be studied as processes in motion and change rather than 

2) as “stable, fixed objects” (Vygotsky, 1978: 61). This led him to “developmental

psychology, not experimental psychology, [as this] provides the new approach to analysis 

that we need” (p61). This emphasis on studying the history and development of human 

phenomena was characteristic of Vygotsky’s work throughout his life, and it derives 

directly from Marxist theory.

3

3

2.4.4 Fundamental themes of Vygotsky's thought

The basis for Vygotsky's theory was the Marxist view that to understand higher mental 

processes in individuals, you first have to understand their social context. He developed 

three fundamental themes (Wertsch, 1988). The first was his genetic or developmental 

method. By this Vygotsky meant that higher mental functions should be studied through 

their history: “[i]t follows, then, that we need to concentrate not on the product of 

development but on the very process by which higher forms are established.” (Vygotsky, 

1978: 64). His second theme was that “[a]ll the higher functions originate as actual 

relations between human individuals” (p57), emphasising the social origin of higher mental 

functioning. The third theme was that such higher mental functioning is mediated by 

socioculturally evolved tools and signs, of which human language is the most significant.

It is this third theme which is most important in building up the theoretical framework on 

which this thesis is based.
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Mediation by tools and signs

According to Engels, using tools is fundamental to the transformation of apes into humans:

The speciahsation of the hand -  this implies the tool, and the tool implies specific 
human activity, the transforming reaction of man on nature... (Engels, 1934: 34)

This became part of Marxist doctrine. Vygotsky:

... was the first to attempt to relate it to concrete psychological questions. ... he 
creatively elaborated on Engels’ concept of human labor and tool use as the means by 
which man changes nature and, in so doing, transforms himself... (Introduction,
Vygotsky, 1978: 7)

However, where Engels viewed tools as the means by which humans interact with their

environment, Vygotsky extended this to encompass sign systems also. To him, tools and

signs were the same in their mediating function. The difference is that we use tools to act

on objects, whereas we use signs, or psychological tools, such as “language, writing,

number systems” (Vygotsky, 1978: 7), to change our own behaviour (p54f). Tools and

signs are therefore crucial in determining the nature of learning.

If one changes the tools of thinking available to a child, his mind will have a radically 
different structure. (Berg, 1970: 46, cit&d in Afterw ord, Vygotsky, 1978: 126)

Unlike Piaget, Vygotsky’s basis for understanding human development was not the 

maturation of the individual through adaptation to the environment, but human activity and 

the use of tools and signs. Tools and signs are developed by people working together and 

0  have to be mastered by a child through social interaction (van der Veer and Valsiner, 1991)

and through the use of language (Vygotsky, 1978: 23). Using his own theoretical 

explanations together with experimental work carried out by his colleague R E. Levina, he 

concluded:

... the m ost significant moment in the course o f  intellectual developm ent, which g ives  
birth to the pu rely  human form s o f  p ra c tica l and abstract intelligence, occurs when  
speech and p rac tica l activity, tw o previou sly com pletely independent lines o f  
development, converge. (Vygotsky, 1978: 24, original italics)

o
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This conjunction between practical activity using tools and the use of language as a 

problem-solving symbolic tool is fundamental to the case made in this thesis for the use of 

the graphic calculator as a mediating tool.

The zone of proximal development

In assessing the developmental level a child has reached, Vygotsky felt it was important to

look not only at what a child could do alone, but also to look at what the child could do if

helped. Vygotsky gave the example of two eight-year-olds. One could perform at the

twelve-year old level when assisted, whereas the other was only able to perform at the

nine-year old level (Vygotsky, 1978: 85f). Clearly, the first child is at a different level of

development from the second. Vygotsky called the difference between the child’s

performance alone and when aided the ‘zone of proximal development’ (ZPD):

It [the zone o f  proxim al developm ent] is the distance between the actual 
developm ental level as determ ined by independent problem  solving and the level o f  
poten tia l developm ent as determ ined through problem  solving under adu lt guidance 
o r  in collaboration with m ore capable peers. (Vygotsky, 1978: 86, original itahcs)

What hes in the zone of proximal development at one stage is realized and moves to 
the level of actual development at a second. In other words, what the child is able to 
do in collaboration today he will be able to do independently tomorrow. (Vygotsky,
1987: 211)

It is a contention of this thesis that two children working together with a graphic calculator 

can form a ZPD, enabling both children to advance further than they would have done 

alone or unaided by the graphic calculator.

Scientific and everyday concepts

Piaget succeeds in differentiating spontaneous and nonspontaneous concepts, but does 
not see that they are united in a single system that is formed in the course of the 
child’s mental development. He sees only the break, not the connection. (Vygotsky, 
1987: 174)

o
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Whereas Piaget beheved that children started with spontaneous concepts, which were later

superseded, Vygotsky beheved these were part of a single system. ‘Scientific’® concepts

were those that the child acquired during formal instruction’, ‘everyday’ concepts were

those met during everyday hfe. Vygotsky hypothesised that scientific concepts move

downwards to meet corresponding everyday concepts, and that stable concept formation

^  occurred when they interacted:

The development of scientific concepts begins with the verbal definition. As part of 
an organized system, this verbal definition descends to the concrete; it descends to the 
phenomena which the concept represents. In contrast, the everyday concept tends to 
develop outside any definite system; it tends to move upwards toward abstraction and 
generahzation. (Vygotsky, 1987: 168, original itahcs)

This hypothesis led Vygotsky to claim that learning concepts through direct instruction 

alone is impossible, leading to the “mindless learning of words, an empty verbalism that 

simulates or imitates the learning of concepts in the child” (pl70). Teaching a new 

0  concept is not the end of the process of intemahsing it, but the beginning (pl72).

This interaction of practical, everyday ideas and the more formal, abstract ideas taught in 

school is utilised in the graphic calculator model described in this thesis. Connections 

between everyday practical activity and ideas and the more abstract ideas of algebra are 

facihtated by the graphic calculator model of a variable, (discussed later in this chapter in 

section 2.7.2) and by the classroom modules in which it was used (section 4.4).

o

® “In using the term ‘scientific’ in this context, Vygotsky is emphasising (1) the systematic nature of scientific 
knowledge and (2) its association with the peculiar social institutions of science and education.” (Editor's 
Notes, Vygotsky, 1987: 388)

’ “The term that is translated here as ‘instruction’ (obuchenie) has been translated in other texts as ‘learning’. 
Neither of these English glosses is an entirely adequate translation of the Russian term. ... Thus the term 
obuchenie seems to us to imply the teaching/leaming process involved in instruction; not merely the action of 
the instructor or the learner.” (Editor’s Notes, Vygotsky, 1987: 388)
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Language and discussion

The connection between discourse and concept forms an essential aspect of Vygotsky’s 

theory:

Learning to direct one’s own mental processes with the aid of words or signs is an 
integral part of the process of concept formation. (Vygotsky, 1986: 107)

Once a concept is exphcated in dialogue, the learner is enabled to reflect on the 
dialogue, to use its distinctions and connections to reformulate his own thought.
(Bruner, 1987: 4, Prologue to Vygotsky, 1987)

Piaget and Vygotsky agreed that the child’s thinking:

... must... be understood, and perhaps primarily so, as a function of those 
relationships which are established between the child and the social environment that 
surrounds him. ... The very structure of the individual’s thinking depends on the 
social environment. (Preface to the Russian edition of Judgement and Reasoning in 
the Child, Piaget, 1928, cited in Vygotsky, 1987: 82)

However, Vygotsky, unlike Piaget, did not believe that concept development is essentially 

biological. Where Piaget theorised concept development as a process of adaptation 

between the individual and the environment (Piaget, 1974/1977), Vygotsky saw it as a 

process in which social phenomena are transformed into psychological phenomena through 

the mediation of signs (that is, symbolic tools, particularly language) and tools (Vygotsky, 

1978). Vygotsky felt that Piaget radically underestimated the significance of language, 

beheving that:

Real concepts are impossible without words, and thinking in concepts does not exist 
beyond verbal thinking. That is why the central moment in concept formation, and its 
generative cause, is a specific use of words as functional “tools”. (Vygotsky, 1986:
107)

Throughout his career, Vygotsky consistently emphasised the importance of language in 

mediating psychological processes (Minick, 1996).

Another part of the theorisation of the graphic calculator provided in this thesis is that the 

graphic calculator, in providing mathematical objects on which to operate, also provides

o
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objects for discussion and appropriate language for that discussion, thus assisting the 

formation of concepts.

The role of the peer/teacher

Vygotsky believed that adult guidance and collaboration with peers were as necessary to 

learning as the exposure of the student to new material (Vygotsky, 1978: 86; 1987: 187). 

The teacher or peer does not always need to be physically present, as the memory of 

discussion can often be sufficient to enable the learner to move forward (Daniels, 2001; 

Vygotsky, 1987: 216). Peer collaboration was also seen as an effective medium for 

learning by Piaget and his colleagues (Brown, et a l, 1996a; Phelps and Damon, 1991), 

enabhng the learners to work at a level higher than they would alone (Brown, Campione, 

Ferrara, Reeve and Sullivan Pahncsar, 1991; Landsmann, 1991; Richards, 1991). This is 

also an important strand in the theorisation of the graphic calculator provided here.

2.4.5 SocioculturaMsm

Socioculturahsts, who are Vygotsky’s successors, have criticised the behaviourists of the

early and mid-twentieth century and all types of Piagetians and constructivists (including

socioconstructivists) for locating learning in the individual (Brown, Stein and Forman,

1996b; Lerman, 1996a):

The metaphor of students as passive recipients of a body of knowledge is terribly 
limited: so too is the metaphor of students as all-powerful constructors of their own 
knowledge, and indeed of their own identities. (Lerman, 1998: 70)

Like Vygotsky, socioculturahsts see learning as occurring first in the social plane rather 

than in the individual. This is fundamentally opposed to the Piagetian view, despite
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Piaget’s view of the importance of the social environment, since for Piaget learning 

occurred primarily in the individual.

Socioculturahsts are critical of socioconstructivists. For instance, Lerman saw the

socioconstructivists’ position as essentially constructivist to which a layer of social

interaction has been added (Lerman, 2003, cf. Cobb, et a l, 1990). He drew attention to the

danger of bolting together theories which at heart are contradictory and which do not

address each other’s weaknesses. Zevenbergen saw further dangers, highhghting the risk

of individuahstic theories of learning legitimising the marginalisation of many social and

cultural groups (1996):

Within a constructivist paradigm, the individual constmction of meaning recognises 
that students from social, cultural and gendered groups are likely to constmct different 
meaning based on their past experiences and it is this which can be seen to be 
responsible for the poor performance of many marginal social groups, (pi05)

Currently socioculturahsts are engaged in developing Vygotsky's theories for the cultures 

of our time. Daniels (1996) pointed out that the Vygotsky of the USSR in the 1920s and 

1930s is not the Vygotsky of the West post-1970; the Vygotsky of the West of the late 

twentieth and early twenty-first centuries must also be seen in a cultural context. 

Nevertheless Wertsch (1988) has claimed that Vygotsky's work has provided an 

“overarching theoretical framework” (p88) needed in Western thought, together with a 

fundamental shift from the individual to the collective (cf. Daniels, 2001; Minick, 1996; 

Wertsch and Tulviste, 1996). However, Wertsch also pointed to the dangers of distortion 

and the use of Vygotsky's theories piecemeal (cf. Lerman, 1996a).

Development of Vygotsky's work in this way is very necessary. Vygotsky did not have the 

time to develop his theories fully. He was aware of his impending death, so initiated new
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theory, rather than working on establishing it, leaving this to those who came after him. At 

his death in 1934, there was a considerable amount of further work to be done, some of 

which was done by his colleagues in the USSR (led by Leont’ev of the Kharkov groupé”). 

More recently, with the opening up of the USSR and the emigration of Russian scholars to 

the West, development of Vygotsky's work has proceeded in the West also. The Kharkov 

^  group concentrated on activity theory" (e.g. Bakhurst, 1996; Kozulin, 1996; Minick,

1996), which was more overtly Marxist than Vygotsky's primacy of language and culture, 

and hence more acceptable to Stahn. In the West, scholars have considered tool mediated 

action (e.g. Bakhurst, 1996; Daniels, 2001) or goal directed action (Daniels, 1996) as a 

starting point. There has also been considerable expansion of Vygotsky's concept of the 

zone of proximal development (e.g. Brown, et a l, 1996a; Daniels, 2001; Lave and 

Wenger, 1996; Wertsch and Tulviste, 1996). Engestrom (1996) has discussed further 

3  developments of Vygotsky's theory of concept development through the meeting of

everyday and scientific concepts (cf. Hedegaard, 1996).

2 . 5  M e d ia t io n  o f  t o o l s  in  t h e  l e a r n in g  p r o c e s s

There is nothing new about using tools to help students learn mathematics.

The development of mathematics has always been dependent upon the material and 
symbohc tools available for mathematical computations. Nobody would deny the role 

0  played by the introduction of the decimal system, the construction of logarithmic

Shortly before Vygotsky’s death, growing ideological pressure caused a group of psychologists, including 
Vygotsky’s colleagues, Leont’ev and Luria, to move from Moscow to Kharkov. Vygotsky was also invited 
to join them, but preferred to remain in Moscow (van der Veer and Valsiner, 1991:185).

** Activity theory has been “the chief category of psychological research in contemporary Soviet psychology 
since the beginning”. It originated in the work of Vygotslqr, who suggested that “socially meaningfrd activity 
may serve as an explanatory principle in regard to, and be considered as a generator of, human 
consciousness.” However, in the mid 1930s, “a group of Vygotsky’s disciples came up with a ‘revisionist’ 
version of activity theory that put practical (material) actions at the forefront while simultaneously playing 
down the role of signs as mediators of human activity.” (Kozulin, 1996: 99)
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tables, the tabulation of elementary functions, or the development of mechanical and 
graphical computational tools. (Artigue, 2002: 1)"

Theorisation of the use of such tools has developed mainly since Vygotsky’s seminal work

on this subject, becoming particularly significant since the development of the computer

and computerised technologies in general. However,

What is firstly asked of software and computational tools is to be pedagogical 
instruments for the learning of mathematical knowledge and values which were 

3  defined in the past, mostly before these tools existed. (Artigue, 2002: 2)

The mathematics that is currently taught to students relates to an era before computers 

were readily available. There is still suspicion of methods which cannot be replicated 

using paper and pencil technology only: for example, students taking A level examinations 

in the UK are still required to show that they can answer questions without any calculating 

aids". Yet no practising mathematician would handicap themselves by working without 

appropriate professional tools. That it does hamper students to work without the tools they 

have become accustomed to is made clear by Noss and Hoyles:

3

... these tools wrap up some of the mathematical ontology of the environment and 
form part of the web of ideas and actions embedded in i t ... (1996: 227).

It is apparent that there is still a need for a theorisation of tools which provides an 

explanatory structure for their role in mathematics education. In the specific case of the 

0  graphic calculator, since it is more hke a hand-held computer than a simple calculator

(Penglase and Arnold, 1996; Ruthven, 1990), much that has been said and written about 

the use of computers also applies to them.

These page numbers refer to a pre-publication copy of Artigue’s paper.

Information obtained from 
http://www.qca.org.uk/subjects/downloads/revised gee maths criteria 20Q40105.pdf on 7 April 2004.

O
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2.5.1 The computer as a technology that transcends the 
limitations of the mind

In 1985, Pea defined a cognitive technology as

... any medium that helps transcend the hmitations of the mind, such as memory, in 
activities of thinking, learning, and problem solving ... (pi68).

It was axiomatic, he claimed, citing Vygotsky (1934/1962; 1978) in support of his 

argument, that:

... intelHgence is not a quality of the mind alone, but a product of the relation between 
mental stmctures and the tools of the intellect provided by the culture ... (Pea, 1985:
168)

Technologies which have been most explored in this context include “written language ... 

and systems of mathematical notation, such as algebra or calculus”. Pea then went on to 

assert that “computers may provide the most extraordinary cognitive technologies ... 

devised” (p i68).

Computer technology has had many other benefits claimed for it over the last decade or 

two. It could aid students in exploring mathematical relationships (Dreyfus, 1993; Hoyles, 

1993; Noss, 1998) or in reflective abstraction (Ayers, Davis, Dubinsky and Lewin, 1988; 

Dorfler, 1993; Hoyles and Noss, 1992). Computers can take over the technical parts of an 

investigation or calculation, leaving students free to concentrate on the conceptual aspects 

of a problem (Dorfler, 1993; Dreyfus, 1993; Pea, 1985, 1986,1987). Computers can also 

change the nature of the learning process or the nature of what is learnt (Dorfler, 1993; 

Papert, 1980; Pea, 1985; Shaffer and Kaput, 1999). They enable learning to be 

provisional: hypotheses can be made, tested, modified, thrown out and replaced easily; 

mistakes can be removed without trace (Fox, Montague-Smith and Wilkes, 2000; Ruthven 

and Hennessy, 2002). Others point out that learning rarely occurs in a linear fashion, and 

that undue simphfication can cause problems later (Choi and Hannafin, 1995), whereas use
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of the computer allows more complex ideas and real data to be introduced much earher in 

the learning process (Tall, 1989).

However, while agreeing with much of the above, some researchers are more cautious 

about the effects of computer technology on learning. Ruthven (1993) observed a lot of 

trial and error which was unsupported by reflection; Keitel, Kotzmann, et al (1993) 

claimed similarly that a ‘black box’ is substituted for mathematical processes, and the 

mathematics is never made exphcit. Fox, Montague-Smith, et al (2000) asked whether 

students learn from their errors when working at the computer, or whether they just 

become more confused.

2.5.2 Metaphors for tool action

Some tools can be classified as “defining technologies”: these redefine man’s role in

relation to nature, such as the potter’s wheel, the clock, the steam engine, and the computer

(Bolter, 1984: 11; Salomon, 1991: 186f). Defining technologies enable people to perform

new tasks, or to ask new questions and find new answers, or to make new distinctions.

According to Salomon, such defining technologies are metaphors which serve as

“cognitive prisms” (p l86f), through which we can examine and interpret other phenomena.

An example of a technology which acts in this way is the clock:

The situation is much like that of making a clock and letting it run and continue its 
motion by itself. In this manner God allows the heavens to move continually ... 
according to the established order ... (Oresme, 14th century, cited in Salomon, 1991:
187)

Here Oresme is using the clock as a metaphor to say something about the nature of heaven. 

The clock is a “defining technology”, which “develops hnks, metaphorical or otherwise, to 

a culture’s science, philosophy, or literature; it is always available to serve as a metaphor, 

example, model, or symbol” (Bolter, 1984: 11). A defining technology is one that helps us
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to make sense of the incomprehensible, in this case the heavens. These metaphors also 

help us to organise our knowledge and to guide our exploration of new phenomena. An 

example of a metaphor creating such a guide is the comparison of the mind to a computer. 

However, although such metaphors can draw our attention to certain aspects of, for 

instance, the heavens or the mind, that direction may be at the expense of other facets 

(Salomon, 1991).

Another metaphor in common use to exemplify how the computer acts as a tool for

learning is that of ‘amplification’.

Computers are commonly beheved to change how effectively we do traditional tasks, 
amplifying or extending our capabihties, with the assumption that these tasks stay 
fundamentally the same. (Pea, 1985: 168)

Pea (1987) beheved, however, that amphfication is not an adequate metaphor to describe 

2) the effect of cognitive tools or technology. Amplification describes the process whereby

the computer extends our ability to perform a task, but does not change the nature of the 

task, or the way that the task is viewed. Pea claimed that tasks are changed by cognitive 

technologies, changing also the way they are conceptualised. To describe this, he used the 

metaphor of “reorganization” (1985: 170f). The effect of cognitive tools is to not only 

extend or speed up some human faculty, but also to change the way we think; they are 

“reorganizers of mental functioning” (pl79).

These ideas are in many ways implicit in the mediation of signs in Vygotsky's framework 

and that of the socioculturahsts. Signs cause changes in a person, who then goes on to 

change the sign, in a continuous dialectical process (Pea, 1985; Vygotsky, 1978: 54ff; 

Wertsch, 1985).

These signs are special psychological tools by means of which the individual 
organizes his behavior and learns to direct them voluntarily. Just hke tools of labor, 
they act as an intermediate link between the activity of the person and the external
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object and mediate the relationships between them. But whereas the tools of labor are 
directed toward the object and change it according to a consciously set goal, the signs 
change nothing in the object, but serve as a means by which the subject can influence 
himself, his own mind. (Yaroshevsky and Gurgenidze, 1997: 350, Epilogue to 
Vygotsky, Collected Works, Vol HI)

2.5.3 Instrumentation of tools

Fears mentioned at the end of section 2.5.1, that computers may act simply as ‘black

boxes’ with no gain in conceptuahsation by the user, have caused a group of French

researchers to rethink the commonplace view that the use of technology will necessarily

support learning. If such cognitive technologies are to be used to assist students of

mathematics, the question of how the tool can become a means to access the mathematics

needs to be considered (Artigue, 2002).

The widespread idea that computer environments, because they can appear to take on 
technical aspects of mathematical activity, spontaneously induce mathematical 

2) activity, which is both more reflective and conceptual, must be challenged. (Guin and
Tronche, 1999: 200)

Guin and Tronche refer to this process, whereby the mathematics imphcit in the use of the

tool becomes exphcit, as ‘instrumental genesis’ or ‘instrumentation’ :

Transforming any tool into a mathematical instrument for students involves a complex 
‘instmmentation’ process and does not necessarily lead to better mathematical 
understanding. (Guin and Trouche, 1999: 195)

The process of instrumentation (that is, of transforming an artefact into a transparent 

mathematical tool) takes time, and needs to be carefully considered (Artigue, 2002; Guin
2)

and Trouche, 1999; Lagrange, 1999; Vérillon and Rabardel, 1995).

Initially, a tool is merely an ‘artefact’: this is an object whose purpose the user is not aware 

of, so it lacks the potential to help the user in the way intended. For instance, a calculator 

used as a straight edge is simply an artefact (Monaghan, 2003). If the artefact is to become 

an instrument (the calculator becomes a calculating aid rather than a straight edge), the
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user has to enter into a relationship with it, which allows it to become an agent for doing 

mathematics. The user needs to appropriate the tool for themselves and integrate it with 

their activity (Monaghan, 2003; Vérillon and Rabardel, 1995). Studies conducted by the 

French group:

... clearly show that the complexity of instmmental genesis has been widely under­
estimated in research and innovation ... until quite recently. (Artigue, 2002: 8).

Artigue attributed the lack of attention to instrumental genesis to the predominant role

given to technology as a pedagogical tool:

Suggesting that instrumentation may be a complex and costly process does not fit 
visions that consider technology mainly as an easy tool for introducing students to 
mathematical contents and norms defined independently from it. (p8)

The diagram below (Figure 3) is adapted from Ruthven (2003), which is based on a 

diagram in Vérillon and Rabardel (1995: 85). It illustrates the conceptuahsation of an 

artefact becoming an instrament through its relationship with the student and the 

mathematics. Although there are direct relationships between each of these (shown by the 

green arrows), there is also a relationship between the student and the mathematics, which 

is mediated by the instrument (shown by the black arrow). The process of instrumentation 

is the estabhshment of this relationship, and it is the creation of this mediating relationship 

that changes an artefact into an instrument or tool.
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Figure 3: Process of instrumentation

Instrument

MathematicsStudent

It is in this way that the use of the graphic calculator by students is conceptualised in this 

thesis. In this theorisation, the calculator becomes an instrument which is transparent 

(Ruthven, 2003): the tool does not hide the mathematics, but reveals it. The examples 

2) given in Chapter 5 exemplify this, with the students developing their conceptual

understanding through the mediation of the graphic calculator.

2.5.4 The graphic calculator as a mediating tool

This thesis is about the use of the graphic calculator as a mediating tool. The graphic 

calculator is a form of cognitive technology (see section 2.5.1), which can enhance the 

capability of a student. It also has the potential to be a ‘cognitive prism’ providing a 

metaphor to explain the incomprehensible (see section 2.5.2). As is discussed later 

(section 2.7.2), the calculator provides a model of a variable which helps students to access 

a difficult concept early in their experience of algebra. My initial expectation of how it 

would help students was as an ‘amphfier’, performing routine tasks, and thus giving 

students time to access deeper conceptual understanding. This expectation is also found in 

Berger (1998). In fact, this was not the most significant effect that 1 found, although it was
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for Berger. The evidence of cognitive change was much more significant, as discussed in 

Chapter 5 (cf. Gage, 2002b), which accords with Pea’s (1985) claims.

There is little research that looks specifically at how students working with the graphic 

calculator access knowledge. The hterature on graphic calculator research so far is mainly 

about specific ways of using the calculator to aid students in learning a given aspect of the 

curriculum, particularly graphs. There is much less research which looks at how it does 

this, or what impact it might have on teaching and learning. In 1996, after a decade of 

graphic calculator use in schools, Penglase and Arnold asked: “In what ways can [graphic 

calculators] be used to maximise learning and achievement?” (p59). They concluded that 

an answer to this question remained “elusive and conflicting”, and that the current state of 

research was inconclusive.

A year later, Hennessy (1997) reviewed the literature on portable technologies in a report 

for the Computers and Learning Group at the Open University. She found studies which 

claimed that handheld technologies were empowering, assisting student autonomy and 

active learning. Key features which contributed to the usefulness of handheld technologies 

included accessibility, portability, ease of use, and time for experimentation. The graphic 

calculator scores highly on all these indicators, as Hennessy recognised. Both Penglase 

and Arnold and Hennessy focused mainly on how the graphic calculator supports students 

in the area of graphing.

In 2002, Burrill, Allison, et al conducted a review of graphic calculator research in a 

variety of different mathematical areas. They found that there were still many unanswered 

questions about how the technology is used, what its impact on student understanding is.
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and which students benefit from using the technology. They also found few studies on use 

by children less than 16 years of age. They concluded that research so far is ‘uneven’, but 

that it at least establishes the groundwork for more rigorous research in the future.

It is clear from these studies that the graphic calculator has the potential to be an effective 

^  classroom tool for a range of reasons. It can aid the active construction of learning by

giving immediate feedback (Gage, 2002b; Hennessy, Fung and Scanlon, 2001) and 

reducing drudgery (Hennessy, 1997). It can also lead to collaborative work (Hennessy, et 

a l, 2001), focused dialogue and reflection (Graham, 1998) which all aid the constructive 

process (Gage, 2002a). Ruthven (1995) observed informal networking when year 7 

students used graphic calculators as part of their normal classroom kit. The students that 

he observed felt that it was a useful learning tool, and it was found to have an overall 

3  positive influence on their attitudes to the use of technology. It provides a private space

for an individual to try out hypotheses (Penglase and Arnold, 1996) without mistakes being 

made public (Hennessy, 1997), and it has all the provisionality of computer technology 

(Gage, 1999a; Ruthven and Hennessy, 2002). Like other forms of computer technology, 

the graphic calculator can externalise objects for reflection, analysis and discussion, 

providing a physical reality for abstract concepts (Graham, 1998; Graham and Thomas, 

2000a).

0

In Mind and Society (1978; 40-45), Vygotsky described a series of experiments in which 

pre-school children (aged 5-6 years), older children (aged 8-9 years), adolescents (aged 

between 10 and 13 years) and adults were all given external aids to help them in a 

memory-based task. The very young children could not make use of the aids, and found 

them confusing (this corresponds to artefacts which have not become tools through the
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process of instrumentation, as described in the previous section). The older children and

the adolescents found the external aids very useful, but the adults also found them

confusing, preferring to use their own internal resources. Vygotsky found that the

youngest children could not yet make use of external prompts to mediate their mental

functioning, school children and adolescents found them very useful, but the adults had

already internalised such signs, and no longer needed them:

... the external sign that school children require has been transformed into an internal 
sign produced by the adult as a means of remembering. This series of tasks applied to 
people of different ages shows how the external forms of mediated behavior develop. 
(Vygotsky, 1978: 45)

This result suggested that for children in the age group I was studying (10-14 years), using 

an external instrument to help them in their learning might indeed prove valuable.

2 . 6  P e r c e iv e d  d if f ic u l t ie s  in  t h e  t e a c h in g  a n d  l e a r n in g  o f

ALGEBRA

The previous sections of this chapter have considered the epistemology underlying the 

work described in this thesis, and the work of Vygotsky on which it is grounded. 

Mathematics is seen as a human construct, which has to be actively built up by each 

individual. The tools that mediate this construction are an important consideration when 

discussing how students form concepts. In the context of the research described in this 

2) thesis, the graphic calculator acts as a form of cognitive technology, which can act as a

mediating tool in the way that Vygotsky described. The next sections of this chapter 

consider aspects of the teaching and learning of algebra, and how the graphic calculator 

can contribute to these.
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2.6.1 The nature of algebra and thinking algebraically

What is algebra and what does it mean to think algebraically? What is the connection 

between algebra and arithmetic? Most mathematicians, mathematics educators and 

researchers find it easy to recognise algebra and algebraic thought, yet equally most find it 

very difficult to characterise them (e.g. Charbonneau, 1996; Janvier, 1996; Lins, 1992; 

Usiskin, 1988).

Algebraic statements usually involve a specific notation, yet working with letters or strings 

of symbols may not necessarily be evidence of algebraic thinking (Janvier, 1996; Love, 

1986; Mason, 1996). As Wheeler (1996a) pointed out, algebra certainly involves working 

with a symbolic system, but it is much more than that. 3(x + 5) + 1 may be the result of an 

algebraic process; it might equally be an empty string of symbols (Sfard and Linchevski, 

1994). Janvier suggested that using the formula 70̂  to calculate the area of a circle from its 

radius does not involve algebraic thinking, whereas using this formula to calculate the 

radius of a circle from the area does.

The purpose of using the graphic calculator in the classroom studies described later in this

thesis (section 4.4.3) was to give students a way to find meaning in such an expression, and

a context for working with it, so that it became more than an empty string of symbols for

them. It was hoped that this grounding would enable the students to move forward into

genuine algebraic thinking:

Algebra is now not merely ‘giving meaning to symbols’ but another level beyond that: 
concerning itself with those modes of thought that are essentially algebraic -  for 
example, handling the as-yet-unknown, inverting and reversing operations, seeing the 
general in the particular. Becoming aware of these processes, and in control of them, 
is what it is to think algebraically. (Love, 1986)
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2.6.2 Comparisons between the historical development of
algebra and difficulties students experience in learning 
algebra today

Many writers have looked at the historical development of algebra (phylogenesis) and 

drawn parallels between this and the way that individual children learn (ontogenesis), 

although they have not always agreed about the stages of that development. Harper (1987) 

identified the main stages of algebraic development as rhetorical (where the problem and 

solution are framed in natural language, as was the case before Diophantus), syncopated 

(where a mix of words and symbols was used, as happened from Diophantus*'* until the end 

of the 16* century, particularly in the work of Viète*  ̂in the mid-16* century) and 

symbolic. Sfard (1995) gave the main stages as rhetorical and syncopated (pre-Viète), 

Viètan symbohc algebra, and abstract algebra, which she claimed corresponded to primary, 

2) secondary and tertiary stages of education.

The development from rhetorical to syncopated to symbolic forms of algebra can certainly 

be used to give a structure to model the development children have to go through in their 

learning, if they are to be successful users of algebra (Sfard and Linchevski, 1994). Harper 

(1987) suggested that the curriculum should mirror the history of mathematics, and looked 

at this in detail for the case of algebra. He concluded that using the methods of history to 

3  introduce algebra could help students’ attempts to find some meaning in the tasks they

Diophantus of Alexandria (his dates are uncertain, but he is generally assumed to have lived around 
250AD) was a leading algebraist of the Greek period. He used words and some abbreviations in his algebraic 
methods, including a symbol for an unknown. This is the type of notation known as ‘syncopated’ (Boyer, 
1968: 197ff)

François Viète, or Franciscus Vieta, as he was also known, (1540-1603), developed algebraic notation, 
distinguishing between a parameter and an unknown. Nevertheless, his notation was still essentially 
syncopated rather than symbolic (Boyer, 1968: 333ff)
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were expected to do, but that it was not realistic to expect some 1300 years of history to 

happen in the classroom in a mere five years. While this paralleling of stages in the 

development of algebra as a discipline and that of its development in the individual child 

has many advocates, others believe that the lessons of history are less direct than this 

(Wheeler, 1996b).

2.6.3 Difficulties at the arithmetic/algebra interface

Some definitions of algebra equate it to a form of generalised arithmetic:

Historically, algebra grew out of arithmetic and it ought so to grow afresh for each 
individual. (Mathematical Association, The Teaching of Algebra in Schools,
1929/1945: 5, cited in Lee and Wheeler, 1989: 41)

Yet for Love (1986) algebra is about handling the “as-yet-unknown” (p 49), which is not

an arithmetic process (cf. Janvier, 1996). Usiskin (1988) claimed that algebra is not just

generalised arithmetic, and it is more than a vehicle for problem-solving:

It provides the means by which to describe and analyze relationships. And it is the 
key to the characterization and understanding of mathematical structures, (pi 8)

Kieran (1988b: 91) claimed that “[ajlgebra is often called ‘generahzed arithmetic’” and 

Demana and Leitzel (1988) felt that students need to work with key algebraic concepts in a 

numerical setting first, since the basic concepts of algebra are available through numerical 

experience. The many attempts that have been made to characterise the relationship 

between arithmetic and algebra suggest that this is as difficult as pinning down the nature 

of algebra itself.

Clearly there is an intimate connection between arithmetic and algebra. However, as Lee 

and Wheeler (1989) pointed out, the connection between arithmetic and algebra is not 

always obvious, particularly when students first meet algebra (cf. Herscovics and 

Linchevski, 1994; Matz, 1980). Nor is it obvious to them why they have to use algebraic
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methods, when often informal or arithmetic methods work perfectly well (Lee and 

Wheeler, 1987).

Students’ and their teachers’ difficulties in moving from arithmetic to algebra have been 

well-documented (e.g. Dickson, 1989; Linchevski and Herscovics, 1996; Sfard and 

Linchevski, 1994; Usiskin, 1988). In arithmetic, signs mean ‘do something’, so, for 

instance, 3 + 5 is interpreted as the operation of addition. In algebra these same signs are 

no longer instructions to do something, but are the expression of relationships: a + 6 is a 

mathematical object in its own right, and the ‘+’ sign expresses the relationship of the 

variables a and b, rather than an instruction (e.g. Booth, 1988; Kieran, 1990; Nickson, 

2000). In arithmetic, students operate on numbers, in algebra they have to learn to operate 

on objects like a + b. This is often a major difficulty for them (Nickson, 2000).

Another cause of difficulty may arise from methods being masked in arithmetic. When 

children do arithmetic, they make specific calculations, which generally have a specific 

numerical answer (Booth, 1988). Achieving a correct answer may allow difficulties or 

deficiencies in methods to go unappreciated by either the child or the teacher, and these 

may then transfer over into algebra, where they cause greater problems (Booth, 1984; 

Kieran, 1990). Misconceptions in arithmetic may also be passed on. Booth gives the 

example of 12 4- 3 and 3 12, which students often think mean the same thing, because

you just divide the larger figure by the smaller (cf. Dickson, 1989).

It is very common for children to spend several years learning arithmetic before they start 

algebra, and their early use of algebra is rooted in the procedures and concepts of 

arithmetic (Bednarz and Janvier, 1996). However this can cause problems, with the child
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experiencing disturbances to their arithmetic (e.g. Booth, 1984; Carraher, Schliemann and

Brizuela, 2000; Filloy and Rojano, 1989; Sfard and Linchevski, 1994). Lee and Wheeler

(1987; 1989) found that about a third of the students they interviewed (aged 15 or 16 years)

beheved that 20 = 4 was an acceptable answer when algebra was involved, since these

students had no expectation that arithmetic and algebra would obey the same rules:

As in the previous problems, students gave a justification by rule for the algebraic 
development. That these “rules” could lead to a result which is nonsense in arithmetic 
did not appear to be a problem for the majority of these students. ... Once again 
students behaved as though algebra were a closed system untroubled by arithmetic.
(Lee and Wheeler, 1989: 45f)

This disassociation of arithmetic and algebra may mean that students do not check their 

algebraic answers numerically, not seeing this as a useful thing to do.

Avalos (1996) however found that when 11-12 year-old children used graphic calculators 

^  to begin their study of algebra, many of the problems commonly experienced were

avoided. The children in his study used their knowledge of arithmetic and language 

provided by the calculator to generalise about relationships between variables. He found 

that there was no disassociation between arithmetic and algebra, and that the arithmetic 

background provided meaning for the children because they encountered algebra as a 

“language-in-use” capable of expressing and negotiating mathematical ideas (Avalos, 

1996: 82).

2) The calculator played the role of a mediational tool that gave support to children in
making the transition from a step by step strategy to a more relational-based way of 
working. (p91)

His findings would suggest that disassociation of arithmetic and algebra need not be 

inevitable.
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2.6.4 Children’s understanding of letters used in algebra

Many children do not understand letters as numbers, but conceptualise them as objects, for 

instance, interpreting 6a as six apples (e.g. Booth, 1984; Rosnick and Clement, 1980). 

Dickson (1989) found that 11-12 year-olds could interpret container symbols, such as □, as 

numbers, but did not interpret letters as numbers**̂ . After all, if 51 can mean five times the 

length of something, why is interpreting 6a as six apples not also correct? Confusion about 

the interpretation of letters is not helped by the fact that letters can be used in many 

different ways. Graham and Thomas (1999) hsted nine different ways*  ̂in which a letter 

may be used in mathematics. No wonder students get confused!

Kiichemann (1981) listed six different interpretations of a letter, which he hnked with 

2) Piaget’s levels of intellectual development (cf. Lins, 1992). Kiichemann’s first three

interpretations were all ways in which students effectively ignore the algebraic character of 

the letter: evaluating the letter, ignoring the letter, and interpreting the letter as an object. 

As students gained in understanding, they interpreted a letter first as a specific unknown, 

then as a generahsed number. His highest level of understanding was that of 

conceptuahsing a letter as a variable. Kiichemann found that very few students ever reach 

the highest levels. This framework has frequently been used by subsequent research 

3  studies, and now forms a standard for children’s conceptual understanding of variables.

In this case, it was not helped by the textbook they were using stating that 10a stood for 10 apples.

These are: a name, a placeholder, an index, an unknown, a generalised number, an indeterminate, an 
independent or dependent variable, a constant and a parameter.
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Booth (1984) found that the ‘fruit salad’ approach** was not helpful for students (cf. 

Graham and Thomas, 1999; Tirosh, Even and Robinson, 1998). Once students had 

grasped that a letter stood for a number rather than an object. Booth found that they tended 

to conceptuahse it as a specific unknown, rather than a variable (1988). This often resulted 

in students believing that different letters must stand for different numbers, so that x + y + z 

= x + p  + z could never be true (Booth, 1984,1988; cf. Ohvier, 1988). Booth’s results 

were largely confirmed by the classroom studies reported in this thesis.

2.6.5 Proceptual thinking

If students are to cope successfully with the transition to algebra, they have to learn to 

think ‘proceptually’. The word ‘procept’ was coined by Thomas (Tall and Thomas, 1991) 

to express a combination of a process and a concept, and it captures the dual identity of 

mathematical objects (e.g. Graham and Thomas, 1998). For instance, the symbol % 

expresses both the process of division and a fraction, which is a mathematical object which 

can be further manipulated*’. Other words that have been used for this include 

‘encapsulation’ (Dubinsky and Tall, 1991), and ‘reification’ (Sfard, 1995; Sfard and 

Linchevski, 1994). Sfard and Linchevski saw mathematical objects as the result of 

reification, in which processes become permanent entities in their own right.

Unfortunately, the same notation is often used for both the process and the object, so it is 

difficult for the beginner to see that there is a fundamental difference (Gray and Tall,

1994).

** a = apple, b  = banana, etc., 6a means six apples, lb  means seven bananas. However, as Graham (1999: 
34) pointed out, what does a x  2a then mean?

*’ While I was teaching, I found that many students were not happy with an answer of %, but would want to 
make it into a ‘proper number’ (0.75). They did not see % as a number, but as an ‘unfinished’ process.
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There is also a tendency for teachers to concentrate on the procedural aspects of algebra as

these follow on more naturally from arithmetic, and are easier for students to grasp than the

structural aspects (Graham and Thomas, 1998; 2000a).

To cope with the difficult transition from arithmetic process-oriented thinking to 
versatile algebraic thinking, teaching has tended to emphasise the process side of 
algebra; the evaluation and manipulation of algebraic expressions. Students have 
often been taught the rules of algebra so that they could develop the necessary 
manipulative abihty, but with little addressing of concepts. (Graham and Thomas,

O 2000a: 268)

This is exemphfied by the preference for teaching equations initially by ‘flowchart’ 

methods^” (a procedural method), rather than by operating on the whole equation (a 

structural method). Tall and Thomas (1991) referred to this as process management, rather 

than relational understanding. Tall and Thomas, and Graham and Thomas, used 

technological tools (computers and graphic calculators respectively) to overcome these 

limitations.

0

0

2.6.6 Misconceptions

As Graham (1998: 6) wrote:

... students significantly under-represent to their teacher the true extent of their 
ignorance and uncertainty in mathematics.

or to quote Rosnick and Clement (1980: 24):

This is a method of solving equations. For instance, 3(% + 2)/2 = 36 would be solved as follows:

+ 2 x3 - 2
X— ^  x4-2—>  3(x + 2)—>  3fx-!-2)

2
-2 - 3  X2

2 2 < —  24 -e—  7 2 -e—  36

At each stage of this process, the operation is written ahove the arrow. A reverse ‘flowchart’ then leads to 
the value of x, by reversing each operation. At no point is the whole equation considered, discouraging 
holistic approaches, and encouraging purely numerical evaluation.
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... large numbers of students may be slipping through their education with good 
grades and little learning.

Johnson (1989) found that the proportion of students whose progress matched what was 

intended was very small, and that teachers’ views on students’ abilities were at odds with 

the understanding (or lack of it) that their students were able to demonstrate in interviews.

3  Student ignorance and error can result from a variety of misconceptions. Lee and Wheeler

(1989) claimed that the arithmetic/algebra interface was a particularly sensitive point for 

misconceptions to arise, while Booth (1988) and Nickson (2000) felt that misconceptions 

were frequently transferred from arithmetic to algebra. Johnson (1989) also reported 

student errors arising from poor teaching strategies, while Herscovics and Linchevski 

(1994) speculated whether student failure might reflect the type of instruction rather than 

the students’ learning potential.
3

3

In her report on the Secondary Mathematics Project, (1980-83), which was about students’ 

strategies and errors. Booth (1984; 1988) stated that there was a high incidence of errors, 

and detailed many different error types. One of the most common misconceptions students 

demonstrate is in their understanding of letters as used in algebra. Indeed, Graham and 

Thomas (1998; 1999; 2000a; 2000b) believed this to be a significant reason for children’s 

failure to progress in algebra: “one reason that algebra is hard is because the notion of a 

variable is elusive” (2000a: 266). The concept of a variable underpins algebra, but, they 

claimed, is rarely discussed in classrooms (cf. Rosnick and Clement, 1980).

Children’s errors are not casual or careless, but an indication of “deeply ingrained and 

resihent misconceptions” (Rosnick and Clement, 1980: 16, cf. Matz, 1980).

Constructivists in particular, beheve that “students’ misconceptions are never arbitrary or
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altogether unreasonable” (Ohvier, 1988; 511). Misconceptions are highly persistent and 

resistant to change through instruction, because they cause students to distort or reject 

incompatible information, so that they simply cannot ‘hear’ the teacher’s instruction. It is 

not reasonable to assume that students will overcome such misconceptions by a process of 

osmosis while learning to manipulate algebraic expressions.

3
Many children appear to use their own idiosyncratic methods in algebra, often derived 

from the extension (frequently inappropriate) of methods they have learnt in arithmetic. 

These methods are often successful initially, but do not enable students to solve harder 

problems (Booth, 1984; Nickson, 2000). Many difficulties in algebra stem from the use of 

informal methods in arithmetic which do not generalise or symbolise efficiently (Booth, 

1988). The emphasis on correct final answers in arithmetic can often mask the use of an 

D  inefficient method, which only becomes apparent much later. Such informal or

idiosyncratic methods can be very persistent, being retained after formal teaching has been 

given (Kieran, 1988a).

I hoped that the graphic calculator model and method of working would enable students to 

tackle some of their misconceptions. A Piagetian view would anticipate that, if confronted 

with a conflict between their own ideas and the feedback of the graphic calculator, students 

would rethink their ideas, and learning would occur. Sometimes, however, when faced 

with such a conflict, students would ignore it, as in this example (discussed in section 

5.2.4) from Claire and Briony’s discussions during the Year 7 case study conducted as part 

of this research:

3

Briony: ... equals minus 17, which is a slight problem.
Claire: So I think we got that wrong once again. ... maybe we just wrote

down the wrong number.
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In this case, the two girls decided that they had written down their predicted answer 

incorrectly, rather than allowing the discrepancy between their prediction and the result 

obtained on the graphic calculator to challenge them. Conflict in itself was not always 

enough; active discussion between students, with the support of the graphic calculator, was 

necessary for change to occur. This was also found by Avalos (1996), who observed that 

students did not always check their answers with the graphic calculator, since they were 

convinced that the rules they had decided on were correct.

2.6.7 Students’ failures at algebra

Accounts of students’ failure to learn algebra are widespread. Lee (1996) described

students’ introduction to algebra as a “cultural shock” (p87), and asked why, if  teachers

work so hard to make algebra meaningful, do their students find it so meaningless, dishke

it so much, and fail so often to succeed (p89). According to Sutherland (1989: 317):

School algebra hopefully provides pupils with a tool, to be used either within 
mathematics itself or within other disciplines. Unfortunately this potential is not often 
realised within the school setting.

Few students or adults would disagree with the following remarks made over 75 years ago

by Bertrand Russell:

When it comes to algebra and we have to operate with x and y there is a natural desire 
to know what x and y really are. That, at least, was my feeling; I always thought the 
teacher knew what they were but wouldn’t tell me ... (Bertrand Russell, 1927, cited in 
Harper, 1987: 86)

Many would also agree with these two students, quoted by House (1988), who were

following accelerated courses (implying they were above average attainers):

Algebra is quite hard, and although very educational, it is very frustrating ninety 
percent of the time. It means hours of instruction that you don’t even come close to 
understanding.

I don’t know much about algebra, but who cares?
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If this is what good students think, what chance is there for the rest?

Herscovics and Linchevski (1994) felt that students “fail to construct meaning for the new 

symbolism and are reduced to performing meaningless operations on symbols they do not 

understand” (p60). Wheeler (1996a) commented that algebra is intrinsically general, 

abstract and context-free, which is why it is such a powerful tool, but, of course, this is 

what students initially find so difficult about it.

2.6.8 Cognitive obstacles in learning algebra

In 1978, Davis, Jockusch, et al looked at the tasks students were asked to do when they 

started algebra, and considered that regression because of cognitive overload was very 

likely. However, they felt that it was not the hmitations of students’ minds that were the 

problem, but the form of the learning experience. Herscovics and Linchevski (1994) also 

queried whether students' failure was a product of the type of instruction rather than their 

learning potential.

Nevertheless, the possible existence of a cognitive gap or cognitive obstacles between 

arithmetic and algebra has attracted attention. In 1988, Chalouh and Herscovics viewed 

students’ failure to understand that letters signify numbers, together with lack of closure, 

the confusion of process and object, and ambiguities in notation, as cognitive obstacles.

An ambiguity of notation they mentioned is that 43 means 40 + 3, 416 means 4 + V2 , but 4a 

means 4 x a  (cf. Matz, 1980). In 1989, Filloy and Rojano suggested there was a “didactic 

cut” (p 20) between equations with one occurrence of the unknown and those with 

occurrences of the unknown on both sides. Herscovics and Linchevski (1994; Linchevski
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and Herscovics, 1996) reported that students refused to operate spontaneously on the 

unknown, and called this a “cognitive gap” (p63).

In 1989, Sutherland agreed that “there is a gap between arithmetical and algebraic thinking 

which relates to the use of informal methods in arithmetic” (p318). She then found that 

students would accept lack of closure in a Logo environment, and that they could see that 

the letters chosen to represent a variable were essentially arbitrary. Two years later 

(Sutherland, 1991), she said that the idea of a cognitive obstacle or gap needed serious re­

examination, and raised the question as to whether such obstacles could be ascribed to 

classroom practice. Looking at Thomas’ and Tail’s (1988) work using Basic 

programming, together with work she and others had done using Logo and spreadsheets, 

she found that students who leamt algebra in these environments did not develop some of 

3  the misconceptions about variables as did students taught by more traditional methods.

Avalos’ (1996) work with students using graphic calculators suggests this also.

Sutherland hnked the apparent existence of cognitive gaps or obstacles to the Piagetian 

view. This suggests that language is grafted on to understanding, and so understanding has 

to be developed first. If students are unable to develop this understanding, it is because 

they have not yet reached the stage of formal operations, and so are not ready to study 

algebra. On the other hand, if a Vygotskian view is taken, language becomes a “crucial 

mediator of inter-psychological functioning and an essential agent in intra-psychological 

functioning” (Sutherland, 1991: 44). Algebra can then become a language which 

structures the thinking of the student meeting it, in a process which is essentially 

dialectical. Sutherland claimed that students’ thinking and problem-solving processes

3
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were moulded by the tools available in the medium they used, such as Logo or a 

spreadsheet.

It is entirely consistent with a Vygotskian framework, that the nature of the concepts 

formed, and thus of the misconceptions formed, will be dependent on the tools used in 

learning. The various cognitive gaps or obstacles identified vary, suggesting that although 

there may be serious difficulties for students learning algebra for the first time, there is not 

a specific demarcation between arithmetic and algebra. It seems much more likely that the 

existence of gaps or obstacles should be ascribed to the teaching method used. The graphic 

calculator work described in this thesis was originally started with the intention of enabling 

students to forge links between arithmetic and algebra which would help them to make 

sense of variables, and to see the connection between their previous learning in arithmetic 

3  and the new ideas they were meeting in algebra.

2.6.9 A response to the perceived difficulty in teaching and 
learning algebra: teaching algebra concurrently with 
arithmetic

Several researchers have suggested that children could begin algebra earlier than the usual 

age of about 12 years. Those who beheve that learning algebra requires formal operational 

3  thinking (as in Piaget’s stage theory of development), see no point in teaching it before a

child reaches this age (e.g. Kiichemann, 1981: 171f). However others believe that algebra 

is accessible to younger children, although it should not be taught in the same way 

(Brizuela, Carraher and Schliemann, 2000; Carraher, et al ,  2000; Davydov, 1962). 

Teaching arithmetic and algebra together makes explicit the connections between them, 

and avoids creating tensions and discontinuities between them:
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We are suggesting that arithmetic can and should be infused with algebraic 
meaning from the very beginning of mathematics education.

... algebraic concepts and notation are part of arithmetic and should be part of 
arithmetic curricula for young learners. (Carraher, et ah, 2000: 2)

Teaching the two together successfully needs the teacher to see how arithmetic and algebra 

are interwoven, and to draw out the algebraic character of arithmetic. For instance, 3 + 5 = 

8 and 8 - 5  = 3 will be seen as different types of problem in arithmetic, if  the focus is on 

the operations involved and the answers obtained. When the relationship between the 

numbers becomes the focus, these can be seen to be the same problem, and the relationship 

may be considered as algebraic in character (Carraher, et al,  2000). Interpreting the ‘=’ 

sign as an equivalence relation rather than ‘do something’ is a similar example of algebraic 

understanding found in an arithmetic context, for example, in 8 = 3 + 5.

3  Davydov (1962) taught an algebraic approach to arithmetic, using letters to stand for

numbers, to children aged 6-8 in several schools during 1961-62 in the USSR. He found 

that they were quite ready to master generahsed patterns of quantitative behaviour and to 

recognise these when written symbolically. The ‘=’ sign was always seen as a symmetric, 

equivalence relationship in his approach rather than as an instruction to find a numerical 

answer. The TERC researchers (Brizuela, et al ,  2000; Carraher, et al ,  2000; Carraher, 

Schliemann and Brizuela, 2001; Schhemann, Carraher, Brizuela and Pendexter, 1998)

3  conducted a three-year study in which children aged 8-10 were taught algebra concurrently

with arithmetic, using letters to signify unknown quantities and to express relationships 

between them. They found that the children moved gradually from expressing 

relationships first with natural language, then using iconic representations, drawings and
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number lines, and eventually using symbols^*. These representations became increasingly 

schematic and context independent (Brizuela, et al,  2000). Similarly, Avalos (1996) 

found that the 11-12 year-old Mexican children in his study were perfectly capable of 

expressing themselves algebraically, using the graphic calculator to provide the language 

they needed.

o
In comparing algebra curricula world-wide, Sutherland (2000) found that Japanese 

children are introduced to algebra before thé age of 11, and that they are ready to begin 

quadratic equations by the age of 11 or 12. She suggested that because Japanese is not an 

alphabetic language, it is perhaps easier for Japanese children to learn about variables. In 

Hungary, there is a great emphasis on pre-algebra in primary schools, and the children 

begin formal work with equations by the age of 10 or 11. It would appear that children’s 

3  readiness to start algebra is as much cultural as it is developmental (Lins, 1992).

