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Abstract

The activation of leukocytes during inflammation results in the engagement of many related 

intracellular signalling pathways. The role of two key proteins families, phosphodiesterase 

(PDE) and Src kinase, has been assessed in these signalling pathways using specific 

inhibitors.

Inhibition of phosphodiesterase type 4 (PDE4) in lipopolysaccharide (EPS) stimulated 

human peripheral blood mononuclear cells (PBMC) resulted in the inhibition of TNF-a by 

an IL-10-independent mechanism. This is in contrast to other agents that elevate cAMP 

which in turn inhibit TNF-a synthesis by an IL-10-dependent mechanism. When PBMC 

were stimulated with EPS plus IFN-y, inhibition of PDE4 resulted in an altered effect on 

cytokine production, elevating IE-10 while still inhibiting TNF-a.

Inhibition of PDE4 in activated T cells only weakly inhibited cellular proliferation. In 

contrast, PDE4 inhibitors were potent but non-selective inhibitors of T-cell cytokine 

production. In contrast to studies in murine cells, inhibition of T-cell activation correlates 

with inhibition of binding to a high-affinity Rolipram binding site on the PDE4 protein.

Kinases from the Src family (Eck, Fyn and Eyn) have been implicated in signalling via the 

T-cell receptor (TCR) on lymphocytes and the high affinity IgE receptor (FceRI) on mast 

cells. Potent inhibitors of Src kinases blocked T-cell proliferation and cytokine generation in 

response to specific ligation of the TCR. However, activation of T-cells by multiple co

stimulatory pathways was much more resistant to Src kinase inhibition. Inhibition of Src 

kinase in human cord blood-derived mast cells inhibited IgE-dependent degranulation of 

these cells. This indicates that Src kinase inhibitors may be useful in down-regulating 

allergic responses. Conversely, inhibitors of PDE4 and PDE type 7 (PDE7) did not prevent 

mast cell degranulation.

The observation that PDE4 inhibitors can regulate monocyte cytokine generation further 

supports the view that these agents could have therapeutic benefit in a number of 

inflammatory diseases such as asthma, arthritis and inflammatory bowel disease. The failure 

of Src kinase inhibitors to modify T cell signalling activated by multiple pathways indicates 

redundancy in these signalling pathways and therefore Src kinases may not represent good 

targets for immunomodulation. However, a selective Src kinase inhibitor could represent a 

good target for an anti-allergic drug.
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Chapter 1 

Introduction

1.1 General introduction

The discovery of cytokines approximately 50 years ago has opened the door to the 

understanding of the inflammatory process. The family of cytokines (which are described in 

more detail in section 1.3) has dramatically increased as the impact of genomics, proteomics 

and informatics has uncovered an ever expanding family tree. Cytokines have many 

activities; they can induce activation, differentiation, proliferation, migration and apoptosis 

of cells. The wide spectrum of responses controlled and induced by cytokines, makes them 

attractive targets for therapeutic intervention. Cytokines, such as tumour necrosis factor 

alpha (TNF-a) and interleukin-1 (IL-1), are regarded as excellent candidates and their 

blockade, using biological inhibitors, has already proved their importance in human clinical 

disease This thesis has examined how manipulation of enzymes that are involved in key 

intracellular signalling cascades can control cellular activation, particularly with respect to 

the control of cytokine production that is important in inflammation.

1.1.1 Acute inflammation

Since cytokines play an important role in inflammation it is necessary to define what is 

meant by ‘inflammation’. Inflammation is classically defined as the response of a living 

tissue to damage. This damage can be due to: infection, physical injury, chemical substances 

or hypersensitivity reactions among other causes. Acute inflammation requires the rapid 

recruitment of cells capable of dealing with foreign invaders. This infiltration of cells to the 

site of inflammation is a complex process. Neutrophils normally are the first cell type 

recruited to the site of inflammation. The neutrophil is responsible for mounting a 

phagocytic response against any foreign material, leading to its destruction and removal. The 

danger signals emitted by the injured tissue during inflammation also serve to summon other 

cell types. At later stages of the inflammatory response, cells such as: eosinophils, basophils.
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monocytes, T and B lymphocytes all appear at the site of injury. Resident tissue cells, such 

as mast cells, macrophages and dendritic cells also contribute to the innate and adaptive 

immune response. These cells are capable of mounting a sustained immune response to 

foreign bodies, resulting in the eventual control of the pathogen. The communication and co

ordination of the cells involved in the inflammatory response is, for the large part, mediated 

by the action of cytokines. When inflammation and hence cytokine production persist over 

time a state of chronic inflammation may ensue.

1.1.2 Chronic inflammation

Chronic inflammation is defined as an inflammatory response of prolonged duration - weeks, 

months or indefinitely. The persistence of inflammatory disease is due to the inflammatory 

agent remaining, either at the site of the inflammatory reaction, or systemically. This 

continuous inflammatory insult inevitably causes tissue damage and consequently the body 

attempts to repair that damage. Chronic inflammation may develop in a number of ways. 

This may be as a progression from a state of acute inflammation, or develop following repeat 

episodes of acute inflammation or develop de novo. The aetiological agents that cause 

chronic inflammation are summarised in table 1.1.

1.2 Inflammatory disease
The broad definition of inflammation, as defined above, encompasses many biological 

processes and involves many different cell types and tissues. Inflammatory disease is too 

wide a topic to cover extensively in this introduction. Instead, two diseases each with their 

own distinct aetiology and pathology -  rheumatoid arthritis and asthma will be covered in 

some detail. These diseases will be used to introduce the concepts of inflammation, the cell 

types and cytokines involved in inflammation and as a general background to ideas 

introduced and studied throughout the thesis.
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Table 1.1: Aetiological agents responsible for eliciting chronic inflammatory responses.

I Infectious organisms that can avoid host defences and thus persist

for prolonged periods. E.g. Mycobacterium tuberculosis, fungi 

and parasitic infections. Such organisms survive by either being 

able to withstand phagocytosis, by existing within phagocytic 

cells or by inducing only a mild inflammatory response.

Infectious organisms that are not resistant to host defences but 

exist in areas protected from host defences. For example, bacteria 

that grow in the pus within an undrained abscess cavity.

III Irritant non-living and foreign material that cannot be removed by 

enzymatic breakdown or phagocytosis. For example, wood 

splinters, grit, metal and plastics. These foreign materials can be 

either:

Inhaled e.g. silica dust and other particles/fibres.

Introduced e.g. surgical prostheses etc.

IV Stimulation from usually normal tissue components. As in the 

case of auto-antigens.

V Where there is no other obvious cause, such as idiopathic 

diseases: Crohn’s disease, rheumatoid arthritis etc.

1.2.1 Rheumatoid Arthritis

Like most other chronic inflammatory diseases, rheumatoid arthritis (RA) is poorly 

understood. Although it is known that RA has an autoimmune component, its exact aetiology 

is unknown. What is known, is that the disease can be associated with a number of risk 

factors, some of which are genetic. Identical twin studies, which are normally powerful 

indicators of the genetic linkage of diseases, show a relatively low rate of concordance, in 

the range of 15-35% for RA This places a limit upon the possible contribution of a genetic 

element to the disease. Though, undoubtedly factors such as HLA subtype, age and sex are 

important predictors of the likelihood of disease; they are not the full explanation.
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RA is manifestly a disease of the joints, particularly the hands, wrists and feet. Despite this 

obvious outward phenotype, there is also clear evidence that RA has a systemic element. RA 

patients with active disease have elevated erythrocyte sedimentation rate (ESR), C reactive 

protein (CRP) and other acute phase proteins In more severe and prolonged cases there is 

an extra-articular disease, manifest as skin nodules which occur in regions prone to mild 

injury. Other features of RA include fibrosis, most commonly of the lung and in ~1% of 

cases ‘Feltys syndrome’  ̂ (hypersplenism and increased white blood cell and platelet 

turnover).

The joints of patients with RA exhibit two main features; synovitis with hyperplasia and 

inflammation of the synovium inducing an inflammatory exudate into the joint causing 

erosion of bone and cartilage. Synovitis manifests itself symptomatically as joint pain, 

morning stiffness with swelling and tenderness of the joints. In RA there is a thickening of 

the synovium, the lining layer of the joint being 6-10 cells, as compared to 1-2 cells thick in 

a normal lining layer.

One consequence of synovitis is an increased vascularisation of the joint This ultimately 

leads to a large cellular infiltrate into and between the many newly formed small vessels. 

The most abundant infiltrating cells are T cells and macrophages with plasma cells, dendritic 

cells, activated fibroblasts and endothelial cells making up the rest of the cell mass As has 

been indicated, the majority of these cell types have trafficked to the joint and are blood- 

borne in nature. The erosion of cartilage and bone takes place mostly at the site where the 

fibrous capsule of the joint, lined by the synovium, abuts with the cartilage and bone. This 

region of synovium, known as the ‘pannus’, overlies and erodes the cartilage and invades the 

bone. Macrophages are the major cell type at this juncture with endothelial cells and 

fibroblasts (also known as synoviocytes) also present.

1.2.2 Asthma

The second disease used to illustrate the role that cytokines play in inflammation is asthma. 

Asthma is an inflammatory disease of the airways of the lung. In asthma, narrowing of the

5



Chapter 1

airways occurs because of inflammation and hypersecretion of mucus. This is exacerbated as 

the smooth muscle of the bronchi become hyperresponsive to non-specific stimuli This 

intermittent airway constriction leads to wheeze, cough, tightness and shortness of breath. In 

the long term, this may lead to fibrosis and scarring of the bronchioles, and obstruction of the 

airways may become permanent.

Asthma is a disease whose prevalence has markedly increased over the last twenty years 

This increase has been postulated to be caused by such things as passive smoking 

vaccination programmes (e.g. BCG) viral infections diet and the length of time an 

individual spends indoors Either together, or on their own, none of these factors can truly 

explain the inexorable rise in the number of asthma cases.

Asthma has, like many diseases, been shown to have a genetic component with genetic loci 

being mapped as disease susceptibility factors. These have been associated with human 

chromosomes 4, 5, 6, 7, 11, 13 and 16 Genome screening techniques have been used 

to try to map individual genes or sectors of chromosomes that have either positive or 

negative effects upon asthma. Two such candidates are CD 14 and the high-affinity IgE 

receptor.

A linkage with the CD 14 gene was mapped to the short arm of chromosome 5 

Interestingly this is the same location as the IL-4 gene and a number of other Th2 cytokines. 

CD 14 acts as a co-receptor for lipopolysaccharide (EPS) so it’s linkage, albeit as a negative 

regulator of disease, was a surprise. Baldini et al discovered that a C-^T base change 159 

bases upstream of the transcription start site for CD 14 was associated with high levels of 

soluble CD14 (sCD14) and low levels of IgE. This adds weight to the theories of those who 

think that exposure to allergens and the immune milieu encountered during infancy, 

programs immunity to asthma. Thus, exposure to bacterial antigens and stimulation of 

monocytes and macrophages (in particular the production of IL-12) may prime for cytokine 

responses that counteract IgE production.
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The other gene product strongly linked to asthma is the high affinity IgE receptor (FceRI) (3- 

chain The P-chain of FceRI, although not essential for IgE signalling, acts to amplify 

signals through the receptor. Regulating its expression may therefore be a way of modifying 

cell function and disease. Unlike CD 14 there have been few changes identified in the FceRIp 

chain and those that have been discovered are conservative and do not seem to alter the gene 

function

Although, like rheumatoid arthritis, asthma does have a genetic component, the disease can 

be best understood by examining the cell types and cell-cell interactions that occur both in 

normal and diseased states. At the centre of the asthmatic process lies the CD4 positive T 

helper memory cell These cells are critical because they produce an array of cytokines 

that programme the behaviour of other leukocytes, and ultimately control acute and chronic 

allergic inflammation in the airway (the role of cytokines in the pathogenesis of asthma will 

be covered in more detail in section 1.3.2). The various cell types and their interactions in 

asthma can be seen in fig 1.1.

Asthma exhibits a two stage progression from an immediate response, which starts in 

minutes, to a delayed response, which starts hours after the initial insult. The immediate 

response is mediated by acute phase components involved in classical immediate-type 

hypersensitivity responses. This is induced by allergen cross-linking specific IgE bound to 

mast cells via the high-affinity IgE receptor Mast cells release a range of granule- 

associated preformed mediators which are responsible for the immediate symptoms of the 

acute allergic response and which contribute to the late phase response Mast cells also 

produce a variety of chemokines and cytokines which contribute to the recruitment and 

activation of a second wave of response, in particular the recruitment and survival of 

eosinophils The late phase response is characterised by airway perivascular oedema, 

mucus plugging and activated Th2 cells which sustain the recruitment and activation of 

eosinophils.
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Figure 1.1: The cells co-ordinating the asthmatic response. Allergen is processed as peptides 
and presented to CD4 T helper cells in the context o f MHC class II. IL-4 released by mast cells, basophils and 
eosinophils facilitates the differentiation of Th2 cells, which upon stimulation produce IL-4, IL-5, IL-10 and IL- 
13. Activated Th2 cells then interact with B cells via TCR, BCR and CD40/CD40L, and in the presence of IL-4 
and IL-13 switch Ig synthesis in favour of IgE. IgE binds to IgE receptors (including FceRI on mast cells and 
basophils) and is cross-linked by allergen to activate IgE receptor positive cells. Amplification of B cell Ig class 
switching may occur from interactions of basophils with CD40 positive B cells (see box). Activation of mast 
cells, basophils and eosinophils leads to the release of pro-inflammatory, vasoactive and fibrogenic factors 
(histamine, tryptase, chymase, LT, PG, PAF) that are responsible for the symptoms of bronchial asthma. 
Abbreviations: APC, antigen-presenting cell, BCR, B cell receptor, CD40L, CD40 ligand, Ig, immunoglobulin, 
LT, leukotrienes, MHC, major histocompatability complex, PG, prostaglandins, PAF, platelet activating factor, 
TCR, T cell receptor. Adapted from a diagram by Marone
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1.3 Cytokines and inflammation

Cytokines are often viewed as the hormones of the immune system. They bind to target 

receptors which are expressed at the cell surface but which can also be expressed in a 

secretable form. Cytokines are potent molecules that typically act at concentrations in the 

pico- to nano-molar range and can act in three separate ways. They can act upon the cell 

producing the cytokine in an autocrine manner, act locally on neighbouring cells in a 

paracrine manner or act over longer distances in an endocrine manner. Unlike classical 

endocrine hormones, cytokines are often pleiotropic in action. This can be exemplified by 

the actions of TNF-a, fig 1.2, an important pro-inflammatory cytokine involved in the 

pathogenesis of many diseases
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Figure 1.2: Overview of the effects of tumour necrosis factor-alpha. Abbreviations, Ag, 
antigen, HLA, human leukocyte antigen, MMP, matrix-metalloproteinases, PGE2, prostaglandin E?, ROS, 
reactive oxygen species.

Cytokines rarely act in isolation but form complex and interdependent regulatory pathways,

termed ‘cytokine networks’ Individually cytokines have been shown to have distinct and
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potent effects upon many cellular activities. These in vitro actions have not always been 

manifest when tested in vivo. To understand how cytokines act in vivo it is necessary to 

know how they interact with other cytokines in their local network. To understand how these 

networks are altered in diseases the examples of RA and asthma will again be used. RA will 

introduce the concept of a cytokine imbalance between pro- and anti-inflammatory cytokines 

that perturbs the cytokine network in the rheumatoid synovium and asthma will introduce the 

Thl/Th2 paradigm and how inappropriate cytokine production can lead to disease.

1.3.1 Cytokines and rheumatoid arthritis

In a chronic autoimmune diseases, such as RA, it can be predicted that cytokines will be 

expressed at high levels at the site of inflammation. From early studies measuring both 

mRNA and protein, in culture and in situ, it became apparent that the rheumatoid synovium 

was an abundant site of cytokine expression these cytokines are shown in table 1.2. As 

can be seen from this list of cytokines, both pro- and anti-inflammatory cytokines can be 

found in the inflamed joint, and although informative it gives no indication as to which 

cytokines may be critically involved in the pathogenesis of the disease.

Using the knowledge that cytokines act within connected networks, researchers analysed the 

pattern of cytokine production in the hope of finding an immune bias to the cytokine 

network. It was discovered that macrophage derived proteins TNF-a, IL-1, IL-6 and IL-8 

were found at high levels in the synovium These proteins, in particular TNF-a, IL-1 and 

IL-6, have many effects on different cells and organs of the body and were thought likely to 

play some role in the disease. T cell derived cytokines, such as IL-2 and IFN-y were found to 

a lesser extent at the protein level, though were found to be more abundantly expressed at the 

mRNA level This imbalance in cytokine production formed the basis of a theory to 

explain the joint destruction seen in RA, Fig 1.3.
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Table 1.2; The expression of cytokines in the rheumatoid synovium. *

Cytokines Monocytes Fibroblasts T cells

IL-1 + +
TNF-a + +

IL-6 + +
LIF + +

GM-CSF + +
PDGF + +
bFGF +

IL-lRa +
TGF-P + +
IL-10 + +
IL-13 +

MCP-1 + 4-
M IP-la + +

RANTES +
IL-8 + +

ENA-78 + +
VEGF -t-
IFN-y ±
IL-2 ±
IL-4 ?

* Abbreviations, ENA-78, epithelial cell-derived protein 78, bFGF, basic fibroblast growth factor, GM-CSF, 
granulocyte/macrophage colony stimulating factor, LIE, leukaemia inhibitory factor, MCP-1, monocyte 
chemoattractant protein 1, M IP-la, macrophage inflanunatory protein 1 alpha, PDGF, platelet derived growth 
factor, RANTES, regulated and normal T cell expressed, TGF-|3, transforming growth factor beta, VEGF, 
vascular endothelial growth factor.

The pattern of cytokine expression described in figure 1.3 however, does not completely 

describe the network of cytokines involved in rheumatoid arthritis. Other cytokines, such as 

IL-11, IL-12, IL-15, IL-17 and IL-I8 which are also found to be expressed in the 

rheumatoid synovium are likely to play some role in the pathogenesis of the disease. Despite 

this obvious complexity, the key finding that inhibition of individual cytokines could alter 

the global cytokine profile has aided both the understanding and the therapy of RA. Work in 

animal models of arthritis and ultimately in clinical trials has shown that blockade of 

TNF-a can reduce disease severity.
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s-TNFR, IL-lRa, 
IL-10

TNF-a, IL-1, IL-6 TGF-p 
IL-8

Pro-inflammatory Anti-inflammatory

Figure 1.3: The balance of pro- and anti-inflammatory cytokines in the rheumatoid 
synovium. The overall outcome of cytokine production in the rheumatoid synovium can be seen as a balance 
of the actions of the cytokines produced in that environment. Many cytokines are pro-inflammatory and 
contribute to the pathogenesis of the disease, e.g. TNF-a and IL-1. Other cytokines are anti-inflammatory, and 
can antagonise the action of pro-inflammatory cytokines, e.g. soluble TNF receptors and IL-1 receptor antagonist. 
A third class of cytokines, that has both pro- and anti-inflammatory action can influence both arms of the 
inflammatory response, e.g. TGF-P. Adapted from a diagram by Feldmann and Brennan .

1.3.2 Cytokines and asthma

The adaptive immune response involves both humoral and cellular immunity. These twin 

arms of adaptive immunity are largely regulated by T cells and in particular the cytokines 

they produce. Pioneering work by Mosmann and Cofmann led to the proposal that T 

helper (Th) cells could be separated into different subsets according to the cytokines they 

released. This distinction was also subsequently made for cytotoxic T cells The discovery 

of Th subsets has provided great insight into the probable disease mechanisms underpinning 

atopic inflammation and hence asthma. Th subsets are thought to be derived from a common 

precursor and, in response to environmental stimuli, differentiate into different populations 

with distinct cytokine secretion profiles, Fig 1.4. The so-called Thl subset of cells secrete 

IL-2, IFN-y, TNF-a and LT, i.e. cytokines involved in cellular defence mechanisms and lytic 

antibody responses against intracellular pathogens The other major subset, called Th2 

cells, in contrast to Thl cells produce an entirely different spectrum of cytokines including, 

IL-4, IL-5, IL-6, IL-9 and IL-13 These cytokines are involved in the immune response to
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combat extracellular pathogens, e.g. parasitic worms. Th2 cytokines critically prime the 

immune response to make IgE antibodies. The presence of IgE and Th2 cytokines are 

strongly associated with asthma

Naive
CD4+

Pathogen
Antigen

Teel

Thp

IL -2

o D
 ̂ T N F -a /p

IF N -y

IL-12

IFN-y + IL-4

Delayed type
hypersensitivity
Macrophage
activation
Ig62a

IL-4

IL -4

Mast cell 
degranulation 
Eosinophil 
activation 
I g e i , IgE

Figure 1.4; The balance of T helper subsets and cytokine production. Naive CD4 positive T 
cells when experiencing antigen for the first time are not pre-committed to either a Thl or Th2 lineage. Thp (T 
helper precursor cells) cells expand when stimulated with antigen under the influence of IL-2. The dominant 
differentiating cytokines, IL-12 (Thl) and IL-4 (Th2), skew T helper cells to becoming either Thl or Th2 cells. 
These cells upon restimulation, produce distinct patterns of cytokines. Thl cells produce, IL-2, IFN-y, LT and 
TNF-a and Th2 cells produce, IL-4, IL-5, IL-10 and IL-13. IFN-y is responsible for amplifying Thl responses 
and IL-4 is responsible for amplifying Th2 responses. Thl cells mediate delayed type hypersensitivity reactions 
and Th2 cells mediate allergic inflammatory reactions.

A major breakthrough in our understanding of asthma came about by the discovery that, in 

response to allergens, T lymphocytes produce a restricted array of cytokines The study of 

T cell lines and clones produced in response to such allergens lead to the discovery of a 

distinct cytokine production profile, dominated by cytokines that are pro-inflammatory for 

allergic inflammation It is the over-production of Th2 cytokines such as, IL-4, IL-5 and 

IL-13 (Fig 1.1), which contributes to events such as the production of IgE and recruitment of 

eosinophils to the asthmatic lung. A number of factors are thought to select for the Th2 

response in asthma. These include low binding affinity of allergenic peptides in the groove
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of MHC class II, selective engagement of CD28 with CD86 but not CD80 and low IL-12 

or IL-18 production in the microenvironment, which normally biases T cell/dendritic cell 

interactions to prime for Thl responses

1.4 Signal transduction pathways involved in inflammation

The activation of cells to produce factors, such as cytokines, requires the transduction of 

extracellular signals, usually through the binding of a ligand to a receptor, which leads to the 

transcription of genes and production of proteins. These activation pathways, in different cell 

types, while sharing common elements are distinct. Key signal transduction pathways 

activated in cells involved in RA and asthma will be emphasised. These signalling pathways 

can be activated in vitro and share common elements with those pathways likely to be 

activated during inflammation.

1.4.1 Activation of monocytes and macrophages with bacterial endotoxin (LPS)

Monocytes and macrophages are responsible for producing large amounts of inflammatory 

cytokines, e.g. TNF-a, IL-1 and IL-6. These cytokines, which are produced in large 

quantities in the rheumatoid synovium, play a role in joint destruction. To date the best 

established in vitro model of monocyte/macrophage activation utilises bacterial products 

such as LPS. Although there is no definitive evidence for the role of infection in rheumatoid 

arthritis, the signalling pathways activated by LPS are likely to be shared by cells in the 

synovial environment. The understanding of how LPS transduces downstream signals has 

recently undergone a paradigm shift

In 1968 Sultzer et al, demonstrated that the C3H/HeJ inbred mouse strain was naturally 

tolerant to LPS These mice were able to withstand an LPS challenge 20-40 times the 

median lethal dose for most other laboratory strains This trait mapped to the major urinary 

protein (mupl) locus on chromosome 4 and was designated as the Ips locus The Ips
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mutation not only manifests itself at a system level but also at the individual cell level and 

renders many diverse cell lineage’s hypo-responsive to the effects of LPS.

Virulent Gram-negative bacteria induce inflammation by the shedding of their outer 

membrane Within the aqueous environment of the host’s vascular compartment, 

amphipathic LPS molecules spontaneously aggregate as micelles These micelles, via a 

plasma LPS-binding protein, are catalytically transferred as monomers to the surface 

receptor CD 14 CD 14 is recognised as both a myeloid differentiation factor and a receptor 

for LPS and can either be glycosylphosphatidylinositol-linked into the plasma membrane or 

a soluble protein. Both the cell surface and soluble CD 14 moieties facilitate LPS signalling 

despite the absence of a transmembrane domain This has led to speculation that a co

receptor is recruited to the LPS/CD14 complex and mediates signal transduction

Recently the gene responsible for the Ips phenotype in C3H/HeJ mice was discovered. A 

mis-sense mutation in the Toll-like receptor 4 (TLR4) was discovered and was found to 

result in a Pro 712—>His amino acid substitution The Toll-like receptors are signalling 

receptors that, although initially thought to be involved in embryogenesis in Drosophila, 

were subsequently found to be implicated in innate immune defence responses against 

pathogens The mammalian homologues of Toll have a characteristic leucine rich repeat 

extracellular domain and a cytoplasmic domain responsible for signal transduction. Nine 

human Toll receptors have been cloned thus far but only one, TLR4, has been implicated in 

LPS signal transduction. The transfection of constitutively active TLR4 into a recipient cell 

line induces expression of cytokines and co-stimulatory molecules in a similar manner to 

endotoxin Wild-type TLR4 transfection alone is insufficient to confer LPS sensitivity, but 

in the presence of another protein, MD-2 it forms a complex at the cell surface which confers 

LPS sensitivity upon TLR4 negative cell lines Confusion regarding which toll receptor is 

responsible for mediating LPS signalling has recently been clarified as LPS preparations 

from distinct bacterial species {Leptospira) were found to activate cells through TLR2 and

notTLR4T

15



Chapter 1

The cytoplasmic domain of the Toll-family proteins is homologous to the cytoplasmic 

domain of the lL-1 receptor and both receptors share many of the same signal transduction 

pathways The cytoplasmic domain of the Toll/lL-1 receptor (TIR) is referred to as a 

TIR domain. The TIR domain also resides in a second protein, known as myeloid 

differentiation factor 88 (MyD88). MyD88 is postulated, via its TIR domain, to interact with 

Toll-like receptor complexes In lL-1 signal transduction MyD88 immunoprecipitates with 

the functional IL-IR complex (IL-lRl, IL-IR accessory protein and IL-IR associated kinase 

(IRAK)) In MyD88 deficient mice, responses to lL-1, lL-18 and endotoxin are all 

deficient indicating its central role in all three pathways

The death domain of MyD88 recruits the down stream serine/threonine kinase IRAK, in its 

unphosphorylated state IRAK is also a key molecule in the signalling cascade, as 

dominant-negative mutants of IRAK inhibit nuclear factor-KB (NF-kB) activation by 

upstream components of the cascade IRAK becomes autophosphorylated when the IL-IR 

is stimulated, but as yet no substrate for IRAK has been identified. IRAK interacts with a 

downstream protein, a member of the TNFR (tumour necrosis factor family receptor)- 

associated factors (TRAFs), known as TRAF6 The TRAF family of adapter proteins 

promotes protein oligomerisation and facilitates protein-protein interactions. TRAF6 is 

unique amongst the TRAF factors in that, apart from its association with CD40 it is the 

only TRAF not to engage a receptor complex. LPS activates the production of both TNF and 

lL-1, the common elements between the two receptor signalling pathways are shown in fig 

1.5. TRAF6 immunoprecipitates with the mitogen activated protein kinase kinase kinase 

(MAPKKK), NIK (NF-KB inducing kinase), this activates the IkB kinase complex and these 

enzymes are responsible for degrading the NF-kB inhibitor IkB Another MAPK, MEKK- 

1 (mitogen activated protein kinase Erk kinase kinase 1), is thought to activate IKK’s but as 

yet this has no proven role in Toll receptor signalling. Finally the phosphorylation of IkB 

releases NF-kB and it translocates to the nucleus where it induces the expression of specific 

genes, many of which are cytokines involved in the inflammatory response
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Figure 1.5: The similarities in signalling pathways of Toll/IL-IR and the TNFR family.
Abbreviations, TNFR, TNF-a receptor, TRADD, TNFR 1-associated death domain protein, RIP, receptor 
interacting protein, IRAK, IL-1 receptor-activated kinase, TRAF, TNF receptor-associated factors, NIK, NF-kP 
inducing kinase, IKK, IkP kinase.

1.4.2 Activation of T cells through the T cell receptor

Alongside monocytes, activated T cells are critically involved in inflammatory cytokine 

production. The primary activation signal of T lymphocytes is one that is transduced via the 

T cell receptor (TCR), which recognises antigenic peptides in the binding groove of the 

major histocompatibility complex (MHC). Although there are many other pathways that can 

be activated in T cells, only a limited number of such pathways will be discussed in this 

introduction. The TCR is a complex multi-subunit structure composed of a ligand binding 

heterodimer (a^ or yô) that can recognise peptides bound to MHC molecules. This complex 

also contains the CD3e, y, ô and TCRÇ (zeta) chains The role of these chains is to target
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the fully functional TCR complex to the cell surface. The CD3 and zeta chains contain 

immunoreceptor tyrosine-based motifs (ITAMs), three in the zeta chain and one in each of 

the CD3 chains These IT AMs may either be involved in amplification of signalling 

through the TCR, or determine signal specificity as they are thought to differentially bind 

intracellular signalling proteins, Zap-70 (Zeta associated protein -  70 kDa), phospholipase 

Cyl (PLCyl), phosphatidylinositol 3-kinase (P13 kinase) and she (Sh2 containing sequence)

85-88

Members of at least four families of tyrosine kinases are involved in the transduction of the 

signal generated by engaging the TCR. Src kinase members, p56^‘̂*' (Lck) and p59^^" (Fyn) 

are two proteins that play an important role in TCR signalling. The role of Lck in TCR 

signalling was elucidated using a mutant of the Jurkat cell line, termed JCAMl Upon 

TCR stimulation, these cells failed to give a calcium flux. Analysis of these cells revealed a 

defect in tyrosine phosphorylation, which was due to a defect in functionally active Lck 

Reconstitution of JCAM-1 cells with wildtype Lck restored functionality to the cell line. 

