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Abstract

This thesis presents epidemiological and gene mapping studies of the genetics of 

osteoporosis and low bone mineral density (BMD). BMD is a highly heritable trait. 

However the genes that underlie the population variance in BMD remain unknown.

Genetic epidemiological studies of families collected for gene mapping investigations 

demonstrated significantly low BMD in siblings and relatives of probands with 

osteoporosis. A sibling recurrence risk ratio (Xs) for low BMD was established, with Xs 

o f  6.26 at lumbar spine (LS) and 5.24 at femoral neck (FN), and heritability of BMD 

estimated at 60% for LS and 48% for FN. There was also evidence of both site- and 

gender-specific genetic effects.

A large candidate gene linkage study demonstrated linkage of BMD with several loci, 

notably Parathyroid Hormone Receptor Type 1 (PTHRl), type 1 Collagen alpha-1 

(COLlAl), type 2 Collagen alpha-1/Vitamin D Receptor, Interleukins 1,4 and 6, 

Epidermal Growth Factor, RANKL and Estrogen Receptor-alpha.

Mutation screening of PTHRl exons and promoter regions revealed both previously 

described and new polymorphisms. Association of BMD at LS with a polymorphism 

present in exon M7 of PTHRl was demonstrated in both population-based and within^ 

family association studies.

A within-family association study of a polymorphism in the first intron of COLlAl 

found no evidence of association with BMD. However, when only maternal
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transmissions were considered, there was evidence of association with BMD at FN, 

suggesting the possibility of imprinting of this gene.

Further genetic studies of PTHRl and other genes identified as contributing to the 

population variance o f BMD will help clarify their roles in the determination of BMD 

and the development of osteoporosis.
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Chapter 1 : Introduction

1.1 Osteoporosis: Definition and Epidemiology

Osteoporosis is a systemic metabolic bone disease characterised by decreased bone mass 

and microarchitectural changes, resulting in increased fragility of bone and a propensity 

to fracture (Consensus development conference V 1994). Osteoporosis may result in 

fracture of any bone, however the most common sites are bones with high trabecular 

bone content -  the vertebrae, hip and distal radius. Osteoporotic fracture rates increase 

exponentially with age in both men and women (Melton 1988). However, there is 

approximately a two-fold higher incidence of fracture in women compared with men for 

all age-related fracture rates, mainly due to postmenopausal accelerated bone loss.

Osteoporosis is the most prevalent metabolic bone disease in the developed world and is 

becoming increasingly prevalent in the developing world. Hip fractures are the most 

serious clinical outcome of osteoporosis, because they account for most of the mortality, 

morbidity and costs of the disease. There are substantial race and sex differences to hip 

fracture rates. In American Caucasians aged 50 years, the remaining lifetime risk of hip 

fracture is 11-18% in women and 6% in men (Melton et al. 1992), with approximately a 

2:1 female to male fracture ratio. A similar female-to-male fracture ratio has been 

reported in Australian Caucasians (Jones et al. 1994). Hip fracture rates are lowest in 

black populations, with about one third of the risk of hip fracture for Caucasians, with 

rates in Asian populations about half the Caucasian rate (Genant et al. 1999). The female 

to male ratio of fracture in these populations is lower than in Caucasian populations. Hip 

fracture rates are expected to quadruple worldwide from an estimated 1.66 million hip

1



fractures in 1990 to 6.26 million by 2050, with approximately 75% expected to occur in 

the developing world of Asia and Latin America (Cooper et al. 1992). Thus an 

increasing proportion of fractures will occur in men, in whom -  at least in Caucasian 

populations -  mortality after a hip fracture is higher than for women (Center et al. 1999; 

Forsen et al. 1999; Jacobsen et al. 1992).

Vertebral fracture incidence is more difficult to estimate, as many vertebral fractures do 

not come to clinical attention. Using radiographic evidence of vertebral deformity to 

indicate vertebral fracture, prevalence rates have been estimated overall at 12% in 

European males and females aged over 50 years (O'Neill et al. 1996). Prevalence also 

increased with age in both sexes, though more steeply in females than in males, and 

fracture rates were higher in more Northern countries. Slightly higher figures were 

reported in a North American study, with marked increase in vertebral fracture 

prevalence with age (Cauley et al. 2000). An Australian study found that at least 17% of 

males and 12% of females aged 60 years or older have vertebral deformity, and the 

overall residual lifetime risk of any fracture (the bulk of which are fractures o f the hip, 

vertebrae, humerus and distal radius) for a person aged 60 years with average life 

expectancy is 29% in males and 56% in females (Jones et al. 1994).

Mortality is increased after osteoporotic fracture in both men and women, with greater 

mortality in males following all types of osteoporotic fracture compared with females. A 

large Norwegian study showed mortality rates for hip fracture of 31% in males and 17% 

in females (Forsen et al. 1999). Although most deaths occurred in the first year after 

fracture, the excess mortality in fracture patients persisted for at least 5 years. The



relative risk o f dying for patients with hip fracture compared with controls was 4.2 for 

men and 3.3 for women. Age-adjusted mortality ratios following hip fracture in an 

Australian study were somewhat lower at 3.17 for males and 2.18 for females (Center et 

al. 1999). Of note, excess mortality from hip fracture was evident in all age groups, but 

was highest in younger patients (Center et al. 1999).

Increased mortality also occurs in patients with clinically diagnosed vertebral fractures. 

The only study to assess mortality after clinically evident vertebral fracture in both men 

and women demonstrated age-adjusted mortality ratios of 2.38 for males and 1.66 for 

women (Center et al. 1999). The result for women concords with a previously published 

study of mortality after vertebral fracture in women (Cooper et al. 1993). Both these 

studies suggested that increased mortality after vertebral fracture might be due to co- 

mo rbid conditions increasing the risk of both death and osteoporotic fracture, rather than 

necessarily arising from vertebral fracture per se. Patients with radiographic evidence of 

vertebral deformity also have reduced survival, with excess mortality rate ratios o f 1.9 in 

women and 1.3 in men (Ismail et al. 1998) but after adjustment for adverse health and 

lifestyle factors, the excess mortality rates were not significant in either sex, supporting 

the concept that excess mortality observed in patients with vertebral fractures may be due 

to other factors.

Morbidity is also highest from hip fractures. Acute complications include pressure sores, 

urinary tract infections, pneumonia, anaemia, and operative and anaesthetic 

complications, in addition to the pain of the fracture. Chronic complications include loss 

of mobility (of the 80% of patients ambulant before hip fracture, 50% are unable to walk



independently afterwards), loss of independence and a high risk of institutionalisation. 

Morbidity from other osteoporotic fractures is also not inconsiderable, with vertebral 

fracture resulting in back pain, kyphosis, height loss, and loss of quality of hfe (reviewed 

in (Cooper 1993)).

1.2 Clinical Picture

Osteoporosis is a clinically heterogenous condition and can result from more than one 

pathological process. It can be divided into primary (or idiopathic) osteoporosis, and 

secondary osteoporosis, resulting from a number of causes (see Table 1.2). Historically, 

primary osteoporosis was previously further subdivided into type 1 osteoporosis, 

referring to postmenopausal osteoporosis in women, and type 2 osteoporosis, bone loss 

due to ageing, occurring in both men and women. However, this subdivision is 

somewhat artificial, as there is no histological difference between the two types. 

Additionally, this model implies that osteoporosis is solely a disease of loss of bone 

whereas bone mass at any one point in time is the result of peak bone mass achieved and 

subsequent bony loss.

Peak bone mass is achieved in both sexes after a period of rapid pre-pubertal bone growth 

with a post-pubertal period of consolidation lasting approximately a decade. The greater 

peak bone mass observed in men is mainly due to greater bone size (Henry et al. 2000; 

Orwoll et al. 1995) and true volumetric bone mineral density (BMD) may not differ 

between the sexes or may even be higher in women (Seeman 1995). BMD is thought to



be maximal between the ages of 20 and 30 years, after which bony loss due to ageing 

becomes noticeable. Peak bone mass predominates in determining overall bone mass 

until late in life when bone loss becomes increasingly important. At age 65 years, peak 

bone mass and bone loss are thought to contribute equally to the overall variance of 

BMD, but by age 80 years bone loss accounts for approximately 80% of the variance in 

BMD (Cooper 1997). It is not clear whether the mechanism by which a person has low 

BMD -  either failure to achieve good peak bone mass, or subsequent excessive bone loss 

-  has any bearing upon fracture risk. However some studies have shown that markers of 

bone resorption predict hip fractures independently of BMD (Gamero et al. 1996; Melton 

et al. 1997), suggesting that increased bone turnover per se is a risk factor for fracture, 

whilst an isolated longitudinal study o f forearm BMD in women suggested that rapid 

bone loss contributes as much to risk of fracture as does low BMD (Riis et al. 1996).



Table 1.2: Secondary Causes of Osteoporosis

Secondary Causes of 

Osteoporosis

Examples

Endocrine disorders Hypogonadism (primary or secondary)

Hyperthyroidism

Hypercalciuria

Cushing’s syndrome

Hyperparathyroidism

Malignancy and infiltrative 

conditions

Multiple myeloma, leukaemias and lymphomas 

Waldenstrom’s macroglobulinaemia 

Mastocytosis

Gastrointestinal disorders Malabsorption of any cause, including coeliac 

disease

Gastrectomy (especially males)

Chronic liver disease

Drugs Glucocorticoid therapy 

Anticonvulsant therapy 

Heparin

Excessive thyroxine replacement 

Pro tease inhibitors

Renal disorders Renal tubular acidosis 

Chronic renal failure

Cigarette smoking

Inflammatory conditions Rheumatoid arthritis 

Ankylosing spondylitis

Dietary Vitamin D deficiency 

Calcium deficiency 

Alcoholism

(N.b. Modest alcohol intake is not associated with 

low BMD or fracture)



1.2.1 Bone Mineral Density

The major clinical outcome of osteoporosis is fracture. Fracture risk clearly depends on 

bone fragility but also upon other factors, principally exposure to trauma, which are 

difficult to measure and control for in analysis. Further, fracture incidence rates are quite 

low, making collection of sufficient clinical resources for research purposes both difficult 

and expensive. Therefore whilst the study of fracture rates has the major advantage of 

direct biological relevance, measuring the amount of bone tissue is much easier and more 

precise, and thus low BMD is frequently used as a surrogate or synonym for osteoporosis, 

especially for clinical and genetic research.

The close association between BMD measured by densitometry at hip or spine and 

subsequent fracture risk of both sites has been shown in longitudinal and cross-sectional 

studies in both men and women. Prospective studies have shown that the risk of fracture 

in general increases with decreasing BMD, regardless of measurement site, with overall 

fracture risk approximately doubling for each standard deviation (SD) decrease in bone 

mineral density (Genant et al. 1999; Wasnich 1993). However, the relationship between 

site-specific BMD measurement and subsequent fracture of that site is even greater. 

Cummings and colleagues found the age-adjusted risk of hip fracture per SD decrease in 

femoral neck (FN) bone density was 2.6 in women, with BMD measurement at FN a 

better predictor than BMD at lumbar spine (LS) or radius, although low BMD at LS and 

radius also resulted in an increased risk of hip fracture, with risk of 1.6 per SD decrease 

in BMD (Cummings et al. 1993). A large prospective study in the Netherlands recently 

showed that the relative risk of hip fracture per SD decrease in femoral neck BMD was



2.5 for women, and 3 for men (De Laet et al. 1998). A recent Meta-analysis of 7 

prospective studies measuring BMD at various sites reported the highest relative risk of 

subsequent hip fracture per SD decrease in BMD at femoral neck and trochanter (RR of 

2.29 and 2.22 respectively), although the analysis also found that BMD at any site was 

predictive of subsequent hip fracture (Woodhouse et al. 2000). These results concorded 

with a previous Meta-analysis of the overall and site-specific predictive value o f BMD 

(Marshall et al. 1996). Conversely, patients with fracture have been found to have 

generalised osteopaenia with BMD lowest at the site of fracture (Aloia et al. 1992; 

ChevaUey et al. 1991; Firooznia et al. 1986). A study of male patients with either 

vertebral or femoral neck fracture found site specificity of diminution of both bone size 

and BMD (Seeman et al. 2001). In addition to clinical data, mechanical testing of failure 

load for cadaveric bone samples of femur, vertebra and calcaneus is highly correlated 

with site-specific BMD measured by dual energy X-ray absorptiometry (DXA), with 

somewhat weaker although still positive correlations with BMD measurements at other 

sites (Cheng et al. 1998).

The correlation between BMD measured at different sites is closer in the younger healthy 

population than in patients with significant bone loss. As rates of bone loss differ at 

different sites, it is not surprising that the correlation of BMD between sites declines with 

age (Kanis et al. 1994), and therefore site-specificity o f BMD measurement and fracture 

prediction may increase. Additionally, BMD measurements may become less accurate 

with age at some sites such as the lumbar spine, where aortic calcification, spinal 

osteoarthritis and the presence of osteophytes bias projectional BMD measurements (see 

below). Indeed, age-related bone loss, which proceeds at all sites after about the age of
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30 years, may not be measurable at the lumbar spine in the elderly because of the 

increase in the presence of confounders (Brown et al. 2001; Burger et al. 1994) in both 

men and women. Lateral DXA scanning can provide a BMD reading free of the effect of 

such confounders. Overall, bone loss with ageing is higher in women than in men 

(Hannan et al. 2000).

The World Health Organisation has defined osteoporosis in white women as BMD 2.5 

SD below the mean for a young healthy population (a t-score of-2.5 or below). 

Osteopaenia is defined as BMD with t-score between-1 and -2.5 (Kanis et al. 1994). Of 

those women who fracture, 95% will have BMD below the -2.5 SD threshold (Maricic et 

al. 2000); and the prevalence of osteoporosis defined by this threshold approximates the 

prevalence of osteoporotic fracture (Kanis et al. 1994). Women with osteopaenia are also 

at increased risk of fracture, and intervention to improve BMD will lessen their fracture 

risk. Defining osteoporosis by BMD values allows identification o f a patient cohort with 

low BMD, whether the cause is failure to achieve good peak bone mass or rapid bony 

loss. It does not help with planning preventative measures.

The appropriate BMD values to define osteoporosis and osteopaenia in males or in non- 

Caucasian populations are not known. Melton and colleagues, having formulated a male 

normative data base locally, found that using a threshold of a t-score of-2 .5  at either hip 

or spine resulted in prevalence rates of BMD-defined osteoporosis of 19% of males over 

50, an overestimate of the actual osteoporotic fracture rate that they observed for males of 

13% (Melton et al. 1998). Other studies have found a higher prevalence of osteoporotic 

fracture in men, some with estimates as high as 25% of males aged over 60 years



(Nguyen et al. 1996). However, using the normative database provided by the 

manufacturer for each type of densitometry machine (excluding CT scanning) Faulkner 

and Orwoll found 4-9% of males with a t-score less than -2.5, a substantial under

representation of the group who will fracture (Faulkner et al. 2000). Using a t-score o f-2  

resulted in a prevalence o f osteoporosis as defined by densitometry measurements that 

more closely correlated with fracture prevalence, and thus provided a better identification 

of the group who would benefit from intervention. Use of a t-score less than -2.5 using 

the normative database established by the US National Health and Nutrition Examination 

Survey (NHANES III) also underestimated the frequency of male osteoporotic fracture 

(Looker et al. 1997). The use of a male-derived cut-off value (lowest quartile of BMD) 

correlated better with vertebral fracture prevalence than the use of female-derived cut

offs (Cauley et al. 2000). Thus further epidemiological work is needed to determine the 

appropriate use of BMD to define osteoporosis in men.

1.2.2 Measurement of BMD bv Dual Energv X-rav Absorptiometrv

BMD measurement can be performed by a number of techniques. True volumetric bone 

density can be measured by computerised tomography (CT) scanning, which also allows 

differentiation of cortical and trabecular bone. CT scanning involves substantial radiation 

exposure and is thus unacceptable as a means of monitoring BMD as many repeat scans 

may be needed. Absorption of either X-rays from a cathode ray tube or photons from 

degenerating I^^Ms the common method of assessing BMD. BMD can be assessed at the 

wrist using single energy photon or X-ray absorption, or at the lumbar spine and femur 

using dual energy photon or X-ray absorption. These sites, the most common sites of
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osteoporotic fracture, are rich in trabecular bone. Although overall trabecular bone 

accounts for only 15% of the skeleton, the lumbar spine consists of over 75% trabecular 

bone, the intertrochanteric area of the femur 50%, the femoral neck 25%, and the distal 

radius 25% (Mundy 1999).

DXA is widely used in the assessment o f osteoporosis because o f its rapidity, low dose of 

ionising radiation and high precision (coefficient of variation of 0.5-1.5%) (Genant et al.

1996). DXA scanning of the vertebral bodies of the lumbar spine and the femur involves 

a projectional technique in which total calcium content (calculated by the absorption of 

X-rays) is divided by the area of the bone. This results in an areal bone mineral density 

rather than a true volumetric measurement. Such a result is biased by the size o f bones in 

that a larger bone will appear to have higher BMD due to the greater depth of bone in the 

area scanned. In general this is not considered in clinical practice. If bone size itself is 

an important predictor of bone strength (and bone size is predictive o f fracture 

independently of BMD (Gilsanz et al. 1993)) then adjusting BMD for measures of bone 

size will reduce the information about fracture risk, whereas areal BMD captures both 

facets of bone size and bone density (Compston 1995). However, both areal bone density 

and estimated volumetric bone density of the hip have been shown to have very similar 

predictive values for hip fracture in vivo (Cummings et al. 1994) and ex vivo (Tabensky et 

al. 1996). Further, measurement of areal BMD will underestimate the true bone density 

loss with ageing, due to periosteal appositional growth continuing throughout life and 

increasing bone dimensions (Kanis et al. 1994).
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Carter and colleagues proposed several methods of calculating a true volumetric bone 

density (measured in g/cm^), which they called bone mineral apparent density (BMAD) 

(Carter et al. 1992). In order to calculate BMAD, approximations for bone thickness and 

hence bone volume were considered. Candidates that would allow adjustment of BMD 

to an anthropomorphic measure that would reflect bone thickness included height; the 

square root of observed bone area (which the authors demonstrated was also proportional 

to height); and observed bone width (although this information is not usually given in 

bone densitometry reports; however, it can be formally measured by the investigator from 

the printed output picture of the bone in question). Using these approximations. Carter 

and colleagues demonstrated that BMAD was independent of height and weight. As 

mentioned above, the importance of BMAD or other measures accounting for bone size is 

not so much in the clinical context (where an individual may have repeat BMD to follow 

the development and/or treatment of osteoporosis) as in the research setting, where 

comparison of BMD of individuals of different sizes may be inherently biased. This is 

discussed further in Chapters 3 and 4. Some authors have argued that the observed 

differences in BMD between men and women are due to sexual dimorphism in skeletal 

size: once BMD is corrected for bone size (using BMAD or other measure), that men and 

women have skeletons of equal volumetric bone density (Seeman, 2001).

Lumbar spine DXA measurements may be affected by age-related degenerative disorders 

such as aortic calcification, lumbar spondylosis, osteoarthritis, or previous lumbar 

vertebral fracture, all of which may artificially elevate bone density measures without an 

associated increase in bone strength. These various measurement problems all add further 

variability to BMD results, reducing the correlation of fracture risk and bone density
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measurement and the power of genetic studies using DXA measures to identify 

osteoporosis genes.

BMD can also be measured by quantitative ultrasound (QUS), which is influenced by 

both bone mineral content and bone microarchitecture. QUS measurements may predict 

fracture risk independently from DXA at both LS (Bauer et al. 1995; CepoUaro et al.

1997) and hip (Bauer et al. 1997), which may relate to effects of bone microarchitecture 

upon QUS (Wu et al. 1998). Additionally some QUS machines are capable of 

specifically examining cortical bone rather than the mix of cortical and cancellous bone 

measured by DXA. Thus genetic studies using QUS may detect genetic effects upon 

fracture risk not detectable by DXA scanning (Patel et al. 2000).

1.3 Epidemiological Risk Factors for Osteoporosis

Large prospective studies have identified a number of risk fractures for hip fracture for 

women. Cummings and colleagues have reported a large prospective study of risk factors 

for hip fracture in white women (Cummings et al. 1995). Maternal history of hip fracture 

was second only to use of anticonvulsant medications as the strongest risk factor for hip 

fracture, with a relative risk of 2.0. If the woman’s mother fractured before age 80, the 

relative risk increased to 2.7. Adjustment for BMD and history of previous fracture 

slightly reduced the relative risk to 1.8. Low BMD at the calcaneus and previous fracture 

after age 50 independently increased the relative risk of hip fracture (1.6 and 1.2 

respectively). Weight was also an important determinant of fracture risk. Women who
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weighed less than they had at 25 had a relative risk of hip fracture of 2.2, whereas the 

more weight a woman had gained since age 25 the lower her risk of hip fracture. A 

number of factors associated with fitness and neuromuscular strength were significant in 

determining hip fracture. Women who spent less than 4 hours a day on their feet had 

twice the risk of fracture compared with women who spent more than 4 hours on their 

feet, and women who walked for exercise had a 30% lower risk of hip fracture compared 

with non-exercisers. An inability to rise from a chair without using one’s arms (relative 

risk 2.1) and visual difficulties such as poor depth perception (1.5) or low contrast 

sensitivity (1.2 ) -  all features associated with increased risk of falling -  were (not 

surprisingly) associated with increased fracture risk. Other significant factors included 

raised resting pulse rate (1.8), a history of hyperthyroidism (1.8), use of anticonvulsant 

medication (2 .8) or long-acting benzodiazepines ( 1.6), and women who rated their own 

health as poor (1.7). Current smokers had twice the risk of hip fracture compared with 

non-smokers or ex-smokers; however the smokers also had lower weight, poorer self

health rating, were less likely to exercise or spend time on their feet and had relative 

tachycardia, and after multivariate adjustment smoking was no longer a significant 

independent risk factor. Modest alcohol intake (7 drinks a week or less) was associated 

with a lower risk of fracture, although overall the protective effect of alcohol ingestion 

(relative risk of 0.7) was lost once adjusted for better self-reported health and the ability 

to stand up from a chair (Cummings et al. 1995). Hypogonadism induced by menopause 

was not included in this study, but is a key factor in the development of osteoporosis 

(Black et al. 2000). A history of previous osteoporotic fracture was also not examined in 

this study, but is a major risk factor for hip fracture, with prevalence of 34% in elderly
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women with hip fracture in northern Britain (Stewart et al. 2000). Estimated risk of hip 

fracture recurrence after previous hip fracture was 29% in a Minnosotan population of 

both men and women, 1.6 times greater than expected (Melton et al. 1982). Many of the 

risk factors for hip fracture also increase the risk of osteoporotic fracture at other sites.

Many of the risk factors for fracture in males are similar to those in females, and include 

low BMD, risk o f falling, physical inactivity, hypogonadism, use of glucocorticoid and 

anticonvulsant medication, alcoholism, hyperthyroidism, cigarette smoking, gastrectomy, 

malabsorption, and hypercalciuria (reviewed in (Eastell et al. 1998; Orwoll et al. 1995)) 

with hypogonadism and glucocorticoid usage common secondary causes of osteoporosis 

and fracture in men. Genetic factors contribute to fractures in males as in females (Krall 

et al. 1993).

Body mass index is a strong predictor of BMD at all sites of measurement and in both 

sexes (Burger et al. 1994; Eastell et al. 1998; Felson et al. 1993). Low body mass index 

is negatively correlated with peak bone mass, and low body mass index and weight loss 

are strongly associated with increased fracture risk (Black et al. 2000).

The concept that environmental influence at critical periods of early development might 

have lasting and longterm effects upon health is referred to as programming, and was 

initially proposed by Barker (1995) with respect to ischaemic heart disease. There is 

some evidence that intrauterine and early postnatal growth may be associated with BMD 

in later life. Weight in early infancy (age 1 year) has been found to correlate with bone 

mineral content (though not BMD) in late adult life (Cooper et al. 1997). More recently, 

birth weight was found to correlate with bone size, bone mineral content and BMD at LS,

15



FN and whole body, although when current weight was added in as a covariate, the 

association between birth weight and bone mineral content became non-significant and 

the results for bone size and BMD were not reported (Gale et al. 2001).

1.4 Genetic Epidemiology of Osteoporosis:

1.4.1 Quantitative Traits

The normal distribution exhibited by many biological traits, including BMD, may result 

from the inheritance of many individual loci (Fisher 1918). The term Quantitative Trait 

Loci (QTL) is now used for the genes determining such normally distributed traits. 

Quantitative traits may result from the action of allelic variation of multiple genes or 

from the action of a single or few gene(s) with strong environmental influence upon the 

final phenotype.

The model proposed by Fisher specified that any continuous phenotype (P) could be 

considered as a function of both the effects of genes (G) and the environment (E).

P = E + G

This concept can be extended to analysis of variance, such that total phenotypic variance 

(Vp) is due to both environmental (Ve) and genetic (Vq) variances.

Vp = Ve + Vg
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Additionally, the total genetic variance of a trait (V q) can be split into additive (V a) and 

dominance (V o) effects. Additive effects are due to the action of individual alleles; 

dominance effects are due to the interaction between alleles. The assessment of additive 

and dominance variance is affected by epistasis, or non-allelic interaction between genes, 

and by gene-environment interaction and/or correlation. Imprinting effects upon alleles 

may also exist (see Chapter 6). Variance of a trait may also be split into factors shared by 

members o f families and/or the general population (both shared genetic and shared 

environmental influences), and factors pertaining only to the individual (non-shared 

environment and unique individual characteristics). This is discussed further below (see 

Section 1.5.1).

Heritability refers to the proportion of the total variance of a trait that is under genetic 

control, or in other words the amount of variance that is heritable. Heritability can be 

split into broad sense heritability, the overall genetic contribution to the variance of a 

trait, and narrow sense heritability, the additive component of the total heritability 

(Kearsey et al. 1996).

Broad sense heritability = (V a  +V d) /(  V a  +V d +  V e)

Narrow sense heritability = V a /(V a  +V d +  V e).

1.4.2 Heritabilitv Studies of BMD and Osteoporosis

Heritability studies of BMD have been performed in both twin and intergenerational 

studies, showing heritability of BMD to be high.
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Heritability studies in twins rely on a number of assumptions. Monozygotic (MZ) twins 

are assumed to share 100% of their genes whilst dizygotic (DZ) twins share on average 

only 50%. Twin models assume that the within-pair environmental variance is the same 

in MZ and DZ twins (i.e. that MZ twins are no more likely to share environmental 

characteristics than are DZ twins). The models also assume that the total MZ and DZ 

variances are equal, that there is no gene-gene interaction (neither dominance nor 

epistasis), and that there is neither gene-environment interaction nor correlation. With 

these assumptions in mind, twin studies partition the total variance into between-pairs 

and within-pairs variance, and then compare the within-pair variance in MZ twins with 

that in DZ twins. Any difference seen is assumed to be due to the greater genetic sharing 

of MZ twins (Christian et al. 1974; Falconer 1964). However, the greater sharing of 

environmental factors by MZ twins (and the likelihood of gene-gene interaction) mean 

that estimates of heritability in twin studies may be inflated (Slemenda et al. 1991). To 

balance this, DZ twins may be genetically more similar than expected (greater than 50% 

IBD used in twin heritability studies) (Brown et al. 1997; Jawaheer et al. 1996).

Mixed sex twin studies have found heritability of BMD at the femoral neck and lumbar 

spine to be similar, between 57-92% (Nguyen et al. 1998; Pocock et al. 1987; Smith et al. 

1973), whilst in general forearm BMD has been demonstrated to have lower heritability 

(Arden et al. 1996; Flicker et al. 1995; Pocock et al. 1987; Slemenda et al. 1991; Smith et 

al. 1973). Whilst several studies performed in female twins have shown BMD to be 

highly heritable (Arden et al. 1996; Flicker et al. 1995; Howard et al. 1998; Slemenda et 

al. 1991), there is a paucity of data regarding male twins alone (Smith et al. 1973), 

making comparisons between the genders difficult. Some authors have suggested that
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heritability may be greater in premenopausal than postmenopausal women (Arden et al. 

1996; Slemenda et al. 1991), although there has been no direct comparison of these two 

groups. However, the within-twin variance of female MZ twins increases with age, 

suggesting an accumulation of environmental influences with ageing in women, 

(Slemenda et al. 1991) consistent with but not limited to the effects of menopause. 

Additionally, the variance of both MZ and DZ twins increases with ageing in men 

(Slemenda et al. 1992), consistent with increasing environmental effects upon BMD in 

men also.

Familial intergenerational studies generally have estimated heritability of BMD to be 

somewhat lower than reported in twin studies, though stiU substantial (heritability 

estimates of 0.46-0.84 for total BMD and for BMD measured at individual sites of the 

femur, lumbar spine and forearm) (Deng et al. 1999; Gueguen et al. 1995; Krall et al. 

1993; Sowers et al. 1992). However, environmental influences upon bone may differ 

between siblings and across generations considerably more than within either MZ or DZ 

twin pairs. This may be particularly the case when comparing BMD across generations 

with different maturity and endocrine effects upon the skeleton. Thus it is not surprising 

that heritability estimates from family studies are somewhat lower than in twin studies.

The strong correlation of BMD between parents and children indicates that peak bone 

mass is a major determinant of BMD in later life (Jones et al. 2000; Jouanny et al. 1995). 

Children and other young relatives of patients with a history o f low trauma fracture have 

low BMD (Cohen-Salal et al. 1998; Evans et al. 1988; Seeman et al. 1989; Seeman et al.

1994), indicating that bone fragility in older age is at least partially determined by low
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peak bone mass. Heritability of peak bone mass may be the greatest component of 

overall heritability o f BMD. This is fiirther supported by the demonstration that the 

maximum value of heritability is achieved at 26.4 years of age (Gueguen et al. 1995), and 

that the correlation in BMD is stronger between mothers and their younger 

premenopausal daughters than their older post-menopausal daughters (Danielson et al. 

1999).

BMD in both sons and daughters correlates most closely with the mid-parental value, 

indicating that both parents make a genetic contribution to BMD, consistent with a 

polygenic or co-dominant monogenic mechanism of disease (Krall et al. 1993). A 

segregation study by Gueguen and colleagues (Gueguen et al. 1995) also supported a 

genetic model of polygenic inheritance of BMD. Further, the demonstration of 

correlation of BMD between different gender parents and children supports the existence 

of at least some common genetic determinants of BMD in males and females (Jones et al. 

2000; Jouanny et al. 1995; Krall et al. 1993). In addition, however, heritability estimates 

of LS, FN and total BMD using mother-daughter pairs were found to be significantly 

greater than those derived from mother-son pairs, supporting the concept of some gender- 

specific genetic effects upon BMD (Jones et al. 2000). A marginally stronger correlation 

was demonstrated between the BMD of children and that of their mother rather than 

father (Jouanny et al. 1995; Krall et al. 1993), probably due to greater similarity of 

lifestyle factors (KraU et al. 1993).

Heritability of BMD may be site-specific (Deng et al. 2000; Nguyen et al. 1998). 

Daughters of mothers with a history of osteoporotic lumbar spine fracture have lower
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BMD at the spine than at other sites (Seeman et al. 1989). Daughters of mothers with 

femoral neck fractures only had low BMD at the femur (Seeman et al. 1994). Site- 

specificity of inheritance of fracture risk also supports this concept (Fox et al. 1998). 

Alternatively, gene-environment interaction may be different at different anatomical sites 

(Deng et al. 2000).

Tabensky and colleagues have recently examined the heritability of both calculated 

volumetric BMD (vBMD) and bone volume of both LS and FN in women with vertebral 

or femoral fractures and their daughters, compared with normal women (Tabensky et al. 

2001). Whilst women with vertebral fracture had both reduced vBMD and reduced 

vertebral size, their daughters had reduced vBMD only and had normal vertebral size.

The authors conclude that vBMD at LS is genetically determined and due to effects upon 

peak bone mass, and that bone size at LS is determined more by age-related bone loss 

than peak bone mass. This explanation can be extended to argue that vBMD at LS is 

under greater genetic control than is vertebral volume. Women with femoral fractures 

had reduced vBMD but increased bone volume. Their daughters had normal vBMD but 

also had increased bone volume. The authors conclude that low BMD at FN was more 

due to age-related bone loss that to reduced peak bone mass, and that increased bone 

volume at this site was due to genetic factors. It is interesting to contrast these results at 

FN with previous work by one of the authors, demonstrating reduced BMD at FN in 

daughters of women with hip fracture (Seeman et al. 1994), and to evidence that small 

bones are more susceptible to fracture (Gilsenz et al 1993).
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Twin studies of heritability of quantitative ultrasound (QUS) have demonstrated that 

QUS is also a highly heritable trait, with estimates of 0.74 for broadband ultrasound 

attenuation (BUA), 0.55 for velocity of sound, and 0.82 for speed of sound (Howard et al.

1998). Adjustment for DXA-measured BMD had only a minor reduction on heritability 

of QUS, suggesting that there may be different genetic effects upon BMD measured by 

DXA and QUS (Arden et al. 1996). In contrast to that observed with BMD measured by 

DXA, BUA was more strongly correlated between mothers and their postmenopausal 

rather than premenopausal daughters (Danielson et al. 1999). Thus the genetic 

contribution to qualitative changes in bone induced by menopause (as measured by QUS) 

may differ from the genetic determination of bone mass per se.

In addition to the heritability of peak bone mass, some twin and family studies have also 

suggested heritability of bone turnover and loss. Significant heritability o f markers of 

bone turnover (both synthesis and degradation) has been demonstrated in twins and 

families (Gamero et al. 1996; Hansen et al. 1992; Harris et al. 1998; Hunter et al. 2001; 

Kelly et al. 1991; Tokita et al. 1994). However, there have been few studies of the 

heritability of bone loss conducted in a prospective longitudinal fashion. Significant 

heritability o f bone loss over three years was demonstrated at LS and Ward’s triangle but 

not at other hip sites in one twin study (Kelly et al. 1993). No heritable effect on radial 

bone loss was demonstrated in a study of elderly male twins (Christian et al. 1989). In 

general, estimates of heritability of bone turnover and of bone loss have been lower than 

estimates of heritability of peak bone mass.
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Despite the strong evidence of heritability of BMD, a large Finnish study following over 

15000 elderly twins of both genders was not able to detect heritability of fracture per se 

(Kannus et al. 1999). The numbers of concordant pairs of twins with fractures were very 

small (for example, only 8 male MZ twin pairs and 4 male DZ twin pairs were 

concordant for fracture). A higher concordance of fracture in MZ twins compared with 

DZ twins was found in both male and female twin pairs but these results were not 

significant (Kannus et al. 1999). Other authors have suggested that the data presented did 

demonstrate heritability of fracture risk in men, with heritability estimates of 35% 

(MacGregor et al. 2000).

In summary, BMD is a heritable quantitative trait. Peak bone mass may be the major 

component under genetic control, although there is some evidence of heritability of bone 

turnover and bone loss. Heritability of BMD and fracture may differ at different skeletal 

sites, either due to effects of different genes upon different sites or to differing gene- 

environment interaction. There may be both common and gender-specific effects upon 

BMD, which again may be site-specific. Thus osteoporosis is a complex disease with 

polygenic inheritance influenced by gene-environment interactions, and determination of 

disease-causing genes in this illness will be difficult.
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1.5 Statistics for Human Genetics

1.5.1 Linkage

Genetic linkage refers to the co-segregation of a disease-associated allele and a marker 

allele within families. A disease-associated allele at a given locus lying close to a marker 

will be inherited with that marker in a family, unless a recombination event occurs. The 

likelihood that the marker and mutation wiU stay on the same haplotype (chromosomal 

strand) depends on the distance between the two and the number of meioses studied. The 

chance of recombination between two loci in any given meiosis is the recombination 

fraction (0). A recombination rate of 1% (0=0.01) corresponds to a genetic distance of 

one centiMorgan (IcM), which is approximately equivalent m most regions of the 

genome to a physical distance of one million base pairs (1 Mb). The relationship 

between map distance and the recombination rate (0 ) is described by mapping fimctions 

such as Haldane and Kosambi fimctions. The map length of a chromosome is the average 

number of crossovers in the interval of a single chromatid. The Haldane function 

assumes that recombination can occur at equal probability anywhere between two loci, 

whilst the Kosambi function takes into account genetic interference, i.e. the suppression 

of recombination in the regions of DNA close to a recent recombination event. The 

Kosambi map function can be expressed as:

e = l/2 (e ''" '- l) /(e ‘‘" '+ l )  

where 0 = recombination fraction and m = map distance (Kosambi 1944).
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Relatively few meioses separate family members within an individual family compared 

with the number of meioses dividing distantly related individuals such as members of the 

general population. Therefore when using families in linkage studies, the distance 

between the marker and mutation can be quite large, yet linkage may still be observed, as 

few recombination events will have occurred within each individual family. Linkage is 

always the result of association (or linkage disequilibrium) between two loci (a marker 

allele and the disease-causing allele), however that association may be only intrafamilial 

and not evident at a population level (Hodge et al. 1994).

Linkage analysis methods can be broadly divided into parametric (or model-based, or 

LOD-score) methods; and non-parametric (or model-free) methods.

Parametric linkage analysis methods are based on the likelihood (odds) ratio of Lha/Lro 

where Lro (the nuU hypothesis) is the likelihood of no linkage (i.e. 0 = 0.5) and LraIs the 

likelihood that there is linkage (i.e. 0 < 0.5). For a given set of genotypic data, the 

likelihood of producing the data can be calculated according to certain assumptions or 

parameters (including mode of inheritance of the trait, allele frequencies o f the loci, 

penetrance of the trait, no inbreeding of the population, no phenocopies in the population, 

and no pleiotropy). This likelihood ratio can be converted to a ‘LOD’ score by 

specifying the prior probability of linkage (Elston 1997) (conventionally estimated at 

1/50), and a maximum LOD score (MLS) can be calculated by testing across different 

values of 0. If a LOD score is maximised over a single unknown parameter (i.e. 0), a 

LOD score of 3 corresponding to a p-value of 10'  ̂has been conventionally regarded as 

‘significant’. A LOD score below -2  is thought sufficient to exclude linkage. Lander
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and Kruglyak have recently shown that for parametric analysis, an exact genome-wide 

significance threshold of p = 0.05 is achieved at a pointwise p-value of 4.9x10'^ or LOD 

of 3.3 (Lander et al. 1995). Additionally, model mis-specification may greatly diminish 

the power of model-based linkage studies (Clerget-Darpoux et al. 1986). However, 

where the parameters are accurately known (or where there are good estimates for 

missing parameters), model-based linkage analysis is the most powerful linkage analysis 

technique (Elston 1998; Jarvik 1998; Nyholt 2000).

For complex diseases such as osteoporosis, though, many of the parameters needed for 

LOD-score based approaches are not known. Instead, model-free or non-parametric 

approaches can be used, which do not require the mode of inheritance of a trait to be 

specified but rely upon known modes of marker inheritance. Broadly speaking, the major 

types of model-free (or non-parametric) analysis can be split into allele sharing methods 

(e.g. Affected Sibling Pair methods (ASP), Affected Pedigree methods, the Haseman- 

Elston statistic) and variance components methods.

The most commonly used allele sharing methods is the affected sib-pair method (Penrose 

1935). By chance, two affected siblings share 0, 1 or 2 marker alleles identical by 

descent (IBD) in the ratio 0.25: 0.5: 0.25. If the marker locus under consideration is 

linked to the disease-causing locus, then the allele sharing will be skewed away from 

sharing 0 alleles IBD towards sharing 1 or 2. In other words, two siblings identical in 

phenotype would be genotypically more similar at that marker than would be predicted 

by chance alone. IBD sharing means that alleles shared by relatives are not just identical 

by state but can be identified as coming from the same familial ancestral chromosome.
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For siblings this usually means that parental genotypes must be known to establish IBD 

sharing. It may be possible to infer missing parental genotypes and parental phase from 

other members of the family, e.g. using the genotypes of other siblings. If IBD sharing 

cannot be established unequivocally then likelihood methods can be used to estimate IBD 

sharing (Risch 1990).

The appropriate threshold of significance for ASP methods is higher than for LOD score 

analysis. LOD score analysis examines inheritance from two parents to one child, whilst 

ASP methods involve inheritance to two children. Lander and Kruglyak have argued 

therefore that for ASP at a genome-wide level, evidence of suggestive linkage requires a 

point p-value of 7.4x10’̂  (a LOD of 2.2) and significant linkage 2.2x10'^ (LOD=3.6) 

(Lander et al. 1995).

In addition to ASP methods, another popular allele sharing method is the affected 

pedigree method, using vector-descent pathways to estimate IBD sharing between 

relatives (Weeks et al. 1988). Alternatively, LOD-score or parametric analysis is 

sometimes used even when the mode of inheritance is not known, as it has been 

demonstrated that as long as this parameter is approximately correct the LOD-score 

methods are more powerful than nonparametric models (Nyholt 2000).

Allele-sharing methods can be extended to quantitative trait analysis. Instead of using 

affected siblings in a qualitative fashion, the squared difference between the trait values 

for the two siblings is regressed against allele sharing IBD at a marker (Haseman et al. 

1972) (see Diagram 1.5.1). If the marker locus is linked with a quantitative trait locus, 

then siblings with greater allele sharing at the marker will be concordant for the trait, and
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siblings with lesser allele sharing will be phenotypically discordant. Thus the regression 

line will have a negative gradient. Conversely, if the marker locus is not linked with the 

quantitative trait locus then the gradient of the regression line will be nought, as the 

phenotypic concordance between the siblings will be independent of allele sharing at the 

marker locus.

In the presence of linkage, the steepness of the negative gradient of the regression line 

will be greatest (and hence of greatest significance) if the siblings are chosen for extreme 

concordance or discordance (Risch et al. 1995). A qualitative or binary disease may be 

analysed by the Haseman-Elston algorithm by giving the value 0 and 1 to unaffected and 

affected persons respectively. In this case, the test becomes a comparison between the 

mean proportion of allele sharing in discordant and concordant siblings. If  only 

extremely discordant or extremely concordant siblings are available, the mean allele 

sharing IBD can be compared with that expected by chance alone (50%); in the presence 

of linkage the observed sharing would be lower for extremely discordant sibs, and higher 

for concordant sibs (Elston 1998). (The use of siblings and pro bands with extreme trait 

values is discussed fiirther in Chapters 3 and 4).
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Diagram 1.5.1: Haseman-Elston statistics
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Variance component linkage analysis is based upon a biometrical model of inheritance. 

At its simplest this model consists of a single locus with two alleles A and a, with allele 

frequencies of p and q = (1-p) respectively. There are three possible genotypes AA, Aa, 

aa with frequencies of p^, 2pq and q  ̂respectively. The additive genetic value (a) is half 

the phenotype difference between the phenotypes of the two homozygotes. The 

dominance genetic value (d) is the distance between the heterozygote phenotype and the 

midpoint between the two homozygotes (see Diagram 1.5.2).

The mean effect at the locus is given as:

p =  Syix/= a(p-q) + 2 dpq 

and the total genetic variance at that locus:

= I.fi(Xi-\i) = 2pq [a+(q-p)d]^ + [4p^qM^] 

where p = mean trait value

f  = frequency of the zth genotype 

Xi =genetic value of the /th genotype 

a = additive variance 

d = dominance variance 

p = frequency of allele A 

q = frequency of allele a = ( 1-p).

The additive component of the total variance (V a ) is 2pq [a+(q-p)d]^ and the dominance 

component (V d ) is [4p^q^d^].

The total genetic variance underlying a complex trait is thus partitioned into the 

cumulative additive and dominance variance at many loci (V g  =  V a  +  V d ). The total
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environmental variance (Ve) can be split into unique environmental effects specific to the 

individual (Vs) and environmental effects common to the family or population (Vc)- 

Therefore the full model for the variance of a quantitative phenotype is given by:

Vt = Va + Vd + Ve + Vc

At a population level, the mean, standard deviation and variance of a quantitative trait 

like BMD are known. Family data is then used to estimate the different components of 

the total variance and to give estimates of heritability (as described above).