2 . 7  T h e  g r a p h ic  c a l c u l a t o r  a s  a  m e d ia t in g  in t e r f a c e

BETWEEN STUDENT AND ALGEBRA

2.7.1 Computer mediation

Heid (1996) emphasised the importance of an understanding of a variable to algebraic 

thinking (cf. Graham, 1998; Graham and Thomas, 2000a; Usiskin, 1988), and used 

computer technologies to offer a dynamic approach (Heid and Kunkle, 1988). Her focus

0

This progression closely matches that described earlier (see section 2.6.2) by those who see the historical 
development of algebra matched in each individual’s development
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was on developing symbol sense (cf. Arcavi, 1994), rather than on symbolic manipulation, 

with conceptual understanding emerging from the examples used, rather than from 

definitions. Kieran, Boileau, et al (1996) used computer technology so that they could 

introduce students to variables in the context of functions, rather than simply as unknowns 

to be evaluated (cf. McConnell, 1988). There was an emphasis on the shift from 

manipulation as a primary focus to meaning and understanding, as in the work of Thomas 

and Tall, and Graham and Thomas, discussed below.

Spreadsheets and Logo have found frequent use in this context also. Sutherland described 

the impact of both Logo (Sutherland, 1989,1991) and spreadsheets (Sutherland, 1991) on 

students’ understanding of variables (cf. Thwaites and Jared, 1997). She believed that 

computer environments could allow students to work with richer and more complex 

3  mathematical ideas than they usually do when starting algebra. Rojano (1996) used

spreadsheets to build on students’ informal methods, hoping to avoid the resistance which 

often occurs when formal methods are introduced. She found that the spreadsheet 

environment helped students to express their ideas symbohcally. Work currently being 

undertaken at Warwick University by Ainley, Bills and Wilson appears to be showing this 

also.

Thomas and Tall (cf. Tall and Thomas, 1991; 1988) used programming activities (in Basic) 

to encourage students to develop their understanding of variables. They modelled a 

variable as a number stored in a box marked with a letter, and used software which enabled 

formulae to be evaluated for given numerical values of the letters involved (cf. Thwaites 

and Jared, 1997). Graham and Thomas (1998; 1999; 2000a; 2000b) used a similar 

metaphor in their work on the use of graphic calculators for helping students to work with
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variables. Avalos (1996) used the idea of programming a graphic calculator (by putting 

numbers into a store and evaluating an expression) to encourage children to use algebra as 

a language which would help them to explore number patterns, and to produce expressions 

that represent these patterns.

All these researchers found that the use of mental images for a variable was more effective 

than skill acquisition on its own in enabling students to learn basic algebraic syntax. 

However, the concerns of the French researchers (noted in section 2.5.3) should be 

considered here. It is not enough for students simply to work with a computer or graphic 

calculator. They need also to engage with the technology, in such a way that it does 

actually mediate between student and algebra.

3  2.7.2 The graphic calculator model

The ‘store’ or ‘box’ model is described by Tall and Thomas (1991): they encouraged 

students to develop a mental image of a letter as a label for a store. This store could hold a 

variety of numbers, and could be used in algebraic expressions which could then be 

evaluated or manipulated on a computer. They felt that this approach showed significant 

long-term benefits for concept formation, and that concept formation prior to skill 

acquisition was beneficial for the students in their study. The students attempted to explain 

and offer reasons for their thinking, and had a more global view of the problems. They 

also showed a superior understanding of algebraic notation. Thwaites and Jared (1997) 

also used the ‘box’ idea, using real boxes with post-it notes on them to name the variable, 

and strips of card with a value written on them to put into the boxes. They wanted to make 

a clear distinction between the name or label of a variable and its contents or value.

3
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This idea has been developed by Graham and Thomas (1998; 1999; 2000a; 2000b) and by 

Avalos (1996) using the graphic calculator. Unhke computers, graphic calculators are 

relatively inexpensive, highly portable, and do not need extra software, or programming 

skills to model a variable. The 26 lettered stores of the calculator form a template for the 

way that variables act and can be acted upon, while the large screen means that students 

can see several lines at once, allowing them to reflect on their input and the calculator’s 

output.

Avalos worked with a group of 11-12 year-olds from Mexico. They were asked to produce 

‘programs’ which would copy tables of input and output values given to them. To do this, 

they had to work out the function used (ranging from x ^ a x i o x - ^ h -  ax), then duplicate 

it on the graphic calculator. They also had to produce programs for word problems and 

3  geometrical patterns. Preliminary conjectures were tested with the calculator, so that the

calculator's feedback helped the children to refine their ideas. The children were also able 

to determine if expressions were equivalent, since they would give the same outputs for 

given inputs. Through doing these activities they became aware that the letters represented 

a range of numbers, and that the letters used were arbitrary. They also became used to 

using algebraic expressions to represent general arithmetic processes.

Graham and Thomas worked initially with 12-14 year-old students from top and middle 

ability groups from five UK schools, and then with all ability groups from six New 

Zealand schools. Kiichemann’s (1981) questions were used, with some others, for pre-and 

post-tests to determine the students’ abilities at standard algebra questions. The module of 

work lasted about three weeks, which included an introduction to the calculator. It also
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included ‘screensnaps’, which were calculator screens for the students to reproduce. The

students used trial-and-error to copy the screens, which then provided:

... consistent feedback [from] which students may predict and test, enabhng them to 
construct an understanding of letters in algebra as stores with labels and changeable 
contents. (Graham and Thomas, 2000a: 270)

The students doing the calculator modules did not differ from the control students at the 

pre-test, but by the post-test were doing significantly better in four out of the five UK 

schools, and in all the NZ schools. Graham and Thomas concluded that the graphic 

calculator model improved the students' understanding of how letters are used in algebra^ .̂ 

In addition, most of the students and teachers felt this was a much more enjoyable way to 

study algebra than more traditional approaches.

2) Graham and Thomas (1999) commented that it should not be expected that a concept like

that of a variable would be fully understood on the basis of one short module of work. In 

particular, they highlighted the fact that a calculator store can contain only one number at a 

time, whereas a variable can be understood as representing all numbers within its domain 

at any given time. They also drew attention to the fact that the calculator can only work 

with rational numbers, and that it cannot therefore use the whole of the real numbers for 

the domain of the variable. Hence this model has limitations, but:

0  . . . i f  one can manage at this level to assist students in encapsulating the use of letters
to represent a discrete subset of the reals which contains, say, rational numbers to N 
decimal places (where N may be relatively small), then this would be a considerable 
achievement. (Graham and Thomas, 1999: 20)

They concentrated on Küchemann’s levels 3 and 4 only -  understanding a letter as a specific unknown, and 
as a generalised number.
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Graham and Thomas’ work was the starting point for my own classroom work with the 

graphic calculator. I took their model, and used it in developing my own materials for 

students to use, particularly the idea of the screensnap (Graham, 1998; 22).

2.7.3 Extending the zone of proximal development with the 
graphic calculator

Psychological tools are essentially sociocultural in nature, according to Vygotsky (e.g. 

Kozulin, 1996; Vygotsky, 1978: 57; Wertsch, 1985), being the product of sociocultural 

evolution. Such tools support a learner in the ZPD, to use Vygotsky's metaphor (the ZPD 

is the difference between what a child can do unsupported, and what s/he can do with 

assistance). Jones (1993) suggested that the student in partnership with the technology has 

the potential to work at a much higher level than s/he would otherwise be able to do. If 

0 this is the case, then the technology has the effect of extending the student’s ZPD. The

research reported in this thesis investigated whether this is so for students using the graphic 

calculator to facihtate their learning of algebra. The graphic calculator can enable the 

extension of the ZPD in various ways. It affords a physical model of a variable, and allows 

students to carry out practical activities using it. It can also furnish language to mediate 

the learning experience, and this is enhanced if students work together at least some of the 

time so that discussion can take place.

The interpretation of the ZPD used here is in agreement with that of Meira and Lerman 

(2001). They criticised views that it is some kind of field or physical space, which the 

teacher must find in order to teach successfully. Instead they saw it as a “sign-mediated, 

intersubjective space for analyzing how people become actors and communicators within 

any given activity or social practice” (p3). Rather than seeing the ZPD as the possession of
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the individual, Meira and Lerman interpreted it as a space inhabited by a social group, 

which is mediated by a sign system such as language. In this space, individuals are 

enabled to communicate with each other in a meaningful way, so that each can achieve 

more than they would have done individually. Students working with the graphic 

calculator, discussing the feedback provided by it as they worked on the various activities 

given to them, began to establish a common language about variables and to use this to 

describe something about the nature of variables, as can be seen in the examples in 

Chapter 5.

The graphic calculator can provide a model of a variable which hnks the unknown, abstract 

world of algebra with the known, everyday world of the child, by instantiating the model 

of a variable as a store for numbers. Students come to school with concepts already in 

0  place; “Any learning a child encounters in school always has a previous history.”

(Vygotsky, 1978: 84, cf. Cobb, 1991; Nickson, 2000). They need to be able to discuss 

their existing ideas, and test them out. In particular, students have prior concepts about 

how letters are used and how they are to be interpreted^. These prior conceptions get in 

the way of their learning more viable concepts of a variable. The instant feedback of the 

graphic calculator helps the learner by validating their ideas (Pratt, 1998) when they are 

correct, and by giving them privacy when they are wrong. They can experiment in private, 

trying out anything they hke, without having to worry about whether that is going to 

expose them to adverse attention.

o

Such as Aa meaning 41, or 4, since the value of a  is always 1.
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The calculator also helps to extemahse thinking, which can then be reflected on and 

discussed, which Pea (1987) saw as a necessary part of what a cognitive reorganiser does. 

This enables the learner to give meaning to symbols and other mathematical objects, which 

frequently fails to occur with more traditional teaching methods (e.g. Davis and McKnight, 

1980; Pimm, 1987; Sfard, 1991). Unlike manipulatives, where the mathematical content 

may be less immediately obvious, the graphic calculator displays mathematical expressions 

directly on the screen. The form in which these expressions are written is the same as 

those written by hand, thus creating an immediate and obvious link.

The need for discourse in the classroom is well documented (e.g. Dekker and Elshout- 

Mohr, 1998; Pimm, 1987). However, as Pimm made clear, talk for the sake of it may well 

not be beneficial; pupil talk needs to be focused (cf. Graham, 1998). Discourse in itself is 

3  not the goal, but provides a way to a better understanding of mathematical concepts. To

become a successful learner of mathematics, it is necessary to become fluent in the 

mathematical code (Zevenbergen, 1996). The graphic calculator, in providing 

mathematical objects on which to operate, also provides objects for discussion, and hence 

language to aid the discussion. Useful discourse should involve the negotiation of 

meanings and the sharing of different points of view about mathematics (Pimm, 1987), as 

the socioculturalists also emphasised (e.g. Laborde, 1990; Lerman, 1996a). Because peer 

interaction does not involve an authority relationship, negotiation of shared meaning is 

much more likely to occur when children talk together than in teacher-pupil discussion 

(Bearison, 1991; Phelps and Damon, 1991).

Oral dialogue enables learners to reflect aloud on new ideas, to verbalise their insights and 

to resolve conflicts. The connection between dialogue and concept forms an essential

0
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aspect of Vygotsky's theory, as discussed in section 2.4.4. Indeed, Vygotsky went as far as 

to claim that “[t]hinking in concepts is not possible in the absence of verbal thinking” 

(Vygotsky, 1987: 131).

2 .8  SUMMARY

In this chapter, the literature relevant to this thesis has been reviewed. In sections 2.2 and 

2.3, mathematical epistemologies and constructivist theories of learning were considered. 

The epistemological position taken here is that mathematics is created by human 

construction, rather than being ‘given’ or in some way already in existence. Knowledge is 

acquired when it is constructed by an individual, rather than being transmitted to a passive 

recipient. This accords with the views of both Vygotsky and Piaget, who both held 

constructivist views. Piaget is perhaps better known in this context, but, as has been seen, 

Vygotsky also beheved that knowledge is actively built up by students, and not passively 

passed on to them.

The chapter then goes on to consider the hfe and work of L.S. Vygotsky (in section 2.4). 

The theoretical position taken in this thesis is grounded in Vygotsky’s work, particularly 

his theorisation of concept formation through the mediation of tools and signs. His work 

on the ZPD (zone of proximal development) is also an important way of developing the 

theory of how students leam with the graphic calculator. The graphic calculator is seen as 

a cognitive tool (described in section 2.5), which supports a pair of students as they try to 

understand how letters are used in algebra, and what they mean.
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In section 2.6, difficulties in the teaching and learning of algebra were considered, 

particularly whether cognitive obstacles or gaps exist between arithmetic and algebra. This 

was followed in section 2.7, by an exploration of how the graphic calculator provides a 

mediating interface between the student and the algebra.

The purpose of this chapter is to provide a firm foundation and theoretical underpinning for 

the discussion of the classroom studies presented in the following chapters. The next 

chapter describes the methodology used for these studies, together with the specific 

methods of data collection and analysis used.
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CHAPTER 3 RESEARCH METHODOLOGY AND METHODS

3.1 Introduction

Q  This chapter is in three parts. In the first part (section 3.2), general methodological issues,

the particular methodological stance underpinning this research and the overall research 

design are discussed. In the second part (sections 3.3, 3.4 and 3.5), the detail of the 

research method used is described; this includes the participating schools and students, the 

methods of data collection, and the analytical methods used. In the third part of the chapter 

(sections 3.6 and 3.7), the quality of the data and analysis is investigated, and ethical 

considerations are discussed. Section 3.8 then summarises the chapter.

A brief note at this point is appropriate about the use of language in this thesis, specifically 

use of the first person, and of active and passive tenses. Quantitative research paradigms 

are intended to be objective, without the person of the researcher intruding. There is an 

underlying assumption that the same results and conclusions would have been obtained 

whoever conducted the research, if it was carried out in the same way. It is therefore 

traditional in writing up such research for researchers to use the passive tense, and not to 

use personal pronouns. However, qualitative research is personal: the underlying paradigm 

assumes that the “knower and the known are inseparable” (Tashakkori and Teddlie, 1998: 

10). The methodology I used involved both quantitative and qualitative research, so 

throughout this thesis I have used the first person and active tenses where it seems 

appropriate, both to emphasise my own personal participation and to make clear where my

o



o

o

Chapter 3: Research methodology and methods 74

own choices, biases and assumptions are involved. Elsewhere, I have used the passive 

tense usual in academic work.

The research design for this study is based on a mixed methodology. This chapter starts by 

giving a brief history of the use of mixed methodologies in educational research. A 

rationale for the use of such a methodology in this particular research study is then given, 

together with a philosophical underpinning of the methodology used. This is followed by a 

detailed description of the overall research design, which comprised two successive stages. 

The first phase of the design involved a qualitative methodology, while the second phase 

was a larger-scale survey based on the analytical framework derived from the first phase. 

The quahtative phase allowed a deep exploration of the research questions in a single 

school. The follow-up survey gave the opportunity to see if the findings from this school 

3  could be generaUsed to a wider population.

Participating schools and students are then described. Schools were chosen on the basis of 

accessibility. The initial phase was undertaken in the school in which I was employed for 

much of that period; other schools participated subsequently if one of their mathematics 

staff was willing to do so. Selection of participating students is described in section 3.3.

o The data collection process is presented in detail for each stage, together with an account 

of how student samples were chosen from the participants. Quahtative data were collected 

throughout the first phase. Questionnaires/algebra tests were given to the students before 

and after the classroom work, to assess their views and skills before and after the teaching 

modules. Data collection during the classroom work included audiotapes of classroom
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discussions between pairs of students, together with their written work, and classroom 

observation.

The contribution of the data to the evolution of the analytic framework is then explained, 

and this framework is introduced. Significant themes were derived from the transcripts of 

the classroom discussions between the students, with the classroom observations 

contributing a useful form of triangulation for these. The questionnaires/algebra tests were 

coded to permit analysis adding depth to some of the themes discussed.

The trustworthiness of the data, the analytic process and the reporting are then considered. 

Quantitative educational research is judged by its vahdity, reliabihty and generalisability 

(e.g. Mills, 2000). Vahdity addresses the issue of whether the data collected accurately

3  measures what it is claimed to measure. Reliability concerns the consistency of the data

over time. Generahsabihty is about the degree to which findings derived in one setting can 

be apphed to others. These criteria are not easily applied to qualitative research without 

further consideration, however. Various alternative ways of establishing the bona fides of 

quahtative research have consequently been proposed. Here, a framework derived from 

the work of Lincoln (1985) is used, and this is discussed. Ethical issues relevant to 

quahtative research are also considered.

o
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3 .2  Research approach: a mixed model study

3.2.1 Mixed methodology in educational research

Quantitative, qualitative and mixed research methods are based on different philosophical 

paradigms. Quantitative methodology has been used in research in many areas for many 

years. Initially, it was based on a positivist (or logical positivist) philosophy, which holds 

that “[a]ll genuine inquiry is concerned with the description and explanation of empirical 

facts” (Mautner, 1997: 438) no matter what the subject matter of the research is. The 

positivist research paradigm depends on the belief that there is a single reahty ‘out there’ 

which we can discover using our senses. Further, we can agree on what we see, because 

this reality is independent of the observer (e.g. Bassey, 1999: 42f; Cohen and Manion,

Q  1994: 10; Tashakkori and Teddlie, 1998: 7). A priori hypotheses are made, and then tested

for their capacity to describe accurately the observed facts.

During the late 1950s, this paradigm became discredited, and was succeeded by 

postpositivism. Postpositivism was an attempt to address difficulties in the basic axioms of 

positivism, notably that there is an objective reality which we can discover by observation, 

but also that research is independent of the researcher and is value-free. Postpositivists 

O  believe that, although our understanding of reality is constructed by us, there may still be a

reality ‘out there’ to which our constructions approximate. Their experimental method is 

based on the axiom that causes determine effects, and so it is appropriate to frame 

hypotheses which can be tested (e.g. Creswell, 2003: 7; Tashakkori and Teddlie, 1998: If). 

Theory is generated deductively, that is, from the general to the particular. Data collected 

by such researchers tend to be numerical, and are usually analysed by statistical means.
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although quahtative data collection and analytical methods can also be based in this 

paradigm.

During the 1980s, however, postpositivism was rejected by a number of researchers, 

particularly in the social sciences. Paradigms deemed “more ‘radical’” (Tashakkori and 

Teddhe, 1998: 9) became increasingly popular, with names such as ‘constructivism’ and 

‘interpretivism’. The constructivist (Creswell, 2003: 8; Tashakkori and Teddlie, 1998: 9f) 

or interpretive (Bassey, 1999: 43; Cohen and Manion, 1994: 36) paradigms are predicated 

on the belief that there is no independent, objectively knowable reality ‘out there’ at all, 

and that reality is constructed by us. Our understandings may well be similar, but they 

cannot be exactly the same, implying that research cannot be independent of the observer. 

The researcher may also change the situation simply by being there, and/or by asking 

0  questions. Because qualitative research depends on observing people in their natural

surroundings, it is not possible to make a priori hypotheses to test, unlike in the laboratory 

where a given cause will always produce a certain effect. Instead, many constructivists 

agree that theory should be generated inductively, from the particular to the general 

(Tashakkori and Teddlie, 1998: 10). Data collected by constructivist researchers tends to 

be verbal rather than numerical, and is not normally susceptible to the use of statistical 

methods, leading rather to qualitative analysis.

o
More recently still, educational researchers have started using a mix of quantitative and 

qualitative methodologies. Mixing these methodologies may at first sight seem suspect, 

since they are based on quite different world-views (Tashakkori and Teddlie, 1998: 11). 

The paradigms on which they are based have different assumptions about what constitutes 

knowledge, how research should be done, and how it can be seen to be reliable and valid.

o
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Yet according to Creswell (2003: 4): “[mjixed methods research has come of age”, with

the postpositivist and constructivist paradigms seen as the ends of a continuum, rather than

as in opposition and incompatible. Mixed methodology is based on pragmatism:

... the significant issue is not whether one method is overall superior to another but, 
rather, whether the method a researcher employs can yield convincing answers to the 
questions that the investigation is intended to settle. (Murray Thomas, 2003: 7)

3.2.2 Rationale for use of mixed methodology in this study

Creswell (2003: 12) argues that researchers should provide a rationale for mixing methods, 

so what follows in this section provides such a rationale. When I began this research 

project, I was a mathematics teacher at a girls’ grammar school. The research described in 

this thesis arose out of work I was doing at the time with my own classes, and which was 

later taken up by my department. My interest in using the graphic calculator as a model for 

an algebraic variable, and as a means of teaching algebra, arose when I used it to help a 

relatively low achieving student to understand better what she was expected to do in her 

forthcoming SATs exams (as described in 1.2). Immediately after this, I carried out a pilot 

study with her class. At this stage, my role was as both teacher and researcher. A year 

later, when I conducted the first part of my main case study, I taught one of the classes 

involved, the other two being taught by two of my colleagues. At the end of that term, 

however, I left teaching to work on a mathematics education project in the University of 

Cambridge. I was able to continue the main case study for a while after this, working with 

one of my ex-colleagues, and her class. My role by this stage was that of researcher only.

By the end of 2000,1 had completed a pilot study, and a two-stage main case study in one 

girls’ grammar school. The deficiencies of this phase, in terms of the sample of students 

involved, were obvious, and so I decided to use the teaching method, research instruments
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and analytical framework I had developed in the main case study to carry out a larger scale 

survey in as many mixed, non-selective schools as I could. This constituted Phase II of my 

research design. Whereas Phase I had used qualitative methods of data collection and 

analysis. Phase II used the analytic themes developed in Phase I to do a larger, quantitative 

survey, to see how well my findings from Phase I would generalise to a more 

representative sample of students.

My methodology was therefore dictated partly by my desire to test out my initial findings

on a more representative sample, and partly by the circumstances of my employment (and

so was to that extent opportunistic). This combination of a desire for findings which could

be generalised and opportunism led me to use a sequential mixed methodology. I believe,

however, that this has increased the strength of my conclusions, and contributed important

0  detail.

I am convinced that each research method is suited to answering certain types of 
questions ... Furthermore, the best answer frequently results from using a 
combination of qualitative and quantitative methods. (Murray Thomas, 2003: 7)

3.2.3 Methodological underpinning of this research study

Creswell (2003: 5) suggests that three questions should be addressed by researchers. 

Firstly, they should clarify the knowledge claims being made, including a theoretical 

perspective; secondly, researchers should decide on a strategy of enquiry which will be 

used to inform their procedures; and thirdly, they should decide on methods of data 

collection and analysis. This section attempts to answer the first two of these questions for 

the research study described in this thesis. The third question is addressed later in this 

chapter (3.2.4 and 3.4)
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Creswell uses the phrase “knowledge claims” to mean the “theory of knowledge embedded 

in the theoretical perspective [which] informs the research” (p4), that is, the epistemology 

which underlies the research. I view the paradigms of the postpositivists and the 

constructivists as the ends of a continuum rather than incompatible opposites, with the 

pragmatist taking from each what apphes to her/his study. Although instinctively I lean 

towards the constructivist end of the continuum, I feel that the statistical methods of the 

postpositivist can add a useful dimension in educational research. Qualitative methods can 

enable us to look deeply into a situation from which we can determine our analytical 

themes. Using these in a wider survey permits us to generalise our views to a broader 

population. As a pragmatist, I wished to claim the benefits of both worlds. This suggested 

a sequential research design, based on a mixed methodology.

3  My first strategy of enquiry was that of the case study, and my second was that of the

survey. According to Stake (1995: xi) “case study is expected to catch the complexity of a 

single case”. However, case study\ as a form of methodology, is not easy to define 

(Bassey, 1999: 22; Stake, 1995: 2, footnotes 2 and 3). Bassey defines an educational case 

study as:

... an empirical enquiry which is ... conducted within a localized boundary of space 
and time .,. into interesting aspects of an educational activity, or programme ... 
mainly in its natural context... in order to inform the judgements and decisions of 
practitioners ... (Bassey, 1999: 58, original italics)o

Stake agrees that case study is specific, bounded, and interesting, and that it occurs in its 

natural setting (p2). There is an emphasis on studying events in their natural settings in 

constructivist/interpretive enquiry, rather than setting up carefully controlled experiments.

* ‘Case study’ as a general methodological tool is used without an article. A(the) case study’ refers to a 
specific instance of such use.
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The constructivist seeks to understand a case in all its complexity, rather than removing 

complexity, believing that the context is part of the case that is studied.

Bassey sub-divides case study on the basis of function into theory-seeking and/or testing, 

story-telling, and evaluation. On the other hand. Stake considers the nature of case study: 

intrinsic case study arises when the researcher wants to leam something about a particular 

case, instmmental case study when s/he wants to understand a more general phenomenon 

and uses a particular case to exemphfy this. I would hke to argue that Stake’s instmmental 

case study is equivalent to Bassey’s theory seeking and/or testing category, and Stake’s 

intrinsic case study contains Bassey’s story telling and evaluation.

Phase I of this research study contains case study research. This arose initially as an 

3  intrinsic part of my work as a classroom teacher: I was trying to find ways of helping my

students cope with an aspect of the curriculum they found difficult, and I also wanted to 

understand better the nature of their difficulties. Initially this led to the work with Sally ,̂ 

and then evolved into the Year 9 pilot study. This stage was evaluative: I needed to justify 

to myself, my Head of Department, the students and their parents, that using the graphic 

calculator model would enable my students to make progress. This was certainly found to 

be the case in the pilot study.

o
Having estabhshed the benefit of the graphic calculator approach, I wanted to look more 

deeply at its role in introducing children to algebra, and to explore more deeply their

 ̂The girl whose relative lack o f ability started my work using graphics calculator to support the teaching of 
algebra.
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understanding of letters, including their misconceptions. This led to the next stage of the 

study, a two-stage main case study, which was instrumental (Stake, 1995) or theory 

seeking and testing (Bassey, 1999) in its form. My intention was to formulate and test 

theory, and to use these particular case studies to exemplify a more general situation. 

Initial theory formulation took place during the pilot study. This led into the main case 

study, which was used to further formulate and test my emerging theories about how 

children leam algebra, and the graphic calculator’s role in this process. My objective was 

to produce an analysis that would be generalisable beyond the particular situation in which 

it occurred.

Summarising, Phase I of this research study consisted initially of a pilot study, which was a 

small, evaluative case study. This was followed by the main case study, which used the 

0  themes that had emerged from the pilot study. The main case study was a collective

(Stake, 1995: 4) theory-testing case study, focusing on two year groups of students. Phase 

I produced a detailed picture of these students teaming algebra, and the role of the graphic 

calculator in their teaming.

The purpose of Phase II was to use a survey to see how far my conclusions could be 

generalised to a wider population. According to Creswell (2003: 14), surveys can include 

“cross-sectional... studies using questionnaires ... for data collection, with the intent of 

generalising from a sample to a population”. Since Phase I of this study was carried out in 

a girls’ selective school, generalisation to a wider population was questionable without 

further data collection. I hoped that a survey of students in more representative schools 

would allow such generalisation.

o
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3.2.4 Overall research design

The overall design is a mixed model study, which is sequential (Creswell, 2003; 16; 

Tashakkori and Teddhe, 1998: 46f). According to Tashakkori and Teddhe, mixed model 

studies are the product “of the pragmatist paradigm and ... combine the quahtative and 

quantitative approaches within different phases of the research process” (pl9).

My study is two-stage: the first phase was mainly quahtative, followed by a second phase 

consisting of a follow-up survey, with its analysis dependent on the themes and categories 

identified in the first phase. This research design allowed an initial exploration using 

quahtative data to produce a thematic analysis, rich in detail, which was then extended 

through a larger, more representative survey. Table 1 (on the following page) gives details 

Q  of the two phases, the case studies comprising Phase I, and the data collection involved.

3.3  Participating schools and students

3.3.1 Phase I participants

O  The pilot study and main case study, which comprised the first phase of this research

study, were all conducted at one selective girls’ grammar school just over 40 miles to the 

north-west of London. At the start of this study in 1999, the school had around 1000 

pupils on roll. Entrants to the school were selected by their performance in standardised

o
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Table 1: Research Design

o

o

o

Phase I Phase II
Pilot Case Study Main Case Study Survey

Initial stage Follow-up stage
Date June/July 1999 Oct/Nov 2000 Oct/Nov 2001 Spring/Summer

2002
Age o f  
students

13-14 years. Year 9 11-12 years. Year 7 12-13 years. Year 8 10-13 years. 
Years 6-8

Sex o f Girls Girls Girls Mixed
students
Types o f  
schools

Selective Selective Selective Non-selective

Number o f 1 1 1 4
schools
Number o f 1 3 1 12
classes
Number o f 1̂ 3“ 1 6
teachers
Number o f 30 79 28 307students
Data ♦ Audiotapes of ♦ Audiotapes of ♦ Videotapes of ♦ Questionnaires/
Collection classroom classroom whole class (pre, immediate

discussion (5/6 discussion ( 3 x 3 discussions (pre post and delayed
pairs of pairs of students) and post) post)
students^) ♦ Written work of ♦ Audiotapes of ♦ 4 X teacher

♦ Written work of 
sample students

♦ Classroom 
observations

♦ 6 X student 
interviews (pre 
and post)

♦ Questionnaires 
(pre and post)

♦ Algebra tests 
(pre and post)

♦ 10 student 
journals

♦ My journal

sample students
♦ Classroom 

observations
♦ Preliminary 

student 
interviews as 
required

♦ 3 x 3  student 
interviews (post)

♦ 2 X teacher 
interviews (the 
following July)

♦ Questionnaires 
(pre and post)

♦ My journal

classroom 
discussion (3 
pairs of students)

♦ Written work of 
sample students

♦ 2 X student 
interviews (post)

♦ Teacher 
interview (post)

♦ Questionnaires 
(pre and post)

♦ My journal

questionnaires

Type o f Mainly qualitative. Mainly qualitative. Mainly qualitative. Mainly descriptive
analysis plus some plus some plus some statistics based on

descriptive statistics descriptive statistics descriptive statistics qualitative analysis 
in previous stage.

This was my class, and I was acting as both teacher and researcher at this stage. 

 ̂I was one of these teachers, again acting as both teacher and researcher.

® Two students missed the middle two lessons.
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tests (although these did not include a mathematical component) and, up to August 2000, 

entered the school at the age of 12 years (Year 8). The number of students on roll rose to 

about 1250 once Year 7 students were admitted from September 2000. The school prided 

itself on its excellent academic record with over 95% of students achieving five or more 

A* to C grades at GCSE* in any given year, and 99% achieving level 5̂  in the mathematics 

SATs*. These statistics are aU well above those for the Local Education Authority of 

which the school is a part, and whose statistics are themselves well above the average for 

England and Wales as a whole. Less than 5% of students are on the register for special 

needs, with no more than one or two students in the school with a statement of special 

needs at any one time. Academically, this was a privileged school whose students could 

expect to gain excellent results.

0  The class that took part in the pilot study was in Year 9 at the time, and comprised 30

students aged 13-14 years. All these students gained A* to C grades in mathematics GCSE 

two years later, except for Sally, who achieved a grade D. I had taught this class 

mathematics since they entered the school in September 1997. The participants in the first 

stage of the main case study, which took place in the autumn term of 2000, were three 

classes (79 students) of Year 7 students, aged 11-12 years. These students had entered the 

school just a month or so before the case study began. One of the classes was taught by 

me, the others by two of my colleagues. The follow-up to this initial stage of the main case 

study was done with just one of these classes in October/November 2001, when they were

o

* General Certificate of Secondary Education, the examinations taken by 16 year old students at the end of 
Year 11.

 ̂The target grade.

* Standard Assessment Tests for students at the end of Key Stage 3 (the end of Year 9 when students are aged 
14 years).
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in Year 8 and aged 12-13 years. This was the only class which kept the same teacher as in 

the previous year. In order to reduce the number of different factors affecting the students, 

I felt it was important to focus on a class where such continuity occurred.

Student samples

At each stage of Phase I, a sample of students audiotaped their discussions during 

classroom work while they used the graphic calculator, and allowed their written work to 

be used to clarify the verbal record. In the pilot study, there were initially six pairs of 

students in the sample. However, a trip to France intervened, and one student from each of 

two of the pairs missed the two middle lessons of four because of this. The two students 

left formed a pair, so that five pairs of students audiotaped their work during these two 

lessons. Even with this absence, a third of the class were involved in recording their 

conversations as they worked, giving a good spread of data from the classroom sessions.

All these students were volunteers and there were no other criteria for choosing this 

sample, other than asking volunteer students to work with someone of similar 

mathematical aptitude to themselves. This stipulation was made because I wanted to see if 

the graphic calculator would support the students in making cognitive gains, and I felt that 

if one student was significantly ahead of the other, genuine collaboration would be unlikely 

to flourish between the two students as they worked together with the calculator. The 

students were asked to talk about what they were thinking, and to state what they were 

doing with the graphic calculator, as they pressed the keys. This means of collecting data 

proved very successful, giving me some access to the students’ thought processes. It was 

clear that any shyness or undue awareness of the tape recorder was soon overcome, and 

using it became routine for the students. However, it should be recognised that articulating
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their thoughts to each other for the tape would have benefited the students’ learning, and 

that effects for these particular students cannot therefore be solely ascribed to the graphic 

calculator.

Because this had proved a useful means of gaining some access to the students’ thought 

processes as they worked with the graphic calculator, it became a major aspect of the data 

collection for the main case study. However, I wanted to choose the student sample in a 

less arbitrary way. Anticipating (correctly) that most of the Year 7 students would want to 

be part of the samples, I asked the students in both my class and that of one of my 

colleagues to work in pairs on a short problem, recording their discussions as they tried to 

solve it. I used these recordings to choose three pairs from each class on the basis of the 

students’ abihty to describe clearly what they were thinking. I also tried to ensure that the 

3  three pairs from each class covered a range of mathematical achievement, basing this on

teacher assessment. The three pairs from the third class were chosen by their teacher using 

the two criteria that students should be able to talk fluently about their work, and that the 

three pairs chosen should demonstrate a spread of mathematical achievement. Preliminary 

recording tests were not carried out with these students, because they joined the study at a 

later point than the other two classes, and time was short. Three pairs from each class were 

chosen, so that nearly a quarter of the students from each class (containing around 26 

students) were recording their work, again giving a good spread of data.

In the follow-up stage of the main case study, the three pairs of students who had recorded 

their work the previous year again recorded their work. This ensured that there was 

continuity, and that conversations from one year could be directly compared with those 

from the other.

o
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3.3.2 Phase II participants

In the second phase of my research study, which consisted of a survey, four different 

schools participated. These were chosen on the basis of accessibility: I contacted all the 

teachers I was by then in contact with through my employment, asking if they would be 

wilhng to take part in this survey. Seven teachers initially responded, and four of these 

actually participated, one also involving two of her colleagues.

The schools

Details of the four schools involved are summarised in Table T  (on the following page). It 

can be seen from Table 2 that a spread of students from different areas of the country and 

from different year groups was included in this survey. The middle school, school B, used 

the graphic calculator approach and materials with about half their students, whereas the 

other three schools used one or two classes only. Originally seven teachers were involved, 

one at each of schools A, C and D, and four at school B. One of the classes at school B did 

not do the delayed questionnaire however, and so I decided to omit data from this 

particular class completely, which meant that six teachers and 12 classes were included in 

the final analyses.

 ̂All information relates to the year 2002.
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Table 2: The schools participating in the Phase II survey

SchoolA^^ S ch o o ls School C SchoolD
Area o f  England in which South East South North east
school is located coast Anglia coast
Nature o f  the school catchment Mainly rural, on Very rural area Medium-sized Small satellite
area outskirts of town near large town on

medium-sized city outskirts of
town major industrial

city
Type o f  school Mixed, Mixed, Mixed, Mixed,

comprehensive middle school comprehensive comprehensive

Age o f  students a t school 11 to 16 9 to 13 11 to 16 11 to 18
Number o f  students on roll 1002 427 1014 1084
% o f  students on the SEN^^ 
register
% o f  students with statements 
o f  special needs_____________
% students achieving target 
grade in end o f  Key Stage 
mathematics tests^^
Number o f  students 
participating in this study 
Number o f  teachers involved in 
this study 
Number o f  classes 
participating
Year groups in d u e d _________

22.5%

1.0%

13.8%

6.1%

18.9%

0.6%

69% 68%

41

1

2

Y8

214

3

8
Y6,Y7, Y8

22

1

1

Y8

4.6%

1.2%

63%

30

1

I
Y7

o

All four schools were e-mailed general instructions for teaching the module and collecting 

data. In addition, detailed teachers’ notes on the graphic calculator model and how the 

calculator was to be used in the classroom, and a set of worksheets to use over a period of 

about three hours of lessons, were also sent to the schools^^ The actual time taken for the 

teaching and the specific materials used were decided entirely by the teachers. All data

11

' No order of any kind is intended by the use of the letters A, B, C  and D  to denote the schools. 

Special Educational Needs

Level 5 is the target grade for the end o f Key Stage 3 Standard Assessment Tests, taken when students are 
aged 14 (and applies to schools A, C, and D). Level 4  is the corresponding target grade for the end of Key 
Stage 2 SATs, taken when students are aged 11 (and applies to school 5).

All these resources can be seen in Annex I.
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collection was done by the teachers concerned, and I was not involved beyond providing 

materials and instructions.

The students

o
A total of 307 students were involved in this survey, distributed as shown in Table 3: 

Table 3: Distribution o f  age groups o f students across schools

Year group School A School B School C SchoolD Sub-totals
Y6 - (36)11.7% - - (36) 11.7%
Y7 - (109) 35.5% - (30) 9.8% (139) 45.3%
Y8 (41) 13.4% (69)22.5% (22) 7.2% - (132)43.0%
Sub-totals (41) 13.4% (214) 69.7% (22) 7.2% (30)9.8% (307) 100%

3

3

The students (Year 8) from school A were in two different sets, both taught by the same

teacher. The higher achieving group, which was the second set of five (althou^ their

teacher*"* qualified this by stating that students were only rou^ly set in Year 8), was

described by the teacher as of;

W ide ability. K S2 SA T  average*® =  4 . Probably worMng at good 5. W ill all fo llow  
intermediate [GCSE level]. Interested and enthusiastic, but not ‘natural’ 
mathematicians.

Their previous algebra experience was “mostly ‘pre-algebra’”, and their understanding of 

letters was varied, with most “probably hav[ing] a ‘formal’/learned, rather than organic 

understanding”. The same teacher described the lower achieving group at school A (the 

fifth set of five) as:

Poor and lacking confidence on the w hole. K S2 level 3  mean*®. Probably worMng at 
level 4  mostly*’.
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Their previous experience of algebra was also described as “pre-algebra”, and their 

understanding of letters as “[p]oor.”.

The school C students (Year 8) were in the seventh set of seven, and were described by

their teacher as “[v]ery weak relative to their year. Main problem is concentration and

retention.” Asked what algebra they had studied previously, the teacher’s response was:

Obviously some in year 7, but they are taught mixed ability in Y7, so possibly little 
stuck at all. A bit in Y8 using algebra to describe simple sequences.

In Year 8, the teacher characterised their understanding as still “[p]oor. Typical 

misunderstandings shown -  e.g. 5jc when x = 3 is 53.” *̂

The school D  students (Year 7) were in the top band of two bands in their year group, and 

were described as “Generally good. End of KS2 SATs results*’, 4-5.” They had “[v]ery 

little [previous experience of algebra] except for finding rules fi-om patterns”, and their 

understanding was characterised by “[sjome confusion based on a mixture of previous 

knowledge”.

The students (Years 6 ,7  and 8) at school B were divided into upper and lower bands in 

each year group. The year 6 students were from the upper band in their year group, plus

Information about the classes came from the questionnaires completed by the contact teacher at each 
school.

Key Stage 2 Standard Assessment Tests, taken at age 11. Level 4 is the target grade for these Tests. 

Hieir mean score on the KS2 tests was Level 3, so below the target grade for their age.

So assessed by their teacher as about 2  years behind the target grade for their age.

** This is the ‘code’ error described in more detail in Chapter 7, Misconceptions.

*’ So at or above the target grade for their year group.
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o

five relatively good students from the lower band. Their teacher described them as “a few 

L6 candidates, rest mixture L4 and L5”. This described the levels at which these students 

would be entered for the KS2 SATŝ ® at the end of that academic year. The Year 7 

students were in a variety of groups. Some were mainly working at Level 4 at the time of 

this study while others were working at Levels 5 and 6. Some of the Year 8 students were 

revising Level 4 and 5 topics, and others were working at Levels 6 and 7. Their experience 

of algebra was described as “little” for the Year 6 students, “some” for the Year 7s and 

“quite a bit” for the Year 8s. Their understanding of letters prior to this module was 

described as “quite good” for the Year 6 and 8 students, but “patchy, especially amongst 

the less able” for the Year 7s.

0

Information about the level of achievement of the students at all the schools, as given by 

their teachers, is summarised in Table 4:

o

Table 4: Distribution o f achievement levels^̂  o f students across schools and year groups 
(figures give numbers of students)

Yeargroi^ School Level 3  Level 4  Level 5  Level 6 Level 7

Y6 B < ------------- 3 6 -------------- >

Y7 B

D 30

Y8 A 10 31

B

C

' Target grade Level 4.

These levels are National Curriculum levels as assessed by the teachers o f the classes.
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Table 4 shows that the students participating in the survey covered a good spread of 

achievement levels and age groups,

3 . 4  M e t h o d s  o f  d a ta  c o l l e c t io n

3.4.1 Data collection in Phase I

Throughout the first phase, data of a mainly quahtative nature were collected. These 

included audiotapes of students’ discussions while working with the graphic calculator, 

students’ written work, teacher and student interviews, and questionnaires testing students’ 

abihty to answer standard algebra questions and asking about their understanding of letters.

O Other forms of data were collected at certain stages of this phase, including videotapes of

classroom discussions and student journals. In addition, I kept a research journal in which 

I noted my observations and reflections. The most valuable data sources were the 

transcripts of the students’ discussions during lessons and the questionnaires. However, 

collecting so many different types of data meant that the information contained in one data 

source could be triangulated against that found from other sources.

O Data collected during lessons

Transcripts o f students^ discussions

As described earlier, a subset of students from every class involved in the three case 

studies recorded their discussions as they worked with the graphic calculators. These were 

transcribed, providing a rich source of primary data concerning the development of the 

students’ thinking while they worked in their pairs with the graphic calculator.

o
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Students* written work

The students audiotaping their discussions did all their written work in special notebooks 

during the pilot study and the Year 7 stage of the main case study, which I kept as part of 

the data collection. The Year 8 sample did their work in their normal exercise books, 

which I then photocopied so I had a record of their work also. In all three cases, this 

proved valuable in supplementing the oral record from the audiotapes, both in ensuring I 

interpreted the oral record correctly, and in giving further evidence of how the students 

worked on questions.

Classroom observations

One of my colleagues observed one of my lessons during the Year 9 pilot study, and 

discussed her observations and reflections with me afterwards. During the Year 7 study, I 

observed lessons in my colleagues’ classes, and one of them observed during my lessons. 

These observations included discussions with individual pairs of students while they were 

working, as well as observation of whole class discussion. Consequently they helped to 

establish how the students were using the calculators, and gave opportunities for probing 

students’ understanding of letters and the misconceptions they held, thus triangulating with 

the data obtained from questionnaires, classroom transcripts and student and teacher 

interviews.

O  Video Data in the Year 8 Case Study

In lieu of classroom observations in the Year 8 stage of Phase I, as I was no longer 

working at the school in question, I asked the class teacher to conduct two 20 minute 

discussions with her class. These took place before and after the classroom work, and 

were based on questions I had picked out from the two questionnaires the students did. I 

videotaped the discussions, and then transcribed them. Like the classroom observations, 

these were useful for triangulating with other forms of data. Being personally present

o
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during these discussions also helped me to contextualise the other data forms, which were 

collected by the class teacher.

Questionnaires/algebra testŝ ^

The questionnaires/algebra tests gave a snapshot of the students’ views and their ability to 

answer standard algebra questions before starting the classroom work and after it finished. 

They also provided evidence for the misconceptions students held.

In the Year 9 pilot study, separate questionnaires and algebra tests were given to the 

students to complete both before and after their work with the graphic calculator. The 

questionnaires concerned their attitudes to mathematics, to algebra and to the graphic 

calculator, which they had used previously for other topics. The post-questionnaire also 

concerned their attitudes to the work they had just done. The algebra tests contained 

questions designed to probe the students’ abihty to deal with algebraic expressions and 

equations, with the first algebra test taking about 30 minutes and the second one an hour. 

When I analysed these, I felt that a lot of the information I had collected did not help me to 

gain an understanding of the students’ interpretation of letters, and was therefore redundant 

for research purposes (although useful for teaching purposes). I also felt there were too 

many questions, with the effect that the students undoubtedly felt that these were 

Q assessment tests, rather than a means of my gaining information about their understanding.

Consequently, when I planned the initial stage of the main case study for the Year 7 

students, I decided to combine the questionnaire and the test, so that the students had a

All questionnaires and algebra tests can be seen in Annex IE.

O



o

o

0

o

Chapter 3: Research methodology and methods 96

single questionnaire to complete. This contained a few questions testing their 

understanding of letters, and their abihty to answer standard questions, plus other questions 

asking what they understood letters to mean, and about their previous experience of 

algebra. When I came to analyse these, I felt they gave adequate information to enable me 

to make worthwhile inferences about the students’ understanding of algebra and letters, 

and their ability to do simple questions. These questionnaires took the students about 20 

minutes to complete, and so were perceived in a much less threatening way. In the follow- 

up stage of the main case study with the Year 8 students, I used more algebra questions, 

and omitted the questions about previous experience, since this was already known to me. 

Some of these algebra questions repeated those in the Year 7 questionnaire using different 

letters and numbers, but the same structures. Again, these took about 20 minutes to 

complete.

When it came to planning Phase H, I decided to work with questionnaires similar to those I 

had used in the main case study. These had proved to contain a lot of information, which 

could be analysed in a number of different ways, hi particular, they had enabled me to 

gain some understanding of the students’ interpretation of letters, their ability to answer 

standard questions, and their misconceptions. The questionnaires used in the survey were 

therefore similar to those of the main case study, with a tittle information requested about 

students’ attitudes to algebra and using the graphic calculators.

o
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Interviews'^

All the interviews were semi-structured. In each case, I decided on a set of questions I 

wanted to ask, but used these to develop a conversation with the students and teachers to 

explore their thinking on the issues raised. I was aware that in the interviews with the 

students, I was in a position of authority and that this could colour how they responded. 

However, I tried to mitigate such effects by emphasising that the interviews would only be 

heard by me, and that nothing they said would be used either by me, or by any other 

teacher, in any way other than as a source of data for this research study. I also tried to 

ensure that the questions were not ones which would cause them any embarrassment or 

difficulty, other than the difficulty of answering questions about algebraic expressions or 

equations.

O Student interviews

All the student interviews lasted about 15-20 minutes. In the pilot study, all the students 

who audiotaped their work were interviewed in their pairs after the first questionnaire and 

test, but before the classroom work, and then again after the second questionnaire and test, 

at the end of the whole study. In their first interviews, students were asked about their 

attitudes generally to algebra and mathematics, then about how they had answered specific 

questions from the test. Discussing these answers then led into an exploration of their 

understanding of letters. In the follow-up interviews, students were asked about their 

attitudes to using the graphic calculators, and questions from the follow-up test were used 

to stimulate further exploration of their understanding of letters. I also asked them what 

difierence they thought recording their conversations had made.

o

23 Interview schedules can be seen in Annex II.
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o

When it came to the Year 7 stage of the main case study, I decided to do a few brief 

preliminary interviews with individual students purely to probe their answers to the first 

questioimaire. Students were chosen for these interviews if  they had written a response to 

the question about their understanding of letters which I did not understand, or which I 

wanted to explore further. Follow-up interviews were held with all the pairs of students 

who had audiotaped their discussions during lessons. These interviews were used to 

investigate the students’ understanding of letters, specific misconceptions which arose or 

became apparent during the teaching period, and their views on using the graphic 

calculator.

In the Year 8 follow-up stage of the main case study, I did not do any preliminary 

O  interviews with the students, partly because I was no longer at the school on a daily basis,

but also because I had decided to video a whole class discussion which enabled me to get 

some idea of the whole class’s understanding of letters at this point. After the classroom 

work was finished, I returned to the school to do a second videotape of another whole class 

discussion, and to do follow-up interviews with two groups of students. Although I had 

asked the same students to record their work as in the previous year for the sake of 

continuity, I wanted to get some idea of what the rest of the class thought as well. I 

therefore asked the class teacher to choose two groups of four reasonably articulate 

students, one group chosen because they were high achieving relative to the class as a 

whole, and the other chosen because they were relatively low achieving. Each group was 

asked the same questions, which covered a range of algebraic questions including their 

understanding of letters, how they used the graphic calculator and their attitudes to using it.

o
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For the pilot study and Year 7 interviews, when I talked to the sample students in their 

pairs, I recorded each interview and made notes, particularly on mathematical aspects of 

the conversation. For the Year 8 interviews, where I was talking to groups of four 

students, I put questions onto pieces of card, put them face down on the table, and then 

asked students to pick a card. Each student took it in turn to do this, answering the 

question on the card. I then opened up each question to discussion with the whole group. I 

found this a good way of ensuring that everyone had a chance to speak, and that no one 

person dominated. Again, I audiotaped the interviews, and took notes of mathematical 

aspects.

Teacher interviews

In the pilot study, I was the only teacher involved, and I recorded my observations and 

reflections in my research journal, together with those of the colleague who observed one 

of the lessons. In the Year 7 stage of the main case study, two of my colleagues were also 

involved. Initially, I intended to interview them at the same point that I interviewed the 

students after the class work had finished. This proved difficult to arrange, and I felt there 

would be benefits in interviewing them later in the year. As it happened, I left the school 

not long after finishing this stage of the main case study, and was not able to interview 

them until the end of that school year in the following July. This proved useful, however, 

in that as well being able to reflect on the specific module in the case study, they were also 

able to consider how the students’ use of the graphic calculators to start their study of 

algebra had impacted on other algebraic topics they studied during that year.

I held separate interviews with the two teachers, lasting about 45 minutes each. I 

audiotaped these and took supplementary notes, particularly of mathematical detail. The 

questions used to initiate discussion covered four areas: the classroom work, the students’ 

understanding of letters and algebraic syntax, types of misconception shown by the

o
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o

students and the teachers’ own views on the feasibihty of the graphic calculator model as a 

teaching method. The discussion of the classroom work included how the teachers 

introduced the graphic calculator to their students, whether they used their own material in 

addition to the worksheets I had prepared and how they would improve those worksheets. 

We also discussed algebraic topics they had covered subsequently with their classes. The 

next set of questions was about how useful the graphic calculator was in helping the 

students to interpret letters appropriately and to learn algebraic syntax, and if they thought 

the graphic calculator model could be used with younger students. I then went on to ask 

them if they had observed specific misconceptions I had found in the data, and whether 

they were aware of other misconceptions. I also asked if they had reahsed that the students 

were sometimes using the graphic calculators in ways which would merely reinforce 

errors, rather than correcting them. The final area of discussion concerned their 

O  willingness to take part in the next phase of the main case study, if  they had a suitable class

the following term.

After the Year 8 phase of the main case study, I interviewed the teacher involved at the 

same point that I interviewed the students, which was soon after the classroom work 

finished. Again, I audiotaped the interview and took supplementary notes of mathematical 

detail. There were three sets of questions in this interview, which lasted about 40 minutes. 

The first set consisted of general questions about the teaching module, and how the 

students used the graphic calculator during it. The second set concerned specific algebraic 

questions I had asked the students about in their interviews, and how the teacher thought 

they might approach them. The final set of questions was about methods students might 

use for certain types of question, and how the graphic calculator could have helped them 

with these.

o
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Journals 

Student journals

In the pilot study, I asked my student volunteers to make journal entries, describing their 

reactions to the lessons and how they felt they coped with the work and the graphic 

calculator. These students had special notebooks to do all their classwork and homework 

in together with these entries. I asked the students to make their comments during the final 

five minutes of their homework, so they were not doing it in time which they would have 

regarded as their own. However, overall these entries proved to be disappointing. There 

were a few useful comments, but most were very brief, not providing any extra insights. I 

therefore decided not to use this form of data collection in future studies.