TCR signalling was also antagonised by the micro-injection of Lck antibodies into T cells 

Finally, Lck deficient mice were shown to have sub-optimal T cell proliferative responses, 

when T cells were stimulated through the TCR Fyn is also associated with the TCR 

directly, being co-expressed with the cytoplasmic domains of CD3e and y and TCR Ç and T) 

chains. The role of Fyn in TCR signalling is not as clear as that of Lck. This is exemplified 

by the fact that overexpression of Fyn in T cells augments TCR stimulation, as measured by 

tyrosine phosphorylation and lL-2 production

A member of the Syk (spleen tyrosine kinase) class of protein tyrosine kinases, Zap-70 is the 

dominant family member in T cells. Zap-70 is known to be a critical molecule in TCR 

signalling, as a rare Zap-70 immunodeficiency exists in humans, and such individuals exhibit 

a severely immunocompromised phenotype In transfection studies, Zap-70 associates 

with the zeta chain and its activation is dependent upon either Lck or Fyn In the JCAM-1 

cell line Zap-70 is neither phosphorylated nor recruited to the T cell receptor complex Syk
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augments TCR-triggered tyrosine phosphorylation of zeta and unlike Zap-70 was able to 

stimulate tyrosine phosphorylation of zeta when transfected into Cos-1 cells Another cell 

line P116 (which has defects of protein tyrosine phosphorylation, calcium flux and lL-2 

transcription), that is also derived from Jurkat cells, is defective for both Syk and Zap-70. 

When either catalytically active protein was reintroduced into these cells their defects were 

reversed

Csk (c-Src tyrosine kinase), another tyrosine kinase family protein, has a negative regulatory 

role upon Src kinase activation and as such upon T cell activation. Csk phosphorylates the 

carboxy-terminal of Lck and Fyn maintaining them in an inactive state The phosphatase 

CD45, (also associated with the TCR complex), dephosphorylates Lck and Fyn allowing 

their activation upon TCR engagement Another tyrosine kinase family member Tec 

(tyrosine kinase expressed in hepatocellular carcinoma), expressed as Itk (lL-2 inducible T 

cell kinase) and Tec, are also involved in TCR signalling. Itk signals downstream of Lck and 

is recruited to different signalling complexes when CD28 or the TCR are engaged In 

Itk-deficient mice T cell signal impairment is modest and hence its contribution to TCR 

signalling may not be as great as the Src family kinases Tec when activated by TCR/CD3 

or CD28 ligation interacts with the CD28 receptor. Tec can phosphorylate p62°°^ (a substrate 

of CD28), whereas Itk cannot. These differences may indicate different roles for these 

tyrosine kinases in T cell activation

Further down stream events, in the TCR signalling cascade, occur via tyrosine 

phosphorylation of Slp-76 (SH2 domain leukocyte protein), a Zap-70 substrate, which 

mediates association with Vav. TCR stimulation induces tyrosine-phosphorylated proteins 

including Slp-76, pl20™ and She which associate with the Grb-2/Sos complex which is 

known to be involved in the regulation of Ras The Ras/MAPK pathway is an

important pathway activated upon TCR stimulation. The expression of T cell cytokines, such 

as lL-2, is largely inducible and is initiated by the cross-linking of the T cell receptor plus 

the activation of other co-stimulatory molecules. The signal transduction pathways detailed
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above, ultimately leads to the activation of many transcription factors. The complex interplay 

between these factors, controls the cytokine production in T cells. In T cells these signal 

transduction pathways include a calcium-dependent/cyclosporin-sensitive pathway that 

regulates the nuclear factor of activated T cells (NFAT), a protein kinase C-dependent 

pathway that regulates activator protein-1 (AP-1), (NF-kB) and a p21/Ras activated MAPK 

cascade that affects AP-1 amongst other transcription factors

1.4.3 Activation of mast cells through the high-affinity IgE receptor

As described earlier, mast cells are important in the pathogenesis of asthma and allergic 

disease. IgE, and more specifically the IgE that is cross-linked on the cell surface of a mast 

cell by antigen, is an important trigger of many of the symptoms of asthma. The receptors 

that bind IgE on mast cells are termed high-affinity IgE receptors or FceRI.

FceRI belongs to a family of multi-subunit immune receptors that do not have intrinsic 

kinase activity but associate reversibly with protein tyrosine kinases. FceRI is expressed on 

mast cells as a heterodimeric complex comprising of a, P and two y chains. IgE binds to the 

alpha chain, which is the major extracellular component of FceRI The P and y sub-units 

are responsible for down-stream propagation of signals through phosphorylation of their 

ITAM’s (as seen in the TCR, section 1.4.2) The P chain has been ascribed an amplifying 

role within the signalling pathway and the y units are essential for targeting the receptor to 

the cell surface and for signal transduction

Upon receptor aggregation signals are transduced via an unknown mechanism to the p and 

y-chain signalling subunits. The Src family tyrosine kinase, Lyn, is activated, or deactivated, 

via tyrosine phosphorylation or dephosphorylation at its carboxy terminus by Csk kinase and 

the phosphatase CD45 respectively Activated Lyn then phosphorylates the P and y- 

chain ITAM’s, the y-chains are then able to selectively recruit Syk which in turn is activated 

by Lyn Targets of these tyrosine kinases include the activation of PI(3) kinase to
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produce phosphotidylinositol (3,4,5)P3 or PIP3, phosphorylation of Bruton’s tyrosine kinase 

(Btk) and phosphorylation of the membrane localised adapter protein (LAT)

These pathways critically activate mobilisation of intra and extracellular calcium, Btk, when 

localised to the cell membrane by its binding to PIP3, contributes to the activation of PLCyl, 

which in turn is brought to the membrane by phosphorylated LAT. PLCyl acts upon 

membrane inositol phospholipids to generate Ins(l,4,5)P3 or IP3 and diacylglycerol (DAG) 

120:121. d a g  targets various protein kinase C (PKC) ispforms, whereas IP3 binds to IP3 

receptors on the surface of the endoplasmic reticulum containing calcium stores 122. This 

leads to a depletion of intracellular calcium stores and an elevation of cytoplasmic calcium 

levels. The depletion of calcium stores leads to an opening of the plasma membrane channels 

required for calcium influx. The calcium release activated current is mediated by the store- 

operated calcium channels and is responsible for sustained elevations in cytosolic calcium 

and replenishment of ER (endoplasmic reticulum) calcium stores

Activation of FceRI also leads to the involvement of adapter proteins required to activate 

down-stream targets of the small GTP-binding protein and kinase cascades. Syk targets the 

membrane bound adapter LAT, which anchors further adapters Grb-2 and Slp-76 *26.127 

These adapters respond by recruiting and localising guanine nucleotide exchange factors for 

the Ras family of GTPases 2̂̂ .

The Erk (extracellular signal-regulated kinase). Ink (c-Jun N-terminal protein kinases) and 

p38 MAP kinases are downstream components of the signal cascade initiated by engagement 

of the high affinity IgE receptor *29;i30̂  The consequence of activation of these pathways is 

the nuclear import of a range of transcription factors including, NF-kB, ATF-2 (activating 

transcription factor 2), Elk-1, Jun and SRF (serum response factor) plus the activation of 

nuclear proteins, e.g. c-jun and c-fos. These transcription factors act in concert so the final 

effect on protein transcription depends upon their overall pattern of expression.
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Finally, the activation of the signalling cascades described results in cytokine production and 

degranulation, with the subsequent release of pre-formed and newly synthesised 

inflammatory mediators. Purified lung mast cells constitutively express mRNA for IL-5, IL- 

6, IL-8 and TNF-a and upon stimulation with anti-IgE induce expression of IL-4 and GM- 

CSF, whilst increasing the expression of IL-5 and TNF-a *21-133 conjunction with 

pathways already described, a transient rise in free calcium and cyclic AMP enables the 

microtubular apparatus of the cell to mobilise and allow fusion of the secretory granules with 

the plasma membrane.

1.5 Inhibitors of cytokine production and signal transduction

The hypothesis that blockade of specific cytokines could be of therapeutic benefit has now 

been supported by clinical findings. This is especially true for TNF-a, where biological 

inhibitors may revolutionise the treatment of both RA and Crohn’s disease *:*24435 ^he 

effectiveness of such an approach, has been to some extent limited by the expense of such 

treatments, which may curtail their eventual use. Orally available, small molecule inhibitors 

of signal transduction pathways, offer a cheaper alternative to biological inhibitors and as 

such are being pursued as alternative therapies.

1.5.1 Phosphodiesterase inhibitors

The phosphodiesterase (PDF) family of enzymes was discovered over thirty years ago by 

Butcher and Sutherland These enzymes were found to degrade the second messengers 3’, 

5’- cyclic adenosine monophosphate (cAMP) and 3’, 5’- cyclic guanine monophosphate 

(cGMP), to 5’-AMP and 5’-GMP respectively. Both cAMP and cGMP act as second 

messengers propagating signals delivered by hormones, neurotransmitters and cytokines into 

the cell 2̂2. The family of PDE enzymes contains at least eleven isozymes with different 

selectivity for cAMP and cGMP. The type 4 of the PDE family, termed PDE4, is known to 

specifically hydrolyse cAMP in preference to cGMP and is an abundant isoform in 

inflammatory cells, smooth muscle and vascular endothelium ^̂9 The PDE4 enzyme is
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further split into four subtypes (A-D). These subtypes themselves are further divided, as 

alternative splicing of the PDE4 A-D genes produces additional splice variants

The archetypal PDE4 inhibitor. Rolipram, was first described twenty five years ago 

Rolipram is a relatively weak competitive inhibitor of PDE4 (Kd -0.5-1 pM) and binds to an 

alternative conformation of the PDE4 enzyme in a steroselective manner and with a high 

affinity (Kd-lnM). This high-affinity confomer is often referred to as the high-affinity 

Rolipram binding site or HARBS *"*2;i43 typified by Rolipram, the first generation of 

PDE4 inhibitors had dose limiting side effects in both animals and humans the greatest 

manifestation of these side effects was the induction of a strong emetic response 

Second generation PDE4 inhibitors have been developed over the last ten years, which have 

reduced side effects and it is these inhibitors, plus Rolipram, that have been used to validate 

the therapeutic potential of PDE4 inhibitors

PDE4 inhibitors have been proposed as being useful in treating chronic inflammatory 

conditions such as RA. PDE4 is an abundant enzyme in monocytes and PDE4 inhibitors 

have proved potent modulators of some monocyte functions, such as the inhibition of LPS 

stimulated TNF-a production in humans and mice *"*2-151 This reduction in TNF-a protein 

levels is mirrored by a decrease in TNF-a mRNA levels In rat models of arthritis, where 

anti-TNF-a antibodies are effective at stopping disease, PDE4 inhibitors had strong 

suppressive effects *22̂ 53̂

At the present time the main therapeutic target of PDE4 inhibitors has been asthma. PDE4 

inhibitors effect diverse components of the allergic response from recruitment of eosinophils 

to the activation of T cell cytokines and show promise in many animal models of the disease, 

these are summarised in table 1.3. In man CDP840 (a specific PDE4 inhibitor) was well 

tolerated by volunteers and, although showed no effect on the early phase response in 

asthma, gave a 30% reduction in the late phase response
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Table 1.3: A list of the pharmacologically active PDE4 inhibitors tested in animal 
models of airway eosinophilia. *

Compound Species Route Model Refs.

CDP840 Rat p.o. IL-5 induced pleural 
eosinophilia 158

Guinea
pig

i.p. OVA- sensitised and 
challenge (aerosol)

158

Monkey s.c. Atopic challenge with ascaris 
suum

159

CP-80633 Guinea p.o. OVA sensitised and 160
pig challenge

Monkey s.c. Atopic challenge with ascaris 
suum

160

D-22888 Guinea
pig

p.o.
OVA sensitised and 
challenge, late phase 

pulmonary eosinophilia
161

T-440 Guinea
pig

p.o.
Allergen induced challenge 

early and late phase 
measurements

162

KF19514 Guinea
pig

p.o. PAF-induced lung 
eosinophilia 78;163;164

SB207499 Guinea p.o. LTD4 and OVA induced 165
pig eosinophilia

* Abbreviations; OVA, ovalbumin, PAF, platelet activating factor, LTD4, leukotriene D4, p.o., per oral, i.p., intra- 
peritonealy, s.c., sub-cutaneously.

1.5.2 Tyrosine kinase inhibitors

Signalling through the T cell receptor and high-affinity IgE receptor are both known to 

recruit tyrosine kinase enzymes to the receptor upon its engagement. The 

immunosuppression of T cell mediated immunity has been one of the driving forces behind 

the successful treatment of autoimmune disease and organ transplantation, in the modem era. 

The ‘gold-standard’ T cell immunosuppressive drug, cyclosporin A (CsA) has revolutionised 

the treatment of transplantation, being more efficient, effective and having fewer side-effects 

than treatments that preceded it *25;i56 (̂ ŝA despite being a very effective treatment does 

however show dose-limiting side effects, particularly nephrotoxicity and a higher incidence
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of cancer, that precludes the broader use of the drug. Other macrolide drugs such as FK-506 

and Rapamycin, though effective, also suffer from dose-limiting side effects .

Newer T cell immunosuppressive drugs have emerged that target the IL-2R (monoclonal 

antibodies daclizumab and basiliximab) and though useful in treating certain conditions 

efficacy and cost prohibit their widespread use. Thus the search has been to replace 

cyclosporin with a synthetic inhibitor of T cell receptor signal transduction. Candidate 

targets, excluding the cyclophilins which are targeted by drugs such as CsA, include proteins 

such as Lck, Fyn, ZAP-70/Syk and MAP kinase, as well as non-TCR transduced signalling 

proteins such as those of the JAK/STAT cytokine receptor pathway. The Src-kinase family, 

which in T cells is represented by, Lck, Fyn and p62^^  ̂(Yes), are attractive targets as they 

have a relatively restricted expression and in the case of Lck and Fyn are important in TCR 

signalling *̂2-no Src-like family of enzymes is also thought to be involved in the 

activation of mast cells through the high-affinity IgE receptor.

A number of inhibitors of Src kinases exist with varying potencies and specificities, these are 

summarised in table 1.4. The most potent and selective inhibitors described to date are a 

series of pyrazolopyrimidines, which have specificity for Lck, Fyn, Src and p59"^  ̂ (Hck) 

over epidermal growth factor (EGF) receptor kinase, with selectivity against ZAP-70 and 

protein kinase A (PKA). These inhibitors, named PPl and PP2, inhibited tyrosine 

phosphorylation of a number of proteins in human T cells stimulated through the TCR 

PPl also inhibited the proliferation of peripheral blood lymphocytes (PEL) in response to 

anti-CD3 antibodies but not PMA/IL-2 dependent p r o l i f e r a t i o n ^ ^ !
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Table 1.4: The action of Src kinase inhibitors in in vitro assays.

Compound IC50 Lck Specificity Effects upon cell function

WIN61651 18-24pM Selective compared 
to PKC and PKA, 
erb2, EGF kinase 
and Insulin receptor 
kinase

i  tyrosine phosphorylation of cellular 
proteins
i  IL-2 production in CD3/CD4/CD28 or 
CD3/PMA stimulated T cells 
i  proliferation to antigen and in MLR

A-125800 l-7pM 50-100 fold 
selectivity over 
MAPK but 
equipotent 
inhibition of Zap-70

i  tyrosine phosphorylation and calcium flux 
i  proliferation to alloantigen and CD3/CD28 
induced IL-2 production in T cell cultures 
Irreversible binding to Lck

PPl & PP2 4-6nM Selective over 
EGFR kinase 
Inactive against 
Jak-2, Zap-70 and 
PKA

i  proliferation of T cells stimulated with CD3, 
influenza (antigen) and MLR 
Weakly active against PMA/IL-2 dependent 
proliferation
Support Th2 differentiation in mice

* References, •174

1.6 Aim of project

PDE4 and Src kinase enzymes are known to play a role in intracellular signalling processes. 

This project has capitalised on the fact that potent and specific inhibitors of these enzymes 

exist. Using such inhibitors it has been possible to assess the role played by PDE4 and Src in 

the activation of inflammatory cells.

Inhibiting PDE4 is known to block TNF-a production from LPS activated monocytes. To 

understand how this regulation occurs the effect of PDE4 blockade on the cytokine network 

induced by LPS activation of human PBMC was investigated.

The aims were:

• To investigate the effect of PDE4 inhibition on the overall pattern of cytokine production 

from LPS activated human PBMC.

• To investigate if the effect of inhibiting PDE4 blocks pro-inflammatory cytokine 

production via the elevation of anti-inflammatory cytokines, e.g. IL-10.
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• To determine whether altering the stimulus delivered to PBMC, alters the effect PDE 

inhibitors have on cytokine production.

Inhibition of PDE4 is also thought to disrupt T cell function. To test this, the effect of PDE4 

blockade on activated T cells was investigated.

The aims were:

• To investigate the effect of PDE4 inhibition on T cell proliferation.

• To investigate the effect of PDE4 inhibition on T cell cytokine production.

• To assess if the effect of PDE4 inhibitors on T cell function correlates with inhibition of 

the PDE4 enzyme in either its low-or high-affinity conformation.

Src kinase enzymes are implicated in transducing signals through the T cell receptor.

The aims were:

• To investigate the effect that Src kinase inhibition has on T cell proliferation induced by 

various stimuli.

• To investigate the effect of Src inhibition on T cell cytokine production.

• To investigate the point at which Src kinase inhibitors block TCR signal transduction.

Finally, to determine the role that Src kinase and phosphodiesterase type? (PDE7) may play 

in mast cell activation.

The aims were:

• To develop a model of cord blood-derived mast cell activation.

• To investigate the effect of Src kinase and PDE7 inhibition on the IgE-dependent 

degranulation of mast cells.
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Chapter 2

Materials and Methods

2.1 General reagents and equipment

Unless stated otherwise all chemical and biological reagents were obtained from Sigma 

Chemical company, Poole, UK. All tissue culture plastic ware was obtained from Falcon, 

Becton Dickinson labware, NJ, with the exception of ‘U’ bottomed 96 well tissue culture 

plates which were obtained from Costar, NY. Centrifugation was performed using bench top 

centrifuges 8R and GP8R, lEC, MA. All biological buffers, including tissue culture media 

were obtained from Gibco, Paisley, UK, unless stated otherwise. Foetal calf serum (FCS) 

was sourced from Helena Biosciences, #NS3005, lot 7329-2-NS31 (USA herd).

2.1.1 Recombinant proteins

Protein Expression system Source

IL-la E.coli R&D systems, Oxford, UK

IL-P E.coli Biosource, UK

IL-2 E.coli R&D systems, Oxford, UK

IL-4 E.coli R&D systems, Oxford, UK

IL-6 E.coli R&D systems, Oxford, UK

IL-8 E.coli R&D systems, Oxford, UK

IL-10 SF21 R&D systems, Oxford, UK

IL-12p40 SF21 R&D systems, Oxford, UK

TNF-a E.coli Celltech, UK

IFN-y E.coli R&D systems, Oxford, UK

2.1.2 Antibodies

Antibody Isotype Conjugate Clone Source

CCRl

CCR2

Mouse
IgG2b
Mouse
IgG2b

Biotinylated

Biotinylated

53504.11

48607.121

R&D systems, Oxford, UK 

R&D systems, Oxford, UK
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Cont.

CCR3 Rat IgG2a PE 61828.111 R&D systems, Oxford, UK

CCR5 Mouse
IgG2b Biotinylated 45549.111 R&D systems, Oxford, UK

CCR6 Mouse
IgG2b PE 53103.111 R&D systems, Oxford, UK

CD117 Mouse
IgGl FITC YB5.B8 Pharmingen, San Diego, CA

CD 14 Mouse
IgG2a PE M5E2 Pharmingen, San Diego, CA

CD16 Mouse
IgGl FITC 3G8 Pharmingen, San Diego, CA

CD25 Mouse
IgGl PE 2A3 BD, San Jose, CA

CD3 Mouse
IgGl FITC/PE SK7 BD, San Jose, CA

CXCRl Mouse
IgG2b PE 5A12 Pharmingen, San Diego, CA

CXCR2 Mouse
IgGl PE 6C6 Pharmingen, San Diego, CA

CXCR3 Mouse
IgGl FITC 49801.111 R&D systems, Oxford, UK

CXCR4 Mouse
IgG2a PE 12G5 Pharmingen, San Diego, CA

CXCR5 Mouse
IgG2b Biotinylated 51505.111 R&D systems, Oxford, UK

IFN-y (c)
Mouse
IgGl Unconjugated NIB42 Pharmingen, San Diego, CA

IFN-Y (d) Mouse
IgGl Biotinylated 4S.B3 Pharmingen, San Diego, CA

IL-10 Mouse
IgG2b Unconjugated 23738.111 R&D systems, Oxford, UK

IL-10 (c) Rat IgG2a Unconjugated JES3-19F1 Pharmingen, San Diego, CA

IL-10 (d) Rat IgG2a Biotinylated JES3-12G8 Pharmingen, San Diego, CA

IL-IOR Mouse
IgGl Unconjugated 37607.11 R&D systems, Oxford, UK

IL-12p40 (c) Mouse
IgGl Unconjugated A08E6E5 Biosource, UK

IL-12p40 (d) Mouse
IgGl Biotinylated A25C4B6 Biosource, UK

IL -la (c) Mouse
IgGl Unconjugated 36-3B3-14 Pharmingen, San Diego, CA

IL-la (d) Mouse
IgGl Biotinylated 284 Pharmingen, San Diego, CA

IL-lp (c) Mouse
IgGl Unconjugated 508A7G8 Biosource, UK

IL-ip (d) Mouse
IgGl Biotinylated 508A3H12 Biosource, UK

IL-2 (c) Mouse
IgGl Unconjugated 419A-7A3 Biosource, UK
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Cont.

IL-2 (d) Mouse
IgG2b Biotinylated 297C16G2 Biosource, UK

IL-4 (c) Mouse
IgGl Unconjugated 8D4-8 Pharmingen, San Diego, CA

IL-4 (d) Rat IgGl Biotinylated MP4-25D2 Pharmingen, San Diego, CA

IL-6 (c) Rat IgGl Unconjugated MQ2-13A5 Pharmingen, San Diego, CA

IL-6 (d) Rat IgGl Biotinylated MQ2-39C3 Pharmingen, San Diego, CA

IL-8 (c) Mouse
IgG2b Unconjugated G265-5 Pharmingen, San Diego, CA

IL-8 (d) Mouse
IgG2b Biotinylated G265-8 Pharmingen, San Diego, CA

mlgGl
control

Mouse
IgGl FITC/PE A112-2 Pharmingen, San Diego, CA

mIgG2a
control

Mouse
IgGl PE G115-178 Pharmingen, San Diego, CA

V mIgG2b 
control

Mouse
IgGl Biotin/PE MPC-11 Pharmingen, San Diego, CA

rIgG2a
control Rat IgG2a PE 35-95 Pharmingen, San Diego, CA

TNF-a (c) Mouse
IgGl Unconjugated MABl Pharmingen, San Diego, CA

TNF-a (d) Mouse
IgGl Biotinylated MABll Pharmingen, San Diego, CA

Notes : (c) = ELISA coating antibody, (d) = ELISA detection antibody, FITC 
= Fluorescein isothiocyanate, PE = Phycoerythrin.
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2.2 Chemical structures

All chemical inhibitors used throughout this thesis were synthesised by the medicinal 

chemistry department Celltech ( Slough, UK).

2.2.1 PDE4 inhibitors

o
R-Rolipram

O

CT1730 (CDP840)

SB207499 (Ariflo)
NC

COgH

O

O

CT1881(RP73401)NH

CT2396 (RS25344)

O

All PDE4 inhibitors were synthesised by the medicinal chemistry department of Celltech 

(Slough, UK) according to the details given in the references I4i;i58;i75-i79̂  Compounds were 

kept as frozen stock solutions at a concentration of 20mM in DMSO, the repeated freeze 

thawing of compounds was avoided.
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Chapter

CT5102-00

CT5215-10

CH,

T
.  N

S

'CH3
,CH,

N C H 3 

'C H ,
L,

N-[3,5-D im ethyl-4-(2-
dim ethylam inoethyloxy)phenyl]-9-

methoxybenzo[h]-
5,6-dihydroquinazoline-2-am ine

N-[3-(D iethylam inoethoxy)-4,5-
dim ethoxyphenyl]-4-(3-
methoxyphenylsulfanyl)

dihydrochloride

CT5227-10

C H .

• C H ,

H3C.

C K
H3C

N-[3,4-D im ethoxy-5- 
(dim ethylam ino)ethoxyphenyl]-4- 

(3-m ethoxyphenylsuifanyl)pyrim idine 
2-am ine dihydrochloride

CT5263-00

H3C

CT5264-10

N 

S

'CH3
, C H ,

H,C
' O

6,6-D im ethyl-9-m ethoxy-N-2-[3-
methoxy-4-(2-

pyrroldinyl)ethoxyphenyl]-
benzo[h]-5,6-dihydroquinazoline-2-

am ine

N-[3,4-D im ethoxy-5-(2-pyrrolidin-1- 
yl)ethoxyphenyl]-4- 

(3-m ethoxyphenylsulfanyl)pyrim idine 
2-am ine hydrochloride

CT5269-10

H3C CH3

N-[3-(2-D iethylam inoethoxy)-4,5-
dim ethoxyphenyl]-9-methoxy-6,6-

dim ethylbenzo[h]5,6-
dihydroquinazoline-2-am ine

dihydrochloride
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CT5276-00

N-[3,5-Dimethoxy-4-(2-
diethylaminoethoxy)phenyl]-9-

methoxy-6,6-dimethyl-
benzo[h]-5,6-dihydroquinazoline-2-

amine

CT5378-10

CH3
N-{3,5-dimethoxy, 4-[2-(4- 

methoxypiperazin-1- 
yl)ethoxy]phenyl}-4 

-(3-methoxyphenylthio)pyrimidine-2- 
amine dihydrochloride salt

CT5474-00

CT5475-00

CT5605-10

0 '  'N H

KC

CT5651-00

N-[3,5-Dimethyl-4-(2-
isopropylaminoethoxy)phenyl]-6,6-

diemthyl-9-methoxy-
benzo[h]-5,6-dihydroquinazoline-2-

amine

4-(3-carboxamidophenylthio)-N-

[3,4-dimethoxy-5-
(isopropoxycarbonyloxy)phenyl]py

rimidine-2-amine

N-(3-hydroxymethylphenyl) 4-(3- 
methoxyphenylthio)pyrimidine-2- 

amine hydrochloride

9-methoxy-6,6-dimethyl-N-(2-
methylbenzimadazol-5-yl)benzo[h]-

5,6-dihydroquinazoline-2-amine

CT5733-00
9-methoxy-6,6-dimethyl-N-(2-

aminobenzothiazol-6-yl)benzo[h]-
5,6-dihydroquinazoline-2-amine
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6,6-Dimethyl-9-methoxy-N-(2-
methylbenzimidazol-5-yl)-4-

methylthio-benzo[h]-5,6-
dihydroquinazoline-2-amine

CT6236-00
N-(6-Benzothiazolyl)-6,6-dimethyl-9-
methoxy-4-methylthio-benzo[h]-5,6-

dihydroquinazoline-2-amine

All kinase/PDE7 inhibitors were synthesised by the medicinal chemistry department of 

Celltech (Slough, UK) according to the details given in patents WO 9841512, 9719065, 

9828281, 9858926 Compounds were kept as frozen stock solutions at a concentration 

of 20mM in DMSO, the repeated freeze thawing of compounds was avoided.

2.3 Cell based assays

2.3.1 Purification of human PBMC

Peripheral blood mononuclear cells were isolated from normal healthy volunteers. Whole 

blood was taken by venous puncture using heparinised vacutainers (Becton Dickinson), 

diluted 1 in 4 in RPMI 1640 (Gibco, UK) and centrifuged at 400g for 35 min over a Ficoll- 

paque gradient (Amersham-Pharmacia Biotech, UK). Cells at the interface were removed 

and washed once followed by a low speed spin to remove platelets. Unless stated otherwise, 

cells were then resuspended in RPMI 1640 containing 10% FCS and penicillin 100 units 

ml \  streptomycin 50|ig mP’ and glutamine 2mM (Gibco, UK).

2.3.2 LPS stimulation of PBMC

PBMC were resuspended at a density of 2x10  ̂ cells/well in flat bottomed 96 well tissue 

culture treated plates. Cells were stimulated with an optimal dose of LPS {E.coli strain
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B5:055, Sigma, at lp.g ml'^) and incubated at 37°C in 5%C02/95% air. Cytokine production 

was measured from cell free supernatants by sandwich ELISA (Chapter 2.4.).

2.3.3 Antigen stimulation of human PBMC

PBMC were resuspended at a density of 2x10  ̂cells/well in round bottomed 96 well tissue 

culture treated plates. Assays were performed in RPMI 1640 with 10% pooled human AB 

serum as a replacement for FCS. Healthy volunteers were chosen for their potential 

reactivity to tetanus toxoid and house dust mite antigen prior to use in assays. Only reliable 

and strong responders to each antigen were chosen. Cells were stimulated with an optimal 

dose of tetanus toxoid (Wellcome Laboratories, Beckenham, UK, at l|Lig ml'^) and incubated 

for five days at 37° in 5%C02/95% air. Cellular proliferation was measured by the 

incorporation of ^H-thymidine. Cells were harvested onto glass fibre filter mats using a 

Skatron 96 well harvester (Molecular Devices, Sunnyvale, CA) and ^H-thymidine 

incorporation measured using a (3-plate counter (Wallac-Perkin Llmer, UK). Cells were also 

stimulated with an optimal dose of house dust mite antigen (part purified preparation of 

Dermataphagoides pterrenyssinus, ALK, Denmark, at 5000 units ml'^) and incubated for 

five days at 37°C in 5%C02/95% air. Cellular proliferation was measured by the 

incorporation of ̂ H-thymidine.

