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ABSTRACT_____________________________________________________  i

M od ellin g  o f Solar M agnetic  F ields using C ellular A u to m a ta  M odels.

C hristopher Peter Brockwell B .Eng M.Sc.
June 2003

Faculty of Science, The Open University 
Submitted for the degree of Ph.D.

Solar activity, including flares, CMEs, sunspots, global fleld reversal and, consequential to these, 

particle acceleration and X-ray emission result from the complexity of the atmospheric magnetic 

fields. These fields are driven into complex topologies by the continual stochastic photospheric mo

tions and granulation flows. Significant energy is stored in the magnetic field however magnetic 

reconnection provides a mechanism for the relaxation and simplification of the field and release of 

this energy. Reconnection is capable of providing the observed plasma heating, field reorganisation 

and particle acceleration, although the relationship between reconnection and flaring is not yet un

derstood. It is clear however that the field topology is key. Given fiare-size self-similarity, the short 

time-scales of hard X-ray emission and the observed apparent self-organisation, flaring models (Lu 

& Hamilton 1991) have been constructed based upon self-organised criticality (‘SOC’) with minimal 

physics and have produced plausible fiare-size distributions. The model by MacKinnon, Macpherson 

& Vlahos (1996) however assumed only local flare-triggering and made no statements regarding flare 

physics. This model reproduced the broad statistical features of flares yet without any implicit SOC.

We speculate tha t the observed Solar activity arises from the self-interaction of the magnetic field, 

flux emergence/submergence and reconnection without the necessity for invoking SOC or power-law 

distributed convective flows. Our first model was a simple 1-D cellular autom ata (‘CA’) containing 

only formalised field connectivity, reconnection and flux emergence/ submergence. The model pro

duced self-similarity in fiare-sizes over four orders of magnitude. The following model built upon the 

first and included more realistic physics with continuous param eter values. The model gave power- 

law distributions in field density and fiare-sizes (up to seven orders of magnitude) without inclusion 

of SOC or power-law forcing. The results were robust and insensitive to details of the reconnection 

mechanism. We derive analytical explanations for the observed rapid decay curves of impulsive-phase 

X-ray emission and consider that the flares produced represent presently unresolvable reconnection 

events. It was found that, similar to large Solar flares, large events are rarely concurrent.
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Chapter 1

Introduction.

“I asked him what the other books were about, the twenty-three previous ones, and he 

said tha t he thought one of them was about owls.”

Richard Brautigan.

“Hello?

Yeah, i t ’s me. I wanna give you some good frequencies. 172, 2.6, 2245 

Yeah?

3032, 400 

400?

Yeah.

I’m coming over.

Do that.

I’ll be there in two seconds.”

Royksopp.

The purpose of this thesis is to present cellular autom ata models of the Solar surface activity 

together with the data produced and make where possible comparisons with real data. These models 

embody realistic 1-D fluid behaviour, emergence and submergence of magnetic flux and magnetic 

reconnection. They consist of simplifled grids of cells with limited physical laws. There is enough 

physics, we believe, to usefully capture the salient behaviour of the Solar magnetic flux, yet not too 

much for the models to place too great a charge upon computing resources.
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The questions we will try to address are as follows :

• How do power-law flux density distributions arise?

• How do power-law event-size distributions arise?

• Do we see sufficient dynamic range and appropriate power-law indexes in the model-generated 

data?

• Can features of flaring events be obtained with this model?

• How do the results depend on the details of the reconnection mechanism?

• W hat is the relevance of self-organised criticality?

1.1 Solar Activity and Properties of the Atmosphere.

The Solar atmosphere, whether atomic, as in the photosphere, or ionised, as in the chromosphere, 

transition region and corona, consists of material where thermodynamic pressure and magnetic pres

sure compete for dominance. The ratio of these can be characterised by the Plasma B :

g  _  particle pressure 
magnetic pressure

_  n k-Q T  

(&)

where : C'a =  and Q  =

Thus, when B > 1, the gas pressure dominates over the magnetic pressure (also, any changes in 

density will be equilibrated by sound waves rather than slower Alfven waves). If we move radially 

outwards through the Solar atmosphere, we flnd that magnetic field density varies such that B > 1 

in the photosphere at the base of the magnetic carpet, B < <  1 in the mid corona, then B > 1 in the 

upper corona (Gary 2001). Our continuous model, explained in chapter 3, takes into account both 

the magnetic and thermodynamic components of pressure, therefore it is unnecessary to make any 

assumptions in the continuous model regarding Plasma B. The model incorporates simplifled fluid 

behaviour intended to represent the photospheric velocity field and magnetic reconnection parame- 

terised to represent the photosphere and corona.
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The photosphere is the visible surface of the Sun. The corona is a hot tenuous region extending 

outwards from the Sun in all directions with no definite edge. The corona radiates thermally and 

non-thermally in extreme ultraviolet, soft and hard X-rays. The transition region is a layer of the 

Solar atmosphere which lies between the photosphere and hotter corona and is characterised by a 

steep temperature gradient, the temperature rising from the photosphere to the corona.

The term ‘magnetic carpet’, as discussed by Parnell (2001), refers to the complex magnetic field 

topology attached to the photosphere and extending through the photosphere and into the corona. 

The term originated when magnetogram images produced by the MDI (‘Michelson Doppler Imager’) 

instrument on board the SOHO (‘Solar and Heliospheric Observatory’) spacecraft were used to pro

duce maps, such as figure 1.1, showing the approximate 3-D geometry of the photospheric and coronal 

magnetic field. The field connectivity has been derived by calculating potential-field solutions to the 

observed spatial distribution of magnetic charges across a magnetogram image.

By assuming that everywhere there is a ‘potential field’ structure we mean tha t we assume there 

are no currents, or current sheets, within the field. This assumption cannot be valid because non

parallel field will inevitably produce intervening current-sheets and diffusion regions, however it does 

allow us to determine from magnetogram images a simplified picture of the magnetic field structures 

and so obtain an idea of the types of field topologies present. These potential-field calculations also 

assume that plasma B < <  1 throughout the whole of the mid-corona and upper-corona. Gary (2001) 

explains that this assumption is not likely to always be valid. We recall that plasma B reflects the 

ratio of gas pressure to magnetic pressure. Moving radially outwards along a magnetic field line 

from the photosphere, we are likely to find that this ratio varies from : B > 1 in the photosphere, 

to B < <  1 in the mid-corona, to B > 1 in the upper corona. It is well known tha t B > 1 where 

r  > 2Rq , however there is a great deal of evidence that B > 1 at relatively low coronal heights 

(Gary & Alexander 1999 and Hiei & Hundhausen 1996). Gary (2001) infer that the spreading of loop 

cusp material at a height of % 0.23 reflects the dominance of Solar wind gas pressure over magnetic 

pressure at that height. This implies that B%1 at this height. The open field lines above loop cusps 

are thought to have advected gas away and therefore to be rarefied and to have B < <  1. Gary (2001) 

construct a model using a variety of fits for gas and magnetic pressures and stretching of loops. They 

find that the general features of the model results are unchanged for a range of values for magnetic 

field density between a photospheric magnetic field density of 2.5 kG and, at the other extreme, 150 

G. At first B > 1 then becomes B < <  1. For upper coronal loop cusps, B > 1 will occur again at a 

height of f e w  x 10  ̂ Mm.

Let’s now consider the thermal and magnetic energy densities inside the photosphere and corona
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Figure 1.1: The Solar magnetic carpet, including magnetogram from which the potential-held topol

ogy was calculated. SOHO Consortium.

assuming the following typical parameter values (Zirin 1989 and Roberts 1999) :

^ph — 10^  ̂ m-3

^ph — 5800 K

-^ph — 1, 10 and 50 G

'Tt’co — lOis m-^

Too — 10  ̂ K

Bco = 1 and 100 G

and also,

772p =  1.673 X 10 kg 

me =  9.11 X 10“ ^̂  kg

Now, we know

Cth =  -jnk^T

Cmag — 2fio
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Location Type B [G ] ^ [J m"®] P  [N m-2]

photosphere thermal 1.2 X 10^ 8x10®

photosphere magnetic 1 4.0 X 10-® 4.0 X 10-®

photosphere magnetic 10 0.4 0.4

photosphere magnetic 50 9.9 9.9

photosphere magnetic 3000 3.6 X 10^ 3.6 X 10^

corona thermal 2.1 X 10-2 2.8 X 10-2

corona magnetic 1 4.0 X 10-® 4.0 X 10-®

corona magnetic 100 40 40

Table 1.1: Calculated typical photospheric and coronal pressures and energy densities, both thermal 

and magnetic.

p
“  2„o

P th,ph — nk^T

P th,co ~  2nk^T

We remember tha t whereas we can consider the photosphere to be an atomic gas, in the corona 

electrons and protons are dissociated therefore there is a particle pressure contribution from both 

electrons and protons.

Table 1.1 shows the energy densities and pressures, thermal and magnetic, for the corona and 

photosphere based upon the values we have assumed above. Thus, we see tha t in the photosphere 

thermodynamics dominates the magnetic field except where the field density reaches 2 -H- 3 x 10  ̂ G, 

which occurs only in sunspots. In the corona the reverse is the case. For the purposes of our 

continuous model, described in chapter 3, we can therefore neglect neither the magnetic nor thermal 

components of the energetics or the pressure forces, but must take account of bo th  in our model 

dynamics.

Lawrence, Cadavid & Ruzmaikin (2001) found tha t the appearance of the photosphere in visible 

light is dominated by the granular and supergranular structures ~  1 ■H’ 2 x 10® m and ~  2 -H- 4 x 10  ̂

m, respectively. Granules have a lifetime of ~  18 minutes and the granular m aterial has a velocity 

of perhaps 1 -H- 2 x 10® m s“ .̂ Granules are caused by the underlying convective motions and 

are destroyed by fragmentation, decay and merger with other granules. Zirin (1989) describes the 

Solar photospheric magnetic field in the following terms. The magnetic field structure has several
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components. The underlying quiet network is mixed in polarity although often unipolar at the poles 

and has a field density of 2.5 -H- 3 G (Parnell 2001). Active regions are characterised by bright plage, 

sunspots and loops. The field density of sunspots may be 2 ■(-)■ 3 x 10® G. Ephemeral magnetic regions 

number in the thousands and appear everywhere on the Sun although usually near neutral lines. By 

contrast, sunspots usually appear at low latitudes. Ephemeral regions persist for approximately a day 

and are usually simple dipoles, contrasting with the far more complicated structures of active regions. 

Ephemeral regions may produce one small fiare each. There are also chaotic regions of post-active 

region fiux known as ‘unipolar magnetic regions’. Magnetic loop structures, observable because of 

the X-ray and extreme UV emitted by hot plasma confined in gyro-rotation to the field lines, extend 

from active regions and ephemeral regions into the corona. Large features such as active regions are 

thought to originate at the base of the convective zone, whereas small features such as ephemeral 

regions may have their origins in small scale motions near the surface (Parnell 2001). Flares tend to 

occur along neutral lines between antiparallel fiux regions and where the field within active regions 

becomes twisted and sheared. The canonical figure for the energy of a large fiare is 10̂ ® J, most of 

which will be generated within ~  100 s. A common informal categorisation of fiares is as follows :

fiares 10%® 10̂ ® J

microflares 10̂ ® 10̂ ® J

nanoflares 10^  ̂-H- 10̂ ® J

Parker (1988) proposed tha t the X-ray emission from the corona is created by immense numbers 

of unobservably small reconnection events (nanoflares). These are localised impulsive energy bursts 

caused by the constant random convection-driven motion of fiux-tube footpoints which complicates 

the field and leads to current sheets and reconnection. We can think of flares in this scheme as 

consisting of superpositions of many nanofiares. Kaufmann et al. (1980) go further and suggest that 

the nanofiares represent a ‘quantisation’ of fiare energy release.

Let’s now consider fiare size distribution data.

Hard X-ray data was obtained by the Hard X-Ray Burst Spectrometer (‘HXRBS’) on the So

lar Maximum Mission (‘SMM’) spacecraft and by the X-ray spectrometer aboard the International 

Cometary Explorer (‘ICE’) spacecraft during long-term Solar fiare observations. Statistical studies 

of the HXRBS data (Crosby, Aschwanden & Dennis 1993) and the ICE data (Bromund, McTiernan 

& Kane 1993) reveal power-law distributions in the peak count rate (C), total duration (D) and peak 

photon flux (F). Peak energy flux (E) and total energy (W) in accelerated electrons were also calcu

lated using a single power-law photon spectrum and a thick-target interaction model. The power-law
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distributions, as shown in table 1.2, extend for several decades. The threshold values result from 

instrument sensitivity and therefore give no information regarding the minimum event size. The two 

studies show slightly different power-law gradients, however this may be attributable to differences 

in instrument sensitivity or to differing methods of electron energy estimation.

C D F E W

(s“ )̂ (s) (ph cm“ 2 g-i) (erg s~^) (erg)

Solar Maximum Mission (Crosby, Aschwanden & Dennis 1993)

gradient -1 .73 ±0.01 -2 .17  ±0.05 -1.59 ±0.01 -1 .67  ±0 .04  -1 .53  ±0 .02

threshold 30 200 1.5 ICf? 3 x ICf®

International Cometary Explorer spacecraft (Bromund, McTiernan & Kane 1993)

gradient - -2 .40  ±0 .04  -1.86 ±0.01 -1 .92 ±0 .02  -1 .67  ±0 .02

threshold - 100 4 2 x 10^  ̂ 10̂ ®

Table 1.2; Characteristics of the distributions of hard X-ray flare parameters. D ata was obtained by 

the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft (Crosby, Aschwan

den & Dennis 1993) and by the X-ray spectrometer aboard the International Cometary Explorer 

spacecraft (Bromund, McTiernan &: Kane 1993).

