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A b s t r a c t

ABSTRACT

Hereditary spastic paraplegia (HSP) is a neurodegenerative disease 

characterized by the spasticity of the lower limbs due to degeneration of the 

corticospinal tracts. The gene responsible for the most frequent form of autosomal 

dominant HSP encodes spastin, an ATPase belonging to the AAA family.

Studies with specific antibodies indicate that spastin has both a nuclear and 

cytosolic localization. In human fibroblasts spastin localizes to the PML bodies, but 

is also present on the centrosome. In HeLa and Cos? cells, during mitosis, spastin is 

enriched in regions rich in microtubules, like the spindle poles and the midbody. 

Furthermore, in an immortalized motoneuronal cell line, spastin is detected in the 

growth cone of the axons. By overexpressing wild-type or ATPase-defective spastin, 

we show that spastin interacts dynamically with microtubules. This association is 

mediated by the N-terminal region of the protein and regulated through its ATPase 

activity. The overexpression of wild-type spastin promotes microtubule disassembly; 

leading to the hypothesis that spastin may play a role in microtubule dynamics.

We identify Spastin nuclear and centrosomal interactors, reflecting the 

complex subcellular localization of the protein. We demonstrate that Spastin interacts 

with Daxx, a transcriptional regulator, and that the overexpression of Daxx causes an 

increase of spastin transcript, suggesting that Spastin may play a role in regulation of 

transcription. We show that spastin is sumoylated, although the function of this 

modification is unclear. Moreover, Spastin interacts with a centrosomal protein.



_______________________________________________________________________________ A b s t r a c t

Nal4, and we postulate that this protein may represent the anchor for spastin to bind 

centrosomes and microtubules.

All these data suggest that spastin has a complex role in the cell and may 

contribute in different ways to the integrity of corticospinal axons. Spastin 

localization to the neurites and its dynamic association with microtubules let us 

hypothesise that a defect in axonal transport may underlie HSP.
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C h a p t e r  1 : In t r o d u c t io n

CHAPTER 1: INTRODUCTION

1.1 Neurons

Neurons are the main signalling cells of the nervous system. To transmit 

signals, neurons stop dividing early in development and then generate long cellular 

processes. Every neuron consists of a cell body, containing the nucleus, with a 

number of long processes radiating outward from it. A typical vertebrate neuron 

extends one axon and many dendrites. Axons are long processes that are specialised 

in transmitting information, while dendrites are shorter processes specialised to 

receive and process information. The neuron grows in size and moves during 

development, sends out branches, transport substances and organelles within these 

branches, and make synapses with other cells. Therefore, there are demanding 

requirements for maintaining a complicated structure that has to be extremely 

flexible. These requirements are absolved by the neuronal cytoskeleton, which 

contain three main filamentous structures: microtubules, neurofilaments and actin 

microfilaments.

1.1.1 Microtubules

Microtubules play a key role in developing and maintaining the neuron’s 

processes. Microtubules are highly dynamic structures, made of a- and p- tubulin 

dimers, and arranged head to tail into protofilaments that assemble to form hollow 

tubes (usually constituted of 13 protofilaments) (Downing and Nogales, 1998). The 

microtubule array within cells is capable of rapid rearrangements that depend on the
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C h a p t e r  1: In t r o d u c t io n

ability to exchange subunits between the soluble and polymer pools (Soltys and 

Borisy, 1985). They switch stochastically between growing and shrinking phases and 

this dynamic behaviour is essential for fundamental processes such as cell division 

and differentiation. Thus, microtubules are polar structures with a rapidly growing 

end {plus end) and an opposite slow-growing end {minus end) prone to lose subunits 

if not stabilised. The ability to regulate the equilibrium between polymerization and 

depolymerization of the microtubule plus end is known as “dynamic instability”. The 

energy required for this process comes from GTP hydrolysis (Heald and Nogales, 

2002). GTP binds to P-tubulin subunit of the heterodimeric tubulin, and is 

hydrolysed to GDP when a tubulin molecule adds to the end of a microtubule. When 

a microtubule grows rapidly, tubulin molecules add to a polymer end faster than GTP 

hydrolysis occurs, this results in the formation of a GTP cap on one end of the 

polymer. Since tubulin molecules carrying GTP have higher affinity for other tubulin 

molecules than tubulin-GDP, the GTP cap will favour microtubule growing. When 

the GTP is hydrolysed to GDP, for example because of a decrease in the microtubule 

polymerisation rate, the polymer will start to shrink, leading to a progressive 

disruption of the microtubule and eventually its disassembly to form “free” tubulin 

dimers.

The primary site of microtubules nucléation in animal cells is the centrosome 

(or microtubule organizing center). The new microtubules grow out from the 

centrosome and elongate towards the cell periphery with their minus end anchored at 

the centrosome and their plus end in the cytoplasm. In living cells where the 

microtubules minus end are anchored at the centrosome, microtubules are thought to 

exchange subunits by polymerisation and depolymerization at their plus end, via the

17
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dynamic instability mechanism. But additional pathways exist by which microtubule 

dynamics can be affected: i.e. “treadmilling” and “severing.” Treadmilling involves 

the addition of subunits to the plus end of a MT and loss of subunits from the 

opposite (minus) end, always coupled to GTP hydrolysis. Treadmilling seems to be 

more common for actin filaments, but it has been observed also for microtubules and 

it allows free microtubules to move towards the cell periphery (Keating et al., 1997).

Alternatively, microtubules can be broken or severed along their length by 

microtubules severing activities. For example, Katanin is a protein involved in 

microtubule severing (McNally and Vale, 1993). This process seems to be very 

important for the production of non-centrosomal microtubules and for spindle pole 

formation (McNally et al., 2000; Odde et al., 1999). Cells can modify the dynamic 

instability of their microtubules for different purpose, during the M phase of the cell 

cycle for example, microtubules turnover is very high, so that chromosomes can 

capture growing microtubules and a mitotic spindle can rapidly be formed. On the 

contrary, when a cell is differentiating, microtubules need to be stabilised. The ability 

to stabilise microtubules in a particular configuration provides an important 

mechanism for a cell to organise its cytoplasm.

A neuron is a postmitotic cell and, unlike an interphase cell, does not display 

the typical radial array of microtubules emanating from the centrosome. Few 

microtubules are attached to the centrosome while most of them are free in the 

cytoplasm, where they tend to form bundles that frinnel from the cell body into axons 

and dendrites. Microtubules are important as structural support of the neuron, but 

they also act as railways for the transport of various materials along the length of 

neuronal processes. It is believed that the neuronal microtubules array is established
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by mechanisms similar to those that an interphase cell utilizes for organizing the 

mitotic spindle. Neurons have a soluble pool of y-tubulin and a pool associated to the 

centrosome, but no y-tubulin signal was ever detected in axons or dendrites (Baas 

and Joshi, 1992). Since y-tubulin is required for the nucléation of microtubules in all 

the cell types, it has been proposed that also in neurons microtubules are nucleated at 

the centrosome, released and then actively transported to the developing axons and 

dendrites (Baas, 1999). To support this hypothesis, experiments with fimctional 

blocking antibody to katanin, a microtubule severing AAA protein which is also 

involved in release of microtubules from centrosomes in mitotic cells, inhibits the 

release of microtubules from the centrosome and severely compromises process 

outgrowth (Ahmad et al., 1999b). Microtubules in axons are uniformly oriented with 

their plus ends distal to the cell body, while in dendrites they have both orientations 

(Baas, 1998).

1.1.2 Neurofilaments

Neurofilaments constitute the set of intermediate filaments of a neuron. Three 

main kind of neurofilaments have been identified, corresponding to polypeptides 

with molecular mass of 70 kDa (NFM-70), 160kDa (NFM-160) and 200 kDa (NFM- 

200). Neurofilaments are composed of fibers that twist around each other to produce 

coils of increasing thickness. The thinnest unit is a heterodimer composed of two x- 

helical chains oriented in parallel and intertwined in a coiled-coil rod. Unlike 

microtubules, neurofilaments are very stable in their basic structure; nonetheless they 

are involved in the continual remodelling of nerve processes. They are 

phosphorylated at the C-terminal portion and they represent the primary cytoskeletal
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component of a nerve cell. Neurofilaments are present in both axons and dendrites, 

but they are much more numerous and more phosphorylated in axons. 

Phosphorylation regulates NF-NF interactions and also interactions between 

neurofilaments and other cytoskeletal protein, so to provide the cytoskeletal lattice 

that supports the mature axon (Grant et al., 1995; Pant et al., 2000). Abnormal 

accumulation and disorganization of neurofilaments is a hallmark of a collection of 

motor neuron diseases including familial and sporadic amyotrophic lateral sclerosis 

(ALS), infantile spinal muscular atrophy, and hereditary sensory motor neuropathy 

(Xu et al., 1993).

1.1.3 Actin microfilaments

Actin microfilaments are polar polymers of globular actin monomers wound 

into a double stranded helix. Unlike microtubules and neurofilaments, actin filaments 

are short. They are concentrated at the cell’s periphery, where they interact with 

numerous actin-binding proteins. The resulting matrix plays a very important role in 

the dynamic function of the cell’s periphery, such as the motility of the growth cones 

during development. Actin microfilaments also undergo cycles of polymerization 

and depolymerization. In addition to their role as cytoskeleton constituents, 

microtubules and actin filaments are important for intracellular transport; in fact they 

act as tracks along which other organelles and proteins are driven by molecular 

motors.
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1.2 Axonal Transport: an example of cellular trafficking

Transport vesicles allow communication within the cell between the various 

membrane-bound organelles and the plasma membrane. The plasma membrane is a 

dynamic structure that separates the cytoplasm from the extracellular environment by 

regulating the entry and exit of small and large molecules. Uptake of nutrients and all 

communications among cells and between cells and their environment occurs 

through this interface. Essential small molecules, such as amino acids, sugars and 

ions, can traverse the plasma membrane through the action of integral membrane 

protein pumps or channels. Macromolecules must be carried into the cell in 

membrane-bound vesicles derived by the invagination of the plasma membrane in a 

process termed endocytosis. The macromolecules, once internalised, are delivered to 

lysosomes where they are digested and the resulting metabolites are then delivered 

from lysosomes to the cytosol.

The internal membrane system provides also a mean to deliver newly 

synthesised proteins and carbohydrates to the exterior. These molecules travelling 

along the biosynthetic-secretory pathway (figure 1) pass through various 

compartments, where they can be modified by the cell, stored until needed and then 

delivered to a specific cell-surface domain by a process called “exocytosis”. 

Generally, a protein is synthesised on the ribosome and then is transported through 

the biosynthetic-secretory pathway till the final destination is reached. Proteins can 

move from one compartment to another in three different ways: by gated transport, 

by transmembrane transport and by vesicular transport. The signals that drive the 

transport of a protein across the cell and eventually its localisation in a specific 

compartment are contained in the primary structure of the protein itself. The protein
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trafficking between the cytosol and the nucleus is an example of gated transport; it 

occurs through the nuclear pore complexes, which function as a selective gate that 

can actively transport specific macromolecules. In transmembrane transport, 

membrane bound protein translocators directly transport specific proteins across a 

membrane. Proteins must be unfolded in order to pass through the membrane. When 

proteins are instead transferred from a compartment to another inside the cell, as 

from the ER to the Golgi apparatus, this transport occurs through vesicle (vesicular 

transport). All the compartments of this biosynthetic-secretory pathway are 

constantly in communication with each other by means, at least in part, of numerous 

transport vesicles which bud off from one compartment membrane and fuse to 

another. Cellular trafficking is a well organised process; the biosynthetic-secretory 

pathway leads out from the endoplasmic reticulum (ER) toward the Golgi apparatus 

and cell surface, while the endocytic pathway leads from the plasma membrane 

towards endosomes and lysosomes. Each transport vesicle that buds from a specific 

compartment must take up only specific proteins and fuse only with the appropriate 

target membrane.

1.2.1 Endocytosis

Endocytosis occurs by multiple mechanisms that can be grouped into two 

broad categories, “phagocytosis” (the uptake of large particles) and “pinocytosis” 

(the uptake of fluid and solutes) (Conner and Schmid, 2003). These diverse 

endocytic pathways control all aspects of intercellular communication and of entry 

into the cell. Furthermore, they play a crucial role in development, immune response.
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neurotransmission, intercellular communication, signal transduction, and cellular and 

organismal homeostasis (Conner and Schmid, 2003).

Phagocytosis is restricted to specialized mammalian cells (macrophages, 

monocytes and neutrophils) that function to clear large pathogens such as bacteria or 

yeast, or large debris such as the remnants of dead cells (Aderem and Underhill,

1999); for example it is crucial for clearing apoptotic cells (Fadok and Chimini, 

2001). It is an active and highly regulated process involving specific cell-surface 

receptors and signalling cascades mediated by Rho-family GTPases (Hall and Nobes,

2000). Both for phagocytosis and pinocytosis the molecule to be internalised and its 

receptor determine the specific path^vay through which it can enter into the cell.

1.2.2 Multiple pathways for pinocytosis

Pinocytosis, instead, occurs in all cells essentially by four mechanisms: 

macropinocytosis, clathrin-mediated endocytosis (CME), caveolae-mediated 

endocytosis, and clathrin- and caveolae-independent endocytosis (Conner and 

Schmid, 2003).

Macropinocytosis accompanies the membrane ruffling that is induced in many 

cell types upon stimulation by growth factors or other signals. It involves the Rho- 

family GTPases signalling cascade, which trigger the actin-driven formation of 

membrane protrusions (Chimini and Chavrier, 2000). Little is known about the 

nature of this fusion process, which is highly regulated and fulfils diverse functions.

Another mechanism of pinocytosis is the Caveolae-mediated endocytosis; 

caveolae are flask-shaped invaginations of the plasma membrane, which are
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proposed to mediate the extensive transcellular transport (Anderson, 1998; Conner 

and Schmid, 2003).

Clathrin-mediated endocytosis (CME) occurs constitutively in all mammalian 

cells, and carries out the continuous uptake of essential nutrients. CME is crucial for 

intercellular communication during tissue and organ development (Seto et al., 2002), 

and throughout the life of the organism, as it modulates signal transduction by 

controlling the levels of surface signalling receptors. CME is also involved in cell 

and serum homeostasis by regulating the internalization of membrane pumps that 

control the transport of small molecules and ions across the plasma membrane. The 

clathrin-mediated endocytosis of calcium channels in neurons helps to control the 

strength of synaptic transmission (Beattie et al., 2000) and is required for efficient 

recycling of synaptic vesicle membrane proteins after neurotransmission (De Camilli 

and Takei, 1996). CME involves the concentration of high-affinity transmembrane 

receptors and their bound ligands into 'coated pits' on the plasma membrane. The 

main assembly unit of those vesicles is clathrin. Once these clathrin vesicles, CCVs 

(clathrin-coated vesicles), are formed, they carry receptor-ligand complexes into the 

cell.

A part from those described till now, other kind of vesicles exists. They are 

referred to as “rafts” and can diffuse freely on the cell surface (Tang and Edidin,

2001). Their unique lipid composition provides a physical basis for specific sorting 

of membrane proteins and/or glycolipids based on their transmembrane regions 

(Anderson and Jacobson, 2002; Tang and Edidin, 2001). These small rafts can be 

captured by, and internalized within any endocytic vesicle and this process is known 

as clathrin- and caveolin-independent endocytosis (Lamaze et al., 2001). The
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mechanisms that control caveolae- and clathrin-independent endocytosis are not 

clear. It is likely that each of the pathways described fulfil unique functions in the 

cell and varies mechanistically not only in how the vesicles are formed, but in terms 

of which cargo molecules they transport, to what intracellular destination their cargo 

is delivered, and how their entry is regulated. Through these different pathways 

pinocytosis can be highly regulated and modulated depending on signal transduction, 

development and modulation of the cell's responses upon interactions with its 

environment.

1.2.3 Axonal transport

The process of axonal transport represents a particular example of the general 

cellular trafficking. The axon lacks protein synthesis machinery, and thus all the 

proteins required in the axon and synaptic terminal must be transported down the 

axon after they are synthesized in the cell body. Most proteins are conveyed in 

membranous organelles or protein complexes. In this sense, organelle transport in the 

axon is fundamentally important for neuronal morphogenesis and fimctioning.

Because of the length of their axons and their highly polarized architecture, 

neurons are highly dependent on an intricate system of transport designed to ensure 

correct targeted delivery of cell components (Almenar-Queralt and Goldstein, 2001). 

Fast and slow axonal transport occurs along microtubules. Slow axonal transport, by 

which many cytoskeletal proteins move, is thought to occur only in the anterograde 

direction (i.e., towards the plus end of the microtubule). Fast anterograde transport, 

powered by kinesin motor proteins, is used for the transport of vesicles, membranes, 

and membranous organelles such as mitochondria. Fast retrograde transport (i.e.,
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towards the minus end of the microtubule) is powered by dynein motor proteins and 

delivers endosomes, other organelles, and neurotrophic signals back to the cell 

bodies (Apodaca, 2001). Kinesin and dynein are molecules that have a globular 

domain at one end, followed by a rod. The globular domain serves as 'motor domain' 

that slides against the tracks using energy from ATP hydrolysis. The motor domains 

of kinesins and dyneins have ATP-binding and microtubule-binding sites. They 

repeat cycles of attachment, sliding and dissociation on the microtubules in an ATP- 

dependent manner, and move along the microtubules (Hirokawa, 1998). The cargoes 

of kinesines (KIFs) include various membranous organelles, mitochondria, 

lysosomes, endocytic vesicles, tubulin oligomers, intermediate filament proteins, 

mRNA complexes and other macromolecular complexes. Some KIFs transport 

different kinds of cargoes depending on cell type. For example, KIF3 motors 

transport membrane vesicles in the axon, but macromolecular complexes in cilia. In 

addition, some cargoes are transported by multiple KIFs; for example, mitochondria 

are transported by both KIF5 and K IFlBa (Hirokawa and Takemura, 2003).

1.3 Axonal degeneration

Axon degeneration appears to be an auto-destructive process that can be 

triggered by diverse insults. In many neurodegenerative diseases, the degeneration of 

the axon is responsible for the clinical progression of the disorder and for the 

patient’s disability more than the neuronal death. There are several ways for axonal 

degeneration to occur, we can distinguish between pathological and physiological 

axonal degeneration. A typical example of pathological axonal degeneration is the
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Wallerian degeneration (Raff et al., 2002; Waller, 1850). This can occur both in the 

peripheral nervous system and in the central nervous system when a trauma locally 

injures axon. So the axon is cut and the part of the axon which is separated from the 

cell body rapidly undergoes wallerian degeneration, disassembling in a characteristic 

and orderly way. Basically the endoplasmic reticulum breaks down, the 

neurofilaments are degraded, the mitochondria swell and the axon breaks up into 

fragments that are phagocytosed (Griffin et al., 1996). As a consequence, the 

neuronal cell body frequently undergoes apoptosis. Wallerian degeneration has been 

considered for a long time as a passive process, with axon degenerating through loss 

of proteins synthesized in the cell body or activation of Ca^  ̂ dependent proteases 

(George et al., 1995). The discovery of a spontaneous mutation in mice called 

Wallerian degeneration slow (Wld®) suggests instead that the degeneration could be 

an active process (Lunn et al., 1989). In these mice, apparently normal, wallerian 

degeneration, both in the peripheral nervous system and in the central nervous 

system, is greatly slowed. The Wld® mutation has been mapped to the distal end of 

mouse chromosome 4 (Lyon et al., 1993) where there is an 85 Kb tandem triplication 

that results in the production of an abnormal fusion protein (Coleman et al., 1998). 

The fusion protein contains the N-terminal 70 amino acids of the ubiquitination 

factor E4B and the entire coding region of the nicotinamide mononucleotide adenyl 

transferase (NMAT) (Conforti et al., 2000). This let hypothesize that the ubiquitin- 

proteasome pathway is involved in determining the Wld^ phenotype (Coleman and 

Perry, 2002). Another kind of axonal degeneration which is more important for 

neurodegenerative diseases is known as dying back process. The axon of an 

unhealthy neuron degenerates, progressively in time, starting from the distal part of
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the axon and sometimes with preservation of the cell body (as in HSP) (Cavanagh, 

1964; Schaumburg et ah, 1974). This is the most common pathology presents in 

peripheral nerve diseases due to toxic, metabolic and infectious insult and seems to 

be also a feature of central nervous system neurodegenerative diseases, including 

motor neuron disease (Azzouz et al., 1997), Alzheimer and Parkinson disease (Iseki 

et al., 2001). The dying back process is very interesting and the mechanisms by 

which it occurs are not known. A crucial point is to understand how can a neuron 

eliminate part of itself (the distal portion of the axon), leaving the rest intact. The 

dying-back-type neuropathies (Cifuentes-Diaz et al., 2002; Saigoh et al., 1999), are 

traditionally considered distinct from Wallerian degeneration, although there is no 

evidence that their mechanisms are unrelated.

Axonal degeneration may also occur during normal development. Many 

projection neurons in the brain initially extend axonal branches to inappropriate 

regions of the CNS; these branches are later lost by a process called branch 

elimination (O'Leary and Koester, 1993). It is not clear whether axonal branch 

elimination in vertebrate development occurs by degeneration or by retraction, but 

still the interesting question is how a neuron avoid to extend the self destruction 

program to the rest of the axon and to the cell body.

The molecular mechanisms of axon degeneration are poorly understood. One 

of the pathways that have been implicated in axonal degeneration is the Ubiquitin- 

proteasome pathway.

Mutations in ubiquitin proteasome pathway proteins affect neuronal 

degeneration, including axon degeneration. Beyond the involvement of the ubiquitin- 

proteasome pathway in the Wld® mice phenotype, mutations in other proteins of the
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ubiquitin-proteasome pathway can affect axonal degeneration. In fact, in the gracile 

axonal dystrophy {gad) mouse, axons progressively die back from the first few 

weeks of life (Mukoyama et al., 1989), owing to an in-frame deletion in the gene 

encoding Uch-Ll (Saigoh et al., 1999), an ubiquitin C-terminal hydrolase that is 

abundant in all neuronal compartments (Kent and Clarke, 1991). Uch-Ll releases 

and stabilizes monomeric ubiquitin, thus promoting protein turnover, which is 

essential for maintaining axons. The importance of the ubiquitin-proteasome 

pathway in chronic neurodegeneration has also been highlighted by a mutation in the 

gene encoding the ubiquitin-E3 ligase parkin that causes recessive juvenile 

parkinsonism (Shimura et al., 2000). Intracellular accumulation of insoluble 

aggregates of ubiquitinated protein, either in the cell body or in dystrophic neurites, 

is a hallmark of chronic neurodegenerative disease (Lowe et al., 1993). Deposition of 

such ubiquitinated proteins and their failure to be degraded by the proteasome could 

disrupt the normal physiology of the neuron, in particular could impair axonal 

transport. Alternatively, the formation of protein aggregates could be a protective 

mechanism to decrease levels of soluble toxic proteins, and ubiquitination might be a 

step towards their degradation (Layfield et al., 2003).

Interestingly, several line of evidence suggests that axons and synapses 

degenerate by active and regulated mechanisms that are molecularly distinct from 

apoptosis (Coleman and Perry, 2002). The pmn/pmn mutant mouse develop a motor 

neuropathy in which motor neuronal axon degenerate in a dying back pattern and the 

neurons dye by apoptosis (Schmalbruch et al., 1991). When those mice have been 

crossed with transgenic mice expressing the human bcl-2 gene in many of their 

neurons (Dubois-Dauphin et al., 1994), the death of the motor neuron cell body was
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prevented, as expected by the anti-apoptotic activity of Bcl-2, but there was no effect 

on the axonal degeneration and on the pathological phenotype of the mice (Sagot et 

ah, 1995). It seems like the axonal degeneration of the motor neuron and not the 

death of the cell hody that causes the clinical feature of the disease and lead to the 

mice death.

1.4 Impairment of axonal transport and diseases

Proteins synthetic machineries are absent in nerve axons, therefore, most 

proteins that are vital for the maintenance and function in the axon and synaptic 

regions need to be transported down the axon. Many proteins, such as those of the 

kinesin and dynein superfamilies (Hirokawa, 1998), mediate axonal transport. 

Therefore it is not surprisingly that mutations in those genes results in axonal loss. In 

addition, mutations, not in the motor itself, but in the proteins associated with the 

motor proteins can also causes diseases. It was recently shown that a mutation of 

KIFIBP is the cause of Charcot-Marie-Tooth disease (CMT) type 2A (Zhao et al., 

2001a). KIFlBp is a plus-end-directed motor that transports synaptic vesicle 

precursors in the axon from the cell body to the synapse, kiflb''' mice show defects 

in both sensory- and motor-nerve functions. A detailed analysis shows that both the 

number of synapses and the density of synaptic vesicles at the synapse are reduced, 

which is consistent with a defect in the transport of synaptic vesicle precursors 

(Tanaka and Hirokawa, 2002; Zhao et al., 2001a). All affected individuals of 

CMT2A have a heterozygous point mutation, Gln98Leu, which occurs in the ATP- 

binding site of the motor region of KIFIBP and causes significant reduction in
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ATPase and in vitro motor activities. Furthermore, the transport of amyloid precursor 

protein (APP) by KIF5 might contribute to the pathogenesis of Alzheimer's disease. 

It is known that APP plays a major role in the development of Alzheimer's disease, 

and that cleavage of APP mediated by P-secretase or y-secretase produces pathogenic 

amyloid. Cleavage by y-secretase is carried out by an enzyme complex that contains 

presenilins. APP appears to be one of the cargoes transported in the axon by KIF5 

conventional kinesin, which interacts with APP through the light chain (Kamal et al.,

2000). In addition, APP has been shown to be transported in vesicles containing 

presenilin-1 and p-secretase, and it has been suggested that the processing of APP to 

amyloid-p by secretases could occur in axonal membrane compartments transported 

by KIF5 (Kamal et al., 2001).

Recent evidences suggest that also polyglutamine proteins (polyQ) can disrupt 

axonal transport leading to axonal degeneration (Feany and La Spada, 2003). The 

polyQ disorders include several neurodegenerative diseases and one of the best 

studied of this group is Huntington disease. Expansion of glutamine repeats within 

the coding region of a protein confers a toxic gain of function that disrupts essential 

cellular processes and leads to loss of affected neurons. In general, theories on the 

pathogenesis of polyQ toxicity have not focused on abnormality in axonal transport 

but on several other cellular targets, such as impaired proteasomal degradation (Ross, 

2002). But recently, it has been shown that normal levels of huntingtin are required 

for proper axonal transport in drosophila and that expression of expanded polyQ 

proteins disrupts axonal transport in larval neurons (Gunawardena et al., 2003). 

Moreover, polyQ proteins have been involved in the inhibition of fast axonal 

transport in the squid giant axon system (Szebenyi et al., 2003). These results suggest
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that the polyQ disorders can be included in that group of neurodegenerative disease 

linked to abnormalities of axonal transport.

The importance of axonal transport for maintaining motor neuron viability has 

been also highlighted by the finding that mutations in dynactin, a multiproteic 

complex associated with dynein and required for axonal transport, have been 

described in patients with a motor neuron disease (Puls et al., 2003). Moreover in 

mice, disruption of dynactin function (by overexpression of dynamitin, a subunit of 

the dynactin complex) produces motor neuron degeneration (LaMonte et al., 2002).

Mutations in the kinesin KIF5 have been found in a neurodegenerative disease, 

hereditary spastic paraplegia (HSP) (Reid et al., 2002), leading to the hypothesis that 

a defect in axonal transport could be the cause for the axonal degeneration phenotype 

which characterizes this disease.

Thus, although we are far from understand the pathogenic mechanism of 

Alzheimer’s disease, HSP and other chronic neurodegenerative diseases, axonal- 

transport deficiency could play an important role in pathogenesis.

1.5 Hereditary Spastic Paraplegia

The genetic information is carried in the linear sequence of nucleotide in DNA 

(deoxyribonucleic acid). More precisely, it is organised in structural units, named 

genes. Each gene contains a particular set of instructions, usually coding for a 

particular protein. Many, if  not most, diseases have their roots in our genes. In fact, 

many diseases are thought to arise from mutated genes. A mutation can be defined as 

a permanent change in the DNA. Mutations that affect the germ cells are transmitted
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to the progeny and can give rise to inherited diseases. When a gene is mutated, this 

will result in the transcription and translation of an abnormal protein product; some 

protein changes are insignificant but some other are disabling and therefore disease 

causing.

Hereditary spastic paraplegia (HSP) (also known as familial spastic paraparesis 

and Strumpell-Lorrain syndrome) is a mendelian disorder characterised primarily by 

progressive weakness, spasticity and loss of the vibratory sense in the lower limbs 

(Fink, 1997; Harding, 1983). These disorders are classified according to their 

symptoms and to the mode of inheritance; they are divided into pure and complicated 

forms depending on whether spasticity occurs in isolation or with additional features 

such as mental retardation, ataxia, cortical atrophy, optic neuropathy, deafiiess and 

ichthyosis. The age of onset symptoms, rate of symptom progression and the extent 

of disability are extremely variable both within and between the different HSP forms. 

There are few forms arising in childhood, and most cases between 20 and 40 years of 

age. Usually the later the onset of the disease, the faster is the progression of its 

course. Although HSP is an invalidating disease, it never causes shortening of the 

life-span of patients.

1.5.1 Neuropathology

The major neuropathological feature of HSP is axonal degeneration that is 

maximal in the terminal portions of the longest motor and sensory axons of the 

central nervous system (CNS), i.e. the crossed and uncrossed corticospinal tracts 

projecting to the legs, the fasciculus gracilis fibers and to a lesser extent the
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spinocerebellar fibers (Fig.2) (Behan et ah, 1988; Behan and Maia, 1974; Harding, 

1993; Schwarz and Liu, 1956).

Axons of the corticospinal tracts arise from pyramidal neurons in layer V of the 

motor cortex and project through the internal capsule to reach the ventral surface of 

medulla where they form two elongated swellings, the pyramids. These axons cross 

the midline at the junction between the bulb and the spinal cord and descend in the 

contralateral funiculus of the spinal cord. The crossed corticospinal tract conveys 

voluntary motor impulses to the secondary motor neurons located in the ventral 

horns of the spinal cord. The fasciculus gracilis is composed of central branches of 

axons of pseudounipolar neurons located in dorsal root ganglia and ascend in the 

most medial part of the dorsal funiculus. These axons transmit deep sensory 

information from the lower extremities to secondary sensory neurons in the nucleus 

gracilis. The corticospinal axons are exceptionally long, in some cases over 1 metre, 

with axonal volumes that can be up to one thousand times of the cell bodies. 

Corticospinal tract neurons therefore provide an excellent example of the difficulties 

encountered in diverse cellular processes, such as trafficking, transport and energy 

metabolism (Reid, 2003).

Interestingly, a specific pattern of degeneration is seen in HSP, during which 

the cell bodies remain largely intact while the degeneration is principally limited to 

the axon and may be considered as a dying-back axonopathy, beginning distally and 

proceeding towards the cell body (Schwarz and Liu, 1956). In contrast to other 

neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), which is 

characterised by degeneration of functionally and physically related motor system 

elements (including pyramidal neurons, corticospinal tracts, spinal motor neurons
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and skeletal muscle), axonal degeneration in HSP involves different classes of 

neurons. The common feature shared by these degenerating axons is their length. In 

fact, these are the longest axons in the CNS.

1.5.2 Genetics

All mendelian disorders are the result of expressed mutations in single genes. 

The patterns of inheritance of single Genes mutations typically depend on two 

factors. First, the chromosomal location of the gene mutated, which may be 

autosomal (located on an autosome) or X-linked (located on the X chromosome); 

second, whether the phenotype is dominant (expressed only when one chromosome 

of a pair carries the mutated allele) or recessive (expressed when both chromosome 

of a pair carry the mutated allele).

HSP is extremely heterogeneous from a genetic point of view. So far, 21 

different loci have been mapped and more will be identified. HSP can be transmitted 

as an X-linked (SPGl, SPG2, SPG16), autosomal dominant (SPG3A, SPG4, SPG6, 

SPG8, SPG9, SPG 10, SPG12, SPGl7, SPG 19) or autosomal recessive trait (SPG5A, 

SPG7, SPG ll, SPG14, SPG15, SPG20, SPG21). Despite the large number of loci 

mapped for the various form of HSP (table 1) and the identification of 11 genes to 

date, the pathogenetic basis underling most forms of HSP remains unclear, but the 

identification and characterisation of the causative genes suggest that a common 

mechanism could underlie several forms of HSP (Crosby and Proukakis, 2002). 

Although the disease is genetically heterogeneous, approximately 70% of all pure 

HSP are inherited as dominant traits, the 20-30% as recessive tracts and only rare 

cases are reported as X-linked.
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1.5.3 The X-Linked HSP Genes

Two X-linked genes, LI cell adhesion molecule (SPGl, LI CAM) and 

proteolipid protein (SPG2, PLP1\ were identified as responsible, when mutated, for 

a complicated HSP phenotype. PLPl mutations may additionally lead to pure HSP 

(Jouet et al., 1994; Saugier-Veber et al., 1994).

SPGl: LICAM

In this form of HSP, spastic paraplegia begins in the first two decades of life 

with slow progression of symptoms. Although this form may manifest as pure HSP, 

it is more often observed in association with a complex disorder, referred to as 

“MASA syndrome” (mental retardation, adducted thumbs, spasticity and aphasia) or 

“CRASH syndrome” (corpus callosum hypoplasia, mental retardation, adducted 

thumbs, spastic paraplegia, and hydrocephalus) (Fransen et al., 1995). The LICAM  

gene encodes a transmembrane glycoprotein with extracellular immunoglobulin and 

fibronectin type III repeats, which mediates cell adhesion, neurite outgrowth and 

axon pathfinding. LICAM is expressed throughout the nervous system on 

populations of developing and differentiated neurons, as well as in Schwann cells in 

the peripheral nervous system. Several studies indicated that this molecule is 

required for normal development of the corticospinal tract (Casari and Rugarli,

2001), and recent data suggest a function for LICAM in potentiation of neuronal 

migration (Thelen et al., 2002).

SPG2:PLP1

SPG2 maps to Xq22 and results from mutations in the proteolipid protein, PLP, 

one of the major protein components of myelin in the central nervous system (CNS). 

PLP is a four-helix spanning membrane protein that stabilizes the structure of the

36



C h a p t e r  1 : In t r o d u c t io n

CNS myelin, by forming the intraperiod line. PLPl is mutated in complicated and, 

rarely, in pure forms of HSP. Mutations in PLPl are also responsible for Pelizaeus- 

Merzbacher disease (PMD) (Saugier-Veber et al., 1994), which is characterized by 

hypomyelination of the CNS with a reduced number of mature oligodendrocytes.

Knockout mice lacking completely PLPl have normal CNS function; they 

assemble compact myelin sheaths and subsequently develop widespread axonal 

swelling and degeneration (Griffiths et al., 1998). Consequently, a lack of PLPl 

protein does not cause the dysmyelination seen in PMD, and the axonal defect is 

explained by a deficiency in oligodendroglial function. This together with the 

accumulation of membranous dense bodies and mitochondria suggests that axonal 

transport is impaired in HSP due to PLPl mutations (Griffiths et al., 1998).

1.5.4 SPG7and SPG13: The Mitochondrial Story

The mitochondria are membrane-bound organelles that convert energy to forms 

that can be used to drive cellular reaction. They are localised to the regions of the cell 

where ATP consumption is high and are dispersed according to changes in local 

energy requirements (Wagner et al., 2003). A mitochondrion is bounded by two 

highly specialised membranes that play a crucial role in its biological function. 

Together they create two separate mitochondrial compartments: an internal matrix 

space and a narrower intermembrane space. The outer membrane contains many 

copies of transport proteins, the porins, which forms large aqueous channel through 

the lipid bilayer. Therefore this membrane is permeable to all molecules of 5000 

daltons or less. Other proteins present in this membrane include enzymes involved in 

lipid synthesis and enzymes that convert lipid substrates. The major working part of
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the mitochondrion is the matrix space and the inner membrane that surrounds it. The 

inner membrane is highly specialised, it is folded into numerous cristae and contains 

several proteins which are involved into three types of function: 1) proteins that carry 

out the oxidation reactions of the respiratory chain; 2) an enzymatic complex, the 

ATP synthase, which produces ATP in the matrix; and 3) proteins that regulate the 

transport of metabolites into and out of the matrix. The matrix contains, instead, a 

high variety of enzymes involved in the pyruvate and fatty acid oxidations and in the 

citric acid cycle; furthermore the matrix contains the mitochondrial genome and 

several enzymes necessary for the expression of the mitochondrial genes.