2.3.4 Superantigen stimulation of human PBMC

PBMC were resuspended at a density of 2x10^ cells/well in round bottomed 96 well tissue 

culture treated plates. Cells were stimulated with an optimal dose of superantigen (an equal 

mixture of staphylococcal enterotoxins A, B, D and E, Toxin Technologies, Sarasota, FL, at 

0.1 ng mf^) and incubated at 37°C in 5%C02/95% air. Cellular proliferation was measured 

by the incorporation of ̂ H-thymidine.
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2.3.5 Anti-CD3 stimulation of human PBMC

PBMC were resuspended at a density of 2x10  ̂cells/well in round bottomed 96 well tissue 

culture treated plates. Cells were stimulated with an optimal dose of the anti-CD3 antibody, 

OKT3, (Celltech, UK, at 0.05pg ml'^) and incubated at 37°C in 5%C02/95% air. Cellular 

proliferation was measured by the incorporation of ^H-thymidine. Where indicated, cells 

were resuspended in DMEM (Gibco, UK) containing 10% FCS and penicillin, streptomycin 

and glutamine (Low biotin preparation). The cytokine production from such cultures was 

measured using a multiplex cytokine assay (Section 2.4.4).

2.3.6 Concanavalin A (Con A) stimulation of human PBMC

PBMC were resuspended at a density of 2x10  ̂cells/well in round bottomed 96 well tissue 

culture treated plates. Cells were stimulated with an optimal dose of Con A (at lp,g ml'^) and 

incubated at 37°C in 5%C02/95% air. Cellular proliferation was measured by the 

incorporation of ̂ H-thymidine.

2.3.7 Phytohaemagglutinin (PHA) stimulation of human PBMC

PBMC were resuspended at a density of 2x10^ cells/well in round bottomed 96 well tissue 

culture treated plates. Cells were stimulated with an optimal dose of PHA (derived from 

Phaseolus vulgaris, at l|ig ml'^) and incubated at 37°C in 5%C02/95% air. Cellular 

proliferation was measured by the incorporation of ̂ H-thymidine.

2.3.8 Phorbol 12- myristate-13-acetate (PMA) and ionomycin stimulation of 

human PBMC

PBMC were resuspended at a density of 2x10^ cells/well in round bottomed 96 well tissue 

culture treated plates. Cells were stimulated with an optimal dose of PMA (at l[ig ml'^) and 

ionomycin (Ca"̂ "̂  ionophore derived from Streptomyces conglobatus, at 10 ng ml'^) and 

incubated at 37°C in 5%C02/95% air. Cellular proliferation was measured by the
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incorporation of ^H-thymidine. IL-2 production was measured in cell free supernatants by 

sandwich ELISA (Chapter 2.4).

2.3.9 Mixed lymphocyte reaction (MLR)

PBMC from two HLA mismatched donors were selected for use in a MLR. The first donor’s 

cells, referred to as the ‘responder’, were resuspended at a density of 1x10  ̂ cells/well in 

round bottomed 96 well tissue culture treated plates. These cells were stimulated with the 

second donors cells, referred to as the ‘stimulator’, which had been irradiated for a period of 

45 min with a total dose of 2500 rads. These cells had no proliferative capacity but were 

determined to be alive by staining with trypan blue and propidium iodide. The stimulator 

cells were added to the responder cells at a density of 1x10  ̂in an equal volume. This gave a 

ratio of 1:1 responders to stimulators. Cells were was incubated for five days at 37°C in 

5%C02/95% air. Cellular proliferation was measured by the incorporation of ̂ H-thymidine.

2.3.10 Isolation of human mast cells derived from cord blood precursors

The purification of human mast cells was adapted from a technique developed by Saito et al 

Either heparin- or citrate-treated cord blood was taken from the umbilical cord vein of 

placental tissue (performed with parental consent). Cord blood was always used within 12 

hours of collection. Cord blood mononuclear cells were separated over Ficoll-paque 

gradients as detailed in section 2.3.1. Briefly, cord blood was diluted 1 in 4 with RPMI 1640 

and centrifuged at 400g for 35 min. Cells at the interface were removed and washed once 

followed by a low speed spin to remove platelets. Red cells were removed by suspension in 

red cell lysis buffer (155mM NH4CI; lOmM KHCO3 and O.lmM EDTA, in H2O pH = 7.4) 

for 5 minutes. Cells were then resuspended at a concentration of 1x10  ̂cells ml'* in a 75cm^ 

tissue culture flask in mast cell media (RPMI1640, 10% FCS, penicillin, streptomycin, 

glutamine, transferrin 5pg ml'  ̂ , insulin 5pg m l'\ sodium selinite 5ng ml'* and HEPES 

25mM). Cells were treated with a cocktail of human recombinant stem cell factor (SCF) 

4.3nM (R&D Systems, Oxford, UK), interleukin-6 (lL-6) 2.5nM (R&D systems, Oxford, 

UK) and 300nM PGE2 (prostaglandin E2) and incubated at 37°C in 5%C02/95% air. Growth
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factors were added at weekly intervals to cultures to which fresh mast cell media had also 

been added. Cellular viability was assessed weekly using trypan blue and cellular 

morphology was assessed using cytospin preparations stained with Giemsa/May-Grünwald.

2.3.11 Anti-IgE stimulated human mast cell degranulation

Cord blood derived mast cells (cbMC) were grown in a cocktail of SCF, IL-6 and PGE2 for 

70 days prior to harvest. cbMC were resuspended at a density of 2x10“̂ cells/well in flat 

bottomed 96 well tissue culture treated plates. Cells were preincubated with lOpg ml'  ̂ of 

human IgE protein (Serotec, Oxford, UK) for 2 hours in mast cell media. Cells were then 

stimulated with an optimal dose of mouse anti-human IgE antibody (Pharmingen, at 5pg 

ml'h, either in the presence or absence of SCF (lOng ml'h, for 30 mins at 37°C in 5% 

C02/95% air. Plates were then spun at 200g for 3 minutes and supernatants taken and frozen 

at -70°C. The concentration of histamine and peptido-leukotriene was determined in 

supernatants by EIA (Section 2.4.5 and 2.4.6).

2.3.12 PMA and ionomycin stimulated human mast cell degranulation

cbMC were resuspended at a density of 2x10"̂  cells/well in flat bottomed 96 well tissue 

culture treated plates. Cells were stimulated with an optimal dose of PMA (Ipg ml'h and 

ionomycin (lOng ml'h and incubated for 30 min at 37°C under conditions of 5% C02/95% 

air. Plates were then spun at 200g for 3 minutes and supernatants taken and frozen at -70°C. 

The concentration of histamine and peptido-leukotriene was determined from supernatants 

by EIA (Section 2.4.5 and 2.4.6).

2.3.13 Preparation of rat pleural mast cells

Mature Sprague-Dawley rats were killed according to an approved Home Office schedule. 

The underside of the rat was sprayed with 70% ethanol to reduce contamination by hair. Skin 

was removed from belly to ribs. The diaphragm was cut near the sternum and injected with 

2mls of DPBS+ (Dulbecco’s PBS with 0.1%BSA and 0.1%glucose); the pleural cavity
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massaged and the washout placed into a 50ml centrifuge tube. Rat pleural lavages were 

centrifuged at 150g for 8 minutes. Pelleted cells were resuspended in 40ml cDMEM 

(DMEM + 10%FCS + glutamine + pen/strep) and centrifuged at 150g for 8 minutes. Pelleted 

cells were resuspended in 7.5 mis of 72.5% isotonic Percoll (Amersham Pharmacia Biotech) 

and placed into a 15ml centrifuge tube. 1ml of cDMEM was layered on top of the cell 

suspension and the tube centrifuged at 300g for 10 minutes. Cells at the interface and in the 

supernatant were discarded and the pellet resuspended in lOmls of cDMEM. Cells were 

washed once more in lOmls of cDMEM prior to use in assays.

2.3.14 Anti-IgE stimulated rat pleural mast cell degranulation

Rat pleural mast cells were resuspended in 1ml of cDMEM containing 2.5jLtg mP* of rat IgE 

(Zymed, San Francisco, CA) incubated overnight at 37°C in 5% C02/95% air. Cells were 

then washed and resuspended in cDMEM at a density of 2.5x10"̂  cells/well in round 

bottomed 96 well tissue culture treated plates. After 15 minutes incubation at 37°C, cells 

were stimulated with l[ig ml'  ̂ anti-rat IgE and incubated for a further 30 minutes at 37°C. 

Plates were then centrifuged at 200g for 5 minutes and supernatants harvested. The 

concentration of histamine was determined from supernatants by EIA (Section 2.4.5).

2.4 Immunoassays

2.4.1 Assay buffers (ELISA)

Coating buffer : 4.3g NaHCOs, 5.3g Na2 COs made up to 1 litre with distilled H2 O,

pH 9.4.

Blocking buffer: 8.0g NaCl, 1.42g Na2HP04.2H20, 0.2g KH2PO4, 0.2g KCl, 5.0g

bovine serum albumin (fraction V) made up to 1 litre with distilled 

H2O, pH 7.4.

Assay buffer: 8.0g NaCl, 1.42g Na2HP0 4 .2H20, 0.2g KH2PO4, 0.2g KCl, 5.0g

bovine serum albumin (fraction V), 1ml Tween20 made up to 1 litre 

with distilled H2O, pH 7.4.
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Wash Buffer: 9.0g NaCl, 1ml Tween20 made up to 1 litre with distilled H2O, pH

7.4.

Stop solution : 1.8M H2SO4

2.4.2 Cytokine sandwich ELISA protocol 1

Nunc Maxisorb plates (Nalge Nunc, Rochester, NY) were coated with 2.5 \ig ml'  ̂of capture 

antibody (anti-IL-la, -lL-4, -lL-6, -IL-8, -IL-10, -TNF-a and-IFN-y) overnight at 4°C in 

coating buffer. Wells were then aspirated and blocking buffer added whilst plates were 

rotated (250rpm on an orbital shaker (Stuart Scientific, Bibby Sterilin, Staffordshire, UK)) at 

room temperature (RT) for 1.5h. Plates were then washed four times with wash buffer, using 

a Denley Wellwash 4 plate washer (Denley,Thermoquest). Standards were diluted in assay 

buffer and added along with samples to plates and incubated at RT for 2 h. The plates were 

washed a further four times and biotinylated detection antibody added at a concentration of 

2.5 pg ml'  ̂ in assay buffer. Plates were incubated at RT for a further 1.5 h. The plates were 

washed a further four times and streptavidin conjugated to horseradish peroxidase (Amdex, 

Amersham, UK) added at a concentration of 1 in 500 in assay buffer. The plates were 

incubated at RT for a further 30 min. Plates were washed four times and 

tetramethylbenzidine (TMB, Intergen, CA) substrate added. Plates were allowed to develop 

for between 10 to 30 min and the reaction terminated using stop solution. Plates were read at 

450nm with a reference reading taken at 630nm using a Labsystems Multiskan Ex plate 

reader (Labsystems, Thermo Labsystems, UK). Standard curves were constructed and data 

analysed using Genesis II software (Labsystems, Thermo Labsystems, UK). Minimum 

detection limits of each assay were determined to be at least two standard deviations above 

background readings.

2.4.3 Cytokine sandwich ELISA protocol 2

As for cytokine sandwich ELISA protocol 1 except, capture antibodies (anti-IL-ip, -IL-2

and-IL-12p40) were used at a concentration of 5pg m l'\ plates blocked for 2 h and the

concentration of detection antibody used was 0.4 pig m l'\
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2.4.4 Multiplex cytokine assay (Upstate biotech #48-001)

Cytokine production was measured from 0KT3 stimulated PBMC as indicated in chapter 

2.3.5. All assays were performed in 96 well ‘U’ bottomed polypropylene plates (Costar, 

NY). Recombinant standards, which contained 5000 pg ml'  ̂of IL-2, IL-4, TNF-a, IFN-y and 

GM-CSF, were reconstituted with DMEM and diluted over a range from 5000 to 31.25 pg 

ml"\ 50pil of standards and samples were added to 25pil of Luminex beads. Separate beads 

were conjugated to monoclonal antibodies that specifically recognised IL-2, IL-4, TNF-a, 

IFN-y and GM-CSF. Standards and samples were vortexed gently and incubated at room 

temperature (RT) for 2 hours in the dark. 25jLil of biotin-conjugated antibodies that 

specifically recognised IL-2, IL-4, TNF-a, IFN-y and GM-CSF, were then added to samples, 

vortexed gently and incubated at RT for 1.5 hours in the dark. 25pil of a 20pig ml'  ̂ solution of 

streptavidin-phycoeiythiin (PE) (Pharmingen, SanDiego, CA) was added and samples 

incubated at RT for 30 minutes in the dark to reveal the presence of bound antibody on bead. 

The reaction was terminated by adding 25pil of a 0.2% (v/v) solution of formaldehyde in 

PBS. The fluorescence of each bead set was assayed at an emission wavelength of 532nm 

using a Luminex 100 analyser (Luminex, Austin, TX). 50 beads were counted per assay 

point and sample concentrations were determined by linear regression analysis of standard 

curves, using Graphpad-prism 3 software (Graphpad software, San Diego, CA).

2.4.5 Histamine EIA (IBL kit #RE 59221)

Standards and samples were added to soda glass tubes with an equal volume of indicator 

buffer. Samples were acetylated for 30 min by treatment with acetylating agent (acetic 

anhydride). Samples were then diluted 1 in 20 in assay buffer and added to 96 well plates. 

Tracer (histamine-HRP) was then added to the wells and anti-histamine anti-serum. Plates 

were then incubated for 3 h at RT and then washed four times in wash buffer. TMB substrate 

was added and the reaction terminated with stop solution 20 minutes after the addition of
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substrate. Plates were read at an optical density of 450nm with a reference reading taken at 

630nm. Standard curves were constructed and data analysed using GenesisII software.

2.4.6 Peptido-Leukotriene and leukotriene C4 (kit # 520501, 520211) and 

prostaglandin D2 (Kit # 512011) EIAs (Cayman Chemical Co.)

Assays for peptido-leukotrienes were determined to cross react with the following; 

Leukotriene C4 (100%), D4 (100%), E4 (67%), D5 (61%), C5 (54%), E5 (41%), A3 (<0.01 %), 

A4 (<0.01%), B3 (<0.01 %), B4 (<0.01%). Leukotrienes C4, D4 and E4 are collectively termed 

peptido-leukotrienes. Plates pre-coated with mouse anti-rabbit IgG were treated with 

standards and samples plus peptido-leukotriene tracer (peptido-leukotriene linked to 

acetylcholinesterase) and peptido-leukotriene polyclonal antiserum. Plates were incubated 

for 18 hours at RT in the dark. Plates were then washed four times and Ellman’s reagent 

added (acetylthiocholine and 5,5’-dithio-bis-(2-nitrobenzoic acid)) and colour allowed to 

develop in the dark for between 60 to 90 min. Plates were read at a wavelength 405nm and 

total and non-specific binding calculated to allow for the estimation of peptido-leukotriene 

levels. Due to the rapid degradation of PGD2 methoxylamine (MOX) hydrochloride was 

added to cultures which formed stable PGD2 -  MOX derivatives, these were measured using 

specific antiserum raised against PGD2 -  MOX. Standard curves were constructed and data 

analysed using GenesisII software (Thermo Labsystems, UK).

2.4.7 cAMP EIA (Amersham kit #RPN225)

5x10^ human PBMC were suspended in DPBS (0.1% glucose and 0.1% bovine serum 

albumin in Dulbecco’s PBS). Cells were added to a 1.5ml Eppendorf tubes and mixed with 

inhibitor and incubated in a 37°C water bath for 10 minutes. l|ig  ml'  ̂Con A was added and 

samples incubated at 37°C prior to harvesting cAMP. cAMP was retrieved from samples by 

firstly cooling cells on ice. Tubes were then micro-centrifuged and the assay supernatant 

discarded. Cell pellets were resuspended in assay buffer (0.05M sodium acetate buffer, pH
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5.8 containing 0.02% BSA) and boiled for 10 minutes using a boiling water bath. Samples 

were snap frozen prior to assay using cAMP ELISA.

2.5 Flow cytometry

2.5.1 General procedure

1x10  ̂ cells were spun down in 5ml polypropylene Falcon tubes (Becton Dickinson, San 

Jose, CA). Cells were then washed once in PBS and then washed once more in 3ml of 

staining buffer (PBS, 0.5% heat-inactivated FCS and 0.1% sodium azide, pH 7.4). Cells were 

resuspended in 50jal of staining buffer with between 0.1 and 0.5pg pl'  ̂ of either 

fluorochrome or biotinylated conjugated antibody added in a reaction volume of lOpl. Tubes 

were incubated at 4°C for 30 min in the dark. Cells treated with biotinylated antibodies were 

washed twice in 3ml of cold staining buffer and incubated with streptavidin-PE (0.1 pg pl'^) 

in a reaction volume of 50pl. These tubes were incubated for a further 30 min at 4°C . Before 

analysis, all cells were washed twice in cold PBS and resuspended in 500pl of PBS without 

azide. Cell staining data was acquired using CellQuest software (Becton Dickinson) on either 

a FACScan or FACSCalibur flow cytometer (Becton Dickinson). Specific antibody staining 

was compared to staining with isotype antibody controls. PMT (photo-multiplier tube) 

voltage, threshold and compensation settings were adjusted using calibrite beads™ (Becton 

Dickinson). Positivity was assessed using histogram markers for single stains and quadrant 

markers, on dot plots, for double stains.

2.5.2 IL-2 receptor alpha chain expression on OKT3 stimulated human PBMC

1x10  ̂Human PBMC in round bottomed 96 well plates were stimulated with 0KT3 (0.05pg 

ml'^). Cells were assessed for the expression of CD25 (IL-2 receptor alpha chain) after 1, 2, 3 

or 4 days post-stimulus. 0KT3-stimulated cells were stained with CD3-FITC (fluorescein 

isothiocyanate) and CD25-PE according to the general staining protocol (Chapter 2.5.1). 

Lymphocytes were gated according to their characteristic forward and side light scattering 

properties. Lymphocytes that were deemed to be positive for CD3, using quadrant markers,
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were also assessed for CD25 expression. CD25 positivity was expressed in mean 

(geometrical) fluorescent units.

2.5.3 CD14 and CD16 expression on LPS and LPS plus IFN-y stimulated human 

PBMC

1x10  ̂human PBMC in 24 well plates (Costar, UK) were stimulated with LPS (Ipg ml'^) or 

LPS (Ipg ml'*) plus IFN-y (Ing ml'*) or left untreated. PBMC were harvested by scraping all 

cells from the bottom of each well. Cells were assessed for the expression of CD 14 and 

CD 16, using CD14-PE and CD16-FITC directly conjugated antibodies, according to the 

general staining protocol (section 2.5.1). Monocyte/macrophages were gated according to 

their characteristic forward and side light scattering properties. Monocyte/macrophages were 

assessed for both CD 14 and CD 16 expression using quadrant gates, and CD14/CD16 

positivity was assessed in terms of the percentage cells that stained double positive for both 

markers.

2.5.4 The expression of chemokine receptors on human cord blood derived mast 

cells

2.5.4.1 Light Scatter properties

Cord blood mast cells were analysed using flow cytometry to determine their physical 

phenotype. Cord blood mononuclear cells stimulated with SCF, IL-6 and PGE2 (section 

2.3.10) were assessed using flow cytometry at weekly intervals. Cellular light scattering 

properties, forward light scatter (a measure of cell size) and side or 90° light scatter (a 

measure of cell granularity) were measured. Forward and side scatter were plotted using dot 

plots and distinct populations were assessed using polygon gates applied to dot plots.

2.5.4.2 Chemokine receptor staining on cord blood mast cells

Distinct cbMC populations as determined in section 2.5.4.1. were stained with biotinylated 

antibodies against human CCRl, 2, 5 and CXCR5 and directly conjugated antibodies against 

human CCR3, 6 and CXCRl, 2, 3 and 4 according to the general staining protocol (section

45



Chapter 2

2.5.1). Chemokine receptor expression was assessed on distinct cbMC populations at weekly 

intervals. Expression was assessed using histogram plots and positivity was expressed in 

mean (geometrical) fluorescent units.

2.6 Enzyme assays

2.6.1 Reagents

Staurosporin, ATP (Tris salt), DTT, HEPES, pEY (polyglutamic acid tyrosine ratio of 4:1), 

manganese chloride were obtained from Sigma, protein kinase C assay kit, streptavidin-SPA 

beads and ^^P-yATP were obtained from Amersham. Brij-35 was obtained from Pierce and 

magnesium chloride was obtained from BDH. Microtitre plates for SPA were purchased 

from Wallac. 6-amino hexanoyl AEEIYGVLAKKK Lck substrate was synthesised by IBMS 

Southampton.

2.6.2 Enzymes

GST (glutathione S-transferase) -Lck (GST fusion proteins refer to enzymes expressed with 

a GST affinity tag to aid enzyme purification), was cloned from a Jurkat cDNA library and 

expressed as a GST fusion protein in mammalian NSO cells. GST-Lyn was produced in- 

house as a GST catalytic domain fusion by a Baculovirus-SF9 expression system. GST-Fyn 

was produced in-house as a GST catalytic domain fusion by a Baculovirus-SF9 expression 

system. PKC was purchased from Boehringer Mannheim. EGFR was produced in-house as a 

GST catalytic domain fusion by a Baculovirus-SF9 expression system. Zap-70 was produced 

in-house as a GST fusion by a Baculovirus-SF9 expression system, cdc-2 was purchased 

from Amersham. Full length PDE4A was harvested from baculovirus infected SF9 insect 

cells, partially purified from crude cell lysates using a Resource Q column with a 0 - 0.5M 

salt gradient. Truncated PDE4A enzyme, AQ44-L329, containing only the catalytic domain 

(without the high affinity Rolipram binding site (HARBS)) was purified from transfected 

COS cells
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2.6.3 GST-Lck enzyme assay

Reactions were carried out in a total volume of 200pl at room temperature in 96 well 

microtitre plates. The reaction mixture contained 20mM HEPES pH7.4, lOmM magnesium 

chloride, lOmM manganese chloride, 0.05% Brij 35, 0.5pM 6-amino hexanoyl 

AEEIYGVLAKKK peptide substrate, 0.6pM ATP (Tris salt) and 5pCi/ml 33P y-ATP. The 

compounds were added in DMSO so that the final DMSO concentration was 1%. The assay 

was run for 15 minutes before being stopped with 50pl stop solution; 3mM ATP in 125mM 

EDTA. 200pl of the final mixture is then transferred to a Millipore MAPH filtration plate 

containing lOOpl 75mM phosphoric acid. The plate was then left for at least 60 minutes at 

room temperature. The plate was then washed lOOpl x6 with 75mM Phosphoric acid and 

then lOOpl scintillant (Packard Ultima Gold) was added prior to counting in a Wallac 

Microbeta plate counter.

2.6.4 GST-Lyn enzyme assay

Reactions were carried out in a total volume of200jxl at room temperature in 96 well 

microtitre plates. The reaction mixture contained 20mM HEPES pH7.4, 2mM magnesium 

chloride, 2mM manganese chloride, 0.05% Brij 35, 5mM DTT, IpM 6-amino hexanoyl 

AEEIYGVLAKKK peptide substrate, 0.6pM ATP (Tris salt) and 5pCi/ml 33P y-ATP. The 

compounds were added in DMSO so that the final DMSO concentration was 1%. The assay 

was run for 15 minutes before being stopped with 50pl stop solution; 3mM ATP in 125mM 

EDTA. 200|xl of the final mixture was then transferred to a Millipore MAPH filtration plate 

containing lOOpl 75mM phosphoric acid. The plate was then left for at least 60 minutes at 

room temperature. The plate is then washed lOOpl x6 with 75mM Phosphoric acid and then 

lOOpl scintillant (Packard Ultima Gold) was added prior to counting in a Wallac Microbeta 

plate counter.

2.6.5 GST-FynT enzyme assay

Reactions were carried out in a total volume of 200pl at room temperature in 96 well 

microtitre plates. The reaction mixture contained 20mM HEPES pH7.4, 2mM manganese
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chloride, 0.05% Brij 35, lOpM 6-amino hexanoyl AEEIYGVLAKKK peptide substrate, 

0.6pM ATP (Tris salt) and 5pCi/ml 33P y-ATP. The compounds were added in DMSO so 

that the final DMSO concentration was 1%. The assay was run for 15 minutes before being 

stopped with 50pl stop solution; 3mM ATP in 125mM EDTA. 200|xl of the final mixture 

was then transferred to a Millipore MAPH filtration plate containing lOOpl 75mM 

phosphoric acid. The plate was then left for at least 60 minutes at room temperature. The 

plate was then washed lOOpl x6 with 75mM Phosphoric acid and then lOOpl scintillant 

(Packard Ultima Gold) is added prior to counting in a Wallac Microbeta plate counter.

2.6.6 Zap-70 enzyme assay

Reactions were carried out in a total volume of 200|il at room temperature in 96 well 

microtitre plates. The reaction mixture contained 20mM HEPES pH7.4, lOmM magnesium 

chloride, lOmM manganese chloride, 5mM DTT, 0.05% Brij 35, 5pg/ml pEY, 0.6pM ATP 

(Tris salt) and 5pCi/ml 33P y-ATP. The compounds were added in DMSO so that the final 

DMSO concentration was 1%. The assay was run for 10 minutes before being stopped with 

50|xl stop solution; 3mM ATP in 125mM EDTA. 200pl of the final mixture was then 

transferred to a Millipore MAFC filtration plate containing lOOpl 30% cold TCA which was 

left at 4°C overnight. The plate was then washed lOOpl x6 with 10% cold TCA, lOOpl x3 

with 100% ethanol and then lOOpl scintillant (Packard Ultima Gold) was added prior to 

counting in a Wallac Microbeta plate counter.

2.6.7 PKC (Amersham Kit RPN77) enzyme assay

Reactions were carried out in a 30pl reaction volume 50mM Tris pH 7.5 buffer containing 

ImM Ca2+, 15mM Mg2+, 0.6mole L-a phosphatidyl-L-serine and 2pg/ml'* PMA, 2.25pM 

peptide, 2.5mM DTT, 1.2pM ATP, 0.2pCi 33P y-ATP. For reactions that contained 

staurosporin, this was added in a DMSO solution and the final DMSO concentration did not 

exceed 1%. This was shown not to interfere with enzyme activity. (Data not shown.) The 

reaction was initiated with enzyme, either mix or individual isozymes and run for 10 minutes
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at room temperature before being stopped with 20pl 0.5M phosphoric acid containing IpM 

staurosporin. 30pl of the final mixture was then transferred to a Millipore MAPH filtration 

plate containing lOOpl 75mM phosphoric acid. The plate was then left for at least 60 minutes 

at room temperature. The plate was then washed lOOpl x6 with 75mM phosphoric acid and 

then lOOpl scintillant (Packard Ultima Gold) was added prior to counting in a Wallac 

Microbeta plate counter.

2.6.8 EGFR enzyme assay

Reactions were carried out in a total volume of 200pl at room temperature in 96 well 

microtitre plate. The reaction mixture contained 20mM HEPES pH7.4, 25mM magnesium 

chloride, ImM manganese chloride, 5mM DTT, 0.05% Brij 35, 5pg/ml pEY, IpM ATP 

(Tris salt) and 5pCi/ml 33P y-ATP. The compounds were added in DMSO so that the final 

DMSO concentration was 1%. The assay was run for 30 minutes before being stopped with 

50pl stop solution; 3mM ATP in 125mM EDTA. 200jxl of the final mixture was then 

transferred to a Millipore MAFC filtration plate containing lOOpl 30% cold TCA and then 

this is left at 4°C overnight. The plate was then washed lOOpl x6 with 10% cold TCA, lOOpl 

x3 with 100% ethanol and then lOOpl scintillant (Packard Ultima Gold) was added prior to 

counting in a Wallac Microbeta plate counter.

2.6.9 cdc-2 (Amersham SPA kit RPNQ 0170) enzyme assay

Reactions were carried out in a 40pl reaction volume containing, 50mM Tris-HCl pH 8.0 

buffer, lOmM Mg2+, lOOmM NazVOg, ImM DTT, 0.75pM (biotin-PKTPKKAKKL) 

peptide, 0.5pM ATP and 0.2pCi 33PyATP. For reactions that contained inhibitors, this was 

added in a DMSO solution and the final DMSO concentration did not exceed 1%. This was 

shown not to interfere with enzyme activity. The reaction was initiated with enzyme, and run 

for 30 minutes at room temperature before being stopped with 200pl streptavidin - PVT 

beads 5mg/ml in 50pM ATP in 5mM EDTA. The plate was left to stand for 30 minutes 

before being spun at 2000rpm for 10 minutes in a centrifuge and then read in the Wallac 

Microbeta plate counter.
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2.6.10 PDE enzyme assay

PDE (3, 4 or 7) enzymatic activity was assayed in a homogeneous scintillation proximity 

assay (SPA) using yttrium silicate SPA beads (Amersham, UK). The buffer used for dilution 

of substrate and enzyme contained 50nM TES pH 7.6 with lOmM MgCl2. Substrate was

[^H] cAMP/cGMP (Amersham) at 0.1 pm final concentration and the enzyme was titrated to 

give approximately 20% substrate hydrolysis at the 30 minute time-point. The inhibitors 

were added to the enzyme substrate in a DMSO solution prior to the addition of the enzyme. 

The reaction mixture was incubated at room temperature for 30 minutes then the reaction 

was terminated by the addition of PDE SPA beads at 20mg ml * in HPLC grade water. 

Samples were quantified in a Wallac Microbeta scintillation counter and IC50 values 

calculated using XL Fit (Microsoft) with a log dose inhibition curve. Background was given 

by the addition of an excess quantity of a potent reference PDE inhibitor.