The SMM and ICE data shows typical Solar flare event-size distributions. However it has been 

well known since Datlowe, Elcan & Hudson (1974) tha t the size-distribution of flares follows power- 

laws when counted by peak photon flux during the soft X-ray impulsive phase of the flares. Many 

later studies have confirmed this for peak photon flux together with various other proxies for flare 

size, such as integrated energy (Wheatland 2000). Aschwanden, Dennis & Benz (1998) provide a 

useful tabulation of many studies which obtained distributions of peak flux for Solar flares and give 

the power-law indexes found. That paper shows that most studies completed during the last decade 

fint the spectral index of the peak flux distributions in the hard and soft X-ray bands are : ~  1.5±0.2.

We should clarify the meaning of the term ‘power-law’. If we collect data of events where the size 

of each of these events is s, we will bin these events in order to obtain the likelihood of finding events
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of size 5 . We can divide the event count within each bin by the width of that bin in order to obtain 

the probability density function (‘P.D.F.’), P{s). Let us suppose that :

P{s) = a  s -X

where e is the base of natural logarithms, A is the spectral index and a  is a constant. The 

distribution is said to be of ‘power-law’ form. If we then plot a graph of log(s) — v — log(P(s)) 

we will find that the distribution lies along a straight line. The spectral index (‘power-law index’) is 

the gradient of the distribution.

Miroshnichenko, Mendoza & Enriquez (2001) analyzed data between 1955 and 1996 in order to 

determine accurate distributions of event-sizes. Considering only protons with energies greater than 

10 MeV, and events above the rate of 1 p.f.u (proton cm~2 sr“ ^), they found 320 events associated 

with identified flares. Considering the integrated energy released from these events they found the 

events to have a power-law distribution with a gradient of 1.37 ±  0.05 over the whole range of 

proton intensities : 1.0 -B- 10® p.f.u. Considering only a subgroup of 159 events associated with 

magnetospheric storms, they found tha t this subgroup exhibited double power-law distributions. The 

two exponents for these were 1.00 ±  0.04 and 1.53 ±  0.03, below and above 10® p.f.u., respectively.

In this section we have explained something of the general nature and behaviour of the Solar 

surface plasma and magnetic fields. The following sections within the Introduction will focus more 

closely upon specific physics, phenomena and models.

1.2 Variation of |5 | with the Solar Cycle.

The Solar photospheric magnetic field appears to exist in a power-law distribution. Schrijver & 

Harvey (1989) analysed magnetic field maps for the period 1975 to 1984 and generated magnetic field 

density distributions for six snapshots during this period. Schrijver & Harvey (1989) used synoptic 

magnetic field maps produced from smoothed l"-resolution daily magnetograms, since within any 

small area of the photosphere for which we have magnetogram data we would not expect a complete 

absence of magnetic flux antiparallel to the vector of the mean flux.

The magnetic field distributions determined by Schrijver & Harvey (1989) and the times associated 

with each are given in figure 1.2. This plot shows normalised distributions of field density where the 

x-axis is in units of Gauss and both axes are log-log.

These distributions all consist of two regimes. There is a fairly flat lower region which undergoes a 

transition into a clearly power-law region at higher flux levels. The six distributions run roughly from 

Solar minimum through maximum to another minimum. We can distinguish the distributions without
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Figure 1.2: P.D.F. of |B | (despite the use of (j) in the figure) at different times in the Solar cycle. 

Bin-size =  1 G. Time interval ‘d ’ represents Solar maximum. (Schrijver & Harvey 1989).
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difficulty and there is an unequivocal flattening of the P.D.F, moving towards Solar maximum, 

followed by a steepening again after maximum. Also, there is a progressive movement of the position 

of the roll-over from approximately 2-4 G at Solar minimum to 3-6 G at maximum.

We will consider this data in more detail later in section 5.4 when discussing the results from the 

model.

1.3 Power-law Structure of Magnetic Regions.

Meunier (1999) have analysed the fractal nature of the Solar surface magnetic field and found that the 

area and perimeter of regions exceeding particular magnetic flux density thresholds can be described 

by fractal dimensions. The two plots shown in figure 1.3 were generated from full disc magnetogram 

data. To generate the upper plot they identified regions with magnetic field density greater than 40 

G then calculated area, linear size and perimeter for each region. Plotting perimeter against area on 

logarithmic axes they found the slope of the best-fit line. Twice this value is equal to a measure of 

fractal dimension called the Hausdorfi" dimension. Thus ;

The more complex and denticulate a magnetic region the closer will the value of the Hausdorff 

dimension (di) be to 2. A perfect circle or square will give a value of 1. The value of the Hausdorff 

dimension for figure 1.3 lies between 1 and 2.

The lower plot was generated by plotting area against linear size on logarithmic axes. Thus :

Alog A
-  Â i ^

The slope of this graph is equal to another measure of fractal dimension. The more complex and 

denticulate the region is the smaller this value will be, and will equal 2 for non-fractal regions. The 

lower plot of figure 1.3 gives a value for this measure of approximately 2 .0 , thus indicating a non- 

fractal field distribution. The reason for using two different methods of calculating fractal dimension 

is tha t each of the two methods are only indicators of how denticulate a region is.

1.4 Trozen-In Condition’ and Magnetic Reconnection.

We have seen that the magnetic field dominates energetically in the upper Solar atmosphere extending 

from the transition region into and including the corona. For an ideal MHD plasma Ohm’s law gives 

us :
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Figure 1.3: Top: Average perimeter P versus the area A for data set of full-disk magnetograms for 

a threshold of 40G and area larger than 30 pixels; bin-size =  0.05. Bottom: similar relation between 

L and A. Units of A, P and L are pixels. Meunier (1999).
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E + v x B = 0

Here, E  is the electric field.

Ohm’s law in a more general form :

^  =  V X (« X 5 )  +  ,, V^B (1.1)

The first term on the right-hand side of equation 1.1 represents advection of field lines and the 

second term represents diffusion of fiux across plasma. Taking the ratio of these two terms gives us 

the following, where Rmag is the magnetic Reynolds number, v a velocity term, L  a characteristic 

length-scale and r] the magnetic diffusivity of the plasma :

Rmag
V  x j v x B )

advective term 
diiffusive term

= V Lir]

For Solar and astrophysical plasmas L  is large therefore the advection term dominates and diffusion 

is negligible. This means tha t plasma and magnetic field are fixed together. This is known as the 

‘frozen-in condition’. Flux cannot diffuse readily through the plasma but must flow with it (or vice 

versa depending on the value of the Plasma B). The only relative motion allowed between the plasma 

and field is (1) gyro-rotation of electrons and protons around field lines and (2) motion along the 

field lines, the superposition of which implies a spiralling motion along field lines. For an electron 

velocity of 10  ̂ m s“  ̂ and a field density of 10 G we would expect a gyro-radius o f ~ 6 x l G~^ m.

Thus, we have an im portant result for space plasma physics : like beads on a string, elements of 

plasma attached to a field line remain attached to that field line throughout any subsequent motion. 

This means that topologically different regions of fiux cannot interpenetrate. Figure 1.4 shows a 

2-D section through two topologically different and distinct regions of magnetic field : (1) a closed 

island/plasmoid, and (2) open parallel field. While these regions may change their field density and 

number density distributions and distort their shapes, they may not change their topologies, cross 

over or interpenetrate.

Considering the case of a magnetic field in a static atmosphere of fully ionised hydrogen, Dere 

(1996) obtain an expression giving the time-scale of resistive diffusion of fiux.
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Figure 1.4: Illustration of frozen-in condition. Two topologically distinct regions of magnetic field.

In the purely diffusive regime, Ohm’s law (equation 1.1) becomes :

dB
dt

After performing a dimensional analysis of this, we arrive at :

B  t}B 
T ~ l ?

where T  is the characteristic time-scale of the diffusion. 

Further, we have :

t  =  A
V

Spitzer (1962) gives :

77 =  5.2 X 10  ̂ ln(A) m^

If we consider T % T  and substitute for 77 we obtain :

where :

Tdiff — L I d

d % 10 ^̂ -̂  cm^ s - i

( 1 .2 )

AiifF = L  is the time-scale for resistive diffusion of magnetic fiux and d is the diflPusion rate. Thus, 

magnetic field variations over the length scale L, are destroyed over the timescale r .
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Dere (1996) find tha t for a typical coronal active region of size 3 x 10  ̂ m and temperature 2 x 10® 

K, T % 6 X 10̂ ® s. The early impulsive phase of a fiare, which may release of the order of 10̂ ® J, will 

typically take place in ~  100 s. Clearly the reorganisation of a magnetic field by diffusion is far too 

slow to explain the topological changes in field structure required for the dynamic behaviour of the 

Solar atmosphere.

In order therefore for reorganisation of the Solar magnetic field to occur, the frozen-in condition 

must break down. This is where magnetic reconnection must be brought in. Additional to the 

problem of explaining mechanisms for fast energy release and field reorganisation, there is another 

significant difficulty which has not yet been satisfactorily resolved. Although the temperature of 

the Solar photosphere is around 5800 K, the far more tenuous and expansive corona, extending out 

several Solar radii, has temperatures of typically several hundred thousand to several million Kelvin. 

Amongst other theories, including some which invoke MHD waves, it is believed that magnetic 

reconnection is responsible for heating the coronal and transition region plasma (Jardine 1992).

It was realised in the early sixties that magnetic reconnection is necessary for the fast energy 

release occuring in the large-scale and rapid field organisation we observe during flaring activity and 

CMEs.

The ‘Sweet-Parker model’ (Sweet 1958) was probably the earliest serious model for magnetic 

reconnection where anti-parallel fiux is being pushed together by external bulk movement of field. 

The model, shown in figure 1.5 is 2-D and steady-state, like the later Petschek model, and consists 

of a thin current sheet between anti-parallel fiux. After reconnection, plasma exits the current sheet 

at the Alfven speed. C'a - To preserve the current sheet there must be an inflow of fiux at velocity V[n 

such tha t the outward diffusion of the field in the current sheet is exactly balanced. Thus, we have :

«in = y

where I = thickness of the current sheet and uin is assumed to be small compared with C'a - By 

considering mass continuity of the plasma flow we obtain :

L Uin =  / C'a

also, we have :

S
where L = length of the current sheet. Further algebraic manipulation using these relationships 

will give :
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Figure 1.5: ‘Sweet-Parker’ reconnection model showing inflow and outflow of flux through diffusion 

region (Sweet 1958).

Min =
mag

where Min =  inflow Mach number.

In the typical Solar plasma we are considering here, the magnetic Reynolds number, Rmag, will 

be large (see section 1.4) therefore we expect Min to be small. Given that Rmag =  Lv^/r]  and 

fin =  it follows tha t :

y  =  y  Rmag

Given tha t Rmag will be large, j  will be small and when L  is considered to be the global length 

scale of a typical flare the current sheet in the Sweet-Parker model will be long and th in  with 

Min ~  10“  ̂ -H- 10~®. Given a typical coronal value for C'a of ~  10  ̂ m s~^ we therefore have values of 

fin which are far too low to explain flare observations. Thus, although the Sweet-Parker model has 

been confirmed experimentally (Yamada 1998), the reconnection takes place too slowly to account 

for Solar flares and a faster mechanism is required. Although controversial, a model which answers 

this problem is the ‘Petschek model’.

The current model for simple 2-D reconnection was suggested by Petscheck (1964). We suppose 

that bulk movements push together Solar plasma such that flux with a substantial anti-parallel 

component comes into contact. Because of the non-zero resistivity of the plasma, a current sheet 

will exist across the region where the field lines reverse. W ithin this region the magnetic Reynolds
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number, Rmag, will be sufficiently small such that field lines will be able to diffuse. Figure 1.6 shows a

2-D schematic representation of the Petschek model (Petscheck 1964). The diffusion region is shown 

by the shaded box. Thus, the field lines can reconnect into a new continuous pattern about the null 

point within the diffusion region. The thickness of the diffusion region must be in the order of tens 

of metres in order to generate the necessary field gradients (Foukal 1990) therefore we cannot expect 

to be able to directly observe the diffusion region itself. This model incorporates Alfven waves piled 

into shocks across the inflow regions which convert energy stored in the magnetic field into thermal 

energy (Jardine 1992). Tension in the newly-reconnected field lines post-reconnection accelerate the 

plasma away from the diffusion region at the Alfven speed (Jardine 1992).

In this model, the diffusion region constitutes in effect a miniature Sweet-Parker model, and it is 

no longer necessary therefore to assume that the length of the diffusion region is comparable to the 

size of the system. We can therefore allow fin to approach Ca , which gives us a much higher rate of 

reconnection than tha t allowed in the Sweet-Parker model. Nevertheless, the Petschek model is not 

widely accepted. This is partly because of the semi-qualitative nature of the analysis. The magnetic 

field strength should decrease outwards along the direction of propagation of the incoming Alfven 

wave (or slow shock), which implies that the field to the outside of that region should be bowed away 

from the diffusion region, rather than being straight. The Petschek model assumes, amongst other 

things, that the magnetic field density outside the current sheet is independent of distance from the 

neutral line (Petschek & Thorne 1967).

Biskamp (1986) performed a numerical experiment and found, contrary to the Petschek model, 

that when the rate of inflowing plasma was increased magnetic flux accumulated in front of the 

diffusion region and the rate of reconnection scaled only as per the slow reconnection predicted by 

the Sweet-Parker model, although the inflow velocity exceeded that allowed by the Sweet-Parker 

model.

Petscheck (1964) assumes the length of the diffusion region to be a free parameter and consequently 

chooses the smallest possible length in order to produce the highest possible reconnection rate. In 

fact, as explained by Kulsrud (2003), this length is not a free parameter but is constrained by the 

requirement of constant resistivity. Where the resistivity is held constant it is a consequence that the 

size of the diffusion region will be the same as that of the whole reconnection region, and therefore 

we would find that the Petschek mechanism gives a reconnection rate no faster than that predicted 

by the Sweet-Parker mechanism.

Priest & Forbes (1992) were able to explain the results of Biskamp (1986) and show that it was 

his assumption of constant resistivity tha t resulted in his findings that the rate of reconnection was
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Figure 1.6: Current reconnection model (‘Petschek model’), showing inflow and outflow of flux 

through diffusion region. Petscheck (1964)

no greater than that of the Sweet-Parker model. They were able to show tha t numerical simulations 

using suitable and reasonable boundary conditions are able to produce the fast reconnection predicted 

by the Petschek mechanism.