Variance components linkage analysis is an extension of the above analysis. The 

estimate for overall heritability can be partitioned into a linked major gene effect and an 

unlinked remaining genetic effect (potentially due to many genes). The numbers of 

alleles shared at a locus by a pair of relatives will determine the extent of their 

covariance. If the locus under consideration affects the quantitative trait, then as the 

number of alleles shared by the pair increases so their covariance also increases.

Vt = Va + Vd + Ve + Vc + Vga+Vgd

a  +  +  cr^E +  cr^c +  cr^gd

and Cov(XiXj) = TUycĵ ga + Aya ĝd + (pya^o if i?^j 

= o^A + + cĵ ga+cr̂ gd i f i = j

where:

XiXj are the trait values for pedigree members i or j.

Tty = the proportion of genes shared identical by descent
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(fga = major gene additive effect (2pq[a-d(p-q)]^

Ay = the probability the pair share both alleles IBD (the only circumstance where

dominance can be assessed)

a^gd = major gene dominance effect [4p^q^d^].

(pij = the coefficent of relationship between the pairs of individuals, i.e. the mean

probability that they share alleles IBD based on their relationship.

cpQ = residual polygenic component

Vga = variance due to a major gene additive effect

Vgd = variance due to a major gene dominance effect.

(often the residual environment and polygenic effects are not partitioned).

Maximum likelihood estimates can be obtained for the major gene effects for each locus 

under investigation, as well as residual polygenic and environmental variance 

components, assuming multivariate normality. Two likelihoods are compared: (1) the 

likelihood of a major gene effect, and (2 ) likelihood of there being no major gene effect; 

using minus twice the log likelihood ratio to establish significance. As well as 

identifying a locus, variance components linkage analysis can give a conservative 

estimate of the magnitude of genetic effect of that locus (Amos et al. 1996). Variance 

components analysis also explicitly allows for statistical nonindependence of siblings, 

and thus type 1 errors are less likely (Wijsman et al. 1997).

The variance components for each trait locus, simultaneously with estimates of the 

residual polygenic variance, are estimated from the data at each chromosomal site. 

Comparison of variance components analysis and sib-pair based approaches show that
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although type 1 error rate is similar, variance components analysis is more powerfiil and 

efficient (Amos et al. 1997; Williams et al. 1999). Additionally the use of general 

pedigrees, rather than nuclear families, also increases statistical power (Williams et al.

1999), although this may depend upon the genetic model for the trait (Badner et al. 1998).

Violation of the assumption of multivariate normality by ascertainment (such as choosing 

probands with extreme trait values) results in bias of this statistic, although this can be 

corrected if the ascertainment criteria are known (de Andrade et al. 1997). Failure to 

correct for ascertainment bias tends to lead to loss of power, rather than to inflation of 

type 1 error (Fisher et al. 1999; Marlow 2001).

All the different linkage packages, whether model-free or model-based, require that 1) all 

relationships among pedigree members are accurately known, 2) marker-allele 

frequencies are accurately known, and 3) all marker-typing data are correct. The impact 

o f genotyping errors upon the ability to detect linkage is considerable. A 1% error rate in 

genotyping results in the loss of 21-58% of linkage information (Douglas et al. 2000).

Thus for loci contributing modestly to the overall susceptibility to disease, genotyping 

errors necessitate substantial increases in sample size for such loci to be detectable.

1.5.2 Linkage Disequilibrium and Association

Linkage disequilibrium refers to the inheritance of markers together on a chromosome 

strand (‘haplotype’) in a population more often than would be expected by chance. When 

a disease-causing mutation occurs it will be inherited together with the surrounding DNA 

unless recombination occurs. Recombination is unlikely between the mutation and the
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markers lying very close to it, resulting in a haplotype of marker alleles and the mutation. 

This haplotype will be found more often in disease cases than in healthy individuals; thus 

the frequency of marker alleles near the mutation will differ between affected and 

unaffected individuals. This will not of course be observed in diseases where a high 

proportion of cases are due to new mutations, where multiple disease-associated 

haplotypes exist or where there are phenocopies.

To become common in the population, the disease-causing mutation must have occurred 

many generations previously and thus many meioses will have occurred since the original 

mutational event. Only alleles lying very close to the mutation will remain on the same 

haplotype in linkage disequilibrium. The extent of linkage disequilibrium varies 

considerably throughout the genome and in different populations. Populations with 

relative genetic homogeneity have wider areas of linkage disequilibrium. In some areas 

of the genome, most notably the major histocompatibility complex, evolutionary pressure 

has maintained linkage disequilibrium over areas as great as 5-6 cM, whereas on average 

throughout the rest of the genome it may only be observed over <lcM (discussed further 

below). In genes with high mutation rates (e.g. fibrillin) the area of surrounding linkage 

disequilibrium may be extremely narrow (<1 kb -  not even measurable across the coding 

region of a large gene such as fibrillin). Linkage disequilibrium may be so weak as to be 

unmeasurable on a population level. Such disease-causing genes are difiScult to identify 

by linkage disequihbrium or association methods (Terwilliger et al. 1998).

Population association studies include case-control studies of unrelated individuals and 

Analysis of Variance (ANOVA methods). Case-control studies compare the frequency of
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particular genetic polymorphisms between cases and controls, whereas ANOVA methods 

compare the variances within and between each genotype group. A significant result may 

arise for several reasons. The genetic polymorphism being examined may be the actual 

disease-causing mutation and therefore more prevalent in the cases. If  the polymorphism 

is a marker in strong linkage disequilibrium with the disease-causing allele then again 

association will be evident. Spurious association may result if individuals are not drawn 

from the same population, as the frequencies of marker alleles will differ between cases 

and controls whether or not the markers are in linkage disequilibrium with the disease- 

causing mutation. This is referred to as population stratification. The high false-positive 

rate of case-control association studies is frequently attributed to this cause. However, an 

alternative reason is that in most cases the prior probability of a particular polymorphism 

being causally related to the trait under consideration is low (Risch 2000).

1.5.3 Within-Familv Association Methods

Within-famQy association methods were developed to circumvent bias from population 

stratification in association studies. In essence, allele frequencies are compared between 

cases and their relatives rather than with unrelated controls. Many types of relatives could 

be used, but in practice parents have been the most common choice.

Most simply, one could compare the frequency of all marker alleles (both transmitted and 

non-transmitted) in parents (controls) and the alleles present in an affected child (case). 

However, power would be lost by effectively double-counting the transmitted alleles in 

both the case and the control groups. Hence the haplotype relative risk statistic was 

developed by Rubinstein and Falk (Falk et al. 1987). For this statistic, the sampling unit
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consists of a family with two parents and an affected chüd (the ‘case’). Each unit 

contributes the case genotype (the child) and an artificially constructed ‘control’ 

genotype fi*om the two parental alleles not transmitted to the child. The case and control 

genotypes are regarded as independent samples and are compared in a contingency table 

as would be used for an unmatched case-control study, with the presence or absence of a 

specified genotype used as the ‘exposure’ status. The odds ratio obtained is known as the 

haplotype relative risk. If the non-transmitted alleles are a random sample firom the 

general population, and if the recombination fraction between the marker and the disease 

loci is 0 , it is a true estimate of the population relative risk.

The haplotype-based haplotype relative risk statistic uses alleles rather than genotype as 

the unit of observation and compares the proportion of a particular allele transmitted with 

the proportion not transmitted (Terwilliger et al. 1992). Thus each sampling unit 

contributes two transmitted and two non-transmitted alleles to the total allele numbers in 

the case and control groups respectively. These groups are then compared as two 

independent case-control samples. The test statistic corresponds to McNemar’s statistic, 

which is asymptotically distributed in a chi-squared distribution with 1 degree of 

freedom. In contrast with the transmission disequilibrium test (discussed below), parents 

may be homozygous or heterozygous for the marker and still contribute information.

Also, the haplotype relative risk statistic can use only one affected child per family. 

Because it is a comparison of total allele frequencies in the different groups, it is purely a 

test of association and not of linkage.
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Haplotype relative risk methods assume that the transmitted and non-transmitted alleles 

contributed by a parent are independent observations whereas in fact they are paired data. 

Transmission disequilibrium testing (TDT) was developed to compare the paired data of 

the transmitted and non-transmitted alleles from heterozygous parents, testing differential 

transmission of alleles (Spielman et al. 1996; Spielman et al. 1993). Suppose at a 

particular marker there are two alleles Ml and M2. In the absence of linkage or 

association, heterozygous parents should transmit Ml and M2 with equal frequency. 

However if the Ml allele is in linkage disequilibrium with a disease-associated allele then 

it will be transmitted more often to affected children. TDT can be extended for highly 

polymorphic markers rather than the simple two-allele model used in explanation, so that 

for each heterozygous parent genotype MiMj, the number of times M, is transmitted to 

affected offspring is compared with the number of times Mj is transmitted (Sham et al.

1995). Distortion in marker allele transmissions from a heterozygous parent to an 

affected child can only occur if the marker and disease loci are linked.

The advantage of TDT over haplotype-based haplotype relative risk methods is that TDT 

is concerned with transmission of alleles rather than a comparison of allele frequencies in 

different patient groups and thus it tests for linkage in the presence of linkage 

disequilibrium. Most other linkage analyses (e.g. affected sib-pair methods) require more 

than one affected child per family. TDT only requires a single affected individual and 

their (heterozygous) parents to be informative for linkage; however in this setting it is a 

test of linkage disequilibrium in the presence of linkage.
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In the case of randomly ascertained singleton cases and their parents, TDT is a test of 

both linkage and of linkage disequilibrium (Sham et al. 1995). TDT can be performed in 

multiplex famihes but in this situation it is vahd only as a test of linkage, not of linkage 

disequilibrium. This is due to the bias introduced by intra-familial linkage disequihbrium 

between a particular marker allele and the disease locus. For example, consider a large 

pedigree with multiple affected members ah descended from a single affected founder. 

The ancestral haplotype, containing the marker ahele and the disease ahele, would be 

inherited by ah the affected individuals (assuming no recombination between marker and 

disease loci). Greater transmission of the marker ahele to the many affected cases from 

this one pedigree would bias the association data towards this particular marker ahele. 

Thus linkage would (correctly) be observed, but no inference about an association of the 

disease and marker aheles at a population level could be made (J. Terwilhger, personal 

communication quoted in (Spielman et al. 1996)). However, the transmission 

disequihbrium statistic has been extended so that multiplex pedigrees can be used with 

the statistic remaining a vahd test of both linkage and linkage disequihbrium (Martin et 

al. 1997). In general, TDT is always a measure of linkage with increasing power in the 

presence of linkage disequihbrium.

TDT requires two heterozygous parents to be informative. If data were included from 

famihes in whom only one parental genotype was known, the results would be biased 

according to the frequency of the most common ahele. If the known parent had genotype 

M 1M2 and the affected child was of genotype MiMi it would be assumed (correctly) that 

the known parent had transmitted Mi to the child. However, if the child were 

heterozygous with genotype MiM% then the data would be discarded, as no comment
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about allele transmission from the known parent could be made. The more frequent Mi is 

in the population, however, the more likely it would be the allele transmitted by the 

unknown parent. Thus data on the transmission from the available Mi M2 parent would 

be used when that parent transmitted Mi (as the child would be homozygous for Mi) but 

not used if the parent transmitted M2 (resulting in a heterozygous genotype), biasing the 

statistic (Curtis et al. 1995; Dudbridge et al. 2000). The data would also be used if the 

child had an allele (M3) not seen in the single known parental genotype, as this obviously 

came from the other parent (Curtis et al. 1995).

The use of TDT may be vahd despite missing parental genotypes if siblings can be used 

to estabhsh parental genotypes and phase. Several statistical methods to infer missing 

parental genotypes in an unbiased manner have been developed (Abecasis et al. 2000; 

Dudbridge et al. 2000; Fulker et al. 1999). Alternatively, TDT may use unaffected 

siblings as controls instead of parents (Alhson et al. 1999; Curtis 1997; Spielman et al.

1998), however greater numbers of famihes are needed to achieve equivalent power 

(Curtis 1997).

TDT may be biased by segregation distortion (in which there is preferential transmission 

of a particular ahele to ah viable offspring, whether disease-affected or not). Ahele 

transmission to non-affected siblings may be compared with transmission to the affected 

offspring to demonstrate equal transmission o f aheles and to exclude such meiotic drive 

(Parsian et al. 1991).

TDT may also be used for quantitative data (Ahison 1997; Alhson et al. 1999) and may 

be a more powerful test for detecting linkage than Haseman-Elston (1972) or the extreme
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sib-pair analysis of Risch and Zhang (1996). As with both of these methods, the use of 

probands with extreme trait values increases the power of quantitative TDT (QTDT) to 

detect linkage (Allison 1997).

Abecasis and colleagues recently extended QTDT by using variance components 

modelling, using nuclear families of any size, with or without parental information. 

Although missing parental genotypes still reduces power, this loss is negligible in 

families with four or more genotyped siblings (Abecasis et al. 2000).

There has been considerable debate about the use of linkage disequilibrium methods 

(such as TDT) in whole genome scanning. Single nucleotide polymorphisms (SNPs) are 

bi-allelic loci occurring at very high frequency throughout the genome. Recently 

released SNP maps include over 2.5 million markers genome wide 

(http://snp.cshl.org/snp and http://www.ncbi.nlm.nih.gov/SNP). Linkage disequihbrium 

methods may revolutionise detection of disease-causing genes. TraditionaUy, disease- 

causing genes have been identified by positional cloning. A relatively large (~10cM) 

area containing one or more disease-causing genes is identified by linkage in famihes. 

Linkage disequihbrium mapping (by TDT, haplotype-based haplotype relative risk 

statistics or other means) is an efficient way of further fine mapping of the gene(s) of 

interest (Todd 1995). Candidate genes previously identified by gene expression studies 

or from a known biological role in the disease that are located within the isolated region 

can then be examined by mutational screening. An alternative way would be to 

undertake linkage disequihbrium mapping over the whole genome (initiahy proposed by 

Risch and Merikangas (Risch et al. 1996)). This would criticahy depend upon the extent
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of linkage disequilibrium throughout the genome. Using results from simulation studies, 

Kruglyak argued that useful linkage disequilibrium only extends for an average of 3 kB, 

and thus many thousands of markers (~ 500 000 SNPs) would be needed for such an 

undertaking (Kruglyak 1999). However, the simulations did not include provision for 

natural selection. For disease-causing alleles for common diseases (such as 

cardiovascular disease) to become sufficiently common in the population there must be 

selective pressures for these alleles to persist in the population. Several studies have 

demonstrated that linkage disequilibrium is more extensive than these estimates and in 

some areas extends as far as 500 kB (Abecasis et al. 2001; Eaves et al. 2000; Moffatt et 

al. 2000). However, a study of SNPs o f the lipoprotein lipase gene showed that there 

may be no linkage disequilibrium between many SNPs even within this one gene (Clark 

et al. 1998; Templeton et al. 2000), although a functional genetic effect upon lipoprotein 

lipase would be hkely to have a severe detrimental effect upon survival of the individual 

and thus there would be selection against a disease-associated haplotype of this gene.

Thus beliefs about the feasibility of linkage disequilibrium mapping using SNPs fall 

broadly into two camps. On one hand, the number of markers required may be 

prohibitive (~ 500000), as it is likely that for many genes causing common diseases 

several mutations may be involved, each with little measurable linkage disequilibrium on 

a population level. The alternative view is that common disease variants, with broad 

surrounding linkage disequilibrium, cause common diseases. Therefore the required 

marker density for detection of such common variants may be as low as one SNP every 1 

cM, a total of 3400 for the whole genome. However, the statistical analysis would have 

to use Bonferroni correction to adjust for multiple independent observations drawn from
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the same set of data with substantial effect upon significance levels. Correction of 

significance levels for SNP mapping will also be much greater than for linkage analysis 

in order to adjust for each marker’s independence and for the number of alleles. Further, 

if linkage disequilibrium does not extend sufSciently far for a 1 cM map, then disease- 

causing loci will be missed. Extensive use of linkage disequilibrium mapping using 

SNPs over the next few years will prove which view is correct.

1.6 A Review of Bone Phvsiolosv

A summary of bone physiology is presented to give context to the genetic studies in 

osteoporosis reviewed in Sections 1.7 and 1.8.

Bone can be divided into cortical bone, the tubular component of long bones, and 

trabecular bone, the meshwork of interconnected rods and plates of bone making up the 

core of the tubular bones and the body of the vertebrae. Trabecular bone is the more 

metabolically active part of bone, due to the extensive surface area available for 

resorption and reformation. Thus it is the more susceptible part of bone to factors 

affecting either resorption or bone formation.

Bone cells (osteocytes, osteoclasts and osteoblasts) respond to endocrine, paracrine, 

autocrine and mechanical signals, resulting in bone formation, resorption, remodelling 

and repair.
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1.6.1 Bone Formation

The cells responsible for bone formation are stromal osteoprogenitor cells (mesenchymal 

progenitor cells derived from the periosteum and bone marrow); osteoblasts (synthesizing 

bone matrix on bone forming surfaces); osteocytes (resulting from the further 

differentiation of osteoblasts engulfed within the structure of the bone matrix) and the 

supportive bone surface lining cells or endosteum.

Osteoblastogenesis requires bone morphogenetic proteins (BMPs) for uncommitted 

progenitor cells to differentiate into osteoblasts. BMPs, especially BMP-7, result in 

transcription of an osteoblast-specific transcription factor, core binding factor al (Cbfa- 

1). Cbfa-1 activates osteoblast-specific genes including osteopontin, bone sialoprotein, 

type 1 collagen, and osteocalcin. Additionally, BMPs induce a homeobox gene, distal- 

less 5 (dhc-5), which regulates osteocalcin and alkaline phosphatase expression and the 

process o f mineralization. The crucial role of Cfba-1 in osteoblast development is 

illustrated by Cfba-1 knockout mice, which completely lack osteoblasts (Otto et al.

1997). Other growth factors can influence committed osteoblast progenitors, notably 

transforming growth factor p (TGF-p), platelet derived growth factor (PDGF), insulin

like growth factors (IGF-1 and -2) and fibroblast growth factors (FGFs). Parathyroid 

hormone (PTH), parathyroid hormone-related peptide (PTHrP), glucocorticoids, and 

prostaglandin E% also influence osteoblastogenesis.

Osteoprogenitor cells grow and proliferate before finally differentiating into osteoblasts. 

Osteoblasts are characterised by biosynthesis and organization of the bone extracellular 

matrix, secreting both type 1 collagen and bone matrix proteins as osteoid. Accumulation
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of extracellular matrix results in down-regulation of osteoblast growth and proliferation. 

Maturation of the bone matrix follows, with collagen fibril modification and increased 

osteoblastic secretion of specialised bone matrix proteins, such as osteopontin, 

osteocalcin and bone sialoprotein. The osteoid is then mineralised by deposition of 

hydroxyapatite (Caio(P0 4 )6(OH)2) to become bone.

Osteoblasts finally differentiate into osteocytes as the cells are subsumed within mature 

bone. Osteocytes have numerous extensions of their cell membrane through the 

canaliculi o f bone. Osteocytes communicate with each other and with osteoblasts on the 

surface of the bone through gap-junction proteins (connexins) connecting the cell types. 

This results in a cellular syncytium capable of an integrated response to the various 

stimuli upon the skeleton. Both osteoblasts and osteocytes have receptors for PTH, 

1,25(0H)2D3, estrogen, and the many cytokines that influence bone turnover.

1.6.2 Extracellular Matrix Proteins Produced bv Osteoblasts

1.6.2.1 Collagen

The predominant protein of bone is type I collagen, making up 90% of its organic 

makeup. Type I collagen is a triple helical structure, consisting of two a  1(1) chains and 

one a2(I) chain. The chains associate into a left-handed helix, which then twists into a 

right-handed helix, to form a final structure of a rope-like rod (reviewed in (Lian et al. 

1999)).

Each chain consists of about 1000 amino acids (AA) consisting of a gly-X-Y repeating 

triplet. It is essential that glycine is the third amino acid, as it is the only AA small
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enough to fit in the centre of the triple helix. The X position amino acid is fi*equently 

pro line, the Y position fi-equently 4-hydroxyproline. The X and Y amino acids limit 

rotation of the chain. Additionally the side chains of the X and Y amino acids lie 

externally on the surface of the molecule, and promote polymerisation of the collagen: 

interaction between clusters of hydrophobic and charged side chains direct self assembly 

into polymers (Prockop et al. 1995).

The chains are synthesised as large precursor molecules (procollagen). Post-translational 

modifications include cleavage of signal peptides, hydroxylation of particular proline and 

lysine residues in position Y, glycosylation of certain lysine and hydroxylysine residues, 

and formation of intra and inter-molecular covalent di-sulfide cross-links. The carboxy- 

terminal propeptides associate together forming a nucleus of a triple helix, which 

conformation is then propagated to the amino-terminal region in a zipper-like fashion.

The soluble procollagen molecule is secreted but then undergoes cleavage of both amino- 

and carboxy-terminal propeptides and conversion of some AA residues to aldehydes.

The collagen then self-assembles into tightly packed striated fibrils, with staggering of 

each molecule by approximately one-quarter its length relative to its neighbour. Further 

cross-linking renders the collagen insoluble (Prockop et al. 1995).

The cross-links of collagen differ in different connective tissue types. Bone resorption 

results in release of relatively bone-specific type I collagen cross-links that can be 

assayed in urine or blood as a measure of bone degradation. Examples include 

deoxypyridinoline and C- or N- terminal cross-linked telopeptides of type I collagen 

(Woitge et al. 2000). N- or C- propeptide cleavage products can be assayed as a measure
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of collagen formation, with intact procollagen type I aminoterminal propepetide (PINP) 

the most sensitive marker (Gimdberg 2000).

In addition to type 1 collagen, trace amounts of other types of collagen are found at 

various stages of bone development.

1.6.2.2 Non-coUagenous Proteins

Non-coUagenous proteins make up 10-15% of the total bone protein content. These 

include both endogenously- and exogenously-derived proteins. The predominant 

exogenously-derived proteins are albumin and a 2-HS-glycoprotein, accounting for 25% 

of the non-coUagenous proteins. The endogenous proteins are produced by bone cells on 

a mole-to-mole basis with type 1 collagen. These include proteoglycans (e.g.biglycan 

and decorin), glycoproteins (including alkaline phosphatase and osteonectin), 

glycosylated proteins involved in cell attachment (including fibrillin, osteopontin, bone 

sialoprotein, fibronectin, vibronectin, thrombospondin and type 1 collagen itself) and 

finally y-carboxylic acid (gla)- containing proteins (matrix-gla protein, osteocalcin and 

protein S).

1.6.2.3 Glvcosvlated Proteins in Bone

The glycosylated proteins in bone contain an RGD (Arg-Gly-Asn) motif. This consensus 

sequence then binds to the integrin class of cell surface attachment molecules, although 

cell attachment may also occur independently of RGD. Additionally osteopontin and 

bone sialoprotein bind calcium ions by polyacidic amino acid sequences.
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Osteopontin is the most abundant phosphoiylated glycoprotein of the extracellular matrix 

of bone and has an important role in bone remodelling. Osteopontin mediates the binding 

of osteoclasts to the bone matrix through the integrin ayp3 receptor present on the 

osteoclast membrane (Reinholt et al. 1990) and thus potentiates bone resorption. 

Additionally osteopontin promotes the adherence o f osteoblasts, fibroblasts, 

macrophages, and T-ceUs. It is thought that osteopontin directs cellular migration during 

skeletal growth and remodelling, and affects the degree of mineralization of the 

extracellular matrix (Gerstenfeld 1999). At least in part this is achieved through the 

facilitative effects of osteopontin upon angiogenesis. Osteopontin enables efficient 

vascularisation of bone thus supporting osteoclastogenesis (Asou et al. 2001).

During development, the osteopontin gene is expressed ubiquitously in skeletal tissues 

but is also present in other tissues including the kidney. In the mature skeleton 

osteopontin is produced by both osteoblasts and osteoclasts. It is distributed throughout 

the mineralised part of bone and in hypertrophic cartilage. Osteopontin gene expression 

m bone is regulated by la,25-dihydroxycholecalciferol (l,25(OH)2D3) through a vitamin 

D response element (Staal et al. 1996). Osteopontin gene expression is also induced in 

response to mechanical stimulation (Terai et al. 1999).

Osteopontin is also expressed in many other tissues, with important roles in mahgnant 

growth and metastatic potential of tumours, mediation of tissue inflammation and repair 

and as a CD44 ligand (reviewed in (Gerstenfeld 1999)). Osteopontin is a constitutive 

protein of normal elastic fibres of the aorta and skin. These fibres have a tendency to 

calcify and osteopontin may regulate their mineralization ((Baccarini-Contri et al. 1994),
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quoted in http://www3.ncbi.nlm.nih.gov/htbin-post/Oniim/dispmim7166490).

Osteopontin may play a role in urinary stone formation as calcium oxalate stones consist 

of osteopontin protein (Kohri et al. 1992) and osteopontin mRNA has been demonstrated 

in the distal tubular cells of stone-forming rats (Kohri et al. 1993).

Bone sialoprotein expression is specific to bone and highly correlated with the 

appearance of mineralization.

Fibrillin is a large (350 kDa) RGD-containing glycoprotein. In bone, fibrillin is secreted 

by osteoblasts into the extracellular matrix, where it forms 10-12 nm microfibrils. In 

adult bone, fibrillin microfibrils are found mainly on the bone surface, especially at the 

sites of insertion o f tendons and ligaments. Although found throughout the bone cortex 

during development, in adult cortical bone fibrillin is found mainly in the canaliculi and 

cement lines (Keene et al. 1991). Fibrillin is also found pericellularly to cells lining the 

endosteal surfaces of trabecular bone, some osteocytes and cells surrounding blood 

vessels (Kitahama et al. 2000). Fibrillin is constitutively expressed by osteoblasts with 

expression unaffected by many skeletally active agents (Kitahama et al. 2000).

1.6.2.4 Bone gla Proteins

The bone gla proteins (matrix-gla protein, osteocalcin and protein S) are post- 

translationally modified by vitamin K-dependent y-carboxylation, producing dicarboxylic 

glutamyl residues with enhanced calcium binding. Osteocalcin (also known as bone gla 

protein) is the most abundant non-collagenous protein o f the bone extracellular matrix. 

Osteocalcin expression occurs almost exclusively in osteoblasts; hence serum osteocalcin
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levels have been used as a measure of bone formation. Expression is regulated by a 

1,25(0H)2D3 response element in the osteocalcin promoter region (Kemer et al. 1989). 

The physiological role o f osteocalcin in humans is not entirely clear. Its release may 

mark the turning point between bone formation and resorption. The strong binding of 

osteocalcin to hydroxyapatite is critically dependent upon its 3 residues of y 

carboxyglutamic acid. Osteocalcin may have an inhibitory role for bone mineralization 

(Lian et al. 1999).

1.6.3 Bone mineralization

Mature bone consists of 50-70% mineral, 20-40% organic matrix, 5-10% water and 3% 

lipid. Bone mineral provides mechanical rigidity and load bearing strength to the 

skeleton. It consists of crystals of hydroxyapatite (Caio(P0 4 )6(OH)2) with impurities 

(such as carbonate, magnesium, strontium and acid phosphate) and vacancies (missing 

hydroxyl groups) (Glimcher 1998). The imperfections result in increased hydroxyapatite 

solubility, giving the skeleton an additional role as a buffer against serum changes in 

calcium and phosphate ion levels.

Crystal growth commences with nucléation -  the generation of the first stable crystal 

from its component ions. Subsequent growth is due to addition of ions and aggregation 

of ion crystals (Landis 1995). Bone mineral crystals are initially extremely small (less 

than 200A) but as bone matures, the hydroxyapatite crystals become larger and more 

perfect.
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The mechanical role o f the organic matrix -  which is predominantly type I collagen -  is 

to provide elasticity and flexibility. Additionally, both the collagenous and non- 

coUagenous matrix proteins influence bone mineralization, by promoting nucléation and 

regulating the size, shape and orientation of crystal growth. The proteins affecting 

mineralization include collagen itself, osteopontin, osteocalcin, biglycan, osteonectin, 

thrombospondin, bone sialoprotein and matrix gla protein. Several o f these proteins are 

phosphoproteins. Enzymes that regulate the phosphorylation and dephosphorylation of 

these proteins (such as alkaline phosphatase) also affect bone mineralization (Lian et al.

1999).

1.6.4 Bone Remodelling

Bone undergoes continuous regeneration both during development and growth and in the 

mature adult skeleton. In the growing skeleton, modelling results in increasing trabecular 

thickness and widening of the marrow cavity of long bones. Remodelling in the adult 

skeleton replaces old bone with new, most probably to repair fatigue fl-actures, to prevent 

accumulation of old bone, and in response to physical stress. Remodelling affects 

trabecular bone disproportionately, such that 25% of trabecular bone undergoes 

remodelling annually, compared with 3% of cortical bone (Manolagas et al. 1995).

Remodelling requires close temporal and spatial coupling of osteoclasts and osteoblasts 

so that bone resorption and formation are closely matched. The basic multicellular unit 

(BMU) or bone modelling unit consists of the collection of osteoclasts and osteoblasts 

with supporting vascular, neural and connective tissue structures needed for the orderly 

remodelling of bone. Multicellular osteoclasts at the front resorb bone by acidification

50



and proteolytic digestion at their ruffled cell membrane border. The osteoclasts then 

undergo apoptosis and are replaced by osteoblasts that cover the bone surface and secrete 

osteoid. Osteoid is then mineralised to form new bone. In cortical bone the BMU moves 

in a tunnel through the bone. In trabecular bone the BMU moves in a trench across the 

trabecular surface (Manolagas 2000).

The close relationship between osteoclast and osteoblast formation and activation is 

achieved by a complex system involving cytokines and growth factors, systemic 

hormones, and cell-adhesion molecules such as matrix proteins. Cytokine production in 

bone is notable for its extensive redundancy (discussed below) and complex positive and 

negative feed back loops with both autocrine and paracrine regulation (also discussed 

below). Most systemic hormones exert their effect on osteoblastogenesis and 

osteoclastogenesis indirectly, through local cytokine production (Manolagas et al. 1995). 

Many o f the same factors are capable o f influencing both osteoblastogenesis and 

osteoclastogenesis, thus maintaining their fimctional and temporal relationships.

Cbfa-1 knockout mice illustrate the tight coupling of osteoblasts and osteoclasts. 

Abrogation of the Cbfa-binding site in the RANKL gene promoter region blocks both 

osteoblastogenesis and osteoclastogenesis (Otto et al. 1997). Additionally other mice 

strains with defective osteoblastogenesis exhibit decreased osteoclastogenesis (Jilka et al. 

1996; Weinstein et al. 1997).
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1.6A l  Osteoclast Formation: the OPG/RANKL/RANK Axis

Remodelling commences with osteoclast activation and formation, followed by bone 

resorption and finally osteoclast apoptosis. Osteoclastic precursors come from the 

haematopoietic cells of the macrophage/monocyte lineage (Hattersley et al. 1991). 

Osteoclastogenesis is induced by both many cytokines (including IL-1, IL-6, TNF, M- 

CSF) and by systemic hormones 1,25(0H)2D] and PTH. However, a major axis in 

osteoclastogenesis has recently been described, involving TNF-related proteins RANKL 

(Receptor Activator of NF-kB ligand), RANK (receptor activator of NF-kB) and 

Osteoprotegerin (OPG). A number of synonyms for these three proteins exist (Table 

1.6.4.1).
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Table 1.6.4.1 Synonyms for OPG. RANK and RANKL (Riggs et al. 2000)

Accepted term Synonyms

RANKL Receptor activator of NF-kB ligand 

Osteoclast differentiation factor (ODF)

TNF-related activation-induced cytokine (TRANCE) 

Osteoprotegerin ligand (OPGL)

Stromal osteoclast-forming activity (SOFA)

TNF superfamily 11

RANK Receptor activator o f NF-kB

Osteoclast differentiation and activation receptor (ODAR) 

TNF superfamily receptor 11A

Osteoprotegerin (OPG) Osteoclastogenesis inhibitory factor (OCIF) 

TNF receptor related molecule 1 (TRl) 

Follicular dendritic receptor 1 

TNF superfandly receptor 1 IB

RANKL is a TNF-related cytokine critical for osteoclastogenesis. It is a polypeptide of 

317 amino acids and exists in both membrane bound (40-45 kDa) and soluble (31 kDa) 

forms (Lacey et al. 1998; Yasuda et al. 1998). Its gene has been localised to chromosome 

13ql4 (Wong et al. 1997) and contains a response element for Cbfa-1 (O'Brien et al. 

1998). Cbfa-deficient mice (as mentioned above) are deficient in RANKL mRNA 

expression and osteoclastogenesis (Gao et al. 1998).

Expression of RANKL is found in many tissues but is highest in committed pre- 

osteoblastic cells and T lymphocytes. RANKL mRNA levels in osteoblasts are up- 

regulated by many factors that stimulate bone resorption including DXAmethasone, IL- 

1, IL-6, IL-11, TNF-a, PTH, l,25(OH)2D3, and prostaglandin E2. Conversely, RANKL
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mRNA levels are down-regulated by TGF-p which suppresses bone resorption. 

Administration of either OPG (see below) or anti-RANKL antibodies results in blocking 

the bone resorption induced by 1,25(OH)2D3, PTH, IL-1, and PGE2 (Takai et al. 1998; 

Tsukiietal. 1998).

RANKL, in the presence of M-CSF and in the appropriate bone stromal cell environment, 

is both necessary and sufficient for osteoclast formation, maturation and activation 

(Burgess et al. 1999; Fuller et al. 1998). RANKL stimulates osteoclast differentiation 

from pluripotent osteoclast precursors through to mature multinucleated osteoclasts. It 

enhances the activity of mature osteoclasts, stimulating bone resorption and resulting in 

osteoclastic pit formation and calcium release (Udagawa et al. 1999). RANKL also 

prevents osteoclast apoptosis. RANKL exists in both soluble and membrane bound 

forms, the latter resulting in efficient cell-to-cell signalling with stromal cells (Nakashima 

et al. 2000).

RANKL knockout mice have severe osteopetrosis, skeletal malformation (short club-like 

bones), impaired tooth eruption, no mature osteoclasts, and (due to bone marrow cavity 

narrowing) extramedullary haematopoiesis (Kong et al. 1999). Additionally such mice 

have defects in B-and T-lymphocyte maturation and abnormal lymphoid tissue 

development.

RANKL binds with high specificity and affinity to receptor activator of NF-kB (RANK), 

a transmembrane-bound receptor expressed on osteoclasts and pre-osteoclast progenitors, 

resulting in osteoclastogenesis and bone resorption (Hsu et al. 1999). RANK is a 616 AA 

peptide receptor, a member of the TNF receptor superfamily, found on osteoclasts, T

54



cells and dendritic cells. Its essential role in osteoclastogenesis is demonstrated by 

transgenic RANK-knockout mice, which develop osteopetrosis (Dougall et al. 1999). 

Expression of a soluble RANK-Fc fusion protein in normal mice results in decreased 

osteoclastogenesis, decreased bone resorption and osteopetrosis, due to interruption of 

osteoblast signalling to osteoclast precursors (Hsu et al. 1999). Physiologically, this 

signalling is interrupted by osteoprotegerin.

Osteoprotegerin is a soluble ‘decoy’-receptor for RANKL, blocking RANKL-RANK 

interaction. It is a member of the TNF receptor superfamily, unique in that it lacks 

transmembrane and cytoplasmic domains. Instead it is secreted as a disulfide-linked 

homodimeric glycoprotein, each monomer consisting of 380AA (Simonet et al. 1997; 

Yasuda et al. 1998). OPG mRNA expression is found in many bone cells but particularly 

osteoblasts. OPG mRNA is also found in endothelial cells, aortic smooth muscle cells, 

fibroblasts, and a wide variety o f other tissues including haematopoietic and lymphoid 

tissues.

OPG binds with RANKL, preventing its binding with RANK. OPG inhibits osteoclast 

differentiation, suppresses osteoclast activation, prevents osteoclastic pit formation, and 

induces osteoclast apoptosis (Simonet et al. 1997). OPG also prevents osteoclastogenesis 

and bony resorption induced by l,25(OH)2D3,PTH, IL-1, IL-11 and PGE2 (Hofbauer et 

al. 1998).

OPG knockout mice have severe osteoporosis with destruction of the femoral growth 

plates, multiple fractures, low bone mineral density, reduced strength and stiffiiess of 

bone, and loss of both cancellous and cortical bone (with near total loss of cancellous
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bone by 2 months), a phenotype resembling human osteoporosis (Bucay et al. 1998; 

Mizuno et al. 1998). Additionally, such mice have vascular calcification affecting 

particularly the aorta and renal arteries (Bucay et al. 1998) (of note given the clinical 

observation of the fi*equency of both osteoporosis and aortic calcification in women (Min 

et al. 2000)).

OPG overexpression results in severe osteopetrosis with narrowed bone cavities and 

compensatory extrameduUary haematopoiesis (Simonet et al. 1997). Trabecular bone in 

particular is increased. In contrast to RANKL knockout mice, dentition and immune 

defects are lacking.

Table 1.6.4.2 Bone Phenotvpe in Transgenic and Knockout Mice

Osteopetrotic mice RANK (-/-)(Dougall et al. 1999) 

RANKL (-/-)(Kong et al. 1999) 

OPG-Tg (Simonet et al. 1997) 

RANK:Fc-Tg (Hsu et al. 1999)

Osteoporotic mice OPG (-/-)(Bucay et al. 1998) 

RANKL-Tg (Lacey et al. 1998)

Multiple cytokines, growth factors, and systemic hormones affect mRNA levels of OPG 

and RANKL (see Table 1.6.4.3). The co-stimulation of both OPG and RANKL by many 

of these factors appears paradoxical. It may be the resulting ratio of expression of the 

two genes that determines the extent to which remodelling proceeds (Hofbauer et al. 

2000).
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In addition to these factors, OPG and TGF-p mRNA levels in osteoblasts increase 

markedly after tensional force is applied to bone, with resultant loss of osteoclasts 

(Kobayashi et al. 2000). Thus OPG may also be involved in the compensatory response 

of bone to stress.

Table 1.6.4.3:

Regulatorv Effects of Calcitropic Hormones and Cvtokines on RANKL and OPG 

Expression

Adapted from (Hofbauer et al. 2000)

M ediator RANKL OPG

1,25(0H)2D3 Up Up

IL-lp Up Up

IL -la Up

TNF-a Up Up

IL-6 Up

TGF-P Up

Glucocorticoids Up Down

Prostaglandin E2 Up Down

PTH Up

IL-11 Up

TGF-P Down Up

17p-Estrodiol Up

BMP-2 Up

References (Hofbauer et al. 1998; Takai et al. 1998; Vidal et al. 1998).

The OPG/RANKL/RANK axis appears to be a final common pathway for many of the 

cytokines and hormones affecting osteoclastogenesis (see Table 1.6.4.3) (Hofbauer et al.
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2000). Whether it is the sole final pathway is uncertain. On one hand it seems intuitively 

unlikely given the extensive redundancy in the cytokine network. However, the severe 

phenotypic effects of OPG-, RANKL- and RANK- knockout mice contrast sharply with 

the lack of a skeletally abnormal phenotype in IL-1, IL-6 and TNF knockout mice (see 

below).

1.6.4.2 Interleukin-1. Tumour Necrosis Factor -alpha and -beta and Interleukin-6

The interleukin-1 (IL-1) family includes IL -la , IL-ip and the IL-1 receptor antagonist 

(IL-IRA). IL -la  and -p are 17kDa proteins synthesised by a wide variety of cell types, 

including activated monocytes and osteoblasts. IL -la  and -p are structurally distinct: IL- 

l a  is the acidic form and IL-lp is the neutral form. However both are potent stimulators 

o f bone resorption and are pro-inflammatory cytokines, exerting their effect through 

stimulation of the IL-1 receptor (see below) (http://www3.ncbi.nlm.nih.gov/htbin- 

post/Omim/dispmim?147760). In contrast, IL-lRA inhibits the effects of IL -la  and IL- 

ip  by competitive binding to the IL-1 receptor without eliciting any stimulation 

(Eisenberg et al. 1990), blocking the effects o f both IL -la  and -p on bone resorption 

(Seckinger et al. 1990). It is the ratio between the agonists IL -la  and -p to the antagonist 

IL-IRA that determines the overall biological effects of IL-1.

TNF-a (cachexin) and TNF-P (lymphotoxin) are released from activated macrophages 

and mitogen-activated T- lymphocytes respectively. TNF-a and -P are powerful stimuli 

of bone resorption and decreased collagen synthesis (Bertolini et al. 1986).
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Interleukin 6 (IL-6) is expressed and secreted by osteoblasts and stromal cells in response 

to both cytokines (especially IL-1 and TNF-a) and systemic calcitropic hormones (PTH 

and 1,25(0H)2D3) (Manolagas 2000). The osteoblast is the most prodigious source of IL- 

6 known (Mundy 1999). IL-6 acts through a cytokine-specific receptor IL-6R. Binding 

of IL-6 to its cellular receptor results in activation of the signal transducing protein 

gpl30, which ultimately results in effects upon gene transcription. IL-11, another pro- 

osteoclastic cytokine, also signals through gpl30 after binding with its specific receptor 

(Kishimoto et al. 1995; Manolagas 2000; Yin et al. 1993). The IL-6R a-subunit also 

exists in soluble form. The IL-6R a-subunit can bind to soluble IL-6, and then interact 

directly with membrane-associated gpl30 to stimulate intracellular signalling (Tamura et 

al. 1993).

TNF, IL-1 and IL-6 are involved in mediating the effects of estrogen deficiency in bone 

(Jilka et al. 1992; Kimble et al. 1996; Pacifici 1996) (see below). Their relative 

physiological roles in a sex-hormone replete state is arguable, as mice lacking the ability 

to synthesize, or respond to, IL-1 or TNF do not have an abnormal skeletal phenotype 

(Ammann et al. 1997; Lorenzo et al. 1998) whilst IL-6 knockout mice have increased 

bone turnover relative to normal mice but no other abnormality (see below) (Poli et al.

1994).

IL-1, TNF, PTH and l,25(OH)2D3 stimulate osteoclasts indirectly by stimulating 

osteoblastic production of cytokines including RANKL (as discussed above), IL-6, IL-11, 

M-CSF and GM-CSF (Kobayashi et al. 2000; Mundy 1999; Pfeilschifter et al. 1989;

Suda et al. 1995; Thomson et al. 1986; Thomson et al. 1987). These factors exert a direct
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effect on osteoclasts, promoting proliferation, differentiation, activation and inhibiting 

apoptosis. IL-6 also has indirect effects upon osteoclastogenesis as IL-6 can 

independently stimulate RANKL secretion from osteoblasts. IL-1, TNF, PTH and 

1,25(OH)2Ds also stimulate production of cell-adhesion molecules that may further 

promote osteoclastogenesis (reviewed in (Jilka 1998; Manolagas 2000)).

IL-1, IL6 and TNF each have a positive autocrine effect upon their own production (Jilka 

1998). Further, there is marked synergy between them such that TNF and IL-1 

synergistically promote IL-6 and TNF production, and TNF and PTH also synergistically 

increase IL-6 (Passeri et al. 1994).

IL-6 plays a pivotal role in mediating bone loss associated with gonadal deficiency. In 

ovariectomised mice, osteoclastogenesis was blocked by administration of 17-pestradiol 

or IL-6 neutralising antibody, and IL-6 levels were increased in the culture media of bone 

marrow cells from the ovariectomized animals (Jilka et al. 1992). Similarly, 

orchidectomized mice have increased osteoclastogenesis that is blocked by 

administration of androgen therapy or administration of an IL-6 neutralizing antibody 

(Bellido et al. 1995).