My journal

I kept a research journal throughout my research study. During the pilot study and the 

main case study, I was able to use this to make observations and to reflect, both on the 

conduct of the studies and on incidents I saw and comments I heard in the classroom. 

During the Year 8 case study, I used it to record thoughts that I wanted to check with the 

class teacher or the students, and to record conversations with the class teacher. This has 

proved useful in providing my inunediate reactions to events, and in checking my memory.

o
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3.4.2 Data collection in Phase 11

Student questionnaires "̂̂

In Phase H, the main method of data collection was three questionnaires given to all the 

O  students to complete. The first was done before the classroom work, the second

immediately afterwards, and the third some four to six weeks later. All three contained the 

same questions, except for varying the precise numbers and letters used, so that they could 

all be directly compared with each other. The questions were all ones which had been 

trialed during one or more stage of the main case study, so that further comparisons could 

also be made. Students were also asked whether they had found the classroom work 

difficult (on a scale of 1 to 5), and how helpful using the graphic calculators had been
3

(again on a scale of 1 to 5).

Teachers^ questionnaires

The main contact teacher in each school involved was asked to complete a short 

questionnaire, consisting of open questions. This was intended to establish teachers’ 

assessment of their class(es)’ level of achievement in mathematics and algebra, whether 

O  they had used any material of their own in addition to the worksheets provided, and their

opinion of both the graphic calculator model and the teaching materials.

^  All questionnaires can be seen in Annex El.

O
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3.5  DATA ANALYSIS

Phase I provided the main analytical tools used in both phases of this research study. Four 

major themes emerged from the classroom transcripts and the questionnaires, and, to a 

lesser extent, from the other data. These were the students’ understanding of letters, their 

Q  abihty to answer simple algebraic questions, any evidence found of cognitive change

during the classroom work, and the students’ misconceptions. The questionnaires from the 

Year 7 stage of the main case study were used to provide an analytical structure which was 

then used for the Year 8 questionnaires and, retrospectively, for the pilot study 

questionnaires. Analysing the questionnaires was an iterative process with many 

iterations. Once I was satisfied with the structure I had devised, I used it to analyse the 

Phase n  survey questionnaires.

o

o

3.5.1 Analysis in Phase I

The pilot study

My initial analysis of the pilot study materials was aimed at estabhshing whether the 

teaching module provided a satisfactory way of helping students grasp various aspects of 

algebra, specifically simphfying algebraic expressions and solving Unear equations. For 

this, I simply compared marks gained before and after the teaching module. As well as 

evaluating the teaching method, I also wanted to see if  there was any evidence that the 

graphic calculator acted either as an amplifier, speeding up the learning process but not 

producing any fundamental changes in it, or as an agent of cognitive change (Berger, 1998;

o
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Pea, 1985,1987). In addition, I looked at the students’ attitudes to using the graphic 

calculator.

Two major themes which emerged from analysis of the classroom data in the pilot study 

were students’ developing ability to answer algebraic questions appropriate to the stage 

Q  they had reached and cognitive change in their thought processes. Evidence for the

students’ abihty to answer algebraic questions before and after the teaching module came 

from the algebra tests they did. The evidence of cognitive change came from the 

classroom transcripts, supported by the students’ written work and their interviews. As a 

teacher, I found myself surprised by the sophistication and depth of some of the students’ 

discussions as they worked. As a researcher, I found myself surprised to see that the 

graphic calculator rarely acted as an amphfier: indeed, it often slowed the students down, 

O  rather than speeding them up. I was even more surprised to see strong evidence for

cognitive change. This was quite the opposite to Berger (1998), whose work had provided 

a stimulus for this study (section 2.5.4).

Reflecting on this, I felt that there were in fact two crucial questions about which I wanted 

to be able to say something. One was whether the graphic calculator could be an agent for 

cognitive change. The other issue was the students’ interpretation of letters. Examining 

the classroom transcripts and other supporting data allowed me to comment on the role of 

the graphic calculator, but I found little I could say about how the students understood 

letters at this stage. As I moved on to the main case study, I therefore decided to focus the 

questionnaires on this issue of student understanding of letters, and to see again if evidence 

of cognitive change in this understanding would emerge from the classroom data. I also

o
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decided to focus my next case study on Year 7 students, who had not yet started any formal 

study of algebra, to see what interpretations they held prior to doing algebra.

The main case study

As a result of my findings in the pilot study, when I started the Year 7 study I planned a 

questionnaire which I hoped would reveal something of the students’ understanding of 

letters. I also hoped that collecting other forms of data, particularly audiotapes of the 

students’ discussions while working, would again provide evidence of cognitive change.

The classroom data of all kinds provided a veiy rich source of analytic themes. These 

included the learning environment provided by the graphic calculator, the students’ 

interpretation of letters and their proceptual understanding^, evidence of cognitive change, 

the role of discussion, and the students’ misconceptions. Considering these enabled me to 

conceptuahse the role of the graphic calculator, by using Vygotsky’s (1978: 86) zone of 

proximal development (ZPD, section 2.4.4). It appeared to me that a pair of students 

working together with a graphic calculator created a ZPD (sections 2.7.3 and 4.3). The 

combined elements of discussion and the graphic calculator’s instant, neutral feedback 

provided the support which enabled each student to reach a higher level than either would 

have done on their own and without a calculator. The evidence for their achieving higher 

levels of understanding came from the analyses reported in Chapter 6: Developments in 

students' understanding and skills.

^  A  student who thinks proceptually (Tall and Thomas, 1991) can understand and use, e.g. x  + 1, as both a 
mathematical object in its own right, and as the result o f a process. A student who does not think 
proceptually only sees the process.

O
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o

The theme of misconceptions (Chapter 7: Misconceptions) emerged primarily from the 

questionnaires, but also from the classroom data, particularly the observations. I used the 

algebra questions on the questionnaires to classify students’ incorrect answers. Several 

major categories appeared, which included substituting specific numbers for letters 

(e.g. a =  1 ,6  = 2, c = 3, and so on); interpreting letters as individual digits of a number 

(e.g. 6c = 63); interpreting letters as arithmetic processes (e.g. a means +1, b means +2, 

and so on); interpreting letters as exponents in some way (e.g. 2a means 2 squared, 2b 

means 2 cubed, and so on); ignoring the letter completely (e.g. 6c used as just 6); and 

interpreting letters as objects (e.g. 6a means 6 apples). These interpretations were further 

explored using an open question asking students directly what they understood the letters 

to mean. In cases where I was still unclear, I used the interviews to investigate students’ 

views further. Other misconceptions became apparent during the classroom observations, 

0  and I discussed these with both students and teachers during the follow-up interviews.

I used the analytical structure which I derived from the Year 7 stage of the main case study 

for the Year 8 follow-up study. This required reconsidering all the themes and categories, 

and revisiting the Year 7 data. Finally, I re-analysed all the data a third time, this time 

including the Year 9 pilot study data. In this way, the analytical structure I devised based 

on the Year 7 data was reviewed on three separate occasions, as well as repeatedly during 

each revision, each time checking that the themes I identified were representative of the 

data.

o

3.5.2 Analysis in Phase II

The analytical themes and categories I had created for the questionnaires in Phase I were 

then used for the analysis of the survey. This required a further review of the categories
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used to code the questionnaires, and all questionnaire data, both from the case studies and 

the survey, were revisited yet again. In the survey, two open questions were asked about 

students’ interpretation of letters, and how they had actually worked out one of the algebra 

questions. The combination of these two proved very useful in giving evidence of 

students’ thinking about letters, and how they worked with them.

3 .6  Quality of the data and inferences

Reliability is the extent to which a research fact or finding can be repeated, given the 
same circumstances, and validity is the extent to which a research fact or finding is 
what it is claimed to be. (Bassey, 1999: 75).

It is usually not possible in qualitative studies to demonstrate rehability and vafidity since 

case study and other quahtative research depend on a specific context. Repetition of a 

O  study is impossible, since the exact circumstances can never be repeated. As an alternative

to reliabihty and validity therefore, the concept of ‘trustworthiness’ was estabhshed by 

Lincoln and Guba (1985) as an appropriate substitute or analogue for quahtative 

methodologies (Bassey, 1999:75; Tashakkori and Teddhe, 1998: 90). This concept will be 

used as a way of checking the standard of Phase I of this research project. As Phase II uses 

the analytical framework developed in Phase I it will also be assessed in the same way.

3.6.1 Trustworthiness

Lincoln and Guba introduced four criteria which give quahtative researchers a way to 

assess the trustworthiness of their data, their analysis and the inferences made. These are 

credibihty, transferability, dependability and confirmabihty (Tashakkori and Teddhe,

1998: 90). Bassey (1999: 75) developed these criteria into a sequence which enables the 

researcher to check these issues, which is very similar to the sequence given by Tashakkori
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and Teddlie. This sequence will be used to examine the trustworthiness of the data, 

analysis and inferences made in this research study.

Trustworthiness of the data collection

Bassey’s three criteria for this stage of a research project are:

O  1. Has there been prolonged engagement with data sources?

2. Has there been persistent observation of emerging issues?

3. Have raw data been adequately checked with their sources? (Bassey, 1999: 75; 
cf. Tashakkori and Teddhe, 1998: 90)

According to Bassey, ‘prolonged engagement’ is about

... spending enough time on a case in order to be immersed in its issues, build the trust 
of those who provide data and try to avoid misleading ideas. (p76)

The pilot study and the main case study were all carried out in the school in which I 

0  worked for most of the time in question. Two of the classes considered were taught by me,

the others were taught by two of my colleagues. I observed the classes taught by my 

colleagues during the Year 7 study, and observed two classroom discussions in the class 

who took part in the Year 8 study. I carried out ah the interviews personally, and had 

frequent informal conversations with students and teachers involved, which enabled me to 

build trust and check my ideas with those participating. This inunersion in the work going 

on also enabled me to decide on emerging themes, and then to check these with the 

participants. In particular, I was able to use the interviews after the teaching modules to 

probe participants’ views and to check my understanding against theirs. In Phase H, where 

I did not have any direct contact with the students, I used the analytical framework 

established during Phase I.

o
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Trustworthiness o f the analysis and interpretation

Bassey’s criteria for this stage of a research project are:

4. Has there been sufficient triangulation of raw data leading to analytical 
statements? ...

5. Has the working hypothesis, or evaluation, or emerging story been systematically 
tested against the analytical statements?

Q  6. Has a critical friend thoroughly tried to challenge the findings? (Bassey, 1999:
75; cf. Tashakkori and Teddlie, 1998: 91)

Triangulation of the data occurred within stages and across the two phases. Evidence from 

questionnaires, classroom transcripts, classroom observations, and student and teacher 

interviews were compared with each other within each stage of the pilot study and the 

main case study. Classroom recordings and observations and student interviews were not 

conducted in Phase H, but evidence from the questionnaires was compared with data 

collected during Phase I. Analytical statements were made mainly on the basis of the 

classroom transcripts and the questionnaires from Phase I. These were then checked 

against the other data collected in Phase I: the interviews with the participants, students’ 

written work, the classroom observations, and my own research journal. My teacher 

colleagues also observed lessons, and discussed what they saw with me. Further 

triangulation occurred between Phase I and H, and the analytical framework was 

reassessed in the tight of the data collected in Phase H.

o

o
According to Bassey, analytical statements are “meaningful statements”, which are “firmly 

based on the raw data”, and which may also “suggest the need for more specific data to be 

collected” (p70). Initial analytical statements generated by the pilot study concerned the 

value of the graphic calculator model and teaching method to enable students to learn 

algebraic techniques, and to make cognitive changes in their understanding of how letters 

are used algebraically. These suggested the need to collect data which would give me the
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opportunity to explore students’ understanding of letters more deeply, and the data 

collection for the initial stage of the main case study, the Year 7 study, was planned on this 

basis. The Year 7 and 8 main case study then generated further analytical statements. 

Further data were collected in Phase If to check these, and to improve the generahsabihty 

of the statements. The analytical statements that emerged are:

Q  •  The graphic calculator model of a variable helps students in the early stages of learning

algebra to develop a sound interpretation of letters.

•  The graphic calculator method of learning algebra helps students in the early stages of 

learning algebra to understand basic algebraic syntax.

•  The graphic calculator method of learning algebra helps students to make cognitive 

changes in their interpretation of algebraic syntax.

• The graphic calculator method of learning algebra helps students to remediate certain 

^  misconceptions in their understanding of letters.

• The combination of two students and a graphic calculator can constitute a ZPD in 

which both students are enabled to further their interpretation of letters and their 

understanding of algebraic syntax.

Throughout the analysis of Phase I, the emerging themes evolved, together with this 

analytical structure. These were tested against the data of Phase U, and the whole story 

Q  was re-evaluated during the writing of this thesis. In addition, parts of this research have

already been presented at conferences and seminars (Gage, 1999b, 2001, 2003a, b), and 

published in research and teachers’ journals (Gage, 1999a, 2002a, b). This has allowed for 

critical challenge in addition to that provided by my supervisors.

o
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Trustworthiness of the reporting

Bassey’s criteria for this stage of a research project are:

7. Is the account of the research sufficiently detailed to give the reader confidence in 
the findings?

8. Does the case record provide an adequate audit trail? (Bassey, 1999: 75; cf. 
Tashakkori and Teddlie, 1998: 91f)

O  The account of the research is contained in detail in this thesis. All data and analyses are

available should an audit be required; teaching materials and research instruments are 

contained in the Annexes to this thesis.

3.6.2 Generalisability of the conclusions of this research 
project

The generahsabihty of the findings of this research study is affected by a number of issues.

O  These include the sampling, the nature of the data collection, and the analytic process. The

participating schools and classes were selected on the basis of accessibihty. The pilot 

study and main case study looked at the effect of using the graphic calculator in various 

classes chosen from a single school. This school was a girls’ selective school, and so not a 

very representative environment for school children in general. The survey was more 

representative in that it included classes from four mixed non-selective schools. However, 

of the 12 classes included in the analysis of the survey, eight are from one school. These 

schools were self-selected, because there was a teacher at each of them willing to 

participate in the survey. Nevertheless, the students who participated in the survey did not 

choose to participate, and they covered a range of age groups and achievement levels (see 

Table 3 and Table 4, section 3.3.2). They attended four different schools in different parts 

of England, all co educational and non-selective. This should permit generalisation of the 

findings to a wider population.

o
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o

In Phase I, a good variety of different data types was collected. However, the coding of the 

questionnaires, from which much of the subsequent data analysis proceeded, required some 

personal judgement. Concluding that 6a + 2a = 8 is algebraically incorrect was not a 

problem, but deciding a reason for the error was often more difficult. It could be that the 

student was simply ignoring the letters. Then again, the student might be substituting the 

value 1 for a and evaluating on this basis. In making judgements of this type, I was guided 

by students’ responses to other questions. If the subsequent question was answered 

126 - 2 6  = 10,1 would feel justified in inferring that the student was ignoring the letters. If 

the subsequent answer was 126 -  26 = 2 0 ,1 would infer that the student was substituting 

values, with a = 1 ,6  = 2. However, there were occasions when some degree of uncertainty 

was unavoidable. I found that asking students in the survey how they had answered a 

3  specific question of the type 4a + 36 + 2a = was invaluable for reducing this uncertainty.

This question also helped me to deduce that although, when specifically asked about their 

interpretation of letters, some students wrote that letters represented numbers, in fact they 

were working with the letters in some other way. Triangulation of the data during Phase I, 

and across Phases I and II, also helped with these judgements.

o
Another issue affecting generahsabihty is my choice of themes and analytical statements. 

Other researchers working with my data might well choose quite different themes and 

analytical statements. My personal biases have been at the root of my preference for the 

particular themes and statements on which I have chosen to work. Nevertheless, these 

themes were found through examination of the data, and although there may also be others 

which I ignored, those chosen are relevant and appropriate.

o
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3 .7  Ethical ISSUES

Ethical issues which needed to be addressed included obtaining informed consent from all 

those involved in any aspect of the research study. I also needed to consider whether the 

identities of those involved should be concealed or not In Phase I, which involved 

Q  students for whom I had a responsibihty as a teacher and colleagues I was working with on

a daily basis, it was also important that my work as a researcher did not impact upon my 

work as a teacher in any way that could be considered detrimental to my students or 

colleagues.

At all stages of the pilot study and main case study, I kept the Headteacher and my Head of 

Department informed about what I was doing and what my intentions were. I 

demonstrated to my Head of Department that the students’ learning would not be 

compromised in any way by what I was doing. Letters were sent home to the parents of all 

students involved telhng them about the research project and the teaching modules, and 

encouraging them to make contact with me if they had any questions at any point about 

any aspect of the study. The parents of all students taking a direct part in the data 

collection were asked for written consent for their daughters’ participation in these 

activities. The students were told about what I was doing and its purpose, both as a 

research project and as a means of evaluating a new teaching approach. In Phase H, I 

asked the teachers I contacted to ensure that they asked permission as appropriate from 

their Headteachers and from the parents of students involved. To assist this, I sent a letter, 

which could be adapted for use as required, explaining what I was doing and inviting 

parents to contact me for further information if  they wished.

o

o
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Students taking part in any of the interviews or classroom data collection were all 

volunteers. They and their parents were asked for permission to use their words and work 

in any future pubhcation in teaching or research journals or in this thesis. I decided that 

keeping the schools’ and the students’ identities hidden would prevent identification of 

individuals or any potential embarrassment to any person or institution in either phase of 

this study.

3 .8  SUMMARY

In this chapter, the case has been made for a mixed methodology as a vahd means of 

investigating research questions. This was then related to the specific investigation 

conducted during this research project. The research design was described in detail as a 

sequential design, in which a qualitative methodology was used in the first phase to enable 

rich detail to be gathered about the questions being studied. This was supplemented with a 

survey to allow generahsation to a wider population. Data collection and analysis was 

discussed, with attention paid to the trustworthiness of both these processes. The 

generalisability of the findings was considered, as were ethical issues which arose during 

the study.

In the following four chapters, the analysis of the data is considered in more detail, to 

present findings across the four major themes identified. These are:

• the role of the graphic calculator in mediating students’ learning (Chapter 4);

• evidence for cognitive change in the students’ interpretation of letters, and their ability 

to work with algebraic expressions (Chapter 5);

o
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•  evidence for progress in the students’ understanding of letters and their abihty to work 

with simple algebraic expressions (Chapter 6);

•  the nature of students’ misconceptions and evidence for the role of the graphic 

calculator in enabhng students to remediate these (Chapter 7).

o

o

o
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CHAPTER 4 THE GRAPHIC CALCULATOR: MEDIATING IN 
A LEARNING ENVIRONMENT

4.1 Introduction

In this chapter, the theorisation of the graphic calculator as a cognitive tool (section 4.2), is 

grounded in Vygotsky’s theory of the mediation of tools (section 2.4.4). This is used to

support the model of a variable which the lettered stores of the calculator embody. In 

section 4.3, the role of the graphic calculator in shaping students’ higher mental processes 

is discussed (which was also considered in sections 2.4.4 and 2.5), and in section 4.4, its 

use as a tool for learning algebra is explored (continuing the theme of section 2.7). Section

Q  4.5 contains a summary of the chapter.

The pre-eminence tools have in Vygotsky’s work is a direct result of his grounding in 

Marxism. The Marxist analysis differs from much Western science however, which is 

based on an instrumentalist view of the notion of tool (Meira and Lerman, 2001), and 

which has its roots in positivism. Vygotsky worked with binary concepts, such as thought 

and language, learning and development, where the two poles are in a dialectic relationship

O to each other. In this dialectic, there is a tension where neither pole can exist without the

other, and in which neither on its own is succeeded by some new synthesis. The 

interaction of the two is the synthesis. In Vygotsky’s theory, tool use is internalised by us, 

with this internalisation becoming part of the resulting action. Meira and Lerman 

described this as “a result and a tool” with the “‘result’ ... itself a tool” (pl3). It is tool use 

in this sense that is explored in this chapter. The students’ use of the graphic calculator 

and the constructs they form are both part of one conceptualisation.

o
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o

o

Another metaphor used to tease out how the graphic calculator aids student understanding 

is Salomon’s (1991:1861) “cognitive prism” (section 2.5.2). This is also used to provide 

another perspective on the model of a variable provided by the graphic calculator. The 

model acts as a ‘prism’ though which students can pass questions and conjectures, which 

are confirmed or rejected.

It is argued in this thesis that the unit formed by a student pair and a graphic calculator has 

the potential to form a zone of proximal development, in which the students can develop 

their understanding (2.7.3). The view of the ZPD taken here agrees with that of Lerman 

(1998) and Meira and Lerman (2001), who conceptualise the ZPD as a symbolic space 

rather than some kind of force-field around a student. Two students discussing their ideas, 

O  and using the graphic calculator to verify or reject their conjectures, will learn more than

either would have done alone or without the graphic calculator.

Using another binary concept of Vygotsky's, that of scientific and everyday concepts 

(section 2.4.4), the physical model provided by the calculator is discussed in relation to the 

abstract nature of the concept of a variable. Vygotsky held that scientific and everyday 

concepts need to interact if  a true concept is to be formed. From this perspective, the 

calculator is viewed as a locus for this interaction of the abstract and the concrete to occur. 

Vygotsky held that thinking in concepts was impossible in the absence of verbalisation of 

thought (section 2.4.4), and the role of the graphic calculator in providing language and a 

focus for discussion is also explored.

o



o  Chapter 4: The GC: Mediating in a learning environment 118

The role of the graphic calculator in the four classroom studies reported in this thesis is 

described, together with teacher and student comment. Here, the effect of the calculator is 

differentiated from the contexts of its use. The underlying model, and the feedback of the 

calculator, are directly attributable to the calculator, and can be used in a variety of 

teaching situations. The teaching contexts are also discussed, however, as using the 

^  calculator with materials written specifically to support it provides a rich learning

environment.

4 .2  Mediation BY CULTURAL TOOLS

O

o

4.2.1 The nature of cu Itural tools

Wertsch’s (1988) analysis of Vygotsky's work identified higher mental functioning

mediated by socioculturally evolved tools and signs (Minick, 1987; Vygotsky, 1987), as

the third major strand in Vygotsky's theory (cf. section 2.4.4). Indeed Leont’ev (1997), a

younger colleague of Vygotsky's, said that Vygotsky began his analysis of mental

processes with the analogy of the mediation of the labour process by tools. A quotation

from Bacon, which summed this up for him, was:

Neither the naked hand nor the understanding left to itself can effect much. It is by 
instmments and aids that the work is done. (Bacon, 1620/1960:39, cited in Leont'ev,
1997: 17)

Where the behaviourists saw individuals reacting to the environment in elementary ways, 

with stimuh producing direct responses, Vygotsky envisaged a more complex interaction 

with the environment. A stimulus, S, would act through a mediating tool or sign of some 

kind, X, to produce a response, R:

o



o

o

o

Chapter 4: The GC: Mediating in a learning environment 119

Consequently, the simple stimulus-response process is replaced by a complex, 
mediated act, which we picture as:

(Vygotsky, 1978:40)

Mediation can be provided by physical tools, or by psychological signs of which language 

is the most important.

Complex mental processes cannot be simply learned however, but have to be developed in 

the child (Vygotsky, 1987), and tools or technology, together with social interaction, can 

aid such development (Landsmann, 1991). The cultural background against which 

Q  children develop in the early years of the twenty-first century is based on technology to a

high degree, and children take for granted the presence of technology in most aspects of 

life. It therefore seems reasonable to base their learning in appropriate cognitive 

technologies.

The phrase “cognitive technologies” (section 2.5.1) was used by Heid (1997: 6) to express 

the idea of a microworld “in which students can express, develop and investigate 

mathematical ideas”. She linked this to other metaphors, hke those of amplification and 

cognitive reorganisation, which are much used in the hterature on cognitive technologies 

(Dorfler, 1993; Pea, 1985,1987; Salomon, 1991). Tools are viewed as amplifiers of our 

physical and/or mental strength (Dorfler, 1993). Hence, the amplification metaphor is a 

way of explaining how technology can augment our powers, allowing us to cany out tasks 

more efficiently and in less time, but without changing the nature of those tasks. The

o
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o

reorganisation metaphor recognises that technology can allow us to engage in new tasks, 

and to carry out mental operations which we could not have done on our own: the nature of 

the tasks we can accomplish is changed.

In section 2.5, various other metaphors for the action of cultural tools were also 

considered. These included Salomon’s (1991:186) “defining technologies” (2.5.2), which 

act by creating metaphors which come to serve as “cognitive prisms” (pl86f) through 

which other phenomena are examined and defined. Salomon interpreted such a metaphor 

as a mental tool which can make the incomprehensible comprehensible (such as the 

universe in Oresme’s use of the clock metaphor, section 2.5.2), and which help us to 

reorganise already acquired knowledge. Salomon also gave the example of the computer, 

which is used as a cognitive prism though which we gain an understanding of our own 

O  minds. It is argued in this thesis that the graphic calculator is another such cognitive prism,

which serves to allow exploration of, and to make comprehensible, the concept of variable. 

However, we need to be aware that a feature of metaphors is to direct our attention to 

certain aspects of a phenomenon at the expense of other aspects, and that they may obscure 

as well as reveal.

o
There is some evidence fi-om the four classroom studies reported in this thesis of the 

graphic calculator acting as an amplifier, enabling the students to concentrate on the 

concepts involved by taking away some of the routine work. Students were able to try a 

variety of values in an equation, for instance, using the calculator to test them reasonably 

quickly. In the pilot study, one pair of students checked five different answers to one 

equation, initially guessing, then attempting to work out their answer more systematically.

o
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and finally using the “equation way”* -  at which point they got the right answer. Without 

the graphic calculator, they would probably have just written down their first answer and 

left it at that By the time the question was marked, with a time delay before they received 

this feedback, they would have forgotten what the question was about, and would simply 

have written in the correct answer without re-engaging with the question. There is rather 

more evidence of cognitive reorganisation in these classroom studies, in which students 

can be seen reorganising their knowledge, and acquiring new knowledge, through their use 

of the graphic calculator (Gage, 2002a, b). This is considered more fully in Chapter 5: 

Evidence o f cognitive change.

Changing the tools changes the knowledge

Focusing on technology draws attention to epistemology: for new technologies -  all 
0  technologies — inevitably alter how knowledge is constructed and what it means to any

individual. This is as true for the computer as it is for the pencil, but the newness of 
the computer forces our recognition of the fact. There is no such thing as unmediated 
description: knowledge acquired through new tools is new knowledge ... (Noss and 
Hoyles, 1996: 106)

The above passage was also quoted in section 2.2, but it encapsulates a thought worth 

considering again: Noss and Hoyles argued that the nature of the tools used in the 

acquisition of knowledge determines the structure of that knowledge. This suggests that 

the choice of appropriate tools and protocols shapes what is done, what is discovered, and 

Q  how it is represented. Similarly, Salomon (1991) claimed that new technologies can lead

people to raise new questions, to find new answers and to make new distinctions. This 

point has also been made by Noss:

* Their way of referring to the method they had been taught previously.
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Learners can, in other words, say and do things with suitably-designed systems that 
they may be unable to say or do without them, and they can often do so in ways that 
are interestingly differently from conventional means. (2002: 48f)

It is argued in this thesis that the graphic calculator has the power to provide such a system

for children meeting the algebraic use of letters for the first time, or struggling to make

sense of earher encounters. Although mathematical symbohc systems allow abstractions

to be displayed, yet what they gain in universahty they may lose in expressiveness (Noss,

2002). This is particularly true for the novice, endeavouring to make sense of a new

representational system, but unable to see how such a system might allow expression of

anything anyone might want to say. Students in the classroom studies  ̂described in this

thesis, responding to a question asking about the meaning of the letters in algebraic

expressions, made this very clear :̂

I think the a means above a number and b means below a number. [Year 6 student, 
school B]

An example of what you use? [Year 7 student, school D]

I think it means that it tells you that you’re doing algebra. [Year 8 student, school A]

I think they are there to make it harder. [Year 8 student, school B[

Just fancy ways of making them look good. [Year 8 student, school C]

These students have varying previous exposure to algebra, yet it is clear that they have 

Q  absolutely no idea what the letters are for, or why they should be using them. Algebra, if

not completely meaningless, seems to be about doing “sums”, then adding on “fancy” 

letters at the end, just to make it “harder”. As Noss put it:

o

Details of classroom studies can be found in section 4.4.3.

See also the responses to this question quoted at the beginning of this thesis, on p i.
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... the compactness and elegance of mathematical expression does not necessarily 
make it equally functional for learning, and if learning is our prior goal, we would do 
well to think about new epistemological frameworks in which to embed the 
mathematics we wish our students to understand. (Noss, 2002: 60)

Such new epistemological frameworks could well include the use of appropriate cognitive

technologies, such as graphic calculators. Students can learn:

Q  ... symbolic manipulations skills ... more quickly in areas such as introductory
algebra... after [they] have developed conceptual understanding through the use of 
cognitive technologies... (Heid, 1997:48).

Ultimately, use of the graphic calculator as a tool with which to introduce children to the 

concept of a variable needs to allow them to develop a rich understanding of a variable, 

and the skill to work with a variety of algebraic expressions, but the way that such 

understanding and skill are achieved may well be quite different from that of a learner in a 

more traditional teaching environment.

o

o

Effects of the tool and the context of its use

Two well-known meta-analyses of graphic calculator research differentiate between the

use of the calculator, and the teaching approach in which it is used:

... it is uncertain if the [observed] shift to higher cognitive skills was a direct result of 
the use of technology or of the approaches used with i t ... (Dunham and Dick, 1994:
14)

Similarly, Penglase and Arnold warned:

... studies which make claims regarding the effects of graphics calculator use must 
carefully distinguish between the tool and the context in which it is used, while those 
that purport to judge effectiveness must make explicit their assumptions concerning 
both the method and focus of assessment procedures ... (1996: 62)

The model of a variable provided by the graphic calculator can be considered as an effect 

of the calculator. The model is reliant on attributes of the calculator, and could be used 

with any number of teaching approaches. In the classroom studies described in this thesis,

o
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the specifics of the teaching varied from one study to the next and from teacher to teacher, 

but the underlying model remained a constant. Another effect of the calculator is its ability 

to act as a tool for diagnosis and remediation through the instant feedback that it gives 

(Avalos, 1996; Gage, 2002b). Again, this is not dependent upon the teaching approach. 

The Year 8 case study described in this thesis was taught by a teacher using her own 

Q  resources. The graphic calculator model was used to underpin the concept of a variable,

and students used the graphic calculator feedback to reassure them that they were making 

progress.

However, the effect of the calculator and of the context in which it is used cannot be 

separated entirely. The use of ‘screensnaps’, which are calculator screens for students to 

copy, gives a context particularly suited to exploiting the visual display of the graphic 

3  calculator. Their use also helps students by giving them a way to start a question. A

student may feel completely helpless when faced by a question asking her/him to find a 

value for X that satisfies a given equation, not knowing where to start or how to write 

things down. That same student, if  asked to copy a screen which requires finding a value 

of some unknown, can at least make a start. All they have to do to get going is to put a 

value into the appropriate calculator store, key in the required expression, and press the 

ENTER key. If it turns out to be the correct value, fine; if not, they can try again. Their 

efforts can be completely private if  they want, with no one else aware that they do not 

really know what to do. This helps to take away some of the misery students often 

experience when faced with a page of algebra questions.

o
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4.2.2 The graphie calculator model for a variable

Graham and Thomas (1998; 2000a) proposed a model of a variable using the graphie 

calculator (section 2.7.2). They suggested that the lettered stores of the calculator could be 

pictured (or, indeed, physically modelled) as ‘boxes’ into which numbers can be put, and 

that these could then be used to enable students to become familiar with elementary 

algebraic operations. The calculator allows the student to evaluate expressions and to keep 

an on going check on whether their thinking is correct by operating on the letters in the 

same way as an algebraic variable. In this way, students are enabled to construct their own 

understanding of what the letters used in algebra mean. They do not have to learn to 

operate on them without any mental picture of what is happening; neither do they have to 

accept blindly what the teacher says.

Graham and Thomas’ graphic calculator model is intended to help students begin to 

understand what the mysterious x  used in algebra actually is. x or y, or any other algebraic 

variable, is seen to be a number, specifically the number in the X or 7  store** in the 

calculator. Figure 4 shows three screensnaps, which students are invited to copy on their 

own calculators. In order to do so, they have to decide on appropriate values to put into the 

lettered stores, in this case, the G, A and B stores.

' The graphic calculator uses capital letters, rather than the lower case letters usual in algebra.

O
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Figure 4: Three screensnaps

6G
30

BR 8

o

o

o

This leads to a number of questions which might be asked:

What number do you have to store in G to copy the first screen?

Will any other number work?

What does 6G mean?

What numbers can you put into A and B to copy the other screens?

So does A =1 and B = 2 in this instance?

Is there more than one pair of numbers that will do?

Do they have to be whole numbers?

Do they have to be positive numbers?

Do AB and BA always have the same value?

What does AB mean?

What does BA mean?

How can you find out?

The graphic calculator can be a source of good questions for a class to consider, and it 

provides answers as well. If the value 5 is put into the G store, then the first screensnap 

can be copied exactly, and the students know immediately that they have found the correct 

value. If other values are put into the G store, these are found to be incorrect. Similarly, 

the questions raised by the expression AB can be discussed, conjectures made and tested on 

the graphic calculator, with immediate feedback as to their vaUdity (Gage, 2002a, b).

o
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Screensnaps like these allow the students to explore the meaning of an expression in which 

a number and a letter, or two letters, are placed side by side without any apparent operation 

being shown. In this way, they can discover that the convention in algebra is that the 

letters and numbers involved should be multipUed. Misconceptions, like that of always 

choosing A = 1 and B = 2, can be considered and found to be an inadequate way of 

Q  conceptualising these letters: while it is true that A could sometimes contain the value of 1,

and B that of 2, that would not work in the example given (Gage, 2001,2002b).

Exploring the two expressions AB and BA more generally, students can find that they are 

equal whatever numbers are put into the A and B stores, and this can be seen to be the same 

if  the variables are called A, B, X, 7, or any other letter. Teachers may feel that this will 

cause the students to have too great a reliance on the graphic calculator as the provider of 

O  mathematical authority, and that the calculator showing something to be true for a limited

selection of values is far from being a proof and, of course, this is true. However, the fact 

that AB = BA is always true is an axiom, part of the structure of the real number system, 

rather than a result susceptible to proof. The alternative is for the students to accept that it 

is so on the authority of the teacher. There are times when it is appropriate for teachers to 

make their students aware of the limits of the authority of the calculator, but here it is a 

case of whether students are asked to accept the authority of the calculator or that of the 

teacher .̂

Working with the graphic calculator allows students to try out many different ideas, seeing 

immediately if  their ideas are correct or not. For instance, students often want to simplify

o

This issue is discussed further in this section.
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expressions like x + 8, feeling unhappy at the lack of closure. Using the graphic calculator, 

they can experiment with various such ‘simplifications’, discovering for themselves that 

these will not do, and thereby acquiring confidence in their ability to recognise a correct 

algebraic answer. In cases like this, it seems preferable for the student to be able to 

experiment until they are satisfied that x + 8 #  8x, for example, than just to accept from the 

teacher that it is not so. It is not enough to try examples with numbers, since for the 

student, there is no way of knowing whether what they are doing is correct or not, without 

some provider of authority. If 8x can mean 8 multiphed by x, maybe x + 8 can mean the 

same as 8x? Why not, if  it all seems just a game of arbitrary rules®?

o

o

The graphic calculator as a tool for diagnosis and remediation

A diagnostic tool in the educational context is one which identifies errors or

misconceptions in a student’s thinking. An example of the graphic calculator acting in this

way is shown in this excerpt from the discussions of a pair of Year 9 students during the

pilot study carried out for this research project:

Eleanor Now on to question 3. This asked them to solve the equation
6x/4 + 9 = 4.5.

Kerry OK, so...
Eleanor This one seems quite a These students had been using an

tricky one so we’re just appropriate method for solving previous
going to have to have a equations, but appeared to be put off by
stab in the dark. the apparent complexity of this question.

Q  Kerry Yes. OK, so we’ll try This looks like a complete guess.
... 7.

Eleanor OK, 7. 7 STORE which They stored the value of? in the X store
is this keŷ , X,T, on the graphic calculator.
ENTER.

® It became clear during the analysis of the Year 6-8 survey, that many students interpreted 2a as 2  +  a, and 
be as 8, given values of 2 for b and 6 for c.

’ The calculators the students were using had a special key, labelled X,T, for die variables X  and T (used in 
parametric equations).
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Kerry OK, so now it’s stored Having cleared the screen, ...
as 7. CLEAR screen.
OK.

Both 6X divided by 4 plus 9 ... they started to key in the equation.

Eleanor 2“** function, MATH, The key sequence 2'  ̂function, MATH,
ENTER, 4.5, ENTER. ENTER gives a Boolean ‘= ’ sign. The

calculator returns a 1 if the value in the 
X store is correct, but a 0 otherwise.

Kerry No. Clearly, their calculator returned a 0 ...
Eleanor No.
Kerry OK, so 7 ...
Eleanor .. .was not right. ... telling them that 7 was not the correct

choice.
Kerry Um ... so what are we

going to try now?
Eleanor 3. 3. Do you want to do They made another guess, this time that x

it? is 3. Needless to say, this was also
wrong.

In this excerpt, the graphic calculator acted as a diagnostic tool, showing that these two 

girls had problems with equations of the type axlb + c = d. Having tried several small, 

positive values they reahsed that perhaps the answer needed to be a negative number, but 

then, resorting to guesswork again, tried -24 as a “stab in the dark”, then -15 and -25. 

Kerry then said that would not be right, and that it would be 20 or 30. They settled on 

-29.5 instead, which was still wrong. At this point, Eleanor suggested that they “try the 

equation way” (that is, they worked out the answer rather than guessing it) and they very 

quickly calculated that x needed to be -3, which the graphic calculator confirmed as the 

correct answer.

This incident exemplifies the graphic calculator diagnosing a problem, then giving the 

students the opportunity to solve their problem for themselves. They did not need outside 

help, as they actually had all the skills they needed already. What they did need was 

feedback as they tried their guesses, helping them to realise that guessing was not an 

adequate method, so that they would revert to the method they had been taught. With its 

immediate feedback, the graphic calculator can provide support so that students are

o
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empowered to solve their own problems. This is an example of the graphic calculator and 

the two students forming a ZPD (see sections 2.4.4 and 4.3) in which both students 

advance their understanding.

Hindrances to learning

O  It became clear from some of the transcripts of classroom discussions, however, that poor

use of the graphic calculator can hinder students’ learning. In the following extract from 

the Year 8 study, the students used the graphic calculator inappropriately leading them to 

confirm incorrect answers. These students were trying to solve the equation 2(p + 5) = 24. 

This example also shows that at that point the students’ thinking was procedural, rather 

than proceptual*.

Rebecca: ... so you must do the p Rebecca wanted to do the operation
Q  plus the 5 first, and then in brackets first, thinking

add the 2. So p add 5 ... procedurally, rather than seeing
add the 5 and the 2 together (p + 5) as an entity, defined by the

brackets. She also saw the 2 as 
added to, rather than multiplied by, 
the result of this calculation.

Fran: ... 7 ... Because they did not see
(p + 5)as an entity multiplied by 2, 
they added the 5 and 2, giving them 
7p = 24.

Rebecca: ... that’s 7, and then 24 They then compounded this error by
minus 7 is ... subtracting instead of dividing ...

Fran: ... 17, so we guess that p is ...to  obtain a completely erroneous
17. answer.

o
The graphic calculator should have helped them to at least reahse something was wrong, 

but unfortunately the check they did simply repeated their mistakes. Instead of putting the

Proceptual thinking (section 2.6.5), a term coined by Tall and Thomas (1991), encapsulates the ability of 
the expert to view algebraic expressions flexibly, seeing the procedural aspect o f an expression like jc +  1 and 
identifying it as a mathematical object in its own right

O
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value of 17 in the P  store, and then evaluating 2(p + 5), they used the graphic calculator to 

add 2 and 5, and then subtracted it from 24.

This is an example of calculator authority which needed to be challenged. The two girls 

clearly did not realise that what they were doing was completely wrong, and an 

inappropriate check meant that the graphic calculator feedback simply confirmed their 

error. Instances like this require the teacher to be aware of this kind of confusion, and to 

discuss the issues with the class. A similar question was discussed with the teacher 

concerned during her interview after the Year 7 case study a year earlier. On that occasion, 

she said that the students knew about brackets and where to find them on the graphic 

calculator, and so she could not see why there would be a problem. A year later, in her 

interview at the end of the Year 8 case study, conunenting on a very similar equation to the 

Q  one Rebecca and Fran were doing, it became clear that she had not been aware of the

inadequacy of the checks some of the students were making. This is discussed in more 

detail in Chapter 5: Evidence of cognitive change.

4 . 3  T h e  g r a p h ic  c a l c u l a t o r : s h a p in g  h ig h e r  m e n t a l

PROCESSES, EXTENDING THE ZPD

In his Prologue to the English Edition of Vygotsky's Thinking and Speech, Bruner (1987) 

wrote that Vygotsky’s theory of the zone of proximal development (or ZPD) was a 

“stunning concept” (p4). Late in his life’, Vygotsky saw that just looking at the current 

level of development of a child did not tell the whole story about that child’s abilities. His

o

’ First mentioned in a lecture in 1933, some 15 months before he died.

O



G) Chapter 4: The GC: Mediating in a learning environment 132

example (also discussed in section 2.4.4) was that of two children who without help both 

perform a task at the level of an eight year old, but with help, one could perform at the nine 

year old level whereas the other could perform at the twelve year old level.

Vygotsky concluded from this that it was necessary to establish two levels of child 

development: what the child can do now, and what her/his potential is. The difference is 

the “zone of proximal development”. What is in a child’s ZPD today will be achieved 

tomorrow (Vygotsky, 1987: 211). If a problem or activity is within a child’s zone of 

proximal development, s/he will be able to solve that problem or perform that activity 

given help, although s/he would not be able to do it alone. An adult or more able peer 

provides a ‘scaffold’ which allows the child to reach a functionally more sophisticated 

level of performance. We saw an example of this in section 4.2.2, where the graphic 

O  calculator helped Eleanor and Kerry to solve an equation which they were finding difficult.

Lerman (1998) has argued that the zone of proximal development belongs to the

classroom, rather than to the child, and that it:

... is created in the learning activity, which is a product of the task, the texts, the 
previous networks of experiences of the participants, the power relationships in the 
classroom, etc. (p71)

As has already been discussed in section 2.4.4, there has been criticism of

O  conceptualisations of the ZPD as a force-held or physical space (Meira and Lerman, 2001 ;

Newman and Holzman, 1993) which the teacher must find in order to teach successfully.

The revolutionary function of the ZPD is that it is the space, created in activities, in 
which the participants teach each other and learn from each other, where the dialectic 
of thinking and speech is manifested, and where the individual's meanings encounter 
social meanings (sense) and purposes. (Meira and Lerman, 2001: 4).

Indeed:

o
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o

o

o

... pairs of students can create their own zone of proximal development if they are 
motivated, taught how to share ways of working, have an appropriate personal 
relationship, and/or other factors. (p72)

It is argued in this thesis that the unit of a pair of students and a graphic calculator can 

create a ZPD for the students, if their working relationship satisfies these conditions.

Figure 5: Model of ZPD created by a pair of students and a graphic calculator

GC

s

This unit of student-graphic calculator-student provides another metaphor for exploring

how the graphic calculator enables students to learn, supporting them together as they

explore the rules and conventions of algebra.

... learning can be facihtated by providing help in developing an appropriate notation 
and conceptual framework for a new or complex domain, allowing the learner to 
explore that domain extensively. (Noss and Hoyles, 1996: 107)

A pair of students plus the graphic calculator provides the scaffolding needed to support 

the students in reaching a higher level of understanding. The graphic calculator provides 

the notation and conceptual framework for the new domain of algebra, but on its own 

would be insufficient, since it can only give feedback, it cannot suggest another approach. 

The student partner alone would not be adequate, since s/he would not know if a different 

approach was any better. The combination of two students and a graphic calculator, 

however, provides an environment in which cognitive development can occur, with the 

calculator acting as the tool which mediates that development.

o
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o

4.3.1 Scientific and everyday concepts

Vygotsky hypothesised that children leamt both everyday, or spontaneous, concepts and

scientific concepts during childhood and adolescence (section 2.4.4). Scientific concepts

are those which are taught to a child, probably in school, and which derive from formal

learning. These he visuahsed as descending from the abstract to the concrete, where they

meet up with the spontaneous, everyday concepts which originate in the child’s everyday

experience. Luiia, in the Afterword to the Russian edition of Thinking and Speech

(Vygotsky, 1987), argued:

Everyday concepts are well known to the child. He knows what a house is, what a 
dog is, and what a brother is. He uses these concepts effectively, but cannot provide 
verbal definitions for them. Everyday concepts do not enter the child’s conscious 
practice in a direct way. The opposite features characterize scientific concepts.
Scientific concepts are introduced by the teacher through verbal means even before the 
pupil has any concrete experience with what stands behind them. As a consequence, 
the pupü can easily formulate the scientific concept verbally. This does not mean,

O  however, that he can use the concept fluently. (p366).

Vygotsky was very critical of the type of teaching which expected children to learn from

direct instruction alone, which is often all they receive when learning algebra, stating that

this is “a mindless learning of words, an empty verbalism” (Vygotsky, 1987: 170). The

teaching needs to be seen as a beginning, rather than an end, with much work still to be

done on the child’s part:

... scientific concepts are not simply acquired or memorized by the child and 
assimilated by his memory but arise and are formed through an extraordinary effort of 

O his own thought. (ppl76f, original italics)

In order for children to learn new concepts successfully, there needs to be teaching which 

will introduce them to the abstract aspects of the concept, and there needs to be practical 

experience which will give them a concrete grounding in using that concept. The abstract 

and concrete should not be viewed as “bipolar opposites” (Noss and Hoyles, 1996: 45)
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however, but rather as a dialectic. Meaning is “reshaped in the interplay between ‘abstract’

and concrete’ activities” (p45). Another way of expressing this is that:

... concreteness is not a property of an object but rather a property of a person’s 
relationship to an object... The more connections we make between an object and 
other objects, the more concrete it becomes for us. ... This view will lead us to allow 
objects not mediated by the senses, objects which are usually considered abstract -  
such as mathematical objects -  to be concrete ...(Wilensky, 1991: 198f, original 
itahcs).

o
The graphic calculator model brings together scientific and everyday concepts for a 

variable. The everyday concept of a number in a box or store is brought together with the 

algebraic conventions, expressions and equations which students meet in school, thus 

enabling them to move from the abstract to the concrete and from the concrete to the 

abstract. Working with the calculator also enables students to make connections between 

the physical model of a variable as a number in a lettered store and the abstract algebraic 

O concept. When classes are working with the graphic calculator model of a variable, it is

therefore very important that the teacher uses opportunities to draw out the significance of 

what the children are discovering. This allows students to work in their ZPD, which has 

the potential for a:

... fundamental reconstruction of the child’s reflection of reality ... the creation of 
new psychological formations of a kind that the child’s spontaneous development 
could never have achieved (Luria, 1987: 367).

o Dorfler (1993) similarly asserted that cognitive processes can often be

... successfully guided and organized by concrete representations, images or models 
of the given situation. The thinking process then consists essentially of 
transformations and manipulations of these ... models, (pi 66)

He further argued that the difference between novices and experts is the range and 

adequacy of the mental models they have available to them. Construction of such models 

is not simple, nor is it automatic, with many students failing to produce effective models 

for themselves. In providing novices with an easily understood model for a variable, the

o
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graphic calculator is helping them to do mathematics more as an expert would. The 

support given by the graphic calculator is not that of a ‘temporary crutch’, but a full part of 

the cognitive construct built up by the student, similar to the function of diagrams and 

physical models -  a tool-in-use becoming a “tool-and-result” (Meira and Lerman, 2001; 

11).

o

o

It is an important aspect of models used to enable learning that students should be able to

move on from them. This is emphasised by Noss and Hoyles (1996: 107):

Learner participation is gradually increased -  according to the needs and learning pace 
of the individual -  and the support is gradually (Original itahcs)

The fact that the graphic calculator initially enables the student to create a cognitive 

construct for a variable does not mean it always has to be physically present to be useful. 

Vygotsky noted that children leam from their teachers initially by imitation and 

collaboration, then by using their awareness of the “adult’s help, invisibly present” 

(Vygotsky, 1986:191), so that eventually they can operate independently.

4.3.2 Language with which to think

Thinking in concepts is not possible in the absence of verbal thinking. (Vygotsky,
1978:131)

The central tenet is that verbahsation helps students to own their knowledge, to ask 
O realistic questions and to make mathematical structures and relationships explicit.

Discussion can ... assist in focusing awareness between the tool use of mathematics 
and the appropriation of the relevant structures and relationships. (Noss and Hoyles,
1996: 141)

These two quotations both emphasise the need for students to have language with which to 

think (section 2.4.4). Vygotsky made the point repeatedly that higher mental functioning 

requires words, whether in the context of spoken language or of internal thought.

Similarly, Noss and Hoyles claimed that learners can think and speak about abstract.
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mathematical ideas, if they have a language with which to do this, and that this language 

can be derived from the tools and notation used. It is argued here that the graphic 

calculator can provide the language of algebra, by providing a tool with which to work, 

notation to express the relationships between variables, and words with which to describe 

these relationships (cf. Avalos, 1996).

o
The model of a variable as a ‘box’ or ‘store’ containing a number can be used to explain

the use of letters in algebra. This is then exemplified with the use of screensnaps, so that

students become used to putting numbers into the lettered stores of the calculator. Each

time they do this, it underlines that the letters are placeholders for numbers, giving students

a way of explaining what letters are in a way that makes sense. It also gives the questions

a meaning. When a student is asked to copy a screensnap, there is an action for them to

O  perform: they put a number into the given lettered store, and see if the screen they get

when they press the ENTER key is the same as the screen given. The following brief

excerpt from the discussions held by a pair of Year 7 students shows how such

internalisation of the concept of a variable occurs in the context of the graphic calculator:

Sam: It’s 2 times B, 7 This question asked them to evaluate! xB, given
is in B, so it’s that B =7. Note the use of language here: “7 is in
14. B”. This language is provided by the graphic

calculator model.
Chloe: It is 14. Next The next question asked them to evaluate 2B.

one is 2B. So
O it’s 2 times 7,

14.
Sam: 2B is 2 times B. Remarks like this help the students to internalise

the fact that 
2B = 2 xB.

In the Year 6-8 survey questionnaires, five students answered a question about their 

interpretation of letters by using language directly provided by the graphic calculator on
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the post-questionnaires, having failed to answer the question satisfactorily on the pre­

questionnaire. These are the responses of two Year 8 students from school A:

I think it means that it tells you you’re doing algebra. [First student, pre­
questionnaire]

They stand for the numbers which you stored in the graphic calculator. [Immediate 
post-questionnaire]

o

o

o

I think that’s what they are stored in. [Delayedpost-questionnaire]

[Question left blank] [Second student, pre-questionnaire]

I think a and c means what number is stored in A and C. [Immediate post­
questionnaire]

I think a is a number like 5 and b would be like 10. [Delayed post-questionnaire]

All five students made good gains in their total scores on the algebraic questions between 

the pre-questionnaire and the delayed post-questionnaire : from 17% to 27%, 8% to 27%, 

25% to 45%, 8% to 27%, and from 42% to 73% respectively. I would argue that the 

calculator gave them the language with which to conceptualise these problems, thus 

enabhng them to tackle them more successfully.

