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Modulated Microwave Retro-reflectors and their Applications.

Abstract:

This work seeks to investigate the viability of establishing communications links 

using modulated microwave reflectors, and explores potential application areas. A 

primary and underlying objective has been to combine modulation of radar cross 

section (RCS) with the wide-angle RCS response of a microwave retro-reflector so as 

to yield a transponder which imparts information content on the reflected spectrum. 

Since the RCS is electrically large, the communications link is directive and yet the 

transponder is not a transmitter of microwave energy and hence has modest power 

needs.

The microwave retro-array was quickly identified as the most promising structure to 

achieve these aims, and hence the further objectives of the work have been to 

investigate this structure and fabricate working prototypes so as to:

• achieve a manufacturable structure.

• perform measurements to compare with theoretical models of behaviour.

• explore the limits of performance, and seek to expand them.

• identify applications and markets.

• explore and pursue such related discoveries that may occur.

All the above aims have been explored to some extent, and the findings have been 

reported in the body of the thesis. The background and historical context is discussed 

in chapter 1, while chapter 2 reports on the construction and characterisation of 16- 

element modulated retro-array prototypes operating at a 2.5 GHz carrier frequency. 

The applied nature of this work is extended in chapters 3 and 4 to printed integrated 

circuits for passive transponders, and the scaling of these methods to frequencies 

around 9.2 GHz. Theoretical models for the properties of much larger arrays are 

presented in chapter 5, and range finding applications and results presented in chapter 

6. Two applications are then discussed for which the required array dimensions are 

estimated, before closing with conclusions and suggestions for future work.
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Chapter 1
Introduction to Modulated Retro-reflectors.

1.1 Introduction.

This work seeks to investigate the viability of establishing communications links using 

modulated microwave reflectors, and explores potential application areas. The technique of 

modulating the radar cross section (RCS) of a microwave retro-reflector (a structure which 

maintains its RCS over a wide range of look-angles), so as to impart information content 

on the reflected spectrum, was first suggested at least as long ago as 1961 by Bauer [1]. 

Surprisingly, the technique appears to have been almost entirely over-looked by the 

modem communications arena. This is most likely because technological difficulties 

encountered by the pioneers of three or four decades ago, combined with the lack of any 

real marketing drives, stifled any serious development. However, considering the over

crowding of today's radio spectmm and traffic management systems, many niche 

applications for transponder technology are being suggested. In this light, the ability to 

realise a passive transponder based on a microwave reflector, which may be realised as a 

cheap and mass-producible stmcture, becomes an elegant and attractive solution to a 

number of these application areas.

At the inception of the project at the University of Oxford, the remarkable utility of such a 

device had been suggested by Professor D. J. Edwards, particularly as a means to 

enhancing the effective radar cross section (RCS) of small vessels in adverse sea 

conditions. In this case, a filter matched to the modulation signal of the transponder would 

effectively reject high levels of clutter (unwanted radar retums). Many additional 

application areas were soon suggested, including long range tagging, vehicle tracking, 

telemetry, or indeed any situation where it is advantageous to establish a communications 

link with a passive transponder. In essence, such a link is established by illuminating a



structure which has a RCS which is modulated with the information signal to be conveyed. 

The reflected spectrum contains frequency components which include this modulation 

signal and which may be recovered at a receiver, in most cases co-located at the 

transmitter. If a phase-conjugating (retro-reflecting) structure is employed, the signal 

strength in the direction of the transmitter is greatly enhanced, while reflected power in 

other directions is suppressed. Thus the power link budget is improved and the technique is 

"clean" in terms of radio pollution. Many transponders may be interrogated by a single 

transmit/receive station. The power consumption of each transponder is extremely low 

since they require neither radio frequency (RF) power sources nor amplifiers in the 

simplest case, merely a low power modulation circuit and hence the term passive may be 

used.

1.2 Historical Summary.

The field of radio communications is vast and the following overview of radar techniques 

is necessarily brief. Long range identification transponders have been in use for many 

years [2] in a number of areas and basically follow the IFF ("Identify Friend or Foe") 

approach of actively transmitting a response to an interrogating radar. Such a class of 

transponder might be called "responder". These approaches suffer the disadvantages that 

the target requires signal processing equipment to generate a response, and generally 

transmits omni-directionally so that other listeners on the same frequency are likely to 

receive the broadcast. This also means that the power transmitted by the responder is 

unnecessarily larger than that required to establish the link. The retro-reflecting 

transponder is an alternative approach which is highly under-exploited at the present time 

and is the subject of this work. A small number of prior works alluding to this technique, 

mostly confined to the realm of suggestions rather than demonstrable hardware, have been 

published and will be reviewed here. It appears that no actual devices or systems are 

commercially available.



In the early stages of the investigation, reflective structures based on optical principles, 

such as trihedral reflectors, were considered the most likely starting point. However, the 

concept of the modulated retro-reflecting antenna array was adopted as the most promising 

structure even before prior work in the area came to light. The retro-array [3,4] is an 

antenna array where antenna pairs are joined by transmission lines to achieve approximate 

phase-conjugation. Modulation of the array may be readily achieved by employment of 

switches in the transmission lines. This technique presents many advantages compared to 

optical comer reflectors:

• Ideal for the microwave spectmm where commercial radar operates.

• Polarisation, bandwidth and angular response can be tailored by the characteristics 

of the antenna element chosen.

• There is the potential to develop stmctures which are planar.

• Efficient solid state switches allow for high index of modulation and low power 

consumption.

• It will be shown that they may be fabricated as cost effective printed circuits, ideal 

for conunercial applications.

Historically, applications for the retro-array were being suggested in the early 1960s, 

mostly in the context of communications satellites. At that time, purely passive, 

unmodulated satellite reflectors [5] were being postulated as a means of facilitating over

horizon communications. The concept of an active (i.e. amplified) Van Atta reflector was 

also advanced in this context [6]. References to reflective communications links to 

satellites may be found in textbooks of this era, such as [19] which has a section entitled 

"Passive space communication systems" and which reviews such diverse concepts as 

balloon reflectors, retro-reflectors and "distributed reflectors", the latter including, 

possibly, a belt of orbiting chaff. Interestingly this reference concludes that an active 

"repeater" is approximately 51 dB better than a passive repeater for a low orbit (at a height



of around 1000 km). However, satellite communications evolved in a very different 

direction, based on separate uplink and downlink frequencies transmitted via active 

travelling wave tube amplifiers and high gain antennas mounted on a stabilised space 

vehicle. It is suggested that the pioneers in retro-arrays were largely overlooked in light of 

such developments.

The concept of a passive transponder for terrestrial applications still appeared to be sound, 

but the relative under-development of semiconductors and printed microwave circuits in 

the 1960s are likely to have precluded their general adoption since they could not be 

realised as cheap, mass-producible structures. For example, Bauer [1] in 1961 suggested 

using ferrite phase shifters as a modulation mechanism, each of which would consume 100 

mW of power and allow modulation rates up to 10 kHz. This approach is highly unwieldy 

and performance is poor compared to the printed circuits & semiconductor switched arrays 

the development of which forms a large part of the content of this work.

1.3 Coherent Transponding Systems:

A number of transponding systems based on coherent detection of modulated scatterers, 

suggested up to the mid 1970s, are summarised by King [7]. They are based on homodyne 

detection of the spectrum of a co-operative scatterer and illustrate some of the advantages 

of the employment of such scatterers. None, surprisingly, suggest the employment of retro- 

reflecting transponders even though the advantages in terms of range and power budget 

must have been known (at least in theory) at that time. The lack of modulating retro- 

reflecting hardware may explain why the inclusion of this technique appears to have been 

again overlooked during this period.



1.4. Statistical Aspects of Radar.

This section will review the important statistical aspects of radar systems.

1.4.1 Clutter

The term clutter refers to unwanted echoes in the returned signal at a radar receiver. Its 

source is the environment which is illuminated by the outgoing signal, and its effect is to 

mask out the retums from the targets of interest which may produce a weaker echo than the 

clutter. Clutter tends to increase the number of "false" echoes on a radar display, and is 

usually very dependent on siting factors for the transmit and receive antennas which in turn 

are usually co-located. For terrestrial applications, clutter effects are dominated by 

unwanted retums from the surface near the transceiver, typically from buildings, 

vegetation and uneven terrain. In maritime applications, clutter is highly dependent on the 

condition of the sea's surface (the "sea state") and in all cases the weather and precipitation 

in particular are a major source of clutter.

The Earth's curvature tends to limit surface clutter to echoes from short range, whereas 

long range radar sensitivity is limited by signal-to-noise ratio. Therefore, in pulsed radar 

systems, it is often advantageous to reduce receiver sensitivity (gain) in the earlier 

detection period between pulses, and ramp up the gain to its maximum for the latter part of 

the detection period. This common technique is known as swept gain or sensitivity time 

control (STC).

The suppression of clutter is a major concem to the radar systems designer. Weather clutter 

may be minimised by adoption of circularly polarized radiation, since rain droplet RCS is 

much reduced in this case. Ground clutter is best minimised by careful sighting of 

antennas. Moving targets are more easily distinguished from clutter than stationary ones, 

either by direct observation of the doppler shift on the RF carrier, or by detection of the 

doppler shift applied to the pulse repetition frequency (PRF) of the retumed pulse train. In



these cases, only a radial velocity, i.e. towards or away from the transceiver, will give rise 

to a doppler shift. Non-radial movement may be detected by comparing successive pulses 

and cancelling conunon components. Until the 1970s quartz ultrasonic delay lines were 

widely used for this purpose, but the modem approach is to compare successive video 

frames by digital signal processing techniques.

1.4.2 Matched Filtering

In pulsed, and in particular pulse compression systems, matched filtering is usually 

employed to maximise signal-to-noise ratio. The matched filter is a type of correlator, 

whose output is found by convolving the input signal with the filter's impulse response. 

This is equivalent to multiplication of their respective frequency spectra. Since the filter is 

matched to the transmitted waveform, typically a CW pulse or FM pulse, its frequency 

spectmm is the complex conjugate of that transmitted, so that multiplication of the spectra 

performs autocorrelation. Use of matched filters optimises the decision making process at 

the receiver, since the random fluctuations which can lead to "false alarm" signals are 

minimised. It should be added that real hardware can produce only approximate matched 

filtering.

1.4.3 Target Fluctuations.

It is very difficult to derive analytical solutions for RCS since a mathematical description 

for boundary conditions, necessary for the exact solution of Maxwell's equations, cannot 

generally be derived for arbitrary surfaces in free space. An analytical solution for the 

sphere does exist [13] since in this case the surface of the target conforms to the natural co

ordinate system used to describe its surrounding space. For other surfaces, such as a plane 

reflector or comer reflector, approximations based on geometrical optics are useful if the 

object is large compared to the wavelength of the illuminating radiation. In such cases, 

diffraction effects at surfaces edges may be neglected without a large loss in accuracy. To



include such effects, more physically accurate methods based on numerical techniques 

may be employed such as the moment method (or Boundary Element Method) [14] which 

has been successfully applied to, for example, wire antennas.

A typical radar target (e.g. ship or aircraft) has many reflecting surfaces each of which 

contributes to the overall reflectivity of the object. Wave interference effects lead to a 

complicated response for target RCS as a function of look angle in either monostatic or 

bistatic radar installations. Hence, in practical cases, RCS is always strongly dependent on 

angle of illumination and angle of observation. In addition, wave polarization, frequency, 

and the electrical properties of the materials comprising the target have a strong effect. For 

these reasons, average values are often used to compare different targets. Table 1.1 gives 

typical values for a variety of targets at X-band [16, 17].

Target RCS (m^)
bird 0.01
missile 0.5
person 1
small aircraft 1-2
bicycle 2
small boat 2
fighter aircraft 3-8
bomber 30-40
large airliner 100
truck 200

Table 1.1 Typical RCS for common targets.

Further, similar examples are given by [18] which also states that the RCS for an 

"advanced tactical fighter" would be as low as -60 dBsm (decibel square meters) -  some 

10 dB less than that of an insect. Corroboration of this impressive claim for stealth 

technology has not been pursued by this work.
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1.4.4 Ultra Wideband Radar

The term Ultra Wideband (UWB) radar has recently come to encompass impulse, time 

domain, non-sinusoidal, carrier free and large-relative-bandwidth signals. A good, two-part 

review article may be found in [20]. In the context of this work, UWB would be best 

considered to be synonymous with ultra short pulse length, and would represent the logical 

extension of the short pulse length and pulse compression techniques which have evolved 

to extract increasingly detailed information about a target under examination. Interestingly, 

[20] draws a clear distinction between a UWB radar and a UWB sensor. The former is 

intended to detect a target, while the latter is intended to identify the target and is therefore 

more closely related to our theme. In a UWB sensor, the pulse length in space is much 

shorter than the target's length, and information may be extracted from the target in the 

time domain. The ultra shortness of the pulse leads to individual scattering components of 

the target's stmcture becoming distinguishable rather than forming a composite RCS term. 

This process is sometimes called time domain decomposition of RCS. The information 

extracted may thence be analysed in the frequency domain, or shown as time-frequency 

plots which effectively express a target's spectral signature. For this technique to be useful, 

it would seem that prior knowledge of the target's signature is required so that a 

comparison with a look-up table can be carried out for purposes of identification. 

Alternatively, matched pulse or matched adaptive time-frequency packet (MAP) 

techniques [20] have been suggested, whereby a target is interrogated by a (non-sinusoidal) 

test pulse which is intended to be the complex conjugate of the target's impulse response. If 

the test pulse has been correctly chosen, the return from the target is maximised in what is 

effectively a matched filtering process, while that from other targets is minimised. Again, a 

database of test-pulse shapes, and hence prior knowledge of target characteristics, is 

implied by this technique.



1.4.5 Cooperative and Non-cooperative Targets.

The identification of non-cooperative targets has become increasingly important in civil as 

well as military applications. By "identification" we mean the discrimination of different 

types of target and also of similar targets within a class of targets. This clearly implies the 

extraction of more information content from the radar measurement than just range, 

bearing and RCS. The process consists of firstly establishing a database of the properties of 

the backscattered waves from known targets. The actual measured properties for the 

unknown target under scrutiny are then compared with the database (as discussed above), 

and decisions based on the degree of correlation are made. The properties which contribute 

to radar signature that are studied in this context include polarisation, time domain 

response and frequency domain response [15]. For example, the natural resonance of a 

target may be examined by illuminating with a range of frequencies. Also, moving 

components such as aircraft propellers or compressor blades produce doppler shifts which 

may help identify the target if those properties are listed in the database. A difficulty of this 

method is the initial study of the targets of interest to generate the database of radar 

signatures. The signal processing required is clearly not trivial.

1.4.6 Summary

When we consider the likely information content which may be extracted from such a 

statistical approach to target identification, and the confidence of its accuracy, we may feel 

that the investment in effort in gaining this data is disproportionately large. In military 

situations non-cooperative target identification will remain an ongoing and competitive 

study, but there is less need for civil radar system development to evolve along similar 

principles. When a target is co-operating with its traffic managers, a small investment in 

hardware and power consumption can yield an effective, high data-rate communications 

link, and hence we return to the theme of generating a cooperative radar signature by RCS 

modulation.



1.5. Optical Retro-reflectors and Retro-directive Arrays.

This section will discuss optical retro-reflectors and then introduce microwave retro-arrays.

1.5.1 Rationale.

Retro-reflectors have found use in many application areas from road signing to satellite 

and space applications. These devices are essentially passive in that the retro-reflecting 

structures have fixed radar cross section and the reflected signal is effectively the same 

signal as that transmitted.

In the field of terrestrial and marine traffic control there is an increasing need to detect, 

track and identify craft within the surveillance area. This is of particular relevance to 

harbour and airport traffic management, particularly considering small vehicles with 

inherently low radar cross sections (RCS). At present, simple retro-reflectors comprising 

corner structures are sometimes employed on small craft to increase their RCS. These are 

passive devices, designed along physical optics principles -  some variants are illustrated in 

Figure 1.1. They are relatively simple and inexpensive to produce. Clearly, a requirement 

of future transponders employed in these fields are simplicity, light weight, low cost, low 

power consumption and furthermore not polluting the electromagnetic environment.

Long range identification is traditionally achieved by actively transmitting a response to an 

interrogating radar. Such a method is employed by the military “Interrogate Friend or Foe” 

(IFF) system. (We have discussed the disadvantages of transmitter and signal processing 

equipment on board the target and the omnidirectionality of the response, which requires a 

transmitted power which is excessively large and pollutes the local radio environment.) 

The rationale behind the development of the retro-reflecting transponder is the 

establishment of the communication link by redirecting the interrogating signal back 

toward its source, thus eliminating the need for a transmitter and associated equipment on 

the target. Many types of structure exist, based mainly on physical optics principles [8] and

10



much literature exists reporting work undertaken to investigate and model their 

performance.

X

Square Trihedral Triangular Trihedral

Figure 1.1. Variants of trihedral comer reflector.

X

Circular Trihedral

1.5.2 Corner Reflector.

As part of the initial investigation, literature on eonventional dihedral and trihedral corner 

reflectors was reviewed [10,11,12]. The former are retro-reflective in a single plane only, 

whereas the latter retro-refleet in three dimensions. As mentioned above, simple eomer 

refleetors have been employed as a means of increasing RCS in the maritime environment. 

A comparison of variants of the trihedral refleetor are shown in Table 1.2 below.

Type Maximum RCS Average RCS Angular coverage (3 dB points)

square llTtÛ
A"

O.lTtÛ
A '

23° cone about symmetry axis

triangular Anà
A'

Q.iiTüà
A"

40° cone about symmetry axis

circular I5.6jtâ QÂlnÛ 32° cone about symmetry axis

Table 1.2. Comparison of Trihedral Corner Reflectors.

The theoretical angular response for these devices is reported in [8], along with some 

experimental data. In summary. Figure 1.2 illustrates the trend in angular response for 

these device types, by showing theoretical plots for the triangular trihedral corner reflector 

for various angles away from boresight. The axis system is shown in Figure 1.1.
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normalised RCS boresight

-  10°

+  10'

- 20 '

+  20 '

degrees
30 402010

Figure 1.2 Normalised RCS for triangular corner reflector ( ) as a function of a
(where a  = (j) - 45°) for various values of theta away from boresight. The maximum RCS 

occurs along the boresight, defined as 9 = 54.7°, (|) = 45°

Apart from the physical volume occupied by these devices, they present other 

disadvantages. The corner reflector is a device based on simple geometric optics 

considerations and is in reality only functional when the wavelength is small compared to 

the reflector’s dimensions [12]. At typical maritime radar frequencies, this may require 

bulky 3-dimensional structures, which may reduce the practicality of this approach, 

particularly for small craft. To establish a unique radar signature/communications link, 

modulation of the reflector’s RCS is required, but this is non-trivial and may for example 

require the employment of frequency selective surfaces in the aperture of the device.

If an effective means of RCS modulation can be developed, the retro-reflected signal may 

be modulated with a code unique to the target, hence the target may identify itself to the 

interrogator without the need to supply power for a transmitted RF signal. A pre-requisite 

for any modulation mechanism is therefore that of low power consumption, to capitalise on 

the energetic advantages of this approach. Furthermore such a device primarily returns the 

signal to the interrogator and little or no power is re-radiated elsewhere, thus reducing the
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probability of detection by other receivers and hence limiting the pollution to the 

electromagnetic environment.

1.5.3 Modulated Corner Reflector.

A modulated dielectric comer reflector was suggested by Lewis and Pietch [9] in 1968, in 

which the means of modulation is a gaseous discharge tube on one of the reflecting walls. 

The gas may be ionised by a suitable electric field. The incident electromagnetic wave 

suffers a phase shift at the dielectric-gas interface. If the gas is ionised, this phase shift is 

always close to 7i, but in the absence of ionisation the incident wave must arrive at an angle 

greater than 0c (the critical angle) to undergo total internal reflection. This reflection 

suffers a phase change between 0 and n which is dependent on angle of arrival. The phase 

modulation thus produced has a modulation index which is dependent on arrival angle, 

which is a disadvantage of this approach. A variation of this method achieves amplitude 

modulation by placing the gas tube up to 0.175 À, behind the dielectric wall to reflect the 

evanescent field in this region, which would interfere destmctively with the internally 

reflected wave. King [7,9] does not comment favourably on the modulation index which 

might be possible using this scheme. Other disadvantages of comer reflectors in the 

microwave spectmm include the physical size of the reflecting surfaces. A trihedral 

reflector is by definition a three dimensional stmcture, whereas the antenna retro-array 

may be a planar stmcture which still functions over the three spatial dimensions and is 

better suited to the microwave region.

1.5.4 The Retro-Array

This comprises an antenna array where antenna pairs are joined by transmission lines to 

achieve (an approximate) phase conjugation, as illustrated in Figure 1.3 below. This 

stmcture lends itself to the modulation of the properties of the transmission line and hence 

the RCS of the array.
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transmission
lines

Figure 1.3. Geometry of retro-array.

Figure 1.3 shows a six element linear array of like antennas (1-6) aligned along the x-axis. 

The elements may be considered to be omnidirectional with regard to radiation pattern and 

well matched to both free space and the connecting transmission lines. The antennas are 

joined in pairs, by transmission lines of equal length Ltl- Thus antenna pairs 1 and 6, 2 and 

5, and 3 and 4 are linked bidirectionally. Consider a plane wave incident at an angle 0 to 

the x-axis. If we take points A to F in the incident wave front, energy from point A is 

received by antenna 1 and re-radiated by antenna 6, energy from point F is received by 

antenna 6 and re-radiated by antenna 1, and so on for the other antenna pairs. The path 

lengths AF, BE and CD are all equal and given by:

Laf = Ttl + 4- constant (1.1)

where d= kacosO  (1.2)
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'Xtt
and k = —  (1.3)

Therefore the radiated power from each antenna adds constructively in the direction 0 i.e. 

the reflected wave is in the same direction as the incident wave.

Another way of visualising the array’s characteristics is a consideration of the array factor 

of a phased array antenna, where the gain pattern of the array G(0,(|)) is given by the 

product of antenna element gain g(0,(|)) and the array factor F:

G(0,# = Fg(0,4)) (1.4)

For a uniform, linear array:

Sin^
F = ---------------------------------------------------------------------------------------------------- (1.5)

S in |

where u = k a cos 0 + 5, N is the number of elements and 5 is the phase shift between 

elements.

For the retro-array, the phase delay between each element’s radiation is given by

S =- k a c o s Q  (1.6)

so M = 0 and the array factor converges and is simply given by

F = N  (1.7)

Therefore, to a first order (since we will not consider here the mutual coupling between

elements, the finite size of the ground plane and mismatches between free space and the

antennas and the antennas and the transmission lines) the gain of the retro-array is given

by:

G(0,(|))=Arg(0,(|)) (1.8)

The RCS is given by the square of the gain, since the transmit gain is the same as the 

receive gain in this case. It is worth noting that the RCS of the array may be tailored by 

selection of an appropriate g(0,(|)) - this will then define the angular variation of the RCS of 

the array. The choice of array element is therefore of fundamental importance in defining
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the performance of the retro-reflector in both its angular response and the magnitude of its 

reflectivity.

In this class of structure, modulation of the RCS may be achieved by means of suitable 

switching circuitry on the transmission lines. Additionally, antenna elements may be 

chosen which have a selected polarisation response and radiation resistance. We observe 

that an advantage of this approach is that the array may readily be tuned or tailored for a 

specific application, be it broad or narrow band. It was observed at an early stage in the 

research that photolithographic techniques could facilitate economic production of planar 

antenna arrays for this application and be easily integrated with solid state modulation 

circuits. These techniques are explored in the following chapters.

1.6 The Radar Equation.

The essential form of the radar equation is often given by:

p  _ Pt.Gr.Gt.CJ.À’ 9̂

in the monostatic case i.e. the receiver and transmitter are co-located. Pr is the power 

received by a target of radar cross section a  which is at a distance r from the transceiver 

which transmits power P t . Gr and Gt are the gains of the transmit and receive antennas 

respectively. If a single antenna performs the same task, or the antennas are identical, the 

terms may be replaced simply by G The received power is clearly dominated by its 

inverse relationship to the fourth power of distance, so signal to noise ratio and receiver 

sensitivity are limiting factors at large distances.
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Chapter 2

Prototyping at 2.5 GHz

2.1 Unmodulated Retro-array Prototypes.

The retro-array, described in chapter 1, was first conceived by Van Atta. Refs [1-3] report 

on the performance of such a device at 2.85 GHz, where the array consisted of a 4 x 4 

rectangular matrix of half-wavelength dipoles, horizontally aligned a quarter wavelength 

above a ground plane and spaced at intervals of 0.61 wavelengths. As a convenient starting 

point, and to aid direct comparison, this design was replicated but scaled to an operating 

frequency in the 2.5 GHz band.

Prototype dipoles were built by feeding RG/316/U flexible co-axial line through an axial 

drilling in a PTFE rod of 8 mm diameter. The radiating elements were formed by stiff 

copper wire soldered to the inner and outer conductors. The properties of dipole antennas 

are well documented [4]. To summarise their characteristics, the optimum match (hence 

radiation efficiency) occurs for a wire length of slightly less than a half wavelength. The 

conductor thickness has a secondary effect on the resonant frequency, as does the proximity 

of a ground plane, so this type of antenna is often empirically tuned [5]. The resonant 

frequencies of dipoles of various lengths were measured using an HP 8753 vector network 

analyser - a tool much used throughout the project. The dipoles were placed horizontally 30 

mm above a ground plane, thus meeting the quarter wavelength condition at the 2.5 GHz 

design centre frequency. The results are shown in Figure 2.1. The optimum length thus 

derived was 52.5 mm.
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Figure 2.1. Dipole resonant frequency versus length.

The first prototype retro-array was fabricated by fixing a 4 x 4 array of such dipoles above 

an aluminium ground plane measuring 32 cm along the axis parallel to the dipoles and 28 

cm along the orthogonal axis. The PTFE supports were press fitted into circular drillings in 

the aluminium plate. The antennas were joined in pairs in the ordering given by [2], which 

is the two dimensional equivalent of the coupling order shown in chapter 1. The coax 

lengths were chosen to be 500 mm -  the length is not important but all lengths should be 

the same to preserve the phase relationships which produce phase-conjugation. Excessive 

cable lengths result in greater RF losses, and should be avoided. The maximum cable span 

required was 500 mm so this value was used for all 8 cables. A photograph of the 

fabricated 16 element dipole array is shown in Figure 2.15. (This dipole array layout was 

common to the various unmodulated and modulated arrays which are described in this 

chapter, and hence several were constructed)

2.2 Unmodulated Array Radar Cross Section

Neglecting the angular response, a uniform antenna array has maximum gain G = N  ge\ , 

where N  = number of elements and gei is the maximum gain of each element. For the dipole 

array prototype, # = 1 6  and gel = 2.8, or 4.5 dBi [4].

the maximum RCS is then given by: <7 = ----
4jt

(21)
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and since ^ = 0.12 m we have a  = 2.3

It is instructive to compare this with the maximum RCS of the ground plane, given by [6]:

C 7 m a x = ^ ^  =  7 m ^  ( 2 .2 )

and consider why the maximum plate RCS is significantly bigger than that of the retro- 

refiector. The reason lies in the spacing of the retro-reflector antenna elements. To avoid 

the effects of mutual coupling between elements, they are spaced sufficiently apart that the 

effective areas of the elements do not overlap. Since the effective area of an antenna is:

Aes = ^  (2.3)

the effective area of the dipole has a diameter 0.54 1, while the spacing of elements in the 

array is 0.61 X. Therefore, the dipole effective areas are distributed over the ground plane, 

with effective gaps between the elements. Since the ratio of the effective area to physical 

area is 1.7, the associated RCS ratio would be the square of this, or 2.8, which is almost 

exactly the ratio (i.e. 3.0) between the retro-reflector RCS - which is due to dipole effective 

area - and the ground plane RCS - which is due only to a physical area. (The apparent error 

is due to the extra ground plane area at its edges). The consideration of antenna effective 

areas has thus given some insight into the relationship between the different types of target, 

and the way the retro-reflector utilises the physical space in which it is constructed.

To further study these effects, measurements of the monostatic RCS were performed using 

a network analyser as source and receiver. In the absence of a fully anechoic test facility, a 

semi-anechoic environment was facilitated by the use of radar absorbent foam lining a 

screened room, as illustrated in Figure 2.2. While this approach is unconventional, it did 

require the least number of components. The absolute magnitude of the RCS was not 

determined, but the measurement of relative RCS compared to a metal plate reflector was 

useful in demonstrating changes in RCS and the angular response of the retro-reflector 

during the earliest stages of the investigation.
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(a) Test method
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(b) Photograph of retro-array in measurement chamber

Figure 2.2. Method for approximate RCS measurement.

In this method, the reflection coefficient ( S n )  of the horn antenna may be measured at a

given frequency. The measurement is calibrated by storing the data in the absence of the

target i.e. the data for the environmental reflections. The target is then put in place.

Selecting "data/memory" at the HP8753 network analyser gives a relative signal the

magnitude of which is dependent on both the magnitude and phase of the power reflected

from the target, since a standing wave exists between the antenna and the target at a given

frequency. It is then necessary to adjust this distance to obtain a maximum (or minimum) in

the measurement. Alternatively, the measurement is more easily visualised by using a

frequency sweep close to the frequency of interest (for example 2.2 -  2.8 GHz). The

measurement then shows an oscillatory waveform in the frequency domain, and relative 
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RCS may be estimated by looking at the interference peaks adjacent to the frequency of 

interest. A further target, in this case a plane reflecting sheet of the same outer dimensions 

as the array, is used as a standard for obtaining a value of the array RCS.

Measurement errors: Clearly the signal strength returned in such a measurement is 

dependent on the magnitude of the target's RCS compared to the background reflections, 

thus a truly anechoic environment is needed for high signal-to-noise ratio measurements. 

The environment available was rather worse than this ideal. The plate's peak RCS 

corresponded to a reflection coefficient difference of just 0.65 dB, or 16% above 

background, while measurement accuracy, estimated from repeatability, was around 0.1 

dB which is 2.3 % above background and therefore 0.14 of the plate peak RCS. From this 

figure, the error bars in Figure 2.3 are derived. Since the error is large compared to the 

measurement, not too much information about the structure of the targets' RCS versus 

angle should be inferred. However, the measurement has sufficient resolution to identify a 

difference in RCS response between the target types.

With the intention of building an amplitude modulated array at a later stage, a second 

prototype array was built where the coaxial transmission lines were terminated by 

absorptive loads, instead of being routed to the counterpart antenna. Here the intention was 

to achieve a low RCS so that a demonstration of different RCS magnitudes might be 

established. Again, the RCS was measured and compared with the retro-array. To achieve a 

high modulation index, a large change in RCS was sought between the two prototypes. 

Measurement results are shown in Figure 2.3.
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Figure 2.3. Array RCS variation with look-angle, relative to plane conducting plate.

In Figure 2.3 (a), the theoretical monostatic RCS of the plate is also shown, where, after 

[6]:

(2.4)

for a rectangular conducting plate of sides a and b rotated through incidence angle 6 about 

the a axis.

4.%r #6 ] cos^ 6 sin(y^/?sin^)
Ix ) j3bsm0
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The measurements demonstrated the required characteristic of the retro-array, namely, a 

strong RCS which varied weakly with the look angle. RCS is displayed as a function of 

azimuth rotation of the array for two cases of elevation rotation: a) 0° elevation rotation 

(i.e. vertical) and b) 20° elevation rotation, with respect to the incident RF wave. RCS is 

shown relative to the maximum measured RCS of the metallic plate of the same shape as 

the array ground plate.

In addition, it is apparent that the measured RCS ratio between the retro-reflector and the 

plane plate is rather greater than the theoretical case discussed above. This is because the 

retro-reflector is in reality a composite structure, consisting of two RCS components: (i) 

the retro-reflecting component and (ii) the specular reflecting component of the ground 

plane. The latter is due to the area of the ground plane which falls beyond the effective area 

of the dipoles, which, as was discussed above, is less than the physical spacing area. We 

thus expect some energy to "escape capture" by the antenna element, and be reflected by 

the plate - this is most apparent in the measured on-boresight reflectivity of the matched 

array. For the retro-reflector, while the phase relationship between the two components has 

not been determined, it would appear that constructive interference is contributing to an 

increase in the RCS. This effect contributes to the structure of the measurement, and could 

be determined theoretically from the phase and amplitude response of the plate's RCS. (We 

might also identify this composite nature of the retro-reflector RCS as a fundamental 

disadvantage compared to the optical corner reflector approaches discussed in chapter 1.) 

However, these concerns only apply to the un-modulated characteristics of the retro-array. 

The composite RCS nature disappears when the RCS is modulated, since the spectra of the 

retro-array component becomes decorrelated from the parasitic RCS due to energy which is 

not coupled into the antenna and modulation circuitry. As the work now focuses on 

modulated structures, the un-modulated RCS will not be further considered.
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2.3 Modulated Retro-array Prototype.