Certainly, fast reconnection under the Petschek scheme has never been achieved in numerical 

simulations, except by increasing the resistivity in the diffusion region in a way not universally 

agreed to be valid.

Figure 1.7 illustrates the standard 2-D flare model, based upon magnetic reconnection. The 

field topology in this cartoon model is one of several possible alternative speculative field topologies. 

Let’s briefly consider the im portant features of this model. First, reconnection accelerates the ejected 

plasma away into the upper corona to typical velocities of 10  ̂ -H- 10® m s“  ̂ where it merges with the 

Solar wind. Second, the production of reconnected field accelerates charged particles along the field 

lines down to the footpoints of the loop. Along the way these particles heat the loop m aterial trapped 

along the field lines in the corona, chromosphere and photosphere and eventually impact with and 

heat photospheric material. The existence of these fast particles is inferred from observations of 

impulsive bursts of hard X-rays generated in the corona and/or chromosphere and /or photosphere.



1.4 ‘Frozen-In Condition’ and Magnetic Reconnection. 18

The model shown in figure 1.7 is undoubtedly a highly simplified version of the actual process and 

remains a controversial idea although there is general agreement regarding the broad features ; 

magnetic reconnection, ejected plasma, fast particle streams leading to impulsive hard X-ray bursts.

Simulations have shown that in terms of fiow rates the Petschek model gives dynamically sensible 

results for the forced convergence of anti-parallel fiux regions.

Thus, it is believed that the continual stochastic photospheric motions and granulation fiows 

force a continuous and random braiding of the intense fiux-tubes which thread the photospheric 

surface and are believed to be constituents of magnetic concentrations. This braiding stores energy 

in the magnetic field and creates conditions for complex current sheets. Fast non-thermal electrons 

and protons are observed to be associated with fiaring events, and powerful electric fields generated 

may be responsible for acceleration of these particles. We have discussed the Petscheck and Sweet- 

Parker models here as simple models of reconnection, however we must clarify that where there is 

complex braiding of fiux-tubes, there will not be a simple structure of current sheets. Therefore 

simple Petschek model reconnection will not take place. Reconnection need not occur in a simple 

current sheet geometry, but can occur within a region where the field is sheared, leading to tearing

mode instability. Braided and twisted fiux tubes are also likely to exhibit pinch, kink and helical 

instabilities. The topology of the field and current sheets may have very complex geometries.

Magnetic reconnection provides a mechanism for the relaxation and simplification of this complex 

field. There is also evidence that reconnection is responsible for fiaring activity. Demoulin et al. 

(1993) studied magnetic field topology within several active regions and, after calculating potential 

fields (magnetic field where there are no currents) from magnetogram data, compared these diagrams 

with fiare loops. By performing these studies Demoulin et al. (1993) tentatively showed that the 

evolution of the magnetic fields is caused by reconnection.

Moore, LaRosa &: Orwig (1995) take this standard fiaring model and address a problem associated 

with it. In order to do this they consider a large eruptive fiare which occurred on April 24/25 

1984. Reconnection taking place during the fiare causes three events, according to the model : 

(1) acceleration of electrons and plasma heating to precipitate hard and soft X-ray emissions; (2) 

creation of an arcade of coronal fiare loops with two footpoints attached to a pair of separating fiare 

ribbons; (3 ) an intense fiux rope located above the reconnection site is further wrapped in fiux which 

forms a plasmoid, unattached to the photospheric field, and which is driven (possibly constituting a 

coronal mass ejection (‘CME’)) into interplanetary space. The is no accepted model of the electron 

heating of the plasma by reconnection. The problem is tha t the shocks which sit above and below 

the reconnection site, and which the accelerated electrons fiow through, can heat the plasma to
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Figure 1.7: Standard flare model.
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only a few keV at the most. Electrons with energies of > 25 keV must be produced at a high rate 

10®® s"^) to produce the observed hard X-ray ( >25  keV) emission during the impulsive phase of 

flares. Moore, LaRosa Sz Orwig (1995) suggest and test a mo difled form of the standard model. The 

modiflcation consists of the inflowing field not being laminar but instead being turbulent. Moore, 

LaRosa Sz Orwig (1995) find that their model allows the acceleration of ambient electrons to energies 

of ~  25 keV by Fermi acceleration. More generally, they find that the morphology of the 1984 flare 

accords with their model. The model turbulent wall required to power the heating of the plasma fits 

comfortably within the observed flare. This energy required is of the order of ~  10̂ ® J. Taking the 

observed length of the two flare ribbons at the peak of the explosive phase to be ~  65000 km, the 

width of the pre-flare channel to be ~  5000 km and the average field strength to be 1000 G, they 

calculate that the preflare turbulent wall could have contained ~  2 x 10̂ ® J. Thus, with suitable 

modiflcation it is clearer still tha t the general features of the standard flare model are correct.

1.5 Relevance of MHD.

The behaviour of the Solar atmosphere is an expression of the release of energy stored in the magnetic 

field. For the purposes of this study we are concerned with the field of the photosphere out into the 

corona. The footpoints of loops visible in TRACE images are anchored in the magnetic carpet. We 

have seen how the frozen-in condition requires that reorganisation of the field is achieved through 

magnetic reconnection. The question is : how can we use this understanding to develop useful 

models?

By considering the plasma as a conducting fluid within the presence of a magnetic field we can 

use MHD to analyse and model the dynamical behaviour and equilibria of plasma. MHD allows us to 

describe a conducting collision-dominated (therefore Maxwellian) fluid through which are threaded 

magnetic field lines. This field may be produced by current flowing in the fluid, externally imposed 

or a combination of these. The MHD description is macroscopic and statistical and consists of an 

amalgamation of fluid mechanics and electromagnetism and incorporates conservation principles in 

respect of mass, momentum, energy and magnetic flux.

The equations of MHD are as follows : mass continuity, adiabatic equation of state, momentum 

continuity. Ampere’s law, Faraday’s law, div R =  0 and resistive Ohm’s law (Dendy 1993).

MHD is a powerful technique, and has for instance successfully explained in general terms many 

effects ranging from the dynamo effect, where a field arises spontaneously in a rotating conducting 

planetary body, to the varied problems associated with magnetic confinement of hot plasma in pro

totype thermonuclear fusion reactors. MHD is useful for examining evolution of idealised magnetic
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plasma configurations where there are a small number of null points and simple magnetic topology, 

very often using symmetrical geometrical arrangements. MHD is capable of describing the propa

gation of Alfven, sound and magnetosonic waves, where Alfven waves propagate across and along 

magnetic field lines and magnetosonic waves are a combination of sound waves and Alfven waves.

There are a number of workers in the field making different approaches to the problem of exploring 

the effect of magnetic reconnection in a variety of realistic Solar atmospheric environments. The most 

popular is the use of MHD where a magnetic configuration is set up with specific initial conditions 

and is evolved. Of course, these models are highly simplified idealisations and cannot yet approach 

the variety and randomness of the real Solar atmosphere. An example of this work is Galsgaard 

& Roussev (2002). These models attem pt to incorporate increasing numbers of im portant physical 

features such as gravity, stratification, three-dimensionality and multiple null points and current 

sheets.

MHD is however incapable so far of performing accurate 3-D simulations with large numbers of 

null points and complex current sheets, and certainly is nowhere near being able to deal with the full 

range of length scales from that of the reconnection diffusion region in Solar plasmas to th a t of large 

fiares : a few metres (Foukal 1990) to 10® m, respectively. Such capabilities are necessary if MHD 

is to explain the behaviours we observe in the Solar atmosphere, including fiares, CMEs, sunspots, 

plage, poleward migration of sunspot pairs, tornadoes and coronal heating.

Hesse (1995) have discussed magnetic reconnection in generic cases with a particular interest in 

investigating the relevance of the integral of the parallel electric field along field lines, they showed 

that reconnection is most likely to occur where there are helical structures of magnetic field. Such 

structure are referred to in the literature as ‘fiux ropes’. They used detailed MHD simulations to 

model the formation of current sheets and fiux ropes and the consequent acceleration of these fiux 

ropes by the outflow from reconnection. They showed that the formation of helical field lines and 

of large regions of parallel fiux are obtained, as expected, where there is a sheared magnetic field 

configuration and the loop footpoints are converging. Hesse (1995) showed tha t sensible scaling of 

the model up to coronal sizes would result in particle acceleration in the GeV range.

1.6 3-D MHD Simulations of Black Hole Accretions disks.

It is thought that magnetic fields play im portant roles in many astrophysical systems, often being a 

mechanism for energy release by reconnection or transport of angular momentum.

Machida & Matsumoto (2003) used MHD to model black-hole accretion disks and the role of 

magnetic reconnection therein. We would expect differential rotation to stretch and compress field in
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Figure 1.8: Schematic comparing magnetic reconnection in Solar flares and accretion disks. Machida 

& Matsumoto (2003)

the inner region of a disk. Current sheets should form and the field will be subject to magnetic recon

nection. Tajima & Gilden (1987) and Sano h  Inutsuka (2003) have carried out MHD simulations of 

the formation of current sheets and magnetic reconnection in accretion disks. These models showed 

quasi-periodic energy release. Mineshiga (1994) used a simple cellular automaton model incorpo

rating self-organised criticality and obtained self-similar flaring behaviour. Kawaguchi, Mineshige 

& Machida (2000) performed MHD simulations of accretion disks and successfully reproduced the 

self-similar behaviour in the time-domain which we observe in black-hole candidates. Machida & 

Matsumoto (2003) modelled not only magnetic field topology and energy release by reconnection, 

but also ratio of gas pressure to magnetic pressure (plasma B) and density, radial velocity, angular 

momentum and other parameters. Figure 1.8 illustrates schematically two types of reconnection 

process analogous between Solar flares and accretion disks. Interactions taking place in accretion 

disks may be able to release more energy than those in the Solar corona for the reason that rota

tional energy is an additional source of magnetic energy. Figure 1.9 shows the magnetic field lines 

of the disk distorted by differential rotation. Machida & Matsumoto (2003) found that gravitational 

potential energy of the accreting gas was converted into magnetic energy and that following the infall 

of dense blobs of gas, reconnection would occur in the newly rarefied material. Reconnection also 

occurs where current sheets interact. X-ray emission by reconnection in the model was compared 

to that of Cygnus X-1. In both the soft X-ray ‘shot’ is time symmetric. In the model, hard X-ray 

emission occurs impulsively after the peak of the soft X-rays has passed.
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Figure 1.9: Magnetic field lines and equatorial density distribution of accretion disk projected onto 

the equatorial plane. Images a,b : global structure inside r  =  60. Images c,d : inner region inside 

r = 10. Machida & Matsumoto (2003)

1.7 Self-Organised Criticality, Power-Law Behaviour and Sand-piles.

The world and the wider universe are replete with systems, natural or otherwise, exhibiting temporal 

or spatial power-law behaviour. For example : size of animal bodies across species, sizes of lunar 

impact craters, magnitude of biological extinctions, quasar hard X-ray bursts and city-sizes. Processes 

which produce objects or behaviour with power-law distributions are said to be ‘self-similar’. As we 

can see from the above list, these behaviours can be self-similar in space or time (turbulence is a 

self-similar phenomena in both space and time). Bak, Tang & Wiesenfeld (1987) and Bak, Tang Sz 

Wiesenfeld (1988) have found that the dynamics of self-similar phenomena tend to be associated with 

a temporal behaviour known as ‘1/ /  flicker noise’, where the power spectrum P{ f )  as a function of 

the frequency /  scales as P ( / )  == 1 / / “ where the exponent a is close to 1. Examples of 1 / /  noise 

include current fiow through resistors, traffic fiow, speech, river fiow rates and stock exchange indices
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(Sornette 2000). 1 / /  flicker noise is not really noise but temporal self-similarity of the system. It 

seems that spatial self-similarity and 1/ f  flicker noise are signatures of systems which exist in a state 

of self-organised criticality (‘SOC’). It does not follow however that systems which exhibit spatial 

self-similarity and 1 /f flicker noise are necessarily SOC.

The classic example of an idealised system exhibiting SOC is the ‘sand-pile’, as explored by Bak, 

Tang &: Wiesenfeld (1988).

Figure 1.10 shows the sand-pile model. In the 1-D case we use a space which is open to the right 

with an infinite wall to the left. We can visualise this more easily by thinking of the model as half 

of a symmetric pile of sand. A 1-D array of integers specifies the height of consecutive sites along a 

grid. Units are dropped in tu rn  at random locations and the model is allowed to evolve in accordance 

with simple rules.

Where the gradient at site s is we have :

Zg = h(s) — /i(s -f-1)

Given this expression for Zg, each time that the height at site s is incremented by one unit the 

effect is that ;

Zg ^  Zg + \

Z g - i  -4- Z g - I  — 1

This is shown in figure 1.10. Just like a sand-pile there is a critical gradient, Zc, above which an 

adjustment is made to the heights of site s and s -1-1 : one unit is subtracted from site s and added 

to site s -f-1 .

When Zg > Zc ■

Zg Zg — 2

Zg±i -4- Zg±i 4- 1

We can see that the increment in value of Zg+i and Zg-\  may precipitate further events. The size 

of an ‘avalanche’ is the sum of the number of events following from the deposition of one unit upon 

a randomly selected site. An avalanche, and the events of which it is constituted, represent a form 

of relaxation of the system.

Thus, we find that from arbitrary initial conditions the system evolves towards a state where 

the gradient everywhere is just below the critical gradient. The critical state is an attractor for the 

system. This is the ‘minimally stable state’ and the system is said to have reached ‘criticality’.
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Figure 1.10: Sand-pile model. Shows the relocation of one unit caused by an event. Bak, Tang & 

Wiesenfeld (1988)

Following the attaining of criticality, the avalanches of the sand-pile will be of power-law distri

bution as a consequence of there being no intrinsic scale. Avalanches of any size are possible up to 

the size of the model and it is not possible to infer from one avalanche the details of the following 

one. The power-law distributions follow from the lack of any natural physical scale in the system 

and the behaviour is said to be ‘scale-invariant’. Exploring 2-D and 3-D sand-piles using exactly the 

same principles, Bak, Tang & Wiesenfeld (1988) found qualitatively identical scale-invariance.