A focus for reflective discussion

It has been claimed that working with technology tends to increase the proportion of group 

work done in classes (e.g. Heid, 1997). More recently, Hennessy, et al (2003) have carried 

out detailed classroom research, which suggests that much of this group work is not really 

collaborative, and that opportunities for genuine collaboration need to be specifically 

provided by the teacher, rather than this being a necessary outcome of using ICT. When 

such collaboration does take place, however, there is opportunity for discussion to take 

place, both between small groups of students with or without the teacher, and between the

o



o

o

o

Chapter 4: The GC: Mediating in a learning environment 139

whole class and the teacher. Such discussion has the effect of making students more

conscious of their views through re-presenting them to others;

In the effort to communicate, the speaker has to strive to frame his or her thoughts in 
language which conveys meaning, to try to see another point of view and develop 
more flexible approaches to strategies and solutions. (Noss and Hoyles, 1996: 142)

Disagreement, which may then ensue, gives students the opportunity to re-evaluate their 

initial thoughts. Discussion is therefore a form of scaffolding and contributes to the ZPD: 

coUaboratively students can achieve more than they could alone. In the Phase I case 

studies, the students were encouraged to work in pairs so that reflective discussion would 

be facilitated, and real collaboration could occur. This approach was also suggested to the 

teachers at schools A, B, C and D, as a way of enabhng reflective discussion between 

students. Such discussion needs to be focused if it is to be an effective learning instrument 

however, and the graphic calculator provides such a focus (Graham, 1998).

In a questionnaire completed at the end of the pilot study, those students who had recorded 

their conversations in the classroom were asked if they thought this had made a difference 

to their work. Nine students answered this question, and of them six felt it had made a 

significant difference, two did not think it had made much difference and one felt it had 

made no difference. It is interesting to note that some of the students were aware that they 

were working more slowly than normaP®, and that by saying what they were doing aloud, 

O they were taking more notice of what they were doing. Explaining for the benefit of the

tape'* also became explaining for their own benefit. Remarks included:

As you said what you were doing it kind of stuck in your brain.

*® This issue is discussed by Hennessy et al (2003). Teachers in their studies found that the pace of lessons 
was often less where ICT was used.

"  The tape recorder forced the students to articulate their thoughts, but the graphic calculator provided the 
forum for those thoughts. The two effects are not the same.

O
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O

o

We had to explain what we were doing all the time whereas usually we’d just do the 
work without discussing it so much.

It made us explain our work and not have to rush ahead. We also understood our work 
easily.

I think it made a difference because we had to concentrate harder and not gossip as 
much!

It slowed us down quite a bit, having to explain everything as we went.

4 . 4  T h e  GRAPHIC CALCULATOR AS A TOOL FOR LEARNING ALGEBRA

4.4.1 Problems with traditional teaching approaches

... a focus on procedures alone, without conceptual linkages between them, leads to 
increasing cognitive stress as the individual learns more and more disconnected pieces 
...(Tall, 2000: 37)

The classroom work described in this thesis originally arose from a desire to offer students 

something more meaningful to them than the normal paper and pencil approach for 

teaching the early stages of algebra. Many students fail to grasp much about the nature of 

a variable despite years of algebra lessons, indicating that traditional methods do not 

succeed for all students (section 2.6). Indeed such difficulties are a commonplace among 

secondary school mathematics teachers and researchers.

Q  Kaput (2000) claimed that “in contrast with the arithmetic system, the algebra system was

built by and for a small and specialized intellectual elite” (p5, original italics), regardless

of the difficulties most learners would experience in trying to grasp its principles.

The effect of these leamability factors did not really become felt until the latter part of 
the twentieth century when education systems around the world began to attempt to 
teach algebra to the general population. Prior to the middle of the twentieth century, 
the algebra literacy community was quite small, quite analogous to the small literacy 
communities of the speciahsts associated with early writing. (Kaput, 2000: 6)
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Kaput went on to say that the invention of the alphabet had revolutionised the process of 

learning to read, so that it became accessible to the population at large, and that a 

comparable invention was now needed for algebra. He suggested that the graphic 

calculator was a suitable instrument, which was practical to use in the school classroom, 

and would facihtate students' efforts to learn algebra. Changing the medium of instruction 

would allow symbohc algebra to become knowable and leamable. Kaput was discussing 

the use of CAS*  ̂systems on graphic calculators, and the students he worked with were 

studying calculus. However, the focus of this thesis is to argue that the use of graphic 

calculators can aid much younger students in their learning of algebra.

o

o

4.4.2 Use of the graphic calculator in the case studies

Various types of use of the graphic calculator by students have been suggested. These 

include using them for calculations, for data collection and analysis, for visualisation and 

for checking (Doerr and Zangor, 2000). Other uses have also been observed, including 

exploration beyond the inunediate topic being taught (Simmt, 1997). Some of these uses 

were also significant in the classroom work described here, especially checking and 

exploration.

Q  In all the studies described in this thesis, the basic model was that of the graphic calculator

stores providing an instantiation of an algebraic variable. The calculator’s stores are 

labelled with letters; numbers can be put into the stores, and the calculator can then be used 

to display algebraic operations on the lettered stores and the results of these. The key

Computer Algebra Systems, such as DERIVE. These are not the focus of any of the work described in this 
thesis.
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sequences required follow the algebraic expressions exactly, and the display looks the 

same as an algebraic expression, apart from the use of upper case rather than lower case 

letters. In order to exploit this model, the students used the calculators as tools for 

investigation and exploration, and to provide feedback on their conjectures (Gage, 2002a, 

b). The screensnaps also provided visual confirmation of how a given operation on a 

^  variable should be expressed, a great help to students in the initial stages of learning

algebra.

The students' work was based on the constructivist approach throughout: it was intended 

that the students’ actions with the graphic calculator would help them to contextualise their 

understanding of letters used in the algebraic context. Knowing how to perform certain 

rituals in mathematics is not the same as understanding; the constructivist approach to 

O  teaching and learning views exploration and reflective enquiry as more useful than the

passive acceptance of what the teacher says (Richards, 1991; Steedman, 1991). It was 

therefore intended that the use of the graphic calculator, and the materials provided, would 

enable students to develop their understanding first, and to allow the learning of skills to 

come from this or to be returned to later.

o
Discussion between students was viewed as a vital part of the learning process, both 

between pairs of students working together on the screensnaps and other questions, or 

between small and large groups of students and the teacher. The purpose of such 

discussion was for students to make conjectures about the screensnaps: to verbalise their 

ideas, to compare them with those of others, and to use the graphic calculator to test them. 

The teacher’s role was to probe misunderstandings and ask questions that would make
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students reconsider, to bring good questions to a wider audience, and generally to open up 

discussion.

4.4.3 The classroom studies

O

o

o

Details of the schools and classes participating in the classroom studies are given in section 

3.3. The case studies were all carried out in school G, a girls’ grammar school, at which I 

taught until Christmas 2000. A pilot study for this research was carried out in the summer 

of 1999 (Gage, 1999b), followed by the two stages of the main case study, in the autumns 

of 2000 and 2001 (Gage, 2002b). The pilot study involved one class of Year 9 students 

taught by me. The initial phase of the main case study was conducted with half a year 

group (three classes) of Year 7 students, taught by two of my colleagues and myself (Gage, 

2001,2002b). The following year, one of these classes, by then in Year 8 and taught by 

one of my colleagues, was followed up.

Year 9 pilot study, 1999

The classroom element of my graphic calculator research started in April and May of 1999 

with Sally (section 1.2), a 14 year old girl who needed additional help, if she was to do as 

well as her peer group in the end of year standard assessment tests (Key Stage 3 SATs). 

Her knowledge of algebra in particular was hmited and unrehable: when asked what 2 x - x  

equalled, she answered very firmly: “2!” (Gage, 2002a). Using the idea of putting 

numbers into stores, then carrying out simple operations with the graphic calculator, she 

began to understand how letters are used in algebra, and to have some success with 

algebraic questions.
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Working with Sally during lunch breaks then developed into a pilot study with her class, 

which was carried out during June and July of 1999. Sally was well below the average 

level of mathematical attainment of her year in that particular school. She was the only 

student with a Level 5 pass*̂  in the SATs exams that May, while some of her peers gained 

Level 8 passes and the rest gained Level 6 or 7 passes. For most of these students, the 

^  problem was not to understand basic use of letters, but to develop their skills on more

challenging questions. However, other students were not so confident. I hoped that using 

the graphic calculator would stretch those for whom this was appropriate, and provide a 

means of building up a sounder conceptual basis for others. The topic chosen was that of 

solving hnear equations and simphfying algebraic expressions of varying degrees of 

difficulty, since a number of the equations required simplifying before they could be 

solved. Easier questions were succeeded by more challenging ones so that everyone could 

Q  work at an appropriate level.

The main teaching method was to give the students screensnaps (calculator screens) to 

copy. The following screensnap is an example from the pilot studŷ '*:

Figure 6: Screensnap illustrating method used in Year 9 pilot study

o
5X-6=36-2X

Although this was the target grade nationally.
This example shows the magnitude of Sally’s problem: she was convinced that 2x-x = 2, but she was 

expected to be able to solve equations of this complexity. I am convinced that many students are in this 
position, of being expected to work on problems which require considerably more conceptual understanding 
than they possess.
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o

To copy the screen in Figure 6, the students needed to calculate the value of x which would 

satisfy the equation. They would then put this value into the X  store, and key in the 

equation. If the value in the X  store was correct a 1 would be returned (as in the left 

screensnap in Figure 7), but if  the value was incorrect a 0 would be returned (as in the right 

screensnap in Figure 7.

Figure 7: Screensnaps illustrating use of graphic calculator in the pilot study

6-»%
6

5X-6=36-2%
1

7+%
7

5X“6=36“2K
0

o In addition to equations set in this way, others were given in the more usual way, but the 

students were still expected to check their answers with the graphic calculator.

o

In the simplification exercises, students were given typical algebraic expressions to 

simpHfy, for example:

2a + 3b — a — 4b 36a x  2b

The screensnaps in Figure 8 show the first example simphfied correctly (the calculator 

returned a value of 1), and the second simphfied incorrectly (the calculator returned a 

value of 0). Students were told to put any values they liked into the A and B stores for

Q
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these exercises, although it was pointed out that it would be a good idea to avoid using 0, 1 

and

Figure 8: Screensnaps showing how simplifications o f expressions were checked in the 
pilot study

2R+3B“R-4B=R-B 36R*2B=38RB
1 0

0

o

A major benefit of the graphic calculator was that it gave prompt feedback to the students: 

they knew inunediately if their answer was correct or not, and could work on a question 

until they were satisfied. This is in contrast to much classroom practice, where students 

answer questions, writing answers in their books, then check them at the end of the lesson 

or wait until the book has been marked by the teacher. Often by the time the students find 

out if their answers are right or wrong, they have forgotten what the question was about 

and what their thinking was at the time, so there is no chance for them to change the way 

they thought. A correction may be written in, but this is a mechanical exercise, compared 

with the opportunity to rethink a question at the time (Gage, 2002b).

o
This excerpt from a transcript of a classroom exchange shows how the graphic calculator 

was used during this case study, and in particular, how it enabled the students to correct 

their approach to a problem:

Using 0,1 or 2 could make expressions equal which would not otherwise be the same, e.g. 36a x2b = 
3Sab is correct if either aorb = 0;p  ̂= 2pifp = 2 (an example discussed at length in Chapter 5: Evidence of 
cognitive change).
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o

o

o

Gemma:

Lauren:
Gemma;

Lauren:

Gemma:
Lauren:
Gemma:

Lauren:

Gemma:
Laura:

Gemma:

Gemma:
Lauren:
Gemma:
Lauren:

Gemma:
Lauren:
Gemma:
Lauren:

Number 8 is 5X take 6 equals 36 
take 2X.
So here we could take ...
... take the 2%’s ...

... take 2X and we would get 3Z 
minus 6 equals 36.
Yeah.
... and 36 ...
... is it plus 6? 36 plus 6 equals 42 
divided by 3 equals 14. X  equals 
14. Right then.
Oh, yes, X equals 14. Check on 
the calculator.
Yeah.
So we do 14 STORE X, ENTER, 
then you do 5X take away 6 then 
2nd e n t e r  equals 36 take 
away 2X, ENTER ... we got it 
wrong.

We got it wrong? Um ... 
it be ...

Would

Gemma: Yes, so if we add 2X we’ll ge t ... 

Lauren; That’ll equal I X ...

5 x -6  = 36 — 2x.

They decided to take away the 
2x term, forgetting that the 
sign is attached to it - a very 
common mistake...
... giving 3 x - 6 = 36.

They reversed the operations 
to get Xfrom 3 x - 6  = 36...

... which gave them 14.

They entered 14 into the X 
store, then input the equation. 
2nd e n te r  gives them 
the Boolean ‘= ’ sign. 
However they found that 14 
was not the correct answer.

Yeah, take 6 . . .
... equals 36 ...
Yeah.
... and now we do X times 7 minus 
6 is 36, then 36 plus 6 which 
equals 42,42 divided by 7 is 6, so 
X. . .
Yeah.
... so X equals 6.
Yeah.
Are we going to check it on the 
graphical calculator? 6 ENTER, 
then we do 5X minus 6, 2"'* TEST, 
ENTER, 36 minus 2X. Yes! We 
got i t ... we got it right! So X 
equals 6.

After some discussion, and 
trying it the same way, again 
unsuccessfully...
... Gemma identified the 
problem.
5 x - 6  = 36-2x  
7 x - 6  -  36

When they repeated their 
calculation, they got the right 
answer of 6.

They checked this answer with 
the graphic calculator... and 
saw that they had then 
answered the question 
correctly.

o
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Year 7 study, 2000

The next study planned was with Year 7 students (aged 11-12 years) in their first term of 

secondary education. The pilot study had proved effective as a means of teaching Year 9 

students about more comphcated equations and expressions, but some of them had found 

using the Boolean ‘=’ sign unduly complicated, and the data collected had not proved a 

particularly effective way of probing students’ understanding of a variable. Three classes 

took part in the Year 7 case study (half a year group), with two additional teachers using 

the graphic calculator model. It was intended that this would give greater breadth to the 

findings (Gage, 2002b).

o

o

o

The graphic calculator model was used to introduce students to using letters. Many of 

them had done some work with letters in their primary schools, but for some it was their 

first introduction to algebra. The National Curriculum in force in the UK at the time 

required that students in the 11-14 age range were taught how to use symbols in equations 

and expressions, progressing from using a letter as a definite unknown to using a variable 

in an identity or function. It was intended in this study to explore students’ initial exposure 

to expressions, what meaning they gave to the letters used in these expressions and the 

types of misconceptions that occurred in their thinking, both before and after the teaching 

module. The teaching approach encouraged constructivist learning, relying heavily on the 

calculator’s provision of instant feedback, so that correct ideas were strengthened and 

misconceptions quickly challenged. Reflective discussion between pairs of students, and 

between the whole class and the teacher was also a feature of this study.

Again screensnaps were used, this time to allow students to investigate how letters are used 

in algebraic expressions, and to do simple operations on the letters. The students started by

o



o Chapter 4: The GC: Mediating in a learning environment 149

learning how to put a number into a store and to evaluate simple expressions (as illustrated 

in the left and middle screensnaps in Figure 9). Then they went on to predict values to put 

into stores to produce given screensnaps (as in the screensnap on the right in Figure 9).

Figure 9: Screensnaps illustrating use o f the graphic calculator in the Year 7 case study

o 3-^F
3

F+1
4

F -2
1

5-̂ R
5

2R
10

6R
30
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4

B-2
3

o

Once the teachers were sure that their students knew how to produce screensnaps like 

these, the students worked together in pairs copying further screensnaps which took them 

through a range of algebraic ideas and conventions. Screensnaps were used throughout 

this study, with students using the graphic calculator to check their ideas. Common 

misconceptions which needed to be challenged were that A = 1, JB = 2, so AB = 12 or 2; or 

if AB = 16, then A = \ ,B  — 6. Again, instant feedback was an important aspect, as was the 

remediation of misconceptions about letters, and how they are used in algebra (Gage, 2001, 

2002b).

o The two students, whose discussion is quoted below, started their first lesson thinking that 

if  AB =16, then A = 1, and JB = 6. By this point in the lesson (less than an hour later), they 

had corrected this idea, and Fran was starting to express ideas about the range of numbers 

which could be used for a screensnap hke this. This excerpt shows the power of the 

graphic calculator to help students sort out these ideas. Figure 10 shows the screensnap 

they were copying:

o
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Figure 10: Screensnap used in Year 7 case study

MN
30

O  Rebecca: We’ve got another one. The recognition that M N  is a  p rodu ct
M N, which is M times shows a  considerable step  fo rw a rd  f o r
N , equals 30. 6 times these tw o students, who, less than an
5, because 6 times 5 is hour earlier, thought the letters w ere  the 
30. dig its o f  a  tw o-d ig it number.

Fran: But you see, it could be I t is th is rem ark that is  significant
anything. It could be however. I t shows the beginning o f  the
one is 10 and one is 3. realisation that letters are generalised

numbers, rather than specific numbers.

Year 8 study, 2001

O My intention initially was to follow up all of the students who had taken part in the Year 7

study a year later. However by then, I was no longer teaching at the school, and one of the 

other classes had also had a change of teacher. I decided therefore to follow up the one 

class who had kept the same teacher, and to take a ‘snapshot’ of the students’ thinking a 

year after their initial introduction to algebra with the graphic calculator. My focus was on 

how the students’ thinking had progressed since the previous year, rather than on the 

classroom process or how the calculator was used.

o
The teaching method in this study did not concentrate so directly on the graphic calculator. 

Students had graphic calculators available at all times to use as they saw fit, but apart from 

a few screensnaps to remind them of the basic method, the teacher did not direct students 

on how to use the calculators. The focus was on the calculator giving feedback, so that 

students would be able to monitor their progress, rather than on the calculator providing an

o
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environment for discovery and exploration. Rather than using materials specially prepared 

for the graphic calculator, as had been the case in both the previous studies, this time the 

teacher used resources of her own, using the graphic calculator to support the underlying 

model of a variable, rather than as a specific tool for exploring ideas about variables. The 

topic was on the use of the ‘balance’ method to solve linear equations, together with some 

work on graphs of hnear equations.o

o

o

Year 6-8 survey, 2002

By the end of 2001,1 had collected data in a girls’ grammar school with students aged 11 

to 14 (school years 7, 8 and 9), from classes taught by three different teachers. However, 

there were clear hmitations on using these data to draw conclusions which could be applied 

to students of this age more generally: only girls were represented, and they all came from 

one selective school. The next stage, therefore, was to find other schools which would use 

the graphic calculator model for a variable, would use materials specifically prepared to 

allow exploration of how letters are used and interpreted, and would allow the collection of 

data from their classes. The four schools which eventually took part were all mixed, non- 

selective schools, one a 9-13 school in East Angha (school B), two 11-16 schools on the 

south coast (schools A and C), and one 11-18 school in the north-east (school D). The 

students who participated were in school years 6, 7 and 8, that is, aged 10 to 13̂ .̂

Again, screensnaps figured heavily in the teaching method^’. After the same kind of start 

to the sessions as described in the Year 7 study above, students were given questions like

Full details of the schools and the students participating can be found in section 3.3. 

The worksheets, teaching notes and general instructions can be seen in Annex I.
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o

this to give them the opportunity to discuss aspects of how operations on letters should be 

interpreted:

Can you make this screensnap in three different 
ways? Write down the numbers you use.

What would the screensnap for BA look like? Draw 
it.

RB
1 0

Questions like this were followed by harder screensnaps, using large numbers, negative 

numbers or non-integer numbers, and more operations in each question.

o

o

Students were then asked to match equivalent expressions. The six expressions in Figure 

11 formed one such set to be matched.

Figure 11: Screensnaps and stars

X  «  2

X + l - 3

2  +JC

Questions like this gave students the opportunity to investigate sets of expressions, to find 

out which of the expressions are the same and which are not. Here the graphic calculator is 

acting as a tool for investigation and exploration, giving immediate feedback, so that 

conjectures can be made and tried out. This approach can be used to explore specific
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misconceptions, for instance, that 2x = 2 + x ,  a. misconception held by a surprisingly large 

number of students (see Chapter 7: Misconceptions).

4.4.4 Participants’ views on the graphic calculator

O

O

Teachers’ views on the graphic calculator model

In interviews conducted at the end of the school year with my two colleagues from school 

G who had participated in the Year 7 case study, both said they had been very pleased at 

how well the students’ understanding of letters and their competence with algebraic 

expressions had been maintained during that year. They felt that the students had made 

much better progress with other aspects of algebra, such as constructing and evaluating 

O  simple formulae, than would normally have been the case. They also felt the students’

motivation to study algebra had not fallen as much as they had expected on the basis of 

their previous experience.

In the Year 6-8 case study, one teacher from each school completed a questionnaire which 

included questions about how helpful the graphic calculator had been. All four said they 

had found the graphic calculator model useful and that they would be prepared to use it in 

the future. They all felt that their students had coped well with using the graphic 

calculators, finding them a help rather than a hindrance. The teacher from school C wrote: 

“I had one moment where a very weak girl explained clearly to me what 5a meant. It was 

quite brilliant.” She also said that she had already successfully used it with “a weak Year 

11 group”, and that she intended using this model in the future:

o
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Ideas will be written into Y7 scheme of work for September. Rest of department have 
had ago-very successful. Even shared ideas with another school who were equally 
enthusiastic.

The teachers from the other schools expressed similar feelings, and had recommended this 

model to others in their departments.

The teachers in this study claimed their students’ understanding of letters had progressed 

through using the graphic calculators. The teacher from school A said of his “more able” 

group that they “[n]ow have a firm model of a variable. Needs to be built up further, but 

progress!” His “less able” group showed “[s]ome improvement. May not remember or be 

able to work independently, but can grasp the concept when led.” The teacher at school D 

commented that her students’ understanding was “[m]uch better, ideas already formed 

have been corrected. More confident/less afraid of algebra.”

The teacher from school A sounded a note of caution, however, which relates to the

authority of the calculator:

I’m quite taken with this approach, but I’ve had one slight doubt for a while when we 
suggest that 3A means 3 x A, because that’s what the calculator does. I’m not sure 
that’s a good thing! ‘It must be that, because the calculator says so.’ However, the 
model is so useful. I’ve decided to ‘teach round’ this issue.

He was concerned that students would learn to accept an answer “because the calculator” 

says so. This can be a hindrance to learning, as discussed earher in this chapter (section 

4.2.2), where two students confirmed a wrong answer because they were using the 

calculator incorrectly. The calculator cannot remedy errors caused by using the wrong key 

sequence, or by putting unsuitable numbers into the stores. The deficiency is not in the 

authority of the calculator or the model, however, but in students’ lack of awareness of the 

need to use the calculator correctly, and of the need to follow up problems, rather than just 

assuming that if there is a discrepancy between a calculator answer and an expected

o

o
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answer, that the calculator is bound to be right. As the teacher at school A added, this is an 

issue that teachers need to be aware of, and to discuss with their students.

Students’ views on using the graphic calculator

o

o

Very few of the students had any problems with the graphic calculator, once they had 

practised what to do a few times. The only students commenting to any extent on 

difficulties with, or dishke of, the graphic calculator were a few from the pilot study. 

Comments made by some of them about it being a nuisance to have to use a menu to 

access the Boolean ‘=’ sign were the main reason for simphfying the use of the calculator 

between the pilot study and the other studies. In the later studies, all students really had to 

know how to do was to put a number in a lettered store, then copy the content of a 

screensnap, equation or expression.

One particular student in the pilot study really disliked using the calculator, but this degree

of dislike was not found in the later studies, or even among other students in her class.

When interviewed, she said it was fiddly, and she and her partner begrudged the time it

took to do a calculator check:

Interviewer; How do you think you are getting on using the graphic 
calculators?

Holly: I never ... They help just to, like, check things, if
O you’ve done it right, hke those things we did

yesterday, but I never reaUy ...
Carly: I think they do help, it’s just...
Holly: ... they seem really complicated.
Carly: Yeah, you have to do so many things each time you do

a question, and you just wonder if it is worth the 
bother.

Holly: It’s too long.

Nevertheless these two did experience success with the calculator, finding that it helped 

them to get questions right.

o
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Other students in the pilot study commented:

... and then we just check, and it’s good to see if it’s right...

... it tells you if you’re getting on, if you’re like doing the right sort of thing, because 
otherwise you could be doing them all wrong.

Attitudes to the graphic calculator were tested by questionnaire, as well as by interview, in 

Q  the pilot study. Over 40% of the students rated the graphic calculator as “good” after their

module, compared to nearly 30% rating it as “good” beforehand. About 20% thought them 

“boring” or “hard to use” both before and after the module.

During the student interviews in the Year 7 study, the nine pairs of students (three from 

each participating class) who audiotaped their discussions in the classroom were asked 

about their views on the graphic calculator. Most said it had helped them to find answers, 

and that they had found it useful. Only one pair mentioned any real problems. They said it 

was annoying to find the letters, and to remember the STORE and ALPHA keys. They 

also said it sometimes made things too comphcated, and it was easier to do the questions in 

your head, comments which echoed those of Holly and Carly from the pilot study. It was 

observed throughout the teaching period that the majority of the students enjoyed working 

with the calculators.

o

o
In student interviews following the Year 8 study, both groups of students interviewed 

agreed that the graphic calculator was useful to help them check their answers. The higher 

achieving group" said they could solve the equations without any extra help, but they liked 

to be able to confirm that their answers were correct as they worked through them. The
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lower achieving group" agreed with this, but said they would only check their answers 

once they had finished a set of questions. However, they felt that the calculator helped 

them directly through its feedback, rather than simply providing answers. This group did 

not have the certainty the first group had that they could solve the equations without help. 

The higher achieving group said the calculators were most helpful when they did 

^  something new, and that after they had done one or two of a given type of equation, they

found it a bit annoying to have to use it to check their answers.

Students in the Year 6-8 survey were asked how helpful they had found the graphic 

calculator in a questionnaire at the end of the teaching period. Of the 272 who completed 

this questionnaire, only 10% thought it “not very helpful” or “not at all helpful”, with the 

vast majority finding it at least “OK”. Over 60% found it either “very helpful” or “quite 

O helpful”.

4 .5  SUAWARY AND CONCLUSIONS

This chapter describes a model in which the graphic calculator provided a significant 

contribution to an environment in which students can begin their early studies of algebra. 

Such an environment is a social one, in which the calculator can be viewed as a mediatingo
tool (Vygotsky, 1978; Wertsch, 1985). A student’s peers and the graphic calculator 

together form the scaffolding enabling a student to reach a higher level of understanding of

A group of four, chosen by their teacher as relatively “able” mathematically, and articulate.

A similar group of four, also articulate, but relatively “less able” mathematically, also selected by the 
teacher.
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a variable than would have been the case if  they had worked alone and without the graphic 

calculator:

Figure 12: Diagram illustrating ZPD formed by two students and a graphic calculator

o

o

GC

S

The student-graphic calculator-student triangle is instrumental in allowing a ZPD to form 

in which the students can develop their understanding.

There are four aspects to how the calculator contributes to this environment. It acts as a 

tool, shaping the higher mental processes of the students (Vygotsky, 1978). Secondly, if 

students work together sharing a calculator, the calculator forms a focus for discussion 

which is also part of shaping their thinking (Graham, 1998). Thirdly, it provides students 

with an easily understood concrete model for how an algebraic variable ftmctions, and 

which allows them to connect the abstract and the concrete (Noss and Hoyles, 1996). 

Finally, it provides immediate feedback, enabling the students to challenge their 

Q  misconceptions and correct errors (Gage, 2001, 2002b).

In the next three chapters, the results of the case studies and the survey are discussed in 

depth, focusing on cognitive change in the students (Chapter 5), the progress the students 

made in working with expressions (Chapter 6), and the misconceptions the students 

showed (Chapter 7).
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CHAPTER 5 EVIDENCE OF COGNITIVE CHANGE

In the previous chapter, it was suggested that using the graphic calculator could enable 

students to change how they interpret letters, that is, to make cognitive changes in their 

understanding of how letters are used. This chapter concerns such cognitive change, both 

O what it is and how it may be recognised. In section 5.1, cognitive change and criteria for

its recognition are discussed. The criterion chosen, which derives from Pea’s work (1985; 

1987) is that there should be evidence that the student’s thinking has been restructured in 

some way. This is then exemphfied with vignettes from the classroom case studies, which 

are described in section 5.2. The examples chosen include occasions where cognitive 

reorganisation did occur and also occasions where cognitive reorganisation did not occur 

for some reason. The chapter is summarised in section 5.3.

o

5.1 What is cognitive change, and how can it be 
RECOGNISED? 

5.1.1 Metaphors for the effects of cognitive technologies

O
‘Amplification’ and ‘cognitive reorganisation’ are metaphors frequently used to describe 

how students might learn more or learn more quickly when using computer technologies 

(sections 2.5.2,4.2.1). In 1985, Pea wrote that “[cjomputers are classically viewed as 

ampUfiers of cognition”, taking up what he called Bruner’s “influential phrase” of 

“‘cultural amplifiers’ of the intellect” (pl68). Computers could be expected “inevitably 

and profoundly [to] amphfy human mental powers”. This expectation of inevitability has 

since been challenged, particularly by the French school whose work was reviewed in
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section 2.5.3, but the metaphor of ‘amphfication’ to explain how computers might help us 

persists.

Pea used the idea of amplification as a metaphor for those interactions where the computer 

speeds up what the learner does, or extends what they can do. Such effects can be 

observed inunediately, and occur while the learner is using the technology. An example 

might be that of the student who is assisted in grasping certain features of graphs by having 

a graphic calculator draw a series of graphs. Here the graphic calculator would enable the 

student to observe features across a series of graphs by removing the necessity to draw out 

all the graphs by hand.

o

However, Pea felt that the metaphor of amphfication was inadequate to theorise the effects

O of cognitive technologies. In many cases, the effect of using computer technology is not

simply to speed up a task, or to extend a person’s capabihty in some way, but to restructure

the task. Pea gave the example of a young child who uses a pencil to help her/him

remember a long hst of items, suggesting that it would be:

... distortive ... to say that the mental process of remembering that led to the outcome 
was amphfied by the pencil. ... The pencil did not amphfy a fixed mental capacity 
called memory; it restmctured the functional system for remembering, and thereby led 
to a more powerful outcome. (Pea, 1985:170).

o
Instead, Pea proposed that the metaphor of cognitive reorganisation would be a better one 

to describe how “computer-based cognitive technologies such as software fundamentally 

restructure the functional system for thinking” (pl70).

The effects of cognitive technologies are much more complex than the metaphor of 

amphfication would suggest, because the nature of the learner’s thinking is changed (Pea, 

1987; cf. Vygotsky, 1978: 132f). The specific details of how thinking is restructured are

o
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unpredictable, with the emergence of new quahties in the learner’s thought. Pea defined 

cognitive technologies as “any medium that helps transcend the hmitations of the mind, 

such as memory, in activities of thinking, learning, and problem solving” (1985: 168). An 

example is the invention of written language, which enables us to rise beyond the 

restrictions of our memories, to extemahse fleeting thoughts for subsequent reflection, 

analysis and discussion.

The crucial difference between ‘amphfication’ and ‘cognitive reorganisation’ as metaphors

to explain how cognitive technologies enable us to do more than we could previously, is

that our partnership with cognitive technologies gives us the opportunity to  e n g a g e  in  n ew

tasks, n o t s im p ly  to  d o  o ld  ta sk s  b e tte r .

. . .  it m ight be said that the real power o f  technology . . .  is  in its abihty to redefine and 
fundamentally restmcture w hat w e do . . . ,  how  w e do it, and when  w e do it. We com e 

Q  to  use this technology as a  too l to think with. (Salom on, 1991: 191, original itahcs)

Salomon identified the unit of analysis as not simply the individual, but the partnership 

between the individual and the intellectual tool. He argued that there is a need to 

distinguish between mental operations reorganised d u rin g  this partnership, and those 

altered a s  a  re su lt  of it (pl92). Pea expressed this in the question: “How can technologies 

for education serve not only as tools for thinking, but for helping thinking to develop?” 

(1985: 178).

o
Following this hne of thought, in this chapter I want to explore how the use of the graphic 

calculator can enable students to develop how they think about variables. I argue that such 

development in students’ thought is caused a s  a  re su lt o f  th e  triad of two students and a 

graphic calculator, and is not simply something that occurs w h ile  they use the calculator. 

The calculator is a necessary part of the learning situation: its replacement by some other 

tool or form of technology would change the learning that occurred.

o
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5.1.2 Cognitive reorganisation; Vygotsky

Pea’s metaphor of cognitive reorganisation has its origins in the work of Vygotsky (Pea, 

1985,1987). Marx’s theory of society (historical materiahsm) identified “historical 

changes in society and material Kfe” as the causes of changes in human nature (Cole and 

Scribner, Introduction to Vygotsky, 1978: 7).o
O ur produ ctive a ctivities change the world, thereby changing the w ays in which the 
w orld  can change us . . .  (Pea, 1987: 93, original italics)

There is a dialectical process between us changing our world and our world changing us.

According to Marx and Engels, labour is the factor which mediates our relationship to

nature, and this relationship is fundamentally changed by the use of physical tools. Such

tools enable us to change our environment, and, in turn, the environment changes us:

Vygotsky argued that the effect o f  tool use upon humans is fundamental not only  
because it has helped them relate m ore effectively to their external environment but 

O also because tool use has had important effects upon internal and functional
relationships within the human brain. {Afterword, Vygotsky, 1978: 132f)

Vygotsky and Luria generahsed this theory and apphed it to a historical analysis of 

symbolic tools, such as speech and writing. Vygotsky (1978) concluded from this that 

mental processes are mediated by signs (or symbolic tools) in the same way that physical 

processes are mediated by tools (even if only by a hand).

o Because tools and signs have an inevitable effect on us through this dialectical relationship,

it follows that amphfication is not a sufficient metaphor to describe their effect, since

amphfication presumes that there is no change in how we think.

The growing com plexity o f  children’s behavior is  reflected in the changed m eans they 
use to fu lfil new  tasks and the corresponding reconstruction o f  their psychological 
processes. (Vygotsky, 1978: 73)

From this. Pea (1985; 1987) concluded that cognitive technologies are reorganisers rather 

than amphfiers of the mind. The examples Pea (1987) hsted (which echo those of

o
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O

Vygotsky, 1978: 7, 38) include all symbol systems such as written language, mathematical 

notation, computer language, and physical technologies such as chalk and board (which 

has to be erased), pencil and paper (which does not), and so on. These all have the power 

to extemahse the intermediate products of thinking, and to make them permanent for a 

greater or lesser time.

Suggestions that this can be interpreted as an amphfication of the ZPD (Berger, 1998) 

seem to interpret the ZPD metaphor in too concrete a way. The amphfication metaphor 

does not encompass new thought constructs, so the ZPD cannot be extended if there is only 

an amphfication effect. The ZPD is the difference between what the child can do alone 

and what s/he can do with help, and it involves new ways of thinking. It is cognitive 

reorganisation that affects the ZPD, leading to a more powerful outcome than would have 

O  been the case without the cognitive technology which mediated the reorganisation.

5.1.3 The graphic calculator; a tool for cognitive reorganisation

The graphic calculator has been described as an intelhgent technology “capable of 

significant cognitive processing on behalf of the user” (Berger, 1998: 14). However, the 

calculator can be used in a variety of ways, and it may be the case that some of these are 

Q  more capable of such cognitive processing than others. Much research on their

effectiveness in aiding learners relates to the use of graphic calculators in providing graphs, 

and is therefore not particularly relevant to its use in helping children learn about variables. 

It is argued here that the graphic calculator model of a variable is a form of cognitive 

technology in Pea’s sense: it is a tool which helps transcend the limitations of the mind. Its
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affordances' enable children in the 10 to 14 year old age group to understand what letters 

used in algebra mean and how they are used.

A study designed to discover if  the graphic calculator has detectable amphfication or 

cognitive reorganisation effects was carried out by Berger (1998) with South African 

^  students, who were learning basic calculus. Her project was hmited by the availability of

the calculators, so only twenty students were included. These students had an additional 

45 minute tutorial a week in which they were given guidance about using the calculator, 

but otherwise they followed the same course as the other students in their year. Since use 

of the calculators was not permitted in examinations at the time, use of the calculator was 

hmited to verification and support of analytic results in these tutorials. Berger found 

amphfication effects in her qualitative data, in that students were able to generate graphs 

O quickly and easily for further consideration. She had hoped also to find evidence of

cognitive reorganisation effects, but she was only able to report one such incident.

Berger’s criterion for cognitive reorganisation was that the student would

... use her calculator in a manner which was quahtatively different from that possible 
with pencil and paper ... (pl8).

It is difficult to see how this could be a useful criterion, however, since using a different 

tool means that there will almost certainly be differences in how the students carry out 

tasks. Berger’s criterion is also very difficult to use in practice: how can one know if a 

given student’s thinking is different using one cognitive technology from what it would 

have been had that student used a different technology? Pea’s (1985) definition is that

o

* ^Affordances are the properties of a system ... which allow certain actions to be performed and which 
encourage specific types of behaviour’ (Cox, Webb, et a l ,  2004).
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there is evidence of restructuring the functional system for thinking. Berger’s and Pea’s 

definitions are not necessarily the same: on the one hand, Berger was looking for evidence 

that the calculator has been used in a way that would show a different approach, and on the 

other. Pea was looking for evidence of restructuring of thinking. The criterion chosen here 

for cognitive reorganisation is that there is evidence of the student’s thinking being 

^  restructured in some way, as this is more fundamental and easier to detect.

5 .2  Examples of cognitive reorganisation

In this section, several episodes are described from the three case studies carried out in this 

research. The incidents are grouped together thematically, and include examples of 

occasions where there was an opportunity for cognitive reorganisation which did not take 

place. It is argued that the graphic calculator can provide a locus in which students are 

enabled to change their constructs, but only if the change required is within the students’ 

ZPD. If it is outside the ZPD made up of the unit of the two students and the graphic 

calculator, then the anticipated cognitive reorganisation will not take place.

o

o

5.2.1 What does 2a mean?

This excerpt was recorded by two students during the first lesson in the Year 7 study, and 

shows the way in which the graphic calculator has the potential to enable students to 

change the way they think. The previous question asked them to evaluate 2 x  A, given that 

A was 4, which they did correctly. They continued:

o
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Charlotte: Three is 2A. 2 and 4 
must be 24,1 think.

o

o

o

Abigail: 2B.

Charlotte:
Abigail:

Charlotte:

Abigail:

Charlotte:

Abigail:
Charlotte:

Abigail:
Charlotte:

Abigail:

Charlotte:

Abigail:

Charlotte:

Abigail:

Charlotte:
Abigail:

Charlotte:

Abigail:

It’ll be 24.
Yeah. No, this is B. 
Five.
27, it’s 27.

This is  a  perfect exam ple o f  the ‘code' 
misconception^.

Referring to  question num ber five .

The value they w ere given f o r  B w as 7. 
Again, note the ‘code' misconception.

Then eight, which is AB Question 8.

... and that will be 12 ... 
47.

47. Then nine ... BA. 
Yeah, so that will be 74.

74. ...
... We now have to 
check them all with the 
calculator.

2 times ALPHA A, 8. 
We got that right, so we 
can write in 8.
OK, now I’ll do i t ... 
number three. So we 
got that one right, so ... 
Three ... 2A ... so 2 
ALPHA A ...
So ...2  ALPHA A 
equals 8 ...
Whoops!

[laughs]
OK, maybe I did it 
wrong!
[laughs again, then a 
long pause]
OK, so that’s 8. [tape 
turned off]

It is interesting that C harlotte's f ir s t  
thought w as to  substitute A = 1  and  
B = 2, an d  to  in terpret each as a  d ig it o f  
a  single num ber (the ‘code' 
m isconception again). H ow ever they  
se ttled  f o r  47, again  ‘code', bu t this 
tim e using the given values.
Question 9.
They w ere s till using the ‘code' 
m isconception.

2 x A  =  8, since A  =  4.

2A =  8  also.

They rea lised  that they have  
m isinterpreted 2A, since they p u t 24.

They w ere clearly both stunned by this 
turn o f  events.

 ̂ ‘Code’ is a category of error (see Chapter 7: Misconceptions) where students interpreted a letter as one digit 
in a number rather than as the whole number.

O
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It is a pity that this was the end of the lesson, and Abigail was away for the next lesson, so 

there is no record of how they sorted this out. However, compare the following extract 

from their discussions, taken from the transcript of the third lesson. This extract gives an 

example of how a gain in skills can be related to proceptual thinking (Tall and Thomas, 

1991), and demonstrates the role of the graphic calculator in enabling this cognitive 

reorganisation to occur. The students were trying to find expressions equivalent to 

2{S + T) from a hst of possible choices, but at this stage they had done no work on 

multiplying out brackets. The correct choices given to them were 2S + IT  and 

S + S + T + T :

o

Abigail: 5 plus Thas to be done first. Because it  is in brackets
presum ably.

Charlotte: That means 2 times 5 plus T. N ote C h arlo tte’s  recognition o f
S  plus T times 2. S + T a s  a p ro cep t.

Abigail: I can’t find that.
Charlotte: Oh, there it is, S  plus S  plus T

plus T.
U  Abigail: Is that right? Are you sure?

Charlotte: Yes, because it’s 2 times S  and
... I think so anyway.

They then checked that 2{S + T) equalled S + S + T + Thy putting numbers into the S and 

T stores on the calculator and evaluating the two expressions. They found them to be 

equal, so moved on, satisfied, to the next question. Although Charlotte’s skills in 

manipulating algebraic expressions had yet to be developed in any real sense (she missed 

2S + 27), she was already gaining a sense of S plus T as an encapsulated object that can be 

operated on. Both students showed how far they had moved from thinking that the A in 2A 

meant the second digit of a two-digit number. The graphic calculator model had enabled 

them to restructure their thinking.

o

o
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5.2.2 Interpreting 2x and

In this example, three incidents are described, two from the Year 7 study, and one from the 

Year 9 pilot study. The Year 7 students were strugghng to interpret expressions like 2x. 

Does it mean jc + jc, or x x x? The root of their confusion is that 2x means that x should be

o

o

o

m u ltip lie d  by 2. The Year 9 students were trying to interpret terms like 5x ,̂ initially 

squaring the 5, rather than the x, to give 25x.

Does 2P = P + P o r P  X P?

Evidence that when students work collaboratively with a graphic calculator, cognitive 

reorganisation can occur can be seen in the problem of sorting out whether 2P is the same 

as P X P or P + P. This particular question came towards the end of the Year 7 teaching 

module, and caused confusion for many of the students who tried it. Students were asked 

to find equivalent expressions for 2P -  g  from alternatives which included P + P - Q  and 

P x P - Q .

This first excerpt is from Sofia and Chantelle’s discussions. These were both students who 

had done some algebra in their primary schools, and who had made good progress during 

the Year 7 module.

Sofia: Which of the
following is the same 
as 2P minus Q1

Chantelle: So ...
Sofia: One second. The

choices are ...
Chantelle: The choices are P add P + P -  Q, P -  Q + P ...

P take away Q, or P 
take away Q plus P ...

Sofia: P times P take away ... P x  P -  Q, P + P + Q,
G, Pplus Pplus G, G Q + P - P  ...
plusPminus Por ...

o
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o

o

Chantelle: . . . Q  take P  take P. Q - P - P

Sofia: 2P equals P times P. Sofia seem ed very sure o f  her ground.
Chantelle: Yes. No. I P  equals P Chantelle w as equally sure, however,

p lu s P.
Sofia: No. 2 times P, P This is the crux o f  the problem :

times P. 2 x P  is multiplication, an d  it is hard f o r
a  student a t this early stage to  see it as  
the sum o f P  and P, ra ther than their  
product.

Chantelle: Oh, right. Sorry.
Sofia: But no. 2P. M aybe Sofia w as not qu ite so  certain.
Chantelle: So P plus P.
Sofia: P times.
Chantelle: Isn’t it just 2P, P plus Chantelle kept trying to  bring them back  

P? to  P  + P.
Sofia: Not add.
Chantelle: Yeah, but...

Compare that with the following exchange between Megan and Lucy, who had also studied 

algebra before, and were getting on well during this module. These two students were in a 

completely different class, with a different teacher.

Megan: 2P is the same as P M egan w as in no dou bt abou t this.
plus P.

Lucy: No, it’s not, it’s the Lucy w as equally sure.
same as P times P.

Megan: No, but...
Lucy: It’s the same but...
Megan: Yes, I know, but plus

... and ... so it means 
IP .

Lucy: Y es...
Megan: ... so they have to be M egan knew w hat she w as trying to  say,

added together, not but had difficulty articulating it.
taken away.

Lucy: No, you have to times. Again, this suggests the roo t o f  the p rob lem
is that 2 P  involves the operation  o f  
multiplication, not addition.

Although these two pairs were from different classes, their exchanges were almost 

identical. Both conversations continued in a very similar way, with Chantelle and Megan 

trying to convince their partners that 2 x  P is P + P not P x P , and Sofia and Lucy 

appearing convinced, then saying “Yes, but...” Both Sofia and Lucy appeared unable to

o
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let go the idea that as 2 x P  involves a multiplication, so too should any equivalent

expression.

This confusion is apparent in the discussion that ensued between Megan and Lucy:

o

o

o

Lucy: Times or add then take Q.
Megan: But there’s two P’s but because to

work it out you actually times it. 
You have like...

Lucy: 2 times P take Q  is what you’re
saying, right?

Megan: Yes. It is. P plus P take Q.
Lucy: Yes. P tim es P.

Megan: Plus.
Lucy: Times, it’s times, but put... oh right,

fine.

Megan: Wait, can I just prove my point?

Lucy: I know.
Megan: Pretend P is 2.

Lucy: You’ve got 2 plus 2 is 4 but 2 times 2
is 4 as well. I understand what you 
mean.

Megan: But because ... Let’s pretend P is 3. 
You’d have to have two P’s.

Lucy: Yeah, no, hang on, 3 plus 3 is the
same as 3 times 3. No it’s not. If it’s 
3 then 3 plus 3 is 6 and 3 times 3 is 9 
... so that’s only working with ... no, 
it’s not... sorry ... you’ve got 3 plus 
2, 3 times 2 ... but put in brackets ... 
um ... P times P take ...

Megan: But... um ... for example, pretend 
that P is 7.

Lucy: Yeah.
Megan: You would have ... you would have 

two 7’s.
Lucy: Mmh hmm ...
Megan: So it could be P and P or two times 7 

... or like 7 and 7.
Lucy: Yeah.
Megan: So that’s the same as P plus P take

Ô.
Lucy: I see what you mean ... cos P times

M egan w as s till trying to  
explain the con fu sion ...

... but Lucy rem ained quite  
sure that she w as right (like 
Sofia).

H ow ever (like Chantelle), 
she appeared  abou t to  
concede the argument.
But M egan w anted to  p rove  
the point, not ju s t win the 
argument.

Unfortunately, she started  
with the one value that 
w ou ld  not help h e r ...
. . . a s  Lucy quickly po in ted  
out.

So she m oved on to 3.

L ucy’s confusion w as  
growing. H aving started  
correctly, by  considering  
3 + 3 an d 3 x3, she then  
started  adding and  
m ultiplying by 2, and  
w orrying abou t brackets. 
M egan abandoned this an d  
tr ied  y e t another value, this 
tim e 7.

Lucy appeared  abou t to
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. . .  no . . .  make the breakthrough  ...
Megan: But i f  P i s  2 ...
Lucy: I understand because 7 times 7 . . .  no,

7 times 2 ...
Megan: 2  is  a number which . . .  2  add 2 and 2 M eanwhile, M egan w as

times 2  are exactly the same. explaining w hy 2 is a  p o o r
choice f o r  this explanation.

Lucy: . . .  can b e added or tim esed . ..
Megan: . . .  so when you get to other numbers,

Hke m y example, 7, it would be 49.
Lucy: N o  it w on ’t, i f  you ’ve got 2 times . . .  Finally, Lucy d id  appear to

but P  tim es P  . . .  I see your point, have understood w hat
O  yeah, you ’re right. Sorry. P  plus P  M egan w as saying.

take <2-

It appeared at this point that Lucy and Megan had resolved their difference by using 

numbers to convince Lucy that her interpretation of 2P was incorrect. Yet, the final 

resolution of this problem shows that Lucy was still not completely certain at this point. 

Using the graphic calculator, they put 7 into the P store and 8 into the Q store, and showed 

that 2 P - Q Ï S  equal to P + P -  <2- Then:
o

o

Lucy: Can we just do [the] one I thought it Lucy still wanted to check
could be. out P x P  -  Q.

Megan: Yes.
Lucy: ... which is P times P ... ALPHA P, Lucy enteredP x P  -  Q into

times ALPHA P, take Q, ENTER. the graphic calculator, and
Right, you are correct. I understand found it gave a different
your point. Right, I’ve been doing answer from 2P -  Q. 
this wrong.

On the audiotape, Lucy sounded much more convinced at this point than she had at the end 

of the discussion using numbers. The previous discussion had clearly gone a long way to 

persuade her, but this final demonstration really made the difference. The graphic 

calculator’s inunediate feedback enabled her to move from being almost sure to being very 

sure, so changing the way she viewed expressions like 2P. This is an example of a student 

restructuring her thinking: at the beginning of this episode, she was convinced that 2P 

meant P x P; at the end she was certain that it meant P + P.

o



o Chapter 5: Evidence of cognitive change 172

o

o

Sofia and Chantelle's resolution of the problem was similar, although they did not go 

through a stage of trying out different numbers, but went straight to using the graphic

calculator to evaluate the different expressions: 

Sofia: 2 ALPHAP ...

Chantelle: You’re probably right though!

Sofia: ... take away ALPHA Q  equals
zero.

Chantelle: Yay!

Sofia: That’s right.
Chantelle: Yeah, so it can’t be zero.

Sofia: No, wait... ALPHA P  times
ALPHA P  take away ALPHA Q  
equals minus 1. Hmmm... Well! 
Which one do we go for now?

Chantelle: Exactly. Let me ...
Sofia: Let’s try P plus P minus Q.

Sofia: ALPHA P minus ALPHA P  ...
sorry, it’s plus ... ALPHA P plus 
ALPHA P take away ALPHA Q  
... equals zero. So it must be P 
plus P. You’re right! ... Pen 
eraser please!

Sofia started  the key 
sequence needed to f in d  a  
value f o r  2 P  -  Q, having  
f ir s t  p u t 1 into the P  store  
an d 2 into the Q store. 
Chantelle w as p rep a red  to  
concede the argument, 
although it is c lear she w as  
not convinced b y S o fia ’s  
case.
Sofia obtained a value o f  0.

Presum ably Chantelle saw  
this a s a  vindication o f  her 
argu m en t...

... although w h at she m eant 
here is not clear.
Sofia then evaluated  
P  x P  -  Q, getting a  value o f  
-1 which is clearly not the 
same.

She then tried  P  +  P - Q .

Sofia then evaluated  
P  + P - Q ,  and ob tained 0, 
the sam e a s f o r  2 P  -  Q, and  
conceded the point.

o
It is just as well that Sofia did not put 2 into the P store, or the contradiction would not 

have been exposed. Although it had been pointed out to the students that using 0, 1 and 2 

could cause false results, these two had clearly forgotten this.

However, the final comments of both Lucy and Sofia show a remarkable similarity. 

“Right, you are correct. I understand your point. Right, I’ve been doing this wrong.” and 

“You’re right!” In the end, both are absolutely convinced, and have changed their

o
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constructs for 2P. In both cases, the graphic calculator provided the support they needed to 

abandon their old ideas and to accept what their partners were saying, with the calculator 

acting as a tool which helped the students to learn. The graphic calculator allowed the 

students to retain control of their own learning. They worked independently and co­

operatively without any recourse to their teachers, with all four showing that they could 

negotiate their ideas and understanding quite successfully for themselves.

What does 5x̂  mean?

In the Year 9 pilot study, some of the more capable students worked on simplifying 

expressions like:

3x +  5x^ -  7jĉ  -  6x  4x̂  -  7 + 4 + 5ĵ

They had already simphfied expressions with similar structures like:

2a +  3 b - a - 4 b  6c  —3c —2d +  Ad 6x +  3 -  A x - 1

In the episode described here, however, it is clear that one of these students at least did not 

recognise that all these expressions were essentially the same structure.

o

Lauren: For number four do you. N um ber fo u r  required them to sim plify
like work out the square 3x + 5x^ -  7x  ̂-  6x.
first, so do you put 25, 
so ... 5x^... isn't that 
25x...

Gemma: What?
Lauren: ... and then...because 5̂  Lauren w an ted  to sim plify  5x̂  to 25x,

is 5 times 5, so isn't that an d 7x  ̂ to 4 9 x ...
O  25x and then that's 49x,

then you .. .have 3x  plus 
25x minus 49x minus 
6x...

Gemma: Yeah, or can't you just Gemm a on the o ther hand suggested  the
do 5x̂  take 7x̂ , and do correct m ethod f o r  sim plifying this
the 3x  take the 6x expression.
separately?

o
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Lauren: But it's all %'s, they don't Lauren fa ile d  to recognise that term s in 
make separate... x  an d in X^should be trea ted  separately,

like the a ’s and b ’s in the previou s  
examples. H er knowledge o f  how to 
dea l w ith  expressions like this is not 
sufficiently w ell fo rm ed  to  resist the 
destabilisa tion  caused by the presen ce  
o f  the terms.