Having demonstrated that a strong change in RCS could be achieved, a third prototype 

array wa^ built where switching circuitry was added to the coaxial lines behind the ground 

plane. Thus, a double-pole, double-throw switch for each dipole pair was required. Purpose 

built switches based on microstrip circuit and FIN diodes were fabricated, with the aim of 

achieving the lowest possible insertion loss in the "on" state and low reflection coefficient 

in the "matched" (low-reflectivity) state. A schematic of such a switch is shown below in 

Figure 2.4.

port 1

ground - = f - ground

R = 5 0  QR = 5 0 £ 2

port 2

(a) switch on (through state)

ground ground

R = 5 0 Q R = 5 0  £2

port 1 port 2

(b) switch off (matched state)

Figure 2.4. Schematic of double-throw, double pole RF switch

2.3.1 Microstrip Design Techniques.

To design microstrip circuits successfully it is vital to accurately model the characteristic 

impedance of the line (Zq), and the wavelength in the line Both are a function of the
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microstrip dimensions illustrated in Figure 2.5, and the dielectric constant of the substrate 

8r. There is much literature discussing microstrip design techniques [7-10] - it is 

nevertheless valuable to summarise the basic properties of this medium.

lectric field

h dielectric

ground plane

Figure 2.5. Microstrip Geometry

If the dimensions w and h are small compared to a wavelength, the mode of propagation in 

the transmission line is transverse electromagnetic (TEM) to a good approximation. That 

is, the electric and magnetic fields are orthogonal to the direction of wave propagation, and 

to each other. In any medium, the propagation constant p is a function of the dielectric 

constant. For microstrip we introduce a parameter called the effective dielectric constant 

(̂ reff ) which is a measure of the distribution of electric field between the dielectric and the 

air above it. Hence:

2 jt I-----P  =  — — V
/to

And ÀJL = Ao
V  £re jf

(25)

(2.6)

Wider microstrip tracks and thinner substrates lead to a greater confinement of the electric 

field within the substrate and hence larger values of Erejf, which is always within the range 

1 ^ ^

A common approximation [11] is:

1£ r+ \ £ r - \
£ r e f f  =  +  — ; i —

1 +
Vlh

(2.7)

w
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but numerical methods lead to greater accuracy [12]. The characteristic impedance of the 

line is given by [11].

Zo = ^  (2.8)
C.c

where c = speed of light and C = capacitance per unit length. The latter is often computed 

by numerical means [13].

At this stage it became useful to use HP's EESOF microwave design CAD package, which 

includes the routine Linecalc for analysing microstrip - deriving 8reff and Zo when given w 

for a given substrate - or conversely, synthesising a microstrip -  deriving w for a required 

value of Z q .

2.3.2 Microstrip Switch Design

Commercial laminates of the PTFE/ceramic composite based type typically have 8r within 

the range 2.2 to about 11. The photo-etching facilities available at the time were not well 

suited to fabrication of circuits above 50 x 50 mm in size. To minimise the circuit 

dimensions, a high dielectric constant laminate -  Roger's Duroid 6010 -  was selected, with 

Er = 10.8 and h = 0.64 mm.

A double pole, double throw matched switch was designed using 3 PIN diodes, each with a 

DC bias supply fed by RF chokes of the classic principle requiring high and low impedance 

sections of line. The range of impedances practically possible was investigated using 

Linecalc and summarised in Table 2.1. The design techniques used are well established -  

the data is included to illustrate some of the trade-offs inherent in microstrip design which 

often lead to compromises in performance. For example, thinner substrates exhibit better 

field confinement, particularly at high frequencies, but require very narrow lines to achieve 

the high impedances required for filters. The photo-etching resolution is a factor which
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must not be overlooked at the design stage. Similar issues became more critical to the 

project in later stages where the entire retro-reflector would be fabricated from printed 

circuits.

w (mm) Zo (Q) Er eff Xtl (mm)

0.10 88.4 6.241 48.0

0.15 79.5 6.400 47.4

0.20 73.0 6.514 47.0

0.55 50.0 7.040 45.2

3.70 15.0 8.832 40.4

6.08 10.0 9.351 39.2

Table 2.1. Microstrip properties at 2.5 GHz. (Rogers Duroid 6010 laminate, 8r = 10.8 and
h = 0.64mm)

The bias filters were designed to present an open circuit to the RF signal at 2.5 GHz. The 

circuit was verified using EESOF/Lihra (microstrip and transmission line analysis). The 

results are shown in Figure 2.6. The switch microstrip circuit is illustrated in Figure 2.7, 

with symbols for the lumped elements.

12.0 S 2 1  d B

- 5

- 1 0

- 1 5

- 2 0

- 2 5

f  GHz

(i) Layout dimensions (mm). (ii) Simulated filter characteristic.

Figure 2.6. Bias Filter Circuit. (Rogers Duroid 6010 laminate, 8r = 10.8 and h -
0.64mm)
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V bias

diodeSdiode2

diodel
port 1

lumped
elements:

resistor 
ground 
PIN diode 
capacitor

port 2

50 mm

Figure 2.7. Double pole double throw microstrip switch layout.

Notes: (i) The dark pattern is the microstrip layout, (ii) The lumped element symbols have their 
usual meaning, (iii). RF ports 1 and 2 and the control voltage contact are labelled .

The 16 X separation between the diodes and the microstrip branch points are required so 

that the open or short circuit presented by each diode (depending on its bias condition) is 

transformed to the same state at the branch point. Thus when the switch is "on" (biased for 

through transmission), the diodes 2 and 3 are open circuit, which remain open circuit at the 

branch points and the RF path between the ports is not perturbed. The earths, at the edge of 

the circuit board, were provided by short contacts to the ground plane. The line lengths 

introduced by this type of grounding introduce small impedance transformations, and thin 

wires tend to introduce inductive parasitics, so the circuit must be kept very compact and 

tidy in these areas.

Switch performance was measured using the HP 8753 network analyser. The results are 

shown in Figure 2.8. Optimum switching performance was achieved with a diode current 
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of 20 rtiA. (The silicon PIN diodes used were packaged for surface mount applications, 

being easy to handle and solder and costing around £1.50 from RS.)

u

S21
- 5- 5

- 1 0 - 1 0
Sll

Sll- 1 5
- 1 5

S 2 1
- 2 0 - 2 0

2 . 8 32 2 . 2 2 . 4 2 . 6 2 . 2  2 . 4  2 . 6  2 . 8  32

 ̂ f (GHZ)

(i) switch on (through) (ii) switch off (matched to 50 Q )

Figure 2.8.Measured switch performance: Sn and S21 for on and off states.

Eight such switches were fabricated. A further dipole antenna retro-array was fabricated, 

with one of the matched switches joined between antenna pairs by coaxial line. Again, line 

lengths were kept equal to about 1 mm accuracy. Having fabricated the amplitude 

modulating prototype, monostatic RCS measurements were repeated to confirm that the 

device could be electrically switched between the retro-reflectivity and low-reflectivity 

states.

2.4 Modulation Performance.

The switching circuitry on the array was modulated with a low frequency (typically 25 

kHz) signal and the radiating array illuminated with an RF carrier at a frequency close to

2.5 GHz. For each switch, an op-amp circuit was used to provide the necessary current gain 

following the signal generator. The nature of the reflected signal was examined using the 

test arrangement shown in Figure 2.9.
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horn 
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Figure 2.9. Modulated retro-array test arrangement.

The modulation waveform used was a square wave, resulting in digital amplitude 

modulation of the array RCS. Analogue modulation was considered, but the highly non

linear current-voltage (I-V) characteristics of the diode switches would make linear 

analogue modulation inconvenient.

The spectrum of the reflected signal was displayed on a spectrum analyser. The sidebands 

produced by the digital amplitude modulation of the reflected RF were clearly visible, as 

shown in Figure 2.10 below, where the modulation frequency is 25 kHz.
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Figure 2.10. Amplitude modulation products for the reflected RF at 0° to the array
Foresight.

(Labels: fc - carrier, USB - first upper sideband, LSB - first lower sideband)

2.4.1 Discussion of Modulation Spectrum.

From Figure 2.10 we can see that the sidebands produced by square wave AM are strongly 

visible. It is also apparent that the power returned at the carrier frequency is strongly 

dependent on the location of the array with respect to its environment, but the power in the 

first upper sidebands is not. This is because the power available to the modulation products 

is primarily dependent on the RCS of the array, whereas the power returned at the carrier
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frequency is strongly dependent on both the environment and the targets' relative locations 

since standing waves exist between them.

In case (a) the array was at a local maximum for received carrier power, whereas in 

case (b) the array was moved by just 30 mm (a quarter wavelength) and a minimum in 

carrier power - a reduction of 19 dB - resulted. The sideband powers are affected only very 

weakly by the small change in distance. This illustrates the enhanced detectability of a 

modulated scatterer in a cluttered or high-multi-path environment.

The modulation products were also studied as the orientation between the array and 

the incident signal was varied by rotating the array in azimuth (H-plane). As expected for a 

retro-array, the power reflected varied slowly with orientation angle. Figure 12 shows that 

the modulation products remain strongly visible when the array is at 35 degrees to the 

incident illumination - the power of the first upper sideband has diminished by 4 dB 

compared to the on boresight case of Figure 2.10.
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Figure 2.11. Amplitude modulation products for incident illumination at 35° azimuth to
the array boresight.

To confirm that a communications link could be established by RCS modulation, the 

received signal was mixed with the RF source to recover the modulation signal applied to 

the array switching circuit. The modulation waveforms are shown in Figure 2.12 below. At
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this stage the receiver was crude, being a direct homodyne downconversion (i.e. without IF 

stage) and the received waveform is distorted, but the 40 îs period is clearly visible.

volts volts

0.5

- 0.5

t(ps)

0.01

t (lis)
100

- 0.01

a) waveform across switch b) received waveform
Figure 2.12 Typical measured modulation waveforms.

2.4.2 Conclusions from Amplitude Modulated Prototype.

It is worth summarising the work described thus far, which covers the earliest investigative

stages and experiments into modulated retro-reflectors:

• Study of optics-based microwave retro-reflectors; trihedral reflectors etc.

• Adoption of antenna retro-array as basic structure and suggestion to modulate array 

with switches.

• Fabrication of unmodulated prototype dipole arrays at 2.5 GHz

• Demonstration of amplitude modulated dipole array at 2.5 GHz including simple digital 

communications link.

At this stage confidence in the direction of the work was well established, since the concept

had by now been demonstrated with working hardware. The work could now take many

possible directions, a few of which are summarised below:

• refine 2.5 GHz communications link by design of receiver, optimisation of modulation 

scheme etc.

• develop more detailed theoretical models for RCS, link budget, coupling, losses etc.
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• refine angular coverage by selection of other antennas, study of beam patterns, 

polarisation, and study interference effects in a multi-array structure.

• select another working frequency.

• investigate more convenient fabrication techniques.

While pursuing these areas, the author concentrated on improving the modulation circuitry 

whilst retaining the dipole array in the first instance. In particular, phase modulation was 

felt to be a more elegant and energetically efficient approach, and it will be shown how 

phase switches were developed which reduced the number of components and also 

assembly time. In the following chapters, it will be shown how the development of 

increasingly integrated microwave structures proved to be very beneficial, and how the 

methods developed were then scaled to higher carrier frequencies.

2.5 Phase Modulated Retro-Array

A further array was built, with the same dipole antenna geometry as described above, but 

using phase shifting switches in place of the double-pole double-throw matched switches. 

The combined feed line and switching circuit is shown photographed in Figure 2.16. The 

phase shifters were based on PIN diode circuits which switched between two different 

lengths of microstrip transmission line. The theoretical phase difference between the two 

lengths of line was 180° at 2.5 GHz, to achieve that maximum attainable modulation index,

i.e. unity. The phase switch circuit layout is shown in Figure 2.13, where the overall circuit 

dimensions are 50 mm x 50 mm.
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Figure 2.13. Microstrip phase switch layout.

Switching was achieved by using packaged in-series diode pairs, of a similar type to the 

single diodes used in the amplitude modulated array. Eight switches were fabricated (one 

for each dipole pair). Care had to be taken to ensure the packaged diode pairs were 

soldered in place with the correct polarity -  in Figure 2.13 above it can be seen that the 

diode configurations requires one package to be placed upside-down with respect to the 

other. This also necessitated a mechanical adjustment of the solder pad heights for the 

upside-down package. A practical advantage of the adoption of phase switching was the 

reduction in the number of RF components -  the resistors and capacitors used in the earlier 

amplitude switch are not required. A photograph of one such switch is shown in Figure 

2.17.

Again, the current requirement was close to 20 mA for each diode. The typical measured 

phase shift was 164° ± 2° at 2.5 GHz. Digital phase shift modulation was achievable by 

applying a square wave of ± 1 V amplitude to each switch. Another dipole array was
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fabricated, with a phase switch in series with each transmission line. Figure 2.14 shows the 

modulation products in this case, where the modulation frequency is again 25 kHz.
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frequency (GHz) 

(a) array at 0° rotation

frequency (GHz)

(b) array at 35° rotation

Figure 2.14 . Phase modulation products for the reflected RF at 0° azimuth and at 35°
azimuth to the array boresight.

Like the amplitude modulated array, the phase modulated array demonstrated that sideband 

power varied slowly with the orientation of the array to the illuminating signal. The first 

upper sideband power diminished by 3 dB when the array was rotated from 0° to 35° 

azimuth. The first upper sideband power was also 3 to 5 dB greater than that produced by 

AM, for any orientation angle from -35° to 35°. The greater sideband power produced is 

consistent with PM compared to AM, the latter being less energy efficient since energy is 

dumped into resistive loads on alternate cycles of the modulation signal. Hence the results 

demonstrate that phase modulation is energetically advantageous in this application.

Reflector bandwidth: The behaviour of both (AM and PM) arrays was also observed at 

other frequencies between 2.4 GHz and 2.9 GHz. The essential characteristic of the retro- 

reflector i.e. strongly visible modulation products over a wide range of orientation angles, 

was observed over this frequency range. However, it has not been possible to present 

results comparing the absolute performance at these frequencies, since the overall power
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budget in the measurement system was not calibrated. Factors affecting the bandwidth of 

the device include the anterma bandwidth and the switch bandwidth. In both AM and PM 

switches, resonant ( A./2) line lengths were employed, which clearly imposes a bandwidth 

limitation.

The maximum usable modulation frequency is governed by the maximum rate at which the 

switches may be operated. In the devices described above, this is partly dependent on the 

switching speed of the PIN diodes. In the PM array, the PIN diodes used allowed higher 

switching speeds -  it was possible to drive the switches at 250 kHz and retain an 

approximately square waveform. A trade-off between switching speed (i.e. data rate) and 

modulation efficiency became clearly apparent -a reduction of 2dB in first upper sideband 

power was evident at 250 kHz, compared to 25 kHz. Beyond 250 kHz, sideband power 

diminished more sharply. Part of the roll-off in switching efficiency is due to the bias 

circuit filter characteristic. The RF frequency range of the individual PIN diodes was also 

explored, and it was found that reasonable performance could be expected to about 3.5 

GHz. Beyond this, the transmission characteristics become increasingly dominated by the 

parasitic impedance of the device package.
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Figure 2.15 2.5 GHz retro-array antenna matrix. (The 16 dipole array common to the
unmodulated and modulated versions)
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\ \
Figure 2.16. The 2.5 GHz 
phase modulated retro-array: 
transmission lines and 
switches.
(The red cables are the 
switch bias supplies, which 
plugged in to a current 
amplifier buffer.)

Figure 2.17. 2.5 GHz microstrip phase switch, shown in-situ.
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2.6 Conclusions from Modulated Dipole Retro-Array Prototypes.

Having designed, built and partly characterised both an amplitude modulated and phase 

modulated array, it was again necessary to consider the future direction for the work from 

the many possibilities which have already been suggested. Since the mechanical fabrication 

of the arrays had been rather labour intensive, and they are also physically quite bulky, it 

was thought most advantageous to investigate the possibility of using printed circuits to 

fabricate the entire device. Microstrip switches had already been demonstrated as printed 

circuits, and to extend the use of planar circuits it would be necessary to develop printed 

antennas and also devise a planar transmission line layout that would facilitate integration 

of all the components. Thus, the aim would be to minimise the use of coaxial line and 

associated connectors, and minimise the number of fabrication stages. This would facilitate 

the construction of a larger number of modulated retro-arrays and lead to more 

experimental measurements examining and comparing their properties. If frilly planar 

circuits could be realised this would also represent a step towards a mass-producible 

solution and hence marketability. The development of planar and integrated circuits for 

modulated microwave retro-arrays is presented in the next chapter.
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Chapter 3
Printed Circuits for Modulated Retro-Arrays.

3.1 Printed Antennas.

Also commonly known as patch antennas, printed antennas are popular in a wide range of 

applications. Much literature exists examining the properties of this class of antenna, refs. 

[ 1 - 4 ]  make a good starting point for the designer. Since they may be fabricated using 

standard photolithographic techniques, they may be easily integrated with other printed 

circuit components - indeed this was their main attraction for the application described 

herein. Also, printed antennas are by nature planar, lightweight and mechanically robust 

structures. They lend themselves to array applications in that many antennas and their 

associated microstrip feed lines may be combined in configurations to give a required gain 

and beam pattern. They are also effective and compact radiators - the mechanism of 

radiation is illustrated in Figure 3.1 below.

Top
view

fringing field

fe e d  line

Vi 'k

Side
view » y »

substra te

Figure 3.1 Patch antenna radiation mechanism.

A primary disadvantage of printed antennas is their inherent narrow bandwidth, 1.5 %

being a typical figure, although this does not necessarily present a problem for retro-array
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applications. However, the bandwidth limitation leads to a great sensitivity to the exact 

value of substrate dielectric constant, which is typically specified to a 1.5 % tolerance by 

manufacturers, and so it is usually necessary to prototype the antenna for any given batch 

of substrate, and tune the antenna dimensions to achieve the required resonant frequency. 

Also, the radiation efficiency and pattern is easily corrupted by stray radiation from 

discontinuities in other microstrip components such as the feed lines. A further problem is 

encountered if large values of array gain are required, since the large number of elements 

required can lead to difficulties in designing the feed line network, and requires larger 

physical areas of material. This in turn leads to greater losses in the feed lines which begins 

to negate the sought after increase in array gain.

3.2 Initial Design Considerations.

Firstly, the relationship between patch dimensions and resonant frequency had to be 

determined, so that the dimensions required for the 2.5 GHz design frequency could be 

established. An estimate can be found by calculating the wavelength using the microstrip 

design equations for Ereff from chapter 2. Then:

where L is approximately the length required to produce a resonance at a free space 

wavelength of lo (0.12 m. in this case). This approximation does not account for the 

effective extra transmission line length introduced by the fringing fields which are the 

radiating mechanism, but would suffice to estimate overall dimensions so that a laminate 

could be procured. The photographic group at the University of Oxford Department of 

Physics were consulted about their photo-etching facilities, and in particular the range of 

circuit dimensions which could conveniently be handled, which was about 300 mm square 

for a non-flexible substrate (also a commercially available laminate sample size). The 

mask generating plotter could handle patterns up to 296 mm in width (A3 size).
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Since 8reff is a function of track width w, substrate height h and dielectric constant 8r 

assumptions for these values must be made. Commonly used substrates have h = 0.76 mm 

so this value was assumed for initial design calculations. Since antenna gain diminishes 

with increasing 8r a value of 3.0 was initially assumed, being toward the lower end of the 

commercially available constants. Using a nominal track width of 2 mm gives 8reff * 

2.456 and L = 38.3 mm. A wider track yields more efficient radiation, so a width of 38.3 

mm was then used to derive new values of 8reff = 2.913 and L = 35.2 mm. It can be seen 

that a square patch antenna can be derived after a few iterations - this was later necessary. 

At this stage it became apparent that a 4 x 4 array of patches close to 36 mm square in 

dimension could lie within a total area of 300 mm square allowing a patch separation of 

about 70 mm, which was estimated to be sufficient separation to obviate mutual coupling. 

The preferred feed method was to aperture-couple the patches to a separate printed circuit 

which would contain the interconnections and switches with associated diode bias circuits. 

This printed circuit would also be subject to the 300 mm square size restriction, and some 

sketches showed that this would be possible. The design of the circuit for the 

interconnecting feeds is discussed in more detail in section 3.6.

3.3 Antenna Prototyping.

The laminate procured was Rogers R03000, with 8r = 3.0 ± 0.04 and h = 0.76 mm. This is 

a high performance PTFE/ceramic composite based laminate, with loss factor Tan ô = 

0.0013. It was next necessary to model the resonant frequency/length relationship for the 

patch antenna more accurately. From [5] the extra length contributed by the fringing fields 

is approximated by:
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M  = 0.412A
Sreff + 0.300

Sreff -  0.258

^  + 0.262
il_______

+ 0813
h

(3.2)

The total length is then the sum of the conductor length and the two fringing field lengths: 

Ltot = 1/ + 2 A/ (3.3)

and resonance occurs at a wavelength:

Àres = 2LtotylsreJf (3.4)

A Mathematica program was written to examine the relationship between resonant 

frequency and dimensions for a square patch (w = T ) in the frequency region of interest, as 

shown below in Figure 3.2.
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32 34 36 38 40 L  (mm)

Figure 3.2. Resonant frequency versus length for a square patch.

Using the program, a value of 34.5 mm was derived for a resonant frequency of 2.50 GHz. 

Also using the design equations from [5], the Mathematica program was extended to 

calculate radiation resistance at the centre of one side of the patch. The value of 259 Q 

which was derived represents the load impedance seen by the microstrip feed line.

3.4 Antenna Feeds.

To match the relatively high impedance of the patch antenna (Rrad ) to a 50 Q feed line, 

there is clearly a necessity for an impedance transformer between the feed and antenna.
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The most convenient way of realising this is a quarter wave transmission line length of the

classic type where Zt = ^IZq.Zl where Zt is the required characteristic impedance of the 

transformer section which is X/4 in length, Zo is the feed line characteristic impedance and 

Zl the load impedance. At this stage, Zo has not been assumed. An arbitrary value may be 

selected since each line is to provide a connection to the counterpart antenna, rather than 

interface to the standard 50 Q test environment. Here, another design trade off becomes 

apparent -  lower impedance microstrip lines tend to exhibit lower loss than higher 

impedance lines, but are correspondingly wider, thus consuming more "real estate" on the 

printed circuit and reducing the spacing between the tracks. If the spacing is too close, 

parasitic electromagnetic coupling between the lines will corrupt the phase relationships 

between the antenna pairs, and degrade the array performance. The critical region is where, 

in a 4 X 4 array, 5 transmission lines need to pass between adjacent antennas. This can be 

seen in Figure 3.10 which shows the feed layout which was later derived.

Discussion: it will be apparent that at this stage, even before any circuit elements have 

been designed in detail, it has been necessary to consider the inter-relation of a large 

number of parameters which include for example, dependence of antenna dimensions 

hence total circuit dimensions on dielectric constant, total surface area available for the 

printed circuits, microstrip feed line impedance and inter-dependence on width, spacing, 

parasitic coupling, losses and required impedance of quarter-wave transformers.

Polarisation: As a further variation on the radiation characteristics of the preceding dipole

array, it was thought useful to design an array with circular polarisation properties. This

would respond to illuminating radiation of arbitrary linear polarisation, or the correct sense

(right or left hand) circular polarisation. A circularly polarised patch antenna can be

realised by feeding two edges of a square patch in phase quadrature [10], as suggested by

the layout shown in Figure 3.3. The load presented by such an antenna was modelled as
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two parallel loads each of Rrad, since the radiation modes are orthogonal and therefore the 

presence of one does not modify the radiation mechanism of the other.

\  +  a / 4

f e e d  line

radiating p a tc h

Figure 3.3 Circularly polarised patch antenna.

For the circularly polarised patch, the quarter-wave impedance transformers are required to 

present an impedance 2 Zo so that the parallel combination is Zq (the feedline characteristic 

impedance). The circuit dimensions at 2.5 GHz allowed the use of 50 Q feeds (w = 1.89 

mm) which, although not vital (as discussed above), was a convenient value for simulation 

purposes. In Figure 3.3 above, it can be seen that an additional quarter wavelength line is 

required to produce the necessary phase shift for circular polarisation. The characteristic 

impedance of the this line is 2 Zo . Using EES OF Linecalc, the required dimensions for 

these lines were derived, as shown in Table 3.1 below. The 161 Q line transforms the 259 

Q patch radiation resistance to a load impedance of 100 Q.

Zo (Q) w (mm) A-tl (mm)

50 E89 19J^

100 (148 20H8

161 0.10 20.85

Table 3.1. Microstrip dimensions for circular polarised patch feeds.

The layout was modelled using EESOF's Momentum planar circuit simulator. This is a 

method of moments electromagnetic simulator which produces a two-dimensional mesh of
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the planar circuit. Substrate and conductor losses may be accounted for and an arbitrary 

number of ports may be used. The package also derives far-field radiation patterns. The 

tool was used extensively from this part of the work onwards. Figure 3.4 below shows the 

physical layout modelled, and the simulated return loss (Sn) for the prototype antenna.

S ll □ Simulate 
o Interpolate

0 . 0

1 0 . 0

2 0 . 0

- 2 5 . 0

- 3 0 . 0

Px\ I /\ V
\  ft
Va

2.44

Port 1

2.50
Frequency

2.56

(i) Layout (ii) simulation results: return loss (Sn)

Figure 3.4. Simulated antenna match from EESOF Momentum.

The simulation predicted a resonant frequency of 2.47 GHz which represented a 

discrepancy of 30 MHz compared to the design frequency of 2.50 GHz, or a 1.2 % error. 

The Momentum simulation was thought to be the more accurate indication of predicted 

frequency, since the approximate boundary conditions used in [5] do not apply, so the 

patch dimensions were scaled by the 1.2 % factor to yield a new square patch length of 

34.09 mm.

3.5 Radiation Patterns.

The far field electric fields [5] for a linearly polarised rectangular patch antenna are given 

by:

51



Ee = Cos{k.h.Cos6)-

(  a ^Sin A:o-Sin(9.Sin<zJ
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(3.6)

2/r I—where = —  and k = kQ , a is the patch length, b is the patch width and h is the
%

substrate height. The co-ordinate system is shown in Figure 3.5 below.

radiating ed g e

radiating ed g e

\  (j) = 0
Figure 3.5 Patch antenna fields: coordinate system

Special cases of interest are the E-plane (plot Ee as function of 0 theta for (|) = 0) and H- 

plane (plot E^ as function of 0 theta when (|) = n il ). The E-plane may be visualised by 

remembering that the plane in which the electric field is linearly polarised is in the 

direction of the feed line, i.e. where (|) = 0. The H-plane is the orthogonal plane. The 

theoretical E-plane and H-plane radiation (power) patterns for one linear mode of the 

prototype patch are shown in Figure 3.6 below.
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Figure 3.6 Linearly polarised patch antenna, theoretical radiation patterns.

The resultant field from the superposition of the two linear modes, which are fed in phase 

quadrature, may be assumed to be the time average of the E- and H-plane contributions, 

which is shown in Figure 3.7 below.
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Figure 3.7 Circular polarisation radiation pattern.

The Momentum simulation showed that a slightly modified patch dimension of 34.09 mm 

(c.f. 34.50 mm) was necessary in this case to achieve the design frequency of 2.50 GHz. It 

was seen that the presence of the feeds and aperture slightly perturb the operating 

frequency of the patch radiator in the simulation. The simulated radiation patterns are 

shown in Figure 3.8 below.
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Figure 3.8 Simulated radiation patterns for circularly polarised patch antenna.

In Figure 3.8 the two components of electric field are shown (Ee and E<|)) and a slight 

asymmetry in their powers is visible. For circular polarisation, both components should 

have the same peak magnitude. In case (i) it can be seen that E(|) has a slightly greater 

magnitude than Ee by about 1 dB. That is, one of the orthogonal radiating modes is 

stronger than its counterpart. The same phenomena is visible in case (ii), but viewed at a 

different azimuth angle (j). The asymmetry is caused by parasitic radiation from the 

micro strip feeds, and results in slight ellipticity of the radiation pattern.

Aperture coupling. To separate the antennas from the intercoimecting transmission lines 

and switching circuitry, a means of aperture coupling through the circuits' ground planes 

was sought. It was preferred to devise a means of coupling which would allow the circuits 

to be separated so that a different antenna matrix could be changed should this prove 

necessary, for example, to change the polarisation or centre frequency. For this reason, 

direct coupling to the antenna patches was not used, and a short transmission line stub was 

used as an interface. In this configuration the functions of the antenna, aperture and 

interconnecting lines are separated. Various aperture configurations were modelled using 
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Momentum, the best proved to be a long narrow slot perpendicular to the feed lines as 

shown in Figure 3.9. This configuration was derived by the author to meet the needs of the 

design as it developed.

Port 1 Lower conductor

Aperture (in common ground plane)

Port 2

Upper conductor

w

Figure 3.9 Microstrip aperture coupling.

Figure 3.9 shows the metalisation pattern of two "back-to-back" microstrip feed lines 

which share a common ground plane. The feedlines are shown slightly offset for clarity of 

illustration -  in practice there is no lateral offset. The insertion loss was found to be very 

sensitive to the dimensions shown. The best results were obtained with a slot width w of 

0.1 mm, a slot length L of 30.0 mm and a stub length s of 14.9 mm. This configuration 

gave a modelled insertion loss better than - 0.15 dB over a 500 MHz bandwidth. It is 

worth observing that the slots give rise to further restrictions on transmission line routing, 

since the interconnecting microstrip lines should not be routed over the apertures which 

"belong" to a neighbouring line.

3.6 Transmission Line Routing and the Unequal-line-iength Retro-array.

At this stage the antenna matrix and aperture feeds were finalised, and it was necessary to

devise the routings for the interconnecting microstrip lines which would populate a

separate circuit board "behind" the antenna matrix. The classic retro-array requires that all

transmission lines are of equal length, although that length may take any value. To realise a

planar circuit which would perform this function, an important conceptual step was made.
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Rather than attempting to map routes for equal lengths of line, lines may vary in length 

from one another by an integer multiple of wavelengths. Such a geometry preserves the 

phase relationship between antenna pairs that leads to phase-conjugation, albeit at a single 

frequency of operation. Approximate phase conjugation will occur at other frequencies 

close to this centre frequency. Thus the unequal-line-length retro-array is a narrow band 

variant of the Van Atta array. The unequal-line-length array is ideally suited to planar 

configurations, where the bandwidth limitation imposed by the unequal lengths is expected 

to be less than the typical 1.5 % bandwidth of the radiating patch elements. A further 

advantage of the unequal-line-length array is a reduction in transmission line losses since 

the total length of line used may be much reduced compared to the Van Atta array.

To determine the geometry for the interconnecting lines for the 8 antenna pairs, the longest 

interconnection was sketched out and its length determined. Earlier, the wavelength in the 

line ^TL was accurately modelled at 77.1 mm. A set of allowed lengths could now be 

established i.e.

Tallowed ~  L\ Tl X ,t l

where L\ is the first and longest line length. A schematic of a circuit layout realised using 

this principle is shown in Figure 3.10, where the antenna array spacing is 68 mm.
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n

Figure 3.10 . Schematic for unequal-line-length retro-array feed configuration.

Switches: phase switches of a similar design to that described in chapter 2 were added to 

the circuit layout. Again, to maximise the modulation index a phase shift of Jt was sought 

by switching between two lengths of line differing by Vi Xtl which is 38.5 mm. Packaged 

surface mount silicon PIN diodes were to be used as before.

Mask generation: The circuit geometry could now be written in the EESOF Layout editor, 

prior to generation of the mask sets. Great care had to be taken to ensure the feedlines 

overlay each other correctly via the apertures. Oversize apertures were used for one of the 

two circuit boards - although it would have been viable to remove the entire ground plane , 

this was thought to put an excessive loading on the chemical etching stage. Two pairs of 

masks were printed: the antenna patterns with aperture slots in ground plane, and the feed 

and switching circuits with oversize slots in ground plane. Two additional software 

translation stages were necessary between the EESOF Layout file and the printing of the 

mask to transparent film. The photographic process at by the Department of Physics used 

solid film negative resist, and so negative masks were required. For each circuit, the mask
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pairs were pre-aligned, and the laminate placed in between them for double-sided UV 

exposure.

Figure 3.11. Combined graphic showing mask for 2.5 GHz retro array feed circuit,
including apertures.

In Figure 3.11 the layout of the feed circuit is shown, including phase switches and bias 

filters. The Figure also shows the apertures -  horizontal slots placed 14.9 mm from the 

transmission line ends -  which were printed on a separate mask in practice. Attention is 

drawn to the region (lower left) where the transmission lines are close together to avoid 

crossing the apertures. The square border markers were used to aid mask alignment.

Fabrication: The etched boards were placed back-to-back and secured with adhesive tape. 

Permanent bonding of the boards was avoided so that they could be separated easily in the
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future if necessary, for example to change the antenna matrix. The build of the switching 

and bias circuits was mostly straightforward, involving conventional soldering of the 

components.

3.7 Measurements.

The measurement method has been discussed in chapter 2, where a spectrum analyser was 

used to study the modulation products in the reflected signal. Of particular interest was:

• magnitude of reflected signal, being proportional to RCS magnitude

• angular response

• frequency response

• polarisation response.

The first three cases of measurements are straightforward to present. The centre frequency 

was established as 2.52 ± 0.01 GHz, where the peak reflected power (in the first upper 

sideband for a 25 kHz modulation signal) was found to be approximately 2dB lower than 

for the phase modulated dipole array. Since the gain of the individual radiators (dipole and 

patch) are similar in both cases, being approximately 4 dBi, the reduced peak directivity of 

the printed array is consistent with the expected increase in loss in the microstrip feed lines 

compared to the shorter co-axial lines used in the dipole array. Feed line losses are 

considered in more detail in chapter 5, which examines the implications for different 

construction methods and materials, particularly for larger arrays. Figure 3.12 shows the 

theoretical and measured angular response of the printed array, where linear polarisation 

was used for the illuminating signal and the array was oriented so that only one patch mode 

was excited. In this case, the reflected signal is also linearly polarised and the F and H- 

plane responses may be studied independently.
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Fig 3.12. Reflected sideband power versus angle — measured • • • theoretical. (Plots are
normalised)

For incidence angles between approximately ± 60°, both E and H-plane measured patterns 

are in good agreement with the theoretical cases. The trend that the H-plane measurement 

is slightly higher than the theoretical case while the E-plane is slightly below, is consistent 

with the simulated polarisation asymmetry of the individual patch antenna of Figure 3.8.