SPG7: paraplegin

Mutations in SPG7 gene are responsible for both complicated and pure forms 

of autosomal recessive HSP (Casari et al., 1998). Paraplegin, the protein product of 

the SPG7 gene, is a mitochondrial metalloprotease with strong homology to the yeast 

mitochondrial ATPases YtalOp and Ytal2p. Like its yeast homologues, Paraplegin 

has an N-terminal mitochondrial leader sequence and two transmembrane domains 

that anchor the protein to the inner mitochondrial membrane. Paraplegin contains 

two functional domains: an AAA (ATPases associated with diverse cellular 

activities) domain common to the AAA proteins (Patel and Latterich, 1998), a group 

of molecules possessing a range of functions that include protein degradation, 

trafficking and organelle biogenesis, and a proteolytic domain with a consensus 

metal binding site.

The yeast YtalOp and Ytal2p form a high molecular weight complex, the m- 

AAA, which is embedded in the inner mitochondrial membrane and exposes 

proteolytic sites to the mitochondrial matrix (Langer et al., 2001). The m-AAA
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complex guarantees the protein quality control system for inner membrane proteins 

and is required for the maintenance of the functional membrane embedded protein 

complexes (Guelin et ah, 1994; Paul and Tzagoloff, 1995; Tauer et ah, 1994). It 

ensures the removal of misfolded or not-assembled proteins and performs crucial 

steps in mitochondrial biogenesis. Yeast cells lacking the m -AAA  proteolytic 

complex exhibit deficiencies in the expression of mitochondrially-encoded 

polypeptides and in the post-translational assembly of the ATP-synthase and of the 

respiratory chain complexes (Guelin et al., 1994; Tauer et al., 1994; Tzagoloff et al., 

1994). Recent studies showed that paraplegin form a high molecular weight complex 

very similar to the one described in yeast (Atorino et al., 2003). This complex 

complements the respiratory deficiency of yeast cells lacking the m -AAA  complex, 

indicating that the m-AAA  protease is functionally conserved across species and that 

the paraplegin complex has the same proteolytic activity of the yeast counterpart. 

Furthermore, very recent data of electron microscopy studies in mice lacking 

paraplegin reveal that, long before degeneration, the axons are filled with abnormal 

mitochondria. Subsequently, axons swell because of accumulation of membranous 

organelles and neurofilaments. These findings suggest that a mitochondrial-based 

mechanism underlies this form of the disorder and that the mitochondrial dysfunction 

may lead to axonal degeneration by impairing axonal transport (Ferreirinha et al., 

2004).

SPG13: HspôO

Further support to the role of mitochondria in HSP pathogenesis came from 

the identification of a missense mutation (V72I) in the mitochondrial chaperonin, 

heat shock protein 60 (Hsp60), (SPG 13) in a French family with an autosomal
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dominant form of HSP (Hansen et al., 2002). Hsp60 proteins belong to a conserved 

subgroup of chaperone proteins, which promote protein folding in the mitochondrial 

matrix, in cooperation with the co-chaperonin HsplO. A complementation assay was 

performed using wild-type Hsp60 or Hsp60W72I, together with HsplO, in bacteria 

{E. coli) where the homologous groES groEL chaperonin genes have been deleted. 

Only the wt HSP60, but not the mutant Hsp60W72I, was able to support the growth 

of the defective bacteria, showing that the V72I mutant is functionally inactive. So 

far, there are no clues on how mutations in hsp60 cause HSP, although a 

mitochondrial defect can be hypothesised.

The reason why the loss of ubiquitous mitochondrial proteins, such as 

Paraplegin and hsp60, causes the specific degeneration of a subset of axons is still 

unknown. This will be a central issue for all the genes involved in the different forms 

of HSP. The most accepted hypothesis is that primary motor neurons are more 

susceptible to a defect in mitochondrial functions. These neurons in fact have very 

long axons and they depend, for their survival and function, on efficient transport of 

organelles, molecular cargoes and synaptic vesicle along the axons. This process 

requires energy and this is supplied from the mitochondria, which are also 

transported along the axon. It is possible that mitochondria located very distal from 

the cell body have to endure for longer time and could be much less efficient in 

adapting to inefficient protein quality control mechanisms (Ferreirinha et al., 2004).

1.5.5 Genes involved in cellular trafficking

A second group of genes involved in HSP appear to play a role, direct or not, in 

cellular trafficking. Their identification supports the hypothesis that any defect of
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normal trafficking processes and therefore of the axonal transport, may lead to 

axonal degeneration. The long axons composing the corticospinal tracts and the 

fasciculus gracilis would be preferential pathological target for this defect.

Kinesin Mutation Found in HSP

The best example of the pathogenic role of impaired axonal transport in HSP 

comes from the fact that recently, a mutation in a kinesin heavy chain gene, KIF5A, 

has been identified in one family with autosomal dominant form of HSP (SPG 10) 

(Reid et al., 2002). KIF5A, a specific neuronal kinesin, is part of a heterotetrameric 

complex that constitutes the kinesin motor for transporting cargoes along 

microtubules in an anterograde direction in axon (from the cell body to the distal end 

of the axons) (Goldstein, 2001; Goldstein and Yang, 2000; Xia et al., 1998). The 

mutation identified in this family occurs in an invariant asparagine residue (N256S) 

located within the motor domain of the molecule, which has been previously 

identified as crucial to motor fimction in biochemical studies of kinesin proteins. 

Studies of a yeast mutant with a substitution in the corresponding amino acid 

position (N650K) suggest that the human mutation may result in a dominant-negative 

version of the neuronal kinase-I motor (Hoyt et al., 1993). Moreover, loss-of- 

function mutations in kinesin heavy chain related genes of various species, such as 

yeast and Drosophila, cause movement defects that are reminiscent of those observed 

in human spastic paraplegia (Reid et al., 2002). When the kinesin heavy chain is 

mutated in this invariant asparagine, this prevents the stimulation of the motor 

ATPase by microtubule binding. Thus, kinesin mutation studies clearly support a role 

for defective microtubule-mediated trafficking in causing axonal degeneration.
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Atlastin (SPG3A) and the Dynamins

Additional support for defective trafficking as the basis for some forms of HSP 

is provided by the identification of four different missense mutations in atlastin 

(SPG3A) that result in dominantly inherited early-onset HSP. The SPG3A gene 

encodes a product, atlastin, possessing structural homology with members of the 

dynamin family of large GTPases, particularly guanylate binding protein-1. It is 

widely expressed, but it is most abundant in brain and spinal cord (Muglia et al., 

2002; Zhao et al., 2001b). Mutations in atlastin gene account for approximately 10% 

of AD-HSP (Reid, unpublished data). Dynamins play essential roles in a wide variety 

of vesicle trafficking events, i.e. during the formation of clathrin-coated vesicles 

from the plasma membrane, receptor-mediated endocytosis and endosome trafficking 

to the trans-Golgi network (Jones and Wessling-Resnick, 1998; Nicoziani et al., 

2000). This is important for the action of neurotrophic factors and during 

neurotransmission (McNiven et al., 2000). Dynamins are essential for the rapid and 

efficient recycling of synaptic vesicles, a crucial process for neurotransmission and 

the maintenance of synaptic membrane morphology. In addition, dynamins have 

been implicated in the maintenance and distribution of mitochondria (Pitts et al.,

1999) and have been found to associate with cytoskeletal elements, including actin 

and microtubules (Ochoa et al., 2000).

The homology with Dynamins let to postulate many possibilities by which 

atlastin mutations can cause axonal degeneration in HSP. Defective synaptic vesicles 

and impaired neurotransmission, as well as impaired activation of selective 

neurotrophic factors or impaired mitochondria distribution could be one of the 

pathogenetic mechanisms underlying HSP due to SPG3A mutations (Fink, 2003).
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SPG20, SPG21: Spartin, Maspardin and Endosomal Trafficking

The Troyer syndrome (TRS) is an autosomal recessive complicated form of 

HSP associated with dysarthria and distal amyotrophy, present at high frequency in 

the Amish population of the United States (Cross and McKusick, 1967). SPG20 is 

the gene mutated in Troyer syndrome and it encodes for a novel protein named 

Spartin (Patel et al., 2002). Spartin contains three novel domains, two of which are 

located in the C-terminal portion and for which no functional data are available. The 

N-terminal portion contains a recently described ESP domain, so named because it 

was identified in three molecules; Endl3Wps4, SNX15 (sorting nexin 15), and PalB 

(Phillips et al., 2001). This domain is also referred to as MIT domain (microtubule 

interacting and endosomal trafficking molecules) (Crosby and Proukakis, 2002). The 

N-terminal portion of the MIT domain has similarity to the tetratricopeptide repeat 

homology consensus sequence (Phillips et al., 2001), which mediates protein-protein 

interactions (Blatch and Lassie, 1999). The MIT domain is present in many other 

molecules (fig.3). For example, the sorting nexins (SNX) are a family of cytoplasmic 

and membrane-associated proteins that are involved in various aspect of endocytosis 

and protein trafficking. Endocytic pathways function to internalize extracellular 

components. After internalisation by clathrin-coated vesicles, cargo proteins are 

delivered to early endosomes and then they are sorted for delivery to one of these 

destinations: to the cell surface via the recycling endosomes; to the lysosomes via the 

late endosomes or to the Trans Golgi network (TGN) (Worby and Dixon, 2002). 

Different sorting nexin function in one of these specific pathways. Sorting nexin 15 

(SNX 15) is a recently discovered SNX that is thought to play a crucial role in 

trafficking through the endocytic pathway (Barr et al., 2000; Phillips et al., 2001). In
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particular SNX 15 affects the internalisation of the transferrin receptor and of the 

platelet-derived growth factor (PDGF) and is important for the protein trafficking 

process that involves the endocytic pathway and the TGN, and in particular for the 

localisation of fiirin to the TGN. Furin is predominantly localised to the TGN, but 

cycles continuously from the TGN to the plasma membrane, and returns to the TGN 

through sorting/recycling or late endosome (Ghosh et al., 1998; Worby and Dixon, 

2002), #1998)(Mallet and Maxfield, 1999).

In addition, the MIT domain has been also identified in yeast vacuolar protein 

sorting factor (Vps4p), in its mammalian orthologues VPS4 and SKDl, and in 

spastin (commonly mutated in AD-HSP), which are all closely related ATPases 

(Babst et al., 1997; Beyer, 1997; Hazan et al., 1999; Yoshimori et al., 2000). Yeast 

Vps4p is an essential component of the intracellular protein transport machinery, 

being required for the efficient transport of newly synthesized carboxy-peptidase Y 

from the Golgi network to the vacuole, the yeast counterpart of the animal lysosome 

(Babst et al., 1998).

Like SNX15, Vps4p primary sequence lacks a clear membrane-binding region. 

Nevertheless it contains a putative coiled-coil motif (Scheuring et al., 2001) 

corresponding to the terminal portion of the MIT domain. Deletion of the region 

including this coiled-coil motif abolishes the membrane association, thus 

demonstrating that the MIT domain is implicated in the binding to endosomal 

membranes (Babst et al., 1998). SKDl, a mouse orthologue of VPS4 (Scheuring et 

al., 2001), is also involved in this process and is believed to associate transiently with 

membranes. Recent data suggest that SKDl is required for the formation of 

autolysosomes in the late stages of the autophagic pathway (Nara et al., 2002).
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Finally, the MIT domain is also contained within the recently identified human 

protein RPK118, which was found to colocalize with early endosomes (Hayashi et 

ah, 2002).

Recently, the SPG21 gene has been identified as the gene mutated in Mast 

syndrome (Simpson et ah, 2003). Mast syndrome is a complicated form of HSP in 

which progressive spastic paraplegia is associated with dementia and other CNS 

abnormalities (Cross and McKusick, 1967). The SPG21 protein product, named 

Maspardin, localises both to the cytosol and to vesicles of the endosomal/trans-Golgi 

network (Zhang et al., 2002). On those bases maspardin is believed to be involved in 

the sorting and/or trafficking of molecules and would therefore represent another 

HSP gene involved in cellular trafficking.

1.6 SPG4 and its protein product: SPASTIN

The most common form of AD-HSP, 40% of AD cases, is linked to the SPG4 

locus on chromosome 2p21-p22 (Hazan et ah, 1994; Hentati et ah, 1994). This gene 

consists of 17 exons and encodes a 616 amino acid protein, ubiquitously expressed, 

of unknown function, named Spastin.

Spastin is expressed at a very low level; therefore the expression pattern of 

human and murine spastin has been detected by PCR on normalised cDNA 

collections. The murine spg4 transcripts are ubiquitously expressed in adult tissues 

and from embryonic day (E) 7 to E l7. The human SPG4 is ubiquitously express in 

adult and fetal human tissues, with a slightly higher expression in fetal brain (Hazan 

et ah, 1999). Human spastin is 96% identical to its mouse orthologue, this high level
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of identity together with the low level of polymorphism throughout the coding region 

of spastin gene suggest a low level of tolerance for amino acids substitutions 

(Svenson et al., 2001).

Analysis of Spastin primary structure underlines the presence in the N-terminal 

region of a NLS, between amino acids 7 and 11, (Hazan et al., 1999) and of a MIT 

domain. The carboxy-terminal portion of the protein is characterized by the presence 

of an AAA cassette (aa 342-599), where the three characteristic ATPase domains are 

recognisable, the walker domain A and B (Walker et al., 1982) located respectively 

between amino acid positions 382-389 and 437-442 and the AAA minimal consensus 

located between 480-498 (Hazan et al., 1999). Notably, the MIT domain present 

within the endosomal trafficking molecules was also detected in the N-terminus of 

Spartin. Since the MIT domain lies within the N-terminal portion of spastin and 

spartin, and no other domains in this region have been discovered, it seems possible 

that the MIT provides the structural framework in which a common pathogenetic 

mechanism of HSP can be found. However, the domain is also present within 

molecules not involved in HSP, i.e. the Vps4p orthologues, as well as within SNX 15 

and RPK118, which are involved in endosome modulation (Crosby and Proukakis,

2002). Recently, Charvin et al reported the existence of a spastin splice variant 

lacking the exon 4. The two isoforms are both present in human and mouse tissue 

with a tissue specific variability of the isoform ratio, and so far none of the mutations 

found in HSP-SPG4 patients map to the exon 4. Moreover, consistently with the NLS 

presence, Spastin seems to be a nuclear protein, abundant in neural tissues (Charvin 

et al., 2003).
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1.6.1 Spastin mutations

The spectrum of SPG4 mutations in AD-HSP includes missense, nonsense and 

splice site mutations, as well as insertions and deletions (table 2). Notably, all the 

missense mutations found in SPG4 patients fall into the AAA domain, with the 

exception of the S44L substitution that appears to be disease causing only in the 

homozygous state, underlying the functional significance of this domain 

(Fonknechten et ah, 2000; Hentati et ah, 2000; Ki et ah, 2002; Lindsey et ah, 2000; 

Namekawa et ah, 2002; Proukakis et ah, 2003; Proukakis et ah, 2002; White et ah, 

2000; Yabe et ah, 2002). The other mutations are scattered along the coding region 

of the gene (with the exception of the exons 1,4,6 and 17) and lead to premature 

termination codons, and mRNA instability suggesting that haploinsufficiency is the 

molecular cause of the disease (Burger et ah, 2000). There is no correlation 

phenotype-genotype, and the phenotype of the missense mutations is the same of the 

loss of function mutations.

It has also been reported a late onset dementia in association with one patient 

with pure HSP due to a missense mutation (A1395G) in SPG4 gene. Two other 

affected family members were reported to have had late onset memory loss, and a 

younger affected individual of the same family showed signs of memory disturbance 

and learning difficulties (White et ah, 2000). Autopsy of the patient with dementia 

confirmed changes in the spinal cord typical of HSP and also demonstrated specific 

cortical pathology. Corticospinal tract pathology showed myelin pallor and loss of 

axons in the lateral and ventral corticospinal tracts. In relation to dementia seen in 

this patient, there were some interesting findings. The substantia nigra, in fact, 

showed frequent Lewy bodies formation. There was neuronal depletion in the
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hippocampus and the surviving neurons showed frequent neurofibrillary tangles that 

were immunoreactive for tau, but no senile plaque formation was reported in any 

region of the brain (White et ah, 2000). These pathological findings are not typical of 

known tauopathies (Dickson, 1998; Spillantini and Goedert, 1998) and confirm that 

HSP linked to chromosome 2 can be associated with dementia, although the role of 

spastin in generating this phenotype is unknown (White et al., 2000).

Moreover mRNA expression studies on RNA extracted from lymphocytes 

from patients permit to identify a leaky mutation (splice-site mutation); that is, the 

mutant allele produced both mutant (skipped exon) and wild-type (full length) 

transcripts. This finding suggests that relatively small differences (less than 50%) in 

the level of wild-type spastin expression can have significant functional 

consequences (Svenson et al., 2001).

1.7 AAA proteins

AAA proteins are ATPase enzyme associated with diverse cellular activities, 

they are found in eukaryotes, prokaryotes and archeabacteria, underlining their 

ancient origin and the important role played, virtually, in all life forms. The unifying 

feature of the AAA superfamily is a conserved ATPase domain, of about 220 amino 

acid, referred to as AAA module or AAA cassette (Confalonieri and Duguet, 1995; 

Patel and Latterich, 1998). The classical AAA proteins are easily recognised, in fact, 

by their strong sequence conservation in the AAA domain (~ 30% identity). 

Furthermore, a broader AAA^ superfamily, embracing the classical AAA family, has 

been proposed on the basis of more accurate sequence alignments and structural
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information (Neuwald et al., 1999). In fact, although their sequences are more 

divergent compared with the classical AAA proteins, clamp loading subunits for 

DNA polymerase (Guenther et al., 1997), the Clp/HsplOO family of ATPase 

(Bochtler et al., 2000), and the microtubule-based motor dynein (Neuwald et al.,

1999) all contain an AAA structural fold (Vale, 2000).

The members of the originally defined “AAA family” contain a specific motif, 

named SRH (by Second Region of Homology) or AAA minimum consensus, in 

addition to the Walker motif A and B, present in all the AAA"  ̂proteins. In general, 

the domain architecture of the AAA proteins consists of a non ATPase N-terminal 

domain, mainly involved in substrate recognition, followed by one or two AAA 

domains, named D1 and D2. When two AAA modules are present on a polypeptide, 

they can both be conserved or just one of them, but usually only one module (D1 or 

D2) has an high enzymatic activity, while the other as a more structural role 

(Whiteheart, 1994). All the wide range of functions absolved by the different 

members of the AAA family requires a chemo-mechanical converter, the AAA 

module, which drives its energy from ATP hydrolysis. The “motor” module is 

attached to other domains that act usually by interacting directly or through adaptors 

with substrates.

In figure 4 are represented the different localisation and the different processes 

in which some of the AAA proteins are involved. The members of the AAA ATPase 

family play important roles in numerous cellular activities including proteolysis, 

protein folding, membrane trafficking, cytoskeleton regulation, organelle biogenesis, 

DNA replication, and intracellular motility. Some of them are involved in 

recognizing specific proteins and prepare them for degradation. In eukaryotes, the
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regulatory particle of the 26S proteasome contains six distinct AAA proteins (Walz 

et al., 1998). They form an oligomeric structure that sits on the top of the proteolytic 

channel. It seems that the AAA enzymes are used to unfold target proteins so that 

they can enter the protease cavity (Weber-Ban et al., 1999). Other AAA-ATPases 

involved in the unfolding and degradation of misfolded proteins is the member of the 

m-AAA  complex in mitochondria. For these proteins the same chaperone activity, 

that unfolds proteins for degradation, can also assist proteins in folding to their active 

conformation.

Another subgroup of AAA proteins is involved in disassembling stable protein- 

protein complexes using the energy derived from the ATP hydrolysis. The best 

example of this category is the N-ethylmaleimide sensitive factor (NSF), which 

dissociates a complex of SNAREs (soluble NSF attachment protein (SNAP) 

receptors). The SNARE complex facilitates the fusion in vesicle trafficking pathways 

by bringing two membranes together and NSF is involved in the recycling o f these 

complexes for other membrane fiision events. For this purpose NSF needs another 

protein, DSNAP, which functions as a bridge between NSF and the SNARE 

complex. The precise mechanism of this process is not known, but it’s believed that 

an ATP-driven conformational change in NSF is relayed to DSNAP and as a 

consequence to SNARE. Another AAA protein highly homologous to NSF, p97, 

seems to be involved in membrane fusion events. p97 is one of the most abundant 

cytosolic proteins and it is involved in different cellular processes depending on the 

co-factor to which is complexed. In mammals, p97 and its cofactor p47, participate 

in postmitotic fusion processes which reconstitute the endoplasmic reticulum and the 

Golgi apparatus (Acharya et al., 1995; Latterich et al., 1995; Rabouille et al., 1995).
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p47 is an adaptor which targets certain substrates to p97. Additional adaptor proteins 

for p97 have been identified. A heterodimeric complex of Ufdl and Npl4 competes 

with p47 for binding to p97 (Meyer et al., 2000). Ufdl is involved in ubiquitin- 

dependent processes and Npl4 is involved in nuclear targeting, suggesting that p97 is 

involved in other processes, different from membrane fusions, and in particular it 

could be involved in ubiquitin dependent nuclear events. Recent data show that RNA 

interference of p97 in Drosophila S2 and human HeLa cells caused significant 

accumulation of high-molecular-weight conjugates of ubiquitin, an indication of 

inhibited ubiquitin-proteasome system (UPS) These results lead Wojcik et al. to 

postulate that p97 plays an important general role in mediating the function of the 

UPS, probably by interacting with potential proteasome substrates before they are 

degraded by the proteasome (Wojcik et al., 2004).

Furthermore, the AAA-ATPase Cdc48/p97 and its adapters Ufdl-Npl4 also 

regulate spindle disassembly by modulating microtubule dynamics and bundling at 

the end of mitosis (Cao et al., 2003). Genetic analyses of Cdc48, the yeast homolog 

of p97, reveal that Cdc48 is also required for disassembly of mitotic spindles after 

execution of the mitotic exit pathway. Moreover, Cdc48/p97-Ufdl-Npl4 directly 

binds to spindle assembly factors and regulates their interaction with microtubules at 

the end of mitosis. Therefore, Cdc48/p97-Ufdl-Npl4 is proposed to be an essential 

chaperone that regulates transformation of the microtubule structure as cells re-enter 

interphase (Cao et al., 2003). Another potential adaptor protein is the DNA unwiding 

factor (DUF), suggesting that p97 could be implicated also in DNA replication 

(Yamada et al., 2000). Therefore, p97 represents an example of how a single AAA
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protein can use the energy derived from ATP hydrolysis to assist different cellular 

processes.

Because AAA proteins functions in so many different cellular processes, it has 

been very difficult to define a common mechanism of action. However, the structural 

and sequence conservation of the AAA module throughout three phylogenetic 

kingdoms strengthen the hypothesis that some similarity in their function exist.

Recent structural and enzymatic studies are providing new data on the 

properties of the conserved AAA domain.

1.7.1 Structure and mechanism of AAA ATPase

So far two structures of AAA domains have been determined the D2 domain of 

NSF (Lenzen et al., 1998; Yu et al., 1998) and the D1 domain of p97 (Zhang et al.,

2000). The two structure showed high level of similarity, although only the D1 

domain of p97 is a catalytically active and conform to the AAA consensus (Lupas 

and Martin, 2002). The AAA module is formed by two subdomains, an N-terminal 

subdomain which has a a/p  fold and a nucleotide binding pocket and a smaller C- 

terminal a-helical subdomain (Fig.5). The N-terminal subdomain has a RecA like 

fold and consists of a five stranded parallel psheet (strand order P5-pl-p4-p3-P2) 

flanked on one side by two and on the other side by three a-helices. The highly 

conserved residues of the Walker A motif form a loop (The P-loop) connecting 

strand pi to helix o2, while the Walker B motif is in strand p3 and the ensuing loop 

(Ogura and Wilkinson, 2001). The C-subdomain, instead, is variable in size and 

structurally less conserved than the N-subdomain, although it has preferentially a a - 

helical composition. Even if the nucleotide binding pocket is in the N domain,
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positively charged residues from the C-subdomain contribute significantly to the 

ATP binding. Therefore, ATP binding or hydrolysis might be associated with 

movement in both the N and C subdomains of the AAA module (Ogura and 

Wilkinson, 2001). AAA proteins usually function as oligomers, and in most cases 

they form hexameric ring. VPS4 (Babst et al., 1998) and p60 Katanin (Hartman and 

Vale, 1999) are AAA proteins with a single ATPase cassette. They exist in 

equilibrium between monomers and oligomers, in particular for katanin the 

oligomeric state was confirmed to be a hexameric ring (Hartman and Vale, 1999). 

For these proteins the oligomerization process is promoted by the presence of non- 

hydrolysable ATP analogue and by substrate binding. In the case of p97 or NSF, 

where two AAA modules are present, both AAA modules generate hexameric rings. 

As already mentioned, in this case one AAA cassette is the main hydrolytic domain 

and the other, which binds ATP, but hydrolyses it very slowly, has a structural role in 

hexamer stability (Whiteheart, 1994).

Atomic structures have been solved also for members of the more general 

AAA"  ̂superfamily, for one of the clamp loading subunit (ô’) (Guenther et al., 1997) 

and for HsIU (Bochtler et al., 2000), a member of the Clp/HsplOO protease family. It 

is evident that the structural folds of these distantly related AAA proteins can be 

quite well superimposed to the p97/NSF data, indicating that all AAA domains will 

probably share this basic core structure. This core is composed by an N-terminal 

oc/psubdomain that contains the ATP pocket and a C-terminal four-helix bundles 

subdomain that lies on the top of the nucleotide pocket (Vale, 2000). The crystal 

structure of AAA domain in the hexameric ring (Bochtler et al., 2000; Lenzen et al., 

1998; Yu et al., 1998) showed that in the hexamer the nucleotide is located near the
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interface between subunits and the active sites contain important residues from the 

adjacent subunit. This finding can provide an explanation of the fact that 

oligomerization of some AAA proteins, such as Katanin (Hartman and Vale, 1999), 

VPS4 (Babst et al., 1998) and NSF (Nagiec et al., 1995), accelerate ATP turnover. 

Moreover the nucleotide state of the AAA protein, whether it is ATP or ADP bound, 

affects the affinity for the substrate. In fact, most AAA proteins bind their substrates 

tightly in the ATP-bound state. Basically, this structural information suggests that 

ATP binding induces structural rearrangements which increase interactions between 

adjacent AAA domains as well as between the AAA protein and its target (Vale,

2000). This brings the AAA complex in a “tense state”. In turn, the tight interactions 

between subunits stimulate the ATPase reaction. Once the ATP has been hydrolysed 

to ADP, the complex pass to a relaxed state in which the interaction between the 

subunits and with the substrate are weaken. This conformational change between the 

ATP and the ADP-bound state supply the energy and the mechanical force necessary 

for the AAA protein function.

1.7.2 AAA proteins and disease

Since the AAA proteins are involved in so many fundamental processes, it is 

understandable how mutations in gene encoding for AAA ATPases can correlate 

with human diseases. The first identified human diseases related to AAA protein, 

were peroxisome disorders such as Zellweger syndrome and neonatal 

adrenoleukodystrophy. Peroxisome biogenesis requires many proteins (peroxins); in 

particular two of these proteins, Pexlp and Pex6p, are members of the AAA family.
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Approximately 65% of peroxisome disorders are due to mutations in the PEXl gene 

(Reuber et al., 1997).

Mutations in the Torsin A, an AAA+ protein, cause a movement disorder, 

known as early onset (torsin) dystonia, which is characterised by twisting muscle 

contractures (Ozelius et al., 1997).

Dyneins are minus-end-directed microtubule motors. They can be divided into 

two classes, cytoplasmic and axonemal. Cytoplasmic dyneins are expressed in most 

eukaryotic cells and are important for vesicle trafficking and cell division. Axonemal 

dyneins generate sliding forces between adjacent axonemal microtubule doublets and 

produce the beating of cilia or undulating movement of flagella. Dynein motor 

mutations are also associated with several human diseases. For example defects in 

the axonemal dynein cause primary ciliary dyskinesia (Omran et al., 2000). Also 

connected to dynein dysfimctions is a brain developmental disorder, lissencephaly. 

Lissencephaly is a developmental disease of the brain (Vallee et al., 2001; Wynshaw- 

Boris and Gambello, 2001). It is characterized by disorganization of the cortical 

regions resulting fi*om defects in neuronal migration. It has been shown that a 

significant part of the disease is caused by mutations in the gene encoding LISl, but 

how LISl causes a neuronal migration defect is not clear (Reiner et al., 1993) 

(Cardoso et al., 2002). Recently, it was shown that LISl interacts with cytoplasmic 

dynein (Smith et al., 2000; Tai et al., 2002) and that their interaction is evolutionarily 

conserved. This interaction (of LISl and cytoplasmic dynein) might cause neuronal 

migration defects either by affecting cell division, which is crucial for deciding the 

final destination of a cortical neuron, or by affecting the extension of leading 

processes.
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As discussed previously, two AAA proteins are involved in different forms of 

hereditary spastic paraplegia: Paraplegin (Casari et al., 1998) and Spastin (Kazan et 

al., 1999).

So far, not many disease related to AAA proteins defect are known, but given 

the crucial role of AAA proteins, it is likely that more AAA genes will be associated 

with human diseases in the future.

1.8 Spastin and AAA proteins

As described above, Spastin is the protein mutated in the most common 

autosomal dominant form of HSP and it belongs to the AAA family.

Based on sequence homology and on phylogenetic studies, the AAA proteins 

can be divided in subgroups that are related not only in structure but also in cellular 

function. In particular, Spastin belongs to the subfamily-7 of AAA proteins, also 

called the “meiotic group” (Fig.6 ) or “cytoskeleton interaction protein” group 

because of its member’s function (Beyer, 1997; Swaffield and Purugganan, 1997). 

The best characterized proteins of this group are p60 katanin and Vps4/SKD1.

The murine SKDl and its yeast homolog Vps4p are ATPase involved in 

regulation of the morphology of endosomes and in endosomal trafficking (Bishop, 

2000; Yoshimori et al., 2000).

Katanin is a microtubule-stimulated ATPase, requires ATP hydrolysis to severe 

microtubules (McNally and Vale, 1993), and is proposed to be involved in mitosis 

(Vale, 1991), neuronal differentiation (Ahmad et al., 1999a) and flagellar physiology 

(Lohret et al., 1999). Katanin is a heterodimer consisting of an AAA-ATPase subunit
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(p60) and an accessory subunit (p80) (Hartman et al., 1998; McNally and Vale, 

1993). The p60 subunit is composed of an N-terminal domain that binds 

microtubules (Hartman and Vale, 1999) and a C-terminal domain sharing homology 

with the AAA proteins (Hartman et al., 1998). The p80 subunit is composed of an N- 

terminal WD40 repeat domain and a C-terminal domain required for dimerization 

with the catalytic p60 subunit. The WD40 domain of p80 is required to target katanin 

to the spindle pole, possibly through interactions with other spindle pole proteins 

(Hartman et al., 1998; McNally, 2000). By structural studies in presence of a non- 

hydrolysable ATP analogue, it has been possible to draw a model in which 

microtubules act as a scaffold upon which katanin oligomerizes after it has 

exchanged ADP for ATP. Once a complete katanin ring (hexamer of katanin dimer) 

is assembled on microtubules, the ATPase activity of katanin is stimulated. 

Successively to ATP hydrolysis and phosphate release, katanin oligomers undergo a 

conformational change that creates a pushing force on the underlying tubulin 

subunits, leading to a destabilisation and a consequent dissociation of tubulin-tubulin 

contacts (severing) (fig.7)(McNally, 2000; Quarmby, 2000).

For other AAA proteins, such as Vps4, a similar mechanism can be adopted, 

where ATP binding, together with enzyme-substrate binding, may allow the 

formation of a transient, closed ring conformation. Vps4 exists as a homodimer in the 

ADP bound state, whereas, when ADP/ATP exchange occurs, Vsp4 dimers assemble 

into a decameric complex. The oligomeric structure is susceptible to ATP hydrolysis, 

which drives cycles of association and dissociation of the Vps4 dimers/decamers and 

at the same time regulates the association with the substrate, the endosomes (Babst et 

al., 1998).
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As for the other proteins of the Sb7 family, Mei-1 from C. elegans has a high 

degree of similarity to katanin p60. It forms a heterodimeric complex with mei-2, and 

mei-1 /mei- 2  complex shows microtubule severing activity and is required for meiotic 

spindle pole organization in C.elegans (Dow and Mains, 1998; Srayko et ah, 2000).

Sapl from S. cervisiae associates with the transcriptional activator Sinlp and is 

required for mitotic chromosome segregation (Liberzon et al., 1996). A very recent 

identified gene of this subfamily is the mouse Fidgetin-1, which seems to be 

involved in embryonic development (Cox et al., 2000).
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1.9 Aims of the project

Hereditary spastic paraplegia is a very heterogeneous disease. Many genes are 

involved and each of them seems to play a different role. Almost all the proteins 

mutated in the different forms of HSP are ubiquitously expressed, thus an important 

point is to understand how a defect in a ubiquitous protein give rise to an extremely 

specific cellular phenotype. Moreover, it’s also interesting how proteins involved in 

so many different pathways and processes can all lead, when mutated, to the specific 

degeneration of the longest axons in human body.

Spastin has been identified only recently (Hazan et al., 1999) and nothing is 

known about its biological role. In this context, the aim of this work has been to get 

insight on spastin biological fimction. A first step has been to investigate spastin 

subcellular localisation, by looking at the exogenous and at the endogenous protein. 