Gemma: But then if you add them Unfortunately, Gemma w a s not 
together ... We'U just do sufficiently sure o f  her ground to  
it your way, because it's overru le Lauren. 
easier.

Lauren: OK.
Gemma: OK.
Lauren: So we are doing 5x̂

equals 25x...
Gemma: Yeah.
Lauren: ... and equals 49x.
Genuna: Yes.

o

o

The discussion about this expression concentrated on simplifying the terms in initially. 

Lauren reduced 3x + 5x  ̂-  7x  ̂-  6x to 3x + 25x -  49x -  6x, which no doubt looked a lot 

more famihar to them, and was something they knew they could simplify. Although 

Gemma initially wanted to proceed by working with the terms in x  ̂separately from those 

in X, she allowed Lauren to go ahead with her method, saying: “We'U just do it your way, 

because it's easier.” They then simplified their expression to -15x, by adding the 3x and 

25x to get 28x, then subtracting the 6x from the 49x to get 43x, and finally subtracting this 

from the 28x to get -15x, so they had actually simpUfied 3x + 25x -  (49x -  6x). Having 

reached something that looked as if could be a final answer, -15x, they decided to check it 

Q  with the graphic calculator .̂

Gemma: Minus 15%.
Lauren: We re just going to check it on the They typed  in

calculator. OK. To check 5% +5%^-7X^-6%...
number 4 we are typing in ...

In this study students were told to make sure they had values other than 0, 1 and 2 in the stores they were 
using.

O
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Lauren: ... minus 6X, 2nd TEST, ENTER. ... then the Boolean '=  ’ sign
What did we think our answer (produced by  2"̂  TEST,
was? E N T E R ...

Gemma: Um, minus 15X. ... fo llo w e d  by their answer.
Lauren: Minus 15%, ENTER. We got a The ca lcu lator returned a  0,

zero, which means we got it indicating that the tw o
wrong, we're just going to rework expressions w ere not
it out. equivalent.

Gemma: OK.

The calculator’s immediate feedback showed them that there was a problem somewhere. It 

gave them no indication where the problem was (in fact they had made two different types 

of error), which allowed them to set about correcting their answer in their own way. They 

decided to go back to Gemma’s suggestion, of working with the terms in x and

separately:

0  take 7%̂ equals minus
2% \..

Lauren: OK. We're now going
to try it by doing ...

Gemma: Um... Yes, we're They reverted  to G em m a’s w ay  o f  doing
going to do 5% [sic] it, subtracting 7X^ from  5X^to ge t  -2%  ̂ ...

Lauren: ... and 3% take 6% ... an d 6X from  3X  to get
equals minus 3%... -3X.

Gemma: ... so minus 2% [sic]
take 3%equals ...

Lauren: We didn't have time to
work out number 4...

Genuna: ... because we have to A s they ran ou t o f  time, w e  cannot see i f
go home. G em m a’s m istake w ith  2% instead of2X^

w as a  genuine mistake, o r  a  slip  o f  the 
tongue.

It is a pity that the two girls were not able to finish this. However, provided Gemma’s 2x 

was a shp of the tongue, trying their new answer on the graphic calculator would have 

shown them that this time they were correct. Without the prompt feedback of the graphic 

calculator, they would probably have been quite satisfied with -15x, as it was a very simple 

answer. However, they found out immediately that they were wrong, so went back to the 

alternative suggestion, which they had initially ignored. Even though they were not able to 

verify that their second attempt was successful, the graphic calculator had enabled them to
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reject Lauren’s suggestion for dealing with the terms in Gemma was not sufficiently 

sure of her method to over-rule Lauren when they started this the first time, and it had not 

occurred to Lauren to do it that way. This incident shows that both girls were well on the 

way to changing their constructs for deahng with expressions containing terms in both x 

and x̂ , and is thus very hkely to have been another example of cognitive reorganisation.

o

o

o

5.2.3 Solving equations

In this section, students’ efforts to solve three equations are discussed. The first equation 

proved to be a problem, probably because the way it was displayed on the graphic 

calculator screen meant that the students did not interpret it correctly. The second equation 

involved a negative coefficient of x. The third equation showed up an inadequate 

conceptuahsation of ax, which meant that the students’ method could not be extended to a 

case where a was not a whole number. In two of the three cases the graphic calculator was 

central in allowing the students to move on in their thinking; the third is an example of a 

case where the question is at present outside the ZPD created by the student-calculator- 

student triangle, and so cognitive reorganisation could not occur.

How do you solve 6x14 + P = 4.5?

This equation was also discussed in 4.2.2. In Chapter 4, the two Year 9 students from the 

pilot study who were discussed (Eleanor and Kerry) attempted to solve the equation by 

guessing, with the graphic calculator’s immediate feedback eventually forcing them back 

on the method they had been taught. In the example analysed here, the two girls involved 

(Emma and Felicity) tried to use an appropriate method from the start, but made a mistake 

in its execution. The screensnap these two students were copying is shown in Figure 13.

o
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Figure 13: Screensnap illustrating equation

o

o

o

Emma: OK, number 3. OK, this
is 6% divided by 4 plus 9 
equals 4.5. Well, 9 plus 4 
equals 13. What’s 4.5 
times 13? 52, 52 ... 58.5.

Felicity: Yeah. Oh, 5.
Emma: 58.5...
Felicity: You write in the number 

you think it is, then you 
press the STO button, 
then you press X ,T ... it 
says on the sheet...

Emma: ...it’s 9 point something,
so ...

Felicity: Emma, explain! What 
are you doing?

Emma: 9.5 right, STO X,
ENTER, CLEAR, OK.

Felicity: 6X  divided by 4...
Emma: 6%...
Felicity: .. .divided by 4 ... divided 

by 4 plus 9, 2“‘‘MATH, 
ENTER...

Emma: I think I’m totally wrong
actually. ... plus 9, 
ENTER.

Felicity: Yeah, you’re wrong. So 
what were you using, 4.5?

Emma started  b y  m isunderstanding the 
problem , working on  
6x/(4+9)  =  4.5, rather than 6x/4  +  P =
4.5. H er m isinterpretation w as  
p robab ly  caused by the calculator's  
w ay o f  showing a  division sign, so  that 
the 4  w as on the sam e level as the 9.

F elicity w as looking a t the instructions 
on the worksheet f o r  using the graphic  
calcu lator to  check an answer.

This com es fro m  4 .5  X l 3 - r 6  
(^ 9 .7 5 ) .

Emma p u t 9 .5  into the X  store o f  the 
calculator.

M ATH  (or TEST), ENTER gives the 
B oolean  ‘=  ’ sign.

The ca lcu lator returned a  0, telling  
them that they w ere wrong.

There was nothing wrong with Emma’s skill in solving equations, but her first instinct was 

to add the 4 and the 9, so that she was in fact solving the wrong equation. She knew about 

the order of operations in an expression like 6x/4 + 9, but it seems likely that the way in 

which the equation was displayed on the screensnap destabihsed her knowledge. She was 

used to equations of this type looking hke this:
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6x + 9 = 4.5 
4

where the temptation to add the 4 and the 9 is much less, rather than:

6%/4 + 9 = 4.5

The two girls went on to try various numbers, including 9.8, 9.3, and 9.75. They both

Q  agreed that the value they were looking for was 9 point something, because six nine’s are

54, and 4.5 multiplied by 13 is 58.5 (solving 6x/(4 + 9) = 4.5). By the time they tried 9.75

however, they were basically using trial and error -  it did not seem to occur to them to

evaluate 58.5/6 on the calculator. Each time they tried a value, the calculator returned a 0,

showing them that their answer was still wrong. Then came the moment when Emma saw

what they were doing wrong:

Emma: Oh\ It’s divided by 4 and then plus This is  the breakthrough,
9 so that is going to be, it’s going to when Emma changed how

O  be 9 less than 4.5, which is ... minus she understood the problem .
4.5, so something 6, 6 times 
something divided by 4...

Felicity: .. .equals minus 4.5... This is  now  a  correct
conceptualisation.

They then correctly simphfied the equation to 6x/4 = -4.5, and proceeded to calculate a

value forx, which they tried out on the graphic calculator:

Emma: OK, um, STOX ...
Felicity: What are you trying?
Emma: Minus 3. ... Yes! Emma then checked to  see that their

O  Minus 3 was right! an sw er w as a t  last correct.
Felicity: Yay!

In this example, the graphic calculator feedback supported the students while they 

reconstructed the way they perceived the equation. Unlike the previous examples, where 

one of the student pair was seen constructing knowledge they did not previously have, this 

example showed the students stabilising knowledge they did have, but which was not yet 

totally secure.
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You can’t take 5x from each side of an equation because you don’t know 
what it is!

In the Year 8 case study, students worked on a range of equations, including 18 = 8 -  5x. 

The two girls in the following extract were quite capable of doing apparently similar 

equations, having just solved 4 = 4x -  2 and 7x +1 = 2x -  3. However, they perceived 

4 = 4x -  2 as much easier, since the coefficient of x is positive, and even 7x +1 = 2x -  3

o appeared more straightforward for the same reason.

Claire:

o

Briony:
Claire:

Briony:

Claire:
Briony:
Claire:

o
Briony:

You would have to add 
... we have to add ... is it 
5x we would have to add 
on the other side, so that 
18 ...
What?
Wouldn’t we have to add 
5x to that side and to that 
side, so that 18 plus 5x 
equals 8.
Then that would be 8 
minus lOx ... if we added 
5xto each side ...
Oh, do we have to take it? 
So if we take 5x ...
No, because we don’t 
know what 5x is, so ... 
we could take 8 from 
either side, so that would 
make it easier! 10 equals 
5x, so 10 divided by 5 is 2
. . . SO • • •

So let’s ... do you want 
me to try that? 2 STO, 
ALPHA%,ENTER... 8 
minus 5 ALPHA %, 
ENTER, equals minus 2

The equation they w an ted  to  solve  
w as 18  =  8 - 5 x .  Initially, C laire 
considered adding 5 x ...

. . . t o  both  sides o f  the equation, 
to  g ive 18  +  5x = 8. She had  
alm ost done the question a t this 
stage!
H owever, Briony, doing the sam e  
operation  o f  adding 5x, ob tained  
8 - 1  Ox f o r  the right hand side ... 
... which confused C laire ...
... and then confused B riony also. 
H er thinking by then to ta lly  
disorganised, C laire dec ided  they 
cou ld  not w ork on a  term  f o r  
which they d id  not know a  value. 
Instead, she tried  to  take the 8  
fro m  both  sides, to  g ive 1 0 =  5x. 
The sign error here is not ju s t  
chance, however. Students often  
fo rg e t that signs are a ttached  to  
the term  which fo llo w s them, and  
in rem oving the 8, C laire  
pro b a b ly  fe l t  she had also  
rem oved the minus sign.
Briony then p u t the value o f  2  
into the X  store, an d  keyed in the 
righ t hand side o f  the equation. 
When she p ressed  the ENTER  
key, the ca lcu lator gave a  value  
o f - 2  instead o f  the value o f  18

O
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o

Claire: So that can’t be right...
they were expecting .̂

Claire almost did the question correctly in the first few seconds, but when Briony clearly 

did not understand what she was doing, Claire lost her way. Instead, she became so 

confused she decided that they could not do anything about the 5x, as they did not have a 

value for it. Removing the 8 instead led them to a sign error, and eventually to a wrong 

answer, as confirmed by the graphic calculator. Like Emma in the previous example, 

Claire’s knowledge was destabihsed, this time by Briony’s lack of understanding and her 

suggestions of alternative ways to proceed.

Briony then proposed that instead of trying to deal with the 5x or the 8, perhaps they 

should try for something smaller, like taking off two or three, as this might be easier. They

Q  continued by subtracting three from each side of the equation:

18 = 8 -5 x  

giving:

15 = 5 -  5x

At this point, Claire suggested that x might be a negative number “because two minuses

equals a plus, so it must mean that 5x equals minus 10”. Here Claire is using common

sense, noticing that the -5x term has to equal 10, or, equivalently, that 5x should equal

Q  minus 10. Briony mistook what she meant, and thought she was suggesting 10 as a value

for X. The conversation then continued:

Briony: I don’t know, I don’t understand Briony did not
what... understand what Claire

* This was a simpler way of checking equations than using the Boolean sign, as it did not involve using 
any additional menus, but just keys to be found on the calculator keyboard. In addition, problems 
encountered if  the students used values of 0 ,1  or 2 in the stores did not occur.

O
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had just said.
Claire: Minus 2 ,1 think it’s minus 2, minus Meanwhile, Claire was

2 STO, ALPHA %, ENTER then we testing her value of -2
do 5 take away, 5 ... in their revised

equation.
Briony: Yeah, you’re right. So what did we The calculator

have to do to get that? confirmed that x=  -2 is
the right answer, but 
Briony still could not 
see where it came from.

Claire: Um ... divide minus 10, because it’s Claire’s explanation
got to be two minuses, and minus was not a masterpiece

U  10 add minus 5 equals minus 15, so of clarity!
minus 10 divided by ... um ... 5 
equals minus 2, and x equals ...

Briony: So what is it? Divide minus 10 by Briony seemed to have
5, which equals ... understood at least that

they needed to 
calculate -10/5...

Claire: ... minus 2 ...
Briony: ... sox equals minus 2. ... hence getting an

answer o f-2.

Having discovered that their first answer was wrong, Claire and Briony managed to find a 

O way that made sense to them, although it was not the most efficient method to solve the

equation. At the heart of this process was the triangle of the student-calculator-student, 

forming a ZPD in which they could reconstruct how they understood the question leading 

to cognitive reorganisation.

5.2.4 Brackets

O
Expressions hke 3 x (A -  B) and 3(A -  B) were used in the Year 7 case study: students 

were asked to evaluate these expressions, with values of A = 4 and B = 1 using the graphic 

calculator, so that they could discover that the presence or absence of the ‘x ’ sign makes 

no difference. Equations like 4(2x + 1) = 10 featured in the questions the Year 8 case 

study students worked on during lessons, and also during interviews held afterwards. The 

examples given below are both from the transcripts of Claire and Briony’s discussions, the 

first when they were in Year 7, and the second a year later when they were in Year 8.

o
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Claire and Briony, Year 7

In this first excerpt, Claire and Briony showed that they reahsed that 3 x ( A - B )  =

3 (A -  B), but still managed to go astray because of the way that they managed the presence

of brackets in the expressions.

Claire:

o
Briony:

o

Claire:

Briony:

Claire:

o

Now we’re doing 3 
times A take B, so first 
we have to do ALPHA 
A, take ALPHA B ...

... and we predict that 
will be 6 ...

... times ... 3, equals ... 
um...
... equals minus 17, 
which is a slight 
problem.
So I think we got that 
wrong once again. 
Maybe we should check 
the rest of our answers. 
We got the next one 
right, because we had 
minus 17, so maybe we 
just wrote down the 
wrong number.

Briony: Yeah.

They were working on 
3 X(A-B),  with A = 4 and 
B =7. Claire decided she needed to 
put A -B  into the calculator first as 
it was in brackets.
They had already predicted that 
3(A -B ) would be 6. To do this they 
had multiplied -3 (from 4 - 7 )  by 3, 
getting an answer of 6 (a mistake 
made by others also -  they all 
started with -3 then added on 3 lots

Claire then evaluated 
A -B  x3  with the calculator...
... getting -17 (from 4 - 7  x3).

The wrong answer they were 
referring to was their prediction of 
6. The next question was 3(A-B),  
which they predicted to be -17.
They concluded that this was correct 
since they knew it would be the same 
as 3 X  (A-B).  They then decided 
that their wrong answer of 6 was 
perhaps something they had written 
down wrongly. Here incorrect use 
of the graphic calculator led to it 
supporting an incorrect conclusion. 
The girls did not allow their initial 
value of 6 to challenge what they 
saw on the calculator, and so did 
not rethink these questions.

Claire and Briony, Year 8

Contrast Claire and Briony again, one year later (in the Year 8 case study), working on a 

structurally equivalent expression, but this time in the context of an equation,

4(2% + 1) = 10:

o
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o

Claire: We could take 4 ...

Briony: No, we’ve got to do the
brackets first, so it will be 2x 
plus 1 ...

Claire: ... because you’ve got to
have four lots of the brackets

Briony: Wait a minute. OK, so what 
we could do is ... um ... we 
do 10 divided by 4 ... which 
is ... can you just work that 
out...

o

Claire: So let’s try that. 0.75 STO,
ALPHA X, ENTER, and then 
it’s 4, open brackets, 2 
ALPHA %, plus 1, close 
brackets, ENTER, is 10, so 
that’s right. So x equals 0.75.

Confusion between division and 
subtraction was quite common, and 
occurs elsewhere in the transcripts 
from the Year 7 and 8 case studies. 
Briony, thinking procedurally, 
wanted to do something with the 
brackets first.
The conversation continued along 
these lines for a short time.
Then Claire looked at the equation 
again, and observed its structure: it 
is 4 lots of something defined by the 
brackets.
Briony then took a second look, and 
saw what she meant. Having 
realised that the overall structure is 
a simple multiplication, she then 
saw that the required operation is to 
divide the 10 by the 4, giving 2.5. 
Continuing from this point, they 
evaluated x = (2.5 -1 )/2, getting a 
value of 0.75.
They used the graphic calculator 
appropriately to check this, by 
putting the value of 0.75 into the X 
store, and evaluating 4(2x + 1), 
which confirmed that this was the 
right value for X .

o

It is clear that in the year between the Year 7 and Year 8 studies, these two students had 

begun to think proceptually, and were able to use this more flexible approach in how they 

interpreted algebraic expressions and equations. This time they used the graphic calculator 

appropriately, confirming that they were correct. These two students had made a cognitive 

reorganisation in the course of the year, supported by the graphic calculator model of a 

variable.

Year 8 case study interviews

Procedural and hohstic approaches to equations of the type a(hx + c) = d  were also 

apparent in the student interviews at the end of the Year 8 case study. The group deemed 

higher achieving by the teacher could see the structure of the equation, and hence deal
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appropriately with the brackets, whereas most of the group deemed lower achieving 

worked in a purely procedural manner. The first excerpt is from the interview with the 

higher achieving group :̂

o

Anna: How would you do this equation,
4(fl + 1) = 20? Um ... I think you would do 
... well, 4 times something equals 20, so it 
would be 4 times 5. Then you need to work 
out something plus 1 equals 5, so would it be a 
= 4. Then you do 4 plus 1 equals 5, then 4 
times 5 equals 20?

Group: Yeah.
Claudia: Or could you do it like a balancing scale, so 

you divide by 4 on both sides, so that’s just a 
plus 1, and the other side’s just 5. Then you 
take off 1, so then one’s 4, and the other’s a, 
so it’s a = 4.

Group: Yeah.

Anna clearly saw 
(a + 1) as an 
entity in its own 
right, multiplied 
by 4.

Claudia’s 
alternative was to 
use the 
‘balancing’ 
method.

o

o

The other students then discussed which of these two methods they would use, with most 

choosing the ‘balancing’ method they had just been working on in the classroom in this 

study. These are both holistic methods, however, with the whole equation considered in 

both cases. Contrast this excerpt from the interview with the lower achieving students:

Amanda: How would you do this
equation,
4(fl+ l) = 20? ...take 
away the 1 ...

Bethany: ... if you do that, that
means 4 times ...

I*: I think you are saying
different things, so let’s get 
you separately. Amanda, 
can you say your bit first, 
and then Bethany, you can 
do yours?

Amanda: Um ... what I do is ... take Amanda wanted to start by
away 1 from 20, to make reversing the addition. This may be
19, because it’s add there, because it is in brackets, or it may
so it would just leave you be just that it is the operation that

Questions were given to the students on cards, turned face down. Students took it in turns to take a card, 
read out the question, and start answering it. The others then joined in, or were asked for their views.

* The interviewer, I, was me.
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o

o

o

with 4a, and then you do 4 
... would you do 4 divided 
by 20?

I: So you would take the 1
first...

Amanda: Yeah, to make it 19 ...
I: ... and then you would

divide by the 4?
Amanda: Yeah.
I: Right. Bethany, you

weren’t saying quite that, I 
don’t think, what were ...

Bethany: No. I would do ... well, if
you take away the 1, like 
Amanda said, that would be 
19, but then wouldn’t that 
leave you with 4 times a?

I: Mm.
Bethany: ... and so 4 times a would

be ... so yeah, you’d do the 
same ... you’d divide it, 
yeah.

I: What would you do first,
Donna?

Donna: I think I’d probably take 1
from 20 ...

I: So you’d start that way as
well?

Donna: ... and that would be 19,
then 4 times ...

I: Mm-hm. How about you,
Freya?

Freya: Well, I’d just do 4 times
something add 1 equals 20, 
so I would do ... um ... 
well. I’d sort of experiment 
what you added 1 to and 
timesed it by 4 to make 20.

I: So if you experimented,
what sort of number would 
you start with, do you 
think?

Freya: Well, 4, because it’s quite
easy.

appears ‘nearest’ to the a.

Bethany repeated the difficulty she 
saw in the method just explained, 
although her concern was still not 
made completely clear. It could be 
that she was worried about ending 
up with 19/4, which as it is not an 
integer was perhaps not right.

Donna agreed with Amanda ...

... but she also had a problem with 
where that took her.

Freya, on the other hand, showed 
signs of viewing the equation 
holistically...

... and was able to see what the 
answer should be, as it is 
straightforward.

Where all the first group viewed the equation holistically, using a method which is 

proceptual in its conceptualisation, most of the second group worked on reversing one 

operation at a time, floundering when the result they obtained was not a straightforward

o
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calculation. In this group, only Freya was beginning to take a more holistic approach, and 

even then, she still relied on experimentation to an extent.

The teacher was interviewed a little later the same day. Questions about how the students 

used the graphic calculator to check their work were used to lead into a discussion about 

whether they would have been able to use it to detect errors in how they worked with

brackets:

T’: a  lot of them didn’t stay with the 
graphic calculator, when they were 
checking their answers really.
They put in the value just to check 
whether the answer was right... 
um ... yeah, they didn’t go into the 
method of storing, putting the 
value into STO ...

I: But if they got that one ...
4(a + 1) = 20 ...

T: Yes.
I: ... if what they had done first was

subtract the 1 and then divide by 
the 4, if they then repeat that on the 
calculator, they wiU merely repeat 
their error...

T: Yes.
I: ... so did you find that that

happened?
T: Um ... the most successful ones,

who were the ones who said that 
the thing in the brackets must be 
worth 5 ...

The teacher confirmed that she 
had not given the students any 
particular directions about 
using the graphic calculator, 
apart from reminding them of 
how they had used it the 
previous year, in the Year 7 
study.

This is the method preferred by 
three of the lower achieving group.

As Anna had described in the 
interview with the higher achieving 
group.

... and there was still a lot of them The teacher agreed however that a
who would subtract 1, then divide 
by 4.

number of the students would not 
have been doing it in a way that 
would be successful...

I: But would those people have
discovered that they had made a 
mistake?

T: Yes, if they put it in the calculator. ... however, she appeared not to

’ T is the teacher; the interviewer. I, was me again.
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have realised that the inadequacy 
of their interpretation of the 
question also meant that their 
check would he inadequate, unless 
they were using the calculator 
correctly.

I: ... if you subtract 1 and divide by
4, you’re going to get 3%, 3.75 ...

T: Yes.
I: ... if they then did 4 times 3.75

plus 1 ...
T: ... but they won’t, they’ll put the She was convinced that they would

brackets in, you see ... put the brackets in ...
I: Right.
T: ... when they substitute the answer ... repeating this again.

in they will type in 4 bracket...

To the experienced user of algebra, there is no problem with questions like these: the 

brackets signify that (A -  B), (2x + 1) or {a + 1) are mathematical objects which are 

multiplied by some number (which of course also means that the addition/subtraction takes 

precedence over the multiplication). To the novice user of algebra, using the ideas they 

have brought with them from arithmetic, the brackets signify that the calculation in the 

bracket is to be done first, then the result multiplied by the given number, which sounds 

almost like the same thing. However, the less successful students in these examples did 

not understand the sequence of operations the calculator would follow if the brackets were 

not actually used. This is illustrated particularly well in the discussion Claire and Briony 

had in the Year 7 study, when they obtained a result of -17 (discussed at the beginning of 

this section). They clearly had no idea where this had come from, or why it was so 

different from their predicted answer of 6 (which admittedly was wrong also).

The graphic calculator model depends on the calculator being used in the appropriate way 

if  it is to help students reconstruct their thinking, with numbers put into the appropriate 

store. If it is just used like a scientific calculator to perform calculations, it is of very little 

use.

3
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5.2.5 When the divisor is greater than the dividend

Various equations of the form a = bx, where b >  a, and a/x = b, were set for the students to 

solve in the Year 8 case study. In the first set of questions, the first of this type was 

10/m = 4, which Fran and Rebecca managed to solve:

Fran:

Rebecca:

Fran:

10/m = 4. 10 divided by 
something equals 4.
So if we do 4 ... 10 minus 
4, which is 6 ...

Rebecca:

Fran:
Rebecca:

Fran:

Rebecca:

No, we don’t need to do 
minus 4, do we? You 
can’t ... divide ... 4 only 
goes into 10 two times, 
and then there’s a 
remainder of 2, so it must 
be a point number.
10 times ... no ... um ... 
10 divided by 4 ...
... we can do that, 2.5 ... 
... 2.5 ... and then ... um

... and then 10 divided by 
2.5 is equal to ... 
m must be equal to 2.5.

Fran: m equals 2.5.

Rebecca was confusing division and 
subtraction, perhaps because she was 
happier with subtraction as a means 
of reducing the size of a number, or 
perhaps just because 10 is not a 
multiple of 4, so subtraction allowed 
her to give an integer answer.
Fran struggled to divide 10 by 4 ...

... eventually getting there.

Eventually they both concluded that 
m must have value 2.5.
They checked this with the graphic 
calculator, simply by repeating the 
calculation 10/4 = 2.5, rather than by 
putting 2.5 into the M store, and 
evaluating the left hand side of the 
equation.

On the next question, 3 = 12», however, they hit a stumbling block:

Fran: 3 = 12», so 12 times n
equals 3. So it must be 12 
times minus something.

Fran: Um ... I reckon it’s 3 equals
12 and then the n is ... 
minus 9, that’s my guess. I 
think n is minus 9.

Rebecca; OK, so we put n is minus 9.

Again, trying to reduce 12 by 
subtraction rather than by 
multiplication.

They were both quite happy with 
this answer, since in their

)
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experience so far subtraction 
reduces the size of a number.

When they returned to this question later, the conversation continued:

Rebecca: The next one is 3 = 12», so 
it’s 3 equals 12 something, 
and it can’t be 12 times 
something, because then it 
would be bigger than 12, 
instead of less, so we are 
guessing that the » is a minus 
number, so if we do ... well 
to get from 12 to 3 we have 
to take away 9, so we’re 
guessing that the » is minus 
9.

Rebecca reiterated the argument 
for » being minus 9, unable to 
conceive of a multiplication that 
would cause the answer to be 
smaller. They presumably checked 
the arithmetic with the calculator 
which did not show up the error. 
They clearly did not put the value 
of minus 9 into the N store on the 
graphic calculator, and then 
evaluate 12n.

The following day, they were given Up = 14 to solve and their confusion became yet more 

obvious:

Rebecca: 7 divided by something equals 14. Um ... 
7 divided by ...

Fran: For the 7 divided by p equals 14 question,
the only thing we can think of, as 7 is a 
smaller number than 14, is that the number 
is divided by a plus number which is 
minus ... and so we think that 7 divided 
hyp,  thep  is plus 7, but... we don’t ... as 
I don’t know if you can actually get plus 
numbers ... Rachel, can you get plus 
numbers? OK, we have no idea about 
number 5, so we’ll just move on, and we’ll 
do number 4 and number 5 again at the 
end.

Fran showed the 
extent of their 
confusion... referring 
to ‘plus numbers 
which are minus’ ... 
...and then asking 
someone else if you 
can have ‘plus 
numbers’.

Right at the end of the lesson, they came back to this question. Fran started by saying that 

she thought it was impossible, but someone else in the class then told her that x was 0.5, to 

which she replied: “7 divided by 0.5 equals 14? Oh, yes, it does! Wow!” Rebecca then 

checked this with the graphic calculator, this time putting 0.5 in the P store, and evaluating 

IIP, to find that this was indeed correct. It seems unlikely that simply being given the 

answer like this would have helped them to reconstruct their thinking however.

3
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5 . 3  S u m m a r y  a n d  c o n c l u s io n s

This chapter started with a consideration of what cognitive reorganisation might be, and 

how it might be recognised. Cognitive change or reorganisation is considered here to be a 

restructuring of a student’s thought processes, as argued by Pea (1985; 1987). Examples 

were then given of cognitive reorganisation occurring during the classroom studies as a 

direct result of the support given to the students by the graphic calculator while they 

struggled with the questions they were doing. Examples of cognitive reorganisation failing 

to occur were also given, where the students did not have an appropriate method for a 

question, and/or did not use the graphic calculator in the appropriate way. Some of these 

examples show instances where the question is outside the ZPD defined by the pair of 

students and the graphic calculator. This is particularly apparent in the excerpts from the 

conversations between Rebecca and Fran.

Transcripts from the classroom studies showed two pairs of students, Sofia and Chantelle, 

and Megan and Lucy, sorting out for themselves without teacher intervention that 2x is 

equal to x + x, not to x x x, even though 2x involves multiplication. Further examples 

showed students realising that they had made errors in solving various types of equations 

and in coping with the presence of brackets in an expression or equation. Claire and 

Briony were shown in Year 7 failing to deal appropriately with brackets, then in Year 8, 

finding a better way of working with them.

In most cases, we saw the graphic calculator providing immediate feedback which allowed 

the students to restructure their thinking. In some examples, however, students did not use 

the calculator in an appropriate way, and so such restructuring did not occur. Rebecca and 

Fran’s conversations showed this, as did the Year 7 discussion between Claire and Briony.

3
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)

In conclusion, I would argue that using the graphic calculator model of a variable can help 

students to reorganise their thinking in some of the tasks commonly given to 11 to 14 year 

olds. Working with the graphic calculator allows them to reorganise their knowledge 

structure in this area, provided it is used in a way that takes advantage of the model of the 

lettered stores, and is not just used to repeat calculations which may have been done 

incorrectly.
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CHAPTER 6 DEVELOPMENTS IN STUDENTS’ 
UNDERSTANDING AND SKILLS

6.1 I n t r o d u c t i o n

The focus of this chapter is on the progress students made in developing their 

understanding and skills in working with algebraic letters and expressions during the time 

they worked on the graphic calculator modules. As discussed in section 2.6, to be 

successful, students of algebra need a robust concept of a variable. They need to 

understand the nature of a variable and the operations on it, and to be able to perform 

algebraic procedures fluently, if they are to progress beyond the basics of algebra. It is a 

contention of this thesis that using the graphic calculator to begin the study of algebra will 

help a student to gain such a robust concept.

According to Vygotsky, the process by which conceptual knowledge is gained is complex.

As described in section 2.4.4, he suggested that students leam both ‘spontaneous’ concepts

through their everyday experiences, and ‘scientific’ concepts through instruction in school.

These need to be brought together and to interact if a stable concept is to be formed.

Though scientific and spontaneous concepts develop in reverse directions, the two 
processes are closely connected. The development of a spontaneous concept must 
have reached a certain level for the child to be able to absorb a related scientific 
concept. ... It [an everyday concept] creates a series of structures necessary for the 
evolution of a concept’s more primitive, elementary aspects, which give it body and 
vitality. Scientific concepts, in turn, supply structures for the upward development of 
the child’s spontaneous concepts toward consciousness and dehberate use. (Vygotsky,
1986:194)

For example, the concept of ‘brother’ is one which a child understands well from ordinary 

family life, yet it can be difficult for a child to define clearly. On the other hand, a child
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may be able to define perfectly a concept taught in school, such as Archimedes’ law, yet 

have very little real understanding of what it means (Vygotsky, 1986: 158).

For a stable, useful concept to be formed, the everyday and the taught need to mesh, so that 

the child has both the words available to discuss the concept and the experience which will 

give the words meaning for her/him. The purpose of the graphic calculator model and 

method described in earlier chapters of this thesis is to give students experience of letters at 

the ‘everyday’ level (that is, as a ‘store’ for numbers) and for them to connect this with the 

material taught in school. If this connection is successful, then students will understand 

better the concepts taught in school, and will be able to work with letters in algebraic 

contexts in a more meaningful way.

This process is theorised in this thesis using Vygotsky’s theory of the mediation of tools 

and signs in the development of concepts. Vygotsky believed that humans form concepts 

through their interaction with both physical tools and symbolic or psychological signs, 

such as language. He did not view this as a one-way process, but saw such interaction as a 

dialectic process, with a person acting on a tool or sign, and that tool or sign 

simultaneously acting upon the person. The mediation of a tool or sign leads to change in 

the individual, as well as enabhng the individual to change their environment.

In the context of the classroom work described in this thesis, the graphic calculator acts as 

both a mediating physical tool and a mediating psychological sign. Its function as a 

physical tool is more obvious: the students pressed keys on their calculators in order to 

copy the screensnaps they were given. In doing so, they began to internalise the idea that a 

number can be put into any of the calculator stores, and that this store is represented by an
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arbitrary letter (sections 4.2.2,4.4). Operating on these labelled stores gave the students 

experience in operating on variables, since these are isomorphic processes, and the 

calculator display is identical to written algebra. The graphic calculator’s function as a 

psychological sign is perhaps less obvious. Examples Vygotsky gave of such ‘signs’ are 

the use of notched sticks or writing to help people remember things (van der Veer and 

Valsiner, 1994: 143). The graphic calculator display acts as a ‘sign’ in a similar way; it 

shows the student the result of an operation on a labelled store, and so helps the student to 

begin to understand algebraic operations.

To see whether development in understanding and skills occurred, three layers of analysis 

were conducted, as shown in Figure 14.

Figure 14: Analyses discussed in Chapter 6

Layers of analysis

verbal demonstrated

Understanding of letters Proceptud understandng of expressions Basic skill level

The first layer concerned students’ understanding of letters, which was tested verbally and 

by considering the understanding demonstrated in answering algebraic questions. Verbal 

testing was carried out using direct questions which asked what students thought the letters 

in an algebraic question meant. Students’ responses were then compared with their 

demonstrated understanding. This was examined by comparing questions used in the 

questionnaires with those used by Kiichemann (1981). His analysis was then used to 

decide on the level of understanding students demonstrated when actually working on
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questions. For many students, their verbal responses were comparable to the level of 

questions they could tackle successfully, but there were groups where one was at odds with 

the other: this is discussed in section 6.3.3.

In section 6.4 the second layer, that is, the progress students made in their proceptual 

understanding of algebraic expressions, is considered. Here understanding is explored 

from a different perspective, using an analysis dependent on Tall and Thomas’ (1991) 

definition of ‘proceptual’ understanding. This focuses on students’ ability to perceive both 

the operations inside an expression and the expression itself as a hohstic, mathematical 

object upon which further operations can be made. Such a flexible understanding of 

expressions is necessary for students to move beyond the most basic level in working with 

algebraic expressions (section 2.6.5). Some progress occurred in students’ proceptual 

understanding, particularly among the students whose level of understanding was least.

The teaching modules used concentrated on giving students an understanding of what 

letters mean and how they are used, rather than on basic skills per se. It was hoped, 

however, that such an emphasis would also lead to progress in basic procedures, such as 

simphfying expressions, and this is discussed in section 6.5. It was found that most 

students did indeed make gains in the level of their basic skills, but those whose previous 

level of understanding and achievement was least made very good progress, whereas those 

displaying higher levels of understanding made less progress.

Finally, the chapter is summarised and concluded in section 6.6.
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)

6 . 2  D a t a  u s e d  f o r  t h e  a n a l y s e s

In this chapter, data from the classroom studies carried out during this research project are 

analysed, in order to see if the graphic calculator did in fact enable the students to find 

greater meaning in the algebra they were studying. The data are also used to see if students 

developed greater skills in working with algebraic questions, as would be expected during 

more traditional algebra lessons. These analyses are used both to comment on Vygotsky’s 

theory of conceptual development, and to assess the usefulness to teachers and students of 

the graphic calculator model and teaching method. The data used in these analyses were 

the questionnaires given to all the students before and after they did the classroom work.

The classroom studies conducted for this thesis were carried out in two phases, 

summarised in Table 5̂ :

Table 5: Summary of phases o f data collection in the classroom research

Phase I Phase II
Pilot Case Study Main Case Study Survey

Initial stage Follow-up stage
School(s)
Type o f  school(s) 
Date
No. classes 
No. teachers 
No. students 
Age o f  students

---------------------- School G ----------------------^ A, B, Q  D  
Mixed, non-selective 
Spring/Summer 2002 

12 
6

307
10-13 years, Y6-8

June/July 1999 
1 
1

30
13-14 years, Y9

Oct/Nov 2000 
3 
3

79
11-12 years, Y7

Oct/Nov 2001 
1 
1 

28
12-13 years, Y8

Phase I consisted of three case studies, with students from school years 7, 8 and 9. The 

students in the Year 8 follow-up study were also part of the Year 7 case study, conducted a 

year earher. All these students came from one selective girls’ school, school G.

* This information is discussed in more detail in Chapter 3: Research methodology and methods.
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Further details of the students who participated in the Phase II survey are given in Table 6. 

These students were from four different non-selective schools, and from school years 6, 7 

and 8. The figures shown without brackets are the proportions of students in each school 

and year group expressed as a percentage of the total number of students taking part in this 

survey (307). Figures in brackets are the actual numbers of students in each category.

Table 6: Details o f schools and year groups involved in the Phase II Survey

Year group School A School B School C School D Sub-totals
¥6
Y7 - 
Y8 (41) 13.4%

(36) 11.7% 
(109) 35.5% 
(69) 22.5% (22) 7.2%

(30) 9.8%
(36)11.7%  

(139) 45.3% 
(132)43.0%

Sub-totals (41) 13.4% (214) 69.7% (22) 7.2% (30) 9.8% (307) 100%

In Phase I of the classroom research, questionnaires were administered to the students 

immediately before and immediately after their classroom work, but delayed post­

questionnaires were not used. In the Phase II survey, pre-questionnaires and inunediate 

post-questionnaires were administered immediately before and after the classroom work, 

with additional delayed post-questionnaires completed some four to six weeks after the end 

of the classroom work.

6 . 3  S t u d e n t s ’ u n d e r s t a n d in g  o f  l e t t e r s

Determining students’ understanding from their written answers to questions cannot 

provide indisputable results. Classifying students’ answers is sometimes subjective, and so 

is deciding which questions should be considered. Although I have attempted to use the 

questionnaires that the students in the case studies and the survey completed to assess the 

level of their understanding of letters, both verbal and demonstrated, changes in the figures
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produced for this assessment should only be considered significant where there is 

substantial change.

In section 6.3.1, students’ responses to a direct question about their interpretation of letters 

in algebra are used to estimate their verbal understanding (corresponding to Vygotsky’s 

scientific understanding). Then in section 6.3.2, an analytical framework provided by 

Kiichemann (1981) is used to determine the level of algebraic question the students can 

actually tackle successfully. These two different facets of understanding are then brought 

together in section 6.3.3. In this section, the students are divided into subsets according to 

their verbal understanding of letters, so that a comparison of the levels of questions they 

can answer correctly can be made between the two subsets. I then use this comparison to 

comment on Vygotsky’s remarks about the need for more than verbal or ‘scientific’ 

knowledge, if students are to form sound concepts. Finally, since this is a substantial 

section containing several different arguments, I have summarised the main points made in 

section 6.3.4.

6.3.1 Students’ verbal understanding

Students’ verbal understanding of what letters mean when used in algebraic expressions 

was tested using a variant of this question:

What do you think the a and c in question X mean?

The ability to answer this question satisfactorily corresponds to Vygotsky’s hypothetical 

child who can state Archimedes’ Law (Vygotsky, 1986: 158). On its own, possessing such 

verbal knowledge is insufficient for any real understanding of the underlying concepts.
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This question was asked on all the case study and survey questionnaires, except those used

in the Year 9 pilot study. Responses were divided into three categories: ‘algebraic’,

‘numeric’, and ‘other’. ‘Algebraic’ covered any answer referring to numbers in general, or

to ‘different’ or ‘unknown’ numbers. If specific numbers were mentioned, these needed to

be purely illustrative. Examples of responses in this category were:

Letters in the place of numbers. [Y ear 7  student, delayed  post-questionnaire, school 
B ]

An unknown number. [Y ear  7 student, pre-questionnaire, school G ]

A  number. [Y ear 8  student, pre-questionnaire, school B [

I think they stand for different amounts of your choice. [Y ear 8  student, delayed  p o s t­
questionnaire, school C ]

Although such answers might indicate a good understanding of how letters are used in 

algebra, they could also conceal a multitude of misconceptions. A correct answer could 

mean that a student understood letters to represent numbers and was able to use this 

information in answering an algebraic question. Equally, it might indicate a learned 

response to the question, which did not influence the student’s thinking when s/he worked 

on expressions. Assessing the extent to which this occurred is part of the analysis 

discussed in section 6.3.3.

The ‘numeric’ category comprised responses where specific numbers were used to define 

the letters, and not merely as an illustration, for example:

a  means 1 and c  means 5. [Y ear 6  student, im m ediate post-questionnaire, school B ]  

a =  2, b  =  3. [Y ear 7  student, pre-questionnaire, school D ]  

a =  l , b  =  2. [Y ear 7  student, pre-questionnaire, school G ]
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e.g / a = 10, /. (6 X 10) + (2 x 10) = 80. e.g. b = l, .-. (12 x 1) -  (2 x 1) = 10. [Y ear 7  
student, pre-questionnaire, school G ]

I think it means 0 and 5. [Y ear 8  student, pre-questionnaire, school A ]

These students at least knew that the letters represented numbers, but had not yet realised 

that they can represent any number. a = l , h  = 2, c = 3, and so on, were particularly 

common responses in this category. Some students thought values should be substituted 

for letters, so that, for instance, 6a would be equated to 6 and 6b to 12; others used them as 

place-holders for digits, so that 6a would be equated to 61 and 6b to 62.

The ‘other’ category of answers consisted of responses that did not refer to numbers at all,

including responses that were incomprehensible, and non-responses where students put

‘don’t know’ or simply left the question blank. Examples of responses in this category are:

It means that it’s an algebra question. [Y ear 6  student, im m ediate post-questionnaire, 
school B ]

I think a  means above a denominator. I think b  means below a numerator. [Y ear 6  
student, pre-questionnaire, school B ]

I don’t know but I know how to work it [sic] at most questions. [Y ear 7  student, 
im m ediate post-questionnaire, school B ]

I think the a  and b  mean different angles, sizes or things. [Y ear 7  student, p re ­
questionnaire, school D ]

a  = apple and b = bananah [sic] (apples can be added to apples, but you can’t add 
apples and bananahs together). [Y ear 7  student, pre-questionnaire, school G ]

I have never done it before but I guessed that if there was an "a' you add 1, "b’ you 
add 2, etc. [Y ear 7  student, pre-questionnaire, school G ]

It’s just added in to make it look harder but it’s easy. [Y ear 8  student, p re ­
questionnaire, school B ]

Nothing, anything. [Y ear 8  student, pre-questionnaire, school B ]

I think the a and b mean ... [Y ear 8, pre-questionnaire, school C ]

The student used the questions 6a + 2a and I 2 b - 2 b  to illustrate her answer.
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As these examples show, this category contained a great variety of responses. Since this 

category also included all those who left the question blank, the proportion of students who 

appeared not to understand letters in any kind of numerical way may be an over-estimate.

A blank hne might not mean that the student did not know how to interpret letters at all, 

merely that they had decided not to answer the question for some reason. Just as the 

number of students in the ‘algebraic’ category was probably an over-estimate, so the 

‘other’ category probably included students who did have some understanding of letters.

Table 7 shows the detailed results for the students as a whole, and for the Phase II survey 

students as a separate group. Responses are to the question asking students what they 

thought the letters used in algebraic questions might mean. Figures in brackets are the 

actual numbers of students in each category; figures not in brackets are the proportions of 

students in each category, expressed as a percentage of the number of students completing 

each questionnaire^. The top part of the table gives the results for all students, but does not 

include the delayed post-questionnaires, since school G students did not do these. The 

lower part of the table gives the results across all three questionnaires for the Phase II 

survey students (schools A to D only), so that information for the delayed post­

questionnaires can also be included.

 ̂Since the pilot study students were not asked this question, there are 30 fewer students represented in this 
table than in the previous one.
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Table 7: Students* responses to a direct questiony asking how they interpreted letters

Pre­
questionnaires

Immediate post­
questionnaires

Delayed post­
questionnaires

A ll students Total (384) 100% (379) 100%
‘algebraic
‘numeric
‘other’

(154) 40% 
(38) 10% 

(192) 50%

(210) 55% 
(47) 12% 

(122) 32%
Survey
students
only

Total (279) 100% (272) 100% (283) 100%
‘algebraic’
‘numeric’
‘other’

(120) 43% 
(18) 6% 

(141) 51%

(142) 52% 
(28) 10% 

(102) 38%

(160) 57% 
(26) 9% 

(97) 34%

This table indicates that some significant changes did occur in students’ ability to answer 

such a question satisfactorily, with more students aware that letters represent numbers. 

Considering the results for all the students, the proportion of students who could state that 

letters represent numbers or some variant on this (‘algebraic’) increased from 40% to 55% 

across the teaching period, and the proportion of students who showed no awareness that 

letters stand for numbers at all ( ‘other’) decreased from 50% to 32%.

The survey students were also considered separately, both so that the delayed post­

questionnaires could be taken into account, and so that the degree to which the results of 

the case study students from school G were generahsable to the other schools could be 

assessed. The results for the survey students were initially less impressive, but were very 

similar by the time of the delayed post-questionnaires. The proportion of students in the 

‘algebraic’ category rose from 43% to 52% by the immediate post-questionnaires, and then 

to 57% by the delayed post-questionnaires. The proportion of students with a totally non- 

numerical understanding ( ‘other’) had dropped from 51% to 38% by the immediate post­

questionnaires, and to 34% by the delayed post-questionnaires. These findings suggest that 

on this indicator, at least, results from the case studies and the survey were not greatly 

dissimilar, once the delayed post-questionnaires results were taken into account.
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It would appear that many students were better able to articulate an understanding of what 

letters used in an algebraic context mean after they had completed their graphic calculator 

modules. Although this is a good result, the figures do raise some concerns. It is worrying 

that so many students did not understand letters to be numbers at all (that is, were in the 

‘other’ category). Most of the survey students (all but the 36 Year 6 students) had studied 

some algebra before, yet half of them had not grasped the fact that letters stand for 

numbers. By the time of the delayed post-questionnaires, this had dropped to about a third, 

which indicates progress was made, but that there was still work to be done in this area. 

Furthermore, this change may not imply that the students were able to make use of this 

improved verbal competence when working with algebraic expressions, as discussed in the 

introduction to this section.

6.3.2 Level of algebraic questions students can successfully 
answer

During 1974-79, the Concepts in Secondary Mathematics and Science (CSMS) research 

progranune investigated the performance of students in the 11 to 16 years age range on 

eleven secondary school mathematics topics. Their assessment of students’ performance in 

algebra was reported by Kiichemann (1981). Since 1981, his framework has become a 

standard for assessments of the level at which students can understand and work with 

algebraic expressions (e.g. Booth, 1984; Graham and Thomas, 1998). In his study, 

Kiichemann formulated a hierarchical evaluation of students’ interpretations of letters. 

Throughout this chapter, this evaluation is used to estimate the level of understanding of 

letters and expressions which students actually demonstrated when working on standard 

algebraic questions, as opposed to their professed understanding in answer to a verbal 

question about the meaning of letters in algebra.
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Before proceeding with this analysis, however, I wish to clarify how I interpret 

Kiichemann's levels here. Kiichemann made tentative connections between his levels and 

the levels a student might be expected to have reached according to Piaget’s developmental 

levels; for instance, level 1 corresponded to “[b]elow late concrete”, whereas level 4 

corresponded to “[l]ate-formal” (Kiichemann, 1981: 117). I have rejected Piaget’s 

developmental framework as a basis for understanding students’ capacity to leam algebraic 

concepts in this thesis (section 2.3.1), but Kiichemann’s levels do provide a way to track 

any progress made by students in the specific areas of interpretation of letters and 

competence in working with expressions. Whereas Piaget considered his levels to be 

necessary stages a child passes through on the way to maturity, Kiichemann’s framework 

does not require students to show earlier levels of interpretation of letters before they reach 

higher levels (cf. Avalos, 1996), but provide a means of describing the stage that a student 

has reached in her/his thinking about variables. It is quite possible for a student to miss all 

the level 1 and 2 stages in Kiichemann’s hierarchy, and start with a level 3 understanding 

of a letter as a specific unknown, for instance. Indeed, it was an intention, in using the 

graphic calculator model of a variable, to enable this to happen for students who were new 

to algebra.

Kiichemann^s analysis

From the performance of some three thousand students in Years 8 to 11 (aged 13 to 15) 

from schools across the UK, Kiichemann and his colleagues were able to formulate a 

hierarchy of levels of understanding. This hierarchy consisted of six different categories of 

interpretation of a letter at four different levels of understanding (Kiichemann, 1981: 104).
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‘Letter evaluated’, ‘letter not used’, and ‘letter used as an object'*’, which were all deemed 

to be ways of avoiding working with the letters, were put at level 1 or 2. ‘Letter used as a 

specific unknown’ and ‘letter used as a generahsed number’ were at least level 3, and 

possibly level 4. ‘Letter used as a variable’ was put at level 4. Using these levels, 

Kiichemann classified each question in his tests according to the interpretation of a letter 

the question required and its structural complexity.

It is not possible to be certain that a student who answers a high level question correctly 

does in fact have that level of understanding, as Kiichemarm acknowledged (p il l ) .  

However, a student who can answer one higher level question correctly, despite not really 

having that level of understanding, is unUkely to sustain correct answers at that level. 

Kiichemann considered a level had been achieved by a student if at least two thirds 

(approximately) of the questions at that level were answered correctly, and this criterion 

was also used where possible in the analyses in this chapter. In the Year 7 case study, 

however, there was only one question at each leveF.

Many of the questions used in my questionnaires were taken from those used by 

Kiichemann and his colleagues, so that direct comparisons could be made. Others that 

were similar were given a level on his framework; those that were not similar were ignored

'* For example, a means ‘apple’ and 6a means ‘six apples’. This is unhelpful, because although it stresses the 
difference between different variables so that students see why 6a + 2b cannot he simplified ( ‘you can’t add 
apples and bananas’), it does not help students to see that 6a is the product of two numbers.

 ̂In my role as the class teacher, I wished to avoid making students who were new to the school, and had 
little if  any previous experience of algebra, unduly worried about what might be in store for them.
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for the purpose of these analyses. Examples^ of questions used for the analyses in this 

chapter are given below^.

Level 1 (letter can be interpreted as an object, evaluated, or ignored)

2a + 5a =  [a ll questionnaires]

a  +  b  =  5 7 , a  +  b  +  2 =  [Y ear 8G  study]

Neither of these questions requires students to understand anything about the use of letters, 

or to operate directly on them, to obtain a correct answer. The first can be answered by 

simply adding the coefficients, then putting the letter back. Alternatively, it can be 

conceptuahsed as two apples plus five apples, which clearly gives seven apples. The 

second requires the student merely to observe that the required answer will be 2 more 

than 57.

Level 2 (as level 1, but structurally more difficult, with perhaps some lack o f closure in 
the answer)

\ 2 b - 2 b -  [Y ear 7G  an d Year 6-8  studies]

4a  +  3b +  2 a =  [Y ear 6-8  stu dy]

Although the first question here appears similar to the first level 1 example above, students 

found questions involving subtraction more difficult, so such questions were considered 

structurally more difficult in this analysis. In Kiichemann’s study, questions hke 

Aa + 3b + 2a were put at level 2, whereas questions hke Aa + 3 b -  2a were assigned to 

level 3. A question hke Aa + 3b + 2a requires a student to accept that the correct answer is 

6a + 3b, that is, to accept lack of closure. It was clear from the questionnaires where this

 ̂Each questionnaire in a particular study carried questions of the same structure and difficulty, but used 
different letters and numbers so that students would not feel they were doing the same questionnaire as 
before. For example, 6a + 2a on the pre-questionnaire would become 3b + 9b on the immediate post­
questionnaire, and so on.