The expressions ‘scale-invariant’, ‘scale-free’, ‘self-similar’ and ‘power-law distribution’ mean es

sentially the same thing and we will use them interchangeably in the text.

Thus, we see that sand-pile models naturally produce time-series of events in power-law distri

butions. Some models or systems which exhibit power-law distributions may be easily characterised 

as sand-piles however many may not. Also, some power-law behaviours are products of SOC while 

others are not. Using terminology introduced near the beginning of this section, the presence of 

spatial self-similarity and 1/ f  flicker noise are not direct evidence of SOC. In other words, we can’t 

necessarily expect there to be SOC wherever we find power-laws (Sornette 2000). However, it appears 

that SOC is often very swiftly invoked to provide convenient theoretical explanations for power-laws.

For an example of a phenomenon where it has been conjectured tha t SOC may be responsible, 

accretion disks around some galactic objects produce X-ray flares in power-law distributions. (Mi

neshiga 1994) suggest that this effect is produced by reconnection in disks threaded with tightly
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Figure 1.11: Schematic of possibilities for self-organisation of Solar atmosphere.

wound field lines . The concept is tha t reconnection occurs at a critical threshold and locally heats 

the disk plasma, thus producing the observed X-rays. Perhaps using a similar mechanism to the 

production of CMEs, the reconnection reorganises the disk field into the existing disk plus a new 

topologically distinct region of field. This new region forms into a plasmoid which detaches from the 

disk, carrying away angular momentum thus allowing further inflow of material.

We see in chapter 2 tha t Solar fiares show power-laws in their distributions of proxies for size, 

including peak duration, photon count rate, peak energy fiux and total energy. These distributions 

extend over several decades. This data provides a basis for comparison with the synthetic data 

produced by our models. The models which form the main subject m atter of this thesis do not 

explicitly include SOC behaviour, however we will consider in chapter 5 whether SOC is indirectly 

responsible for power-laws in our results and whether the models contain elements of SOC.

Considering the real Solar atmosphere, there are several possibilities for the origin of the scale- 

invariance of the flaring events and size of the fiux regions (see section 1.3 below) :

• SOC in the self-interaction of the magnetic carpet and photospheric plasma through reconnec

tion and flux emergence/submergence.

• Solar atmospheric 3-D magnetic field is self-organising into scale-free structures without SOC.

• Solar atmosphere scale-free field is driven directly by scale-free granulation/supergranulation 

flows from convective zone.

We illustrate these relationships in figure 1.11.
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SOC/sand-pile modelling is increasingly a common and popular method for the production of 

scale-free behaviour in models. We will shortly see an example of a sand-pile model devised to model 

Solar flaring behaviour.

1.8 Cellular Automata Models.

In contrast with the hegemony of MHD modelling of Solar magnetic field behaviour, our models in this 

work are cellular autom ata (‘CA’) models. CA models are an approach which allows simplification 

of a problem to its dynamical essence and therefore extended evolution of a model without too 

onerous use of computer time. The simplification naturally means that physics which is explicitly 

incorporated into full physical simulations, for example MHD, must be neglected or parameterised 

for inclusion in a CA. In addition to reduced number-crunching a benefit of this is tha t if realistic 

results are obtained by the CA model then it may be true that the detail of the parameterised physics 

is not an im portant part of producing the actual physical features of the system.

The study of CAs was initiated by Wolfram (1984). CA models are dynamical systems which 

are discretized in time and space. The model will evolve through a series of discrete time-steps 

and will consist spatially of a lattice/grid of cells. We will use ‘lattice’ and ‘grid’ interchangeably 

in this work. Each cell will have one or more parameters associated with it. The updating of the 

grid each time-step, which is performed simultaneously on all cells, will proceed according to local 

rules of interaction between neighbouring cells. Non-local interactions are also allowed although the 

rules of these interactions must be precisely specified. Thus, in general the state of each cell will 

depend upon the states of itself and its neighbours in the previous time-step. A CA model may be 

completely deterministic or may include stochastic elements, such as the sand-pile models of Bak, 

Tang & Wiesenfeld (1988) or forest fire models. CA models have been used to usefully model fluid 

dynamics, disease aetiology and progress, Maxwell’s equations, traffic flows and ecosystems.

The most relevant models previous to this work are those of Lu & Hamilton (1991) and MacKin

non, Macpherson &: Vlahos (1996), both of which are CA models.

Following the idea mentioned in section 1.1 tha t fiares are composed of many simultaneous 

nanofiares Lu & Hamilton (1991) suggest that this postulated nanoflaring behaviour might result 

from self-organisation of these fundamental units of energy release. Through SOC a flare could be 

regarded as an avalanche of nanofiares. The model by Lu & Hamilton (1991) is essentially a 3-D 

sand-pile consisting of a 3-D vector field within a regular lattice. The model makes no statements 

about the detailed physical origin of flaring events. This is not to say tha t there is no physics as 

such within their model. Rather, the physics is embodied within the rules of the model insofar
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as magnetic field is represented by the 3-D vector field, and reconnection events are considered be 

avalanches within a 3-D grid which result in redistribution of the tension within the vector field into 

the surrounding 3-D lattice.

The local gradient V|Ag| at any site s is defined as the discrepancy between the field at that site 

Xs  and the mean of its six neighbours, Ann :

nn

Each time-step the vector field is incremented at a randomly located site by the addition of a

random vector. There is a critical gradient, Xc and when addition of a random vector causes a local 

gradient to exceed this critical gradient then adjustment of the local lattice must occur to reduce the 

offending local gradient to a value below the critical gradient. Some of the magnitude of the local 

vector is redistributed to neighbouring sites. Specifically, the rules for the adjustment are as follows

V|%«|

A n n  —> A n n  +  ^  V | A s |

Thus, although the adjustment reduces the local gradient, it will also increase the gradients in 

the immediately surrounding cells and so create the possibility that these gradients will exceed the 

critical gradient. Therefore the initial adjustment is capable of triggering further adjustments. If 

tha t is the case then still within the same time-step further adjustments must be carried out and so 

forth until all gradients are less than critical.

By following these rules the scheme is implicitly conservative of the modulus of the vector field. 

If we consider A  in this model to be equivalent to B  then the vector field A  represents the magnetic 

field of the Solar atmosphere and avalanches can be considered to represent Solar fiares. By producing 

a time series of avalanches the model is used to simulate a time-series of Solar flares.

This model is essentially a sand-pile, constructed completely around SOC behaviour, and will 

move from arbitrary initial conditions to a minimally stable state. Lu & Hamilton (1991) found that 

the model produced events with power-law distributions in the event-size distributions. MacKinnon 

Sz Macpherson (1997) when running this model in a 40 x 40 x 40 grid found that the power-law 

behaviour persisted over almost five orders of magnitude and that the system robustly settled to 

the same mean vector field values regardless of whether the model was begun with under-critical, 

near-critical or over-critical values. MacKinnon & Macpherson (1997) explored this model further, 

incorporating a facility for remote triggering of avalanches. They found that remote triggering of one
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or two sites simultaneously did not alter the event-size distributions, however higher levels of remote 

triggering destroyed the distributions.

MacKinnon, Macpherson & Vlahos (1996) took a further step back from realistic physics and 

created a simple CA model without making any statements about the detailed physical origin of 

flares. The model features the idea that the likelihood of flaring at a site is more favourable if one 

or more neighbours are presently flaring. We have a 1-D grid where each cell, %, has three possible 

states :

0 (quiescent)

Xi = < 1 (flaring)

2 (flared)

All sites begin with x = 0. Each time-step each cell is considered and if the state of cell i is rcj =  0, 

and the neighbours of cell i, (i — 1) and (% +  1) are such that : Xi^i = 0 and =  0 then there 

is a probability, po tha t cell i will change state : ^  1. If however Xi-i  =  1 or Xi^i = 1 then there

is a probability pi {pi > po) oî Xi 1.

Thus, if a cell Xj has neighbours neither of which have flared, a change in state of -> 1 represents 

potentially the initiation of an avalanche, where an avalanche is a series of spatially and temporal 

connected changes of cell-states from 0 to 1. Continuing the analogy with Solar flares, the size of an 

avalanche is equal to the number of flaring sites within the avalanche. This assumes tha t each cell 

flaring is identical, which of course is the case within the model. Where Xi = 1 the state of this cell 

will then be set to 2. Thus {xi =  1) ^  (æ% =  2).

This means that following the initiation of an avalanche the probability of it being of size N  is :

P ( N ) = N p ^ - \ l - p i f

In order to avoid arbitrary choice of the value of pi  and to draw analogy with the expectation 

that the probability of a flare commencing, given that a nearby flare is presently occurring, will vary 

across the Sun, MacKinnon, Macpherson & Vlahos (1996) considered pi  to be a random variable 

with a flat distribution over 0 1. They then integrate P{N)  over all values ofpq. This gives :

P{N)  =  C  P(AT)dpi 
Vo

{N +  l ) { N +  2)
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This power-law index in the avalanche size of -2 is similar to the observed index of flare sizes (-1.5) 

although not the same. MacKinnon, Macpherson & Vlahos (1996) argue that if a model with the 

same principles is constructed in 2-D or 3-D then the increased number of possibilities for interaction 

and triggering between neighbouring cells will reduce the index and bring it closer to -1.5. However, 

Litvinenko (1998) used branching theory methods to prove that the distribution of avalanche sizes 

produced by this model is independent of dimension. Also, we might hope that the introduction 

of non-local triggering of avalanches into this model might move the index closer to -1.5. Non-local 

triggering however represents a partial increase in the dimensionality of the model therefore the result 

of Litvinenko (1998) will also foreclose the bringing about of a more favourable power-law by this 

method.

This model does not require the criticality which the sand-pile model of Lu &; Hamilton (1991) 

explicitly depends upon but instead the one free parameter, p i, is allowed to take all possible values. 

Neither is there a need for an explicit conservation law in this model. Like Lu &: Hamilton (1991), 

this model contains no explicit physics, yet its achievement lies in showing that by supposing only 

that flares are self-organising processes, we can reproduce the broadest statistical feature of flares 

(power-law distribution with an index close to observations).

We mentioned earlier that Parker (1988) suggested that there are many unobservably small flaring 

events occurring, which he termed ‘nanoflares’. Some researchers have proposed that a continuous 

background flux of energy released from the magnetic fleld by nanoflares may be responsible for 

maintaining the coronal temperature at its level of f e w  x 10  ̂ K (Parker 1983, Parker 1989, Berger 

1993). Hudson (1991) found tha t if the generally-accepted power-law index of ~  1.5 ±  0.2 for flare 

peak energy flux is extrapolated downwards below the observable level then the contribution to 

coronal heating by nanoflares is insufficient. Further, they found that the energy balance of the 

corona would be met if the spectral index for the nanoflares is ~  —4. Georgoulis & Vlahos (1996) 

suggested that below the presently observable minimum flare peak flux, the Solar flare spectral index 

may increase substantially. If this were so then nanoflaring may indeed be sufficient to maintain the 

high coronal temperature. Georgoulis & Vlahos (1996) proposed a sand-pile model consisting of a

3-D lattice with a scalar fleld representing local values of a magnetic field. As in the model of Lu & 

Hamilton (1991) there is random loading of the field and a relaxation process which occurs when local 

field gradient exceeds a threshold. The relaxation can occur both isotropically and anisotropically. 

The introduction of the anisotropic element into the model has the effect of producing a peak flux 

P.D.F. consisting of a broken power-law. At the upper end of the distribution the spectral index
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is ~  —1.73 ±  0.05 whereas at the lower end of the distribution the spectral index is ~  —3.26 ±  0.2. 

They found that a similar broken power-law was found for flare duration and to tal flux. Georgoulis 

& Vlahos (1996) flnd that the steeper lower end of the distribution contributed more than 90% of 

the energy released. Georgoulis & Vlahos (1996) concluded that this result supports the hypothesis 

of coronal heating by nanoflare energy release. In the future more sensitive instrum entation might 

reveal a region of the peak flux flare distribution with a spectral index steep enough to indicate that 

nanoflaring is indeed largely responsible for coronal heating.

1.9 Interpreting Solar Flare CA Models as Discretized MHD equations.

We have already discussed MHD and a few G A Solar flare models. The advantages of the G A 

approach are tha t we assume there is insensitivity to precise details of the local processes, and 

therefore we gain no insights into the local behaviour over short time-scales; however we are able 

to gain an appreciation of the global behaviour over longer time-scales. Classical physical models 

however, such as MHD models, may elucidate the local processes but oflfer little help in understanding 

global dynamics (Isliker et al. 1998).

Instead of accepting a stark choice between either the MHD approach (Galsgaard & Roussev 

2002) or the cellular autom ata approach (Lu & Hamilton 1991) there is perhaps another way of 

modelling Solar flares. Isliker et al. (1998) considered the model of Lu & Hamilton (1991) and recast 

that model as a set of discrete MHD equations. Lu & Hamilton (1991), in creating their model, 

found a general type of system (sand-pile models) which produced the type of dissipative avalanche 

behaviour observed in Solar flares. By contrast Isliker et al. (1998) have taken a useful model (Lu 

& Hamilton 1991) and discovered the continuous system which corresponds to tha t model. In their 

paper it is clear that in doing so they have also founded a general approach for achieving this.

Basically, the model of Lu & Hamilton (1991) has been recast as the solution to a discretized 

partial differential equation (‘PD E’) ;

dB{x, t)  _  2
dt

= 77V B{x, t)  -f S{x, t)

where we have

B  =  magnetic fleld 

X = 3 — D space 

t = time
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T] = diffusivity 

S  = source (driving) term

This equation consists of a diffusion term and a source term and is equivalent to the usual 

continuous induction equation of MHD. The diffusion only occurs when an instability threshold 

is met. The source term  provides the random driving of the vector field.