Therefore, spastin cDNA has been introduced in several tagged eukaryotic 

expression vectors and exogenous protein localization has been analysed by 

immunofluorescence after the transfection of spastin plasmid into the cell. On the 

other hand, several spastin specific antibodies have been produced in the lab and the 

endogenous subcellular localisation of spastin was analysed by immunofluorescence 

studies with the different antibodies on different cell lines. In a second step, two 

hybrid screening techniques has been used to identify spastin putative interactors and 

to try to insert spastin in a specific cellular process. Thus, this thesis represents a 

preliminary work in understanding spastin biological function by elucidating its 

subcellular localization and its biological partners. Moreover, comparison of spastin 

function with the role exerted by other genes involved in the different forms of HSP
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will provide more information in understanding whether there is a common 

pathogenetic mechanism underlying hereditary spastic paraplegias and which role 

spastin is playing in generating the disease.
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Symbol/Locus Cytogenetic
Location

Inheritance Protein HSP
Syndrome(s)

LlCAM(SPGl) Xq28 X-linked LI CAM Complicated

PLPl (SPG2) Xq28 X-linked PLPl Complicated 
(rarely pure)

SPG3A 14qll-q21 Autosomal
dominant

Atlastin Pure

SPG4 2 p2 2 Autosomal
dominant

Spastin Mainly pure

SPG5A 8 q Autosomal
recessive

Pure

SPG6 15qll.l Autosomal
dominant

NIPAl Pure

SPG7 16q24.3 Autosomal
recessive

Paraplegin Pure and 
complicated

SPG8 8q23-q24 Autosomal
dominant

Pure

SPG9 10q23.3-q24.2 Autosomal
dominant

Complicated

SPGIO 12ql3 Autosomal
dominant

KIF5A Pure

SPGll 15ql3-ql5 Autosomal
recessive

Pure

SPG12 19ql3 Autosomal
dominant

Pure

SPG13 2q24-q34 Autosomal
dominant

HSP60 Pure

SPG14 3q27-q28 Autosomal
recessive

Complicated

SPG15 14q22-q24 Autosomal
recessive

Complicated

SPG16 X qll.2 X-linked Complicated

SPG17 
(Silver syndrome)

Ilq l2 -q l4 Autosomal
dominant

BSCL2
(seipin)

Complicated

SPG19 9q33-q34 Autosomal
dominant

Pure

SPG20 
(Troyer syndrome)

13ql2.3 Autosomal
recessive

Spartin Complicated

SPG21 15q22.31 Autosomal
recessive

Maspardin Complicated

Table 1. Summary of the Known HSP Loci and Genes (Crosby and Proukakis, 
2002).
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Location Mutation Amino acid 
change

References

Missense
Exon 1 C256T S44L (Lindsey et aL, 2000)
Exon 6 T1031A I344K (Ki et al., 2002)
Exon 7 C1164A Q347K (Yabe et al., 2 0 0 2 )
Exon 7 C1210G S362C (Fonknechten et al., 

2 0 0 0 )
Exon 8 G1233A G370R (Fonknechten et al., 

2 0 0 0 )
Exon 8 T1267G F381C (Fonknechten et al., 

2 0 0 0 )
Exon 8 T1283G N386K (Fonknechten et al., 

2 0 0 0 )
Exon 8 A1282G N386S (Orlacchio et al., 

2004)
Exon 8 A1288G K388R (Fonknechten et al., 

2 0 0 0 )
Exon 9 T1336C F404S (Hentati et al., 2000)
Exon 10 A1395G R424G (Lindsey et al., 2000)
Exon 10 C1401G L426V (Fonknechten et al., 

2 0 0 0 )
Exon 11 G1468A C448Y (Fonknechten et al., 

2 0 0 0 )
Exon 11 G1504T R460L (Fonknechten et al., 

2 0 0 0 )
Exon 12 C1579T T486I (Namekawa et al., 

2 0 0 1 )
Exon 13 C1620T R499C (Fonknechten et al., 

2 0 0 0 )
Exon 13 G1633T R504L (Proukakis et al., 

2003)
Exon 13 G1659C E512D (Patrono et al., 2002)
Exon 13 G1704A G526D (Hentati et al., 2000)
Exon 14 T1726C L534P (Molon et al., 2003)
Exon 15 G1788A D555N (Fonknechten et al., 

2 0 0 0 )
Exon 15 C1792T A556V (Fonknechten et al., 

2 0 0 0 )
Exon 15 C1809G R562G (Svenson et al., 

2 0 0 1 )
Exon 17 G1875C D584H (Lindsey et al., 2000)
Nonsense
Exon 1 G459T E112ST0P (Hentati et al., 2000)
Exon 1 G465T E114ST0P (Svenson et al..
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2 0 0 1 )
Exon 3 C702T Q193STOP (Fonknechten et al., 

2 0 0 0 )
Exon 5 C859G S245STOP (Lindsey et al., 2000)
Exon 5 A873T K229STOP (Fonknechten et al., 

2 0 0 0 )
Exon 5 C907A S261STOP (Fonknechten et al., 

2 0 0 0 )
Exon 5 C932G Y269STOP (Fonknechten et al., 

2 0 0 0 )
Exon 9 C1195T R399STOP (Hentati et al., 2000)
Exon 10 C1416T R431STOP (Fonknechten et al., 

2 0 0 0 )
Exon 15 C1809T R562STOP (Fonknechten et al., 

2 0 0 0 )
Frameshift
Exon 1 190-208dupl9 (Proukakis et al., 

2003)
Exon 1 411delG (Lindsey et al., 2000)
Exon 2 578-579insA (Fonknechten et al., 

2 0 0 0 )
Exon 4 71 Oins A (Hentati et al., 2000)
Exon 5 852delll (Fonknechten et al., 

2 0 0 0 )
Exon 5 882-883insA (Fonknechten et al., 

2 0 0 0 )
Exon 5 906delT (Fonknechten et al., 

2 0 0 0 )
Exon 8 1259-1260delGT (Proukakis et al., 

2003)
Exon 9 1299delG (Fonknechten et al., 

2 0 0 0 )
Exon 9 1340del5 (Fonknechten et al., 

2 0 0 0 )
Exon 10 1406delT (Lindsey et al., 2000)
Exon 10 1442delT (Molon et al., 2003)
Exon 11 1486insA (Svenson et al., 

2 0 0 1 )
Exon 11 1520delT (Fonknechten et al., 

2 0 0 0 )
Exon 12 1574delGG (Fonknechten et al., 

2 0 0 0 )
Exon 13 1634del22 (Fonknechten et al., 

2 0 0 0 )
Exon 14 1684-1685insTT (Fonknechten et al., 

2 0 0 0 )
Exon 14 1685del4 (Fonknechten et al..
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2 0 0 0 )
Exon 14 1702-

1705delGAAG
(Proukakis et al., 
2003)

Exon 16 1845delG (Proukakis et al., 
2003)

Splicing
Intron 4 808-2A>G (Fonknechten et al., 

2 0 0 0 )
Intron 6 1129+2T>G (Fonknechten et al., 

2 0 0 0 )
Intron 6 1130-1G>T (Proukakis et al., 

2003)
Intron 7 1223+1 G>T (Fonknechten et al., 

2 0 0 0 )
Intron 8 1298+1G>A (Lindsey et al., 2000)
Intron 8 1299+1 G>A (Fonknechten et al., 

2 0 0 0 )
Intron 9 1370+1 G>T (Yabe et al., 2 0 0 2 )
Intron 11 1538+5G>A (Fonknechten et al., 

2 0 0 0 )
Intron 11 1538+3del4 (Fonknechten et al., 

2 0 0 0 )
Intron 11 1538+3A>C (Lindsey et al., 2000)
Intron 11 1538+3-

6 del(AAGT)
(Lindsey et al., 2000)

Intron 12 1618+2T>A (Lindsey et al., 2000)
Intron 13 1661+1G>T (Fonknechten et al., 

2 0 0 0 )
Intron 13 1661+2T>C (Lindsey et al., 2000)
Intron 13 1662-2A>T (Fonknechten et al., 

2 0 0 0 )
Intron 14 1742-1G>T (Yabe et al., 2002)
Intron 15 1812+1G>A (Fonknechten et al., 

2 0 0 0 )
Intron 15 1812+2T>G (Lindsey et al., 2000)
Intron 15 1813-2A>G (Fonknechten et al., 

2 0 0 0 )
Intron 16 1853+1 G>A (Fonknechten et al., 

2 0 0 0 )
Intron 16 1853+2T>A (Proukakis et al., 

2003)
Intron 16 1853+2T>C (Lindsey et al., 2000)

Table 2. Mutations found in patients with HSP linked to the SPG4 locus.
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CYTOSOL

I
r 1

1 r

NUCLEUS PEROXISOME

1 f

MITOCHONDRIA p l a s t id s

ENDOPLASMIC RETICULUM

LYSOSOME

ENDOSOME -J

GOLGI

CELL SURFACE

Gated transport 
Transmembrane transport 
Vesicular transport

Figure 1. Map of protein trafficking.
Protein can move from one compartment to another by gated transport (red), 
transmembrane transport (blue) or vesicular transport.
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cerebral
peduncle

Û
motor 

cortex

corticospinal
tract

lateral 
c s .  tract

pyramids

anterior 
c s . tract

Figure 2. Corticospinal tract.
The pathway that drives a deliberate movement can be divided into: descending 
connection between neurons in the motor cortex and cells in the anterior and 
posterior horns of the spinal cord (corticospinal tract) and the lower motor neuron in 
the anterior horn connect to the skeletal muscle.
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IQLKKIILES EEAN
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Figure 3. Multiple sequence alignment of selected members of the MIT domain 
containing proteins.
Sequences are indicated using their database accession number followed by the 
starting and the ending residues of the domain and by the species. The consensus 
present in 70% of the sequences is given below the alignment; residues and colours 
are as follows: h (hydrophobic, blue), 1 (aliphatic, blue), K (lysine), p (polar, yellow), 
and R (arginine). Plus signs (+) indicate conserved, positively charged residues 
(lysine and arginine), which are in red in the alignment; minus signs (-) indicate 
conserved negatively charged residues, which are indicated in pink. The secondary 
structure prediction ("Sec.Str.Pred.") at the bottom of the alignment is derived from 
the alignment (H = helix predicted with expected average accuracy >82%; h = helix 
predicted with expected average accuracy <82%). Abbreviations: Hs, Homo sapiens; 
Mm, Mus musculus; and Sc, Saccharomyces cerevisiae (Ciccarelli et al., 2003).
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r a

( " K

4  c v
I '

Figure 5. AAA structure.
Structure of p97-Dl AAA domain. The N and C terminal domains of the AAA 
module are coloured cyan and blue, respectively, with the sequence at the N- 
terminus of the N-domain coloured in green. The additional N-domain of p97 is 
eoloured in yellow. Adenine nucleotides are shown in red (Ogura and Wilkinson, 
2001).
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CHAPTER 2: MATERIALS AND METHODS

2.1 Generation of spastin constructs for expression studies

2.1.1 Constructs for expression studies

To clone the full-length or partial Spastin oDNA into sveral expression vectors 

(appendix B), conventional Polymerase Chain Reaction (PGR) was performed with 

appropriate primers that incorporated convenient restriction enzyme sites. HeLa 

cDNA was used as template and specific primers designed on available sequence 

(Hazan et al., 1999).

For the PCR, Pfu Turbo Polymerase (Stratagene) was used as follows:

5 pi lOx Pfuturbo buffer 

0.4 mM of each dNTP 

125 ng forward primer 

125 ng reverse primer 

1 pi Pfuturbo Polymerase 

50 ng DNA template 

dH20 to 50 pi

For the amplification of Spastin cDNA, PCR reactions were usually performed 

with the following cycling parameters:
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1 cycle: 5 min at 95°C 

30 cycles: 30 sec at 95°C

30 sec at the primer annealing temperature

2 min at 72°C (or 1 min per each Kb of DNA to amplify)

1 cycle: 10 min at 72°C

The resulting PCR product was analysed by agarose gel electrophoresis, and 

extracted from the gel using Quiaquick columns (Quiagen), according to the 

manufacturer’s protocol. The purified DNA was then digested with the appropriate 

restriction enzymes and the resulting fragments were subcloned in frame into the 

following eukaryotic vectors (previously digested): pMT21-myc (blant/Sall) (primers 

SP1/SP2, see appendix A), pcDNA3-HA (Ecorl/Xhol) (primers SP1/SP3) and 

pcDNA3-myc-GFP (EcorV/Xhol) (primers SP1/SP3) and in pcDNA3 (BamHl/Notl) 

(primers SP4/SP5).

The vectors (3 pg) were digested using the same restriction enzymes of the 

respective inserts, the DNA were analysed and purified from agarose gel (eluted in 30 

pi) and the ligations were set up as follows:

2 pi 1 Ox ligation buffer 

2 pi vector DNA 

5-10 pi insert DNA

1 pi T4 DNA Ligase (New England Biolabs) 

dIÎ2 0  to 20 pi
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Ligation was carried out at 2 hrs at room temperature. The whole reaction was 

used for transformation of chemical competent DH5a E. coli cells. The resulting 

clones were analysed by restriction digest and sequencing.

In the resulting constructs, the myc and GFP tags are positioned C-terminal to 

the spastin coding region, while the HA-tag is N-terminal to it.

The spastin^’̂ ^^ construct (corresponding to the nonsense mutation C932G, 

Y269STOP) was generated by PCR amplification with specific primers (primers 

SP1/SP6), using Pfu Turbo polymerase, and subcloned into the pMT21-myc vector 

(blant/Sall). The spastin^'^ construct, lacking the first 241 amino acids of spastin, 

was generated by digesting the spastin-myc construct with Ecorl/Spel, followed by 

Klenowl (Biolabs) treatment at room temperature for 10 min and self-ligation. The 

ATG is reconstituted after self-ligation. In each case the integrity of the clones was 

determined by direct sequencing.

2.1.2 Constructs for yeast two hybrid screening

The constructs pAR202-LexA-Spastin (primers SP4/SP5) and pAR202-LexA- 

spastin^'"^^ (primers SP4/SP7) for the two hybrid screening were prepared by PCR 

amplification with specific primers (as described above) and subcloned into the 

pAR202 vector (BamHl/Notl). The pAR202-LexA- spastin^*^ construct was 

prepared by digesting the pAR202-LexA-Spastin construct with Ecorl/Spel, followed 

by Kelnowl treatment at room temperature for 10 min and self-ligation. The integrity 

of the clones was determined by direct sequencing.
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2.1.3 Constructs for antibodies production

Two different constructs were used for the production of specific spastin 

antibodies. A construct that has been previously prepared in the lab and corresponded 

to a portion of spastin between amino acids 1 and 120 fused with its 5’ to a 6His tag 

(6HisSP). A different portion of spastin, corresponding to amino acids 80-354, was 

obtained by PGR amplification (primers SP8/SP9) with Pfu Turbo polymerase and 

subcloned into a pGEX-3X vector (BamHI/Ecorl), where the protein product results 

fused with its N-terminus to the GST protein (GST-SP)

2.1.4 Generation of a chimera NLS (sv40)-Spastin

The SV40 Large T antigen NLS was fused to the N-terminus of Spastin (Kruyt et al., 

1997) by using the oligonucleotides NLS-Up (5’- 

GATCCATGCCGCCGAAGAAAAAGAGAAAGGTGGAG-3’) and NLS-Dw (5’- 

AATTCTCCACCTTTCTCTTTTTCTTCGGCGGCATG). The oligonucleotides 

have been designed with the restriction sites post-digestion. 5 pg of both 

oligonucleotides were incubated in a final volume of 20 pi in TrisHCl 200mM pH 

7.4/MgCl2 20 mM/ NaCl 500mM for 5 min at the melting temperature of the 

oligonucleotides (100 °C). The samples were then cooled in a water bath to 30°C and 

then kept on ice. The resulting fragment was directly used for the ligation reaction in 

pCDNAs-spastin (BamHI/EcoRI). As control spastin was also fused to mNLS-Up 

and mNLS-Dw, which are identical to NLS-Up and -Dw except for the substitution 

of the underlined nucleotides for C or G respectively, to harbour a hybrid spastin 

protein with an inactivated Large T NLS.
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2.1.5 Cloning of spastin Aex4

pRSET-Aex4 was from Elena Pegoraro. This plasmid was used as template for 

amplifying Aex4 cDNA by PGR (primers SP1/SP2) and subcloned it into the 

pMT21-myc vector.

2.1.6 Constructs for mapping the MTs interacting region

Deletion constructs of spastin were prepared by PGR using specific primers. 

A50 (primers SP10/SP2), AlOO (primers SP11/SP2), A190 (primers SP12/SP2) 

(constructs lacking 50, 100 190 amino acids from the N terminus of spastin) were 

subcloned into the pMT21-myc vector (EcoRI/ Sail). These constructs were then 

subjected to site direct mutagenesis to produce for each of them the K388R mutation.

A construct lacking the MIT (340-600bp) domain was prepared in a two-step 

cloning strategy. pMT21 -Spastin-myc plasmid was digested EcoRI/Xbal. The 

digestion generated two fragment of different size: a small insert of about 600bp and 

the remaining linearized plasmid. These fragments were separated on a 1% agarose 

gel and the band corresponding to the linearized plasmid was purified from gel as 

described above. Using specific primers (SP1/SP13) a portion of 340bp (from 1 to 

340 bp) was amplified by PGR and digested EcoRI/Xbal. The plasmid and the PGR 

product digested have been used for a ligation reaction, and then transformation into 

DH5 □ competent cells.

Furthermore A50 (primers SP15/SP5), AlOO (primers SP16/SP5), A190 

(primers SP17/SP5), were also subcloned into the pAR202 vector (BamHI/Notl) and 

used in interaction mating assay.
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2.2 Restriction enzyme digestion of DNA

DNA was digested in a final volume of 20 |il at 37°C for 1 h. All the restriction 

enzymes were from New England Biolabs, and digestions were performed in 

appropriate buffers, supplied by the manufacturer with the enzyme. All digestions 

were analysed by agarose gel electrophoresis.

2.3 Agarose gel electrophoresis

Agarose gels (1 % w/v in TAE; 40 mM Tris-acetate pH 7.5, 2 mM EDTA) were 

prepared and supplemented with ethidium bromide (ca. 1 pg/ml). The percentage of 

the agarose in gels was determined depending on the size of the DNA fragments to be 

resolved. Gels were generally run at 120 V in Ix TAE buffer, and DNA was 

visualised on a UV transilluminator.

2.4 DNA sequence analysis

For DNA sequence analysis, plasmids or PGR were processed by the DNA 

sequencing core at TIGEM.

2.5 Isolation of DNA from agarose gels

Following agarose gel electrophoresis, DNA gel slices were excised under UV 

light. DNA was extracted from these gel slices using Quiaquick columns (Quiagen)
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following the gel extraction protocol supplied by the manufacturer. Purified DNA was 

eluted from the columns using 30-50 pi deionized water.

2.6 Quantification of plasmidic DNA

DNA concentration was determined for 1:100 dilutions of stocks according to 

the following formula:

Absorbance of one A2 6 0  unit indicates a DNA concentration of approximately 

50 pg/ml.

2.7 Transformation of E. coli with plasmidic DNA

Transformation of chemical competent cells was generally used for the 

transformation of E. coli DH5D with plasmid DNA. E. coli DH5a cells were prepared 

for transformation as follows: Cells were grown to mid-log phase (Aeoo = 0.6) in Luria 

Broth (LB; 1 % bactotryptone, 1 % NaCl and 0.5 % Bacto-yeast extract) at 37°C with 

shaking. Cells were collected by centrifugation at 1200 rpm at 4°C, resuspended into 

30ml (for each 100 ml of culture) of RFl and kept on ice for 90 min. This suspension 

was then centrifuged at 1200 rpm for 15 min, the resulting pellet was resuspended in 

4ml (for each 100 ml of culture) of ice cold RF2 and kept on ice for 30 min. At this 

point cells were aliquoted and stored at -80°C. For each transformation, DNA was 

added to 50 ml of competent cells and incubated on ice for 30 min, then cells were 

subjected to heat shock treatment at 42°C for 2 min an successively incubated on ice 

for 10 min. Cells were recovered in 1ml of LB and incubated at 37°C for 1 h, before
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plating on LB-agar containing appropriate antibiotics and incubation at 37°C 

overnight.

Solutions:

R Fl (V=250ml)

1.86gKCl 

2.47g MnCl2  4H20 

0.74g CH3 COOK 

0.367g CaCW H2 O 

37.5mls Glycerol 

pH=5.8 (with CH3 COOH)

RF2 (V=250ml)

0.52gMOPS 

0.187gKCl 

2.75g CaCW H2 O 

37.5mls Glycerol 

pH=7(withHCl)

2.8 Isolation of plasmid DNA from E, coli

Large-scale (‘midi-preps’) plasmid DNA preparations were carried out using the 

Quiagen MIDI prep kits according to the manufacturers instructions (Quiagen), while 

plasmid mini-preps were carried out using the Quiagen MINI prep kits. Both 

procedures are based on the alkaline lysis method (Sambrook J et al., 1989), but use a 

support column to purify isolated plasmid DNA. Purified DNA was always checked 

by enzymatic digestion with appropriate enzymes.
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2.9 In vitro site directed mutagenesis

To introduce the point mutations, S44L, S362C, G370R, F831C, N386K, 

K388R, L426V, C448Y, R460L, R499C and A556V into both the spastin-myc 

and/or spastin-mycGFP constructs, in vitro mutagenesis was performed using the 

Quickchange site directed mutagenesis kit (Stratagene, La Jolla, CA), according to 

the manufacturer instructions. The point mutations of the lysine K340R, K462R, 

K565R were also introduced in the pCDNAs-Spastin construct. Both single and 

multiple lysine mutants were produced and tested in the in vitro SUMO-conjugation 

assay. The presence of the point mutation was then confirmed by DNA sequencing. 

The following primers were used:

S44L,5’-GCCCCTCCGCCCGAGTTGCCGCATAAGCGGAAC-3’

S362C, 5’-GTTATTCTTCCTTGTCTGAGGCCTGAG-3’

G370R, 5’-CCTGAGTTGTTCACAAGGCTTAGAGCTCCTG-3’

F3 81C, 5 ’ -GGCTGTTACTCTGTGGTCCACCTGG-3 ’ 

N386K,5’-GTCCACCTGGGAAGGGGAAGACAATGC-3’

N386S, 5’-GTCCACCTGGGACTGGGAAGACAATGC-3’ 

K388R,5’-CTGGGAATGGGAGGACAATGCTGGC-3’

L426V, 5’-GAAATTGGTGAGGGCTGTTTTTGCTGTGGCTCG-3 ’

C448Y, 5’-GTTGATAGCCTTTTGTATGAAAGAAGAGAAGGG-3’

R460L, 5’-GCACGATGCTAGTAGACTCCTAAAAACTGAATTTC-3’

R499C,5’-GGCTGTTCTCAGGTGTTTCATCAAACG-3’

A556V,5’-GCTTTGGCAAAAGATGTAGCACTGGGTCCTATC-3’

K340R, 5’- AATGGAACAGCTGTTAGATTTGATGATATAGCT-3’
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K462R, 5’- GCTAGTAGACGCCTAAGAAGTGAATTTCTAATAG-3’ 

K565R, 5’- CCTATCCGAGAACTAAGACCAGAACAGGTGAAG-3’

2.10 Expression and purification of spastin fusion protein

6 his-SP (6 his-Spastin 1-122) construct was expressed in Escherichia Coli strain 

M l5. Protein expression was induced with 2mM IPTG over night at 25°C and then 

purified under denaturing condition.

This cloning, protein production and purification were carried out previously in 

the lab.

GST-SP (GST-spastin 87-354) construct was expressed in Escherichia Coli 

strain B834. 100 mis LB medium containing the appropriate antibiotic were 

inoculated overnight at 37°C with vigorous shaking, the morning after the culture 

was diluted 1:10 (to 11) and grown at 37°C until their ODôoo was 0.6. Before 

induction, 1 ml of bacterial culture was removed as control. After induction with 

2 mM IPTG, cells were grown for 3 hours at 25°C. Bacterial samples (1ml of 

uninduced and 1 ml of induced bacteria) were centrifiiged to pellet cells, which were 

then resuspended in 100 pi of boiling mix (see SDS-PAGE methods). Samples were 

fractionated by SDS-PAGE and the protein gel was stained with Blue-Comassie 

(0.1 % Coomassie Blue, 40 % Methanol, 10 % glacial acetic acid in dH2 0 ) for 15 

min and destained in (40% Methanol, 10% glacial acetic acid in dH2 0 ). If the 

fusion protein was induced, all the bacteria culture was centrifiiged to pellet the cells. 

Cells were processed for native lysis and resuspended in (PBS/500mM NaCl/lmM 

DTT/lmM protease inhibitor cocktail) and sonicated (6x30sec). The resulting
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bacterial suspension was supplemented with Triton-X-100 to a final concentration of 

1% (v/v) and centrifiiged at 14000 rpm for 30 min in a JA-14 Beckman rotor. 

Supernatant was collected, transferred to new tubes and centrifiiged at 20000 rpm for 

2hrs in a JA-20 Beckmann rotor. The lysates obtained was supplemented with 1ml of 

GST-Agarose beads suspension (50% w/v) and incubated over night at 4°C under 

stirring. This suspension was then put on a 1ml polypropylene Quiagen column and 

F/T was collected. Beads were washed with 10 times bed volumes of (PBS/500mM 

NaCl/lmM DTT) and fusion protein was eluted in 50mM TrisHCl pH 8.5/ 500mM 

NaCl/lmM DTT/ lOmM Glutathione (1ml fractions). 5 pi of each fraction were 

checked by SDS/PAGE analysis and those containing the fiision protein were 

unified. Purified fusion proteins were used for the production of specific rabbit 

polyclonal and monoclonal antibodies.

2.11 Quantification of protein

Protein concentrations were determined using Bradford’s method (Bradford, 

1976). Protein samples were mixed with Bradford’s reagent (Biorad) and the 

absorbance at 595 nm was measured on a spectrophotometer. Protein absorbances were 

converted to mg/ml concentrations using a standard curve constructed by measuring the 

absorbances of a range of bovine serum albumin (BSA) concentrations.
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2.12 Affinity purification of spastin polyclonal antibodies (SP-R74, SP-50 and 

SP-51)

Primary antibodies to spastin were raised in rabbit (SP-R74 at Primm, Italy; SP- 

50 and SP-51 at Biogenes, Germany) and were antigen affinity purified. NHS Hi- 

Trap™ affinity columns were used for the purification of the antibodies from the crude 

rabbit serum. The columns were washed with 10 volumes of coupling buffer (200mM 

NaHCOs/ 500mM NaCl pH 7.8). All the antigens were dialysed in coupling buffer. 

Following this, the appropriate ligand was bound to the column by recirculation of 5mg 

of recombinant protein (GSTSP or 6 HisSP) over the column for 2 hrs at RT. In order to 

deactivate any excess groups that have not coupled ligand and to wash out not-bound 

ligand, the columns were washed in buffer A (500mM NaCl/ 500mM Ethanolamine, 

pH 8.3) and buffer B (lOOmM CHgCOONa/ pH 4.0). After columns preparation, a 1:10 

dilution (in PBS) of rabbit serum was recirculated over the column over night at 4°C. 

Then, the column were washed with 20 volumes of lOmM Tris/ 500mM NaCl/ pH 7.5 

and eluted with lOOmM Glycine pH 2.25. 500 pi fractions were collected in 50pl of IM 

Tris pH 8.0 in order to neutralise the acidic eluate and preserve antibodies activity. The 

antibodies so purified were then dialysed in PBS and stored at 4°C.

In the case of SP-50 and SP-51, the sera were first passed through a GST-agarose 

beads column to discard the portion of antibodies raised against the GST moiety. The 

flow through from this step was then used for the affinity purification.
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2.13 Cell culture and antibodies

Monkey kidney Cos-7 and HeLa cells were maintained in exponential growth 

in Dulbecco’s modified Eagle’s medium (DMEM, Highclone) containing 10% fetal 

bovine serum (Highclone). Immortalised motoneuronal cells NSC-34 (kindly 

provided by Angelo Poletti, Milan) were cultured in DMEM supplemented with 5% 

defined fetal bovine serum (Highclone). Human fibroblasts were cultured in a-MEM 

(GIBCO) supplemented with 10% of defined fetal bovine serum (Highclone).

The affinity purified spastin specific antibodies produced in this work were 

used as follow: R74 (1:5, IF); SP-50 (1:5 IF, 1:2000 WB and 1:200 in IP); SP-51 (1:5 

IF, 1:2000 WB and 1:200 in IP); M3 and M4 (1:1 IF and 1:10 WB).

Monoclonal anti-myc was produced from 9E10 hybridoma cells (Evan et al., 

1985), used 1:5 for western blot (WB) and 1:1 for immunofluorescence (IF). For 

immunoprécipitation experiments, 500pl of 9E10 hybridoma supernatant were 

concentrated on lOOpl of protein A beads at 4°C for 1 hr, beads were then used 

directly for the immunoprécipitation.

HA-tagged proteins were detected using monoclonal or polyclonal antibody 

(SIGMA), specific for a 9 amino acid HA peptide sequence (YPYDVPDYA) from 

influenza HA, both used at a dilution of 1:2000 for western blot (WB), 1:200 for 

immnufiuorescence (IF) and 1:200 for immunoprécipitation (IP).

Anti-catalase was from SIGMA (1:200), Lysotracker and Mitotracker (Orange) 

were from molecular probes. The Mitotracker and the Lysotracker were used at 

200nM final concentration in culture medium for 30 min at 37 °C, and then cells are 

fixed and processed with the normal immunofluorescence protocol. Anti a-tubulin 

(1:250, IF) was from Molecular probes; anti-58K protein (1:100, IF), anti-flag
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(1:1000, WB and 1:100 for IP), anti p-tubulin (1:2500, WB), monoclonal anti y- 

tubulin (GTU-8 8 , 1:50, IF) and polyclonal y-tubulin (1:1000, WB) were from 

SIGMA. Monoclonal anti-PML was a kind gift from Pellicci (Milan, Italy) and was 

used 1:5 in IF. Monoclonal anti RT97 was from Development Studies Hybridoma 

Bank (University of Iowa, IA)(Wood and Anderton, 1981)(1:50, IF) and monoclonal 

anti-NF200 was from SIGMA (1:100, IF). Goat-polyclonal anti-GST (1:1000, WB) 

was from Amersham. Monoclonal anti-SUMO-1 antibody was purchased from 

Cambridge Bioscience and use in western blotting at a ratio, respectively of 1:500. 

Rabbit polyclonal anti-SUMOl was from Santa Cruz and used 1:200 in WB and 1:50 

for IP.

All the secondary antibodies for immunofluorescence were from Dako (1:200); 

while horseradish peroxidase (HRP)-conjugated antibodies were from Amersham 

(1:3000). The Mouse secondary antibody AMCA-conjugated was from Jackson 

laboratories (1:50).

2.14 Cell transfection and immunofluorescence

All constructs were transfected using Lipofectamine (Invitrogen) or Polyfect 

(Quiagen) according to instructions provided by Manufacturer. Transfection to 

obtain a low level of expression were performed by incubating cells with DNA- 

lipofectamine mixture for 4 hrs and fixing cells 2 hrs later.

Cells were grown on coverslips or on multiwell chamberslides (Nunc), 

transfected as described and fixed for 5 min with a solution of 4% paraformaldehyde
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in PBS or for 5 min in Methanol at -20°C. Then cells were permeabilized with a 10 

minutes treatment in PBS/0.2% Triton X-100 and blocked (before antibody addition) 

by incubation in 10% pig serum/PBS for 30 min. The appropriate dilution of primary 

antibodies was prepared in 1% pig serum /PBS and subsequently the cells were 

incubated at room temperature for 2 hrs. Immobilised antibody/antigen complexes 

were detected using secondary antibodies at a concentration of 1:200 for 1 h. To 

detect nuclei, cells were stained using DNA specific stain DAPI (1 pg/ml, Roche). 

For confocal microscopy, cells were treated with RNase A (lOpg/ml at 37°C for 30 

min, SERVA) and nuclei were stained with Propidium iodide (2.5 pg/ml, SIGMA).

When requested, cells were treated with 20 pM Nocodazole (SIGMA) for 2.5 

hrs at 37°C. Cells were mounted with vectashield (DBA) and examined with an 

Axioplan microscope (Zeiss) equipped with an Axiocam CCD camera and 

Axiovision digital imaging software (Zeiss). Alternatively, cells were analysed with 

a confocal microscope (Leica). The images obtained were processed using Photoshop 

5.5 software (Adobe).

2.15 Microtubule disassembly in transfected Cos-7 cells

Cells were transfected with spastin-GFP, spastin^^^^-GFP, or pcDNA3-GFP, 

fixed 24 hrs post-transfection and analyzed by double immunofluorescence using 

GFP fluorescence and a monoclonal antibody against a-tubulin. Three independent 

transfection experiments were performed for each constructs. For each experiment, 

1 0 0  transfected cells were examined to evaluate the intensity of anti a-tubulin
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staining. We scored a cell as having a microtubule disassembly phenotype only when 

a dramatic reduction in tubulin fluorescence was appreciated compared to 

neighbouring untransfected cells. To analyze the integrity of microtubules in cells 

showing a dramatic decrease in the intensity of a-tubulin staining, images were 

acquired with a longer time of exposure.

2.16 Subcellular fractionation and immunoprécipitation

Transfected cells were collected 48 hrs post-transfection, resuspended in buffer 

A (lOmM Hepes pH7.9, 1.5mM MgCli, lOmM KCl, 0.5mM DTT, 0.5mM PMSF), 

incubated on ice for 10 min and homogenized. Samples were centrifuged at 510 x g 

for 10 min at 4°C; the supernatant was collected and stored as cytoplasmic fraction. 

The resulting pellet was resuspended in buffer B (20mM Hepes pH 7.9, 1.5mM 

MgClz, 0.42M NaCl, 25% Glycerol, 0.2mM EDTA, 0.5mM DTT, 0.5mM PMSF), 

homogenized and incubated on ice for 30 min. The sample was then centrifiiged at 

12900 X  g for 30 min at 4°C and the supernatant was analyzed as nuclear fraction. 

Both nuclear and cytoplasmic fractions were concentrated by immunoprécipitation of 

the protein the 9E10 antibody. Samples from immunoprécipitation were fractionated 

on an 8 % SDS/PAGE acrylamide gel, blotted on a PVDF membrane and revealed by 

immunoblot analysis.
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2.17 Immunoprécipitation

To assess protein-protein interactions, HeLa cells were collected and lysed in 

PEM/DNNA buffer (Pipes 80mM pH 6 .8 , EGTA ImM, MgCL ImM, DTT 1 mM, 

NaCl 150mM, NP40 1%). PEM/DNNA was supplemented with ImM protease 

inhibitor cocktail (SIGMA) and 25 mM NEM (N-ethilmaleymide, SIGMA). Samples 

were subjected to brief sonication (3 xl5 sec) to ensure full lysis and after they were 

incubated on ice for 10 min. Samples were then centrifuged at 10000 rpm for 5 min 

at 4°C to remove cellular debris. Total extracts were pre-cleared with 100 pi protein 

A sepharose (10% w/v in PBS, SIGMA) for 1 hr at 4°C to minimise the amount of 

non-specific binding during immunocomplex formation. Following incubation, non­

specific complexes were removed by centrifugation, discarding the protein A beads. 

The precleared lysates were supplemented with the appropriate primary antibody and 

incubated at 4°C for 3 hrs. To isolate the immunocomplexes, samples were then 

supplemented with lOOpl of protein A 10% and incubated for 1 hr at 4°C. Samples 

were then centrifuged at 5000g for 2 min and washed 4 times with PBS/0,1% Triton- 

X-100. Immunocomplexes were recovered by adding 30pl of disruption buffer to the 

protein A beads. Samples were boiled for 5 min, resolved by SDS-PAGE and 

analysed by Western blotting.

2.18 Microtubule-binding assay

Transfected cells were collected 48 hrs post-transfection and lysed in 

PEM/DNNA buffer supplemented with protease inhibitors, at 4°C for 1 hr. Lysates
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were centrifiiged at 610 x g for 10 min at 4°C. Cytosol was then purified by 

successive centrifugations at 1 0 , 0 0 0  x g for 1 0  min, at 2 1 , 0 0 0  x g for 2 0  min and at 

100,000 X g for 1 hr at 4°C. Each supernatant was then supplemented with ImM 

GTP (Boeringher) and 40 pM taxol (Molecular probes) and incubated at 37°C for 30 

min. Corresponding samples without taxol were also prepared. Each sample was 

layered over a 15% sucrose cushion and centrifuged at 30,000 x g for 30 min at 30°C 

to sediment polymerized microtubules. The resulting supernatants were saved and 

pellets were resuspended in an equal volume of sample buffer IX for electrophoresis 

and immunoblot analysis.

2.19 Centrosomes purification

Centrosomes were isolated from HeLa cells by discontinuous gradient 

ultracentrifiigation according to the method of Moudjou and Bomens (Moudjou and 

Bomens, 1998). Cells in the exponential phase of growth were treated with 1 pg/ml 

cytochalasin D and 0.2 pM nocodazole for 1 hr at 37°C. Cells were trypsinized and 

collected by centrifugation. The resulting pellet was washed in TBS (lOmM Tris­

HCl pH 7.4, 150mM NaCl) and successively in O.IX TBS/ 8 % Sucrose. Cells were 

resuspended in 2 ml of O.IX TBS/ 8 % Sucrose, followed by the addition of 8  ml of 

lysis buffer (ImM Hepes pH 7.2, 0.5% NP40, 0.5mM MgCl:, 0.1% |3- 

mercaptoethanol, 1 pg/ml leupeptin, 1 pg/ml pepstatin, 1 pg/ml aprotinin and ImM 

PMSF). The suspension was gently shaken and passed more times through a 10ml 

serological pipette to lyse the cells. The lysates was spun at 2500g for 10 min to 

remove the swollen nuclei, chromatin aggregates and unlysed cells. The resulting
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supernatant was supplemented with hepes buffer to a final concentration of 10 mM 

and with 1 pg/ml DNasel, and incubated on ice for 30 min. The mixture was gently 

underlaid with 1ml of 60% Sucrose solution (lOmM Pipes pH 7.2, 0.1% tritonX-100, 

and 0.1% P-mercaptoethanol containing 60% sucrose w/v) and spun at lOOOOg for 30 

min to sediment centrosomes on the cushion. The upper 8  ml of the supernatant was 

removed and the remaining part, containing the concentrated centrosomes, was 

vortexed and loaded onto a discontinuous sucrose gradient consisting of 70, 50 and 

40% w/v solution from the bottom (500 pi 70% sucrose, 300 pi 50% sucrose and 300 

pi 40 % sucrose), and spun at 120000g for 1 hr. 200 pi fractions were collected and 

centrosomes of each fraction were sedimented by addition of 1ml of lOmM pipes pH

7.2 and centrifugation at 20000g for 15 min at 4°C. Supernatants were removed and 

centrosomes were resuspended in disruption buffer and fractionated on an 

SDS/PAGE.