2.6.11 [^H]-Rolipram binding to guinea-pig membranes

R-Rolipram was iodinated and dispatched to Amersham International, where it was titrated 

by catalytic reduction with palladium charcoal to a specific radioactivity of 851 Gbq/mmof*. 

The ability of compounds to inhibit the binding of [̂ H] R-Rolipram to guinea-pig 

membranes was investigated using the method devised by Schneider et al *̂ .̂ For saturation 

binding experiments , the concentration of [̂ H] R-Rolipram was varied from 0.01 to 30nM. 

Sufficient enzyme was used to bind 10% of the total label at 5nM. Non-specific binding was 

assayed in the presence of 2pM unlabelled Rolipram. Specific binding was calculated by 

subtracting non-specific from total binding.

2.7 Statistical analysis of results

Where appropriate statistical analysis of data was performed using Graphpad-Prism version 

3 (Graphpad software, San Diego, CA). To determine if parametric or non-parametric 

analysis of data was required Bartletts test of homogeneity of variance was performed. If the 

data was Gaussian or approximately Gaussian (using larger sample numbers) then parametric
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analysis of variance (ANOVA) was performed. For sample comparisons data was analysed 

using a two-tailed student’s T-test to which a P-value of =<0.05 was assigned as significant. 

To investigate the statistical relationship between two sets of data a Pearson correlation, 

assuming Gaussian distribution, was performed. The p-value for such correlation’s was set at 

=/<0.05. The coefficient of determination (r )̂ was derived from such calculations and used to 

explain the shared variance between two sets of data. If the data set was small, then no 

assumption of Gaussian distribution was made and a nonparametric (Spearman’s) correlation 

was made. Spearman’s (r) was calculated instead of an r̂  value. A two-tailed p-value of 

=/<0.05 was assigned as significant.
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monocyte function
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Chapter 3

Evaluation of the effect of inhibition of phosphodiesterase 

type 4 on human monocyte function

3.1 Introduction

Human monocytes are a rich source of both pro-inflammatory cytokines; TNF-a, IL-la, IL- 

1(3, IL-6, IL-8 and IL-12 and anti-inflammatory cytokines; IL-10, IL-lRa (IL-1 receptor 

antagonist) and sTNF-R (Soluble TNF receptor). Regulation of the balance of these two 

types of mediator determines whether a response to infection or invasion by foreign material 

is either normal or inappropriate.

The elevation of cAMP is a key regulatory step in controlling inflammatory cell activation, 

and is an important mechanism for controlling the balance between pro- and anti

inflammatory responses. This need for control has resulted in many co-operative systems 

which act in unison to safeguard the production of cAMP. For instance many G protein 

coupled receptors, such as the histamine receptors, mediate intracellular signalling by 

controlling cAMP levels These pathways control the synthesis of cAMP by acting upon 

the enzyme, adenylyl cyclase, which is responsible for the synthesis of cAMP from AMP 

188:189 also be controlled by another family of enzymes, the phosphodiesterases,

which are responsible for the degradation of cAMP It is the eventual balance of the 

action of the phosphodiesterase and the adenylyl cyclase enzymes which determines the 

level of intracellular cAMP.

The cAMP dependent type 4 phosphodiesterase (PDE4) is abundantly present in 

inflammatory cells Thus the regulation of its activity has been proposed as a

therapeutic target to control the level of cAMP in these cells PDE4 inhibitors potently 

inhibit TNF-a production by activated human and murine monocytes both in vitro and in
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vivo *47;150;176 i48;149 i99;200 ^he inhibition of TNF-a by PDE4 inhibitors has implications for 

their use in inflammatory diseases, such as rheumatoid arthritis, where blockade of TNF-a 

has been validated as a therapy for this disease

The aim of the work presented in this chapter was to clarify how inhibition of PDE4 controls 

the production of cytokines from activated human peripheral blood mononuclear cells. 

Varying effects on the production of pro-inflammatory cytokines by elevating cAMP levels 

have been reported in the literature These variations, in both human and murine

experiments, have suggested that apart from TNF-a, regulation of IL-1, IL-6 and IL-10 by 

cAMP is complex. The work in this chapter has attempted to quantify the effect PDE4 

inhibition has on inflammatory cytokine synthesis. The concept that different activation 

signals delivered to the monocyte may alter the effect of PDE4 inhibition on cytokine release 

has also been explored.

3.2 Results

3.2.1 The effect of PDE4 inhibition on TNF-a release from human PBMC

In order to deduce the exact kinetics of cytokine production from activated human 

monocytes human PBMC were stimulated with purified EPS derived from E.coli (strain 

055:B5) and the production of TNF-a, IL-1 a, IL-lp, IL-6, IL-8 and IL-10 proteins was 

measured over a period of up to four days post stimulus, fig 3.1.
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Figure 3.1: The production of cytokines from LPS stimulated human PBMC. ixlOf 
human PBMC, were stimulated with l|ig  ml ' of LPS derived from E.coli (055:B5 strain). TNF-a, IL-1 a, IL-ip, 
IL-6 , IL- 8  and IL-10 were measured at the times indicated in cell free supernatants by sandwich ELISA. The 
amount of cytokine produced was quantified relative to standard curves for all cytokines tested. The data shown 
is representative of at least seven other experiments. The values shown are the mean of three separate points, 
standard deviations were omitted to allow the nature of the curves to be fully represented.

The maximum production of cytokines varied markedly. IL-8 was produced in the greatest 

quantities with a maximum concentration found in the culture fluid of 122.3 ng ml'\ In 

contrast only 853 pg ml * of IL-Ia was found to be produced.

When human PBMC were pre-treated with the potent PDE4 inhibitor RP73401 (Chapter

2.2.1) prior to stimulation with LPS, RP7340I blocked the production of TNF-a. Figure 3.2 

indicates that RP73401 potently, and dose dependently, inhibited TNF-a protein production 

from LPS stimulated human PBMC. RP7340I inhibited the production of TNF-a for the 

duration of the experiment.
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Figure 3.2: The effect of the PDE4 inhibitor RP73401 on the LPS stimulated release of 
TNF-a from human PBMC. IxlO^ human PBMC were incubated with the PDE4 inhibitor RP73401 at 
the concentrations indicated for 30 min prior to stimulation with Ijag ml ’ of LPS derived from E.coli (055:B5 
strain). TNF-a was measured at the times indicated in cell free supernatants by sandwich ELISA. The experiment 
shown is representative of six others. Mean values are indicated ± SD.

3.2.2 The effect of PDE4 inhibition on the production of IL-1 a , XL-(3, IL-6 and 

IL-8 by human PBMC

The effect of RP73401 on LPS induced IL-1 a  production by human PBMC was evaluated, 

fig 3.3. Pre-treatment of cells with RP73401 strongly inhibited the production of IL-1 a. The 

effect of RP73401 was dose-dependent. The highest concentration of RP73401 (lOpM) 

inhibited IL-1 a  production by 84 ± 5.1% when measured 9 hours after cytokine induction.

The effect of RP73401 on the other IL-1 family member, IL-lp, was also tested, fig 3.4. 

Unlike its effect on IL-1 a, RP73401 inhibited IL-lp production to a lesser extent. However, 

the effect of RP73401 was dose-dependent. The highest concentration of RP73401 (lOpM) 

inhibited IL-1 (3 production by 39.1 ± 2.5%, 7 hours after LPS challenge.
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Figure 3.3: The effect of the PDE4 inhibitor RP73401 on the LPS stimulated release of 
IL-loC from human PBMC. IxlO^ human PBMC were incubated with the PDE4 inhibitor RP73401 at the 
concentrations indicated for 30 min prior to stimulation with Ipg ml ' of LPS derived from E.coli (055:B5 strain). 
IL-1 a  was measured at the times indicated in cell free supernatants by sandwich ELISA. The experiment shown 
is representative of four others. Mean values are indicated ± SD.
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Figure 3.4: The effect of the PDE4 inhibitor RP73401 on the LPS stimulated release of 
IL-IP from human PBMC. Ixlof human PBMC were incubated with the PDE4 inhibitor RP73401 at the 
concentrations indicated for 30 min prior to stimulation with Ipg ml ' of LPS derived from E.coli (055:B5 strain). 
IL-ip was measured at the times indicated in cell free supernatants by sandwich ELISA. The experiment shown 
is representative of three others. Mean values are indicated ± SD.
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In contrast to its effects on TNF-a and IL-1, RP73401 did not inhibit IL-6 production by 

LPS stimulated human PBMC, fig 3.5. Even at the highest concentration tested (lOpM), 

RP73401 showed no statistically significant inhibition of IL-6, p=0,799.

Like IL-6, RP7340I was unable to inhibit the production of IL-8 by LPS stimulated human 

PBMC cultures, fig 3.6, Even at the highest concentration tested (lOpM), RP7340I showed 

no statistically significant inhibition of IL-8 production, p=0.720.

60000

50000

40000

30000

20000
— O—  LPS alone 
- - 0- -  LPS + O.InM RP73401 
— a — LPS + 1nM RP73401 
— X— LPS + 1GnM RP73401

LPS + 1G,GG0nM RP734G1

10000

0
0 10 20 30 40 50 60 70 80 90 100

Time In hours

Figure 3.5; The effect of the PDE4 inhibitor RP73401 on the LPS stimulated release of 
IL-6 from human PBMC Ixiof human PBMC were incubated with the PDE4 inhibitor RP73401 at the 
concentrations indicated for 30 min prior to stimulation with Ipg ml * of LPS derived from E.coli (055:B5 strain). 
IL-6 was measured at the times indicated in cell free supernatants by sandwich ELISA. The experiment shown is 
representative of four others. Mean values are indicated ± SD.
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Figure 3.6: The effect of the PDE4 inhibitor RP73401 on the LPS stimulated release of 
IL-8 from human PBMC. IxIO  ̂ human PBMC were incubated with the PDE4 inhibitor RP73401 at the 
concentrations indicated for 30 min prior to stimulation with Ipg mf* o f LPS derived from E.coli (055:B5 strain). 
IL-8 was measured at the times indicated in cell free supernatants by sandwich ELISA. The experiment shown is 
representative of three others. Mean values are indicated ± SD.

3.2.3 The role of IL-10 in PDE4 inhibitor-mediated blockade of TNF-a 

production

To investigate if elevated levels of IL-10 were responsible for the blockade of TNF-a 

caused by inhibition of PDE4, exogenous human recombinant (hr) IL-10 (hrIL-IO) was 

added to human PBMC at the time of LPS challenge. The effect of the addition of hrIL-IO 

on TNF-a, IL-1 (3 and IL-6 was measured and compared to the effect of RP73401 on the 

same cytokines (figs 3.2, 3.4 and 3.5). Figure 3.7a shows that hr IL-10 suppressed the 

production of TNF-a by LPS activated human PBMC. Ing ml'  ̂ of IL-10 inhibited TNF-a 

production for the duration of the experiment, blocking 73.4 ± 8.3% of TNF-a released 20 

hours after stimulation. Figure 3.7b indicates that hrIL-10 also suppressed the production of 

IL-ip by LPS activated human PBMC. Ing ml * of hrIL-10 inhibited IL-1(3 production for 

the duration of the experiment, blocking 55.8 ± 2.7% of IL-ip released 20 hours after 

stimulation. Figure 3.7c indicates that hr IL-10 weakly suppressed the production of IL-6 by
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LPS activated PBMC. Ing ml'  ̂ of hr IL-10 inhibited IL-6 production for the duration of the 

experiment, blocking 21.8 ± 0.4% of IL-6 released 20 hours after stimulation, however this 

inhibition was not statistically significant, p=0.749. The effect of hrIL-IO on LPS induced 

cytokine production was similar to the effect RP7340I had on TNF-a production. To test if 

IL-10 mediated the effect of RP7340I on TNF, the IL-10 produced in LPS stimulated PBMC 

cultures was neutralised using an anti-fL-IO receptor antibody capable of neutralising 

bioactive IL-10.
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Figure 3.7: The effect of human recombinant IL-10 on the LPS stimulated release of 
TNF-a, IL-ip and TNF-a from human PBMC. Ix lof human PBMC were incubated with human 
recombinant IL-10 (Ing ml'h for 30 min prior to stimulation with Ipg ml'  ̂ o f LPS derived from E.coli (055:B5 
strain). TNF-a (A), IL-ip (B) and IL-6 (C) were measured at the times indicated in cell free supernatants by 
sandwich ELISA. The experiment shown is representative o f three others. Mean values are indicated ± SD.

The antibody specifically recognised the IL-10 receptor, and at a dose of 5pg ml'  ̂ blocked 

total IL-10 biological activity (according to the manufacturers data). Table 3.1 indicates that 

at a dose of 5pg ml ' an anti-IL-IO receptor antibody was unable to effect the ability of
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RP73401 to inhibit TNF-a production. This effect was not dependent on the antibody used, 

as both neutralising monoclonal and polyclonal antibodies against IL-10 protein (as well as 

the anti-IL-10 receptor antibody used in this study) had no effect on the ability of RP73401 

to block LPS stimulated TNF-a release (data not shown).

Table 3.1: The effect of an anti-IL-10 receptor antibody on the PDE4 inhibitor- 
mediated inhibition of TNF-a release from LPS stimulated human PBMC. *

Concentration of 

RP73401 (nM)

Anti-IL-10 receptor 

antibody (5|ig ml ')
SEM±

M0PC21 control 

antibody (5pg ml ')
SEM±

1000 88.9% 5.5% 89.2% 4.6%

100 87.3% 5.0% 82.9% 4.4%

* IxlOf human PBMC were incubated with 1000 and lOOnM of the PDE4 inhibitor RP73401 for 30 min prior to 
the addition of either 5jxg ml'* of a mouse anti human IL-10 receptor antibody or 5pg ml'  ̂ o f an isotype control 
antibody (M 0PC2I) and Ipg ml'  ̂ o f LPS derived from E.coli (055:B5 strain). TNF-a was measured after 24 
hours from cell free supernatants by sandwich ELISA. The values shown are expressed as percentage inhibition 
of total specific TNF-a produced in the absence of any drug. The experiment shown is the mean of four other 
experiments ± SEM.

RP73401 was also tested to see if it effected IL-10 levels in LPS stimulated cultures of 

human PBMC. Figure 3.8 indieates that RP73401 weakly inhibited IL-10 production. The 

effect of RP73401 on IL-10 levels was greatest between 20 and 40 hours after LPS stimulus. 

In the experiment shown the highest concentration of RP73401 (lOpM) inhibited IL-10 

production by between 48 ± 3.6% 20 hours after LPS challenge. In other experiments the 

effect of RP73401 was weaker, by 48 hours post LPS challenge RP73401 did not inhibit IL- 

10 production (fig 3.12).
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Figure 3.8: The effect o f the PDE4 inhibitor RP73401 on the LPS stim ulated release of 
IL-10 from hum an PBMC. Ixlof human PBMC were incubated with the PDE4 inhibitor RP73401 at the 
concentrations indicated for 30 min prior to stimulation with l^ig ml'  ̂o f LPS derived from E.coli (055;B5 strain). 
IL-10 was measured at the times indicated in cell free supernatants by sandwich ELISA. Experiments shown is 
representative of five others. Mean values are indicated ± SD.

3.2.4 The effect o f LPS plus IFN-y on the phenotype o f hum an m onocytes and the effect 

of PDE4 inhibition on pro-inflammatory cytokine production by LPS plus IFN-y 

stimulated hum an PBMC

In order to test if different activation conditions altered the phenotype of monocytes, the 

expression of two surface proteins, CD14 (co-receptor for the recognition of LPS) and CD16 

(low-affinity receptor for IgG), was measured. Figure 3.9 shows the effect of LPS, or LPS 

plus IFN-y, or tissue culture media (containing 10% PCS) on the surface expression of CDI6 

in CD 14 positive cells, measured over a six day period. After 2 days in culture 89.7 ± 1.9% 

of untreated CD 14 positive cells expressed CD 16, 43.7 ± 0.5% of LPS treated cells and 22.8 

± 4.6% of LPS plus IFN-y treated cells expressed CD 16. By day 4 these percentages had 

altered so, 77.4 ± 4.8% of untreated cells were positive, 62.2 ± 7.8% of LPS treated cells 

were positive and 18.1 ± 6.3% of LPS plus IFN-y treated cells were positive. On the sixth 

day 53.9 ± 1.5% of untreated cells were positive, 22.4 ± 2.1% of LPS treated cells were 

positive and 10.9 ± 4.6% of LPS plus IFN-y treated cells were positive.
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Figure 3.9: The effect o f LPS plus IFN-y on the maturation of CD14/CD16 double 
positive monocytes. IxlOf human PBMC were incubated with l|ag ml ' o f LPS derived from E .coli (055:B5 
strain), l|ag ml ' of LPS derived from E.coli (055:B5 strain) plus Ing ml ' of human recombinant IFN-y or left 
untreated. Prior to stimulation monocytes (identified using flow cytometry) were analysed for the dual expression 
of the surface markers CD 14 and CD 16. CD 14/CD 16 levels were enumerated using a mouse anti-human CD 14 
FITC antibody and a mouse anti-human CD 16 PE antibody. Positivity for these markers was assessed by 
comparison with isotype control antibodies and the percentage o f CD14 positive cells staining for CD16 was 
calculated. CD 14 and CD 16 expression were monitored daily. The values shown are the mean o f six separate 
experiments ± SEM.

Using the same experimental conditions the effect of RP73401 (20pM) on CD16 expression 

in CD 14 positive monocytes was investigated. Figure 3.10a shows the effect of 20p,M 

RP73401, on CD 16 expression in CD 14 positive cells treated with tissue culture medium. 

After 2 days in culture 89.7 ± 1.9% of untreated CD14 positive cells expressed CD16 

compared to 42.3 ± 11.7% of cells treated with RP73401. After 4 days in culture 77.4 ± 

4.8% of untreated CD 14 positive cells expressed CD16 compared to 54.3 ± 16.3% of cells 

treated with RP73401. On the sixth day in culture 53.9 ± 1.5% of untreated CD 14 positive 

cells expressed CD16 compared to 38.4 ± 10.8% of cells treated with RP73401. Figure 

3.10b shows the effect of 20pM RP73401, on CD16 expression in CD 14 positive cells 

treated with LPS. After 2 days in culture 43.7 ± 0.5% of LPS treated CD 14 positive cells 

expressed CD 16 compared to 11.5 ± 4.0% of cells treated with RP73401. After 4 days in 

culture 62.2 ± 7.8% of LPS treated CD 14 positive cells expressed CD 16 compared to 12.1 ± 

1.8% of cells treated with RP73401. On the sixth day in culture 22.4 ± 2.2% of LPS treated
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CD 14 positive cells expressed CD16 compared to 3.9 ± 1.2% of cells treated with RP73401. 

Figure 3.10c shows the effect of 20|xM RP73401, on CD16 expression in CD 14 positive 

cells treated with LPS plus IFN-y. After 2 days in culture 22.7 ± 4.6% of LPS plus IFN-y 

treated CD 14 positive cells expressed CD 16 compared to 8.3 ± 1.7% of cells treated with 

RP73401. After 4 days in culture 18.1 ± 6.3% of LPS plus IFN-y treated CD 14 positive cells 

expressed CD16 compared to 3.2 ± 1.3% of cells treated with RP73401. On the sixth day in 

culture 10.9 ± 4.6% of LPS plus IFN-y treated CDI4 positive cells expressed CD16 

compared to 4.8 ± 0% of cells treated with RP73401.
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Figure 3.10; The effect of RP73401 on the maturation of CD14/CD16 double positive 
monocytes. IxlOf human PBMC were incubated with Ipg ml ' of LPS, Ipg ml ' of LPS plus Ing ml ' o f IFN- 
Y or left untreated. Cells were either incubated with or without 20pM of RP73401. Prior to stimulation monocytes 
(identified using flow cytometry) were analysed for the dual expression of the surface markers CD14 and CD 16. 
CD 14/CD 16 levels were enumerated using a mouse anti-human CD 14 FITC antibody and a mouse anti-human 
CD 16 PE antibody. Positivity for these markers was assessed by comparison with isotype control antibodies and 
the percentage of CD 14 positive cells staining for CD 16 was calculated. CD 14 and CD 16 expression were 
monitored daily. The values shown are the mean o f three separate experiments ± SEM.
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The PDE4 inhibitor RP73401 was compared in terms of its ability to alter the production of 

TNF-a and IL-10 from LPS and LPS plus IFN-y stimulated human PBMC. Figure 3.11 

shows the percentage inhibition of TNF-a production by human PBMC stimulated with 

either LPS or LPS plus IFN-y (Ing ml *). 48 hours after stimulation RP73401 inhibited LPS 

induced TNF-a production more potently and to a greater extent than LPS plus IFN-y 

induced release. Using lOnM of RP7340I to compare effects, 90.9 ± 2.6% of LPS induced 

TNF-a was inhibited compared to 70.2 ± 2.6% of LPS plus IFN-y induced TNF-a. The IC50 

for RP73401 also shifted, being 0.4nM in LPS stimulated cultures and 3.5nM in LPS plus 

IFN-y stimulated cultures. These differences were statistically significant, p<0.05.
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Figure 3.11: The effect of the PDE4 inhibitor RP73401 on LPS and LPS plus IFN-y 
stimulated release of TNF-a from human PBMC. IxlOf human PBMC were incubated with the 
PDE4 inhibitor RP73401 at the concentrations indicated for 30 min prior to stimulation with Ipg ml ' of LPS 
derived from E .coli (055:b5 strain) or Ipg ml ' of LPS derived from E .coli (055:b5 strain) plus Ing ml ' of human 
recombinant IFN-y. TNF-a was measured after 48 hours from cell free supernatants by sandwich ELISA. The 
values shown are expressed in terms of percentage inhibition of total specific TNF-a produced in the absence of 
any drug. The data shown is the mean of seven experiments ± SEM. A single asterisk denotes a statistically 
significant difference in the ability of the same dose of RP73401 to inhibit TNF-a production from LPS versus 
LPS plus IFN-y stimulated human PBMC, p<0.05. A double asterisk denotes a statistically significant difference 
in the ability of the same dose of RP73401 to inhibit TNF-a production from LPS versus LPS plus IFN-y 
stimulated human PBMC, p<0.01.
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The effect of RP73401 on LPS and LPS plus IFN-y stimulated IL-10 release was also 

compared in the same way. Figure 3.12 shows that 48 hrs after LPS stimulation RP7340I 

had little overall effect on IL-10 production by human PBMC, however RP7340I inhibited 

IL-10 production when measured at earlier time points (as indicated in fig 3.8). In contrast, 

RP7340I dose-dependently augmented IL-10 production by LPS plus IFN-y stimulated 

human PBMC cultures. At a concentration of lOnM, RP73401 inhibited 2.4 ± 9.4% of LPS 

induced IL-10 compared to a stimulation of IL-10 levels by 83.9 ± 25.6 % in LPS plus IFN-y 

stimulated cells. This effect was also seen at earlier time points (data not shown).
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Figure 3.12: The effect of the PDE4 inhihitor RP73401 on the LPS and LPS plus IFN-y 
stimulated release of IL-10 from human PBMC. IxlOf human PBMC were incubated with the 
PDE4 inhibitor RP73401 at the concentrations indicated for 30 min prior to stimulation with Ipg ml ' o f LPS 
derived from E.coli (055;b5 strain) or Ipg ml * of LPS derived from E.coli (055:b5 strain) plus Ing ml * o f human 
recombinant IFN-y. IL-10 was measured after 48 hours from cell free supernatants by sandwich ELISA. The 
values shown are expressed in terms of percentage stimulation of total specific IL-10 produced in the absence of 
any drug. The data shown is the mean of seven experiments ± SEM.

To evaluate if this increased IL-10 production caused by inhibiting PDE4 in LPS plus IFN-y 

stimulated cells played a role in modulating TNF-a, bio-active IL-10 was neutralised using a 

monoclonal antibody to the IL-10 receptor. Figure 3.13, indicates that 5pg ml'  ̂ of an anti- 

IL-10 receptor antibody did not alter the ability of RP73401 to inhibit TNF-a production 24 

hours after human PBMC were stimulated with LPS plus IFN-y. At a concentration of lOnM,
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RP73401 inhibited 93.7 ± 0.6% of TNF-a in the presence of 5pg mf^ of an anti IL-10 

receptor antibody and inhibited 95.4 ± 0.7% of TNF-a in the presence of 5pg ml ' of 

M0PC21 (isotype matched control antibody).

In contrast to PBMC stimulated with LPS alone, cells stimulated with LPS plus IFN-y 

synthesised appreciable amounts of the pro-inflammatory cytokine lL-12. Figure 3.14 

indicates that RP73401, potently and dose dependently inhibited lL-12 p40 protein 

production by LPS plus IFN-y stimulated human PBMC. RP73401 inhibited the production 

of lL-12 p40 for the duration of the experiment, lOpM of RP73401 inhibiting 81.8 ± 7.1% of 

lL-12 p40 released 7 hours after LPS plus IFN-y challenge.
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Figure 3.13: The effect of an anti IL-10 receptor antibody on the ability of RP73401 to
block production of TNF-a from LPS plus IFN-y stimulated human PBMC. ixlOf human 
PBMC were incubated with the PDE4 inhibitor RP73401 at the concentrations indicated for 30 min prior to the 
addition of either 5gg ml ' of a mouse anti human IL-10 receptor antibody or 5pg ml ' o f an isotype control 
antibody (M0PC21) and Ipg ml ' of LPS derived from E.coli (055:B5 strain) plus Ing ml ' of human 
recombinant IFN-y. TNF-a was measured after 24 hours in cell free supernatants by sandwich ELISA. The values 
shown are expressed in terms of percentage inhibition of total specific TNF-a produced in the absence of any 
drug. The experiment shown is the mean of three other experiments ± SEM.

Elevated levels of IL-10, as well as being known to control TNF-a, have also been 

implicated in the control of lL-12 production from human monocytes The effect of
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R f73401 on lL-12 production was tested in the presence of an anti-IL-10 receptor antibody 

that had previously been used to neutralise bioactive IL-10. Figure 3.15 indicates that Spg 

ml ' of an anti-IL-10 receptor antibody did not alter the ability of RP73401 to inhibit lL-12 

p40 production 24 hours after human PBMC were stimulated with LPS plus IFN-y. At a 

concentration of lOnM, RP73401 inhibited 77.9 ± 5.5% of 1L-I2p 40 in the presence of 5|ig 

ml ' of an anti IL-10 receptor antibody and inhibited 87.0 ± 2.2% of lL-12 p40 in the 

presence of 5pg ml ' of MOPC21 (isotype matched control antibody). These differences 

were not statistically significant, p=0.595.
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Figure 3.14: The effect of the PDE4 inhibitor RP73401 on the LPS plus IFN-y 
stimulated release of IL-12 p40 from human PBMC. ixlOf human PBMC were incubated with 
the PDE4 inhibitor RP73401 at the concentrations indicated for 30 min prior to stimulation with Igg ml ' of LPS 
derived from E.coli (055:B5 strain) plus Ing ml ' of human recombinant IFN-y IL-12(p40) was measured at the 
times indicated in cell free supernatants by sandwich ELISA. The experiment shown is representative o f three 
others. Mean values are indicated ± SD
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Figure 3.15: The effect of an anti-IL-10 receptor antibody on the ability of RP73401 to 
block production of IL-12p40 by LPS plus IFN-y stimulated human PBMC. ixio^ human 
PBMC were incubated with the PDE4 inhibitor RP73401 at the concentrations indicated for 30 min prior to the 
addition of either 5pg ml ’ of a mouse anti human IL-10 receptor antibody or 5pg ml ’ of an isotype control 
antibody (M0PC21) and Ipg ml ’ of LPS derived from E.coli (055:35 strain) plus Ing ml ’ of human 
recombinant IFN-y. IL-12p40 was measured after 24 hours in cell free supernatants by sandwich ELISA. The 
values shown are expressed in terms of percentage inhibition of total specific TNF-a produced in the absence of 
any drug. The experiment shown is the mean of three other experiments ± SEM.

3.3 Discussion

Inhibitors of phosphodiesterase type 4 are currently being evaluated in a number of diseases 

and are showing clinical efficacy i54;i96;)98;209-2i4 inhibitors, which are non-

discriminatory for the four PDE4 subtypes, have a wide range of action on cellular function. 

Particular interest has surrounded the capacity of PDE4 inhibitors to block TNF-a

production from activated monocytes 147-150;176;199, as biological inhibitors of TNF-a are

efficacious in the treatment of rheumatoid arthritis and Crohn’s disease Both

IL-10-dependent and-independent mechanisms have been implicated to explain how PDE4 

inhibitors might regulate TNF-a production. In light of these contradictions the effect of 

PDE4 inhibitors on key cytokines involved in inflammation was studied.
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Using in vitro activation of human PBMC with LPS studies were undertaken to detail the 

exact effect of a potent and specific PDE4 inhibitor upon pro- and anti-inflammatory 

cytokine production from activated cells. Human peripheral blood mononuclear cells 

activated with LPS release cytokines in an ordered and reproducible fashion. TNF-a is 

produced before either IL -la and IL-ip which precede the release of lL-6 and lL-8 which in 

turn is followed by the production of IL-10. In accordance with literature reports this 

study showed that, the potent selective PDE4 inhibitor RP73401, strongly and dose- 

dependently, blocked the production of TNF-a from LPS stimulated PBMC and this effect 

was sustained over the whole time course of the assay. This effect was not specific to this 

particular chemical class of PDE4 inhibitor (data not shown).