This recasting allows for the interpretation of the CA model of Lu & Hamilton (1991) by examining 

the continuous PDE.

The PDE has a stable mode and an unstable mode. During the stable mode the equation reduces 

to :

and describes behaviour in a convective regime.

If the Laplacian, exceeds a certain threshold then the induction equation reduces to :

which represents behaviour in the diffusive regime. The time-scale of the source term, S', is much 

longer than that of the diffusive process, and the term is therefore neglected.

As Isliker et al. (1998) explained, this approach is based upon assumptions : (1) every instability 

(flare) has the same diffusion time and length-scale; (2) diffusion occurs within a bounded region of 

the same size for each instability, and (3) the convective term  can be replaced by a simple random 

driving function.

This approach produces in effect a hybrid model, where we understand the physics explicitly, but 

we can also see tha t the global behaviour is an avalanche phenomenon.

Isliker et al. (1998) considered how the approach may be carried further after the introduction of 

meaningful units into the model :

1. We can enquire as to whether the level of diffusion required for SOC in the model is physically 

reasonable.

2. We can calculate the magnetic energy released during avalanches.

3. we can compare the released energy with the input from the driving.

They also consider how the CA model may be made more physical by the modification of the CA 

rules. Thus, we can see tha t by following this approach the rules of CA Solar flare models in general 

may be improved by inclusion of insights from MHD.
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Figure 1.12: Waiting-time distribution for the ICE flare data. A power-law flt for the range 10  ̂ 10^

s is shown. W heatland, Sturrock McTiernan (1998)

Isliker et al. (1998) have shown that a simple CA model may be equivalent, and understood in 

terms of, a physically meaningful classical model. Given that each of these provides insights tha t the 

other cannot, Isliker et al. (1998) hope that this work may eventually lead to the creation of models 

explicitly incorporating these two approaches and capable therefore of illuminating both the local 

and global behaviour.

1.10 Solar Flare Waiting-Time Distributions.

We have already noted the property of self-similarity of Solar flares as evidenced by the power- 

law nature of flare-size distributions (Crosby, Aschwanden & Dennis 1993, Bromund, McTiernan & 

Kane 1993 and Pearce, Rowe & Yeung 1993). Let us now consider the waiting-times between flares. 

W heatland, Sturrock & McTiernan (1998) analysed the waiting-times amongst eight years of hard 

X-ray burst data obtained by ICE. They considered the time of an event to be the time of peak-flux. 

Figure 1.12 shows the distribution of waiting-times obtained from this data. The plot suffers from a 

deficit of larger waiting-times owing to gaps in the data. Additionally, there are likely to be small 

events lost because their peak fluxes were swamped by emission from previous events. This may be 

responsible for the turn-over below ~  30 seconds. There appears to be a power-law flt over 10  ̂ ■(-> IC  ̂

seconds (gradient % -1.4).
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Figure 1.13: Waiting-time distribution for the avalanche model. The x-axis is in units of the time 

step of the model. W heatland, Sturrock Sz McTiernan (1998)

Now, considering sand-pile models, there is no memory of the previous avalanche contained within 

the present avalanche and therefore the events/ avalanches generated by sand-pile models are inde

pendent events. W heatland, Sturrock & McTiernan (1998) explain that sand-pile models represent 

Poisson processes and therefore the distribution of waiting-times between events in a sand-pile model 

will follow an exponential law :

where we have.

P{At)  = ae —aAt 1 -

A t

A t  = waiting -  time

a = constant

T  =  observing time

W heatland, Sturrock & McTiernan (1998) used the 2-D sand-pile model of Bak, Tang & Wiesen- 

feld (1987) to generate a waiting-time distribution for 10  ̂ time-steps of the model. During this

time there were almost 5000 events. Figure 1.13 shows this distribution, clearly exponential, thus

confirming their derivation of the above waiting-time PDF.

W heatland, Sturrock & McTiernan (1998) compared their analysis of ICE hard X-ray burst data
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with the sand-pile-derived simulated data and found an over-abundance of short waiting-times. These 

short waiting-times suggest tha t occurrence of one event is likely to trigger another event which will 

therefore follow the first closely. The short waiting times thus imply inter-dependence of events.

It appears thus tha t hard X-ray bursts are not independent and tha t sand-pile modelling is 

incapable of explaining this inter-dependence of small events. Given tha t the ICE data which they 

used contained no spatial resolution, W heatland, Sturrock & McTiernan (1998) comment tha t it 

would be interesting to use data obtained by an instrument with spatial distribution, such as that 

obtained from YOHKOH, to determine whether the events following short waiting-times and their 

preceding events originate from the same area of the Sun (this is called ‘sympathetic flaring’).

Suggesting a simple 1-D MHD model, Galtier (2000) was able to produce a distribution of waiting- 

times (gradient «  -2.3) compatible with the observed waiting-time distributions determined by Bof- 

fetta et al. (1999) (gradient ~  -2.4). The model of Galtier (2000) treats loops as magnetic lines and 

events are generated as shocks. Each burst of Joule dissipation signals an event, and thus waiting- 

times are considered to be times between these dissipation events. The model is able to reproduce 

other Solar flare properties, such as peak flux distribution.

Figure 1.13 shows the distribution obtained for waiting-times. Galtier (2000) takes the view that 

the plot shows that events are not independent, and tha t the recovery of the power-law gradient com

patible with the results of Boffetta et al. (1999) indicates tha t non-local interactions are im portant 

in MHD phenomena. Galtier (2000) explains that the ‘overlapping of dissipative events appears as 

a natural property of the 1-D MHD model’, and tha t this fact, together with obtaining the correct 

power-law index and the ‘strong time-correlation of flares’ should be tests for all flare models : tests 

which sand-pile models are not generally able to pass.

1.11 Statistical Prediction using Artificial Neural Networks.

Most of the work we discuss in the Introduction represents attem pts to determine, or test, theories of 

mechanisms which explain the energy release processes occurring in the corona and /o r photosphere. 

When these processes, such as flux emergence, or reconnection in coronal loops, are observed by 

our instruments, that data may not contain in itself all the information necessary to explain the 

underlying mechanisms. There will probably also be noise and other statistical randomness within 

the data (Conway 1998). Some researchers have therefore considered whether, in a statistical sense. 

Solar behaviour might be understood in terms of itself rather than always assuming the existence of 

an underlying cause.

Sunspot number is a simple proxy for the level of Solar activity and consists of a time series. In
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fact, the sunspot number, recorded daily since 1848, is the longest continually-recorded time series. 

As explained by Conway (1998), accurate prediction of sunspot number would be useful in many 

ways, including (1) Solar satellite mission-planners need to know when Solar maximum will occur, 

and (2) Solar storms can damage satellites and terrestrial electrical systems and therefore protective 

measures would ideally be based upon accurate and timely foreknowledge.

During the period since 1848, the Solar magnetic field has exhibited an eleven-year periodicity. 

At ‘Solar minimum’ there is a clearly definable, generally poloidal, global field. There is a gradual 

change to a more active and disrupted field, flares and coronal mass ejections (‘CME’) occurring 

more frequently and higher daily sunspot numbers. Five or six years after Solar minimum, the fleld 

is highly disordered and energetic. This is ‘Solar maximum’. During the following five or six years 

there is a gradual calming of the fleld and a return to Solar minimum. The polarity of the global fleld 

post-maximum is however opposite to that of the pre-maximum phase. Thus, every approximately 

eleven years there is a fleld reversal, and the Solar cycle can be regarded as a cycle of twenty-two 

years periodicity. This periodicity is known as the ‘Solar cycle’.

Conway (1998) has taken the sunspot number and applied neural network techniques to the 

problem of predicting the profile of the rise and fall of the sunspot number during the next (now 

present) maximum (cycle 23). Such techniques are used in the following way. Let us suppose we 

have a time series of a single output of a system, t o , . . .tk, and we are interested in predicting further 

values of this parameter, —  We can input into our neural network the known time series

up to and including and expect it to give us predicted values for this parameter, —  Thus, 

the predictions are based entirely upon the already known time series and are not derived from any 

knowledge of the underlying physics.

Neural network techniques may vary considerably in detail but all are broadly similar in operation. 

We take one output node and a number of input nodes.

Let a, 6 be the input nodes, and c the output node. Also, Wa and Wb are the input weight 

connections of these nodes (see figure 1.14). The state of the neural network is contained within the 

values of the input weight connections. Initially, values for these are chosen fairly arbitrarily then 

the network is trained by exposing it to input values (the ‘training set’), comparing its output to 

observed values, calculating the error and iteratively changing the input weight connections until 

this error is minimised. At some point during this minimisation we will flnd that, when compared 

with some other independent data set, the error reaches a minimum then begins to increase. This 

occurs when the input weight connections pass their optimum values. The neural network has begun 

to lose its generalisation ability and is learning the training set too closely, in the same way that a
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schoolchild, having learned examples of solutions to mathematical problems by rote, would be unable,

upon taking a difficult examination, to adapt to the new problems requiring solution. If he/she had 

instead gained an understanding of general principles then he/she would be able to tackle the new 

problems in a meaningful way.

The value of the output node is given by: c =  g{wa +  Wb) where g{x) is the ‘input activation

function’, increasing with x  but saturating to finite values as a; —)• Too.

We calculate the error using a least-squares method :

N
Æ =  X ^ (c ( a i ,6 i ) - C i) '

i=0
We carry out the following procedure :

1. Randomly choose values for Wa, Wb-

2. Evaluate c(oi, 6%) for all i (table 1.3 shows example values).  ̂ ■

3. Evaluate error, E.

4. At present point {wa,Wb) evaluate :

dE   ̂ dE 
and

dwa dwb

5. For small change, e, calculate new values of Wa and Wb :

dE
Wa ^  Wa —   edW(i

dE
Wb Wb — —  e

dwb

6. return to point 2 until values of Wa and Wb have converged such tha t E  is minimised.

Conway (1998) clarifies that there has been some limited success in making predictions using neural 

networks, however these techniques suffer from a number of inherent problems, such as systematic 

delays in the predicted times of peak sunspot number. Prior to this work there had only been 

13 complete Solar cycles and the capability for training the neural networks was limited by this 

insufficiency. Feed-forward neural networks used by Conway (1998) made predictions of the year 

2000/2001 Solar maximum based upon sunspot numbers throughout cycles 20 and 21. The quoted 

uncertainties of these predictions had a confidence of 80%.

As explained by Conway (1998), we cannot be certain tha t the Solar cycle is a stationary time 

series rather than a temporary transitional part of a longer time-scale chaotic behaviour. If this is the
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i CLi bi Q (a,6)

0 8 9 7

0 8 9 7

1 2 7 3

2 6 4 3

N 8 9 1

Table 1.3: Example training set for a neural network. Example values: i] input nodes: a, 6; observed 

values: C.

W b

Figure 1.14: Schematic diagram of simple neural network. Input nodes: a, 6.; output node: c; input 

weight connections: Wa and 14 .̂

case then we cannot expect artificial neural networks to be able to predict future sunspot numbers 

well, or at all. Certainly, given the difficulty in obtaining correct predictions from neural networks, 

it may be the case that the time series will be found to be non-stationary.

We might wonder whether predictive techniques not based upon any understanding of the under

lying physics but instead upon historic time series are able to make better predictions than intuitive 

guessing by human beings? In fact, Conway & Brown (1999) made a non-rigorous attem pt to answer 

this question. Briefly, they gave a series of training data sets to seven individuals who attempted 

to make predictions. Individually, the standard of the human predictions varied, though none sur

passed the neural network method. The individuals were also averaged to produce a prediction by 

‘committee’, and this also was found to be no better than predictions by neural network.
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1.12 Isliker Effect.

Isliker & Benz (2001) explored a systematic biasing of data which has some bearing on the under

standing of our data in this present work.

Isliker &; Benz (2001) performed an analysis of narrow-band radio spikes during a Solar flare. They 

took this very high resolution data and artificially worsened the temporal and frequency resolution. 

They then showed tha t the values of the peaks obtained will not coincide with the actual peaks 

within the time-series and that this will give erroneous distributions for low and high flux values. In 

particular, this error arises where we are attem pting to obtain peak flux values from time-series data 

and the peak flux values are in a power-law distribution. The time-series is integrated or sampled 

using low temporal or frequency resolution.

Isliker &; Benz (2001) also provide an analytical explanation of the dependency of the biased peak 

flux distributions upon the temporal/frequency resolution used.

In qualitative terms the reason for this bias is that the actual peaks within the data will in

variably lie between the time/frequency points where the data was sam pled/integrated and the 

sampled/ integrated data cannot therefore give the true locations of these peaks. Thus, there is likely 

to always be a discrepancy between the magnitude of the true peaks and the measured peaks.

More specifically, Isliker & Benz (2001) found that the biased distribution may be near to the 

true distribution apart from two effects :

1. At high values of peak flux, there is a change from power-law to exponential distribution, i.e. a 

faster fall-off at high flux values.

2. At low values of peak flux the true distribution is extended into a completely artificial, elongated 

and relatively flat region.

These are illustrated schematically in figure 1.15.

As we will see later,, the continuous model (described in chapter 3) generates a time-series of 

energy release rate data at the rate of one value per time-step. This is then sampled by taking 

every tenth value and it is from this time-series that event-size distributions are produced. We would 

therefore expect the Isliker effect to cause a biassing of the distribution profiles.

The effect will also cause a distortion of our distributions of cell parameters, such as B  and (f). 

The reason for this is less obvious but we shall explain why this is the case. In the continuous 

model in respect of any particular parameter a single value only attaches to each cell, where each cell 

represents a 1-D section of fluid with finite length. In real fluid we would flnd a continuum of values 

whereas in the model this single value is assumed to encapsulate the complete range of values for
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Figure 1.15: Schematic of systematic biasing effects found by Isliker & Benz (2001).
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Figure 1.16: Schematic of relationship of Isliker effect to cell parameter values. Isliker & Benz (2001).

the cell in question. If we assume that there is a real continuous fluid underlying the CA grid then 

figure 1.16 illustrates the problem for the magnetic flux density. The values which the model uses 

will in some sense be related to the values at the intersections between the curve and the centre-lines 

of the cells. The fleld density at point A  clearly gives an over-estimate whereas that at point B  gives 

an under-estimate. In a sense the parameter values represent a sampling of the true underlying field 

and will therefore be subject to the effect discussed by Isliker & Benz (2001).