2.20 SDS/PAGE and Western Blot analysis

Protein samples were resuspended in disruption buffer (IX: 20 mM Tris/ HCl 

pH6 .8 , 2% SDS, 5% b-mercaptoethanol, 2.5% glycerol and 2.5% bromophenol blue) 

and denaturated at 100°C for 5 minutes before loading on a 8.5-12.5% SDS- 

polyacrylamide gel (acrylamide percentage appropriate for the size of proteins to be 

separated). Bio-Rad mini gel equipment was used in accordance with the 

manufactures instructions. New England Biolabs protein molecular weight markers 

were used as standards to establish the apparent molecular weights of proteins 

resolved on SDS-polyacrylamide gels. All gels were run at 150 V for an appropriate
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length of time, using SDS-PAGE running buffer (25 mM Tris, 192 mM glycine, 

0.1 % SDS). Separated polypeptides were stained with Comassie Blue (0.2% 

Comassie brilliant blue R250; 50% methanol; 10% acetic acid) for 30 minutes and 

then destained (20% methanol; 10% acetic acid). Alternatively, proteins were 

transferred to a polyvinylidene difluoride membrane (PVDF, Amersham) using a wet 

blotter (Biorad Systems) at lOOV for 1 h in blotting buffer (25 mM Tris, 192 mM 

glycine, 20% Methanol).

The membranes were blocked against non-specific binding of antibodies with 

TBS containing 5% skimmed milk powder and 0.1% Tween 20. Successively, 

membranes were incubated with monoclonal or polyclonal antibodies diluted in 

blocking buffer for 2 hrs at room temperature. After primary antibody incubations, 

membranes were washed (3x 5 min) in a large excess of TBS/0.1 % Tween 20 

(TBST), before incubation with the relevant horseradish peroxidase-(HRP) 

conjugated secondary antibody for 1 h at room temperature. Horseradish peroxidase 

conjugated anti-mouse IgG, anti-rabbit IgG (Amersham) and anti-goat (Jackson 

laboratories) were used as secondary antibodies (1:3000). Membranes were again 

washed (3x 5 min) in PBST, before developing using the ECL reagent system 

(Amersham) according to the manufacturer’s protocol.

2.21 Yeast two hybrid screening

The yeast strain used for the two hybrid screening is the EGY48, which has the 

LEU2 reporter gene integrated. Additional DNAs are introduced into this strain by 

transformation.
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2.21.1 Yeast transformation

The appropriate yeast strain is grown over night at 30°C. The morning after, 

yeasts were diluted 1:3 and grown till the absorbance at 600 nm (OD ôoo) reach 0 .6 . 

Yeast cultures are centrifuged at 2000g for 5 min. The resulting pellet is washed with 

5 mis of sterile H2 O and then with 5 mis of TELiOAc (lOmM Tris-HCl pH 7.5, ImM 

EDTA, lOOmM LiOAc pH 7.5). Cells were centrifuged at 2000g for 5 min and the 

yeast pellet was then resuspended into 500 pi (for a starting culture of lOOmls) of 

TELiOAc. 50 pi of cells were used for each transformation and were supplemented 

with 6  pi of DMSG, 5 pi of Salmon sperm (lOmg/ml) (carrier DNA), 1-2 pg of DNA 

to transform, 300 pi of PEG/TELiOAc (40% PEG 3500 in TELiOAc). The 

transformation mix was incubated at 30°C for 30 min and then heat shock was 

performed at 42°C for 15 min. 150 pi of this mixture was then plated on selective 

plates, depending on the plasmid transformed and their selectable marker genes (HIS 

for pAR202; URA for SHI8.34, lacZ plasmid reporter; TRP for pJG4-5). Plates were 

then incubated at 30°C for 3 days.

2.21.2 Testing whether the bait protein activates transcription of the reporters

EGy48 yeast strain was transformed with the LacZ reporter SHI8.34 (URA) 

and either with empty pAR202 (HIS) or with pAR202 plasmid containing the baits to 

test. Three different baits have been tested for transactivation of the reporters: 

pAR202-LexA-Spastin, pAR202-LexA-spastin^'^^ and pAR202-LexA-spastin^'^. 

Yeast selection strains EGy48/SH18.34/pAr202empty, EGY48/SH18.34/ pAR202- 

Spastin, EGY48/SH18.34/pAr202-spastin'^'^ and EGY48/SH18.34/pAr202-
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spastin^^ were grown in liquid cultures (URA, HIS, Glucose; UH Glc) at 30°C and 

then several dilution in water (from 1 0 ’  ̂ to 1 0 '^) of the culture were spotted onto 

three selective plates:

UH Gal/Raf (URA, HIS Galactose/Raffmose) (for Leu reporter)

UHL Gal/Raf (URA, HIS, LEU Galactose/Raffmose) (for Leu reporter)

UH Glc Xgal (URA, HIS, Glucose Xgal) (for LacZ reporter)

Plates were incubated at 30°C for 3 days. All the yeast strains should grow at a 

similar rate on the UH Gal/Raf plates. Yeasts with plasmid baits that do not 

transactivate the system should not grow on UHL Gal/Raf and form white colonies 

on UH Glc Xgal, while yeasts transformed with a transactivating bait grow on this 

selective plate and form blue colonies on UH Glc Xgal.

In the same way the yeast selection strains above mentioned were transformed 

also with the pJG4-5 empty vector, grown in liquid cultures and several dilutions 

were spotted on selective plates:

UHWL Glc (URA, HIS, TRP, LEU Glucose) (for Leu reporter)

UHWL Gal Raf (URA, HIS, TRP, LEU Galactose/Raffmose) (for Leu 

reporter)

UHW Glc Xgal (URA, HIS, TRP, Glucose Xgal) (for LacZ reporter)

UHW Gal/Raf Xgal (URA, HIS, TRP, Galactose/Raffmose Xgal) (for LacZ 

reporter)

Plates were incubated at 30°C for 3 days. All the yeast strains should grow on 

the UHWL Glc plates. Yeasts with plasmid baits that do not transactivate the system 

should not grow on UHWL Gal/Raf and form white colonies on UHW Glc Xgal
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plates, while yeasts transformed with a transactivating bait grow on UHWL Gal/Raf 

and form blue colonies on UHW Gal/Raf Xgal.

pAR202-LexA-spastin^'^^ was transactivating the system and therefore could 

not be used for the yeast two hybrid screening, while pAR202-LexA-Spastin and 

pAR202-LexA-spastin^'^ were non-transactivating baits.

2.21.3 Verifying that a full-length fusion protein is made

To verify that the full-length bait protein is made, yeast extract from yeast 

strain expressing the appropriate bait were prepared. The appropriate yeast selection 

strain is grown over night at 30°C in selective medium. The morning after yeast 

culture was diluted 1:3 and when ODeoo was 0 .6 ,1ml of yeast culture was centrifuged 

at 2000g for 5 min. The yeast pellet was then resuspended in 125 pi of 80mM 

Sorbitol, 8 mM NaCitrate pH 5, 0.8mM EDTA pH 8 , 0.8mM DTT, 0.8mM KH2PO4 , 

ImM PMSF, 1 mg/ml zymolase) and incubated at 30°C for 30 min. Samples were 

supplemented with 62,5 pi of disruption buffer (3X). Cells were then lysed by 

freezing on dry ice followed by boiling for 5 min prior to loading samples on 

SDS/PAGE. Proteins are then transferred to a PVDF filter and immunoblot analysis 

is performed using an anti-LexA antibody (1:2500, Clontech) to detect the fusion 

protein.
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2.21.4 Introducing the library into the selection strain

The selection strain (EGY48/SH18.34/pAR202-Spastin or 

EGY48/SH18.34/pAR202- spastin^"^) was grown in liquid medium UH Glc at 30°C 

over night, the morning after the culture was diluted in 500mls and let grow till 

ODeoo is 1.1. Cells were processed as for a normal yeast transformation, using 2.5 

times the amounts of a normal transformation. So 125 pi of yeast cells were 

supplemented with 15 pi of DMSO, 12.5 pi of Salmon sperm, 2.5 pg Library DNA 

and 750 pi PEG/TELiOAc. This mixture has been incubated at 30°C for 30 min and 

then at 42°C for 15 min. All the reaction mixture has been plated on a 24x24 cm^ 

bioessay dish (Nunc) (UHW Glc) and incubated at 30°C for 3-4 days.

When yeasts are grown, the total number of transformants is calculated, by 

counting the number of colonies per cm^, and then considering the area of each 

bioassay dish and how many dishes have been plated (usually around 600000 total 

transformants). Then, yeast are collected, washed with sterile water, resuspended into 

a glycerol solution (65% v/v glycerol, 0.1 M MgS0 4 , 25 mM Tris-HCl pH 7.4) and 

stored at -80°C. The plating efficiency is calculated by thawing an aliquot of library 

transformants and making serial dilution in sterile water. 1 0 0  pi of each dilution are 

plated on to 100mm diameter UHW Gal/Raf dish. Yeasts are incubated at 30°C for 3 

days and then the number of colonies formed is counted. In this way, the plating 

efficiency is calculated as the colony forming unit (c.f.u.) per unit volume (Ipl) of 

frozen cells ( 1 0  ̂cfii/pl).
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2.21.5 Selecting interactors

An aliquot of library transformants is thawed. A volume (pi ) corresponding to 

1 0  times the number of total transformants ( 1 0  x 600000 = 6  x 1 0  ̂cfu) is incubated 

in 10-20 mis of UHW Gal/Raf liquid medium and incubated at 30°C for 4 hrs. Then, 

yeast are centrifuged at 2000g for 5 min and washed with sterile water. The yeast 

pellet is resuspended in sterile water and plated on 150mm UHWL Gal/Raf selective 

plates (0.5 x 10  ̂c.f.u. per plate). Plates were incubated at 30°C for 2-5 days. When 

yeasts are grown, single colonies are picked and streaked onto UHW Glc selective 

plates and let at 30°C for 2-3 days. Then yeasts are replicated on four selective plates 

(UHWL Glc and Gal/Raf; UHW Xgal Glc and Gal/Raf) in order to check the 

activation of both reporters and individuate the positive interacting clones. Good 

candidate for interactors are those yeast which grow on UHWL Gal/Raf but not on 

UHWL Glc, and that forms blue colonies on UHW Xgal Gal/Raf and white colonies 

on UHW Xgal Glc.

DNA from positive clones was isolated, reintroduced in the appropriate yeast 

selection strain (EGY48/SH18.34/pAR202-Spastin or EGY48/SH18.34/pAR202- 

spastin^'^) via transformation and the activation of the reporter genes was 

reconfirmed.

2.21.6 Preparation of yeast DNA miniprep and isolation of positive interactor 

DNAs

A large mass of yeast is scraped from the plate and resuspended into 1ml of 

sterile TE (lOmM Tris-HCl pH 7.5, ImM EDTA). This suspension is centrifuged at

96



C h a p t e r  2. M a t e r ia l  a n d  M e t h o d s

2000g for 5 min and yeast is resuspended in 0.5 ml of S-buffer (lOmM K2HPO4 pH 

7.2, lOmM EDTA, 50 mM 2-mercaptoethanol, 50 pg/ml zymolase) and incubated at 

37°C for 30 min. Then 0.1 ml of lysis solution (25mM Tris-HCl pH 7.5, 25 mM 

EDTA, 2.5% SDS) was added and samples were incubated at 65°C for 30 min. This 

solution was supplemented with 166 pi of 3M potassium acetate and kept on ice for 

10 min. Samples were centrifuged for 10 min, and the supernatant was poured in a 

new tube. DNA was precipitated by adding 0.8 ml of cold ethanol, incubating on ice 

for 10 min and centrifiiging for 10 min. The pellet was washed with 70% ethanol, 

dried and resuspended into 40 pi of sterile water. 1-2 pi of this crude yeast DNA 

were used to transform a special E.Coli strain (KC8 ) of competent cells, so to isolate 

only the pJG4-5 plasmid. The KC8  strain of E. Coli contains a mutation in the TRP 

gene and therefore is unable to grow in the absence of tryptophan, this inability is 

complemented by the yeast TRP gene present on the library plasmid.

2.21.7 Screening of positive clone by PCR

Yeast colonies were resuspended in 20 pi of 0,25% SDS and vortex. Samples 

were centrifuged shortly and supernatant was recovered. Ipl of this supernatant was 

used as template in a PCR reaction to determine the length of the clones. The PCR 

reaction was set up as follow:

For the PCR, AmpliTaqGold (Applied Biosystem) was used as follows:

5 pi 1 Ox PCR buffer 

4 pi MgCl2  20mM
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0.4 mM of each dNTP

2 0 0  ng forward primer

2 0 0  ng reverse primer

1 p\ AmpliTaqGold Vo\ymQi2iSQ

1 pi DNA template

dH2 0  to 50 pi

For the amplification of positive clones, PCR reactions were usually performed 

with the following cycling parameters:

1 cycle: 10 min at 94°C

30 cycles: 30 sec at 94°C 

30 sec at 42°C 

2 min at 72°C 

1 cycle: 10 min at 72°C

PCR products were used for direct DNA sequence analysis.

2.22 Interaction mating

In this mating assay, the activation tagged proteins are expressed in the EGY48 

(mating type a) that contains the LEU reporter and grown on TRP (lacking 

tryptophan) Glc plates; the baits are expressed in the EGY42 (mating type a), where 

it has been also transformed the LacZ reporter, and grown on URA/HIS Glc plates. 

The yeasts are streaked on selective plates. The two strains are mated by applying
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them to the same replica velvet (one perpendicular to the other), replicated to a YPD 

(complete rich medium) plate and incubated at 30°C for 1-2 days. At the intersection 

of the YPD plate the diploids are formed. This plate is then replicated on the four 

selective plates for testing the activation of the two reporter genes.

2.23 Generation of constructs for putative spastin interactors

The coding region of Nal4 cDNA was amplified by PCR using Pfu turbo 

polymerase (Stratagene), HeLa cDNA as template and specific primers designed on 

available sequence (Ramos-Morales et al., 1998). Nal4 was the subcloned into 

pcDNA3-HA vector (primers Nal4-l/Nal4-2) (Ecorl/Xhol) and into the pGEX3X 

vector (primers Nal4-3/Nal4-4)

CMV-Daxx was a kind gift from Prof. Gianni Del Sal (University of Trieste, 

Italy). Daxx open reading frame was amplified by PCR (primers daxxl/daxx2) with 

the Pfu Turbo polymerase and cloned into pMT21-myc vector (Ecorl/Sall). 

pcDNA3-6his-SUM01 was a gift from Ron T. Hay (University of St. Andrews, 

SCOTLAND). SUMO I and UBC9 cDNA in yeast vector pAR202 and pJ4-5 as well 

as pcDNAs-HA-PML were from Germana Meroni. pcDNAg-Flag-BRD? was a kind 

gift from Dr. Julia Kzhyshkowska (University of Heidelberg).

2.24 Purification of GST-Nal4

GST-Nal4 construct was expressed in Escherichia Coli strain B834. Induction 

and purification were conducted as described in paragraph 2 .1 0 .
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2.25 GST pull-down assay

Cells were collected and resuspended in lysis buffer (50mM Tris-HCl pH 7.5, 

lOmM MgC12, 0.5 mM DTT, protease inhibitors), sonicated and kept on ice for 10 

min. The resulting suspension was centrifuged at 14000 rpm for 10 min. The 

supernatant was supplemented either with GST-agarose beads or with specific GST 

fusion protein bound to agarose beads and incubated at 4°C for Ihrs. Samples were 

then centrifuged at 2000g for 4 min and beads were washed 4 times in the lysis 

buffer.

After the last wash, beads were resuspended in the disruption buffer, boiled for 

5 min and analysed by SDS/PAGE.

2.26 Purification of 6XHIS-tagged SUMO-1- conjugates

Cells transfected with 6 His-tagged SUMO-1 in a 100mm dish (Rodriguez et 

al., 1999; Treier et al., 1994) were lysed in 1 ml of 6  M guanidinium-HCl, 0.1 M 

Na2HP0 4 /NaH2 P0 4 , 0.01 M Tris/HCl, pH 8.0 plus 5mM imidazole and 10 mM □- 

mercaptoethanol. After sonication, to reduce viscosity, the lysates were mixed with 

50 jil of Ni^*^-NTA-agarose beads (Quiagene) prewashed with lysis buffer and 

incubated for 2 hours at room temperature. The beads were successively washed with 

the following: 6  M guanidinium-HCl, 0.1 M Na2 HP0 4 /NaH2 P0 4  ,0.01 M Tris/HCl, 

pH 8.0, 10 mM P-mercaptoethanol; 8  M Urea, 0.1 M Na2 HP0 4 /NaH2 P0 4  ,0.01 M 

Tris/HCl, pH 8.0, 10 mM P-mercaptoethanol; 8  M Urea, 0.1 M Na2 HP0 4 /NaH2 P0 4  , 

0.01 M Tris/HCl, pH 6.3,10 mM P-mercaptoethanol (buffer A) plus 0.2% Triton X-
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100; buffer A and then buffer A plus 0.1% Triton x-100. After the last wash with 

buffer A the beads were eluted with 200 mM imidazole in disruption buffer. The 

eluates were subjected to SDS-PAGE analysis and the proteins transferred to a 

polyvinylidene difluoride membrane (Amersham).

2.27 In vitro transcription-translation

In vitro transcription/translation was performed using 1-2 Og of plasmid DNAs 

and a TNT Coupled Wheat Germ Extract System (Promega) according to the 

instructions provided by the manufacture. ^^S-methionine (Amersham) was used in the 

reactions to generate radiolabelled proteins.

2.28 In vitro SUMO-1 conjugation assay

^^S-methionine labelled in vitro transcribed/translated proteins (1 pi) were 

incubated with 2 pi of HeLa cell fraction containing SUMO-1 El (SAEl/2) activity 

(fr II.4) (Desterro et al., 1999) in a 10 pi reaction including an ATP regenerating 

system (50 mM Tris pH 7.6, 5 mM MgCh, 2 mM ATP, lOmM creatine phosphate,

3.5 U/ml of creatine kinase and 0.6 U/ml of inorganic pyrophosphatase), SUMO-1 (1 

mg/ml), Ubch9 (60 pg/ml). Reactions were incubated at 37®C for 2 h. After 

terminating the reactions with SDS sample buffer containing mercaptoethanol, 

reaction products were fractionated by SDS-PAGE (8.5%) and the dried gels 

analysed by phosphoimaging (Fujix BAS 1500, MacBAS software).
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The in vitro transcription translation and the SUMO-1 conjugation assay were 

carried out by Ellis Jaffray at the University of St Andrews (in collaboration with 

Prof. R.T. Hay)

2.29 RNA extraction from cells

RNA was extracted from transfected and mock cells using the RNeasy Mini 

Kit (Quiagen). Cells were plated on 100 mm dishes and transfected (as described 

above). 48hrs post transfection cells were washed with PBS and harvested in 600 01 

of RLT buffer (supplemented with 0.1% p-mercaptoethanol) and homogenized using 

a Quiashredder spin column (Quiagen) and centrifuging for 2 min at maximum 

speed.

1 volume of 70% ethanol was added to the flow-through; the resulting solution 

was loaded on RNeasy column (Quiagen) and centrifuged at 8000g for 15 sec. The 

RNeasy column was then washed with 700 pi of buffer RWl (Quiagen) and 

successively with 500 pi of buffer RPE (Quiagen). RNA was then eluted from the 

column into two successive centrifuged in a final volume of 60 pi. RNA was then 

checked on 1 % agarose gel and quantified by measuring the absorbance at 260 nm. 

An absorbance of 1 unit at 260 nm corresponds to 40 pg of RNA per ml.
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2.30 cDNA transcription

cDNA synthesis was performed using the Superscript™ First-Strand Synthesis 

System for RT-PCR (Invitrogen). cDNA syntesis was performed using random 

hexamers as follow:

RNA 3 pg

Random hexamers 3 pi

lOmM dNTP mix 1 pi

DEPC-treated water to 10 pi

Each sample was incubated at 65°C for 5 min and incubated on ice for 1 min.

Then 9 pi of the following reaction mixture were added to each sample:

1 OX RT buffer 2 pi

25mM MgC12 4 pi

O.lMDTT 2 pi

RNase inhibitor 1 pi

Samples were incubated at 25 °C for 2 min, and then 1 pi of Superscript™ II RT was 

added to each tube. Samples were then treated as follow:

42°C for 50 min 

70°C for 15 min

Samples were then chilled on ice and treated with 1 pi of RNaseH at 37 °C for 20 

min.

The cDNA so synthesized was used as template in real time PCR experiments.
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2.31 Real Time quantitative PCR

The Spastin mRNA was measured by real-time quantitative PCR method using 

an ABI PRISM 7700 instrument (PE Applied Biosystems), in several cells 

transfected either with Daxx, or Nal4 or untransfected. PCR primers were designed 

using the Primer Express Software (PE Applied Biosystems). After reverse 

transcription, a quantity of cDNA was amplified by PCR. For each sample, three 

distinct amplifications were carried out in parallel, in order to amplify Spastin 

cDNA, D-actin cDNA as control, and the GAPDH cDNA as a reference gene. The 

primers used for amplification are the following:

B-actin.up 5 ’-TCACCCACACTGTGCCCATCTACGA-3 ’ 
B-actin.dw 5’-CAGCGGAACCGCTCATTGCCAATGG-3’ 
GAPDH.up 5’-GAAGGTGAAGGTCGGAGTC-3’ 
GAPDH.dw 5’-GAAGATGGTGATGGGATTTC-3’ 
Spastin.up 5’-TCGAGTACATCTCCATTGCCC-3’ 
Spastin.dw 5’-TTCCACAGCTTGCTCCTTCTG-3’

The SYBR® Green PCR Core Reagents Kit (PE Applied Biosystems) was utilized 

for fluorescent detection of cDNA. For each sample, spastin and |3-actin mRNA 

values were normalized to the mean value of GAPDH mRNA calculated from three 

independent determinations in the corresponding cell extract. Data were then 

analyzed with Microsoft Excel.
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CHAPTER 3: Subcellular localization of Spastin

3.1 Exogenous spastin localizes to cytoplasmic aggregates

In order to get an insight on the biological role of spastin, we investigated its 

subcellular distribution by transiently transfecting different epitope-tagged spastin 

constructs in Cos? cells (Fig. 8 A). As a first step, Cos? cells were transfected with 

the spastin-myc construct. Cells were collected 48 hrs post transfection; the cellular 

lysates were subjected to subcellular fractionation followed by immunoprécipitation 

in order to concentrate spastin. Samples were then fractionated by SDS/PAGE, 

transferred to a Polyvinylidene fluoride (PVDF) membrane and analysed by 

immunoblotting with an anti-myc antibody. A band of the expected size ( 6 8  KDa), 

corresponding to the spastin-myc protein, was present in the cytoplasmic fraction 

(Fig. 8 B).

Moreover, immunofluorescence experiments on Cos-7 cells transfected with 

the spastin-myc construct showed that exogenous spastin localizes to discrete 

punctuate cytosolic structures, which display a perinuclear distribution (Fig. 9A). 

These structures tend to increase in size with longer period of expression and 

ultimately fill up the cytoplasm. We have observed the same pattern of expression in 

other cell types such as HeLa (Fig. 9B) and human fibroblasts (Fig.9C).

Cos? cells were transfected with the spastin-myc-GFP construct to perform 

double immunofluorescence experiments, using antibodies specific to known 

organelles. These experiments ruled out the possibility that the cytosolic spastin
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spots may correspond to known organelles, such as mitochondria (Mitotracker 

Orange) (Fig.9D), lysosomes (LysoTracker) (Fig.9E) or peroxisomes (anti-catalase) 

(Fig.9F). These data were confirmed by the transfection of different epitope-tagged 

spastin constructs (Fig.8 A). In fact, the use of different promoters and epitopes (HA 

versus myc or GFP) either positioned at the N-terminus or C-terminus did not change 

spastin fluorescent pattern.

Finally, transfection experiments were designed in order to monitor spastin 

localisation in cells that are just beginning to express the construct (see methods). 

Under these conditions, specific spastin fluorescence labelled only one perinuclear 

region (Fig. 9G). This region is located near the Golgi apparatus (Fig. 9H), and 

corresponds to the center of microtubule asters, as assessed by double labelling with 

anti a-tubulin antibody (Fig. 91). This domain of expression is close to the 

centrosome revealed by y-tubulin staining (Fig. 9L, M). These data suggest that onset 

of spastin expression may be in the microtubule-organizing center and that, upon 

longer periods of expression, spastin may accumulate in cytoplasmic aggregates.

3.2 Production and characterization of spastin specific polyclonal and 

monoclonal antibodies

To assist with the in vivo studies on the function of spastin protein, polyclonal 

and monoclonal antibodies were produced using as antigen two different portions of 

the spastin protein, expressed in bacteria: a his-tagged polypeptide corresponding to 

amino acids 1 to 122 (His-Spastin) and a GST fusion protein corresponding to the 

portion of spastin between amino acids 87 to 354 (Gst-Spastin).
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3.2.1 The polyclonal antibody: SP-R74

The antigen His-Spastin obtained previously in the lab, is a his-tagged protein, 

produced in bacteria and purified under denaturing condition. It was used for the 

immunization of rabbits at PRIMM (Milan, Italy). The resulting antiserum, SP-R74, 

was tested previously in our laboratory by immunoprécipitation and Western blot. The 

studies conducted precedent to this thesis reported that this antibody recognizes the 

transfected protein, but was unable to detect a signal corresponding to the endogenous 

protein in whole cell extracts. By immunoprécipitation, instead, it was possible to 

detect a band of the expected size. In my work, this antibody has been characterized 

by immunofluorescence in order to investigate the endogenous localization of spastin.

3.2.2 The polyclonal antibodies SP-50 and SP-51

To raise antisera against a different antigen, the portion of spastin, 

corresponding to the region between amino acid 87 and 354, was cloned into the 

pGEX3x vector for inducible expression of a GST-tagged spastin protein in E. coli. 

The pGEX plasmids are designed for inducible, high-level intracellular expression of 

genes or fragments as a fusion protein with the glutathione S-transferase (GST) 

domain of Schistosoma japonicum (26 kDa) (Sj26) (Smith and Johnson, 1988). The 

plasmid contains the tac Promoter (Amann et al., 1983) followed by the coding 

sequence of Sj26 and also contains the lad  gene which encodes the lac repressor 

protein. In the absence of inducer, the lac repressor binds to the tac Promoter, 

repressing expression of the GST fusion protein. Upon induction with isopropyl P-D- 

thiogalactoside (IPTG), derepression occurs because the lac repressor now binds 

IPTG, and the GST fusion protein is expressed.
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The production of the fiision protein was induced by adding 2 mM IPTG to 1 

litre of E. coli transformed with the pGEX3x-Spastin (87-354) construct. This 

resulted in increasing expression of the expected 60 kDa fusion protein over a period 

of three hours at room temperature (Fig. lOA). Cells were harvested and the GST- 

spastin fusion protein was purified under native condition through binding to 

glutathione agarose beads. The protein was eluted and the collected fractions were 

analysed on a SDS/PAGE (Fig. lOB). The most concentrated fractions (1, 2, 3, 4 in 

figure lOB) were pooled and used for the immunisation of two rabbits (Biogenes, 

Germany). The obtained antisera, SP-50 and SP-51, were tested by 

immunoprécipitation and Western blot analysis, and were successively used in 

immunofluorescence studies for the characterization of the subcellular localization of 

the endogenous spastin.

Western blot analysis

The anti-spastin SP-50/SP-51 pre- and post-immune sera were tested by Western 

blot analysis. SP-50 and SP-51 were first affinity purified. Sera were passed though a 

column of GST-agarose beads to eliminate the fraction of antibodies raised against the 

GST portion of the protein. Successively the antibodies were affinity purified on a 

NHS Hi-Trap™ column on which the GST-Spastin was previously bound (see 

Methods).

5 pg of GST-Spastin and GST proteins were loaded on 10% SDS/PAGE and 

transferred to a PVDF membrane. Western blot analysis was performed using SP- 

50/SP-51 pre- and post-immune sera and also antibodies against GST. The GST- 

Spastin protein is approximately 60 kDa in size. The antibody against the GST tag 

detected both the band corresponding to the GST-Spastin (Fig. 11 A,D lanel) and to
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the GST alone (Fig. 11 A,D lane 2). The affinity purified anti-spastin SP-50 and SP- 

51 detected specifically the GST-Spastin (Fig. 11 B,E lane 1), but failed to detect the 

band corresponding to the GST alone (Fig. 11 B,E lane 2). The other bands detected 

from the antibodies (both the anti-GST and anti-Spastin) are probably due to 

degradation product of the fusion protein. None of the pre-immune sera recognized 

the recombinant GST-Spastin (Fig. 11 C,F). Therefore, we concluded that by affinity 

chromatography we eliminated the fraction of antibodies raised against the GST 

moiety from our polyclonal sera.

SP-50 and SP-51 antibodies were also used in Western blot analysis on HeLa 

total cell extracts, either untransfected or transiently transfected with a pcDNAa- 

spastin (full length) construct or with a construct expressing the spastin splicing 

variant Aex4. We compared the results obtained using the crude sera or the affinity 

purified antibodies (Fig. 12). The pattern of bands recognized by the affinity purified 

antibodies was, more or less, the same of the crude sera. In the case of the SP-51 the 

upper band of about 80 kDa disappears after the affinity purification, indicating that 

it was a non specific band (Fig. 12). Both antibodies, SP-50 and SP-51, recognize the 

exogenous spastin (figure 12 A,B,C,D lane 3) and Aex4 (Fig. 12 A,B,C,D lane 2). In 

the lane corresponding to the HeLa cells transfected with Aex4 (Fig. 12 A,B,C,D lane 

2), it is possible to reveal also a slower migrating form respect to the Aex4 band, 

which could also represent a post-translational modification of this splicing variant. 

However they failed to detect the endogenous protein when 30 pg o f HeLa lysates 

were loaded, although affinity purified SP-51 detected a faint band of approximately 

the same size of transfected spastin when 100 pg of HeLa lysates were loaded (Fig. 

12 A,B,C,D lane 4). The main band that both the antibodies recognize has an
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apparent molecular weight of 60 kDa and is lower than both the full length and the 

spliced variant of spastin.

To confirm the specificity of the bands detected by SP-50 and SP-51 

antibodies, cell extracts from HeLa untransfected (50 pg or 100 pg) or transfected 

(50 pg) with full length spastin (pCDNAg-spastin) were fractionated on a 7,5% 

SDS/PAGE. Samples were then transferred to a PVDF membrane and probed with 

pre-immune sera (pre SP-50 and pre SP-51) and affinity purified antibodies (Fig. 13). 

Both SP-50 and SP-51 recognized the band corresponding to the transfected spastin 

(Fig. 13 B,C lane 2), but they did not detect the endogenous protein, even when 100 

pg of lysates were loaded (Fig. 13 B,E lane 3). The ability of the antibodies to 

recognize the endogenous protein may therefore depend on the preparation of the 

lysates. The pre-SP50 and pre-SP51 did not recognize the exogenous spastin (Fig. 13 

C,F lane 2) and detected few bands in the untransfected and transfected cell extracts. 

These bands were different from the main bands recognized by the affinity purified 

antibodies. The comparison between the pre-SP51 staining and the corresponding 

affinity purified antibody suggests that the lower band of about 50 kDa (arrow in 

figure 13 A,B) is already present in the pre-immune serum and therefore it is not 

specific. Furthermore, the specificity of the signal detected from the SP-50 and SP- 

51 antibodies is underlined by the disappearing of the bands after the competition 

with the antigen.

Immunoprécipitation analysis

The SP-50 and SP-51 antibodies were then tested for their ability to 

immunoprecipitate transfected spastin. HeLa cells were transiently transfected with a 

pCDNAs-Spastin expression construct, and 48 h post-transfection.
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immunoprécipitation of the whole cell extract using the SP-50 and SP-51 affinity 

purified antibodies was performed.

Immunoprécipitation with the affinity purified SP-50 and SP-51 antibodies 

resulted in detection of the 6 8 -kDa spastin transfected protein by the SP-50 and SP-51 

(Fig. 14A, arrows). Immunoprécipitation from untransfected cells using both 

antibodies and revealing either with SP-50 or Sp-51 (Fig. 14B, arrows) resulted in 

detection of a band of the same size of the transfected spastin, which should 

correspond to the endogenous protein. Moreover, after immunoprécipitation, the 

antibodies are able to detect a slower migrating form (around 90 kDa), which could 

represent a post-translational modification of spastin. The immunoprécipitation using 

the pre-immune serum gave no bands at these molecular weights. Thus, it can be 

concluded that both antibodies are able to specifically immunoprecipitate the 

transfected and the endogenous spastin.

Two additional major signals are detected following immunocomplex 

formation with both antibodies. The band at -50-55 kDa represents the heavy chain 

of the rabbit IgG used for the immunoprécipitation, revealed with the anti-rabbit IgG 

used in the Western blot. The other band of -60-62 kDa is the major band recognised 

also in the total cell extract. Therefore, this 60-62 kDa band seems to be a protein 

specifically recognized by the anti-spastin SP-50 and SP-51. Whether this is a 

specific signal for a different post-translational modification, a splicing variant of 

spastin, a cross-reacting protein, or a signal coming from a contaminant protein in the 

antigen preparation, is not clear at the moment. However this band is not recognized 

by the SP-R74 antibody (data not shown).
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3.2.3 Monoclonal spastin specific antibodies

The GST-spastin fusion protein was also used for the production of 

monoclonal antibodies (Biogenes, Germany). Five clones with high affinity for 

Spastin and no affinity for GST (tested in ELISA assay from Biogenes) were 

obtained: M l, M2, M3, M4, M5. The supernatants from the hybridoma cultures were 

used in Western blot and immunofluorescence analysis. Total cell extract from HeLa 

untransfected or transfected with pCDNA3 -spastin were fractionated on a 7,5% 

SDS/PAGE and transferred to a PVDF membrane. Membranes were then incubated 

with the different monoclonal antibodies ( 1 :1 0 ) or with the antibodies that have been 

pre-incubated with the antigen. Only M3 and M4 detected a signal corresponding to 

the transfected protein in western blot analysis (Fig. 15). They also recognized a 

lower band which seems to be the main band detected from the SP-50 and SP-51 

antibodies in total cell extract from HeLa. M3 shows a higher affinity for this lower 

band respect to M4. This result suggests that this band, recognized from both 

polyclonal and monoclonal antibodies, might be specific and represent another form 

of spastin.

3.3 Subcellular localization of endogenous spastin

3.3.1 Immunofluorescence experiments with SP-R74

The SP-R74 antibody was affinity purified and tested by indirect 

immunofluorescence on several fixed cell line (HeLa, Cos7, human and mouse
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Fibroblast, NSC34). SP-R74 showed different pattern of localization depending on the 

cell line used.

In HeLa and Cos7 cells, the antibody showed a faint diffuse nuclear and 

cytosolic staining on interphase cells (Fig. 16 C, G, H). A strongest signal was instead 

recognized in different phases of the cell cycle, where the SP-R74 recognized the 

spindle poles (Fig. 16 B,D) and stained the midbody at cytokinesis (Fig. 16 C, H). 

These signals were not present with the preimmune serum (Fig. 16 A, F) and were 

competed by pre-incubation of the antibody with the antigen (Fig. 16 E, L).