The inhibition of another key inflammatory regulator, lL-1, by either elevating cAMP levels 

directly or via inhibiting PDE4 has yielded conflicting data in the literature. In human 

monocytes or PBMC studies have shown either a suppression of IL-ip production or a 

neutral effect on IL-lp production To confirm and extend these findings, experiments 

were performed to distinguish the inhibition of both IL -la and IL-ip, as evidence points to 

distinct biological roles for these two proteins IL -la production was, strongly and dose- 

dependently, blocked by RP73401 in a similar manner to TNF-a. In contrast IL-ip 

production, though blocked by RP73401, was inhibited to a lesser extent than IL-la. IL-ip 

is thought to be a more physiologically important cytokine than IL -la and its

overexpression may be responsible for some of the destructive effects seen in diseases such 

as rheumatoid arthritis The differential effect of RP73401 on IL -la  and P may relate 

to their different secretion pathways, both molecules are synthesised as pre-cursors with 

calpain cleaving pro-lL-la and IL-ip converting enzyme (ICE, also known as caspase-1) 

cleaving pro IL-lp

The pro-inflammatory cytokine IL-6 can be induced by lL-1 which is thought to play 

a regulating role in controlling lL-6 synthesis. Conflicting reports exist regarding the effect
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of elevated (intracellular) cAMP on the production of lL-6 from LPS activated monocytes. 

These indicate that elevated cAMP (by PDE-dependent and-independent mechanisms) can 

either inhibit or have no effect on IL-6 production 168:202:221:232 ^he work in this thesis has 

indicated that the PDE4 inhibitor RP73401 had no statistically significant effect on lL-6 

production from LPS stimulated PBMC. This could be due to the weak effect on IL-ip 

caused by PDE4 inhibition and, since lL-1 is known to induce IL-6 may mean that 

production of IL-ip rather than IL-la controls the production of lL-6 in LPS stimulated 

human PBMC. In accordance with literature reports the PDE4 inhibitor RP73401 had no 

effect on lL-8 production from LPS stimulated human PBMC

LPS stimulated PBMC produce IL-10 in response to increasing levels of TNF-a and as such 

TNF-a and IL-10 are reciprocally responsible for activating and deactivating gene 

transcription and protein production of each other Since IL-10 is a potent anti

inflammatory agent that is capable of controlling TNF-a the elevation of IL-10 could be an 

effective mechanism for inhibiting TNF-a production. This elevation in IL-10 has been 

shown to directly control TNF-a production One mechanism to increase IL-10

production in inflammatory cells is via the elevation of intracellular cAMP. The same 

hypothesis has been extended to explain why PDE4 inhibitors are such potent blockers of 

TNF-a production. In these studies IL-10 at low physiological doses was a potent suppresser 

of TNF-a production when added to PBMC at the time of LPS challenge, confirming 

literature findings In addition it also suppressed IL-ip production, inhibiting its 

production to the same extent as the PDE4 inhibitor RP73401. lL-6 production was only 

weakly inhibited by exogenous addition of IL-10.

The similarity between the effect of hrlL-10 and RP73401 on the inhibition of cytokine 

production gives credence to the hypothesis that an elevation of IL-10 may mediate the 

effect of PDE4 inhibition upon cytokine production. However, PDE4 inhibitors have been 

shown to inhibit TNF-a by both IL-10-dependent and-independent mechanisms 6̂i;205:24i
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this study the potent PDE4 inhibitor RP73401, did not induce increased IL-10 production. 

RP73401 at concentrations as low as lOnM inhibited IL-10 production from LPS stimulated 

PBMC, in contrast to the published observations of the effects of PDE4 inhibitors on IL-10 

production This implies that elevated IL-10 did not mediate the inhibitory effect of 

PDE4 inhibition of TNF-a production. The IL-10-independent mechanism of RP73401 was 

confirmed, as it inhibited TNF-a production in the presence of an excess quantity of an anti- 

IL-10 receptor neutralising antibody. Thus, PDE4 inhibitors potently inhibit TNF-a 

production by an IL-10-independent mechanism.

Monocytes, like many other leukocytes, cannot be clearly defined as a single uniform 

population of cells. Indeed human blood derived monocytes can be defined as different types 

depending upon their relative expression of certain surface receptors. One population, typical 

of the majority of blood monocytes, expresses high levels of the LPS binding protein, CD14, 

but little or no low-affinity IgG receptor (CD 16 or FcyRllla) The other population,

which represents the minor sub-set in whole blood, expresses lower amounts of CD 14 but 

much higher levels of CD 16.

The occurrence of these two monocyte/macrophage phenotypes can be altered in disease and 

according to anatomical location, e.g. alveolar macrophages are CD14^/CD16^ whereas 

peritoneal macrophages are CD 14"  ̂ and pleural macrophages are intermediate between 

the two phenotypes In diseases, such as sepsis and renal disease the

circulating levels of CD14^/CD16^ and CD 14^ monocytes are altered and may contribute to 

the specific pathogenesis of those diseases. As well as differing phenotypically these 

monocyte sub-sets also differ functionally. Although both sub-sets transcribe TNF-a mRNA 

and produce TNF-a protein in response to LPS they differ in their regulation of IL-10. 

CD 14^ monocytes regulate IL-10 normally at both message and protein level, but cells that 

express CD 16 produce little or no IL-10 protein when stimulated with LPS
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In light of the contradictory findings surrounding the action of PDE4 inhibitors on cytokine 

production, the contribution of monocyte phenotype on the effect of PDE4 inhibitors was 

investigated. Although certain cytokines, such as TGF-j3 and GM-CSF can regulate 

CD16 expression, the effect of different activating agents on the maturation of CD14^/CD16^ 

monocytes is untested. In the present studies when monocytes were cultured in medium 

containing serum, they up-regulated CD 16 expression in accordance with literature accounts 

242:243 However, when cells were stimulated with serum and LPS (stimulating through 

TLR4), cells initially suppressed CD 16 expression but later reverted back to the phenotype 

of serum treated cells. In contrast, when LPS plus IFN-y were added to human PBMC 

cultures, CD 16 expression was strongly suppressed. This effect was not observed when IFN- 

Y alone was administered to monocytes

CD14VCD16'*' and CD 14^ monocyte/macrophages as well as differing in their production of 

cytokines in response to LPS, also regulate their expression of phosphodiesterases 

differently. In blood, as monocytes mature (and increase CD 16 expression) they also up- 

regulate the transcription of PDEl and PDE3 whilst down-regulating the transcription of 

PDE4 ^̂ 4. This is in contrast to CD 14^ monocytes which maintain PDE4 activity ^̂ 4 and are 

susceptible to the action of PDE4 inhibitors. Since PDE induction may be linked to 

monocyte phenotype, the effect of PDE4 inhibition on CD 16 expression was investigated. 

Inhibition of PDE4 suppressed the expression of CD 16 on serum, LPS and LPS plus IFN-y 

treated monocytes. Paradoxically this would suggest that active PDE4 may be required for 

CD 16 expression, though CD 16 expressing cells are known to down-modulate PDE4 activity 

^̂ 4, However, in cells treated with serum, for five days, RP73401 was unable to suppress 

CD 16 expression. This fits with the known PDE expression profile of such cells, which lack 

PDE4 In both LPS and LPS plus IFN-y treated cells the regulation of phosphodiesterases 

is unknown. Further studies will be required to see if such cells do regulate their PDF’s 

differently, and if this accounts for the effect that PDE4 inhibitors have on CD 16 expression.
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Since LPS and LPS plus IFN-y stimulated monocytes differ with respect to surface 

phenotype and may differ in PDE expression profile, the effect of PDE4 inhibition on 

cytokine release from such cells was studied. In contrast to LPS stimulated PBMC, cells 

stimulated with LPS plus IFN-y were shown to produce large amounts of IL-12. RP73401 

potently suppressed IL-12 production from PBMC stimulated with LPS plus IFN-y, an effect 

seen in endotoxemic animals treated with PDE4 inhibitor This effect may be critical to 

the ability of PDE4 inhibitors to block inflammation since inhibiting IL-12 production can 

suppress Thl mediated disease

PDE4 inhibitors also inhibited TNF-a production by PBMC stimulated with LPS plus IFN-y. 

However, this inhibition of TNF-a production was weaker than from PBMC stimulated with 

LPS alone. Expressed in terms of IC50 RP73401 was almost ten-fold weaker at inhibiting 

LPS plus IFN-y than LPS induced TNF-a release. PDE4 inhibition also had markedly 

different effects on the regulation of IL-10 production from LPS versus LPS plus IFN-y 

stimulated cells. Inhibition of PDE4 had no significant effect on IL-10 production from LPS 

stimulated PBMC measured 48 hours after LPS stimulation, though it did inhibit the 

production of IL-10 at earlier time points. However, it caused a dose-dependent elevation in 

IL-10 synthesis 48 hours after stimulation of PBMC with LPS plus IFN-y.

It could be postulated that the increase in IL-10, caused by PDE4 inhibition, in LPS plus 

IFN-y stimulated PBMC was responsible for the suppression of pro-inflammatory cytokines, 

such as TNF-a. However, despite the up-regulation of IL-10 caused by PDE4 inhibition this 

study found that the blockade of TNF-a production was independent of IL-10 release, as the 

inhibitor RP73401 worked equally well in the presence of excess amounts of an anti-IL-10 

receptor antibody. Likewise, it was discovered that, as was the case for TNF-a, the inhibition 

of IL-12 production by PDE4 inhibitors was independent of any effect on IL-10 production.
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To summarise, the results in this chapter confirm that PDE4 inhibitors have potent anti

inflammatory effects in vitro. They suppress the production of TNF-a by both LPS and LPS 

plus IFN-y-stimulated PBMC. As well as TNF-a, they also suppress the production of IL-la 

and to a lesser extent IL-ip. In addition, the suppression of IL-12 by PDE4 inhibitors 

represents an important point of blockade of Thl (cellular) mediated immune responses. In 

contrast to other agents that elevate cAMP, PDE4 inhibitors do not inhibit TNF-a production 

by enhancing the synthesis of IL-10. It has been shown that PDE4 inhibitors, as well as 

suppressing cytokine production, can also suppress the expression of surface proteins, such 

as those of the B7 family To this list should be added the low-affinity IgG receptor, 

which is suppressed in CD 14 positive cells. This may have important implications as CD16 

expressing monocytes have been associated with specific diseases, e.g. sepsis 4̂̂ . The 

stimulation of monocytes with LPS plus IFN-y, which results in a well documented effect on 

cytokine production, and now also an increase in CD 14̂  ̂cells, alters the pattern of cytokine 

inhibition achieved by PDE4 inhibitors. In such cells PDE4 inhibitors can up-regulate IL-10, 

though IL-10 is not responsible for the TNF-a inhibitory action of PDE4 inhibitors. The next 

results chapter will discuss the impact of inhibiting PDE4 upon T cell activation and 

cytokine release. This will focus on the therapeutic potential of PDE4 inhibitors to act as 

immunosuppressive or immunomodulatory agents.
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Chapter 4
Evaluation of the effect of inhibition of phosphodiesterase 

type 4 on human T cell function

4.1 Introduction
The effect of elevation of cAMP in T cells has been well documented. Elevating cAMP in T 

cells has a suppressive function, inhibiting both the production of IL-2 and cellular 

proliferation 253-261 jjowever, these suppressive effects are complex, and under certain 

circumstances cAMP can augment T cell responses, as in the case for the production of Th2 

cytokines by Th2 cells or clones 262-265

The elevation of cAMP through activation of adenylyl cyclase has emphasised the important 

role that cAMP plays in modulating T cell responses. Research aimed at defining the effect 

of PDE4 inhibition, as a means to elevate cAMP levels, has attracted far less study and has 

yielded some conflicting and contradictory data ^̂ =̂̂66-269 ^he archetypal PDE4 inhibitor. 

Rolipram, was the first PDE4-specific tool used to elucidate the effect of PDE4 in T cells 

but further studies using PDE4 inhibitors to block T cell function have been compounded by 

a number of factors. The first of these relates to the pharmacological profile of PDE4 

inhibitors. Rolipram binds, with a high affinity, to a site on the PDE4 enzyme. This binding 

was first ascribed to a phosphodiesterase species in brain membranes and is often termed 

HARBS (high affinity Rolipram binding site). Rolipram binds to the catalytic site of the 

PDE4 enzyme, in what is thought to be an alternative conformation, with approximately 100- 

fold lower affinity. The pharmacological profile of inhibitors differs with respect to their 

inhibition at the catalytic (low-affinity) and HARB sites and inhibition at these sites 

correlates with distinct physiological sequelae. This distinction occurs for inhibition of TNF- 

a  production in LPS stimulated monocytes 4̂7;i50 thg inhibition of eosinophil superoxide 

production^^ ,̂ which correlate with inhibition at the catalytic site. However, many of the so- 

called side effects of PDE4 inhibitors, such as the induction of emesis *̂6 and gastric acid
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hyper-secretion correlate with displacement of ^H-Rolipam binding to the PDE4 enzyme 

(in its high-affinity state).

The pharmacological effect of PDE4 inhibitors is further complicated by the existence of 

sub-types of the PDE4 enzyme. The PDE4 enzyme can be transcribed by four distinct genes 

coding for four separate subtypes termed A, B, C and D. The expression patterns of these 

isoforms are tissue specific 2̂ 5-277 jjuman CD4 and CD8 positive T cells, in various studies, 

have been shown to express subtypes A, B and D but not C; this expression profile can be 

altered upon T cell activation i40;i99;276 studies on resting human T cells messenger RNA 

for PDE4A was dominantly expressed. Upon activation both PDE4B and D were induced 

but not PDE4C These isoform expression patterns are complicated by the presence of 

many splice-variants *4°, the expression patterns of which remain largely unknown.

These two factors, the unknown mode of binding to the PDE4 enzyme and the existence of 

PDE4 enzyme isoforms, have combined to confuse the studies evaluating the effect of PDE4 

inhibitors on T cell function. Many studies conducted with PDE4 inhibitors have used either 

pan-specific PDE4 inhibitors or inhibitors of unknown specificity. Conclusions from such 

experiments have been interpreted without the consideration of which PDE4 isoforms or 

splice variants were involved. Work using inhibitors that preferentially inhibit PDE4A and B 

showed that inhibition of these subtypes correlated with inhibition of T cell activation 

though a contribution of the PDE4D enzyme could not be ruled out. However PDE4D does 

not seem to be involved in controlling T cell proliferation as mice lacking PDE4D (PDE4D 

''' knockout mice), showed no impairment of their T cell responses to antigen

The differences in modulation of T cell responses by PDE4 inhibitors are most obvious when 

comparing in vitro and in vivo data between mammalian species. Elevation of cAMP has 

been shown to skew the Th cell cytokine profile toward a Th2 phenotype, yet in animal 

models PDE4 inhibitors have been shown to be efficacious in both Thl and Th2 disease 

models i52;i58;280;28i human in vitro experiments Rolipram inhibited Th2 cell proliferation
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more potently than Thl However, the effect of inhibition of PDE4 on Thl/Th2 cytokine 

production suggested Thl cytokines may be inhibited to a greater extent than Th2 

cytokines^^^’̂ ^̂ ’̂ ^̂ . In contrast, inhibiting the action of PDE4 in murine T cell clones resulted 

in a skewed cytokine response in favour of Th2 cytokine production

PDE4 inhibitors are currently undergoing clinical trials to test their efficacy in a number of 

diseases, such as asthma and chronic obstructive pulmonary disease (COPD) These

diseases, particularly asthma, are either mediated or influenced by T cell activity and in 

particular the T helper cytokines produced by T cells. In light of the limited and 

contradictory studies on the effects of PDE4 inhibitors on human T cell function, this thesis 

has attempted to understand the therapeutic potential of inhibiting T cell PDE4. Using in 

vitro models of human T cell activation the contribution of PDE4, to both T cell proliferation 

and cytokine production, was studied in detail. This work has addressed how the 

pharmacological activity of PDE4 inhibitors may account for their inhibition of different T 

cell functions. In particular it addresses whether inhibition of the PDE4 enzyme in its low- or 

high-affinity state correlates with inhibition of T cell activation.

4.2 Results

4.2.1 The effect of PDE4 inhibitors on T cell activation

In order to assess the effect of PDE4 inhibitors on T cell activation initial experiments were 

carried out to determine the effect on cAMP levels in activated cells of PDE4 inhibition. 

Human PBMC were stimulated with the mitogen Con A for a period of 24 hours. The potent 

PDE4 inhibitor RS25344 (refer to chapter 2.2.1), when added to Con A stimulated PBMC 

cultures elevated the level of cAMP. Figure 4.1 indicates that lOjitM of RS25344 elevated 

cAMP levels by 303 ± 8% at thirty minutes and by 217 ± 31% at 24 hours after Con A 

stimulation of PBMC. The effect of RS25344 was dose-dependent as lOOnM of RS25344 

elevated cAMP levels by only 180 ± 12% thirty minutes after stimulation and by 21 ±31% 

24 hours after stimulation.
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Figure 4.1: The effect of the PDE4 inhibitor RS25344 on intracellular cAMP 
accumulation in Con A stimulated human PBMC. IxlO^ human PBMC were incubated in the 
presence of IGp-M and lOOnM of the PDE4 inhibitor RS25344 prior to stimulation with Ipg ml ' of Con A. The 
intracellular levels of cAMP were measured at the intervals indicated, using a RIA. The graph is representative of 
four other experiments, each point is the mean of four separate determinations ± SD.

In order to test if PDE4 inhibitors blocked T cell proliferation six phosphodiesterase 

inhibitors; CDP840, R-Rolipram, S-Rolipram, RS25344, RP73401 and SB 207499 (refer to 

Chapter 2.2.2) were used to inhibit the antigen specific proliferation of human PBMC. 

Figure 4.2 shows that all six inhibitors evaluated inhibited tetanus toxoid stimulated human 

PBMC proliferation in a dose-dependent fashion. No compound achieved total inhibition of 

proliferation, maximal inhibition was in the range of 75 to 90%.
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Figure 4.2: The effect of PDE4 inhibitors on tetanus toxoid induced proliferation of 
human PBMC. IxlO^ human PBMC were incubated in the presence of six PDE4 inhibitors; CDP840, R- 
Rolipram, S-Rolipram, RS25344, RP73401 and SB 207499 for 30min prior to stimulation with lp.g mP  ̂ of 
tetanus toxoid. PBMC were incubated for five days and ^H-thymidine incorporation was measured for the last 
12h of culture. PDE4 inhibitor inhibition of proliferation was expressed as a percentage of total proliferation 
induced by tetanus toxoid alone. The graph is a mean of three separate experiments ± SEM.

The same compounds also inhibited antigen proliferation of human PBMC in response to 

Dermataphagoides pteronyssinus (a Th2-like stimulus as opposed to tetanus toxoid which is 

a Thl-like stimulus) in a dose-dependent manner (data not shown). Inhibition of tetanus 

toxoid-and D. pteronyssinus-mducQd proliferation was compared in terms of the 

concentration of compound needed to inhibit 25% of the maximal proliferative response 

(IC25) induced by each antigen. IC25 instead of IC50 values were used as not all compounds 

consistently achieved 50% inhibition of maximal proliferation. Table 4.1 compared these 

IC25 values and indicates that all PDE4 inhibitors tested showed no significant differences in 

potency between tetanus toxoid-or D. pteronyssinus-'mductd PBMC proliferation.
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Table 4.1: Tbe effect of PDE4 inhibitors on Thl-and Th2-Iike antigen-induced 
proliferation of human PBMC. *

Compound TT (IC25) nM SEM +/- HDM (IC25) nM SEM +/-

S-Rolipram 3333 1333 3250 577

R-Rolipram 916 308 650 122

CDP840 2250 749 2625 509

RP73401 29 20.7 80 57.2

RS25344 8.53 4.21 10 0

SB207499 375 96 1000 288

* 1x10^ human PBMC were incubated in the presence of six PDE4 inhibitors; CDP840, R-Rolipram, S-Rolipram, 
RS25344, RP73401 and SB 207499 for 30min prior to stimulation with Ipg ml'* o f tetanus toxoid or 1x10^ units 
of D.pteronyssinus major antigen Der PL PBMC were incubated for five days and ^H-thymidine incorporation 
was measured for the last 12h of culture. PDE4 inhibitor inhibition of proliferation was expressed as a percentage 
of total proliferation induced by tetanus toxoid alone or D.pteronyssinus. The table is a mean of four separate 
experiments ± SEM. Abbreviations: TT, tetanus toxoid and RDM, house dust mite antigen.

The PDE4 inhibitor RP73401 was tested to see if it inhibited human PBMC proliferation 

induced by an equal mixture of the staphylococcal enterotoxins A, B, D and E (termed 

superantigen). RP73401 only weakly inhibited proliferation induced by superantigen, fig 4.3. 

At the highest concentration tested (lOpM), RP73401 inhibited 77.5% of the response after 

36 hours but only gave 17.8% inhibition 78 hours post-stimulus.

The inhibition of Con A stimulated PBMC proliferation by the PDE4 inhibitors CDP840, R- 

Rolipram, S-Rolipram, RS25344, RP73401 and SB 207499, like the effect on superantigen 

induced proliferation, was also transitory. IC25 values for each compound, when measured 24 

and 48 hours after Con A stimulation, showed a decrease in potency in the range of 1.5 to 10 

fold. The addition of lOOnM of PGE2 (which by itself elicited no effect upon PBMC 

proliferation) enhanced the anti-proliferative effects of the PDE4 inhibitors when measured 

48 hours after stimulation table 4.2.
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Figure 4.3: The effect of the PDE4 inhibitor RP73401 on superantigen induced 
proliferation of human PBMC. IxlO^ human PBMC were incubated in the presence of RP73401 for 
30min prior to stimulation with lOOpg ml * of an equal mixture of the staphylococcal enterotoxins A, B, D and E. 
^H-thymidine incorporation was measured at the intervals indicated for a period of 92h. The graph is a 
representative of three others; mean values are indicated ± SD.

Table 4.2: The effect of PGE2 on the PDE4-mediated inhibition of Con A stimulated 
human PBMC proliferation. *

Compound
Con A 

24hrs 

(IC25) nM

SEM

±

Con A 48hrs 

(IC25) nM

SEM

±

Con A 48hrs 

+ PGE2(IC25) 
nM

SEM

±

S-Rolipram 500 218 2733 1246 550 1 2 2

R-Rolipram 253 130 1000 252 138 92

CDP840 33 19 46.7 27 15 7.5

RP73401 <2 .2 / 5.3 1.8 <6.3 /

RS25344 <2 / 10.7 4.7 <3.8 /

SB207499 87 13 833 338 355 176

* 1x10 human PBMC were incubated in the presence of six PDE4 inhibitors; CDP840, R-Rolipram, S-Rolipram, 
RS25344, RP73401 and SB 207499 for 30min prior to stimulation with Ipg ml ' of Con A. ^El-thymidine 
incorporation was measured after 24 and 48 h in culture. In separate experiments compounds were also incubated 
with lOOnM of PGE? for 30min prior to stimulation with Con A and ^H-thymidine incorporation was measured 
after 48h in culture. PDE4 inhibitor inhibition of proliferation was expressed as the concentration of compound 
needed to inhibit 25% of the total proliferation induced by Con A only. The table is a mean o f four separate 
experiments ± SEM. Where ‘ < ‘ is shown this indicates values below lower detection limits of the assay.
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4.2.2 The effect of PDE4 inhibition on T cell cytokine production and cytokine 

receptor expression.

Human PBMC were induced to produce cytokines using the mitogenic anti-CD3 antibody, 

0KT3. GM-CSF, IL-2, IFN-y, IL-4 and TNF-a levels were then monitored at regular time 

intervals for a period of 72 hours. Figure 4.4a shows that RP73401 inhibited the OKT3 

stimulated production of GM-CSF in a dose-dependent manner. At the highest concentration 

(IpM), 70.3 ± 7.4% of GM-CSF was inhibited 24 hours after 0KT3 stimulation. In addition 

to GM-CSF, IL-2 levels were also inhibited by RP73401, fig 4.4b. However, IL-2 was only 

produced over the first 48 hours after 0KT3 stimulation and its production peaked after 8 

hours. The effect on IL-2 was again dose-dependent. The highest concentration of RP73401 

blocked 69.5 ±6.1% of IL-2 released 24 hours after 0KT3 stimulation.

The cytokines IFN-y and IL-4, are responsible for amplifying Th cytokine production and so 

are important immunomodulatory cytokines. Figures 4.4c and d indicate that RP73401 

inhibited IFN-y and IL-4 production in a dose-dependent manner, with the highest 

concentration of RP73401 inhibiting 72.1 ± 16.9% of IFN-y and 53.2 ± 3.4% of IL-4 

produced 24 hours after 0KT3 stimulation. These differences were not statistically 

significant, p=0.211.

Finally, RP73401 potently blocked TNF-a production from 0KT3 stimulated human PBMC 

cultures, fig 4.4e. Like its effect on other cytokines, RP73401 inhibited TNF-a production in 

a dose-dependent way. The highest concentration of RP73401 inhibited 94 ± 3.2% of TNF-a 

produced 24 hours after 0KT3 stimulation. It should be noted that at later time points the 

inhibition of TNF-a production was total, though this was not the case for any of the other 

cytokines tested.

To test the effect of PDE4 inhibitors on cytokine receptor expression, human PBMC were

induced to express the IL-2 receptor alpha chain (CD25) by stimulation with superantigen.

Figure 4.5 indicates that RP73401 weakly inhibited the expression of CD25 on CD3 positive
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T cells. At the highest concentration tested (lOpM), RP73401 inhibited 59 ± 20% of CD25 

expression measured 18 hours after superantigen challenge. After 72 hours in culture 

RP73401 did not inhibit the expression of CD25 on CD3 positive cells.
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Figure 4.4; The effect of PDE4 inhibitor RP73401 on OKT3-induced cytokine (GM-
CSF, IL-2, IFN-y, IL-4 and TNF-a) production from human PBMC. ixiô  human PBMC 
were incubated in the presence of RP73401 for 30min prior to stimulation with 0KT3 (40ng ml '*)• GM-CSF 
(Figure 4.4a), IL-2 (Figure 4.4b), IFN-y (Figure 4.4c), IL-4 (Figure 4.4d), and TNF-a (Figure 4.4e) production 
was monitored at regular intervals over a 72h period. Cytokine levels were measured in cell free supernatants by 
multiplex cytokine assay. The graphs shown are representative of five other experiments. The data shown 
represents mean values ± SD.

85



Chapter 4

■ RP73401 (lO.OOOnM)
□ RP73401 (lOOnM)
□ RP73401 (InM)

<9 0*

O I  30

0) O)

0) 0)
I  % -10

Time (h)

Figure 4.5: The effect of the PDE4 inhibitor RP73401 on superantigen induced 
expression of CD25 (IL-2 receptor alpha chain) on human PBMC. ixiô  human PBMC were 
incubated in the presence of RP73401 for 30min prior to stimulation with lOOpg ml'  ̂o f an equal mixture o f the 
staphylococcal enterotoxins A, B, D and E. CD25 (IL-2 receptor alpha chain) levels were monitored at regular 
intervals for a period of 72h. CD25 levels were determined on CD3 positive cells using a FACScan flow 
cytometer. The data shown is the mean of three separate experiments ± SEM.

4.2.3 PDE4 inhibition of superantigen stimulated PBMC proliferation: Data 

analysed for a correlation with inhibition of PDE4 in its high-affinity or low- 

affinity conformation.

Six PDE4 inhibitors; CDP840, R-Rolipram, S-Rolipram, RS25344, RP73401 and RS 14203 

were tested for their ability to block the activity of PDE4 enzyme preparations in an in vitro 

assay. Table 4.3 indicates the IC50 values for each compound tested for their inhibition of the 

catalytic activity of PDE4A derived from SF9 cells, a truncated PDE4 enzyme PDE4A330 

(A330 mutant lacking HARBS, ^̂ )̂ which was purified from COS cells and inhibition of ^H- 

Rolipram binding to guinea pig brain membranes (a PDE4 preparation demonstrated to 

exhibit the high-affinity Rolipram binding site). The IC50 values for all six compounds varied 

in potency from 0.26nM to 325nM against PDE4A, from 0.4nM to 753nM against 

PDE4A330 and from 1 to 9InM against antagonism of ^H-Rolipram binding to guinea-pig 

membranes.
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Table 4.3; The inhibition of PDE4 enzymatic activity and competition for ^H-Rolipram 
binding by a selection of PDE4 inhibitors.*

Compound
PDE4A (SF9) 

IC50 (nM)

PDE4A330 (COS) 

IC50 (nM)

^H-Rolipram binding to brain 

membranes IC50 (nM)

S-Rolipram 325 605 91

R-Rolipram 66 501 5

CDP840 2.7 3.9 60

RP73401 0.26 0.4 5

RS25344 37.4 753 1

RS14203 0.87 39 64

* PDE4 enzyme activity was assayed in a homogeneous scintillation proximity assay. Full length PDE4A was 
harvested from baculovirus infected SF9 cells and truncated PDE4A (AQ44-329) was harvested from transfected 
COS cells. Inhibitors were added to the enzyme substrate prior to enzyme addition. The reaction was incubated at 
room temperature for 30 min prior to termination of the reaction. Antagonism of ^H-Rolipram binding to guinea 
pig brain membranes was measured using liquid scintillation counting The IC50 values shown represent the mean 
of five different experiments.

Figure 4.6a shows the relationship of the inhibition of PDE4A (derived from SF9 cells) by 

the six compounds CDP840, R-Rolipram, S-Rolipram, RS25344, RP73401 and RS 14203 

correlated against the inhibition of superantigen-induced human PBMC proliferation 

(measured after 36 hrs). The correlation between these two parameters was good 

(Spearman’s r = 0.714) and though the result showed a trend towards significance it was not 

significant, p= 0.136. Figure 4.6b shows the relationship of the inhibition of ^H-Rolipram 

binding to guinea-pig membranes for the same six compounds correlated against the 

inhibition of superantigen-induced human PBMC proliferation proliferation (measured after 

36 hrs). The correlation between these two parameters was good (Spearman’s r = 0.927) and 

the result was statistically significant, p= 0.007. Figure 4.6c shows the relationship of the 

inhibition of PDE4A330 (derived from COS cells) for the six compounds CDP840, R- 

Rolipram, S-Rolipram, RS25344, RP73401 and RS 14203 correlated against the inhibition of 

superantigen-induced human PBMC proliferation proliferation (measured after 36 hrs). 