Chapter 2

Discrete Model.

“I guess one of the reasons that I ’ve never been a very good private detective is tha t I 

spend too much time dreaming of Babylon.”

Richard Brautigan.

2.1 Introduction.

MacKinnon, Macpherson & Vlahos (1996) and others have used 1-D lattice models with highly 

simplified physics and/or highly formalised behaviour. Few of these models, however, explore the 

relevance of the magnetic field connectivity. In this chapter we present the discrete model which we 

developed in order to explore this aspect of the magnetic field. The discrete model consists of a 1-D 

lattice and includes a simple field connectivity, whereby each cell is either connected to another cell 

or unconnected. Figure 2.1 illustrates this idea. An idealised form of reconnection occurs between 

cells and new field connectivity is generated in order to simulate the emergence of magnetic flux 

occuring within the photosphere. Other than these, there are no features within the structure of 

the model. We allow the model to run and we count the rate at which reconnection events occur 

within the model. We also take snapshots of the lattice when a steady-state has been reached. We 

produce distributions of event-sizes and loop-sizes. We can thus investigate the importance of the 

field connectivity to the distributions of events and size structure of the field.

We will here describe this model in detail and present the results generated by it. We will 

compare these results with Solar behaviour and finally, leading us into the next chapter, touch upon
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the limitations of this model.

Now, we should firstly address the meaning of discrete and continuous in this context. The model 

consists of a finite number of interacting cells however, we are not concerned with the model being 

discrete in this sense. Rather, by ‘discrete’ we imply an absence of parameters attached to the cells 

which take non-integer values. Each cell is identical and has only two features : attachment to a 

magnetic field line and a velocity. ‘Discrete’ here means tha t (1) the attachment to a field line takes 

one of five states, and (2) the velocity of a cell does not vary along the cell (there is no notion of 

cell length) but is a single value attached to the whole cell. In chapter 3 we will make clear in what 

sense the continuous model is ‘continuous’.

While the continuous model is Lagrangian, this present discrete model is Eulerian. This distinction 

is explained more fully in section 3.2.2. Eulerian in the present model implies that the cell boundaries 

are fixed in absolute space and do not follow the motion of fluid moving around the model. Our 

points of reference are not attached to bundles of fluid, but rather we consider that fluid moves across 

the points at which we record data in our model. These points are the footpoints of the field lines. In 

fact, this classification is misleading here since there is no notion of fluid motion occurring within the 

model but only of magnetic flux emerging, and disappearing through reconnection or submergence.

The discrete model is built upon the premise that the topology of the atmospheric magnetic field, 

ranging from the magnetic carpet (Parnell 2001) to the coronal field, and its self-interaction, is the 

most im portant determinant of its magnetic reconnection and energy-release events. Also, we expect 

that the photospheric footpoint of any field line will be tied to the Solar gas and be passively dragged 

by the photospheric convective motions until moved into a supergranular boundary where the field 

line will eventually meet and annihilate with oppositely-directed flux (Simon, Title & Weiss 2001). 

Thus, moving within the photospheric surface velocity field produced by convection, we expect the 

part of the field lines existing above the photosphere to become increasingly knotted and braided 

as a function of time. Current sheets will appear between regions of opposite magnetic polarity 

and consequently the ‘frozen-in condition’ (see the Introduction) will break down allowing magnetic 

reconnection to occur between these regions of opposite polarity magnetic flux.

The model is designed to be as simple as possible for clarity and understanding of the bare bones 

of the problem. The discrete model is comprised of only two aspects : a velocity field and magnetic 

connectivity.
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2.2 Magnetic Connectivity and Reconnection.

Magnetic field lines are connected to the cells, and each line may be open or closed. ‘Open’ lines 

connect to only a single cell, whereas ‘closed’ lines connect pairs of cells. Each field line, whether 

open or closed has a direction associated with it and this direction has two states : upwards or 

downwards. Where we have a closed field line, for continuity of direction along the line, the direction 

(we call this ‘polarity’) of the line will appear to be upwards at one end and downwards at the other. 

Each cell in the model is connected to a field line in one of the following ways :

• connected to a closed field line with ‘upwards’ polarity.

• connected to a closed field line with ‘downwards’ polarity.

• connected to an open field line with ‘upwards’ polarity.

• connected to an open field line with ‘downwards’ polarity.

• not connected to any field lines.

We can accept having unconnected cells in the model for the following reasons. Let us consider 

instruments performing observations of Solar fiaring activity, such as the Reuven Ram aty High Energy 

Solar Spectroscopic Imager (‘RHESSI’), for instance. We would expect that, there would be small 

fiares which fall below the time resolution of the instrument and could never therefore be resolved 

despite high spatial resolution. Thus, there will be a succession of (spatially small) short-lived events 

which go unobserved.

Figure 2.1 shows a snapshot of a section of the grid during a model run and we can see the 

connectivity described, shown by many closed field lines and nested loops. All loops are adjacent or 

nested with no crossing lines. Field lines in real 3-D space cannot cross therefore we do not allow 

crossing of field lines in this model. The model is 1-D in the sense tha t it consists of a 1-D lattice of 

cells, however there is non-local connectivity between cells, and this indicates dimensionality greater 

than one, but less than two.

When the model is allowed to run, an annihilation process analogous to reconnection is allowed to 

occur between adjacent cells of antiparallel magnetic fiux. As mentioned in section 2.3, reconnection 

may only occur between cells i and i + 1 when V[ — Ui+i > 0. This process is illustrated in figure

2.2. Adjacent cells which have anti-parallel fiux are deemed to become connected to each other and 

their partners become connected to each other. If the antecedent field lines consisted of two loops, 

the configuration will change to two different loops using the same cells, as we can see in figure

2.2. Then (still within the same time-step) the new loop formed from the two initially adjacent cells
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Figure 2.1: Example section of the grid during a run. Shows connectivity of field lines.

will be deleted. The cells will thus become unconnected. This is equivalent to the annhilation and 

submergence of magnetic fiux and is shown in part (c) of figure 2.2. On the actual Sun, we find that 

submergence of magnetic fiux occurs at sites of cancellation by reconnection (Harvey et al. 1999). 

For this reason in the model we will submerge a new closed field line created by reconnection. Where 

we have reconnection between an open field line and a loop, the process will produce a new loop, 

and the point of attachment of the open field line will change. The loop will then submerge. This 

is illustrated in figure 2.3. Similarly, two adjacent open field lines will reconnect with one another 

then submerge, as shown in figure 2.4. A detail we have not yet mentioned is that the occurrence 

of reconnection is conditional upon the velocity field. This will be explained later. Where one loop 

(or open field line) reconnects with another loop (or open field line) we will call this a ‘reconnection 

event’ and it represents a unit of energy-release.

Thus, we have simplified the problem of studying the connectivity of the Solar magnetic field. 

Physics has been stripped away and reduced to simple local rules governing the behaviour of the 

cellular automata.
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reconnection sites

(a)

tim e = T

reconnection has occurred

(b)

loops have disappeared

(c)

time = T + 1

Figure 2.2: Formalised magnetic reconnection process (loop - loop).
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than the spatial resolution of 
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Figure 2.3; Formalised magnetic reconnection process (loop - open field line).
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Figure 2.4; Formalised magnetic reconnection process (open field line - open field line).
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2.3 Velocity field

The model is strictly 1-D and therefore cells cannot exchange positions or move relative to one 

another. Therefore in order to represent the confluence and separation of magnetic flux we establish 

a velocity fleld within the model. The way that this is achieved is as follows. A velocity is assigned 

to each cell of the model. This value is randomly generated in the range — 1 -H- 4-1 according to 

a uniform random distribution and represents motion parallel with the grid. Cell i has velocity v, 

defined such that u > 0 indicates motion towards cell % 4-1. Thus, we flnd tha t v\ — V[+i > 0 indicates 

that cells i and «4-1 are approaching one another. We take the view that compared with a state 

where V[ — Vi^i < 0 (cells i and «4-1 are separating) the fact of the two cells converging enhances 

the likelihood of magnetic reconnection occurring between them. This idea is incorporated into the 

model by making reconnection between cells « and «4-1 conditional upon V[ — v\+i > 0. The velocity 

fleld is evolved with time and this is accomplished by re-assigning random values to each cell every 

timestep.

2.4 Emergence of Magnetic Flux.

Each time-step, after the reconnection process has been performed, a number of closed fleld lines 

sufficient to maintain the grid with its initial complement of fleld lines are introduced into the grid. 

The footpoints of the lines are given random locations and random polarity. Again, no fleld lines are 

allowed to cross. Given tha t the reconnection of fleld lines depends upon their polarity and proximity, 

this emergence and submergence of fleld lines represents stochastic excitation of the grid. By analogy 

with the Solar magnetic fleld there is conservation of magnetic flux with fresh flux appearing randomly 

across the surface.

2.5 Initial State.

Prior to running the model is given an initial state. 75% of the cells are deemed to be attached to 

a fleld line, of which 5% are open fleld lines. The locations of the open lines are random, as are the 

pairings of the remaining cells. The random generation of pairings follows the rule that the fleld lines 

must not cross. It is necessary to leave 25% of the cells initially free from fleld lines otherwise the 

finding of an intial state becomes a non-trivial problem.
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Figure 2.5: Top: probability density function of event-sizes (number of reconnection events occur ing 

per time-step); y-axis gives log (normalised frequency); error bars are too small to be visible; bin-size 

=  1. Bottom: probability density function of loop-lengths; y-axis gives log(normalised frequency); 

bin-size =  0.245 .
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2.6 Running the Model and Results.

The model consists of 5000 cells. In choosing this number of cells we have balanced the running time 

with the need for a sufficient number of cells for viable data when counting loop-sizes and number 

of reconnection events.

During a run we count the number of reconnection events which take place during every successive 

period of 100 time-steps and consider this to be the ‘event-size’. Therefore we are assuming that 

events are correlated over model timescales of at least 100 time-steps. There is no physical length 

scale embedded in the model therefore if this were real data we would assume that the reconnection 

events represented are proximate enough for our instruments to only detect the total energy-release 

in a given time interval. Alternatively, we might consider that the physical region is sufficiently 

small that we would expect only a single event at any one time. Thus, we create a time-series of 

the energy-release rate. Also, if we stop the run at a point after it has settled to a steady state 

where the energy-release rate has become approximately a stationary time-series, we can count the 

number of loops of various lengths and thus obtain a size distribution for these. Thus, we can produce 

probability density functions for both loop-size and event-size. Figure 2.5 shows these. Regarding 

the upper plot, the quantity of data was sufficient for the error bars to be sufficiently small that 

they are not visible on this plot. Regarding the lower plot, the left-most point at log(loop-size)=0.48 

appears to suffer from an edge effect and we have therefore ignored it in the line-fitting. During any 

individual run, the relatively few number of cells results in poor statistics, hence the large error bars 

which resulted. The line-fitting was performed using the least-squares method. It is known that 

Solar fiaring events follow power-laws in distribution (Crosby et al. 1998, Datlowe, Elcan & Hudson 

1974, Aschwanden, Dennis & Benz 1998), the index of which depends on the particular parameter 

considered. Thus, this highly simplified model is capable of producing power-laws extending over 

several orders of magnitude in both event-sizes and in loop-size within the grid.

Events produced by the model are of discretized size and by definition have a minimum size of 

two cells. Theoretically, the maximum event-size equals the length of the grid, though this is unlikely 

to be reached. Thus there is no intrinsic length-scale other than the minimum event-size and quanta 

of length (one cell), and we therefore expect that the distribution of event-sizes would be power-law, 

which is what we see.

There is another reason why we might expect to find power-law distributions produced by this 

model. In the context of this present model let’s recall our discussion of self-organised criticality in 

the Introduction. In general terms, for SOC we require that the system consists of units which are 

driven by some form of stochastic forcing, the existence of a threshold, and that when the threshold
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is exceeded there is a redistribution or adjustment. In the discrete model we appear to satisfy these 

requirements : (1) the positions of cells with oppositely-directed field lines are randomly driven by 

the fiux emergence process, (2) a qualification for the occurrence of reconnection, the threshold in 

effect, is tha t of the fiux between two adjacent cells being anti-parallel, and (3) when reconnection 

occurs there is a reorganisation of the field lines resulting in a cancellation of the two reconnecting 

oppositely-direct field lines. It is arguable that the structure of the model exhibits SOC behaviour 

and produces power-law distributions for this reason.

This extremely simple model has displayed behaviour consistent with the broad properties of Solar 

activity. However, it has limitations insofar as there is no realistic fiuid behaviour or thermodynamic 

properties and the reconnection has no notion of time-scale or length-scale. Also the intrinsic scale 

(one cell) and units of energy release are discrete. It is in the spirit of trying to take this model to a 

more useful level, with enhanced comparability to real observations, tha t the continuous model was 

developed, which we will describe in chapter 3.



Chapter 3

Continuous Model.

“I bought me a Chevy 

it’s as big as a whale 

and it’s about to set sail.”

“If I didn’t dream of fish I dreamed of money.” 

John Faute.

3.1 Introduction.

As discussed in the Introduction, a variety of models, such as those of Macpherson & MacKinnon 

(1997) and Lu & Hamilton (1991), have been developed to explore ideas of triggering of fiares. 

These particular models, and others in the field use simple 1-D, 2-D or 3-D lattices and highly 

simplified physics. By contrast, magnetohydrodynamics produces highly detailed physical simulations 

of the behaviour of plasmas. There thus seems to be a lacuna in this modelling schema which we 

have attem pted to fill with the ‘continuous model’ presented in this chapter. There are in fact 

few models which use simple lattices and simple, but plausibly realistic parameterised physics. We 

have attem pted here to minimise the physical rules, but still to maintain plausible physicality. The 

continuous model consists of a 1-D lattice of cells containing atomic gas. Gas does not move across 

cell boundaries but instead the cells will adiabatically expand and contract, the boundaries remaining
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tied to the gas. As explained later, this is a Lagrangian approach. The key features of the model are : 

fluid behaviour of the 1-D lattice, flux emergence and submergence and parameterised reconnection. 