Immunofluorescence analysis on human primary fibroblasts showed both a 

nuclear and a cytosolic localization. In particular, the SP-R74 antibody showed a 

peculiar cytosolic spot, which was highly reminiscent of the centrosome (Fig. 17 

A,B). Indeed co-immunofluorescence experiments using a centrosomal marker, □- 

tubulin, confirmed the localization of endogenous spastin to the centrosome in this 

cell line (Fig. 17 B). The antibody revealed also an additional discrete punctuate 

staining in the nucleus (Fig. 17 A,B). It is known that the nucleus is organized in 

different subdomains such as PML bodies, Cajal bodies or polycomb bodies (Spector, 

2001). As a first step to understand if this nuclear spots were belonging to any known 

subnuclear compartment, fibroblasts were transfected with a HA-tagged-PML 

construct and double immunofluorescence experiments using the anti-HA antibody 

and the SP-R74 antibody to recognize the endogenous spastin were performed. PML 

is the structural constituent of the PML bodies (or Nuclear bodies) and this co- 

immunofluorescence showed that the nuclear dots were indeed PML bodies (Fig. 17 

C). To confirm this result we have performed a double immunofluorescence 

experiment using SP-R74 antibody and a monoclonal antibody recognizing the
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endogenous PML. Endogenous spastin and PML were co-localizing in the PML 

bodies (Fig. 17 D), although it is evident that in this case there is a partial co­

localization of spastin to the PML bodies. This is probably due to the fact that when 

PML is overexpressed; PML bodies increase in number and size, and this may cause a 

more efficient recruitment of a protein to these structures. Both the centrosomal and 

the nuclear staining were absent in immunofluorescence experiment with the 

preimmune serum and the specificity of the signal was demonstrated by its 

disappearance after the competition with the antigen (Fig. 17 A).

Because of the specific cellular phenotype of the disease, we wanted to 

investigate also the subcellular localization of spastin in neuronal cells. We used, 

therefore, the NSC34 cell line, which is an immortalised murine motoneuronal cell 

line. Also in these cells the antibody revealed both a nuclear and a cytosolic staining. 

In the nucleus, it labelled discrete nuclear domains (Fig. 19 A). More interestingly 

there was a specific staining in the terminal portion of the neuronal processes (Fig. 19 

A), which corresponds to the growth cone as assessed from the white field image (Fig. 

19 A). Double immunofluorescence experiments were performed using the anti- 

NF200 marker for neurofilaments or the RT97 antibody which recognizes 

phosphorylated epitopes on neurofilament proteins (Anderton et al., 1982), fetal tau, 

and also recognizes a developmentally regulated phosphorylation epitope on MAP IB 

(MAP IB is the first MAP to be expressed in neurons and plays an important role in 

neurite outgrowth) (Johnstone et al., 1997). The NF-200 staining is homogeneous on 

all the axonal length (Figure 19 B) and do not co-localize with spastin (Fig. 19B), 

while the RT97 antibody recognized a specific signal in the terminal part of the 

neuronal processes, which was co-localizing with spastin signal (Fig. 19 C). The
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NSC34 are immortalized cells, therefore they undergo cell cycle. When cells were in 

different phases of the cell cycle, as showed by the DAPI staining (blue signal), SP- 

R74 antibody marked peculiar filaments that were surrounding the nucleus (Fig. 19 

A,B). Spastin signal was also detected at the midbody during the cytokinesis, as 

confirmed by a double staining with an anti-atubulin antibody (Figure 14). Both the 

nuclear and cytoplasmic staining were not detected with the pre-immune sera and 

were competed by the antigen (Fig. 18 A).

Thus, endogenous spastin seems to have a complicated subcellular localization, 

which is dependent on the cell type analyzed.

3.3.2 Immunofluorescence experiments with SP-50/51

To get more data concerning the subcellular localization of the endogenous 

spastin, the antibodies SP-50 and SP-51 were used in immunofluorescence 

experiments on different cell lines.

Immunostaining of fixed HeLa cells with the affinity purified SP-51 gave a 

specific staining at the midbody (Fig. 20 B,C red arrows) and it was also possible to 

detect a signal between cells that are going through cytokinesis, in a region where, 

probably, the midbody will form (Fig. 20 B,C yellow arrows). It seems that the level 

of spastin in HeLa cells is very low and only when the protein is concentrated in 

these structures, it is possible to detect a signal. The localization of spastin at the 

midbody was confirmed by the SP-50 staining (Fig. 20 A). These signals were not 

detected when the pre-immune sera were used as control (Fig. 20A).

In human fibroblasts both antibodies recognized punctuate nuclear structures 

(Fig. 21 A,B), which are not present in the immunofluorescence with the preimmune
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sera (Fig. 21 A,B). Since the Sp-R74 antibody permits us to localize spastin in the 

PML bodies in these cells, we have performed double staining with a monoclonal 

PML antibody. In both cases (SP-50 and SP-51), we confirmed a partial co­

localization between spastin and PML (Fig. 21 A,B). It was also possible to detect a 

centrosomal staining, but experiments with the preimmune sera revealed also the 

presence of a faint staining at the centrosome (data not shown).

We have also looked at the spastin localization in the motoneuronal cell line 

NSC34. SP-50 and SP51 showed a very diffuse staining on the cell (Fig. 22 A,B), 

without any enrichment in the terminal part of the neuronal processes (as seen with 

the SP-R74 antibody). The SP-50 detected also a nuclear spotted signal (Fig. 21 A) 

similar to that observed with SP-R74.

3.3.3 Immunofluorescence experiments with spastin monoclonal antibodies

Monoclonal antibodies have also been tested in immunofluorescence 

experiments on different cell lines (HeLa, human fibroblasts and NSC34). None of 

them detected a significant signal in the different cell lines, probably because they 

are not enough concentrated. Nonetheless, M4 stained the terminal portion of the 

neuronal processes in the NSC34 cells, confirming the localization revealed by the 

SP-R74 antibody (Fig. 22 C)

3.4 Spastin and centrosome

Immunofluorescence experiments using the SP-R74 antibody showed that 

spastin has both a nuclear and a centrosomal localization. Moreover the antibodies 

SP-50 and SP-51 detected a signal in correspondence of the midbody. During the
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telophase, before cytokinesis occurs, centrosomes migrates in the region were the 

midbody will form (Piel et al., 2001). Because the nuclear localization has also been 

confirmed by the other antibodies, we investigated if spastin was indeed localizing at 

the centrosomes. To this end we have purified centrosomes from HeLa cells by 

discontinuous gradient ultracentrifugation according to the method of Moudjou and 

Bomens (1989). Several fi*actions were collected and loaded on a 10% SDS/PAGE. 

Western blot analysis was performed using SP-R74, [3-tubulin and y-tubulin 

antibodies. While the y-tubulin, which is a centrosomal marker, is detected in the first 

fractions eluted from the discontinuous gradient, the p-tubulin is detected in the last 

fractions, showing that we have purified effectively the centrosomes (Fig.23A). The 

SP-R74 antibody revealed the 6 8 kDa spastin band and also an additional band of 83 

kDa (Fig.23A). Spastin is enriched in the same fractions were the y-tubulin is present 

suggesting that spastin is a centrosomal protein. The 83 kDa band correspond to a 

cross-reacting protein.

The same experiment was performed using the SP-51 antibody to detect the 

spastin signal. Also in this case, the band corresponding to the endogenous spastin 

(figure 23B, arrow) is enriched in the centrosomal fractions, as confirmed by the y- 

tubulin staining. The lower 60 kDa band described before was also present in these 

fractions.

These experiments indicate that spastin is also a centrosomal protein.
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3.5 Spastin and PML

We have several data indicating that spastin colocalize with the PML bodies in 

human fibroblast. To confirm this evidence we have performed a double 

immunofluorescence staining on human fibroblasts using the anti-PML antibody and 

an additional antibody specific for spastin. This antibody was obtained fi*om A. 

Molon and has been raised against the peptide (56-76) of spastin. The anti-peptidic 

antibody showed a punctuate staining in the nucleus. These nuclear structures 

colocalized with the PML bodies, as assessed by the double immunofluorescence 

experiment (Fig.24 A).

This confirms the nuclear localization of spastin and this localization to the PML 

bodies in human fibroblasts.

Since this localization to the nuclear bodies is specific for the human fibroblasts, 

we decided to investigate the subcellular localization of spastin in murine fibroblasts.

We used both mouse embryonic fibroblasts (mef) and primary fibroblasts from 

an adult mouse (PO, post natal day 0). Immunofluorescence studies on these cell lines 

showed that the nuclear signal revealed by the SP-R74 antibody was quite different 

with less numerous and larger dots in the nucleus (Fig. 24 B). To assess if  this was a 

different localization in respect to that observed in the human fibroblasts, HA-PML 

was transfected into these cells. Double immunofluorescence analysis revealed that 

these larger nuclear domains were not co-localizing with the PML bodies (Fig. 24 B). 

Because the PML construct encoded for the human protein, we have also performed a 

double staining with SP-R74 antibody and with an antibody which recognise the 

murine PML (data not shown), confirming that in mouse fibroblasts spastin was 

localized to discrete nuclear structure different from the PML bodies.
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3.6 A NLS-spastin chimera does not localize to the nucleus

The antibodies produced against different spastin antigens showed that the 

endogenous spastin has a complex subcellular localization which is also cell type 

dependent. Spastin localizes both to the nucleus and to the cytoplasm. This is in 

contrast with the results obtained overexpressing spastin into the cell, where the 

protein exhibits a predominant cytoplasmic localization. This different behaviour in 

terms of localization between the endogenous and exogenous spastin may have 

several explanations. It is possible that spastin shuttles between the cytoplasm and 

the nucleus, or that a post-translational modification is necessary for its nuclear 

localization and therefore the overexpression of the protein results in the mis- 

localization. It could also be that when the levels of spastin are over a threshold 

value, spastin become toxic for the nucleus and therefore it is released in the 

cytoplasm. As a first step, we investigated if  we could force spastin to stay into the 

nucleus. We have, therefore, generated a chimeric protein where the strong nuclear 

localization signal (NLS) of the SV40 large T antigen has been fused at the N- 

terminus of spastin protein. We have generated a wild-type NLS-spastin and a 

mutated NLS-spastin with a mutation in the NLS sequence which abrogates the 

nuclear localization. These constructs were transfected in Cos? cells and their 

localization was analysed by immunofluorescence. We have compared the 

localization of the full-length spastin myc-tagged, the full length spastin without a 

tag and these two chimeric proteins. Cells were analysed by confocal microscopy. As 

shown in figure 25, there is no difference in the localization of these different spastin 

constructs, they are all predominantly cytoplasmic. The fact that a strong NLS, such 

as the NLS of SV40, does not force spastin into the nucleus, lead us to hypothesize
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that high level of spastin may be toxic for the nucleus, therefore when we 

overexpress this gene, we observe a cytoplasmic localization.

Summary

V Endogenous spastin shows a different localization depending on the cell type.

^  Exogenous spastin has a prevalent cytosolic localization, while the endogenous

spastin has both a nuclear and a cytosolic localization.

All the antibodies tested (SP-R74, SP-50, SP51 and anti-peptidic) showed that 

spastin partially co-localize with the PML bodies in human fibroblasts.

Both the SP-R74 and the monoclonal M4 antibodies showed that beyond the 

nuclear signal, spastin is enriched in the terminal part of the neuronal processes.

V In HeLa cells SP-R74 detected a specific signal in correspondence of the 

centrosome in metaphase cells and the midbody in cells that were going 

through cytokinesis. Also SP-50 and SP-51 antibodies stained the midbody in 

HeLa cells. A centrosome staining was detected in human fibroblasts by the 

SP-R74 antibody and the centrosomal localization of spastin was confirmed by 

the presence of the endogenous spastin in the firaction were □-tubulin is 

enriched after the purification of the centrosomes.

y

y
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Figure 8. Spastin constructs and subcellular fractionation.
(A) Schematic representation of the spastin constructs used in this thesis. The AAA 
domain is indicated by the grey bar. The N- and C- terminal position of the different 
tags are shown. Numbers denote residues present at the beginning and at the end of 
the AAA domain. (B) Cos? cells were transfected either with the pMT21-myc empty 
vector or with the spastin-myc constructs. 48 hours post-transfection samples were 
processed to make a cytoplasmic (C) and a nuclear (N) fraction. Both fractions were 
then concentrated by immunoprécipitation with the anti-myc antibody, subjected to 
electrophoresis on a 10% SDS/PAGE followed by immunoblotting with the anti-myc 
(9E10) antibody.
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Figure 9. Subcellular localization of exogenous spastin.
Spastin-myc construct was transfected in Cos7, HeLa and human fibroblasts cells. 
Cells were analyzed by immunofluorescence with the anti-myc antibody 24h post­
transfection. Spastin-myc shows a discrete punctuate cytoplasmic localization in 
Cos? (A), HeLa (B) and human fibroblasts (C). Spastin-myc-GFP construct was 
transfected in Cos? cells. Double immunofluorescence analysis using Spastin-myc- 
GFP (green signal) and appropriate markers (red signal), revealed that spastin 
cytosolic spots do not co-localize with mitochondria (D), lysosomes (E) and 
peroxisomes (F). When low levels of expression were achieved (see Material and 
Methods), spastin localizes to a discrete perinuclear area (G). Double 
immunofluorescence experiments using spastin-myc-GFP showed that this 
expression domain is in the proximity to the Golgi apparatus (H), and co-localize 
with the microtubule aster (I) and the centrosome (L, M). In (I) the yellow color of 
the merged figure indicate the co-localization of spastin with the aster of 
microtubule. In (M), arrows point the centrosomes. Monoclonal antibodies against 
58kDa Golgi protein, a-tubulin and y-tubulin were used to detect the Golgi 
apparatus, microtubules and the centrosome, respectively.
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Figure 10. Production of recombinant GST-spastin.
pGEXSX-Spastin was transformed in E. Coli cells (strain B834). (A) The production 
of the recombinant protein was induced by the addition of 2mM IPTG. The 
recombinant protein is soluble under native condition, as assessed by the presence of 
the GST-spastin (87-354) in the lane of the native lysate (Ln). (B) GST-spastin was 
purified on GST-agarose column. The recombinant protein was bound to the GST- 
agarose beads; the flow through (f/t) was discarded. After washing, the recombinant 
protein was eluted in a glutathione buffer, 1000 pi fractions were collected and 5 pi 
of each fraction were tested on 10% SDS/PAGE.
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Figure 11. Affinity purified SP-50 and SP51 recognize specifically the 
recombinant protein.
5 pg of GST-Spastin and of GST were loaded on a 10% SDS/PAGE and transferred 
to a PVDF membrane for immunoblot analysis. The anti-GST antibody detects both 
the GST-Spastin (A, B lanel) and GST bands (A, B lane 2). The affinity purified 
anti-spastin SP-50 and SP-51 recognize specifically the GST-spastin (B, E lane 1), 
but do not recognize the GST alone (B, E lane 2). None of the preimmune sera (50, 
51) detect the recombinant protein (C, F lane 1,2).
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Figure 12. SP-50 and SP-51 recognize spastin in transfected cells.
Total cell extracts were prepared from HeLa untransfected or transfected with 
pcDNAs-Spastin (full length without tag) or with pMT21-Aex4myc. 30pg o f extracts 
from pcDNAs-Spastin transfected cells, 30pg o f extracts from pM T21-Dex4myc 
transfected cell and 30pg or lOOpg o f extracts from untransfected cells were 
fractionated on a 7.5% SDS/PAGE and transferred to a PVDF membrane. 
Membranes were then analyzed by immunoblot with the crude sera and the affinity 
purified antibodies. The results obtained with the affinity purified SP-50 (D) or SP- 
51 (B) were approximately the same o f the crude antisera (A, C). Both, SP-50 and 
SP-51 recognize the exogenous spastin (A, B, C, D lane 3, red arrow) and Aex4 (A, 
B, C, D lane 2). The endogenous proteins was not detect when 30pg o f  lysate were 
loaded (A, B, C, D lane 1), although a faint band is recognized when lOOpg o f 
extracts are loaded (B, lane 4).
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Figure 13. SP-50 and SP-51 are specific for spastin.
HeLa cells were transfected with pcDN A] - Spastin. Total cell extracts were prepared 
from untransfected and transfected HeLa cells. 50 or lOOpg (lane 1, 3) o f 
untransfected cell extracts and 50pg (lane 2) o f extracts from transfected cells were 
fractionated on a 7.5% SDS/PAGL. Western blot analysis was performed probing the 
filters with preimmune sera (A, D) and affinity purified antibodies (B, L). The 
specificity o f the signals was evaluated after the competition with the antigen (C, F). 
Both SP-50 and SP-51 detected the band corresponding to the exogenous spastin (B, 
L lane 2), this band was not recognized by the preimmune sera (A, D lane 2) and 
disappeared after the antigen competition (C, F lane 2). The band o f about 55 kDa 
(B, arrow) seems to be present also in the preimmune serum (A, arrow) and therefore 
is a non specific signal.
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Figure 14. SP-50 and SP-51 immunoprecipitate both exogenous and endogenous 
spastin.
(A) HeLa cells were transfected with pcDNAg-Spastin. Lysates were prepared from 
untransfected and transfected cells. Immunoprécipitation experiments were 
performed on transfected extracts using the antibodies SP-50 and SP-51 (1:100). 
Untransfected HeLa extracts (lOOpg; lane 1), extracts from transfected cells (30pg, 
lane 2) and immunoprécipitation samples obtained either with SP-50 or SP-51 (lanes 
3,4) were loaded on a 7.5% SDS/PAGL. Immunoblot analysis, respectively with SP- 
50 or SP-51, showed that both antibodies were able to immunoprecipitate the 
transfected spastin protein (lane 3, arrows). (B) Cell extracts were prepared from 
HeLa cells; immunoprécipitation was carried out with the antibodies SP-50 and SP- 
51. HeLa cells transfected (30pg, lane 1) or not (lOOpg, lane 2) with spastin and 
immunoprécipitation samples were resolved on a 7.5% SDS/PAGL and western blot 
analysis was performed using the SP-50 or the SP-51 antibody. Both antibodies were 
able to immunoprecipitate a protein of the same size of the transfected spastin, which 
should correspond to the endogenous spastin (lane 3, 4 of both panels) (red arrows). 
A slower migrating band is also revealed with both antibodies. This band has an 
apparent molecular weight of 90 kDa (green arrows).
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Figure 15. Monoclonal antibodies M3 and M4 recognized exogenous spastin.
HeLa cells were transfected with pcDNAg-Spastin. Total extracts were prepared from 
untransfected (HeLa and Cos?) and transfected (HeLa + Spastin) cells. Samples were 
fractionated on a 7.5% SDS/PAGL, transferred to a PVDF membrane and analyzed 
by western blot using the M3 or M4 antibodies. Both antibodies detected the band 
corresponding to the transfected spastin, but failed to detect the endogenous protein. 
When the M3 or M4 antibodies were pre-incubated for 3 hrs at 4°C with the antigen 
(GST-spastin) and then used for western blot analysis, all the signals revealed by the 
M3 and M4 antibodies disappeared.
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Figure 16. Immunofluorescence experiments on HeLa and Cos? cells with SP- 
R74
Cos? (A-E) and HeLa (F-I) cells were fixed in PFA 4% and stained with the specific 
spastin antibody SP-R74 or with the pre-immune sera as control. The specificity of 
the signal was confirmed by the staining with an antigen-antibody mix. The signals 
were detected using as secondary antibody an anti-rabbit FITC-conjugated. In A and 
F are shown the pre-immune serum staining, respectively in Cos? and HeLa cells. In 
B, C and D are shown the IF on Cos? cells, where the SP-R74 stains the spindle 
poles and the midbody. In HeLa cells, the SP-R74 has a diffuse nuclear staining 
(G,H) and marks the midbody (H). The signals detected by the SP-R74 in Cos? and 
HeLa cells were specific as demonstrated by the competition with the antigen (L, I), 
where these signals disappeared.
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Figure 17. Immunofluorescence experiments on Human Fibroblasts with SP- 
R74.
(A) Fibroblasts were fixed in methanol and stained with pre-immuneserum, SP-R74 
and an antigen-antibody mix. The SP-R74 revealed both a spotted nuclear signal and 
a discrete cytoplasmic signal (arrows). (B) A double IF experiments was performed 
using the SP-R74 to stain Spastin and a monoclonal antibody that recognizes the y- 
tubulin. The co-localization is indicated by the yellow signal in the merge figure 
(third panel). (C) Human fibroblasts were transfected with a PML-HA construct. 
Double IF experiments using the SP-R74 to stain Spastin and a monoclonal antibody 
against the HA tag were performed. Co-localization between spastin and PML in the 
nuclear dots is indicated by the yellow signal in the merge figure. (D) Double IF 
experiments with the SP-R74 to stain Spastin and a monoclonal antibody that 
recognizes the endogenous PML. SP-R74 is revealed with a rabbit-secondary 
antibody FITC-conjugated in the single staining. In double IF experiments, SP-R74 
was revealed with a rabbit-secondary antibody TRITC-conjugated; anti y-tubulin, 
anti-HA and anti-PML were revealed with a mouse-secondary antibody FITC- 
conjugated. Nuclei were marked with DAPI (blue signal).
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Figure 18. Immunofluorescence experiments on NSC34 with SP-R74.
(A) NSC34 were fixed in methanol and stained with pre-immune serum, SP-R74 and 
an antigen-antibody mix. The SP-R74 revealed a spotted nuclear signal and also a 
signal enriched in the terminal portion of the neuronal processes (arrows). (B) A 
double IF experiments was performed using SP-R74 to stain Spastin and a 
monoclonal antibody, RT97, that recognizes phosphorylated epitopes on 
neurofilaments protein. The co-localization is indicated by the yellow signal in the 
merge figure (third panel). (C) Double IF experiments with SP-R74 to stain Spastin 
and a monoclonal antibody, NF200, which marks the neurofilaments.
SP-R74 was revealed with a rabbit-secondary antibody FITC-conjugated in the 
single staining. In double IF experiments SP-R74 was revealed with a rabbit- 
secondary antibody TRITC-conjugated; anti NF200 and anti RT97 were revealed 
with a mouse-secondary antibody FITC-conjugated. Nuclei were marked with DAPI 
(blue signal).
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Figure 19. Immunofluorescence experiments on cycling NSC34 with SP-R74.
NSC34 were fixed in methanol and stained with pre-immune serum, SP-R74 and an 
antigen-antibody mix. When cells are going through cell cycle, as stated by the 
nucleus staining (blue), SP-R74 marks filaments which are surrounding the nucleus 
(A, B). SP-R74 revealed also a signal at the midbody during cytokinesis (C), as 
stated by the double IF experiments vHth SP-R74 and a monoclonal antibody, anti a - 
tubulin, that stains microtubules (D). SP-R74 was revealed with a rabbit-secondary 
antibody FITC-conjugated in the single staining. In double staining, SP-R74 was 
revealed with a rabbit secondary antibody TRITC-conjugated; anti a-tubulin was 
revealed with a mouse secondary antibody FITC-conjugated. Nuclei are marked with 
DAPI (blue signal).
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Figure 20. Immunofluorescence experiments on HeLa cells with SP-50 and SP- 
51.
(A, B) HeLa cells were fixed in PFA 4% and stained with pre-immune serum and 
SP-51. SP-51 revealed a spastin signal at the midbody (B, red arrow) and also a 
discrete signal in the region between the two nucleus that are going through 
cytokinesis (A, B, white arrow). (C) Immunofiuorescence analysis on HeLa cells 
with the pre-immune serum and the SP-50 antibody confirmed the localization to the 
midbody (C, red arrow). SP-50 and SP-51 were revealed with a rabbit secondary 
antibody FITC-conjugated, nuclei were marked with DAPI (blue signal).
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Figure 22. IF experiments on NSC34 with SP-50/51.
(A, B) NSC34 were fixed in methanol and stained with pre-immune sera (SP-50/51) 
or with the anti-spastin SP-50 and SP-51 antibodies. SP-50 revealed a spotted nuclear 
signal (A). Both antibodies revealed a diffuse staining in the cytoplasm (A, B). (C) 
NSC34 were fixed in methanol and stained with the M4 monoclonal antibody. The 
M4 revealed a staining in the terminal part of the neuronal processes (C), in 
particular the signal at the growth cone is shown (C, panel 2 and 3). SP-50 and SP-51 
were revealed with a rabbit secondary antibody FITC-conjugated; M4 was revealed 
with a mouse secondary antibody FITC-conjugated, while nuclei are marked with 
DAPI (blue signal).
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Figure 23. Spastin is enriched in a centrosome fraction.
HeLa cells were treated with 0.2pM Nocodazole and 1 pg/ml of cytochalasin D. 
Cells were collected by trypsinization, washed and resuspended in lysis buffer (see 
methods). Centrosomes were concentrated by centrifugation on a 60% sucrose 
cushion (w/v) and then purified on a discontinuous sucrose gradient (70% - 50%- 
40%). The fractions eluted from the gradient were loaded on a 10% SDS/PAGE, 
transferred to a PVDF membrane and analyzed by immunoblot using an anti b- 
tubulin, an anti y-tubulin and a specific anti-spastin antibody. SP-R74 revealed the 
presence of spastin in the same fractions where the g-tubulin was eluted (fractions 2  

to 5) (A), while the p-tubulin was present in fractions 6  to 9. The same experiment 
was performed and spastin was revealed with the SP-51 antibody (B). SP-51 detected 
also spastin in the fraction 2 to 5 together with the y-tubulin, while p-tubulin was 
detected in fractions 6  to 9 (B).
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Figure 24. Spastin localizes to the PML bodies in human fibroblasts but not in 
mouse fibroblasts.
(A) Human fibroblasts were fixed in methanol. PML bodies were detected (green 
signal) using the monoclonal anti-PML antiboy. While spastin was detected using a 
specific polyclonal anti-peptidic antibody (red signal). Nuclei were stained with 
DAPI (blue signal). A partial colocalization is evident as shown in the merge figure 
by the yellow signal.
(B) Mouse embryonic fibroblasts (mef) or fibroblasts from a mouse at PO were fixed 
in methanol and immunofluorescence experiments were performed with the SP-R74 
antibody. The SP-R74 detected in both cell type a spotted nuclear signal, but these 
spots are larger then those observed in the human fibroblasts. Mef were transfected 
with the PML-HA construct. Double IF experiments were performed on mef 
transfected cells using the SP-R74 and the anti-HA antibody to recognize PML. It is 
evident that the nuclear domains recognized by SP-R74 in the murine cell lines are 
not PML bodies.
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Figure 25. A NLS-spastin chimera does not localize to the nucleus
The SV40 NTS, wild type (wt) or mutated, was fused at the 5’ of the spastin cDNA 
in the pcDNAg-spastin construct (A). Cos7 cells were transfected with spastin 
(without tag), spastin-myc or with the two chimeric protein containing the wt or 
mutated NTS fused to spastin cDNA (B). Cells were fixed 24 hrs post-transfection in 
PFA 4% and analyzed by immunofluorescence at the confocal microscope. Both 
spastin constructs, without tag and with the myc tag, shown the typical cytoplasmic 
pattern, although few nuclear spots were detected. The NLSw^Spastin and 
NLSmutSpastin constructs did not show a different localization from the precedent 
constructs.
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CHAPTER 4: Spastin and Microtubules

4.1 ATPase defective spastin localizes to microtubules

Other members of the AAA family, such as SKDl, p60 katanin, and NSF bind 

and release protein substrates in a nucleotide-dependent manner (Babst et ah, 1998; 

Hartman and Vale, 1999; Whiteheart, 1994; Wilson et ah, 1992). This may lead to 

transient association in vivo with their targets. However, this transient association can 

be revealed by expressing dominant-negative mutants unable to bind or hydrolyze 

ATP. To test whether this is true also for spastin, a spastin construct was prepared, 

expressing a well-characterized mutation (K388R), which falls into the Walker A 

motif or P loop of the AAA domain, and is known to abrogate ATP binding in other 

members of the family (Babst et al., 1998; Hartman and Vale, 1999; Whiteheart, 

1994; Wilson et al., 1992). This mutant has been found in a patient with HSP and 

therefore represents also a pathogenic form of spastin (Fonknechten et al., 2000). The 

construct Spastin-mycGFP was subjected to site directed mutagenesis to introduce 

the missense mutation K388R. Cos? cells were transfected with s p a s t i n ^ a n d  

subcellular localization was analysed by immunofluorescence. The beginning of 

expression of the mutated spastin was seen in a single perinuclear domain, similarly 

to the wild-type protein (Fig. 26 A). However, with longer periods of expression, a 

filamentous pattern, reminiscent of association with the cytoskeleton, was detected 

(Fig. 26 B). In some transfected cells a combination of filaments and of cytoplasmic 

aggregates was also observed.
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To assess the nature of the filaments, double immunofluorescence experiments 

were performed, using the antibody to recognise the transfected spastin and 

monoclonal antibodies against a-tubulin or vimentin, to detect microtubules and 

intermediate filaments, respectively. The filaments labelled in spastin^^^^- 

transfected cells co-localize with a-tubulin (Fig. 26 C, D), and not with vimentin 

(Fig. 26 E, F). To further confirm binding of spastin^^^^ to microtubules, cells 

transfected with spastin^^^^ were treated with nocodazole, a drug capable of 

inducing microtubule depolymerization by inhibiting addition of tubulin monomers. 

Treatment with 20DM nocodazole for 2,5 hours results in the disruption of the 

microtubules network with a consequent dispersion of mutant spastin and tubulin 

monomers within the cytoplasm in most cells (Fig. 26 G, H). Co-localization of 

spastin^^^^ with microtubules shows peculiar features. First, although all filaments 

labelled by mutant spastin seem to co-localize with microtubules, not all the 

microtubules present in the cell are labelled by spastin (Fig. 26 C, D). This data 

suggests that the mutant may bind a subset of microtubules. Second, microtubule 

distribution in transfected cells seems to be altered, with the disappearance of the 

aster, typical of an interphase cell, and the formation of thick and long perinuclear 

bundles (Fig. 26 C, D). Consistent with a redistribution of microtubules, also 

dispersal of intermediate filaments appears affected in transfected cells (Fig. 26 E, 

F). Third, in some cases these bundles appear to be more resistant to nocodazole 

treatment, suggesting that spastin may protect them from depolymerization (Fig. 26 

H).
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4.2 Spastin associates with microtubules via its N-terminal region

The findings that spastin expression begins in the microtubule organizing 

center and that an ATPase-defective mutant associates with microtubules in vivo 

strongly suggest that also wild type {wt) spastin may associate with MTs. So, in vitro 

experiments were performed to investigate if wt spastin may bind taxol-stabilised 

microtubules. Cos? cells were transfected with the Spastin-myc construct (Fig. 8  A). 

Extracts from spastin transfected cells were supplemented with taxol and GTP, and 

centrifuged on sucrose cushion to sediment microtubules and associated proteins. In 

these conditions, full-length spastin was enriched in the microtubule fraction (Fig. 21 

A). As negative control lysates from transfected cells were not supplemented with 

taxol. In order to map a putative microtubule-binding domain, we produced two 

artificial mutants in which either the AAA domain (spastin^^^^) or the N-terminal 

part of spastin were deleted (spastin^^) in the pMT21-myc plasmid. Those deletion 

constructs were transfected into Cos-? cells and used in the same assay. The 

spastin^^"^^ retained the ability to co-sediment with polymerised microtubules in the 

in vitro binding assay, whereas spastin°^ lost it (Fig. 2?A). These results were 

confirmed by immunofluorescence experiments on Cos? cells previously transfected 

with either spastin^^^ or spastin^^. In both cases a a-myc antibody was used to 

reveal spastin levels. The spastin^"^^ construct showed a filamentous pattern of 

expression, which was susceptible to nocodazole treatment (Fig. 21 B, C). Spastin^’̂ , 

instead, exhibited a diffuse cytoplasmic staining (Fig. 21 D). All together, these data 

indicate that spastin interacts with microtubules via its N-terminal region.
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4.3 Mapping of the mierotubules binding domain

To map more precisely a microtubule (MTs) binding domain, the N-terminal 

region of spastin was dissected by generating several constructs carrying different 

and progressive deletion of the N-terminal moiety (A50, AlOO, A190)(Fig.28). The 

analysis of spastin sequence revealed the presence of a MIT domain which seems to 

be present in microtubule interacting and endosomal trafficking molecules. 

Therefore, a spastin construct lacking the MIT domain was generated (OMIT), to 

understand if this domain could be involved in the MT binding. All the constructs 

were then subjected to site directed mutagenesis to introduce the missense mutation 

K388R in the AAA, in order to abrogate the ATPase activity of spastin and reveal, 

when present, the MTs interaction. All the constructs were myc-tagged. Then, wt and 

mutated constructs were transfected in Cos-7 cells and analysed by 

immunofluorescence. The ATPase defective mutaitts A50 and AMIT, retained the 

ability to stably associate with the MTs network, while the mutants AlOO and A190 

lost this ability. So, the MTs binding domain of spastin is located in its N-terminal 

region between amino acids 50 and 100; furthermore the MIT domain is not 

implicated in this association.

4.4 Overexpression of WT spastin leads to Microtubule disassembly

Spastin ability to bind microtubules in an ATP-dependent manner and to alter 

microtubule distribution and morphology suggest that it could be implicated in some 

aspects of microtubule dynamics. Another AAA protein of the same subfamily, p60 

katanin, has been largely studied for its microtubule severing activity at the
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centrosome (Hartman and Vale, 1999; McNally and Vale, 1993). To assess a putative 

microtubule severing activity of spastin in vivo, an assay previously used to measure 

in vivo microtubule severing of katanin and of its C. elegans homologue MEI-1 

(McNally, 2000; Srayko et al., 2000) was employed. In this assay, the microtubule 

cytoskeleton is examined by anti-tubulin immunofluorescence in Cos-7 cells 

expressing spastin-GFP and compared to neighbouring untransfected cells. When 

wild-type spastin was expressed in Cos7 cells, a dramatic reduction in the intensity 

of tubulin immunofluorescence in approximately 50% of transfected cells (Table 3; 

Fig. 29 A, B, D, E) was observed. Reduced intensity of tubulin staining was never 

observed in cells transfected with the spastin^^^^^ mutant or with GFP alone. 

Overexposure of the spastin transfected cells showed that mierotubules are broken, 

with the end of the filament recognizable in a few cases (Fig. 29 C, F). The 

remaining filaments are still emanating from the centrosome, but the dimension of 

the aster is greatly reduced (Fig. 29 C, F).

4.5 Functional characterisation of spastin missense mutation

All the spastin missense mutations found in HSP patients up to now are located 

into the AAA domain. The only exception is a serine to leucine substitution in 

position 44 that was reported to occur in the homozygous state (Lindsey et al., 2000). 

As already shown, the K388R mutant associates with mierotubules. As a first step to 

investigate the functional role of all the missense mutations identified in HSP 

patients, their subcellular localization has been investigated. Several spastin 

missense mutations, found in HSP patients, have been introduced in appropriate
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expression vectors, by site-directed mutagenesis (Table 4). Based on available 

knowledge on other members of the AAA family, missense mutations into the AAA 

domain are predicted to interfere either with ATP binding or hydrolysis.

When transfected in Cos? cells, all the mutants showed a filamentous pattern, 

which corresponded to association with mierotubules, as demonstrated after 

nocodazole treatment of the cells (Fig 30). Microtubule binding showed the same 

characteristics that were described above for the K388R mutation, i.e. formation of 

thick perinuclear bundles, disappearance of the aster, and, in some cases, increased 

resistance to nocodazole treatment. The only two exceptions were the S44L 

substitution, and the S362C mutation that behaved like the wild-type protein. The 

first mutation lies outside the AAA, while the second affects an amino acid just at the 

beginning of the domain.

4.6 fVt and mutated spastin form complexes in transfected cells

AAA proteins perform their functions in homo- or hetero-oligomeric 

complexes. In order to determine whether the spastin missense mutants could act as 

dominant-negative and interfere with expression of wild-type spastin, Cos? cells 

were co-transfected with HA-spastin and respectively with spastin^^^^-GFP or 

spastin^^^^-GFP. Subcellular localization was analysed by immunofluorescence in 

double-transfected cells. In all cases of co-transfection, the wild-type and the mutant 

proteins always co-localize (Fig. 31). In some co-transfected cells the wild-type 

protein labelled mierotubules (Fig. 3 IE). In other cases, both the mutant and wild- 

type spastin localized to the cytoplasmic spots (Fig. 31 A, B). This different
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behaviour may reflect different rates of expression of the mutants relative to the 

wild-type protein.

Moreover, the effect of “spastin complexes” on the microtubule network, in the 

double transfected cells, depends on the behaviour of the complexes. In fact, if  the 

complexes form cytosolic aggregates, it is possible to observe a disrupted MTs 

network (Fig.31 G,H,I,L). Otherwise, if both proteins localise to the MTs, then the 

typical ATPase defective mutant phenotype is observed.

4.7 Summary

V Spastin associates dynamically with mierotubules

^  This association is mediated by the N-terminal region, and is regulated through

the AAA domain.