There was no correlation between these two parameters (Spearman’s r = 0.143) and the result 

was not significant, p= 0.801.
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Figure 4.6a: Correlation of inhibition of superantigen induced proliferation and 
FDE4A enzyme activity by inhibitors of PDE4. PBMC were preincubated with PDE4 inhibitors 30 
minutes prior to stimulation with lOOpg mb' of staphylococcal enterotoxins A, B, D and E. Proliferation was 
measured after 36 h by incorporation of [^H] thymidine. An IC25 was taken as not all responses consistently 
reached 50% inhibition. Independently the compounds were assayed for activity against the PDE4A enzyme 
derived from SF9 cells. These two data sets were plotted against each other using Prism-3. This graph represents 
the data from three separate experiments.
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Figure 4.6b: Correlation of inhibition of superantigen induced proliferation and H- 
Rolipram binding to brain membranes by inhibitors of PDE4. PBMC were preincubated with 
PDE4 inhibitors 30 minutes prior to stimulation with lOOpg ml'  ̂ of staphylococcal enterotoxins A, B, D and E. 
Proliferation was measured after 36 h by incorporation of [^H] thymidine. An IC25 was taken as not all responses 
consistently reached 50% inhibition. Independently the compounds were assayed for ability to displace [^H] R- 
Rolipram from guinea-pig brain membranes. These two data sets were plotted against each other using Prism-3. 
This graph represents the data from three separate experiments.
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Figure 4.6c: Correlation of inhibition of superantigen induced proliferation and 
PDE4A330 enzyme activity by inhibitors of PDE4. PBMC were preincubated with PDE4 inhibitors 
30 minutes prior to stimulation with lOOpg ml ' of staphylococcal enterotoxins A, B, D and E. Proliferation was 
measured after 36 h by incorporation of [^H] thymidine. An IC25 was taken as not all responses consistently 
reached 50% inhibition. Independently the compounds were assayed for activity against the PDE4A330 truncated 
enzyme. These two data sets were plotted against each other using Prism-3. This graph represents the data from 
three separate experiments.

4.3 Discussion

As the results in this chapter indicate, PDE4 inhibitors were able to elevate cAMP levels in 

mitogen stimulated human PBMC. cAMP levels were still elevated in PDE4 inhibitor-treated 

cells 24 hours after Con A stimulation but overall cAMP levels were diminished by 86%. 

This may indicate that inhibition of PDE4 alone is insufficient to maintain cAMP levels as 

they are in resting cells and may require additional stimulatory signals, for example those 

delivered via adenylyl cyclase. This phenomenon (a decrease in cAMP following 

stimulation) is intriguing and may hint at the fact that PDE4 activity dominates over adenylyl 

cyclase stimulation in activated T cells.

The elevation of cAMP, as a result of inhibition of PDE4 in T cells, was manifest as an 

inhibition of PBMC proliferation in response to the recall antigen, tetanus toxoid. However, 

PDE4 inhibitors did not achieve total inhibition of tetanus toxoid induced proliferation. Since 

research has indicated that Th2 cells may be more susceptible to elevated levels of cyclic
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AMP than Thl cells, this possible effect was investigated ^̂ =̂ 7̂:282 jjowever, the results for 

these experiments did not substantiate literature reports as all PDE4 inhibitors tested 

inhibited tetanus toxoid (Thl priming) or Dermataphagoides pteronyssinus (Th2 priming) 

primed responses to the same extent.

In this study PDE4 inhibitors were unable to totally inhibit T cell proliferation induced by 

Con A or superantigen. Inhibition of mitogen-driven PBMC proliferation (or antigen, data 

not shown), became progressively weaker as time increased following the initial stimulation. 

This is in contrast to some the reported effects of PDE4 inhibitors i48;i76;i97;266̂  though none 

of these studies used human PBMC. It was postulated that the reduced potency of PDB4 

inhibitors may be due to a reduced adenylyl cyclase stimulation. PGE2 (which stimulates 

adenylyl cyclase), at a dose which did not interfere with PBMC proliferation, enhanced the 

potency of PDE4 inhibitors to block proliferation. PGE2 production is known to be activated 

in human PBMC but work in this chapter indicates that this may not be sufficient to 

maintain inhibition of T cell proliferation. Thus a lack of adenylyl cyclase stimulation could 

explain why PDE4 inhibitors are only transitory blockers of T cell proliferation.

As well as being anti-proliferative, PDE4 inhibitors have also been postulated to block 

cytokine production, either inhibiting Thl responses or antagonising Thl responses by 

augmenting Th2 responses 266-268:282 of PDE4 function, as exemplified by the

inhibitor RP73401, was able to block the production of cytokines from PBMC activated via 

the T cell receptor. This inhibition of the PDE4 enzyme non-selectively blocked the 

production of GM-CSF, IL-2, IL-4 and IFN-y. Unlike other studies inhibition of PDE4 

did not selectively enhance or diminish Th-polarising cytokines, in particular IFN-y and IL- 

4. This evidence would indicate that, at least in human in vitro experimental models, PDE4 

inhibitors do not bias Th cytokine expression but are general suppressants of cytokine 

production.
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In contrast to the incomplete inhibition of IL-2, IL-4, IFN-y and GM-CSF production, PDE4 

inhibition completely blocked TNF-a production. This may indicate that TNF-a, produced 

by T cells stimulated through the TCR, lies on a pathway that is regulated by cAMP and 

hence PDE4. Further studies will need to establish that this effect on TNF-a production is 

solely directed at the T cell. These studies are needed as activated T cells, via the production 

of such factors as IL-17 can induce monocytes to synthesise TNF-a. Regardless, this 

effect emphasises the potent anti-TNF-a activity of PDE4 inhibitors and reinforces their 

potential therapeutic benefit in TNF-a-mediated disease.

Inhibition of PDE4, as was the case for other cytokines with exception of TNF-a, did not 

completely block the production of IL-2. However, unlike the effect on proliferation, 

inhibition of cytokine production was maintained over the course of the experiment. To 

address if PDE4 inhibition altered cytokine receptor expression, CD25 levels on activated T 

cells were also measured. RP73401 only blocked CD25 expression for the first 24 hours 

following T cell activation. This may indicate that, as well as IL-2 receptor expression, 

signalling through the IL-2 receptor is unable to be blocked by inhibiting PDE4. Further 

studies are needed to distinguish the exact T cell signalling pathways that are PDE4 

dependent. It is known that activation of certain pathways, e.g. using CD3, CD28 and PMA 

in combination, can overcome the inhibitory effect that cAMP has on T cell proliferation 

Thus it may be possible, using purified T cells, to distinguish PDE-sensitive and-insensitive 

signalling pathways.

The partial inhibition of T cell proliferation, by PDE4 inhibitors, is at odds with their potent 

suppressive effect in many other inflammatory cells I47;i76;i98;273;2g6 of these effects

correlate with inhibition of the enzyme in its low-affinity conformation jjowever, a

proportion of the biological effects of PDE4 inhibitors, including many unwanted side- 

effects, correlate with their ability of inhibitors to compete with Rolipram binding to the 

PDE4-HARB site but not the enzyme in its low-affinity conformation.
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It was discovered that, in contrast to studies that measured the production of IL-2 from 

activated murine T cells PDE4-mediated inhibition of mitogen stimulated human PBMC 

proliferation correlated with displacement of ^H-Rolipram binding to PDE4 and not 

inhibition of the low-affinity enzyme confomer. This was exemplified by a strong correlation 

with inhibition of superantigen-stimulated human PBMC proliferation and inhibition of ^H- 

Rolipram binding to brain membranes. In an enzyme which is unable to adopt the high- 

affinity conformation (PDE4A330) inhibition of proliferation did not correlate with 

inhibition of the enzyme. This effect is the opposite to that seen when correlating murine T 

cell cytokine production and may indicate that inhibition of cytokine production and T cell 

proliferation by PDE4 inhibitors correlates with inhibition of the PDE4 enzyme in its low- 

and high-affinity conformations respectively.

To summarise, though PDE4 inhibitors block T cell proliferation their effect is transitory. 

This may be due to both a lack of adenylyl cyclase stimulation and activation of signalling 

pathways that are insensitive to the inhibition of PDE4. Indeed, inhibition of T cell activity 

by PDE4 inhibitors does not correlate with inhibition of PDE4 enzyme, in its low-affinity 

state, but with inhibition of a high-affinity binding pocket on the enzyme, the function of 

which is unknown. In contrast to the effect on proliferation, inhibition of PDE4 activity does 

inhibit T cell cytokine release at all stages following T cell activation. This cytokine 

inhibition shows no Thl/Th2 bias and in particular indicates that PDE4 inhibitors completely 

inhibit TNF-a production.

Chapters 3 and 4 have discussed the effect of inhibiting PDE4 function in human monocytes 

(antigen-presenting cells) and T lymphocytes. The conclusions drawn from this work 

indicate that PDE4 inhibitors are potent blockers of cytokine production, particularly TNF-a. 

In the remaining chapters of the thesis another class of signal transduction inhibitor will be 

used in an attempt to block the function of leukocytes. These inhibitors are selective for the 

Src kinase family of enzymes, members of which play a role in signalling through multi-
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subunit receptor complexes. Chapter 5 will concentrate on the consequences of inhibiting Src 

kinase in human T cells activated through the T cell receptor.
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Chapter 5
Evaluation of the effect of inhibition of Src kinase enzymes 

on human T cell function
5.1 Introduction

Immunosuppressive drugs have radically altered the treatment of organ transplantation. The 

drug cyclosporin A (CsA), which has proved very effective as an immunosuppressive agent, 

was the first drug in a class of relatively inexpensive small molecule inhibitors of T cell 

activation and function. Due to CsA’s dose limiting side-effects other

immunosuppressive drugs have emerged that have sought to replace it. Many of these are 

biological inhibitors of T cell function, such as those that block activation of the IL-2 

receptor alpha chain ^̂ =287-289 though effective in certain circumstances, their wide 

spread use has been limited by their cost. This has stimulated the search for new drugs that 

can block signal transduction pathways emanating from the T cell receptor.

The Src kinase Lck, as indicated in Chapter 1, plays a key role in mediating signals 

transduced through the T cell receptor. Lck has a restricted pattern of expression, being 

mainly expressed in cells of haematopoietic origin and along with another Src family 

member, Fyn, it plays a critical role in mediating phosphorylation of proteins recruited to the 

TCR ^̂ :29i;292 ^Ithough inhibitors of Lck currently exist (Chapter 1.5.2), they are limited in 

both their potency and selectivity for Lck over other tyrosine kinase enzymes. The work in 

this chapter has aimed, by utilising a panel of novel chemical inhibitors of Src family 

kinases, to assess whether inhibition of selected Src kinases inhibits T cell function in an in 

vitro assay system.
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5.2 Results
5.2.1 The effect of Src kinase inhibitors on human PBMC proliferation induced 

by mitogenic stimuli
A novel series of chemical inhibitors (refer to Chapter 2.2.2) of the Src kinase family of 

enzymes (abbreviated to CT-SKI) was synthesised by the medicinal chemistry department, 

Celltech, UK. The selectivity of these compounds for the Src kinase family of enzymes was 

tested using a panel of in vitro enzyme assays. Table 5.1 shows the IC50 values for six Src 

kinase inhibitors against Lck, Lyn and Fyn (Src kinase family members) as well as ZAP-70, 

protein kinase C (PKC), epidermal growth factor receptor (EGFR), Csk and cdc2. The 

known Src kinase inhibitor PP2 was included to act as a reference standard. All six 

inhibitors tested were potent Lck inhibitors, each having IC50 values for the inhibition of Lck 

of less than 5nM. These inhibitors showed weak activity against ZAP-70 and PKC and an 

improved selectivity against EGFR and Csk as compared to PP2.

Table 5.1: IC50S of different Src kinase inhibitors for a panel of different kinase 
enzymes.*

Compound Lck Zap-70 PKC EGFR Csk cdc2 Fyn Lyn

PP2 173 >10000 8900 700 281 ND ND 51

CT5102 4.0 ND ND ND 1166 579 8 ND

CT5215 3.5 >10000 1531 606 330 9036 61 21

CT5263 4.0 ND 3590 631 330 1292 8 ND

CT5264 3.9 9209 1270 2938 126 >10000 24 15

CT5269 1.1 >10000 >10000 3155 86 8463 13 13

CT5276 3.0 ND 2245 795 135 6277 11 ND

* All values are expressed as nM ICso’s. Values are the mean of five separate experiments. ND = not 
determined.

Figure 5.1 shows the effect of three Src kinase inhibitors, CT5102, CT5125 and CT5269 on 

human PBMC proliferation induced by 0KT3. At a fixed concentration of 400nM, CT5269 

inhibited PBMC proliferation by 65% when measured after 72 hours, CT5215 inhibited 30% 

of PBMC proliferation measured after 72 hours and CT5102 did not inhibit PBMC 

proliferation at the concentration tested. CT5269, which was the most potent of the three
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inhibitors tested, inhibited 0KT3 stimulated PBMC proliferation in a dose-dependent 

manner, fig 5.2. The IC50 of CT5269 was 130 ± 34nM. The other two inhibitors tested also 

inhibited OKT3 induced proliferation in dose-dependent manner (data not shown).
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Figure 5.1: The effect of Src kinase inhibitors on the proliferation of human PBMC 
induced by 0KT3. PBMC were pre-treated with 400nM of the Src kinase inhibitors for 30min, prior to 
stimulation with 0KT3 (40ng ml '). Proliferation was measured at different times after stimulation of PBMC. 
Values are mean of triplicates ± SD and are representative of three separate experiments.
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Figure 5.2: The effect of CT5269 on the proliferation of human PBMC activated by 
OKT3. PBMC were pre-treated with the concentrations of CT5269 indicated for 30min, prior to stimulation 
with 0KT3 (40ng mP'). Proliferation was measured 48h post-stimulation with 0KT3. Values are expressed as a 
percentage inhibition of 0KT3 only stimulated cultures. Values are the mean of three separate experiments ± 
SEM.
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A group of ten related Src kinase inhibitors were tested for their capacity to inhibit 0KT3 

and MLR induced proliferation of human PBMC. Figure 5.3 indicates that the compounds 

blocked OKT3-more potently than MLR-induced proliferation. The mean IC50 value for the 

compounds, was 480nM for 0KT3 and 2,000nM for MLR, these differences were 

statistically significant, p<0.008. Figure 5.4 shows the correlation of the inhibition of Lck 

(expressed as an IC50) with the inhibition of 0KT3 induced PBMC proliferation (expressed 

as an IC50) and the inhibition of an MLR (expressed as an IC50) for fourteen Src kinase 

inhibitors. When 0KT3 and Lck were correlated, the correlation was good (r^=0.853) and 

the result was significant (p<0.0001). However, when the MLR and Lck were correlated the 

correlation was poor (r^=0.113) and the result not significant (p=0.241).
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Figure 5.3: The effect of Src kinase inhibitors on the proliferation of human PBMC 
induced by OKT3 and in a MLR. PBMC were pre-treated with Src kinase inhibitors for 30 min prior to 
stimulation. Proliferation was measured 48h after stimulation with 0KT3 and 5d after stimulation in the MLR. 
IC50 values for each compound were obtained from dose response curves. Values are mean of three separate 
experiments, errors are not shown. A straight line indicates the mean of all separate points.
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Figure 5.4.; Correlation of inhibition of Src kinase enzyme activity with inhibition of 
human PBMC proliferation induced by 0KT3 and in a MLR. PBMC were pre-treated with 
Src kinase inhibitors for 30min, prior to stimulation with either 0KT3 (40ng ml'h or an equal number of 
mismatched irradiated PBMC in the case of the MLR. IC50 s for each inhibitor were obtained 48h after 
stimulation of PBMC with 0KT3 and 5d after stimulation in the MLR. Values are the mean of three separate IC50 

determinations and are plotted without errors.

5.2.2 The effect of the Src kinase inhibitor CT5269 on T cell cytokine production

The Src kinase inhibitor CT5269 was evaluated for its effect on cytokine production from 

0KT3 stimulated human PBMC. Figure 5.5a shows that, at a fixed concentration of 500nM, 

CT5269 blocked 92.3% of IL-2 produced, as measured by area under the curve. The 

inhibition of IL-2 production was maintained over the course of the experiment.
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Figure 5.5: The effect of CT5269 on the synthesis of IL-2, IFN-y and IL-4 by PBMC 
stimulated with OKT3. PBMC were pre-treated with 500nM of CT5269 for 30 min, prior to stimulation 
with 0KT3 (40ng ml"')- IL-2 (A), IL-4 (B) and IFN-y (C) were measured in cell free culture supernatants at 
different times following stimulation with 0KT3. Values are the mean of three separate experiments ± SD.
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CT5269 was also evaluated for its effect on IL-4 production. Figure 5.5b shows that, like 

the effect on IL-2, CT5269 blocked 93% of IL-4 produced, as measured by area under the 

curve. Likewise the inhibition of IL-4 was maintained over the course of the experiment.

Finally, CT5269 was evaluated for its effect on IFN-y production from 0KT3 stimulated 

human PBMC. Figure 5.5c shows that CT5269 blocked IFN-y production by 72%, as 

measured by area under the curve. This inhibition of IFN-y production was maintained over 

the course of the experiment.

To test if inhibition of IL-2, IL-4 and IFN-y production was dose-dependent, CT5269 was 

titrated from 20nM to 5pM and the percentage inhibition of cytokine production measured. 

Figure 5.6 shows that CT5269 dose-dependently inhibited IL-2, IL-4 and IFN-y production. 

The respective ICso’s were 150nM for IL-2 and IL-4 and 300nM for IFN-y. Although there 

was a trend suggesting that CT5269 was a weaker inhibitor of IFN-y production this was not 

statistically significant, p= 0.879 when comparing IL-2 with IFN-y.

5.2.3 The effect of Src kinase inhibitors on IL-2 production from human PBMC

activated by either phorhol ester plus calcium ionophore or OKT3

A panel of thirty one related Src kinase inhibitors were chosen, which had a wide variation in 

their potency against isolated Src kinase enzymes. Figure 5.7 shows the correlation of the 

inhibition of Lck, (expressed as an IC50) with the inhibition of 0KT3 induced IL-2 

production (expressed as an IC50), and the inhibition of PMA and ionomycin-induced IL-2 

production (expressed as an IC50), for all thirty one compounds. The inhibition of 0KT3 

induced IL-2 production and Lck showed good correlation (r^=0.914) which was significant 

(p<0.0001). However, when inhibition of PMA/ionomycin induced IL-2 production and Lck 

were correlated the correlation was poor (r^=0.110) and not significant (p=0.08).
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Figure 5.6: Titration o f the effect o f CT5269 on the synthesis o f IL-2, IFN-y and IL-4 by 
PBM C Stimulated with OKT3. PBMC were pre-treated with CT5269 at the concentrations indicated for 
30 min prior to stimulation with 0KT3 (40 ng ml '). Cytokine levels were measured 48 h after stimulation. 
Cytokine production was expressed as a percentage inhibition of total cytokine produced from 0KT3 stimulated 
PBMC cultures only. Values are the mean of three separate experiments ± SD.
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Figure 5.7: Correlation o f inhibition of Src kinase enzym e with inhibition o f IL-2 
production from human PBMC stimulated with OKT3 and PM A/ionomycin. PBMC were 
treated with the Src kinase inhibitors for 30min, prior to stimulation with either 0KT3 (40ng ml ') or PMA (1 p,g 
ml ') and ionomycin (10 ng ml"'). The IC50S of each inhibitor were obtained 48h after stimulation o f PBMC with 
either 0KT3 or PMA and ionomycin. Values are the mean of three separate IC50 determinations and are plotted 
without errors.
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5.2.4 The effect of the Src kinase inhibitor CT5269 on IL-2 receptor expression 

and IL-2 amplified proliferation in OKT3 stimulated human PBMC

Src kinase inhibitors were tested for their ability to block the expression of CD25 on 0KT3 

activated human CD3 positive T cells. Figure 5.8 indicates that Src kinase inhibitors 

CT5102, CT5264 and CT5276 were effective inhibitors of CD25 expression. Their IC50 

values being 900nM, 750nm and 400nm, respectively. The inhibition of CD25 expression 

was seen at all time intervals following OKT3 activation (data not shown).
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Figure 5.8: The effect of Src kinase inhibitors on the expression of CD25 (IL-2Ra 
chain) on human PBMC stimulated with OKT3. PBMC were pre-treated with Src kinase inhibitors 
for 30 min before stimulation with OKT3 (40 ng ml h- IL-2Ra chain (CD25) expression was measured 48 h after 
stimulation. CD25 expression was calculated as a percentage of CD25 mean expression levels on CD3^VCD25 
double positive cells stimulated with 0KT3 alone. Values are the mean of three separate experiments ± SD.

The ability of IL-2, added after TCR engagement, to reverse the inhibitory effect of CT5269

on proliferation was examined. Figure 5.9 shows the effect of CT5269 (500nM) in the

presence of increasing concentrations of hr IL-2. In the absence of IL-2 CT5269 inhibited

58.7 ± 15.3% of OKT3 induced proliferation. As the concentration of IL-2 was increased,

the inhibitory effect of CT5269 was reversed. The highest concentration of IL-2 (lOng ml'^)

completely reversed the inhibition caused by 500nM of CT5269.
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Figure 5.9: The effect of CT5269 on the proliferation of human PBMC induced by 
OKT3 and the addition of exogenous human recombinant IL-2. PBMC were preincubated 
with 500nM of CT5269 for 30min, prior to stimulation with 0KT3 (40ng ml *)- Four hours after stimulation 
PBMC were treated hy the addition of human recombinant IL-2 at the concentrations indicated. Proliferation was 
measured 72h after 0KT3 stimulation. Where a zero is indicated on the X-axis this refers to the percentage 
inhibition of CT5629 without the presence of exogenous IL-2. Data is represented as the percentage inhibition of  
0KT3 stimulated cultures. Values are the mean of three separate experiment ± SEM.

5.3 Discussion

The results in this chapter report the effect of a new class of Src kinase inhibitor on T cell 

function. These compounds were shown to be more potent than first generation inhibitors 

such as Genistein and WIN61651 They also improved upon second generation

inhibitors, such as pyrazolopyrimidines (PPl and PP2) which until now were the most 

potent and specific inhibitors of the Src kinase family of enzymes.

This new class of Src inhibitor (abbreviated to CT-SKI, for Celltech Src kinase inhibitor) 

was shown to have little activity against other enzymes important to T cell receptor 

activation (e.g. PKC and ZAP-70) and showed selectivity of inhibition over the regulatory 

kinase Csk. This was in contrast to PPl/2 which showed equal activity against Src and Csk. 

This distinction between the two classes of compound may be important, as inhibition of Csk
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may counteract any inhibitory effect towards Src kinases, Lck and Fyn, in T cell signalling 

It was confirmed that CT-SKI acted specifically to block phosphorylation of Lck and Fyn 

(auto-phosphorylation) in the T cell line E6.1 stimulated by cross-linking CD3 using an anti- 

CD3 antibody (data not included). The calcium flux induced in such cells was also blocked 

these effects correlated with inhibition of isolated Src kinase enzyme (data also not 

included).

In order to study their effect at the cellular level, CT-SKI were tested in human in vitro T cell 

activation assays. Since T cell clonal expansion (i.e. proliferation) is an important step in the 

immune response mediated by T cells, CT-SKI were tested for their ability to interfere with 

this process. When T cells were activated through the T cell receptor, using cross-linking 

anti-CD3 antibodies, CT-SKI completely blocked cellular proliferation. It was noted, 

however, that when compared to inhibition of enzyme activity (e.g. Lck) CT-SKI potency 

was shifted by at least two orders of magnitude. When CT-SKI were tested in other models 

of T cell activation, such as the MLR, their ability to block proliferation was considerably 

weaker. This is in contrast to CsA which inhibits with an equal inhibitory potency 0KT3-, 

PHA-and MLR-induced proliferation When the inhibition of proliferation induced by 

0KT3 and MLR were analysed, inhibition of 0KT3-mediated proliferation but not MLR, 

correlated with inhibition of the activity of the Src enzyme p56Lck. These findings may 

indicate that separate signalling cascades may be activated by the different stimuli, 0KT3 

and MLR, whose requirement for Src kinases may differ.

Since proliferation is a multifactorial readout involving the activation and co-ordination of 

many genes and proteins, an earlier readout of cellular activation was chosen to test the 

effect of CT-SKI. T cell specific cytokines, such as IL-2, are inducible and highly regulated 

and also important in the proliferative response. CT-SKI were thus employed to block 

cytokine production from 0KT3-stimulated T cells. CT-SKI were potent inhibitors of 

cytokine production and their effects were the same regardless of the time point when 

cytokine production was measured. The CT-SKI, CT5269, at a dose which inhibited
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approximately 50% of 0KT3 induced proliferation, completely blocked the production of 

both IL-2 and IL-4. The effect of CT5269 on IFN-y synthesis was also potent, though it was 

weaker than on the other two cytokines tested. This may be due to the production of IFN-y 

by non-T cells, e.g. NK cells, which may be refractory to the effects of Src kinase inhibitors. 

These effects were in contrast to those observed with the pyrazolopyrimidine compound, 

PPl, which acted differentially on Th cytokines, inhibiting IFN-y production and augmenting 

IL-4 production

CT-SKI have thus been shown to inhibit proliferation and IL-2 production under the same 

conditions. Since IL-2 production can act to amplify proliferation it is important to inhibit 

this pathway, since failing to do so may negate any inhibitory effects on the TCR pathway. 

To rule out a non-specific suppressive effect on IL-2 production, CT-SKI were tested using 

alternative stimuli to activate IL-2 production. When PBMC were stimulated with PMA and 

ionomycin, which are known to activate signalling at the level of PKC and calcium, CT-SKI 

were unable to block the production of IL-2. Inhibition of PMA/ionomycin induced IL-2 

production by CT-SKI did not correlate with inhibition of Src, which is in contrast to 

inhibition of OTK3-induced IL-2 production which showed good correlation. This evidence 

would suggest that CT-SKI act to block IL-2 production at a point above PKC/calcium and 

would be expected if these inhibitors blocked Src kinase activity at the level of the TCR.

To localise the point of action of the inhibitors, assays were set up utilising stimuli that acted 

at different levels along the signalling cascade. Since CT-SKI were ineffective at inhibiting 

proliferation in an allogeneic MLR, but inhibited 0KT3 stimulated proliferation and IL-2 

production, the role of IL-2 receptor signalling was investigated in more detail. IL-2 receptor 

expression (IL-2 receptor a, P and common y-chains) is required for full IL-2 signalling, so 

the effect of CT-SKI on IL-2 receptor a  chain was measured. CT-SKI inhibited IL-2 

receptor a  expression in an equivalent manner to their effect on proliferation. This indicates 

that IL-2 receptor (a chain) expression may be dependent on active Src enzyme.
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The final link in the signal transduction pathway from TCR through production of IL-2 and 

expression of IL-2 receptor is IL-2 binding and signalling through its receptor. If CT-SKI 

failed to block this pathway, this may limit their efficacy in blocking IL-2 driven 

proliferation. There is evidence in the literature that protein tyrosine kinases (PTK) are 

activated when IL-2 binds its receptor These PTK’s include the Src kinase, Lck 

To test CT-SKI in IL-2 receptor-dependent T cell activation, an IL-2 driven model of 

proliferation was established. In 0KT3 stimulated PBMC, exogenous IL-2 was added four 

hours after stimulation and its effect on proliferation measured. The addition of IL-2 under 

such circumstances reversed, in a dose-dependent manner, the inhibitory effect of CT-SKI. 

This is in accordance with the known role of Lck in IL-2 receptor signalling which is thought 

to act in parallel with Jak3 (Janus kinase 3)/STAT (signal transducer and activator of 

transcription), but is not involved in STAT activation

To conclude, CT-SKI appear to be potent inhibitors of mitogen-stimulated T cell activation. 

However, when other stimuli are used, as in the case of the MLR, they are less potent. This 

shift in potency may represent the activation of distinct signalling pathways which may be 

Src-independent. In addition CT-SKI potency shows considerable drift going from the 

isolated enzyme to cell functional assays. This may be due to a number of factors, such as 

poor cell penetration, protein binding or more likely high (mM) intracellular ATP 

concentrations High ATP concentrations are likely to alter the potency of CT-SKI, as 

these compounds were discovered to be ATP-competitive (data not shown). In light of these 

studies, it could be suggested that CT-SKI would not make ideal immunosuppressive agents 

and Lck is not be a good therapeutic target for immunosuppression. Despite this, their 

capacity to block T cell cytokine production and proliferation may indicate that they can act 

in an immunomodulatory role, and further investigation, particularly of their effect in vivo, 

will be needed to verify this function. The final results chapter of this thesis will discuss the 

effect of inhibiting Src kinase enzymes in mast cells activated through the high-affinity IgE 

receptor. This chapter will also investigate the role of phosphodiesterase enzymes in IgE- 

dependent signalling.
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Chapter 6
Evaluation of the effect of inhibition of Src kinase and PDE 

enzymes on mast cell function

6.1 Introduction

Mast cells have long been recognised as critical effector cells of the allergic inflammatory 

response When they act in an unregulated or dysfunctional manner, they can contribute 

to the pathogenesis of a number of diseases such as asthma, fibrosis, autoimmunity, 

neoplasia and inflammatory bowel disease amongst others 3os-3i9̂  Studies investigating 

the function of human mast cells have relied heavily upon the recovery of cells from 

cadaverous tissue. However, these cells are particularly heterogeneous in their phenotype 

and function according to anatomical location Current techniques of purifying mast

cells from CD34 positive precursors have yielded large numbers of homogenous cells that 

have enabled an insight to be gained into both the function and development of these cells

323-325

As the understanding of mast cell biology has increased, so too has the understanding of the 

molecular basis of mast cell activation and degranulation. The high-affinity IgE receptor 

(FceRI) is the central molecule involved in mast cell activation in allergic inflammation 

108:326 Yhe rapid degranulation of mast cells in response to allergens is mediated by the 

aggregation of surface bound IgE (bound to FceRI) by multivalent antigen The 

consequence of these actions is ultimately the release and synthesis of histamine, 

prostaglandins, leukotrienes, proteases and cytokines 3̂2;320;327-33i

Activation of FceRI receptors on the surface of a mast cell initiates a complex signalling 

cascade. The Src family kinase Lyn is one protein involved in FceRI-mediated signalling. 