The polarisation response of the printed array proved much more problematic to interpret. 

While the above results relate to a single (and optimum) polarisation angle (j), the reflected 

power was seen to drop off sharply for other polarisation angles. The geometry is 

illustrated in Figure 3.13. The magnitude of this effect was not expected, because the 

radiating elements had been simulated and an almost circular polarisation demonstrated.

Figure 3.13 polarisation geometry
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The polarisation response was studied by varying the incident polarisation angle with 

respect to the array, which was achieved by rotating the array about its boresight. To 

summarise the results, the peak reflected power was observed for (j) = 45° and (j) = 225°, 

(in which case the incident polarisation is coincident with the patch mode fed by the "long" 

feed). The minimum reflected power was some 22 dB lower, and occurred for (j) = 135° 

and (j) = 315°, (in which case the incident polarisation is coincident with the patch mode 

fed by the "short" feed). Thus the polarisation response of the array was so highly elliptic 

as to be linear for practical purposes, and the intended insensitivity to polarisation had not 

been achieved. A number of possible explanations were investigated. Firstly, it appeared 

that one of the orthogonal patch modes was being exited much less than the other. 

However, the simulated results shown in Figure 3.8 show an asymmetry of just 1 dB, 

which would be manifested as 2 dB in the combined transmit and received operations of 

the reflection measurement, so the mechanism causing the strong asymmetry has not been 

included in the simulation. A consideration of the manufacturing tolerances quickly 

rejected mask or etching tolerance as a likely mechanism.

It is important to recall that the simulation of the individual radiating element is not 

necessarily representative of the entire array of elements, since the effect of parasitic 

radiation from the microstrip stub feeds may be constructive or destructive in different 

planes depending on the array spacing. To further investigate the array, rather than the 

individual radiating element, a larger simulation was constructed which comprised 4 of the 

16 elements in a square array. A corporate microstrip feed, with associated power dividers 

and impedance transformers, was included to simulate the behaviour of the array as an 

antenna, with all elements fed in phase. Processor and memory constraints precluded 

simulation of all 16 elements, (which in any case ought not have been necessary from a 

consideration of the array symmetry). The layout constructed for the Momentum simulation 

is shown in Figure 3.14.
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Figure 3.14 EESOF layout for diagnostic simulation of array extract.

3.8 Diagnostic simulation results.

Figure 3.15 shows the simulated fields Eq and as a function of theta. In this case, the 

asymmetry between the field magnitudes is much greater than was observed for the 

simulation of a single element shown in Figure 3.8. The simulation reproduces the 

measured result, namely that the co-polar field Eq is stronger than the cross-polar field 

when (j) = 45°. Had all 16 elements been included in the simulation, the 8 dB difference 

may have been expected to be greater. The plot for (j) = 135° has been included to confirm 

that in this case it is the cross-polar field which is stronger. We also recall that for the 

reflection measurement, the polarisation loss will occur twice, and a figure of 16 dB would 

be expected.
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Figure 3.15. Orthogonal fields: relative magnitudes

It is postulated that the mechanism which has given rise to the polarisation asymmetry is 

the interference effect of the parasitic radiation from the microstrip feeds, since all the 

above investigation points towards this being the case. To re-iterate, while a single 

radiating element exhibits almost circular polarisation, when the simulation is extended to 

include 4 elements in a rectangular array, the ellipticity is much more severe. Means of 

obviating this difficulty are explored in the following section.

3.9 Alternative patch antenna configurations.

To overcome the adverse interaction between the antennas' radiation and that of the feeds, 

the stub feeds may be removed in favour of placing the apertures directly behind the patch 

antennas [6,7]. Circular polarisation may be achieved by feeding a pair of such apertures in 

phase quadrature [8] as illustrated in Figure 3.16, where the power dividers are fabricated 

on the same circuit as the feed lines.
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Figure 3.16 Dual aperture coupled circular polarised patch antenna.

A circular polarised patch antenna is described in [8] where a design frequency of 2.4 

GHz was used and where: TFfeed = 156 mm, IFsiot = 0.6 mm, Lpatch= 37.0 mm, Lstub = 14.0 

mm and ôffset = 3.2 mm. In the example of [8], = 2.33 for the patch substrate and 2.22

for the feed substrate. The retention of both feed lines at the branch-line coupler allows for 

the sense of polarisation to be switched. While this approach is more robust from an 

electromagnetic point of view, it is less tractable for experimentation purposes, since feed 

circuits and antenna circuits cannot be so easily interchanged.

3.9.1 Omnidirectional Coverage.

To complete the study of printed antennas for retro-arrays, consideration was given to 

means of tailoring the antenna radiation pattern, so that a number of different applications 

(with differing requirements for spatial coverage) might be addressed. The angular 

coverage of the reflector has been shown to be equivalent to that of the individual antenna 

element chosen. For the patch antennas considered thus far, the radiation is inherently into
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half-space, with a well defined power roll-off with increasing incidence angle which, for 

linear polarisation, is more rapid for the H-plane than for the E-plane. In a practical 

application, this radiation mechanism is useful to cover the majority of a hemisphere, such 

as might be applicable to a vehicle control or docking system. However, in applications 

where a transponder may be interrogated from any angle, a number of transponders (at 

least 2) would be required to prevent blind spots in coverage. The consequence of this 

approach is interference patterns between the two transponders’ radiation patterns, unless 

the complexity of orthogonal access channels for each transponder is adopted (e.g. 

addressing each transponder with a different carrier frequency).

However, if we consider that there are few applications which require truly 

omnidirectional coverage, a radiator may be chosen to provide coverage in the region 

where it is most required. For example, a small marine vessel or ground-based vehicle may 

carry a transponder to enhance its detectability is a busy environment. Indeed, this was one 

of the original themes of the work which it is interesting to now re-visit. In this context, a 

transponder may be interrogated from any angle in azimuth i.e. from a ground based radar, 

and we may assume that interrogation "from above" will not occur. For this geometry, a 

vertical monopole or dipole would be an ideal candidate, such as are used in terrestrial 

broadcasting. Since fabrication and feed constraints render this type of antenna 

inconvenient for retro-array applications a printed equivalent has been sought. A promising 

solution is the over-moded rectangular patch, where radiation at a harmonic frequency of 

the fundamental mode is exploited. In this case, the components of the fringing fields 

which are parallel to the ground plane and make up the aperture fields are in anti-phase and 

constructive interference occurs in the plane of the substrate, with a null along the normal 

to the substrate, as illustrated in Figure 3.17 below.
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Figure 3.17 Over-moded patch radiation mechanism.

3.9.2 Circular Patch Antennas.

To examine the radiation pattern of a symmetrical radiator, a circular patch was simulated 

using Momentum. A nominal 33.3 mm diameter was chosen. From [5], an estimate for the 

fundamental resonant frequency is:

f  = (3.8)
2jmyl£r

where a is the radius and k\o = 1.8412. This yields/=  3.05 GHz for the test patch when a 

dielectric constant of 3.0 is used. Since the estimate is based on a model assuming a non

radiating zero-admittance wall around the cavity formed by the patch (the added length of 

the fringing field is not included and there is no dependence on substrate height), we may 

expect the actual resonance to occur at a slightly lower frequency. For a higher order 

resonance, we use:

/  = (3.9)
IjmyfSr

where k'mn is the m̂  ̂zero of the derivative of the Bessel function of the first kind Jn(x). The 

second resonance is derived using k '20 = 3.05, yielding/ =  5.06 GHz, where we expect the 

over-moding to produce a Foresight null and wide angle coverage in the plane of the 

substrate. A frequency sweep of 2.0 -  6.0 GHz was used in the simulation so as to be 

confident of capturing both the fundamental and second harmonic resonances. A substrate 

height of 0.76 mm was used. The reflection coefficient is shown in Figure 3.18, where the
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first and second resonances at 3.0 and 4.95 GHz respectively are encouragingly close to the 

predicted values.

0.0

S11
(dB)

- 5 . 0

- 1 0 . 0

- 1 5 . 0

20 .0

- 2 5 . 0
6.05.02.0 3.0 4.0

Frequency (GHz)

Figure 3.18. Return loss for circular patch, from wideband Momentum simulation.
{d = 33.3 mm, 8r = 3.0)

The radiation pattern for the fundamental mode will not be presented, being very similar to 

the rectangular patches presented earlier. The radiation pattern for the 2°  ̂ resonance is 

shown in Figure 3.19, where the characteristic on-boresight null is evident.

o°o.o

270

180

Figure 3.19. Circular patch antenna E-plane radiation pattern for 2"  ̂resonance
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To consider this approach in the context of the prototype retro-array described which was 

built and characterised, the over-moded circular patch could be scaled to an operating 

frequency of 2.5 GHz. From (6) above, the diameter required would be 67.4 mm. A 

patch of this diameter would preclude the adoption of the same array architecture since 

there would be insufficient space between the elements which were spaced at 68 mm 

intervals. The implications are that the bigger (over-moded) antenna element would require 

a bigger circuit board to accommodate an array of equivalent RCS. While use of a higher 

dielectric constant would allow for a smaller antenna element (using 8r = 10.0 yields d = 

36.7 mm.), the peak RCS would suffer from the reduction in antenna gain. A further 

observation is that while a circular patch is larger than a rectangular patch for a given 

fundamental operating frequency, the dimensions become comparable when the 2°  ̂

harmonic is exploited. This is because, for the rectangle, the length is approximately 

doubled to produce over-moding, while for the circular patch the ratio which applies to the 

scaling factor for diameter is:

kio 3.05

&20 1.84
= 1.66 (3.10)

3.10 Conclusions.

In this chapter, a number of microwave design techniques have been brought together in 

the realisation of a modulated retro-reflector constructed from a pair of aperture-coupled 

printed circuits. The rationale for this development is to some extent economic, in that the 

dipole arrays discussed in chapter 2 are unattractive from a manufacturing point of view, 

are physically more bulky, heavy, and require more components. The constraints on the 

designer have been discussed in some detail, which are chiefly constraints of available 

space on the printed circuits. An important discovery arising from the solution which was 

adopted was the unequal-line-length retro-array, which is a narrow-band variant of the 

more general Van Atta array, and is an excellent solution for planar transmission line
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routing. A useful corollary of this method is the reduction in total line length and hence 

attenuation. Polarisation has been studied in some detail. The intention was to develop a 

polarisation-insensitive response by adopting circularly polarised radiating elements, 

which would respond to any linear polarised interrogating signal. When the intended 

characteristic was not achieved, the underlying reasons were studied in some detail by 

recourse to CAD simulation of a representative structure. Parasitic radiation from the 

antenna feeds was identified as the underlying mechanism, and alternative feed 

configurations have been presented as a solution. In addition, alternative radiation patterns 

have been put forward so as to tailor the angular response for 360° azimuthal coverage 

from a single array. Alternative printed antenna geometries studied in this context have 

included circular and over-moded patches.

The work was successful in a number of aspects, not least of which was the confidence 

afforded by demonstration of working hardware in a field that appears to have been 

previously over-looked. Also, important lessons were learnt relating to the scaling of the 

parameters which define the performance which can be expected from a given aperture 

dimension and dielectric material. A number of interesting possible developments for the 

future could be identified at this stage. The array could be scaled in size to yield higher 

RCS values, and the fundamental limit explored - being mindful of the increasing effect of 

transmission line loss -  which is discussed in chapter 5. Also, faster modulation circuitry 

could be developed to explore the limits of information transmission in a wireless link, or 

the design could be scaled to a higher operating frequency. The latter goals (bit rate and 

carrier frequency) were identified as the most important to pursue in the next stage of the 

work.
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Chapter 4
Planar Modulated Retro-Arrays at X-band

4.1 Maritime Radar Applications

With the dual aims of developing the work toward commercial applications, and extending 

the performance envelope of the techniques discussed in the preceding chapters, a move in 

carrier frequency was sought. X-band (nominally 8-12 GHz) was identified as one of the 

most common bands used in mass-market applications, typically such as maritime radar. 

Pulsed radar sets in common use by sea-farers, from smaller amateur pleasure craft to 

larger commercial cargo vessels typically operate between 9.2 and 9.5 GHz [1]. (The more 

basic, mass-market sets [2] may cost as little as $ 2000). In a return toward the roots of the 

project, this frequency band was chosen for the development of transponder prototypes 

which might address the problem of target detectability for the smallest vessels not 

otherwise equipped. An increase in transponder modulation rates would also be sought so 

as to address other application areas and extend the use of spectrum as far as possible. 

Should the need arise, availability of components in this band was not expected to present 

a severe restriction on build of hardware.

A survey of regulatory issues was conducted with the aim of selecting the specific 

frequency and bandwidth of operation.
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M Hz
8850 - 9000 RADIOLOCATION Government.

9000 - 9200 AERONAUTICAL

RADIONAVIGATION

(1) Approach radar.
(2) Government.

9200 - 9300 RADIOLOCATION
(1)

MARITIME
RADIOLOCATION
(2)

(1) Government.
(2) The maritime radionavigation service is for 
shipbome radar and racons, with harbour radar by 
special agreement with other users of this band.
Low Power Radiolocation Equipment for Detecting 
Movement and for Alert.

9300 - 9500 AERONAUTICAL
RADIONAVIGATION
(1)

MARITIME
RADIONAVIGATION
(2)

(1) Ground and airborne radar.
(2) The maritime radionavigation service is for 
shipbome radar and racons, with harbour radar by 
special agreement with other users of this band.

The Motorwam system operates on 9410 MHz. 
MDM equipment may use 9325 MHz and 9480 MHz 
on a non-interference basis to other users.

The development of new airborne weather and new 
shipbome radars in this band will be limited in 
accordance with the aim of Rec. 600, WARC, 1979.

9500-10000 RADIOLOCATION Govemment. Existing harbour radars at Gravesend, 
Southampton and Crayfordness may operate up to 
9530 MHz, on a temporary basis until withdrawn.

10000-10125 MOBILE
RADIOLOCATION
AMATEUR

Govemment.
3cm survey equipment may use this band on a non
interference basis to other services.

10125-10225 RADIOLOCATION
(1)
MOBILE (1)
FIXED (2)

(1) Govemment
(2) Civil Radio Fixed Access in the bands 
10125-10225 MHz, paired with 10475-10575 MHz. 
3cm survey equipment may use this band on a non
interference basis to other services.

10225-10450 MOBILE (1) 
RADIOLOCATION 
(1)
AMATEUR (2)

(1) Govemment. Shared with secondary service: 
10300-10360 MHz - PMSE.
Home Office/Scottish Office for the Emergency 

Services in the bands 10250-10270 MHz and 10360- 
10400 MHz.

(2) Amateur service in the band 10225-10475 MHz. 
3cm survey equipment may use this band on a non
interference basis to other services.

Table 4.1 UK frequency allocations, 8.85 - 10.45 GHz
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Table 4.1 shows an extract of the UK Radiocommunication Agency's (RCA) published 

frequency allocations [3] within X-band known to be utilised by maritime radar 

applications. With the exception of the headings, the data is reproduced in its published 

state, and has not been otherwise edited or interpreted. A cursory inspection of the (in 

places vague) contents illustrates the difficulty in extracting specific information from 

these regulations. However, the bands 9.0-9.2 GHz, 9.2-9.3 GHz and 9.S-9.5 GHz would 

appear those most commonly used for maritime radar. Typical carrier frequencies for 

commercial pulsed radar sets include 9.375 and 9.410 GHz with an IF bandwidth between 

20 and 60 MHz [2]. The centre frequency selected for design purposes was thus 9.39 GHz, 

being the mean of the aforementioned carrier frequencies.

4.2 Transponder Design.

In chapter 3 the difficulty in achieving circular polarisation was investigated in some 

detail. In particular, the aperture coupled microstrip feeds were found to suffer parasitic 

radiation which corrupted the polarisation purity. With the emphasis now on operation at 

9-9.5 GHz, a new set of challenges would be encountered. In particular, prototyping of 

antenna arrays would be necessary to achieve the desired frequency of operation. 

Separation of the feed, aperture coupling and radiating functions of the microstrip elements 

was therefore still sought. For these reasons, integrated aperture coupled patch antennas 

were not proposed, since a change in the antenna circuit board would necessitate a change 

in the aperture geometry. Retention of aperture coupled feed lines, as prototyped at 2.5 

GHz, allowed the continuation of the philosophy of changing the combination of feed line 

circuit and antenna array.
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4.2.1 Laminates.

In addition to the Roger's R03000 laminate [4] used at 2.5 GHz, a second, lower cost 

laminate was procured. This was Taconic TLC30 [5]. The properties of the two laminates 

are sununarised in Table 4.2

Laminate Rogers R03000 Taconic TLC30

£r 3.0 ± 0.04 3.0 ± 0.05
h (mm) 0.76 0.79
Tan Ô (at 10 GHz) 0.0013 0.003
approx. cost UKP per 
300 mm square panel

40 10

width of 50 Q microstrip 
(mm)

1.96 1.98

Table 4.2 Comparison of laminate properties.

Being mindful of mass production applications, the cheaper laminate was procured, in part, 

to investigate its performance compared to its costlier counterpart. Also, the Taconic 

laminate exhibited better mechanical properties and proved to be easier to handle, cut, and 

was less susceptible to damage. In both cases the laminates were ordered with 18 \im thick 

electrodeposited copper cladding on both sides. The slight difference in laminate heights 

yields a very slight difference in the relationship between line impedance, wavelength and 

width [6]. This effect was not considered sufficient to warrant separate layout design for 

line interconnects, switches and bias lines, but was expected to yield different patch 

antenna resonant frequencies for a given mask layout. Therefore, a range of antenna 

lengths was proposed, while the feed line layout would be common to both substrates.
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4.2.2 Antenna Elements.

Linear polarisation was preferred, with the patch antenna's E-plane orientated horizontally 

to exploit the widest angular response in azimuth (see Figure 3.6). To obviate further 

complications with parasitic feed line radiation, the feed lines on the antenna circuit were 

rotated through 90° with respect to the antenna E-plane so that the stub parasitic radiation 

would be orthogonal to the linear radiating mode of the patch, as illustrated in Figure 4.1.

W

w

1/1/feed

^^y/^rc\aXch =X/4

Figure 4.1 patch antenna element with microstrip feed.

As discussed in chapter 3, the feed line should be matched to the input resistance (radiation 

resistance) of the antenna. For linear polarisation the patch is not required to be square. 

However, as the patch width w is reduced, the radiation resistance increases [7] and 

becomes more difficult to match to, requiring a matching line of higher impedance and 

therefore lower width. The minimum track width is a function of the mask and etch 

resolution, being around 100 jam in this case. Using the methods described in chapter 3 

(equations 3.2 - 3.4.) a square patch of length 8.94 mm yielded the target resonant 

frequency of 9.39 GHz on the Rogers substrate.
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Aperture coupling. The method developed at 2.5 GHz was scaled to a 9.39 GHz centre 

frequency for the Rogers substrate (/z=0.76 mm). Momentum was used iteratively to 

minimise the insertion loss of the circuit. Following a manual optimisation of 12 iterations, 

the slot and stub dimensions (see Figure 3.9) which were derived were: L = 9.0 mm, w = 

0.10 mm, s = 4.2 nun, where the line width was 1.0 mm. (The choice of this line width, 

which does not yield 50 Q line, is discussed below.) This resulted in a minimum insertion 

loss 0.18 dB and better than 0.4 dB over the full 500 MHz bandwidth which was 

simulated. The laminate loss terms were not included in this simulation so as to isolate the 

inherent, reflective insertion loss of the aperture from the resistive material losses. It is 

worth adding that, since two apertures are used in each transmission line, the loss term will 

occur twice in the finished circuit, and also that the non-resonant, broadband response of 

the aperture justifies use of either substrate, with their slight height difference, with the 

same layout.

A Momentum simulation of the antenna layout shown in Figure 4.1, with aperture 

coupling, showed that the length needed to be re-scaled to 8.82 nun to achieve the target 

frequency. This simulation included the substrate loss terms, and predicted a 10 dB 

bandwidth of 2.1 % or 197 MHz. A further simulation for the Taconic TLC substrate 

indicated a square patch of length 8.80 nun would be required.

Antenna prototyping: The laminates' dielectric constant are both specified to a tolerance of

around 1.3 %, and other factors such as mask accuracy and etch resolution lead to

uncertainty in the final resonant frequency achieved. Also, apart from these considerations,

the accuracy of the simulation tool was a further unknown, although it had proved

invaluable at lower frequency studies. For these reasons a prototyping stage - i.e.

fabrication and measurement - was carried out. As long as the achieved resonance is very

close to the design figure, the antenna dimensions may be scaled linearly to re-scale the 
76



centre frequency. (A less methodical or accurate theoretical analysis would likely have 

lead to a bigger error at the first prototyping stage and hence require subsequent stages.)

The 8.80 mm patch was prototyped as a single element using both substrates and the 

measured resonant frequencies used to derive new patch lengths. In addition, 1.5 % 

oversize and 1.5 % undersize patches were proposed in anticipation of the final antenna 

arrays exhibiting further errors in centre frequency due to, albeit weak, mutual coupling 

between elements in the array [8]. The scaling of the prototype dimensions is summarised 

in Table 4.3

substrate Taconic TLC Rogers R03000
centre frequency, single patch 
prototype, L=8.80 mm (fabricated)

9.130 GHz 9.248 GHz

error (%) 2.77 1.51
new required length (mm) 8.56 8.67
+ 1.5 % length (mm) 8.68 8.77
- 1.5 % length (mm) 8.43 8.54

Table 4.3. Patch lengths derived from first prototyping stage for target centre frequency
9.39 GHz

From Table 4.3, four lengths are suggested to "capture" the intended centre frequency in 

the 16 element retro-reflector. These are: 8.43, 8.55, 8.68 and 8.77 mm. Since the 

lithography process would handle laminates up to approximately 300 x 300 nun size, 9 

circuits could be fabricated in each batch. To maximise the available use of circuit and 

mask space, a number of antenna matrix variants would be fabricated together. A fifth 

length of 8.61 mm was used on a spare 16 element matrix. (The remaining 4 domains on 

the laminate would be used for the feed circuits.) An antenna matrix is shown in Figure 4.2
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22 mm

m ’  m ’

m’ m’
Figure 4.2. X-band retro-array antenna matrix

If the spacing is too close (much less than half a wavelength) coupling between antenna 

elements may become significant and corrupt radiation patterns [9]. Also, the area for 

transmission line routing is reduced, which could lead to increased parasitic coupling 

between lines. If the spacing is increased, the total aperture efficiency is poor and the 

interconnecting transmission lines are excessively long which leads to excessive loss. The 

22 mm antenna spacing was chosen to be similar to the spacing used at 2.5 GHz, and is 

equivalent to 0.69 wavelengths at 9.4 GHz. This spacing allowed the feed circuit to fit 

within the target 100 nun square circuit area, so that 9 circuits could be fabricated together, 

but placed constraints on the routing and line widths of interconnecting lines.

In-situ antenna measurements: Two examples each of the five antenna circuits fabricated 

for each laminate were tested. The resonant frequency of a single element within each 

array was measured by connecting a co-axial line to one of the outer antenna feeds. The 

measured antenna resonant frequencies are summarised in Table 4.4
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patch length L 

(mm)

Taconic TLC Rogers R03000

predicted centre 

frequency (GHz)

measured centre 

frequency (GHz)

predicted centre 

frequency (GHz)

measured centre 

frequency (GHz)

8.55 9.40 9.57 9.52 9.59
8.77 9.17 9.29 9.28 9.34

Table 4.4 Measured resonant frequency of in-situ patch antenna.

Uncertainties on the validity of the measured frequencies in Table 4.4 includes the mis

match between the 50 Q co-axial lead and 73.8 Q microstrip and the proximity of the 

substrate edge to the outer antenna. For these reasons the measurement of antenna 

bandwidth, which indicated the order of 150 MHz at 10 dB, is likely to be unreliable and a 

greater bandwidth would he expected for retro-array operation. The frequency response of 

the completed transponders is discussed later in the chapter.

Discussion: The extensive antenna prototyping and measurement was carried out partly 

because of the expected difficulty in achieving the desired centre frequency for an 

inherently narrowband antenna, with its known sensitivity to manufacturing tolerances and 

other factors which are difficult to predict such as the effect of neighbouring circuit 

elements and finite ground plane area. Also, unlike a conventional antenna, it is difficult to 

establish the frequency response of a modulated retro-reflector with great accuracy, since it 

has no measurement port for connection to a network analyser. For the latter, the measured 

(modulation spectra) response is dependent on the RF frequency response of the 

modulation circuitry in addition to the frequency response of the individual antenna 

elements. It is also difficult to de-embed the measured frequency response of the device 

from that of the measurement system, since the measured result includes the frequency 

response of the transmit and receive antennas in the measurement system although this is 

ideally flat over the frequency range of interest. In contrast, an antenna may be connected
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directly to a network analyser to measure its insertion loss and hence radiation bandwidth. 

For these reasons, considerable effort was put into a thorough characterisation of the 

radiating elements in the retro-array and the discrepancies between different stages of 

simulation and prototyping.

4.2.3 Feed lines

As discussed in chapter 3, the interconnecting feed line width and hence impedance is 

arbitrary, but limited in practice by the available area on the printed circuit. To a first 

order, track impedance is determined by width and does not scale with frequency. 

However, the dimensions of the patch antennas, their spacing, and the switch dimensions 

do scale with frequency, and the track width of around 2 mm required for 50 Q line 

becomes inconvenient as the other circuit dimensions reduce. Conventionally, thinner 

substrates are used for feedlines at increasing frequencies, but this would yield a lesser 

antenna operating bandwidth and hence even greater sensitivity to tolerances and so this 

route was not preferred. A thinner substrate for the feedline and switching circuit compared 

to the antenna circuit would require aperture coupling between dissimilar substrates and 

also the procurement of an additional substrate type. While it is suggested that this 

approach is worth investigating in future work, it was not pursued at this stage due to 

fabrication constraints (it was preferred to photo-etch groups of antenna circuits and feed 

circuits from a single sheet of laminate).

For similar reasons a higher dielectric constant for the feed circuit was rejected. Also, 

while line widths would be reduced in this case, the resulting increase in the electrical 

length of interconnecting lines between antenna pairs, due to the reduced line wavelength, 

would lead to greater loss.

A narrower feed line was the preferred approach to relax the spacing between congested

interconnecting lines. However, excessively narrow microstrip lines exhibit greater loss,

which is detrimental. A study of line loss as a function of width was conducted in some 
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detail and is detailed in the Appendices. A line width of 1 mm was selected as a good 

compromise to allow for transmission line routing without excessive line loss. For this 

width, the line impedance is 73.8 Q and the wavelength 20.9 mm at 9.4 GHz \

The principle of unequal feed line lengths discussed in chapter 3 was again used. The line 

lengths are shown in Table 4.5. for the antenna pairs, which are numbered according to the 

matrix shown in Figure 4.3. Table 4.5 also includes the difference in length of each line 

from that of the longest lines, as an integer number of wavelengths. The completed feed 

line layouts are shown in Figure 4.7

antenna pair line length (mm) difference from line 1-16 (A,tl)
1-16 221.8 0
2-15 221.8 0
3-14 200.9 1
4-13 180.0 2
5-12 96.4 6
6-11 54.6 8
7-10 159.1 3
8-9 138.2 4

Table 4.5 Lengths of interconnecting transmission lines.

 ̂A design frequency of 9.4 GHz is quoted for the switch and transmission line components since 
these are sufficiently wide band in frequency response that the additional precision used for the 
antenna centre frequency, i.e. 9.39 GHz, is unnecessary.
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1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Figure 4.3 Numbering convention for antenna elements referred to in Table 4.5

4.2.4 Switches.

Phase modulation, being more efficient than amplitude modulation, was the preferred 

mechanism. To this end, silicon beam lead PIN diodes were used with a similar microstrip 

switch to that developed at 2.5 GHz. To achieve the required path difference of a half 

wavelength (10.45 mm in the 1 mm width microstrip), the two path lengths chosen were 

5.0 mm and 15.45 mm. Switch bias networks were re-designed for a centre frequency of

9.4 GHz using the conventional approach of using alternate high and low impedance 

quarter wave lines to achieve a low pass response, with the stop band centred at 9.4 GHz. 

A Momentum simulation of a 3 element bias filter indicated a stop band rejection between 

25 dB at 9.0 GHz and 35 dB at 10.0 GHz.

A simplified bias network reduced the number of bias filters by a factor of 2 compared to 

the method used previously at 2.5 GHz. The new switch microstrip layout is shown in 

Figure 4.4. A control voltage may be applied to a single terminal and the diodes are biased 

in series pairs, in contrast to the parallel paired method used for the 2.5 GHz prototypes. In 

the latter case, the bias current in the individual diodes is not controlled, while series paired 

bias is preferred since it assures the same bias current in each diode.
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1.0 mm 5.0 mm

(a) microstrip layout

port 1

path 1

bias high 
=path 2 on

path 2 
+180°

(b)diode configuration

port 2

bias high 
=path 1 on

Figure 4.4 9.4 GHz microstrip phase switch 

The switch was incorporated with the feed line layout to yield the final mask layout.

Amplitude modulation

A further variant substituted the phase switch for a straight through line, with a single gap 

in which a single diode could be placed to achieve a crude amplitude modulation. With this 

arrangement, a modulation index of unity cannot be achieved since the switch can never be 

totally absorptive. While when "on" the switch is in the low loss state, in other states the 

switch is reflective. This is because the impedance presented to the transmission line is the 

series combination of the diode and line impedances, as shown in Figure 4.5
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ZO zo

Figure 4.5 Series impedance in transmission line 

Where the series impedance z is normalised to the line impedance ZO, the 's' parameters of 

the switch are given by;

iSii =
2 + z

and iS2i =
2 + z

(4.1)

(4.2)

While the fractional loss in the load z is given by :

loss = 1 — — 5*21 (4.3)

The loss reaches its maximum value of Vi when the normalised impedance z is 2, as shown 

in Figure 4.6

loss
0 .5

0 .4

0.3

0.2

0 .1

2 4 6 8 10
Figure 4.6 Loss in single diode series switch as function of switch impedance

Thus we may expect an amplitude modulation index of up to Vi to be attainable when the 

diode bias current is switched to a low state and the diode resistance, represented by z, is 2
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Zo or 148 Q. This assumes that in the high current "on" state the loss is negligible. 

However, this neglects the effect of the phase of the reflected energy from the switch. 

Considering all the switches, the phase of the reflected energy from each switch may add 

destructively or constructively in the reflected phase front depending on the location of the 

switch (the mis-match) in the transmission line. Since this location was chosen arbitrarily 

to suit the physical location of components on the printed circuit, these phase effects 

should be considered random. For these reasons, the amplitude modulation achieved by 

this simplistic approach is unlikely to be very efficient, and the phase modulation method 

is much preferred. However, the single diode amplitude modulation requires one quarter of 

the number of diodes and hence one quarter of the power consumption, and these 

advantages should be weighed against the poor modulation index. Mask sets for both cases 

were printed and the circuits fabricated .

4.2.5 Diodes.

Two batches of diodes were procured. Firstly, a sample of 20 obsolete Alpha DSG 6474- 

006 silicon beam lead PINs were supplied free of charge by Alpha Industries. These would 

be insufficient in quantity for a phase modulated device, which would require 32 diodes (4 

per switch) and so were used to build up an amplitude modulated transponder.

Secondly, a batch of 50 MA/COM MA4P461 silicon beam lead PINs were procured at a 

cost of £ 6.90 per diode. These were later built up into a phase modulated transponder. The 

diode specifications are summarised in Table 4.6.

diode Alpha DSG 6474-006 MA/COM MA4P461
suggested frequency range (GHz) 1 -18 1 -8
insertion loss at 20 mA (dB) 0.5 (at 10 GHz) 0.3 (at unspecified GHz)
isolation 20 12
switching time (ns) 25 15

Table 4.6 Summary of diode specifications.
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Specifications for switching PIN diodes generally exhibit trade-offs in terms of isolation 

and insertion loss. A diode which offers high isolation when unbiased or reverse biased 

will tend to exhibit poor insertion loss when forward biased. Typically, manufacturers offer 

variants of a diode family ranging from good isolation with poor insertion loss, to poor 

isolation with good insertion loss. Also, higher bias currents lead to reduced insertion loss, 

with the practical limit often not reached until about 50 mA or even 100 mA forward bias 

current. The DC power consumption associated with these currents leads the designer of a 

passive transponder to seek the lowest insertion loss possible for the lowest forward bias. 

Isolation is sought to achieve good depth of modulation in the switching circuits, but 

beyond a certain value (say 20 dB), further gains in isolation reap no practical benefit. 

GaAs diodes present an alternative from silicon, and typically offer higher switching 

speeds due to the increased carrier mobility associated with the former semiconductor 

material, but with higher bias voltages and power consumption.

It should be stressed that the diodes listed were those which were available from 

manufacturers at the time (since a number of manufacturers/suppliers proved to be 

somewhat intractable), and are in no way optimum for the application. In particular, the 

MA/COM diode would be operated about 1.4 GHz beyond its suggested operating range. 

In practice, the weakness of this diode when tested proved to be poor isolation (around 6 

dB) at 9.4 GHz, although this value would be doubled for the series diode pair in the phase 

switch.