^  The MIT domain is not involved in microtubule binding, which is delimited to 

the region between amino acids 50 and 100.

V Expression of all the missense mutations suggests a role of spastin in 

microtubule dynamics

Wild-type spastin promotes microtubule disassembly in transfected cells
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Transfected plasmid % GFP-positive 
cells with reduced 
microtubule 
staining

Cells
counted/transfection

Number of 
transfection

pcDNA3-mycGFP 0.7 ±1.1 1 0 0 3

Spastin-GFP 50.5 + 3.4 1 0 0 4

SpastinK3 8 8 R-GFP 2.4 ± 2.5 1 0 0 3

Table 3. Effects of overexpression of wild-type spastin on microtubule disassembly.
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Spastin mutation Subcellular localization Sensitivity to nocodazole 
treatment

S44L Cytosolic bodies -

S362C Cytosolic bodies -

G370R Filaments and cytosolic 
bodies

+

F381C Filaments and cytosolic 
bodies

+

N386K Filaments and few 
cytosolic bodies

+

N386S Filaments and few 
cytosolic bodies

+

K388R Filaments and few 
cytosolic bodies

+

L426V Filaments and sporadic 
cytosolic bodies

+

C448Y Filaments and few 
cytosolic bodies

+

R460L Filaments and sporadic 
cytosolic bodies

+

R499C Filaments and few 
cytosolic bodies

+

A556V Filaments and few 
cytosolic bodies

+

Table 4. Subcellular localization of transiently expressed spastin missense mutations 
reported in HSP patients.
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Figure 26. ATPase defective spastin localizes to mierotubules.
In all cases spastin^^^^ was expressed as GFP fusion in Cos? cells and is visible as 
green signal, nuclei are stained with DAPI, blue signal; mierotubules and 
intermediate filaments were revealed using monoclonal antibodies against a-tubulin 
and vimentin, respectively, red signal. Spastin^^^^ expression begins in 
correspondence of the microtubule aster (A) and proceeds with the accumulation in 
filamentous structures (B). These filaments correspond to a subset of mierotubules 
(C, D) and do not co-localize with vimentin (E, F). Mierotubules association was 
confirmed by nocodazole treatment, which disrupts both the filamentous pattern of 
expression of spastin (G) and the microtubule network (H). In some cases, the 
spastin-labelled microtubule bundles were protected from nocodazole effect (arrows 
in G and H).
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l i . i i i i i  II

Figure 27. Spastin interacts with mierotubules via its N-terminus.
(A) Microtubule binding assay. Cos-7 cells were transfected with spastin-myc, 
spastin^^^^ or spastin"^  ̂ constructs. Lysates (L) from transfected cells were either 
supplemented or not with 40 pM taxol. After sedimentation on sucrose cushion, 
supernatant (S) and pellet (P) fractions were assayed for spastin, spastin^^^ ,̂ 
spastin^^ and p-tubulin detection, using appropriate antibodies (anti-myc for spastin 
constructs and anti p-tubulin). When lysates are supplemented with taxol, in order to 
stabilize polymerized mierotubules, both full-length spastin and spastin^^"^ proteins 
were detected in the pellet together with the polymerized mierotubules, while 
spastin"^  ̂ remains in the supernatant. As control, when samples are not treated with 
taxol, all the proteins are detected in the supernatant fractions after the 
sedimentation. Immunofluorescence analysis of spastin^^^^ showed a filamentous 
pattern of expression (B), which is disrupted by nocodazole treatment (C). On the 
contrary, the spastin^^ construct showed a diffuse cytoplasmic localization (D), 
confirming that the spastin^^ construct is not able to bind mierotubules both in vivo 
and in vitro.
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F381C R424G R499C

S362C D555N
S44L

Y269STOP

K388R C448Y

S404F R460LG370R A556V

N386K L426V G527D

+ nocodazole 
 >

Figure 30. Almost all spastin missense mutations localize to microtubules.
All spastin missense mutations tall into the AAA cassette, with the only S44L 
exception (A). The subcellular localization of transiently expressed missense 
mutations was analyzed alter transtection m Cos / cells. All of them, with the 
exception of S44L and S362C, showed a filamentous pattern (B). These filaments 
were disrupted alter nocodazole treatment (C). the S44L and S362C exhibit a 
subcellular localization similar to the wt protein (data not shown).

152



C h a p t e r  4: S pa st in  a n d  M ic r o t u b u l e s

Figure 31. Wt and mutated spastin associates in transfected cells.
Either GFP-tagged spastin^^^^^ (A) or spastin*^^^^  ̂ (D, G) were co-transfected with 
wt spastin-HA in Cos7 cells. Both mutated proteins are visible as green signal; nuclei 
are stained with DAPI, blue signal; wt HA-spastin was revealed using a monoclonal 
anti-HA antibody, red signal (B, E, H). Co-localization is indicated by yellow signal 
in merged images (C, F, I). In some co-transfected cells, both mutant and wt spastin 
localize to the cytoplasmic spots (A-C, G-I). In other cases the wt spastin localizes to 
the filaments generated from the ATPase defective spastin mutant (D-F). We 
observed the microtubule network when both mutant and wt spastin localized to the 
cytoplasmic spots (G-L) using the anti a-tubulin marker. In this case, the 
microtubules appeared disassembled, a-tubulin marker was revealed with a mouse 
secondary antibody AMCA conjugated; HA-spastin was revealed using a polyclonal 
anti-HA and a rabbit secondary antibody TRITC-conjugated.
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CHAPTER 5: Two Hybrid system and spastin interactors

5.1 Searching for spastin inter actors: The Interaction Trap

The basis of the two hybrid system relies on the structure of some transcription 

factors that have two distinct functional domains: a DNA binding domain and a 

transcription activation domain. The DNA binding domain functions to target the 

transcription factor to specific promoter sequence, while the activation domain 

facilitates the assembly of the transcription complex allowing the initiation of the 

transcription. A functional transcription factor can be assembled through non-covalent 

interaction of two independent hybrid proteins carrying either a DNA binding domain 

or a transcription activation domain (Fields and Song, 1989). When those proteins are 

interacting, they bring a transcriptional activation domain into close proximity with a 

DNA binding site that regulates expression of an adjacent reporter gene (Fields and 

Stemglanz, 1994).

The interaction trap is a two hybrid system for identifying cDNAs encoding 

proteins that interact with a protein whose coding sequence is known. It can also be 

used to study interaction between known proteins. The interaction trap consists of 

three critical components. First, it uses a vector expressing a protein of interest fused 

to the DNA binding domain of the LexA, and this is referred as the bait of the 

system. Secondly it uses a yeast strain with two reporter genes: LEU reporter (which 

is integrated in the yeast chromosome and is downstream to the lexA operator) and 

the LacZ reporter (which is transformed into the yeast strain and provides a second 

assay for testing the interactions). Thirdly, it uses a library plasmid that directs the
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conditional expression of cDNA-encoded proteins fused at their N-terminus to a 

moiety containing three domains: a nuclear localisation signal, a transcription 

activation domain and an epitope tag. The activation domain used in this system is 

B42, which is derived from bacteria and it is weaker than the activation domains of 

Gal4 or VP 16.

The bait protein cloned into the pAR202 vector is constitutively expressed, it 

binds to the LexA operators upstream of the reporter genes, but it does not activate 

transcription by itself. The activation-tagged cDNAs (from the cDNAs library into 

the pJG4-5 vector) are conditionally expressed from the GALl promoter, so they are 

induced by galactose and repressed by glucose.

So, in glucose medium (Fig.32 A) the GALl promoter is repressed, the 

activation-tagged cDNA encoded protein is not expressed, and the yeast does not 

grow on a medium lacking leucine. In a galactose medium (Fig. 32 B,C), activation 

tagged cDNA encoded proteins are expressed. Those that interact with the bait will 

activate transcription of the two reporter genes, and the yeast will grow on medium 

lacking leucine (Leu ) and will form blue colonies on galactose (Gal) Xgal plates. 

Other proteins from the library that do not interact with the bait, will not activate the 

transcription of the reporter genes, so the yeast will not grow on Leu' and will form 

white colonies on Gal-Xgal plates.

To get clues on possible biological function of spastin, we used the interaction 

trap technique to search for molecular partners by screening a human fetal brain 

(HFB) library. Three different “bait” constructs have been prepared with different 

portions of spastin: the full length spastin cDNA, the N-terminal region of the protein 

(spastin^'^^) and the C-terminal portion of the protein (spastin^'^). These constructs
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were transformed in the yeast strain EGY48, together with the lacZ reporter 

(SHI 8.34), and tested for the transactivation of the system (see methods). The 

construct pAR202-LexA-spastin^'^^ was discarded because it was transactivating 

the system by itself. In contrast, yeasts transformed with the other two constructs, 

pAR202-LexA-spastin and pAR202-LexA-spastin^'^, were processed to determine if 

the “bait proteins” were expressed in yeast cells. Western blot analysis, using an anti- 

LexA antibody, on lysates from yeast transformed either with the empty pAR202 

vector or with the bait construct (pAR202-LexA-spastin and pAR202-LexA-spastin^‘ 

^), showed that the expected fusion proteins (respectively 8 8  kDa and 60 kDa) were 

produced (Fig 33).

5.1.1 Screening of HFB library with pAR202-LexA-spastin and pAR202-

LexA-spastinA-N

When the full length spastin was used as bait for the two hybrid screening, 310 

positive clones were obtained (out of 400 screened). All those clones were identical 

and corresponded to an ORF of 900bp. The DNA sequences of the clones were 

blasted against the non-redundant database and all of them identified a unique 

transcript, Nal4 (NM 003731). The HFB library was also screened using as bait the 

construct lacking the N-terminal region of spastin (pAR202-LexA-spastin^'^). 20 

positive clones, out of 200 screened, were isolated. The DNA of the positive clones 

were extracted by the yeast, subjected to sequence analysis and used in interaction 

mating assay to test the interaction with spastin. The DNA sequences of the clones 

were blasted against the non-redundant database and permitted to identify 9 

independent transcripts (table 5).
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Clones 6 , 17, 36, 47, 80, 81, 111, 161 correspond to the Bromodomain 

containing protein 7 (NM 013263). These clones are different in the 5’ region, in 

particular clones 6 , 17, 36, 47, 80, 111 start at amino acid 276, clone 81 start at 

amino acid 453 and clone 161 start at amino acid 394, all the clones include the TGA 

stop codon. Analysis of the clones 93, 125, 150 identified the SUMO-1 cDNA (NM 

003352); the clones were all identical and contained the full-length cDNA.

The third group of clones identified 34, 133 correspond to the cDNA sequence 

of Daxx (NM 001350). They are identical clones, start at amino acid 484 of Daxx 

protein and include the TGA of the gene.

The other two independent putative interactors were clone 97 and 176, 

corresponding respectively to the bromodomain PhD finger transcription (XM 

166450) factor and to the sumo activating enzyme subunit 2 (NM 004634) (they both 

represent uncompleted cDNA).

5.1.2 Putative interactors were reconfirmed in yeast by interaction mating 

assay

The interaction mating assay takes advantage of the fact that haploid cells of 

the opposite mating type will fuse to form diploids when brought into contact with 

each other (Finley and Brent, 1994). This mating approach is complementary to the 

library screening procedure described above; it permits to test interaction between 

known proteins and is also a mean to confirm the data obtained from the interaction 

trap. Interaction mating assay was set up to confirm the interactors obtained by the 

screening of the HFB library with the two different spastin baits. All the confirmed 

clones are shown in figure 34. This assay was also used to test the interaction
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between the clones identified and the bait not used for that screening. We showed 

that Nal4 does not interact with the spastin^'^ construct. Furthermore, all the positive 

clones obtained from the screening with spastin^'^ truncated construct did not 

interact with the full length spastin bait (Figure 34)

5.2 Nal4: spastin anchor to the centrosome and MT

Nal4 is a small coiled coil protein that was first identified as a nuclear 

autoantigen from patients with an autoimmune disease, the Sjogren syndrome 

(Ramos-Morales et al., 1998). Immunofluorescence using the serum from patients 

with Sjogren syndrome showed a punctuate nuclear localisation, but recently a 

centrosomal localisation of this protein has been demonstrated (Pfannenschmid et al., 

2003), and the protein was identified as a centrosome component by a proteomic 

approach (Andersen et al., 2003).

The region of spastin that is responsible for the interaction with N al4 was 

determined by using several deletion mutants of spastin in the interaction mating 

assay. The deletion mutants A50, A100,A190, AN were prepared in the pAR202 

vector. Both the full length spastin and the deletion mutants were transformed in the 

yeast strain EGY42 together with the lacZ reporter. The Nal4 cDNA, in the pJ4-5 

vector, was transformed in the yeast strain EGY48. The yeasts are streaked on 

selective plates. The two strains are mated by applying them to the same replica 

velvet (one perpendicular to the other), replicated to an YPD plate and incubated at 

30°C for 1-2 days. At the intersection of the YPD plate the diploids are formed. This 

plate is then replicated on the four selective plates for testing the activation of the
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two reporter genes. Nal4 is interacting with the full length spastin and with the 050 

construct as assessed by the growth of the diploid yeast cells on the LEU selective 

plate and by the positivity of the LacZ-Xgal reaction on the Xgal plates (blue 

colonies), but this interaction is lost with the deletion mutants A100, A190 and AN 

(Figure 35 A). Therefore, the region of spastin able to bind Nal4 is located between 

aa 50 and 100. This region was also defined as the minimal microtubule interaction 

region, so Nal4, being a centrosomal protein, could represent the anchor for spastin 

microtubule binding.

The cDNA obtained from the library screening was incomplete, lacking the 

first 99bp (33 aa) at the 5’ of the gene. To confirm that Nal4 is a spastin interactor, 

the full length cDNA was obtained by RT-PCR using a HeLa cDNA as template and 

cloned both in the pGEX-3X vector and in the pcDNAg vector. pGEX-Nal4 was 

used for the production of a GST-Nal4 recombinant protein that was used for a pull 

down assay from whole cell lysates. Extracts from different cell lines (HeLa, NSC34, 

and a neuroblastoma cell line SKNBE) were prepared and the agarose-GSTNal4 

beads were used for the pull down of the endogenous spastin from those lysates. 

Agarose-GST beads were used as control. The proteins bound to the GST or to the 

GST-Nal4 beads were fractionated on an 8 % SDS/PAGE, transferred to a PVDF 

membrane and analysed with a specific spastin polyclonal antibody SP-R74. The 

presence of a band of the expected size in the lane corresponding to the GST-Nal4 

pull down (Fig 35 B), which was absent in the pull down with GST alone, in all three 

cell lines is another evidence of the spastin-Nal4 interaction.
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5.3 Spastin is SUMO-1 conjugated in yeast

SUMO-1 is a small protein with high structural homology to Ubiquitin 

(Bayer et ah, 1998), which modify target substrates via formation of a covalent 

isopeptide bond. The covalent modification of target proteins by SUMO-1 is very 

similar to that of ubiquitin, three kind of enzymatic activity are involved in this 

system: a SUMO-1 activating enzyme, SAE, which consists of two subunits, 

respectively SAEl and SAE2; a SUMO-1 conjugating enzyme, UBC9; and a 

SUMO-1 ligase (Desterro et al., 1999; Desterro et al., 1997; Hochstrasser, 2001).

The two hybrid screening of a human fetal brain library, using as bait 

Spastin^^, permitted to isolate the sumo activating enzyme (subunit2, SAE2) and 

SUMO-1 as putative interaetors of spastin. SAE2 is a component of the enzymatic 

machinery, which catalyses the addition of a molecule of SUMO-1 to a target 

protein. Since spastin seems to interact both with SAE2 and SUMO-1, interaction- 

mating experiments were performed to assess if spastin was able to associate also 

with the other component of the sumo machinery: UBC9. pAR202-LexA-spastin and 

pAR202-LexA-spastin^'^ were introduced into the EGY48 yeast strain, while pJ4-5 

UBC9 and the lacZ reporter SHI8.34 were introduced into the EGY42 yeast strain. 

The yeasts are streaked on selective plates. The two strains are mated, replicated to 

an YPD plate and incubated at 30°C for 1-2 days. At the intersection of the YPD 

plate the diploids are formed. This plate is then replicated on the four selective plates 

for testing the activation of the two reporter genes. Confirming the previous results, 

the full length spastin is not able to bind UBC9, instead the Spastin^^, which interact 

with SAE2 and SUMO-1, is also able to interact with UBC9.
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Since spastin seems to be SUMOl modified in the yeast two hybrid system, 

spastin amino acidic sequence was examined in order to determine the presence of 

possible sites for SUMOl conjugation. SUMO-1 (small ubiquitin-related modifier) is 

a member of the ubiquitin and ubiquitin-like superfamily. Most SUMO-modified 

proteins contain the tetrapeptide motif'F-K-x-D/E where T  is a hydrophobic residue, 

K is the lysine conjugated to SUMO, x is any amino acid, D or E is an acidic residue. 

SUMOplot™ program (http://www.abgent.com/sumoplot.htnil) predicts the 

probability for the SUMO consensus sequence to be engaged in SUMO attachment. 

Analysis of the spastin primary structure indicates that four different lysine residues 

(Lys 279, Lys 340, Lys 462, Lys 565) (Fig. 36) conform to the consensus sequence (- 

\j/KxD/E-) for this modification; all of them are in the C-terminal portion of the 

protein (the portion retained in the Spastin^^ construct). Lys 565 is conserved in 

human and mouse, but not in Drosophila spastin sequence. Lys340 and Lys462 

appear to be conserved also in Drosophila and are therefore strong candidates to be 

targets of the SUMOl modification. Lys 279 is not conserved in the mouse and 

Drosophila spastin sequences and therefore was not taken in account. We have 

therefore investigated which of these lysines K340, K462 and K565 may represent 

the target for SUMO-1 conjugation in the human spastin.

We have generated pAR202-LexA-spastin^^ carrying the mutations K340R, K462R, 

K565R and also the double mutant K462/K565R. These constructs were used in 

interaction mating experiments to determine if one of the mutations could abrogate 

the interaction with SUMOl and other components of the SUMO machinery, or if 

any of the interactions found using the pAR202-LexA-spastin^^ construct was 

dependent on one of these residues. Spastin^^^^^^ and spastin^^ '̂^^^^^^^  ̂proteins are
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not expressed in yeast (data not shown) and could not be used in our studies. 

Spastin"^ ,̂ spastin^^ '̂^^^^ and spastin^^^^^^ interact with SUMOl, SAE2, UBC9 as 

revealed by the LacZ reporter in figure 37 A. Furthermore spastin^^, spastin^^ '̂^^^^ 

and spastin^^^^^^ interact with daxx and brd7 (Fig. 37 A). The interaction of 

spastin^^^"^^^  ̂with SUMOl, SAE2, UBC9, daxx and brd7 is weaker, in terms of the 

colorimetric reaction, respect to spastin^^ and spastin^^^^^^^. When we checked that 

the fusion proteins relatives to the constructs we used in the interaction mating assay 

were made properly, we saw that the levels of expression of the LexA-spastin^^^"^^^^ 

were lower respect to the other constructs (Fig. 37B). Therefore the weaker 

colorimetric reaction is probably due to a low level of the protein available for the 

interaction.

5.3.1 Spastin is SUMO-1 modified in vitro

To investigate if spastin is a new substrate for SUMO-1, we performed in 

collaboration with R.T. Hay and E. Jaffray (University of St. Andrews) an “m vitro ” 

system for SUMO-1 modification (Desterro et al., 1998). ^^S-labelled in vitro 

translated Spastin was incubated with a source of SUMO-1 activating enzyme 

(SAE 1/2) (Desterro et al., 1999) and SUMO-1 conjugating enzyme (Ubch9)(Desterro 

et al., 1997) in the presence of SUMO-1 and ATP. Under these conditions ^^S- 

labelled Spastin was converted to a more slowly migrating form that is consistent 

with SUMO-1 modification. To confirm that this species was indeed a SUMO-1 

modified product, GST-SUMO-1 was substituted for SUMO-1 in the reaction, 

resulting in the detection of a modified species with altered electrophoretic mobility
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(Fig. 3 8 A). SUMO-1 modification was abolished if SUMO-1, SAE, Ubch9 or ATP 

was omitted from the reaction (Fig. 38B). Both constructs are mono-SUMO-1 

modified. Constructs carrying the mutations K340R, K462R, K565R, K462/565R, 

K340/462/565R were tested in the in vitro conjugation assay. None of the mutations 

(single or multiple) resulted in the abrogation of the SUMO-1 conjugation (Fig. 39). 

The fact that mutating the putative target lysines there is no abrogation of SUMO-1 

conjugation could suggest that when the target lysine is mutated, other lysine become 

reactive in the conjugation reaction.

5.3.2 Spastin is SUMO-1 modified in vivo

To test the hypothesis that spastin is a substrate for SUMO-1 modification in 

vivo, HeLa cells were transfected with a vector expressing a 6 His tagged SUMO-1 

protein and full length spastin-myc or spastin^^-myc. Cells were collected 48 hrs 

post transfection, lysed in 6 M guanidine-HCl and the extracts were subjected to 

affinity purification with nickel-charged agarose beads to recover proteins covalently 

attached to 6His-SUM01. Materials bound to the beads were then separated by SDS- 

PAGE and analysed by Western blotting with the anti-myc antibody (Fig. 40A). 

Unfortunately, both full length spastin-myc and spastin^^-myc bind not specifically 

to nickel beads also when 6His-SUM01 has not been co-transfected in cells. Since 

spastin seems to bind non-specifically to the nickel beads, this system cannot be used 

to investigate whether spastin is SUMOl modified also in vivo.

Since spastin localize to the PML bodies in human fibroblasts, we have 

performed immunofluorescence experiments to determine if spastin colocalizes with 

SUMO-1 in these structures. Human fibroblasts were transfected with a HA-SUMO-
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1 construct. Double immunofluoreseence experiments, using the anti-HA antibody to 

stain SUMO-1 and the spastin specific antibody SP-R74, revealed that spastin 

colocalize with SUMO-1 in those nuclear punctuate structures (Fig. 40B). This result 

does not imply a direct interaction between SUMO-1 and spastin, which could be 

mediated by a component of the PML bodies.

5.4 Brd7

Brd7 is a bromodomain containing protein. The bromodomain is a conserved 

sequence of approximately 110 amino acids (Jeanmougin et al., 1997). Brd7 function 

is not clear, although many of the bromodomain proteins seem to be involved in 

transcriptional regulation (Cuppen et al., 1999). To demonstrate that the interaction 

between spastin and brd7 occurs also in a mammalian environment, 

immunoprécipitation analysis of the two proteins from mammalian cell lysates was 

carried out.

We used the full length Brd7 cDNA cloned into the pCDNAs-FLAG expression 

vector (from Dr. Julia Kzhyshkowska), which allows expression of Brd7 with an N- 

terminal FLAG epitope tag. Since spastin mis-localizes when overexpressed, we used 

the SP-51 antibody to work with the endogenous protein.

HeLa cells were transiently transfected with the Brd7-FLAG construct, and 48 hours 

post-transfection, cell lysates were prepared, quantified and pre-cleared by incubation 

with protein A. Immunoprécipitation was carried out using the anti-FLAG antibody, 

the SP-51 and an unrelated antibody (HA) as control. As negative control, 

untransfected HeLa cell extracts were subjected to the same experimental procedure
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(see Material and methods). Following washing to remove non-specifically bound 

proteins, immunopreeipitated complexes were eluted in the disruption buffer and 

fractionated on a 7.5% SDS/PAGE. Western blot analysis of eluted proteins using the 

anti-Flag antibody (Fig. 41) resulted in the detection of the 85 kDa band 

corresponding to the Brd7-flag protein in the transfected lysates and also in the 

immunoprecipitate using the flag, SP-51 an HA antibodies. This band was not 

detected in any of the untransfected samples. In addition, western blot analysis with 

the SP-51 antibody showed the presence of the band corresponding to the endogenous 

spastin exclusively in the SP-51 immunoprécipitation samples. Unfortunately, these 

results indicate that the Brd7 protein is sticky to the protein A resin and it is in fact 

immunopreeipitated also by an unrelated antibody. Further experiments, changing the 

experimental conditions (such as different washing conditions), will be needed to 

confirm this interaction.

5.5 Daxx

Daxx has been implicated in several processes, but its exact role has to be still 

elucidated. Many reports have implicated Daxx in apoptosis, but whether it functions 

as a pro- or anti- apoptotic molecule has not yet been clarified (Michaelson, 2000).

Daxx was identified as a putative spastin interactor with the two hybrid 

technique. To confirm that this interaction occurs also in mammalian cells, 

immunoprécipitation analysis of the two proteins from mammalian cell lysates was 

performed.
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The full length Daxx cDNA was cloned into the pMT21-myc expression vector, 

which allows expression of Daxx with a C-terminal MYC epitope tag. We want to 

demonstrate the interaction between the exogenous Daxx-myc and the endogenous 

spastin, using respectively an anti-myc antibody and the SP-51 anti-spastin antibody.

HeLa cells were transiently transfected with the Daxx-myc construct, and 48 

hours post-transfection, cell lysates were prepared, quantified and pre-cleared by 

incubation with protein A. Immunoprécipitation was carried out using the anti-myc 

antibody, the SP-51 and, as control, the pre-immune serum from the rabbits that were 

injected with the SP-51 antigen for the antibody production. Untransfected HeLa cell 

extracts were subjected to the same experimental procedure (see Material and 

methods). Immunopreeipitated complexes were eluted in the disruption buffer and 

fractionated on a 7.5% SDS/PAGE. Western blot analysis using the anti-myc antibody 

resulted in the detection of the 95 KDa band corresponding to the Daxx-myc protein 

in the transfected lysates (Fig. 42, lane 5). Daxx was immunopreeipitated by the anti- 

myc antibody as expected (Fig. 42, lane 6 ) and it was also possible to detect a fainter 

band in the immunoprecipitate with the SP-51 antibody (Fig. 41, lane 7). This band 

was not detected either in the untransfected samples (Fig. 42, lane 1-4) or in the 

immunoprecipitate with the pre-immune serum (Fig. 42, lane 8 ). Furthermore, the SP- 

51 antibody detected the presence of the band corresponding to the endogenous 

spastin in the samples immunopreeipitated both with the SP-51 (Fig. 42, lane 7) and 

the myc (Fig. 42, lane 6 ) antibodies. Spastin band was not detected in none of the 

controls (Fig. 42, lane 1-4, 8 ). This result confirmed the physical interaction between 

spastin and daxx.
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Interestingly, in the co-immunoprecipitation experiments of spastin and daxx, 

we have noticed that the levels of the endogenous spastin were different between 

untransfected and transfected cells. The endogenous spastin was never detected in the 

50 jig of total lysates of untransfected cells. However spastin was clearly detected 

when 25 |Xg of the Daxx-myc transfected lysates were loaded on the SDS/PAGE and 

analysed by immunoblot. This striking increase in the amount of the band 

corresponding to the full length spastin was also noticed in the immunopreeipitated 

samples (Fig. 42). Moreover, a slower migrating band, which is immunopreeipitated 

both by the SP-51 and by the myc antibodies, was detected at higher levels (see 

arrow). A hypothesis could be that the slow migrating form is the SUMO-1 modified 

spastin.

5.5.1 The level of spastin transcript are increased upon Daxx overexpression

To investigate if the increased level of spastin in HeLa cells transiently 

transfected with Daxx was due to an increase in the level of spastin transcription or 

to a stabilization of spastin protein, we perform real-time reverse transcriptase PGR 

on untransfected HeLa cells, cells transfected with Daxx-myc and cells transfected 

with a n other construct which did not show the same effect (Nal4-ha).

The real-time PGR system is based on the detection and quantification of a 

fluorescent reporter. This signal increases in direet proportion to the amount of PGR 

product in a reaction. By recording the amount of fluorescence emission at each 

cycle, it is possible to monitor the PGR reaction during the exponential phase where 

the first significant increase in the amount of PGR product correlates to the initial 

amount of template. The SYBR™ Green dye was utilized for fluorescent detection of
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cDNA. SYBR Green is a non-sequence specific fiuorescent DNA intercalating agent 

and it binds exclusively to double-strand DNA. We used an endogenous gene as 

normalizer, GAPDH (Glyceraldehyde-3-phosphate dehydrogenase), which is more 

abundant and remains constant, in proportion to total mRNA, among the samples.

We extracted the total RNA from HeLa cells untransfected or transfected with 

Daxx-myc or with Nal4 (as control) and we performed real-time quantitative PGR 

measurements on total RNA. For each sample, three distinct amplifications were 

carried out, in parallel, to amplify spastin, |3-actin and GAPDH mRNA as a reference 

gene, p-actin was used as control to ensure that Daxx-myc overexpression was not 

affecting the transcriptional level of every gene.

We demonstrate that spastin transcription levels are higher in cells 

overexpressing Daxx of 3.5-4.6 fold respect to the untransfected cells or to the cells 

transfected with an unrelated protein (Fig. 43). The fold of increase is probably 

related to how efficient is the transfection of Daxx and therefore on how much Daxx 

we are expressing. As control, the levels of p-actin are constant in the different 

samples.
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5.6 Summary

^  Spastin interacts with Nal4, a small coiled-coil centrosomal protein, and this

interaction is mediated by the N-terminal portion of spastin (aa 50 and 100)

^  Nal4 and Microtubules share the same region of interaction on spastin,

therefore Nal4 could represent the anchor for spastin to the microtubules 

Spastin is sumoylated in vitro

Spastin interacts specifically with Daxx via its C-terminal portion

Daxx overexpression in HeLa cells cause an increase in the level of

transcription of spastin gene
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Positive clones Interaction 
mating 

(+ confirmed 
interaction)

gene

6 + Brd7
17 + Brd7
36 + Brd7
47 + Brd7
80 + Brd7
81 + Brd7

1 1 1 + Brd7
161 + Brd7
93 + SUMO-1
125 + SUMO-1
150 + SUMO-1
34 + Daxx
133 + Daxx
12 - HDAC-1
29 - HDAC-1
97 + Bromodomain PhD 

finger transcription 
factor

140 - SI0 0  calcium binding 
protein

151 - Site specific 
recombinase FTP yeast

176 + Sumo-1 activating 
enzyme (subunit 2 )

184 - Thioredoxin related 
protein

Table 5. Positive clones from the two hybrid screening of HFB library with 
pAR202-LexA-spastin0 N. The positive clones have been subjected to sequence 
analysis and retested by interaction mating.
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LEU
bait

LacZ
Q  DNA binding

dom ain

B □ Activation
domain

LEU

LacZ

LEU

2

LacZ

Figure 32. The interaction trap.
(A) Glucose medium. The LexA fusion protein (bait) is made and binds to LexA 
operators (black box) upstream of the two reporter genes, LEU and LacZ. The bait 
does not aetivate the transcription of the reporters because it lacks an activation 
domain. The activation domain-tagged cDNAs are not expressed because the GALl 
promoter is repressed in presence of glucose. Yeast cells do not grow in medium 
lacking leucine and forms white colonies on an X-Gal plate. (B) Galactose medium: 
interaction. Galactose induces expression of the activated tagged cDNA library. A 
protein encoded from the library interacts with the bait; the activation domain 
activates the transcription of LEU and LacZ. Yeast cells will grow on a medium 
lacking leucine and form blue colonies on an X-gal plate. (C) Galactose medium: no 
interaction. Galactose induces the expression of the proteins encoded from the 
activation-tagged cDNA library. A protein encoded from the library does not interact 
with the bait; the activation domain cannot activate the transcription of LEU and 
LacZ. Yeast cells will not grow on a medium lacking leucine and form white 
colonies on an X-gal plate.
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Figure 33. Expression of the LexA fusion proteins.
pAR202-Spastin^^ and pAR202-Spastin'^^ were transformed in EGY48 yeast strain 
and yeast cells were lysed to check that a tusion protein was made. As control, yeasts 
transformed with the empty pAR202 vector have been used. Cell extracts were 
prepared from over night culture and samples were fractionated on a 1 0 % 
SDS/PAGE. Immunoblot analysis was performed with the monoclonal anti-LexA 
antibody. The constructs, pAR202-Spastin^^ and pAR202-Spastin^^, express fusion 
proteins of the expected size as indicated by the arrows.
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Figure 34. Interaction mating assay to confirm spastin putative interactors.
The pAR-202 constructs (pAR202-Spastin^^ and pAR202-Spastin'^^) and the LacZ 
reporter (SHI 8.34) were transformed in the yeast strain EGY42 (mate type a). The 
clones identified with the interaction trap are in the pJ4-5 vector and were 
transformed into the EGY48 yeast strain (mate type a). The yeasts were streaked on 
selective plates. The two strains are mated on an YPD (rich medium) plate and 
incubated at 30°C for 1-2 days. At the intersection of the YPD plate the diploids are 
formed. This plate is then replicated on the four selective plates for testing the 
activation of the two reporter genes. Each bait has been crossed with the putative 
interacting clones identified in both screenings. Nal4 interacts exclusively with the 
spastin^^; the PhD finger protein was not confirmed by interaction mating. The other 
clones, SAE2, SUMO-1, Daxx and Brd7, interact specifically with the Spastin"^^ 
protein and not with Spastin^^.
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1 MNSPGGRGKK KGSGGASNPV PPRPPPPCLA PAPPAAGPAP PPESPHKRNL
51  YYFSYPLFVG FALLRLVAFH LGLLFVWLCQ RFSRALMAAK RSSGAAPAPA

1 0 1  SASAPAPVPG GEAERVRVFH KQ AFEYISIA LRIDEDEKAG QKEQAVEWYK
1 5 1  KGIEELEKGI AVIVTGQGEQ CERARRLQAK MMTNLVMAKD RLQLLEKMQP
2 0 1  VLPFSKSQTD VYNDSTNLAC RNGHLQSESG AVPKRKDPLT HTSNSLPRSK
2 5 1  TVMKTGSAGL SGHHRAPSYS GLSMVSGVKQ GSGPAPTTHK GTPKTNRTNK
3 0 1  PSTPTTATRK KKDLKNFRNV DSNLANLIMN EIVDNGTAVK FDDIAGQDLA
3 5 1  KQALQEIVIL PSLRPELFTG LRAPARGLLL FGPPGNGKTM LAKAVAAESN
4 0 1  ATFFNISAAS LTSKYVGEGE KLVRALFAVA R E L Q P S I I F I  DEVDSLLCER
4 5 1  REGEHDASRR LKTEF L IE F D  GVQSAGDDRV LVMGATNRPQ ELDEAVLRRF
5 0 1  IKRVYVSLPN EETRLLLLKN LLCKQGSPLT QKELAQLARM TDGYSGSDLT
5 5 1  ALAKDAALGP IRELKPEQVK NMSASEMRNI RLSDFTESLK KIKRSVSPQT
6 0 1  LEAYIRWNKD FGDTTV

Figure 36 . Searching for SUMO-1 consensus sequence yKxE
Spastin (human and drosophila) sequence was analysed with the SUMO-plot 
program (http://www.abgent.com/sumoplot.html) in order to identify lysine that could be 
substrates for SUMOl conjugation. Sequences in red correspond to lysine with a 
high probability to be SUMOl modified, while sequences in blue correspond to 
lysine with low probability to undergo SUMOl modification. The underlined 
sequences are conserved in Human, Mouse and Drosophila spastin.
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Figure 37. Spastin is SUMO-1 conjugated in yeast.
SUMOl and SAE2 were identified as putative interactor of spastin. pAR202- 
Spastin^ construct mutated in the putative target lysines for SUMO-1 conjugation 
were generated: ANK462R and ANK565R. (A) SpastinAN, ANK462R and 
ANK565R were transformed in EGY42 yeast strain together with the LacZ reporter. 
SUMO-1, SAE2, Daxx, UBC9 and Brd7 (cloned in the pJ4-5 vector) were 
transformed in the EGY48 yeast strain and an interaction mating assay was 
performed. As control, we transformed also the pJ4-5 empty vector in the EGY48. 
Spastin^^ interacts with SUMO-1, SAE2, Daxx, Brd7 and also UBC9. ANK462R 
interacts with all the constructs although a weaker colorimetric reaction was 
observed. ANK565R interacts with all the constructs. (B) Spastin^^, ANK462R and 
ANK565R were transformed in EGY42 yeast strain together with the LacZ reporter 
for the interaction mating assay. Yeast cells were lysed to check that a fusion protein 
was made. As control, yeasts transformed with the empty pAR202 vector were used. 
Cell extracts were prepared and samples were fractionated on a 10% SDS/PAGE. 
Immunoblot analysis was performed with the monoclonal anti-LexA antibody. All 
the constructs express fusion proteins of the expected size as indicated by the arrow, 
although the LexA-ANK462R protein is expressed at a lower level.
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Spastin Control
GST-SUMO-1 + _ _ + +
SUMO-1 - + - + +
Ubc9 + + _ + +
SAE1/2 + + _ + +