Estrogen suppresses production of IL-6 through inhibition of TNF- and IL-1-stimulated 

IL-6 synthesis (Girasole et al. 1992) and (perhaps also) blockade of IL-6 autocrine 

stimulation, by binding of the estrogen-receptor complex to transcription factors required 

for activation of the IL-6 promoter, preventing their activity (Stem et al. 1995). Estrogen 

also blocks production of gpl30 and gp80 o f the IL-6 receptor on osteoblast and stromal 

cells (Lin et al. 1997).
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IL-6 secretion by mononuclear cells is raised in women after the menopause (Fagiolo et 

al. 1993; Kania et al. 1995). However, levels of IL-6 are not increased in 

postmenopausal women with osteoporosis compared with normals (Khosla et al. 1994), 

and elevated levels o f IL-6 have not been found to correlate with BMD or with indices of 

bone turnover (Kania et al. 1995). However, it should be noted that serum levels of 

cytokines might not reflect the bone environment. IL-6 administration to estrogen-replete 

mice stimulates colony forming unit-granulocyte/monocyte proliferation but does not 

increase osteoclastogenesis or bone remodelling unless IL-6R is also given (Taguchi et 

al. 1998; Tamura et al. 1993; Udagawa et al. 1995). Thus changes in IL-6 alone are not 

sufficient to account for postmenopausal bone loss and the effects of estrogen deficiency 

in humans may be mediated by IL-6R also. In support of this statement, surgical 

menopause in humans results in an increase in levels of soluble IL-6R. This increase is 

suppressed by administration of either estrogen or alendronate (Girasole et al. 1995). 

Serum levels of IL-6R have been correlated with bone resorption markers and with 

lumbar BMD in postmenopausal women (Chen et al. 1995).

Estrogen does not affect IL-1 secretion but does suppress TNF-secretion, by inhibition of 

transcription factor binding to the TNF promoter (Kimble et al. 1997).

Ovariectomy in mice lacking biological activity of any one of IL-1, IL6 and TNF does 

not increase osteoclastogenesis and bone remodelling (Ammann et al. 1997; Lorenzo et 

al. 1998; Poli et al. 1994). Thus, despite their apparent redundancy in a sex-hormone 

replete state, the synergistic effects of these cytokines are needed to mediate the effects of 

estrogen deficiency in vivo.
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1.6.5 Gonadal Hormones in Bone

The importance of estrogen and the estrogen receptor in control of bone density in 

women is clear from the rapid bone loss at menopause and the efficacy of hormone 

replacement therapy. The important role of estrogen in bone metabolism in men also was 

supported by the report of a male, homozygous for a coding mutation in exon 2 of the 

estrogen receptor (introducing a premature stop codon) who was tall with unfiised bones 

and had profound osteoporosis (Smith et al. 1995).

As discussed above, estrogen deficiency results in increased bone remodelling, 

osteoclastogenesis and bone loss. Specifically, estrogen deficiency results in increased 

osteoclast progenitor numbers, increased production of cytokines promoting 

osteoclastogenesis, and increased numbers and activity of stromal cells supporting 

osteoclastogenesis. Estrogen deficiency also increases osteoblastogenesis, which given 

the close coupling of the two is not surprising. The effects of estrogen are mediated 

through IL-1, TNF and IL-6 as discussed above.

Androgen deficiency also increases bone remodelling, osteoclastogenesis and bone loss. 

Androgen deficiency is similarly mediated through cytokines especially upon IL-6 

(Girasole et al. 1992).

The differing contributions of testosterone and estrogen upon the skeleton in both men 

and women have been controversial. Hypogonadism is a common cause of osteoporosis 

in males, accounting for 30% of cases (Orwoll 1998). Testosterone may be aromatised to 

estrogen, either systemically or locally (osteoblasts can aromatise androgens to estrogens
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(Burich et al. 1992)), and therefore it is not clear that it is testosterone deficiency per se 

that causes low bone mass. Both male and female patients with aromatase deficiency 

(and thus inability to synthesise estrogen) have osteopaenia, which responds to 

administration of estrogen (Carani et al. 1997). A recent study in normal elderly men 

with pharmacologically induced hypogonadism and aromatisation blockade demonstrated 

that estrogen is the major hormone preventing bone loss (with a small contribution from 

testosterone), and that both estrogen and testosterone contribute to bone formation 

(Falahati et al. 2000). The role of testosterone in the skeleton in women is demonstrated 

by patients affected by the androgen insensitivity syndrome, who have severe osteopaenia 

even when well-replaced with estrogen (Marcus et al. 2000). Thus both estrogen and 

testosterone are important in normal skeletal development and maintenance in both men 

and women.

Serum levels o f free estradiol and testosterone correlate with bone mineral density in both 

sexes, although after multivariate analysis only free estradiol levels remain a significant 

independent predictor (Greendale et al. 1997; Khosla et al. 1998).

Both androgens and estrogens bind to intracellular sex steroid receptors. Once activated 

by ligand binding, the receptors interact with a specific response DNA sequence (known 

as hormone response elements) or with specific transcription factors, such as AP-1 and 

NF-kB. Additionally, the nuclear matrix structure may affect nuclear binding of steroid 

receptors and regulation of gene transcription (reviewed m (Waters et al. 1999)).

Two estrogen receptors are known in humans, estrogen receptor-alpha (ER-a) and -beta 

(ER-p). Both ER-a and ER-p are expressed in human bone on osteoblasts, osteoclasts
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and osteocytes (Eriksen et al. 1988; Hoyland et al. 1997; Vidal et al. 1999). These are 

discussed further in Chapter 4.

1.6.6 Calcitropic hormones

1.6.6.1 Parathyroid Hormone TPTH)

Normal calcium ion homeostasis is under the influence of parathyroid hormone (PTH), 

1,25(0H)2D3 and calcitonin. PTH is the most important of these regulators and is 

secreted from the parathyroid glands as an 84 AA peptide. Its synthesis and secretion are 

critically determined by the extracellular calcium concentration, monitored by the 

calcium sensing receptor of the parathyroid glands. In the presence of hypocalcaemia, 

PTH is secreted to act primarily upon kidney and bone to restore blood calcium levels by 

both direct and indirect effects.

PTH secretion is critically determined by serum calcium levels. Hypocalcaemia 

(detected by the surface membrane calcium sensing receptor, see below) results in rapid 

secretion of preformed PTH. The steep inverse relationship between serum levels of 

calcium and PTH release results in close control of serum calcium levels, maintaining 

near constancy. Additionally, serum calcium levels affect rates of intracellular PTH 

degradation. In addition to the immediacy of PTH secretion, changing calcium levels 

also have a more sustained effect by regulating PTH gene expression. Intracellular PTH 

mRNA levels are increased by hypocalcaemia and hyperphosphataemia, and reduced by 

hypercalcaemia and hypophosphataemia. l,25(OH)2D3 also affects PTH secretion, PTH
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gene expression, calcium sensing receptor gene expression, and parathyroid cellular 

proliferation (reviewed in (Jiippner et al. 1999)).

In the kidney, PTH acts directly to increase tubular resorption of calcium. PTH also 

stimulates la-hydroxylase to increase l,25(OH)2D3 levels, resulting in increased 

intestinal absorption of calcium. PTH also affects phosphate levels by inhibiting tubular 

phosphate resorption through reduction in expression of the sodium-dependent co

transporter Npt2.

In bone, PTH exerts its effects mainly through osteoblasts; although osteoclast precursors 

have PTH receptors, these are not present on mature osteoclasts. Hence PTH action upon 

mature osteoclasts is indirect and due to PTH-stimulated osteoblastic secretion of 

RANKL, resulting in osteoclastogenesis and osteoclast stimulation (Yasuda et al. 1998). 

PTH stimulation of RANKL may be direct or may require cytokine intermediaries.

In general, PTH results in rapid release o f calcium from the bone matrix. Continuous 

high-dose administration of PTH causes predominantly osteoclastic resorption and 

hypercalcaemia (as happens with primary hyperparathyroidism). Lower intermittent 

doses of PTH can elicit anabolic effects on bone, through induction of proliferation and 

differentiation of osteoprogenitor cells (Nishida et al. 1994).

PTH secretion follows a circadian rhythm. Some authors have found alterations in this 

rhythm in postmenopausal women with osteoporosis, compared with postmenopausal 

women without osteoporosis and premenopausal women. The normal circadian pattern 

of PTH is of a nocturnal increase in PTH and phosphate; however in postmenopausal
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women with osteoporosis, PTH and phosphate levels fail to rise and PTH in fact falls 

(Fraser et al. 1998). Consistent with this is evidence that urinary fractional excretion of 

calcium normally falls at night; however, in women with postmenopausal osteoporosis, 

nocturnal urinary fractional excretion of calcium is unchanged (Eastell et al. 1992). 

However whether these events are in any way causative or merely responsive to 

excessive bone turnover in postmenopausal osteoporosis has not been established.

1.6.6.2 PTH-related Peptide IPTHrP)

PTHrP was initially identified as the humoral mediator of hypercalcaemia of malignancy 

(Wysolmerski et al. 1994). Its role in normal skeletal development has now also been 

elucidated, with a critical role in foetal skeletal development demonstrated. This is 

discussed further in Chapter 5.

Its physiological role in adults is still to be fully established, however it has a wide range 

o f biological actions. In contrast to the systemic effect of PTH, PTHrP has a paracrine 

effect on local tissue functions. The expression of different isoforms of PTHrP may 

mediate its varied effects in different tissues.

Of note, PTHrP is involved in the calcium homeostasis of lactation. Glandular epithelial 

cells and myoepithelial cells of the lactating breast produce large amounts of PTHrP, 

resulting in elevated serum levels in the nursing mother with large quantities being 

secreted into breast milk. PTHrP is also expressed in the epidermis and hair follicles, the 

placenta, the parathyroid gland, pancreatic islet and pituitary and in the central nervous 

system (Strewler 2000).
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Both PTH and PTHrP bind to the Parathyroid Hormone Receptor typel (PTHRl). The 

physiology of PTHRl is discussed extensively in Chapter 5.

1.6.6.3 Vitamin D

1,25(0H)2D3 is the active form of vitamin D. Vitamin D3 is formed in the skin from 

ultraviolet B radiation of 7-dehydrocholesterol. The main dietary sources are fatty fish 

oils and fortified dairy and cereal products. Vitamin D3 is metabolised in the liver (to 

25(0H)D3) and then in the kidney (to l,25(OH)2D3). PTH enhances renal hydroxylation 

of 25(0H)D3 to form the active hormone. 1,25(OH)2D3 negatively regulates renal 1 a- 

hydroxylase and suppresses synthesis and secretion of PTH, thus forming negative 

feedback loops on its production.

Free l,25(OH)2D3 enters target cells to bind with a nuclear vitamin D receptor (VDR). 

The 1,25(0H)2D3-VDR complex forms a heterodimer with the retinoic acid X receptor 

(RXR). The hetero dimer binds to vitamin D response elements (VDRE) within DNA to 

affect transcription of vitamin D-responsive genes such as osteocalcin, osteopontin and 

alkaline phosphatase (http://www3.ncbi.ntm.nih.gov/htbin-post/Omim/dispmim?601769). 

1,25(0H)2D3 also regulates transcription of PTHRl, PTH and PTHrP. Administration of 

1,25(0H)2D3 results in differential effects upon PTHRl expression according to cell type, 

with downregulation of PTHRl expression in osteoblasts and preosteoblasts, but no 

change of PTHRl expression in chondrocytes (Amizuka et al. 1999).
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1,25(0H)2D3 increases serum calcium and phosphate levels, by stimulating intestinal 

calcium and phosphate absorption, renal calcium and phosphate resorption, and bone 

resorption of calcium and phosphate.

The primary effect o f 1,25(OH)2D3 in bone is to mobilize calcium. 1,25(OH)2D3 elicits a 

paracrine response from osteoblasts (RANKL and other cytokines) to activate 

osteoclastogenesis and thus bone resorption (see above). l,25(OH)2D3 also has direct 

effects upon osteoblasts, such as regulating expression of various osteoblast-specific 

proteins (e.g. osteocalcin).

1,25(0H)2D3 paradoxically also promotes bone mineralization. However this is an 

indirect rather than active process, primarily achieved by maintaining a sufficiently high 

ion product to allow mineralization to proceed. The bone abnormalities of both VDR 

homozygous knockout mice and humans with Vitamin-D dependent rickets can be 

substantially improved if not normalised by dietary maintenance of adequate serum 

calcium and phosphate levels (Liberman et al. 1999).

1.6.6.4 Calcitonin

Calcitonin is a 32 AA peptide secreted from the parafollicular C-cells of the thyroid. In 

contrast to PTH and l,25(OH)2D3, the major biological effect of calcitonin is to inhibit 

osteoclastic bone resorption (Defros et al. 1999). Serum calcium levels regulate 

calcitonin secretion such that acute increases or decreases in serum calcium result in 

stimulation or suppression of secretion respectively. The effects o f chronically abnormal 

calcium levels upon calcitonin secretion are less clear (Deftos et al. 1999). Nasal
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calcitonin administration increases LS BMD in postmenopausal women (Reginster et al.

1995).

1.6.7 Other Cvtokines in Bone

Many cytokines influence bone modelling. The following cytokines are not intended to 

be an exhaustive list but rather are included both because of their relative importance in 

bone modelling and because they were used in the candidate gene linkage study 

presented in Chapter 4.

1.6.7.1 Transforming growth factor-beta

Transforming growth factor-beta (TGF-p) is an important regulator of bone formation 

and resorption. TGF-P exists abundantly in the bone matrix as three isoforms (Pl, 2, and 

3) of which TGF-P 1 is the dominant form (Pfeilschifter et al. 1998). Levels of TGF-p 1 

and -p2 in bone tissue correlate with histomorphic indices of bone formation and 

resorption, and with serum markers osteocalcin and bone-specific alkaline phosphatase 

(Pfeilschifter et al. 1998).

TGF-p 1 is produced by a number of bone cells including osteoblasts and bone marrow 

cells. It is secreted as a propeptide of 390 AA and incorporated into the bone matrix 

during its formation. TGF-p 1 is activated in the presence of plasmm or strongly acidic or 

alkaline environments, with cleavage of the propeptide to a 25 kDa protein o f 112 AA. 

During bone resorption TGF-p 1 is released fi*om the bone matrix and activated by the 

low pH under the osteoclast ruffled border. TGF-P 1 inhibits mature osteoclasts and
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osteoclastogenesis, promotes osteoclast apoptosis (Jilka 1998), stimulates 

osteoblastogenesis and increases osteoblast synthesis of the extracellular bone matrix 

(Centrella et al. 1994). As discussed above, TGF-pi increases OPG secretion (Takai et 

al. 1998), and its action upon osteoclasts may be a secondary phenomenon, mediated 

through the OPG/RANK/RANKL signalling system.

1.6.7.2 Colonv Stimulating Factors 1 and 2: Monocvte/Macrophage Colonv

Stimulating Factor TM-CSF) and Granulocvte/Monocvte-Colonv Stimulating Factor 

tGM-CSF)

The cytokine colony stimulating factor-1 is critical for osteoclastogenesis and osteoclast 

function. As mentioned above, M-CSF with RANKL are both essential and sufficient for 

osteoclast formation, maturation and activation (Burgess et al. 1999; Fuller et al. 1998).

Osteoblasts synthesize CSF-1 as both a membrane bound and a secreted form, a small 

portion of which is incorporated into the bone matrix. The different molecular forms 

may be responsible for different localised effects. CSF-1 has a direct effect upon 

osteoclasts to stimulate proliferation and differentiation and to prevent apoptosis (Jilka

1998).

CSF-2 (GM-CSF) is also synthesised by osteoblasts and has direct effects upon 

osteoclasts, stimulating proliferation and preventing apoptosis (Jilka 1998).
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1.6.7.3 Insulin-like Growth Factors HGF-1 and -2)

The insulin-like growth factors IGF-1 and IGF-2 are polypeptides of molecular mass 1.6 

kDa. The genes coding for IGF-1 and -2 are found on chromosomes 12 and 11 

respectively and show marked structural homology with each other and with the insulin 

gene, suggesting an evolutionary relationship (http://www3.ncbi.nlm.nih.gov/htbin- 

post/Omim/dispmim?l47440). IGF-1 and -2 are present both in the systemic circulation 

and are synthesized in bone as local regulators. IGF-1 is synthesized in the liver in 

response to growth hormone (GH) and is carried in the circulation by IGF-binding 

proteins (IGFBPs), especially IGFBP-3. Peripheral production of IGF-1 however is less 

GH-dependent (Duncan et al. 1999). In bone, IGF-1 synthesis is stimulated particularly 

by PTH and other agents that increase cAMP levels and only modestly by GH (Delany et 

al. 1994), whereas glucocorticoids inhibit skeletal IGF-1 production. Local IGF 

production is also under the influence of other skeletal growth factors (such as fibroblast 

growth factors) and local production of IGFBPs.

IGF-1 is strongly associated with linear growth and with acquisition of peak bone mass 

and bone mineral content. IGF-2 is much more active prenatally compared with IGF-1. 

Much less is known about the postnatal effects of IGF-2 on bone mass and skeletal 

growth (Duncan et al. 1999).

IGF-1 enhances collagen and matrix synthesis, inhibits collagen degradation and 

stimulates osteoblastogenesis (reviewed in (Lian et al. 1999)). IGF infusions in humans 

increase bone remodelling (Ebeling et al. 1993). Serum levels of IGF-1 are highest in 

men and women at the time of attaining peak bone mass, and subsequently decline with
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age (Goodman-Gruen et al. 1997). IGF-1 content in bone also declines with age in both 

men and women (Boonen et al. 1997). Serum IGF-1 levels have been shown in some but 

not all studies to correlate with BMD (reviewed in (Barrett-Connor et al. 1998)). Men 

with osteoporosis have been reported to have reduced IGF-1 serum levels (Kurland et al.

1997).

1.6.7.4 Epidermal Growth Factor ÆGFI

EGF is a potent mitogen for cells of ectodermal and mesodermal origin. EGF is a single

chain polypeptide of 53 AA with MW 6000. It is an analogue of transforming growth 

factor alpha, sharing 40% homology (http://www3.ncbi.nlm.nih.gov/htbin- 

post/Omim/dispmim?131530).

In vitro, osteoblast precursors express EGF-receptors. However differentiation into 

mature osteoblasts results in loss o f EGF-receptors (Chien et al. 2000). In vitro, EGF 

transforms osteoblast-like cells from a polygonal shape to a spindle form, suppresses 

osteoblast alkaline phosphatase activity, and selectively decreases type I collagen 

production with alteration of its hydroxyproline content resulting in a more immature 

fibril (Hata et al. 1984; Kumegawa et al. 1983).

1.6.7.5 Interleukin-4 HL-4I

IL-4 is a T helper cell derived cytokine initially identified as a B-cell mitogen (Yokota et 

al. 1986). As well as having potent anti-inflammatory activity, IL-4 prevents bone 

resorption. IL-4 inhibits osteoclastogenesis, osteoclast fiinction and osteoclast survival 

(Bizzarri et al. 1994; Riancho et al. 1993; Shioi et al. 1991). IL-4 protects against bone
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matrix degradation and (at least in vitro) promotes bone matrix mineralization (Ueno et 

al. 1992). IL-4 inhibits the synthesis of many pro-resorptive and pro-inflammatory 

cytokines, including IL -la, TNF-a, and IL-6, and increases synthesis of cytokine 

inhibitors (such as IL-1-receptor antagonist) (Joosten et al. 1999). IL-4 administration in 

murine models of rheumatoid arthritis (collagen-induced arthritis) protects against 

cartilage and bone destruction and suppresses RANKL production (Joosten et al. 1999; 

Lubberts et al. 2000).

1.6.7.6 Interleukin-11 IIL -llI

Interleukin 11 is an osteoblast/stromal-cell derived lymphopoietic and haematopoietic 

cytokine which stimulates osteoclastogenesis and bone resorption. The biological 

similarities between IL-11 and IL-6 may be in part due to a common interaction of each 

ligand-specific receptor with the gp-130 subunit (Kishimoto et al. 1995). Osteoblastic 

production of IL-11 is stimulated by many of the same factors that elicit IL-6 including 

IL-1, TNF-a, PTH and l,25(OH)2D3 (Romas et al. 1996). In addition to paracrine 

regulation, IL-11 production from osteoblasts is regulated under autocrine control 

analogous to autocrine regulation of IL-6 (Heymann et al. 2000). In addition to 

stimulating RANKL from osteoblasts, IL-11 also has a direct effect upon osteoclasts, 

resulting in osteoclast proliferation and prevention of apoptosis (Yasuda et al. 1998). 

Girasole and colleagues suggested that whilst IL-6 subserves osteoclastogenesis induced 

by estrogen deficiency, in the estrogen replete state IL-11 may play a central role in 

osteoclast signalling (Girasole et al. 1994). The subsequent discovery of the 

RANKL/RANK/OPG axis makes this suggestion somewhat less likely.
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Thus physiology of bone is highly complex. It is not surprising therefore that analysis of 

the genetics of osteoporosis should present similar levels of complexity.

1.7 Genetic Studies in Osteoporosis: Association studies

1.7.1 Collagen tvpe I -  alpha I chain ICOLl A ll

There is convincing evidence of association between a polymorphism in an Spl binding 

site o f COLl Al and BMD. Grant and colleagues demonstrated that the ‘s’ allele o f a 

binding site for the transcription regulator Spl in the first intron of COLl Al (base +2046, 

GenBank accession number J03559) was associated with low BMD at the spine, adjusted 

for height and weight and other confounding variables (Grant et al. 1996). A similar but 

not significant trend was evident at the femoral neck. The ‘s’ allele was also over

represented in fracture patients compared with controls.

Subsequently several large studies have supported this finding, with association of the ‘s’ 

allele with both BMD and fracture (Keen et al. 1999; Uitterlinden et al. 1998) in both 

men and women (Langdahl et al. 1998). Linkage of this gene with BMD has been also 

demonstrated in twins (Brown et al. 2001). However negative association studies have 

also been published (Gamero et al. 1998; Heegaard et al. 2000; Hustmyer et al. 1999; 

Liden et al. 1998; Sowers et al. 1999).

In vitro studies published in abstract form suggested that the ‘s’ allele resulted in greater 

affinity for Spl binding, with as much as three-fold increase in transcription of the ‘s’
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allele compared with the ‘S’ allele. This could potentially result in an imbalance of a l  

chains relative to the a l  chain, affecting bone strength by promoting a  1(1) homotrimer 

formation (Dean et al. 1998). However to date there have been no published articles to 

confirm the mechanism o f the association with osteoporosis.

Further discussion of the genetics of COLl Al and BMD is presented in Chapter 6.

1.7.2 Vitamin D Receptor TVDRf

There remains considerable controversy about the role of alleles of the vitamin D 

receptor (VDR) in control of bone density (Eisman 1995; Peacock 1995). Early studies 

by Morrison and colleagues suggested that VDR polymorphisms were major 

determinants of serum osteocalcin (Morrison et al. 1992) and bone density (Morrison et 

al. 1994). A partial retraction of these findings has subsequently been published, mainly 

due to incorrect allocation of twin heterozygosity (Morrison et al. 1997).

Three common restriction fragment length polymorphic (RFLP) sites recognised by 

restriction enzymes BsmI, Apal and TaqI have been examined in association studies of 

VDR, with ‘B’ or ‘b’, ‘A’ or ’a’, and ‘T’ or ‘t ’ representing the absence or presence of 

the RFLP site respectively. BsmI and Apal both recognise a noncoding polymorphism 

located intronically, between exon 7 and the 3’ untranslated region. A fiirther RFLP site 

(C/T) recognised by TaqI in exon 9 is a silent polymorphism (both ATT and ATC coding 

for isoleucine). Linkage disequilibrium between the BsmI and TaqI polymorphisms of 

VDR is extremely tight, with >98% concordance between ‘b’ and ‘T’ and conversely 

between ‘B’ and ‘t’ genotypes (Uitterlinden et al. 1996).
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The initial publication by Morrison and colleagues reported both linkage and association 

between VDR and BMD, with the ‘B’ allele associated with lower BMD (Morrison et al. 

1994). Of note, however, IBD statistics were used to determine linkage when in fact 

genotypes were only known IBS (no parental information was used). Multitudes of 

association studies either confirming or contradicting the initial observations have now 

been published, many of which lacking adequate power to address the question. A large 

population based survey found no association between any VDR RFLP genotype and 

BMD (Uitterlinden et al. 1996). A large case-control study of fracture patients did not 

show any association of VDR genotype with fracture risk (Bnsrud et al. 1999), although a 

similar sized study of similar design did find an association of the ‘B’ allele with 

osteoporotic fracture (p=0.06) (Langdahl et al. 2000). Two subsequent twin studies had 

conflicting results (Hustmyer et al. 1994; Spector et al. 1995). One candidate gene 

linkage study in a small number of families did not show evidence of linkage of BMD 

and this site (Spotila et al. 1996). A Meta-analysis of 16 studies concluded that VDR 

polymorphisms had a small effect upon BMD at both hip and lumbar spine. At the hip, 

the ‘at risk’ genotype BB resulted in -0.18 SD difference in BMD at the hip and -0.19 

SD difference at the spine. There was a trend (p=0.06) for VDR polymorphism effects to 

be greatest in younger age groups, dirninishing with age. However, exclusion of the 

initial publication (Morrison et al. 1994) (not unreasonable given its subsequent partial 

retraction) resulted in no significant effect of VDR polymorphisms on BMD at hip, spine 

or distal radius (Cooper et al. 1996). Additionally, heterogeneity of study design 

significantly influenced spine and hip data (p<0.0001 and p=0.0006 respectively).
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indicating that discrepancies between the types of study could be contributing to their 

conflicting outcomes.

Several studies have found that the ‘BB’ or ‘tt’ genotypes are associated with more rapid 

bone loss longitudinally (Brown et al. 2001; Ferrari et al. 1995; Gough et al. 1998; 

Kikuchi et al. 1999; Krall et al. 1995; Yamagata et al. 1994; Zmuda et al. 1997), although 

even this finding has not been universal (Berg et al. 1996; Gamero et al. 1996; Gamero et 

al. 1995; Jorgensen et al. 1996; Keen et al. 1995). This may relate to small sample sizes 

with lack of power to detect a tme association, differences in dietary calcium intake (high 

intake potentially obscuring moderate genetic effects -  see below), and the menopausal 

status of subjects studied (rapid perimenopausal bone loss obscuring non-estrogen related 

genetic effects).

VDR polymorphisms may affect intestinal calcium absorption (Dawson-Hughes et al. 

1997; Wishart et al. 1997), although this finding has not been consistently reproduced 

(Francis et al. 1997; Kinyamu et al. 1997), and no differences in intestinal VDR 

expression have yet been demonstrated with different genotypes (Barger Lux et al. 1995). 

The effect of dietary calcium on bone density in relationship to VDR genotypes has also 

yielded conflicting results. Brown and colleagues showed that a difference in rates of 

bone loss was evident between VDR genotypes only in the lowest and middle tertiles of 

calcium intake, with ‘Tt’ and ‘tt’ genotypes having the highest rates of bone loss (Brown 

et al. 2001). In one study, calcium supplementation had no effect in ‘bb’ homozygotes 

but an effect was noted in heterozygotes and a non-significant change in ‘BB’
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homozygotes (Ferrari et al. 1998), whereas in another study, ‘bb’ homozygotes on high 

calcium diets gained bone density compared with other genotypes (Kiel et al. 1997).

Recently, there have been reports of a coding polymorphism (T/C) in exon 2 of the VDR 

gene resulting in alternative translational start sites and thus different isoforms o f the 

VDR protein (Gross et al. 1996). Women with the longer VDR (‘ff  genotype) have been 

reported to have low bone density in some studies (Arai et al. 1997; Choi et al. 2000; 

Gross et al. 1996; Harris et al. 1997) but not others (Cheng et al. 1999; Eccleshall et al. 

1998; Ferrari et al. 1998; Langdahl et al. 2000; Zmuda et al. 1999). As with the plethora 

of association studies of the BsmI, Apal and TaqI polymorphisms, some of these 

negative results may be due to small sample sizes with inadequate power to exclude an 

effect. There is also contradictory data from molecular biological studies into the effects 

o f this polymorphism. One study showed no difference in either the binding of VDR 

ligands or transactivation of VDR target genes with different genotypes (Gross et al.

1998), and another found less vitamin D-dependent transcriptional activation in the ‘f f  

compared with ‘FF’ genotypes (Arai et al. 1997). A study in children found an 

association between higher calcium absorption and greater BMD with the ‘FF’ genotype 

(Ames et al. 1999).

Uitterlinden and colleagues recently reported that although there was no association 

between VDR and BMD, there was an association between the ‘baT’ haplotype and 

fracture risk independently of BMD. The odds ratios for fracture were 1.8 for 

heterozygous carriers and 2.6 for homozygous carriers, with similar effect at both 

vertebral and nonvertebral sites. Further, there was evidence of interaction with COLlAl
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genotype, such that carriage of both the ‘T’ allele of COLl Al (corresponding to the ‘s’ 

allele discussed above) and the ‘baT’ allele of VDR fiirther increased the risk of fracture 

independently of BMD (Uitterlinden et al. 2001).

An association has also been reported between BMD and combinations of 

polymorphisms of the Estrogen Receptor (ER) and VDR (Gennari et al. 1998; Willing et 

al. 1998) although, yet again, contradictory results have also been reported (Brown et al. 

2001). The power of such studies is again problematic, as division into multiple genotype 

groups reduces the sample size of each.

It therefore remains possible that this gene or linked genes may contribution to the 

heritability of bone mineral density and/or fracture. However the effect may be evident 

only in particular environmental or genetic backgrounds.

1.7.3 Estrogen Receptor-alnha ÆR-al

Three SNPs recognised by restriction enzymes BstUI (in exon 1), PvuII and Xbal (both in 

intron 1) and a dinucleotide micro satellite marker in the promoter region have produced 

suggestive evidence for a role for ER-a in determining bone density.

Association of the RFLPs and bone density in postmenopausal women was initially 

reported in Japanese (Kobayashi et al. 1996) and Caucasians (Gennari et al. 1998;

Willing et al. 1998). However, other groups have found no association in 

postmenopausal women (Bagger et al. 2000; Han et al. 1997; Vandevyver et al. 1999) of 

the same and different ethnic groups. In Thailand, association with the opposite genotype

79



was seen in males (Ongphiphadhanakul et al. 1998) and in young premenopausal females 

(Ongphiphadhanakul et al. 1998).

One study of pre-, peri- and postmenopausal women did not find an association overall 

but found an association with the heterozygous Xx genotype in younger premenopausal 

women. Further, markers of bone turnover were greater in the perimenopausal Xx 

genotype compared with the xx genotype. This suggests that the effects of ER-a on BMD 

may be greatest in younger people (and thus affect peak bone mass), with ablation of its 

effects with the bone loss of menopause. However, the numbers involved were very 

small (Mizunuma et al. 1997).

There is strong linkage disequilibrium between the RFLPs identified in the ER-a 

(Becherini et al. 2000; Langdahl et al. 2000). Different haplotypes have been associated 

with low bone density m different studies. The ‘Px’ haplotype was found to have lower 

bone density in Japanese postmenopausal women (Kobayashi et al. 1996) and in a British 

cohort of mostly (92.7%) postmenopausal women (Albagha et al. 2001) whereas the ‘PX’ 

haplotype was associated with lower bone density m a study of Italian postmenopausal 

women (Gennari et al. 1998). It should be pointed out that several o f these studies use 

probabilistic rather that actual haplotypes for their statistical analysis (Becherini et al.

2000; Gennari et al. 1998; Kobayashi et al. 1996; Langdahl et al. 2000).

Recently three studies examining the three RFLPs in the exon and intron and a (TA) 

repeat in the promoter region have demonstrated linkage disequilibrium between all the 

polymorphisms (Albagha et al. 2001; Becherini et al. 2000; Langdahl et al. 2000).

Despite finding no association with the intragenic polymorphisms, two studies reported
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an association between the promoter region and BMD, with fewer (TA) repeats 

associated with lower BMD (Becherini et al. 2000; Langdahl et al. 2000). In contrast, the 

third study reported an association with the Px haplotype but none with the (TA) repeat 

polymorphism, with greater number of (TA) repeats in linkage disequilibrium with the ‘at 

risk’ Px haplotype (Albagha et al. 2001). The interpretation of such studies is difiBcult as 

the level of cut-off of repeats is arbitrary and critically alters results. A further study of 

the (TA) repeat polymorphism found an association with BMD at LS, although this result 

was not significant after adjustment for hysterectomy and oopherectomy (Sowers et al.

1999).

Longitudinal studies of ER-a polymorphisms and bone loss demonstrated contradictory 

results. No association was seen between ER-a and BMD in a group of elderly 

postmenopausal women (Bagger et al. 2000; Brown et al. 2001), nor in a perimenopausal 

group (Willing et al. 1998), although an association was found in one young 

postmenopausal cohort (Salmen et al. 2000).

Two studies have suggested that there is genetic interaction between the VDR and ER-a 

influencing bone density (Gennari et al. 1998; Willing et al. 1998). No effect of either 

ER-a or VDR/ ER-a combined on bone density or change in bone density was 

demonstrated m a study of late postmenopausal women, also suggesting that this effect 

may be most prominent in younger individuals (Brown et al. 2001).

A study of body size in infants found a similar interaction between ER-a and VDR and 

an independent association of the PvuII ER-a SNP with body growth in infancy, 

suggesting that this interaction may primarily influence peak bone mass (Suarez et al.
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1998). An association of the PvuII ER.-a SNP with BMI in adults has also been reported 

(Deng et al. 2000).

An association has been shown between ER-a alleles and QUS (Patel et al. 2000). 

Further, this study also showed that another gene associated with the intracellular 

transduction of estrogen signals (estrogen receptor cotranscriptional activator amplified 

in breast cancer-1) had both an independent association with QUS and also interacted 

with alleles of ER-a in determining BMD.

1.7.4 Interleukin-6 tIL-6)

A study looking at a minisateUite in the 3’ flanking region of IL-6 reported an association 

with low bone density in homozygotes (genotype ‘FF’) compared with heterozygotes 

(genotype ‘CF’), although of note the ‘CC’ homozygotes actually had lower lumbar spine 

bone density compared with either ‘C/F’ or ‘F/F’ (Murray et al. 1996). A similar trend 

was noted at the femoral neck. A study of Japanese postmenopausal women examining a 

different microsatellite at this locus found an association with radial bone density 

(Tsukamoto et al. 1999). A polymorphism in the promoter region of IL-6 has been 

reported to affect IL-6 transcription and plasma IL-6 levels (Fishman et al. 1998), and an 

association study of this polymorphism in young men reported association with peak 

BMD (Lorentzon et al. 2000). Linkage has also been reported between osteopaenia (as a 

qualitative trait) and IL-6, but not with IL-6R (Ota et al. 1999), although other studies 

have not confirmed this (Takacs et al. 2000).
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1.7.5 Transforming Growth Factor-p fTGF-p)

Polymorphisms of the TGF-pi gene have been associated with low BMD, fracture and 

increased bone turnover. Association of an intronic single base deletion affecting the 

splice junction sequence upstream of exon 5 (713-8delC) with low bone density, fracture 

and increased bone turnover has been reported in two studies (Bertoldo et al. 2000; 

Langdahl et al. 1997). Additionally bone-specific alkaline phosphatase, a marker of bone 

formation, was also associated with this polymorphism. A study of Japanese 

postmenopausal women did not find the 713-8delC deletion in the study population. 

However a different polymorphism (T/C transition at nucleotide 29 in the signal sequence 

region causing a Leu to Pro substitution at AA position 10) was found to be associated 

with low bone density, fractures, and increased TGF-pi serum levels with a trend for 

increased markers of bone resorption (Yamada et al. 1998). Longitudinal studies showed 

greater bone loss in patients with the ‘TT’ genotype, with significantly greater response 

to 1,25(0H)2D3 therapy and a trend to greater response to hormone replacement therapy 

in patients with the ‘CC’ genotype (Yamada et al. 2000). A study o f yet another TGF- 

p i polymorphism, a T/C polymorphism in intron 5, also reported association with BMD 

(Keen et al. 2001). Serum levels of TGF-pi have been reported to have heritability of 

0.54 (Grainger et al. 1999).

1.7.6 Interleukin-1

The Interleukin-1 family includes IL -la, IL-lp and the IL-1 receptor antagonist (IL- 

IRA). Two association studies of IL-1 RA have been performed in osteoporotic patients 

(Keen et al. 1998; Langdahl et al. 2000), both finding a weakly significant association.
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Keen and colleagues found an association of early postmenopausal bone loss at the spine 

but not the femoral neck with the ‘Al A1/A3’ genotypes (Keen et al. 1998). Langdahl 

and colleagues found an association of the same genotype with both osteoporotic fracture 

and low BMD at the spine. Although there was no association with any markers of bone 

turnover, they noted a non-significant trend of increasing difference in LS BMD between 

genotypes with increasing age (Langdahl et al. 2000). Of note, though, the heterozygote 

group had the highest BMD compared with the homozygotes of both the putative ‘at-risk’ 

and the ‘protective’ alleles, which is biologically improbable.

1.7.7 TNF-g/MHC

A single linkage study in Japanese women, analysing BMD as a qualitative trait, reported 

linkage of TNF-a to BMD, using an intragenic microsatellite marker, although the p- 

value threshold used to report linkage was unusually high (Ota et al. 2000). However, as 

linkage disequilibrium across the MHC is extremely high, this result at best suggests 

linkage of MHC rather than of TNF-a per se. A previous small association study of 

HLA also in Japanese women had also reported association with a particular MHC 

haplotype (Tsuji et al. 1998).

1.7.8 IGF-1

Association was reported with an intragenic CA-repeat and BMD in a small study 

focussing on males with osteoporosis (Rosen et al. 1998). Subsequent larger linkage and 

association studies have not supported this result (Takacs et al. 1999).
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1.7.9 Parathyroid Hormone TPTH)

Two association studies of an intronic BstBl RFLP site in the PTH gene and BMD have 

been performed, with contradictory findings (Hosoi et al. 1999; Johnson et al. 1995). A 

further study suggested an effect upon bone size rather than on BMD (Gong et al. 1999).

1.7.10 Calcitonin Receptor

Two studies of different polymorphisms of the calcitonin receptor have reported 

association with low BMD and fi*acture (Masi et al. 1998; Taboulet et al. 1998). 

However, in both of these, BMD was reported to be highest in the heterozygote groups 

(with low significance levels), which is not consistent with a biological role of these 

polymorphisms in determining BMD.

1.7.11 Osteocalcin

Serum osteocalcin levels have been reported to be a heritable trait. Greater correlation 

was observed in serum osteocalcin levels between monozygotic twins than in dizygotic 

twins, both pre- and postmenopausally (Kelly et al. 1991). The allocation of zygosity for 

some twin pairs in this study has since been demonstrated to be incorrect (Haughton et al.

1998).

Allelic variation of the VDR is correlated with serum osteocalcin levels, suggesting that 

population variation in VDR may underhe variance in BMD through its effects upon 

osteocalcin production and, by inference, bone formation (Morrison et al. 1992).
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In a modest sized association study involving 261 women, no association was 

demonstrated between a dinucleotide CA repeat tightly linked to the osteocalcin gene, 

and serum osteocalcin levels either at baseline or with change over 3 years. Additionally, 

there was no association between osteocalcin genotype and BMD at baseline or with its 

change over 3 years (Willing et al. 1998). However, this negative study did not have the 

power to address the question due to the number of genotypes examined. A fiirther study 

by this group of a C/T polymorphism in the promoter region of osteocalcin was also 

negative (Sowers et al. 1999). An association study in Japanese women of a C/T 

polymorphism in the osteocalcin promoter region did not show a significant difference in 

BMD between genotypes (Dohi et al. 1998).

1.7.12 Osteopontin

An association study of an intragenic dinucleotide repeat in the osteopontin gene and 

BMD showed a significant association with baseline BMD at femoral neck but not at 

other sites. The bulk o f the contribution to the chi-squared statistic was due to a single 

heterozygous genotype without any clear aUele-dose effect. There was no association 

between genotype and change in BMD over 3 years (Willing et al. 1998).

1.7.13 Others

Other candidate genes have been reported to have associations with bone density, 

including the apolipoprotein E gene (Salamone et al. 2000; Shiraki et al. 1997) and the 

calcium sensing receptor (Tsukamoto et al. 2000). As with many of the above genes, the
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level o f significance obtained in these studies has not been great, and confirmation 

studies will be required to determine their general relevance.

1.8 Genetic Studies in Osteoporosis: Linkage Studies

Very few large linkage studies have been performed in osteoporosis. A candidate gene 

study in a small number of ethnically heterogeneous families did not demonstrate any 

linkage with several candidate genes (VDR, COLlAl or C0L1A2), although the study 

did not have adequate power to exclude significant effects (Spotila et al. 1996). 

Subsequently a whole genome scan was performed in this sample of families, with 

suggestive evidence of linkage of BMD to loci on chromosomes Ip, 2p and 4q, with the 

highest individual marker lying on chromosome l lq  (LOD 2.08 at marker CD3D) 

(Devoto et al. 1998). A genome-wide scan in 96 Chinese families with 153 sib-pairs 

showed linkage of forearm bone mineral density with several areas of chromosome 2 and 

a more localised area on chromosome 13 (Niu et al. 1999).

A genome-wide scan in a family kindred (22 members) with autosomal dominant high 

bone density showed linkage to chromosome 1 lql2-13 with maximal LOD score (MLS) 

of 5.74 at marker dl ls987. As individuals with high bone density were identifiable by 

young adulthood, this locus was therefore thought to be involved in determination of 

peak bone mass (Johnson et al. 1997). A linkage study of 374 Caucasian and Afiican- 

American sisterships initially examining only 56 cM of chromosome 1 lql2-13 showed 

linkage of this region to femoral neck bone density (LOD score 3.5) and to a lesser extent
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lumbar spine BMD (LOD score 1.63 in Caucasian sisters only) (Koller et al. 1998). 

Subsequently a full genome scan was performed in an expanded cohort, with significant 

evidence of linkage of chromosome lq21-23 with lumbar spine BMD. Suggestive 

evidence of linkage was seen at chromosomes 5q33-35 and 1 lql2-13 with femoral neck 

BMD, and at 6pl 1-12 with lumbar spine BMD. The area of 1 lql2-13 had a lower LOD 

score with their expanded population than in their earlier work (Koller et al. 2000).

As indicated above, three studies have shown linkage of bone mineral density to an area 

on chromosome llq . Two monogenic diseases associated with abnormal bone density 

(autosomal recessive osteopetrosis (Heaney et al. 1998) and osteoporosis-pseudoglioma 

syndrome (Gong et al. 1996)) have been mapped to the same region. It seems likely that 

this region will contain a gene or genes relevant to the control of bone density in the 

general population.

Recently two small candidate gene linkage studies have reported linkage o f BMD to IL-6 

(Ota et al. 1999) and and to TNF-a (Ota et al. 2000).

So in summary, despite many association studies of BMD and various genes, there have 

been few candidate or whole genome linkage studies in osteoporosis, with none 

performed in a homogeneous population looking at BMD of lumbar spine and femoral 

neck. The genes underlying population variance in BMD remain unknown. This thesis 

presents work undertaken in order to determine such genes.
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Chapter 2: Materials and Methods

2.1 Genomic DNA Extraction

DNA was extracted from peripheral blood mononuclear cells by a modification of the 

guanidine hydrochloride method (Jeanpierre 1987).

Peripheral venous blood was collected in EDTA-containing tubes (Greiner, UK). 

Following freeze-thawing, 30mL of blood was mixed with approximately 30mL of 

erythrocyte lysis buffer (1% Triton-X 100, 320 mM sucrose, 1 mM 

Tris(hydroxymethyl)methylamine pH 8, 5mM magnesium hydrochloride). This was 

vortexed then centrifuged at 2500rpm for 15 minutes. The supernatant was poured off 

and the pellet resuspended in approximately 20mL of lysis buffer, vortexed and 

centrifuged again. This process was repeated until there was little visible haemoglobin 

remaining.

The pellet was resuspended in 3.5mL 6M guanidine hydrochloride and 250p,L 7.5M 

ammonium acetate and vortexed. Proteinase K 50pL (lOmg/mL in 1% lauryl sulfate, 

2mM sodium edetate pH 8.0) and 250pL 10% SDS were added to the solution. The mix 

was then incubated either at 37° overnight or at 60° for an hour. The mixture was then 

cooled to room temperature. 2mL of chloroform was added, the tube vortexed and then 

centrifuged at 2000 rpm for 3 minutes. The aqueous supernatant was collected by pipette 

and added into a fresh tube of lOmL of cold 100% ethanol (-20°C). This tube was then 

agitated to precipitate the DNA. The tube was centrifiiged for 15 minutes at 3000rpm. 