Reflective loss in imperfect phase switch.

The finite isolation of the switching diodes leads to some leakage of the input signal

through the branch of the switch which is ideally infinitely isolated. This "leakage" power

adds in anti-phase (due to the 180° path length difference) at the switch output. The

reflective loss due to this destructive interference can be estimated as a function of the

diode voltage insertion loss I, which is 0 for perfect isolation and 1 for perfect 
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transmission. A formai circuit analysis is somewhat beyond our scope, as it would require 

knowledge of the (complex) voltage scattering parameters of the diodes in both forward 

and reverse biased states. However, an estimate can be presented which is valid for small 

values of I. Here, we assume the "on" diodes are perfect and estimate the voltage 

attenuation for the "leaky" path as Ÿ  (i.e. for two diodes). This leads to a relative voltage

Vl-I^ for the "on" path and a reflected voltage, due to the destructive interference

between the two paths, of +1  ̂ relative to the input. For a -10 dB diode insertion

loss this leads to a reflection coefficient of -19.5 dB, which represents a trivial loss due to 

reflection at the imperfect switch. However, this reduces to -11 dB (i.e. 8 % reflection) for 

a diode insertion loss of -6 dB.

In-situ diode performance.

In later measurements of the completed phase-modulated transponder, the diode 

performance at minimal bias currents proved to be very encouraging - the power in the 

modulation products could be observed as a function of total diode current, which could be 

reduced to about 100 |iA (through the use of a variable in-line resistor in the bias supply) 

before the sideband power dropped off significantly. This represents about 12 jxA per 

switch (containing 2 in-series diodes) and from the approximately 1.8 V supply current 

allows a good estimate of total diode power consumption of 0.18 mW.

Switch assembly.

Being very small (100 micron contacts) and delicate, soldering by hand proved to be 

impractical with the facilities available. While soldering of components of smaller 

dimensions, such as chip diodes (i.e. unpackaged and without leads) for sub-millimetre 

wave devices is routinely performed this requires a dedicated laboratory equipped with 

microscopes and purpose-built heat jigs. The process usually involves hand application of
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flux and finely powdered indium-based solder, followed by a short, pulsed application of 

heat. The technique is best performed with metal based components such as waveguide, or 

crystalline substrates such as quartz or alumina, and is not well suited to PTFE based 

laminates.

As an alternative, a bonding process was developed to secure the diodes to the copper 

conductor of the microstrip, based on baking silver loaded epoxy. This involved applying 

the epoxy to the copper conductor by hand whilst viewed through a microscope, and 

similarly bringing the diode to the contact by hand. The tools used were tweezers and 

finely cut-down wooden cotton-bud sticks. The heat was applied by placing the circuit in 

an electric fan oven.

A number of epoxies were tested in an attempt to minimise contact ohmic resistance. 

Initially, some very poor results were obtained. It was found that some batches of epoxy 

exhibited surprisingly poor characteristics and were very sensitive to mixing, baking and 

very probably their history of storage. The best results were obtained with CircuitWorks 

epoxy, samples of which exhibited no measurable ohmic resistance if mixed sufficient 

rigorously (5 minutes by hand) and baked at 120° C for 30 minutes.
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Figure 4.7 X-band retro-array feed networks.

89



4.2.6 Diode Driver Interface.

The bias network, as described above, requires the bias ports to be alternately high and low 

voltage with respect to each other, to turn on one of the RF paths. The configuration might 

well be described as a "push-pull" mechanism. To buffer the diodes to the modulation 

source, while building in some adjustability to the drive voltage, CMOS inverters were 

found to be a convenient, clean buffering mechanism. The inverter chosen was the 

74HC04. The circuit adopted is shown in Figure 4.8

Vcc=+2 V diode
phase
switdh'

input
signal

1 ~ ~Vcc=+2 V

R_variable 
~  120 0

Figure 4.8 CMOS diode interface

CMOS interface principle of operation: When the input signal is low, the output from the

inverter a is high, while the output from the inverter pair b,c is low, and diode pair 1 are

forward biased and diode pair 2 are reverse biased. Conversely, when the input signal is

high, the situation is reversed. The advantages of this arrangement compared to an op-amp

based interface are that the diode currents are fixed by the inverter supply voltage Vcc, and

the variable resistor which is in series with the diode pairs, and are not dependent on the

input signal voltage. The circuit is insensitive to the input signal voltage as long as it

exceeds V2 Vcc in its high state, at which voltage the inverters switch states. The diode

pairs require a voltage drop of around 1.8 V to be adequately forward biased, the

remainder of the inverter output voltage being dropped across the resistor. The current is

most conveniently controlled, or reduced, by varying the resistance value, and the current

may be monitored by probing the voltage drop across the resistor.
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4.2.7 Final Assembly.

A phase modulated transponder was completed by joining the two aperture coupled 

circuits boards together. Markers at the circuit edges aided alignment. The transponder 

antenna array used had 8.77 mm length patch antennas on the Taconic substrate, and the 

completed feed and modulation circuit using MACOM diodes was also on the Taconic 

substrate. In addition, an amplitude modulated circuit using Alpha diodes on a Taconic 

substrate was completed with a Rogers antenna array also having 8.77 mm length patches. 

In both cases the circuits were initially joined with adhesive tape at the circuit edges to 

facilitate a non-pemianent assembly, so that other circuit combinations could be used. For 

protection from physical damage aluminium housings were fabricated to contain the 

transponders, which are illustrated in Figure 4.9

(a) Completed AM  feed circuit (b) Housed PM transponder, show ing antenna array

Figure 4.9 Completed transponders.
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4.3 Transponder Measurements and Testing

In a similar study to that undertaken at 2.5 GHz, the transponder characteristics in terms of 

modulation rate and angular response were studied. The AM transponder performed 

adequately and some experimental results for modulation spectra and angular response etc. 

were recorded. However, the PM transponder tended to exhibit superior performance and 

the remainder of the chapter will concentrate on measurements with this device.

4.3.1 Phase Modulation Spectra.

Typical modulation spectra for the 16-eIement X-band phase modulated transponder are 

presented in Figure 4.10 where the reflected spectrum from the target was captured on a 

spectrum analyser co-located at the transmitter in the arrangement shown in Figure 2.9. 

Separate pyramidal horn antennas were used for transmit and receive functions. Since the 

measurements were performed in an indoor, non-anechoic environment there is always a 

strong return at the carrier frequency. The carrier frequency here is 9.2 GHz and the 

modulation signal is a 1 MHz square wave.

Power (dBm)
- 4 0  

- 5 0  

- 6 0  

- 7 0

- 8 0  I \ I I .1

9195 9200 9205 9210 f (MHz)

Figure 4.10 Modulation products on Foresight.

Figure 4.10 shows the on-boresight response, while Figure 4.11 shows two further cases 

where the transponder is rotated with respect to the incident RF carrier in the E-plane of 

the patch antenna elements.

92



p (dBm)
P

- 5 5

(dBm)

- 4 0 -60
- 5 0 - 6 5

- 6 0 - 7 0

- 7 0
- 7 5

-80 1
- 8 0

9195 9200 9205 9210
f  ( M H z

919 5 9200 9205 9210 f  (MHz:

(i) 45° (ii) 80°
Figure 4.11 Modulation spectra for transponder E-plane rotation

Comparing Figure 4.10 and Figure 4.11 we see a drop-off in the power in the modulation 

products of about 5 dB over a 45° rotation angle and about 13 dB over an 80° rotation 

angle from boresight. The full E-plane angular response is shown in Figure 4.13. Further 

modulation spectra are presented in the appendices.

4.3.2 RCS Calibration Method.

To estimate the efficiency of the PM transponder, a conventional 16 element printed array 

antenna was fabricated to act as a reference. The reference antenna used the same 16 

element patch antenna array on the same substrate, while a corporate feed structure was 

designed along classic quarter-wave impedance matching principles [10]. The layout and 

completed antenna are pictured in Figure 4.12
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(a) circuit layout (b) photograph of antenna

Figure 4.12 X-band 16 element array antenna

The RCS of the reference antemia was phase modulated by connecting in series with a 

purpose built phase shifter to which the modulation signal was applied. This phase switch 

comprised a single diode in series with an open circuit quarter wave length of line. The 

phase of the reflected signal is hence switched through 180° on switching the diode 

between conducting and open circuit states. The power of the reflected modulation 

products was studied for both the transponder and the reference antenna. Figure 4.13 

shows the reflected power for the E-plane angular response of both structures at an 

illuminating RF frequency of 9.2 GHz and a modulation frequency of 1 MHz. The angular 

response is expected - the retro-array shows strong modulation products over 180° of 

illumination angle while the reference antenna maintains an equivalent RCS over only 26°. 

The power in the modulation products is directly proportional to the RCS of both devices. 

Since the peak modulation power of the modulated retro-array was 1.5 dB lower than the 

antenna array, this figure represents the additional loss in the former structure, which is 

chiefly attributable to the additional transmission line lengths and also variations in 

construction such as the coupling apertures.
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Figure 4,13 RCS calibration results -  reflected power in sideband.

Directivity of a two dimensional array.

The gain of the reference antenna may be estimated by calculation. From a consideration 

of the two dimensional array factor, the theoretical array directivity may be found by 

integration. The normalised two dimensional array factor [14] is:

Sin M Mx Sin
1 [ 2 J 1 I ^ J

M Sin( N
SinV 2 ; U J

where Ux = k.ax-SinO.Cos^ -t- Sc 

and Uy = k.aySmûSm(p +Sy

(4.4)

(4.5)

(4.6)

27Tk is the wave number —  and ax and ay are the element spacings along the x and y axes
À

respectively. Similarly, 0% and 5y are the relative phase shifts between elements, but these 

terms are zero for the uniform array under consideration. M and N are the number of 

elements along x and y respectively. 0, (|) are the spherical polar coordinates, referenced to
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the array broadside direction which is the antenna boresight in this case. For the square 4 x 

4 array, equ.(4.4) becomes

Sin Ar.Ux Sin
 ̂AUy^

1 1 2 j I ^ Jj  (  (4.7)
Sin u

\  ^  J
Sin

Uy

and ÜX and ay are both 22 mm, which is also 0.68 X at 9.4 GHz. Since directivity is 

rigorously defined as:

= (4.8)
Prad

where Prad is the total power radiated over all space:

K In
Prad= J \P(e,f).SineM.d(l) (4.9)

^=0 ^=0

we can find the directivity of a 16 element array of isotropes by solving equs. (4.8) and 

(4.9) and substituting the for power:

P{0,<l>) = M N F ( 0 ,^ f  (4.10)

(since (4.6) is the normalised array factor for electric field, the term M N is included to

yield the correct scaling for power. Thus has a maximum of 1, while P^ has a maximum

of M i.e. the total number of elements).

For an array which is delineated by a ground plane, we are concerned with radiation into 

half space only. Hence we may modify the limits of integration in equ. (4.9)

JL 7L

Prad_half_space = 4 J JP(P, ̂ ).Sin P. (4.11)
P=0^=0

In equ.(4.11), the limits of integration define an octant, and we multiply by 4 to find the 

power radiated into a hemisphere. This abbreviated method is valid because we have 

symmetry about the 0=0 axis (i.e. antenna boresight).

A numerical solution for equ.(4.11) is 3.12, hence the scaling for directivity in equ. (4.8) is 

96



—  = 4.03 (4.12)
Prad

Hence the directivity of a 4 x 4 array of half-omni antennas, i.e. radiating into a hemisphere 

with a spacing of 0.68 X, is 4.03 x 16 = 64.5 which is 18.1 dB.

Directivity of array of patch antennas.

Thus far we have considered only semi-omni elements, while the directivity of the square 

patch antenna element will in practice modify the radiation pattern and hence directivity of 

the array. This pattern has been introduced in chapter 3, and is rather more directive than 

the theoretical semi-omni pattern. The necessary tools to calculate the patch antenna's 

directivity have already been introduced: equs. (3.5) and (3.6) define the electric fields in 

polar co-ordinates, and equs. (4.8) and (4.9) define the relationship between the power 

pattern and the directivity. It remains only to state that the power is given by:

+  Ec!?' (4.13)

since the electric field components are orthogonal. We can also substitute for the patch 

length and width in equs. (3.5) and (3.6):

a= b = (4.14)
24er

which is a good approximation for a resonant patch which will yield a function which is 

independent of a and b and dependent only on substrate height, free space wavelength and 

dielectric constant. While a further simplification could be applied by fixing height as a 

small fraction of wavelength, the actual parameters h = 0.79 mm and lo = 0.032 m have 

been used to evaluate (4.8) for boresight (i.e. 0=0 and (|)=0) as a function of dielectric 

constant £r. This is shown in Figure 4.14 which shows good agreement with [15].
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Figure 4.14 Theoretical directivity of resonant square patch antenna as a funetion of 
dielectric constant, {h = 0.79 mm, ?io = 0.032 m)

We can see from Figure 4.14 that for the laminate of interest (8r = 3.0) the theoretical 

directivity is 6.2 dB. It is also interesting to observe that Figure 4.14 shows that directivity 

is inversely proportional to dielectric constant, which is consistent with a resonant square 

patch having a larger length and hence larger aperture as dielectrie constant diminishes. 

For increasing dielectric constant, we would expect the directivity to tend toward 3 dB as 

the aperture becomes small (recall that the ground plane implies a directivity of at least 3 

dB).

We ean now combine the theoretical array directivity with that of the patch element, but 

taking care not to add the 3 dB gain implied by the ground plane twice. Therefore, we take 

the full-space directivity of the array which is half that derived from (4.12) i.e. 32.25 or 

15.1 dB and then add the directivity of the element (whieh has a ground plane) of 6.2 dB, 

yielding 21.3 dB.

The measured pattern for RCS for the referenee array antenna shown in Figure 4.13 

follows the theoretical pattern very closely, from whieh we can imply that the 

measurement corroborates the theoretical figure for directivity. This is because direetivity
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can be in many cases be estimated quite aecurately from the half power beamwidths of a 

radiation pattern [16] by:

Dmax = ----—---- (4.14)
Û3dB0dB

where 0 3 dB and (j)3dB are the two orthogonal beamwidths. For the 16 element array antenna 

these beamwidths are, from symmetry, the same and equal 0.3364 rad. Thus equ.(4.14) 

gives a figure of 20.5 dB for the directivity using this approximation.

Gain of reference antenna.

Means of deriving a figure for the reference antenna directivity have been explored in 

some detail, so that an estimate of gain may follow. A direct measurement of gain can 

often be difficult to achieve with confidence. Measurements using an anechoic chamber 

(which was not available) and standard antennas derive the gain of an antenna under test 

directly, but are still subject to calibration procedures. Thus an alternative approach has 

been developed:

It remains to estimate the losses L in the reference antenna so that gain can be derived 

sinee:

G{dB)  =  D { d B ) - L { d B )  (4.15)

Thus D will put an upper bound on G. Measured gain for a single patch antenna is typically 

the order of 4 dB and commercial specifications typically quote 4 to 7 dB depending on 

substrate (e.g. "air dielectric" is often used, which implies a higher directivity and reduced 

loss). We may thus estimate an inherent loss in eaeh patch of 2.2 dB. Additional microstrip 

feed loss amounts to about 1.1 dB (about 150 mm at 0.008 dB/mm - see Appendices and 

chapter 5 for diseussion of microstrip loss) while a residual uncertainty of about 1 dB 

would be implied from the combined effects of transmission line discontinuities and
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connectors. (This error estimate is manifested as ± 2 dB in the estimate for RCS whieh is 

proportional to the square of gain.) The mean of the two above estimates for array 

directivity are 20.9 dB, from whieh at least 3.3 dB should be subtracted for loss effects, 

yielding an estimate for gain of 17.6 dB for the reference antenna. Since the retro- 

reflector's peak RCS is 1.5 dB below the referenee antenna RCS, the former is calculated 

from equs (2.2) and (2.3) to be 0.19 m  ̂or -7.2 ± 2 dB m  ̂ . (The modulator loss has not 

been included here, being approximately common to both structures). The figures are 

summarised in Table 4.7 along with some additional remarks to elarify the method.

D (dBi) theory lossless RCS (m̂ ) Loss (dB) G (dBi) RCS (m )̂

retro-array 20.9 1.23 16.8 ** 0.19*
antenna 20.9 1.23 3.3 17.6 0.27

Table 4.7 Summary of antenna and retro-array aperture gain, directivity, loss and RCS.

* The retro-array RCS is derived from the observation that the modulation products are 1.5 dB
below the reference antenna in the measurement of Figure 4.13.

** The retro-array gain cannot be measured directly (it is not an antenna) but can be derived from
RCS

*** The retro-array aperture loss is calculated as the difference between the theoretical directivity 
and the gain derived from the RCS. It differs from the antenna loss by half the dB value of the 
observed difference in RCS (i.e. Vi x 1.5 dB) since RCS «= Ĝ .

4.3.3 Modulation Rates.

An encouraging characteristic of the completed X-band PM transponder was the increase 

in modulation rates - rates up to 10 MHz were demonstrated with a 3 dB efficiency roll-off 

compared to 1 MHz. Beyond 10 MHz, the modulation efficiency, measured as the power in 

the first upper sideband of the BPSK modulation spectrum, dropped off more sharply. The 

10 MHz rate represented a significant improvement compared to the earlier work at a 2.5 

GHz carrier frequency. The proposed telemetry applications now seemed much more fully 

demonstrated in view of the data rates which could be achieved, subject to link budget 

limits.
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4.4 Communications Link Demonstrator at 5 M bits /s.

To further explore the potential offered by the available transponder modulation rates, a 

demonstration of a communications link was sought. This might be representative of a 

telemetry application or a local area network communications application. The objective 

was to take a convenient bitstream, apply it to the modulation circuitry of an X-band 

transponder, and have the bitstream recovered at another location by means of a transceiver 

with a continuous wave (CW) source illuminating the transponder. A very convenient 

source was found to be the bitstream output of a domestic audio CD player. This bitstream 

may be converted to audio by use of a domestic audio DAC, which are often marketed as 

an "upgrade" to replace the DAC internal to the CD player. The system which was 

configured is illustrated in Figure 4.15

couplerCW source 
9.2 GHz

transmit
antenna

receive
antenna

LNA 
9.2 GHz

mixer

bitstream
IF amplifier 
5 MHzV

DAG
audio

transponder bitstream

CD player

Figure 4.15. Communications link demonstrator using compact disc bitstream.
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The bitstream output of the CD player is shown in Figure 4.16. The bitstream is pulse 

width modulated - the 200 ns minimum pulse width corresponding to a 5 Mbit /s data rate.

Volts 

0.25 1̂  Ml
200 ns

-0.25

_t (lis)
10

Figure 4.16. CD bitstream

The system, as illustrated in Figure 4.15 is clearly not optimum. An RF bandpass filter is 

absent, which will tend to contribute to noise and interference, and as the relative phase 

between the LO and RF signals at the mixer are not controlled they are subject to the path 

length to the transponder. The received IF signal thus varies between a maximum and a 

zero as the transponder distance is varied by a quarter free space wavelength or about 8 

mm. This characteristic would be unsuitable for most practical applications where some 

relative movement between the interrogator and transponder is expected - in this case the 

single mixer architecture would be replaced by a mixer each in I and Q channel in the 

manner of the coherent transponding system of [13].

The IF amplifier was built using a NE592 video op. amp. (gain-bandwidth product 120 

MHz) so as to provide the considerable gain required to yield the 0.5 V peak-to-peak 

amplitude required at the DAC input.
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Available transmit power was approximately 15 dBm. The link functioned satisfactorily 

over the 4 m. distance available in the laboratory, and also with transponder orientations up 

to about 70 degrees. Although a measurement of bit error rate was not performed, the 

audio quality was (at least subjectively) indistinguishable from a hard-wired link. This is to 

be expected of a digital link with the powerful forward error correction used in CD, and 

when the link did fail through path length errors or transponder obscuration, it tended to 

fail suddenly i.e. without graceful degradation.
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4.4 Conclusions.

The scaling in frequency from 2,5 GHz to around 9.4 GHz involved a re-appraisal of the 

microstrip techniques investigated in some detail in chapter 3. For the convenience of 

fabricating many printed circuits concurrently from a single laminate sheet, the same 

substrate was used for both antenna and feed line circuits. While the chosen laminate 

thieknesses (either 0.76 or 0.79 nun) are favourable for printed antenna applications at 9.4 

GHz, the congestion of the feed line circuit necessitated a low feed line track width. The 

effect on impedance and in particular loss was studied in some detail to derive a 

compromise between inter-line spacing and loss. The unequal-line length approach, 

previously pioneered at 2.5 GHz, was again adopted with success.

An approximate method for calibrating the radar cross section of the transponder was 

developed, and indicated that the losses in the device were not excessively severe. The 

angular response was similar to the theoretical case, and exhibited the characteristic wide- 

angle response of the retro-reflector, particularly on exploiting the antenna E-plane 

radiation pattern. The calibration method used a reference antenna array for comparison, 

whose aperture was the same as that of the retro-directive array, and whose RCS was also 

phase modulated. The reference antenna gain was not measured direetly, since this would 

require a calibrated anechoic facility, but its directivity was derived from theory and its 

measured beamwidths corroborated the theoretical result. Estimates for loss in the 

reference antenna then lead to an estimate for gain in both the antenna and reflector 

structures. From these methods, RCS has been derived with an uncertainty of around 2 dB. 

The error is not very significant in the context of the very large dynamic ranges associated 

with communications links.
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One of the most encouraging results from the work was the demonstration of modulation 

rates beyond 10 MHz. The rates are strongly dependent on the switching speed of the 

diodes. There was little choice of available switching diodes and it is very likely that better 

performance could be obtained in this area. Switch fabrication was by hand and involved 

the use of baked conductive silver epoxy. While phase modulation is preferred, a crude 

amplitude modulation is more easy to obtain, involving use of a single diode in series with 

the transmission line. The modulation index in the latter case cannot be optimum, but the 

number of semi-conductor components and hence power consumption is reduced by a 

factor of 4.

The efficiency and frequency response of the diode driver interface has not been modelled 

in detail and the switching circuitry is unlikely to be optimum in this case. It may be 

improved upon by further work and attention to detail in this area. However, the 10 MHz 

rate is more than sufficient for a wide range of applications. The establishment of a high 

data rate link by transmission of only a very narrowband carrier is a fascinating property of 

the technique in light of the legislative environment and cost of bandwidth, although the 

legislative implications remain unexplored.

A communications link using the bitstream output of a domestic CD player was 

constmcted. This acted as an interesting demonstration of a 5 M bit/s link over a 4 m. 

distance using 15 dBm of transmit power. Since any number of interrogators may 

simultaneously address the transponder, if placed within its range of spatial response, such 

a link could serve as a point-to-multi-point link for local broadcast type applications.
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Chapter 5
Modelling the Characteristics of Large Retro-Arrays

In this chapter, general models for the characteristics of larger retro-arrays will be 

developed. By "large", an increase in size considerably beyond the 16 element prototypes 

discussed in the preceding chapters is inferred. As more elements are added to the array, 

the losses in the transmission lines become more significant and, for the unequal-line- 

length array, an increasing bandwidth limitation is expected. These effects may be 

estimated by developing general models for transmission line lengths. The implications of 

choosing different transmission line media will be examined.

5.1 Losses in Antennas and in Retro-arrays.

The properties of some prototype modulated retro-arrays operating at 2.5 GHz and at 

approximately 9 GHz have been considered. In the latter case the reflectivity of the 16 

element, printed (microstrip) retro-reflector compared favourably with that of a 

conventional uniform antenna array, and it was possible to derive a figure for the 

efficiency of each. When considering the efficiency of increasingly large arrays, the losses 

in the interconnecting lines will clearly have an increasingly detrimental effect, which will 

become much larger than the other (fixed) losses associated with the modulation circuits 

and antennas. For example, a reasonably efficient modulator might only give rise to 1 dB 

or so of loss. The loss in the radiating elements should be similarly small, although it has 

been estimated that about 2 dB is realistic for printed antennas. Where aperture coupled 

microstrip is used, the modelling discussed in chapter 3 showed that a loss of only 0.15 dB 

could be expected at 2.5 GHz although alignment errors might lead to a worse figure. The 

summation of these loss estimates is therefore around 5.3 dB, although the exact value will 

clearly depend on the type of array geometry and materials chosen. The value represents a
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constant term which may be compared with the transmission line loss models which will 

now be presented.

In this section, models will be developed which present estimates of the severity of the 

transmission line losses. This is of importance for many applications where a larger array 

may be required, or where a trade-off between the other parameters of the link budget such 

as transmit power is to be investigated. Hence an estimate for the required "over design" to 

accommodate the effects of loss is important when addressing a given application.

Care must be taken to account for the transmission line loss in the correct physical manner. 

Firstly, consider an antenna of finite efficiency, which may be modelled as a lossless 

antenna in series with a lossy length of transmission line, as shown in Figure 5.1 (a). To 

operate the antenna as a reflector, a short (or open) circuit is connected to the other end of 

the line. The RCS for the system is given by:

a = ^ { G T ] f  (5.1)
A n

which is as equation 2.1, with the efficiency r| of the antenna included. Here, r\ may be 

considered as the efficiency of the transmission line in series with the lossless antenna of 

gain G. In extending this approach to a retro-reflector, care must be taken over the correct 

treatment of T|. This is because in the case of the shorted antenna, both the incident and 

reflected wave suffer attenuation (in the transmission line equivalent circuit), whereas for 

the retro-reflector, the transmission line is routed to another antenna so the incident energy 

is re-radiated after a single trip through the line. The equivalent circuits are shown in 

Figure 5.1.
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Figure 5.1 Losses in antennas and in retro-arrays.

In Figure 5.1 case (a) an antenna array of 2 elements is shown in series with a lossy 

transmission line and short circuit. In case (b) the retro-array has the same antenna gain 

and a single length L of transmission line interconnecting the antenna elements. Thus the 

reflective loss exhibited is half that of case (a). The true equivalent to the retro-array is the 

antenna array which has half the line length, as shown in case (c). Thus the RCS of the 

retro array is given by:

02
Oretro —  Cj^ T] (5.2)

A n

where the efficiency is determined by the loss in the interconnecting lines, and occurs 

once. Thus the gain and efficiency are no longer coupled together in the same composite 

term, as was the case for the reflective antenna. On re-writing RCS in terms of antenna 

element effective area we have:

Oretro — — —  7 /(^  d e l )  (5.3)
À

where «ei = effective area of lossless antenna element.
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If r| = 1 then we may use S «ei =N «ei , where N  is the total number of elements.

However, in general, the efficiency for each inter-connected antenna pair must be 

calculated independently, so

4;r(Jretro = ——

r
NI2  
i

V

(5.4)

where antenna pairs are considered, and Tji is the efficiency of the interconnecting line of

the pair. For this reason, the summation is to — and a term 2 appears inside the
2

parenthesis to account for the antenna pair2 . The square root of Tji is used as the term has 

been taken inside the sununation, which is squared. In effect, the RCS is here derived from 

the summation of the antenna element effective areas which are each weighted by their 

corresponding transmission line loss.

5.1.1 Models for Efficiency of n x n Element Square Retro-arrays.

In order to estimate the efficiency, generalised models for the transmission line lengths are 

presented. A matrix of n x n elements with an inter-element spacing of a - as used in the 

prototypes discussed in chapters 2, 3 and 4 - will be considered. Two general cases will be 

explored for different construction methods: transmission lines which are fabricated on a 

single planar circuit and therefore not allowed to cross, and co-axial lines which occupy 

the three spatial dimensions and are therefore allowed to cross.

5.1.2 Non-crossing Geometry.

In Figure 5.2 the transmission line routing approximates that which minimises the line 

lengths. In practice, radii and diagonals could be used in place of 90° corners to minimise 

the additional line lengths in these regions. Also, electromagnetic coupling effects in 

microstrip and the requirement to adjust lengths for phase conjugation all have a large

influence on the practical routing that is chosen. The essential feature of the diagram is the
110 = = =  ^



relation of the lines to the ports of the antenna matrix, from which a good approximation of 

the minimum lengths may be derived.

Figure 5.2 shows the innermost two concentric antenna groups within a square array of M % 

n antenna elements spaced by a. In this case the transmission lines are a planar type such a 

microstrip, and not allowed to cross. This type of construction is very convenient for 

integrating with both the modulation circuitry and printed antennas, which has been 

discussed in chapters 3 and 4.

Figure 5.2. Non-crossing lines: model for minimum line lengths.

The interconnecting lines as drawn do not represent a practical circuit, but illustrate a 

model for deriving minimum line lengths. Thus, the inner group i=2 has 2 lines of length 

2a, and the next group i=4 has 4 lines of length 6a and 2 lines of length Aa. Using i as a 

counter for each concentric group, there are i lines of length (2i -2 )  a and (/ -2) lines of 

length (2/ -4 )  a where i = 2,4, 6 ...«. Modifying (5.4) we have:
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cr = 4 k
\2

(5.5)

where each antenna pair j  is considered and hence the summation is to half the total 

number of elements. We may further extend this argument from an antenna pair to an 

antenna concentric group /, where the effective area contributed by the group is found by 

weighting with the appropriate transmission line loss, which is linearly related to the line 

length. Hence:

I {2 i-2 )a .lp m  I {2 i-4 )a .lp m

Ai = 2M elJ.no 10 +2M el.(i-2).\10  10 (5.6)

is the effective area contributed by the Vth group after losses have been considered, where 

Ipm is the loss factor in the transmission line, in dB/m. The RCS for the array may now be 

calculated by summing over all concentric groups i , hence:

r  \2

E:::2(7 =
An

(5.7)
\  step2 J

which may be evaluated by selecting a value for Ipm, and the array size n. The former is a 

function of the frequency as well as the transmission line type and material loss, and may 

often be accurately derived or measured for a range of media such as microstrip or 

waveguide.

To illustrate the effect of increasing loss, (5.7) has been evaluated as a function of array 

length L, where n = L/a and a = 0.5 at a 2 GHz carrier frequency, as shown in Figure 5.3.
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Figure 5.3. Maximum RCS at 2 GHz for a = 0.5 X, for non-crossing line routing.

[Aside: We can test the summation terms of (5.6) and (5.7) by considering the case where 

the lines are lossless, i.e. Ipm = 0 dB. In this case the effective areas are summed without 

any weighting for transmission line loss:
Ai = 2.ügi .i + 2.a^i.(/ -  2) = 2.a^/ .(2/ -  2)

For convenience, consider a 6 x 6 element array , which has 3 concentric groups: 

the i = 2 group has area 4 â i

th e / = 4 group has area 12 <3ei

the i = 6 group has area 20 â i

and the summation for the 3 groups gives a total effective area of 36 which is consistent 

with the total number of elements = 36]

In Figure 5.3, the effect of increasing transmission line loss is apparent as a slowing of the

rate of RCS increase with array length. The results are for the minimum line lengths and

hence maximum RCS, and so represent an upper bound on RCS for planar, non-crossing 

transmission lines. These might typically be microstrip, where loss at 2 GHz might be as 

low as 2 dB/m. However, where narrower track widths are used to alleviate circuit 

congestion, losses tend to increase rapidly. The results are useful in showing by how much 

the dimensions of a lossy retro-directive transponder would need to be increased, 

compared to the lossless case, to achieve a given link budget. For example, the RCS
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highlighted in Figure 5.3 is given by a lossless array of length 1 m, which needs to be 

increased to at least 1.2, 1.6 or 3.0 m for line losses respectively of 2,4, or 6 dB/m.

5.1.3 Crossing Geometry.

If transmission lines are allowed to cross, e.g. by using co-axial lines, an alternative 

derivation of minimum line lengths may be found. It is stressed that the line lengths must 

still be adjusted so that they differ by an integer number of wavelengths, so that phase 

conjugation occurs at the design frequency, so these models for minimum lengths represent 

an optimistic case.

(i-1) a

< -
(i-j)a (i-j)a

i=3
(a)

i=5

(b)

Figure 5.4 Transmission line lengths: development of general model.

In a similar approach to the above, where each concentric antenna group i is considered, 

there are 2 lines between the diagonals of length

ldiag = a - \ j2 { i - l f '  (5.8)

and from the symmetry of the square matrix, there are groups i,j of 4 lines of length

lij =  ü 'J{i — i f '  + (/ -  j Ÿ  (5.9)

where j  takes values from 3 to i-1 in steps of 2. Hence the RCS for the co-ax fed array may 

be expressed as
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(5.10) has been evaluated in terms of array length, as shown in Figure 5.5, and compared 

with the results for the non-crossing geometry. (It is interesting to observe that, in contrast 

to 5.7, a nested summation is involved in the computation in 5.10 due to the different form 

of the solutions for line length between the non-crossing and crossing cases for line 

routing.)

RCS (dB m2)

losslessIpm = 2 dB/m5 0

4 0

3 0

Ipm = 4 dB/m20
Ipm = 6 dB/m

10

- 1 0

— non-crossing geometry. — crossing geometry. —•— lossless case 
Figure 5.5. Comparison of array RCS for crossing and non-crossing geometries at 2 GHz

In Figure 5.5 the reduced path lengths in the non-crossing geometry lead to a quantifiable 

increase in array RCS for a given loss factor. In practice, a planar medium such as 

microstrip tends to exhibit more loss than co-axial transmission line, which would lead to a 

further advantage in terms of efficiency in the latter case. There are clearly many variable 

parameters, not least including the RF frequency and the chosen means of construction, 

but the above results are intended as a first estimate of the severity of transmission line loss 

where passive transponders of high RCS are sought.