35S-Spastin-GST-SUM 01

2^S-Spastin-SUIVI01

35S-Spastin ^

Spastin Control
SUMO-1 + + + . +
Ubc9 + -  + + _  +
SAE1/2 - + + + . +

^^S-Spastin-SUM GI

^^S-Spastin

Figure 38. In vitro conjugation of SUMO-1 to Spastin.
(A) In vitro expressed and labelled Spastin or a control protein were incubated 
with ATP, recombinant SUMO-1 or GST-SUMO-1, UBC9 and SAE (1/2) as 
indicated. Reactions products were fractionated by SDS/PAGE, and the dried gel was 
analyzed by phopshorimaging. The bands corresponding to spastin, SUMO-1 
conjugated spastin and the GST-SUMOl conjugated spastin are indicated by the 
arrows. (B) S labelled Spastin or a control protein were incubated with ATP, 
recombinant SUMO-1, UBC9 and SAE (1/2) as indicated. The SUMO-1 conjugation 
of spastin is abolished if either SUMO-1, SAE or UBC9 was omitted from the 
reaction.
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Spastin Control
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SUMO-1 + + + + + + -  +
Ubc9 + + + + + + -  +
SAE1/2 + + + + + + - +

35S-Spastin-SUM 01

3^S-Spastin

Figure 39. In vitro conjugation of SUMO-1 to several spastin mutants.
In vitro expressed and labelled Spastin (wt, K340R, K462R, K565R, K462/565R 
or K340/462/565R) or a control protein were incubated with ATP, recombinant 
SUMO-1 or GST-SUMO-1, UBC9 and SAE (1/2) as indicated. Reactions products 
were fractionated by SDS/PAGE, and the dried gel was analyzed by 
phopshorimaging. The bands corresponding to spastin and SUMO-1 conjugated 
spastin are indicated by the arrows. None of the mutations abrogate the SUMO-1 
modification of spastin.
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Spastin'"'- Spastln^^

+ - +

83 — 

62 —

47.5 —

32.5 —

B

spastin SUMO-1 (a-HA) m erge

Figure 40 . SUMO-1 modification of spastin in vivo.
(A) HeLa cells were co-transfected with 6 His tagged SUMOl and spastin-myc or 
spastin" '̂̂  myc. Cells were lysed in guanidine-HCl buffer, and proteins linked to 6 His 
tagged SUMO were purified using Ni-agarose beads and, after extensive washing, 
eluted with 200 mM imidazole. Eluted proteins were fractionated on a 10% 
SDS/PAGE, transferred to a PVDF membrane and analyzed by Western blot using 
the anti-myc monoclonal antibody. Molecular weight markers are shown on the left.
(B) Human fibroblasts were transfected with Ha tagged SUMO-1. 24 hrs post­
transfection cells were fixed in methanol. SUMO-1 was detected (red signal) using 
the monoclonal anti-HA antibody. While spastin was detected using a specific 
polyclonal SP-R74 antibody (green signal). Nuclei were stained with DAPI (blue 
signal). A co-localization is evident as shown in the merge figure by the yellow 
signal.
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Figure 41. Spastin molecular partner: Brd7
HeLa cells were transfected with the Brd7-flag construct. Extracts from 
untransfected (lane 1-4) or transfected (lane 5-8) cells were immunoprecipitated with 
the anti-flag, the SP-51 or the anti-ha (as control) antibodies. Samples were 
fractionated on a 7.5% SDS/PAGE and analysed by western blot using the anti-flag 
or the SP-51 antibodies. Brd7-flag was immunoprecipitated by the anti-flag antibody 
(WB flag, lane 6 , blue arrow), by the SP-51 (WB flag, lane 7), but also by the 
unrelated anti-HA antibody (WB flag, lane 8 ), suggesting that Brd7 binds non 
specifically the resin. On the contrary, spastin was immunoprecipitated only by the 
SP-51 antibody (WB SP-51, lane 3, 7 red arrow).
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Figure 42. Spastin interacts physically with Daxx.
HeLa cells were transfected with the Daxx-myc construct. Lysates from 
untransfected (lanes 1-3) or transfected (lanes 4-8) cells were immunoprecipitated 
with the anti-myc, the SP-51 or the anti-ha (as control) antibodies. Samples were 
fractionated on a 7.5% SDS/PAGE and analysed by immunoblot using the a-myc or 
the SP-51 antibodies. Daxx-myc was immunoprecipitated by the a-myc antibody and 
by the SP-51 antibody, but not by the unrelated anti-HA antibody (WB a-myc, lane 
5,6,7). Consistently, spastin was immunoprecipitated by the SP-51 and by the a-myc 
antibodies, but not by the anti-HA (WB SP-51, lane 5,6,7). Both the SP-51 and the a- 
myc immunoprecipitated the 6 8 kDa form and a slower migrating form of 90 kDa 
(red arrows). When cells were transfected with daxx, it is possible to detect a higher 
level of spastin, both in the total lysate (WB SP-51, lane 4) and in the 
immunoprecipitate samples (WB SP-51, lane 5,6), respect to the untransfected cell 
(WB SP-51, lane 1,2,3).
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Figure 43. Real-time quantitative PCR
Total RNA was extracted from untransfected HeLa cells or cells transfected with 
Daxx-myc or Nal4. cDNA was transcribed from 3 pg of RNA and 1:20 dilution was 
used as template for the real-time PCR. Daxxl and Daxx2 represent two independent 
transfections. GAPDH was used as reference; spastin (A) and b-actin (B) 
transcription level were evaluated in the different samples. Spastin transcription 
levels are 3.5 to 4.6 fold higher in Daxx transfected cells respect to untransfected 
cells, while b-actin levels are constant in the different samples.
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CHAPTER 6: A structural model for spastin

6.1 Spastin sequence analysis

The linear polypeptidic chain contains all the information necessary for the 

acquisition of the correct and fiinctional three-dimensional fold, as well as 

information regarding the subcellular compartment where the protein is localized. 

Spastin primary sequence has been analyzed with Pfam (this program scans a 

sequence against the Pfam protein families database 

http://www.sanger.ac.uk/Software/Pfam/search.shtml/) and SMART (Simple 

Modular Architecture Research Tool; http://smart.embl-heidelberg.de/) programs 

searching for domain architecture. Both programs identified two main domains: the 

AAA domain between amino acid 374 and 562; the MIT domain between amino 

acids 116 and 194. Furthermore, a small transmembrane domain is recognized 

between residues 57 and 79. A nuclear localization signal (NLS) between amino 

acids 7 and 11 was originally identified in spastin sequence (Hazan et al., 1999). 

Analysis of spastin protein sequence with PSORT, a program for the prediction of a 

protein subcellular localization, lead to the identification of three NLS: PKRKDPL at 

aa 233; RKKK at aa 309; PGGRGKK at aa 4. By computer analysis the protein has 

therefore a strong probability to be nuclear.
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6.2 Spastin 3D structure prediction

The biological function of a protein is directly determined by its three- 

dimensional structure. When structural data are not available for the construction of a 

three-dimensional model, some information can be retrieved by using 3D structure 

prediction programs. The 3D-PSSM program

(http://www.sbg.bio.ic.ac.uk/~3dpssm/) analyzes a protein sequence of interest and 

attempts to predict its 3-dimensional structure. It is based on a library constructed 

with known protein structures onto each of which the input sequence is "threaded" 

and scored for compatibility. Protein fold recognition is achieved using ID and 3D 

sequence profiles coupled with secondary structure information (Foldfit). Spastin 

amino acidic sequence was analysed via the 3D-PSSM program. Unfortunately the 

full length protein could not be used because no structural homology for the N- 

terminal portion was detected by the program. A sequence corresponding to the C- 

terminal portion of the protein (aa 250-616), mainly containing the AAA cassette, 

was therefore used for a 3D structure prediction. The resulting atomic coordinates for 

spastin model were superposed on the crystal structure obtained from the AAA of 

p97 using the “least square fitting” program (local program. Imperial College of 

London) (PDB code: 1E32) (Zhang et al., 2000). Because the two set of atomic 

coordinates were almost perfectly overlapping, we could use the structure of p97 

AAA as a base for generating our model of Spastin AAA. The program used for the 

model generation and for all the calculation shown is the PREPI (Dr. S. Islam, 

Imperial college of London). The resulting model for spastin has some gaps due to 

the absence of few amino acids that were instead present in p97 and vice versa. In 

this way we could generate a model for the spastin AAA domain. In this model
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Spastin AAA domain comprises, as for p97, an N-terminal subdomain which has a 

□/□ fold, a nucleotide binding pocket (ADP in red) and a smaller C-terminal Hi- 

helical subdomain (Fig. 44). p97 forms a symmetric homo-hexamer. Because of the 

high degree of similarity between the AAA domain of p97 and spastin, we have 

constructed also a hexameric model for spastin AAA (Fig. 45).

6.2.1 Mapping of missense mutations to the model

All the missense mutations found in SPG4-HSP patients fall in the AAA 

domain of spastin. They are predicted to interfere with ATP binding and/or 

hydrolysis and therefore interfere with ATPase activity of the domain.

In order to understand the effect of the missense mutations, we have 

investigated the localization of these mutated residues on our model. All the mutated 

residues are represented on the model in purple and in the ball and stick format, both 

on the monomer (Fig. 44) and on the hexamer (Fig. 45).

Based on our model, we have estimated the amino acids that constitute the 

active site and are therefore responsible for ATP-binding. Considering that the radius 

of the Carbon atom (C) is 1.6 Â and that of the Oxygen (O) atom is 1.4 Â, the 

maximum distance that accounts for the interaction between atoms is given by the 

sum of C and O radius (3 Â) plus an error correction of 0.5 Â. Two atoms interact if 

they are at a distance equal or inferior to 3.5 Â. In this way we have identified which 

are the atoms and therefore the residues involved in the interaction with the ADP 

molecule (table 6 , figure 46).
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Some of the residues of the active site have been found mutated in patients 

with HSP. Clearly for these residues, the mutation interferes with the ATP binding. 

In particular, the K388 is the lysine predicted to bind the ATP.

In figure 43, it is evident that some missense mutations fall in structural 

element of the AAA module, for example R424 and L426 are in the middle of a a- 

helix, while F404 is on a (3-sheet. Some mutations, therefore, altering structural 

elements, could generate changes in the structure which compromise the AAA 

function.

Another important observation has been to evaluate which is the surface of the 

protein which is exposed to the solvent and therefore involved in possible 

interactions with other molecules. The concept of solvent accessible area was 

originally introduced by Lee and Richards (Lee and Richards, 1971) and it describes 

the area over which contact between protein and solvent can occur. With the PREPI 

program we have calculated which is the solvent accessible area (Lee & Richardson 

algorithm) (Lee and Richards, 1971) of each residue and we have generated a surface 

model as shown in figure 47. All the missense mutations are in purple, while the 

ADP is in red. If a residue, localized on the surface, is mutated, this can disturb the 

eventual interaction with other molecules and therefore interfere with the protein’s 

function.

Since we have generated also a hexameric model for spastin AAA, we have 

calculated which are the residues localized at the interface between two subunits. We 

have determined which residues lost solvent accessible area comparing the monomer 

calculation with the hexamer one. These will be the residues at the interface. If we 

suppose that spastin, as the other members of the AAA family (p97 or Katanin), acts
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as an hexamer, mutations in the sites at the interface between two subunits of the 

oligomer can interfere with the assembling of the hexamer and therefore with its 

function.

On this basis, it is clear that mutations of a residue in the AAA, which is 

involved in the active site formation, exposed on the protein surface, localized in 

structural elements or at the interface between subunits in the hexameric models 

(table 7), can interfere with the AAA module activity, via different mechanism and 

cause a defect in spastin function leading to HSP.

6.2.2 SUMO-1 consensus lysine and spastin structure

The analysis of spastin primary structure and the sequence homology between 

the Drosophila, mouse and human protein permit us to identify three candidate 

lysines for the SUMO-1 conjugation: K340, K462, and K565.

To be SUMO-1 modified the lysine residue has to be exposed on the surface of the 

protein. Therefore we observed where these lysines were localized on our AAA 

model (fig 47, yellow residues). The K565 is the residue which is not conserved in 

the Drosophila spastin and on our model it is hidden in the structure. The K340 and 

K462 are conserved in these three species. They are both exposed on the surface of 

the spastin AAA. The side chain of the K462 is laying on the structure, while the side 

chain of the K340 is exposed toward the solvent. The K340 residue has indeed a 

higher solvent accessible area. Since we are discussing on a model which has no 

experimental support, we can not tell which residues between K340 and K462 is 

most probably SUMO modified. But they are both, in terms of consensus and of 

surface accessibility, good candidates for this modification.
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6.3 Summary

Z Missense mutations of the spastin gene interfere with the AAA module 

function, by altering structural elements, disrupting the ATP binding site, or 

modifying residues important for molecular interactions.

Z  K340 and K462 are the most probable lysines for SUMO-1 conjugation, 

because they match the consensus and are exposed on the protein surface.
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Residues in the active site Mutation inHSP-SPG4 
patients

D343
1344 I344K
A345
Q347 Q347K
G385
N386 N386K/S
G387
K388 K388R
T389
M390
L517
S547
T550

Table 6 . Amino acidic residues of Spastin active site.
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Missense
mutation

Active
site

Surface Interface Structural
motif

H: Helix 
S: □-strand

Residues with a 
lower “solvent 

accessibility 
area” in the 

hexameric model
S44L Not present the model 

in
I344K +
Q347K + +
S362C + + (H)
G370R 4- + (H) +
F381C + (S)
N386K +
N386S +
K388R +
F404S + + (S)
R424G + + (H)
L426V + + (H)
C448Y loop
R460L + + + (H) +
T486I + (S)
R499C + + + (S)
R504L + + (S)
E512D
G526D loop
L534P + (H)
D555N + + + (H) +
A556V + (H)
R562G + +
D584H

Table 7. SPG4 missense mutation and their location on the three-dimensional model 
of spastin AAA domain.
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.G370

R424

R460

V. G526

a/p subdomain

a-helical C- 
terminal 

subdomain

Figure 44. Secondary structure model of spastin AAA.
A model of the AAA domain of spastin has been realized with the PREPI program 
on the basis of the homology with p97. The model consists of an N-terminal a/p fold 
suDûomam, a nucieotiûe binding pocket and a C-termmal a-helical subdomain. 
Missense mutations are represented in purple and in the ball and stick format. 
Lysines candidate for SUMO-1 conjugation are in yellow and in the ball and stick 
format. The ADP is in red.
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Figure 45. Hexameric model of spastin AAA.
On the basis ot the p9 / hexamenc model, we have generated a hexamenc model of 
the spastin AAA. In blue is evidenced one monomeric subunit. In purple are the 
missense mutations, in yellow the lysines candidates for SUMO-1 conjugation, while 
in red is the ADP.
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M390

Figure 46. Active site of spastin AAA.
This is a schematic representation of the active site of the spastin AAA. In cyan is the 
Ca skeleton of the AAA structure. In ball and stick are the amino acids that 
constitute the active sites. In purple are the missense mutations. In green are the other 
amino acids of the active site. In red is the ADP.

193



C h a p t e r  6: A  S t r u c t u r a l  M o d e l  f o r  S p a s t i n
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CHAPTER 7: DISCUSSION

Hereditary spastic paraplegia (HSP) is a clinically and genetically 

heterogeneous group of neurodegenerative disorders. So far, 21 HSP loci have been 

mapped and 10 genes have been identified. All the genes involved in the different 

forms of HSPs are ubiquitously expressed and they are involved in many different 

cellular processes. An important issue in studying HSP is to understand how it is 

possible that mutations in ubiquitous proteins involved in different pathways can all 

lead to a very specific cellular phenotype, which is the retrograde and progressive 

degeneration of the longest axons of human body.

The most common form of HSP is due to mutations in the SPG4 gene. 

Therefore we have studied the protein product of the SPG4 gene, spastin, as a mean 

to understand the pathogenesis of this group of diseases.

7.1 Spastin has a complex subcellular localization

A first step, in investigating spastin function, was to determine its subcellular 

localization. We have investigated the localization of both the endogenous and the 

exogenous protein. When spastin is transfected into cells, it starts to be expressed at 

the microtubule organizing center and then, with longer period of expression, it
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accumulates in cytoplasmic spots. This predominantly cytoplasmic localization is in 

contrast with the presence of three NLS in spastin amino acidic sequence. Moreover, 

a recent report indicate that spastin is an abundant neuronal protein which localizes 

to the nucleus (Charvin et al., 2003).

We have produced specific spastin antibodies and we have found that spastin 

has a complex subcellular localization, both nuclear and cytosolic, which depends on 

the cell type analyzed.

In Cos-7 cells a specific spastin signal was detected at the spindle poles in 

different phases of the cell cycle and at the midbody. The presence of a spastin signal 

at the midbody was detected also in other cell lines, such as HeLa and the 

immortalized motoneuronal cell line NSC34, and was confirmed by the three 

polyclonal antibodies we have analyzed: SP-R74, SP-50 and SP-51. In human 

fibroblasts and in NSC34, spastin had both a nuclear and cytoplasmic localization. 

Indeed, in fibroblasts spastin was present at the centrosome and also in discrete 

nuclear structures, which were the PML bodies. In NSC34, spastin was localized to 

nuclear dots that were bigger in size in respect to those revealed in fibroblasts. More 

interestingly, an enrichment of spastin signal was detected in the terminal portion of 

the neuronal processes, in correspondence of the growth cone of the axon. A diffuse 

nuclear staining was also observed in HeLa and Cos7 cells, but the signal is faint and 

is very difficult to distinguish it from background staining. It is possible that the 

cellular levels of spastin are low, rendering very hard to detect spastin if  it is not 

concentrated in defined structures (like nuclear dots or midbody).

There is clearly a discrepancy between the localization observed with the 

antibodies that recognize the endogenous protein, in respect to the localization
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observed when spastin is transfected into the cell. Indeed, the exogenous spastin has 

a predominantly cytoplasmic localization with the formation of cytosolic aggregates. 

A hypothesis could be that low levels of spastin are normally present in a cell. The 

high levels of expression achieved upon transfection are not tolerated by the cell; 

therefore spastin is mis-localized into cytoplasmic aggregates. When we performed 

transfection experiments to achieve low level of expression, we could detect a signal 

at the centrosome. Many centrosomal proteins mis-localize when overexpressed. 

Indeed, the centrosomal localization can be appreciated at low levels of expression, 

while a diffuse staining throughout the cytoplasm or the formation of cytoplasmic 

aggregates can be observed at higher levels of expression (Andersen et al., 2003). 

Moreover, also studies on the p60 katanin, a centrosomal component belonging to 

the AAA family and homologous to spastin in the AAA domain, have shown that 

overexpression leads to the formation of aggregates which do not localize with the 

centrosome, suggesting that once the centrosome binding-sites are saturated, the 

additional protein expressed aggregates into the cytoplasm (Hartman et al., 1998).

A confocal analysis of cells overexpressing spastin showed that, although the 

major part of the protein is present in the cytoplasmic compartment, there is a small 

fraction of spastin that localizes to the nucleus. We have also forced spastin to enter 

the nucleus by generating a chimeric construct where the strong NLS of the SV40 

was fused at the 5’ of spastin cDNA. When this chimeric protein was transfected into 

the cells, we observed the same localization of the exogenous wt spastin. This 

suggests that the levels of spastin tolerated in the nucleus may be low and that there 

might be a threshold level. When spastin expression reaches levels higher than this 

threshold, the cell activates probably a mechanism to export spastin which will be
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otherwise toxic for the nucleus. Alternatively, spastin translocation into the nucleus 

may depend on the association with a “carrier” protein or on a post-translational 

modification of the protein. Further experiments are needed to understand the 

mechanisms of spastin nuclear localization and also to determine if spastin may 

shuttle between the nucleus and cytoplasm upon certain stimuli.

Recent findings validate our data concerning a complex localization of spastin 

protein (Wharton et al., 2003). Indeed, immunohistochemistry experiments, with the 

use of specific antibodies on human tissue, demonstrated that spastin is a neuronal 

protein predominantly expressed in the cytoplasm, with staining also along the 

axons. Interestingly, spastin expression was present throughout the brain and the 

spinal cord and not confined to the motor system. In motor cortex, pyramidal 

neurons, Betz cells and a portion of small neurons demonstrated cytoplasmic 

expression with staining in the proximal neurites. A diffuse synaptic staining was 

observed in the neuropil. Moreover, a nuclear signal was also reported in a portion of 

cells. This staining was generally diffuse, but sometimes a punctuate pattern was 

observed (Wharton et al., 2003). A similar pattern of expression was revealed in the 

hippocampus, with strong expression in the pyramidal cells and dentate granule 

neurons. In the cerebellum, a cytoplasmic staining was detected in dentate neurons 

and Purkinje neurons. There was also a nuclear staining in the cerebellar molecular 

layer, with more than 50% of granule layer neurons exhibiting a nuclear punctuate 

pattern. In the grey matter of the spinal cord, a strong staining of neurites was 

observed in large neurons. Furthermore, anterior horn motomeurons showed 

exclusively a cytoplasmic staining with no nuclear expression (Wharton et al., 2003).
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All these data suggest that spastin has both a nuclear and cytosolic localization. 

This localization depends on the cell type analyzed and it is probably also dependent 

on the animal species studied.

7.2 The role of spastin on the microtubules cytoskeleton

Microtubules provide architectural support to eukaryotic cells, organize 

membranous organelles and act as railways along which cytoplasmic molecules are 

transported. Microtubules are highly dynamic structures that switch continuously 

between growing and shrinking phases. Several proteins have been identified which 

are responsible for the changes of the microtubule cytoskeleton in vivo (Hunter and 

Wordeman, 2000; Quarmby, 2000; Schroer, 2001; Srayko et al., 2000). The work 

reported in this thesis suggests that spastin may be involved in microtubule 

dynamics.

We find that spastin associates with microtubules in vitro and that this 

interaction is mediated by the N-terminal portion of the protein. In vivo, microtubules 

association can be detected only by expressing mutants lacking the entire AAA 

cassette or defective in ATP binding or hydrolysis. This suggests that the binding to 

microtubules is transient and is regulated through the nucleotide-binding state of the 

AAA domain. This is not completely unexpected, indeed other members of the AAA 

family, such as SKDl and p60 Katanin, show a transient and nucleotide dependent 

association with their substrate. These proteins bind and release continuously from 

their substrate in a nucleotide dependent manner, and only the expression of ATPase
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defective mutant has permitted the identification of their targets in vivo (McNally et 

ah, 2000; Yoshimori et ah, 2000). Taking advantage of the fact that ATPase 

defective spastin binds constitutively microtubules, we have generated several 

ATPase defective deletion constructs in the N-terminal region of spastin in order to 

map more precisely the region of spastin responsible for the microtubule association. 

Studying the localization of these ATPase defective deletion mutants, we have 

shown that the region of spastin responsible for the association with microtubules is 

located between amino acid 50 and 100. Notably, the MIT domain is not responsible 

for the spastin association to microtubules. The MIT domain was initially reported as 

“ESP” domain because it was originally identified in only three molecules: 

Endl3A^ps4p, SNX15 (sorting nexin 15) and PalB (Phillips et al., 2001). Because of 

the limited information available at the time, no functional implication was suggested 

for the domain. Recently, a multiple alignment study showed that the domain is 

present in a larger group of proteins (Ciccarelli et al., 2003). Since the domain was 

identified in a microtubule binding protein, Spastin, and in other molecules mainly 

involved in intracellular transport, such as SNX15, Calpain? or SKDl (Fig.3), a 

more descriptive term was adopted for this domain. It was named MIT, which stands 

for a domain contained in “microtubule interacting and trafficking molecules”. 

Moreover, this domain is present in the N-terminal portion of two proteins mutated 

in different forms of HSP: Spastin and Spartin (Ciccarelli et al., 2003; Patel et al., 

2002). This fact together with the fact that the N-terminal portion of spastin was 

involved in the microtubule association lead to the hypothesis that also Spartin may 

associate with microtubules and that this association may be mediated by the MIT 

domain (Patel et al., 2002). Since we have now demonstrated that this domain is not
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involved in microtubule association, further experiments have to be performed to 

investigate the function of the MIT domain and its relevance to hereditary spastic 

paraplegia.

The association to microtubules was confirmed by the data on the subcellular 

localization of the endogenous spastin. Although we could never detect endogenous 

spastin on the microtubule array in interphase cells, we found that spastin was 

enriched in structures rich of microtubules during the cell cycle. Spastin specific 

antibodies detected, in fact, a signal at the centrosome and at the midbody. 

Furthermore, it is possible to detect an enrichment of spastin signal in the region 

between two cells that are undergoing cytokinesis (Fig.20). This is the region where 

the midbody will originate from and is therefore rich in microtubules.

We found that a spastin ATPase-defective mutant constitutively binds 

microtubules. This association showed some peculiar features. Indeed, the 

overexpression of ATPase defective spastin alters the microtubule network 

distribution, leading to the disappearance of the aster (typical of an interphase cell) 

and to the formation of thick perinuclear bundles. Moreover, the overexpression of 

wild type spastin promotes microtubules disassembly in transfected cells. These 

findings together with the fact that spastin is highly homologous, within the AAA 

domain, to p60 katanin, a microtubule severing protein, suggest that spastin may play 

a role in microtubule dynamics.

Katanin is a heterodimer consisting of the AAA-ATPase catalytic subunit 

(p60) and an accessory subunit (p80), which targets the heterodimer to the 

centrosome. Katanin seems to be responsible for the release of microtubules from the 

centrosome (McNally, 2000; McNally et al., 2000). Although the N-terminal regions
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of spastin and p60 katanin are not highly conserved, both of them harbour a 

microtubule binding domain. Furthermore, the N-terminal regions of other members 

of the AAA family, such as the well studied NSF, seem to be involved in protein 

targeting to the substrate (Nagiec et al., 1995).

Katanin, as many other AAA proteins, acts as a hexamer. The accepted model 

is that the substrate (in this case MTs) acts as a scaffold upon which the enzyme can 

oligomerizes. At this point the presence of the substrate stimulates the ATPase 

activity of the AAA domain and the ATP is hydrolysed. For katanin, the ATP 

hydrolysis and the consequent phosphate release generate the driving force for the 

destabilization of the tubulin-tubulin contacts, leading to the severing of 

microtubules (Fig.7)(McNally, 2000; Quarmby, 2000). We do not have direct proof 

of spastin oligomerization. However, studying the structural model we have 

generated for the spastin AAA domain, we have observed that the regions of the 

AAA domain important for the oligomerization are conserved in spastin AAA 

sequence and indeed we were able to generate a hexameric model. Furthermore, we 

have shown that in co-transfected cells, the wt protein and the ATPase defective 

mutant, which have different subcellular localization, co-localize, either in the 

localization of the wt protein or in the localization of the mutated protein. This can 

depend on which construct is expressed first in the cell, but can also depend on the 

wt/mutant ratio in the hexamer, if we accept the formation of the oligomer as model 

for spastin function. All these observations suggest that spastin may also function as 

hexamer, although further experiments are needed to confirm this hypothesis.

Although spastin may share functional properties with the known microtubule- 

severing proteins, several issues are still unresolved. The use of spastin specific
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antibodies indicated that spastin localizes to the centrosome and also to other 

structure, such as the midbody, which are rich in tubulin. This suggests that spastin 

binds microtubules also outside the centrosome; this association is restricted to a 

subset of microtubules and is probably related to a remodelling of the cytoskeleton. 

In this context, it is very interesting the localization of spastin in the growth cones of 

axons in the NSC34 cell line. Local changes in microtubule organization and 

distribution are required for the axon to grow. The growth cone of an axon contains a 

dense array of microtubules that are tightly coalesced into bundles (Dent et al., 

1999). During growth of the axon, the microtubule array within the growth cone 

reorganizes and reorients toward the future direction of axon outgrowth. The 

presence of short microtubules is essential for the dynamicity of the growth cone. It 

is known that microtubules fragment to generate short microtubules during the 

transition from the quiescent to growth states (Dent et al., 1999). The current 

hypothesis is that microtubule fragmentation may be regulated by factors that locally 

activate katanin (Ahmad et al., 1999a; Dent et al., 1999; McNally and Thomas, 

1998). The finding that spastin localizes at the growth cone may suggest that it can 

also be involved, together with katanin perhaps, in the cytoskeleton reorganization 

of the axon. Therefore, spastin may act as a microtubule severing protein not only at 

the centrosome, but also in different locations, where probably there is a higher 

requirement of cytoskeleton reorganization. This aspect would be very important 

because of the specific cellular phenotype of the disease. Moreover, the current 

model is that most of the cellular mechanisms that regulate the microtubule arrays of 

the postmitotic neuron are variations of mechanisms that organize microtubules in 

mitotic cells (Baas, 1999). In this context, we can speculate that spastin may act
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during cell cycle in non neuronal cells because of its localization at the centrosome 

and at the midbody, and that spastin function is then used by postmitotic neurons for 

cytoskeleton remodelling in the regulation of important processes such as axonal 

growth and axonal transport.

It is still unclear if the association of spastin with microtubules is direct or 

mediated by other proteins. We have isolated a centrosomal protein, N al4 as a 

putative spastin interactor. Notably, Nal4 is a nuclear autoantigen found in patients 

with an autoimmune disease, the Sjogren syndrome (Ramos-Morales et al., 1998). 

Nal4 is the homologous of the Chlamydomonas reinhardtii DIP 13 protein 

(deflagellation inducible protein 13). DIP 13 and Nal4 are described as a new class of 

proteins associated to microtubules, they indeed localize to the basal bodies and 

flagella in Chlamydomonas, as well as centrosomes in HeLa cells and basal bodies 

and flagella of human sperm cells (Pfannenschmid et al., 2003). RNA interference 

experiments have showed that the reduction the levels of DIP 13 causes defects in cell 

division with the formation of multiflagellate and multinucleate Chlamydomonas 

cells, suggesting a role for this protein in proper cell division. Based on the cellular 

localization and on the fact that they both contain the KREB motif similar to the 

microtubule binding sites found in MAP IB (Noble et al., 1989), it is believed that 

bothNal4 and DIP 13 bind microtubules directly (Pfanneschmid, 2003).

We have mapped the region of spastin responsible for the binding to N al4  in 

the N-terminal moiety of spastin, more precisely between amino acid 50 and 100. 

This is the same region we have identified as necessary for the microtubules 

association. An intriguing possibility would be that Nal4 represents the anchor for 

spastin to the centrosome and to the microtubules, although further experiments have

204



C h a p t e r  7: D isc u ssio n

to be performed to confirm this possibility. This hypothesis would draw another line 

of homology with p60 katanin, which is targeted to the centrosome by the p80 

subunit.

7.3 The pathogenic role of spastin missense mutations

Almost all spastin missense mutations fall into the AAA cassette, and they are 

predicted to interfere with spastin function by altering the AAA domain ability to 

bind and/or hydrolyze ATP. We have shown that almost all these mutations when 

transfected into the cells behave as the ATPase defective mutant (table 4) and 

therefore they constitutively bind to microtubules. An exception is the S362C 

mutant; in fact its subcellular localization is undistinguishable from the wt. In order 

to understand the effect of the missense mutations, we have generated a structural 

model for the AAA cassette of spastin and we have analyzed the localization of the 

mutated residues on the model. The features of each mutation with respect to the 

structural model are summarized in table 7. Some mutations occur in residues 

involved in the active site formation, some other are exposed on the protein surface, 

localized in structural elements or at the interface between subunits in the hexameric 

models. On these bases, it is clear that each mutation, depending on its location on 

the structural model, can interfere with the AAA module activity via a different 

mechanism, and cause a defect in spastin function leading to HSP. For example, the 

S362C mutant, which has the same subcellular localization of the wt, is localized in a 

0 -helix and it is exposed on the protein surface. The substitution from a serine to a
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cysteine residue is not dramatic from the point of view of the amino acid 

characteristics, they both have a polar side chain and the only difference is the 

presence of the SH group in the cysteine respect to the OH group in the serine. This 

could explain why we do not see an alteration of the subcellular localization of the 

S362C mutant. However, since the S362 residue is on the surface of the protein on 

the AAA spastin model, a substitution in this position can interfere with protein 

interactions altering spastin function and leading to HSP. An important point would 

be to investigate if this mutant can promote microtubule disassembly when 

transfected in cells.

Previous studies of genotype-phenotype correlation showed that there is no 

difference in the severity of spastic paraplegia between patients with missense 

mutations and those with mutations that lead to a premature protein termination 

(Fonknechten et al., 2000). Whenever the level of spastin mRNA has been tested in 

tissues from patients with this last kind of mutations, it has been found that the 

mRNA was greatly reduced. These findings are consistent with mRNA instability 

and have suggested that haploinsufficiency is the molecular cause of the disease 

(Burger et al., 2000). However, our data on the possible association between wt and 

mutated protein open up the possibility that a dominant negative pathogenic 

mechanism could be involved in patients with spastin missense mutations. We 

cannot exclude that the stable association to microtubules of the mutants is an effect 

of the overexpression and we don’t know yet if  the mutated protein in SPG4 patients 

carrying a missense mutation localize to microtubules, therefore the dominant 

negative hypothesis has to be considered carefully.
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Interestingly, in some SPG4 patients a subtle cognitive impairment, primarily 

affecting executive function, was detected. Disease progression and cognitive 

impairment appeared to be more severe in carriers with missense mutations than in 

those with truncating mutations. Moreover the cognitive dysfunction seems to be 

more frequent in patients with missense mutations (Tallaksen et al., 2003). These 

findings may validate the hypothesis that a different mechanism from 

haploinsufficiency may be responsible for the disease in the case of missense 

mutations.

7.4 Spastin is SUMO-1 modified

Post-translational modifications generally modulate protein function by altering 

its activity, subcellular localisation and, at least, the ability to interact with other 

proteins. They thus represent an extremely selective and valid means for the cell to 

modulate protein function, to trigger cellular response and to control a crucial 

equilibrium that ensures the survival of the cell.

Specific amino-acid residues of target proteins are chemically modified by 

molecules, such as phosphate, acetate, lipids or sugar, thus modulating protein 

function. A unique case in post-translational modification is the covalent attachment 

of proteins to other proteins. With respect to small molecule modifiers, protein 

modifiers have larger and more chemically varied surfaces, and they represent a tool 

for altering protein conformation and protein-protein interactions. The first and
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probably better characterised example of a protein acting as a modifier is Ubiquitin. 

Ubiquitination is a post-translational modification in which the C-terminus of the 

small protein ubiquitin is covalently attached to lysine side chains of target proteins; 

this process is an important step in earmarking a protein for proteasomal degradation.

In recent years many proteins related to ubiquitin have been identified. 

SUMO-1 is a small protein of 11.5 KDa with high structural homology to Ubiquitin 

(Bayer et al., 1998). Like Ubiquitin, SUMO-1 is synthesised as a prepolypeptide that 

is cotranslationally processed to expose the mature glycine dipeptide conserved in 

ubiquitin and responsible for conjugation. The similarity in the three-dimensional 

structure refiects a similar function, and both proteins modify target substrates via 

formation of a covalent isopeptide bond. SUMO is covalently conjugated to target 

proteins, in a similar multistep process to ubiquitination (Fig. 48).

SUMO-1 is activated by formation of a thioester bond between the 

carboxyterminal glycine and a cysteine of the SUMO-activating El enzyme. The 

SUMO-activating is a heterodimeric complex of two subunits, respectively of 38 

(SAEl) and 72 (SAE2) kDa (Desterro et al., 1999). Once activated, SUMO-1 is 

transferred to a conjugating E2 enzyme (Ubc9) (Desterro et al., 1997; Johnson and 

Blobel, 1997; Saitoh, 1997; Schwarz et al., 1998) and finally passed to the e amino 

group of specific lysine residues on target proteins. In some cases, at least, this last 

step is regulated by SUMO-specific ligases (E3s).