The supematent was drained, the DNA pellet washed twice with 70% ethanol and
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transferred to a 1.7mL Eppendorf tube, and the pellet left to dry. The DNA was then 

resuspended in IM TE8.

2.2 Spectrophotometric Quantification of DNA.

The concentration and purity of DNA samples were assessed by UV light absorption. 

5pL from each DNA sample was diluted 1 in 20 in SDW and then aliquoted into a 

cuvette. The optical density was assessed at light wavelength 260nm and 280nm using a 

spectrophotometer (Beckton-Dickinson). The concentration of DNA is given by the 

formula:

Concentration (ng/pL)= OD260 x dilution x 50.

The purity was assessed using the ratio OD260/OD280. The absorption at 280nm is mainly 

due to protein contaminants. Pure DNA has a ratio >1.5.

2.3 Microsatellite Amplification and Detection

2.3.1 The use of Microsatellite Markers and Polvmerase Chain Reaction For Linkage

The power of linkage analysis depends critically upon the informativity of the markers 

used (Risch 1990). The probability that a marker will be informative for linkage analysis 

depends on the number of alleles of the locus and their frequency. Parents homozygous 

for a marker will not be informative for linkage as IBD status in the offspring cannot be 

determined (unless multipoint analysis is performed). Similarly, parents who are
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identical heterozygotes will also not be informative for linkage when the offspring are 

also heterozygotes, as again IBD status cannot be determined. The proportion o f meioses 

that will be informative at a marker is given by the polymorphism information content 

(PIC) of that marker. This is equal to one minus [(the proportion of meioses involving 

homozygotic parents) and (the proportion of meioses occurring from identical 

heterozygotic parents resulting in heterozygotic offspring)].

« - I n  2 2

p/c = i-(2/?,)-SI2/.,p
i=\ i=\ y=/+l

Where pi is the frequency of allele i

n is the number of alleles at the marker locus 

2piPj is the proportion of heterozygotes (equation 1)

4pi^Pj  ̂is the proportion of parents who are identical heterozygotes (equation 2) 

2pi^Pj  ̂is the proportion of meioses involving identical heterozygous parents that 

result in heterozygotic offspring at a particular marker (equation 3).

Note that equation 2 is the square of equation 1, and equation 3 is half equation 2.

Microsatellite markers are short sequences of tandem nucleotide repeats, the bulk of 

which are dinucleotide (CA)„ repeats. Microsatellite markers are spread throughout the 

genome and are common, with (CA) repeats accounting for 0.5% o f the total genome 

(Strachan et al. 1996). Microsatellites are highly polymorphic i.e. the number o f repeats 

is highly variable between different alleles present in the population, making it unlikely 

that an individual will be homozygous for a particular marker. Microsatellites are also
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easily typed by semiautomated means. Of note, (CA)n repeats are prone to replication 

slippage during PCR, so that stutter bands may be evident on both agarose and 

genotyping gels. This combination of characteristics means that micro satellite markers 

are very useful for linkage analysis. However, they are likely to be superseded by single 

nucleotide polymorphism technology (see Chapter 1: Section 1.5.3).

Microsatellite markers are amplified by polymerase chain reaction (PCR). PCR is a 

means of cloning multiple (in the order of 2^ )̂ copies of small segments of DNA. In 

brief, oligonucleotide probes (known as primers) anneal to the DNA flanking the 

microsatellite variable region and promote replication of the intervening sequence by 

providing starter templates for DNA polymerase.

2.3.2 PCR Protocols

PCR o f microsateUite markers was undertaken in 96 well V-bottom microtitre plates 

(Costar, High Wycombe, UK). The reaction mix consisted of 50ng DNA, 0.4}^L of 5p.M 

primer solution (containing both forward and reverse primers), 0.25p,L of 2mM dNTPs, 

0.5-3.5mM MgCb, IpL lOxNIL buffer, 0.2 units of DNA polymerase and SDW to 10p.L 

volume. Unless otherwise specified, the DNA polymerase used was Bio line Taq (Bio line 

UK Ltd, London, UK). MJ thermal cyclers (MJ Research, Watertown, MA, USA) were 

used for PCR, with standard cycling conditions of DNA dénaturation (94°C 1 minute), 

annealing of probes (54-61°C for 1 minute) and extension (72°C for 45 seconds). 

Annealing temperature, magnesium concentration and numbers of cycles for each 

microsatellite were individually optimised.
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For genotyping using ABI373 machines, primers were synthesised with a fluorescent tag 

(FAM, ROX, HEX, TET) from Sigma-Genosys Ltd., Pampisford, Cambridgeshire, UK; 

Gibco/Life Technologies™, Paisley, UK or were selected from the Medical Research 

Council (UK) set of primers (Reed et al. 1994).

2.3.3 Use of de-aza deoxvguanosine trisphosphate

DNA with high (G+C) content has substantial intra-strand secondary structure that during 

normal electrophoresis is not frilly denatured. This results in anomalous migration with 

adjacent bands o f DNA becoming compressed. Compression is entirely dependent on 

secondary structure. To diminish secondary structure, nucleotide analogues can be used: 

either dITP (deoxyinosine trisphosphate) or 7-deaza-dGTP. These pair weakly with 

conventional bases whilst being good substrates for DNA polymerases: thus they are well 

incorporated and diminish secondary structure resulting in fewer compressions and 

facilitating work with (G+C) rich DNA (Sambrook et al. 1989).

2.4 Agarose Gel Electrophoresis.

3% agarose gels were prepared by dissolving 3g agarose (Sigma, Poole, UK) in lOOmL 

IxTBE (0.09M Tris-borate, 0.002M EDTA) and boiling in a microwave oven. Ethidium 

bromide (8qL of lOmg/mL solution) was added to the cooled agarose solution which was 

then poured into the gel mould.
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Alternatively, agarose gels were poured without adding ethidium bromide, but 

subsequent to electrophoresis the gels were soaked in a solution of ethidium bromide 

(Ig/L in TBE) for 30-60 minutes.

5pL of loading buffer (30% glycerol in sterile distilled water with equal mass of 

bromophenol blue and xylene cyanole (approximately 0 Ig of each for lOOmL solution)) 

was mixed with an equal volume of PCR product prior to loading. DNA marker VIII 

(Boehringer Mannheim, Lewes, UK) was used as a size standard.

Gels were electrophoresed in IxTBE at 150-200V for at least 15 minutes. Nucleic acid 

was then visualised by UV light transillumination, as ethidium bromide intercalates with 

DNA and fluoresces under UV light.

2.5 Polvacrvlamide Gel Electrophoresis for Micro satellite Markers

Separation of microsatellite markers was performed by electrophoresis using ABI 373 

semiautomated sequencers (Applied Biosystems, Warrington, UK) using 6% denaturing 

polyacrylamide gels.

The PCR products were diluted with water according to the amount of PCR product 

present, and pooled into primer sets. These were arranged such that no set contained two 

primers of the same length with the same colour fluorescent tag.

For each sample, 2.4pL of loading buffer (8.3mg/mL blue dextran, 5mM EDTA, 86% 

formamide) was mixed with 0.6pL GS Tamra 500 size standard (see below) and 3-5pL
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of pooled PCR product. The mix was denatured at 95° for 3 minutes then rapidly cooled 

on ice. 2-3 pL of the mix was loaded per well. Gel electrophoresis was performed at 

approximately 900V for approximately 4 hours (according to the size o f the largest PCR 

product).

2.6 Size standards

2.6.1 Size standards for agarose gels

Marker VIII (Boehringer Mannheim, Lewes, UK) is a mixture of digestion products of 

the plasmid pUCBM21 by the restriction enzymes Hpa //and  separate digestion with 

Dra I  and Hind III. 1 OOpL Marker VIII was mixed with 1.55mL TE8 and 1.65mL 

loading buffer to make a size standard for running with agarose gels. The bands 

produced are shown in the table below.

2.6.2 Size standards for genotyping gels

GS Tamra 500 (Perkin Elmer, Boston, Massachussetts, USA) is made by /  digestion

of plasmid DNA followed by ligation of a TAMRA-labelled 22-mer to the cut ends. 

Subsequent digestion with Bst UI produces DNA fragments, each containing a single 

TAMRA dye. 0.6pL of GS Tamra 500 was mixed with 2.4pL of loading buffer for each 

sample loaded. The bands produced are shown in the table below.
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Table 2.6: Size standard bands

Band Marker VIII GS Tamra 500

1 1114 500

2 900 490

3 692 450

4 501 400

5 489 350

6 404 340

7 320 300

8 242 250

9 190 200

10 147 160

11 124 150

12 110 139

13 37 100

14 37 75

15 34 50

16 26 35

17 19

2.7 Semiautomated Genotyping of Microsatellites.

Products were sized using the programme GeneScan^^ Versions 2.0.2 and 2.1 (Applied 

Biosystems, Warrington, UK) and genotypes semiautomatically assigned using the 

programme Genotyper^^ Version 1.1 (Applied Biosystems, Warrington, UK). All 

genotypes were manually checked. The programme GAS (A. Young, unpublished) was 

used to conyert the size data into discrete allele numbers. Mendelian inheritance was
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checked both manually, using the programme Genotyper^^, and automatically, using 

GAS (A. Young) and Pedcheck (O'Connell et al. 1997).

Allele frequencies were calculated from the data using the programme Downfreq 

(J.Terwilliger, unpublished).

Allele sharing and linkage were assessed using the programmes Mapmaker/Sibs 

(Kruglyak et al. 1995), Analysis of Complex Traits (‘ACT’) (Amos et al. 1996), 

Sequential Oligogenic Linkage Analysis Routines (SOLAR) (Almasy et al. 1998), and 

Quantitative Transmission Disequilibrium Testing (QTDT) (Abecasis et al. 2000). These 

programmes are discussed in more detail in Chapters 1,4,6, and 7.

2.8 Denaturing High Performance Liquid Chromatography TDHPLC)

2.8.1 DHPLC Rationale

Heteroduplex analysis is a frequently used mutation screening method. Heteroduplexes 

arise from the annealing together of a wild type DNA strand with its complementary 

mutant strand, resulting in one or more mismatched bases. Examples of heteroduplex 

analysis detection systems include heteroduplex mobility in polyacrylamide gels 

(utilising the different electrophoretic mobility o f heteroduplexes and homoduplexes in 

polyacrylamide gels), chemical or enzymatic cleavage of mismatches (CCM or ECM) 

present in heteroduplexes, and denaturing gradient gel electrophoresis (differing 

migration of the different DNA duplexes through a gel with increasing gradient of either
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chemical or temperature dénaturant; migration ceases when the DNA denatures). 

Heteroduplex based analysis systems will not pick up homozygous mutations, unless the 

sample has been mixed with wild-type DNA. In contrast, single strand conformation 

polymorphism (SSCP) analysis, another frequently used mutation detection method, 

relies on differences in folding patterns and secondary structure of single stranded DNA. 

SSCP does not rely upon heteroduplex formation although again homozygous mutations 

would not be detected unless a control wild type was run for comparison. However, 

commonly used methods o f mutation detection (such as SSCP and heteroduplex mobility 

in polyacrylamide gels) lack sensitivity (Sheffield et al. 1993), whilst more sensitive 

methods (such as denaturing gradient gel electrophoresis and CCM) are expensive and 

labour intensive (O'Donovan et al. 1998).

Denaturing high performance liquid chromatography (DHPLC) is a rapid and sensitive 

means of mutation detection capable of detecting single base pair changes. A sample 

from an individual who is heterozygous for a single nucleotide polymorphism or 

mutation wül have 1:1 ratio o f wild type and mutant DNA. After amplification by PCR 

(see below), the DNA samples are denatured by heating to 95°C followed by slow 

cooUng to promote the formation of heteroduplexes. Thus after hybridisation four 

species of DNA will be present from a heterozygous individual -  2 homoduplexes and 2 

heteroduplexes. The PCR product is then analysed using ion-pair reverse phase liquid 

chromatography. This is undertaken at a temperature sufficient to partially denature the 

sample. Under non-denaturing conditions the four species of DNA will all have the same 

retention time on the column or matrix. As the temperature increases gradually, the 

heteroduplex DNA fragments denature in the region around the mismatched base pair(s).
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This dénaturation results in a reduction of the double-stranded portion of the PCR 

product. Heteroduplex fragments containing the mismatches will have a greater 

proportion of single-stranded DNA and therefore will elute off the column before 

homoduplex fragments. Retention time of each homoduplex fragment and of each 

heteroduplex fragment will differ due to the differing base constitution of each species: 

an A-T homoduplex will denature and elute before a C-G homoduplex (due to the 

additional hydrogen bond existing between the C-G base pair). Therefore the differing 

species will be resolvable into two sets of two fragments representing both homoduplexes 

and both heteroduplexes. At sufficiently high temperatures all species will be denatured 

(Kuklinetal. 1997).

Samples are amplified using touchdown PCR using both a 5’-3’ DNA polymerase and 

additional 3’-5’ proof-reading exonuclease. Touchdown PCR results in the first strand 

synthesis occurring at the highest possible temperature and thus having the highest 

specificity; subsequent amplification occurs from this template. This results in fewer 

species of DNA from non-specific primer amplification (‘mis-primed products’). The 

proof-reading enzyme results in fewer PCR-induced errors. The fidelity of PCR is 

critical, as detection of mis-primed products or error induced by PCR will be confiised 

with the detection of true heterozygotes.

DHPLC is performed at a temperature sufficient to partially denature the DNA 

complexes. The clearest definition between different fragments occurs with 

approximately 10% dénaturation, i.e. 80-90% helical fraction or ‘double strandedness’. 

This is fragment-specific, with higher temperatures needed for dénaturation o f (G+C) rich
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areas compared with (A+T) rich fragments. The appropriate dénaturation conditions can 

be calculated using the theoretical Tm from sequence data and various software packages 

(e.g.WAVEMaker™ 3.3, Transgenomic Inc., San Jose, California, USA). Alternatively, 

the appropriate temperature for 90% dénaturation can be determined by experiment, 

running incremental temperature curves. These plot retention time o f wild type DNA 

against temperature, starting at approximately 50°C (DNA fully double-stranded) and 

increasing temperature until the DNA is fully denatured. Once the appropriate 

temperature is determined, the quality of the PCR product can be tested using control 

wild type DNA. PCR fidelity can be assessed from the shape of the curve of retention 

time, looking for evidence suggesting the presence of more than one DNA fragment, in 

which case the PCR reaction must be re-optimised. Longer sections of DNA may have 

more than one domain of melting (i.e. 10% dénaturation of each domain may occur at 

different temperatures according to the different base pair constitution) and thus it may be 

necessary to analyse samples at more than one temperature. On average, two 

temperatures are needed.

For mutation detection, 50pL of PCR product is analysed by the WAVE™ DNA 

Fragment Analysis System (Transgenomic Inc., San Jose, California, USA). The WAVE 

machine is an automated system allowing plates of up to 96 samples to be analysed 

sequentially and rapidly (6.8 minutes/sample). This system is capable of detecting single 

base changes in fragments as large as 1.5 kB, although the optimum length is between 

150 and 450 base pairs (Kuklin et al. 1997). Larger products are also more likely to have 

more than one domain of melting and, as indicated above, may require several analyses at 

differing temperatures. The samples anneal to a high resolution matrix consisting of
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polystyrene-divinylbenzene copolymers (DNASep^, Transgenomic Inc., San Jose, 

California, USA). The buffers used for mutation detection consist of a) O.IM 

triethylammonium acetate (TEAA) and b) O.IM TEAA with 25% acetonitrhe. DNA 

binds to the column through the bridging molecule TEAA: the alkyl group binds to the 

column whilst the ammonium ion binds to the phosphate ions of the DNA molecule. The 

former interaction is disrupted by an increasing gradient of acetonitrile concentration, 

achieved by a 2% increment in buffer B per minute. Thus at the predetermined 

temperature for partial dénaturation, the four different DNA species will elute at slightly 

different concentrations of acetonitrile and will be detected by UV screening of the buffer 

diluent. Typically heterozygotes will elute at concentrations of buffer B 1.5 to 2% lower 

than is required for elution of the homozygotes (Taylor et al. 1998).

Populations containing a high number of homozygous mutants can be screened by 

addition o f known wild-type DNA to the unknown sample. Normally homozygous 

mutants will not be detected, as the sample will elute as a single entity, indistinguishable 

from a homozygous wild type sample. Addition o f control wild type DNA will allow for 

the formation o f heteroduplexes with the mutant homozygous DNA; the mutation will 

thus be detected. The addition of control wild type DNA to heterozygous samples is not 

detrimental to their detection despite disrupting the usual 1:1 ratio between wild type and 

mutant DNA strands (Escary et al. 1999). Indeed mutations may be detected with a wild 

type to mutant DNA ratio of 50:1 (Kuklin et al. 1997). If DHPLC is run as a single step 

with the addition of wild type DNA to the samples, homozygous mutants and 

heterozygous samples would be indistinguishable. To distinguish clearly between
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homozygous wild type, heterozygous and homozygous mutant samples requires a two- 

step procedure.

DHPLC is a highly sensitive and specific method for detecting mutations ((O’Donovan et 

al. 1998), (Liu et al. 1998). It is more sensitive than SSCP or gel-based heteroduplex 

analysis (Jones et al. 1999), although SSCP has the advantage of reliable identification of 

dififerent sequence variants (Dobson-Stone et al. 2000).

2.8.2 PCR Protocol for DHPLC

PCR for DHPLC was performed with oil-jfiee conditions in 0.2mL skirted 96 tube plates 

(ABgene®, Epsom, Surrey) with microcap covers (ABgene®, Epsom, Surrey) on MJ 

Thermal Cyclers (MJ Research, Watertown, MA, USA).

For each 50pL sample, 50ng DNA was used as template with 2pLx 5mM primers (both 

forward and reverse), 1.25pL x 2mM dNTPs, 5qL of 1 x Expand^^ High Fidelity PCR 

buffer (Boehringer Mannheim, Lewes, UK), 1.225 units Expand^^ High Fidelity PCR 

enzyme (Boehringer Mannheim, Lewes, UK), MgCb at 0.5-3.5mM and sterile distilled 

MilliQ water to achieve final volume. When used, dimethyl sulfoxide (DMSO) was 

included at 2% concentration.

The PCR protocol consisted of 94°C for 2 minutes, followed by touchdown protocol 

([94°C for 1 minute], [(7.5°C + final annealing temperature, minus 0.5°C per cycle) for 1 

minute], [72°C for 45 seconds]) repeated 14 times, then 25 cycles of ([94°C for 1 

minute], [final annealing temperature for 1 minute], [72°C for 45 seconds]). PCR was 

finished with 10 minutes at 72°C.
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To promote heteroduplex formation, samples were then denatured by heating to 95 °C for 

4 minutes, then cooled over 45 minutes to a final temperature of 25°C.

Magnesium concentration and annealing temperature were optimised for each primer 

individually.

2.9 Sequencing

2.9.1 Sequencing Rationale

Sequencing determines the exact base composition of DNA and is a means of exact 

identification of polymorphisms. Most sequencing now involves enzymatic amplification 

of a single strand DNA template. The nucleotides used in synthesis include 2',3'- 

dideoxynucleotides (ddNTPs) that lack hydroxyl groups at both the 3' carbon position 

and the usual 2' position. Thus, although ddNTPs can be conventionally incorporated 

into the synthesising chain of DNA through their 5* carbon position, they cannot form a 

phosphodiester 3'-5' bond to extend the DNA chain to the next nucleotide, resulting in 

chain termination. By using a mix of ddNTPs and dNTPs with very low ddNTP 

concentration, the incorporation of the ddNTP will occur randomly and result in a whole 

series of DNA fragments of different sizes. The fragments will have a common 5' end 

(the original priming template) but variable 3' end according to the point of termination. 

These fragments can then be separated using a denaturing polyacrylamide gel. Detection 

of the different sized fragments involves either labelling the primer or the ddNTPs.
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‘Dye terminator’ sequencing using fluorophore-labelled ddNTPs means that only one 

synthesis reaction is needed. ‘Dye-primer’ sequencing using fluorophore-labelled 

primers can also be performed: four separate reactions (one for each ddNTP), each with a 

different labelled primer, would be needed but the collection of DNA fragments could be 

pooled and run in a single lane. During electrophoresis, the DNA fragments pass a laser 

beam that excites the dyes and causes fluorescence at a different wavelength for each 

dye. This information is detected and stored by the sequencing machine for later 

analysis.

2.9.2 Sequencing

For the sequencing in this study the dyes used were dichloro-rhodamine dye terminator 

ddNTPs (DRl 10/Fam, DR6G/Fam, DTamra/Fam and DRox/Fam), supplied as ‘BigDye’ 

kit (Applied Biosystems, Warrington, UK). The sequencing reaction mix consisted of 

8 .8 p,L post PCR DNA product, 4pL BigDye kit, 4pL half strength BigDye and 3.2p,L of 

either forwards or reverse primer using ImM stock solution. The control was 2pL o f 

PGem DNA with 4pL of 0.8mM primer, 4pL BigDye kit, 4pL half strength BigDye and 

sterile distilled water to 20pL.

The cycling conditions were ([96°C for 10 seconds], [50°C for 5 seconds], [60° for 4 

minutes]) for 25 cycles using MJ thermal cyclers (MJ Research, Watertown, MA, USA).

After PCR the product was added to lOOpL 100% ethanol on ice for 10 mmutes before 

centrifuging at 13000 for 10 minutes. The supematent was removed and the pellet was 

gently resuspended in 150pL of 70% ethanol. After brief centrifuging the ethanol was
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completely removed and the pellet left to air-dry for 5-10 minutes. If not immediately 

used the samples were stored at -20°C.

Just prior to loading the samples, 3pL of loading buffer (8.3mg/mL blue dextran, 5mM 

EDTA, 86% formamide) was added to each sample. The sample was denatured at 95°C 

for 2 minutes then cooled rapidly on ice and loaded on the sequencing gels. Sequencing 

was carried out using ABI 377 automated sequencers (Applied Biosystems, Warrington, 

UK), and 40% acrylamide gels.

Sequencing was analysed using the programmes Factura^^ 2.0.1 and Sequence 

Navigator^^ (both Perkin Elmer, Applied Biosystems, Warrington, UK).

2.10 OIAquick PCR Purification

Where samples required purification prior to sequencing, the QiaQuick PCR Purification 

Kit was used following the given protocol (Qiagen, Crawley, West Sussex).

2.11 Restriction Fragment Length Polvmorphism (RFLP) Tvping

Restriction endonucleases recognise specific, often palindromic, sections o f DNA. In the 

presence of a restriction enzyme site, the endonuclease will bind to the DNA and cleave it 

into fragments of specific length, according to the sites of cleavage. A single base pair 

change in the recognition sequence is sufficient to prevent enzyme binding and activity. 

Thus RFLP typing can be used to detect single nucleotide polymorphisms as a di-allelic 

system.
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The DNA section of interest is amplified by PCR as described above. The PCR product 

is incubated with the endonuclease (at enzyme-specific temperature and duration). If an 

RFLP site is present the allele will be cleaved into a characteristic length. The fi*agments 

are separated and detected by agarose gel electrophoresis (as described above).
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Chapter 3: Genetic Epidemiology of Osteoporosis and Bone Mineral Density

3.1 Introduction

Both low BMD and fracture are heritable traits. One of the greatest risk factor for hip 

fracture for white women is a maternal history of hip fracture (Cummings et al. 1995). 

Twin, mother-daughter pair, and family studies have demonstrated that BMD is a highly 

heritable trait (reviewed in Chapter 1). Heritability of peak bone mass may be the major 

component of heritability of BMD overall (Gueguen et al. 1995; Jouanny et al. 1995). 

However, there is some evidence of heritability of bone loss also so that heritability of 

bone loss may become an increasingly important component of overall BMD heritability 

with age (Gamero et al. 1996; Hansen et al. 1992; Harris et al. 1998; Kelly et al. 1991; 

Tokita et al. 1994). Heritability of BMD and fracture may differ at different skeletal 

sites, either due to effects of different genes upon different sites or to differing gene- 

environment interaction. Further, there may be both common and gender-specific effects 

upon BMD, which again may be site-specific. Finally, heritability of BMD assessed by 

DXA may be different from heritability of QUS (Arden et al. 1996).

This chapter presents genetic epidemiology of a cohort of families recruited for genetic 

studies of BMD and osteoporosis.

3.2 Proband and Family Recruitment

To be eligible for this study, probands needed to fulfil two criteria:
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a) Primary osteoporosis, defined by WHO (t-score < -2.5 at either LS or FN) (Kanis et al.

1994)

b) Low BMD according to an age- and gender-matched cohort. This was arbitrarily set at 

a z-score < -2.0 at either FN or LS.

Probands were recruited from several sources. Both male and female probands were 

identified from the osteoporosis clinics of the Department of Endocrinology and 

Metabolism, NufiSeld Orthopaedic Centre, Oxford, UK. Female probands were also 

identified from a cohort of unselected volunteer women taking part in an unrelated survey 

of LS BMD at the Nuffield Orthopaedic Centre, Oxford, UK. Further male probands 

were recruited from men with atraumatic hip fracture presenting to the Accident and 

Emergency Department, John Radcliffe Hospital, Oxford, UK from January 1994 to 

December 1995, who were reviewed clinically with measurement of BMD.

All first-degree relatives of the probands were invited to participate in this study. When a 

first-degree relative of the proband was found to have low BMD, recruitment was 

extended to their first-degree relatives (i.e. second-degree relatives of the proband).

Participants had BMD measured at LS and FN by DXA using a QDR lOOOW 

densitometer (Hologic Inc., Waltham, MA, USA) and were screened for secondary 

causes of osteoporosis by questionnaire, physical examination and biochemical screening 

(full blood count, erythrocyte sedimentation rate, serum urea, creatinine, liver fiinction 

tests, calcium, phosphate, thyroxine, thyroid stimulating hormone, testosterone, sex 

hormone binding globulin, follicle-stimulating hormone, luteinising hormone, estradiol.
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progesterone and prolactin). Individuals with secondary causes of osteoporosis 

(including corticosteroid use (>7.5 mg of prednisolone or equivalent per day for > 6 

months), alcohol excess (more than 21 units per week for males or 14 units per week for 

females (one unit being the amount of alcoholic beverage containing lOg of ethanol)), 

chronic renal failure, pituitary disease, hyperparathyroidism, thyrotoxicosis, anorexia 

nervosa, prolonged immobilisation, malabsorption, or neoplasia) had their BMD values 

excluded from the study, though their DNA may have been used to help linkage analysis. 

Absolute BMD scores were corrected for age and sex using the Hologic US White Hip 

and Lumbar Spine reference data (Kelly 1990) and expressed as z-scores.

Ethical approval for the study was granted by the Central Oxford Research Ethics 

Committee, and all subjects gave written informed consent.

3.3 Statistical Methods

3.3.1 Descriptive Statistics

Descriptive statistics of the cohort were analysed using the Data Analysis pack of 

Microsoft® Excel programme (Microsoft Corporation, USA). Comparisons with the 

normal population were made using the one-sample t-test. Comparisons between 

different groups were made using the normal (or z) test, and all p-values quoted are two- 

tailed.
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3.3.2 Sibling Recurrence Risk Ratio

The sibling recurrence risk ratio is often used as a measure of the genetic effect upon a 

trait. However, it is a measure of familiality rather than heritability per se, as the sibling 

recurrence risk ratio may be increased by increased sharing of either genes or 

environment by family members. The sibling recurrence risk ratio (Is) is calculated as:

%s = (prevalence o f disease in siblings)/(prevalence of disease in the general population).

3.3.3 Heritabilitv

As discussed in Chapter 1, heritability is the proportion of variance of a trait under 

genetic control, and may have both additive and dominance components. Heritability 

was calculated using the programmes Sequential Oligogenic Linkage Analysis Routines 

(SOLAR) (Almasy et al. 1998) and Pedigree Analysis Package (PAP) (Hasstedt 1994). 

Both PAP and SOLAR estimate heritability by variance components methods. The 

assumptions made in these analyses are: multivariate normal distribution, no epistasis, 

and no gene-environment interaction or correlation.

3.3.4 Correlations of BMD

Correlations o f BMD between relative pairs were modelled using PAP. Comparisons of 

correlations were made using the normal (or z) test.
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3.3.5 Partitioning of Variance

To assess for the effect of dominance variance, the overall correlation of BMD for 

parent-offspring pairs was compared with overall sibling-sibling pair correlation of 

BMD.

As discussed in the introduction, siblings can share 0,1 or 2 alleles identical by descent, 

with probabilities of 25%, 50% and 25% respectively. Thus on average the overall allele 

sharing o f siblings IBD is 50%. Parents and offspring have 50% allele sharing IBD 

absolutely, as offspring inherit 1 allele from each parent. Dominance variance can only 

be assessed when 2 alleles are shared IBD, as it is only present where there is interaction 

between alleles. Additive variance (the variance introduced due to the individual effect 

o f an allele) is assessed where there is sharing of (only) one allele IBD. Sibling-sibling 

correlations therefore consist of both additive and dominance variance (0.5 Va + 0.25 

Y d), whilst parent-offspring correlations only consist of additive variance (0.5 V a).

3.4 Results

3.4.1 Descriptive Statistics of Probands

147 probands had BMD measured at LS, with mean z-score of-2.23, standard deviation 

(SD) 0.76 and range -4.31 to 1.30.

146 probands had BMD measured at FN with mean z-score o f-1.80, SD 0.74, and range 

-3.82 to 0.62.
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The mean age of the probands was 51.9 years (range 23.6 to 77.3 years).

3.4.1.1 Male probands

Of the 45 male probands, 10 probands had z-score < -2.0 at both LS and FN, 24 

probands had z-score < -2.0 at LS only, 3 probands had z-score < -2.0 at FN only, and 8 

had z-scores higher than -2.0 at both sites, although all these 8 had z-scores below -1.79, 

corresponding to the lowest 3.67% of the population (presented in Table 3.4.1.1).

Table 3.4.1.1: Entry Criteria for Male Probands

BMD < -2 .0 Number

Both LS and FN 10

LS only 24

FN only 3

Neither 8

For BMD at LS, the mean z-score was -2.59, SD 0.73 and range -4.31 to -1.56.

For BMD at FN, the mean z-score was -1.68, SD 0.72, and range -3.25 to 0.62.

The mean age of male probands was 53.4 years, with range 25.4 to 77.3 years.

3.4.1.2 Female probands

Of the 102 female pro bands, 20 probands had z-score < -2.0 at both LS and FN, 47 

probands had z-score < -2.0 at LS only, 25 probands had z-score < -2.0 at FN only and
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10 had z-scores higher than - 2 .0  at both sites, although all these had z-scores below -  

1.81, corresponding to the lowest 3.59% of the population (presented in Table 3.4.1.2).

Table 3.4.1.2: Entry Criteria for Female Probands

BMD < -2 .0 Number

Both LS and FN 20

LS only 47

FN only 25

Neither 10

For BMD at LS, the mean z-score was -2.07, with SD 0.72 and range -3.67 to 1.30.

For BMD at FN, the mean z-score was -1.85, with SD 0.75, and range -3.82 to 0.33. 

The mean age of female probands was 51.4 years, range 23.6 to 76.3 years.

3.4.2 Comparisons Between Male and Female Probands

As shown in Table 3.4.2, male probands had significantly lower BMD at LS compared 

with female probands (-2.60 ys. -2.07, p = 0.0001). There was no significant difference 

at FN between male and female probands (-1 .68  ys. -1.85, p = 0.2). There was no 

significant difference in age of probands (p = 0.41).

There was a significant difference in the number of probands recruited according to FN 

or LS (x  ̂=10.8 with 3 degrees of freedom, p < 0.025). This was despite the recruitment
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of some female probands through the voluntary survey of BMD, which only measured 

BMD at LS.

Table 3.4.2: Mean BMD of Probands

Probands LS BMD FNBM D

All -2.23 -1.80

Male probands -2.59 - 1.68

Female probands -2.07 -1.85

3.4.3 Descriptive Statistics and Comparisons of BMD of Siblings 

For all siblings who took part in the study:

188 siblings had BMD measured at LS, with mean z-score of-0.84, SD 1.16, and range -  

3.75 to 2.66. 184 siblings had BMD measured at FN, with mean z-score o f-0.82, SD 

0.99, and range -3.69 to 1.92. The mean BMD at both LS and FN was significantly 

different from the normal population (defined by the Hologic normative database), with p 

= 2.6 X 10'̂  ̂at LS and p = 3.6 x 10^  ̂at FN (presented in Diagrams 3.4.3.1 and 3.4.3.2).

The siblings of male probands had mean BMD of -0.95 at LS and -0.69 at FN.

The siblings of female probands had mean BMD o f-0.80 at LS and -0.88 at FN.

There was no significant difference in mean BMD of siblings of differing gender 

probands (p = 0.44 for comparison of BMD at LS, p = 0.28 for comparison of BMD at 

FN).
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However, when looking at the siblings according to their gender irrespective of the 

proband’s gender, male siblings were significantly lower at LS compared with female 

siblings (-1.35 vs. -0.51, p = 0.0000005). There was no significant difference between 

male and female siblings at FN (-0.72 vs. -0.89, p = 0.25) (presented in Diagrams 3.4.3.3 

and 3.4.3.4).

Table 3.4.3.1: BMD according to sender of siblings

BMD at LS BMD at FN

Brothers -1.35 -0.72

Sisters -0.51 -0.89

p-value 0.0000005 0.25

To see if this was due to bias arising from the differences in BMD at LS and FN between 

male and female probands, the siblings were subdivided into gender for each gender 

group of proband.

For the siblings of male probands, brothers had lower BMD at LS compared with sisters 

(-1.48 vs. -0.20, p<0.00002). At FN there was no significant difference between 

brothers and sisters (-0.63 vs. -0.78, p = 0.61) (presented in Table 3.4.3.2).
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Table 3.4.3.2: Siblings of Male Probands

BMD at LS BMD at FN

Brothers -1.48 -0.63

Sisters -0.20 -0.78

p-value <0.00002 0.61

For the siblings of female probands, the same pattern was evident. Brothers had 

significantly lower BMD at LS compared with sisters (-1.25 vs. -0.58, p = 0.0024), 

whereas there was no significant différence at FN (-0.78 vs. -0.92, p = 0.45) (presented 

in Table 3.4.3.3).

Table 3.4.3.3: Siblings of Female Probands

BMD at LS BMD at FN

Brothers -1.25 -0.78

Sisters -0.58 -0.92

p-value 0.0024 0.45

There was no significant difference between the brothers of male probands compared 

with brothers of female probands at either LS or FN. Similarly, there was no significant 

difference between the sisters of male probands compared with the sisters of female 

probands at either site (presented in Tables 3.4.3.4 and 3.4.3.5).
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Table 3.4.3.4: BMP in Brothers according to Proband Gender

BMD at LS BMD at FN

Male proband -1.48 -0.63

Female proband -1.25 -0.78

p-value 0.39 0.55

Table 3.4.3.5: BMD in Sisters according to Proband Gender

B M D atL S BMD at FN

Male proband -0.20 -0.78

Female proband -0.58 -0.92

p-value 0.13 0.54

There was significant differential recruitment of siblings according to gender. Overall 

more sisters took part than brothers (113/188 vs. 75/188). For male probands, more 

brothers were recruited than sisters although this was not significant (p = 0.13 using 

binomial test and assuming equal gender distribution in siblings). For female probands 

significantly more sisters were recruited than brothers (p = 0.000032). Overall test for 

recruitment of brothers and sisters showed significant differences with corrected x? of 

9.59, p = 9.77x10* .̂ The recruitment of siblings according to gender is presented in Table 

3.4.3.6.
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Table 3.4.3.6: Sibling Recruitment According to Gender

Male proband Female proband Total

Brothers 31 44 75

Sisters 22 91 113

Total 53 135 188

There was a significant difference between LS and FN z-scores of siblings according to 

proband recruitment through either LS or FN. Siblings of probands recruited through low 

BMD only at FN (z-score < -2) had significantly lower BMD at FN than did siblings of 

probands with low BMD only at LS (-1.33 vs. -0.61, p = 0.00005). There was no 

significant difference at LS (-0.79 vs. -0.77). This is presented in Table 3.4.3.7.

Table 3.4.3.7: BMD in Siblings at LS and FN According to Proband Recruitment Site

BMD

site

Proband with low LS BMD 

only

Proband with low FN BMD 

only

p-value

LS -0.77 -0.79 0.93

FN -0.61 -1.33 0.00005

3.4.4 Sibling Recurrence Risk Ratio

The sibling recurrence risk ratio (^s) of low BMD defined as a z-score < -2.0 was 

calculated at both LS and FN.
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Of 189 siblings with BMD measured at LS, 27 had a z-score < -2.0, giving Xs of low 

BMD at LS of 6.26, with confidence limits 4.08 to 8.46. Of note, 22 % of siblings 

fulfilled the WHO definition o f osteoporosis (t-score < -2.5) and 58% fulfilled the WHO 

definition of osteopaenia (t-score < -1.0).

Of 184 siblings with BMD measured at FN, 22 had a z-score < -2.0, giving Is of low 

BMD at FN of 5.24, with confidence limits 3.19 to 7.30. 35% fulfilled the WHO 

definition of osteoporosis and 66% fulfilled the WHO definition of osteopaenia.

40 known siblings did not take part. Two siblings gave blood samples but did not have 

BMD measured. Two siblings had their BMD result excluded due to the presence of 

other disease(s) affecting bone. Nine siblings did not take part because of prohibitive 

distance. The remainder (27) either refused to take part or the reason for nonparticipation 

was not known.

3.4.5 Descriptive Statistics of Relatives and Comparison of BMD 

For all relatives who took part in the study:

596 relatives had BMD measured at LS, with mean z-score o f-0.7402, SD 1.217, and 

range -4.58 to 5.44.

582 relatives had BMD measured at FN, with mean z-score of-0.8278, SD 1.082, and 

range -3.83 to 5.64.
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There was no difference in BMD of relatives according to proband gender, at either LS or 

FN (presented in Table 3.4.5.1).

Table 3.4.5.1: BMD of Relatives According to Proband Gender

Proband Gender BMD at LS BMD at FN

Relatives of male probands -0.857 -0.781

Relatives of female probands -0.699 -0.844

p-value 0.186 0.552

Overall, male relatives had lower BMD at LS compared with female relatives (-0.976 vs. 

-0.576, p = 0.0001). There was a non-significant trend for lower BMD in female 

relatives compared with male relatives at FN (-0.895 vs. -0.732, p = 0.073) (presented in 

Table 3.4.5.2).

Table 3.4.5.2: BMD of Male Relatives Compared with Female Relatives

Gender of Relatives BMD at LS BMD at FN

Male relatives -0.976 -0.732

Female relatives -0.576 -0.895

p-value 0.0001 0.073

The relatives were subdivided according to proband gender. At LS, male relatives o f the 

male probands had significantly lower BMD than female relatives (-1.214 vs. -0.466, p =
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0.0002). There was no significant difference at FN (-0.69 vs. -0.8817, p = 0.31) 

(presented in Table 3.4.5.3).

Table 3.4.5.3: BMD of Relatives of Male Probands

Relatives of male probands BMD at LS BMD at FN

Male relatives -1.214 -0.690

Female relatives -0.466 -0.882

p-value 0.0002 0.31

Again, the same pattern was observed with relatives o f female probands, with lower 

BMD at LS observed in male relatives compared with female relatives (-0.858 vs. -  

0.605, p = 0.038). A non-significant trend for lower BMD at FN in female relatives 

compared with male relatives was observed (-0.898 vs. -0.752, p = 0.16) (presented in 

Table 3.4.5.4).

Table 3.4.5.4: BMD in Relatives of Female Probands

Relatives of female probands BMD at LS BMD at FN

Male relatives -0.858 -0.752

Female relatives -0.605 -0.898

p-value 0.038 0.16

At LS, male relatives of male probands had significantly lower BMD than male relatives 

of female probands (p = 0.036). This may be due to the bias introduced by lower BMD at
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LS of the male probands. There was no other significant difference between male and 

female relatives according to proband gender (presented in Tables 3.4.5.5 and 3.4.5.6).

Table 3.4.5.5: BMD in Male Relatives According to Proband Gender

BMD at LS BMD at FN

Male proband -1.214 -0.690

Female proband -0.858 -0.752

p-value 0.036 0.70

Table 3.4.5.6: BMD in Female Relatives According to Proband Gender

BMD at LS BMD at FN

Male proband -0.466 -0.882

Female proband -0.605 -0.898

p-value 0.40 0.90

For the 233 young relatives (aged 35 years or less) mean z-score at LS was -0.962 (SD

1.01, range -4.58 to 2.38). At FN mean z-score was -1.09 (SD 1.09 with range -3.83 to 

2.74). These were significantly lower than the general population (p < 10'^  ̂for both 

comparisons).

3.4.6 Correlations between Relative Pairs

Correlations of BMD adjusted for age and sex (Le. correlation of z-scores) for relative 

pairs were assessed using PAP with mean and standard error (s.e.) shown in Table
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3.4.6.1. The analysis was repeated using height as a covariate as a proxy for bone size, 

with results shown in Table 3.4.6.2. Statistical comparisons of these data are presented in 

Tables 3.4.6.3 to 3.4.6.6.

Abbreviations used in this section:

MD Mother-daughter

MS Mother-son

FD Father-daughter

FS Father-son

SS Sister-sister

SB Sister-brother

BB Brother-brother

Table 3.4.6.1: Correlation of BMD (unadjusted for measures of bone size)

Relative pair Correlation at LS (s.e.) Correlation at FN (s.e.)

MD 0.137 (0.065) 0.247 (0.063)

MS 0.173 (0.067) 0.166 (0.078)

FD 0.166 (0.060) 0.067 (0.076)

FS 0.260 (0.068) 0.0625 (0.089)

SS 0.207 (0.081) 0.293 (0.071)

SB 0.153 (0.079) 0.198 (0.073)

BB 0.359 (0.076) 0.207 (0.100)
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Table 3.4.6.2: Correlation of BMD /adjusted for height)

Relative pair Correlation at LS (s.e.) Correlation at FN (s.e.)

MD 0.133 (0.066) 0.225 (0.038)

MS 0.169(0.069) 0.169 (0.038)

FD 0.166 (0.060) 0.100 (0.038)

FS 0.261 (0.069) 0.0660 (0.039)

SS 0.204 (0.082) 0.269 (0.039)

SB 0.150 (0.080) 0.226 (0.039)

BB 0.361 (0.076) 0.244 (0.038)

A consistent trend was noted that all male-male comparisons were greater at LS than at 

FN, whilst all female-female comparisons were greater at FN than at LS. Further, at LS 

male-male comparisons were higher than female-female comparisons, whilst at FN 

female-female comparisons were greater than male-male comparisons. The comparisons 

are shown in Tables 3.4.6.3 - 6, with p-values.