115



5.1.4 Losses in Practical Transmission Line Media.

In this following sections the transmission line losses applicable at the x-band frequencies 

used by the transponder prototypes will be applied to the general models for array loss 

which have been described above. Here, the rationale is to present estimates of efficiency 

which could be expected on designing and fabricating bigger versions of these prototypes.

5.1.5 Choice of Substrate for Planar Retro-arrays

In the chapter 4 and Appendix 1, a detailed study of loss in microstrip is presented. This 

comprised a combined consideration of theoretical models from the literature, some 

measured data and various simulation techniques. These values have been used to evaluate 

equ.(5.7) for three substrate types (one of which is mythical), where the loss term has been 

converted to dB per mm. as shown in Table 5.1 below for a 1 mm track width and 0.79 mm 

substrate height.

Substrate Loss (dB / nun) at 9.5 GHz

ideal (copper conductor loss only) 0.004
Rogers Duroid 0.005
Taconic TLC 0.008

Table 5.1 Summary of loss terms used to evaluate loss in array from equ.(5.7)

The 22 mm antenna element spacing has been used to evaluate RCS from equ. (5.7) , 

which is shown in Figure 5.6 for the three substrate types. Here, the RCS is plotted as a 

linear function of the number of elements along the side of the array.
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-ideal (conductor loss only) 0.004 

Rogers Duroid 0.005

Taconic TLC 0.0076
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Figure 5.6. Maximum RCS using model for minimum transmission line length, for n x 
n array of patch antennas at 9.4 GHz, spaced at 22 mm.

Discussion o f model for the nx  n array using planar transmission lines.

In the estimate for maximum RCS as shown in Figure 5.6 above, it should be emphasised 

that the results are optimistic, since the line lengths used in a practical circuit would be 

expected to be greater than those suggested by the minimum line length model described in 

section 2 above. Also, semiconductor losses in the modulation circuit and reflective 

microstrip discontinuities will all add to the loss and further degrade the RCS. For larger 

square arrays the difficulties of routing lines between elements in the matrix, and the 

further geometric limitation imposed by coupling apertures, might necessitate a spacing a 

greater than the 22 mm used in the 16 element X-band prototypes, which would lead to 

additional line lengths and corresponding loss. These effects all suggest that all-planar 

circuits for retro-arrays are better suited to smaller arrays. Thus applications which require 

links over short distances and very low mass and low power transponders, such as may be 

worn by a person or used in a local indoor network, are best addressed using all-planar 

circuits.

5.1.6 Choice of Coaxial Line.

The loss term Ipm will now be considered for coaxial transmission line. Figure 5.7 shows

typical loss curves for various co-ax types, as a function of frequency. For RG-405 the loss

at 9 GHz is about 2.13 dB per m, which compares favourably with the author's
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measurements of a variant of this product - Suhner Sucoform - which showed 1.8 dB per

m.

loss (dB/m)
RG-178

RG -174,188

RG-187

RG-58

RG-180,195,405 

RG-55,223

f(GHz)10

Figure 5.7 Loss in various co-axial lines (After [1] )

We may augment this data with theoretical models for loss in co-axial lines. From [1] an 

expression for the attenuation constant for co-axial line is:

1a = — 
2

Rs
— I— ^corjs CLll)

where the surface resistance of the conductor, R., is

Rs
\(OjH
2cr

(5.12)

s" is the imaginary part of the dielectric's permittivity. (This term gives rise to loss in the

£
dielectric medium. We recall that this is often specified by the loss tangent: tanS = —

£

where s' is the real part of the permittivity.)

Also, the intrinsic impedance in the dielectric is:

7 — (5.13)
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and a and b are the inner and outer conductor diameters as shown in Figure 5.8

8=£’+8

Figure 5.8. Co-ax transmission line cross-section

Values for conductivity a  tend to not vary greatly between commonly used metals, as 

shown in table 5.2

Material Conductivity (S/m) at 20° C
Aluminium 3.186 X 10’
Chromium 3.846 X 10’
Copper 5.813 X 10’
Gold 4.098 X lO’
Silver 6.173 X 10’

Table 5.2. Conductivities for commonly used metals

A further term which accounts for conductor surface roughness should be added, since this 

tends to increase loss quite significantly. After [2], a quasi-empirical formula for 

attenuation constant for a co-axial line with rough conducting surfaces is:

a  = a 1 H—  arc tan 
71

(5.14)

where A is the r.m.s. surface roughness and ôs is the skin depth in the conductor:

& =
CO{IG

C5 15)

We may now evaluate (5.14) for a typical 50 Q co-axial line with copper conductor. For a 

PTFE dielectric, we use £r = 2.1 and tan ô = 0.0004. Since the line impedance is
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Zo = ^ ln - ^  
2;r "

(5.16)

we may choose a = 0.5 mm and 6 = 1.68 mm to yield a 50 Q line (the dimensions are those 

for RG-405 standard coax.) Figure 5.8 shows the attenuation constant as a function of 

frequency, here expressed in dB/m for various values of surface roughness A.

l o s s  (d B/ m )
A=1 |LLm

A=0

f  (GHz)
105 1 5 20

Figure 5.8. Theoretical loss in co-axial line, as a function of frequency 

5.2 Bandwidth of Unequal-line-length Retro-arrays.

For the classic Van Atta array, the interconnecting transmission lines have equal length. 

Phase conjugation occurs at all frequencies, and there is thus no bandwidth limitation 

implied by the lines themselves (the bandwidth of the radiating elements is the practical 

limitation). However, in this work we are interested in exploring the properties of the 

unequal-line-length retro-array. In this case the line lengths differ by an integer number of 

wavelengths at the design or centre frequency. At other frequencies, a phase shift will exist 

between adjacent radiating elements which is non-zero (strictly, not an integer multiple of 

2 7t) as shown in Figure 5.9.

* The natural units for attenuation constant - the distance over which a field strength decays to 1/e of its 

original value - is Neper/m. To convert to dB/m (a power ratio), we multiply by 8.686.
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Figure 5.9 Phase effects in unequal-line-length retro-array.

Thus, if the array is operated at some other frequency to the centre frequency, interference 

effects will lead to a modified RCS, which is most likely to be reduced although it is not 

necessarily reduced. The effect may be quantified by adapting the above models for line 

length and examining the phase shift produced by each line as a function of wavelength. 

The field at the aperture may be considered as the summation of the field phase at each 

element i:

N

£  = X e x p (7 ^ /)
i= l

(5.17)

For the array with crossing lines, we may re-express the summation in (5.10) in terms of 

element phase, rather than weighting each element for loss (using upper case J  for 

imaginary j, and lower case j  for the iterator in the summation):

a
47V Ogi

E
i= 2
step!

i —1
4.exp(7 (ÿ,)+ X  8.exp(/ (Z)ÿ)

;=3
Step!

(5.18)
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where (|)i is the phase of the field contributed by the elements at the comers of the antenna 

group i. The term is analogous to equ.(5.8) which derives the minimum line length for this 

group. Similarly, (|)ij is the phase of the field contributed by each antenna group ij and is 

analogous to equ.(5.9) for length.

We need to modify the lengths in equ.(5.8) and (5.9) to ensure that the only allowed 

lengths are those which differ from each other by an integer multiple of the transmission 

line wavelength (the adjustment is trivial when calculating loss, but is important for 

ensuring correct phase). This is most conveniently achieved by forcing all line lengths to 

be an integer number of transmission line wavelengths. Thus the modified lengths are the 

minimum lengths rounded up to the nearest integer wavelength;

LdiagLd'= Roundup 

Lif= Roundup

ÂTLO

Lij
ÀTLO

Xtlo (5.19)

Z tlo (5.20)

=  I k  (5.21)

(j)ij = I n  (5.22)

Where the function Roundup yields an integer. Now:
L d'

ÀTL

and

ÀTL 
Also,

;Itlo = —̂ =  (5.23)

where Xo is the design wavelength, and similarly 
À

Atl = - ■ —  (5.24)
^jerejf

Equ.(5.18) can now be evaluated as a function of n, for a fixed spacing a and a chosen 

value of the effective dielectric constant Ereff. Since the solution for crossing lines is being 

here considered, the implied transmission line type is co-axial so it is appropriate to use 

Ereff = 6r = 2.2 (for PTFE dielectric). Figures 5.10 and 5.11 show the absolute value of 

RCS from equ.[5.18] for various values of the number of elements along the array side n 

and where the spacing a is equal to half a wavelength.
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Figure 5.10 noraialised RCS as a function of normalised wavelength for M x M element 
retro-array with crossing lines (w = 4*, 6 and 10)

normalised res

/ ;

\

i:Js
/ 7

\a

L 7 \
\A

0 . 4

n . ?
n=20

1. 0 l .C

n=12

n-16
  —  — , ^

0 . 8 5  0 . 9  0 . 9 5  1 ^  1 . 0 5  1 . 1  1 . 1 5  1 . 2  ;C

Figure 5.11 normalised RCS as a function of normalised wavelength for M x M element 
retro-array with crossing lines. (» = 12, 16 and 20)

In Figures 5.10 and 5.11 the wavelength is normalised to the design wavelength. The trend 

that the bandwidth reduces for increasing n is expected, since a shift in wavelength yields a 

greater net phase shift as transmission line length increases.

* In this formulation, the « = 2 case is a classic Van Atta array: the two interconnecting lines have equal 

length and the array exhibits no wavelength dependency. Thus n = 4 is the smallest array of interest.
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Interestingly, the absolute RCS is always recovered at half the design wavelength, since all 

the transmission lines again yield equal phase. The array thus exhibits harmonics at 

multiples of the design frequency, which we observe as the structure in Figure 5.10 on the 

left hand side. For increasing n, the main lobe becomes naiTOwer. Figure 5.11 shows the 

main lobe for array lengths of 12, 16 and 20 elements. The normalised 3 dB bandwidth is 

shown in Figure 5.12 which has been derived numerically for each value of n.
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Figure 5.12 Fractional 3 dB bandwidth o f n x n  element retro-array with crossing lines,
spacing = % Xq.

5.3 Use of Waveguide for Transmission Lines in Retro-arrays.

Two contrasting construction approaches have thus far been considered in detail i.e. planar 

and coaxial transmission lines. In the former case, microstrip has been assumed to be the 

transmission line medium and this has been the subject of considerable attention, not least 

because many of the prototype modulated retro-arrays reported in preceding chapters were 

fabricated using this medium. Flowever, it is interesting to expand the scope of the work by 

considering alternative transmission line types which might be used. As discussed in 

Chapter 3, micro strip is a very convenient medium from a viewpoint of circuit integration, 

ease of fabrication and cost. However, the loss associated with micro strip presents a 

disadvantage which for many applications may be prohibitive. For larger array structures 

use of coaxial lines is clearly advantageous in terms of aperture efficiency, while being less 

suited to economic production in quantity. Despite these pros and cons, both methods
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present problems when addressing carrier frequencies much higher than those used by the 

prototypes i.e. 2.5 and up to about 9.5 GHz. To successfully exploit higher frequencies, 

component dimensions need to be reduced. This implies reducing substrate heights (for 

microstrip) and conductor diameters (for coaxial line) which carries associated 

requirements of higher manufacturing tolerances such as photo-etching resolution. 

Additionally, we have seen in section 5.1.6 that thinner coaxial lines exhibit higher loss. 

Nevertheless, either technique could reasonably be expected to be practicable for 

frequencies up to around 20 GHz or so, but the effect of dielectric losses would become 

increasingly detrimental.

These considerations bring us to a third possibility for transmission line type, i.e. 

waveguide, which presents the advantage of being an air-filled medium which therefore 

does not exhibit dielectric loss (neglecting the insignificant loss in dry air below about 50 

GHz). The properties of waveguide are well documented, but its use in retro-directive 

arrays has received relatively little attention. The properties of waveguide in the context of 

a transmission line medium for interconnecting antenna pairs will be presented, with 

particular emphasis on attenuation in the intrinsic waveguide, integration with modulation 

and antenna circuits, and fabrication aspects.

In chapter 3 the use of printed circuits for the retro-array fabrication implied an inter

relation of many parameters and properties of the medium. We recall that these included 

the trade-offs between the physical space available, choice of laminate and the associated 

effects of inter-component electromagnetic coupling, impedance matching, transmission 

line loss, antenna properties etc. It is worth approaching a study of waveguide properties in 

a similar fashion i.e. being mindful that a number of trade-offs and inter-relationships are 

likely to be encountered. This is well illustrated in the following section which summarises 

the attenuation mechanisms exhibited by the waveguide medium.
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5.3.1 Losses in Waveguide and its Suitability as a Transmission Line in Retro-arrays.

The attenuation properties of waveguide arise from the ohmic losses suffered by currents 

in the waveguide wall. As is well documented [5], for materials with finite resistivity, these 

currents exist in a region close to the inner surface of the conductor walls, where the 

electric and magnetic field intensities decay exponentially with distance. This gives rise to 

the "skin depth" effect, where the skin depth is the distance at which the fields decay to 1/e 

of their magnitude at the air/conductor interface. The effect in waveguide is illustrated in 

Figure 5.13.

air
E

t J

+ 0
H H

conductor

E„/e

(a) Waveguide cross section, TEio field distribution (b) Skin depth in conductor
Figure 5.13 Waveguide fields and loss mechanism

The attenuation is then also a function of the field and hence current distributions within 

the waveguide, which are also a function of the waveguide mode. For brevity, the study 

will be limited to rectangular, metal, air-filled waveguide propagating the dominant TEio 

mode, since for the purposes of a low-loss transmission line this a commonly used medium 

which is convenient to fabricate.

A derivation of attenuation may be found in [3], from which we summarise that the loss in 

Neper per unit length is:

power lost per unit distance
a

2 power transmitted
(5.25)
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where the lost power is that absorbed in Ohmic losses in the waveguide walls and found by 

the loop integral around the guide cross section of the average Poynting vector into the 

walls. The transmitted power is similarly found by the surface integral of the average 

Poynting vector in the direction of propagation. While [3] leaves the derivation in these 

rather general terms, [4] substitutes the actual H-field distributions and evaluates the 

integrals, which reduces equ. (5.25) to:

a =

b rj 1-

v / y

1 +
2b /<

V /  y
C%26)

For the fundamental (TEio) mode. (Expressions for attenuation of higher order modes may 

be found in [5] ). Here Rg is the surface resistivity:

(5.27)

b and a are the waveguide cross-section dimensions shown in Figure 5.13, fc is the cut-off 

frequency of the mode, r\ is the impedance of free space and |T is the permeability. The 

waveguide is assumed air or vacuum filled. The conductivity of the waveguide wall, o, has 

been discussed in preceding sections and in table 5.2.

Since the attenuation term equ.(5.26) is clearly a function of waveguide cross-section 

dimensions, the choice of waveguide routing and allowable separation will have a direct 

influence on the transmission line loss experienced in a waveguide retro-reflector. Figure 

5.14 shows the loss term for a 50 mm wide rectangular copper waveguide as a function of 

frequency, for different waveguide heights.

127



attenuation (dB/m)
a/b = 10

0 . 2 = 2.95 GHz
0 . 1 75

0 . 15

0 . 1 25
a/b = 5

0 .1
0 . 07 5

0 . 05 a/b = 2
0 . 0 25

(GHz)
2520 30155 10

Figure 5.14 attenuation for copper rectangular waveguide, (a = 50 mm)

From Figure 5.14 it can clearly be seen that reduced height waveguide suffers excessive 

loss compared to standard waveguide (we recall that standard waveguide has a 

widthiheight ratio of 2). Thus, changing the width:height ratio from, for example, 2 to 10 

leads to an increase in the minimum loss by a factor of about 4.5. This has implications for 

the type of layout chosen for a waveguide retro-array. A possible layout is illustrated in 

Figure 5.15 below.

i=2 i=n

□  radiating element

—  ̂ waveguide (H-plane machined into billet)

Figure 5.15 Possible configuration for » x 2 element waveguide retro-array.
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A waveguide fed, square retro-array is likely to be a very cumbersome, indeed impractical 

proposition for more than a few elements (i.e. radiating elements). This is because the 

physical volume of the waveguides would lead to large inter-element spacings, which 

would yield a poor exploitation of the total aperture area.

As an alternative, Figure 5.15 shows a practical configuration for the routing of 

waveguides which are machined into a metal billet. Thus three of the waveguide walls are 

contained within the billet, while the 4* would be formed by a lid which would also 

contain radiating apertures. Here, there are two rows of elements in the array, and n 

columns leading to a total number of element 2n. The plane for the machining could be 

either the E-plane or H-plane, but in the latter case it is the smaller dimension (i.e. 

waveguide height b) which defines the width of the machined trench, and the larger 

dimension (i.e. waveguide width a) which defines the depth of the trench. The machined 

width, b, imposes a limit on the minimum spacing of the waveguides in the congested 

region (labelled dimension t). Unlike microstrip, waveguide is a shielded transmission line 

which can be put in very close proximity with a neighbour without cross-coupling of 

energy. The minimum separation s would in practice be limited by mechanical constraints. 

If we assume that s is an insignificant dimension, the inter-waveguide separation is limited 

by b. It can be seen that greater values of waveguide height b lead to a greater waveguide 

separation hence increased total distance and increased loss. Thus, smaller values of b lead 

to shorter lines and reduced loss. However, in Figure 5.14 it is clear that smaller values of 

b lead to increased loss per unit length. A question which thus arises is: what is the 

optimum value of waveguide height to minimise loss in a retro-array ? Since there are a 

vast number of possible array configurations there will be no single answer to this 

question, but a trend might be expected. To search for such a trend, an approximate model 

for the efficiency of the above n x 2  waveguide-fed array will be presented which takes a 

very similar form to those developed in preceding sections 5.1.2 and 5.1.3 for square (i.e. n 

X n) arrays. In contrast to the forgoing models, where loss per unit length was assumed
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constant for a given transmission line medium, a model for loss in the waveguide-fed array 

must account for the variation in loss with changes to the waveguide dimensions.

Using similar reasoning as in section 5.1.2 above, an approximation for minimum line 

lengths for each group i in Figure 5.15 is:

LU = 2 i s  + ( 2 i - l ) b  (5.28)

L2i = 2 i s  + 2 i b  (5.29)

Here, each group i contains 4 elements, 1 pair of which are joined by a line of minimum 

length Lli, and the other pair by a line of length L2i. The element separation is s (a having 

been used for waveguide height.) The terms in ^ are a consequence of the extra distance 

imposed by the waveguide's physical volume - thus in the congested region labelled t in 

Figure 5.15 the lines are forced to circumnavigate their neighbours with an extra length of 

at least 2 b. Using the same methodology as before, the RCS may be expressed as a 

function of the square of the effective area of the aperture, where this area is derived from 

the sums of the paired elemental effective areas (flei) weighted by the loss term for the 

interconnecting line:

/ ,------- I-------  \2
Lli a  \L2i a

Att
i ( 2 a e l l O ^  10 + 2 a , , l o V  10 )
i=l

(5.30)

In equ. (5.30), the summation is to H since this is the number of groups, and a  (the loss
2

per unit length in dB) is taken from equ.(5.26). If (5.30) is normalised by dividing by the 

RCS for a lossless aperture, the efficiency of the array may be explored as a function of the 

waveguide dimensions, and waveguide height in particular, as shown in Figure 5.16 below.
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Figure 5.16 Relative effieiency of 2 x 100 element waveguide-fed retro-array as a function
of waveguide relative dimensions.

In Figure 5.16 three frequencies have been chosen, and the waveguide width is fixed using 

the design rule 2a = l c  = 1.7 lo  (A typical design rule for the centre frequency for 

waveguide is 1.7 times the guide's cut off frequency. Operation at lower frequencies leads 

to increased loss, as seen in Figure 5.14, while operation above twice the cut-off frequency 

leads to a likelihood of over-moding which tends to be undesirable.)

Other constants are the number of element pairs n = 100 which is an arbitrary but large 

figure chosen to examine the effects of waveguide dimension on large arrays, the wall 

resistivity which is that of copper (see Table 5.2) and the element spacing is half the free

space wavelength. Equ.(5.30) was then evaluated as a function of — for fixed a.
b

The trend observed in Figure 5.16 is very clear: it is disadvantageous to use reduced height 

waveguide for this configuration. While the shorter path length allowed by reduced height 

waveguide leads to reduced loss, this is more than offset by the increased loss per unit 

length. This would also lead us to another important conclusion that the configuration 

studied - H-plane machined into billet - does not offer a significant advantage compared to
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using the E-plane. (Recall that the rationale for proposing the H-plane cut was closer 

waveguide spacing and hence reduced path lengths.)

5.3.2 Integration of Switch Circuits.

A disadvantage of using waveguide for a modulated retro-array is the added complexity of 

integrating the modulation (switching) circuits Since there are a large number of possible 

physical configurations for modulating signals in waveguide, this section will be limited to 

illustrating one variant. Figure 5.17 shows a microstrip insert which would integrate the 

waveguide probes, switch, diodes and bias circuits on a single circuit board. (For the 

illustration, a phase switch is shown). This could be placed in a machined cavity so that the 

probes are coincident with the centre of the waveguide H-plane. The two arms of the 

waveguide would need to be separated by either a wall (as shown) or a grounded E-plane 

pin which would have the same effect i.e. terminating the waveguide.

microstrip
insert + /-  y,

GND.

waveguide

probeprobe

metal billet

Figure 5.17 Mierostrip insert for switch in waveguide 

There are clearly many variants of this approach, such as probes orientated in the H-plane, 

as shown in Figure 5.18.
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(a) E-plane probes (^) H-plane probes

Figure 5.18 Probes for waveguide switches 

The choice of switch orientation would be expected to be influenced by the manufacturing 

and assembly techniques chosen, which in turn depend on the frequency band of operation.

5.3.3 Antennas for Waveguide Retro-arrays.

A primary objective for the waveguide-fed antenna in retro-arrays is that high directivity is 

not in general sought, since the retro-array is generally required to have a wide angular 

response. This implies that the aperture of each antenna is not large, which also allows the 

antennas to be spaced close together. While a very large number of different configurations 

are possible (many are described in [6]), a few practical antenna types for the application 

will be summarised . Figure 5.19 illustrates 4 possible configurations.
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Figure 5.19 Antenna and feed variants for waveguide retro-arrays

In Figure 5.19 (a), an antenna suitable for the two dimensional arehitecture of Figure 5.15 

is shown. This comprises a waveguide bend and a short feed horn. The bend is illustrated 

as an E-plane bend, but the layout would also be applicable to an H-plane bend. The horns 

may be most conveniently fabricated in a separate billet which would form the lid of the 

billet containing the machined waveguides. Case (b) shows a simpler variant which is a 

linear array. Either the broad or short waveguide wall could be machined into the billet and 

each terminated by short horns. This configuration appears to be among the simplest to 

fabricate, but leads to a physically bulky structure. Other small aperture antenna variants 

include the waveguide slot shown in case (e). This may be a single slot, or multiple slots 

can be used as commonly adopted in waveguide antenna arrays for radar or 

communications. The orientation of the slot with respect to the waveguide axis dictates the 

polarisation of the radiated wave. Radiating slots may be placed in either the broad or short 

wall. The slot in case (d) produces a polarisation with is orthogonal to that of case (c). Case 

(d) also shows the slot feeding a secondary antenna, which could be a printed antenna as
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shown. This is often advantageous in enhancing the antenna bandwidth, improving the 

impedance match, and/or modifying the radiation pattern.

A disadvantage of horn antennas for retro-arrays is that a short (and hence compact) horn, 

as illustrated in Figure 5.19 (a) and (b), is less well matched to free space than a longer 

horn with a larger aperture. Where a larger aperture horn is used the array spacing may 

need increasing, and the horns become more directional which tends to negate the wide 

angle spatial response characteristic of the retro-array. However, this may be acceptable 

depending on the application. Variants of these basic antenna types might include sectoral 

horns (i.e. with rectangular apertures) to tailor the radiation pattern by increasing the 

directivity in a selected direction. For example, in the linear array in Figure 5.19 (b), it 

would be quite straightforward to lengthen the horn to produce a rectangular aperture with 

an elliptic radiation pattern, or in case (e) increase the number of slots to produce an 

equivalent effect. Beam shaping is a useful way of increasing RCS in a preferred direction, 

which will be explored in detail in following chapters.

5.4 Conclusions.

In this chapter the properties of increasingly large retro-arrays have been considered by 

developing approximate models for the lengths of interconnecting transmission lines. The 

type of transmission line medium chosen has important implications for the way the array 

is constructed and the severity of the loss which is to be expected. There is very little (if 

any) prior literature which explores these issues in detail, and the scope of the work cannot 

address every possible retro-array configuration. However, three configurations have been 

considered, each having different transmission line properties and requiring different sets 

of assumptions in their study. These configurations are crossing transmission lines which 

have been assumed to be coaxial line, and two variants of planar (non-crossing) lines. The 

planar variants are microstrip and waveguide.
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In each case, approximate models for minimum line length have been derived, and the 

RCS or efficiency of the array aperture has been found by weighting the effective area 

contributed by antenna pairs with the associated line loss for the pair. In practice, line 

lengths must be adjusted so that the only allowed lengths are those which differ from each 

other by an integer number of wavelengths (strictly, transmission line wavelengths).

For coaxial line the lines may cross and the fabrication of very large arrays would be 

practicable. In this case, the models for loss and efficiency ought to be very realistic. For 

large microstrip arrays, the limited circuit area leads to difficulties in transmission line 

routing and the models for efficiency which have been presented assume that the lines can 

be kept electrically small by use of thin substrates, but the projected efficiencies for large 

array sizes should be interpreted as a first order and optimistic approximation. The choice 

of substrate has been discussed, and an upper bound on efficiency based on conductor loss 

alone has been presented which suggests that a substrate with zero dielectric loss would 

allow a large, square retro-array {nxn  elements) at X-band frequencies to be at best around 

60 % efficient.

For waveguide arrays, while many configurations are possible, a practical approach is to 

use non-crossing lines machined into a metal billet. Here, the dimensions of the 

transmission line medium are significant and have been included in the models for the line 

routing. It was found that minimising the line lengths by using reduced height waveguide 

(when the H-plane is cut into the billet) was detrimental since the increase in loss per unit 

length outweighs the line length reduction. Means of integrating waveguide with the 

switch and antenna components of a modulated array have been briefly discussed and a 

small number of configurations have been illustrated, while drawing attention to a very 

wide range of possibilities for further work.
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As briefly discussed in section 5.1 there are other constant loss terms totalling about 5 dB 

for the X-band planar prototypes* and it is worth estimating the array dimensions, in terms 

of the number of elements, for which the transmission line losses start to dominate. These 

estimates are presented in Figure 5.20, where lossy RCS relative to lossless RCS is shown 

for three different combinations of geometry and line loss. The plots are derived from 

evaluating equ. (5.7) for non-crossing geometry and equ. (5.10) for crossing geometry.

no. elements along side of square array

20 25 30 40

Co-ax (crossing 
geometry, 1.8 dB/m)1

2 non-crossing 
geometry, 1.8 dB/m4 x 4  element 

prototypes3

4

5 microstrip (non-crossing 
geometry, 5 dB/m)loss (dB) in RCS

Figure 5.20 Summary of RCS loss due to transmission lines only, as a function of retro-
array length.

In Figure 5.20, the line losses are those applicable to co-ax or mierostrip at 9.4 GHz. A 

hybrid case is shown (non-crossing geometry with loss for eo-ax) to illustrate how the 

additional loss associated with mierostrip at this frequency presents are more severe 

disadvantage than the extra line lengths associated with planar construction.

(continued)

* This figure applies to the reduction, due to losses, of RCS, not aperture gain. See chapter 4, Table 4.7. 

(RCS is proportional to the square of aperture gain.)
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Also, the arrowed region shows that for the 16 element retro-array prototypes the loss due 

to transmission lines, for any construction, is theoretically less than 0.6 dB and thus not the 

main contributer. For much larger arrays (up to 40 x 40 elements) the transmission line 

contribution to loss remains less than 2 dB for the less lossy lines (1.8 dB/m) but becomes 

comparable to the other transponder losses, i.e. around 5 dB, for the mierostrip example 

shown.
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Chapter 6

Range Measurements to Modulated Retro-reflectors.

6.1 Introduction.

In the context of communications applications for modulated retro-refleetors, the important 

functionality of the system is the recovery of data from the passive target, i.e. the 

transponder. It is this aspect which has thus far been emphasised: the transponders reported 

in chapters 2, 3 and 4 have shown modulation spectra in practical measurements. In these 

measurements, continuous wave (CW) illumination has been used, and a homodyne 

detection method can conveniently recover the baseband signal applied to the modulation 

circuits within the transponder. However, the forgoing work has not addressed another 

important application which is closely related to the original aims of the work. These are 

radar applications. In contrast to communications applications, it is target location and 

identification which is here the primary objective. The former objective is primarily the 

measurement of target range and bearing, and requires a different interrogating waveform 

to the CW previously reported.

This interrogating waveform requires a periodic structure from which the target range may 

be derived from measuring the time difference between the transmitted signal and received 

reflection or "echo". This is traditionally achieved by either transmitting pulses of radiation 

and timing their return, or sweeping the carrier frequency i.e. using frequency modulation 

(FM). This chapter will show how the former method has some theoretical promise but has 

been inconvenient to implement, while the latter method has been implemented very 

successfully. The FM measurement system will be reported in some detail, as it presents an 

application which would appear to be of very significant benefit in fields such as vehicle 

guidance and control, local navigation, collision avoidance and many related areas.
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6.1.1 Pulsed Systems.

Historically, pulsed radar has been the predominant mode of radar operation, particularly 

in the defence, aviation and maritime fields. Therefore, in this section the salient features 

will be discussed in the context of a pulsed system which might use modulated retro- 

refleeting transponders. As alluded to in the introductory sections of the first chapter, there 

is a vast literature on pulsed radar and its development. This was largely driven by 

requirements for defence applications [1]. While an overview of the field is substantially 

beyond the scope of this work, the most fundamental concepts will be summarised since 

they relate directly to the feasibility of using pulsed radar with a modulated transponder.

Broadly speaking, pulsed radar systems may be considered as the transmission of a 

continuous wave at a fixed frequency multiplied or modulated by a square wave, the 

product being a pulse train. Most radars only operate for a short period and therefore the 

truncation of the pulse train can be considered as a further multiplication of a windowing 

function which in this case is the rectangular pulse envelope. Thus in the frequency domain 

we have essentially three components : the centre frequency of the sinusoidal carrier, at 

which the radar operates, the spectrum due to the square wave pulse train forming signal 

and the window function i.e. the switch on/s witch off function of the individual pulse. 

Thus any transponder modulating the return signal could in theory be identified by a 

matched filter which was the time inverse of the impulse response of the transmit radar 

signal modulated by the transponder.

The main parameters of the time domain pulse train are shown in Figure 6.1.
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PRF and maximum range.

The time interval between pulses is a function of the pulse repetition frequency (PRF). A 

fundamental trade-off in pulsed radars is the relationship between the PRF and the 

maximum unambiguous range. Clearly, a target return from a distance greater than that 

travelled by a previous pulse during the PRF duration Tprf cannot be distinguished from a 

return by the "current" pulse from a much closer target. This is because the receiver begins 

its timing function after each pulse has been transmitted, and has no memory of or means 

of distinguishing each preceding pulse. Thus the PRF tends to be dictated by the maximum 

range of operation. However, too long a PRF leads to a low power duty cycle and hence 

low overall signal-to-noise ratio. It is common for different PRF values to be selectable by 

operators, or for the PRF to be modulated [2] or "dithered" [3] so as to ameliorate the 

range ambiguity problem.

Range resolution and minimum range.

Since the receiver is switched off during the pulse transmission, a target closer than the 

distance travelled during the pulse duration Tpuhe will tend not to be detected. Similarly, the 

resolution of the measurement is limited by this range. The tendency for pulsed radar to 

operate at duty cycles of the order of 0.001 and with pulse durations less than 1 |JLs leads to
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considerable difficulty in detecting the modulation waveform of the co-operative 

transponder, which will be shown in the following section.

6.1.2 Modulated Transponders.

In the case of the modulated retro-reflector transponder the signal is phase or amplitude 

modulated so that the returned signal can have a well defined and relatively narrow 

spectral content. The modulated return will have sidebands centred on the original transmit 

radar frequency, as shown in chapters 2 -4 .  Conventional demodulation techniques can be 

employed to either recover the original transmitted pulse train or the modulating tone. As 

an illustration. Figure 6.2 shows an experimental measurement in which a pulsed 

illuminating signal at a carrier frequency of 9.2 GHz is incident on a transponder 

modulated at 1 MHz. This experimental arrangement is substantially the same as the CW 

measurements first illustrated in Figure 2.9, and most of the subsequent measurements 

where the modulated RF spectrum was captured on a spectrum analyser such as shown in 

appendix A4.2. However, in the pulsed measurements, the CW signal was replaced by 

what are effectively periodic bursts of the carrier. The required pulse length and PRF were 

programmed into the synthesised source.