 ̂Full details of all the questions used for this analysis can be seen in Annex IV.
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type of question was used that many students of the age group involved in this research 

were unhappy with an answer hke this, preferring to give a single number or term, such as 

9, 9ab, or 9c.

Level 3 (letter needs to he interpreted as a specific unknown, and some lack of closure in 
the answers needs to he accepted)

Add 4 onto In  [Y ear 9 G  an d  Year 8G  studies]

5 a -  2b  +  l a  =  [Y ear 8G  an d  Year 6-8  studies]

These questions require the student to accept both lack of closure in the answer, and some 

understanding of the meaning of the letters involved. Students not able to cope at this level 

tended to add the coefficients and either ignore the letters, or put them together in some 

way. The first question above was frequently ‘simphfied’ to 11 or l ln,  the second to 10, 

lOab or 10c (or even 1 2 ,12ab, or 12c). Kiichemann put 5 a -2 b  + la  at a higher level than 

4a + 3b + 2a because the latter could be answered by combining numbers of objects (such 

as apples and bananas), whereas the former is more difficult to interpret in this way:

3 apples take away one banana makes httle immediate sense (unless there already are 
some bananas), nor does 3 a’s take away one b  unless b  is thought of as a number. 
(Kiichemann, 1981: 107)

Level 4 (as level 3, but structurally more difficult, requiring interpretation o f a letter as a 
generalised number or a variable)

Multiply 3 + b by 9 [Y ear 9G  stu dy]

Isa + b + c = a + p + c tme: [Y ear 8G  stu dy]
always/sometimes/never?
Choose one of these alternatives, 
and explain your answer.

The first question here is structurally more difficult than the first exemplar of level 3, 

according to Kiichemann (1981: 109), since students have to realise that both terms in the 

expression 3 + b need to be multiplied by the 9. The second question requires students to 

understand that b and p  may sometimes have the same value, despite being represented by 

different letters. This would indicate that students were beginning to interpret letters as
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generalised numbers, rather than specific numbers. Students who had not made this shift 

in understanding were likely to state that the two expressions could never be the same, as b 

and p  were necessarily different numbers.

Questions from all the questionnaires used in the Phase I case studies (school G) and the 

Phase n  survey (schools A, B, C and D) were, where possible, allocated a level on 

Kiichemann’s framework. In the Year 7 case study, there was only one question at each 

level on each questionnaire. Level 4 questions were only used in the pilot study (Year 9G) 

and the follow-up case study (Year 8G); questions used in the Year IG  case study and the 

Year 6-8 survey were at most level 3.

Using Kiichemann^s framework to assess the case study and survey 
students’ competence in working with algebraic expressions

Once the questions on all the questionnaires had been allocated a level on Kiichemann’s 

framework (or omitted from this analysis), the numbers of students achieving a given level 

were determined, and details of this analysis are shown in Table 8. The top part of this 

table represents the results of all the students, and the bottom part represents the results of 

the survey students. Figures shown in brackets are the numbers of students who achieved 

at least the given level, by answering correctly at least two thirds (approximately) of the 

questions at this level. Figures not in brackets are the proportions of students achieving at 

least a given level, expressed as a percentage of the total number of students completing 

each questionnaire. (Students who failed to answer correctly at least two thirds of the 

questions at level 1 were put at level 0 in subsequent analyses).
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Table 8: Proportions (and numbers) of students achieving a given level on Kiichemann*s 
framework

Pre-questionnaires Immediate post­
questionnaires

Delayed post­
questionnaires

A ll students Total (414) 100% (409) 100%
A t least level 1 
A t least level 2  
A t least level 3

(327) 79% 
(231) 56% 
(109) 26%

(338) 83% 
(279) 68% 
(126)31%

Survey students 
only

Total (279) 100% (272) 100% (283) 100%
A t least level 1 
A t least level 2 
A t least level 3

(234) 84% 
(177) 63% 
(79) 28%

(228) 84% 
(178) 65% 
(74) 27%

(247) 87% 
(182) 64% 
(57) 20%

This table suggests that the students as a whole made a httle progress on this indicator, but 

that the picture for the survey students was less good. Considering the students as a whole 

first, some improvements in the levels achieved on Kiichemann’s framework can be seen 

in Table 8. Initially 21% of the students were unable to answer correctly even questions at 

level 1, but this decreased to 17% by the time the students did the immediate post­

questionnaires. 26% of the students were initially at level 3 or higher, and this increased to 

31% by the immediate post-questionnaires. The most noticeable change, however, was in 

the proportion of students reaching level 2 successfully, with a rise from 56% of the 

students to 68%.

Looking at the results for the survey students, the change in the proportion of students 

reaching at least level 1 was similar by the time of the delayed post-questionnaires. 

However, the impressive rise in the proportion of students reaching level 2 did not occur, 

and there was actually a decrease in the proportion of students able to answer questions at 

level 3 correctly by the time of the delayed post-questionnaire. These results are 

considered further in the next section.
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6.3.3 Comparison between students’ responses to a direct
question about the meaning of letters, and their level on 
Kiichemann’s framework

In section 6.3.1, students’ interpretation of letters in answer to a specific question was 

considered; in section 6.3.2 the level at which students were actually operating in 

answering algebraic questions was discussed. The next question to answer is the degree to 

which these are related. Does the abihty to answer successfully the question: “What do the 

letters in an algebraic question stand for?” mean that students can operate at some 

minimum level on Kiichemann’s framework, or is there no connection between the two? 

This is now explored further.

Levels on Kiichemann’s framework achieved by students sub-divided by 
their interpretation of letters

As might be expected, a relationship was found between students’ direct responses about 

what letters mean, and the levels they reached on Kiichemann’s framework. To explore 

this relationship, students were divided into two groups according to their responses to the 

direct question about their understanding of letters*. The ‘algebraic’ category, as in the 

earlier analysis, comprises students whose response indicated that they understood letters 

to be numbers in general, or at least specific unknowns. The ‘non-algebraic’ category here 

includes students previously put into either the ‘numeric’ or the ‘other’ category: that is, all 

those students whose understanding does not appear to be at the level of a specific 

unknown. The level on Kiichemann’s framework reached by students in each of these 

subsets is then considered.

* Again, the Year 9G  students are excluded from this analysis, since they were not asked a question asking 
them what the letters in algebraic questions mean.
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The level on Kiichemann’s framework which should correspond to an understanding that 

letters represent numbers in general is level 3. This is the level which Kiichemann 

identified as the stage where students begin to operate on letters as at least specific 

unknowns, rather than avoiding them in some way, treating them as objects or replacing 

them with specific values. Table 9 shows that not all students with an ‘algebraic’ 

understanding of letters reached level 3 on Kiichemann’s framework, and not all students 

with a ‘non-algebraic’ interpretation of letters were at a lower level than this. That some 

students are able to answer a direct question about the meaning of letters successfully 

without being able to answer higher level questions is perhaps not surprising. What is less 

expected, perhaps, is that some students whose understanding was ‘non-algebraic’ reached 

at least level 3 on Kiichemann’s framework and others with an ‘algebraic’ interpretation 

did not even reach level 1. These students show distinct differences between their 

professed interpretations of letters, and the level at which they could actually answer 

algebraic questions successfully.

The details of this analysis are shown in Table 9. Sub-division by interpretation of letters 

was done first. Figures in brackets are then the numbers of students in each subset who 

achieved the given level on Kiichemann’s framework. Figures not in brackets are the 

proportions of the students in each subset achieving the given level, expressed as a 

percentage of the number of students in that subset completing each questionnaire.

Table 9: Comparison o f students* verbal interpretation of letters with the levels they 
achieved on Kiichemann*s framework

‘non-algebraic’ interpretation o f  letters ‘algebraic’ interpretation o f  letters

Pre-questionnaires Immediate post­
questionnaires Pre-questionnaires Immediate post­

questionnaires
Total (230) 100% (169) 100% (154) 100% (210) 100%
A t least level 1 
A t least level 2 
A t least level 3

(159) 69% 
(96)42% 
(34) 15%

(120) 71% 
(88) 52% 
(24) 14%

(139) 90% 
(108) 70% 
(55) 36%

(188) 90% 
(163) 78% 
(74) 35%
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Table 9, like Table 7, shows clearly the increase in the number of students able to interpret 

a letter ‘algebraically’. There were decreases at all levels between the pre-questionnaires 

and the immediate post-questionnaires in the numbers of students in the ‘non-algebraic’ 

subset, with corresponding increases in the numbers of students who knew that letters 

represent numbers.

Within both subsets, the most impressive increases were in the proportions of students 

reaching at least level 2. For students in the ‘non-algebraic’ category, that proportion rose 

from 42% to 52%, and for those in the ‘algebraic’ category it rose from 70% to 78%. All 

other changes in proportions are very minor.

^Anomalies’ in the comparison of students’ verbal understanding and levels 
achieved on Kiichemann’s framework

There were 99 students whose interpretation of letters on the pre-questionnaires was 

‘algebraic’, but who did not show they could answer questions successfully at level 3 on 

Kiichemann’s hierarchy. This can be deduced from Table 9, since there were 154 students 

altogether in the ‘algebraic’ subset, of whom only 55 achieved at least level 3. These 99 

students represent 64% of those in the ‘algebraic’ subset, and 26% of the student body as a 

whole. This means that nearly two thirds of students who were aware that letters represent 

numbers were not able to work at a level which Kiichemann claimed was equivalent in 

understanding. This is perhaps not that difficult to explain: it is much easier to leam verbal 

definitions than to make use of the knowledge which such definitions encapsulate, as 

Vygotsky pointed out so frequently (eg. Vygotsky, 1986: 158).
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By the time of the immediate post-questionnaires, there were 136 students’ able to state 

that letters represent numbers (and thus in the ‘algebraic’ group), who could not answer 

level 3 questions successfully, corresponding to 65% of that group, or 36% of the entire 

student body. This finding suggests that the proportion of those able to answer 

appropriately the question about their understanding of letters who were unable to answer 

questions at level 3 had not changed since the pre-questionnaires, but that more of the 

students were in that position. This again supports Vygotsky’s view that it is not verbal 

competence which counts in establishing a new concept, but that such verbal competence 

is only the beginning of genuine learning; “The development of scientific concepts begins 

with the verbal definition.” (Vygotsky, 1987; 168, original italics).

Before the graphic calculator modules began, there was also a group of 34 students'®, who 

were in the ‘non-algebraic’ subset, but who were able to answer successfully questions at 

Kiichemann’s level 3 (all but one from the survey schools). These students represent 15% 

of those in the ‘non-algebraic’ subset and 9% of the entire student body. On the inunediate 

post-questionnaires, 24 students" (all from the survey schools) failed to answer 

satisfactorily a question about the meaning of letters, but were able to answer successfully 

questions at level 3. They represented 14% of those in the ‘non-algebraic’ subset at this 

point, or 6% of the entire student body.

See Table 9: there were 210 students in the ‘algebraic’ group for these questionnaires, of whom 74 achieved 
level 3.

'® See Table 9: ‘non-algebraic’ subset, 34 students achieved level 3.

"  See Table 9: ‘non-algebraic’ subset, 24 students achieved level 3.
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This is a far more surprising finding, and one which requires further research. Their 

presence tends to suggest that concept formation, and the development of accompanying 

skills, is a complex business, with some students able to answer algebraic questions at a 

level beyond their verbal competence. Such students perhaps reahse intuitively what to do, 

without actually verbahsing what this might mean about the letters involved.

Alternatively, they may have been rote taught, so that they can simphfy expressions 

without really understanding what they are doing. It would be interesting to see how they 

fare at algebra after another year or two.

The existence of these two groups of students would seem to indicate that knowing that 

letters represent numbers is neither a necessary nor sufficient condition for students to be 

able to answer questions at Kiichemarm’s level 3. One conclusion to draw from this, is that 

although Kiichemann’s level 3 corresponds to an understanding that letters are specific 

unknowns at least, working at this level demands far more of students than just this 

reaUsation. It may also be that the other kinds of learning required for students to work 

successfully at level 3 are more important than simply reahsing that letters are used as 

generahsed or even specific numbers.

A closer look at the survey students

Since there did not appear to be much change in the levels reached on Kiichemann’s 

framework by the survey schools, it seemed worth investigating if  there was any difference 

in the levels achieved by students giving an ‘algebraic’ response to the question about their 

interpretation of letters and those giving a ‘non-algebraic’ response.
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Figure 15: Proportions of students achieving at least each of Kiichemann*s levels 
(expressed as a percentage of the students in the ^algebraic* and *non-algebraic* 
categories respectively)
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The yellow, orange and red bars in Figure 15 show the proportion of the students giving an 

‘algebraic’ interpretation of a letter achieving at least each of levels 1, 2 and 3, while the 

pale, mid and dark blue bars show the proportions of those with a ‘non-algebraic’ 

interpretation achieving each level. The absolute number of students in the ‘algebraic’ 

category increased across the questionnaires, while the absolute number in the ‘non- 

algebraic’ category decreased (Table 7, p202).

Of the students in the ‘algebraic’ category, around 90% reached at least level 1, compared 

to around 80% of those in the ‘non-algebraic’ category, while over 70% of those in the 

‘algebraic’ category reached at least level 2, compared to around 55% of those in the ‘non- 

algebraic’ category. However, the proportion reaching at least level 3 decreased across the 

three questionnaires for both groups, from 38% to 35% to 29% in the case of those in the 

‘algebraic’ category, and from 21% to 18% to 8% in the case of those in the ‘non- 

algebraic’ group.
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Clearly a higher proportion of students in the ‘algebraic’ group reached each of the levels. 

The proportions of students reaching at least levels 1 and 2 remained fairly constant in both 

categories, but the drop at level 3 occurred in both categories of students. Whatever the 

cause of this drop, it does not therefore appear to be related to students’ interpretation of a 

letter. From the data available, it is not possible to probe this finding more deeply. It is 

quite possible that the drop at level 3 is a statistical effect caused by the increase in the 

population of the ‘algebraic’ group and decrease in that of the ‘non-algebraic’ group.

Other explanations include the possibility that these students were suffering from 

‘questionnaire fatigue’, or that their performance was affected by other factors which were 

not apparent from the data.

6.3.4 Summary of this section

This is a complex section in which I have attempted to explore students’ understanding of 

letters, comparing it with the level they can achieve on Kiichemann’s framework. In 

section 6.3.1, students’ responses to a direct question asking how they interpreted the 

letters used in algebraic expressions were analysed. Overall, the students made progress in 

this, with a greater proportion able to answer satisfactorily after the graphic calculator 

modules than before. This finding appeared to be consistent across the whole student body 

and the survey students alone.

In section 6.3.2, Kiichemann’s analysis was used to determine the level at which students 

could actually answer algebraic questions correctly. His analysis depends on the 

interpretation of a letter required by a question and its structural complexity, and so is 

another way of looking at student understanding. Here the students as a whole appeared to 

make a small amount of progress, but this was not shown by the survey students.
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In section 6.3.3, these two analyses were combined, to see if students’ verbal interpretation 

of a letter was related to the level they could reach on Kiichemann’s hierarchy. There was 

found to be some relationship between the two, but there were two groups whose results 

appeared anomalous. These included those whose interpretation of a letter was ‘algebraic’, 

but who had yet to achieve Kiichemann’s level 3, and those whose interpretation of a letter 

was not ‘algebraic’, but who had achieved Kiichemann’s level 3. Using the subdivision of 

the survey students into ‘algebraic’ and ‘non-algebraic’ subsets, their results on 

Kiichemann’s hierarchy were re-examined. It was found that students in both categories 

showed a similar pattern in Kiichemann’s levels, with httle change in those reaching at 

least levels 1 and 2, and a drop in those reaching at least level 3.

In this section, students’ understanding of letters and how it is connected to the level of 

questions they can successfully answer has been considered. In the next section, students’ 

proceptual understanding is examined, together with the implications this has for the level 

they can achieve on Kiichemann’s hierarchy.

6 .4  S t u d e n t s ’ p r o c e p t u a l  u n d e r s t a n d i n g  o f  e x p r e s s i o n s

Proceptual understanding (Tall and Thomas, 1991) is a measure of a student’s ability to see 

an expression tike 2% + 3 both as a set of operations on a variable, jc, and as a mathematical 

entity in its own right which can be operated on in the same way that x can. Students’ 

facility in interpreting expressions flexibly as operations on a single variable, or as 

mathematical entities, according to context is an important indicator of their capacity to see 

how expressions are constructed and hence how to operate on them (section 2.6.5). This is 

necessary for proceeding beyond the most basic of levels in algebra, and so progress in this
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aspect of students’ understanding was investigated to see if there had been any change 

during the period the students worked with the graphic calculators.

Students’ proceptual understanding can be illustrated by responses from the survey

students to a question asking them:

How did you work out your answer to question 5 [4a + 3b +2a  =  ]?

On the pre-questionnaires, many students gave responses hke these:

I worked it out by adding 4, 3 and 2 together and then adding on an a. [A nsw er given,
9a; Year 7  student, school B ]

Added the numbers up together. [A nsw er given, 9a; Year 8  student, school A]

By the immediate post-questionnaires [the corresponding question was 6c + 2a + 3c =],

these two students’ responses were respectively:

I added 6c and 3c together and then placed the 2a  on the end. [A nsw er given, 9c2a;
Year 7  student, school B [

I added the two c numbers to the 2a. [A nsw er given, 9 c  +  2a; Year 8  student, school 
A]

It was clear that at least some of the students were viewing expressions more holistically or 

proceptually than they had done initially, and less as collections of numbers to be operated 

on, with letters as mere appendages.

An example of a question requiring proceptual understanding (from the Year 8G case 

study) is 2al2a. If a student is to understand that 2a/2a is equal to 1, s/he needs to see the 

two ‘2a’ terms proceptually, that is, as single mathematical entities, so that the whole 

expression is perceived as something divided by itself. Students whose understanding was 

not yet proceptual did not see the ‘2a’ terms as single entities, and so did not see the 

overall structure of the question. Instead, they tended to work on the coefficients first, 

getting a value of 1 or 0, onto which they might or might not tag an ‘a’. An answer of 1
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could be an indication of proceptual thinking; an answer of la, 0 or Oa is a clear indication 

of its lack.

This one example is not enough to give complete certainty about the degree of proceptual 

understanding a student has, since a student could get a value of 1 by cancelling the two 

‘2’s, and completely ignoring the letters. However many students whose thinking was at 

this stage tended either to divide 2 by 2 to get 0 rather than 1, or to put an ‘a’ onto the 

number. This is equivalent to answering a question like 6a + 2a by adding the ‘6’ and the 

‘2’, then putting the ‘a’ back on to get 8a*̂ . This lack of proceptual thinking is not obvious 

in the case of 6a + 2a, but is in other questions.

Questions" from each of the questionnaires used in the case studies and survey were 

analysed according to the degree of proceptual understanding required in order to answer 

them successfully. Other examples of questions used to test proceptual understanding 

were:

5 a-2b  + l a =  [Year 6-8 and Year 8 study ]

Add 4 onto In [Year 9G and Year 8 study]

Which of the following expressions [Year 9G study]
do you think is correct for the area
of this rectangle? Tick every one you think is correct.

"  This corresponds to one of Kiichemann’s level 1 forms of understanding of a letter: that a student operates 
on the numbers ignoring the letters, at least until the final answer is displayed.
13 Details of the questions used can be seen in Annex V.
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(Options: 5 x e + 2, 5 x (e + 2), lOe, 5 x e2, 5(e + 2),e + 2x5 ,  none correct/other 
answer)

The Year I G  questionnaires did not have any questions which could be used to assess 

proceptual understanding, so these students were omitted from this analysis.

Taking the students as a whole, on the pre-questionnaires 51% of them showed evidence of 

proceptual thinking, which increased to 54% on the immediate post-questioimaires. The 

proportions of students from the Phase II survey showing proceptual thinking showed little 

change, remaining around 49-51% on all three questionnaires.

Such figures conceal considerable variation, however. Some students clearly came to this 

work with a good understanding of what a letter meant, and how it should be used, whereas 

others had no idea about using letters in an algebraic way. To probe such differences, the 

degree to which students’ thought was proceptual was investigated according to their initial 

level on Kiichemann’s framework. This level was chosen rather than age, because any one 

age group could contain as much variation in understanding and attainment as the whole 

group, whereas a student’s initial level on Kiichemann’s framework gives a basehne for 

their ability to work with algebraic expressions. It was chosen in preference to their 

response to the direct question asking about their interpretation of letters, because it 

reflects the level at which a student can actually work, rather than a purely verbal 

understanding.

Students were assigned a level on Kiichemann’s hierarchy for their pre-questionnaires, and 

this level was then used throughout this analysis, so that a student assigned to level 1 on 

the pre-questionnaire was considered as a level 1 student thereafter, regardless of any 

progress made on subsequent questionnaires. The degree to which they showed proceptual
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thinking was then assessed for all the questionnaires, and compared from the pre­

questionnaire to the post-questionnaire(s).

Details of this analysis are shown in Table 10. Figures shown in brackets are the number 

of students at a given level on Kiichemann’s framework showing proceptual thinking as a 

proportion of the total number of students at that level. Figures not in brackets are the 

same proportions converted to a percentage. So, for instance, none of the 46 (0/46) 

students at level 0*'‘ on the pre-questionnaires showed proceptual thinking, whereas six of 

the 41 (6/41) of these students completing the immediate post-questionnaires showed 

proceptual thinking (the other 5 students did not complete the immediate post­

questionnaires). Because the Year 7 students from school G did not have any questions 

suitable for showing proceptual thinking, only the Year 8 and 9 students from school G are 

included in this analysis (57 students on the pre-questionnaires).

Table 10: Proportion of students at a given level on KUchemann^s framework in the pre­
questionnaires who showed proceptual thinking

Level on
Kiichemann’s
framework

Proportion o f  students showing proceptual thinking
Pre-questionnaires Immediate post­

questionnaires
Delayed post­
questionnaires

A ll students Total (172/336) 51% (172/319) 54%
Level 0 (0/46) 0% (6/41) 17%
Level 1 (4/67) 6% (9/62) 16%
Level 2 (64/115) 57% (63/106) 62%
Level 3 or 4 (104/108) 96% (94/100) 94%

Survey students Total (138/279) 49% (128/253) 51% (126/258) 49%
only Level 0 (0/45) 0% (5/40) 13% (4/38) 11%

Level 1 (2/57) 4% (6/52) 12% (9/53) 17%
Level 2 (57/98) 58% (51/90) 57% (48/91) 53%
Level 3 (79/79) 100% (66/71) 93% (65/76) 86%

Those who failed to answer at least two thirds, approximately, of the level 1 questions on the pre­
questionnaire successfully.
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It can be seen from Table 10, that proceptual thinking appears to be closely hnked to a 

student’s level on Kiichemann’s hierarchy. The proportion of students showing proceptual 

thinking is very low for students operating at levels 0 and 1, but some of them were able to 

show a degree of proceptual thinking after the graphic calculator modules. More than half 

of the students able to answer questions at level 2 successfully showed proceptual thinking, 

and virtually all the students able to operate at level 3 or above showed proceptual 

thinking. The only improvements in proportions of students showing proceptual thinking 

occurred in those students originally on the lowest levels according to Kiichemann; 

students originally at a higher level showed drops in the proportions showing proceptual 

thinking. This hnks with some decreases in performance shown by these students in other 

analyses described in this chapter.

It is inevitable that there will be a fair degree of agreement shown in this analysis between 

the level on Kiichemann's framework achieved by students and the proportion showing 

proceptual thinking, since the questions at the higher levels according to Kiichemann are 

also those which require proceptual understanding, whereas lower level questions do not.

It would be interesting to conduct further research on this, using different questions for 

determining students’ level on Kiichemann’s framework and for determining their 

proceptual understanding, to see if the agreement shown here is an artefact of the questions 

used, or whether it is a real connection between the two measures.

6 .5  Progress in basic algebraic skills

A third measure of students’ progress during the period they worked with the graphic 

calculators is their ability to answer questions of the type met in traditional algebra 

teaching. This is also a way of finding out if the graphic calculator method of teaching
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algebra compares successfully with other methods as regards the development of such 

skills. Practising such traditional skills was not a basic objective of the teaching materials 

used, but it was hoped that enabhng students to understand better how and why letters are 

used in algebra would contribute to the development of such skills (cf. Graham and 

Thomas, 1998; Graham and Thomas, 2000a). If students are able to answer skills-based 

questions more fluently as well as showing an increase in their conceptual understanding, 

then the graphic calculator model can certainly be deemed useful.

Progress in basic algebra skills was found to follow the same kind of pattern as previous 

analyses. Students with a low starting point on Kiichemann’s framework made good 

progress, while students starting from a higher level appeared to stand still, or even, in 

some cases, to regress.

This analysis included all the questions used on the questionnaires, not aU of which were 

used in the other analyses discussed in this chapter. Whereas the questions used to 

determine students’ levels on Kiichemann’s framework and those used to determine their 

proceptual understanding were often the same questions, all the questions on the 

questionnaires were used for the basic skills scores, many of which could not be used in 

other analyses, so this result is based on a wider sample of questions. This means that this 

result is more independent of the other analyses used (although still not entirely 

independent). The questions are not rated by the level of understanding they require or 

their structural complexity, as with the measures dependent on Kiichemann’s analysis.

Development of basic skills was measured by looking at students’ scores on all the 

algebraic questions on each questionnaire. All the previous analyses have used numbers or
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proportions of students in a given category. For this analysis, however, each questionnaire 

was scored according to the number of algebraic questions it contained, and each student 

was given a mark, expressed as the percentage of questions answered correctly. These 

marks were then averaged across each questionnaire for all the students completing it, and 

a mean correct score obtained for each questionnaire.

On the pre-questionnaires, the students considered as a single group showed a mean correct 

score of 47%, which improved to 54% on the immediate post-questionnaires. This 

increase is statistically highly significant" (p = 4.24 x  10"̂ ), and very unhkely to have 

occurred by chance. For the survey students taken as a single group, the students’ mean 

score was 49% on the pre-questionnaires, which improved to 52% on the immediate post­

questionnaires, but dropped back to 51% on the delayed post-questionnaires. None of 

these changes is statistically significant.

Again, the students’ results were investigated further by grouping students according to 

their initial level on Kiichemann's framework, so that variations in the performances of 

different groups of students could be ascertained. Similar results were obtained to those in 

the previous analyses: the students in the lowest achieving groups made excellent progress, 

while those in the highest achieving group showed a small decrease in their mean score. 

Details of this analysis are shown in Table 11, where students are again sub-divided 

according to their level in the pre-questionnaires on Kiichemann’s framework (note that 

these figures give mean scores rather than proportions of students).

All results used for calculations of statistical significance can be seen in Annex VI.
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Table 11: Comparison of mean scores for each questionnaire, students differentiated 
according to their level in the pre-questionnaires on Kiichemann^s framework

Level on
Kiichemann’s
framework

Mean scores
Pre­

questionnaires
Immediate post­
questionnaires

Delayed post­
questionnaires

Level 0 15% 41%
A ll L e v e ll 43% 45%
students Level 2 53% 55%

Level 3 or higher 71% 74%
Level 0 21% 34% 35%

Survey Level 1 35% 38% 40%
students L e v e ll 53% 54% 51%

Level 3 70% 71% 68%

The most remarkable feature of this table is the gain in mean score shown by the students 

initially at level 0 both in the whole group of students and in the survey. Looking at the 

student body as a whole first, the increase in the mean score for those at level 0, from 15% 

on the pre-questionnaires to 41% on their immediate post-questionnaires is statistically so 

unlikely, that a p  value cannot be obtained (Izl = 8.45). A similar result is seen among the 

level 0 survey students, whose mean score rose from 21% to 34%. The probabihty of this 

increase happening by chance isp  = 3.53 x  10'̂ . These values both indicate that it is 

highly unlikely that these students would have obtained the increased scores that they did 

without some intervention, and is thus an indication that the graphic calculator modules 

that they studied helped them to develop markedly better basic algebra skills.

None of the other changes shown in Table 11 is statistically significant. In general, the 

students showed increases in their scores, which they maintained through to the delayed 

post-questionnaires. Exceptions to this are the level 2 and 3 students from the survey 

schools, who showed a small decrease in mean score between the immediate post­

questionnaires and the delayed post-questionnaires.
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6 . 6  SUAWARY AND CONCLUSIONS

In this chapter, analyses of the questionnaires given to the participating students were used 

to determine how successful the graphic calculator model and teaching materials had been 

in helping students to understand letters and expressions better, and also to see if this 

affected their basic algebra skills. Given the nature of the case studies and the survey 

carried out, it is not possible to be certain that the progress noted is due solely to the 

graphic calculator modules that the students studied. The purpose of this research was to 

find out what would happen if graphic calculators were used to provide a model of a 

variable and to support students’ investigational work in ordinary classes, rather than in 

controlled settings. In everyday classroom lessons, there are always many variables, and 

no attempt was made to control for these.

Three different analyses were used to see if the questionnaire data support the contention 

that the graphic calculator provides an everyday model for a variable which can interact 

with the abstract model taught in school, resulting in new conceptual learning, as Vygotsky 

maintained. The first was students’ understanding of letters, as demonstrated both verbally 

and in their responses to typical algebra questions. The second was the degree to which 

students showed proceptual thinking, and the third was that of the skill they showed in 

answering typical algebra questions.

The first analysis was divided into two different aspects. Initially, students’ responses to a 

straightforward question asking them what they thought the letters in the algebraic 

questions meant were analysed. It was found that about half the students knew that letters 

represent numbers, but that half had no idea what the letters meant. Even after the graphic 

calculator modules, with their emphasis on putting numbers into stores, about a third of all



Chapter 6: Developments in students’ understanding and skills 227

the students were unable to give a satisfactory answer to such a question. This finding 

alone is significant for practitioners. It is no wonder that students find algebra hard, when 

so many of them fail to grasp the fundamental fact that letters stand for numbers. It seems 

likely that the graphic calculator model did help some students, but others still needed to 

have the model reinforced. Vygotsky emphasised that verbal learning was but the 

beginning of conceptual learning, and thought neither ‘everyday’ nor ‘scientific’ 

knowledge enough on its own (Vygotsky, 1986: 194).

Students’ understanding was also investigated by looking at the level of questions they 

could answer successfully. To determine the level of a question, Kiichemann’s (1981) 

hierarchical framework was used, in which questions are classified both by the 

understanding of letters required and their structural difficulty. Overall, the students 

showed some improvement here, but this was found to derive from the case study students 

with those in the survey showing little change, or even a drop in level.

These two aspects of understanding were then considered together. Students were sub­

divided into ‘non-algebraic’ and ‘algebraic’ subsets, according to whether they could state 

that letters stand for numbers, or at least a specific unknown. Looking at the levels on 

Kiichemann’s framework students in each subset achieved, it was found that many were at 

a level which accorded with their verbal understanding, but that a minority either had a 

verbal understanding ahead of their ability to work on a question, or vice versa. Students 

with a verbal understanding ahead of the level at which they could actually answer 

questions exemplify Vygotsky’s {Collected Works, Vol HI, van der Veer and Valsiner, 

1994) claim that verbal knowledge is but the beginning of concept formation. The much 

smaller group of students whose demonstrated ability to work on questions appeared to be
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in advance of their verbal understanding indicates that this whole area is more comphcated 

than that simple statement would suggest. Further research in this area would be useful, to 

see if this result is simply due to inconsistencies in students’ understanding and ability to 

work on questions at this stage, or whether there is another explanation.

Progress made by the students in their proceptual understanding was analysed, with 

students differentiated according to their initial level on Kiichemann’s framework. It was 

found that those students whose initial level was very low made some progress, whereas 

students at the highest levels slipped back a little. Proceptual understanding appeared to 

relate to initial level on Kiichemann’s framework, but this may well be an artefact, caused 

by the use of many of the same questions in the analyses.

Students’ progress in basic skills showed that the lowest achieving students made 

spectacular progress, whereas other students’ progress was less remarkable. Perhaps the 

excellent progress of the students with lowest previous success at algebra may be attributed 

to the graphic calculator model and teaching method combining the ‘everyday’ and the 

‘scientific’, enabling them to develop some understanding of basic algebra.

In Chapters 4 to 6, the findings of the case studies and survey have been considered from 

various perspectives. In Chapter 4, the effects of the graphic calculator as a cognitive tool 

were discussed, then in Chapter 5, vignettes from the classroom were analysed to show 

examples where cognitive change occurred and examples of occasions where it failed to 

occur. Finally, in this chapter, the progress students made in understanding the 

interpretation of letters and the construction of expressions, and their skill in using these 

was discussed. In the next chapter, students’ errors and misconceptions are described.
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together with the effect on these misconceptions of the graphic calculator model of a 

variable.



Chapter 7: Misconceptions 230

CHAPTER 7 MISCONCEPTIONS

7.1 Introduction

During the analyses conducted to determine how much progress students had made during 

the classroom studies carried out in this research, it became obvious that many students 

showed a range of misconceptions. Students who had not yet really started algebra did not 

start their study of it as ‘blank slates’, and very few of these students (less than 10%) had 

no misconceptions at all. Some of these misconceptions showed themselves to be 

remarkably persistent, still observable in students some two years older, and with nearly 

two years more algebra teaching. Vygotsky’s view, that: “[a]ny learning a child 

encounters in school always has a previous history” (1978: 84) would suggest that students 

already have many ideas that they use in trying to construct meaning for what they do in 

algebra: there is no such thing as starting from scratch. Instead, the everyday conceptions 

children have already formed have to be considered (Vygotsky, 1987), and where 

necessary children have to be given the means to reconstruct how they link these concepts 

with what they learn in school.

Students’ failures at algebra (section 2.6.7) and the literature on the occurrence of 

misconceptions when students make the transfer from arithmetic to algebra (sections 2.6.3, 

2.6.8) have been discussed in Chapter 2: Review of the literature. Some researchers have 

proposed the existence of a cognitive ‘gap’ (Herscovics and Linchevski, 1994; Linchevski 

and Herscovics, 1996) or cognitive ‘obstacles’ (Booth, 1988; Filloy and Rojano, 1989). 

However, Tall (1989) suggested that “our curriculum, designed to present ideas in their 

logically simplest form, may actually cause cognitive obstacles” (p89), rather than their
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being inherent. Sutherland (1991) agreed, arguing that the apparent existence of such 

‘gaps’ or ‘obstacles’ may be caused by the use of Piagetian theory, which contends that if 

students are unable to cope with the demands of algebra it is because they have not yet 

reached the stage of formal operations.

A Vygotskian perspective supports this possibility. The nature of students’ learning 

depends on the tools they use (as discussed at length in sections 2.5 and 4.2), so students’ 

misconceptions may be a result of the instruction process and the tools used, rather than of 

the existence of a pre-determined ‘gap’ or ‘obstacle’. This is the view taken in this thesis. 

Consequently, it is worth discussing further how using the graphic calculator in the way 

described earlier (section 4.4) might help students deal with misconceptions. It is argued 

here that the unit of two students and a graphic calculator can enable students to extend 

their ZPD, through dialogue supported by the calculator which provides language and a 

forum for investigating ideas (section 4.3). This environment encourages students to try 

out their ideas, to see which are correct and which are not. Examples where this occurred 

were given in Chapter 5: Evidence of cognitive change.

In this chapter, students’ misconceptions are analysed in detail, and the effect of using the 

graphic calculator on these is considered. In section 7.2, major and minor misconceptions 

are described. Here major misconceptions are defined as those observed in more than 10% 

of the Year 6 and IG  students, who were new to algebra, while minor misconceptions are 

those observed in between 5% and 10% of these students. Section 7.3 is a discussion of 

the types of misconceptions students showed before and after their graphic calculator 

modules and the proportion of students in which these were observed. In this section, the 

incidence of the various types of misconception is considered for each year group of
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students, rather than by students’ level on Kiichemann’s framework, as in the previous 

chapter. I decided to do this because misconceptions were spread throughout the student 

body, and I wanted to see if  the length of time for which students had been studying 

algebra made any difference to the incidence of misconceptions. In section 7.4, 

misconceptions deemed to be a result of the teaching method are discussed. Finally, 

section 7.5 is a sununary of the chapter.

7 . 2  Misconceptions observed in students new to algebra

The pre-questionnaires of the Year 6 students from school and the Year 7 students from

school were analysed for misconceptions the students brought with them before they 

started formal work in algebra. Although many of these students had done preliminary 

work designed to lead up to learning algebra including some use of letters for numbers, 

few had done very much formal algebra at the point that they did these questionnaires. It is 

not possible to pinpoint a time at which students start learning algebraic concepts, since all 

concepts are grounded in the totality of a child’s experience. However, in the UK 

educational system the change from Year 6 to Year 7 marks the end of the primary phase 

and the beginning of the secondary phase, and is the point at which a more formal 

approach to mathematics teaching often occurs. I hoped therefore that the Year 6 students, 

who were just a couple of months from this transition, and the Year IG  students, who were 

a couple of months past this transition, would give an indication of the algebraic 

misconceptions students have already formed at this significant point in their education.
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Students’ answers to questions on their pre-questionnaires were coded for different 

categories of misconceptions shown. Any misconception shown by at least 10% of the 

Year 6 and IG  students taken together, equivalent to three or more students in a class of 

30, was deemed a major misconception. Any misconception shown by between 5% and 

10% of the students was deemed a minor misconception. Misconceptions observed in less 

than 5% of the students were not considered Airther, apart from one particular instance 

which appeared to be teacher related, and which is discussed further in Section 7.4. Using 

these criteria, five major misconceptions were observed in these students and one minor 

misconception.

7.2.1 Major misconceptions observed

These were those found in the questionnaires of more than 10% of the Year 6 and Year IG  

students taken together.

2a means a 2̂̂  and an ^a\ and therefore equals 2 + a

This misconception was only found in the questionnaires of the Year 6 students, since 

there were no questions where it could have been observed in those of the Year 7G 

students. However, it was shown by 83% of the Year 6 students, and was the most 

prominent misconception shown by older students in the Year 6-8 survey also. The Year 6 

students were asked to indicate any expression they thought might be the same as 2a from 

choices which included 2 + a. A further question asked students to mark any answer they 

agreed with for be, given that 6 = 3 and c = 5, and here 8 was one of the choices. The

* The non-selective middle school.

 ̂The selective girls’ grammar school.
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essence of this misconception, therefore, is to add two symbols which are written next to 

each other without any operation indicated.

For students who have not been introduced to the algebraic convention that such symbols 

should be multiplied, this is quite reasonable. In arithmetic, students would have learnt 

that Tfh means 2 + Vi and 34 means 30 + 4, so, extending these ideas, 2a could mean 2 + a 

(Matz, 1980). However, it seems unhkely that students actuaUy think this through 

consciously in this way. Students who can answer l i b - 2 b  correctly often give an answer 

of 2 to the apparently structuraUy similar problem of 2b — b. This appears to be because 

they see 2b as a pair of symbols, a ‘2’ and a ‘6’, rather than proceptually as 2b: if  you have 

a ‘2’ and a ‘6’ and you take away the ‘6’ you are left with the ‘2’ (Gage, 2002a). 126 -  26, 

on the other hand, is dealt with by subtracting the 2 from the 12, and then tacking the 6 

back on the end, giving an apparently correct answer. If this argument is correct, then 2a is 

perceived as a ‘2’ and an ‘a’, and be as a ‘6’ and a ‘c’. This interpretation is supported by 

the two Year 9G students, who chose options of ‘5 and y’ and 5 + y as correct 

interpretations of 5y, and the discussion with Sally reported below (and also discussed in 

1.2).

Sally was the Year 9G girl whose observation that 2 x - x  = 2 started this research; it is 

clear from the discussion quoted below that she did not really have a concept of terms like 

2jc . This extract is from the first lunchtime session Sally and I held, having decided she 

needed extra help. We were going through a revision sheet which the class had done a 

couple of weeks earher. In trying to solve 5 - 3 x  = 23, Sally had written:

X — >x x 3 — —5 = 23 

7 < 28 < 23
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which we started to discuss. I suggested she start this again from scratch. This time, she 

added the 3 to the 23 to get 26, then tried to divide by the 5. Sally clearly had no concept 

of the -3x as a proceptual unit.

A little later, we moved on to consider 6 + x = 7 + 2x. The conversation continued: 

JG^ So what we do, is we use this 
idea of balancing ...
On the left hand side if you 
take away jc, what do you get 
left with?

Sally: Just the plus ...

JG: Not just the plus sign ...
SaUy: ...and 6 ...

JG: But we have to do it to both
these sides, and if we take 
away an jc on this side, what 
do we get?

Sally: 2.

JG: No, 2x means 2 times jc, two
lots of JC, if you hke.

Sally: OK.
JG: If I’ve got two lots of jc, and I

take one of them away ...
Sally: You’ve got one of them ...

I reminded Sally briefly of work we 
had done earlier in class on equations 
where the idea of balancing was used.

6 + x less the x leaves just +. It is 
apparent how little comprehension 
Sally had of what was going on"*.

6 + X less the x leaves 6 + ...

Turning to consider the right hand 
side of the equation ...

7 + 2x — x = 2

I tried to give 2x some meaning ...

Then I tried to give the operation 
2jc  -  JC some meaning ...

Sally was perfectly capable of understanding that if you have two lots of something and 

you take one lot away, you are left with one lot of it. The problem is that she (and other 

students hke her) do not conceptualise 2 jc  as two lots of x, but see it is a ‘2’ and an ‘jc ’ .

JG is me.

No doubt, she was not alone in this. Although she appeared weak by comparison with her class, she 
obtained a Level 5 pass at the end of Key Stage 3 SATs, which is the target grade at this stage.
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I added them all together and added an ‘a ”̂

This response of a Year 6 student to the question: “How did you work out your answer to 

4a + 36 + 2a” illustrates the next major misconception shown by the Year 6 and IG  

students. The answer he gave was 9a, which he justified as above. Students showing this 

misconception simply work with the coefficients, and then perhaps put a letter or letters on 

afterwards. Other examples of responses from Year 6 students  ̂who ignored the letters

were:

I just added the numbers up and put a -  6 after because I didn’t know what to do as 
there were two different letters, [answer o f9 a -b ]

I added all the number up and add to it the next number [sic] of the alphabet, [answer 
of 7c]

Add the numbers together and put a c because there is an a and a 6 therefore a add 6 
equals c. [answer of 9c]

At least 61% of the Year 6 group and 33% of the Year IG  group answered one or more 

questions by simply ignoring the letters, and operating on the coefficients. The true 

proportion could be much greater than this, since it is not possible to know if the student 

who gets an answer of 8a to 6a + 2a has in fact added the ‘6’ and the ‘2’, and then just put 

an ‘a’ on the end. Ignoring the letters either completely or until the last minute is one of 

the low level ways of working with letters identified by Kiichemaim (1981) (see 6.3.2), 

who observed this misconception in at least 37% of the 14 year-old students in his study 

(pl06).

 ̂Year 7G students were not asked to explain the reasoning behind their answers in questions like this.
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This is an example of a misconception where a strategy which works at one level fails at a 

higher level. Answering 6a + 2a in this way is fine, but it causes problems very soon, as 

can be seen in answers to this question:

Add 4 onto « + 43 [Question from the Year 8G and 9G questionnaires]

Such answers included 47 and 47». Another example of this approach causing problems 

can be seen in this extract from a discussion Nicky and Karen had during the first lesson of 

the Year 8G follow-up case study:

Nicky: Question 1, 3%= 12. So what we do is 12 divided by 3?
Karen: How does the jc come in?

^^6a+2a = 82̂ ^

The third misconception considered here is called ‘code’, and was observed in some of the 

examples described in section 5.2.1 also. Many students interpreted a term such as 2a as 

the digits of a two-digit number, or as a code in which letters stand for single digit 

numbers. This is familiar to them from simple codes and mathematical puzzles where 

letters are used to represent digits. In the pre-questionnaires, 35% of the Year 6 and the 

Year IG  students demonstrated this misconception. The Year 6 student, whose answer is 

quoted above, justified her answer by putting: “I think a = 1 and b = 3”. She had obviously 

worked out 6a + 2a to mean 61 + 21 to obtain her answer of 82; her answer to 5a -  26 -f la  

was 99 (obtained by evaluating 51 -  23 + 71). Similarly, a Year IG  student gave answers 

of 84,100 and 85 to 6a + 2a, 126 -  26 and 6a + 26. She wrote that the letters in these 

questions were to be interpreted as a = 2 and 6 = 3. Given values of 6 = 3 and c = 5, many 

of the Year 6 students chose options for be of 35 or even 23 (from 6 = 2 and c = 3, despite 

their being given specific values in the question).
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This also proved to be a tempting way of solving an equation like 2j -  6 = 18. In a 

question asking them to explain how they had reached their answers for this and similar 

equations, two students wrote:

j  = 4 because2 4 - 6  = 18 [Year6 student, solving2j- 6  = 18]

Add twelve to 24 = 36 so the jc= 6. [Year 7G student, solving 3 x - 12-24 ,  original 
underlining]

This is an example of a misconception obtained by extending a practice which works in 

codes and puzzles of the type:

Three A ’s

In the multiplication problem below, each letter represents a different digit:

AS

X A

M AN

Which of the ten digits does A represent? (Summers, 1968: 6)

An example of this type of thinking is seen in this excerpt, recorded by two students during

the first lesson in the Year IG  case study, and already discussed in section 5.2.1. This is

quoted again to show how the graphic calculator has the potential to enable students to

challenge this particular misconception.

Abigail: [Number] three is 2A. They were given A = 4 to use. This is
Two and four must be a perfect example of the ‘code ’
24 ,1 think. misconception.

Charlotte: Well, I’m not sure, so I’ll
just write it anyway!

Charlotte: Three, 2A. A little later on, they checked the
question with the graphic calculator.

Abigail: 2A, so 2 ALPHA A. 2 Graphic calculator key sequence ...
ALPHA A ...

Charlotte: ... equals 8. ... confirming that their answer was
not right.

Abigail: Whoops! We’re wrong Charlotte giggled, then there was a
long pause.
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Other students showed this misconception in their written work. In her first piece of 

homework, Fran put 3C = 33 and 2 C - D  = 22, given that C = 3 and D = 1; on the other 

hand, she put 3 x C = 9. She obviously did not understand 3C to be 3 x C. Similarly, 

Briony wrote CDCD = 3131, although she also wrote 2C + 2D = 8. In an interview when 

the module was finished, Briony said her father had agreed with her that CDCD = 3131. 

Later in the same homework, using values of C = 2.2 and D = 0.2, Fran put 3 x C = 4.4 

(which is actually 2 x  Q , 3C = 6.6 (which is correct) and 2 C - D  = 4.2 (also correct). 

Briony, however, put CDCD = 2.20.22.20.2, which is at least consistent!

a = l ,b  -2 ,  c = 3,...
A common misconception (23% of the Year 6 and 7G students showed this on their pre- 

questioimaires) was to equate a with 1, b with 2, c with 3, and so on. Given an expression 

to simplify, then asked what the letters a and b in that question referred to, two students 

wrote:

4fl + 36 + 2a = 12a

I just worked it out by assuming that a = 1 and 6 = 2 and just added it together and put 
the answer in a’s. [Year 6 student]

6a + 26 = 6 + 4 = 10 

a = 1, 6 = 2 [Year 7G student]

In both these questions, the values of 1 and 2 have been substituted for the a and 6. In 

other examples, they were used as digits (the ‘code’ misconception discussed above). This 

misconception is caused by extending the idea that a is the^ïr^t letter of the alphabet, 6 is 

the second, and so on, to give values for the letters on this basis. Again, this is often used 

in simple codes and puzzles.
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Questions in which such alphabetic substitution could be seen included questions hke those 

above, and the multi-choice questions on the Year 6 questionnaires, where one of the 

options for 2a was 21, and 23 was an option for be. Students choosing these options 

demonstrated this particular misconception. Instances were even seen of equations 

‘solved’ by this means, so that, for example, j  = 10 was given as a solution to 2j -  6 = 18.

Substitution of numbers for letters

This category was used to indicate instances when students substituted numbers for letters

where there was no need to do this or it was inappropriate to do so. One example is those

students who evaluated expressions like 4a + 36 + 2a by substituting numbers of their

choice for the letters, giving a purely numerical answer. Explaining what they thought the

letters meant, two students wrote;

I think a means x 1 and 6 means x 2. [Year 6 student, who obtained an answer of 12 
to the above question]

I think (not sure) that a stands for 2 and 6 for 1? [Year 7G student, explaining an 
answer of ]4 to 6a + 2b]

This occurred in the pre-questionnaires of 15% of the Year 6 and Year 7G students, and is 

an example of a misconception which starts by helping the students, by giving them a way 

of understanding algebraic terms, but soon restricts their understanding.

7.2.2 Minor misconceptions observed

The major misconceptions described in the previous section were observed in more than 

10% of the questionnaires completed by students in the Year 6 and Year IG  groups. One 

minor misconception was observed, demonstrated by between 5% and 10% of the students 

from these groups, which was an instance of algebraic rules being extended inappropriately 

to numbers. It seems unlikely that this particular misconception is amongst those which 

the children would have brought with them from their previous experience, however.
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Given the nature of this misconception, it seems more likely to have occurred because the 

students misunderstood what their teachers told them about algebraic terms. This 

misconception involved errors in dealing with terms like 2Apq, with equivalents such as 

2 X 4 X  p X   ̂and ^2pq being selected. This is considered further in Section 7.4, which 

concerns misconceptions which arose during the teaching process.

Although all the Year 6 and most of the Year 7G students had done some algebra before, 

this was probably their first introduction to formal algebra. It therefore seems reasonable 

to make the assumption that the major misconceptions shown by these students are those 

students bring with them from their ‘everyday’ experience (Vygotsky, 1986). This is 

supported by the nature of these misconceptions: that two symbols written next to each 

other should be interpreted as one plus the other; that it makes sense to work with famihar 

numbers then tack meaningless letters on at the end; that a letter stands for a single digit; 

that « = 1, è = 2, and so on; that numbers should be substituted for letters in order to give 

an answer which makes sense (that is, it is numerical).

7 .3  Incidence of misconceptions among all the students

The previous section considered the misconceptions shown by the youngest groups of 

students, those more or less at the start of their formal algebra teaching, in order to give a 

picture of the misconceptions students bring with them from their previous school work 

and their everyday lives. In this section, all the misconceptions shown by all the students 

who took part in the various classroom studies are considered before and after their work 

with the graphic calculator, in order to see if  the same pattern of misconceptions existed as 

with the younger students, and whether working with the graphic calculator had any impact 

on those shown.
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It was found that the same misconceptions as discussed above in section 7,2 emerged, plus 

one extra one. Five misconceptions were identified as major misconceptions in the 

previous section. These, together with names given to identify them, were:

•  ‘sum’: interpreting e.g. 2a as 2 + a

•  ‘letters’ : ignoring the letters and working on the coefficients

•  ‘code’: interpreting e.g. 2a as twenty something

• ‘alphabetic’: assuming a = 1, 6 = 2, c = 3, and so on

• ‘substitution’ : substituting numbers for letters inappropriately

The additional misconception found was another of the low level interpretations of letters 

mentioned by Kiichemann (1981), the identification of letters with objects, which he 

reported observing in over 20% of 14 year-olds (pl07). This misconception was 

demonstrated by 5% of the Year IG  students (four people) on their pre-questionnaires but 

it was not shown at all by the Year 6 students, reducing its incidence to 4% of this group as 

a whole, and thus below the threshold chosen for considering a misconception as of even 

minor significance. Since the incidence of this misconception is so low among the 

youngest students, it is considered in section 7.4 with the other errors deemed to have 

arisen during the teaching process. This section focuses on the overall incidence of 

misconceptions which students appear to hold prior to any formal teaching about algebra.

On the pre-questionnaires taken as a whole across all the year groups and schools 

participating in all the classroom studies (407 students®), the proportion of students

® 414 students took part altogether, but 7 of the Year IG  students did not answer any of the algebraic 
questions, so their misconceptions could not be considered.
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showing no observable misconceptions at all was 18%. This proportion rose with age, as 

might be expected, apart from the Year 8 group in schools A, B, and C. Table 12 shows 

how this proportion varied with the age of the students.