Table 3.4.6.3: Correlations of BMD (unadjusted for bone size) Between Relative Pairs

Relative pair Correlation at LS p-value Correlation at FN p-value

BB vs. SS 0.359 vs. 0.207 0.17 0.207 vs. 0.293 0.48

MD vs. FS 0.137 vs. 0.260 0.19 0.247 vs. 0.0625 0.09

MD vs. MS 0.137 vs. 0.173 0.70 0.247 vs. 0.166 0.42

FD vs. FS 0.166 vs. 0.260 0.30 0.0667 vs. 0.0625 0.97

MS vs. FS 0.173 vs. 0.260 0.36 0.166 vs. 0.0625 0.38

MD vs. FD 0.137 vs. 0.166 0.74 0.247 vs. 0.0667 0.07

124



Table 3.4.6.4: Comparison of BMD Correlation funadjusted for bone sizel at LS and FN

Relative pair Correlation of BMD at LS vs. FN p-value

Brother-brother 0.359 vs. 0.207 0.23

Sister-sister 0.207 vs. 0.293 0.42

Mother-daughter 0.137 vs. 0.247 0.22

Father-son 0.260 vs. 0.0625 0.08

Table 3.4.6.5: Correlations of BMD tadiusted for heighf) Between Relative Pairs

Relative pair Correlation at LS p-value Correlation at FN p-value

BB vs. SS 0.361 vs. 0.204 0.16 0.244 vs. 0.269 0.65

MD vs. FS 0.133 vs. 0.261 0.18 0.225 vs. 0.0660 0.0035

MD vs. MS 0.133 vs. 0.169 0.7 0.225 vs.0.168 0.3

FD vs. FS 0.166 vs. 0.261 0.29 0.100 vs.0.0660 0.53

MS vs. FS 0.169 vs. 0.261 0.34 0.168 vs. 0.0660 0.06

MD vs. FD 0.133 vs. 0.166 0.71 0.225 vs. 0.100 0.02

Table 3.4.6.6: Comparison of BMD (adjusted for height! at LS and FN

Relative pair Correlation of BMD at LS vs. FN p-value

Brother-brother 0.361 vs. 0.244 0.17

Sister-sister 0.204 vs. 0.269 0.47

Mother-daughter 0.133 vs.0.225 0.23

Father-son 0.261 vs. 0.0660 0.014
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3.4.7 Heritabilitv

Using PAP, heritability o f BMD at LS was 0.453, increasing to 0.484 when height and 

weight were added in as co variâtes. Heritability of BMD at FN was 0.424, increasing to 

0.482 when height and weight were added in as co variâtes.

Using SOLAR, the heritability of BMD at LS was 0.639 and at FN was 0.432, with BMI 

used as a covariate.

Of note, correction for ascertainment had a marked effect upon heritability estimates. 

Using a subset of 710 individuals and disregarding ascertainment, heritability estimates 

for BMD were 0.184 at LS and 0.198 at FN. Correcting for ascertainment bias resulted 

in substantial increases in heritability estimates to 0.453 at LS and 0.424 at FN.

3.4.8 Partitioning of Variance

Initial work using 710 individuals showed overall parent-offspring correlation at LS of 

0.222 (s.e. 0.041) with sibling correlation of 0.267 (s.e.0.055) (no significant difference). 

At FN, parent-offspring correlation was 0.186 (s.e. 0.033) whilst sibling correlation was 

0.287 (s.e. 0.039). These were significantly different (p = 0.048) and suggested that 

dominance variance was present at FN.

From sibling correlation: V2 Va + ‘A Vd = 0.287

From parent-offspring correlation: A Va = 0.186 and total Va = 0.372

Therefore: A Vo = 0.101 and total Vd = 0.404
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As a proportion of total genetic variance Vd = Vd/(Va + Vd)

= 0.404/(0.404+0.372) = 52.06%.

Subsequent work was performed using 833 individuals. Using unadjusted z-scores, 

overall parent-ofifspring correlation at LS was 0.186 (s.e. 0.0366) compared with sibling- 

sibling correlation of 0.225 (s.e. 0.0502) (p = 0.53). At FN, parent-ofifspring correlation 

was 0.151 (s.e. 0.0408) compared with sibling-sibling correlation of 0.239 (s.e. 0.0513) 

(p = 0.18). Thus although the same trend was present there was no longer a significant 

difference.

When height was included as a covariant as a surrogate correction for bone size, at LS 

there was no significant difference between parent-ofifspring correlation and sibling- 

sibling correlation (0.187 vs. 0.233; p = 0.46). At FN, parent-ofifspring correlation was 

0.150 (s.e. 0.042), compared with sibling-sibhng correlation of 0.252 (s.e. 0.051) (p = 

0.12), demonstrating a similar, though non-significant, trend.

3.5 Discussion

This chapter presents the genetic epidemiology from a family cohort collected for the 

purpose of linkage studies into the genetics of osteoporosis.

As detailed above, probands for this study were selected with an extremely low BMD 

relative to an age- and sex-matched cohort, using the Ho logic QDR-1000 manufacturer’s 

normative database (Hologic Inc., Waltham, MA, USA). Ascertainment schemes where
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probands are selected for extreme quantitative trait values are more powerful for gene 

detection than randomly recruited families. Using unselected sibling pairs, only loci 

contributing a large amount (around 50%) to the total heritability of a trait will be 

detectable by the Haseman-Elston allele-sharing method in a ‘reasonably sized’ sample, 

and thousands of sib pairs would be needed to detect linkage to loci contributing less than 

this, even using multipoint analysis (Blackwelder and Elston, quoted in (Risch et al.

1995). Use of sibling pairs selected through a single proband with an extreme trait value 

(e.g. 5-10% of the tail of distribution of the quantitative trait) dramatically increases 

power both for two-point (Cardon et al. 1994; Carey et al. 1991) and multipoint (Cardon 

et al. 1995) linkage analysis. Carey and colleagues showed that using sibling pairs 

sampled through one proband with a trait value in the extreme 5% of the tail resulted in 

an order of magnitude increase in power compared with using unselected siblings, such 

that loci responsible for 10-20% of the phenotypic variance of a trait could be detected 

with 80% power in sample sizes potentially as low as 73 sib pairs (depending on 

dominance and allele frequencies) (Carey et al. 1991). Risch and Zhang further 

demonstrated that a ‘double proband’ approach, using siblings either extremely 

concordant (for high or low values) or extremely discordant, was in general even more 

powerful, with greatest power obtained using extremely discordant sibling pairs (Risch et 

al. 1995). However, this may be dependent upon allele frequencies and the underlying 

genetic model (Allison et al. 1998). Further, finding extremely discordant sibling pairs 

can be very difiScult and power may have to be balanced against the expense of 

ascertainment (Gu et al. 1997; Ou et al. 1996). The effect of ascertainment bias (in 

choosing probands with extreme trait values) upon heritability estimates must also be
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considered. The comparison of heritability estimates obtained with and without 

correction for ascertainment (Section 3.4.7) demonstrates that failure to correct for 

ascertainment bias results in loss of power to detect linkage (Fisher et al. 1999; Marlow 

2001).

For this study, families were recruited through a single affected proband (BMD z-score < 

-2.0, corresponding to the lowest 2.275% of the age- and sex-matched population 

distribution, in addition to having osteoporosis as defined by WHO (Kanis et al. 1994)). 

The greater power of this ascertainment scheme was, however, at the cost o f increased 

difficulty recruiting families.

The original Hologic US White Hip and LS reference database, compiled using a North 

American Caucasian population, were used to define z-scores for both men and women. 

Previous studies of comparisons between Hologic and other manufacturers of bone 

densitometers (Lunar Corporation, Madison, WI, USA and Norland Medical Systems 

Inc., Fort Atkinson, WI, USA) had shown that although measurement of absolute BMD 

(in g/cm^) was highly correlated between machines, the z- and t-scores varied according 

to the manufacturer’s normative database. Results using the Hologic machines 

consistently resulted in lower t-scores at FN, although there was no difference in LS t- 

scores between the different machines (Faulkner et al. 1996; Pocock et al. 1992).

Hologic has subsequently altered its FN reference database, implementing the normativer 

database established by the US National Health and Nutrition Examination Survey 

(NHANES III) (Looker et al. 1998). This large study measured BMD and bone mineral 

content using DXA of the proximal femur in a nationally representative sample of both
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men and women. The mean FN BMD values for white men and women were 

approximately 3-5% lower than the Hologic normative database, and the SDs 26-30% 

higher. The difference in mean BMD applied to both young and old age groups. The 

difference in SD according to age varied according to the different region of interest 

examined. However for FN, there was no clear pattern of difference in SD with age 

(Looker et al. 1995). Thus use of the new database would result in both t- and z-scores 

changing, but the relative changes for a younger or older person should be similar. 

Further, although both FN and total hip BMD had the same predictive value for hip 

fracture, precision error of BMD at total hip was approximately half that of FN, of 

particular importance in follow-up scans. Hence BMD of total hip has now become the 

standard region of interest at this site (Chen et al. 1998).

Neither the NHANES nor the previous Hologic normative databases have been formally 

compared with the Oxfordshire population at both LS and FN. Several studies have 

suggested the importance of using locally-derived normative data, due to substantial 

geographic variability in BMD (Crabtree et al. 2000; Lofînan et al. 2000; Simmons et al. 

1995). One UK study of both volunteer women and women with possible osteoporosis 

did not find a difference in mean and SD of BMD at LS compared with the Hologic 

normative database in either group (Ryan et al. 1993). However, comparison of mean, 

standard error and standard deviation established using BMD from 650 Oxfordshire 

women volunteers and the Hologic normative database revealed substantial differences. 

Peak bone mass was obtained at a later age (30-40 years). Mean BMD was generally 

higher, and SD widened with age (personal communication, AJ Shipman and I Smith). 

This suggests that it would be useful to have a local database for assessment of BMD.
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Unfortunately, the Oxfordshire study only measured BMD at LS, and only in women. To 

maintain consistency, therefore, the Hologic database was used.

The descriptive statistics presented in this chapter were based upon z-scores obtained 

with the old Hologic normative database. The average difference between t-scores 

obtained at the hip using the NHANES database and the previous Hologic database is 

0.64, which substantially decreases the number of individuals with osteoporosis and 

osteopaenia at FN according to WHO guidelines (Chen et al. 1998). Therefore the 

number of siblings and relatives in this family collection who folfilled WHO guidelines 

for osteoporosis (t-score < -2.5) or osteopaenia (t-score -1 to -2.5) at the hip may have 

been extensive. Further, there may have been excessive numbers of relatives with z- 

scores below -2.0, and thus the sibling recurrence risk ratio at FN may be upwardly 

biased. However, the results at LS were not biased.

This work is the first to define a sibling recurrence risk ratio (^s) for low BMD. Of note, 

however, Ig is a measure of familiality rather than a measure of genetic effects per se, as 

it does not differentiate between increased prevalence of disease in siblings arising from 

shared envkoment or shared genes. Further, diseases with high population prevalence 

may have quite low Ig despite being substantially genetically determined, i.e. having high 

heritability. Asthma is an example of a highly heritable disease with low Xg, with 

heritability of approximately 70% yet a sibling recurrence risk ratio of 1.5 (Palmer et al. 

2000). Examples of heritability estimates and A,g for other heritable musculoskeletal 

diseases are shown in Table 3.5.1.
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Table 3.5.1: Heritability and Sibling Recurrence Risk Ratios

Disease Heritibllity Sibling Recurrence 

Risk Ratio

Prevalence

Rheumatoid Arthritis 53-65%* 14^

43

1-3%

Ankylosing Spondylitis 95" 82" 0.1-0.5%

Osteoarthritis 27-58%^-'’ 1.9*' 60-75%

Systemic Lupus Erythematosis 66' 24' 0.05%

^(MacGregor et al. 2000); ^(Wordsworth 1995); ^(Rigby et al. 1998); "^(Brown et al. 

2000); ^(MacGregor et al. 2000); ^(Chitnavis et al. 1997); ^(Lawrence et al. 1987).

The heritability estimates obtained with these families are in keeping with those 

previously reported from family studies (Deng et al. 2000; Gueguen et al. 1995; Sowers 

et al. 1992). Of note, Gueguen and colleagues reported that heritability of BMD was 

highest in young individuals, maximal at age 26 years with heritability of 84%, and Deng 

and colleagues reported similar high heritability of peak bone mass (Deng et al. 1999; 

Gueguen et al. 1995). The young relatives of this cohort (aged 35 years or less) had 

significantly low BMD. These results are consistent with heritability of low peak bone 

mass rather than of bone loss, although this was not formally compared.
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The differences between BMD at LS for male and female probands (Table 3.4.2) may 

have arisen because of different means of recruitment. Most male probands had 

symptomatic osteoporosis, evidenced by fracture, wherease many of the female probands 

had been identified through the voluntary survey at BMD. Their participation in this 

survey may have been prompted by a realistic concern of personal risk of osteoporosis 

(for example, by having a family history of fracture). Although there was a significant 

difference between the numbers of male and female probands recruited with low BMD at 

LS or FN (or both), the bulk of the contribution to the statistic was due to 

disproportionate recruitment at FN, not at LS, with a greater proportion of female 

probands recruited through FN compared with male probands. The use of the old 

database may have meant that those probands recruited through low BMD at LS had 

more severe osteoporosis than those recruited through FN. This would not have affected 

linkage results, but may have diminished power to detect genetic effects by recruitment 

of probands with a less extreme phenotype (see above discussion).

Brothers had consistently lower BMD at LS than sisters (Table 3.4.3.1). This may have 

been due to the greater number of brothers recruited through a male proband, and to the 

lower LS BMD of male probands compared with female probands. However, this trend 

was observed in brothers of both male and female probands (Tables 3.4.3.2 and 3.4.3.3). 

Further, there was no significant difference in BMD between brothers of male probands 

compared with brothers of female probands, nor between sisters of male probands 

compared with sisters of female probands (Table 3.4.3.4 and 3.4.3.5). Thus the low 

BMD at LS observed in brothers was not due to biases in either proband recruitment or 

the relative numbers of brothers and sisters recruited according to proband gender. A

133



possible explanation for this is that there are male-specific genes contributing to BMD at 

LS. A further possibility is that the Hologic database for LS for males gives excessively 

low t- and z-scores compared with the female database. Some support for a possible 

under-reporting of male BMD was found by Tai and colleagues who demonstrated a 

small gender bias in z-scores at LS but not FN (Tai et al. 2001). However, the results 

using all relatives did not support evidence of systematic error in the Hologic normative 

database.

The results presented in Table 3.4.3.7 support the concept of site-specificity of 

inheritance of BMD. Siblings of patients recruited through low BMD at FN had 

significantly lower BMD at FN than siblings of probands recruited through low BMD at 

LS. This would support the concept of site-specific genes in determination of BMD: that 

relatives of probands with severe osteoporosis at one site shared more alleles determining 

low BMD at this site, and thus manifest lower BMD at this site. The correlations of 

BMD between relative pairs (presented in Section 3.4.6) also suggested site-specific 

genetic effects at both LS and FN. The initial work partitioning genetic variance into its 

components supported evidence of dominance variance at FN but not at LS, which again 

is consistent with site-specific genetic effects. However, parent-offspring and sibling- 

sibling correlations at FN were no longer significantly different with the expanded data 

set. Greater numbers of families are needed for a definitive answer.

The concept of site-specific genetic effects is supported by the work of several lines of 

investigation. As mentioned in the introduction, although BMD is correlated between 

sites and BMD at one site is predictive of fracture overall, BMD of fracture patients is
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frequently lowest at the site of fracture, suggesting both generalised and site-specific 

effects upon BMD. Seeman and colleagues measured BMD at multiple sites in 

premenopausal daughters of mothers with vertebral fractures and demonstrated low BMD 

at all sites measured; however BMD was lowest at LS, the site of maternal fracture 

(Seeman et al. 1989). In contrast, premenopausal daughters of mothers with hip fractures 

had reduced BMD at FN and femoral shaft, but normal BMD at LS (Seeman et al. 1994). 

Fox and colleagues also demonstrated site specificity of family history of fracture in 

predisposition to fracture (Fox et al. 1998), although this may be due not only to BMD 

but also to other shared factors predisposing to fracture (e.g. hip geometry). A study 

comparing shared and specific genetic effects upon BMD at different sites concluded that 

a substantial proportion -  but not all -  genetic effects on femoral neck were shared with 

genetic effects at lumbar spine and total body BMD, with genetic correlations between 

FN and LS of 0.64 and between LS and total BMD of 0.75 (Nguyen et al. 1998).

The mechanism for different genetic effects at different sites may be due to several 

possible mechanisms. Appendicular and axial skeletal growth are disparate (Bass et al.

1999), and thus various effects upon peak bone mass may differ at hip and spine. The 

relative proportions of cortical and cancellous bone differ at FN and LS. Factors exerting 

differential effects upon cortical and cancellous bone will therefore differ in their relative 

contribution to overall BMD at each site. For example, PTH is thought to have a 

primarily anabolic effect upon trabecular bone, whilst having a catabolic effect upon 

cortical sites (Bilezikian et al. 2000; Duan et al. 1999). Intermittent administration of the 

PTH analogue (parathyroid hormone 1-34) at doses of 20pg/day or 40pg/day increased 

BMD at both LS and FN; however this was considerably greater at LS (9% and 13%
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respectively) than at FN (3% and 6%) (Neer et al. 2001). Another mechanism may be 

that gene expression induced by torsion, loading, or other physical stresses may differ at 

sites under such different physical stresses as LS and FN.

Further, this low BMD at LS was only manifest in male relatives of both male and female 

probands, not in female relatives (Table 3.4.5.3 and 3.4.5.4). Whilst this may be due to 

an incorrect normative male database, another possibility is gender-specific genetic 

effects. Other examples of heritable diseases in which there are substantial gender 

differences in disease manifestation include autoimmune disease such as thyroiditis, 

rheumatoid arthritis, systemic lupus erythematosis, and ankylosing spondylitis.

The correlations of BMD at LS and BMD of various relative pairs suggested both site- 

specific and gender-specific genetic effects. Male-male correlations were highest at LS 

compared with FN. Further, male-male correlations at LS were higher than female- 

female correlations at LS. Female-female correlations were higher at FN than at LS, and 

female-female correlations were higher than male-male correlations at FN (presented in 

Tables 3.4.6.1- 6). Jouanny and colleagues (Jouanny et al. 1995) demonstrated evidence 

of gender-specific effects upon BMD, measuring total body BMD in nuclear families. A 

mother’s BMD was more closely correlated to her daughter’s BMD whereas a father’s 

BMD was more closely correlated to his son’s BMD, with same-gender parent-child 

correlations being higher than cross-gender correlations (Jouanny et al. 1995). Jones and 

Nguyen also found evidence of gender-specific effects, with heritability estimates 

obtained using mother-daughter pairs significantly higher than those obtained using 

mother-son pairs (Jones et al. 2000). Other authors have also found greater correlation
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between mother-daughter pairs compared with mother-son pairs (McKay et ai. 1994). Of 

note, given the greater female-female correlations at femoral neck (presented in Tables 

3.4.6.1-6), Jones and Nguyen also found mother-daughter correlations to be higher at FN 

(0.4) than at LS (0.3) or total BMD (0.22), although these correlations were not 

significantly different (Jones et al. 2000). Fox and colleagues found that the risk of hip 

fi-acture increased with maternal (but not paternal) history of hip fi-acture (Fox et al.

1998). The Rancho Bernardo study found that low BMD at LS in both sons and 

daughters was associated with a paternal history of osteoporosis, and low BMD at FN in 

sons (but not daughters) was associated with a maternal history of osteoporosis.

However, this latter study did not measure parental BMD (Soroko et al. 1994).

Comparisons between relatives were performed both with and without correction of 

BMD for bone size. As discussed in Chapters 1 and 4, regression o f BMD on height, 

weight or BMI results in a bone density measurement less dependent upon bone size than 

is uncorrected areal BMD, and allows approximation of a calculated volumetric bone 

density (Compston 1995). However, it is not a true volumetric measurement.

Volumetric DXA or quantitative CT scanning o f relatives would have provided true 

volumetric measurement removing bias of bone size between the sexes. This was not 

possible in this study and quantitative CT scanning also involves substantially greater 

exposure to radiation. Adjusting BMD for bone size is not usually considered in clinical 

practice where both BMD and bone size may be of clinical relevance (see Chapter 1).

When comparing BMD between family members (particularly in linkage studies) or in 

the general population (for association studies), the bias introduced by bone size must be
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considered, particularly when comparing BMD between men and women (Faulkner et al. 

1995).

Height was used as a surrogate measure of bone size and included as a covariate when 

assessing BMD correlations with PAP. The covariate of weight was unable to be 

accurately assessed using the programme PAP. When added in, the mean BMD for the 

most likely model at which PAP coalesced was positive, which was known to be 

incorrect from the previous descriptive statistics. There are two possible reasons for this. 

The study may not have had adequate power to accurately assess the correlation between 

BMD and weight, particularly where multiple other within-family correlations were 

being simultaneously assessed. With weight included as a covariate, PAP models where 

the mean BMD was fixed at a range of negative values had similar likelihoods to those 

where PAP was allowed to estimate the mean BMD freely, despite the difference in sign 

of the mean BMD. An alternative explanation was that the effect of current weight upon 

BMD was not great, given the variability of weight over an individual’s lifespan.

However, this was not supported by a recent report from the Framingham study 

indicating that both low weight and recent weight loss (though not gain) affected BMD in 

both men and women (Hannan et al. 2000).

It is possible that the comparisons between relative pair BMD correlation at the different 

sites were biased by using the old database (see Tables S.4.6.4 and 3.4.6.6). Assuming 

that correlations at FN would have decreased due to the smaller SD, adjustment for this 

bias may have decreased correlations at FN. This may have reduced the trend for female- 

female correlations to be higher at FN than at LS, but it would have increased the

138



difference between male-male comparisons at LS compared with FN. Additionally, 

NHANES III did not report a gender difference in the changes to mean and SD for BMD.

In conclusion, the results of this chapter have substantial implications for the design and 

interpretation of gene-mapping projects in osteoporosis. Gender-specific effects may 

only be manifest in analysis restricted to one gender. Genetic determinants of BMD at 

various regions of interest may be different and need to be considered separately.

Genetic studies utilising total BMD may blur these site-specific effects. Although the 

selection of probands with extreme BMD improves power to detect linkage, 

ascertainment bias must be considered to prevent artificially low estimates of heritability, 

with their knock-on effects upon linkage analysis. Finally, screening relatives 

(particularly siblings) of patients with osteoporosis for low BMD may prove a cost- 

effective way o f preventing firacture.
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Chapter 4: A Candidate Gene Linkage Study in Families with Osteoporosis

4.1 Introduction

Studies of the genetic epidemiology of BMD in twins and families have shown that BMD 

is a highly heritable trait. Although several genes have been studied for association with 

BMD, very few linkage studies have been performed.

The use of candidate gene linkage and association studies to identify disease-causing 

genes has been most successful in monogenic disorders (e.g. Duchenne muscular 

dystrophy). Linkage analysis has also been successful in identifying genes underlying a 

subset of cases in otherwise more complex disease groups, where inheritance appears 

more consistent with a Mendelian model (e.g. BRCA-1 in some cases of familial early 

onset breast and ovarian cancer (Hall et al. 1992) and presenilin-2 in Volga Germans 

affected with Alzheimer’s disease (Rogaev et al. 1995)). However, most complex 

genetic diseases, such as diabetes mellitus types 1 and 2, asthma, Alzheimer’s disease and 

osteoporosis, arise from the action of multiple genes and their interaction with each other 

(epistasis) and the environment. The identification of genes in complex genetic disorders 

is therefore considerably more difficult. This is borne out by the paucity of genes 

identified in these complex disorders. To date, only the insulin gene in type 1 Diabètes 

Mellitus (Bell et al. 1984), Apolipoprotein E4 in late onset familial Alzheimer’s Disease 

(Corder et al. 1993; Myers et al. 1996; Saunders et al. 1993) and Calpain-10/NIDDM 1 in 

type 2 Diabetes Mellitus (Horikawa et al. 2000) bave been identified as contributing to 

population susceptibility to these common conditions, despite the plethora of whole 

genome screens in families with these (Concannon et al. 1998; Cox et al. 1999; Davies et
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al. 1994; Hanis et al. 1996; Hashimoto et al. 1994; Pericak-Vance et al. 1991) and other 

inherited complex diseases. Notably, these genes were finally identified through 

candidate gene association studies rather than linkage screens.

For complex traits, linkage studies can only identify broad chromosomal areas that might 

contain a possible disease-causing gene. Although at a population level linkage 

disequilibrium extends only a short distance (possibly as little as 3kB (Kruglyak 1999)), 

within a family there are relatively few meioses occurring in the few generations studied, 

and thus within each family linkage will extend much further. This is exploited in 

planning marker density in whole genome scans, such that approximately 300 markers 

are sufficient to screen the whole genome. Once areas of interest have been identified, 

suitable candidates can be screened by positional cloning and linkage disequilibrium 

methods. However, genes exerting only a small or modest effect upon disease may be 

missed by the initial linkage screen. Greater marker density would increase the power of 

the study but such an approach is inefficient and expensive.

In the first part of this chapter, a large candidate gene linkage study in families with 

osteoporosis is presented. By only examining candidate genes, markers could be selected 

lying closer to the genes of interest than would probably occur in a full genome screen. 

This increases the power to detect linkage such that even genes exerting only a modest 

effect upon BMD may be detectable.
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4.2 Materials and Methods

4.2.1 Family members

For proband and family ascertainment see Chapter 3. 115 families participated in this 

linkage study, comprising 613 individuals. BMD data were available on 572 individuals 

(236 males (41%), 336 females (59%)), of whom 165 (70 males (42%), 95 females 

(58%)) had a BMD z-score <-2.0 for either the FN (75 (45%)) or LS (121 (73%)). For 

41 individuals, only DNA samples were available.

The mean age of participants was 50 years (range 16-90 years). The mean FN BMD z- 

score was -0.93 (range -3.71 to 4.97, n = 558) and LS BMD z-score was -1.00 (range -  

4.55 to 5.03, n = 568).

4.2.2. Candidate gene identification

Candidate gene genetic and physical locations were established fi*om the literature and 

publicly available data bases (including http://www.gdb.org/gdb/gdbtop.html. 

http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/maps.cgi, http://www.ncbi.nlm.nih.gov/, 

http://www3.ncbi.nlm.nih.gov/0mim/) (see table 4.2.2).

142

http://www.gdb.org/gdb/gdbtop.html
http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/maps.cgi
http://www.ncbi.nlm.nih.gov/
http://www3.ncbi.nlm.nih.gov/0mim/


Table 4.2.2: Chromosomal Location of Candidate Genes

Locus name Chromosomal location

COLlAl 17q21.3-q22

C0L1A2 7q21.3-22.1

C0L2A1 12ql3.1-ql3.2

VDR 12ql2-ql4

PTHRl 3p22-p21.1

Calcitonin receptor 7q21.3

Calcium sensing receptor 3ql3.3-q21

ER-a 6q25.1

Androgen receptor X qll.2-ql2

IL-1 2ql3

IL-6 7p21-pl5

IL-4 5q23-q31

IL-11 19ql3.3-ql3.4

TNF-a and -P 6p21.3

TGF-P 19ql3.2

EOF 4q25

IGF-1 12q22-q23

CSF-1 (M-CSF) Ip21-p31

CSF-2 (GM-CSF) 5q23-q31.1

Osteopontin 4qll-q21

Osteocalcin Iq25-q31

Fibrillin 15q21.1

PTH Ilpl5.2-pl5.1

PTHrP 12pl2.1-pll.2
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Candidates were chosen because of:

a) their role in normal bone structure and function (e.g. the calcitrophic hormones and 

their receptors);

b) murine models suggesting a role in control of BMD (e.g. osteoprotegerin knockout 

mice);

c) previous association studies in humans suggesting a role in determining BMD (e.g. 

Vitamin D receptor);

d) implication of a role in osteoporosis suggested by similar bone phenotype in other 

genetic disorders (e.g. COLlAl mutations in Osteogenesis Imperfecta).

Obviously these categories are not mutually exclusive.

Many of the candidate genes in this study are discussed at length in Chapter 1 (Section

1.6 presenting their role in normal bone physiology and Sections 1.7 and 1.8 reviewing 

previous genetic studies of these candidate genes in osteoporosis). Therefore, to avoid 

repetition, the following section only covers aspects not discussed elsewhere.

Collagen tvpe 1 alpha-1 and alpha-2

COLlAl and C0LIA2 code respectively for the two a l  and one a2 chains forming the 

triple helix of type 1 collagen present in skin, tendon and bone. Whilst genetically 

distinct, the two genes are similar to each other and to all the genes coding for collagen 

types 1, 2 and 3, in that they share an unusual and characteristic structure of a large 

number of relatively small exons (54 or 108 bp). Each exon begins coding for a glycine 

residue, and codes for a discrete number of gly-X-Y tripeptide units. COLlAl is located
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on chromosome 17 and consists of 51 exons with total size of 18 kb. C0LIA2 on 

chromosome 7 consists of 52 exons over 35 kb (reviewed in 

http://www3.ncbi.nlm.nih.gOv/htbin-post/Omim/disprnim7120150 and 

http://www3 .ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?120160).

Mutations of type 1 collagen result in Osteogenesis Imperfecta (01), a disease 

characterised by brittle bones and multiple fractures (Sykes et al. 1990). 01 has a wide 

range of phenotypic features, including differing degrees of bone fragility, blue sclerae, 

abnormal teeth, thin skin, weak tendons and hearing loss. The clinical heterogeneity of 

01 is due to the heterogeneity of type I collagen mutations. Around 200 different 

mutations have been described in OI patients, affecting both a l  and (more rarely) a2 

chains, including substitutions, deletions, insertions, and formation of null alleles (the last 

manifesting as milder forms of 01). The most common defect in severe/lethal 01 is a 

single base substitution causing replacement of a glycine residue for a bulkier amino acid, 

this impairing the tight helical structure of the triple helix (Kuivaniemi et al. 1997).

A fraction (1-3%) of patients with osteoporosis but lacking features of 01 have been 

found to carry mutations of COLlAl or C0L1A2 (Spotila et al. 1994; Spotila et al. 

1991).

A review of genetic studies in COLlAl, BMD and osteoporosis is presented in Chapter 

1, with further discussion in Chapter 6.
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Collagen tvpe 2 alpha-1

C0L2A1 codes for type 2 collagen, found in the cartilage and vitreous humour.

C0L2A1 is located on chromosome 12, with 75% sequence homology with COLlAl and 

63-67% homology with C0L1A2 (http://www3.ncbi.nlm.nih.gov/htbin- 

post/Omim/dispmim?l 20140). Mutations of C0L2A1 result in chondrodysplasias, 

characterised by short-limbed dwarfism and skeletal deformities (Prockop et al. 1995). 

Mutations have also been reported to be a rare cause of early onset familial osteoarthritis 

(Ritvaniemi et al. 1995).

Vitamin D receptor

The VDR gene is located on chromosome 12, distal to C0L2A1, and consists o f eleven 

exons spanning over 75 kB. There are three non-coding exons at the start of the gene 

(exons lA, IB and 1C). Differential splicing of exons IB and 1C results in three distinct 

mRNA iso forms. The hormone-binding domain of VDR is in the carboxy-terminal 

region (coded for by exons 7,8 and 9), as is the domain for heterodimerization with RXR. 

The DNA-binding domain is in the amino-terminal region, coded for by exons 2 and 3 

with each exon coding separately for a zinc finger motif (reviewed in (Haussier et al. 

1998)).

Mutations affecting VDR result in Vitamin D-dependent Rickets type II, otherwise 

known as hereditary resistance to l,25(OH)2Ds. The disease is usually inherited in an 

autosomal recessive fashion. Affected children appear normal at birth but present in 

infancy with rickets and/or osteomalacia, no historical or biochemical evidence of
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Vitamin D deficiency (in fact serum l,25(OH)2D3 levels may be extremely high), no 

historical or current evidence of calcium deficiency, hypocalcaemia, secondary 

hyperparathyroidism, and minimal response to administration of physiological doses of 

Vitamin D. In addition to effects upon calcitropic tissues, patients may also manifest 

alopecia and ectodermal anomalies including epidermal cysts and oligodontia.

Vitamin D-dependent Rickets type II is a clinically heterogeneous disorder, due to 

heterogeneity of cellular and molecular defects affecting VDR. These include: (a) 

defects of l,25(OH)2D3 binding, due to decreased receptor capacity (i.e. low number of 

binding sites) or decreased afiSnity of the receptor; (b) impaired nuclear localisation 

(including inability to heterodimerise with Retinoid-X receptor) or (c) decreased affinity 

of DNA binding (reviewed in (Haussier et al. 1998; Liberman et al. 1999) and 

(http://www3.ncbi.nlm.nih.gOv/htbin-post/Omim/dispmim7601769)). It is therefore not 

surprising that response to administration of high doses of l,25(OH)2D3 is highly 

variable. However, bone abnormalities can be substantially improved if not resolved by 

fi-equent intravenous overnight calcium infusions (al-Aqeel et al. 1993; Balsan et al. 

1986). This suggests that VDR and l,25(OH)2D3 play a faciHtativerather that obligate 

role in bone metabolism.

VDR homozygous knockout mutant mice have normal intrauterine and early postnatal 

growth and development prior to weaning. Subsequently, the mice fail to thrive, 

developing a syndrome very similar to human Vitamin D-dependent Rickets type II, with 

rickets, osteomalacia, hypocalcaemia, hypophosphataemia, secondary 

hyperparathyroidism and alopecia. Additionally the mice are infertile, with uterine
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hypoplasia and impaired foUiculogenesis secondary to impaired estrogen synthesis, and a 

proportion die in early life. Heterozygous VDR knockout mice appear phenotypically 

normal (Li et al. 1997; Yoshizawa et al. 1997). Dietary excess of calcium, lactose and 

phosphate may result in reversion to normal of many of the phenotypic abnormalities of 

VDR knockout mice, in particular bone mineralisation and PTH levels (Li et al. 1998).

The role o f VDR polymorphisms in BMD determination has been studied at length and is 

reviewed in Chapter 1.

Parathvroid Hormone Receptor tvpe 1

The gene for PTHRl is at chromosome 3p22-21.1. The structure, physiology and 

regulation of PTHRl are reviewed in Chapter 5.

Calcitonin receptor

The gene for the calcitonin receptor is on chromosome 7q21.3 (Nussenzveig et al. 1995). 

Like PTHRl, the calcitonin receptor is a G-protein coupled receptor with seven 

transmembrane domains. Several different mammalian calcitonin receptors exist and 

three distinct iso forms have been cloned from human tumour cell lines, due to alternative 

mRNA splicing (Gom et al. 1992; Nussenzveig et al. 1995). The isoforms may have 

differential ligand specificity and/or responsiveness (Deftos et al. 1999). Calcitonin 

receptors are abundantly expressed on osteoblasts (Nicholson et al. 1986).
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Calcium sensing receptor

The calcium sensing receptor is a member of the G-protein coupled receptor superfamily, 

with extracellular and intracellular domains and seven membrane-spanning domains. 

Binding of calcium ions to the extracellular domain triggers second messenger systems, 

resulting in suppression of PTH release in PTH cells, stimulation of calcitonin release in 

C-cells of the thyroid and decreased calcium reabsorption from renal tubular cells 

(reviewed in (Pearce et al. 1997)).

The calcium sensing receptor gene is located on chromosome 3ql3.3-21. The gene 

consists of six exons and codes for a protein of 1078 AA (Garrett et al. 1995). Gene 

expression is widespread including many calcitropic tissues such as the parathyroid, 

thyroid C-cells, and renal tubular cells.

Inactivating mutations affecting the calcium sensing receptor gene result in 

hypercalcaemia. Heterozygosity results in autosomal dominant benign familial 

hypocalciuric hypercalcaemia. Homozygosity results in neonatal severe 

hyperparathyroidism (Poliak et al. 1993; Poliak et al. 1994). Activating mutations result 

in hypocalcaemia with low serum PTH and hypercalciuria. Vitamin D administration can 

precipitate nephrocalcinosis and acute renal failure (Poliak et al. 1994).

Estrogen Receptor-alpha

Two estrogen receptors are known in humans. The estrogen receptor-alpha (ER-a) gene 

on chromosome 6q25-27 spans 140kB and consists of eight exons with one known 

promoter region. The first exon codes for a regulatory domain, the DNA binding domain
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contains two zinc fingers that are coded for by two separate exons, and the residual five 

exons make up the hormone-binding region (Ponglikitmongkol et al. 1988). The estrogen 

receptor-beta (ER-P) gene is on chromosome 14q22-24 also consisting o f eight exons 

although spanning only 40 kB. High homology has been demonstrated between ER-a 

and -p in the DNA binding domain (96% conserved) and the ligand-binding domain 

(58%), however the regulatory domains o f the two receptors are distinct. Alternative 

mRNA splicing results in several isoforms o f each receptor each with different tissue 

expression (reviewed in http://www3.ncbi.nlm.nih.gov/htbin- 

post/Omirn/dispmim?l33430 and http://www3.ncbi.nlm.nih.gov/htbin- 

post/Ornim/dispmim?601663). Variable ER-a subtypes in tumour cells expressing 

estrogen receptors (such as breast cancer cells) might result in differing responses to 

estrogen. Both ER-a and ER-P are expressed in human bone, present on osteoblasts, 

osteoclasts and osteocytes (Eriksen et al. 1988; Hoyland et al. 1997; Vidal et al. 1999).

ER-a knockout mice are completely infertile, lack breast tissue and have approximately 

10% lower bone mass, supporting a facultative but not critical role of estrogen in skeletal 

development (Korach et al. 1996). ER-P knockout mice have reduced fertility in female 

but not male mice and normal breast tissue (Krege et al. 1998). The skeletal effects in 

ER-p knockout mice are yet to be reported.

Previous association studies of ER-a are discussed in Chapter 1.
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Androgen receptor

The androgen receptor gene is on chromosome Xql 1-12. It has a similar structure to the 

estrogen receptor genes, also consisting of eight exons with exon 1 coding for the 

modulatory domain, exons 2 and 3 the DNA-binding domain and exons 3 to 8 the 

hormone-binding domain. Multiple polymorphisms and mutations are known, with 

various mutations resulting in the androgen insensitivity syndrome, X-linked spinal and 

bulbar muscular atrophy, and prostate cancer (http://www3.ncbi.nlm.nih.gov/htbin- 

post/Ornim/dispmim?313700). Androgen receptors are also found on bone cells in 

similar concentrations to estrogen receptors (Colvard et al. 1989; Noble et al. 1999).

A modest study of LS BMD in pre- and perimenopausal women reported an association 

with an (AGC)n polymorphism in the androgen receptor gene (Sowers et al. 1999).

Interleukin-1

The genes coding for IL-1 a , IL-lp and IL-IRA lie within a 1 cM region on chromosome 

2 (http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/maps.cgi?org=hum&chr=2).

The IL-1 a  gene consists of seven exons and is known to contain several polymorphisms. 

A 46 bp variable nucleotide repeat in intron 6 known to bind the transcription factor Spl 

has been reported to be associated with IL-1 a  production, with a trend for greater 

numbers of repeats to result in lesser gene expression (Bailly et al. 1996).

The IL-lp gene also consists of seven exons with several known polymorphisms 

(Langdahl et al. 2000). A single nucleotide polymorphism (C3954T) has been reported
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to be associated with increased lipopolysaccharide-induced IL-lp production from 

peripheral blood monocytes (Pociot et al. 1992). A study of this SNP in patients with 

osteoporosis found no association of the polymorphism with osteoporotic fracture and 

BMD (Langdahl et al. 2000).

The IL-IRA gene comprises four exons, with two alternative first exons, coding for 

intracellular and secreted IL-IRA respectively. Several polymorphisms have been found 

in the coding region of ILl-RA in linkage disequilibrium with each other (Langdahl et al.

2000). Some but not all studies have also shown linkage disequilibrium extending as far 

as the IL-lp gene (Langdahl et al. 2000; Santtila et al. 1998). An association has been 

reported between an 86-bp VNTR in intron 2 and GM-CSF-stimulated monocyte 

production of IL-lRA (Danis et al. 1995).

Previous association studies ofIL-1 are discussed in Chapter 1.

Interleukin-6

The gene for Interleukin-6 is located at chromosome 7p21. The osteoblast is the most 

prodigious source ofIL-6 in vivo (Mundy 1999). Whilst its physiological role in the 

estrogen-replete state is uncertain, IL-6 and/or its receptor play critical roles in the 

changes in bone turnover induced by estrogen deficiency, with a similar role in androgen 

deficiency (see Chapter 1). In multiple myeloma, IL-6 is a powerful growth factor for 

myeloma cells and a major cause of the bone resorption in the disease (Klein et al. 1990). 

IL-6 has been studied in several association studies of BMD; these are discussed in 

Chapter 1.
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Interleukin-4

The IL-4 gene is found on chromosome 5q31.1 in close proximity to IL-5, IL-13, 

fibroblast growth factors, and other haematopoietic growth factors (Sutherland et al. 

19W0.

Transgenic mice overexpressing IL-4 have markedly decreased bone formation, resulting 

in severe low-tumover osteoporosis (Lewis et al. 1993). Patients v\dth hyper-IgE 

syndrome in which B-cells fimction as if exposed to excess IL-4 also develop low 

turnover osteoporosis (Leung et al. 1988).

Interleukin-11

The gene for IL-11 is located on chromosome 19ql3.3-13.4 (McKinley et al. 1992). 

Interleukin-11 secretion by osteoblasts results in osteoclastogenesis and bone resorption 

(discussed in Chapter 1).

Tumour Necrosis Factors alpha and beta tTNF-a and TNF-p)

The genes for both TNF-a and TNF-P are closely linked and situated in the major 

histocompatibility complex, between HLA-B of class I and C2 of class III (Ragoussis et 

al. 1988). The two genes are encompassed in approximately 7 kB of DNA. Overall there 

is 30% homology between the genes. The last exons of the genes, however, which code 

for 80% of the secreted proteins, share greater (56%) homology 

(http://www3.ncbi.nlm.nih.gov/htbin-post/Gmim/dispmim?! 91160).
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Transforming Growth Factor-p

The TGF-pi gene consists o f seven exons on 19ql3.2, with exons 5,6 and 7 coding for 

active TGF-pl. Several polymorphisms of TGF-pi have been studied in association 

studies in osteoporosis (see Chapter 1).

TGF-pl homozygote knockout mice have significantly lower total bone mineral content 

and growth, although BMD is unchanged (Geiser et al. 1998). Mice lacking an important 

extracellular matrix proteoglycan, biglycan, which binds TGF-P and negatively regulates 

its fimction, develop osteoporosis and exhibit reduced growth rate (Xu et al. 1998). In 

contrast to the effects of TGF-P 1, TGF-p2 overexpression in transgenic mice causes 

osteopaenia due to increased bone remodelling (Erlebacher et al. 1998).

Epidermal Growth Factor TEGF)

EGF is reviewed in Chapter 1.

Colonv Stimulating Factor -1 and -2

The roles of CSF-1 and -2 in bone are reviewed in Chapter 1.

In mice, a point mutation in the coding region o f CSF-1 results in murine osteopetrosis 

(Yoshida et al. 1990). The mice have impaired osteoclastogenesis with osteoclasts absent 

from trabecular surfaces. Administration of recombinant CSF-1 results in restoration of 

osteoclastogenesis, bone resorption and marrow cavity formation (Felix et al. 1990; 

Kodama et al. 1991). In humans however osteopetrosis is a heterogeneous disorder and 

the pathological bases of the many types of osteopetrosis are not known.
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Osteopontin

Osteopontin is present abundantly in the extracellular matrix of bone and has an 

important role in bone remodelling (reviewed in Chapter 1). The osteopontin gene is on 

chromosome 4q21-23 and, in common with other bone glycoproteins, contains the coding 

sequence for the consensus motif ROD (Arg-Gly-Asn) for cell adhesion. Osteopontin 

gene expression in bone is regulated by l,25(OH)2D3 through a vitamin D response 

element (Staal et al. 1996). Osteopontin gene expression is also induced in response to 

mechanical stimulation (Terai et al. 1999).

Osteopontin knockout mice were reported not to have skeletal abnormalities but rather 

altered wound healing with abnormal collagen fibrillogenesis and disorganized matrix 

production (Liaw et al. 1998). However, osteopontin knockout mice are resistant to bone 

resorption induced by ovariectomy and by PTH, despite increased numbers o f osteoclasts 

(Yoshitakeetal. 1999).

Osteocalcin

The osteocalcin gene contains four exons and is located on chromosome 1. The 

osteocalcin gene is thought to arise from a common ancestral sequence with coagulation 

factor IX. There is high sequence homology between them, particularly the residues 

involved in post-translational vitamin K-dependent y carboxylation 

(http://www3.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?! 12260). Osteocalcin gene 

expression is regulated by a vitamin D response element in its promoter region (Kemer et 

al. 1989).
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Osteocalcin homozygous knockout mice have increased bone mass due to increased bone 

formation, without abnormalities of mineralisation or bone resorption (Ducy et al. 1996).