Lyn, when activated by the phosphatase CD45, phosphorylates the ITAM’s contained within 

the P and y chains of the FceRI receptor, and is a critical controlling step in the activation
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of FceRI Evidence for the involvement of Lyn in FceRI signalling comes from animals 

models in which Lyn activity has been abolished (Lyn ''' mice) Mast cells from these 

animals have impaired protein tyrosine phosphorylation and calcium mobilisation when 

activated via the FceRI. In rat basophilic leukaemia-2113 (RBL-2H3) cells a kinase inhibitor 

with specificity for the Src kinase family of enzymes, blocked activation by cross-linked IgE 

Other critical tyrosine kinases involved in mast cell signalling include Syk a member 

of the Zap70 protein family and Bruton’s tyrosine kinase which, may be a substrate of Lyn 

and has both redundant and opposing functions to Lyn in mast cells

Another key molecule involved in regulating FceRI signal transduction is the second 

messenger cAMP Elevated intracellular cAMP is a potent suppresser of mast cell 

degranulation Stimulation of Gs-coupled receptors or direct stimulation of adenylyl 

cyclase can suppress FceRI signalling. Phosphodiesterases have been shown to control 

cAMP levels in mast cells and the pan-specific phosphodiesterase inhibitor 3-isobutyl-1- 

methylxanthine (IBMX) has been shown to block FceRI activation However the

specific phosphodiesterase thought to control cAMP levels in human mast cells is unknown, 

as both PDE3 and PDE4 specific inhibitors have no effect upon mast cell degranulation

The aim of the work contained within this chapter was to discover which key intracellular 

targets, when blocked, could therapeutically modulate the activation of mast cells stimulated 

through the high-affinity IgE receptor. Using cord blood derived mast cells (as a model of 

IgE-dependent activation) a unique set of chemical inhibitors were used to probe FceRI 

signalling. These inhibitors had selectivity for Src family kinase and phosphodiesterase type 

7 (PDE7) and were used to elucidate the role of these proteins in mast cell activation.
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6.2 Results

6.2.1 The generation of human mast cells from cord blood mononuclear cell 

precursors

Human mast cells were derived from cord blood mononuclear cells by growing them in the 

presence of SCF (Stem cell factor) at a concentration of 4.3nM, IL-6 at a concentration of 

2.3nM and PGE2 at a concentration of 300nM. The method is derived from Saito et al and 

is detailed in chapter 2.3.10. The ability of these cord blood-derived mast cells to proliferate 

in culture was measured over a 45-day period. Figure 6.1 indicates that, by day 15, cell 

number had increased by 177 ± 22%. From day 15 onwards cell numbers started to decline 

and by day 45 in culture 28 ± 9% of original cell numbers remained.
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Figure 6.1: The effect of SCF, IL-6 and PGE2 on cord blood mononuclear cell survival.
30 X 10  ̂Cord blood PBMC were treated with SCF (4.3nM), IL- 6  (2.5nM) and PGE2 (300nM) in weekly doses. 
Viable cells were counted at the times indicated by their ability to exclude trypan blue. The values shown are the 
mean of five separate experiments ± SEM.
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6.2.2 The phenotypical analysis of human mast cells derived from human cord 

blood mononuclear cell precursors

Cord blood mononuclear cells cultured with SCF, IL-6 and PGE2 were monitored using a 

FACScalibur flow cytometer, fig 6.2. Forward light scatter (which was taken as an indicator 

of cell size) and side light scatter (which was taken as an indictor of cell granularity) were 

measured by flow cytometry for a period of 14 weeks. These measurements began after 6 

days in order to eliminate contaminating cells, e.g. lymphocytes, from the plots. By day 20 

the cells had formed into a single agranular population that was termed, immature cord 

blood-derived mast cells (IcbMC). This population is indicated on the day 27 plot of fig 6.2 

by an oval gate. IcbMC persisted until day 62 as a minor population. By day 34 in culture, 

the IcbMC population had started to split into another more granular population. These cells 

were termed cord blood-derived mast cells (cbMC), this population is indicated on the day 

62 plot of fig 6.2 by a circular gate.

These two populations, IcbMC and cbMC, were analysed using flow cytometry for the cell 

surface expression of a panel of chemokine receptors. Figure 6.3 shows that IcbMC 

expressed the CC chemokine receptors CCR2 and CCR5 but did not express the chemokine 

receptors CCRl, CCR3 and CCR6. Expression of CCR2 and CCR5 progressively increased 

from day 13 to day 62. Weak expression of CCR6 was observed in some experiments, 

though this expression was variable.
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Figure 6.2: The light scatter properties of cord blood mononuclear cells treated with 
SCF, IL- 6  and PGE2 . Cord blood PBMC were treated with SCF (4.3nM), IL- 6  (2.5nM) and PGE2 (300nM) 
in weekly doses. At the times indicated (day represented in the top left-hand comer of each plot) cells light 
scattering properties were analysed using flow cytometry. The data was expressed as plots o f forward scatter 
(FSC or size) versus side scatter (SSC or granularity). The plots shown consist o f at least 5000 events and the 
data shown is representative of five separate experiments.
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Figure 6.3: The expression of CCRl, CCR2, CCR3, CCR5 and CCR6  on immature 
cord blood derived human mast cells (IcbMC). immature cord blood derived mast cells (IcbMC), 
were defined according to their unique light scattering properties, as analysed using flow cytometry techniques 
(see figure 6.2). IcbMC were stained with antibodies that recognised human CCRl, CCR2, CCR3, CCR5 and 
CCR6 , represented by a red line. IcbMC were also stained with irrelevant isotype matched antibodies, represented 
by a green line. Data was plotted as overlaid histograms, each plot consists of at least 3000 events. The data 
shown is representative of five separate experiments.

IcbMC were also tested for the expression of CXC chemokine receptors. Figure 6.4 shows 

that IcbMC expressed the CXC chemokine receptors CXCR2, CXCR3 and CXCR5 but did 

not express the CXC chemokine receptors CXCRl and CXCR4. Expression of both CXCR3 

and CXCR5, though consistently detectable, was weaker than the expression of the CC 

chemokine receptors CCR2 and CCR5 upon the same cells. Expression of CXCR3 and 

CXCR5 progressively increased from day 13 to day 62, in a similar fashion to the expression 

of CCR2 and CCR5. The expression of CXCR2 on IcbMC was transitory; CXCR2 levels 

peaked after 27 days in culture and had decreased by 62 days in culture.
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Figure 6.4: The expression of CXCRl, CXCR2, CXCR3, CXCR4 and CXCR5 on 
immature cord blood derived human mast cells (IcbMC). immature cord blood derived mast 
cells (IcbMC), were defined according to their unique light scattering properties, as analysed using flow 
cytometry techniques (see figure 6.2). IcbMC were stained with antibodies that recognised human CXCRl, 
CXCR2, CXCR3, CXCR4 and CXCR5, represented by a red line. IcbMC were also stained with irrelevant 
isotype matched antibodies, represented by a green line. Data was plotted as overlaid histograms, each plot 
consists of at least 3000 events. The data shown is representative of five separate experiments.

Mature cbMC were also analysed for the expression of CC and CXC chemokine receptors. 

cbMC were assessed for the expression of chemokine receptors after 49 and 62 days in 

culture respectively. Figure 6.5, shows that cbMC did not express any of the CC chemokine 

receptors; CCRl, CCR2, CCR3, CCR5 and CCR6 nor did they express any of the CXC 

chemokine receptors; CXCRl, CXCR2, CXCR3, CXCR4 and CXCR5.
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Figure 6.5; The expression of CCRl, CCR2, CCR3, CCR5, CCR6 , CXCRl, CXCR2, 
CXCR3, CXCR4 and CXCR5 on mature cord blood derived mast cells (cbMC). Cord
blood derived mast cells (cbMC), were defined according to their unique light scattering properties, as analysed 
using flow cytometry techniques (see figure 6.2). cbMC were stained with antibodies that recognised human 
CCRl, CCR2, CCR3, CCR5, CCR6 , CXCRl, CXCR2, CXCR3, CXCR4 and CXCR5, represented by a red line. 
cbMC were also stained with irrelevant isotype matched antibodies, represented by a green line. Data was plotted 
as overlaid histograms, each plot consists of at least 3000 events. The data shown is representative of five 
separate experiments.

6.2.3 The functional responses of human mast cells derived from cord blood 

mononuclear cell precursors

Figure 6 .6  indicates that cbMC (as defined in chapter 6.2.2) were found to contain 

histamine. Cells cultured for at least 70 days with SCF, IL-6 and PGE2, contained 110 ± 37 

ng ml of histamine per lO'̂  cells (11 ± 3.7 pg ml of histamine per cell).
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Figure 6.6; The histamine content of cord blood derived human mast cells, l x 1 0  ̂ cbMC 
were harvested after 70 days in culture (with SCF/IL-6 /PGE2) and lysed with 0.1% triton X-100. Histamine levels 
were determined in cell free culture supernatants by El A. Each point is a mean of four separate values, each point 
represents a separate experiment. A straight line indicates the mean of all experiments.

cbMC (henceforward ‘cbMC’ will refer to cord blood mononuclear cells that have been 

cultured with SCF, IL-6 and PGE2 for at least 70 days) when challenged with human IgE and 

an anti-human IgE antibody, released histamine, fig 6.7a. The release of histamine was 

specific and dose-dependent, 1 pg ml of IgE protein and 5 pg ml of anti-IgE antibody 

inducing a 6-fold increase in histamine release compared to cells treated with 5 pg ml of 

anti-IgE antibody alone. cbMC also synthesised peptido-leukotrienes when challenged with 

human IgE and an anti-IgE antibody, fig 6.7b. The synthesis of leukotrienes was specific and 

dose-dependent, 1 pg ml of IgE protein and 5 pg ml of anti-IgE antibody inducing a 

58-fold increase in leukotriene synthesis compared to cells treated with 5 pg ml of anti IgE 

antibody alone.
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Figure 6.7: Dose-dependent release of histamine and synthesis of peptido-leukotrienes 
by cord blood derived human mast cells exposed to human IgE and anti-IgE
antibodies. cbMC were pre-treated with or without human IgE (1 pg ml for Ih prior to stimulation with a 
mouse anti-human IgE antibody at the concentrations indicated. Histamine (A) and peptido-leukotrienes (B) were 
measured after 30 min in cell free culture supernatants by El A. Values are in triplicate ±  SD and the experiment 
is representative of three separate experiments.

Stem cell factor (10 ng ml when incubated with cells for one hour prior to culture, 

augmented the IgE-dependent release of histamine and synthesis of leukotrienes, fig 6.8. 

SCF augmented the release of histamine by 4-fold and leukotriene synthesis by 8 fold. cbMC 

when stimulated with SCF, IgF and an anti-IgF antibody preferentially synthesised 

leukotriene C4 (LTC4) in preference over prostaglandin D2 (PGD2). In three separate 

experiments the ratio of LTC4 to PGD2 varied from 9 to 19 fold, fig 6.9.
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Figure 6.8: The release of histamine and synthesis of peptido-leukotrienes by cord 
blood derived human mast cells exposed to human IgE, anti-IgE and stem cell factor.
cbMC were pre-treated with or without human IgE (1 jig ml ~‘) for Ih prior to stimulation with a mouse anti
human IgE antibody (5 pg ml in the presence or absence of SCF (10 ng ml “*). Histamine and peptido- 
leukotrienes were measured after 30 min in cell free culture supernatants by El A. Values are in triplicate ± SD 
and the experiment is representative of three separate experiments
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Figure 6.9: The production of LTC4  and PGD2  by cord blood derived mast cells 
stimulated with human IgE, anti-IgE antibodies and SCF. cbMC were pre-treated with human 
IgE (1 pg ml for Ih prior to stimulation with a mouse anti-human IgE antibody (5 pg ml “h and SCF (10 ng 
ml "')• LTC4 and PGD2 were measured after 30min in cell free culture supernatants hy ElA. Values are in 
triplicate ± SD. N.B. CD015-CD017 refers to separate cord blood cultures from different donors.

6.2.4 The effect of agents that elevate cAMP on the functional responses of 

human mast cells derived from cord blood mononuclear cell precursors 

Figure 6.10 shows that forskolin (a direct adenylyl cyclase activator) dose-dependently 

inhibited the IgE-dependent release of histamine from cbMC. 25pM of forskolin inhibited 

100% of the specific histamine released. Figure 6.11 indicates that IB MX did not inhibit 

IgE-dependent histamine release from cbMC. Even at concentrations up to 500pM IB MX 

was unable to block histamine release. Two phosphodiesterase inhibitors, Trequinsin 

(PDE3 selective inhibitor) and RP7340I '̂ ’̂̂ '^̂ (PDE4 specific inhibitor) both failed to inhibit 

the IgE-dependent release of histamine from cbMC, fig 6.12. When Trequinsin and RP73401 

were both added to cbMC, they synergistically inhibited the IgE-dependent release of 

histamine. Figure 6.13 indicates that IpM of RP7340I and lOpM of Trequinsin inhibited 

44% ± 1% of the specific histamine released from cbMC.
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Figure 6.10: The effect of forskolin on the release of histamine from cord blood derived
human mast cells exposed to human IgE, anti-IgE antibodies and SCF. cbMC were pre
treated with human IgE (1 |iig ml ”') and forskolin (at the concentrations indicated) for Ih prior to stimulation 
with a mouse anti-human IgE antibody (5 p,g ml and SCF (10 ng ml Histamine was measured after 30 min 
in cell free culture supernatants by EIA. Values are in triplicate ± SD and the experiment is representative of three 
separate experiments.
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Figure 6.11: The effect of IBMX on the release of histamine from cord blood derived
human mast cells exposed to human IgE, anti-IgE antibodies and SCF. cbMC were pre
treated with human IgE (1 (ig ml and IBMX (at the concentrations indicated) for Ih prior to stimulation with a 
mouse anti-human IgE antibody (5 p.g ml ~‘) and SCF (10 ng ml '*). Histamine was measured after 30 min in cell 
free culture supernatants by EIA. Values are in triplicate ± SD and the experiment is representative of three 
separate experiments
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Figure 6.12: The effect of the PDE3 selective inhibitor Trequinsin and the PDE4 
specific inhibitor RP73401 on the release of histamine from cord blood derived human 
mast cells exposed to human IgE, anti-IgE antibodies and SCF. cbMC were pre-treated with 
human IgE (1 pg ml "*) and Trequinsin or RP73401 (at the concentrations indicated) for Ih prior to stimulation 
with a mouse anti-human IgE antibody (5 pg ml and SCF (10 ng ml "*). Histamine was measured after 30 min 
in cell free culture supernatants by EIA. Values are in triplicate ± SD and the experiment is representative of three 
separate experiments
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Figure 6.13: The effect of the PDE3 inhibitor Trequinsin in combination with the PDE4 
inhibitor RP73401 on the release of histamine from cord blood derived human mast
cells exposed to human IgE, anti-IgE antibodies and SCF. cbMC were pre-treated with human 
IgE (1 pg ml "*), RP73401 (IpM) and Trequinsin (at the concentrations indicated) for Ih prior to stimulation with 
a mouse anti-human IgE antibody (5 pg ml “*) and SCF (10 ng ml “*). Histamine was measured after 30 min from 
cell free culture supernatants by EIA. Values are in triplicate ± SD and the experiment is representative of three 
separate experiments.
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6.2.5 The effect of Src kinase and PDE 7 inhibitors on the functional responses 

of human mast cells derived from cord blood mononuclear cell precursors

A series of structurally similar inhibitors of the enzymes Lyn and/or PDE7, were used in 

these studies. These compounds; CT5474, CT5733, CT5651, CT5982, CT5227, CT5473, 

CT6236, CT5215, CT5378 and CT5605 are described in more detail in chapter 2.2.2. Table

6.1 shows the selectivity for inhibition of the enzymes PDE7, Lck, Lyn, PDE3, PDE4 and 

PKC by these compounds. This series of compounds contained inhibitors of Lyn, which had 

no inhibitory activity against PDE7 e.g. CT5227. The series also contained inhibitors of 

PDE7, that had no inhibitory activity against Lyn e.g. CT5982 and inhibitors of both PDE7 

and Lyn e.g. CT5474.

Table 6.1: The IC50S of a series of structurally related compounds for the inhibition of 
the in vitro enzyme activity of PDE7, Lck, Lyn, PDE3, PDE4 and PKC.*

Inhibitors PDE7 Lck Lyn PDE3 PDE4 PKC

CT5215 13,300 ND 21 ND ND ND

CT5227 13,300 6 11 13,300 ND 1872

CT5378 ND ND 5.5 ND ND ND

CT5474 15 2.7 2.9 13,300 123 10,000

CT5475 2811 10,000 ND ND ND ND

CT5605 13,300 ND 1273 ND ND ND

CT5651 4 165 191 13,300 164 10,000

CT5733 12 708 1287 6500 504 10,000

CT5982 13 10,000 10,000 1100 359 10,000

CT6236 117 13,000 13,000 13,000 13300 ND

* All values are expressed as nM ICggS. Values are the mean of three separate experiments (standard deviations 
are not shown). ND = not determined.

Eight of the Src kinase and PDE7 inhibitors were tested for their ability to inhibit IgE- 

dependent histamine release and leukotriene synthesis from cbMC, table 6.2. The IC50 

values for the compounds varied in potency from 38nM to lOpM for inhibition of histamine 

release and from lOnM to lOpM for the inhibition of leukotriene synthesis. The same eight 

compounds were also tested for their ability to block histamine release from rat pleural mast
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cells that had been stimulated with cross-linking anti-IgE antibodies. Table 6.2 shows that 

the IC50 values for these compounds ranged in potency from llOnM to lOpM for the 

inhibition of histamine release.

Table 6.2: IC5 0 S of Src kinase and PDE7 inhibitors for inhibition of
histamine/leukotriene production by cbMC and histamine production by rat pleural 
mast cells.*

Compound
Mean IC50 

(nM) histamine 
release (cbMC)

SEM
±

Mean IC50 (nM) 
leukotriene 

synthesis (chMC)

SEM
±

Mean IC50 
(nM) histamine 
release (Rat)

SEM
±

CT5227 198.7 114.7 190 130.6 350 47.3

CT5378 37.7 21.8 10 / 453.4 153.8

CT5474 82 47.3 125 61.2 110 55.4

CT5475 98.7 56.9 80 16.3 1883 573.2

CT5651 266.7 154 250 40.8 2353 613.9

CT5733 1267 731.3 725 224.5 5367 1374

CT5982 6000 3464 6500 2857.7 5160 1642

CT6236 10000 5774 10000 0 10000 0

* cbMC were pre-treated with human IgE (1 pg ml and the compounds preincubated for Ih prior to 
stimulation with a mouse anti-human IgE antibody (5 pg ml “*) and SCF (10 ng ml "*). Histamine and peptido- 
leukotrienes were measured after 30 min from cell free culture supernatants by EIA. Rat pleural mast cells were 
pre-treated with rat IgE (2 pg ml “*) and the compounds indicated for Ih prior to stimulation with a sheep anti-rat 
IgE antibody (1 pg ml ”*). Histamine was measured after 30 min from cell free culture supernatants by EIA. 
Values are the mean o f three separate experiments ±  SEM.

The inhibition of histamine release from cbMC by CT5227, CT5474, CT5651, CT5733, 

CT5982, CT5378 and CT6236 was correlated with inhibition of the Src kinase enzyme Lyn, 

fig 6.14. There was a good correlation between these two inhibitory activities (Spearman’s r 

= 0.964) and the result was significant (p=0.003). Figure 6.14 also shows the correlation of 

the inhibition of leukotriene synthesis with inhibition of Lyn for the same panel of 

compounds. The correlation between these two inhibitory activities was good (Spearman’s r 

= 0.964) and the result was significant (p=0.003).

The inhibition of histamine release from cbMC by the compounds CT5227, CT5474, 

CT5475, CT5651, CT5733, CT5982, and CT6236 was also correlated with inhibition of the 

phosphodiesterase enzyme, PDE7, figure 6.15. There was no correlation between these two 

inhibitory activities (Spearman’s r = -0.286) and the result was not significant (p=0.556).
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Figure 6.15 also shows the correlation of the inhibition of leukotriene synthesis with 

inhibition of PDE7 for the same panel of compounds. There was no correlation between 

these two inhibitory activities (Spearman’s r = -0.351) and the result was not significant 

(p=0.444). To investigate if inhibition of PDE4 correlated with inhibition of mast cell 

degranulation, five compounds that were tested for PDE4 inhibition were correlated with 

inhibition of mast cell histamine release. There was no correlation between these two 

activities (Spearman’s r =0.700) and the result was not significant p=0.233, (data not shown).
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Figure 6.14: Correlation of inhibition of histamine release and leukotriene synthesis 
from cord blood derived mast cells stimulated with IgE, anti-IgE antibodies and SCF,
with inhibition of p56^^” for a series of structurally related inhibitors. cbMC were pre
treated with human IgE (1 pg ml and the compounds; CT5227, CT5474, CT5474, CT5651, CT5733, CT5982, 
CT5378 and CT6236 for Ih prior to stimulation with a mouse anti-human IgE antibody (5 pg ml "*) in the 
presence of SCF (10 ng ml "*). Histamine and peptido-leukotrienes were measured after 30 min from cell free 
culture supernatants by EIA. IC50 values obtained from this data were plotted against IC50 values obtained for the 
inhibition of p56^^" in in vitro  enzyme assays. This data is the mean of three separate experiments (errors not 
shown).
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Figure 6.15: Correlation of inhibition of histamine release and leukotriene synthesis 
from cord blood derived mast cells stimulated with IgE, anti-IgE antibodies and SCF,
with inhibition of P D E 7  for a series of structurally related inhibitors. cbMC were pre-treated
with human IgE (1 pg ml and the compounds; CT5227, CT5474, CT5474, CT5651, CT5733, CT5982, 
CT5378 and CT6236 for Ih prior to stimulation with a mouse anti-human IgE antibody (5 pg ml “') in the 
presence of SCF (10 ng ml Histamine and peptido-leukotrienes were measured after 30 min from cell free 
culture supernatants by EIA. IC50 values obtained from this data were plotted against IC50 values obtained for the 
inhibition of PDE7 in in vitro enzyme assays. This data is the mean of three separate experiments (errors not 
shown).

The inhibition of histamine release from rat pleural mast cells by the compounds CT5227, 

CT5474, CT5651, CT5733, CT5982, CT5378 and CT6236 was correlated with inhibition of 

the Src kinase enzyme Lyn, fig 6.16. The correlation between these two inhibitory activities 

was good (Spearman’s r = 0.929) and highly significant (p=0.007). The inhibition of 

histamine release from rat pleural mast cells by the same panel of compounds was also 

correlated with their inhibition of the phosphodiesterase enzyme PDE7, fig 6.16. In contrast
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the correlation between these two inhibitory activities was poor (Spearman’s r = -0.357) and 

not significant (p=0.444).
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Figure 6.16: Correlation of inhibition of histamine release and leukotriene synthesis 
from rat pleural mast cells stimulated with rat IgE and anti-rat IgE antibodies, with 
inhibition of p56̂ "̂ and PDE7 for a series of structurally related inhibitors. Rat pleural 
mast cells were pre-treated with IgE (2 pg ml ~*) and the compounds; CT5227, CT5474, CT5651, CT5733, 
CT5982, CT5378 and CT6236 for Ih prior to stimulation with a sheep anti-rat IgE antibody (1 pg ml “ )̂. 
Histamine levels were measured after 30 min from cell free culture supernatants by EIA. IC50 values obtained 
from this data were plotted against IC50 values obtained for the inhibition of p56^^ and PDE7 in, in vitro  enzyme 
assays. This data is the mean of three separate experiments (errors not shown).

The compounds CT5227, CT5733 and CT5982 (which represented potent, intermediate and 

weak inhibitors of IgE-dependent mast cell degraunlation), were examined for their ability to 

inhibit both histamine release and peptido-Ieukotriene synthesis from cbMC stimulated with 

PMA and ionomycin. None of these compounds inhibited the release of histamine and
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synthesis of leukotrienes, with the exception of the compound CT5733, which at a 

concentration of lOjuM inhibited 45% ± 9.5% of leukotriene synthesis, fig 6.17.

120

^  100
90

O) 80
70
60
50
40 CT5227

CT5733
CT5982

BG
PMA+bnomycin

30
20

0.01 0.1 1 10 100 1000 10000 100000 
Concentration of com pound (nM -1)

2400

2200
2000 

1  1800  

1600
o>

% 1400

S 1200
1000

800
- CT5227
-  CT5733 
- CT5982

PIW\ + Ionomycin 
BG

600

400

200
hHH 1 Mill l-fi 1 I I I lllil M'fflili

100 1000 10000 1000000.01 0.1 1 10
Concentration of com pound (nM -1)

Figure 6.17: The effect of Src/PDE7 inhibitors on histamine release and peptido- 
Ieukotriene synthesis from cord blood derived mast cells exposed to PMA and 
ionomycin. cbMC were incubated with CT5227, CT5733 and CT5982 at the concentrations indicated for 30 
minutes prior to stimulation with PMA (1 pg ml “‘) and ionomycin (10 ng ml “*). Histamine and peptido- 
leukotrienes were measured after 30min in cell free supernatants by EIA. Values are shown in triplicate ± SD and 
the experiment is representative of three separate experiments.
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6.3 Discussion

In order to study the effect of signal transduction inhibitors on mast cell function it was 

essential to obtain large numbers of purified cells. This need was met by deriving mast cells 

from CD34 positive precursors harvested from human cord blood. Cord blood-derived mast 

cells (cbMC) were characterised to ensure they were phenotypically and functionally 

representative of human mast cells. cbMC proliferated in response to high doses of the 

cytokines SCF and IL-6 in the presence of PGE2. cbMC, after this initial period of 

proliferation formed a distinct agranular population as defined by their light scattering 

properties using flow cytometetry. This population termed IcbMC divided into another 

separate and more granular population at around 4 weeks. These granular cells increased in 

number relative to IcbMC and by week 8 were the dominant population. These cells were 

deemed mature mast cells and were termed cbMC.

cbMCs were extensively characterised to ensure that they phenotypically and functionally 

resembled human mast cells. Thirty separate cord blood cultures were used to characterise 

mast cell responses prior to use in this thesis. cbMC after 10 weeks in culture, contained 

levels of histamine similar to those found in human lung mast cells and cord blood-derived 

mast cells described in the literature ^̂"̂=324:346̂ These cells released histamine and synthesised 

peptido-leukotrienes when challenged with cross-linked human IgE but not IgE alone. In 

accordance with other studies SCF augmented this response In addition, cbMC also 

synthesised LTC4 in preference to PGD2, which may indicate the up-regulation of the 5- 

lipoxygenase-synthase pathway Although cbMC were found to express mast cell 

tryptase, technical difficulties precluded the measurement of mast cell chymase. However, 

cbMC did not, using light microscopy, resemble basophils nor did they express any basophil 

specific markers (data not shown). cbMC, thus behaved like human mast cells with respect 

to their functional activation using cross-linked IgE as an activating agent.

At the beginning of this project little was known of how mast cell precursors or mature mast 

cells migrate to the sites of allergic inflammation. To investigate this the expression of
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chemokine receptors on differentiating and mature cord blood mast cells was studied. 

Evidence that mast cells express chemokine receptors has until recently been limited. Human 

mast cells were found to migrate, but not degranulate, in response to monocyte 

chemoattractant protein-1 (MCP-1) and RANTES (regulated upon activation normal T cell 

expressed and secreted) indicating that they express chemokine receptors The mast

cell-like cell line HMC-1 expresses functional CXCRl and 2 though there is no

evidence for the expression of such receptors on primary cells.

During the course of this thesis a paper by Ochi et al supported some of the findings 

contained within this chapter. Ochi et al reported that cord blood derived mast cells express 

the chemokine receptor CCR3, a chemokine implicated in the pathogenesis of asthma. 

Subsequently, fully functional CCR3 was found to be expressed on human mast cells that 

stained positive for tiyptase/chymase The findings of Ochi et al, also indicated that 

immature cord derived mast cells express functionally active C-C chemokine receptors 

CCR3 and 5 and CXC chemokine receptors CXCR2 and CXCR4.

Mast cells used in this study were also found to express a unique repertoire of chemokine 

receptors. IcbMC, which were less granular than fully mature mast cells and did not act as 

functional mast cells (data not shown), expressed the CC chemokine receptors CCR2 and 5 

and the CXC chemokine receptors CXCR2, 3 and 5. IcbMC did not express the CC 

chemokine receptors CCRl, 3, or 6 nor the CXC chemokine receptors, CXCRl and CXCR4. 

This pattern of expression differed from that reported by Ochi et al who found expression 

of CCR3, CCR5, CXCR2 and CXCR4 on immature cells. Mature granular mast cells 

(detected from 5 weeks onwards) did not express the CC chemokine receptors CCRl, 2, 3, 5 

and 6 nor did they express the CXC chemokine receptors CXCRl, 2, 3, 4 or 5. These 

findings are broadly in line with those described by Ochi et al though they did find that 

mature mast cells expressed CCR3, a finding that could not be replicated in the present 

study.
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These findings implicate a wide variety of chemokine receptors in the trafficking of mast 

cell-committed precursors to sites within the body. The expression of CCR2, CCR5, 

CXCR2, CXCR3 and CXCR5 receptors on mast cells precursors may mean they can migrate 

to many different sites within the body. This pattern of receptor expression has not been 

documented on haematopoetic cells. The lack of chemokine receptors on mature mast cells is 

contrary to that reported by Ochi et al, who found expression of CCR3. These differences in 

receptor expression may relate to the use of IL-10 in preference to PGE2 as a differentiating 

factor. This may have induced the preferential expression of CCR3 on mast cells. For 

instance, it has been reported that different cytokines such as IL-4, IL-5 and IFN-y can 

influence the differentiation of mast cells from their committed precursors More

studies are needed to determine how these cytokines can influence the chemokine receptor 

expression on committed mast cell precursors and whether these processes occur in vivo.