In fact, recently, members of the Siz/PIAS (protein inhibitor of activated ST AT) 

protein family (Johnson and Gupta, 2001; Kahyo et al., 2001; Schmidt and Muller, 

2002; Takahashi et al., 2001) have been found to function as E3 ligase for SUMO. 

They have, in fact, the capability to interact with both UBC9 and the target protein
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and to increase the rate and the efficiency of the modification reaction. The Siz/PIAS 

proteins are structurally characterized by the presence of a central RING finger-like 

domain (Hochstrasser, 2001), which is necessary for ligase activity. However 

different kinds of SUMO ligases, like RanBP2 (Ran binding protein 2) (Kirsh et al., 

2002; Miyauchi et al., 2002; Pichler et al., 2002) and the polycomb protein Pc2 

(Kagey et al., 2003), have also been identified.

In the yeast two hybrid system we found that spastin interacts with SAE2, 

UBC9 and SUMO-1. In particular the bait that permitted us to identify the 

interactions with the SUMOl machinery is the spastin^^ (the construct lacking the 

first 263 amino acid). When the spastin^^ construct (spastin full length) was used in 

the interaction mating assay, we could not confirm the interaction with SAE2, UBC9 

and SUMOl. Spastin^^ did not interact with the other proteins isolated from the 

screening with spastin^^ bait, Daxx and Brd7. We have then used different deletion 

constructs (designed to generate a fusion protein between the DNA binding domain 

of the LexA and spastin deleted of the first 50, 100 or 190 amino acids) and found 

that SAE2, UBC9, SUMOl, Daxx and Brd7 were interacting with A190 spastin and 

AlOO spastin constructs but not with the A50 construct. Therefore, we hypothesized 

that in the full length and in the A50 construct the presence of the portion of spastin 

protein between amino acids 1-50 leads LexA-spastin to acquire a fold which inhibits 

the interaction with the described molecules. An alternative explanation is that the 

region 1-50 contains sites responsible for a negative regulation of SUMOl 

conjugation and also of the interaction with Daxx and Brd7.
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To confirm that spastin is SUMO-1 modified, we have used the in vitro 

conjugation assay. In this assay, full length spastin is SUMO-1 conjugated. The size 

of the sumoylated spastin suggests that spastin is mono-SUMO-1 conjugated.

The lysine which is sumoylated on a target protein belongs, usually, to a 

consensus sequence 'F-K-x-D/E, where T  is a hydrophobic residue, K is the lysine 

conjugated to SUMO, x is any amino acid, D or E is an acidic residue.

We have identified three lysines in spastin primary structures, which are good 

candidate for SUMO-1 conjugation: K340, K462 and K565. The analysis of the 

location of these lysines on our structural model showed that K340 and K462 are 

exposed on the protein surface, while K565 is quite hidden in the structure. This 

leads us to identify K340 and K462 as the strongest candidates for SUMO-1 

conjugation. Notably, these lysines are conserved in human, mouse and Drosophila. 

Unfortunately, we were not able to identify the residue responsible for the SUMO-1 

conjugation, neither in the yeast nor in the in vitro system. Using single or double 

mutants of the candidate lysines in the in vitro assay, we could not abrogate the 

spastin SUMO-1 modification. It is possible that even if we are knocking out the real 

target lysine (or lysines), other lysines become reactive in the in vitro assay. We can 

not exclude at this point that both K340 and K462 are modified.

Future experiments to confirm that spastin is SUMO-1 modified in vivo will be 

performed. We will investigated if overexpressing SUMO-1 and UBC9 into cells, we 

can promote the sumoylation of spastin and see the presence of a slower migrating 

spastin form by immunoblot analysis. Because the levels of spastin in total cell 

extracts are low, we will try to co-immunoprecipitate spastin and SUMO-1 both in 

untransfected cells and in cells transfected with SUMO-1 and UBC9. An interesting
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observation is that when we overexpress Daxx in cells, we detect an additional band 

with respect to the endogenous spastin. This band has a higher molecular weight and 

we hypothesized that this slower migrating form represents the sumoylated spastin.

SUMO-1 is a versatile modifier for a large number of proteins in many different 

pathways. SUMO-1 conjugation (sumoylation) is highly regulated in all eukaryotes 

and participates in several processes, such as nuclear transport, transcriptional 

regulation, chromosome segregation and cell cycle control (Scheuring et al.,

2001)(Table 8). SUMO-1 is responsible for the post-translational modification of 

many target proteins such as RanGAPl, PML, SplOO, p53 and IkBa (Desterro et al., 

1998; Kamitani et al., 1997; Matunis et al., 1996; Rodriguez et al., 1999; Saitoh, 

1997). For example, SUMO-1 conjugation of RanGAPl seems to be necessary for its 

translocation to the nuclear envelope, where it binds RanBP2, a cytoplasmic 

component of the nuclear pore complex (NPC) (Mahajan et al., 1998). RanBP2 is a 

GTPase required for the transport of proteins across the NPC, and its GTP/GDP 

cycle is regulated by RanGAPl. Interestingly a necessary requirement for the 

functional interaction of RanGAPl with RanBP2 is the SUMO-1 modification of 

RanGAPl (Mahajan et al., 1998). Moreover, recent data showed that sumoylation is 

also required for targeting RanGAPl to mitotic spindle and kinetochores in dividing 

cells (Joseph et al., 2002). Thus sumoylation seems to be involved both in regulating 

protein-protein interaction and in targeting of substrate proteins to specific cellular 

compartment upon modification (Seeler and Dejean, 2003). Another important 

function for SUMO-1 -modification consists in modulation of transcription. A 

number of transcription factors are sumoylated. Among them are p53, the androgen 

receptor, LEFl, C/EBPs, Sp3 and many more (Verger et al., 2003). SUMO-1
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modification can either activate or, more frequently, repress their transactivating 

function. In particular, sumoylation is regulating the transcription factor Sp3, by 

leading to a repression of its transcriptional targets in association with a 

relocalization of Sp3 from a diffuse subnuclear distribution to nuclear speckles (Ross 

et al., 2002; Sapetschnig et al., 2002). Besides, a number of transcriptional co­

factors, such as HDACl (Colombo et al., 2002; David et al., 2002)or p300 

(Girdwood et al., 2003), are sumoylated. This modification is important for optimal 

protein function as co-activator or co-repressor. In fact, p300-sumoylation seems to 

be necessary for the repressing activity of p300 by enabling the recruitment of the 

histone deacetylase HDAC6.

All these examples show that there is a wide spectrum of physiological 

processes affected by sumoylation, highlighting the importance of this modification. 

Sumoylation is a highly dynamic and fully reversible modification. A family of 

cysteine proteases specifically hydrolyze SUMO isopeptide bonds; therefore 

substrates are continuously conjugated and deconjugated, depending on the cellular 

requests.

Unfortunately, the SUMO-1 conjugation has been involved in so many different 

processes that it is very difficult to predict the role that the modification would have 

on a target protein. We have strong indications that spastin is SUMO-1 modified, but 

which is the effect of this modification on spastin function is unknown. Because we 

observe different subcellular localization of spastin, one hypothesis could be that 

SUMO-1 conjugation is important for acquiring one of these subcellular 

localizations. In particular we have revealed a co-localization of spastin with the 

PML bodies in human fibroblasts.
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The PML protein was first identified as part of a fusion product with the 

retinoic acid receptor alpha, resulting from the t(15;17) chromosomal translocation 

associated with acute promyelocytic leukemia (Grimwade and Solomon, 1997). PML 

is tightly bound to the nuclear matrix and is concentrated in defined subnuclear 

structures (NB, nuclear bodies or PML bodies or NDIO) that are disorganised in 

certain human disease, such as leukemia, neurodegenerative disorder and viral 

infections. PML is the scaffold for the NB formation and it can recruit to the NB 

several other proteins. PML undergoes SUMO-1 conjugation and this modification 

seems to be a pre-requisite for the formation of these structures (Zhong et al., 2000). 

It is interestingly to observe that various proteins that transiently associate with NB, 

such as p53 (Kwek et al., 2001; Muller et al., 2000), Daxx (Jang et al., 2002), Lef-1 

(Sachdev et al., 2001) are also sumoylated. But in these cases it is not clear if the 

sumoylation is a pre-requisite for NB localisation or if NB might be a site for 

SUMO-conjugation. In the case of SplOO, its sumoylation is not necessary for its NB 

localisation and in fact in absence of PML SUMOl-SplOO is not able to acquire a 

NB localisation (Stemsdorf et al., 1999; Zhong et al., 2000).

The function of PML bodies is still unclear; the variety of their components 

suggests a wide range of possible functions, such as tumor and growth suppression 

and transcription regulation. An interesting hypothesis is that PML bodies act as 

storage sites, modulating concentrations of nuclear proteins by sequestering them 

until required and that they may be sites of post-translational modification of PML 

body components (Maul et al., 2000; Negorev and Maul, 2001).
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In this context, we can hypothesize that spastin is either sumoylated in order to be 

translocated to the PML bodies or that it is recruited to the PML bodies where it 

could be SUMO-1 modified.

It is interestingly to note that recent studies implicate a role for the SUMO-1 

modification in neurodegenerative disease (Lieberman, 2004). Neurons in affected 

regions of the brain of patients with polyglutamine disease, such as Huntington’s 

disease, spinocerebellar ataxia type 1, Machado Joseph disease, and dentate-rubro- 

pallido-luysian atrophy (DRPLA) are strongly immunoreactive to SUMO-1 (Ueda et 

al., 2002). SUMO-1 modified proteins accumulate in the intranuclear aggregates of 

neuronal intranuclear inclusion disease (Poutney, 2004). Furthermore, an increase of 

sumoylation has been observed in brain tissues from patients with spinocerebellar 

ataxia type 3 (SCA3) and DRPLA (Terashima, 2002), and SUMO-1 aggregates were 

identified in neurons from patients with SCA3 (Pountney et al., 2003). An additional 

link between neurodegeneration and the SUMO pathway was found in Drosophila 

studies. A Drosophila model of polyglutamine disease was used to show that the 

disruption of the SUMO pathway may increase polyglutamine toxicity (Chan et al.,

2002). A recent study showed that a pathogenic fragment of Huntingtin, the protein 

responsible for the Huntington disease, can be modified either by ubiquitin or by 

SUMO-1 on identical lysine residues. The SUMO-1 modification of this fragment 

seems to stabilize the protein, reduce its ability to aggregate and to increase the 

repression effect of Huntingtin on transcription (Steffan et al., 2004). Moreover, in a 

Drosophila model of Huntington disease, the expression of the pathogenic fragment 

of Huntingtin causes the lost of photoreceptor neurons and the disruption of the eye 

(Steffan et al., 2001). It has been demonstrated in this model that sumoylation of the
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fragment worsens the neurodegeneration phenotype (Steffan et ah, 2004). Therefore 

SUMO-1 pathway may contribute to the pathogenesis of certain neurodegenerative 

diseases, although further studies will be needed to understand the role of SUMO in 

these disorders. Further investigation will probably answer the question on which is 

the role for SUMO-1 modification with respect to spastin function and to hereditary 

spastic paraplegia.
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7.5 Spastin and Daxx: a nuclear role for Spastin

We have shown that, at least in human fibroblasts, spastin localizes to the PML 

bodies. It is unclear why this localization is not conserved in all cell type, but it was 

confirmed using different spastin specific antibodies raised against different antigens. 

More interestingly this nuclear localization is validated by the isolation of nuclear 

partners for spastin. In particular we have isolated Daxx and SUMO-1 which are 

clearly related to the PML bodies. We have already discussed about the possibility 

that spastin is recruited to the PML bodies in order to be SUMO-1 modified and an 

additional corollary could be that this modification is a prerequisite for the 

interaction with nuclear bodies components, such as Daxx. Alternatively, SUMO-1 

conjugation would translocate spastin to the nucleus where it can interact with its 

nuclear partners. Even if the PML bodies localization seems to be extremely cellular 

specific, a nuclear localization of spastin is underlined in all the cell type analysed. 

Therefore, spastin seems to have a complex subcellular localization, which is 

confirmed by the isolation of different classes of molecular interactors, suggesting 

that spastin may absolve different functions depending on its localization and its 

“partner”. This concept is not unusual in the field of the AAA proteins. Indeed, an 

AAA protein represents an enzymatic activity, a source of chemical energy that can 

be used to different purposes depending on the molecule to which is coupled. A well 

studied example is p97. Several adaptor proteins have been identified for p97, which 

is involved in different cellular processes, such as ubiquitin-dependent processes and 

membrane fusion, depending on the co-factor to which is complexed (Cao et al., 

2003; Meyer et al., 2000; Wojcik et al., 2004; Yamada et al., 2000).
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One of the molecular interactor of spastin isolated by the two hybrid screening 

is Brd7, a bromodomain containing protein. The bromodomain is an evolutionary 

highly conserved domain in human, Drosophila and yeast proteins (Hirose and 

Manley, 2000) of approximately 110 aa that is found in over 40 proteins (Conrad et 

al., 2000). Many of these proteins are involved in transcriptional control. The 

conserved bromodomain is responsible for the interaction with transcriptionally 

active chromatin, and, in particular, for binding to acetylated lysine in histone tails 

(Dhalluin et al., 1999; Dyson et al., 2001; Jacobson et al., 2000; Owen et al., 2000). 

Bromodomains may thus be important determinants for targeting proteins or protein 

complexes to specific chromosomal sites by binding to acetylated histones and 

thereby regulating transcriptional activity (Kzhyshkowska et al., 2003). Further 

experiments are needed to understand if Brd7 is a real interactor of spastin.

We have demonstrated that full length spastin interacts physically with Daxx 

and that the cellular overexpression of daxx causes an upregulation of spastin 

transcript. Daxx is a multi-functional protein that modulates both apoptosis and 

transcription (Tang et al., 2004). Daxx seems to have alternative roles shuttling 

between the nucleus and the cytoplasm (Charette et al., 2000; Ko et al., 2001). 

However, it is predominantly nuclear (Kiriakidou et al., 1997; Pluta et al., 1998) and 

has been shown to associate with PML and to localize within PML nuclear Bodies 

(Ishov et al., 1999; Li et al., 2000a; Torii et al., 1999). Daxx is also SUMO-1 

modified, but the sumoylation status of Daxx doesn’t affect its localization in the 

PML bodies (Jang et al., 2002). Daxx recruitment to PML bodies has been reported 

to be essential for its pro-apoptotic effect and also to relieve its transcriptional 

repressive activity (Ishov et al., 1999; Li et al., 2000a; Zhong et al., 2000).
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The ability of Daxx to interact with multiple cellular factors has resulted in its 

involvement in several putative functions, but its exact role still awaits elucidation 

(Michaelson, 2000). Many reports have suggested a role for Daxx in apoptosis, but 

whether it functions as a pro- or anti-apoptotic molecule is still poorly understood. In 

fact, Daxx was initially isolated as a pro-apoptotic molecule that binds the 

intracellular domain of Fas and enhances Fas-mediated apoptosis through the 

induction of the Jun amino-terminal kinase (JNK)(Yang et al., 1997). Daxx 

associates with and activates the Apoptosis Signal-regulating Kinase 1 (ASKl), a 

kinase of the JNK pathway (Chang et al., 1998). Moreover, hDaxx has been involved 

also in TGFB-induced (Perlman et al., 2001) as well as in nuclear, PML-dependent 

apoptotic pathways (Torii et al., 1999; Zhong et al., 2000). Depletion of hDaxx by 

antisense RNA showed a protective effect toward TGFB-induced apoptosis (Perlman 

et al., 2001).

In contrast with these observations, Daxx knock-out embryos showed early 

embryonic lethality and studies with Daxx-null murine embryonic stem cells 

revealed an anti-apoptotic role of this protein (Michaelson et al., 1999). Recently it 

has been shown that ablation of Daxx expression by RNA interference can cause 

increase in apoptosis in different cell types and that this effect is rescued by Bcl-2 

overexpression (Michaelson and Leder, 2003). The pro-apoptotic function of Daxx 

within the nucleus has been linked with its ability to function as a transcriptional 

repressor (Hollenbach et al., 1999; Li et al., 2000b).

Daxx has indeed a role as a transcription regulator. It associates with several 

transcription factors, such as Pax3, Pax5, ETSl and it seems to act as a repressor of 

the transcription (Emelyanov et al., 2002; Hollenbach et al., 1999; Li et al., 2000a; Li
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et al., 2000b; Lin et al., 2003). Even though Daxx was shown to repress transcription 

in most of the cases, it has been shown that, in the case of Pax5, interaction with 

Daxx may result either in transcriptional repression or activation, depending on the 

cell type (Emelyanov et al., 2002). Daxx activity in a particular promoter context 

may be differentially regulated by association with transcription factors and 

additional co-repressors or co-activators. In fact, in the case of Pax5, Daxx was also 

found in complex with the transcriptional co-activator CBP (Emelyanov et al., 2002).

Daxx localizes to the PML bodies and more data strengthen the idea that the 

nuclear bodies can be a critical compartment for the regulation of transcription. PML 

has been implicated in transcriptional regulation and has been shown to modulate 

responses on different promoters via interaction and sequestration of co-activators or 

co-repressors to the PML bodies (Borden, 2002; Negorev and Maul, 2001). The PML 

bodies can, therefore, regulate transcriptional activity by limiting the access of 

regulatory proteins to their target genes or they can contribute to the assembly of 

transcriptional complex by bringing the complex components next to each other 

(Tang et al., 2004). A recent report indicates that PML bodies form in nuclear 

compartments of high transcriptional activity, but they do not directly regulate 

transcription of genes in these compartments (Wang et al., 2004).

In our study, we have found that spastin associates with Daxx, but we don’t 

know if the interaction between these two proteins may be dependent on their 

localization to the PML bodies. We have detected spastin to the PML bodies only in 

human fibroblasts, while we have confirmed the interaction between Daxx and 

Spastin in HeLa cells. An important point would be to demonstrate the interaction 

between these two proteins also in human fibroblasts, performing co-
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immunoprécipitation experiments with both endogenous proteins. Since we have 

indications that both proteins are probably SUMO-1 modified, an important factor in 

the formation of the complex spastin/daxx may be the SUMO-1 modification.

We have transfected Daxx into HeLa cells and we have performed co- 

immunoprecipitation experiments to demonstrate that the endogenous spastin interact 

with the exogenous Daxx. From immunoprécipitation experiments it is evident that 

Daxx is able to immunoprecipitate two bands, a band with an apparent molecular 

weight of 68 kDa, which corresponded to the endogenous spastin and a band that 

correspond to a higher molecular weight specie of about 90 kDa. The idea that the 

slow migrating band around 90 kDa may represent a sumoylated spastin is extremely 

fascinating. One can hypothesize that SUMO-1 modification of spastin is required 

for the interaction of spastin with its nuclear partner and therefore it’s important for 

the nuclear function of the protein.

The other experimental evidence is that the overexpression of Daxx in HeLa 

cells causes an increase in the transcriptional levels of spastin. Daxx may regulate the 

levels of transcription of the spastin gene, but we have also shown that Daxx and 

spastin physically interact. A hypothesis could be that spastin and Daxx are part of a 

transcriptional complex and that one of the target genes of this complex is spastin 

itself. Interestingly, studies on muscle from SPG4 patients (both with missense 

mutations and nonsense mutations) showed that there are dramatic and disease- 

specific alterations in the transcriptome, with the down-regulation of genes 

associated with microtubule, protein and vesicle trafficking pathways (Molon et al., 

2004). Muscle biopsies showed no signs of pathology; therefore these data suggest 

that many or most cells of the body have similar disruption of microtubule pathways
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as a consequence of SPG4 mutations, but they seem able to survive with little or no 

evidence of cell dysfunction. Motor neurons are known to have particularly stringent 

requirements for efficient transport of vesicles and proteins through their long axons 

and processes (LaMonte et al., 2002) and therefore they are particularly sensitive to 

microtubule defects. This would explain why a defect in a ubiquitous protein leads to 

a specific cellular phenotype. The same study demonstrates that another important 

group of down regulated genes includes genes associated with transcriptional and 

translational machinery (Molon et al., 2004), suggesting a possible role of spastin in 

the nucleus as a transcription factor (Charvin et al., 2003). These data cannot exclude 

that the effect on the down regulation of the transcription of the implicated gene is 

indirect. However an attractive possibility is that spastin and daxx form a 

transcriptional complex, which probably includes other molecules, and that this 

complex functions activating the transcription of several genes, including the SPG4.
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CONCLUSIONS

Spastin is the protein mutated in the most common form of hereditary spastic 

paraplegia. We have found that spastin has a complex subcellular localization, both 

nuclear and cytosolic, and that the protein has multiple functions, probably 

depending on its compartmentalization into the cell.

We have demonstrated that spastin localizes to the centrosomes and to regions 

rich in microtubules during cell cycle. We have also seen that in motoneuronal cells, 

spastin signal is enriched in the growth cone. We have indication that spastin 

associates dynamically with microtubules, this association is mediated by the N- 

terminal portion of spastin and is regulated through the nucleotide binding state of 

the AAA domain. We have seen that ATPase-defective spastin localizes 

constitutively to microtubules. The association of the ATPase-defective spastin to 

microtubules provokes a reorganization of the microtubule cytoskeleton with the 

formation of thick perinuclear bundles. Moreover the overexpression of wt spastin 

promotes microtubule disassembly in transfected cells. All these data, together with 

the homology with katanin, suggest that spastin may act as a microtubule severing 

protein.

The localization of endogenous spastin to regions where a highly dynamic 

reorganization of the cytoskeleton is required, such as the midbody, the centrosome 

or the growth cone of axons, well fit with the hypothesis of a role for spastin in 

microtubule dynamic. Moreover, we have isolated a centrosomal protein, Nal4, as 

spastin molecular interactor. We have shown that the region of spastin responsible 

for the binding to Nal4 is the same region involved in the microtubule association.
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We have therefore hypothesized that Nal4 is responsible for the association of 

spastin to the centrosome and to microtubules.

In neurons all the protein necessary for axonal surviving and growth are 

produced in the cell body and then transported along the axon. Microtubules play a 

very important role in this process and they have to be maintained sufficiently short 

to be efficiently transported along the axon. So microtubules are nucleated at the 

centrosome (Fig. 49A) and then actively transported along axons and dendrites. In 

this context, microtubule severing activities, as katanin and perhaps spastin, have a 

crucial role in generating short microtubules that will guarantee the transport of 

mitochondria, endosomes and of all the molecules that the axon will need for its 

growth and function.

We have also shown that spastin may have a different function in the nucleus. 

We have seen, in fact, that spastin localizes also to the nucleus and we have isolated 

several nuclear interactors. In particular, we have demonstrated that spastin interacts 

with Daxx and that Daxx overexpression positively regulates SPG4 transcription. 

These data and the recent findings that the downregulation of genes involved in the 

organization of microtubule cytoskeleton is observed in muscles of SPG4 patients 

(Molon et al., 2004) lead us to hypothesize that spastin can be part of a 

transcriptional complex and be involved in the regulation of genes important for the 

organization of microtubule cytoskeleton. In this case spastin defects will still affect 

axonal transport although via a different mechanism.

We have also evidence that spastin is subjected to a post-translational 

modification: SUMO-1 conjugation. Which is the role of this modification is still

223



C h a p t e r  7: D isc u ssio n

unknown, although several hypotheses can be done regarding the importance of the 

SUMO-1 modification for the nuclear localization of spastin and its nuclear function.

Therefore, we propose that the impairment of the fine regulation of the 

microtubule cytoskeleton in long axons may underlie pathogenesis of HSP due to 

spastin mutations.

Interestingly, mice deficient for stathmin, a microtubule-destabilizing factor, 

develop an age-dependent axonopathy with the dysmyelination and the degeneration 

of axons of the central and peripheral nervous systems (Liedtke et al., 2002).

This idea fits well with the putative functions of other genes involved in HSP. 

In fact, the genes identified as responsible for the different forms of HSP include 

endosomal, mitochondrial and microtubule motor proteins, supporting the hypothesis 

that any defect of normal trafficking processes and therefore of the axonal transport, 

may lead to axonal degeneration.

In the model described above (Fig. 49B) it is clear how a defect in a severing 

activity (spastin) or in a kinesin protein (KIF5a), or in mitochondrial proteins 

(Paraplegin and Hsp60) or in endosomal protein (Spartin and Atlastin) can affect the 

efficiency of the axonal transport. An additional point of view comes from a possible 

role for spastin in reorganizing the microtubule network of the growth cone of axons, 

a fundamental process for the growth of the axon. A defect in the cytoskeleton 

reorganization of the axon would compromise axonal growth leading to the 

degeneration of the axon.

The long axons composing the corticospinal tracts and the fasciculus gracilis 

would be preferential pathological target for this defect. Therefore, the impairment of
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the axonal transport seems to be the common cause of a group of hereditary spastic 

paraplegia (Crosby and Proukakis, 2002; Fink, 2003; Reid, 2003).
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Protein Function Role of Sumoylation References
Mammalia
n
RanGAPl Nuclear import

PML

SplOO

Daxx

p53

p73

HIPK2

TEL

c-Jun

Androgen
receptor

lOBO

Mdm2

Topoisome 
rase I
Topoisome 
rase II

Tumor suppressor

Chromatin 
remodelling (?)

Transcriptional 
repression 
Tumor suppressor

P53 homologue

Transcriptional
corepression

Transcriptional
repression

Trascriptional
activation

Trascriptional
activation

Signal trunsduction, 
NF-DB inhibition

E3 ubiquitin ligase 
for p53

DNA
repair
DNA
repair

Mediates interaction 
with RanBP2

Allows formation of 
NBs and recruitment of 
other molecules to the 
NBs

Mediates 
with HPl

interaction

Activate
transactivation
apoptosis
Unknown

p53
and

replication/

replication/

Mediates the
localisation of HIPK2 
to nuclear dots 
Mediates the
localisation of TEL to 
nuclear dots

Sligthly reduces
transcriptional activity 
of c-Jun
Reduces transcriptional 
activity of androgen 
receptor
Inhibits ubiquitination 
of iKBa Blocks NF- 
kB activity
Inhibits ubiquitination 
of Mdm2, activates the 
E3 function of Mdm2 
Unknown

Unknown

(Mahajan et ah,
1998) (Matunis et 
a h ,1996)
(Duprez et al., 
1999; Muller et 
al., 1998)
(Stemsdorf et al.,
1997)
(Jang et al., 2002 
Seeler et al., 2001 
Seeler et al., 1998 
Stemsdorf et al.
1999)
(Jang et al., 2002)

(Gostissa et al., 
1999; Rodriguez 
et al., 1999)
(Minty et al.,
2000)
(Kim et al., 1999)

(Chakrabarti and 
Nucifora, 1999; 
Chakrabarti et al., 
2000)
(Muller et al.,
2000)

(Poukka et al., 
2000)

(Desterro et al.,
1998)

(Buschmann et al., 
2000)

(Mao et al., 
2 0 0 0 b)
(Mao et al., 2000a)
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WRN DNA helicase Req Unknown (Kawabe et al..
family 2 0 0 0 )

RanBP2 Component of Unknown (Saitoh et al..
nuclear pore complex 1998)

GLUTl Glucose transport Unknown, GLUTl (Giorgino et al..
protein levels are 2 0 0 0 )
downregulated by
UBC9

GLUT4 Glucose transport Unknown, GLUT4 (Giorgino et al..
protein levels are 2 0 0 0 )
upregulated by UBC9

TIFID chromatin-associated Unknown (Seeler and
factor Dejean, 2001)

Yeast
Septins Bud-neck formation Regulates dynamics of (Johnson and
(Cdc33p,C the neck ring Blobel, 1999;
dcllp,Sep7 Takahashi et al..
P) 1999)
Drosophila
Tramtrack Trancrptional Unknown (Lehembre et al..
69 repression 2 0 0 0 )
Dorsal Signal transduction Activates nuclear (Bhaskar et al..

import of dorsal 2 0 0 0 )
CaMK Calcium/calmodulin- Unknown (Long and

dependent kinase Griffith, 2000)
Viral
proteins
CMV-IEl Cytomegalovirus- Unknwon. Correlates (Muller and

immediate early with the loss of PML Dejean, 1999)
regulator sumoylation

CMV-IE2 Cytomegalovirus- Decrease trasactivation (Hofinann et al..
immediate early potential of IE2 2 0 0 0 )
regulator

Ad-EIB Adenovirus-early nuclear import of ElB (Endter et al..
protein IB protein 2 0 0 1 )

HPV/BPV- Human and bovine Regulates nuclear (Rangasamy et
E1 papilloma virus DNA import of El al., 2 0 0 0 )

helicase (initiates
viral replication)

EBV- Epstein Barr virus- Unknwon. Correlates (Adamson et al..
BZLFl immediate early with the loss of PML 2 0 0 0 )

regulator sumoylation

Table 8. Known substrates for SUMO-1 (Muller et al., 2001).
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Figure 48. SUMO-1 conjugation pathway.
(1) In the first step of the SUMO-1 conjugation pathway, the SUMO-1 activating 
enzyme (SAE 1/2) catalyses the ATP dependent activation of SUMO-1 protein. (2) 
Then SAE 1/2 catalyzes the transfer of SUMO-1 to the active cysteine residue of the 
SUMO conjugating enzyme, UBC9. (3) Finally an isopeptide bond is formed 
between the C-terminal glycine in the SUMO and the e-amino group of a lysine in 
the target protein. This can occur in the absence of an additional factor or might 
require an E3 ligase. (4) SUMO-1 modified protein and effect of SUMO-1 
conjugation.
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Figure 49. A model for hereditary spastic paraplegia.
In this model it is illustrated how the impairment of the axonal transport can be a

tor a group of HSPs.common basis
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APPENDIX 1: PRIMERS USED IN THIS THESIS

SPl CTGATATCATGAATTCTCCGGGTGGACG

SP2 CAGTCGACCAGTGGTATCTCCAAAGTC

SP3 GAGTCGACACAGTGGTATCTCCAAAGTC

SP4 GAGGATCCATGAATTCTCCGGGTGGACGAG

SP5 CAGCGGCCGCATTTGTCACCACAGAGG

SP6 CAGTCGACCACTAGGTGCTCTATGGTG

SP7 CAGCGGCCGCATTCACTAGGTGCTCTATG

SP8 CAGGATCCTCATGGCAGCCAAGAGGAGC

SP9 CAGAATTCTGCTTGTTTTGCCAAGTCTTG

NLS-Up AATTCTCCACCTTTCTCTTTTTCTTCGGCGGCATG

NLS-Dw GATCCATGCCGCCGAAGAAAAAGAGAAAGGTGGAG

mNLS-Up GATCCATGCCGCCGAAGACAAAGAGAAAGGTGGAG

mNLS-Dw AATTCTCCACCTTTCTCTTTGTCTTCGGCGGCATG

SPIO CAGAATTCATGCTGTACTATTTCTCTTACCCGC

SPl 1 CAGAATTCATGGGCGAGGCCGAGCGCGTCC

SP12 CAGAATTCATGGAGAAGATGCAACCAGTTTTG

SPl 3 CAGAATTCTCCGGGTGGACGAGGGAAG

SP14 CATCTAGACGCTCGGCCTCGCCGC

SP15 CAGGATCCCTGTACTATTTCTCCTACCCG

SP16 CAGGATCCGAGGCCGAGCGCGTCCGAGTC

SP17 CAGGATCCGAGAAGATGCAACCAGTTTTG

BCOl CCAGCCTCTTGCTGAGTGGAGATG

BC02 GACAAGCCGACAACCTTGATTGCAG

NA14-1 CATGAATTCATGACCCAGCAGGGCGCGGC

NA14-2 CATCTCGAGTCAGCTGTCCCTGCCGCCGC

NA14-3 CAGGATCCTAATGACCCAGCAGGGCGCG
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NA14-4 CAGAATTCTCAGCTGTCCCTGCCGCCGC

DAXXl CAGAATTCATGGTCACCGCTAACAGCATC

DAXX2 CAGTCGACCATCAGAGTCTGAGAGCACG

S44L GCCCCTCCGCCCGAGTTGCCGCATAAGCGGAAC

S362C GTTATTCTTCCTTGTCTGAGGCCTGAG

G370R CCTGAGTTGTTCACAAGGCTTAGAGCTCCTG

F381C GGCTGTTACTCTGTGGTCCACCTGG

N386K GTCCACCTGGGAAGGGGAAGACAATGC

N386S GTCCACCTGGGACTGGGAAGACAATGC

K388R CTGGGAATGGGAGGACAATGCTGGC

L426V GAAATTGGTGAGGGCTGTTTTTGCTGTGGCTCG

C448Y GTTGATAGCCTTTTGTATGAAAGAAGAGAAGGG

R460L GCACGATGCTAGTAGACTCCTAAAAACTGAATTTC

R499C GGCTGTTCTCAGGTGTTTCATCAAACG

A556V GCTTTGGCAAAAGATGTAGCACTGGGTCCTATC

K340R AATGGAACAGCTGTTAGATTTGATGATATAGCT

K462R GCTAGTAGACGCCTAAGAAGTGAATTTCTAATAG

K565R CCTATCCGAGAACTAAGACCAGAACAGGTGAAG

B-actin.up 5 ’-TCACCCACACTGTGCCCATCTACGA-3 ’

B-actin.dw 5’-CAGCGGAACCGCTCATTGCCAATGG-3’

GAPDH.up 5’-GAAGGTGAAGGTCGGAGTC-3’

GAPDH.dw 5’-GAAGATGGTGATGGGATTTC-3’

Spastin.up 5 ’-TCGAGTACATCTCCATTGCCC-3 ’

Spastin.dw 5 ’-TTCCACAGCTTGCTCCTTCTG-3 ’
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a p p e n d i x  2: PLASMID MAPS
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Ampicillin

B-lactamase

SV40 ori
Major Adeno Late Promoter

pMT21-myc
4800 bp

VTripartite Leader
EcoRI (950) 

(1050)

Aval (1100)

Xhol (1100)

DHFR

SV40 poiyA
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CMV

Ampicillin

CoiE1

pCDNA3
5400 bp

H indlll (889) 

T7

Kpnl (925) 

BamHl (937) 

Sp6 

EcoRl (967) 

EcoRY (977) 

\ Aual (990)
\\

Xhol (990)
\
X bal (1002) 

BGHpolyA

/
SV40poiyA

Neomycin

SV40ori

2 7 4
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CMV
Ampicillin ^  ^   ̂  ̂ H in à iii (889)

T7 

HA
B am H l (937) 

EcoRI (946) 

A va l (961) 

X hol (961) 

X b a l (990)

pcDNA3X(+)HA
5436 bp

C0IEI

BGH polyA
SV40 polyA W f1 ori

Neomycin SV40 ori
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Ampicillin

pcDNA3X(+)mycGFP
6200 bp

C0IEI

SV40 poiyA

Neomycin

CMV
H indlll (889) 

T7
BanzHI (937)

EcoRI (946) 

EcoRV (956) 

A val (985) 

Xhol (985) 

mycGFP

BGH polyA 
f1 ori

SV40 ori
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EcoRV (4082) 

laclq

A paLl (3612)

pBR322 ori

A paL l (19 )

pGEX3X
4 9 3 2  bp

/

Ptac

GST
B am U l (915) 

Aual (920)

 ̂ X m a l (920) 

Sm al (922) 

EcoRI (925)

ApaLl (1456)

P stl (1886) 

Ampicillin
ApaLl (2702)
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Pstl (9 8 0 0 )

Ampicillin

Pstl (8 8 0 0 )

pBR ori

H ind lll (1 1 0 0 ) 

HIS3

ADHpro 

LexA

EcoRl (5 1 0 0 )

Bam H l (5 0 9 4 )

pAR202
9 8 0 0  bp

Sail (5 0 8 2 ) 

Xhol (5 0 7 6 ) 

A val (5 0 7 6 )

ADHter

Pstl (2 6 5 0 )

2un ori

X bal (3 8 6 0 )
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Ampicillin

pUC ori

K p n l (3970)

GALpro 

EcoRV (3510)

H in d lll  (3450) 

NLSsv40-B42-HA

X b a l  (180)

EcoRV (380)

TRP1

H in d lll  (6 0 0 )  

P s tl (820)

6200 bp

EcoRI (3130)

X h o l (3112)/
il

A v a l  (3112) /
/

S a il (3098)

2um ori

X b a l  (1950)

H in d lll  (2470)

ADHter
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