The model contains and models thermodynamic properties, magnetic flux, flux density and energy 

released by parameterised reconnection. There are also other features such as thermal cooling of the 

top surface of the lattice and addition of noise to the pressure field. Mass, energy and magnetic flux 

are conserved quantities.

The previous chapter presented and explained the first model, the discrete model. We discussed 

the limited dynamic range and physicality of the model. The simplicity of the concept was however 

one of its appeals, and it is practical to begin with a highly simplified model in order to capture the 

main behaviours of a complex system.

The continuous model was created from the need to extend the dynamic range and features of the 

discrete model. The model is continuous spatially although discrete temporally, evolving through a 

succession of discrete time-steps. The continuous model uses continuous values for all parameters. 

This allows event-sizes to take dynamic ranges of many orders of magnitude. The continuous model 

also differs from the discrete model in that meaningful physical units are introduced and the cellular 

autom ata rules are more physical and consistent with 1-D fiuid laws.

In order to remove avoidable edge effects we use a periodic grid. This also allows the preservation 

of the total length of the grid. The grid is a 1-D layer of cells 1 km wide and 1 km deep. The model 

works by treating the motion of the cells as obeying simple, but sufficient, 1-D compressible-fluid 

dynamical laws. The material is considered to compress adiabatically and radiate thermally from 

i t ’s top surface. There is simplified magnetic fiux attached to each cell, represented by a single 

variable, the magnetic fiux density, which represents a fiux level averaged over each entire cell. Fluid 

material, with attached magnetic fiux, may flow into and out of cells. The physical details of magnetic 

reconnection are not addressed in the model.

UV and soft X-ray images from The Transition Region and Coronal Explorer (‘TRACE’) space

craft have shown us tha t reconnection may be occurring not only in the photosphere but also up in 

the transition region and corona (Saba, Caeng & Tar bell 2002). At first sight there is a difficulty here 

in that the photosphere drives the footpoints of loops, where they are located in the magnetic carpet, 

and pushes them to the edges of super-granular boundaries where they meet oppositely-directed mag

netic flux with which they annihilate (Simon, Title &: Weiss 2001). The continuous model however 

models only the motions and magnetic field of the photosphere. This is not a problem because the 

mass density and energetics of the photosphere far outweigh those of the corona, except where the 

magnetic field density is high, therefore we consider the fiuid motions of only the photosphere.
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Recapping, in the Introduction we found that :

- 3
Cth,ph =  1.2 X lO'̂  J

&h,co =  2.1 X 10-2

Cmag,ph =  4.0 X 10-3

^m agjco =  4 .0  X 1 0 - 3

P ph  «  10-'

Pco 1 0 -

also, we know tha t :

1-3

n “ 3

Perhaps we should begin by outlining some im portant features of the continuous model prior to 

launching into the detailed workings.

3.2 Features and Capabilities of Model.

3.2.1 Physical Param eters of Cells.

• magnetic flux density and polarity, B.

• total number of hydrogen atoms, N.

• length, L.

• temperature, T.

• pressure, P.

• number density of hydrogen atoms, n.

• Alfven speed. C'a

• cell boundary velocities, Vl ,P r

Figure 3.1 illustrates the cell concept within the model.

Amongst the physical parameters listed above, the following are duplicated in both an ‘old’ and 

a ‘new’ form within the code : R, L, P, n, Pli F fi- The sections, or ‘modules’ of the model use values 

contained in the ‘old’ forms of the variables to obtain the ‘new’ values. Towards the end of each 

time-step the ‘new’ values are loaded into the ‘old’ versions of the variables ready for utilisation 

during the next time-step.
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Figure 3.1: Schematic of a typical cell.

3.2.2 One-Dimensional Fluid Laws.

Similarly to the discrete model the continuous model uses a 1-D grid of cells. The model is Lagrangian 

in type which means that the cell boundaries move with the fluid, the cells moving and changing 

size to suit. This is in contrast to an Eulerian model where the boundaries or the points at which 

data is known remain fixed relative to some static framework. The Eulerian approach simplifies the 

obtaining of data from real fluid systems, since we need only station measuring instruments at fixed 

known positions, however, this does not give us information on the evolution of any particular parcel 

of fluid. The Lagrangian is more useful in the sense that the point of origin of our data moves with 

the fluid and thus we have time-dependent data on the evolution of a given bundle of fluid. An 

example would be allowing instruments to float along within a fluid flow, providing pressure and 

tem perature data. However, a Lagrangian grid of data points will not remain evenly distributed, 

and we must constantly redefine our measurement sites. In our present model the high value of the 

magnetic Reynolds number means that the magnetic field lines restrict bulk movement, diffusion and 

conduction across the field lines. The model field lines are considered to be perpendicular to the grid
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therefore conduction and motion are not possible across cell boundaries. Thus, the cell boundaries 

are frozen into the fluid and the model embodies a Lagrangian method, assuming tha t the magnetic 

flux and fluid move together within the same velocity fleld. This is consistent with the approach used 

by Simon, Title & Weiss (2001) where their ‘corks’ floated passively within the 2-D velocity field of 

the photospheric fluid. Simon, Title & Weiss (2001) describe the process of the passive migration of 

flux tubes into the network between supergranules where they eventually undergo annihilation with 

oppositely directed fleld.

In our continuous model the fluid within the cells follows simple 1-D fluid dynamical behaviour, 

using a simple equation of motion. This process is explained in detail later.

To utilise the simplicity and efficiency of the cellular autom ata approach each cell uses a single 

parameter for each cell property. These properties are : magnetic flux density, number of particles, 

length, temperature, pressure, particle number density, sound speed and Alfven speed. Were we to 

use a real physical fluid we would find a continuum of values for each of these properties except 

for particle number. In the model we treat these cell parameters as averages of a range of values. 

This means that each time-step the properties of the whole of the fluid within each cell are updated 

simultaneously in a single action. The distance between neighbouring cell boundaries - in other words 

the cell length - must always satisfy the condition of being greater than the distance a sound pressure 

wave travels in a single time-step. Therefore the cells’ thermodynamic properties cannot equilibrate 

within a time-step and so cell boundaries are adjusted independently. However we can justify this 

apparent unphysicality by ensuring that all the cell parameters change smoothly in time. The change 

in values between each time-step must be small. The necessary checking procedures ensuring the 

maintenance of this condition are explained later.

Cell boundaries cannot be adjusted independently if the distance between two neighbouring cell 

boundaries becomes less than the distance a sound pressure wave can travel in a single time-step. If 

this condition occurs then changes in cell boundary velocities will not be smooth.

Thus, we require :

where :

Cs St << L\

Cs =  sound speed

St = one time — step (1/500 s)

We know
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a  = m

-  8.9 X 10  ̂ m

where :

T  =  5785 K

m ~  TTip (atomic hydrogen)

Now, coming back to our determination of the minimum size of a cell, our model time-step is 

1/500 of a second, thus we can see that

Cs 6t ~  8.9 X 10  ̂ m s~^ x s
500

~  18 m

Thus, cells’ sizes cannot become arbitrarily small. We can see that the model should not allow 

the existence of cells with length less than : few x 10 m. However, there are other reasons related 

to numerical instabilities in discrete-time models causing us to postulate a minimum cell size greater 

than this. Apart from the problems associated with repositioning cell boundaries which are close to 

very small cells, there is also a danger of numerical instability where a cell is allowed to become small. 

Any changes in the material content of a cell caused by emergence or submergence of magnetic flux 

must be small compared with the level of material within the cell i.e. Ac/) <<(/>. The model evolves 

through the passing of discrete time-steps and so, like any temporally discrete numerical simulation, 

the changes in the parameter values between one time-step and another must remain small in order to 

retain relatively little divergence between the model and a real physical system (this occurs where the 

length of a cell is too small. The cell must be removed and we explain this below). This requirement 

is additional to the requirement for smoothness in time which was elucidated above. When a cell is 

undergoing submergence of magnetic flux it is clear that when the cell has almost disappeared there 

is a point when the change in magnetic flux is comparable to the amount of flux contained within 

the cell, and thus Ac/) «  cj) will not be preserved.

To avoid numerical instability the grid must also remain smooth in space, i.e. the disparity in 

parameter values between adjacent cells must remain small.

We will consider the sequence of processes for the resizing of cells and the adjustment each time- 

step of cells’ thermodynamic properties. This sequence includes details of 1-D fluid laws, an equation
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of motion for each cell and also a mechanism for removing cells which endanger the stability of the 

model because of their small size.

Sequence of processes :

1. calculate new lengths.

2. remove dangerously small cells.

3. calculate new number densities.

4. calculate new pressure.

5. calculate new boundary velocities.

6. calculate new temperatures.

It is necessary to have a mechanism within the model for snipping out cells which have become 

too small. Following the removal of such a cell, the space within the grid formerly occupied by the 

excised cell is attributed equally to the two neighbouring cells. We explained earlier why cell length 

must exceed Q  6t and showed that this distance is ~  few x 10 m. On this basis, it was decided 

that cell length must not slip below 100 m. Where this happens, the cell in question is removed from 

the grid. Importantly, this length is small compared with the typical initial cell length of 10^ m.

The parameters attributed to each cell apply to the whole space within tha t cell, and we should 

therefore consider the parameter values to be averages for each cell, as mentioned above. No resolution 

is possible below the size of the cell. Exactly what the value is of this resolution during the running 

of the model is not easily quantifiable, but we will take it to be the initial cell size (i.e. the length of 

the cells at the commencement of a run) and thus it remains constant throughout the evolution of 

a run. It is not a good idea for us to allow arbitrarily large cells to grow during a run, since we are 

then in effect allowing the resolution of the data to become coarser. Therefore, there is a feature of 

the model which detects a large cell and splits it into pairs of smaller cells. The size above which no 

cell is allowed to exist is 1.5 times the mean initial cell size. Thus, there are good practical reasons 

for only allowing cells within this Lagrangian scheme to exist with lengths within a specific range.

The time evolution of the model is discrete in time, in intervals of 0.002 s. During each iteration 

of the model, the functions of the program operate upon the parameter values calculated from the 

previous iteration.

We will now consider the exact process of calculating cell parameter values as occurs each time- 

step.
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1. New cell length.

Given the old cell length (calculated during the previous time-step) we can calculate the new 

cell length. For a given cell,

L' = L - 0 t  A V

where A V  = Vl - V r

2. Remove small cells.

As discussed at the beginning of this section it is im portant to remove small cells around the 

size of ~  few x 10 metres or less. The specific level is chosen for the continuous model is 100 

metres. These cells are removed from the grid, and the cells either side are extended equally 

into the space previously occupied by the cell. If the cell removed was formerly the site of 

emergence or submergence of magnetic flux then this will be deemed to continue in another cell 

in the grid, randomly selected.

3. New number density.

Given the old cell number density, we can calculate the new number density. Total number of 

particles, iV, will be changed by the emergence/submergence processes, thus.

-Agrid L

4. New pressure.

The total pressure within each cell consists of two components : magnetic, Pmag and thermal, 

P th-

Ptotal — Pmag T  Pth  ( 3 A )

Where :

2fj,oPmag =  —  (3.2)

and

Pth =  nk eP  (3.3)
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We assume that cells undergo reversible adiabatic expansion and contraction :

=  constant

=  (3.4)

Let’s explain the mechanism for adjustment of cell pressure :

(a) Subtract Pmag from total pressure to obtain thermodynamic pressure. (See equation 3.1). 

The reason for this is that in the next step we will adjust the thermodynamic pressure in 

accordance with the adiabatic relation. Now, this relation (equation 3.4) does not apply 

to magnetic pressure, therefore we must subtract the magnetic component from the total 

pressure prior to using the adiabatic relation.

P th  ~  P total “■ P m ag ( 3 .5 )

(b) Calculate new thermal pressure assuming a reversible adiabatic equation of state, using

new cell length i.e. use equation 3.4. The adiabatic identity, equation 3.4, holds only for

the thermodynamic pressure. Pth and Pmag are not coupled (see equations 3.2 and 3.3).

p i k = P t i ^ [ ^ y  (3.6)

(c) Calculate new Pmag and new total of therm al and magnetic pressures.

( B ' f

We know :

Therefore we have

P ' —
2/.0

Ptotal =  Pth  +  Pmag

k „ , . p C 4 V + '» 'i’total - \  If  J ' 2 flo

5. New boundary velocity.

We are interested (each time-step) in finding the new boundary velocities in order tha t the 

cell boundaries can be repositioned. New boundary velocities consequently give the necessary 

information for re-sizing the cells and calculating new number density, pressure and magnetic 

field density. Regarding the mechanism for finding the new velocity of a sample cell boundary.
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Figure 3.2: Schematic of cell boundary.

let’s consider figure 3.2. We need to apply the equation of motion to determine the acceleration 

of the boundary produced during one timestep :

A V bound   A P h o u n d  Agrid

St Afhound

We can immediately see problems here. To obtain A P  what pressure values will we take, and 

what mass, M , shall we use? Were we to consider the acceleration of a cell boundary, we can 

see that in the limit the pressures immediately adjacent to a cell boundary on both sides of it 

will be equal, and M  will be zero. W hat then are we to do? Our solution is to suppose the 

existence of a notional cell which straddles this boundary and we locate this cell’s walls in the 

same longitudinal positions as the centres of the true cells on each side of the boundary. Figure

3.3 illustrates this notional cell with a dotted line. We next find the mass of the notional cell 

by simply summing half the mass of each cell either side of the boundary.

Regarding the notional cell straddling the boundary, we calculate the change in velocity of that 

boundary. To do this we use the net impulse resulting from the pressures upon the walls of the 

notional cell. These walls are deemed to be situated along the centre-lines of the actual cells 

either side of the boundary.
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Thus, we have :

b o u n d a ry ,!  ~  ^boundary,! +
6 t { P , - n + i )

rrip +  n i + i ^ )

(Pi — Pi+i) is the net pressure force acting upon the notional cell, while the denominator is the 

mass of the notional cell (neglecting mass of electrons). We can see tha t the cross-sectional area 

of the grid has cancelled out across the fraction. This calculation is carried out simultaneously 

for every boundary along the grid.