Fibrillin

The fibrillin gene is quite large (1 lOkB) with a very fi-agmented coding region (65 

exons). Fibrillin contains multiple (46) EGF-like domains, most of which contain a 

consensus sequence capable of binding calcium. The EGF-like domains form a helical 

structure stabilized by calcium. Mutations affecting calcium binding affect the stability 

of this helix and hence the microfibril structure (Handford et al. 1995). Most of the EGF- 

like domains are coded individually by a discrete exon hence the large size of the gene 

(http://www3 .ncbi.nlm.nih.gov/htbin-post/Omirn/disprnim?l 34797).

Fibrillin is found in many other connective tissues in addition to bone. Mutations of 

fibrillin are known to cause the Marfan’s syndrome, a disease of connective tissue 

characterised by ocular, skeletal and cardiovascular abnormalities including ectopia 

lentis, long bone overgrowth, arachnodactyly, scoliosis, aortic root dilatation, mitral 

valve prolapse, aortic aneurysm, and durai ectasia (http://www3.ncbi.nlm.nih.gov/htbin- 

post/Omim/disprnim?l 54700). Low bone mineral density has been described in both 

men and women with the Marian’s syndrome (Carter et al. 2000).

Parathvroid Hormone

The gene for PTH is located on chromosome 1 Ipl5.3-pl5.1, consisting of three exons 

coding respectively for the 5’ UTR, a 25 AA signal peptide, and PTH with the 3’ UTR 

(Kemper 1986). Translation of PTH mRNA initially produces preproPTH (115 AA).
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The signal peptide is then cleaved to form proPTH (90 AA), before further cleavage of a 

hexopeptide results in the functional hormone. In all mammalian species investigated, 

PTH is a single-chain polypeptide of 84 AA. The amino-terminal region demonstrates 

high homology at in all vertebrates examined (http://www3.ncbi.nlm.nih.gov/htbin- 

post/Omirn/dispmim?l 68450).

PTH expression is regulated by l,25(OH)2D3 through a vitamin D response element. 

Calcium and phosphate also regulate PTH gene expression, through post-transcriptional 

protein-RNA interactions at the PTH mRNA 3’UTR (Silver et al. 1999).

Mutations of the PTH gene have been found in some autosomally inherited forms of 

hypoparathryoidism (Arnold et al. 1990; Bilous et al. 1992; Parkinson et al. 1992; 

Sunthomthepvarakul et al. 1999). Non-coding polymorphisms of the PTH gene have also 

been reported (MuUersman et al. 1992).

Parathvroid Hormone-related Peptide

The gene for PTHrP is located on chromosome 12pl2.1-l 1.2. It consists of three 

promoter regions, with six coding exons. The similarity in structure between the PTHrP 

and PTH genes and PTH and PTHrP imply a common ancestral gene 

(http://www3.ncbi.nlm.nih.gOv/htbin-post/Oniim/dispmim7168470). A complex pattern 

of alternative splicing results in several mRNA species and three common protein 

isoforms of 139, 141 and 173 AA in length, which may have differing biological activity.

No polymorphisms of this gene have been reported to date.
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4.2.3 Candidate Gene Genotvping

Microsatellite markers located close to (<5cM from physically mapped loci, or spanning 

the interval containing the gene for genes of imprecise location) or within the candidate 

genes were identified from the Genome Database 5.6 and 6.0 

(http://www.hgmp.mrc.ac.uk/gdb/), Whitehead Institute STS database (http://www- 

genome.wi.mit.edu), the Medical Research Council (UK) microsatellite set (Reed et al. 

1994), and CEPH/genethon maps (http://www.cephb.fr/ceph-genethon-map.html). The 

markers selected for each candidate gene are presented in Table 4.2.2. Their genetic 

location is presented in Appendix 4.3.
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Table 4.2.2: Microsatellite markers amplified for candidate genes

Candidate gene Microsatellite M arker

Androgen receptor DXS1275, DXS986

COLlAl D17S791, D17S1604, D17S807, D17S789

C0L1A2 and calcitonin receptor D7S2431, C0L1A2 intragenic dinucleotide

C0L2A1 and VDR D12S368, D12S1586, D12S1702, D12S83

CSF-1 D1S290, D1S198, D1S216, D1S207

Calcium sensing receptor D3S1309, D3S1593, D3S1279, D3S1268

EGF D4S1572, D4S406, D4S193, D4S430, D4S429, D4S247

ER-a D6S1654, D6S441, D6S1577, ER intragenic dinucleotide

Fibrillin MTSl, MTS4

IGF-1 D12S78, D12S79, D12S86, IGF-1 intragenic dinucleotide

IL-1 D2S160, D2S2265, IL la  intragenic dinucleotide

IL-4 and CSF-2 D5S2057, D5S393, D5S2017, D5S178

IL-6 D7S503, D7S493, D7S673

IL-11 D19S412, D19S866

Osteocalcin D1S2815,D1S238

Osteopontin D4S392, D4S3042, D4S395

PTH D11S902, D11S1755, D11S915

PTHrP D12S364, D12S1699

PTHRl D3S3559, D3S1289

TGF-P D19S422

TNF TNF alpha intragenic dinucleotide, D6S276

Microsatellite markers were synthesized by Sigma-Genosys Ltd., Pampisford, 

Cambridgeshire, and by the Medical Research Council (UK) (Reed et al. 1994).

Markers were amplified and genotyped as described in Chapter 2.
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4.2.4 Statistical Analysis

Allele numbers and frequencies were calculated from the observed data. Physical 

mapping data were obtained from the Whitehead Institute STS database (http://www- 

genome.wi.mit.edu), Genome Database 6.0 (http://www.hgmp.mrc.ac.uk/gdb/) and the 

National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). 

Recombination mapping using the programme LINKMAP (Lathrop et al. 1984) was used 

to determine the location o f microsateUites that had not previously been physically 

mapped relative to those that had been.

The original 115 families were divided into 165 nuclear units containing at least one 

sibling pair for analysis, using the programme ‘GAS’ (A. Young, unpublished). BMD 

was expressed as z-scores (adjusted for age and gender). BMD was also adjusted for 

effects of body size by regressing BMD against BMI.

Quantitative trait analysis was performed using the statistical programmes 

MapMaker/Sibs (Kruglyak et al. 1995) and ACT (Amos et al. 1996). MapMaker/Sibs 

was used to perform Haseman-Elston (Haseman et al. 1972) and variance components 

analyses, although in all cases the variance components analysis was more significant 

than the corresponding Haseman-Elston analysis.

When more than one pair of siblings can be drawn from each sibship, statistical bias 

be introduced due to the non-independence o f siblings (Hodge 1984). Whilst 

MapMaker/Sibs contains various settings (e.g. ‘all pairs’) to adjust for this bias, the 

correction is acknowledged to be conservative such that whilst type 1 error is not
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increased, type 2 error is (Le. power is decreased) (Davis et al. 1997). Single results 

presented below are for the ‘all pairs’ setting with correction for this bias. Where a 

range of LOD scores is presented, the lower value is for the ‘all pairs’ setting with 

correction, and the higher value for no correction. The true LOD score lies between the 

two. For all markers achieving a LOD score >1.0 using MapMaker/Sibs with the ‘all 

pairs’ setting, variance components analysis was also performed using ACT. As 

described in Chapter 1, variance components modelling models the covariances between 

family members and no correction for multiple sibling pairs per family is required (Amos 

et al. 1996). Theoretic and simulation studies have also suggested that variance 

components analyses such as ACT which make joint use of all sibship data are more 

powerful than analyses which are restricted to pairwise comparisons such as 

MapMaker/Sibs (Amos et al. 1997; Williams et al. 1999; Wright 1997).

Correction for ascertainment was performed using ACT to adjust for the stringent 

ascertainment scheme used to recruit families through a proband with an extreme BMD 

value.

Prior information about the mean population BMD z-score (i.e. zero) was used in the 

analysis using ACT, potentially increasing its power. Fixing the mean BMD to zero is 

valid if the reference population is representative o f that from which the study population 

was drawn. Whilst the reference population and British population are likely to be 

similar, this has only formally been demonstrated at LS (Ryan et al. 1993), and therefore 

analysis was performed both fixing the mean z-score and estimating it directly from the 

study population.
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MapMaker/Sibs was used perform multipoint analysis, which was not available using 

ACT.

For ACT, significance values were converted from log-likelihood ratios to statistic and 

thence to LOD scores using the formula LOD = %̂ /2 In 10.

4.3 Results

Fifteen markers fi'om eight candidate regions achieved LOD scores >1.0 by 

MapMaker/Sibs (see Table 4.3.1). Results for MapMaker/Sibs are aU for variance 

components analysis as in all cases this was more significant than the corresponding 

Haseman-Elston analysis. The strongest linkage achieved was marker D3S1289 (FN 

LOD score 2.7-3.5, depending on correction for number of siblings per family). Marker 

D3S3559 also showed moderate evidence of linkage to both FN and LS BMD with LOD 

scores 1.5-2.2 and 1.3-1.6 respectively.

Of the fifteen markers achieving a LOD score o f >1.0 using MapMaker/Sibs, six markers 

fi'om three regions achieved a LOD score >1.0 with the ACT programme (D2S160, 

D3S1289, D3S3559, D7S503, D12S1586, D12S83). The ACT variance components 

analysis is given in Table 4.3.2. Using ACT, very little difference was observed between 

values where the population mean was fixed and where the mean was estimated from the 

study population.
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The single and multipoint linkage results for all the candidate genes are presented in 

Appendix 4.3.

Table 4.3.1:

MapMaker/Sibs Variance Components Results for All Markers with LOD Score >1.0 

Results are presented using conservative correction for number of siblings per family.

FN Results LS Results

Candidate Gene Marker Two point Multipoint Two point Multipoint

IL-1 D2S160 0.5 1.4* 0.7 0.4

PTHRl D3S3559 1.5* 1.8 * 1.3* 0.8

PTHRl D3S1289 2.7* 2 .0 * 0.3 0.4

EGF D4S430 1.3* 1.4* 0.4 0.3

EGF D4S429 1.8 * 1.6 * 0.2 0.3

EGF D4S427 0 1.4* 0 0.3

IL-4 D5S2057 1.1* 0.3 0.0 0 .0

IL-4 D5S2017 1.2 * 0.9 0.3 0.2

IL-4 D5S178 0.1 1.1* 0.0 0 .2

ER-a D6S1577 0.1 0.4 0.5 1.4*

IL-6 D7S503 0.6 0.3 1.2 * 1.1*

C0L2A1/VDR D12S1586 1.0 * 0.4 0.7 0.8

C0L2A1/VDR D12S83 0.0 0.3 1.7* 1.3*

C0L2A1/VDR D12S1702 0.9 0.4 0.1 1.1*

COLlAl D17S807 1.7* 0 .6 0.5 0.3

*LOD score >1.0
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Table 4.3.2: Results of Variance Components Analysis using the Programme ACT

Results are presented with the mean BMD z-score both estimated from the study 

population, and with the mean fixed at the mean population z-score (zero).

FN results LS results
Candidate
Gene

Marker Mean z-score LOD
score

p-value LOD
score

p-value

IL-1 D2S160 Estimated 1.0 0.03* 0.5 0.1
Fixed 0.8 0.05* 0.4 0.2

PTHRl D3S3559 Estimated 1.4 0 .0 1 * 1.1 0 .0 2 *
Fixed 1.6 0.005* 1.3 0 .0 1 *

PTHRl D3S1289 Estimated 2 . 8 0.0003* 0.5 0.1
Fixed 3.2 0 .0 0 0 1* 0.4 0.2

EGF D4S430 Estimated 0.2 0.3 0.1 0.5
Fixed 0.2 0.3 0.1 0.5

EGF D4S429 Estimated 0.1 0.5 0.1 0.5
Fixed 0.1 0.5 0.1 0.5

EGF D4S247 Estimated 0.3 0.3 0.1 0.5
Fixed 0.2 0.3 0.1 0.5

IL-4 D5S2057 Estimated 0.1 0.4 0.1 0.5
Fixed 0.2 0.4 0.1 0.5

IL-4 D5S2017 Estimated 0.6 0.09 0.4 0.2
Fixed 0.7 0.06 0.3 0.2

IL-4 D5S178 Estimated 0.4 0.2 0.1 0.5
Fixed 0.5 0.1 0.1 0.5

ER-a D6S1577 Estimated 0.1 0.5 0.2 0.4
Fixed 0.1 0.5 0 .2 0.3

IL-6 D7S503 Estimated 0.2 0.3 1.3 0 .0 1 *
Fixed 0.3 0.2 1.4 0.009*

C0L2A1/
VDR

D12S1586 Estimated 0.3 0.2 1.2 0 .0 2 *
Fixed 0.3 0.2 1.3 0 .0 1 *

C0L2A1/
VDR

D12S83 Estimated 0.1 0.4 1.4 0.009*
Fixed 0.6 0.08 1.4 0.009*

C0L2A1/
VDR

D12S1702 Estimated 0.1 0.5 0.1 0.5
Fixed 0.1 0.5 0.1 0.5

COLlAl D17S807 Estimated 0.3 0.3 0.1 0.5
Fixed 0.3 0.2 0.1 0.5

p-value <0.05
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4.4 Discussion

This study provides evidence for a role of polymorphisms of several genes in the 

aetiology of osteoporosis. ‘Suggestive’ evidence of linkage was observed between 

markers lying in the region of the PTHRl gene and BMD. Seven other loci (ILl, EGF, 

IL-4, ESRl, IL-6 , C0L2A W D R, COLlAl) showed some evidence of linkage, although 

none of these linkages were strong. The results are consistent with previous segregation 

studies of BMD indicating the trait most closely fits a polygenic model of inheritance 

(Gueguen et al. 1995).

Quantitative trait linkage analysis is more powerfiil than dichotomising a trait into a 

qualitative phenotype. Therefore linkage analysis was performed using BMD as the 

phenotype rather than the clinical entity of osteoporosis. Correction of BMD for bone 

size was performed in order to approximate a calculated volumetric bone density (as 

discussed in Chapters 1 and 3). Using BMI-adjusted BMD also allowed analysis of the 

genetic factors determining BMD independently of those determining body size. BMI 

has previously been shown to contribute up to 15% of the overall heritability of BMD 

(Sowers et al. 1992), accounting for a larger proportion of overall BMD variance than for 

height, fat mass or weight (Jouanny et al. 1995). BMI is a strong predictor of BMD (as 

discussed in Chapter 1). The genes determining BMD may have a pleiotrophic effect and 

contribute to the heritability o f body size as well as BMD (Nordstrum et al. 1999). In this 

circumstance, adjusting for BMI would result in loss of power to detect such loci. 

However, an analysis of heritability of fat mass, lean mass and BMD found that the 

heritability of each was due to specific genetic factors (Nguyen et al. 1998). Genetic
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factors affecting lean body mass had a non-significant influence on BMD heritability 

(accounting for <15%). Genetic factors affecting fat mass also had a non-significant 

influence upon BMD heritability at LS or FN although a small genetic correlation was 

noted with total BMD (r = 0.31). However, significant environmental correlations were 

noted between both fat and lean mass and BMD; thus the correlations between either fat 

or lean mass and BMD were due to shared environment, not shared heritability. It should 

be mentioned however that the twin zygosity of this work was established by 

questionnaire, which was subsequently shown to be inaccurate in some cases; these 

results therefore are suspect. Nonetheless, adjusting for BMI will enhance the power to 

detect linkage with BMD by decreasing the variance of BMD due to environmental 

effects.

As discussed in Chapter 3, ascertainment schemes where probands are selected for 

extreme quantitative trait values are more powerfiil for detection of quantitative trait loci 

than randomly recruited families. For this study families were recruited through a single 

affected proband (BMD z-score <-2.0; corresponding to the lowest 2.275% o f the age- 

and sex-matched population distribution, in addition to having osteoporosis as defined by 

WHO (Kanis et al. 1994)). Such stringent ascertainment schemes may introduce bias 

into the linkage analysis; however simulation studies using MapMaker/Sibs and other 

programmes suggest that this bias is likely to be trivial (Iyengar et al. 1997; Slager et al. 

1997). Further, failure to correct for ascertainment bias tends to lead to loss of power, 

rather than to inflation of type 1 error (Fisher et al. 1999; Marlow 2001) (see Chapter 3 

for the effects on heritability estimates using variance components analysis with and
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without adjusting for ascertainment bias). Nonetheless, linkage analysis using ACT was 

adjusted for ascertainment bias.

The appropriate level of correction to apply when testing multiple loci for linkage in 

candidate gene screening is controversial. An extreme position is that whole-genome 

thresholds should also be applied to candidate gene screens, on the presumption that an 

infinitely dense whole-genome screen (arguably the gold standard for linkage analysis) 

will eventually be performed (Lander et al. 1995). Lander and Kruglyak suggested the 

terms ‘suggestive linkage’ for a p-value <7.4x10'^ corresponding to a LOD score of 2.2, 

statistical evidence that would be expected to occur once by chance in such a dense 

genome screen; and ‘significant linkage’, a p-value ^.2x10'^ and LOD score of 3.6, 

statistical evidence that would be expected to occur once by chance in twenty such 

infinitely dense genome screens. There is however disagreement amongst statistical 

geneticists regarding the principle of applying thresholds and the accuracy of the 

thresholds set (Curtis 1996; Witte et al. 1996). A simulation study using data derived 

from a real whole genome screen suggested that a LOD score of 3.2 is equivalent to a 

whole genome p-value of 0.05 (the probability below which one or fewer false positives 

would be expected to occur in 20 whole genome screens) (Sawcer et al. 1997). An 

alternative view of thresholds for candidate gene studies is that Bonferroni correction 

should be applied for the number of independent loci investigated, whereby the p-value 

obtained is multiplied by the number of independent observations drawn firom the same 

data set to give the final significance value.

167



By either standard the results obtained at femoral neck with the markers D3S1289 and 

D3S3559, both with two point and with multipoint analysis, are striking. They fiilfil the 

criteria for suggestive linkage as above, or, if Bonferroni correction is used, the corrected 

p-value for linkage between marker D3S1289 and BMD is 0.002, a highly significant 

result.

The markers D3S1289 and D3S3559 lie close to the candidate gene PTHRl (D3S1289, 

PTHRl and D3S3559 lie at 62.7cM, 65.l-67.7cM and 69.1cM firom the p-telomere of 

chromosome 3 respectively). As discussed above, linkage studies cannot pinpoint genes 

of interest for quantitative trait loci and further mapping and functional work are needed 

to establish that it is PTHRl rather than another gene in linkage disequilibrium with these 

markers that is responsible for the observed linkage with BMD. Nonetheless, PTHRl 

was chosen as a candidate gene because of its known role in bone physiology (reviewed 

in Chapter 5). Mutations resulting in constitutively activated PTHRl cause Jansen-type 

metaphyseal chondrodysplasia, a form of short-limbed dwarfism associated with 

hypercalcaemia due to increased bone resorption, hypophosphataemia, and normal to 

high PTH levels (Kruse et al. 1993; Schipani et al. 1996). Although abnormalities of 

endochondral ossification are the principle phenotypic abnormality in this condition, 

increased bone resorption without sufficient compensatory bone formation does occur 

(Kruse et al. 1993). In transgenic mice, targeted expression of constitutively active 

human PTH/PTHrP receptors in growth plate chondrocytes causes delayed endochondral 

bone maturation and reduced bone mineralization at birth. These effects are due to 

decelerated chondrocyte maturation but also due to inhibition o f vascularisation, a key 

step in ossification. The histological abnormalities resolve by two weeks of age.

168



probably because of decreasing numbers of cells expressing the transgene (Schipani et al. 

1997). The influence of constitutive PTH receptor activation in osteoblasts has not been 

similarly assessed, but would be anticipated to cause osteolysis and osteopaenia, as 

occurs in chronic PTH excess. Mutations in the PTHRl gene resulting in loss of function 

of the PTHRl receptor have been identified in patients with Blomstrand’s 

chondrodysplasia, which is characterised by advanced endochondral bone maturation and 

increased bone density (Jobert et al. 1998; Zhang et al. 1998) and homozygous knockout 

mice have a similar phenotype. Both Blomstrand’s and Jansen’s chondrodysplasias result 

fi'om mutations of PTHRl and result in a severe skeletal phenotype. More subtle 

polymorphisms of PTHRl inducing milder degrees of receptor activation or suppression 

may underlie population variance in BMD. This is discussed further in Chapter 5.

Other sites with evidence o f linkage with BMD included COLlAl, IL-1, IL-6 , ER-a and 

C0L2A1WDR, all of which have previously been studied in association studies and are 

reviewed in detail in Chapter 1. Linkage was also observed with IL-4 and EGF, which 

are novel areas of interest.

Of those markers achieving a LOD score of >1.0 using the variance components part of 

MapMaker/Sibs, only six markers (D2S160, D3S1289, D3S3559, D7S503, D12S1586, 

D12S83) from three other regions (IL-1, IL-6  and PTHRl) achieved a LOD score >1.0 

with ACT (also variance components analysis). The more accurate of the two 

programmes cannot be known until specific comparisons between them are made. 

However, the use of cross-generational comparisons o f BMD in ACT may be
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inappropriate due to differing proportions of BMD from ascertainment of peak bone mass 

and subsequent bone loss in differing generations of a family (discussed further below).

There is strong evidence from association studies of involvement of COLlAl in 

determming BMD (see Chapter 6 ). Whilst linkage was observed at this locus using 

MapMaker/Sibs, the level o f significance was not high. As mentioned before, genetic 

studies in these families may be biased towards heritability of peak bone mass rather than 

bone loss, and this weak result may reflect the relative importance of COLlAl in 

determining each component of total BMD.

Both C0L2A1 and VDR are located on chromosome 12, separated by less than 740 kB 

(Pedeutour et al. 1994). Uitterlinden and colleagues recently reported distinct 

associations of VDR and C0L2A1 with separate features of osteoarthritis (Uitterlinden et 

al. 2000). In contrast to association work, the two genes cannot be examined 

independently in linkage studies due to their close genetic relationship. The area of 

maximum multipoint analysis was proximal rather than distal, which might suggest 

linkage more to C0L2A1 rather than VDR. However, as discussed in Chapter 5, the 

shape and maximal height of multipoint linkage curves can be very misleading relative to 

the actual location of the disease-causing gene.

As an extension of this point, it must be recognised that although markers were chosen 

close to or within candidate genes, it cannot be stated with certainty that the linkage 

observed was due to the intended genes. For example, the gene for fibroblast growth 

factor, a cytokine resulting in bone cell formation and osteoblast functioning, is
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sufficiently genetically close to IL-4 for effects at either gene to be indistinguishable by 

linkage analysis.

The intricate interrelations between bone cytokines and gonadal hormones, particularly in 

mediating the bone loss associated with menopause (reviewed in Chapter 1), makes the 

linkage results at candidates IL-1, IL-6  and ER-a fascinating. The synergistic and 

cascade-Uke pathways involved mean that subtle polymorphisms in any o f the cytokines 

could have profound effects upon the final skeletal phenotype. To dissect out the relative 

importance of each cytokine will be difficult. In qualitative diseases, linkage analysis can 

be performed conditional upon a previously identified locus (Cordell et al. 1995). This 

cannot yet be done for quantitative diseases (M. Farrell, personal communication).

The level of significance of linkage observed at the PTHRl locus was greater at FN than 

at LS, although there was at least moderate linkage at both sites. BMD at LS is affected 

by many artefacts, which would reduce the power of linkage analysis to detect genes 

purely affecting BMD at this site. Alternatively, this may reflect genetic heterogeneity in 

the causation of osteoporosis at these two sites, consistent with epidemiological evidence 

of site specificity o f BMD heritability (discussed in Chapter 3). Differences in linkage 

results between FN and LS were also seen at the IL-1 locus (greater at FN) and IL-6  and 

VDR/C0L2A1 loci (both greater at LS), using both MapMaker/Sibs and ACT 

programmes.

In addition to site-specificity of genetic effects, environmental variables (such as calcium 

intake) may interact with genetic influences in a site-specific manner (discussed in 

Chapters 1 and 3). Environmental influences may differ substantially between
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populations, and linkage analysis of these candidate genes in different populations may 

reveal genetic effects not detectable in this population.

The results presented in Chapter 3 also suggest that there may be gender effects upon 

BMD heritability at different skeletal sites. The mixed sex study design employed would 

mask any such gender-specific genetic effects. Further, this linkage analysis cannot 

differentiate between effects due to genes controlling peak bone mass or rate of bone 

loss. Therefore this study should not be seen as excluding an effect of any of the genes 

studied on BMD in particular situations.

Previous full genome screens have not demonstrated linkage to the areas identified in this 

study. This may be due to ethnic heterogeneity of BMD heritability. The families in this 

study were British Caucasians, in contrast with previous linkage studies in French 

Canadians, Greeks, and Ashkenazi Jews (Devoto et al. 1998; Spotila et al. 1996), 

Caucasian- and Afro-Americans (Roller et al. 1998) and Chinese (Niu et al. 1999). 

Certainly these studies lacked sufficient power to exclude any of the candidate areas 

examined here -  and in most cases were insufficiently powered to detect the moderate 

genetic effects reported in this study (Gu et al. 1997). Similarly, the power of this study 

is at best moderate, and genes contributing only a small proportion of total heritability of 

BMD may not have been detected. Greater power will require investigation of more 

families and utilisation of non-parametric linkage analysis packages capable of multipoint 

analysis of general (rather than nuclear) pedigrees.

In conclusion, this candidate gene linkage study has demonstrated ‘suggestive’ linkage of 

the PTHRl locus with BMD, with lesser evidence of a role for the genes COLlAl,
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C0L2A1/VDR, EGF, ESRl, IL-1, IL-4 and IL-6 . The strength of linkage of PTHRl and 

BMD, and the prior evidence of an osteoporosis-associated phenotype with PTHRl 

mutations (Schipani et al. 1996), make this an important candidate for fiirther study.

4.5 Further Candidate Gene Linkage Studv -  Introduction

The OPG/RANKL/RANK axis o f bone cell signalling was first reported after the above 

candidate gene study was performed. These three proteins appear pivotal in control of 

osteoclastogenesis (reviewed in Section 1.6.4.1) and thus were obvious additional 

candidate genes of interest.

The gene for OPG is located on chromosome 8q23-24 (Morinaga et al. 1998) and 

consists of one promoter region and five exons (Langdahl et al. 2000). 12 

polymorphisms have been reported within the OPG gene. Two polymorphisms in the 

promoter region and one in exon 1 (resulting in a AA change) have been found to be 

associated with fi*acture and low BMD at LS (for all three) and femoral neck (for one 

promoter polymorphism), with a suggestion of an osteoporotic haplotype associated with 

firacture and low BMD at LS (Langdahl et al. 2000).

The gene for RANKL is at chromosome 13ql4. No polymorphisms o f the RANKL gene 

have been reported.

The RANK gene is located on chromosome 18q22.1 (Anderson et al. 1997). Several 

polymorphisms and mutations of the RANK gene have been described. Linkage o f this
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gene with familial expansile osteolysis has recently been demonstrated (Hughes et al. 

2000). Mutations affecting exon 1 were found to affect expression levels and prevent 

normal cleavage of the signal peptide, thought to result in higher intracellular levels of 

RANK translation products and increased signal transduction.

Further, two genome-wide linkage studies were published, with some evidence of linkage 

of BMD with chromosome 1 Iq (Devoto et al. 1998; KoUer et al. 1998). Maximal linkage 

was reported with micro satellite marker cd3d in the first study (Devoto et al. 1998).

Therefore a further candidate gene study of OPG, RANKL, RANK and marker cd3d was 

undertaken to examine linkage of these loci with BMD.

The analyses in the candidate gene study presented above required complex family 

pedigrees to be split into nuclear families, with subsequent loss of power. Statistical 

packages capable of analysing extended pedigrees (e.g. Sequential Oligogenic Linkage 

Analysis Routines (SOLAR) (Almasy et al. 1998)) should have greater power to detect 

linkage. Therefore part of the aim of this additional linkage work was to compare the 

results from a statistical programme that analysed only nuclear families with one capable 

of using information from more complex pedigrees.

4.6 Methods

4.6.1 Familv Members

The same families were used as for the above study.

174



4.6.2 Candidate Gene Identification and Genotvping

Microsatellite markers located close to the three candidate genes were identified firom the 

Genome Database 6.0 (http://www.hgmp.mrc.ac.uk/gdb/) and the Whitehead Institute 

STS database (http://vmw-genome.wi.mit.edu). The markers selected for each candidate 

gene are presented in Table 4.6.2 with genetic distances in Kosambi cM.

Table 4.6.2: Microsatellite markers amplified for candidate genes OPG. RANKL.

RANK and chromosome 1 Iq

Candidate area Microsatellite marker Position in Kosambi cM

RANKL dl3s218 35.3

RANKL dl3s263 40.4

RANKL dl3sl53 47.5

RANK dl8s64 83

RANK dl8sll47 88.8

RANK d l 8s68 94.4

RANK dl8s465 98.9

OPG d8sl784 116.8

OPG d8sl008 123.5

OPG d8s514 128.9

OPG d8sl793 135.5

OPG d8s284 142.7

OPG d8s256 147.6

OPG d8sl837 155.5

OPG d8sl717 162.8

l lq CD3D 113.9-117
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Micro satellite markers were synthesized by Gibco/Life Technologies^^ (Paisley, UK). 

Markers were amplified and genotyped as described in Chapter 2.

4.6.3 Statistical Analysis

Allele numbers and firequencies were calculated firom the observed data. Physical 

mapping data were obtained fi'om the Whitehead Institute STS database (http://www- 

genome.wi.mit.edu).

Linkage was performed using BMD expressed as z-scores (adjusted for age and gender). 

BMD was also adjusted for effects of body size by regressing BMD against BMI.

Linkage analysis using nuclear families and the programme MapMaker/Sibs was carried 

out as described above, with both two-point and multipoint linkage analysis. Both 

Haseman-Elston and variance components analyses were performed with and without 

adjustment for number of siblings drawn from each family, and therefore linkage results 

from MapMaker/Sibs are presented as a range.

General pedigree nonparametric quantitative linkage analysis was performed using 

SOLAR. SOLAR uses variance components modelling to analyse linkage. Heritability 

estimates were obtained by within-programme variance components analysis, correcting 

for ascertainment bias.
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4.7 Results

4.7.1 Results using MapMaker/Sibs

Suggestive evidence of linkage of BMD at LS with RANKL was found, with maximum 

LOD scores (MLS) of 1.7-2.1 using variance component multipoint analysis. Maximum 

linkage with BMD was seen at markers dl3s218 and dl3s263 using variance components 

analysis. There was no evidence of linkage at FN (MLS 0.37).

No evidence of linkage with OPG, RANK, or l lq  was observed.

Diagram 4.7.1 : Multipoint Linkage Analvsis of RANKL with BMD
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4.7.2 Results using SOLAR

Multipoint linkage analysis o f these families using SOLAR was unsuccessful. However, 

two-point analysis was available for markers dl3s218 and dl3s263. These results are 

presented in Table 4.7 with the two-point results for these markers obtained using 

MapMaker/Sibs.

Table 4.7: Two-point Linkage Results using MapMaker/Sibs and SOLAR

Mapmaker/Sibs SOLAR

Microsatellite marker LS FN LS FN

dl3s218 0.43-0.49 0.24-0.42 0.39 0.64

dl3s263 0.49-0.52 0.00-0.08 0.18 0 .22

4.8 Discussion

This further candidate gene work demonstrated evidence of linkage of LS BMD with 

RANKL but not OPG or RANK. No linkage was observed with the microsatellite 

marker cd3d on chromosome llq . No evidence of linkage of any locus with FN BMD 

was demonstrated. However, as for the previous candidate gene study, there is 

insufficient power to exclude linkage of these loci with BMD.

The computational time required for establishing IBD sharing using SOLAR was 

prohibitive. Attempts to run the analysis as a whole were ineffective, with each 

microsatellite marker requiring over a week for analysis, and computer instablity
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resulting in repeated loss of linkage data. To circumvent loss of all the linkage results 

each time the computer systems required rebooting, the data was split into individual 

markers and analysed separately. Despite this, only two microsatellites were successfiiUy 

analysed, taking a fortnight of computation. Only two-point analysis was performed. 

Alternative packages capable of analysing general pedigrees (e.g. Genehunter (Kruglyak 

et al. 1996)) were also considered. However, Genehunter can only model vector-descent 

pathways in families with a maximum of 8 founding members. Attempts to run this 

programme with the complex pedgrees of these families resulted in the programme 

discarding multiple individuals from the pedigrees, causing considerable loss of power. 

Further, Genehunter has no capcity for ascertainment correction.

The two-point linkage results from SOLAR are similar to the two-point data obtained 

using MapMaker/Sibs. Thus it is arguable whether the considerably greater effort to 

analyse complex pedigrees did in fact result in improved power to detect linkage. No 

comparison of the multipoint analyses was made, however.

Further, the biological validity of comparing BMD of relatives of a complex pedigree is 

not certain. At any one point in time, bone mineral density consists of both peak bone 

mass obtained and subsequent bone loss. The relative contributions of these two factors 

to total BMD are likely to be most similar amongst siblings who are of comparable age, 

than amongst relatives separated by generations. For example, the proportion o f total 

BMD due to bone loss will be much greater in postmenopausal mothers than in 

premenopausal children. Including menopausal status as a covariate would diminish, but
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not remove, this bias. Therefore, linkage analysis of BMD in complex pedigrees may 

involve comparison of different phenotypes.

This would be consistent with the evidence of previous genetic epidemiological studies, 

where heritability estimates obtained from family studies have in general been 

considerably lower than those obtained using siblings (presented in Section 1.4.2).

In summary, linkage of BMD at LS was demonstrated with RANKL. Linkage analysis of 

BMD utilising the complex pedigrees available (rather than dividing them into nuclear 

families) did not result in improved linkage detection. This may have been due to 

potentially avoidable computational limitations. However, it may also be due to differing 

contributions to the overall phenotype of BMD amongst relatives o f different generations.
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Chapter 5: The Parathyroid Hormone Receptor type 1: High Density Linkage Mapping 

and Mutation Screening

5.1 Introduction

The candidate gene linkage study presented in Chapter 4 identified linkage of BMD with 

markers d3sl289 and d3s3559, located at 62.7cM and 69.1cM respectively firom the p- 

telomere on chromosome 3. The maximum FN LOD scores obtained were 2.7-3.5 with 

d3sl289 and 1.5-2.2 with d3s3559. The maximum LS LOD scores were 1.3-1.6 with 

d3s3559. The PTHRl locus is located at 65.l-67.7cM. Although this linkage result 

could be due to the effects of any of the genes in the same chromosomal area, the PTHRl 

gene is a reasonable candidate for control of BMD, given its known physiological role 

and the effects upon BMD of mutations of this gene.

This chapter presents:

a) A review of PTHRl;

b) A high density linkage study of the PTHRl locus;

c) Mutation screening of PTHRl using denaturing high performance liquid 

chromatography (DHPLC);

d) Sequencing of mutations detected by DHPLC.
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5.2 PTHRl Review

5.2.1 PTHRl

PTHRl is a G-protein coupled receptor, identified in 1991 by expression cloning o f an 

opossum kidney cell cDNA library by Jüppner and colleagues (Jüppner et al. 1991). 

PTHRl was recognised to be part of a unique and ancient G-protein linked receptor 

family due to its homology with the secretin and calcitonin receptors. This family (class 

II or family B G-protein coupled receptors) also includes receptors for vasoactive 

intestinal polypeptide types 1 and 2 , gastric inhibitory polypeptide, corticotrophin 

releasing hormone, growth hormone releasing hormone, pituitary adenylate cyclase- 

activating peptide, glucagon-like peptide 1 and glucagon. The shared characteristics 

include seven membrane spanning domains, large extracellular N-terminal domains 

(including two conserved sites for N-linked glycosylation), 48 AA residues identical in 

all receptors (including 8 cysteine residues) with many other residues highly conserved, 

and cognate ligands of 26-46 AA residues in length (Jüppner 1994). PTHRl is widely 

expressed, with highest levels found in kidney and bone (Jüppner et al. 1991).

G-proteins are the intracellular signal relaying mechanism for many receptors. G- 

proteins consist of an a  subunit loosely associated with a dimer of a p and a y subunit. In 

its inactive form, the a  subunit is bound to both guanosine diphosphate (GDP) and the py 

dimer. Ligand activation of the associated receptor results in release of GDP by the apy 

complex, allowing guanosine trisphosphate (GTP) to bind to the a  subunit. The GTP-a 

subunit complex dissociates firom the Py dimer, and either the complex or the dimer (or 

both) then activate/s downstream effectors. GTP is then hydrolysed back to GDP; the
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GDP-a subunit complex then binds with the Py dimer, preventing continuing stimulation 

of downstream activators (Farfel et al. 1999).

Jüppner identified cDNA for a 585 AA receptor that bound PTH and PTHrP with equal 

affinity (Jüppner et al. 1991). Schipani and colleagues demonstrated that human 

PTH/PTHrP receptor cDNA is identical in both kidney and osteoblast-like sarcoma cells, 

encoding a 593 AA receptor (Schipani et al. 1993). Further, there was only one major 

messenger RNA species identifiable by Northern blotting of total RNA from human bone 

and kidney tissues, suggesting a single PTH-PTHrP receptor present in the major tissues 

concerned with calcium metabolism (Schipani et al. 1993).

The PTHRl gene is located on chromosome 3p. It spans 20 kb with 14 coding exons 

varying in size firom 42 bp (M6 , coding for one of the transmembrane domains) to more 

than 400 bp (T l, the intracellular C-terminal tail). A 10 kb intron separates exon S 

(coding for the signal peptide) fi*om exons E l, E2, E3 and G coding for the N-terminal 

extracellular region. The portion of the gene encoding this region (157 AA) spans 15 kb. 

The 436 AA region of the transmembrane loops and the tail portion is encoded by a 

region spanning 4 kb, with exons separated by much smaller introns varying in size firom 

81-1000 bp (reviewed in (Schipani et al. 1995)).

In bone of normal individuals, PTHRl mRNA is expressed in osteoclasts, osteoblasts, 

osteocytes, and bone marrow cells, although PTHRl protein expression is not detectable 

in mature osteoclasts (Langub et al. 2001). PTHRl is detectable on immature osteoclasts 

(N.Athanasou, personal communication) and on mature osteoclasts in diseased states 

such as secondary hyperparathyroidism (Langub et al. 2001). Although no significant
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correlation was found between serum PTH levels and levels of PTHRl protein expression 

on osteoclasts in secondary hyperparathyroidism, the percentage of osteoclasts expressing 

PTHRl protein was related to the erosive depth of resorption pits, a function of osteoclast 

activity (Langub et al. 2001). Elderly patients frequently have mildly elevated levels of 

PTH due to secondary hyperparathyroidism (reviewed in (Bilezikian et al. 2000)). Thus 

increased expression o f PTHRl protein on osteoclasts, along with increased osteoclastic 

activity, may play a role in the development of osteoporosis. Of note also, administration 

o f la,25(OH)2D3 results in downregulation o f PTHRl expression in osteoblasts and 

preosteoblasts (Amizuka et al. 2000).

5.2.2 Promoter regions o f PTHRl

The 5’ regulatory region of PTHRl is complex. In humans, three promoter regions (PI, 

P2, P3) have been identified, resulting in differentially spliced transcripts in different 

tissues (Bettoun et al. 1998; Bettoun et al. 1997; Manen et al. 1998). In contrast, two 

promoter regions have been identified in mice: PI activity is mainly localised to the 

kidney and accounts for 90% of renal PTHRl transcripts, whereas P2 is more 

ubiquitously active (Amizuka et al. 1997; McCuaig et al. 1995). Homology between 

human and murine first and second promoter regions is high, with 73-4% homology for 

PI and 92% homology for P2 (Bettoun et al. 1997). Despite this conservation, PI 

activity in human kidneys is weak and most (80%) renal transcripts arise from P3 

activity, resulting in a fusion exon of the promoter and the signal sequence exon. P3 is 

also broadly active in other human tissues (Bettoun et al. 1998). In humans and in mice
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P2 is ubiquitously active. P2 activity has been detected even in the kidney but only in 

tubular epithelial cells (Bettoun et al. 1998).

PI gives rise to transcripts containing two untranslated exons (U1 and U2), whereas P2 

and P3 transcripts contain a single exon (U3 and U4 respectively).

PI contains several possible transcription initiation sites over a 100 bp region, although 

these do not include a TATA box (a common transcription start sequence). Potentially, 

different initiation sites may result in transcripts with 5’UTR differing in their capacity to 

form stable stem-loop structures, which in turn may result in varying efficiency of 

translation (Bettoun et al. 1997; Yiu et al. 1994). In contrast to P2 and P3, PI is not 

(G+C) rich (approximately 50%) (Minagawa et al. 2000).

P2 and P3 are highly (G+C) rich and lie in the same CpG island. Both P2 and P3 contain 

single initiation sites. Both proximal promoter regions contain sequence motifs 

recognized by a number of transcription factors including Spl, ETF family and myc- 

associated zinc finger proteins (MAZ) but (in common with PI) do not contain a TATA 

box (Minagawa et al. 2000). Combinations o f transcription factors (Spl and MAZ, or 

Spl and ETF) have been found necessary for activity of several (G+C) rich TATA less 

promoter regions (reviewed in (Minagawa et al. 2000)).

Despite these similarities, P2 and P3 regulation are distinct. As above, very little P2 

activity is present in the kidney where P3-directed transcription dominates PTHRl 

expression. Further, P2 is the only promoter region of PTHRl active up to mid-gestation. 

P2-directed transcripts have been detected in kidneys, calvariae and long bones fi’om
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human foetuses aged from 12 and 19 weeks, an important period of organ development 

and skeletal ossification. During this time, neither PI nor P3 activity were detectable. 

(Bettoun et al. 2000; Bettoun et al. 1998)

P2-directed transcripts may be differentially spliced between U3 and SS, resulting in 187 

and 129 bp products. Both long and short transcripts are found in kidney, spleen and skin 

fibroblasts, whilst only the short UTR was found in human osteoblast-like osteosarcoma 

cell lines. The shorter UTR has a less stable stem loop with less secondary structure 

formation. As extensive secondary structure can inhibit initiation of translation, it may 

be that the shorter U3 is more efficiently translated (Bettoun et al. 1998).

5.2.3 Interaction o f PTHRl with PTH and PTHrP

The structure and function of PTHRl have recently been reviewed (Goltzman 1999; 

Mannstadt et al. 1999). PTHRl is activated by both PTH and PTHrP. Both ligands bind 

with equal affinity to PTHRl and elicit a robust and sensitive cAMP second messenger 

response through the adenyl cyclase A/protein kinase A pathway. An additional second 

messenger response of inositol trisphosphate (IP3 ) is elicited through activation of the 

phospholipase C/protein kinase C pathway (Abou-Samra et al. 1992), though this is 

approximately 10-fold less sensitive than the adenyl cyclase pathway (Takasu et al.

1999). Cell surface density of receptor is a key determinant of the magnitudes of cAMP 

and IP3 responses to PTH and PTHrP. Thus regulation of PTHRl expression modulates 

the character and intensity of response to ligand binding (Takasu et al. 1999).
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Synthetic N-terminal peptide hormone analogues and PTHrP are both critical

and sufficient for binding of PTHRl and activation of the cAMP signalling system. The 

midregion and C-terminal portions of intact PTH and PTHrP are not thought to interact 

with PTHRl. Homology between PTĤ '̂ "̂  and P T H r P i s  greatest at the N-terminal 

region, with eight identical amino acids in the region 1-13. Subsequently homology 

between the two diminishes, with only three identical amino acids in the region 14-34.

Structural studies o f PTH and PTHrP had suggested that PTH^’̂ "̂ and PTHrP contained 

both an N-terminal and a C-terminal helix, with a flexible hinged midregion. Receptor 

binding and activation were thought to be a function of helical stability. However, recent 

three-dimensional X-ray crystallography of PTH '̂ '̂  ̂revealed its structure as a slightly 

bent long single a-helix, although residues 6-20 and 21-33 form two distinct amphiphilic 

helices (Jin et al. 2000). As yet there has been no definitive X-ray crystallography of 

PTHrP, PTHRl, or the ligand-receptor interaction with PTHRl.