In Figure 6.2 the duration of the pulse is 10 jxs and the pulse repetition rate is 100 jis. The 

received signal was mixed with the outgoing microwave carrier. The received IF signal 

was Fourier transformed into the frequency domain and reproduced in Figure 6.3
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Figure 6.2. Pulsed radar with modulated transponder : sample time domain measurements 
of IF. [Tpuise > 1 //m od  (long pulse with relatively fast modulation),Fc = 9.20 GHz,

/m od = 1 MHz, T p u is e  =10 p,S, FpRp =100 p,s]

In Figure 6.2 (ii) the modulation waveform is apparent at 10 cycles of the 1 MHz 

modulation (square wave) signal. Hence, where CW illumination would yield a continuous 

1 MHz monotone at IF following coherent detection, the pulsed illumination yields a 

corresponding pulse of the 1 MHz modulation signal. Since the pulse is here 10 times 

longer than the modulation waveform period, we observe 10 cycles of the modulation 

waveform during the pulsed event. While these phenomena are clear enough, they lead to a 

number of important implications:

Firstly, attention is drawn to the close proximity of the transponder to the receiver, and the 

relatively long pulse duration. Hence the leading pulse edge covers, during the 10 |is

transmission period, a distance of c x 10” ^ = 3000 m . This is conventionally taken as the 

minimum range i.e. in the case where the receiver is switched off during transmission of 

the pulse. However, in the homodyne detection method used, a target within this range is 

detected because the receiver LO power is tapped off from the transmit chain. 

Consequently, a target beyond this range would not be detected by the homodyne receiver, 

unless its distance is sufficiently large that it is received by mixing with a later pulse than

143



that which illuminated it (i.e. the target is at the conventional ambiguous range.) The 

homodyne measurement (receive while transmit) thus yields an inverse situation to the 

eonventional pulsed radar (receive in intervals between short transmit pulses). We may 

conclude that a homodyne measurement, while convenient for studying the IF waveform in 

the laboratory, is not a practical approach for deriving range in an operational system. This 

leads us to a seeond observation which concerns the tendency for pulsed systems to operate 

with shorter pulse lengths to yield increased range resolution and accuracy. This in turn 

leads to a requirement for much faster transponder modulation rates so that each reflected 

pulse yields a number of modulation cycles. Sinee the trend for pulsed systems to operate 

at less than, or very mueh less than 1 qs pulse length, they would tend to become 

incompatible with the < 10 MHz transponder modulation rates available. Another 

inconvenience of the pulsed method in the laboratory compared to CW variants is the 

severe lowering of the average system energy due to the small duty cycle. While a practical 

system would use very high pulse power (several kW), this was not feasible for laboratory 

work.

■/mod

CL

main harmonics of 

Anod

5 63 421

IF frequency (MHz) 

Figure 6.3 The IF spectrum for pulsed illumination.
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In the second example (see Figure 6.4) the transponder modulation frequency was lowered, 

by a factor of 2, to 0.5 MHz. Also, the interrogating pulse train was compressed in the time 

domain by a factor of 10, to give a shorter pulse length of 1 \is and PRF period of 10 |xs. 

In contrast to the example of Figure 6.1, this yields a short interrogating pulse with a 

relatively slow modulation waveform. As can be seen in Figure 6.4 the IF frequency 

spectrum is dominated by the spectrum of the pulse and the modulating spectrum is not 

clear.

Recovery of the signal would be most tractable as a digital signal processing operation to 

improve the recovery of the modulating signal within the spectrum of the pulse. It is 

probable that a process to enhance the signal detection (a matched filter) can be 

constructed to remove the pulsed signal. Overall clutter rejection performance would then 

depend on the performance of the matched filter (roll off and pass band) and relative radar 

cross section of the target relative to the clutter. For more sophisticated transponder 

modulation schemes we may also consider pseudo random binary sequence modulation. In 

a simple system a single pulse from the radar incident on an amplitude modulated 

transponder driven by a pseudo random binary sequence generator, would generate a 

known sequence of returned pulses. In the receiver a correlator would delay and add the 

pulses to reconstruct the interrogating pulse. Unmodulated clutter would be decorrelated by 

this process. In spread spectrum vocabulary [4], the correlator de-spreads the returned 

spectrum, and in addition spreads the spectrum of the unmodulated or uncorrelated signal. 

In broad terms for a single interrogating pulse a 1000 bit spreading sequence will spread 

the power of the one pulse between the 1000 return pulses (assuming no loss or 

amplification). At the receiver, these 1000 pulses will be shifted (at the known times) and 

added on a power basis to reform the original pulse. In this operation, random clutter 

pulses will be shifted but they will not correlate with the known shift periods of the 

modulated returns and therefore will not add up to form a pulse (they will appear as noise).
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While it is worth noting that all the above methods of modulation and demodulation are 

standard communications techniques - each with advantages and disadvantages in both 

implementation and performance - they can become less tractable with the very low duty 

cycles of conventional pulsed radar.
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Figure 6.4 Pulsed Radar: Period of Pulse less than Modulation Period

{ T p u i s e  <  1 //mod (short pulse with relatively slow modulation), Fc = 9.20 GHz,/mod
0.5 MHz, Tpuise — 1 fts, TpRF — 10 p-s]
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6.2 Frequency Modulated Continuous Wave (FMCW) Radar.

6.2.1 Introduction to FM Range Measurement.

In this method, the transmitted waveform frequency varies with time. At any given time, 

the signal received from a reflection at a given range has a different frequency to that 

which is currently transmitted. The frequency variation is typically linear, which simplifies 

signal processing for range. However, where range measurement to multiple targets is not 

required, such as in a radar altimeter, a sinusoidal modulation can conveniently be used 

and range determines from the average difference frequency [5]. The case of linear 

variation of frequency with time is shown below in Figure 6.5 for the transmitted and 

received signals.

frequency

Fstop

Fstart time

Î-
sweep

- Î - Î
Toverlap

 transmitted signal .... received signal.

Figure 6.5. FM radar basic principles:

Conventionally, the RF mixer compares the outgoing frequency with the received 

frequency, the difference Af being directly proportional to the time interval At and hence 

path length 2 L  between the transmitter and target, hence:

A / =
Fstop —  Fstart 2L

o&l)
sweep
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where Fstan and Fstop are the start and stop frequeneies in the linear frequeney ramp of 

duration Tsweep, and c is the speed of light. As with all radar teehniques, it is in general 

diffieult to detect and/or identify specific targets of small RCS particularly in cluttered 

environments.

Effect of Doppler frequency: for a moving target, the Doppler frequency shift appears as an 

additional offset, which reverses sign when the ramp gradient reverses. Thus by comparing 

measurements for the up-ramp and down-ramp, Doppler frequeney and range frequency 

may be resolved unambiguously [6].

6.2.2 Adaptation of Technique for Modulated Reflectors.

In the simplest case of the modulated seatterer technique, the RCS of the target is 

modulated with, for example, a constant period signal of much higher frequency (/m od) than 

Af above. The difference frequency arising from the target's reflection is therefore Af ± 

/mod which is decoded by the seeond mixing stage, i.e. mixing with /mod- This process 

effectively rejects all other, unmodulated targets (except those at very great range which 

produce values of Af close to /mod , which is discussed below). The main frequency 

components are illustrated in Figure 6.6

frequency

Fstop

ifrod

Fstart time

Figure 6.6 Frequency components for FM illumination of modulated transponder.
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In Figure 6.6 the produet generated by the transponder modulation frequency is shown as 

two sidebands, one above and one below the reflected carrier. However, where the 

modulation waveform is a non-sinusoid, harmonies of the fundamental modulation 

frequency will also be present. This is indeed the case with the square wave modulation 

used in practice, whose characteristic spectrum (odd harmonies) has been demonstrated in 

the preceding chapters where a continuous wave, single frequency carrier was used to 

illuminate the transponders. Also the carrier component shown in Figure 6.6 will be 

present only from clutter targets, being suppressed in the spectrum of the transponder, 

when the transponder is phase-modulated. These techniques could be adapted by using 

multi-tone modulation, or a binary code (for example M-sequence) to effectively modulate 

with a spread spectrum technique. The pros and cons of various modulation schemes are 

discussed later.

6.2.3 Detection Techniques.

To aid the study of the output waveforms the measurement of difference frequency, which 

is directly proportional to the range to the modulated target, was performed using coherent 

detection as shown in Figure 6.7. This involved using the same reference signal, at the 

second mixing stage, as that which modulated the target, this technique could not be used 

in practice without a carrier-recovery stage.

Alternatively, an incoherent detector may be more convenient. For example, a separate 

signal generator could be used, but this would not be phase locked to the target modulator 

-  hence the measurement would require some averaging as the output magnitude varies 

randomly between its maximum and zero. Any frequency offset between the two sources 

results in a measurement error. The simplest incoherent detector is the envelope detector, 

which may be a convenient solution, and some practical results using this method are 

presented in section 6.2.8 below.
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Figure 6.7 FMCW range measurements with coherent detection 

6.2.4 Measurement System and Initial Results.

To illustrate typical waveforms, a variety of results are presented which demonstrate the 

dependence of output waveforms on the sweep parameters.

It is emphasised that the measurements were performed indoors with test equipment that 

does not represent an optimum system, but was configured to explore the nature and limits 

of the technique. For example, transmitted power was limited to 20 mW and range was 

initially limited to 5m. RF and IF filters were not employed. Medium gain printed antennas 

of the 16-element type discussed in chapter 4 were used as the transmit and receive 

antennas.

The main system components are listed in Table 6.1 below:
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item manufacturer (model/type) notes
RF source Hewlett Packard 8375IB 

2-18 GHz synthesised sweeper.
up or down ramp only, 
followed by 22 ms idle period. 
Minimum synthesised sweep 
time 10 ms.

coupler 10 dB waveguide or microstrip Microstrip 10 dB coupler 
designed and fabricated by 
author.

antennas pyramidal horns or 16 element 
printed

printed antennas designed and 
fabricated by author, typical 10 
dB bandwidth approx. 300 
MHz. (see Chapter 4)

Transponder 16 element, phase modulated Developed by author, see 
chapter 4.

Receiver RF low 
noise amplifier

Hirotech 1 -9  GHz, or author's 9 
GHz 4-stage GASFET LNA

1®̂ mixer Watkins-Johnson MY85C rated 2-18 GHz, -6 dB nominal 
conversion loss at 0 dBm LO 
drive

2"̂  mixer MiniCircuits 0.05 - 100 MHz
Modulation signal 
generator

HP 20 MHz pulse generator or HP 
synth. with CMOS chopper

CMOS chopper built by 
author. Provides convenient 
square wave drive levels from 
sinusoid input.

Signal processing Kemo analogue active low pass 
filter.

Data capture using HP digital 
oscilloscope.

Frequency
estimation

PC/ Mathematica Performed off-line.

Table 6.1 FM range measurement system main components.

The sweep generator could also be driven in un-locked mode using an external ramp 

generator - faster rates are then possible, but with a reduced sweep bandwidth.

All measured frequencies include a constant offset term for the path lengths of transceiver 

cables and components, in addition to the free space term. In a completed system, this term 

would be calibrated out as described below. FFT frequency scaling is shown relative to the 

length of the data file.
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System bandwidth. This is a function of both the transponder RF bandwidth and that of the 

RF components in the transceiver summarised above. Of these, the most narrow band 

components were the printed antennas, whose 10 dB bandwidths were measured to be 

approximately 300 MHz, although they did not share exactly the same centre frequency. 

Other band-limited components included the printed coupler, and the receiver amplifier, 

which was being operated on the upper edge of its intended frequency range. A detailed 

investigation of system bandwidth is rather unnecessary since it can be measured directly 

by observing IF amplitude as a function of frequency. The 10 dB system bandwidth was 

thus determined to be centred at 9.2 GHz with a 400 MHz bandwidth.

Example (i): 10 ms synthesised sweep.

Here, the RF sweep has been chosen to cover the most useful 400 MHz bandwidth of the 

system i.e. from 9.000 GHz to 9.400 GHz . The sweep time here is 10 ms. This yields a 

frequency ramp rate = 4 x 10̂  ̂ Hz/s which corresponds to 267 Hz for each metre change 

in range. The source exhibited a dormant period of 22 ms. The transponder modulation 

frequency is 2.5 MHz, although this value has little effect on the received waveforms.

The sampling parameters, set on the digital sampling oscilloscope, were chosen to be: 8193 

samples at 25 K samples / s . (Hence the data record length = 0.32768 s)

The target range is 3.8 m hence the difference frequency expected is 1013 Hz.

152



v o l t s

0

0

0

t i m e

0.1150 .0!

0

0

0

Figure 6 . 8  Time domain waveform following coherent detection, 10 ms sweep

It is apparent that the measurement of difference frequency is effectively sampled at the 

repetition rate of the ramp generator. Hence the ramp rate always occurs as a frequency 

component at the output, but is a known quantity, which may be removed by filtering. 

Figure 6.9 shows the un-filtered FFT of the time domain waveform shown in Figure 6 . 8  

where the low frequency products at 1 / Tsweep are apparent as the series of closely spaced 

spectral lines.

relative power

Frequency (kHz)

Figure 6.9 FFT of coherently detected difference frequency.
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The effect of digitally filtering the ramp repetition frequency is illustrated in Figure 6.10 

below. The time domain waveform is a subset of that from Figure 6 . 8  and selected during 

the RF transmit period so that the ramp repetition frequency is suppressed; this is observed 

as removal of the closely spaced spectral lines seen in Figure 6.9 and a consequent 

smoothing of the spectrum.

1 relative power

time
30
(millisec)

frequency (kHz)

(a) Time domain (b) FFT

Figure 6.10 Effect of digitally filtering out ramp frequency.

Example (ii): 100 ms synthesized sweep.

On decreasing the rate of the frequency sweep, the slower sweep gives rise to a lower 

value of difference frequency. However, the idle period of the sweeper is less significant, 

since it yields a frequency term which is now more dissimilar to the sweep rate. Also, the 

duty cycle of the measurement has increased, although this is primarily a function of the 

particular source used; ideally the source would not have a significant idle period. Since 

the target range remains at 3.8 m, the difference frequency corresponding to this range is 

101 Hz
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Figure 6.11 Time domain waveform following coherent detection, 100 ms sweep.

The FFT of the time domain waveform which is shown in Figure 6.11 is shown below in 

Figure 6.12. The (approximately) 101 Hz component is the most prominent term.
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(a) First 1000 points (b) Magnification (first 200 points)

Figure 6.12 FFT for 100 ms sweep

In the above results, while the difference frequency Af is linearly related to range by equ. 

(6 .1 ) for the free space path, the relationship is subject to a calibration term which is a 

function of the path lengths of the transceiver components. Thus the range cannot yet be 

accurately derived from Af. The system calibration is described below in section 6.3.3 

below
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6.2.5 Narrow Band and Wide Band Sweeps.

For any given signal processing method and hardware, minimum range and range 

resolution are always improved by adopting a wider sweep bandwidth, since this will give 

rise to a greater difference frequency Af at any given range. By way of example, a number 

of experimentally derived time domain waveforms are presented for "narrow band" and 

"wide band" FM illumination (the terms are relative), while firstly some of the related 

parameters are discussed.

The measurement of difference frequency is effectively repeated at the repetition rate of 

the ramp generator. It is advantageous to make the observation during the period tgampie 

during a continuous up or down sweep. The frequency components generated during the 

overlap period of the outgoing and received ramps (Toveriap in Figure 6.5) should be 

disregarded as they would appear as noise. Clearly

^sweep —  T s a m p le  T o v e r la p (6.2)

and, unless the range is very great:

T s a m p le  T o v e r la p (6.3)

Having established that the duration of the observation Tsampie is very similar to Tsweep, we 

consider the data collected during this period. For a high resolution measurement of Af, we 

require many periods of Af to fall within the period Tsweep- This is difficult to achieve at 

short range unless the sweep bandwidth is large. Figure 6.13 illustrates the captured time 

domain waveforms in their entirety, for wide and narrow band illumination of the 

transponder. The range here is 3 m. which we may consider "short" range particularly for 

the narrow band measurement for reasons which become apparent on studying the IF time 

domain waveform.
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Figure 6.13 Wide and narrow band time domain waveforms for Af at range = 3m. Tsweep =
1 0  ms.

In the narrow band case (Figure 6.13 case (ii) ) the ten-fold reduction in bandwidth relative 

to case (i) gives rise to a factor of ten fewer cycles of the Af waveform. Figure 6.14 shows 

the extract of data taken from the 10 ms sweep period, with its associated FFT.
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Figure 6.14 Time and frequency domain plots of waveform sampled during Tsweep-
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Since the frequency resolution (fres-Fpr) of the FFT is the reciprocal of the duration of the 

time domain file (or, the duration of the observation):

fres-FFT —  ̂I T  sweep

we have

(6.4)

fres-FFT =100 Hz (6.5)

Using this frequency resolution, the corresponding range resolutions - from equ.(6.1) - are 

shown in Table 6.2 below:

sweep bandwidth (MHz) Af (Hz) per m. range Très (m)

400 267 0.374

40 26.7 3.74

Table 6.2 Frequency and range resolution for wide and narrow band sweeps

Thus, using the basic FFT resolution as the criterion for range resolution, the narrow band 

range resolution in Table 6.2 is greater than the actual transponder range. While there is a 

small uncertainty introduced by not including the system calibration term, the situation is 

consistent with Figure 6.14 (ii) which shows that less than one cycle of Af occurs during 

the observation. These results and observations have been included to emphasise that the 

FFT "resolution" given by the reciprocal of the time domain waveform duration does not 

lead to an inherent limit on range resolution, since there is information content in the 

measurement even where less than one cycle of the difference waveform (e.g. Figure 6.14

(ii) ) is observed.

Minimum range and frequency resolution.

It has been shown that below a certain range, where Af and 1/ Tsweep are equal, less than 1

cycle of the difference frequency Af occurs during the period of the observation. We may

define this range as requ- Since the sweep bandwidth is 
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B — Fstop — Fstart (6.6)

and

A /= ^ =__L__ (6.7)
7  sweep c  i  sweep

then

(6.8)

This range is sometimes interpreted as the minimum range at which FM radar will operate, 

or as the quantisation error range when the frequency measurement is performed using a 

cycle counter [7]. However, since there is still information content in a partial cycle of Af - 

as indeed is seen in the narrow band sweep of Figure 6.13 (ii) and Figure 6.14 (ii) and

(iv) - a measurement can still be made. For this reason the range r̂ qu is used here to 

describe the range at which the period of the Af waveform and the duration of the 

observation reach equivalence but not as an inherent minimum range or error.

6.2.6 Effect of Sweep Period.

Sweep periods of 10 ms to 100 ms have been demonstrated as a matter of convenience for 

use with the laboratory synthesised source. To maximise the duty cycle of the 

measurement, the sweep time should be large compared to time-of-flight to the target since 

this minimises the time Toverlap where the mixing product Af should be ignored, (see Figure 

6.5). For the short distances used in the laboratory, (around 5 m.) the time-of-flight is the 

order of 30 ns and so the sweep period has always been much larger than this value. While 

this criterion would need re-assessing for measurements at much greater distance, such as a 

maritime system which is discussed and dimensioned in chapter 7, faster sweep rates may 

be investigated in the laboratory. The effect of faster sweep rates on the time domain 

waveforms illustrated in the above results would only result in a re-scaling of the time axis, 

and would not change the resolution of the measurement.
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Increased-sweep rates.

Sweep times below 10 ms could be generated in the laboratory by using the synthesiser 

with an external sweep generator. This implies driving the source in a mode which is not 

phase-locked, hence it is behaving more like a frequency modulated VCO than a fully 

synthesised source, although this has little practical bearing on the measurements beyond 

an expected increase in phase noise. An important implication of this mode of operation is 

that the sweep is now sinusoidal rather than linear, since a sinusoidal external source was 

used. Figure 6.15 shows time domain waveforms for a 1 ms sweep where the range to the 

transponder is 5.2 m.

phase inversions

amplitude |  |  |  |  |  |

phase inversions

-1

A A

amplitude

time
(ms)

(i) 40 MHz bandwidth (ii) 100 MHz bandwidth

Figure 6.15 Time domain waveforms, 1 ms external sweep, range = 5.2 m.

In the measurements of Figure 6.15, the phase inversions which occur every cycle of the 

external generator have been marked. The non-constant amplitude of the Af waveform, 

which is expected to be sinusoidal, is particularly apparent in case (ii) since the greater 

sweep bandwidth gives rise to more cycles of Af during the sweep. This contrasts with the 

approximately constant amplitude envelope apparent for the linear sweeps of Figure 6 .8 , 

Figure 6.10, Figure 6.11, and Figure 6.14. As discussed in section 6.2.1 and in [5], for the 

sinusoidal sweep, the frequency component Af is no longer a single value and would need 

to be averaged over the sweep to yield the correct term for range.
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6.2.8 Incoherent Detection.

While coherent detection is convenient for short range measurements in the laboratory, and 

facilitates the exploration of a wide range of transponder modulation schemes, the coax 

link between transponder and transceiver is not suitable for many practical applications. 

While this may be obviated by a carrier recovery stage at the receiver, an incoherent 

detection method is a more simple solution. This is basically a bandpass filter centred at 

the fundamental modulation frequency (which is here a monotone square wave) followed 

by an envelope detector whose output is the beat frequency between the two sidebands. 

This system is effectively the "collision avoidance radar" reported by [8 ], although this 

reference describes a co-operative target with a single radiating element, which imposes a 

very minimal radar cross section and hence range of operation.

This beat frequency captured by the detector is thus 2 Af. This method is less energetically 

efficient than coherent detection since only the energy of the first (upper and lower) 

sidebands are captured. The energy in the harmonics of the modulation signal is lost.

Typical waveforms using an incoherent detector are shown in Figure 6.16 below, where a

3.0 MHz modulation frequency was used at the transponder. Here, the RF sweep was from

9.0 to 9.4 GHz with a sweep time of 50 ms. The time domain data is a 5000 data point 

extract from the 8192 point file recorded from a digital storage oscilloscope.
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Figure 6.16 Typical beat frequency waveforms using incoherent detector
/m od = 3.0 MHz, r « 5 m.

The envelope of the beat frequency waveform suffers considerable amplitude variations. 

Some variation is also observed in coherent measurements, particularly at greater distances 

where multipath effects lead to frequency selective fading during the RF sweep (see 

following section and Discussion of results at extended range). However, most of the 

amplitude variation in the incoherent measurement is inherent to the particular detector 

which was used. Additionally, the FFT in Figure 6.16 (b) above indicates a high DC and 

low frequency content, which demonstrates that the detector was not correctly optimised. 

Despite the limitations of the incoherent detector which was available, a very clear 

frequency peak is observed at ~ 600 Hz, which is the expected result of 2 Af. This is 

confirmed by results for the coherent case shown in Figure 6.18 below where range was 

close to 5 m.

6.3. Signal Processing for Increased Measurement Resolution.

Without attempting at this stage a comprehensive review of signal processing techniques 

for frequency measurement, techniques for increasing frequency and thus range resolution 

appropriate for this application will be considered.
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6.3.1. Data Padding

The above examples of Figure 6.14 illustrate the range resolutions aehievable using the 

inherent FFT resolution. Frequeney resolution may be increased for example by padding 

the sampled data files from Figure 6.14, thus increasing the period of the time domain data 

file. This process is the equivalent to interpolating between the discrete spectral lines of the 

FFT of the initial time domain waveform [9]. Figure 6.17 below shows the effect of 

padding with 3 K samples of zeros before and after the time domain data of Figure 6.14 (i) 

and (ii)
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(iii) FFT, 400 MHz sweep (iv) FFT, 40 MHz sweep

Figure 6.17 Simple signal processing techniques for increased frequency resolution.

The five-fold increase in the length of the time domain data files leads to a corresponding 

five-fold increase in frequency resolution. Hence the new frequency resolution is 20 Hz 

and the new range resolutions are as shown in Table 6.3.
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sweep bandwidth (MHz) Af (Hz) per m. range Très (m)

400 267 0.075

40 26.7 0.75

Table 6.3 Range resolution following data zero padding (2 x  3 K)

Clearly the increased range resolution is at the cost of an increased processing burden, 

while for a fixed processing burden, range resolution is always improved by adopting a 

wider sweep bandwidth.

6.3.2. FFT Versus Parametric Spectrum Analysis.

Power spectrum density is usually determined using methods employing the fast Fourier 

transform (FFT) which is computationally efficient for a large class of time domain 

signals. However, the FFT approach suffers inherent performance limitations, the most 

prominent being frequency resolution, which is limited by the reciprocal of the duration of 

the time domain sampled data. In this study, we are concerned with exploring the 

resolution obtainable in the FM method for range finding to a co-operative transponder. 

Hence a number of alternative spectral analysis techniques have been investigated using 

experimentally derived time domain data.

The FFT based methods are often termed nonparametric since no assumptions are made 

about how the data were generated. The primary alternative to the FFT methods are hence 

termed parametric. [1 0 ] gives a mathematical review of a number of parametric methods, 

many of which are based on auto regressive (AR) and moving average (MA) techniques 

and claimed improvements in frequency resolution are demonstrated in this text. [1 1 ] gives 

further background into the parametric techniques.
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Since the Matlab signal processing toolbox provides a readily accessible implementation 

of a number of parametric analyses, the experimental time domain data were processed by 

a number of these available routines, primarily the Burg method [10],[11], in an 

exploration of the resolution of the frequency measurement. These results were then 

compared with FFT based methods of the author's devising which involved data padding to 

obtain extended time domain files followed by FFT. As described below, the frequency 

domain data thus derived was subject to a frequency peak search, then a curve fit to the 

peak and maximum search so as to estimate the spectral peak.

Results.

Again using a sweep bandwidth of 400 MHz (9.0 to 9.4 GHz) and a sweep duration of 50 

ms., three time domain measurements were recorded using the digital storage oscilloscope. 

The data length was 8192 samples and the sampling frequency was 100 kHz. The useful 

time domain data was extracted from the 5000 points which correspond to the 50 ms sweep 

duration.

Using the DSO as a frequency estimator, the FFT function on the DSO is limited to a

frequency resolution given by the reciprocal of the duration of the time domain file, which

is in this case 8192 hence the instrument's frequency resolution is = 12.2 Hz. The 
100 10^

frequency ramp gives rise to Af = 53 Hz/m thus the 12.2 Hz frequency resolution

12 2corresponds to a range resolution of —L_ = 0  23 m
53

Clearly, to improve on this range resolution, we must adopt a method of spectral analysis 

which exceeds the frequency resolution of the basic FFT algorithm, as discussed above. 

Simply increasing the duration of the measurement, beyond Tsweep results in many 

frequency ramp cycles being included in the time domain file, which precludes the
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preferred technique of selecting the data from a single sweep only and would also lead to a 

decrease in the available update rate of the measurement.

The following three measurements used range increments of 10 mm and 100 mm to act as 

test cases for range resolution below the basic FFT limit of 230 mm.

The first measurement corresponded to a range ri = 5.18 m, thereafter: 

r2 = ri + 10 mm hence Af% = Afi + 0.53 Hz , and 

rs = ri + 100 mm hence Afg = Af2 + 5.3 Hz

The corresponding time domain data are shown in Figure 6.18. The first 30 points of the 

corresponding FFTs are shown in Figure 6.19, which illustrates the coarse nature of the 

basic frequency resolution and that the small range increments are thus not resolved.
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Figure 6.18 Time domain waveforms for difference frequency; small range increments.
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Figure 6.19 FM range measurement using coarse FFT; small range increments
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Parametric Spectrum Analysis

The Matlab Burg power spectrum analysis routine was employed using the 5000 point 

time domain sampled data as input. The other parameters required as input are the order p  

of the AR model and the number of data points n in the output file. The spectral peaks 

generated by the Burg routine for each of the 3 measurements are listed in Table 6.4 below 

for various values of p  and n.

Af (ri) Af (ri) Af (rs)

p = 4, ?7= 16K 311.28 311.28 311.28

/> = 8 , w = 16 K 317.38 317.38 317.38

p = 2, « = 16 K 317.38 317.38 317.38

/? = 4, « = 2 K 292.97 292.97 292.97
Table 6.4. Results for Matlab Burg spectrum analysis.

The above results clearly show that the Matlab Burg spectrum routine is failing to resolve 

differences in the spectral content of the 3 time domain files for measurements ri, 12 and rg. 

This result necessitated a different approach for fine measurement resolution, which is 

described in the following section.

Padded FFTs

This approached has been introduced in section 6.3.1 and will be extended so as to 

investigate the suitability of the technique for resolving the 1 0  mm and 1 0 0  mm range 

increments. On padding the time domain data files with 48 K of zeros, and recalling that 

the sample interval is 1 0 '̂  s, the new frequency resolution derived from the new file 

duration is:

1
fres =  •

(5 + 48)10^ 10'^
= 1.887 Hz
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hence we would expect to resolve rs from ri, being a 5.3 Hz shift, but might not expect to 

resolve ri from ri, being a 0.5 Hz shift. However, the corresponding FFTs for the padded 

data, shown in Figure 6.20, reveal that measurement increment of r2 is just resolvable to 

the eye, while measurement rg is clearly resolved. The measured frequency can be 

accurately converted to a range following the system calibration which is discussed below.

normalised power r%___

1

295 300 305 310 315 320 325 330

rs

F (Hz)

Figure 6.20 Padded data FFTs -  Retro-array FM range measurement.

6.3.3 System Calibration.

The path lengths of the transceiver RF components before the RF mixer add a constant 

offset (or error term) to the measurement of difference frequency. A further term is 

introduced by the path length (or lengths, as discussed above) in the retro-reflector target. 

Hence zero metres range does not necessarily give rise to zero Hz difference frequency. 

Whilst it would be straightforward, if tedious, to add or subtract from cable lengths to 

remove this term, a better solution is a calibration of the system. This involves comparison 

with another range sensor -  a tape measure in the simplest case. Plotting difference 

frequency against range yields a straight line, whose gradient is a function of the FM ramp:

i  = T ^ - c  (6.9)
sweep
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and whose ^/-intercept is the constant calibration term i.e. Af when range is zero. Five 

measured data points with their linear fit are plotted in Figure 6.21 below.

f (Hz)
250

200

150

100

50

100 200 300 400
r (cm)

Figure 6.21 Calibration data (•) with linear fit ( —).

The linear fit for the above data, derived from a Mathematica program, is:

Af= 36.96 +0.54 r (6.10)

where r is given in cm, and Af is in Hz.

However, for the 400 MHz sweep of 50 ms duration, the gradient for frequency versus 

range is known to be 0.5333 Hz / cm. Substituting this value and re-arranging gives:

z y r -36.96 (611)(15333

applying this result to the difference frequencies listed in the 2"*̂  column of Table 6.5. 

yielded the ranges in the 3 column.

A flow chart summarising the stages of the measurement method is shown in Figure 6.22.
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Figure 6.22. FM range measurement and signal processing flow chart

6.3.4 The Unequal-line-length Retro-array in High Resolution FM Range 

Measurement.

Of particular interest was whether the unequal line length geometry of the retro-array 

would lead to a splitting of the measured spectrum into discrete frequencies corresponding 

to the different transmission line lengths, or perhaps as a general broadening of the 

spectrum. To investigate this effect, FM range measurement to an equal line length retro- 

array would provide data for comparison, where no line splitting would be expected. As an 

alternative, a modulated antenna such as that discussed in chapter 4 (see section 4.3.2) 

could be used, since this structure also would not introduce different path lengths. The
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three measurements were repeated for the modulated antenna and the results did not show 

an effect, the FFT after padding ( Figure 6.24 ) very closely resembling that of the retro- 

array case. The 3 measurements begin with measurement r4 at 5.64 m, with r$ and rg being 

increments of 1 0  mm and 1 0 0  mm respectively.

normalised power r4 ___

rs

T6

330 340 350 360 F (Hz)

Figure 6.23 Padded data FFTs -  modulated antenna FM range measurement.

On attempting to further increase the resolution in both cases (unequal-line-retro-array and 

antenna) with additional zero-padding, resolution increases were not observed. Hence, the 

expected line splitting by the unequal-line-retro-array could either (i) not be resolved using 

the measurement and analysis techniques described or (ii) be masked by the inherent 

spectral broadening in the measurement system. The latter is the better interpretation of 

this set of experimental results, since if the information content pertaining to spectral 

splitting did occur in the time domain data, sufficient padding and hence FFT resolution 

should make it visible. Since it did not, we may assume that the information content is not 

present, being lost in the phase noise of the system. It is suggested that contributions to the 

smearing of the measured spectrum, (which is here being measured to ~ 1 Hz resolution) 

are chiefly the phase noise of the RF source and the effects of multipath propagation.
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Curve fitting routines may be exploited to better identify the peaks in Figure 6.20 and 

Figure 6.23 . To this end, a Mathematica quadratic curve fit routine was exploited for each 

of the 20 data points in the plots. A maximum search function then identified the 

corresponding frequency for the centre of each peak, as tabulated in Table 6.5 below.

measurement no. curve fit maximum 
search (Hz)

calculated range 
(cm)

ri 313.283 518.13
i2 (ri + 1 0  mm) 313.986 519.46
rs (ri + 1 0 0  mm) 317.718 526.45
U 337.536 563.62
rs (r4 + 1 0  mm) 338.230 566.1
re (r4 + 1 0 0  mm) 342.788 573.46

Table 6.5 Curve fit maxima results.

Following calibration of the system (described above) it was possible to calculate the range 

between transceiver and transponder as tabulated in the third column of Table 6.5. On 

inspection of the calculated ranges we observe that the 1 0  mm increment was measured as 

13 mm for both retro-array and antenna targets, while the 1 0 0  mm increments were 

measured as 83 mm (hence 17 mm error) and 98 mm (2 mm error ). We may thus observe 

that while 1 0  mm increments may be resolved, the accuracy of the measurement is subject 

to errors of up to 17 mm over a range of approximately 5 m, which represents a 0.3 % 

error.

A more thorough, statistical analysis of system error could be performed by making a 

much greater number of measurements which would form a statistically representative 

sample. However, it was thought that such a study would not be of great interest at this 

stage and it was preferred to explore measurements to transponders at increased ranges.
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6.4 Accuracy, Resolution and Example Measurements at Extended Range.