Table 12: Proportions o f students showing no misconceptions in the pre-questionnaires

Year group Average age a t time 
o f  classroom study

Number o f  
students

Proportion o f  
these showing no 

misconceptions
Year 6 (School B) Just over 11 years 36 3%
Year IG  (School G) Just over W Vi years 71 13%
Year 7 (Schools B and D) Just over 12 years 124 21%
Year 8G (School G) Just over 12 Vi years 27 26%
Year 8 (Schools A, B and C) Just over 13 years 119 14%
Year 9G (School G) About 14 *4 years 30 43%

While some of these figures cannot be taken as representative of wider populations of 

students, since only small numbers are involved, the table does show that over half of these 

particular 14 year-olds, who were at the end of Key Stage 3 in a selective school, still had 

observable misconceptions. This proportion rose to over four in five of the Year 8 students 

from the three non-selective schools. This finding is in agreement with Graham’s (1998) 

remarks;

Unfortunately, largely because of student embarrassment, the true extent of their 
[students’] confusion is never fully revealed -  a state of affairs which can seriously 
undermine their confidence and damage their capacity to grasp new, more challenging 
ideas. (p22)

Apart from one particular subgroup, the students did make some progress in this area. 

Overall, 18% of the students showed no observable misconceptions on the pre­

questionnaires, which rose to 21% on the immediate post-questionnaires. Considering just 

the survey students, who also did a delayed post-questionnaire, 16% of students showed no 

observable misconceptions on the pre-questionnaires which rose to 19% on the immediate 

post-questionnaires, then fell to 15% on the delayed post-questionnaires.
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Table 13: Changes in the incidence of the five major misconceptions between the pre- 
questionnaires and the immediate post-questionnaires

Misconception Year 6 Year 7G Year 7 Year 8G Year 8 Year 9G
‘sum’
‘letters’
‘code’
‘alphabetic’
‘substitution’

- 12% 
+ 8% + 4% 

-9%  
- 5 %  
+ 6%

-9%
-24%
- 24% 
+ 10% 
+ 2%

- 13% 
-23% 

0%* 
+ 7%

-4%
-3%

-30%
-3% 
+ 5%

-3%
+ 30%

-3%’
-3%*“

- 16% 
-8%
- 3%

The negative figures in Table 13 denote decreases in the incidence of a given 

misconception in a year group, and in fact, most of the changes were decreases (shaded 

pink). This is useful supporting evidence for the beneficial effects of the graphic calculator 

in aiding students to remediate their misconceptions, as well as providing them with the 

means to practise their skills. Exceptions to this are shown by the particularly high 

increase in ‘letters’ among the Year 9G students, and the smaller increase in the Year 6 and 

IG  students. There is also an increase in ‘alphabetic’ thinking among the Year 7 students, 

and several small increases in the incidence of ‘substitution’ in other groups. However, it 

seems clear that the graphic calculator model, and the graphic calculator method of 

working, helped students who had previously interpreted terms as ‘codes’. This conclusion 

is evidenced by the big decreases in this misconception across all groups. Many students 

were also helped to understand that pairs of symbols standing next to each other are not to 

be understood as sums, and that a does not always have the value 1, and so on. The 

helpfulness of the graphic calculator is also backed up by the big drop in the proportion of 

Year 7 and 8G students who ignored letters in favour of numbers.

 ̂ ’ indicates that there was no question on the given questionnaire which could be used to test for a
particular misconception.

* 0% incidence both before and after.

® From 3.3% to 0%.
10 From 3.3% to 0%.
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A  question like 2a + 5b, or similar, was used to test how many students ignored the letters 

and worked on the coefficients amongst the Year 9G students, and this question was also 

used on the Year 7G questionnaires, where a much smaller increase was observed. On the 

pre-questionnaire, many of the Year 9G students made comments to the effect that:

This equation [s ic ]  cannot be sim plified as they are different letters.

N one o f  these [the options g iven ]  are equivalent, because you still only have 2a  and
5b.

Students, who answered this correctly on the Year 9G pre-questionnaire, then wrote 

comments on their post-questionnaires Mke:

3 x 6  =  18. 3d  +  6c =  ISdc. d o r  c  haven’t been cancelled out.

Y ou add the 6 +  3. 3d  +  6c =  9dc.

It is not clear from the data why these students should have done this question correctly the 

first time, with explanations which made good sense, but then have written answers 

showing a much less clear understanding the second time. Perhaps initially the students 

remembered what they had been taught previously about adding terms involving different 

letters, but, after two weeks of working on various algebraic expressions and equations, 

were much more primed to find an ‘answer’. However, there is nothing in the data to 

indicate if this is so or not.

Many improvements were maintained through to the delayed post-questionnaires, as can be 

seen from the figures for the survey students in Table 14:

Table 14: Changes in the incidence of the five major misconceptions between the pre- 
questionnaires and the delayed post-questionnaires in the Year 6-8 survey

Misconception Year 6 Year 7 Year 8
‘sum’ -8% -3% -5%
‘letters’ + 5% + 4% -6%
‘code’ -3% -15% - 14%
‘alphabetic’ -6% - 1% -3%
‘substitution’ + 4% + 2% + 1%
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The changes here are much less dramatic, but there is still a good decrease in the incidence 

of ‘code’ thinking in the Year 7 and Year 8 students. The incidence of the ‘sum’, ‘code’ 

and ‘alphabetic’ misconceptions also decreased over the six week period across all three 

year groups. However, ‘letters’ and ‘substitution’ showed small gains, particularly with 

the younger students. Overall, this table supports the claim that the graphic calculator 

method of working can help students to remediate their misconceptions. It would be 

foolish to anticipate ehminating these particularly resistant misconceptions in just a few 

lessons, however, without considerable further work targeted precisely at exposing and 

helping students change such errors in their thinking.

7 .4  Misconceptions observed as a result of the teaching
PROCESS

All the misconceptions discussed so far were observed in more than 10% of the Year 6 and 

Year IG  students in their first formal algebra work. Two other misconceptions were also 

present at this stage, but to a much lesser extent. Both of these were observed to be more 

significant after the teaching modules, and they are therefore deemed to have arisen as a 

result of the teaching process. Of course, this is not to say that any of the teachers were at 

any point dehberately teaching errors to their students. However, it seems likely that some 

of the students misunderstood some of the things said to them, and hence developed these 

misconceptions.

7.4.1 ‘Product’ errors

The first such misconception relates to products, and two variants of this were observed.

In one variant, the digits in a number were spht up, so that 12 became 1 x 2  ( ‘product 

separation’), and in the other, the digits were reversed, so that 12 became 21 ( ‘product
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reversal’). Students justified the first of these with the convention that symbols written 

side by side in algebra are to be multiplied: if 2a means 2 x  a, then perhaps 12a could 

mean 1 x 2 x  a. The justification for the second used this together with the commutative 

rule: since 2a = 2 x  a = a x  2 = a2, then \2pq  = l x 2 xpxqr = 2 x l x q r x p  = 2\qp.

These students, like those described by Booth (1984; 1988) and Lee and Wheeler‘s (1987; 

1989) (section 2.6.6), clearly thought there was no reason to expect the laws of arithmetic 

to hold in algebra. Many students also do not really understand what the ‘=’ sign means, 

seeing nothing wrong with writing strings like 3 + 5 = 8 x 2 = 1 6 .

I discussed one of these variants with two of the Year 1G students in their interviews at the 

end of the module. I wrote down 2Ast = 2 x 4 x  j x t  and asked them if they thought this 

could be correct. Nisha agreed that this was correct, but Renelle was less sure, drawing 

attention to the 2 x  4. Although she could see something was wrong, Nisha could not, 

repeating that what I had written was fine. I therefore suggested they substitute some 

numbers and evaluate the expression, which they did. Having worked out what the two 

expressions would be for 5 = 2 and t = 3, both girls then agreed that something was wrong, 

and Renelle reiterated that 2 x 4  was 8, not 24. This exchange confirmed what Nisha had 

written in the homework she did after their first lesson with the graphic calculators:

24st 20dc

2 x 4 x s x t  20  x d c

2 4 x  s x t  2 x 0  x d x c

** Lee and Wheeler noted that a third of the students involved in a study they carried out accepted an answer 
of 20 = 4 (e.g. 1989, p45f), seeing nothing wrong with this statement, as it was algebra not arithmetic.
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‘Product’ errors were also observed in the Year 8G case study during the second

videotaped class discussion, as the following exchange shows:

Teacher: 366c. V ote on which are the The class were asked which of
same. c649 . . .  anyone? W hy various given expressions were
do you think that’s the same? equivalent to 36bc. A handful of

students felt that cb49 was 
acceptable, and the teacher 
asked one of them why she 
thought that.

Student: Because when they’re next to
each other they’re times.

Teacher: W hen they’re next to each other 
you multiply?

Student: Yeah, and 4  tim es 9 is 36.
Teacher: 4  times 9 is 36 . ..
Student: Y ou do . . .  yeah, and then you  So cb49 = 4 x 9  x b  x c

do that times b and then times c.

The incidence of ‘product’ errors increased from the pre-questiormaires to the post­

questionnaires, as shown in Table 15 below, suggesting that this misconception arises as a 

direct result of the teaching process. It is common to hear a teacher telling students that 

when symbols are written next to each other in algebra they are to be multiplied, and that it 

does not matter which way round you put symbols or numbers when multiplying. The 

discussion above shows how misunderstanding remarks like these can all too easily lead 

students to develop misconceptions.

In Table 15, the incidence of the two variants of the ‘product’ error is given for the pre­

questionnaires, the immediate post-questionnaires, and the delayed post-questionnaires, 

where these were done. The figures given are the percentages of the students from each 

year group demonstrating the error on each questionnaire‘s.

12 Year 9G did not have any questions which would have revealed either of these misconceptions.
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Table 15: Incidence of ̂ producC errors across the questionnaires

‘product separation ‘product reversal’  ̂̂

Year 6  
Year 7G 
Year 7 
Year 8G  
Year 8

6% -+  23% ^  9% 6% 6% ->  13% 
Not tested —> 21%

8% -+ 17% -+  12% 3% -+  2% -+ 7% 
15% -+  25% 4% -+ 7% 
3% ->21% ->  19% 4% ^ 8 % -+ 6 %

‘Product separation’ occurred to a much greater extent than ‘product reversal’, except with 

the Year 6 students. The trend for both misconceptions was for their incidence to increase 

across all the year groups between the pre-questionnaires and the post-questionnaires, 

suggesting that these are indeed ‘taught’ misconceptions, arising from students not hearing 

properly what is said, or not fully understanding it.

7.4.2 Interpreting letters as objects

The teacher of the school C Year 8 group conunented on the questionnaire which she

completed after she had finished teaching the graphic calculator module:

I was intrigued by the number o f  pupils saying a and b represented apples and 
bananas, etc. After questionnaire 3 1 asked who had taught them this -  apparently it 
was one particular feeder school, hence one group o f  children with this idea.

This particular misconception was not shown at all by the Year 6 students and by only four

of the Year IG  students, two of whom wrote that algebraic letters meant:

a =  apple and b = bananah [sic] (apples can be added to apples, but you  can’t add 
apples and bananahs together. [Year 7G student, pre-questionnaire]

A pples and bananas, apes and bats. [Year 7G student, pre-questionnaire]

This means separating out the digits in a product, e.g. \2ab  = l x 2 x a x 6 .

This means reversing the digits in a product, e.g. \2ab = 21ab.

Neither of these misconceptions was tested for on the Year IG  pre-questionnaire. On the post­
questionnaire, options were given which did not differentiate the two misconceptions.
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It was more apparent in some of the responses of older students, however. On her pre­

questionnaire, a Year 8G studenti® answered the question;

a + b + c = a + p + c
Is this true: always/som etim es/never

with:

N ever . . .  because for exam ple, you could not make apples, bananas and carrots equal 
apples, pears and carrots. [Year 8G, pre-questionnaire]

After she had completed the graphic calculator work, she did the same question again, this 

time answering:

Som etim es . . .  because you can have different answers so you have different numbers.
[Year 8G, post-questionnaire]

Kiichemann also pointed out that letters can be treated as objects even if they are not 

interpreted as specific objects, like apples and bananas. Students who view expressions 

like 2a as a ‘2’ and an ‘a’ are doing this. A question where this could be detected was:

2 b - b  = 2 [Year 8G, both questionnaires, several students]

As was discussed above in section 7.2.1, the thinking here seems to be that if  you have a 

‘2’ and a ‘6 ’ and you take the b away, you are left with the 2: b is conceptualised as one of 

a pair of objects rather than as a number multiphed by 2.

Another way in which the identification of letters with objects was observed was in a 

method used by some of the Year 8G students to solve equations where the unknown 

appeared on both sides of the equation. They would write xx for 2x, which worked well for 

them when the coefficients were whole numbers, but failed them when the coefficients 

were not whole numbers, as the following excerpt from the Year 8G case study shows.

' This student was new to the school in Year 8, so was not involved in the Year IG  graphic calculator work.
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The students were given a set of equations to solve, amongst them 7jc +1 = 2jc -  3. 

Rebecca’s comments are given below, together with the corresponding written work she 

produced:

Rebecca: I’m  going to start by drawing
se v en x ’s . . .  and then add 1, 
and then equals tw o little %’s, xxxxxxx +1 =  %% -  3
and then minus 3 . ..
. . .  and then you cross out the xxxxjœm +  1 =#ee -  3
two little %’s and two little %’s
o f  the first side, and then you
end up with five little %’s add xxxxx + 1 =  -3
1 equals m inus 3.

Rebecca’s commentary and her written work both show her conceptualisation of the terms 

7% and 2%, as a collection of ‘little %’s’, that is, as objects. This worked perfectly well for 

the first part of this question, leading her to the simplification 5% + 1 = -3. She and her 

partner, Fran, then went astray by subtracting 1 from -3 to get -2, rather than -4. There is 

nothing in what follows on the audiotape to suggest how they eventually got to (almost) 

the right answer, but Rebecca’s written work finally read:

7% +  1 = 2% -  3 

%%%%xmg+ 1 = ^ - 3  

5% + 4 = 0

4 + 5 = 0.8 [there is another sign error here]

The class teacher was asked about this method of doing equations in her interview at the

end of teaching this module. Using 3% + 2 = 2%-5asan example, she explained:

W ell, I suppose it’s m aybe from  the balance*’ , and m e saying that on your balance 
you’ve got three %’s and you’ve got two, so they’ve drawn the three %’s, as you w ould  
on a balance, and on this side o f  your balance you ’ve got your tw o %’s, so i f  w e want 
to rem ove these objects . . .  OK, they’v e got a value, w e don’t know their value, but 
they’re still something you can call an% .. .  W hen I saw them doing that, I said that’s

*’ She was referring to the teaching method for equations known as ‘balancing’ , in which students are 
encouraged to model their equation on a pair of balance pans which must be kept in balance by doing the 
same operation on both.
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OK, but you must write down x + x + x ... [They don’t] but that’s sort of laziness, I 
think. I mean they probably started off by saying, OK, we’ll write x + x + x ... and 
quite soon, they think we can do this more quickly by not bothering to ...

This sounded perfectly reasonable, both as an explanation of what the students were doing, 

and as a way of coping with equations of this type. However, Rebecca and Fran found that 

this method was of no help with equations like 1.5 -  0.5% = 3.5 + 1.5% (which was 

structurally equivalent to the equation they had just solved). I would argue that what the 

students were doing in abbreviating % + % to %% is not about laziness, but about a deficient 

understanding of what 2% means.

This became apparent from Rebecca and Fran’s discussion about what 1.5% means. 2% can 

be represented by %% and then worked with, but 1.5% is much harder to represent in this 

way, and representing -0.5% on a balance using ‘little %’s’ is surely beyond the point at 

which this model is usefiil, as can be seen from the following transcript;

Rebecca: We’ve got 1.5 on both sides ...
so that’s 1.5 minus something 
and 1.5 plus something ... so if 
we have 1.5 plus 3.5 that makes 
5. . .

Fran: 1.5 minus 0.5 is 1 ...
Rebecca: ... so we’ve got 5 and 1 ...

Fran; 0.5 and one % ...

Rebecca: 1.5 minus 0.5 equals 1

Fran; ... but it’s not 0.5, it’s 0.5%, so 
it’s 0.5 times %.

Rebecca: Good point. 1.5 equals 0.5 
times something, and 3.5 add
1.5 times something, so ... 1.5 
minus 0.5 is 1, and then 3.5 add
1.5 is 5, and then times 
something to make them the 
same ...

1.5 -  0.5x = 3.5 + 7.5%
Rebecca started by ignoring the 
x’s, and just working with the 
coefficients. She began by 
trying to simplify the right hand 
side of the equation to 5.
Fran did the same on the left... 
... leading them to simplify the 
left hand side to 1 and the right 
hand side to 5.
Fran read 0.5% as 0.5 and an x, 
confirming that she saw x as a 
separate object.
Rebecca was still ignoring the 
X , working on the coefficients 
only.
At this point, Fran saw that so 
far they had been 
misinterpreting these terms. 
Rebecca agreed and... then 
went back to simplifying using 
coefficients only!
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At this stage, neither Rebecca nor Fran had managed to find a way into the question: their 

previous method, using ‘little %’s’ had not even been considered. This demonstrates its 

inadequacy that it cannot be used for aU equations of this structure, but only for those 

where there are small, integer coefficients. As a result of playing with the coefficients, 

Rebecca decided that 10 could be significant, basically since both 5 and 1 are factors of it. 

Fran then jumped at something that sounded as if it might yield a value for %, suggesting 

that as 10 is 5 X 2 then % might be 2. They both went round in circles a little more, playing 

around with 10, 5 and 2, but eventually decided to leave this question for the time being.

The degree of confusion these students showed on this question contrasts with the relative 

assurance they showed in working with the structurally equivalent equation 

7% + 1 = 2% -  3. The presence of the non-integer coefficients showed up the inadequacy of 

their method, and their inabiUty to see the expressions proceptually**, rather than as 

collections of ‘Uttle %’s’.

Table 16 gives the figures for the incidence of the various manifestations of the ‘object’ 

misconception. Figures are for the pre-questionnaires, the immediate post-questionnaires, 

and the delayed post-questionnaires where these were done*’.

** A proceptual understanding of, e.g. 7%, is as a term which can be considered as an object in its own right, 
as well as the result of a multiplication, or the sum of seven ‘little %’s’.

*’ There were no questions on the Year 9G questionnaires which allowed ‘object’ thinking to be seen; school 
G students did not do delayed post-questionnaires.
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Table 16: Proportion of students on each questionnaire who showed evidence of ôbject* 
thinking

Year group % of students

Year 6 
Year 7G 
Year 7 
Year 8G 
Year 8

0% -+ 0% 0% 
6% -+ 3%
7% -+ 9% -> 8% 
26% -+ 21% 
7%-+ 11%-+7%

Unlike the ‘product’ misconception, the ‘object’ misconception does not show a rise in all 

the year groups: indeed, it falls in most cases. Surprisingly, the Year 8G students showed a 

particularly high incidence of this misconception, although the reason for this is not clear 

from the data. However, if the Year 6 and Year IG  students can be assumed to give an 

indication of misconceptions students hold prior to being taught algebra, then it is not 

present to any great extent at this point. So-called ‘fruit salad’ algebra may be used by 

some teachers as a way to help students understand why terms with different letters in 

them cannot be added together. Using ‘little %’s’ to help with certain equations may well 

be taught, or at least tolerated, as part of the ‘balance’ method of solving equations. Hence 

the ‘object’ misconception is also considered to be produced in students through the 

teaching process.

7 .5  SUMMARY AND CONCLUSIONS

The data collected in this research study suggest that students have far more 

misconceptions than is often realised, and that their incidence is considerably greater than 

many teachers may suppose. Even at the age of 14, misconceptions were observed in the 

errors made by more than half of the students, and younger students almost all showed 

misconceptions.
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Misconceptions held by the Year 6 and IG  students who had studied very little algebra 

previously were investigated first, as these give an indication of what beliefs about letters 

students bring with them from their previous experience (section 7.2). These included 

interpreting expressions like 2a as 2 + a rather than as a product (‘sum’); working with 

coefficients, then putting a letter on the end of a number ( ‘letters’); interpreting 2a as 

twenty-something, where the a stands for a digit, rather than a number (‘code’); equating a 

with 1, b with 2, and so on ( ‘alphabetic’); and substituting numbers inappropriately 

(‘substitution’).

The incidence of misconceptions before and after the graphic calculator modules among 

the whole student body was then discussed, together with a consideration of the effect of 

the graphic calculator teaching method on this incidence (section 7.3). It was found that 

the graphic calculator model and teaching method enabled many students to become aware 

of their misconceptions, and to change their constructs. Finally, misconceptions which 

occurred during the teaching process were investigated (section 7.4). These included 

‘product’ errors, where expressions like \2pq  were interpreted a s l x 2 x p x ^ o r  2\pq, 

and interpreting letters as objects (both physical objects, such as 6a meaning six apples, 

and more abstract objects, such as 5x meaning five ‘tittle %’s or %%%%%).
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Overview

This research originated with my Year 9 student, Sally, who was so sure that 2x minus x 

equalled 2. During the course of this research, I found many students whose understanding 

of such expressions was similarly inadequate. These include the three Year 8 students, 

whose interpretations of letters I used to open this thesis: “I think that a and b are only 

letters that don’t mean anything.”, “a and b are just fancy things at the end of a sum.” and 

“?” Contrast these remarks with that made by a student who had found meaning in what 

she was doing: “Oh! Wow! I never knew... !”

These examples all show why I felt this research was necessary. So many students are not 

able to find meaning in the symbols used in algebra, and hence struggle with algebra as a 

mathematical language. Yet if they cannot make sense of algebra, much of mathematics is 

likely to remain a closed book to them, and they will miss that sense of excitement the 

student quoted above experienced in making a new discovery. If the graphic calculator 

could help students to make their own discoveries and to understand more, then I felt this 

would be worth demonstrating.

The process by which this research came into being is described in detail in Chapter 1: 

Introduction. My own classroom experience was the starting point, but a number of other 

strands contributed to my focus on my primary research question. Other strands were 

contributed by the work of Alan Graham and Mike Thomas on using the graphic calculator 

to enable students to learn algebra (1998; 2000a), the radical constructivists’ emphasis on
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the need for students to construct their own learning (e.g. von Glasersfeld, 1991,1995) and 

a paper by Margot Berger (1998). Berger led me to the work of Roy Pea (1985; 1987) in 

which he discussed the metaphors of amplification and cognitive change to describe how 

computers might help students to learn. Berger’s paper also contained a quotation which 

was significant both in firing my imagination, and in leading me to the work of Lev 

Vygotsky:

If one changes the tools of thinking available to a child, his mind will have a radically 
different structure. (Berg, 1970: 164, cited in the, Afterword, Vygotsky, 1978: 126)

Above all, the work of Lev Vygotsky provided the theoretical grounding for all the work 

that followed.

Eventually, these strands coalesced into this question:

• Is the graphic calculator a useful mediating tool for students in the early stages of 

forming a concept of a variable?

Sub-questions which then arose fi'om this were:

• Does the model of a variable provided by the graphic calculator mediate successfully 

between students’ initial interpretations of letters and an interpretation which will help 

their progress in algebra?

•  If graphic calculator use proves helpful, what are the attributes of the graphic calculator 

which make it a suitable tool for students learning algebra?

In Chapter 2: Review of the literature, and in Chapter 4: The graphic calculator: Mediating 

in a learning environment, a theoretical model to explain how the graphic calculator might 

help students is discussed. This model is heavily dependent on certain of Vygotsky’s 

theories:
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•  Mediation of tools -  the use of appropriate tools to carry out physical activities.

• Mediation of signs -  the role of psychological ‘signs’ in enabhng humans to develop 

higher mental functions, for instance, putting a knot in a handkerchief to aid the 

memoiy (Vygotsky’s example, 1978: 51) or putting a number into stores labelled with 

X and Y on a graphic calculator to give meaning to the symbols x and y  in algebra.

• Concept formation -  occurring through the interaction of everyday ideas (such as 

putting numbers into stores) and taught ‘scientific’ ideas (such as a variable).

• Key role of speech -  the facilitation of such interaction by language and discussion.

• Zone of proximal development -  the gap between what a student can do unaided and 

what s/he can do when supported.

Using Vygotsky's theory, I modelled the graphic calculator as a mediating physical tool. 

Students start with the physical act of putting numbers into stores labelled with letters, then 

key in the operations to be carried out on that letter. When they press the ENTER key, the 

calculator returns a value. All this involves the student in using a physical tool, repeatedly 

carrying out the same actions, and talking or thinking about putting numbers into stores 

labelled with letters.

The student quoted below illustrates how the students in my case studies talked while using 

the graphic calculator. Claire and her partner were checking that x = 0.75 in the equation 

4(2% + 1) = 10, which they were trying to solve:
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Figure 16: Calculator screen illustrating Clairets remarks

0.75+X
.7 5

4(2X+1)
10

So let’s try that. 0.75 STO, ALPHA X, ENTER, and then it’s 4, open brackets, 2 
ALPHA X, plus 1, close brackets, ENTER, is 10, so that’s right. So x equals 0.75. 
[ Claire, Year 8 case study, taken from a transcript used in Chapter 5]

The graphic calculator is also a mediating ‘sign’. A sign is a psychological or symbolic 

tool which enables us to extend our mental faculties in the way that a knot in a 

handkerchief or a list can help us to remember things. The most important signs are 

spoken language and writing. Algebra is also an example of a sign. The graphic 

calculator’s screen, which displays numbers put into labelled stores, and the results of 

operating upon them, is another such sign. The screen display helps students to find out 

about algebraic operations, thus extending their mental faculties.

According to Vygotsky, true concept formation occurs when an everyday concept, such as 

a store containing a number, interacts with a scientific concept, such as a variable. 

Concepts require both a root in everyday hfe and the kind of knowledge taught in school, 

and are formed by their interaction and fusion. The graphic calculator provides a locus for 

this meeting.

Language has a key function in this process. Vygotsky believed that concept formation 

could only occur through words, whether thought, spoken or written. The graphic 

calculator provides students with appropriate language to talk about algebraic expressions.
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It enables them to articulate their ideas, so that they can examine them and then check with 

the calculator to see if they are correct.

The combination of two students working together, supported by a graphic calculator, is 

theorised as a zone of proximal development, in which the students are enabled to access 

ideas which they would otherwise have found beyond them. In Vygotsky’s original 

theory, a student is supported by an adult or more able peer who enables the student to 

answer questions s/he could not have answered alone. In my theorisation, support is 

provided by a pair of students working together with a graphic calculator. This enables 

both students to reach a higher level of understanding than they would have done without 

the calculator or each other.

Other researchers provided a variety of metaphors which I used to describe how the 

graphic calculator could function as a tool for learning. Two of the most important of 

these for me in developing my model for how the graphic calculator functions as a tool for 

learning were those of amplification and cognitive change (Pea, 1985,1987). A tool which 

ampUfies allows us to do what we can do already, but to do it more quickly or more easily. 

I did not feel that the graphic calculator, used in the way described in this thesis, acted in 

that way. Indeed, students on occasion complained that they could have done their work 

more quickly without the calculator. A tool which allows cognitive change to occur, on 

the other hand, enables us to do something we were previously unable to do, and in so 

doing produces the opportunity for learning. This was demonstrated many times in the 

research conducted for this thesis, and is discussed in Chapter 5: Evidence of cognitive 

change.
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Another important aspect considered in Chapters 2 and 4 is the process by which an 

artefact becomes a useful tool, known as ‘instrumentation’ (Artigue, 2002; Vérillon and 

Rabardel, 1995). Recent French research has emphasised that it is not enough to give 

students a new piece of technology or software, and then expect them to use it to help them 

with their mathematics. The unfamihar technology or software will initially obscure the 

mathematics. It can take a considerable amount of time for ‘artefacts’

(technology/software before they have become useful tools) to become transparent, so that 

the mathematics can be revealed.

The way in which the graphic calculator was used in the classroom studies in this research 

minimises this process. The idea of a labelled store into which a number is put is easy to 

grasp, and operating on these stores is very straightforward. To illustrate, suppose the 

number 8 is to be put into the P store, to test whether IP  is the same as P x P. The 

following screensnap demonstrates how this might be done:

Figure 17: Screensnap illustrating how students could gain an understanding o f the 
expression 2P

8+P
8

2P
16P*P
64

The key strokes required to produce this screensnap are: 

8 STORE ALPHA P ENTER 

2ALPHAPENTER 

ALPHA P * ALPHA P ENTER
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Students found such exercises both straightforward and transparent: they could carry them 

out without difficulty and understood what they were doing. Operating the calculator did 

not obscure the mathematics for them, but revealed it.

Data of various types were collected during the two phases of classroom studies, as 

described in Chapter 3: Research methodology and methods. The first phase consisted of a 

series of case studies carried out at school G, a girls’ granunar school. Initially a pilot 

study with a Year 9 class was conducted. This then led on to a much larger study with 

three classes of Year 7 students from the same school. One of these classes was followed 

up a year later, in the Year 8 case study. These three case studies provided much rich 

detail about what happened while students were working with the graphic calculators, 

particularly through the recordings made of students’ discussions while working, 

interviews with them and with their teachers, and questionnaires to test their ability to 

answer standard algebra questions.

To see how well the findings of these case studies applied in schools more generally, a 

second phase of the research was conducted. This was a large-scale survey in four 

different schools from different areas of England, involving over 300 students. 

Questionnaires were used in this survey, very similar to those used in the earlier case 

studies, to see how the students’ understanding and skills changed after they used the 

graphic calculators and accompanying worksheets. Evidence of progress was found, both 

in terms of understanding and in skill in answering basic algebraic questions. This is 

particularly significant since these classes only spent about three hours on the graphic 

calculator work.
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As a result of the classroom studies, I would suggest that the graphic calculator did indeed 

prove to be a useful mediating tool for students in their early encounters with algebra; that 

the model of a variable it provides enabled many of the students to form a meaningful 

undemtanding of a variable; and that it helped students to understand basic algebraic 

operations. These claims are supported by the findings related in Chapter 5: Evidence of 

cognitive change and Chapter 6: Developments in students* understanding and skills, and 

are reviewed in more detail in section 8.2 below. Through discussion and the physical 

activity of putting numbers into the calculator's stores, together with the feedback provided 

by the graphic calculator, the students came to a fuller understanding of what letters mean 

and how they are used in algebra, as the transcripts in Chapter 5 and the statistical evidence 

given in Chapter 6 show.

I also found evidence in my data of areas of misconception in these students, which is 

reported in Chapter 7: Misconceptions. Students’ lack of comprehension of letters and 

algebraic expressions was one of the starting points for this research, but the wide range of 

misconceptions shown and their persistence still surprised me. The misconceptions I 

found were not particular to any one class or school, and are therefore likely to be 

widespread in children of this age. It would appear that the majority of students in the 10- 

14 age group hold some misconceptions, despite previous exposure to algebra.

8 . 2  R e s u l t s  o f  t h e  c l a s s r o o m  s t u d ie s

In Chapter 3: Research methodology and methods, the classroom studies carried out during 

this research are described. The methodology was of a mixed type, with qualitative data 

collection in the case studies used to define themes and categories, which were then made 

the basis of a quantitative survey. The case studies enabled graphic calculator mediation to
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be studied at the level of the interaction within individual pairs of students as they worked 

together with the graphic calculator on the teaching materials. This was also investigated 

through questionnaires and interviews with both students and teachers. The themes which 

emerged from these case studies as significant were cognitive change in the students, their 

progress in understanding and skill, and the misconceptions they harboured. These themes 

are the subjects of the three main findings chapters, 5, 6 and 7. The survey data were used 

to explore students’ progress and their misconceptions over a wider sample of students, to 

see if  the results of the case studies could be more widely generalised.

Cognitive change occurring or failing to occur in the students’ thinking during the graphic 

calculator teaching modules was the subject of Chapter 5: Evidence of cognitive change. 

Cognitive change was defined as occurring if there was evidence that a student’s thinking 

had been restructured in some way (Pea, 1985,1987). The recordings, made during the 

Year 7, 8 and 9 case studies, of pairs of students working together with one graphic 

calculator between them, were used to provide this evidence. Additional evidence was 

also obtained from interviews held with students and teachers, and the questionnaires 

students answered before and after the teaching modules. Examples of the occurrence of 

cognitive change, and occasions where it failed to occur, are reported. An example of 

cognitive change which did occur, given in section 5.2.2, is the account of Sofia and 

Chantelle’s, and Megan and Lucy’s, discussions on whether 2P = P x P o r P  + P.

Two requirements were noted for cognitive change to occur. The first was that the 

problem was within the zone of proximal development defined by the two students and the 

graphic calculator: that is, whether the students could answer the problem when supported 

by the graphic calculator. Some of the examples given in Chapter 5 show students
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working on problems which were simply beyond what they could access even with 

support, as in section 5.2.5, where Fran and Rebecca are seen struggling with equations 

they do not really understand. The second requirement was that the students used the 

graphic calculator in a way that would enable it to mediate between them and the algebra. 

This means that they did, in fact, put numbers into the appropriate stores and evaluate the 

expressions. Occasions were described where cognitive change failed to occur because the 

students simply used the calculator to re-evaluate the expression incorrectly, without using 

the appropriate stores. This is seen in section 5.2.4, where Claire and Briony evaluated 

incorrectly an expression containing brackets both in discussion, and when using the 

graphic calculator.

The results reported in this chapter support the claim that the graphic calculator does 

enable cognitive change to occur, and that cognitive change is a useful way of describing 

what happens when pairs of students work together with the calculator. Amplification is 

not an appropriate metaphor, because students were not enabled to do things they could do 

already more quickly or easily. In fact, the reverse of amphfication is seen in some of the 

transcripts in Chapter 5, where students can be observed struggling with problems for long 

periods before resolution occurred, or they gave up and moved onto something else.

Analyses of the data which support the claim that the students did indeed make progress in 

understanding and skill level are reported in Chapter 6: Developments in students’ 

understanding and skills. Progress in understanding was first tested using a direct question 

asking students what they understood the letters in algebraic expressions to mean. After 

the graphic calculator teaching modules, a smaller proportion of the students interpreted
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letters in a non-numerical way, and a greater proportion interpreted them in an algebraic 

way.

Progress in understanding was also tested using a framework devised by Kiichemann 

(1981). This framework gives six different categories of interpretation of a letter which 

Kiichemann and his colleagues observed in a survey of over 3000 students aged 13 to 15 

years in the late 1970s. Three of these categories are ways to avoid working with letters at 

all, and were classed by Kiichemann as level 1. Students showing level 2 understanding 

interpret letters in these ways also, but can work with expressions which are structurally 

more difficult. When they reach level 3, students make a breakthrough in that they 

interpret letters as specific unknown numbers. By level 4, students are beginning to 

understand variables as generalised numbers, or even as true variables, and can work with 

expressions showing greater structural complexity. A majority of the students who 

participated in the classroom studies showed a rise in their level on Kiichemann’s 

hierarchy, particularly those who started at level 1 or below. The increase these particular 

students showed was statistically highly significant.

Students’ verbal interpretation of letters, as given by their response to a direct question 

about the meaning of letters, was then compared with the level they reached on 

Kiichemann’s framework. Most students showed consistent interpretations and levels. 

However, some did not, and these cases were discussed further.

Students’ abihty to handle algebraic expressions and equations in a proceptual way was 

also considered. Understanding an expression proceptually means seeing it as an object 

which can be operated on, as well as a collection of procedures (Tall and Thomas, 1991),
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which is necessary if students are to succeed in understanding algebra beyond the most 

basic level. The proportion of students showing proceptual understanding corresponded to 

their level on Kiichemann’s framework, with those on the lowest levels lacking proceptual 

understanding while most of the students on the higher levels showed such understanding.

Students’ general abihty to answer algebraic questions was also considered. It was found 

that most students made at least some progress, and some, particularly the youngest 

students and/or those who started with a low level of understanding made exceptional 

progress. Some Year 8 students did not make much progress, or even dropped back in 

their results, however. Given the nature of the data collected, it was not possible to be sure 

why this should have occurred, but it is possible that factors outside the teaching modules 

considered here could be significant. It is also possible that this is not a real effect at all, 

but was caused by students who already had a good understanding not having the questions 

available to them which would have shown any improvements made.

Finally, students’ misconceptions were considered in Chapter 7; Misconceptions, together 

with the role of the graphic calculator in remediating these. Misconceptions were found to 

be widespread and very persistent - far more so than is perhaps reaUsed by teachers. 

Misconceptions were divided into those which children brought with them as a result of 

their previous experience, and those which appeared during the teaching modules. Major 

types of misconceptions were held by surprisingly large proportions of the students, and 

were shown by students with the greatest lengths of previous exposure to algebra as much 

as by those who had not studied algebra previously. Some of these misconceptions were 

susceptible to the model of a variable provided by the graphic calculator, such as equating 

2a with 2 + a and interpreting 6a as sixty-something, while others proved less tractable.
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The two types of misconceptions which appeared during the teaching modules involved 

interpreting letters as objects, and misunderstanding products involving coefficients with 

two digits. Some students interpreted expressions hke 5x as five httle %’s, a form of 

‘objectifying’ x which worked perfectly well when the coefficient was an integer, but not 

otherwise. Writing xxxxx for 5% makes sense (even if technically it is incorrect); but, as 

Rebecca and Fran discovered (section 7.4.2), this does not help in deahng with 1.5%. 

Misunderstanding products occurred in two different ways: interpreting 24pq as either 

2 x 4 x p x ^ o r a s  42pq. Such errors were not apparent prior to the teaching modules, and 

appeared, I would suggest, as a result of students misunderstanding what their teachers said 

to them, or applying rules inappropriately.

8 . 3  Im p l ic a t io n s  f o r  t h e  c l a s s r o o m

The findings of this research have several imphcations for classroom work. The results 

indicate that using graphics calculators as a way of introducing children to algebra is worth 

pursuing. The graphic calculator model of a variable has the potential to help students 

begin to form a concept for a variable, and to understand basic algebraic conventions. 

Graphic calculators are easily obtainable, and are straightforward for the students to 

operate. The model of a variable as a number put into a store, labelled with a letter, is easy 

to understand and work with. The model emphasises that the letters used represent 

numbers, that those numbers can change, and that the letters used are arbitrary. This is 

empowering for students, many of whom believe the letters to be empty symbols, and 

algebraic expressions to lack any real meaning. Furthermore, most of the students in this 

research found the graphic calculator method of working helpful and enjoyed it, as 

discussed in section 4.4.4.
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Most of the studies described in this thesis did not last very long, with the majority of 

classes only spending three or four hours on this work. If the graphic calculator method 

was used as the basis for all the work students did in algebra, then this would give them 

opportunities over time to develop a sound concept of a variable, and to work out how to 

perform basic operations on variables. The Year 8G group, which was part of the main 

case study in Phase I of this research, used graphic calculators for all their work in algebra 

throughout Year 7, and into Year 8. Their understanding had developed noticeably during 

that time, as is exemphfied in section 5.2.4. One pair of students, Claire and Briony, as 

Year 7 students failed to use brackets correctly, but as Year 8 students showed a much 

improved understanding of the function of brackets. By the Year 8 case study, the class as 

a whole was able to answer questions of greatly increased difficulty compared to a year 

earlier.

The examples of cognitive change in Chapter 5, and the statistics about the improvements 

in understanding and skill in Chapter 6, all illustrate that graphic calculator use does help 

students to learn basic algebra. Copying screensnaps helps students both to internalise that 

letters represent numbers and to clarify what algebraic expressions mean. Having a means 

of checking their work in this way also means that students are less likely to let 

misunderstandings pass unchecked. However, as was apparent from the classroom 

transcripts, it is important for teachers to be aware of the need for students to use the 

calculators appropriately: that is, by actually putting numbers into the stores, not just using 

them to evaluate the answers to operations, which may mean that previous errors are 

repeated. It is also necessary for the teacher to bring out important points and to expose 

misconceptions with groups of students and with the whole class. The discussion which
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this generates is part of enabUng students to articulate their ideas, and hence to develop a 

deeper understanding.

In order to know which points need further elaboration, and which misconceptions need 

general discussion, teachers need to be aware of the depth of ignorance shown by many 

students, and the number and variety of misconceptions they hold. Of course, teachers 

usually reaUse that their students have problems, but it is possible for the real extent of 

ignorance to be hidden. Many students do not answer questions in class if they can avoid 

it. Written work may be marked and then discussed in class, but again, students tend to 

hide their lack of understanding. In support of this contention, only 18% of the students 

who participated in the case studies and the survey described in this thesis showed no 

misconceptions at all, and this includes the older students as much as the younger ones. To 

restate Ûâs’.four out of five of all the students held misconceptions about the nature of 

letters or algebraic expressions. Even among the Year 9 students, who took part in the 

pilot study, the proportion of students showing at least one misconception was greater than 

50%.

Teachers also need to be aware of the potential for new misunderstandings to arise. The 

‘product’ misconception in particular, appeared to originate from teachers saying that when 

two algebraic symbols are written next to each other without an operation between them, 

this means they are to be multiplied. Some students interpreted this to mean that 24 can 

mean 2 x 4  in algebra. Although they would reject this as nonsensical in an arithmetic 

context, at this stage their understanding is not yet secure enough for them to reject such 

ideas when letters are involved as well. Challenging ideas like this with the graphic 

calculator enables students to see that this is an inappropriate extension of a rule.
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8 . 4  St r e n g t h s  a n d  l im it a t io n s  o f  t h i s  s t u d y ,

RECOMMENDATIONS FOR FUTURE RESEARCH

This research focused on students’ early encounters with algebra, and it has already been 

reported in the following papers, seminars and conference proceedings: (Gage, 1999a, b, 

2001, 2002a, b, 2003a, b).

The graphic calculator model is very suitable for helping students to find meaning in their 

first encounters with algebraic letters, as it emphasises that letters represent numbers, 

which are arbitrary and which can change. The model is difficult to extend to the stage of 

a true variable, however, where the letter does not represent any particular value, but can 

represent any value in the domain of a function. A calculator store has to contain a specific 

number at any one time, even if that number is random and perhaps unknown to the 

student, as it would be if produced by a random number generator. All models possess 

limitations, and eventually a point comes when these have to be made explicit to the 

students, so that they can move beyond the model, developing a deeper, more abstract 

concept. However, I do not see this as a hmitation on this particular piece of research, 

because it was explicitly focused on students’ early understanding of a variable.

In the classroom studies, data were gathered from over 400 students over a period of three 

years. The mix of qualitative and quantitative data collected from these students allowed 

themes to emerge, which could then be further tested with a wider sample of students. The 

initial phase of case studies provided rich detail, partly because of the qualitative nature of 

the data collection at this stage, and partly because it took place at the school in which I 

worked at the time. I knew what was happening in the various classrooms and could talk
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to the students and teachers while they worked with the graphic calculators. Emerging 

findings could be tested immediately with the participants, and verified or dismissed.

It may be, however, that this also led to ‘researcher effects’; that is, the results were 

affected by my presence. The other teachers involved were both aware that this was a 

research project whose results were important to me. Students would undoubtedly have 

been affected in some way by the data collection process, reahsing that these lessons were 

not in the ordinary run of things. The attitudes of both students and teachers may have 

been influenced by these factors.

In any case, data from one school, particularly a school which was both selective and 

single-sex, would not have been adequate for establishing wider generaUsations. The 

second phase of the research, the survey in the four non-selective, mixed schools therefore 

added much needed generality. In addition to extending the generalisabihty of my 

findings, I did not visit these schools at all, so that the ‘researcher effect’ would have been 

much less. Students would have been less affected by the data collection process, since 

they just answered questionnaires, and it is doubtful that they would have identified it as a 

project in which their own teacher had a vested interest.

There were, however, problems caused by my not being able to visit these schools. I could 

not be sure of the extent to which the instructions I sent out with the classroom materials 

were observed. I cannot be certain, for instance, that students worked in pairs with a single 

graphic calculator between them, nor do I know if the questionnaires the students answered 

were really the work of individuals, or if students collaborated on their answers or teachers 

helped them, despite my instructions to the contrary.
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The data from these schools would have been greatly strengthened if  I could have audio­

taped conversations between pairs of students while they worked, as I did in school G. 

Interviews with the students would also have contributed to my understanding of their 

thought processes. In particular, it would have been very useful to hsten to the discussions 

between pairs of Year 8 students, and to talk to them after they finished the graphic 

calculator work. This would have enabled me to see why some of them appeared not to 

make progress, or even to drop back in their understanding and/or skills.

The relative contributions of the schools in the second phase is unbalanced, since most of 

the students were from the middle school, school B. School A contributed two classes, one 

of which was very small, and schools C and D contributed one class each. A more 

balanced study would have had a more equal number of classes from each school, which 

also showed a balance across the age range. This particular limitation occurred because 

schools chose to participate, rather than my being able to select a sample.

It would be good to see another survey, in a well-chosen sample of schools, which repeats 

the research carried out in Phase H. As well as a questionnaire survey, such research could 

include videotaped classroom observations, audiotapes of students working together with 

the graphic calculator, and interviews with teachers and students afterwards. In follow-up 

interviews, students could then be asked what they meant in their spoken remarks and 

written statements, where these posed problems in interpretation. They could also be 

asked what they felt had gone wrong, if they failed to make progress.

There are several specific issues mentioned elsewhere in this thesis which could benefit 

from further research. These include the connection between a student’s level on
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Kiichemann’s framework, and the degree to which they made progress in their 

understanding and skill measured in other ways. Inconsistencies between a student’s 

levels on different analyses is also an area which could be further clarified. Both these 

issues would need separate sets of questions to test the various measures and levels, to see 

if  agreements and inconsistencies were an artefact of the research method used or not.

In addition, further research could be done on students’ misconceptions to give us greater 

understanding of what they understand and what they do not understand. It would be 

useful to know where an error is the result of a prior misconception; where it comes from a 

rule being inappropriately extended; where it is the result of insufficient understanding of 

the question; where it is a case of a student being extended beyond their zone of proximal 

development (that is, beyond the level at which they can cope, even with help); or where it 

is inadvertently introduced by the teaching method.

8 .5  FINAL SUMMARY

Finally, I would like to return to the questions used to focus this research:

•  Is the graphic calculator a useful mediating tool for students in the early stages of 

forming a concept of a variable?

• Does the model of a variable provided by a graphic calculator mediate successfully 

between students’ initial interpretations of letters and an interpretation which will help 

their progress in algebra?

• If graphic calculator use proves helpful, what are the attributes of the graphic calculator 

which make it a suitable tool for students learning algebra?
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The findings of this research show that this method is effective in helping students to gain 

a greater understanding of a variable, and to work more effectively with algebraic 

expressions. Most students showed improvements in their understanding and skill, and 

those whose understanding was initially small showed exceptional progress. I would 

therefore argue that graphic calculators do provide useful, mediating tools for students in 

the early stages of forming a concept of a variable.

The model of a variable the graphic calculator provides is transparent and easily 

understood, and, as has been seen in Chapters 5, 6 and 7, does have the power to mediate 

successfully between students’ initial interpretations of letters and the kind of 

interpretation they will need in order to become fluent users of algebra. It is a model 

which is straightforward to incorporate into classroom materials, or to use with existing 

text book exercises. Little training is required for students to put numbers into the 

calculator stores, and then to use these to discover the properties of algebraic expressions. 

The examples in Chapter 5 show the students grappling with the problems caused by the 

algebra, not with problems caused by the graphic calculator.

The attributes of the graphic calculator which make it a suitable tool for students learning 

algebra are various. A graphic calculator is a relatively inexpensive, small, personal 

instrument, affording students a domain for testing conjectures and ideas in a private, safe 

environment. Like the computer, this domain is provisional: it can be quickly changed and 

is not permanent. Once something is written down, there is a tendency to think it is then 

permanent: students write down their answers to a problem, and move on to the next 

question. Keeping an answer provisional is a way of ensuring that students do not move 

on too soon. Examples of students staying with a problem and eventually solving it are
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described in Chapter 5: Evidence of cognitive change. The graphic calculator, by 

providing a locus for cognitive change, enables students to leam.

In this thesis, a model to explain how this learning might occur has been described. This 

model is dependent on Vygotsky’s work, particularly on the mediation of tools and signs. 

The calculator is theorised as both a mediating physical tool, and a mediating 

psychological sign. In both these capacities, it gives students the opportunity to extend 

their combined zone of proximal development so that, working in pairs with the calculator, 

they are able to solve problems which neither would have solved alone or without the 

calculator. In Vygotsky's original theory, help and support are provided by an adult or 

more proficient peer; in my theorisation, help and support are provided by the student pair 

(neither of whom needs to be more proficient) and by the graphic calculator. The 

calculator provides a physical model of a variable, physical acts to get them started on a 

question, language to enable the students to discuss the problem at hand, and feedback on 

whether what they are doing is correct or not.

It has been my intention in this thesis to demonstrate that the graphic calculator is a useful 

mediating tool for students in the early stages of forming a concept of a variable, and that 

this enables them to make progress in their understanding of and skill with algebra. 

Students’ learning is intimately bound up with the actions they carry out with the graphic 

calculator, and the words with which they articulate their ideas. The graphic calculator 

way of working enables students to talk with understanding about what letters and 

expressions mean, thus facilitating cognitive change.
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I would like to close with words from Vygotsky, whose work has made so many of the

arguments in this thesis possible. Initially, development is caused by action: we developed

from apes through the use of tools. However, development is continued by the word:

through language (spoken and written) and thought which become part of the continuing

action -  the word and the act are in a dialectic relationship in which neither supersedes the

other, but together they form a synthesis greater than either. Without tools, we can do

nothing. Without words, we cannot conceptuaUse what we do with our tools. With both:

... since we wanted to express all this in one short formula, in one sentence, we might 
put it thus: if at the beginning of development there stands the act, independent of the 
word, then at the end of it there stands the word which becomes the act, the word 
which makes man’s action free. (Tool and Symbol in Child Development, by Lev 
Vygotsky and Alexander Luria in van der Veer and Valsiner, 1994: 170, original 
itahcs)
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ANNEXES

Annex I : Classroom materials and teachers’ notes

The materials and notes produced for the Year 6-8 survey are reproduced here, as these 

were typical of the earher case studies, and were put into a complete form to be sent out to 

unknown teachers.

General instructions for Year 6-8 Algebra Project (2001/02)

What to do, when to do it, and how to do it.

If anything at aU is unclear, or you want to ask questions about anything, please e-mail me on 

jag55@cam.ac.uk orjag43@tutor.open.ac.uk, or phone me on 01353 666426 or 0777 189 1776. I 

am most anxious that this shouldn’t cause you unnecessary extra work.

Included in these instructions are three questionnaires for the students to complete and a 

questionnaire for any teacher involved. There are also teacher notes and worksheets for the actual 

lessons.

Initial student questionnaire

□ Do ÛÛS first, immediately before starting work on the topic -  it wiU provide me with a baseline 

against which to measure subsequent results for your students. The quality of their answers 

doesn’t matter - 1 just need to know where they are before they start this work.

□ Tell the students that they are doing the questionnaires because their work is part of a research 

project into how Year 6, 7 and 8 students leam algebra, done by the Open University, and that 

their views are very important.

mailto:jag55@cam.ac.uk
mailto:orjag43@tutor.open.ac.uk
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□ Please make sure students do it individually, without talking to each other about their answers 

-  it is important to me that I get each student’s own answers rather than a joint effort.

□ They should not use a calculator of any kind for this.

□ Please don’t explain any of the algebra questions to the students -  if they ask how to do them, 

just say I want to know what they think, and they should put whatever they think.

□ Give the students as long as they need to complete the questionnaires -  they can give their 

questionnaires in once they have finished, but should have something else to get on with so 

they don’t disturb others still working on it.

Working through the topic

□ Use the teachers’ notes provided to prepare the topic.

□ Please encourage students to work in pairs, so that they can discuss their work as they do it. 

The discussion is an important part of the leammg approach.

□ All worksheets provided for class work.

□ Don’t worry if you don’t get through everything.

□ If you have a student who does need extra work, use anything you hke from your normal 

scheme of work.

□ If you want to set homework on this topic, use anything you hke from your normal scheme of 

work.

□ Please D O N ’T teach with an eye on the questionnaires. There are questions in them which are 

dehberately not taught on the worksheets, to see how students’ concept development helps 

them in gaining algebraic skiUs. It would be best if you ignored the questionnaires completely, 

apart from actuahy administering them, and then sending them off to me. If you want to look 

at them in more detail, please do it after you’ve finished the topic.

□ You might want to complete the teacher’s questionnaire as you work through the topic, 

however. I just need frill, accurate answers to this.
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Second questionnaire

□ Same conditions as first one.

□ This should be given to the students to do as soon as possible at the end of the topic. 

Teacher’s questionnaire

□ Please get all teachers involved to complete this as soon as possible after the end of the topic.

□ Same conditions as for the students -  don’t confer, take as much time as it needs.

□ Please tell me exactly what you think. I won’t be offended if you want to be critical!

Third questionnaire

□ To be completed about 6 weeks after the end of the topic.