The C-terminal regions o f the analogues (i.e. PTH '̂ '̂ '̂^and PTHrP contain the main 

receptor-binding domain and interact with the N-terminal extracellular domain o f PTHRl 

(Jüppner et al. 1994). Although the C-terminal regions of the analogues PTH '̂ '̂  ̂and 

PTHrP '̂^"  ̂lack amino acid homology, they both form similar amphiphilic helices that 

bind with similar high avidity to PTHRl (Neugebauer et al. 1992; Pellegrini et al. 1998). 

Binding of ligand to receptor also involves interactions with the membrane-spanning 

helices and extracellular loops of the receptor.

The N-terminal parts of PTH and PTHrP interact with the membrane-spanning helices 

and loops of the receptor and are critical for activation of the adenyl cyclase system.
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Extension or deletion of the N-terminal part of the and PTHrP markedly

inhibits the capacity of either to increase cAMP (Goltzman 1999).

PTHRl activation of the phospholipase C/IP3 second messenger system is poorly 

understood. The C-terminal part ofPTH '̂^"^ is thought to contain the phospholipase C 

stimulating domain. N-terminaUy truncated PTH forms fail to stimulate adenylate 

cyclase and lack anabolic activity, but retain the capacity to stimulate phospholipase C. 

Thus the cAMP second messenger system may be essential (though not necessarily 

sufficient) for anabolic activity.

The intracellular loops and C-terminal portions of PTHRl are linked with G-protein a  

subunits, in particular the second intracellular loop. Stimulation of cAMP and IP3 second 

messenger systems may rely upon activation of different Ga subunits.

In addition to its N-terminal interaction with PTHRl, PTHrP residues 87-107 may also 

act as a nucleolar targeting signal (Amizuka et al. 2000).

5.2.4 The Role of PTHRl in Embrvogenesis: Interaction with PTHrP

Bone development occurs in two distinct developmental patterns - endochondral 

ossification, in which a cartilage mould is replaced by bone (the mechanism for most 

bone formation), and intramembranous ossification, in which bone matrix is deposited 

directly by osteoblasts without such a mould. During endochondral ossification, 

mesenchymal cells differentiate to become chondroblasts: these then secrete cartilaginous 

matrix and differentiate into chondrocytes. The chondrocytes of the future midshaft 

proliferate, hypertrophy and synthesize a distinct extracellular matrix. This hypertrophic
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matrix allows osteoclast invasion. Osteoclasts arise from haematopoietic stem cells and 

resorb the hypertrophic matrix, allowing angiogenesis and formation of the bone marrow. 

Osteoblasts (derived from mesenchymal stem cells) bind to the cartilaginous matrix 

remnants and deposit bone matrix into their surrounds. The residual cartilage remnants 

are later resorbed and replaced by bone. At the ends of the bone shaft, the epiphyseal 

growth plates are formed, where chondrocytes proliferate, hypertrophy and eventually 

undergo apoptosis. Additionally, intramembranous ossification also takes place in the 

midshaft area, in the perichondrium to form a ‘bone collar’. The first bone formed is 

woven bone and the resulting trabeculae are known as the primary spongiosa; subsequent 

remodelling results in replacement of the woven bone and the cartilaginous remnants 

with lamellar bone, resulting in the mature state of trabecular bone called secondary 

spongiosa (reviewed in (Lanske et al. 1999)).

Locally acting negative feedback loops involving PTHRl, PTHrP and Indian hedgehog 

(Ihh) regulate the rate of chondrocyte differentiation in the growth plate. Chondrocytes 

express Ihh as they make the transition from the proliferative to hypertrophic stages. Ihh 

increases expression of PTHrP in the periarticular perichondrium. PTHrP binds to 

PTHRl expressed on proliferating chondrocytes, inhibiting hypertrophic differentiation, 

maintaining chondrocyte proliferation, and preventing production of more Ihh-producing 

cells (Karp et al. 2000). Thus the level for PTHrP expression critically determines the 

rate of chondrocyte differentiation. There are also spatial differences in PTHrP 

expression resulting in polarity of PTHrP expression (greater levels of PTHrP at the ends 

of the bones). At least in part this is responsible for the normal polarity of chondrocyte 

differentiation and long bone development (Lanske et al. 1999).
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5.2.5 Knockout Mouse Models for PTHRl. PTH and PTHrP

PTHRl, PTH and PTHrP homozygous (-/-) knockout mice share a phenotype o f short- 

limbed dwarfism and abnormal endochondral bone formation (Karaplis et al. 1994; Karp 

et al. 2000). The mice exhibit acceleration of chondrocyte differentiation (decreased 

proliferation and extensive hypertrophy) and accelerated ossification. However there are 

additional abnormalities specific for each mouse strain. The differences between PTHRl 

(-/-) knockout mice and PTHrP (-/-) knockout mice may be due to the ability of PTH to 

partially overcome the deficiency of PTHrP. Of note, PTHRl (-/-) knockout mice 

usually die midgestation and in addition to endochondral abnormalities have marked 

reduction of trabecular bone formation (Lanske et al. 1999). PTHrP homozygous (-/-) 

knockout mice usually die postnatally, thought to be due to asphyxia (Karaplis et al. 

1994), however heterozygous (+/-) PTHrP knockout mice reach adulthood and develop 

osteopaenia (Amizuka et al. 2000).

5.2.6 PTHRl Mutations in Humans

Jansen’s metaphyseal chondrodysplasia is an autosomal dominant form of short-limbed 

dwarfism with abnormal growth plate maturation. It is due to constitutively activated 

PTHRl with adenylate cyclase activation in the absence of ligand binding. Disease 

features resemble primary hyperparathyroidism, with increased bone turnover, multiple 

fi-actures, low bone mineral density, hypercalcaemia and hypophosphataemia but with 

normal to undetectable levels of PTH and PTHrP (Parfitt et al. 1996).
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Several mutations of PTHRl resulting in Jansen’s metaphyseal chondrodysplasia have 

been described. These include mutations of:

- the second transmembrane domain (arginine substituted for histadine at 

residue 223) (Schipani et al. 1995)

- the sixth transmembrane domain (proline substituted for tryptophan at 

residue 410) (Schipani et al. 1996)

- the seventh transmembrane domain (isoleucine to arginine at residue 458) 

(Schipani et al. 1999).

Expression of the mutant receptor by transfected COS cells (at approximately 30% of 

normal maximal cell-surface expression) resulted in 5-8 fold increases in intracellular 

cAMP although IP3 levels were unchanged. (Schipani et al. 1999).

Of note, not all patients with Jansen’s disease have been found to have mutations of 

PTHRl. Such patients have been thought to have somatic mosaicism affecting primarily 

the growth plate cartilage (Schipani et al. 1996).

Transgenic mice carrying the mutant human PTHRl (His223 to Arg), with expression 

targeted to the growth plate, have a significant deceleration of chondrocyte differentiation 

and delayed bony mineralization (Schipani et al. 1997). This phenotype has also been 

noted in transgenic mice overexpressing the PTHrP gene (Weir et al. 1996).

Additionally, targeted expression of constitutively overactive PTHRl overcame the 

skeletal abnormalities observed in PTHrP (-/-) knockout mice (Schipani et al. 1997).
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Blomstrand’s chondrodysplasia is a lethal autosomal recessive disorder resulting in 

advanced bone maturation, accelerated chondrocyte differentiation, premature 

ossification and probable abnormal mineral ion homeostasis (Blomstrand et al. 1985). 

Several cases have been described in the literature. The first analysed case resulted fi*om 

deletion of 11 amino acids from the fifth transmembrane domain, due to a point mutation 

(G to A) causing a novel splice site. This resulted in abnormally spliced maternal 

mRNA; the paternal allele was silent for unknown reasons (Jobert et al. 1998). A second 

case resulted fi*om a consanguineous marriage in which the offspring had a homozygous 

missense mutation in the extracellular N-terminal domain in exon E3 resulting in a 

leucine substituted for proline at residue 132 (Karaplis et al. 1998). Although the mutant 

PTHRl was expressed in both these cases, there was abnormal PTH and PTHrP binding 

with reduced cAMP activation and (at least in the second case) undetectable PTH- 

induced IP3 changes. A further case, again resulting firom a consanguineous marriage, 

was due to a homozygous point mutation at position 1122 with loss of a guanine residue. 

This affected the second extracellular loop (EL-2) resulting in a shift in the reading frame 

and a truncated protein that completely diverged from the wild-type sequence after AA 

364; thus the mutant PTHRl lacked transmembrane regions 5,6,7, the interconnecting 

loops and the C-terminal tail. Although mutant mRNA was expressed, there was no 

response to PTH challenge with no cAMP increment (Karperien et al. 1999).

5.2.7 PTHR2

The PTH receptor type 2 (PTHR2) is 51% homologous with PTHRl and responds to 

PTH with activation of the cAMP second messenger system. It is unresponsive to PTHrP
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(Usdin et al. 1995). Unlike the ubiquitous expression of PTHRl, PTHR2 tissue 

expression is limited. PTHR2 mRNA is found predominantly in the brain, but also in the 

exocrine pancreas, testis, placenta, arterial and cardiac endothelium, vascular smooth 

muscles and the lungs (both bronchi and parenchyma) (Usdin et al. 1996). Its biological 

action is currently unknown. The locus for PTHR2 is also unknown.

5.3 Fine Mapping of the PTHRl-Containing Region

5.3.1 Introduction

Having demonstrated linkage o f BMD with two markers, further mapping is needed to 

determine the gene(s) responsible for the observed linkage. Before investigating the 

PTHRl locus as a suitable candidate gene between the two markers, it was important to 

ensure that the demonstrated linkage at d3sl289 and d3s3559 was not due to chance 

characteristics of these markers alone, and to establish boundaries for the area of linkage. 

Therefore a further set of markers from chromosome 3p was amplified, genotyped and 

analysed for linkage with BMD using the same families that were used in Chapter 4.

5.3.2 Methods

Fourteen additional microsatellite markers in the area of observed linkage were selected, 

using the Whitehead Institute STS database (http://www-genome.wi.mit.edu) to establish 

chromosomal position. The markers selected are presented in table 5.3.2, with genetic 

distance in Kosambi cM. Markers were amplified, separated and genotyped as described 

in Chapter 2, using the same families as the studies in Chapter 4.

193

http://www-genome.wi.mit.edu


Table 5.3.2: Markers used for further linkage mapping of PTHRl region

Marker name Position in cM from p-telomere

D3S1266 46.9

D3S1768 56.1

D3S1298 56.7

D3S3559 62.7

D3S3647 65.1

D3S2420 67.9

D3S3640 67.9

D3S2384 67.9

D3S1578 67.9

D3S1289 69.1

D3S1582 69.6

D3S1606 72.9

D3S3621 74.1

D3S1547 77.4

D3S1600 85.7

D3S3571 90.1

5.3.3 Statistical Analvsis

Allele numbers and frequencies were calculated from the observed data. BMD was 

expressed as z-scores (adjusted for age and gender). BMD was also adjusted for effects 

of body size by regressing BMD against BMI.
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Given the results of the comparison between SOLAR and MapMaker/Sibs (presented in 

Chapter 4), the data were analysed in nuclear families using MapMaker/Sibs (Kruglyak et 

al. 1995). As previously, the original 115 families were divided into 165 nuclear units 

containing at least one sibling pair for analysis, using the programme ‘GAS’ (A. Young, 

unpublished). Nonparametric two-point and multipoint linkage analyses were performed 

using both Haseman-Elston (traditional and expectation maximisation methods) and 

variance components analysis. Analyses were performed both with and without 

correction for the number of sibling pairs drawn from each family (as described in 

Chapter 4). Single results presented below are for the ‘all pairs’ setting both with and 

without correction. Where a range of LOD scores is presented, the lower value is for the 

‘all pairs’ setting with correction, and the higher value for no correction.

5.3.4 Results

Two point linkage results o f additional microsatellite markers on chromosome 3 and 

BMD at both LS and FN are presented in Table 5.3.4. Multipoint linkage results are 

shown graphically in Diagram 5.3.4. All results refer to variance components analysis as 

in all cases this was more significant than the corresponding Haseman-Elston analyses 

(both traditional and expectation maximisation methods).
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Table 5.3.4: Two Point LOD Scores for Additional Markers in PTHRl region

Micro satellite marker position is measured from the first marker used.

Correction is for number of sibling pairs drawn from each family, and is over

conservative.

Marker

number

Marker

name

Relative 

position 

(Kosambi cM)

Results at LS Results at FN

Without
correction

With
correction

Without
correction

With
correction

1 D3S1266 0 0 .000 0 .000 0 .0 0 0 0 .000

2 D3S1768 9.2 0 .000 0 .0 0 0 0.05615 0.1648

3 D3S1298 9.8 0.05494 0.1269 0.07420 0.1006

4 D3S3559 15.8 1.467 1.224 2.179 1.498

5 D3S3647 18.2 0 .000 0.01190 0.09708 0.1086

6 D3S2420 21 0 .000 0.002797 0.1853 0.1640

7 D3S3640 21 0 .000 0 .000 0 .000 0 .0 0 0

8 D3S2384 21 0.5290 0.5343 0.6294 0.6088

9 D3S1578 21 0.2348 0.2452 0.2645 0.2955

10 D3S1289 22.2 0.4107 0.2869 3.501 2.698

11 D3S1582 22.7 0.6578 0.5580 1.849 1.669

12 D3S1606 26 1.494 1.1848 0.1459 0.2435

13 D3S3621 27.2 0.4552 0.3285 0 .1 0 1 0 0.02523

14 D3S1547 30.5 1.246 0.8179 2.447 1.554

15 D3S1600 38.8 0.9081 0.5989 1.108 0.7084

16 D3S3571 43.2 0.2825 0.2526 0.2770 0.2500
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5.3.5 Discussion

Additional linkage mapping with further markers on chromosome 3 established that the 

PTHRl locus was within the boundaries of the observed area of linkage with BMD. 

However this does not establish the gene/s responsible for the observed linkage.

Linkage mapping is ineflScient in identifying genes determining complex traits and may 

be only able to isolate a disease-causing gene to an area as broad as 1 cM (depending 

upon the relative risk of disease conferred by that gene and the number of sibling pairs 

sampled) (Kruglyak et al. 1995). To localise a gene causing a five-fold increase in risk of 

a qualitative disease to an offspring even to a 1 cM chromosomal area requires on 

average 200 sibling pairs, whilst for a locus increasing risk two-fold 700 sibling pairs are 

needed (Kruglyak et al. 1995). The figures for quantitative traits are not known. Roberts 

and colleagues have suggested that for sample sizes o f the order used in this study, the 

confidence intervals for locating a gene relative to the point of maximal multipoint 

linkage extend tens of cM either side of the maximum LOD score (Roberts et al. 1999). 

Further, Terwilliger and colleagues have shown with simulation studies that true peaks 

tend to be longer than false peaks (Terwilliger et al. 1997). It is thus improbable that 

linkage mapping will ‘pinpoint’ a disease-causing gene. Therefore to further isolate such 

loci, other approaches are needed, which may include association studies in both families 

and the general population.

Linkage varied markedly between the markers examined, even for adjacent markers, and 

the multipoint curve did not contain a single sharp peak. This is not usual in linkage 

studies, as mentioned above. Observed linkage depends on many factors including the
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polymorphism information content of the markers chosen (discussed in Chapter 2), 

chance variation in allele sharing of the markers chosen within the families in the sample, 

and ancestral haplotypic effects.

So in summary, further linkage mapping confirmed the boundaries for the area of linkage 

observed on chromosome 3p. The area included the PTHRl locus. It was therefore 

reasonable to study this gene further in association studies, to assess if polymorphisms of 

PTHRl were responsible for the population variance of BMD.

5.4 Mutation Screening of the PTHRl Locus

5.4.1 Introduction

The candidate gene study presented in Chapter 4 and the above fine mapping study 

demonstrated linkage of BMD to the chromosomal area containing the PTHRl locus. 

Polymorphisms o f this gene and the promoter regions were therefore sought using 

DHPLC as an efiScient means of screening for mutations. Individual samples containing 

polymorphisms could then be sequenced to establish exact base changes and RFLP 

assays designed for efiScient genotyping in larger scale family- and population-based 

association studies.
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5.4.2 Methods

5.4.2.1 Family Members

Samples from 36 unrelated patients with low BMD at FN were selected from the family 

cohort. Mean femoral neck z-score was -2.45 (range -3.31 to -1.96). 23 samples were 

from women, 13 from men.

5.4.2.2 Mutation Screening of the PTHRl Locus using DHPLC

Heteroduplex detection with DHPLC was used to screen for the presence of 

polymorphisms in the 14 coding exons, intron-exon boundaries and the promoter regions 

of PTHRl. This method is discussed in detail in Chapter 2. Primer sequences for this 

work were obtained from previous publications (Schipani et al. 1995) (Bettoun et al.

1997) or were redesigned using the available published sequence 

(http://www.ncbi.nlm.nih.gov/Genbank). Primers were synthesized by Gibco/Life 

Technologies™, Paisley, UK. Primer sequences and PCR conditions are listed in 

Appendix 5.4.2.

5.4.2.3 Sequencing

Exons containing heteroduplexes were sequenced to identify the polymorphisms 

responsible. Sequencing was performed as described in Chapter 2. Sequencing data was 

compared with previously published sequence (Bettoun et al. 1998; Bettoun et al. 1997; 

Schipani et al. 1995) and with genomic sequence released by the Human Genome Project
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(http://genome.uscs.edu), using the programmes BLAST 2 (Tatusova et ai. 1999) and 

Sequence Navigator^^ (Perkin Elmer, Applied Biosystems, Warrington, UK).

5.4.3 Results

Heteroduplexes were detected in three exons. Heteroduplexes of the M6-7 fragment 

were detected in 22/36 samples (Diagram 5.4.3.1) and of the Tl fragment in 2/36 samples 

(Diagram 5.4.3.2). Heterozygosity was also demonstrated in the U3 fragment (second 

promoter region), detected in 4/36 samples (Diagram 5.4.3.3).

U4 amplification to the standard required for DHPLC was unsuccessful, despite multiple 

primer redesign (including nested primers), magnesium and annealing temperature 

titration experiments, de-aza dGTP nucleotide substitution, addition of DMSO and use of 

Q solution (Qiagen, Crawley, West Sussex).

Sequencing of the M6-7, Tl and U3 fragments demonstrated the polymorphic bases 

responsible for heteroduplexes. These are shown in Diagrams 5.4.3.1, 5.4.3.2 and 5.4.3.3 

respectively. Numbering of bases is from sequence obtained using the primers listed in 

Appendix 5.2. Numbering of amino acids is from SWISS-PROT database 

(http://www.expasy.ch/cgi-bin/niceprot.pl7Q03431 ).
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Diagram 5.4.3.1: Mutation detection of M6-7 exon

1. Mutation detection with DHPLC

Upper sample demonstrates presence of heteroduplexes 
Lower sample demonstrates single post-PCR species.

2. Sequencing of M6-7 exon: C/T polymorphism

 .cm
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Diagram 5.4 3.2: Mutation screening of exons Tl-2

1. Mutation detection with DHPLC

Upper sample demonstrates presence of heteroduplexes 
Lower sample demonstrates single post-PCR species.
n ,  T *  * *  -  i  '

■1 ,

:  V -  ■-------------------------"

/ «

2. Sequencing of Tl-2 exon: A/G polymorphism
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Diagram 5.4.3.3: Mutation screening of exon U3

1. Mutation detection with DHPLC

Upper picture demonstrates single post-PCR species 
Lower picture demonstrates presence of heteroduplexes
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2. Sequeneing of U3 exon: C/T polymorphism
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M6-7 Fragment

A C/T bp change at position 301 (in exon M7) was responsible for the observed 

heteroduplexes.

T1 Fragment

An A/G bp change at position 277 was found, resulting in a coding change in AA 546 

(Glu to Lys).

U3 Fragment

A novel polymorphism was found at position 89, with a C/T bp change. Further, 

sequence of this promoter region jfrom both heterozygote and homozygote samples 

showed several consistent differences with the previously published sequence (Bettoun et 

al. 1997). When compared with genomic sequence data published by the Human 

Genome Project (http://genome.ucsc.edu), the sequencing obtained in these experiments 

was a closer match than the previously published sequence (Diagram 5.4.3.4). Sequences 

were compared using the ‘BLAST2’ programme

(http://www.ncbi.nih.gov/blast.bl2seq/wblast2.cgi) with results shown in Appendix 5.4.3.
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Diagram 5.4.3.4:
Sequencing of U3 exon -  area of discrepancy compared 
with previously published sequence
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5.4.4 Discussion

DHPLC screening of the 14 coding exons and three of the promoter region exons for 

PTHRl in 36 subjects with low femoral neck BMD showed evidence of polymorphisms 

in three exons. Polymorphisms had previously been demonstrated in both M7 and T1 

exons (Hustmyer et al. 1993) (Schipani et al. 1995). The polymorphism demonstrated in 

U3 is a novel finding.

Although ablation of PTHRl clearly results in a severe and lethal phenotype in mice and 

humans, more subtle polymorphic differences in the coding regions could result in 

population variability in PTH and PTHrP binding and their ability to ehcit cAMP and IP3 

responses. Additionally, alterations of the promoter regions could result in abnormal 

splicing, stability or translation of PTHRl mRNA, and, given the tissue specificity of the 

different promoters, such alterations in PTHRl expression might be site-specific.

Apparently benign polymorphisms of PTHRl have been previously reported in the 

literature. In searching for the molecular basis of pseudohypoparathyroidism type lb, 

Schipani and colleagues found silent polymorphisms in exons G (1/17), M4 (1/17), and 

M7 (15/17) (Schipani et al. 1995). Base changes were found affecting two introns: one at 

the spUce-donor site of the intron between E2 and E3, and one between G and M l. The 

mutation of the E2/E3 splice-donor site did not affect total mRNA production fi*om C0S7 

cells. A missense mutation was found in the cytoplasmic tail of PTHRl in exon T l, at 

residue 546 in 3/17 patients and 1/60 healthy individuals, resulting in substitution o f Glu 

for Lys at AA 546. However, ligand binding affinity, PTĤ "̂ '* induced cAMP and 

phosphoinostitol turnover in cells transfected with the mutant receptor were
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indistinguishable from cells transfected with wild-type receptor (Schipani et al. 1995). 

(Of note, the molecular basis of pseudohypoparathyroidism type lb has subsequently 

been shown to arise from abnormalities of the paternally imprinted, renally expressed 

Gsa subunit encoded at chromosome 20ql3 (Jüppner et al. 1998)).

The M7 exon polymorphism detected in the osteoporotic population used in this study 

has also been observed in Caucasian, Black and Asian populations (Hustmyer et al.

1993). The frequency of heterozygotes in the osteoporotic group (22/36) appeared 

excessive. When assessed by Fisher’s exact test there was no significant deviation from 

Hardy-Weinberg equilibrium (p=0.17). Although this polymorphism does not result in 

an amino acid coding change, it may be in linkage disequilibrium with a polymorphism 

or mutation with functional effect. This mechanism is thought to underlie the association 

of intronic VDR polymorphisms and BMD (reviewed in Chapter 1).

The intracellular C-terminal tail o f PTHRl, along with intracellular loops of the 

transmembrane domains, is thought to interact with G protein a  subunits. In vitro 

fimctional studies of the missense mutation of exon Tl did not demonstrate any 

difference from wild-type receptor. However, in vivo studies of the effects o f carriage of 

this mutation upon PTHRl G-protein signalling have not been performed.

As discussed above, the second promoter region o f PTHRl is ubiquitously active in 

humans. In mice it is the only promoter region determining PTHRl transcription in bone 

and cartilage cells, where it is differentially regulated by l,25(OH)2D3 (Amizuka et al. 

1999). The polymorphism found in U3, coding for the second promoter region, may 

result in alteration of PTHRl transcription in bone and cartilage cells.
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Minagawa and colleagues recently analysed the P2 and P3 promoter sequences by 

progressive deletion to determine the critical minimum areas for promoter activity. In 

both P2 and P3, proximal sequences within lOObp of the transcriptional start site were 

found to contain the critical region for activity. Truncation of P2 between -91 and -12bp 

of the transcriptional start site abolished P2 activity. Regulation of P3 activity was more 

complicated. Progressive deletion of P3 from-842 to -147 led to a 2-fold loss of P3 

activity. Truncation of P3 from -115 to +42 also diminished P3 activity. However, 

deletion of an adenosine-rich region (ARR) from -147 to -115 bp increased P3 activity, 

suggesting that this region contains a repressor of activity. When the ARR was inserted 

upstream of P2, it resulted in diminished P2 activity also. In contrast, increased activity 

was observed when the ARR was inserted into a truncated thymidine kinase promoter. 

Apart from the ARR, P2 and P3 are very similar in sequence and organisation (Minagawa 

et al. 2 0 0 0 ).

The polymorphism demonstrated in U3 (i.e. P2) lies within the critical region for P2 

activation (-32bp from the transcriptional start site). Multiple transcriptional factors bind 

to this region with synergistic effects upon promoter region activation. The detected 

polymorphism may alter transcriptional activation o f the second promoter region, through 

effects upon transcriptional factor binding.

PTHRl expression in utero is under the control of the second promoter region, at least 

until midgestation (Bettoun et al. 1998). Alteration of P2 function during this critical 

period of skeletal development could have long ranging effects upon bone density.
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Mutation screening of the third promoter region by DHPLC was unsuccessful. Therefore, 

possible polymorphisms in this region would have been missed. Subsequent release of 

genomic sequence in September 2000 by the Human Genome Project 

(http://genome.ucsc.edu) revealed several discrepancies with previously published 

sequence (Bettoun et al. 1998) (see Appendix 5.4.4) illustrating how difficult this area is 

to sequence. The genomic sequence identified by the Human Genome Project may have 

helped design more effective primers for amplification of this highly (G+C) rich area to 

the standard required for DHPLC. This will be the subject of future work.

The PTHRl locus is a large gene, spanning 20 kB. This study only examined the 14 

coding exons, the intron/exon boundaries and two of the three 5’UTR promoter regions. 

Further intronic polymorphisms will have been missed. Indeed, several have been 

identified by SNP consortiums (http://snp.cshl.org/snp and 

http://www.ncbi.nlm.nih.gov/SNP).

In summary, several polymorphisms of PTHRl were detected in a small population of 

osteoporotic patients, including a novel polymorphism of the second promoter region. 

Further investigation of these polymorphisms in a larger population will determine if an 

association exists between any of these polymorphisms, population variance in PTHRl 

activity and BMD.
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Chapter 6 : Association Studies of the COLl A1 Spl Binding Site Polymorphism

6.1 Introduction

There is mounting evidence that alleles of COLlAl contribute to the population variance 

of BMD. Several cross-sectional (Grant et al. 1996; Keen et al. 1999; Langdahl et al. 

1998; Uitterlinden et al. 1998) and some longitudinal (Harris et al. 2000) studies of a 

polymorphism in an Spl binding site in the first intron of the COLlAl gene have 

demonstrated an association with low BMD in both men and women, in several 

Caucasian populations. Negative association studies have also been published (Gamero 

et al. 1998; Heegaard et al. 2000; Hustmyer et al. 1999; Liden et al. 1998; Sowers et al. 

1999). Some evidence of linkage of this area with BMD was demonstrated in the 

candidate gene study presented in Chapter 4, with maximal LOD scores of 1.7 at femoral 

neck and 0.5 at lumbar spine. Moderate linkage o f the COLlAl locus at the femoral 

neck, but not the lumbar spine, was also observed in an Australian twin and family study 

(Brown et al. 2001).

In this chapter, two different association studies of the COLlAl polymorphism in a 

British Caucasian population are presented. Firstly, a population study for association of 

the COLlAl polymorphism was performed on unrelated individuals drawn fi’om the 

family collection. Secondly, association was assessed by a within-family association 

method, using quantitative transmission disequilibrium statistics (QTDT).

TDT is less powerful in detecting association than are population case-control association 

studies (Morton et al. 1998). However the latter are sensitive to population stratification
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(see introduction). Population studies cannot assess for the presence of imprinting, and, 

given the genetic epidemiology results presented in Chapter 3, an a priori assumption of 

imprinting -  affecting at least some of the genes deterrnining BMD -  is reasonable.

6.2 A Population Association Studv of Alleles Of COLlAl v îth BMD

The aim of this study was to assess the role of polymorphisms at an Spl binding site of 

the COLlAl gene in determining BMD m a cohort of unrelated individuals.

6.2.1 Participants

155 unrelated individuals were identified fi*om the family collection (see Chapter 3).

Either probands or family founders were selected. BMD was measured by DXA at both 

lumbar spine and femoral neck.

6.2.2 Genotyping at the COLlAl Locus

RELP typing for the Spl binding site polymorphism of COLlAl was performed using 

previously pubhshed methods (Grant et al. 1996) but with an isoschizomer for the Ball 

restriction enzyme. PCR was performed with mismatched primers to introduce an RFLP 

site for the restriction enzyme on the polymorphism-carrying allele. The forward primer 

was 5’- CCCGACACCTAGTGGCCGT-3’ and the reverse primer was 5’- 

GGAGAGAAGGGAGGTCCATCCCTCATCCTGGCC-3 % containing mismatched 

bases to introduce the RFLP site. PCR was performed using 20ng of DNA template, with 

1 unit AmpliTaq Gold (Perkin Elmer, Boston, Massachusetts, USA), IxPCR Buffer
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(Perkin Elmer, Boston, Massachusetts), 25pM dNTPs, 1.5pmol/L MgCh, 0.5pmol/L 

each of forward and reverse primer in a final volume of 20pL. PCR conditions were 12 

minutes at 95° C to activate the AmpliTaq Gold (Applied Biosystems, Warrington, UK), 

followed by 35 cycles of [(30 seconds at 94°C), (30 seconds at 56°C), (30 seconds at 

72°C)], ending with 10 minutes at 72°C.

The PCR product size was 321 bp. The product was digested with MscI enzyme (New 

England Biolabs (UK) Ltd, Hitchin, Hertfordshire, UK) for 1 hour at 37°C. Samples 

were run out on a 2% Agarose gel. The rare polymorphism (‘s’ allele) is cleaved to give 

290 and 31 bp fi*agments, the uncut allele (‘S’) remains 321 bp.

6.2.3 Statistical Methods

BMD of three genotypic groups was compared by MANOVA using the statistical 

package SUPERANOVA Version 1.11 (Abacus Concepts, Berkeley, California).

Analysis of variance was used to compare the variances of the three genotype groups. 

Variance of BMD for each genotype group was compared with variance between each 

genotype group. The total variance of the three groups (the sum of the squared difference 

o f each measurement fi*om the mean, hence known as sum of squares) is split into the 

sum of squares due to differences between the three genotypes, and the sum of squares 

due to differences within each group (residual sum of squares). The amount of variation 

per degree of fireedom (d.f.) is calculated as the mean square. The mean squares are 

compared by the F test or variance ratio test. In the case of the null hypothesis (i.e. no 

association between BMD and genotype) then the variance within the groups would be 

approximately the same as the variance between groups and the F test would be
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approximately one (Kirkwood 1988). Where association does exist, F will be greater 

than one.

F = between groups MS/within groups MS, d.f. = d.f.between groups, d.f within groups

= (k-l), (N-k) 

where k = number of groups 

and N = total number o f observations.

When the groups to be compared differ only by one factor then one-way analysis of 

variance can be used. If  the groups may be subdivided by several different factors or if it 

is important to account for strong sources of variation, then either multiple analyses of 

variance or multiple regressions can be used, and are equivalent methods (Kirkwood 

1988).

Age, gender, height and weight were used as covariates in this multiple regression 

analysis. Additionally, the cohort was stratified into tertiles according to age and the 

analysis repeated. This analysis may be more powerful when the relationship between 

covariates is not strictly linear.

6.2.4 Results

155 people (73 males, 82 females) of mean age 60.7 years were used in this association 

analysis.

The mean BMD z-score of the population was -0.83 at lumbar spine and -0.81 at femoral 

neck.
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Genotype frequencies were calculated by direct counting. Expected genotype 

frequencies were calculated using the formula:

p^+2pq+q^=l

where p  ̂and q  ̂refer to the respective homozygous genotype frequencies and 2pq is the 

heterozygous genotype frequency. The expected and observed genotype frequencies 

were compared using the chi-squared statistic.

Mendel’s first law of genetics is that alleles at a locus segregate independently from one 

another. As a consequence, frequencies of genotypes and of alleles remain constant from 

one generation to the next, a property known as Hardy-Weinberg equilibrium. The 

conditions necessary to maintain the Hardy-Weinberg equilibrium are: random mating, 

no migration into or out of the population, no inbreeding, no selective survivorship 

among genotypes, large population sizes (to avoid sampling errors), and no mutation or 

other force that would alter allele frequencies (Khoury et al. 1993). The genotype 

frequencies of this population were 0.16 for the ‘s’ allele and 0.84 for the ‘S’ allele and 

were in Hardy-Weinberg equilibrium (p = 0.17 to 1). The allele frequencies in this 

cohort were not dissimilar to those previously published (Grant et al. 1996; Keen et al. 

1999; Langdahl et al. 1998; Uitterlinden et al. 1998).

No association was seen between genotype and adjusted BMD at either LS (p = 0.8) or 

FN (p = 0.8) in the population as a whole. Addition of height, weight and gender as 

covariates did not alter this result.
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However, when split into tertiles according to age, a significant association was seen 

between COLlAl genotype and BMD in the oldest tertile (age range 65.7 to 90.4 years) 

at LS (p=0.02) with a similar trend evident at FN (p=0.08). In contrast with previous 

studies, BMD was lowest in SS homozygotes, the genotype previously associated with 

higher BMD (see Diagrams 6.2.5.1 âtid 6.2.5.2).
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Diagram 6.2.5.1:
LS BMD in age tertiles according to C O L lA l genotype
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Diagram 6.2.5.2:
FN BMD in age tertiles according to COLlAl genotype
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6.2.5 Discussion

The results of this study conflict with several previous association studies o f COLlAl 

genotype and BMD. There are several potential explanations for this discrepancy.

The individuals used were selected from the large family cohort recruited through 

probands with an extreme BMD trait. The probands may have had low BMD due to 

either low peak bone mass or due to excessive bone loss. The mean age of the probands 

was 53.4 years in male probands and 51.4 years in female probands, and BMD was 

significantly low in the young relatives (presented in Chapter 3). This suggests that in 

this cohort the genetic effect upon BMD is largely due to an effect upon low peak bone 

mass.

Several previous studies have suggested that the COLlAl polymorphism might affect 

bone loss rather than peak bone mass. Uitterlinden and colleagues (Uitterlinden et al.

1998) showed association of the polymorphism with BMD at both femoral neck and 

lumbar spine, with evidence of a gene-dose effect of the ‘s’ allele in lowering BMD. 

However, the differences in BMD for each genotype became greater with age, with no 

significant difference between genotypes evident in younger women, consistent with the 

polymorphism determining rates of bone loss. A cross-sectional study supported a role 

for the polymorphism in determining rates of bone resorption, with increased levels of 

pyridinoline crosslinks (though not deoxypyridinoline) in women possessing the ‘s’ allele 

(Keen et al. 1999). In a longitudinal study, although no difference in BMD between 

COLlAl genotypes was observed at baseline, there was greater loss of total BMD in the 

‘ss’ genotype group in both men and women compared with the other two genotypes. A
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similar but non-significant trend was evident at femoral neck but not at lumbar spine 

(Harris et al. 2000). Thus the lack of an association in this study may be due to a cohort 

selected particularly for heritability of low peak bone mass.

Consistent with a lack of effect of COLlAl alleles upon peak bone mass, a small twin 

study in young women (mean age 33.5 years) did not show any evidence of linkage or 

association at this locus (Hustmyer et al. 1999). This may be due to type 2 error as the 

sample size in this study was very small. There was no association of the Spl 

polymorphism with forearm, lumbar spine or total body BMD in a study of children and 

adolescents (Berg et al. 2000). However, another group has found an association 

between density of cancellous bone at lumbar spine measured by QCT and carriage o f the 

‘s’ genotype in a group of prepubertal girls (Sainz et al. 1999).

Almost all previous studies of the COLlAl polymorphism and BMD have been in 

women only. The current study used both men and women. Despite adding gender in as 

a covariate, a gender-specific effect on BMD in women only may have been missed due 

to the small numbers in the female group.

Gene-environment interaction could also contribute to these results. Strong evidence of 

such interaction was reported in a longitudinal study of the effect of COLlAl upon bone 

loss and its interaction with calcium intake (p=0.0006) (Brown et al. 2001). The “at risk” 

‘s’ allele was associated with bone loss at the lumbar spine (but not at femoral neck) in 

elderly postmenopausal females only in those with low dietary calcium intake (p=0 .0 1 ). 

The opposite effect was present in those on a high dietary calcium intake, such that ‘s’ 

carriers gained bone relative to ‘SS’ homozygotes (p=0.003). Thus the effect of the

219



COLlAl genotype on BMD may be substantially affected by environmental influences 

such as calcium intake, which vary widely across different Caucasian groups (Brown et 

al. 2 0 0 1 ).

Alternatively, the results of this study could be explained by different linkage 

disequilibrium between the true osteoporosis-inducing polymorphism and alleles of the 

Spl site in different populations. Linkage disequilibrium between the Spl polymorphism 

site and a deletion in the upstream regulatory region of the COLlAl gene has been 

identified in a Spanish population (Nogues et al. 2000), although no association of the 

deletion with BMD was observed. A further polymorphism in the upstream regulatory 

region of the COLlAl gene identified in a Spanish population has been associated with 

BMD (Garcia-Giralt et al. 2000). However, McGuigan and colleagues (McGuigan et al. 

2000) have argued that it is allelic variation at the Spl site, rather than at other close by 

sites, that affects fi-acture susceptibility. Although there was substantial linkage 

disequilibrium between several polymorphims of COLlAl and its surrounding region, 

the Spl polymorphism was found to be the only independent predictor o f fi*acture 

(McGuigan et al. 2000). However, this does not necessarily mean that variability at the 

Spl site is responsible for determining fracture risk (although this may be the case); 

rather that linkage disequilibrium between the true disease-causing polymorphism and the 

Spl site is greater than with any of the other polymorphic regions studied. Of note, the 

Spl polymorphism site is not found in all populations (Han et al. 1999). The observed 

low BMD in the ‘SS’ genotype evident in the eldest tertile could occur due to linkage 

disequilibrium with a gene determining bone loss and the ‘S’ allele in the Oxford 

population.
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Not all cross-sectional and longitudinal studies of the polymorphism have supported 

association with BMD, nor with markers of bone formation or resorption (Gamero et al. 

1998; Heegaard et al. 2000; Hustmyer et al. 1999; Liden et al. 1998). However, as was 

the case for many association studies of VDR, studies with inadequate sample size will 

lack sufficient power to reject the null hypothesis. The power of the current study was 

also low.

The power of a study is the probability of not making a type 2 error, i.e. the probability of 

being able to correctly reject the null hypothesis. Power can be expressed as a percentage 

as 100 -  b%, where b = probability o f type 2 error. Power is affected by sample size so 

that larger samples result in greater power (as the sampling distribution curves narrow, 

there wîU be less overlap between the curves for cases and controls, making it more likely 

that a difference between the two will be detected). Additionally the magnitude of an 

effect (in this case, the effect of carriage of the mutant allele upon BMD) will affect 

power. The greater the effect of the polymorphism upon BMD, the greater the power of 

the study to detect the difference between genotypes. Assessing the size of an effect may 

be very difficult a priori, as if it were known then the study would usually be 

unnecessary. Thus power is often assessed either retrospectively or for estimates of the 

expected effect.

A negative association study may have power to exclude a polymorphism from having a 

major effect upon a phenotype but may have insufficient power to exclude a more subtle 

effect. The lack of association in this study may result fi*om the low power of the study.
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In summary, no association of alleles of COLlAl and BMD was observed in this cohort 

as a whole. Although an effect was seen in the oldest tertile, it was with the opposite 

allele to that previously reported. This may have arisen due to differing genetic effects 

upon peak bone mass and bone loss, in a population primarily selected for genetic effects 

upon peak bone mass. Gene-environment interactions may result in different associations 

being seen with different populations. Alternatively linkage disequilibrium between the 

Spl polymorphism and the ‘real’ disease-causing gene may be different in different 

populations. However, the power o f this study to exclude an association was low.

6.3 A Within-Familv Association Studv of the COLlAl Polvmorphism and BMD. 

using Quantitative Transmission Disequilibrium Statistics

Association of BMD with the COLlAl Spl polymorphism was sought using quantitative 

TDT in a cohort of families selected through probands with osteoporosis. A discussion 

of within-family association methods including transmission disequilibrium statistics is 

presented in Chapter 1.

6.3.1 Participants

Probands and families were recruited as described in Chapter 3.

6.3.2 Genotvping

Genotyping for the COLlAl was performed as described in section 6.1.3.
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6.2.4 Statistical Methods

The families were analysed as general pedigrees (i.e. the pedigrees were not broken into 

nuclear families). Identity-by-descent (IBD) parameters were obtained by using the 

programme SimlBD (Sobel et al. 1996). SimlBD uses descent vector pathway analysis 

to determine IBD status, using multiple simulations to determine the most likely pathway.

The IBD data was then analysed with the pedigree, genotype and phenotype information 

in the QTDT programme (Abecasis et al. 2000). QTDT measures association using an 

orthogonal general model of association, in which total association is split into between 

and within family components. Additionally variance components modelling is used to 

partition total variance into its components (including variance from shared and non

shared environment, and genetic variance, due to additive and dominance effects at a 

locus with a residual polygenic component). For association and linkage, the null model 

(incorporating the mean trait value, important covariates, and between-family variance) is 

compared with the frill model (incorporating within-family variance in addition to the 

other factors), and statistical significance is assessed by the log-likelihood test. The 

power to detect association is greater than the power to assess linkage. Linkage and 

association can also be assessed in isolation. Parent-of-origin effects can be included in 

the model. The programme also allows for departure from multivariate normality, 

through the use of Monte Carlo permutation tests to determine statistical significance.

Overall association of the Spl polymorphism with BMD at both LS and FN was 

assessed. Additionally, maternal and paternal transmissions were compared for a parent-
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of-origin effect upon the trait (i.e, imprinting). Evidence for association independent of 

linkage, and of linkage independent of association, was also assessed.

The cohort was assessed for population stratification.

The polymorphism information content (PIC) of the COLlAl Spl polymorphism was 

calculated according to the formula given in Section 2.3.1, using the programme 

Downfi'eq (Lathrop et al. 1984),

6.2.5 Results

Overall, neither linkage nor association was seen at either femoral neck or lumbar spine 

(p>0.5 for both), assessable using 480 individuals. However, a parent-of-origin effect 

was evident at FN (p=0.019) but not at LS. This was assessable using 72 probands. 

Additional analysis of association only supported a parent-of-origin effect (using 480 

individuals). The parent-of-origin effect was entirely due to maternal transmissions, with 

a maternal effect on allele transmission upon BMD at FN (p=0.0078). For this 

calculation 33 transmissions were used, as this was only assessable firom heterozygous 

mothers. Paternal transmissions did not have a significant effect at either site, with 39 

transmissions assessable.

Use of the Monte Carlo permutations test still demonstrated a significant parent-of-origin 

effect upon femoral neck BMD (p=0.008), due entirely to maternal effect (p=0.012).
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There was no evidence of linkage independent of association, nor or association 

independent of linkage.

The effect of maternal transmission o f the ‘S’ allele resulted in an increase in BMD of 

0.126 SD, whereas maternal transmission o f the ‘s’ allele resulted in a decrease of BMD, 

also of 0.126 SD.

The PIC of this polymorphism was low (0.237), making it a poor marker for linkage 

(Camp 1997; Risch 1990).

No population stratification was evident. Thus it was reasonable to use this cohort for 

unrelated population association studies.

6.3.5 Discussion

Consistent with the negative association demonstrated in the population association study 

of BMD and COLlAl genotypes, overall no linkage or association was evident at either 

femoral neck or lumbar spine using transmission disequilibrium statistics.