In the above examples, digital processing methods for increasing range resolution have 

been explored. While the absolute accuracy of the measurement has not been demonstrated 

with a precision beyond a simplistic comparison with the accuracy afforded by a tape 

measure, increments in range may be more easily measured, and have suggested system 

errors up to 17 mm or 0.3 %.

To explore the accuracy and resolution of the prototype measurement system at extended 

ranges, a larger laboratory was used which offered ranges up to 16 m. In this case, the 

measurement accuracy offered by the tape measure, which is unknown, is likely to be 

worse than the 10 mm resolution offered by the microwave system. For example, a 0.5 % 

error in the tape measure reading at 16 m. is 80 mm. While the study could be made more 

comprehensive by adoption of a third sensor (e.g. laser), such a sensor was not available, 

and a detailed statistical study of the errors incurred by use of the tape measure is not likely 

to be particularly enlightening in the context of the present work. Also, the high linearity 

offered by the synthesised sweep generator allows confidence in the linearity of the 

measurement of range, and further calibration terms ought not to be necessary. It should 

also be added that part of the motivation for the development of the FM ranging system 

was as a solution to real engineering applications such as vehicle tracking and control 

systems. Typical specifications for marine tracking systems, for example, require accuracy 

and resolution better than 1 m. This sought accuracy is typically an order of magnitude 

better than that offered by a competing technology such as differential GPS. Therefore, the 

preferred direction for the work at this stage was the demonstration of measurements at 

increased ranges of operation. A summary of indoor measurements, including oblique 

transponder illumination angles, are next presented.
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Range measurements at approximately 16 m:

The measurements for the microwave system were derived using the methodology 

described above, i.e. zero padding (48 K), FFT, identification of major peak, curve fit to 

major peak and maximum search. Range was then derived from the difference frequency 

Af using equation (6.10). The results are summarised in Table 6 . 6  below. All 

measurements were made with the phase-modulated retro-reflector transponder on 

boresight with the exception of the final example, measurement rn where the transponder 

was rotated to 75 degrees from boresight in the E-plane. Horizontal linear polarisation was 

used throughout.

measurement

no.

approx. range, tape measure (cm) range, microwave system (cm)

r? 1600 (accuracy not demonstrated) 1596.6

rg r? - ( 1 0  cm ± 0 . 2  cm) 1585.8 (10.8 cm increment from r?)

T9 r? - ( 1 0 0  cm± 1 cm) 1496.6 (100.0 cm increment from r?)

rio 1580 (accuracy not demonstrated) 1588.4

rii as rio, transponder at 75° 1589.6

Table 6 . 6  Measurements at extended range.

Discussion of results at extended range.

As discussed above, the accuracy of the tape measurement has not been demonstrated. 

However, small increments between measurements can be made with a better control of 

the accuracy, as tabulated above. It is apparent in this group of measurements that the 

microwave system is highlighting errors in the tape system rather than vice versa. In 

particular, the increments of 1 0  cm and 1 0 0  cm are very accurately tracked, having 8  mm 

error at worst -  which compares favourably with the worst error of the previous group of 

measurements, which was of 17 mm at around 5 m - while the agreement in absolute range 

is not always good, particularly in case rio. Also, the final measurements shows a
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difference of just 12 mm when the 75° rotation is applied at fixed range. The time domain 

files for these measurements (rio and rn ) are shown in Figure 6.24 to illustrate the 

reduction in the signal level compared to the noise floor. The entire 8192 point data file is 

included, with arrows marking the start and stop points of the RF sweep.

volts 
0

0 . ].

-0 .

- 0 . 2

I volts

0 . 0 5msec
msec

2 0 80

- 0 . 0 5

(a) Transponder on boresight (b) Transponder at 75°

Figure 6.24 Time domain data for FM range measurement at 1589 cm ± 0.6 cm

It is also interesting to compare the time domain plots of Figure 6.24 with those of Figure 

6.18. Clearly, the period of the waveform is reduced in accordance with the increase in the 

frequency measured. Also, in both cases, the amplitude of the waveform is subject to much 

variation. These variations are due to the RF frequency response of the system between 9.0 

GHz (first arrow in Figure 6.24) and 9.40 GHz (second arrow in Figure 6.24). Since the 

400 MHz sweep corresponds to the 10 dB RF bandwidth of the transponder and 

approximately to that of the transceiver RF front end, the amplitude variations are caused 

primarily by the environment. That is, frequency dependent multipath interference results 

in fading at certain RF frequencies in the sweep. It is apparent that these effects are more 

pronounced when the range was increased in the larger laboratory, and vary depending on 

the position of the transponder. To illustrate these variations the time domain files for 

measurements rg and vg and presented in Figure 6.25. Interestingly, the positional increment 

of 90.2 cm results in both a differently shaped voltage amplitude envelope and also a factor 

of 2 in the maximum magnitude. Since the only change is in the location of the transponder 

with respect to the transceiver and environment, this observation suggests a new possible
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application for the measurement system -  that of a multipath probing sensor. It is worth 

noting that retro-directive arrays have previously been mooted as multipath sensors - [14] 

examines the use of an active (amplified, but not modulated) retro-array as a "probe" in a 

multipath environment.
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(a) measurement rg (b) measurement rg

Figure 6.25 Time domain waveforms for FM measurement demonstrating differing
amplitude envelopes.

6.5 Efficient Frequency Estimation Algorithms.

The signal processing technique, as summarised in Figure 6.22, has been very successful at 

exploring the limits of range resolution in the laboratory. However, it is not necessarily the 

best approach for a real-time measurement system, since the computational load, 

particularly of the zero padding, is excessive compared to other algorithms. The added 48 

K of data zeros is almost ten times the length of the original sampled data, whereas a factor 

of 2 - 4 is considered sufficient [15] for "coarse" frequency estimation i.e. the stage of 

identifying the spectral peak. "Fine" frequency estimation is often performed using a 

quadratic fit such as described above, while more computationally efficient methods 

include a dichotomous search of the spectral peak [16]. This is another means of 

interpolating between the discrete spectral lines of the FFT, which can be combined with 

parabolic interpretation to reduce computational load by 8 8  % [17] compared with 

parabolic interpolation alone.
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6.6 Signal-to-noise-ratio Improvement

The primary advantage of the modulated scatterer method is the ability to perform a radar 

type measurement while (almost) totally rejecting clutter. Considering thermal noise, the 

signal to noise ratio is unchanged, but it is more meaningful to consider the ratio of signal 

to the sum of thermal noise and clutter (SNCR) . In this case, the improvement may be 

expressed by considering the SNCR for the cluttered measurement is:

SNCR = --------------------  (6.12)
^noise ^clutter

while the SNR for the uncluttered measurement (i.e. with modulation) is:

SNR mod (613)
^noise

hence the ratio of the above is

.SNRmod ( 6  1 4 )
SNCR

Considering that the thermal (bandwidth limited) noise Pnoise is fixed for a given 

measurement, (6.14) is dependent on the severity of the clutter term and can take any value 

from 1 upwards.
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6.7 Range Measurement Conclusions.

The FM range method here considered differs from most conventional radar techniques in 

that a modulated scatterer is employed, thus effectively rejecting clutter from the 

measurement. In itself a known technique [8 ], it has not found wide application since the 

scatterer, i.e. the transponder, has previously not been realised as a multi-element target 

such as a retro-directive array. Thus the severe limitation to link budgets has limited the 

range of useful applications. This work extends the technique to include retro-reflector 

transponders and therefore opens up the possibility of high resolution range measurement 

to co-operative targets over greatly increased distances compared to the single element 

scatterer configuration. Indeed, a practical demonstration of the maximum range of useful 

operation for the prototype transponders would have required a larger measurement range 

than was available.

A cyclic experimental approach has successfully demonstrated that 10 mm range 

increments may be resolved using modest signal processing techniques. While 

conventional high resolution parametric spectral analysis was found lacking in this 

application, tailored variants of FFT based analysis, combined with curve fitting, enabled 

range resolution below the inherent FFT limit (the reciprocal of the duration of the 

sampled data). The signal processing method demonstrated that range resolutions of 10 

mm were achievable using a 400 MHz sweep, at ranges of about 5 m where the signal-to- 

noise-ratio was very high. Incremental measurements demonstrated an accuracy of 1.7 cm 

in this case.

On increasing the range to around 16 m. incremental range measurements were shown to 

continue to be accurate to within this 1 0  mm tolerance (i.e. 8  mm.) while overall range 

accuracy exceeded that of the alternative method available i.e. the tape measure. On
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rotating the transponder to 75° at the 16 m. range, the measurement was consistent to 12 

mm despite the reduction of signal to noise ratio, which from Figure 4.5 (RCS versus 

angle) would be estimated at 8 dB. A more thorough statistical approach to parameterising 

resolution and accuracy would require a much larger number of experimental observations. 

The results described should therefore be regarded as qualitatively representative of the 

measurement system in its indoor environment.

The use of modulated microwave retro-reflectors as transponders in a range measuring 

system would appear to represent an excellent application for their useful properties. Many 

applications could be envisaged, and some of those which have been mooted are: 

automotive collision avoidance, aircraft landing aids including ad-hoc airfield and covert 

landing system, airport localisation and decision aids, maritime docking sensors, and 

precise vehicle guidance in general.
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Chapter 7.
Case Studies for Dimensioning Retro-reflector System Applications.

The work reported in the preceding chapters has introduced the rationale for developing 

modulated microwave retro-reflectors and described in some detail methods for their 

design and fabrication. A quantity of measured data for modulation spectra have been 

reported, as have general models for predicting their aperture efficiencies. The evolution of 

a range finding measurement has been reported in some detail. Throughout the preceding 

chapters a wide variety of possible applications have been alluded to - these might be 

classified, somewhat arbitrarily, into conununications applications and radar applications, 

while it is hoped that a particularly important feature would be a combining of both these 

characteristics. Thus while communications applications may include point-to-point links 

(for example telemetry to a robotic or an autonomous vehicle), and radar applications may 

include vehicle guidance and collision avoidance, it should not be overlooked that these 

applications can be combined through a suitable choice of a sufficiently agile interrogating 

waveform.

In this chapter two of the more promising possible future applications will be discussed 

and the outline of the required system parameters will be presented. These will include a 

vehicle guidance system (a radar application) , and a link to a stratospheric platform (a 

communications application). While a very comprehensive analysis of each system is 

beyond the intended scope, it is the system dimensions - i.e. estimates of power budgets as 

a function of transponder size - which will be discussed along with the important and 

interesting features of each system.
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7.1 A Maritime Range Finding System.

In chapter 6 a range finding system was discussed and a number of indoor experimental 

results were presented. The dimensions and link budget for a practical system will now be 

explored, with the emphasis on a maritime system where a transceiver is located on a 

vehicle and a transponder on some other target. It is likely that, for example, the vehicle is 

a ship and the target is some point of interest, such as a harbour entrance, jetty, or another 

ship. It will be important to consider the maximum range of operation from estimates of 

power and noise levels.

Another important feature of the system will include a multi-access scheme, whereby a 

number of transponders may be simultaneously interrogated. Also, the required spatial 

response of the transponder will present interesting implications for the means of its 

construction.

7.1.1 Link Budget.

The link budget encapsulates the received power and signal to noise ratio (SNR) as a 

function of many variables. These include the carrier frequency, transmitted power, 

antenna properties such as gain and the receiver noise figure. The link budget may be 

summarised by equation 7.1 for received power P r, which is here expressed in dBm for a 

transmit power Ft in dBm.

Pj. = 10 Log 10
'  9 9 ^m 0.66 G
\ (4^)

3 4 + 2G + Pf (7.1)

In equation 7.1 the term n? accounts for the effect of a non-ideal modulation index, which 

is a ratio of voltages. The term 0.66^ similarly accounts for the power associated with the 

first harmonic of the square wave which modulates the transponder RCS, since we assume 

that only the first harmonic is detected. Using these assumptions, the theoretical link
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budget for the 16 element X-band retro-array of RCS 0.1 w? (see chapter 4) is compared 

with measured data in Figure 7.1. Here, the power in the first upper sideband was 

measured using a spectrum analyser connected to a dedicated receive antenna, as shown in 

Figure 2.9. The transmit and receive antennas gains were both 16 dBi, and an additional 2 

dB system loss has been included as a very good estimate for combined transmission line, 

connector and pointing losses. Transmit power was 14 dBm and the carrier frequency 9.2 

GHz.

Pr (dBm)
  theory
•  measurement

-40

-50

-60

range (m)

Figure 7.1. Measured and theoretical received power for 16-element X-band retro-array.

In Figure 7.1 the measured received power is very close to the theoretical case, although 

some data tend to deviate from the theoretical J_ trend of the radar equation for free space.

This effect is most likely due to the indoor measurement environment where the actual 

power incident on the transponder aperture tends to be perturbed by reflections and multi- 

path. These effects have also been discussed in chapter 6 (see section 6.4) where they were 

manifested as an amplitude envelope (of the difference frequency measurement in the FM 

sweep) which varied with the position of the transponder within the laboratory.

Returning to a link budget model for a maritime range finding system, reasonable estimates 

for parameters can be used, and predicted SNR may be plotted as a function of distance or
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transponder dimensions. A centre frequency of 9.2 GHz will again be used. The proposed 

link budget parameters are listed in Table 7.1

parameter symbol value remarks
centre frequency / 9.2 GHz common maritime usage. 

Prototype system reported.
transmit power Pt 20 dBm reasonable estimate (100 

mW)
transceiver antenna 
gain

G 30 dBi common, modest radar 
antenna

transponder radar 
cross section

G variable m^ function of transponder 
size

transponder 
modulation index

m 0.9 ideally 1, allows for non
ideal phase modulators.

receiver noise figure NF 6dB reasonable estimate
range r to be studied, e.g. up to 10 

km

Table 7.1. Link budget parameters for maritime system

Received power from equ. 7.1 is plotted in Figure 7.2 below, where the transponder RCS 

has been evaluated using equations 1.6 and 2.1, which relate RCS to the aperture gain. In 

this evaluation, the aperture gain is the sum of the gain of the antenna elements in the retro- 

array, and a gain of 4 dBi has been used. Estimates for transponder loss have not at this 

stage been included. In Figure 7.2 three cases for the number of antenna elements n have 

been included. When n =1, the transponder is a simple reflective tag rather than a retro- 

array. The other cases are «=16, chosen to be representative of the 16 element prototypes 

reported, and «=96 , which while to some extent an arbitrary value has been chosen to be a 

good compromise between transponder size and manufacturing complexity. Means of 

fabricating a 96 element transponder for maritime applications are discussed in section 

7.1.2.
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Figure 7.2 Basic link budgets for different numbers of transponder radiating elements,
(a) up to 1 km range, and (b) up to 10 km range.

The results shown in Figure 7.2 have also been separated into a "short range" case (a) and 

a "long range" case (b), so as to help illustrate the very wide dynamic range which is a

consequence of the free space loss term of the radar equation. The improvement in 
r

received power on increasing the transponder size is evident, and represents the primary 

advantage of the retro-reflector technique compared to the more simplistic approach of the 

single-element modulated scatterer such as described by the homodyne ranging system of

[1]. The signal to noise ratio (SNR) should now be considered, and is given by :

SNR =10 Log10 kTB
-N F (7.2)

where k is the Boltzman constant (1.38 10’̂  ̂J K'  ̂ ), T the system temperature (300 Kelvin 

will be used), and B is the noise bandwidth.

Choice o f noise bandwidth.

Since the measurement in this case is that of an estimation of the frequency of a single 

tone, the noise bandwidth is the reciprocal of the duration of the observation. This term 

will clearly have a large influence on the SNR, and an estimate is not immediately obvious. 

However, many fast and noisy measurements may be averaged to yield an equivalent SNR
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to a measurement of longer duration. The other time variables in the system should also be 

considered. The first of these is the FM sweep duration. This might for example be 

between 1 ms and 100 ms, as discussed in chapter 6; a value of 50 ms will be used. Where 

a directive and rotating antenna is used, another timing parameter is the sweep rate of the 

antenna, which is assumed to rotate with constant angular velocity. This combines with the 

antenna's horizontal plane radiation pattern to provide a narrow timing window of 

illumination of the target. A typical marine radar antenna might have a half power beam 

width (HPBW) of 2° in the horizontal plane and a 1 Hz sweep rate. The dwell period of the 

HPBW on a point target is therefore the order of 5 ms. The disadvantage of attempting to 

minimise noise bandwidth by maximising the duration of the observation is the likely 

relative velocity of the interrogating vehicle to the transponder. At 20 knotts (about 10 

m/s), this equates to 10 mm of displacement per ms which is the order of the range 

resolution expected and demonstrated in chapter 6.

From these considerations, it would be reasonable to propose an observation window the 

order of 1 ms in duration, from which 5 measurements could be made during the sweep of 

the antenna HPBW. Using this 1 ms period to derive noise bandwidth, the received SNRs 

applicable to the link budgets presented in Figure 7.2 are shown in Figure 7. 3.

40

30

n=96

range (km)
n=16- 2 0

- 3 0

Figure 7. 3 Received SNR for different numbers of transponder radiating elements.
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The estimate SNRs of Figure 7. 3 show that on adopting multi-element transponders, an 

approximately 4-fold increase in range (for positive received SNR) is given by the 16- 

element case, and more than ten-fold for the 96 element transponder. The expected range 

of operation in this latter case would thus be the order of ten kilometres.

7.1.2 Array Geometries for a Maritime Transponder.

The square retro-array, fabricated on either microstrip or using coaxial lines (which may 

cross) has been considered in some detail, and successful prototypes have been built. It is 

now important to observe that this is not necessarily the best layout to choose for a given 

practical application. For large arrays, the transmission line routing becomes more 

problematic. It is also worth noting that a rectangular array has the same monostatic RCS 

as a square array with the same number of elements -  the spatial response is still the same 

as that of the radiating element chosen. For a rectangular array the transmission line 

routing can be less difficult, and the physical dimensions of the circuit may be either more 

or less convenient and specially efficient for a given application.

Consideration should also be given to the geometry of the theatre of operation for a 

proposed retro-reflector system. Little work appears to have been reported in this area 

previously. [2] (1994) makes brief reference to an aircraft carrier landing system which 

might use a millimetre wave retro-directive array. A 4 element array is reported, but the 

work does not appear to be very advanced. In particular, the region of required spatial 

coverage has a direct influence on the radiation pattern chosen. For example, a landing 

system for fixed wing aircraft may require a coverage area over a relatively narrow conical 

beam through which aircraft approach a runway. In such a case, the angular coverage could 

be tightened by the use of higher gain antennas (for example sub-arrays of patch antennas), 

which would increase RCS without increasing the number of transmission lines and hence 

the practical complexity of their routing. The sub-array radiation pattern could be tailored
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to yield asymmetrical beam widths in azimuth and elevation if this was an operational 

requirement. A contrasting example is that of a system for vertically landing aircraft which 

may approach from any direction within a hemisphere. In this case, the coverage area 

would need to be as broad as possible, and the use of half-omni-directional antenna 

elements would be preferable to directional sub-arrays.

Returning to the maritime environment, where a ship-to-ship or ship-to-shore link is 

required, it is apparent that a wide spatial coverage is likely to be required in azimuth 

whereas the coverage in elevation may be narrow - perhaps only a few degrees. One 

scenario is illustrated in Figure 7. 4.

drilling
platform

coverage zone

approaching vessel

Figure 7. 4 Likely coverage zone for a typical maritime range sensor.

In this example, the retro-reflector transponder is placed on the fixed maritime installation, 

and the approaching vessel illuminates the environment. To help achieve a large radar 

cross section for the reflector, sub-arrays could be employed which are directional in 

elevation but retain a wide beam pattern in azimuth. A convenient method would be a 

vertically stacked sub-array of horizontally polarised patch antennas. The azimuthal pattern 

is broad, being that of the E-plane radiation pattern for the antenna as investigated in 

chapter 3, whilst the vertical stacking increases the gain of the sub-array, at the "expense" 

of the loss of the unrequired vertical coverage. Figure 7.5 shows a geometry which might 

be adopted for such a purpose.
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Figure 7.5 12x2 array of 4-element sub-arrays, tailored to narrow vertical coverage.

In Figure 7.5, 24 sub-arrays are arranged in a 12 x 2 grid. Thus there are 96 radiating 

elements, but only 12 interconnecting transmission lines are required. The maximum RCS, 

from equ. 2.1 is 12.5 m  ̂(before losses are accounted for). The effect of the 4-element sub

arrays is a 4-fold increase in effective area without the associated additional transmission 

line and switching complexity. The vertical (elevational) coverage is defined by the square 

of the radiation pattern of the sub-array, which may be calculated from the product of the 

4-element array factor and the H-plane radiation pattern of the patch antenna. These 

patterns are presented in Figure 7.6 - in case (ii) it can more easily be seen that the 3 dB 

beamwidth is about 15 degrees.
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4  e lem en t sub-array spatial r e sp o n se  in elevation  (H -plane)

deg
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(a) 180 degree plot (b) 30 degree plot

Figure 7.6 H-plane radar cross section for 4 element sub-array of patch antennas at
22 mm spacing and 9.2 GHz.

Besides the reduction in transmission lines required to yield a given RCS magnitude, 

another fortunate consequence is a similar reduction in the number of RF modulators 

(switches). This yields a significant saving in fabrication costs and the power consumption 

of the transponder. This saving is in a direct relationship to the number of antennas in the 

sub-array.

The extent to which sub-arrays can be exploited is dependent on the expected relative 

angular movement between the vehicles in the system. For example, if the platform 

illustrated in Figure 7. 4 was subject to significant pitch and roll movements, the extent of 

these would need to be considered. Similarly, changes of relative height due to ocean tide 

levels might place a constraint on the extent to which elevational coverage could be 

sacrificed.

There are clearly an infinite number of possible configurations for retro-arrays, and the 

example of Figure 7.5 has been chosen as a natural extension of the 16 (single) element 

prototypes reported in chapter 4. The sub-arrays would be fabricated using the same photo

lithographic techniques, and the circuit dimensions would be approximately 300 nun by
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200 mm. Such a circuit could be fabricated on a single laminate, with either aperture

coupling to microstrip transmission lines, or coaxial feeds. In either case the sub-array feed

point is mid-way between to two antenna pairs. (The curved lines are the quarter-wave

impedance transformers inherent to the microstrip corporate array feed.) It is also easy to

envisage a modular approach where sub-arrays are added to the ends of the « x  2 row and

connected to a bank of modulators numbering H.
2

Another interesting possibility for applications where DC power is limited (perhaps for a 

solar-powered transponder) is that of an idle mode for a large transponder. In this case, a 

sub-section of the array's modulators could be powered when the range is relatively small, 

thus saving DC power when a large RCS is not required

7.1.3 FM System for Multi-target Detection.

The range measurement system reported in chapter 6 was configured to detect a single 

transponder only. Estimates for transponder bearing (i.e. angular direction from the 

interrogating transceiver) were not available. In practice, and particularly for the maritime 

system which is here being considered, estimates for bearing are very likely to be required. 

Two methods for deriving this additional information may be immediately suggested. The 

first method would use a scanning antenna of narrow azimuthal beamwidth, typical in most 

marine applications. The scanning is most conveniently achieved by mechanical rotation 

(also discussed above in section 7.1.1 under choice of noise bandwidth.) The bearing 

estimate would thus be derived from a knowledge of the antenna pointing angle during the 

observation of the transponder modulation products and the associated range measurement. 

A second method for estimating bearing would be the observation of multiple 

transponders, whose relative locations are known. For example, transponders could be 

placed at opposite ends of a vehicle, or other structure of interest such as a harbour 

entrance. The relative transponder locations may be known from a database, or 

"downloaded" from the transponders themselves via a separate communications link which
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would employ a CW burst from the interrogating transceiver. Measurement of bearing 

would therefore involve triangulation on the multiple transponder range measurements. 

This method could use a much wider beamwidth antenna than the 2° suggested above, or 

could be used as a means of augmenting the bearing estimates where a narrow beamwidth 

scan is employed.

Since a system for multiple and simultaneous transponder detection is advantageous, a 

suitable multi-access scheme will be discussed.

7.1.4 Modulation Schemes and Jamming.

Thus far monotone modulation of the transponder has been considered. While this is 

straightforward to achieve and detect, certain disadvantages should be considered. If we 

consider the IF spectrum at the first RF mixer, frequency components from all targets 

(modulated and un-modulated) are included, as illustrated in Figure 7.7.

Clutter

Q.

transponder
modulation
products Clutter at great range

0.1 100 IF frequency101
(Mhz)

Figure 7.7 Frequency components at IF

In the illustration of Figure 7.7 strong reflections from nearby clutter produce relatively 

low frequencies. The modulation frequency is contrived to be well above this region, so 

that detection of the modulation spectrum, which employs a bandpass filter, is essentially
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free of clutter. However, if a clutter target produces a difference frequency which is 

sufficiently close to the transponder modulation frequency that it falls within the filter 

passband, a spurious frequency component will give rise to a false reading. This effect 

could be referred to as jamming, and occurs when:

Af (clutter) ~  /m od (transponder) (7.3)

which using equ. (6.1) gives

/n od
C T s w e e p

therefore the range to the clutter target is:

/n o d  cT sw eep

(7.4)

p. =
jam 2B

(7 j)

The magnitude of the spurious component is proportional to the RCS of the clutter target. 

The greater the value of the range at which jamming can occur, the less likely it is to occur 

since the clutter target would need to be of rapidly increasing RCS, as range increases, to 

yield a reflection of significant magnitude. To produce a reflection of equivalent 

magnitude to that of the transponder (whose RCS is Otran at range r), the RCS of the 

equivalent clutter target may be derived from the radar equation as:

Gclutter =  Gtran
jam

V y
C7.6)

A few typical values for rjam based on the parameters of the FM sweep are tabulated in 

Table 7.2 below, where the transponder modulation frequency has been fixed at 1 MHz.

sweep bandwidth B (MHz) T s w e e p (ms) f \ a m  (m)
400 10 3,750
400 50 18,750
400 100 37,500
40 50 187,500

Table 7.2 Values of jamming range as a function of FM sweep parameters.
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Choosing a transponder RCS of 12 at a range of 10 km, and a jamming range of 20 km, 

it can be seen from equ (7.6) that the clutter RCS would have to have a RCS of 12 x 2  ̂= 

192 m  ̂ to yield a frequency term comparable to the wanted term from the transponder, 

whereas for rjam = 200 km the clutter RCS would have to be a huge 1.9 x 10  ̂ w?.

Apparent from equ. (7.5) is the advantage of low sweep bandwidth, slow sweep rate and 

high modulation frequency to maximise the jamming range and hence minimise the 

likelihood of its occurrence. This is in conflict with the high bandwidths required to 

maximise range resolution. Fortunately, a multi-mode system may be envisaged where the 

sweep bandwidth is reduced for long range operation where high resolution is less likely to 

be required, and increased at short range where resolution is more likely to be required, 

and SNR values are high.

7.1.5 Modulation Schemes for Multiple Transponders.

The maximum difference frequency Af̂ ax and hence maximum range of interest 

corresponds to the maximum deviation of the upper and lower sidebands of the first 

harmonic of Af. Hence additional transponders must utilise modulation frequencies 

separated by at least 2 Afmax- Consideration of the harmonic frequencies of each 

transponder's modulation spectrum, which are generated by the digital modulation, place a 

further constraint on the use of spectrum. The available spectrum for multi-target detection, 

in this case, is the maximum modulation frequency at which the transponder will operate. 

The prototype transponders reported in chapter 4 achieved modulation rates of 10 MHz 

and this figure will be used as an upper limit to illustrate how a multi-target system would 

operate based on frequency division multiple access (FDMA), as illustrated in Figure 7. 8
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Figure 7.8 IF spectrum for FDMA, monotone transponder modulation.

In this case, the targets are located uniquely by multiplexing and each transponder occupies 

a separate piece of spectrum. For a given maximum modulation rate, the widths of each 

channel's bandpass filter and hence maximum range (or maximum sweep rate) are 

increasingly constrained when the number of transponders is increased. Each term fmod 

must be chosen carefully to avoid harmonic interference, for example, the third harmonic 

of fmodl breaking into the channels for targets 2 and 3. These limitations may be mitigated 

by a changing the sweep parameters according to the range of operation, such as reducing 

the sweep bandwidth when the range is large.

To overcome the spectral inefficiencies of the rather simplistic monotone FDMA scheme, 

more advanced schemes such as multi-tone modulation may be advantageous, and also 

reduce the effect of spectral contamination from distant targets. The extension of this idea 

is to use a pseudo random binary sequence as the modulation signal. If orthogonal codes 

are used, the targets may share spectrum with minimal co-channel interference. Both two- 

tone and PRBS modulation have been demonstrated for short ranges, (see measured 

modulation spectra of appendix A4.2) where an M-sequence generator [3] based on a TTL
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shift register [4] replaced the monotone generator. However, in this laboratory 

configuration (Figure 6.7), coherent detection is automatically achieved and the 

measurements for difference frequency have essentially the same form as the results for 

monotone modulation. For a practical system, the detection of difference frequency on 

(suppressed) multi-tone carriers would involve considerable further work, as would a 

sliding correlator detector for the PRBS case. A time division multiple access (TDMA) 

scheme could also be envisaged. An advantage of this scheme would be the possibility of 

each transponder using a simple modulation waveform, such as a monotone, at the 

maximum modulation rate possible, such as the 10 MHz rate achieved by the X-band 

prototypes. This would minimise the likelihood of a clutter target giving rise to a jamming 

signal.
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7.2 A High Altitude Communications Platform Downlink.

Introduction.

High Altitude Platforms (HAPs) - craft located in the stratosphere at altitudes above about 

17 km - are increasingly being cited as playing an important role in future communications 

systems and applications [5], [6]. Proponents claim they have the potential to exploit many 

of the best aspects of terrestrial and satellite based systems, while offering advantageous 

propagation characteristics. Platforms based on airships [5], solar powered un-piloted 

aircraft [7], and conventional piloted aircraft [8] have all been mooted and are at various 

stages of development. While the latter approach would seem the least technologically 

challenging, being essentially a conventional aircraft flown in shifts of a few hours 

duration, the solar powered solutions would appear most attractive from considerations of 

endurance and hence running costs, and of environmental impact. Such platforms are 

unlikely to be fully developed for several years, but their potential for supporting high 

capacity wireless services does appear to be attractive.

A disadvantage of the solar powered HAP is the reliance on batteries or fuel cells which 

would be charged during daylight hours to power the platform and its payload by night. 

The power budget afforded by this cycle of charge and discharge using current solar cell 

and fuel cell technology may be marginal, and particularly so at increasing latitudes during 

the winter months. While advances in technology are anticipated to improve matters, a 

HAP communications payload will always be allocated only the electrical power which is 

remaining after that consumed by the motors and control systems which keep the platform 

aloft (for aircraft) or on-station (for airships). The majority of the available power is likely 

to be consumed by these propulsion and stability systems. The prime power consumer in 

the communications payload would be the RF power amplifiers (PAs), which, along with 

the antennas, are among the most critical components. In circumstances where the supply
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of power is marginal, the PAs may have to be run at reduced power or shut down 

completely, with implication for reduced quality or complete loss of service. The backhaul 

down link - a high data rate link connecting all the down link data into a terrestrial 

network via a hub, (a ground-station) - has been identified as the most susceptible to 

marginal link budgets such as would be encountered during severe rain events [9]. To 

some extent, this can be obviated with spatial ground-station diversity [6], but cannot 

mitigate against a loss of DC power on the HAP. In this section the feasibility of using a 

retro-directive transponder on a HAP is explored, since this has the potential to 

circumventing the problem of link loss where RF power is lacking and remove the need for 

a steered high gain antenna on the HAP

7.2.1. Historical Background.

A link via a reflector was suggested by the pioneers of satellite communications as a means 

of facilitating over-horizon communications, where the reflector might be passive or 

include amplifiers [10], [11]. Other references to reflective links via satellite from the 

1960s are discussed in the introductory sections of chapter 1. The very much reduced path 

length to a HAP compared to a satellite leads to new possibilities for a link via a reflector, 

which may now be examined in a fresh light.

7.2.2 A Passive Transponder for a HAP Link.

The geometry is illustrated in Figure 7.9. Since the link suffers J_ free space loss, means

of increasing the link budget are sought which include maximising the following 

parameters within practicable limits:

• transmit antenna gain
• receive antenna gain
• transmit power
• transponder RCS.
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The first three of these parameters are functions of the ground station and ought not present 

severe restrictions beyond those of cost. (It is interesting to observe that a similar 

philosophy has been proposed, albeit in a more extreme form, to provide all of a platform's 

power needs, including propulsion, via multiple microwave links from the ground [12] .)

HAP

modulator r

transmission
lines

data receivermodulator

antenna

retro-array elem ents, x N

downlink:

interrogating 
carrier 
(high power)

reflected 
data signal 
(low power) I

conventional uplink 
(medium power)

ground station ground station

Figure 7.9. HAP communications link via a passive transponder.

Since the transponder would be placed on the HAP, its size and weight would be expected 

to be limiting factors, and the expected RF efficiency of the transponder as a function of its 

size increases may be estimated from the models developed in chapter 5. At this stage the 

frequency of operation should be discussed. Proposed HAP carrier frequencies include the 

bands close to 2 GHz allocated to 3̂  ̂ generation mobile services and the Local Media 

Distribution Service type bands around 28 GHz and 38 GHz discussed in [6]. An 

additional band specifically for HAPs is close to 48 GHz, where 600 MHz of bandwidth is 

allocated. The choice of carrier frequency would dictate the type of technology adopted for 

the transponder. While microstrip has been used with success at 2.5 GHz and 9.5 GHz, and 

would be very suitable for the maritime transponder proposed in the first part of this
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chapter, it is likely to be less suitable at millimetric bands where waveguide might be a 

better solution, which has also be explored in chapter 5.