Elevated levels of cAMP in cultured human mast cells correlate with the inhibition of 

mediator release and cytokine production The granular cbMC used in these studies were 

shown to be sensitive to the elevation of cAMP. The adenylyl cyclase activator, forskolin, 

inhibited IgE-mediated mast cell activation in accordance with the literature The

question of which PDE controls cAMP in mast cells is unclear. Although PDE3 and 4 have 

been shown to be expressed in mast cells the addition of specific PDE3 and PDE4 

inhibitors was unable to block IgE-induced histamine release. In addition, IBMX did not 

inhibit histamine release from cbMC, in contrast to other experimental findings but

inhibitors of PDE3 and PDE4, when added together, did have a small synergistic inhibitory 

effect on histamine release at high concentrations. This effect has been observed with human 

mast cells using the mixed PDE3/4 inhibitor Benzafentrine This indicates that inhibition 

of PDE4, currently a therapeutic target for intervention in asthma does not control

FceRI induced degranulation of mast cells and is, in contrast to FceRI induced degranulation 

in other cells such as basophils, PDE4-insensitive This may imply that basophils and 

cbMC differ in their expression or utilisation of PDEs. These findings, along with reports in 

the literature, have led to the proposal that a PDE other than PDE3 or 4 must control cAMP
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levels in mast cells. Inhibition of this PDE would control mast cell degranulation in response 

to IgE. One such candidate is PDE7, a cAMP selective PDE, that is thought to play a role in 

T cell activation Until now no potent and specific PDE7 inhibitors have been

available to test whether PDE7 plays a role in mast cells.

Using a series of Celltech inhibitors, the role of both Src kinase and PDE7 could be 

determined in mast cell activation. This series of inhibitors were potent and specific for Src 

kinase, Lyn without showing significant activity for PDE3, 4 and PKC (activity against 

PDE3,4 or PKC may inhibit mast cell degraulation). The inhibition of Lyn (as a 

representative Src kinase) but not PDE7 was able to control the activation of cbMC 

stimulated via the FceRI receptor. Lyn kinase inhibitors controlled the IgE-mediated release 

of histamine and the de novo synthesis of leukotrienes. Under the same conditions low nano

molar inhibitors of PDE7 failed to inhibit the release of histamine and synthesis of 

leukotrienes. The inhibitor effects were not restricted to cord blood-derived mast cells as 

inhibition of Lyn, but not PDE7 also correlated with inhibition of histamine release from rat 

pleural mast cells. The effect was probably not due to a synergistic blockade of PDE3 and 4 

as the most potent dual PDE3 and 4 inhibitor, CT5982, was a weak suppresser of mast cell 

activation. The effects of these inhibitors were confined to signalling pathways upstream of 

those activated by PMA and ionomycin.

This study has confirmed that Src kinases play an important role in FceRI signal 

transduction. Studies using another Src kinase inhibitor, PPl, showed inhibition of markers 

of cellular activation in RBL (rat basophillic leukaemic cell line) cells activated through the 

FceRI receptor During this thesis it emerged that the dominant role thought to be played 

by Lyn in FceRI signalling may be incorrect. Work using Lyn negative mice indicates that 

Lyn does not play such a central role in FceRI mediated degranulation To explain why 

CT-SKI inhibited FceRI-dependent mast cell degranulation it may be that as well as 

inhibiting Lyn, other tyrosine kinases critical to FceRI signalling are also blocked by these
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inhibitors. Two such candidates Syk and Btk may account for the effects seen. Syk activity 

when absent, as in the case of the Syk deficient cell line (RBL-2H3), completely abolishes 

FceRI induced degranulation and cytokine synthesis. When Btk’s activity is abolished, 

together with Lyn, profound inhibition of mast cell degranulation is seen When Btk alone 

is absent from mast cells the synthesis of cytokines is impaired but when Lyn alone is

absent from mast cells cytokine synthesis can be increased Studies of the effect of

inhibitors on mast cell cytokine production may delineate Lyn- and Btk-selective action of 

inhibitors.

Future work using these chemical inhibitors will be required to profile them against a panel 

of critical kinases involved in FceRI activation. These inhibitors are likely to be pan-specific 

inhibitors of the Src family of kinases (as indicated by their inhibition of the related Src 

kinase Lck), whose family members Lyn, c-Src and c-Yes are all activated upon cross- 

linking the FceRI Indeed, these inhibitors may mediate their effects by the concomitant 

inhibition of Lyn, Src and Yes in the same cells. A full understanding of these inhibitors 

profile against other key kinases, along with an understanding of their effects on other 

cellular phenomenon such as calcium mobilisation and cytokine production will be required 

to fully interpret their mechanism of action and possible therapeutic potential as anti-allergic 

drugs.
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Chapter 7

General discussion
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Chapter 7 

General discussion

7.1 Introduction
Inflammation under normal circumstances is a protective phenomenon, but can be 

responsible for an enormous amount of morbidity and mortality worldwide. Infectious 

diseases, cardiovascular diseases, neuro-degenerative disorders, cancer and the many 

idiopathic chronic inflammatory conditions (asthma, rheumatoid arthritis etc.) all have 

inflammatory components which, if they could be blocked, would have therapeutic benefit. 

Inflammatory diseases have been the subject of study for well over a century and since the 

end of the second world war there has been an enormous effort made to understand these 

diseases at levels from the whole animal to the individual protein. More than 50 years of 

intensive research have made us realise the immense complexity of the inflammatory process 

and how deeply it is woven into the fabric of the individual. This has been brought into focus 

by the recent discoveries of the Toll interleukin-1 receptor domain which may be traced back 

through our genetic history for over 2 billion years

How can one envisage controlling, for therapeutic benefit, this ancient and multifaceted 

protective mechanism? One hypothesis, that has been the subject of ongoing examination for 

the past two decades, is that cytokines represent a major control point in inflammation. 

When this thesis began the hypothesis that inhibition of particular cytokines could be of 

therapeutic use in controlling inflammation had not been formally tested. However, in the 

past few years sufficient clinical data has accrued to support the hypothesis that blockade of 

TNF-a has therapeutic benefit. The methods used to block this cytokine include the use of 

neutralising chimaeric anti-TNF antibodies and soluble TNF receptor-Fc fusion proteins 

These macromolecular medicines are proving efficacious but may prove a mere stopgap 

before the introduction of small molecule drugs, which will provide the same end result but 

interfere, with different aspects of the control of the inflammatory process.
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It is likely, given that the cytokines appear to make multi-point attachments with their 

receptors, that small molecule inhibitors of individual cytokines will prove difficult to 

produce. This leaves the intracellular signalling processes driven by cytokines and the 

interactions which induce the transcription of pro-inflammatory cytokine genes, as 

therapeutic targets. In this thesis the hypothesis under test is that blockade of specific 

intracellular signalling systems can inhibit cytokine synthesis or cytokine-driven patho- 

mechanisms.

This project has focused on two intracellular signalling enzyme classes which, when 

inhibited, may regulate the production of cytokines by leukocytes. Potent and selective 

inhibitors of phosphodiesterases and Src tyrosine kinases have been used to block the 

activity of these enzymes in leukocytes and in turn used to discover the role these proteins 

play in regulating cytokine production. Since a detailed discussion has accompanied each 

chapter, this final section will provide an abbreviated review of the findings of the thesis, 

comment on their implications and on further work that is indicated by the studies described.

7.2 Inhibition of the PDE4 enzyme

The PDE4 enzyme has a well defined role in regulating cytokine production i49;i76;2oo;269 

Inhibiting PDE4 in monocytic cells greatly suppresses their ability to produce the pro- 

inflammatory cytokine TNF-a The ability of PDE4 inhibitors to block TNF-a production 

is thought to involve the elevation of intracellular cAMP. This method of suppressing TNF-a 

has been shown to be dependent upon elevating the level of the anti-inflammatory cytokine 

IL-10 as IL-10 is a natural regulator of TNF-a production However, studies using 

PDE4 inhibitors have indicated that blockade of TNF-a can be both-dependent or- 

independent of IL-10 production ^̂ :̂205;24i has led to confusion over the exact way in 

which PDE4 inhibitors regulate monocyte synthesis of TNF.

136



Chapter 7

Chapter 3 of this thesis supports the hypothesis that the suppression of monocyte TNF-a 

production by PDE4 inhibitors is not due to the elevation of IL-10 synthesis. To explain why 

conflicting reports suggested both IL-10-dependent and-independent mechanisms of TNF-a 

inhibition, it was proposed that studies comparing the effects of PDE4 inhibition on murine 

and human monocytic cells may not have taken into account the heterogeneous nature of 

monocytes when interpreting data.

In order to understand why different results using PDE4 inhibitors have been obtained it was 

necessary to study the effect of inhibiting PDE4 on cytokines other than TNF-a. It was 

discovered that inhibition of PDE4, in LPS activated human PBMC, resulted in a distinct 

pattern of cytokine inhibition as shown in table 7.1.

Table 7.1: PDE4-mediated inhibition of LPS induced human PBMC cytokine 
production. *

Cytokine PDE4 inhibitor hr IL-10

TNF-a 4-++-h +++-1-

IL-1 a +4-+ ND

IL-ip -H- 4—H"

IL-6 - -

IL-8 - ND

* ND, indicates measurements not determined. + indicates inhibition and -  indicates no effect. hrIL-10 indicates 
the effect of Ing ml'* of hrIL-10 on LPS induced cytokine production.

As can be seen from the table PDE4 inhibitors mediated strong suppressive effects on both 

TNF and IL-1, an effect similar to the addition of exogenous IL-10 to LPS stimulated 

cultures. An interesting finding was the discovery that IL-1 a  was inhibited to a greater 

extent than IL-p. Both IL-1 a  and IL-1 (3 are synthesised as precursors and secretion of mature 

protein is dependent upon calpain and caspase-1, respectively Apart from the

requirement of these enzymes, the secretion pathways that lead to the release of IL-1 a  and 

IL-ip remains largely unknown. It may be that these pathways interact with the PDE4 

enzyme differently. Future experiments will need to dissect apart these two pathways and
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measure, for instance, the effect of inhibiting PDE4 activity on calpain and caspase-1 

activity. Also, inhibition of PDE4 did not result in the inhibition of IL-6 or IL-8 in vitro. This 

suggests that neither IL-6 nor IL-8 lie on a pathway that is regulated by PDE4.

Using neutralising anti-IL-10 receptor antibodies, it was determined that PDE4 inhibitors did 

not mediate the inhibition of TNF via the production of IL-10. Indeed PDE4 inhibitors were 

found to suppress IL-10 production when measured early on after LPS stimulation. This 

could conceivably be due to the feedback mechanisms between TNF and IL-10 as it is 

known that when TNF production is suppressed, it can counteract the signals that induce IL- 

10 expression

Monocytes are heterogeneous cells and the relative expression of two surface proteins, CD 14 

and CD 16, has proved useful in determining different monocyte subsets The expression 

of CD 16 on CD 14 positive monocytes and macrophages correlates with downregulation of 

the expression of both IL-10 and PDE4 it was discovered that both activating stimuli 

and PDE4 inhibitors can alter monocyte phenotype, fig 7.1.

Monocyte 
CD14 positive

tC D 1 6 iC D 1 4
PDE4-insensitive 
CD 16 expression

Macrophage
( 1 ) 1 6  4 ( 1 ) 1

n s i l i v i

dl d5

Figure 7.1: The effect of different stimuli on monocyte/macrophage maturation. PCS and
to a lesser extent LPS upregulate the expression of CD 16 on macrophages as they mature from human peripheral 
blood precursors. The expression of CD 16 on LPS but not PCS stimulated macrophages was blocked by 
inhibiting the enzyme PDE4. In contrast, LPS plus IPN-y suppressed the expression o f CD 16 and increased the 
expression of CD 14 on macrophages.
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Monocytes stimulated with LPS or LPS plus IFN-y, when compared, showed altered 

regulation of IL-10 by PDE4 inhibitors, table 7.2.

Table 7.2: Comparison of PDE4-mediated inhibition of LPS and LPS plus IFN-y 
induced human PBMC cytokine production. *

Cytokine LPS LPS plus IFN-y

T N F -a -H-4-+ 4-4-4-

IL-1 a +-H- ND

IL-ip 4-4- ND

IL-6 - ND

IL-8 - ND

IL-10 not detected Î Î

IL-12 ND ++++

* ND, indicates measurements not determined. + indicates inhibition, -  indicates no effect and T indicates 
stimulation.

This table indicates that PDE4 inhibitors show altered regulation of the key inflammatory 

cytokine IL-10 when stimulated with LPS with and without IFN-y. It was noted that PDE4 

inhibitors increased IL-10 production only in PBMC stimulated with LPS plus IFN-y. 

However despite elevating IL-10, PDE4-mediated inhibition of both TNF-a and IL-12 was 

found to be independent of IL-10 production. This may mean that PDE4-mediated inhibition 

of TNF-a is due to a direct effect on TNF-a production, which may for instance be due to 

regulation of TNF-a at a transcriptional level

At the beginning of this thesis it was assumed by many that PDE4 inhibitors clearly elevated 

cAMP in monocytes and so, like other agents that elevate cAMP, inhibited TNF-a 

production via an increase in IL-10. In consideration of this, early attempts during this thesis 

were made to show that PDE4 inhibitors could augment LPS induced IL-10 production. This 

hypothesis proved unworkable. To reconcile these findings with studies that clearly showed 

that PDE4 inhibitors elevated IL-10 it was proposed that the phenotype of the

monocytes used in these studies could account for the different effects of PDE4 inhibitors on 

IL-10 synthesis. Since it was known that CD16 positive macrophages differ compared to

139



Chapter 7

CD 16 negative macrophages in their regulation of cytokines and phosphodiesterases, factors 

that alter CD 16 expression could alter the effect of PDE4 inhibitors upon cytokine 

production. Indeed it was discovered that in CD 16 negative monocytes (stimulated with LPS 

plus IFN-y) PDE4 inhibitors could upregulate IL-10 production. Further studies are required 

to examine if CD 16 negative cells stimulated with LPS alone also regulate IL-10 in the same 

way as cells stimulated with LPS plus IFN-y. It would also be of interest to determine if cells 

from different species and anatomical sites, that are both CD 16 positive and CD 16 negative, 

regulate IL-10 the same way in response to PDE4 inhibitors. To know why PDE4 inhibitors 

act differently in different monocyte subsets, apart from the possible dysregulation of PDE4 

protein expression, it is important to know if PDE4 inhibitors block interactions other than 

the hydrolysis of cAMP. For instance, it is known that PDE4 interacts with important 

signalling enzymes such as MAP kinase and Src kinase but it is not known if these 

interactions are functionally relevant with respect to the signalling cascade nor if PDE4 

inhibitors can disrupt such interactions.

7.3 Inhibition of PDE4 in T ceils

The work reported in chapter 4 strongly implicates PDE4 inhibitors as being antagonistic to 

Thl mediated inflammation, exemplified by their inhibition of pro-inflammatory cytokine 

production by activated monocytes. In addition, it was shown that PDE4 inhibitors were 

equally effective at counteracting Th2 driven immune responses These effects may, in 

part, be due to the action on cells such as eosinophils which may be critical to the

pathogenesis of particular disease models. However, it is unclear whether PDE4 inhibitors 

differentially effect either Thl or Th2 cytokine production In chapter 4 of this thesis it

was hypothesised that PDE4 inhibitors have the potential to be both immunosuppressive 

and/or immunododulatory to T cells. To test if either or both of these hypotheses were 

correct the effect of inhibiting PDE4 on T cell proliferation and cytokine production was 

measured.
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PDE4 is an enzyme that is expressed in many cells, including T cells. Since elevating cAMP 

can control T cell responses, an agent that can induce such an elevation would be a useful 

immunosuppressive drug. Work reported in this thesis has shown that PDE4 inhibitors can 

elevate cAMP levels in activated T cells. Despite this, PDE4 inhibitors were weak 

suppressants of T cell proliferation. These weak effects do not correlate with inhibition of the 

PDE4 enzyme in its low-affmity conformation but correlate with inhibition of the PDE4 

enzyme in its, alternate, high-affmity conformation. The significance of these conformations 

is unclear but many of the side-effects of PDE4 inhibitors, e.g. the induction of emesis 

have correlated with inhibition of the enzyme in its high-affinity state. The effect on 

proliferation is in contrast to the effect on T cell cytokine production which was found to 

correlate with inhibition of the PDE4 enzyme in its low-affmity state The weak 

suppressive effect of PDE4 inhibitors on proliferation showed no bias to antigens that primed 

for Thl or Th2 responses, nor to the stimulus used to induce proliferation. Interestingly 

however, it was shown that the potency of PDE4 inhibitors at suppressing T cell proliferation 

could be enhanced by addition of exogenous PGE2. Since PDE4 protein expression may 

regulate PGE2 levels it has been suggested that the anti-proliferative effect of PDE4 

inhibitors is due to PGE2 This may indeed be the case, however in these studies PGE2 

was used at a dose that activated adenylyl cyclase but did not inhibit proliferation. To use an 

analogy, if inhibiting PDE4 is the equivalent of putting a plug in a bath, adenylyl cyclase is 

the equivalent of turning on the tap. Thus, if activated T cells have a decreased rate of cAMP 

synthesis then PDE4 inhibitors will not be able to maintain high cAMP levels. Indeed it was 

shown during this thesis that cAMP levels were greatly diminished 24 hours after activation, 

even in cells treated with high doses of PDE4 inhibitor.

In contrast to the inhibition of T cell proliferation PDE4 inhibitors were more effective at 

blocking cytokine production. The effects of inhibiting PDE4 on a number of T cell 

functions are compared in table 7.3.
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Table 7.3: PDE4-mediated inhibition of T cell activation. *

Response Stimulus 24hrs 48hrs

Proliferation Con A +++ +

Proliferation Con A + PGEz +-H- +++

IL-2 Anti-CD3 *f++ ND

IL-4 Anti-CD3 +4-4- +++

IFN-y Anti-CD3 +++ +++

TNF-a Anti-CD3 ++++ ++++

CD25 expression Anti-CD3 ++ -

* ND, indicates measurements not determined. + indicates inhibition and -  indicates no effect.

PDE4 inhibitors blocked the expression of both Thl (IFN-y) and Th2 (IL-4) cytokines to the 

same extent indicating that in in vitro human cultures PDE4 inhibitors do not favour 

inhibition of either Thl or Th2 cytokines. Under the same experimental conditions TNF-a 

production was completely blocked by PDE4 inhibitors. Although these studies were 

performed on mixed cell populations the TNF-a produced under such conditions could be 

completely blocked by the action of cyclosporin A indicating that T cells were the sole 

source of cytokine production. If these findings can be extended to purified T cell cultures 

then this may indicate that unlike all other T cell responses, TNF-a production in T cells is 

largely regulated by PDE4. The inhibition of T cell PDE4 activity results in a spectrum of 

responses, ranging from the strong inhibition of cytokines such as TNF-a to the weak 

inhibition of T cell proliferation and CD25 expression. As some of these processes correlate 

with inhibition of the PDE4 enzyme in either one or other of its conformational states it may 

be of importance to investigate what factors can regulate PDE4 enzyme conformation. Such 

as the divalent cation magnesium and the interaction of protein kinase A (PKA) with the 

PDE4 enzyme Understanding how such factors can regulate the PDE4 enzyme at the 

cellular level may explain the range of effects mediated by inhibiting PDE4 and how the 

compartmentalisation of responses can exist within the same cell.
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7.4 Inhibition of Src kinase enzymes

Inhibition of kinase enzymes has until recently been of limited use as a therapeutic tool to 

treat disease. The complexity and supposed redundant nature of kinase enzymes has held 

back the development of kinase inhibitors. This has all changed with the introduction of 

Gleevec an inhibitor of Bcr-Abl (Abelson tyrosine kinase) for the treatment of patients 

with CML (chronic myeloid leukaemia). This inhibitor has not only introduced the 

possibility of kinase inhibitors as effective treatments in cancer but has invoked a 

reassessment of kinase enzymes as targets in other non-cancerous diseases. In the second 

part of this thesis the activity of another class of signalling enzyme, Src tyrosine kinase, was 

inhibited in human T and mast cells. Since Src kinases are recruited to multi-chain immune 

recognition receptors, e.g. the T cell and high-affinity IgE receptors, they represent attractive 

targets to modulate immune responses. Such an undertaking required potent and specific 

chemical inhibitors. Through its medicinal chemistry department, Celltech (Slough, UK) 

developed a series of small molecule inhibitors of Src kinase. Although selectivity for 

individual Src kinase members was not achieved, a series of inhibitors were produced that 

specifically blocked Src kinases over other critical intracellular signalling enzymes. These 

small molecules improved upon existing pyrazolopyrimidine inhibitors of Src kinase As 

well as showing increased potency against Src enzymes, Celltech kinase inhibitors do not 

inhibit Csk, a kinase that can also regulate Src activity. This chemical series also contained 

molecules designed to inhibit a novel PDE, PDE7. These compounds were used to probe the 

function of both Src kinase and PDE7 in activated T and mast cells.

It was proposed that because Src kinase enzymes (Lck and Fyn) are implicated in TCR 

signalling, inhibiting their enzymatic function may block signalling through the T cell 

receptor. The data presented in chapter 5 indicates that Src kinase inhibitors were potent at 

suppressing T cell activation directed through the T cell receptor using anti-CD3 as a 

stimulus. This inhibition was exemplified by showing that inhibition of isolated Src kinase 

enzyme correlated with inhibition of anti-CD3-mediated T cell proliferation. This 

suppression was manifested as an inhibition of cellular proliferation, inhibition of the
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synthesis of both Thl and Th2 cytokines and inhibition of IL-2 receptor expression. 

However, when more complex antigen driven systems of T cell activation, such as the MLR, 

were used to activate T cells, Src kinase inhibitors were less effective. This implies that 

during antigen-driven proliferation other signalling pathways are activated that are Src 

kinase-independent. It was hypothesised that since responses such as the MLR are dependent 

upon IL-2 to amplify proliferative signals signalling through the IL-2 receptor may be a 

Src-independent event. It was found that inhibition of anti-CD3 induced proliferation caused 

by blocking Src kinase activity could be short circuited by adding exogenous IL-2. This 

indicates that signalling through the IL-2 receptor does not critically require Src tyrosine 

kinases. To further define the point of action of the inhibitors, IL-2 production was activated 

below the level of the TCR using PMA and ionomycin (which act at the level of PKC and 

calcium signalling). Src inhibitors did not block IL-2 induced proliferation under such 

conditions suggesting that their activity can be localised to the part of the signal pathway 

downstream of the TCR but upstream of PMA and ionomycin.

More work is needed to define how antigen and mitogen driven systems differ in their 

requirement for Src kinases. It is not understood which (apart from signals that are forced 

through the IL-2 receptor) pathways activated by antigen are Src-independent. The complex 

response initiated by T cell recognition of antigen, i.e. antigen processing and presentation, 

TCR recognition of peptide and clonal expansion, means there are many co-stimulatory 

signals feeding into the T cell. Understanding the effect that inhibiting Src kinase has on 

events such as the production of cytokines or expression of activation markers may reveal 

possible Src-dependent-and-independent pathways. This however may be an academic 

exercise, as it is emerging that Src kinases do not represent suitable immunosuppressive 

targets as their inhibition is unable to block antigen-driven T cell proliferation. Instead, it 

may be of benefit to evaluate the ability of these compounds to modulate immune responses. 

Studies in vivo using models of inflammation and immune activation may be modulated by 

Src kinase inhibitors, especially if they are dependent upon overexpression or disregulation 

of T cell cytokines.
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7.5 Inhibition of Src kinase and PDE enzymes in mast cells

Mast cells are recognised to be involved in allergic inflammation via activation of their high- 

affinity IgE receptors. Activation of these receptors results in the recruitment of many 

protein tyrosine kinases to the receptor complex and distinguishing which PTKs are crucial 

to activation is important in establishing therapeutic targets that can modulate mast cell 

function. The final results chapter introduced the hypothesis that inhibiting Src kinase 

enzymes may modulate acute mast cell responses, in particular the ability of mast cells to 

produce histamine and leukotrienes.

To perform these studies it was necessary to develop a model system of human mast cell 

activation. Human mast cells were generated from CD34 positive progenitors by stimulation 

with a cocktail of IL-6, SCF and PGE2. Such cells were phenotypically and functionally 

similar to human tissue mast cells. As a consequence of the phenotypic analysis of these 

cells it emerged that, as cells mature from their progenitors, they express a distinct repertoire 

of chemokine receptors. Parallel to these studies, Ochi et al also reported the expression 

of chemokine receptors on such mast cells. The similarities and differences between the two 

studies are summarised in fig 7.2.

The importance of these findings is yet to be fully understood, but differences between this 

and Ochi et aVs work infer that the cytokines used to induce mast cell maturation may affect 

chemokine receptor expression. Indeed it is already known from work by other groups that 

cytokines such as IL-4 and-5 can influence the phenotype of mature mast cells differentiated 

from cord blood precursors
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Figure 7.2: Chemokine receptor expression on cord blood derived m ast cells, it is proposed 
that as mast cells mature from CD34 positive precursors they express distinct chemokine receptor repertoire. 
Agents such as PGE2 and IL-10 can promote the alternative expression of chemokine receptors in the presence of 
SCF and IL-6. PGE2 promotes the expression of CCR2, CXCR3 and CXCR5 where as IL-10 promotes the 
expression of CCR3 and CXCR4. PGE2 is unable to induce mature mast cells to express chemokine receptors, 
however IL-10 (plus SCF and lL-6) can induce the expression of CCR3

In cord blood-derived mast cells elevation of intracellular cAMP was able to inhibit mast cell 

degranulation. As the PDE responsible for controlling mast cell cAMP was unknown, a 

panel of specific inhibitors to various members of the PDE family were used to identify the 

PDE responsible. No role could be ascribed to PDE3, 4 or 7 in FceRI-dependent activation 

of mast cells but the ability of PDE3 and 4 inhibitors to partially inhibit mast cell 

degranulation suggests a complex regulation of cAMP by PDEs in the mast cell. This may be 

why pan-specific inhibitors of PDEs were unable to control cord-blood derived mast cell 

degranulation. However pan-specific PDE inhibitors did block degranulation of mast cells 

recovered from human tissue More studies are needed to ascertain which PDEs are

expressed in cord-blood mast cells and to uncover what factors regulate PDE activity in 

tissue mast cells.

In fully functional mast cells, Src kinase inhibitors blocked the release of histamine and 

synthesis of leukotrienes, in response to IgE but not other downstream activators (e.g. PMA
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and ionomycin). These effects correlated with inhibition of isolated Src kinase enzymes. In 

addition, these inhibitors also blocked rat pleural mast cell degranulation activated by cross- 

linked IgE. From studies using mice in which Lyn has been functionally deleted it is 

apparent that the regulation of FceRI by Src kinases is complex. In such mice deletion of 

Lyn alone does not inhibit mast cell degranulation To reconcile the effect of Celltech Src 

kinase inhibitors with the Lyn knockout mouse data, it must first be shown that these 

inhibitors do not inhibit Btk or Syk, as inhibition of either or both of these kinases could also 

inhibit FceRI-induced degranulation This would then narrow the effect down to the 

Src kinases; Lyn, Src or Yes (all shown to be present in mast cells ^̂ °). Mutant FceRI 

positive cell lines (such as PT-18, a Lyn/Src deficient cell line ^̂ °), which are positive for 

only one kinase would allow the role of each kinase to be assessed individually. It would be 

logical to test the effect of Celltech Src kinase inhibitors in such cells.

More work is also needed to define the effect of these compounds on other mast cell 

responses such as calcium influx or synthesis of cytokines in response to activation. Albeit, 

these Src kinase inhibitors represent an attractive starting point for a drug discovery 

programme aimed at developing Src kinase family specific inhibitors that can inhibit IgE- 

dependent mast cell degranulation. If these aims were met, then these current molecules, in 

their capacity to act as validating tools, would prove very useful.

7.6 Conclusions
In summary, these studies reinforce the premise that PDE4 inhibitors may be therapeutically 

beneficial for treating inflammatory diseases and can almost be called steroid-like in terms of 

their general broad suppressive qualities, particularly their suppression of cytokine 

production. Src kinase inhibitors, on the other hand, though less useful in suppressing T cell 

proliferation may be therapeutically useful in suppressing T cell cytokine production or mast 

cell activation. Though no role was found for PDE7 in mast cells activated through FceRI, 

potent PDE7 inhibitors may be useful in determining the role of this PDE in other cells. In
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particular, PDE7 is thought to be involved in signalling through the TCR complex but as 

yet little evidence has supported this role.

This thesis has stimulated research on many fronts and has in particular emphasised the 

complexity of even simple in vitro assays, particularly with respect to the regulation of 

cytokines. Toward the end of this thesis a new method for analysing cytokine production 

became available. This technique using fluorescent polystyrene beads, has enabled the 

quantification of multiple analytes (in this case cytokines), measured simultaneously from 

the same sample Such a method will allow the measurement of many (up to 100) 

different cytokines from a sample. The application of such technology to understand the 

interplay of cytokines in simple in vitro systems, such as the LPS activation of monocytes, 

may be helpful in understanding how inhibition of single cytokines (e.g. TNF) affect other 

cytokines within a network. These methods are currently being applied to profiling the effect 

of drugs, such as PDE4 inhibitors, with the hope that they will reveal a unique fingerprint of 

cytokine inhibition. The usefulness of this technique has yet to be fully realised but 

preliminary work during this thesis has suggested that such experiments are possible and 

may allow a greater insight into the mechanism of action of cytokine inhibitors.
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