This was unexpected, given the previous demonstration of linkage of this locus with 

BMD at femoral neck (L0D=1.7) (presented in Chapter 4). TDT is a measure of both 

linkage and linkage disequilibrium, but in the absence of linkage disequilibrium the test 

will fail to detect linkage as well. Neither linkage nor overall association were evident 

when each was examined independently.
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The lack of evidence of linkage may be due to the very low informativity of this marker. 

Not only is it biallehc, one allele is rare, resulting in many uninformative meioses. As 

discussed in Section 2.3.1, the power of linkage is directly related to the informativity of 

the markers used.

A significant parent-of-origin effect was evident at femoral neck, due entirely to a 

maternal effect. This is consistent with the genetic epidemiology results presented in 

Chapter 3, showing gender- and site-specificity o f inheritance of BMD.

Parent-of-origin effects imply imprinting. Imprinting is an epigenetic phenomenon 

specific to mammals. Parental origin is ‘marked’ upon chromosomes independently of 

the DNA sequence, resulting m expression of imprinted genes according to their parental 

origin. Although two alleles are nominally inherited fi*om the parents, only one is 

transcriptionally active, with the other silenced by méthylation. For example, IGF-II 

expression in mice occurs solely fi*om the paternally derived allele whereas IGF-II 

receptor gene expression occurs solely fi"om the maternal allele. In humans, imprinting is 

exemplified by the differing genetic defects resulting fi*om loss of chromosome 15ql 1- 

13. Loss o f the paternal allele results in Prader-Willi syndrome 

(http://www3.ncbi.nlm.nih.gOv/htbin-post/Omim/dispmim7176270), with disease 

manifest by diminished foetal activity, obesity, type 2 diabetes mellitus, mild mental 

retardation, hypotonia, hypogonadotrophic hypogonadism, short stature, and small hands 

and feet. Loss of the maternal allele results in Angelman syndrome with severe 

intellectual and motor retardation, hypotonia, lack of speech, inappropriate laughter, and
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tongue thrusting (previously descriptively referred to as the ‘happy puppet’ syndrome) 

(http://www3.ncbi.nlm.nih.gOv/htbin-post/Omim/dispniim7105830).

Imprinting occurs during formation of germ cells. During early development of the 

blastocyst, a wave of déméthylation sweeps over the entire genome, followed by a wave 

of remethylation. Imprinted genes, however, are resistant to these waves of 

déméthylation and remethylation, retaining the pattern set according to their parent of 

origin. Primordial germ cells, however, do not undergo remethylation. During germ cell 

development and gametogenesis, de novo méthylation occurs, setting a new, sex-specific 

méthylation pattern. This de novo pattern will be carried in the haploid genome of the 

male and female gametes, imprinting the parental origin of the chromosomes. Whether 

méthylation is the primary cause of imprinting or whether it is secondary to sex-specific 

chromatin modifications is uncertain.

The spectrum of action of imprinted genes is still being determined, although many 

imprinted genes are involved in foetal growth. The rationale for imprinting is not known, 

however a theory of ‘parent-conflict’ proposes paternally imprinted genes favour growth 

of the foetus and placenta at the expense o f the mother, whilst maternal imprinted genes 

reduce growth rates of the foetus (reviewed by (Jaenisch 1997), with further discussion 

at http://www.geneimprint.com). In utero effects upon bone development and growth 

may effect subsequent peak bone mass. However, as discussed above, the evidence to 

date is that the effect of this polymorphism of COLlAl may be greatest for bone loss.

Evidence of site-specific effects in osteoporosis was initially suggested by Seeman and 

colleagues, who demonstrated that premenopausal daughters of osteoporotic mothers
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with lumbar spine fracture have lower BMD at the spine than at other sites (Seeman et al. 

1989). Further, daughters of mothers with femoral neck fractures only had low BMD at 

the femur (Seeman et al. 1994). Site-specificity of inheritance of fracture risk also 

supports this concept (Fox et al. 1998). The genetic epidemiology on this cohort of 

families presented in Chapter 3 also suggested site-specific effects, with evidence of 

dominance variance at the FN but not LS, and gender-specific effects upon BMD at 

different sites. Demonstration of a maternal effect upon BMD at the femoral neck is 

entirely consistent with these epidemiological results.

The maternal transmission of the ‘s’ or ‘S’ allele significantly affected femoral neck 

BMD to the extent of decreasing or increasing BMD by approximately 0.126 SD, 

accounting for 15% of overall variance of BMD at FN. Thus this polymorphism only 

contributes a small amount to the overall heritability o f BMD at FN.

Variance components analysis may not be robust if there is non-normal distribution of 

phenotype, as was the case with proband recruitment for the family collection. However, 

use of the Monte Carlo permutation test still showed a positive result for parent-of-origin 

effects due to maternal transmissions. This indicates that the positive results obtained 

were not due to the ascertainment bias inherent in our population (with its violation of 

multivariate normality).

In summary, a maternal affect upon the association of COLlAl upon BMD was 

demonstrated at the femoral neck but not at the lumbar spine. This may be due to 

imprinting at the COLlAl locus, contributing to site- and gender-specific effects upon 

the heritability of BMD.
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Chapter 7: Association Studies of PTHRl

7.1 Introduction

The linkage study presented in Chapter 4 identified linkage of PTHRl with BMD. 

However, linkage studies do not identify association of a particular allele with the trait in 

question. Within each family, linkage disequilibrium of the marker allele and the trait- 

determining locus allele is needed for linkage to be detected -  however, co-segregation of 

these particular alleles may be unique to each family. Further, linkage studies are poor at 

localising the allelic variants underlying the observed linkage.

In this chapter association studies o f the PTHRl locus are presented, using the M7 

polymorphism previously identified in this population (Chapter 5) and by others 

(Hustmyer et al. 1993; Schipani et al. 1994). The use of SNPs in mapping studies is 

based upon the likelihood of linkage disequilibrium between such polymorphisms and the 

disease-causing allele. The M7 polymorphism does not result in a coding change or 

splice site, and therefore is unlikely to be the disease-causing mutation itself. However, it 

may be in linkage disequilibrium with the polymorphism(s) of the PTHRl locus 

contributing to the variance of BMD.

A restriction fi-agment length polymorphism (RFLP) assay was designed for thi^ chapter. 

RFLP assays provide a rapid and inexpensive way of genotyping. Use o f restriction 

enzymes also corroborates the accuracy o f polymorphism detection by sequencing, as 

their action is critically dependent upon the underlying base sequence.
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Three separate association studies are presented in this study. Firstly, a small case- 

control study was performed using unrelated individuals selected from the family 

collection for high and low bone density (see Chapter 3 for details of family recruitment). 

Secondly, the whole family collection was used for TDT analysis. Finally, a large 

population based association study was undertaken at Erasmus University, Rotterdam, 

The Netherlands, using participants from The Rotterdam Study.

7.2 An Association Studv of a Polvmorphism of PTHRl in Individuals with Extremes

of BMD

7.2.1 Methods

7.2.1.1 Population studied

72 unrelated individuals were selected from the family collection described in Chapter 3. 

36 samples from individuals with low BMD were previously used in PTHRl 

polymorphism screening (see Chapter 5). 36 unrelated individuals with the highest BMD 

in the cohort were chosen for study. Equal numbers were chosen to give greatest power 

per unit of genotype.

Mean femoral neck z-score in the low BMD group was -2.45 (range -3.31 to -1.96). 23 

samples were from women, 13 from men.

Mean femoral neck z-score in the high BMD group was 1.23 (range 0.55 to 2.74). 16 

samples were from women, 20  were from men.
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7.2.1.2 Laboratory Methods

The programme GCG (Genetics Computer Group Inc. (also known as Wisconsin 

Package), Oxford Molecular group Inc., http://www.gcg.com) was used to determine 

possible restriction enzymes for the M7 polymorphism found in Chapter 5 (see Diagram 

7.2.1).

Diagram 7.2.1 : Restriction Enzyme Cutting Sites for Exons M6-7 Polvmorphism

(Bases 241 -  340 shown here as position of polymorphism is bp 301)

MboII 
Hpyl78III 

TaqI 
Hinfl I 
Tfil I 

BsmAII I 
I I I
TGATTCGAGACACCCCTCTTCACAGGGATTTTTTGTCGCAATCATATACTGTTTCTGCAA

ACTAAGCTCTGTGGGGAGAAGTGTCCCTAAAAAACAGCGTTAGTATATGACAAAGACGTT

Mnll HaelV Mnll
Earl I Hin4I Taal CviRI|

TspRI 
Bsbl I

BsmAI Taal | I
BsrDI MwolI B s a X I I I I

I I I  II I I
TGGCGAGGTAAGCAGGAGACAGTGTTGGCATAGGGCAGGG

ACCGCTCCATTCGTCCTCTGTCACAACCGTATCCCGTCCC

The restriction enzyme Bsr DI (New England Biolabs (UK) Ltd, Hitchin, Hertfordshire, 

UK) was chosen for this assay. This enzyme (underlined in Diagram 7.2.1) cleaves the 

mutant‘T’ allele (see Diagram 7.2.2).
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Diagram 7.2.2: Base sequence recognised by Bsr DI

Points o f cleavage are marked by triangles.

Polymorphic bases are underlined.

5’ -G C A A IG N N ^ '3 ’

3’ -CGTTACaN N - 5 ’

The original M6-7 product was 340 bp long, which resulted in cleaved products of 

302/304 and 36/38 bp. New primers were designed to shift the position of the 

polymorphism more centrally within the PCR product, in order to improve recognition of 

different genotypes. The new product was 256 bp, which when cleaved resulted in 

products of 162/164 and 92/94 bp.

PCR mix for M6-7 was 20ng DNA, 0 .4 jliL of 5mM primers (forward and reverse), IpL 

PCR buffer, 1.5mM MgCb, 2 units DNA Polymerase (either Bioline Taq (Bioline UK 

Ltd, London, UK) or Expand^^ High Fidelity PCR enzyme (Boehringer Mannheim, 

Lewes, UK), 0.25pL of 2mM dNTPs and SDW to lOpL final volume. The forward 

primer was GGCAAGTCCAGATGCACTATG. The reverse primer was 

CAGGGTGGAAGAATGGAG. The PCR protocol consisted of 94°C for 2 minutes, 

followed by 32 cycles of ([94°C for 1 minute], [55°C for 1 minute], [72°C for 45 

seconds]) using MJ thermal cyclers (MJ Research, Watertown, MA, USA). PCR was 

finished with 10 minutes at 72°C. Post PCR, lOpL of SDW was added to the product to 

dilute it 1 in 2 .
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The reaction mix for RFLP consisted of SpL of diluted PCR product, IpL enzyme (= 2 

units/reaction), 0.1 pL BSA,. IpL enzyme buffer with SDW to lOpL volume. This was 

incubated for a minimum of an hour at 60°C before running out on a 3% agarose gel. Of 

note, this reaction was still complete using as little as 0.25pL of enzyme (= 0.5 units).

7.2.1.3 Statistical Methods

Allele frequencies were calculated from the observed genotype frequencies obtained 

using the programme Genotype Relative Risk (Lathrop 1983). Genotypes were 

compared using a 3x2 contingency table and the ^  statistic. Fisher’s Exact test was used 

to compare allele frequencies and carriage of the mutant allele compared with 

noncarriage, using the LINKAGE statistical package (Lathrop et al. 1984). Hardy- 

Wienberg equilibrium was assessed using the Genotype Relative Risk programme 

(Lathrop 1983).

7.2.2 Results

A total of 70 genotypes were unequivocally identified. Genotype frequencies and their 

comparison between high and low BMD groups are presented in Table 7.2.2.1. Allele 

frequencies and comparisons are presented in Table 1.2.22. Both high and low BMD 

genotypes were in Hardy-Weinberg equilibrium.
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Table 7.2.2.1: Genotype Frequencies for M7 Polvmorphism in Extreme BMD Groups

Genotype Low BMD 

Number (frequency)

High BMD 

Number (frequency)

Wild-type homozygotes 10 (0.28) 19 (0.54)

Heterozygotes 22 (0.63) 14 (0.41)

Mutant homozygotes 3 (0.09) 2 (0.06)

Total 35 35

= 4.25, p = 0.12.

Table 7.2.2.2: Alleles for M7 Polvmorphism in Extreme BMD Groups

Allele Low BMD 

Number (frequency)

High BMD 

Number (frequency)

Wild-type 42 (0.6) 52 (0.74)

Mutant 28 (0.4) 18 (0.26)

Total 70 70

Comparison of allele numbers using 2x2 Contingency t a b l e = 2.84, p = 0.18.

A non-significant increase m carriage o f the mutant allele in the low BMD group was 

observed, although the main contribution to this finding was an overrepresentation of 

heterozygotes. Therefore, the genotypes were grouped and carriage of the mutant allele 

(homozygous mutants and heterozygous genotypes) was compared with non-carriage of 

the mutant allele (homozygous wild-type) with observed low BMD genotypes compared 

with ‘control’ high BMD genotypes calculated according to Hardy-Weinberg 

expectations.
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Table 7.2.2.S: Carriage of M7 mutant allele in individuals with low BMD

Numbers 

(Observed Frequency)

Numbers 

(Expected Frequency)

Carriage of mutant allele 25 (0.71) 15.75 (0.45)

Non-carriage of mutant allele 10 (0.29) 19.25 (0.55)

Using Fisher’s exact test, p = 0.034 (two-sided).

7.3 A Within-Familv Association Studv of M7 Polvmorphism in the PTHRl gene and 

BMD. using Quantitative Transmission Disequilibrium Statistics

7.3.1 Methods

7.3.1.1 Population Studied

Probands and families were recruited as described in Chapter 3.

7.3.1.2 Laboratory Work

Genotyping of the M7 polymorphism was performed as described above.

7.3.1.3 Statistical Methods

Quantitative transmission disequilibrium analysis of the M7 polymorphism was 

performed as described in Section 6.2.3. BMD was analysed at both LS and FN. Height, 

weight, and age were used as covariates. Overall association of the M7 polymorphism 

with BMD at both LS and FN was assessed. Additional analyses included assessment of
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parent-of-origin effect upon the trait (i.e. imprinting). Evidence for association 

independent of linkage and o f linkage independent of association was also assessed.

The polymorphism information content (PIC) of the M7 polymorphism was calculated 

according to the formula given in Section 2.3.1, using the programme Downfreq (Lathrop 

et al. 1984).

7.3.2 Results

A significant association of the M7 polymorphism was seen with BMD at LS (p = 0.04) 

but not at FN. Transmission of the mutant allele resulted in a decrease of 0.1 SD, 

whereas transmission of the wild-type allele resulted in an increase of 0.1 SD. This 

accounted for approximately 15% of the total variance of the trait. Use of the Monte 

Carlo permutation tests supported the significance o f this result.

There were insufficient informative transmissions for assessment of parent-of-origin 

effects. No significant linkage was observed with this marker.

The PIC of the marker was 0.2.

7.4 A Population-Based Association Studv of the M7 Polvmorphism in the PTHRl 

gene

This work was carried out in Dr Andre Uitterlinden’s laboratory. Department of Internal 

Medicine, Erasmus University, Rotterdam, The Netherlands.
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7.4.1 Methods

7.4.1.2 Population Studied

The population recruited for the Rotterdam Study has been previously described 

(Uitterlinden et al. 1998). In brief it is a population based cohort study o f men and 

women aged 55 and older, recruited from the Ommoord district of Rotterdam, The 

Netherlands. BMD data and DNA samples were available from a total o f 1814 

individuals, all of which were used in this study.

7.4.1.3 Laboratory Methods

PCR was reoptimised to adjust for different concentrations and purity of the DNA. The 

new reaction mix consisted of IpL of DNA stock solution (approximately lOOng of DNA 

per reaction), ImM MgCL, 0.125pL of2mM dNTPs, 0.4pL of 5mM primers, IpL PCR 

buffer and 0.1 pL Bio line Taq (Bio line UK Ltd, London, UK). Further laboratory 

methods were as described above.

7.4.1.4 Statistical Methods

BMD at LS and FN was compared between the three genotype groups using analysis of 

covariance (described in Section 6 .1.4). Multiple linear regression was used to adjust 

BMD for relevent clinical covariates including BMI, gender and age. The cohort was 

stratified into tertiles according to age, in order to assess for any changing effects of 

PTHRl genotype on BMD and fracture risk with age.
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7.4.2 Results

BMD and genotyping data was available for a total of 1788 people (912 men, 876 

women). Genotype frequencies were in Hardy-Weinberg equilibrium for the total group, 

for each gender group and within each age tertile. The age tertiles are shown in Table 

7.4.2.1.

Table 7.4.2.1 Age Tertiles for Participants in the Rotterdam Studv (in years)

Tertile Males Females

1 55.18-63.46 55.01-63.28

2 63.47-71.48 63.29-71.5

3 71.49-79.92 71.51-79.98

A significant association of lower BMD (in g/cm^ (unadjusted for age or gender) and as 

z-scores) with the ‘C’ polymorphism was noted at LS in women in the oldest age tertile 

(Table 7.4.2.5 and 7.4.2.9). A non-significant trend for this association was also 

observed in men overall, at LS (p = 0.132 with ANOVA and 0.07 after multiple 

regression) and FN (although with much smaller differences in BMD between genotypes, 

p = 0.56) (Table 7.4.2.6). This trend was evident in the second and third age tertiles for 

men (Tables 7.4.2.4-5 and 7.4.2.8-9). Of note, a non-significant trend for the opposite 

association was noted with women in the second age tertile (p = 0.16 with ANOVA and 

0.06 after multiple regression) (Table 7.4.2.4 and 7.4.2.8).

Inclusion of BMI as a covariate increased the significance of association of the ‘C’ allele 

with low BMD (in g/cm^) at LS in women in the oldest tertile (p = 0.008) (Table 

7.4.2.13). The non-significant trend for the same association in men in the second and

238



third age tertiles at both FN and LS remained (Tables 7.4.2.12-13). Non-significant 

trends were also seen for an effect of this allele upon BMD at LS in women in the second 

age tertile (Table 7.4.2.12) and in men at FN in the first age tertile (Table 7.4.2.11), 

though in the opposite direction.
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7.5 Discussion

The two association studies from the Oxford cohort demonstrate that carriage of the M7 

polymorphism is associated with lower BMD. Although the results in the Dutch 

population were non-significant, the same trend was observed.

The first study compared femoral neck BMD between cases (low BMD) and 

‘hypemormals’ (high BMD), as the use of ‘hypemormals’ as controls in a case-control 

association study is a more efficient design than is the use of ‘normal’ controls (Morton 

et al. 1998). Carriage of the mutant allele was greater in the low BMD group.

The M7 polymorphism was associated with BMD at LS in the QTDT analysis, but was 

not significantly associated with BMD at femoral neck. Linkage of PTHRl had been 

observed with BMD at both LS and FN.

The proportion of total BMD variance explained by the M7 polymorphism was 

approximately 15%. This is equivalent to the effect on BMD of the COLlAl Spl 

polymorphism (presented in Section 6.2.5).

A significant association of the M7 polymorphism with BMD was also demonstrated in 

the Rotterdam cohort. Carriage of the ‘C’ allele was associated with low BMD at LS in 

women in the most elderly tertile, with strengthening of association when BMI was 

included as a covariate. The same -  although non-significant -  trend was evident in men. 

This association of polymorphisms of M7 with BMD was in the same direction as that 

demonstrated for the Oxford cohort. It is also interesting to note that the effect was 

mainly seen at LS in the Rotterdam cohort, as it was for the Oxford cohort also.
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The Rotterdam cohort is quite elderly in comparison to the Oxford families, with mean 

age of 70 years. Thus genetic effects upon bone loss rather than peak bone mass may 

contribute more to the overall heritability of BMD in this cohort. Indeed this has been 

previously argued with respect to this population. Association of polymorphisms of 

COLlAl with BMD was only evident in the most elderly tertile of this population 

(Uitterlinden et al. 1998). The restriction of a significant association to the most elderly 

tertile of women suggests that this polymorphism has at most a small effect upon bone 

loss induced by menopause. The variability introduced by individual rates of menopausal 

bone loss may have masked the effects of this polymorphism upon BMD in the younger 

female tertiles. The underlying effect of PTHRl polymorphism upon peak BMD, and/or 

upon bone loss associated with ageing, would only be evident after menopausal bone loss 

had ceased. The non-significant trend for the same association in men overall is 

consistent with an effect of this polymorphism upon peak bone mass, and/or bone loss 

associated with ageing.

Gene-environment interaction was analysed using the covariates of height, weight, BMI, 

age and gender. Other important environmental variâtes, such as calcium intake and 

estrogen exposure, have not been examined, and may have a significant effect upon the 

results obtained.

Although the M7 polymorphism is non-coding and probably has no fimctional effect, this 

result suggests that it is in linkage disequilibrium with a polymorphism within PTHRl 

determining BMD. Whilst the extent of linkage disequilibrium in the general population 

is arguable (see Section 1.5.2), linkage disequilibrium with the M7 polymorphism would
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not extend beyond the region of the PTHRl gene, as the PTHRl gene is quite large 

(20kB in coding region alone), significantly greater than even generous estimates of 

genome-average linkage disequilibrium. Further, the observed association is in an area 

already identified by linkage and in a candidate gene selected a priori in the region. Thus 

this association is unlikely to be a false positive result. Determination of the exact 

polymorphism of PTHRl responsible for the variance explained at this locus is the 

subject of further work.

As discussed in Section 4.1, very few disease-causing genes have been identified in any 

complex genetic disease, including osteoporosis. This work has demonstrated both 

linkage and association of PTHRl with BMD. Genetic variation at the PTHRl locus 

contributes to the total heritability of BMD and to the development of osteoporosis.
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Chapter 8: Future Directions

This thesis has demonstrated linkage and association of PTHRl with BMD. Several 

other genes influencing BMD were also identified by linkage (COLlAl, VDR, ER-a, 

EOF, IL-1, IL-4, IL-6, RANKL) and association (COLlAl), with possible imprinting of 

the COLlAl locus. A sibling recurrence risk ratio for low BMD has been established at 

LS and FN. Genetic epidemiological studies have suggested both site- and gender- 

specific effects upon BMD.

The exact polymorphisms of PTHRl underlying population variability in BMD remain 

unidentified. Although association was detected with the M7 exon polymorphism and 

low BMD, this polymorphism is non-coding. Thus it is likely that the M7 exon 

polymorphism is in linkage disequilibrium with a polymorphism affecting PTHRl 

function and, in turn, BMD. A key issue therefore is the determination o f the 

polymorphism truly associated with low BMD. The novel polymorphism identified in 

U3 is also o f great interest, given its location within a critical region of the promoter 

region of PTHRl. The U4 exon remains to be assessed for polymorphic variation, with 

the more accurate sequence data generated from the Human Genome Project aiding this 

work.

One possible way of screening PTHRl exons and promoter regions would be to use 

single nucleotide polymorphisms (SNP) identified in and around this gene (such data is 

freely available at http://snp.cshl.org/snp and http://www.ncbi.nlm.nih.gov/SNP). Of 

note, there is a relative paucity of non-conservative SNPs in coding regions, compared 

with either conservative or synonymous polymorphic variations (Cargill et al. 1999;
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Halushka et al. 1999) as well as relative deficiency of allelic diversity in 5’ untranslated 

regions (Halushka et al. 1999). This presumably has arisen because of selective pressure 

against the survival of such polymorphisms, as they would be expected to have 

deleterious functional effects upon the gene. Similarly, the heterozygosity of both non

conservative and conservative coding region SNPs is lower than for SNPs overall (Cargill 

et al. 1999; Halushka et al. 1999). This may affect the ability to detect association of 

PTHRl with BMD using SNP mapping, in both within-family and population association 

studies.

Once a disease-associated polymorphism is identified, functional studies will be needed. 

Osteoblast-like or renal-derived cell lines could be transfected with different iso forms of 

PTHRl to study the effect of receptor polymorphism upon response to PTH and PTHrP. 

PTH and/or PTHrP infusions in humans of different genotype may demonstrate differing 

effects upon cAMP, calcium and phosphate handling by calcitropic tissues such as kidney 

and bone.

Other candidate genes identified in this linkage study also need further mapping work to 

refine the areas of linkage and identify the disease-associated variants.

The linkage work undertaken in this study looked only at a limited number of candidate 

genes. Linkage results from candidate genes studies may have lower false-positive rates 

than those from a genome-wide scan. Candidate genes are chosen because of a priori 

evidence of their involvement in the trait under study, and thus the prior probability that a 

positive linkage result is a true positive is greater than for random microsatellite markers
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spread across the genome. Nonetheless, a genome-wide scan might identify novel areas 

affecting BMD.

To date, linkage studies o f whole genome scans utilising microsatellite markers have had 

limited success in definitive gene mapping in complex diseases such as osteoporosis. 

Risch recently compared the power of linkage studies (using the affected sib pair method) 

with association studies (using a population case-control approach) to detect disease- 

causing loci (Risch 2000). For loci with high genotype relative risk (>4) and 

intermediate allele frequencies (allele frequencies of 0.05-0.5) linkage studies should 

have sufficient power to locate disease loci, without requiring a prohibitive large sample. 

However, for lesser genotype relative risks (<2), linkage would fail to detect disease loci 

whereas a case-control association study would still have sufficient power to detect such 

genes (Risch 2000). BMD is a polygenic trait (as discussed in Chapter 1), and the effects 

upon BMD from each individual locus may be small. Therefore an alternative approach 

to whole genome linkage mapping may be appropriate. As has been mentioned, this 

could include SNP association studies, either within-family or at a population level. The 

extent of linkage disequilibrium in the population will critically determine the feasibility 

of such association studies. Differences in population linkage disequilibrium can be 

exploited to differentiate causal association from linkage disequilibrium. A population 

with high linkage disequilibrium could be used for initial screening to detect SNP 

associations; a population with low linkage disequilibrium could then be screened to 

assess such associations to pinpoint the exact causal polymorphism (Risch 2000).
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A further question for future linkage work in osteoporosis is the type of family to collect. 

For this project, a number o f families with complex pedigrees were recruited, especially 

as this proved an efiScient means o f recruitment. However, the complex pedigrees were 

extremely difficult to analyse as a whole unit, and therefore were broken into nuclear 

families, with a theoretical loss of power to detect linkage. As discussed in Chapter 4, it 

may not be valid to make comparisons o f bone phenotype across generations. It may be 

appropriate to limit linkage analysis to an affected sib-pair method (such as is utilised in 

MapMaker/Sibs), using parents only to establish IBD status. In addition to simplifying 

analysis, other advantages of this approach are that it would require less phenotyping, a 

major expense in genetic studies of BMD, and that sib-pairs similar in age will have more 

homogeneous genetic and environmental influences upon their BMD. Ideally, families 

containing two siblings concordant for very low BMD, or two siblings highly discordant 

in BMD, are the most powerful for linkage analysis. Specific powerful statistics have 

been developed for linkage analysis using such dual ascertainment approaches (e.g. the 

ED AC statistic (Gu et al. 1997)). Alternatively, single ascertainment schemes (such as 

that employed in this project) can be analysed using standard ascertainment-corrected 

variance components methods with only minor loss of power, but considerably greater 

ease of recruitment, compared with dual ascertainment schemes.

The suggestion that there may be site- and gender-specific effects upon BMD raises 

further issues with respect to recruitment and protocol of genetic studies in BMD. If the 

main site of interest in osteoporotic studies is femoral neck, then the most powerful study 

design may be to include only probands recruited through femoral neck, with a similar 

plan for studies of osteoporosis at lumbar spine. Further, subdividing analysis according
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to gender (for example, using either male probands and their male relatives or female 

probands and their female relatives) may show evidence of gender-specific effects at 

either site. This study had insufficient power for these analyses.

This study used BMD at femoral neck as its measure of osteoporosis at the hip. A fiiture 

project will be to analyse the data using BMD at total hip, as this measurement has been 

shown to be more precise than femoral neck measurement. This study also used the 

normative database provided by Hologic manufacturers to define z-scores at both LS and 

FN. A normative locally-obtained database would be the most appropriate, however in 

its absence the NHANES normative database may provide an acceptible alternative for 

defining z-scores at the hip for fiiture work. Measurement of BMD at LS using lateral 

scanning would also result in more precise measurement of BMD due to loss of 

confounding effects from artefact such as vascular calcification, fracture, and 

osteophytes. Use of CT scanning to gain true volumetric BMD of trabecular bone 

involves unacceptable levels o f radiation exposure for a voluntary study. All these 

measures may improve power of both linkage and association studies, by increasing the 

precision of the phenotype under consideration.

The suggestion that ultrasound measurements may reflect important qualities of bone not 

considered in DXA scanning means that future genetic studies in osteoporosis may also 

have to consider this different modality of bone density measurement.

Information upon important environmental influences upon BMD was collected from 

participants in this study. This was mainly used to exclude BMD z-scores from people 

with secondary osteoporosis. However, the residual information needs to be analysed
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and considered for inclusion as covariâtes in analysing genetic effects upon BMD. In 

particular, menopausal status must be considered. Including menopausal status as a 

covariate may reduce the ‘noise’ effects upon maternal BMD from rapid bone loss in 

comparisons with BMD of offspring, in whom BMD is mainly determined by peak bone 

mass.

Osteoporosis remains a major public health problem, with substantial morbidity and 

mortality. Therapeutic options to improve BMD after a fracture has occured are limited 

in efficacy. It is my hope that the work presented in this thesis will improve 

understanding o f the pathology of this debilitating illness, and that this may lead to better 

prevention and treatment of osteoporosis.
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Appendix 4.3:

Two point and Multipoint Results for Microsatellite Markers from Chapter 4 Candidate 

Gene Linkage Study

Maximum LCD score 

LS

Maximum LOD score 

FN

Candidate Marker cM from p 

telomere
Two-
point

Multipoint Two-
point

Multipoint

AR dxsl275 93.5 0.0 0.0 0.0 0.7

AR dxs986 95.9 0.0 0.0 0.5 0.6

CSR d3sl309 157 0.0 0.0 0.0 0.0

CSR d3sl593 165 0.0 0.0 0.6 0.1

CSR d3sl279 173 0.2 0.0 0.1 0.1

CSR d3sl268 180 0.0 0.0 0.0 0.0

COLlAl dl7s791 65 0.0 0.0 0.3 0.2

COLlAl dl7sl604 82.9 0.0 0.0 0.6 0.5

COLlAl dl7s807 87.6 0.5 0.3 1.7 0.6

COLlAl dl7s789 90.8 0.0 0.3 0.1 0.5

C0L1A2/CR dl2sl702 78.9 0.1 0.4 0.9 0.6

C0L1A2/CR d7s2431 109 0.1 0.6 0.4 0.3

C0L1A2/CR colla2 intragenic 0.6 0.7 0.2 0.3

C0L2A1WDR dl2s368 67.3 0.5 0.6 0.2 0.4

C0L2A1/VDR dl2sl586 70.6 0.7 0.7 1.0 0.4

C0L2A1WDR dl2s83 76.5 1.7 1.1 0.0 0.5

CSF-1 dls209 95.9 0.0 0.0 0.2 0.1

CSF-1 dlsl98 103 0.0 0.0 0.5 0.1

CSF-1 dls216 107 0.1 0.0 0.0 0.1

CSF-1 dls207 118 0.1 0.1 0.2 0.7
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Maximum LOD score 

LS

Maximum LOD score 

FN

Candidate Marker cM from p 

telomere
Two-
point

Multipoint Two-
point

Multipoint

EOF d4sl572 106 0.0 0.1 0.0 0.1

EOF d4s406 116 0.0 0.0 0.0 0.3

EOF d4sl93 117 0.0 0.0 0.2 0.5

EOF d4s430 125 0.4 0.3 1.3 1.4

EOF d4s429 131 0.2 0.3 1.8 1.6

EOF d4s247 * 0.0 0.3 0.0 1.4

ER-a d6sl654 151 0.1 0.1 0.0 0.1

ER-a d6s441 155 0.2 0.8 0.0 0.4

ER-a d6sl577 158 0.5 1.4 0.1 0.4

ER-a ER intragenic

fibrillin mtsl intragenic 0.1 0.0 1.0 0.3

fibriUin mts4 intragenic 0.0 0.0 0.2 0.3

IGF-1 dl2s78 113 0.0 0.0 0.5 0.6

IGF-1 dl2s79 126 0.0 0.0 0.1 1.2

IGF-1 dl2s86 135 0.0 0.0 0.0 1.4

IGF-1 IGF-1 intragenic 0.6 0.6 0.8 0.8

IL-1 d2sl60 127 0.7 0.4 0.5 1.4

IL-1 d2s2265 134 0.7 0.0 0.3 0.1

IL-1 IL-1 intragenic 0.3 0.0 0.3 0.0

IL-11 dl9s412 69.9 0.5 0.3 0.1 0.0

IL-11 dl9s866 81.1 0.1 0.3 0.0 0.0

IL-4 d5s2057 135 0.0 0.0 1.1 0.3

IL-4 d5s393 141 0.0 0.1 0.1 0.8

IL-4 d5s2017 145 0.3 0.2 1.2 0.9

IL-4 d5sl78 * 0.0 0.2 0.1 1.1
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Maximum LOD score 

LS

Maximum LOD score 

FN

Candidate Marker cM from p 

telomere
Two-
point

Multipoint Two-
point

Multipoint

IL-6 d7s503 29.6 1.2 1.1 0.6 0.3

IL-6 d7s493 35 0.3 0.9 0.2 0.5

IL-6 d7s673 38.8 0.3 0.7 0.4 0.6

osteocalcin dls2815 194 0.0 0.0 0.0 0.0

osteocalcin dls238 207 0.0 0.0 0.0 0.0

osteopontin d4s392 77.9 0.0 0.1 0.0 0.0

osteopontin d4s3042 81.9 0.0 0.0 0.0 0.0

osteopontin d4s395 90.8 0.3 0.6 0.2 0.5

PTH dlls902 24.7 0.1 0.3 0.4 0.5

PTH dllsl755 30.3 0.7 0.6 0.6 0.4

PTH dlls915 34.3 0.5 0.3 0.0 0.1

PTHRl d3s3559 62.7 1.3 0.8 1.5 1.8

PTHRl d3sl289 69.1 0.3 0.4 2.7 2.0

PTHrP dl2s364 31.7 0.0 0.0 0.0 0.0

PTHrP dl2sl699 37.3 0.0 0.0 0.1 0.0

TGF-P dl9s422 62.5 0.0 0.1 0.0 0.0

TNF d6s276 44.9 0.2 0.2 0.3 0.2

TNF d6sl583 47.6 0.7 0.2 0.8 0.3

TNF TNF intragenic 0.1 0.3 0.0 0.2

*no formal definitive location in Kosambi cM. However both markers (d5sl78 and 

d4sl78) were mapped using MapMaker/Sibs to enable multipoint analysis. 

Abbreviations used above not used elsewhere:

CSR Calcium sensing receptor 

CR Calcitonin receptor

AR Androgen receptor
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Appendix 5.4.2:

Primers and Optimum Reaction Conditions for Exons and Promoter regions of PTHRl 

All reactions were carried out using oil-free PCR with sealed lids on the reaction plates.

Exon Size

(bp)

[Mg2+]

(mmoI/L)

Tm Addition Forward primer Reverse prim er

S 199 1.5 58 Deaza-

dGTP

gccagcctgacgcagctctgca actgcgtgccttagacctactc

El 180 1.5 58 ccggaaagtcctgcctgtggtc tgacctcatacccagaccctct

E2 220 2.5 58 acagctgacagccatcattacc gtggatccaagcccatgccagc

E3 180 2 55 ggtatcccctaccctgtctgtc ctccttgtaatccccacccctt

G 201 2.5 55 tcgagacctccctgccggccc gaatttatctggtcaggttgg

Ml 205 0.5 61 agggctctgactgtgtctcc accatgtcccgccgcctctc

M2 276 0.5 61 cttcctgtccacccaccgc gcagaggggtactcacgta

M3 267 2 58 acttcccggaggcaggccctgc tctccctgtcacccacgggtcc

M4 191 1.5 58 gaatgaccttgtggacagcagc ctcacatgcttcctggaagaaa

E12 204 1.5 58 cctgtgtcctcaacagcta cttggtggccagcagccca

M5 236 1.5 58 actagggtgcagcctccagacg aggatcattcatgggccactg

M6-7 340 1.5 55 ggaagtggcgttggccctgacc ccctgccctatgccaacactgt

T1 340 2.5 58 agacacacctgactgccgcacc agccgttgaggaacccatcgtc

T2 260 3 58 gccctggagaccctcgagacca tgtttttcctcttggccccagg

U1 324 3 55 tgggcatctgaaacaccggca agctgtgctcaggcccctag

U2 343 1.5 58 cttgggcttgacagatttgc atgcctggagcgcagggcttta

U3 362 0.5 59 DMSO cctctcggcctctccacact gactccggccacttcccctc

New

M6-7 256 1.5 55 ggcaagtccagatgcactatg cagggtggaagaatggag
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Appendix 5.4.3: Promoter Region U3 Sequence: Comparisons

1. Comparison of U3 Sequence Obtained by E.Duncan and Sequence Released by

the Human Genome Project

Sequence 1 from Human Genome Project (http://genome.ucsc.edu).

Sequence 2 from E.Duncan.

Comparison of sequences made using 'Blast! programme 

(http://www.ncbi.nih.gov/blast.bl2seq/wblast2.cgi).

Sequence 1 HGP Length 451 (1 ..451)

Sequence 2 ED Length 369 (1 .. 369)

2

Score = 426 bits (268), Expect = e-117 
Identities = 368/369 (99%)
Strand = Pius / Plus

3 L
3

Query: 1 cctctcggcctctooacactcccgcgtcggcggctnnnnnnnnnnnnnnnnnnnnnnnnn 60 

Sbjct: 1 cctctcggcctctccacactcccgcgtcggcggGtgcggagggggtgggggcgggagagg 60
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Query: 61 nnnnnnnnnnnnnnnnnnnnnnaagaggcgcccggccggggagaaggggagcggcagacg 120 

Sbjct: 61 cccgggagggcgcgggggagggaagaggygcccggccggggagaaggggagcggcagacg 120

Query: 121 ccgaggcgagggannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnc 180 

I
Sbjct: 121 ccgaggcgagggatgcgcgcggcgggcggtggctccgagcggcggccgggcggggggcgc 180

Query; 181 tggaggccaggccggccagcggggggtatcccgagagctccatgaagtccccccggggcc 240 

Sbjct: 181 tggaggccaggccggccagcggggggtatcccgagagctccatgaagtccccccggggcc 240

Query: 241 gcggacggggcgctggcttggggaggctgtcnnnnnnnccccgacatccatggcaaggcg 300 

Sbjct: 241 gcggacggggcgctggcttggggaggctgtcgggggggccccgacatccatggcaaggcg 300

Query: 301 ggggccgcggcggcgcgctcggagtaagtcggggctggggacccgcgccgaggggaagtg 360 

Sbjct: 301 ggggccgcggcggcgcgctcggagtaagtcggggctggggacccgcgccgaggggaagtg 360

Query: 361 gccggagtc 369 

Sbjct: 361 gccggagtc 369
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2. Comparison of previously published U3 Sequence and Sequence Released bv the

Human Genome Project

Sequence 1 from Human Genome Project (http://genome.ucsc.edu).

Sequence 2 from previously published data (Bettoun et al. 1998).

Comparison of sequences made using ‘Blast2 programme 

(http://www.ncbi.nih.gov/blast.bl2seq/wblast2.cgi).

Sequence 1 HGP Length 451 (1 ..451)

Sequence 2 Bettoun Length 362 (1 ..362)

C = ]I C U Z D L

2

Score = 329 bits (207), Expect = 6e-88 
Identities = 354/371 (95%), Gaps = 11/371 (2%) 
Strand = Plus / Plus

30C
xziy.:.

Query: 1 cctctcggcctctccacactcccgcgtcggcggctnnnnnnnnnnnnnnnnnnnnnnnnn 60 

Sbjct: 1 cctctcggcctctccacactcccgcgtcggcggctgcggagggggtgggggcgggagagg 60
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Query: 61 nnnnnnnnnnnnnnnnnnnnnn-aagaggcgcc-cggccggggagaaggggagcggcaga 118 

Sbjct: 61 cccgggagggcgccgggggagggaagaggcgcccggcccggggagaaggggagcggcaga 120

Query: 119 cgccgaggcgagggannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 178 

Sbjct: 121 cgccgaggcgagggatgcgcgcggcgggcggtggctccgagcggcggccgggcggggggc 180

Query: 179 nctggaggccaggccggccagcggggggtatcccgagagctccatgaagtccccccgggg 238 

Sbjct: 181 gctggaggccaggccggccagcggggggtatcccgagagctccatgaagtccccccgggg 240

Query: 239 ccgcggacggggcgctggcttggggaggctgtcnnnnnnnccccgacatccatggcaagg 298 

Sbjct: 241 ccgcggacggggcgctggcttggggaggctgtcggggggg-cccgacatccatggcaagg 299

Query: 299 cgggggccgcggcggcgcgctcggagtaagtcggggctggggacccgcgccgaggggaag 358 

Sbjct: 300 cgggggc gggcgctcggagtaagtcggggctggggacccgc-ccgaggggaag 351

Query: 359 tggccggagtc 369
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Appendix 5.4.4:

Comparison of Previously Published U4 Sequence with Sequence Released bv the 

Human Genome Project

Sequence 1 from previously published data (Bettoun et al. 1998).

Sequence 2 from the Human Genome Project (http://genome.ucsc.edu). 

Comparison of sequences made using ‘Blast2’ programme 

(http://www.ncbi.nih.gov/blast.bl2seq/wblast2.cgi).

Sequence 1 Bettoun Length 618(1 ..618)

Sequence 2 HGP Length 690 (1 .. 690)

-bdczjioc
- T T T jn: »

Score =611 bits (385), Expect = e-172 
Identities = 545/590 (92%), Gaps = 19/590 (3%) 
Strand = Plus / Plus

X

Query: 48 gcggcgcgggannnnnnnnnnnnnnnnnnnnnnnnnnnnnnncc-cggcatatggatgtg 106

Sbjct: 52 gcggcgcgggaggggggcggggggcgggccgggggaggcgggcccggccatatggatgtg 111
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Query: 107 atttcttcgctccgaggcagacgggcccgtccgcagcg gcttggcgcccgccgn 160

Sbjct: 112 atttcttcgctccgaggcagacgggccgctccgcagcgctcggcgcccgcccgccgcccg 171

Query: 161 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnttgctcgt 220 

Sbjct: 172 cccggcctccggctctccctccctccctcctgtccctccctccctccctcctttgcgctg 231

Query: 221 cgtcgtcgctcgct cgccctcagcgcat-ggccccgcgccgggcccc-gggc 270

Sbjct: 232 ctcgctcgctcgctcgctcgctcgccctcagcgcatgggccccgcgccgggccccggggc 291

Query: 271 ctcgggccgccgggacgccggggtcccataggccggggcgtgggcggggcggccagcctg 330 

Sbjct: 292 ctcgggccgccgggacgccggggtcccataggccggggcgtgggcggggcggccagcctg 351

Query: 331 acgcagctctgcaccccctaccaccaccagggccggcggcggcggctgccccgagggacg 390 

Sbjct: 352 acgcagctctgcaccccctaccaccaccagggccggcggcggcggctgccccgagggacg 411

Query: 391 cggccctaggcggtggcgatggggaccgcccggatcgcacccggcctggcgctcctgctc 450 

Sbjct: 412 cggccctaggcggtggcgatggggaccgcccggatcgcacccggcctggcgctcctgctc 471

Query: 451 tgctgccccgtgctcagctc-cgtacgcgctggtgagtcccccgccgccaacactccgg 508 

Sbjct: 472 tgctgccccgtgctcagctccgcgtacgcgctggtgagtcccccgccgccaacactccgg 531
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Query: 509 gacaggctgcgggcttaccctagggtccgcgggataggtctaaggcacgcagtcttgagt 568 

Sbjct: 532 gacaggctgcgggcttaccctagggtccgcgggataggtctaaggcacgcagtcttgagt 591

Query: 569 tcccccagtagttcgaactttgggtgagagtcccctctgatccaggatcc 618 

Sbjct: 592 tcccccagtagttcgaactttgggtgagagtcccctctgatccaggatcc 641
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