A further complication in choosing the carrier frequency arises from the apparent fluidity 

of the international regulations - a platform below a height of 20 km may be treated as part 

of a terrestrial system, and may be allowed a greater choice of bands. In addition, the link 

under discussion has no RF transmitter on the HAP and would appear to fall outside the 

conventional classifications. For these reasons, the choice of cenrier frequency will be 

deferred and a link budget will be presented as a function of aperture area only.

7.2.3 Link Budget.

The HAP downlink backhaul groundstation might be similar in specification to a typical 

satellite earth station, but with some important differences. The reduced path length allows 

for a lesser antenna gain and transmit power - their product commonly being referred to as 

equivalent isotropic radiated power (EIRP). It is interesting to observe that the transmitted 

bandwidth is that of the carrier only, since no data is present in the outgoing signal. This 

bandwidth is that of the RF source alone, which is governed by its phase noise. Also, the 

RF power amplifier(s) may be driven fully into saturation without the usual corollary of 

intermodulation distortion, which is again due to the absence of modulation (i.e. data) in 

the transmitted carrier.

To present an elementary link budget which is frequency independent, we may plot 

received power or signal-to-noise-ratio at the ground as a function of the reflector aperture 

length L. For a square array with uniform element spacing, the total number of elements 

is given by :

n =
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where a is the element separation. Since the total aperture gain is the product of the 

number of elements and the gain of each element (n  g ), the RCS for the aperture is:

(7 = (7.8)
Att

where a = s À . Substituting equ. (7.8) into equ. (1.9) yields a term for received power Pi 

which is independent of wavelength À hence:

A( L V  1P =10Logio  ----- g +2Gtr + P̂
yAnrs J

C7.9)

Where powers Pr and Pt are here expressed in dBW, and the transmit/receive antenna gain 

Gtr in dBi. The ratio of received signal power to noise may be shown by subtracting from

(7.9) the thermal noise power (in dBW). Hence signal-to-noise ratio is shown as a function 

of reflector length in Figure 7.10, where noise temperature of 290 K and noise bandwidths 

of 1, 10 and 100 MHz have been used by way of illustration. Element separation a is 0.5 À 

and the element directivity is 3 dBi, which is typical of a single printed antenna.

SNR (dB)

B = 1 MHz
40

B = 10 MHz
30

B = 100 MHz20

10

L (m)

- 1 0

- 2 0

Figure 7.10 Received SNR from square, lossless reflect-array of side length L, at distance
of 30 km, for ground EIRP = 45 dBW.

In Figure 7.10, the quantities Gtr = 35 dBi and = 10 W have been used. To some extent 

the figures are arbitrary, but they have been chosen to be significantly less than for a 

typical satellite earth hub where we may have an antenna gain of 45 dBi and P̂  = 50 W
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[13]. The distance to the reflect-array is 30 km (equating to a ground distance of 22 km and 

a platform height of 20 km). The derivation in Figure 7.10 is straightforward and intended 

only to initiate a first order estimate of the required reflector dimensions - loss terms have 

not yet been included. The actual efficiency of the modulated reflect-array would be rather 

less than unity, and dependent on the carrier frequency and means of construction, as 

discussed below. The dimensions will also be constrained by the payload capability of the 

platform. For example, the European HeliNet [7] solar powered HAP proposes an aperture 

area between 1 and 2 m  ̂ for its broadband payload, while it is anticipated that future 

airship based platforms would support several square metres of aperture.

7.2.4 Link Budget for Lossy Reflectors.

The models for reflector efficiency developed in chapter 5 may be directly applied to 

estimating the effect of reduction of the predicted SNR values. Unlike the derivation of 

Figure 7.10, a carrier wavelength must be chosen, since this scales the lengths of the lines 

which give rise to the loss. The SNR value will be reduced by the difference between the 

lossless aperture and the lossy reflector as illustrated in Figures 5.3 and 5.5, for a given line 

loss Ipm. Choosing again a frequency of 2 GHz, the modified SNR values for a 10 MHz 

signal bandwidth are plotted in Figure 7.11 for nominal Ipm values of 2 dB/m and 4 dB/m 

for both the crossing and non-crossing geometries (from chapter 5, section 5.1).
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Figure 7.11. Received SNR from square, lossy reflect-arrays of side length L, at distance 
of 30 km, for ground EIRP = 45 dBW and 10 MHz noise bandwidth at 2 GHz carrier.

The results in Figure 7.11 will of course scale linearly on changing the EIRP or bandwidth 

etc. It is interesting to observe that where line loss is severe, the link budget improves very 

slowly above a certain aperture length (e.g. 3m. in Figure 7.11) to the extent that the 

increase in fabrication complexity may be considered pointless. It is hence very important 

to choose materials which minimise transmission line loss.

7.2.5 Communications Link to HAP: Conclusions.

The novel type of link described is different from the traditional view of a High Altitude 

Platform downlink implementation: the conventional requirement for antenna alignment 

and power amplification is removed by using a retro-directive array of sufficiently large 

aperture, which acts as a passive transponder. The emphasis on communications 

infrastructure is placed on the ground station, where power and weight constraints are 

much more relaxed than on the platform. We may summarise the properties of the link as 

follows:

Advantages:

• The HAP transponder requires no RF power amplifiers.

• The HAP transponder need not be steered or stabilised.
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• The majority of the RF infrastructure is placed at the ground station.

• The RF power can be increased during adverse weather

• The ground station power amplifiers can be driven into saturation without

intermodulation distortion occurring.

Disadvantages:

• The ground station requires higher RF power compared to a conventional point-to- 

point link, hence it is relatively expensive.

• The transponder is difficult to make efficient and large at higher frequencies.

• The atmospheric loss is squared compared to a one-way link.

The economic viability of the HAP concept for delivery of telecommunications remains to 

be proven. Limitations of solar power sources and uncertainties over stability and station 

keeping present obstacles to communications systems designers. The technique discussed 

could substantially mitigate these limitations, at least in securing a downlink to dedicated 

ground stations for critical data such as command and control, or a backhaul for services 

such as news gathering.
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Chapter 8

Thesis Conclusions and Suggestions for Further Work.

8.1 Conclusions

The original premise of this work, and thesis, was that a structure which can combine the 

properties of retro-directivity and modulation of radar cross section would act as a 

microwave transponder whose power requirements are minimal, and yet support a directive 

and potentially high bandwidth link (in the communications context) and clutter immunity 

(in the radar context). The opening chapter sets out the background for this concept, and 

reviews the literature which is closely related to its aims.

Whilst "optical" reflectors i.e. trihedral reflectors were briefly examined, a modulated 

variant of the Van Atta retro-array was quickly identified as the most promising structure 

to fulfil the above aims. A very limited amount of prior literature on this structure was 

identified. This being the case, a further premise of the work was that means of 

constructing modulated retro-arrays should be explored so as to:

• achieve a manufacturable structure.
• perform measurements to compare with theoretical models of behaviour.
• identify the limits of performance, and seek to expand them.
• identify applications and markets.
• explore and pursue such related discoveries that may occur.

All the above aims have been explored to some extent, and the findings have been reported

in the body of the thesis. The first fabrication techniques involved the use of dipoles as the

radiating elements. A carrier frequency of 2.5 GHz was used, and co-axial cables were

used to inter-connect the antenna pairs. Amplitude (and later phase) digital switches were

incorporated into these lines to act as modulators. When illuminated with a continuous

wave source, a spectrum analyser co-located at the site of the transmitter acted
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conveniently to capture the modulation spectrum reflected from the retro-array. As 

reported in chapter 2, a number of indoor measurements were performed, which 

demonstrated the wide angular response characteristic of the retro-array, and also 

modulation rates up to 250 kHz.

With an aim of making a more manufacturable structure, printed circuits were then 

designed and constructed to combine the functions of antenna, transmission line and 

modulator switch. Initially, the 2.5 GHz design frequency was retained. This part of the 

work involved a very intensive review of microstrip design techniques, and their 

application to developing integrated circuits for retro-arrays. In particular, the layout of the 

printed circuit components on the finite area of the boards required a deep investigation of 

the trade-offs which were identified during the design stages. These are discussed in 

chapter 3. A creative outcome of this work was the development of a further variant of the 

retro-array, which used unequal-length transmission lines. In this case, the wavelength in 

the transmission line medium must be accurately modelled, and line lengths allowed to 

differ by an integer number of wavelengths. Since phase-conjugation then occurs at the 

design wavelength, the structure is a narrow-band variant of the retro-array. Estimates for 

bandwidth were developed in chapter 5, along with models for loss in the array as a 

general case.

The novelty of this approach, which allows for a much less congested printed circuit and 

reduced transmission line loss, formed the pivotal content of an application for intellectual 

property (i.e. a patent application).

An underlying objective, or application, had been the development of a structure to 

enhance target detectability to radar, particularly in the maritime context. This prompted a 

survey of RF frequencies which might be used to scale the foregoing techniques with an 

aim to demonstrating some marketable applications. To this end, x-band was adopted for
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the next phase of the investigation, and specifically the range 9.0 - 9.5 GHz. A further 

design and fabrication stage produced successful prototype 16-element PIN diode 

modulated retro-arrays (both amplitude and phase modulated), whose useful RF bandwidth 

was between about 9.0 and 9.4 GHz and which yielded modulation rates up to 10 MHz (for 

3 dB roll-off in sideband power). These circuits measured about 100 mm square. The 

inherent power consumption of the modulators was modest at around 0.2 mW. (Although 

the CMOS based diode interface consumed considerably more power than this, little 

attention has been paid to this aspect, being a feature of the low frequency electronics 

components.)

The X-band prototypes proved to be a very successful laboratory workhorse and lead to a 

number of experimental results for modulation spectra, received power, DC power 

consumption, angular response, etc. A means of measuring the absolute RCS of the phase 

modulated transponder was developed. In the absence of an anechoic chamber and the 

associated calibration standards, the method compared the power in the spectra of the 

transponder with that of a conventional array antenna of the same aperture, i.e. the same 

antenna element size and spacing. This RCS of this antenna was also phase modulated by 

series connection to a phase switch. The theoretical directivity of the reference antenna was 

derived, and thence its gain by estimating the losses in the printed circuit.

Demonstration of applications were pursued, and these included a communications link 

which utilised a CD bitstream at 5 M bits/s which could be representative of a local-area- 

network or telemetry type application. A further application was a range finding technique 

which used frequency modulated illumination of the transponder. This proved to be a very 

promising application, and signal processing techniques to complement the FM 

measurement were developed which allowed transponder displacements of as little as 10 

mm to be resolved. This accuracy is very good for a radar system, and is possible because
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the transponder acts as a co-operative target to yield an essentially clutter-free 

measurement. The development of this technique is reported in chapter 6.

To close the thesis, two of the more promising applications for passive transponders were 

chosen for discussion in chapter 7, where the dimensioning of the retro-array and the 

corresponding link budget were developed. These applications were (i) a maritime range 

sensor, and (ii) a passive downlink for an aerial platform.

Having presented the conclusions, it remains to close with a short section suggesting some 

of the areas for future work which have occurred to the author.
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8.2 Suggestions for Further Work.

8.1.1 Improvements to the X-band Transponders.

The design of the X-band transponders is covered in detail in chapter 4, where certain 

limitations were identified. These included constraints imposed by the performance of the 

available materials and components, particularly the microwave laminates (substrates) and 

the diodes. Future work could address improvements in this area such as:

• use of dissimilar substrates for the antenna circuit and feed/modulator circuit, i.e. 

thinner substrates for the latter.

• use of better switching diodes, rated to at least 9.5 GHz.

• increasing the number of elements beyond 16

It would also be very interesting to explore the limits of the printed circuits and diodes in 

terms of operating at higher carrier frequencies, where diode selection and 

handling/contacting would be expected to be a critical issue.

8.1.2 Multi-layer Planar Retro-arrays.

A most promising method which might be explored is the use of multi-layer planar feed 

networks for retro-arrays. In chapter 3, the constraints of limited circuit area were 

discussed in some detail, and it is apparent that if the number of array elements is increased 

it would become increasingly difficult to route the interconnecting transmission lines on a 

single planar circuit. However, many of these restrictions could be considerable eased by 

adopting further layers of planar circuit, which might be "stacked". This would require 

more apertures or else apertures which allow for electromagnetic coupling between 

substrates of increased separation. Alternatively, soldered pins might be used to 

interconnect the various circuit layers. From the point of view of the general models for 

transmission line length and the associated attenuation which were developed in chapter 5, 

such an approach would be a hybrid case in between the "crossing" and "non-crossing"
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geometries, since the lines on a given circuit board could not cross, but those on different 

boards would be free to cross. It should be added that a planar transmission line bounded 

by two ground planes is stripline rather than microstrip, and this medium is also well 

characterised. A disadvantage would be the added complexity of the mechanical housing 

and bias supply routing for the diodes. An advantage would be the reduction in circuit 

board congestion. This might allow for more sophisticated modulators to be 

accommodated.

8.2.3 Modulators

The modulators used throughout the work tended to be among the simplest possible, each 

having only 2 switched states. The modulation waveform was therefore inherently digital 

amplitude or phase modulation, with 1 bit per symbol. In a future extension of this work, it 

would be worth considering higher-order modulators so as to allow, for example, 

quadrature phase shift keying, also called 4-PSK, or indeed higher order PSK or combined 

amplitude and phase shift digital modulation. Since such modulation would be done at the 

RF frequency of operation, this would require additional transmission line states (or track 

lengths), each switched by a PIN diode at each end. This would require additional circuit 

space and diodes, but ought not lead to greater power consumption, since only one state 

per switch is powered at any one time. The additional space might be found by adopting a 

multi-layer structure as described above. Data rates would be increased by the associated 

increase in the number of bits per symbol, but of course become more sensitive to noise 

since the energy states in the modulation constellation become closer together.

8.2.4 Applications using superconductivity.

There are an abundance of microwave applications for materials exhibiting 

superconductivity, and related research in these areas. In particular, the materials 

exhibiting "high temperature superconductivity" (HTS) show the most promise for
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marketable applications, although these materials require cooling to around 80 K (for 

Yttrium based compounds) or as high as 125 K (for Thallium based compounds), which 

requires that the HTS device is placed in a cryocooler. For retro-directive arrays, the effect 

of resistive loss in interconnecting transmission lines, (studied and quantified in chapter 5) 

degrades the efficiency of the array and the power budget in the associate communications 

link. If HTS materials could be exploited as the transmission line material, this loss could 

be very substantially reduced. However, the requirement for the cryocooler severely limits 

the applicability of future work in this field: there would be obvious economic 

disadvantages, and the idea of using a retro-directive array as a cheap and lightweight 

transponder would be more-or-less rejected. It might still be worth studying possible retro- 

directive HTS applications for fixed installations (satellite tracking stations, space 

applications etc.) and also operating at higher frequencies e.g. millimetric bands, where a 

multi-element array would be expected to fit within the confines of a cryocooler. 

(Obviously, the latter would need a transparent cover coincident with the array aperture.) 

Even so, it is likely that a more practical solution to the problem of loss is simply to scale 

up the aperture size to achieve the required RCS, and it is hard to imagine that the cost and 

complexity of a cryocooled HTS solution would compete with this approach.

However, if this discussion is extended to the more general field of active self-phasing 

circuits, which are briefly summarised in Appendix 2, an intriguing possibility is suggested 

by the method shown in Section A 2.3. Here, an antenna array achieves self-phasing by use 

of a pilot carrier, and the pilot and signal channels are diplexed by means of filters. For 

good operation, the pilot and signal need to be very close in frequency, but the finite 

isolation and roll-off of conventional filters place a limitation in this respect. If HTS filters 

could be exploited in this area, then a self-phasing antenna could be realised. This would 

have no phase shifters, processor, or moving parts. Possible applications might include 

ground station antennas for Ka band satellites in low earth orbits (LEOs), or indeed
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stratospheric platforms as discussed in chapter 7. As an example, an antenna with a gain of 

30 dB at 30 GHz requires a diameter the order of 100 nun. One could envisage this 

dimension as manageable for a circuit placed in a cryocooler. An alternative approach to 

the filtering requirement in this self-phasing architecture is down-conversion of the RF 

pilot and signal channels to an IF frequency tractable for digital signal processing 

techniques. Thus, HTS and DSP represent quite different solutions to achieving very tight 

filter specifications, the former operating at RF and in the analogue domain, the latter at IF 

and in the digital domain. Their pros and cons, and also the extent to which they can be 

complementary techniques, are discussed in [1] in the context of filtering and frequency 

transposition for digital terrestrial broadcasting.

[1] "Transposer systems for digital terrestrial television", P. B. Kenington, K. Hayler, P. N. Moss,

D. J. Edwards, A. P. Jenkins and M. Johnstone, lEE Electronics and Communication Engineering 

Journal, February 2001, pp.17 - 32.
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Appendices

A 1. Microstrip Losses.

At the earliest stages of the design of the microstrip circuits, the trade-offs between 

practical layout and performance, in terms of losses, impedance matching and parasitic 

coupling, were always carefully considered. These issues have been explored in some 

detail in chapters 3 and 4. Of particular interest are the inter-relationships between 

transmission line characteristic impedance and attenuation as a function of line width. 

Characteristic impedance may be estimated by the equations given in chapter 2, and the 

CAD tool Linecalc (HP EESOF/Libra) was also extensively used in practice. In this 

appendix, three methods are used to derive the microstrip transmission line loss term, since 

its magnitude is of such direct consequence to the efficiency of the passive transponder. 

Firstly, empirical models from the literature are summarised. Secondly, the CAD 

simulation tools are compared, and the implications of modelling non-50 Q transmission 

lines explored. Thirdly, some of the lines on a spare feed line circuit were measured.

A 1.1 Empirical Models.

(i) Conductor loss.

To estimate conductor losses, the relationship [A.l]:

Oc = Np/m where Rs =
wZo M 2(7

which for copper may be written [A.2]:

CUc = 0 . 0 7 2 À TL  dB per microstrip wavelength

where/is the frequency in GHz, Àtl is the wavelength in the line, w is the line width and 

Zo is the characteristic impedance. An addition multiplication factor of 1.6 may be applied 

to account for a 1 pm r.m.s surface roughness which is typical of commercially available 

copper cladded laminates.
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To calculate Uc, values of Zo as a function of w were first derived from EES OF Linecalc. 

The laminate used here is Taconic TLC with h = 0.79 nun and £r =3.0. A Mathematica 

program was written to derive an estimate of X,tl for each value of w, using equations 2.3 

and 2.4 (see chapter 2) and hence derive Uc , - the results are presented in Figure A. 1.1 

below.

Zb (Ohms )

150

125

100

w  (ttm )

a c  (c£ /A)

0.4  

0.3 

0.2 

0.1

w (ttm)

(a) Zo versus w. (b) oCc versus w

Figure. A. 1.1: Characteristic impedance and conductor loss (including 1.6 factor for 
roughness) as a function of microstrip line width in Taconic TLC microwave laminate. Qi

= 0.79 mm and er = 3.0)

(ii)Dielectric loss.

Although conductor loss dominates the dielectric loss for low-loss microwave laminates 

such as alumina and sapphire [A.2], for the PTFE based laminates used the dielectric loss 

becomes significant. The approximation:

^ £r(^Srejf — 1) t&H Ô
(Xd = 11.5----------------------  dB per nucrostrip wavelength

£ r e f f ( 3 -  — 1)

was used. Figure A. 1.2 below shows this parameter as a function of line width w for the 

Taconic substrate.
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Figure A. 1.2. Dielectric loss in microstrip for Taconic TLC microwave laminate.
Qi = 0.79 mm and Br = 3.0)

(iii) Total loss.

The sum of the conductive and dielectric losses from the above derivations, in dB per 

microstrip wavelength, is shown in figure A. 1.3

(d B  / A )

0

0

0

2 31 4 5

total loss 

dielectric loss 

conductor loss

w (mm )

Figure A. 1.3: Estimated total microstrip loss and its components, in Taconic TLC 
microwave laminate, (h = 0.79 mm and Sr = 3.0)

The essential conclusion from the above results is that narrower microstrip lines rapidly 

become more lossy when the width is reduced below a certain value -  about 1 mm in this 

case. This work justified the use of 1 mm wide lines in the x-band retro-array prototypes 

(recall that a reduction in line width was sought to increase the spacing between the 

antenna feed lines).
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A 1.2. Simulation.

To model loss effects in lines of various widths, re-course to the CAD simulators was not 

entirely straightforward. The simulators available were the Libra transmission line model, 

and the Momentum method-of-moments simulator. In each case, conductor loss and 

dielectric loss factor are used as input parameters in addition to the usual microstrip 

geometry. For the main substrate of interest (Taconic TLC), the material specifications 

were:

h = 0.79 mm. Tan 5 = 0.003, Sr = 3.0

while the value for copper resistance used was 0.022 Q per square.

When transmission lines of other than 50 D characteristic impedance were analysed, it was 

necessary to avoid a mis-match at the port by either:

(i) Editing the port impedance to match the line impedance, possible in Libra only (not 

Momentum)

(ii) Add additional quarter wave impedance matching lines between the ports and the line 

of interest.

In case (i), an uncertainty arose from a possible mismatch at the port, i.e., the line 

impedance derived from Linecalc may not have been exactly the same as the line 

impedance used by the Libra simulator. Therefore, any reflection at the port, however 

small, corrupts the simulated measurement of loss. For this reason, a line length of 100 

wavelengths was used so that the result would be dominated by the resistive loss, not 

reflections. The results thus obtained are shown in figure A .l.4 below.
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Figure A. 1.4: EESOF Libra Simulated microstrip loss, in Taconic TLC microwave
laminate, {h = 0.79 mm and £r = 3.0)

In case (ii), the addition of matching sections imposes a bandwidth limitation on the study, 

although this is of little consequence. It also implies that the loss in the matching sections 

is included in the overall result. This method is unnecessary for the Libra simulator, where 

the port impedance can be edited as described, but is vital for the Momentum simulator. In 

the latter case, the physical accuracy of the simulator models the reflections at the step 

discontinuities -  hence a reflective effect corrupts the measurement of resistive loss. 

However, by arranging for a line length of one quarter wavelength, the step reflections 

approximately cancel. The "approximately" caveat applies because the quarter wavelength 

dimension derived from Linecalc is not necessarily in agreement with the more "physical" 

Momentum simulator. To minimise both effects (reflection and matching section line loss ) 

a second simulation utilised an additional half wavelength of line in the microstrip line of 

interest. The geometries are shown in figure A. 1.5 below, where the reflective plane is 

represented by F.
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Matching sections

1/4 1/4
< > < >
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31/4
y

(line of interest)

Figure A. 1.5 Microstrip loss simulation in EESOF Momentum.

Hence the first simulation acts as a calibration standard for the second simulation. The 

difference between the second and first simulations gives the loss for a half wavelength of 

the line of interest, where the first simulation has acted as a calibration standard to 

minimise the effects of resistive and reflective loss in/at the matching sections.

Results derived using Momentum, for the TLC substrate at 9.5 GHz, are as follows:

(For the 50 Q case, the matching sections were not required)

w = 1.9 mm, Zo = 50 Q, loss = 0.04 dB /I  

w = 1.0 mm, Zo = 73 Q, loss = 0.078 dB / I  

w = 0.5 mm, Zo = 100 fl, loss = 0.080 dB / I
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The 1 mm width line was that used in the X-band retro-reflector prototypes. The results 

from the simulations suggest that the empirical approximations in Figure A. 1.3 above are 

slightly pessimistic, since the Libra simulated result is lower by a factor of about 1.5. Too 

few Momentum simulations were performed to demonstrate the rapid rise in loss below 1 

mm line width.

A 1.3 Measured loss in a retro-reflector feed circuit

Measurements of loss in an X-band feed circuit were performed. Coaxial probes were used 

to couple a spare circuit to a vector network analyser, via drillings through the laminate. 

The antenna circuit was not required, so the apertures in the ground plane were covered 

with copper tape. The gaps in the feedlines intended for the PIN diodes were bridged with 

solder.

Since the microstrip characteristic impedance of 73 Q involves a match of -14 dB at the 

interface with the 50 Q coax measurement system, the measurement of loss is slightly 

corrupted by this reflective component. However, a 14 dB match is sufficient that the 

resistive loss dominates the measurement. Also, the loss in the co-axial probes (of about 25 

mm length each) could not be calibrated out of the measurement. These effects are 

removed by taking a number of measurements of different line lengths -  the difference in 

loss for a given change in line length allows computation of loss in the microstrip alone.

The results are summarised in figure A. 1.6 below, where total measured loss is plotted 

against microstrip line length. The slope of the linear fit gives the loss per unit length, and 

the intercept on the y-axis gives the loss in the co-axial probes and connections.
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Figure A. 1.6 measured microstrip loss at 9.5 GHz, and linear fit, in a retro-array feed 
circuit on Taconic TLC microwave laminate. Qi = 0.79 mm and 8r= 3.0)

Measured results.

The linear fit for measured microstrip loss is :

Loss (dB) = 0.986 + 0.0076 L 

where L is the line length in mm. Hence the un-calibrated loss in the measurement (y-axis 

intercept) is 0.986 dB and the inherent microstrip loss is 0.0076 dB per mm, or 0.16 dB per 

microstrip wavelength at 9.5 GHz.

A 1.4 Summary of loss study.

Table A.l below summarises the results for loss in the 1mm wide microstrip on the 

Taconic TLC microwave laminate.

empirical model Libra simulation Momentum simulation measured & linear fit

0.180 0.115 0.078 0.160

Table A.l Loss in dB per microstrip wavelength at 9.5 GHz.
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Economie Considerations.

The loss may be minimised by selection of the lowest loss laminates commercially 

available. While detailed results for the Taconic TLC laminate have been presented, it has 

not been feasible to repeat the study for every laminate available. However, a reasonable 

estimate of a minimum figure for loss may be obtained by consideration of the loss tangent 

specified by manufacturers. For example, the laminate RT/duroid 6002 manufactured by 

Rogers has a specified loss tangent of 0.001. Although this appears to be much better than 

the Taconic TLC figure of 0.003, it should be kept in mind that the conductor loss tends to 

dominate the dielectric loss, as seen in Figure A. 1.3 above. Recalling that the empirical 

model was pessimistic compared to the measured result by the order of 0.2 dB per 

microstrip wavelength, and considering an ideal laminate with zero dielectric loss, we 

would still expect a conductor loss of about 0.09 dB per microstrip wavelength in this ideal 

case. For RT/Duroid 6002, a figure of 0.11 dB per microstrip wavelength is estimated, 

representing an improvement of 0.05 dB per microstrip wavelength at an estimated five

fold increase in cost. Clearly the effect of loss is an important factor in the performance of 

a microwave retro-reflector, especially when fabricated on microstrip. Reflector loss has a 

direct effect on the link budget for a communications system employing a retro-reflector. If 

an increase in reflector RCS is sought by designing and fabricating a larger array, the 

circuit loss increases rapidly for the lines connecting the outer elements of the antenna 

array, as explored in some detail in chapter 5.
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A 2. Active Self-phasing Architectures.

The retro-directive array, which has been the central theme of the thesis, is one sub-class of 

a more general class of structures which achieve approximate self-phasing through phase 

conjugation. As alluded to in the first chapter, while a retro-directive array without 

significant sources of microwave power can be called "passive", a structure which either 

amplifies the retro-directed signal, and/or achieves phase conjugation through the use of 

mixers and their associated local oscillators is better described as an "active" circuit. (In 

practice, phase conjugator circuits would be implemented as arrays - i.e. a multiplicity of 

circuits - for the term to be meaningful.) Since the active phase conjugator differs from the 

"passive" in terms of circuit complexity and power consumption, it represents a quite 

different type of solution for self-phasing communications applications. However, for the 

sake of completeness, and with the intention of both setting this work in a wider context 

and stimulating ideas for further related research, this section will review some of the 

active phase conjugator methods which have appeared in the literature.

A 2.1 Active Van Atta Array.

The Van Atta array achieves phase conjugation through use of equal length transmission 

lines. The modulated variant has been the subject of this work, and a novel variant using 

unequal-length transmission lines has been demonstrated and discussed at length in the 

thesis. It has been called a passive array, or transponder. Thus it is a repeater, rather than a 

transmitter or receiver. It operates at any frequency, within the bandwidth of the radiating 

elements. It does not add energy to the system. Thus, to be particularly useful, it needs to 

be electrically large and have many elements and thus exhibit a radar cross section which 

is much larger than that of a single scattering element.

The unmodulated variant has zero power requirement, while the modulated variant has 

fairly minimal power requirements.
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switch/modulator

y

antennas

(a) Van Atta Array (b) Modulated Van Atta Array

Figure A.2.1 "Passive" Van Atta Array

In the active case, amplifiers are used to add power to the retro-directed signal [A.5], [A.6]. 

This requires the use of circulators, the finite isolation of which limit the magnitude of 

amplification which can be practically used, since the circuit would tend to oscillate. A 

second configuration does not use circulators, and increases the isolation between the 

elements by adding a (small) frequency offset and also using the orthogonal antenna 

polarisation for the retro-directed signal. The use of a frequency offset leads to a phase 

conjugation error, or pointing error A0 given by

A0 = - — tan 00 
f

where 0o is the scan angle i.e. the angle of arrival from boresight.

(Approximate) phase conjugation is still produced by the equal transmission line lengths.
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(a) Active Van Atta Array

polarisation 1polarisation 1
 polarisation 2

antennaantenna polarisation 2

(b) Frequency Offset Active Van Atta Array 

Figure A.2.2 "Active" Van Atta Array

A 2.2 Heterodyne phase conjugation.

(i) simple phase conjugator.

Here, the incident signal V rf  exp(j COo t + cp) has a phase (|), while the local oscillator 

V lo exp(j 2 œo t + a ) , running at twice the incident signal frequency and with an arbitrary 

phase a, have a mixing product Vprodexp(j œ o t-a  + rp). Thus the phase front of the

outgoing signal has phase - (|) at every element, plus the arbitrary term a. While only a 

single element has been shown, array gain is sought in practice and many elements would 

be used. In this case, the elements are not inter-connected in the manner of the Van Atta 

array, and phase conjugation will occur for arbitrary element positioning. However, all the 

local oscillators must be phase locked so that the term a  is indeed constant at every 
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element. Thus the LO distribution is a significant practical problem. The finite circulator 

isolation means that the above circuit is not generally accepted as a practical one.

Local Oscillator mixer

circulator

antenna

Figure A.2.3 Simple phase conjugator circuit

(ii) Heterodyne conjugator

This is basically the simple conjugator with a frequency offset. As shown above, use of a 

frequency offset improves the isolation between the incident and outgoing signal, but leads 

to a pointing error. Refs [A.7],[A.8],[A.9] provide useful material. In a large array, the 

need to distribute a coherent LO signal to each element can be problematic [A. 10].
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Local Oscillator mixer
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antenna

(a) Heterodyne phase conjugator (after Ron)

polarisation 1 

antenna

w w

polarisation 2polarisation 2
polarisation 1 

antenna

(b) Ron retro-directive array 

Figure A.2.4 Heterodyne phase conjugator circuit 

A 2.3. Pilot signal as local oscillator.

Here, a pilot signal which is very similar in frequency to the message signal, is transmitted 

[A. 11], [A. 12]. hi Figure A 2.5 one receiver element is shown, where the pilot and 

message frequencies are separated by filtering, and then mixed so as to produce 

approximately coherent down-conversion. In an array, the output of many such elements 

may be summed. Variants for combining transmit and receive functions are described in 

[A.11].
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Figure A 2.5 Receiver with Signal and Pilot.
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A 3. Multi-tone modulation.

Further to chapter 4, section 4.3.1, modulation spectra for non-monotonic modulation 

waveforms are here presented. The carrier is again a continuous wave at 9.2 GHz and the 

transponder orientation is on boresight.

A 3.1 Dual tone modulation.

Dual tone modulation represents a progression from monotone modulation whereby the 

transponder is assigned a unique signature or code. In this case, identification of the 

transponder requires de-modulation to obtain the two modulation frequencies only. By way 

of example. Figure A.3.1 shows spectra for dual tone modulation

dBm
-50-5 0

-60

-70 -70

f MHz f MHz9 2 0 09 1 9 5 9 2 0 5 9 2 1 0 9 1 9 5 9 2 0 59 2 0 0 9 2 1 0

(i) 2.5 MHz and 2.9 MHz (ii) 6.1 MHz and 6.5 MHz

Figure A.3.1 Dual tone modulation spectra

A 3.2 Direct sequence spread spectrum modulation.

Figure A.3.2 shows example spectra where the modulation waveform is a pseudo random 

binary sequence, or code, obtained from the output of a sequence generator [A.3]. The 

code is a 127 bit M-sequence [A.4] where the clock (or "chipping") rate may be varied. As 

the clock rate is increased, the modulation products are evidently more widely spread, to 

the extent that the spectrum starts to appear noise-like, as seen in case (iii).

A-16



dBm 

-50 

-60 

■70 

■80 

■90

dBm

9198 9200 9202 9204 9206

-50

-60

-70

-80

-90

f MHzMHz 9198 9200 9202 9204 9206

(i) no modulation: (ii) clocked at 1 MHz

dBm

■50

■60

•70

80

■90

9198 9200 9202 9204 9206
f MHz

(iii) clocked at 5 MHz

Figure A.3.2 Direct sequence spread spectrum: modulation spectra
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