□ Same conditions as before.

Return of materials

□ Send all completed questionnaires to me, preferably as you complete them, so I can be getting

on with data analysis, to:

Jenny Gage 
MMP
Centre for Mathematical Sciences 
University of Cambridge 
Wilberforce Road 
Cambridge 
CB3 OWA

Finally, many thanks for agreeing to use my materials, and to take part in my research. I am 

extremely grateful to you and to your students. I shall be writing this work up for a teachers’ 

journal, and I will send you a copy of this once it has been accepted. I will also be writing it up for 

an academic journal or conference, and will send you a copy of this if you tell me you would be 

interested. This will also, of course, form an important part of my PhD thesis.
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Teachers’ Notes

Resources needed: Class set of graphic calculators (one between two is enough)

Worksheets provided 

Objectives: Discover that numbers can be stored in letter stores on the GC

Discover how to produce expressions 

Discover how to evaluate simple expressions 

Find equivalent expressions

First double lesson 

Initial activity (whole class)

The purpose of this activity is to famiharise the class with the calculators, and introduce 

them to the idea of storing numbers in the calculator’s labelled stores. A useful way of 

visuahsing them is as ‘boxes’ with labels on them into which numbers can be put.

•  If this is the class’s first introduction to the graphic calculator, go through main key 

locations (this wiU vary according to which model you are using, but the notes here 

will give you an idea of what I mean by this): 

o grey numeric keys

o blue operation keys and ENTER key (tells the calculator to carry out your 

instructions)

o black keys giving additional operations (like squaring and brackets), new 

operations (hke sin and cos) and keys which enable you to access many menus 

on the calculator 

o blue cursor (arrow) keys to move about the screen 

o yellow 2°̂  key to access items in yellow above keys
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o black ALPHA key to access white letters on right above keys

•  Explain that the calculator has memories or stores labelled A, B, C, ... which can have 

numbers put into them,

•  To store eg. 3 in A, use this key sequence (substitute the appropriate key sequence for 

the model of calculator you are using);

ON

CLEAR 

3 STO 

ALPHA A

Now key in ALPHA, A, ENTER. Your screen should look hke this:

3-̂ fl
3

fl
3

(Show on board -  make sure everyone has managed to do this correctly, and make the 

point that CLEAR removes the display).

Class practice

• Store numbers of your choice in A, B and C. CLEAR the screen and check that when 

you press ALPHA, A, ENTER etc you get your numbers back. For example, store 3 in 

A, 23 in B and 7 in C, CLEAR the screen and see if you can produce the screen below:

fl
6

B
23

C
7
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Now get the class to enter values as in the next screensnap:

fi
3

B
4

C
2

and CLEAR their screens again. Now press 2, A, ENTER. What happens? Find out 

what happens if you enter 3B, 5C, etc. What is the calculator doing?

• Get the class to predict values for A + 1 ,5  -  2, C/3, etc. They should then use the 

calculators to check their predictions. Do quite a lot of examples here, keeping them 

very easy -  this predict and check sequence is important, and whole class activity will 

make sure everyone knows what they are doing before they start work on the 

worksheets.

• The class can then work on the Screensnaps worksheet, followed by Screensnap 

Questions, and Harder Screensnaps, as you feel appropriate.

• Discussion issues to raise at suitable points in the sequence of lessons (and you will 

probably find others arising during the lessons, or may want to add other issues of your 

own):

o how many different stores does the calculator have? 

o what does the calculator do if you key 3A into it? 4C? etc

o what does AB mean to the calculator? and BA?

o if AB = 20, say, how many different ways can you produce this? 

o do you have to put whole numbers into the calculator stores? 

o can the same letter be used for different numbers at the same time?

o can different letters be used for the same number at the same time?
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Lesson 1 worksheets 

Screensnaps

On this worksheet are a number of calculator screens (“screensnaps”). You have to put the 

right numbers into the lettered stores so you can copy each screen on your own calculator. 

Write down the number(s) you put into the store(s) in each case.

9.

1. 2.
P-2 4 12+J 63

3 4.30-E 6 66 30

5. 6.
F10 250 D/2 1

8.
M/9 4 12/P 4

10.BR 8 RB 6
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Screensnap Questions

Make the screensnap first in each case, then answer the questions. 

A

1 Can you make this screensnap in three different ways? Write down the numbers 

you use.

2 Can you make this screensnap without using whole numbers in the A and B stores? 

Write down the numbers you use.

3 Draw the screensnap for B + A.

B

RB
10

1 Can you make this screensnap in three different ways? Write down the numbers 

you use.

2 Can you make this screensnap without using whole numbers in A and B?

3 Draw the screensnap for BA.
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Make this screensnap in three different ways. Write down the numbers you use. 

What would the screensnap for GIG look hke? Draw it.

D

Try to make a different screensnap which only uses the letter L.

It should have the same number in the L store as this one, and also give 9 when you 

press the ENTER key. Draw it.
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Harder Screensnaps

On this worksheet are a number of calculator screens (“screensnaps”). You have to put the 

right numbers into the lettered stores so you can copy each screen on your own calculator. 

Write down the number(s) you put into the store(s) in each case.

7+2R 19

100N-ie0
1800

30-2X 10

3X+1 -29

3fl/7-2

9+5D
39

1000Z-1000
37000

300-2T
180

20E/10
21

3*(D+4)
27

108-13 67

10Q-10
15

12R -24

2F/3-1 3

5(28-1)
35
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Second and third double lessons

Worksheets available; Screensnaps and Stars

Investigating More Complicated Expressions 

Stories and Formulas

From this point on, use the worksheets provided as you feel is appropriate for your class - 

I have deliberately produced more material than you are likely to want so that you can 

choose which worksheets you want to use. Of course, you may well want to use 

worksheets or exercises of your own instead of some of these. All I ask is that you make 

sure the students use the graphic calculators to check all their work as they do it.

Students should work in pairs as far as possible, but there may be times when you want 

them to work as a whole class to discuss points arising, or to introduce a new idea.
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Lesson 2 and 3 worksheets

Screensnaps and Stars

A  Look at these three screensnaps (* means multiply, the same as on a computer) and 

three stars. Pair up screensnaps and stars which show the same expression. Use 

the graphic calculator to check that you’ve got your pairs right (it doesn’t matter 

what numbers you use for B and A, but you should to avoid 1 and 2). You should 

get the same value when you press ENTER if your expressions are the same.

AB
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B Do the same with these, using the graphic calculator to check that 

your pairs match.

2 + A'

2A’

C Do the same with these, using the graphic calculator to check that your pairs match.

2P

2+P

f +1 + 1



c

c
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D Do the same with these screensnaps and stars, using the graphic calculator to check 

your pairs are the same.

iVx 3

N+N+N

N+3
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Investigating More Complicated Expressions

A There are three pairs of expressions which are always equal in these stars. Match

them up. Use the graphic calculator to check your work.

3 ^ k  ?  

1 / ^  <

k - k - ^ k

A'3
nN'

B Look at this group of expressions. Match them into pairs. There are two odd ones 

out - which are they? Use the graphic calculator to check your work.

a x a
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C Here is another group of expressions. Here there are two sets of three expressions 

which are always equal to each other, and one odd one out. Find the two sets, and 

the odd one out. Use the graphic calculator to check your work.

2(q 4- b)

2a2b

D Match expressions from the left-hand hst with expressions from the right-hand hst. 

Which ones don’t have an exact match? Can you write any of these expressions more 

simply? Use the graphic calculator to check your work.

7 + p + l —1 + 1  

p - l + p  

p  -  I - 1  

Ip

2 - p

1 - p  + 1

p + p  

p - 2  

2 + p  

p x p
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Stories and Formulas

A  “Sam adds a coin to a large pile of coins.’

We don’t have to know how many coins there are in the pile -  we can just represent them 

with N, to signify a number of coins.

4-

1. Draw the screensnap to represent this.

2. Write down the formula you get for the total number of coins, T, if you add 1 coin to 

the pile.

3. If A^= 200, what is T, the total number of coins?

4. If T= 300, what is N1

B “Emma has a large collection of CDs which she keeps in a rack, but two are lying on 

the floor, separate from the rest.”

Use N to represent the number of CDs in the whole collection.

1. Draw the rack of CDs with the two on the floor shown separately.

2. Draw a screensnap to represent the number of CDs in the rack.

3. Write what is on your screensnap as a formula, where T represents the number of CDs 

in the rack.
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4. If iV= 128, what is 77

5. If 7 =  135, what is iV?

C “Tim and Nisha have equal numbers of sweets, which they put into one bag.” 

Use N  to represent the number of sweets each has to start with.

1. Draw a picture of this.

2. Draw a screensnap to represent it.

3. Write what is on your screensnap as a formula for the total number of sweets in the 

bag, T.

4. If iV̂ = 25, what is 77

5. If r =  76, what is N1

6. Draw a picture to show the bag of sweets if three more sweets are now added.

7. Draw a screensnap for this.

8. Write down the new formula for the total number of sweets in the bag, making sure 

that your formula is as simple as you can make it.

9. If = 12, what is T now?

10. If 7 =  48, what is N?

D

1. Write a stoiy of your own which could be represented by this screensnap, making it 

clear what number iV represents and what the total 7  represents.

2. Draw a picture of your stoiy.
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3. Write it as a formula for T.

4. Work out T i f N= 2 5 .

5. Work out N  if 7 = 3 8 .

E

1. Write a story which might be represented by this screensnap, making it clear what 

number N  represents and what the total 7  represents in your story.

2. Draw a picture of your story.

3. Write it as a formula for 7.

4. Work out 7 i f  iV = 15.

5. Work out iV if 7  = 84.

F Here is a formula for the total number of something:

T = 2 N - N

1. Draw a screensnap of this.

2. Write a story which it could represent, making it clear what numbers 7  and N  represent 

in your story.

3. Work out 7 if 77= 15.

4. Work out 77 if 7 =  36.

5. Can you make the formula simpler?

6. Now change your story so that the formula

7=2AT + 77
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represents it.

7. Draw the new screensnap to represent this formula.

8. Work out T if 77 = 15.

9. Work out 77 if r  = 36.

10. Can you make the formula simpler?
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A n n e x  II: In t e r v ie w  s c h e d u l e s

P i lo t  s tu d y :  Y e a r  9 G

Initial interviews (held early during the lesson period)

Keny and Jess, Emma and Felicity, Carly and Holly interviewed.

1. Why did you volunteer to take part in this project [to be one of the students audiotaping 

their work]?

2. What do you feel about the test last week [the first set of algebra questions]?

(Easy/hard, enough time, format of questions, talking about what things mean).

3. Tell me about the graphic calculators. How are you getting on with them so far?

Do you think they are:

o easy to use 

o fun 

o boring

o difficult or complicated to use 

o do you understand what the letters mean 

o do you understand the screen commands 

o quicker

4. How do you feel about doing algebra?

Do you find it hard to remember how to do things?

Is the practice boring?

What do you think the letters mean?

Why do you think we use them sometimes?
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5. Review the rectangle question

Which of the following expressions do you think is correct for the area of this 
rectangle? Tick every one you think is correct.

5 x e  + 2 , 5x( e  + 2), lOe, 5 x e2, 5 (̂  + 2), e + 2 x 5

none correct (give any other answer you have)

6. Discuss methods for solving equations.

What are you actually trying to find out?

Does a different letter mean a different equation?

7. See what they think about

• signs (go with preceding or following term?)
• closure
• negative sign outside a bracket
• 9( 3h- 5)
• 36ab 

I2a

8. Do you think equations and expressions are the same thing? Or are they different in 

some way?

9. Generally, how do you think things are going so far?

Is it too hard, or too boring?

Do you feel you are learning?

10. Is there anything else you want to say or ask?
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Follow-up interviews

Gemma and Lauren, and Emma and Felicity were interviewed in pairs.

1. What difference do you think it made, being one of the volunteers?

2. How did using the tape recorder affect your work?

3. Did the awareness you were being taped make any difference, do you think?

4. How did you get on in the tests? Did you find them easy or hard? Was the second 

easier than the first?

5. How do you feel you got on with the graphic calculators? Do you think they helped or 

hindered you to leam? Wliy? Do you think they are fiui, boring, difficult, 

complicated, difficult to understand (abbreviations on the screen), quicker ... Do you 

think you have changed your mind in any way about using them?

6. How do you feel now about doing algebra? Has your view of doing it changed in any 

way since before the lessons?

7. What do you think you have learnt?

8. Review simplification of 3x + 2%̂ - I x -  4%̂

9. Meaning of equations and expressions. What do you think you are doing when you 

simphfy an expression?

10. What difference to your learning do you think the GC made?

Thanks for volunteering! !
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M ain  c a s e  s tu d y :  Y e a r  7G

Questions based on data provided by each pair, but example given shows the general style

of the questions.

Pairs interviewed: Chantelle and Sofia, Nisha and Renelle, Vicki and Georgia, Claire and

Briony, Fran and Rebecca, Karen and Nicky, Charlotte and Abigail, Megan and Lucy,

Chloe and Sam.

Follow-up interview questions with students

1. About you

•  Talk about Middle School experiences with algebra: “I have done a bit but I was not 

very good at it, it confused me.”

2. About the graphic calculator

•  Did the calculator cause any difficulties? Chantelle seemed to be having trouble 

putting 2.5 into B at the end of the first worksheet.

•  There were times when you checked your homework answers by seeing if  you both 

agreed rather than checking with the GC. Were you sure this would be enough? \7hat 

about 6 C - 3 B  = 6 C - B  + B + B (Chantelle) = 6 x C - B  + B + B (Chantelle) = 7C -  4R 

- C - B  (Sofia).

3. About Worksheet 1

•  How did you know AB = BA?

• You did 2A + 3A by working out 2A and 3A and adding them together. Can you see a 

different way of doing this?
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•  Discuss equivalents for 2{A + B).

• Did you find this part of the work too easy?

4. About Expressions Worksheet

•  Is 2A = A X A? How do you know?

• In no. 13, Sofia changed B x A x 2  = BAB to 2AB. Why?

• Can you simplify 2 A- A,  3A-A,  5 C - D - C  now? (They could do 4B -  2B at the 

time).

5. About the Post-Questionnaire

•  You put 9a + 3h= I2ab. Explain.

• In answer to question 3, asking if you need to know the value letters represent, one put: 

“Yes. It can be any number.” Does she really think you have to know values?

• Looks hke 4D -  3C worked out with numbers, D = 5, and C = 4. Why?

• Similarly with 2W -  3V, W = 5, and V=6 .

•  Answers to questions 2 and 3, about what letters mean, and whether you need to know 

their value, one put: “I think a, b and c refer to numbers which have a value of 

something.” And “No”. Enquire a httle more.

•  If a = 5, and b = 9, what is 2abl Didn’t know.
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Notes for interviews with Year 7 class teachers 

In ike classroom

•  How much time did you spend introducing the students to the GC?

• How quickly do you think they got the hang of it?

•  How did you introduce the topic in the first lesson?

•  Did you use additional material -  Gill certainly did, what was it?

•  How would you improve the material for another time?

•  What have you done since in algebra with your class?

Types of misconceptions

•  Were you aware beforehand of the types of misconceptions that arose -  codes, adding 

symbols next to each other without any operation shown, objects, alphabetic 

substitution, interpreting letters as arithmetic operations?

•  Are there any other types of error you saw which I haven’t mentioned?

• Did you realise some students confused x  and +, and / and -?

•  What about 2P = P x P error?

• Did you realise that some were extending the product notation inappropriately into 

numbers?

• Did you discuss the use of the bracket keys? -  errors of the form 2(P + Q% do the 

brackets first, so do P + Q x  2, then GC just confirms their incorrect answer

Theoretical considerations

•  Do you feel this approach helped your students to interpret letters as numbers?

•  Do you think it helped them to start to leam algebraic syntax?
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•  What was different from more traditional approaches?

• Do you think that using the GC slowed them down, forcing them to think more about 

their answers, less hkely to be on auto pilot?

• Do you think that in general if  they got something wrong, they tried to work out why, 

or just marked it wrong, wrote in the right answer, and went on to the next question?

• Do you think this was more or less likely to happen with the GC?

•  Do you remember any useful conversations you had in class with individual students or 

with the class as a whole?

• Has any difference been apparent in lessons done since?

• Do you feel that it leads to an over-numeric approach (always substituting numbers to 

check something)?

•  Using this method, do you think younger children could start to leam algebra?

Future Plans

•  Are you teaching a Yr 8 class next year?

• If so, would you be willing to do a similar topic during the autunm term?
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Main Case Study: Year 8G

Follow-up interviews with students

Questions for each section put on cards, then placed face down on the table. Students took 

it in turns to pick up a question, choose an answer, and then continue. Discussion then 

opened up to the group as a whole.

Introductory questions

•  I found the equations [easy/OK/quite hard/very hard] to start with because ...

•  I found the equations [easy/OK/quite hard/very hard] by the end of the topic because

• I found the graphic calculator [helpful/OK/not very helpful] when I was doing the 

equations because ...

•  When I was doing the equations, I used the graphic calculator to ...

Questions about equations

•  An example of an equation is ...

•  How would you do these equations? Which is easier and why?

•  12 = 6, 12 = 6, 12 = 24
b n k

•  How would you do this equation?

4 ( a + l )  = 20

• How would you do these? Which is easier and why?

2.1% -  8.4 = 6.3, 2jc- 8  = 6

• How would you do these? Which is easier and why?
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3 x - 4 = 2, 3 x - 4  = 2x + 6

•  How would you do these? Which is easier and why?

6x + 3 = 3jc + 6, 6 + 3jc = 3 + 6x

•  How would you do this? Do you get a sensible answer?

9x + 8 = 3jr + 8
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Teacher interview questions 

General questions

•  Did they find it easy to solve the equations to start with?

• How about later on -  did they find it got difficult?

•  What do they think an equation is? Can they distinguish an equation from an

expression?

• Do you think the GC was helpful or a nuisance for them?

• How did you tell them to use it?

•  How do they check their answers? Do they see why they might want to check their

answers?

Easy equation questions

•  How do you think they would handle:

12 =6  
n

Is 12 = 6 the same as 12 = 6 
p  m

12 = 24 
n

4 (a + 1) = 20 

Harder equation questions

•  How do you think they would do these - would the first help with the second?

2jc — 8 = 6 and 2.1jc — 8.4 = 6.3

3x -  4 = 2 and 3jc -  4 = 2jc + 6 

6jc + 3 = 3jc + 6 and 6 + 3% = 3 + 6%

9x + 8 = 3x + 8 - i s x  = Oa sensible answer to them?
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Methods

•  What kinds of methods were you aware of them using to solve the equations?

• How much do you think was guess-and-check, how much appropriate use of 

procedural or hohstic methods?

• What worksheets did you use?

• How did you teach them to solve equations?
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Survey: Years 6-8

Teacher Questionnaire

Name:..........................................  School:.......................................................

Type of school:.............................  Years taught (6 ,7  or 8 ):.........................

Sets taught:...................................... No. of sets in a year:..................................

1. How would you describe this/these class(es)’ general mathematical ability?

2. What previous algebra experience have they had to your knowledge?

3. How would you rate their understanding of the way letters are used in algebra before 

starting this topic?

4. How would you rate their understanding now?

5. How did they get on with the graphic calculators?

6. How much do you think the model of a variable given by the graphic calculator helped 

them?

7. Would you be prepared to use this model again?

8. Would you be prepared to use these worksheets again? What changes would you hke 

to see?

9. What additional materials did you use? (Please describe or include photocopies)

10. Did you do anything significantly different from the procedure in the general 

instructions and the lesson plans (I just need to know!)

11. Anything else you would hke to add
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Annex III: Q uestionnaires

Pilot study: Year 9G

Initial questionnaire

Name

1. How well do you think you did on the test on Monday? Very well

OK

Which part do you think you did best?

Which do you think you did least well?

Not very well 

About letters Qu.l) 

Equations (Qu.2) 

Expressions (Qu.3) 

About letters 

Equations 

Expressions 

Yes 

No

2. Comparing algebra with other Mathematics topics More enjoyable? 

you have done, do you think it i s   About the same

Less enjoyable?

Other (explain below)

3. Why? (Explain your response to question 5).

Did you have enough time to complete it?
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4. Do you like using the graphic calculators? They’re good 

OK

Boring

Hard to use

Other (explain below)

5. Why? (Explain your response to question 7).

6. How do you think you get on at Mathematics generally? Good

OK

Not very well

7. How much do you like Mathematics compared with other Good 

subjects? OK

Not very much

8. What makes it good or not?
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Initial algebra test 

Question 1

For this question, just tick every answer you think is correct.

(i) What does 5y mean?

5 + y 

5 and y 

5 x y

5 + 5 + 5 + 5 + 5

y + y + y + y + y

other answer (please write)

(ii) What does a l  mean?

a x 2  

a + 2 

2 x a  

2 + 2 

a + a 

a and 2

other answer (please write)

(iii) What does 6c mean?

b and c 

b x c  

b + c 

2 + 3 

2 x 3
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other answer (please write)

Answer these questions in the space given:

(iv) If a = 5, what does 6a mean?

If b = 9, what does M mean?

(vi) Which of the following expressions do you think is correct for the area of this 

rectangle? Tick every one you think is correct.

(V)

5 x e  + 2

5 x (e  + 2)

lOe 

5 x e 2  

5(e + 2) 

e + 2 x 5

none correct (give any other answer you have)

Question 2

Please answer each question in the space given in the left hand column. In the 

corresponding space in the right hand column, explain how you went about answering the 

question. Give as much detail here as you can, and don’t worry about whether you are 

using the “right” method or not - 1 want to see what you actually do, not what you think I 

want you to do!

Solve the following equations:

(i) 3 n -9 8  = 115
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(ii) l l («  + 63) = 264

(iii) l ln  + 14n = 375

(iv) 5w + 17 = 2n + 61

(v) 29 -3 w  = -49

(vi) 7 n -7 1 = 5 5  
15

(vii) Ta-7 1  =55  
15

(viü) 36 + 137= 149
n

Question 3

For these questions, ring the letter corresponding to any expressions you think are 

equivalent to (mean the same as) the one given. If you don’t think any of them give an 

equivalent expression, write that in your explanation. Use the left hand column for any 

working out you may wish to do, and the right hand column to explain how you came to 

your answer.

(i) Add l a  onto 5a

A l aa B l a  C l  D  10a

(ii) Add 4 onto 8n

A 12n 5  12 C 4 + 8n D 8n + 4

(iii) Multiply 3 + h by 9

A 27 + 96 B 96 + 27 C 27 + 6 D  6 + 27
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(iv) 2a + 56

A 10a6 B lah C l  D 25

(v) 8n -  9m - 6 n  + Am

A \An — 5m B 2n — 5m C 2n + l3m D -5m —2n

(vi) 9 (3 6 -5 )

A 2 7 6 -5  B -45 + 276 C 2 7 6 -1 4  D  5 -2 7 6

(vii) -(9r -  3s)

A 9r -  3s B -9r -3 s  C 9r + 3s D -9r + 3s

(viü) 36ab 

I2a

A 3ab B 3a C 36 D 3
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Follow-up questionnaire

N am e..............................................................

1. How well do you think you did 

on the test today?

2. Do you think you did better 

than on the test two weeks ago?

3. Which part do you think you did best?

4. Which do you think you did least well?

5. Did you have enough time to complete it?

5. Comparing algebra in this topic 

with what you expected it to be like, 

have you found it to be ...

Very well 

OK

Not very well

Yes

No

About the same 

About letters (Qu.l)

Equations (Qu.2)

Expressions (Qu.3)

Simultaneous Equations (Qu. 4)

About letters

Equations

Expressions

Simultaneous equations

Yes

No

More enjoyable?

About what you expected 

Less enjoyable?

Other (explain below)

6. Why? (Explain your response to question 6).
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1. How has this topic compared with others 

you have done recently, e.g. trigonometry, 

as far as difficulty is concerned?

8. Why? (Explain your response to question 8).

9. Have you enjoyed using the graphic calculators?

Less difficult 

About the same 

Harder

Yes

It was OK 

No -  boring 

No -  hard to use 

Other (explain below)

Yes

Stayed the same 

No

12. In what ways have you improved, or not?

13. Which aspect of the work have you enjoyed most and least?

(Consider work on equations and expressions, and also whether you prefer doing 

screensnaps, working on exercises written algebraically as in a text book, or problems 

from the board).

10. Why? (Explain your response to question 10).

11. Do you think you have improved at algebra?

14. If you used a tape recorder,

how much difference do you think this made?

A lot

Not very much 

None at all

15. If you think it made a difference, what difference do you think it made and why?
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Post-topic Algebra Test 

Question 1

For this question, just tick every answer you think is correct.

(i) What does 3k mean?

3x& 

k + k - ¥ k  

3 + k 

3 + 3 + 3

3 and k

other answer (please write)

(ii) What does m4 mean?

m + 4 

m X 4

4 X m

4 + 4 + 4 + 4  

m + m + m + m 

m + m 

m and 4

other answer (please write)

(iii) What does ec mean?

e and c 

e x c  

e + c

5 + 3 

5 x 3
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3 x 5

other answer (please write)

(iv) If p = 8, what does 9p mean?

(v) I f /=  5, what does/7 mean?

(vi) Which of the following expressions do you think is correct for the area of this

rectangle? Tick every one you think is correct.

2

2 x ^  + 4 

2 x { d  + 4)

M

2 x d 4  

2 ( d  + 4) 

d + 4 x 2

give any other answer you have

Question 2

Please answer each question in the space given in the left hand column. In the 

corresponding space in the right hand column, either show your working, or explain how 

you went about answering the question.

Solve the following equations:

(i) 9g + 187 = 133

(ii) 2 0 7 (6 -9 2 )  = 3933

(iii) 54r -  39r = 840
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(iv) n d - S 9  = l l d+6 1

(v) 8 3 -3 w  = 503

(vi) 5p + 78 = 56 
19

(vii) 1 8 -4 5  = -63 
2q

(viü) 5p + 78 = 56
19

Question 3

For these questions, ring the letter corresponding to any expressions you think are 

equivalent to (mean the same as) the one given. If you don’t think any of them give an 

equivalent expression, say so in the space given.

(i) Add 7s onto 6j

A I3ss B \3s C 13 D A2s

(ii) Add 3 onto 9v

A 12v B 12 C 3 + 9v D 9v + 3

(iü) Multiply 9 + c by 5

A 45 + 5c B 5c + 45 C 45 + c D  c + 45

(iv) 7m + 6y

A 13my B 42my C 13 D 42
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(v) 3 (8 6 -6 )

A 246 -  6 B -18 + 246 C 3 8 6 -6  D  -18+246

(vi) 2c -  5j -  c + 9j

A c - 1 4 /  B 3 c + 4/ C c + 4; D - I 4 j - 3 c

(vii) ~(2z -  5^)

A 2 z - 5 q  B -2z - 5 q  C -2z + 5q D - 5q + 2z

(viü) 33ba

3b

A l l ba  B 116 C l i a  D  11
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M ain  c a s e  s tu d y :  Y e a r  7G

Pre-Questionnaire

Name:  .............................................................      Form:..

1. What middle school did you go to?

2. If you were put in sets or special groups for Mathematics, which were you in?

3. Have you ever done a topic called algebra, or had anything about algebra explained to 

you before? If your answer is yes, please tell me as much as possible about it.

4. Have you ever used a graphic calculator before (one with a big screen that you can 

draw graphs on, not an ordinary calculator)? If your answer is yes, tell me as much as 

possible about it.

5. What do you think the answers to these questions are?

(If you have no idea just say so, but have a guess if  you can, and say it’s a guess.)

(a) 6a + 2a = .......................................................

(b) 1 2 6 -2 6  = . .......................................... .........

(c) 6a + 26 = .......................................................

6. What do you think the a and 6 in question 5 refer to?

7. Can you solve this equation? 3 x -  12 = 24

(If you have no idea what to do, just say so, but have a guess if  you can, and say it’s a 

guess.)

8. How did you work out your answer to question 7?
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Post-questionnaire

N am e:............................................................................ Form:........................

1. What do you think the answers to these questions are?

(If you have no idea just say so, but have a guess if you can, and say it’s a guess.)

(a) 8a + 6a = .....................................................

(b) 1 5 c -7 c  = .....................................................

(c) 9a + 36 = .....................................................

2. What do you think the a, 6 and c in question 1 refer to?

3. Do you have to know values for a, 6 and c to answer question 1? If your answer is yes, 

say what you think they might be.

4. Can you solve this equation? 5jc + 20 = 45

(If you have no idea what to do, just say so, but have a guess if you can, and say it’s a 

guess.)

5. How did you work out your answer to question 3?

6. Which of the following expressions do you think are the same as 35a6? (There may be 

several -  ring each one you think may be the same).

A 5 X  3 X  6 X a B a x 6 x  35 C 7 x  5 x a x 6

D 6 X 35 X a E 6 x 7 x 5 x a  F 6 x 5 x 3 x a

7. If a = 5 and 6 = 9, which of the following are correct values of 2a6?

A 259 B 90 C 180
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8. Here is a student’s work (none of yours!). I want you to mark it. If you think she is 

right, just tick the question; if you think she is wrong, mark it with a cross, and put 

what you think the right answer should be.

(a) C + D = D + C

(b )Bxr=T5

(c) 2 7 = 7 x 7

(d) 3 R - S  = R + R- \ ^R-S

(e) 2{A + D) = 2A + 2D

(f) 4 D -3 C  = 2 D x 2 D -3 C

(g) 2 W - 3 V = W + W - V + V + V  

{ h ) 2 B - B  = B
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M ain  c a s e  s tu d y :  Y e a r  8G

Pre-Questionnaire

N am e:.........................................................................

1. Write these expressions as simply as possible:

(a) 3a + 5a = ...................................................

(b) 2a = 
2a

(c) 26 — 6 = .....................................................

(d) 56 -  2a + 76 = .....................................................

What do you think a and 6 stand for?

2. Circle each of the following expressions which mean the same as lApq:

I x A x p X q  p  X 24 x q  q x  42p pq24

p X g X 3 X 8 pq64 2p4g q x p x 6 x 4

3. What is x in each case?

(a) 4x -  36 = 12

(b) 2jc + 4jc = 66

How did you work out your answers?

4. Look at the table. What can you say about the relationship between x and y?

X 1 2 3 4 5

y 3 5 7 9 11

5. (a) What can you say about m, if m = 5n + 2 and n = 4?

(b) What can you say about 6, if 6 = c + /and  6 + c + /=  30?
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6. (a) If a + è = 57, then a + b + 2 =

(b) Add 4 onto n + 43

(c) If n -  246 = 762, then n — 247 =

(d) If e + /=  8, then e + /+  g =

(e) Add 4 onto In

7. (a) What can you say about c, if  c + J  = 10 and c is less than dl  

(^ )a  + b + c = a + p  + c

Is this true: always /  sometimes / never?

Ring the answer you think is correct, and explain your answer.

8. Which is larger, 2n or n + 2? Explain your answer.

9. Write down an expression for the perimeter (distance around the outside) of each of the 

following shapes:

n
g

This is a pol\-gon 
irhere each side 
has length 2 units. 
Not all the sides 
are sh<«m.The 
polj-gon. has n 
sides altogether
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Post-Questionnaire

Name:.................................................................................

1. Tick the box which best describes how you felt when you did the first questionnaire. 

The first questionnaire we did was:

very easy [2 ]  quite easy OK [2 ]  quite hard very hard [2 ]

2. Look at the table. What can you say about the relationship between x and y?

X 1 2 3 4 5

y 4 7 10 13 16

3. Write these expressions as simply as possible:

(a) 6b 3-Ah = ..........................................

(b) 2a -  a = .............................................

(c) 4a = ...................................................
4a

(d) 3a -  + 6a = ....................................

What do you think a and b stand for?
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4. Write down an expression for the perimeter (distance around the outside) of each of 

the first three shapes. For the fourth shape, write down an expression for its area.

C

C

This is a polygon 
^here each side 
has length 3 units. 
Not all the sides 
are shoTm. The 
polygon has q 
sides altogether

Write down the area of this 
shape:

5. Which is larger, p + 3 or 3p? Explain your answer.

6. (a) What can you say about g, if g = 6ri + 1 and ri = 5?

(b) What can you say about r, if r = p  + w and r + p  + w = 18?

7. (a) If a + 6 = 79, then a + h + 3 =

(b) Add 7 onto 5 2 + p

(c) If V -  583 = 895, then v -  584 =

(d) Add 7 onto 5b

8. If y + w = 6, then y + w + x =

9. Circle each of the following expressions which mean the same as 36bc: 

cb49 c x 3 6 x b  cb36 3c6b

c x 4 x b  x 9  b x c x 6 x 6  3 x 6 x c x b  b x  63c
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10. What is jc in each case?

(d) 3jc-1 1  = 25

(e) 3jc + 2x = 60

(f) 7jc- 1 2  = 3jc + 4 

How did you work out your answers?

11. (a) What can you say about if p + q = 1 2  and q is less than p i

(b) a + 6  = 6

Is this true: always /  sometimes /  never?

Ring the answer you think is correct, and explain your answer.

12. Tick the box which best describes how you feel about this questionnaire. This 

questionnaire was:

OKvery easy qmte easy

13. Compared to the first questionnaire, this one was: 

easier about the same

quite hard very hard

harder
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Survey: Years 6-8

Pre-Questionnaire 

A You and your school

Name: ............................................................... Date:..............

School:......................................................................................

School year (6, 7 or 8):  Your teacher:.

Age:   yrs..............................  mths

Sex; M  Q  F Q

B Previous experience of algebra and graphic calculators

1. Have you ever done a topic called algebra, or had anything about algebra explained to you 

before?

No 1221 A httle 122] Yes (more than a | |
(not more than couple of lessons)
a couple of lessons)

2. Have you ever used a graphic calculator before (one with a big screen that you can draw graphs 

on, not an ordinary calculator)?

No 1221 A httle [221 Yes (more than a |22|
(not more than couple of times)
a couple of times)

C Now try some algebra questions -  don*t worry if  you haven*t done questions like

these before, this is not a test! Just write down what you think the answers might be.

3. 6a + 2 a = .....................................................

4. 1 2 6 -2 6 = .....................................................

5. 4fl + 36 + 2fl = .....................................................
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6. 5a- 2b  + l a = .....................................................

7. What do you think the a and b mean?

8. What do you thinkj stands for here? 27 -  6 = 18

9. How did you work out your answer to question 5 ?

D In this section ring all the answers which you think are right (there could be 

more than one).

10. Ring anything you think is the same as 2a:

2 + a 2 x a  2 a + a 21 a2

11. If 6 = 3 and c = 5, what do you think be is? Ring any answer you agree with:

23 35 15 2 8

If you think it is something else, please write it down

12. Which of the following expressions do you think are the same as 12pql Ring any answer you 

agree with.

6 x 2 x p x q  p x ^ x 2 1  l x 2 x p x q  grx 12xp 12xp x^
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Immediate Post-Questionnaire 

A You and your school

Name: ............................................................................... Date:..............................

School:.................................................. ..............................................................................

B How did you get on with the graphic calculator, and the algebra lessons?

1. How helpful did you find the graphic calculator?

Very —  Quite .— . OK —  Not very —  Not at .— .
helpful I I helpful | | |__| helpfiil | | all helpful | |

2. How did you get on with the algebra?

Very HH Quite EH OK EH Quite EH Very EH
easy easy hard hard

C Try these algebra questions -  remember this is NOT a test! Just put down what you 

think the answers are.

3. 86 + 46 = .....................................................

4. I3 a -9 a = ................. ..................................

5. 6c + 2a + 3c = .....................................................

6. 8a -  5c + 2a = .....................................................

7. What do you think the a and c mean?

8. AVhat do you think/stands for here? 4 / -  30 = 14

9. How did you work out your answer to question 5?
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D In this section ring all the answers which you think are right (there could be more 

than one).

10. Ring anything you think is the same as 2b:

8 2 x 6  2 + 6 2 22 6 + 6 6 x 6

11. If a = 2 and c = 6, what do you think ac is? Ring any answer you agree with:

26 3 12 4 8

If you think it is something else, please write it down

12. Which of the following expressions do you think are the same as 36dsl Ring any answer you 

agree with.

d x s x 6 3  3 x 6 x d x s  d x 3 6 x s  36 x d x s  6 x 6 x d x s
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Delayed Post-Questionnaire 

A You and your school

Name: ................................................................................  Date:

School:..................................................................................................

B Try these algebra questions -  remember this is NOT a test! Just put down what you 

think the answers are.

1. 86 + 4 6 = .....................................................

2. 13a- 9a = .....................................................

3. 46 + 7a + 36 = .....................................................

4. 7a -  36 + 4a = .....................................................

5. What do you think the a and 6 mean?

6. What do you think/stands for here? 4 / -  30 = 14

7. How did you work out your answer to question 4?

C In this section ring all the answers which you think are right (there could be more 

than one).

8. Ring anything you think is the same as 26:

8 2 x 6  2 + 6 22 6 + 6 6 x 6  2

9. If a = 2 and c  = 6, what do you think ac is? Ring any answer you agree with:

26 3 12 4 8

If you think it is something else, please write it down
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10. Which of the following expressions do you think are the same as 36dfs? Ring any answer you 

agree with.

d Xs X63 3 6 x d x s  3 x 6 x d x s  s x 36xd  6 x 6 x d x s
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Annex IV: Questions used for comparison with Küchemann’s
ANALYSIS

Level 1

In Table 17, questions are shown which were considered to be at Kiichemann’s level 1, 

that is, those which can be answered without interpreting the letters as numbers, either by 

ignoring the letters, treating them as objects, or substituting specific numbers.

Table 17: Questions from the various classroom studies considered to be at 
KUchemann's level 1

Classroom
Study

No. o f  
questions

Pre-Questionnaire Immediate Post- 
Questionnaire

Delayed
Post-
Qu’naire

Year 9
Pilot
Study

3 If a = 5, what does 6a mean?

If 6 = 9, what does M  mean?

Add 2a onto 5a 
(options: laa , la , 1 , 10a)

If g = 6, what does 6g 
mean?
If M = 8, what does u5 
mean?
Add 4p onto 5p 
(options: 9pp, 9p, 9,
20p)

Year 7 Case 
Study

1 6a + 2a 8a + 6a

Year 8
Case
Study

3/2 3a + 5a 
Jfa + b = 51, 
then a + b + 2 =
Write down an expression for the 
perimeter (distance around the 
outside) of the following shape:

A
h

6b + 4b 
If a + 6 = 79, 
then a + b + 3 =

Year 6-8 
Survey

1 6a + 2a = Sb + 4b = 86 + 46 =
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Level 2

In Table 18, questions are shown which were considered to be at Kiichemann’s level 2, 

that is, those which can be answered without interpreting the letters as numbers, either by 

ignoring the letters, treating them as objects, or substituting specific numbers, but are 

structurally more complex than level 1 questions.

Table 18: Questions from the various classroom studies considered to be at 
Küchemann's level 2

Classroom
Study

No. o f  
questions

Pre-Questionnaire Immediate Post- 
Questionnaire

Delayed Post- 
Questionnaire

Year 9
Pilot
Study

5/3
(Any correct
option
accepted)

(Any correct
option
accepted)

What does 5y mean? 
(Options: 5 + y, 5 and y, 
5 x y ,  5 + 5 + 5 + 5 + 5, 
y + y + y + y + y, other 
answer)
What does a l  mean? 
(Options: a x  2, a + 2 ,2  
Xfl, 2 + 2, a + a ,  a and 
2, other answer)

What does Ic  mean? 
(Options: 1 + c , l  and c, 
7 x c ,  7 + 7 + 7 + 7 + 7, 
c + c + c + c + c, other 
answer)
What does w4 mean? 
(Options: w x  4, w + 4 ,4  
x w ,4 + 4, w + w ,w a n d  
4, other answer)

Year 7 
Case Study

1 1 2 b -2 b 15c -  7c

Year 8
Case
Study

2 b - b
What can you say about 
m, if m = 5n + 2 and n = 
4?
Write down an 
expression for the 
perimeter (distance 
around the outside) of 
the following shape:

S

2 a - a
What can you say about 
g, if  g = 6 j  + 1 and d  =
5?
Write down an 
expression for the 
perimeter (distance 
around the outside) of the 
following shape:

n. o
Write down an 
expression for the 
perimeter (distance 
around the outside) of 
the following shape:

■O
g

Add 4 onto n + 43

Write down an 
expression for the 
perimeter (distance 
around the outside) of the 
following shape:

y

Add 7 onto 52 + p
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Classroom
Study

No. o f  
questions

Pre-Questionnaire Immediate Post- 
Questionnaire

Delayed Post- 
Questionnaire

Year 6-8 
Survey

3

(Any correct 
options on 
3^ question 
accepted)

l i b - 2 b  
4a + 36 +  2a 
Ring anything you think 
is the same as 2a 
(Options: 2 + a, 2 x  a, 2, 
a + a, 21, a2)

13a -  9a 
6c + 2a + 3c 
Ring anything you think 
is the same as 26 
(Options: 8, 2 x  6, 2 + 6 , 
2, 22 ,6  + 6, 6 X 6)

13a -  9a 
46 + 7a + 36 
Ring anything you 
think is the same as 
26 (Options: 8 ,2  x  6, 
2 + 6 ,  2 2 ,6  + 6, 6 X  

6 ,2 )
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Level 3

In Table 19, questions are shown which were considered to be at Kiichemann’s level 3, 

that is, questions which require letters to be interpreted as a specific unknown.

Table 19: Questions from the various classroom studies considered to he at 
Kilchemann's level3

Class­
room
Study

No. o f  
questions

Pre-Questionnaire Immediate Post-Questionnaire Delayed
Post-
Qu^naire

Year 9
Pilot
Study

3 (1*‘ qu. has 2 
correct 
options) 
(Correct 
response to 3^ 
qu. is to 
choose none.)

Add 4 onto 8n.
(Options: 12», 12,4  + 8n, 8n + 4) 

2a + 5b
(Options: lOab, lab , 7, 25)

Add 7 onto 45.
(Options: 285,28, 7 + 45,45 + 7) 

3 d + 6 c
(Options: \Mc ,  9dc, 9, 36)

Year 7
Case
Study

1 6a + 2b 9a + 3b

Year 8
Case
Study

6 5b — 2a + lb
What can you say about b , i f b  = c + 
f  and b + c + f =  30? 
l f e + f =  g, then e + f +  g =
Add 4 onto In
What can you say about c , i f c  + d  = 
10 and c is less than dH (Answer: 1, 
2 ,3 ,4 )
Write down an expression for the 
perimeter (distance around the 
outside) of the following shape:

3a — b + 6 a
What can you say about r, if  r = p  + 
w and r  + p  + w =  18?
If y + >v = 6, then y + w + jc =
Add 7 onto 5b
What can you say about q , i f p  + q 
= 12 and q  is less than p i  (Answer 
1, 2, 3, 4, 5)
Write down an expression for the 
perimeter (distance around the 
outside) of the following shape:

15̂
This is ■ polrgon 
where each side 
has length 2 units. 
Not all the sides 
are shown. The 
polygon has it 
sides altogether

This is  a  polygon 
w here each side 
has length  3 units. 
Not aU the sides 
a re  shown. The 
polygon has 9 
sides altogether ?

Year 6- 
8
Survey

1 5a — 2b + la 8a -  5c + 2a l a - 3 b  + 
4a
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Level 4

In Table 20, questions are shown which were considered to be at Kiichemann’s level 4, 

that is, questions which require an understanding of letters as at least that of a specific 

unknown and possibly as a variable; also structurally more complex than level 3.

Table 20: Questions from the various classroom studies considered to be at 
Kilchemann's level4 (none on Y7case study or Y6-8 survey)

Class­
room
Study

No. o f  
questions)

Pre-Questionnaire Immediate Post-Questionnaire

Year 9
Pilot
Study

(Two options 
correct on 1®* 
question)

Which of the following expressions do 
you think is correct for the area of this 
rectangle? Tick every one you think is 
correct.

Which of the following expressions do 
you think is correct for the area of this 
rectangle? Tick every one you think is 
correct.

(Two options 
correct on 2“*̂ 
question)

- — K
(Options: 5 X e  + 2, 5 X ( e  + 2), 10c, 5 
X c2, 5(c + 2), c + 2 X 5, none 
correct/other answer)
Multiply 3 + Z; by 9 (Options: 27 + 9b, 
9b + 27, 27 + b ,b  + 27)

8» -  9m -  6» + 4m (Options: 14» -  5m, 
2» -  5m, 2» + 13m, -5m -  2»)

9(3/1-5)
(Options: 27h -  5, -45 + 21h, 21h -  14, 
5-27 /1 )
-(9r — 3s)
(Options: 9r -  3s, -9r -  3s, 9r + 3s, -9r 
+ 3s)

I t *"i
(Options: 3 X ^ + 1, 3 X (ft + 1), 4/i, 3 X 

ftl, 3(ft + 1), ft + 1 X 3, none 
correct/other answer)
Multiply 4 + r by 8
(Options: 32 + 8r, 8r + 32, 32 + r, r +
32)
5 c - 8 a  3c + 9a
(Options: 8c -  17a, 2c + a, 2c + 17a, - 
1 7 a -2 c )
7 (5 y -2 )
(Options: 35y -  7, -14 + 35y, 35y -  14, 
7 -3 5 y )
- { Ip -Aq)
(Options: Ip -  Aq, -Ip -  Aq, Ip  + Aq, - 
7p + 4<7)_______________________

Year 8
Case
Study

% What can you say about c , \ f c  + d  = 
10 and c is less than d l  (Answer: an 
interval bounded above by 4, 4.9 or 5)

What can you say about q, \ f p  + q = 
12 and q  is less than p i  (Answer: an 
interval bounded above by 5, 5.9 or 6)

a + f t + c = a + p + c  
Is this true: always/sometimes/never 
Ring the answer you think is correct, 
and explain your answer.___________
Which is larger, 2» or » + 21 Explain 
your answer.

a + b = b
Is this true: always/sometimes/never 
Ring the answer you think is correct, 
and explain your answer.___________
Which is larger, 3» or » + 3? Explain 
your answer.
Write down an expression for this area:

AI

8
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Annex V: Questions used for analysis of proceptual analysis

Table 21: Questions from the various classroom studies considered to require proceptual 
thinking to be answered successfully

Classroom
Study

No. o f  
questions

Pre-Questionnaire Immediate Post- 
Questionnaire

Delayed Post- 
Questionnaire

Year 9
Pilot
Study

5
(Two 
correct 
options in
j s t

question)

Which of the following 
expressions do you think is 
correct for the area of this 
rectangle? Tick every one you 
think is correct.

Which of the following 
expressions do you think is 
correct for the area of this 
rectangle? Tick every one you 
think is correct.

(Two 
correct 
options in
2nd

question)

(Options: 5 x c  + 2 ,5 x ( c  + 
2), 10c, 5 X  c2,5(c + 2), c + 2 
X 5, none correct/other 
answer)
Add 4 onto 8n.
(Options: 12», 12 ,4  + 8», 8» 
+ 4)

36flft/12a
(Options: 3ab, 3a, 3b, 3)

~h

(Options: 3 x f t + l , 3 x ( f t  + 
l ) , 4f t , 3xf t l , 3( f t + l ) , f t + l x  
3, none correct/other answer)

Add 7 onto 4 .̂
(Options: 285, 2 8 ,7  + 4f, 4s + 
7)

4 8 /C /6 /
(Options: 8/c, 8/, 8c, 8)

Year 8
Case
Study

la lla
Look at the table. What can 
you say about the relationship 
between x  and y.

X 1 2 3 4 5
y 3 5 7 9 11

AalAa
Look at the table. What can 
you say about the relationship 
between x  and y.

X 1 2 3 4 5
y 4 7 10 13 16

(Answer relating x  and y  
correctly required)
What can you say about b, if  b 
= c + /a n d  b + c + f =  30?
If » — 246 = 762, then » -  247

(Answer given correctly 
without evaluating »)
If c + / =  g, then c + / +  g  =

Add 4 onto In

(Answer relating x  and y  
correctly required)
What can you say about r, if  r  
= p  + w  and r + p + w = 18? 
I f v - 5 3 8  = 895, then V - 584

(Answer given correctly 
without evaluating v)
If y + IV = 6, then y + w + x =

Add 7 onto 5b

Year 6-8 
Survey

Aa + 3b + 2a 
5a -  2ft + la

6c + 2a + 3c 
8a -  5c + 2a

4ft + 7a + 3ft 
7a -  3ft + 4a
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Annex VI: Full results of all analyses

Full results by year group

Case Studies (Phase I), school G

Statistically significant improvements are shaded in pink.

Table 22: Results of all analyses for case studies

Analysis Year group, 
and 

questionnaire

n Mean SD p, if  less than 0.05

Mean correct score 7G(1) 78 31.41 29.176
6.17 X 10 ^

7G(2) 79 51.266 27.706

8G(1) 27 56.397 16.973

8G(2) 28 62.013 14.438

9G(1) 30 67.857 17.471
0.00558

9G(2) 30 78.151 13.729

Mean 
Level on

7G(1) 78 0.5897 0.7105
2.24 X 10*

Kiichemann^s
Framework

7G(2) 79 1.3797 1.0658

8G(1) 27 2(2)222 1.086

8G(2) 28 2.6429 0.9894

9G(1) 30 2.667 1.0743
0.0363

9G(2) 30 3.3333 0.8023

% students 
showing proceptual

8G(1) 27 25.926 44.658

understanding 8G(2) 28 53.571 50.787

9G(1) 30 90 30.513

9G(2) 30 100 0
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Survey (Phase II), schools A, B, C and D

Statistically significant improvements are shaded in pink where showing an improvement, 

and in blue where showing a deterioration.

Table 23: Full results for Year 6-8 survey

Analysis Year group, and questionnaire n Mean SD p, i f  less than 0.05

Mean 6(1) 36 34.491 21.561
correct score 6(2) 35 42.208 19.646

6(3) 32 42.33 18.56

7(1) 124 49.093 21.441

7(2) 125 52.509 23.502

7(3) 125 53.127 21.1

8(1) 119 52.976 21.295

8(2) 112 54.058 21.678

8(3) 126 50.902 21.57

Mean 6(1) 36 1.0556 1.0405 0.0133
level on 
Kiichemann’s 6(2) 35 1.5714 0.9167 for pre to post

framework 6(3) 32 1.3125 0.8958

7(1) 124 1.6613 1.0272

7(2) 125 1.688 1.0505

7(3) 125 1.776 0.8786

8(1) 119 2.672 0.9273

8(2) 112 1.9107 1.0183

8(3) 126 1.7619 0.9669 0.00582 for pre to delayed post

% students 6(1) 36 13.889 35.074
showing
proceptual 6(2) 35 22.857 42.604

understanding 6(3) 32 12.5 33.601

7(1) 124 44.355 49.882

7(2) 125 43(2) 49.735

7(3) 125 46.4 50.071

8(1) 119 65.546 47.723

8(2) 112 65.179 47.855

8(3) 126 60.317 49.119
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Full results by initial level on Kiichemann’s framework

Level 1 or below

Level 1 corresponds to an interpretation of a letter as: letter ignored, letter interpreted as 

object, or letter evaluated.

Table 24: Full results for students initially at Kiichemann’s level 1 or below

Analysis Question
naire

n Mean SD p, if  less than 
0.05

1 183 29.52 21.346 4.58 X 10 ^Mean correct score 2 171 43.122 23.075
Mean level on 1 183 0.52459 0.50077 0
Kiichemann’s framework 2 171 1.18713 0.9882 (z = -7.8734)
% students showing 
proceptual understanding

1
2

183
171

3.825
12.865

19.233
33.58

0.00104

Level 2

Understanding of a letter as in level 1, but able to cope with structurally more difficult, 

questions, and some lack of closure.

Table 25: Full results for students initially at Kiichemann’s level 2

Analysis Questionnaire n Mean SD p, i f  less 
than 0.05

Mean 1 122 53.101 13.676
correct score 2 113 55.108 13.754
Mean level on 1 122 2 0
Kiichemann’s framework 2 113 1.99115 0.8914
% students showing 1 122 52.459 50.145
proceptual understanding 2 113 55.752 49.889
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Level 3 or above

Understanding of a letter at the level of at least a specific unknown.

Table 26: Full results for students initially at Kiichemann’s level 3 or above

Analysis Question­
naire

n Mean SD p, i f  less 
than 0.05

Mean
correct score

1
2

109
101

71.205
73.631

14.643
17.105

Mean level on 
Kiichemann’s framework

1
2

109
101

3.13761
2.89109

0.34609
0.7335

0.00105

% students showing 
proceptual understanding

1
2

109
101

96.33
94.059

18.8889
23.756
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