An earlier conceived alternative method for the calculation of the mass was to interpolate the 

number density of the notional cell at the site of the boundary under consideration. This 

number density would be interpolated between those of the two adjacent cells, where number 

densities were assumed to be correct at their centres. However, this method was found to be 

unsatisfactory giving inappropriately high or low values for the number density where the two 

cells were of sufficiently different lengths and number densities. This is shown in figure 3.4. 

Therefore, the interpolation method was abandoned in favour of simply taking half the mass of 

each adjoining cell.

Given that the model is a 1-D system there is no momentum transfer between regions by 

shearing or frictional or turbulent dissipation.

6. New temperature.

Given the new pressure, length, and total cell particle number (post-emergence/submergence) 

we can calculate the new cell temperature.

T' = P'AgndL'
NkB

3.2.3 Simplified M agnetic Field and Reconnection.

The magnetic field within each cell is represented by a single parameter, P , which has magnitude 

and sign. W ithin the formalism of the model, reconnection occurs at the boundaries between cells 

with oppositely signed magnetic flux and depletes the cells’ magnetic energy by a calculated value. 

This process is described in detail in section 3.3.
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Figure 3.3: Mechanism for calculation of new cell boundary velocities.

3.2.4 Emergence and Submergence of Magnetic Flux.

In a real fluid we would expect transfer of momentum by turbulence or friction caused by shearing 

between adjacent fluid layers. We can introduce some sense of this behaviour into the model by 

providing a mechanism for the removal of fluid (with magnetic fleld attached) from one part of the 

grid and its introduction to another region. This operates as a mechanism for transfer of momentum. 

This effect is a non-local communication which raises the dimensionality of the model to greater 

than unity. We may also think of this emergence and submergence of magnetic flux as representing 

the result of convective motions in the fluid, where the grid represents the layer at the top of the 

convective zone. This feature is necessary as regions of fluid, which due to their magnetic fleld have 

the potentiality for undergoing magnetic reconnection, cannot ordinarily flow together in this 1-D 

model without requiring tremendous compression of gas. The emergence/ submergence facility can 

represent inflows and outflows tha t push and ‘suck’ regions together.

3.2.5 Conservation of Magnetic Flux, Energy and Mass.

Although we believe tha t Solar radiative output has increased by a few percent during the last few 

hundred million years, over timescales relevant to our present work (seconds to minutes) there is no
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Figure 3.4: Cell n  and L  configurations which render interpolation method inaccurate.

bulk change in the properties of the Solar surface. Large flaring events may significantly deplete the 

energy stored within the magnetic field, however in general an equilibrium is maintained. The model 

therefore is designed to ensure near constancy in the levels of magnetic flux.

3.2.5.1 Conservation of Magnetic Flux.

Let’s consider the parts of the model which produce changes in the magnetic flux within cells. There 

are three such modules, described below.

Figure 3.5 shows the order of these modules. The boxes described as ‘various’ represent any and 

all of the other parts of the model. Because they do not produce changes to the magnetic fluxes we 

are presently unconcerned with them.

First, before the commencement of a run of the model, the total magnetic flux within the grid is 

summed. This value is remembered throughout the run.

1. Magnetic reconnection.

The reconnection function carries out an appreciation for each cell as to whether magnetic
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reconnection can occur and if so, then the energy release by reconnection and the changed level 

of magnetic flux within the cell are calculated. Thus the magnetic flux contained within a cell 

is depleted.

2. Removal of small cells.

Cells with length below 100 metres are removed in order to avoid a particular class of numerical 

instabilities, as explained in section 3.2.2. The flux within such cells disappears from the model.

3. Emergence/submergence of magnetic flux.

The emergence and submergence process conserves magnetic flux. The order of play is submer

gence first then emergence. The submergence is carried out upon the whole grid then emergence 

is carried out upon the whole grid. Following emergence the total flux within the grid is summed 

and this is compared with a figure equal to the total flux existing at the commencement of the 

run. Any deficit in flux in the present state of the grid is divided between all the cells undergo

ing flux emergence, and the magnetic fleld density of these cells is increased to account for this 

deficit. Details of this process are given in section 3.3.2.

Thus, a constant level of total magnetic flux within the grid of the model is ensured. In the 

long term the magnetic fleld density of the photosphere is constant. Also, we would expect a 

close similarity between the emerging and submerging flux because submerged flux must emerge 

again at the surface due to the convective motions. The reconnection process, both in the Sun 

and the model, conserves total flux, therefore we must ensure tha t the model emerged flux 

matches the submerged flux.

3.2.5.2 Conservation of Energy.

Let us consider now those parts of the model which produce changes in the total energy of the grid. 

There are four such modules, described below. Figure 3.6 shows the order of these modules. The 

boxes described as ‘various’ represent any and all of the other parts of the model. Because they do 

not produce changes to the energy, thermal or magnetic, we are presently unconcerned with them.

1. Magnetic reconnection.

W ithin the model the magnetic reconnection process reduces magnetic fleld density, and hence 

magnetic energy stored within cells.

We expect some of the energy released in real Solar magnetic reconnection to go into heating 

of the photosphere. Highly energetic electrons and protons will travel along the magnetic field
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lines from a reconnection site, situated perhaps at the top of a loop, and impact into the dense 

photospheric material, heating it. Therefore, within the model there is a facility for heating the 

cell material using energy released by reconnection.

2. Removal of small cells.

As we have seen, cells with length below 100 metres are removed in order to avoid a type of 

numerical instability. Because the material is considered to submerge and disappear from the 

model, the magnetic energy and thermal energy within the removed cell are lost from the grid.

3. Emergence/ submergence of magnetic flux.

The submergence process removes material from cells. The total therm al energy within each 

cell is given by ^ N k ^ T  therefore the thermal energy reduces pro ra ta  such tha t it remains 

in proportion with the amount of material remaining in a cell. Similarly, the magnetic flux 

contained within the cell is reduced pro ra ta  such that the new level of flux is in proportion 

with the new reduced amount of material within the cell.

Regarding temperature of emerging magnetic flux, all the material disappearing from submerg

ing cells is put into emerging cells at the same temperature at which it is submerged. This 

means that the thermal energy is actively conserved during the emergence and submergence. 

Similarly, the magnetic fleld density is raised in the emerging cells in order to m aintain the total 

magnetic flux of the grid at the level of the magnetic flux at the commencement of the run. 

Thus, the total magnetic energy of the grid is conserved.

4. Radiative cooling of cells.

The grid is assumed to exist within an ambient black-body radiation field at a tem perature of 

5785 K (Te,o given by Karttunen et al. (1996)), and there will therefore be a net energy flux 

through the notional top surface of each cell. The grid has a width of 10^ m. The particular 

value is unim portant, however in accordance with Stefan’s Law^ we nevertheless need a value 

for width in order to perform the updating calculations)

The photosphere radiates strongly at various wavelengths including IR, optical, UV and X-ray. 

In our model radiative cooling acts as a negative feedback effect, restoring the tem perature of 

each cell to 5785 K.
^Stefan’s law gives the total energy flux, E, radiated at all wavelengths by a black-body at a given temperature, T  :

È = aT^
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3.2.5.3 Conservation of Mass

Let us consider now those parts of the model which produce changes in the total mass of the grid.

Figure 3.7 shows the order of these modules. The boxes described as ‘various’ represent any and 

all of the other parts of the model. Because they do not produce changes to the mass we are presently 

unconcerned with them.

1. Removal of small cells.

As explained in section 3.2.2, cells with length below 100 metres are removed from the model. 

The material within these cells disappears from the model.

2. Emergence/ submergence of magnetic flux.

At the commencement of a run the total mass of the grid is summed and this value is remembered 

throughout the run as a benchmark for comparison. Each time-step cells which are designated 

during that time-step for the submergence of magnetic flux have their N  parameter reduced by 

the designated amount. Similarly, those cells designated for emergence of magnetic flux have 

their number of particles incremented, thus increasing their mass. There are equal numbers 

of submergence and emergence cells therefore the net change of mass will be zero. However, 

during the time-step and prior to the emergence and submergence, the module responsible for 

removing small cells may have carried out its function. If this is the case then we expect that 

there will be a deficit in the total grid mass as compared with the record of the initial total 

mass. The mass deficit, equal to the mass of the lost cells, is divided equally between the cells 

undergoing flux emergence. Their total particle numbers are increased by this figure.

Thus, mass conservation is ensured by the forced emergence of an amount of material required 

to maintain constant total mass equal to the initial total mass.

3.2.6 Not Tied to Any Particular Length Scale.

We have flexibility within the model to choose different initial cell lengths providing tha t the require

ments regarding minimum cell size mentioned in section 3.2.2 are satisfied. If these requirements 

are not satisfied then we expect numerical instability to occur. Thus, cell lengths must significantly 

exceed the minimum level of 100 m.

The initial cell length is effectively the resolution of the model and therefore smaller cells mean a 

higher effective resolution to the model. Increasing the cell length for a constant size of the entire grid 

means fewer cells and therefore poorer data. Fewer cells also implies fewer cell-cell interactions and
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sites with potentiality for reconnection. Similarly, smaller cells mean more cells, which improves our 

data, but makes the computation more CPU-intensive. In the extreme case a spatially continuous 

and infinitely detailed model would obviously provide no limit upon the number of reconnection 

sites, however this is technically unfeasible and would defeat the purpose of using a CA model. 

There is thus a trade-off between data/resolution and practicality. A balance must be struck, and 

consequently we have chosen to use an initial cell length of 10^ metres. For purposes of comparison 

however, we perform additional runs with initial cell length of 5 x 10  ̂ m.

3.2.7 Radiative Cooling of Simulated Solar surface.

Our model incorporates conservation of magnetic flux and energy. We know tha t the tem perature of 

the Solar photosphere is in a steady state and radiates strongly at various wavelengths, in particular 

IR, optical, UV and X-ray. In fact, the total Solar radiation flux is ~  4 x 10̂ ® W (K arttunen et al. 

1996). The model simulates radiative cooling by black-body emission from the surface of the grid. 

For the maintenance of an equilibrium it is assumed that there is an ambient background into which 

the upper surface of the cells radiate at a temperature of 5785 K (Tg,© given by K arttunen et al. 

(1996)). Given that the radiation energy flux is proportional to crT^, the radiative effect behaves as
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negative feedback (strongly linked to the temperature) and tends to return the temperature to 5785 

K, and also therefore acts as a negative feedback upon the thermodynamic pressure, of each cell.

In the introduction we saw that the photospheric thermal energy density is ~  1.2 x 10  ̂ J m~^ 

(table 1.1) whereas the coronal thermal energy density is ~  2.1 x 10“  ̂ J m “  ̂ (table 1.1). Given 

the far greater therm al energy density of the photosphere, we can neglect radiative losses from 

the corona and chromosphere and need only account within the model for radiative cooling of the 

photosphere. Besides, given the high magnetic Reynolds number of the corona, hot particles trapped 

inside magnetic structures within the corona may only travel along such field lines, and so will 

follow the field lines until they impact into the denser photospheric material, where they will radiate 

non-thermally in the UV and X-ray bands until reaching equilibrium with the photospheric gas.

3.2.8 Introducing Noise into the Pressure Field.

In order tha t we can explore the effect of noise in the model there is a facility for its addition to the 

pressure field.

For each cell we have:

p '  =  p ( n - C )

where (  is a uniformly distributed random number in the range : ±77 .

This noise is added to the pressure values for each cell every 500 time-steps (1 second).

77 is a parameter we typically give the value 77 =  0.001. In the E arth ’s atmosphere, we know that 

typically ^  ~  0.001 therefore in the absence of any Solar ^  data we will not use noise greater 

than this.

3.2.9 Reversible Adiabatic Expansion of Cells.

As mentioned above in section 3.2.2, expansion and contraction of cells occurs over a timescale 

assumed to be short compared with the heat transfer timescale. Because of the high gas pressure in 

the photosphere it is difficult to bring gas together for reconnection therefore we expect reconnection 

to mainly take place in the corona. In the Solar atmosphere we know tha t the magnetic Reynolds 

number is much greater than unity, and therefore the plasma is effectively tied to the magnetic field 

lines. This makes heat transfer across the field lines slow and justifies our assumption of reversible 

adiabatic expansion. To properly be able to use the relation PiV^ = constant we need to assume not 

only that cell expansion is adiabatic but also that it is slow enough for the process to be represented 

by a curve on a P-V diagram, i.e. a point on the curve represents the state of the whole cell. This 

means tha t all the material within each cell is in the same thermodynamic state. This is achieved
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if we can assume expansion/contraction is quasi-static. We can justify this if our time-step is small 

enough that the process is smooth.

In the model, by analogy with the high magnetic Reynolds number of the Solar plasma, heat 

transfer between cells due to conduction or mixing is not possible. Given the model time-step of ^  

seconds we can assume adiabatic reversible adiabatic expansion/contraction.

3.2.10 Typical Initial Model Parameter Values.

Let us clarify typical values for the various parameters associated with the initial state of the model 

run.

3.2.10.1 Number of Cells.

Typically, the model will commence with 10  ̂ cells. The determining factor here is time for com

pletion of the run.

3.2.10.2 Number of Time-Steps.

Typically, the duration of a run is 3 x 10  ̂ time-steps. To ensure tha t we lose the memory of the 

initial conditions, data will only be reported after the first 10  ̂ time-steps, thus giving 2 x 10  ̂

time-steps of data, equivalent to 4000 seconds.

Figures 3.8 and 3.9 show the time series of the energy release for a run using a combination of 

initial parameters which will hereafter be referred to as ‘typical’, as per the Definition of Commonly 

Used Terms given at the beginning of the thesis.

Figure 3.8 shows the time series covering the period from the beginning of the model run to 3 x 10® 

timesteps (6000 s), whereas figure 3.9 shows the time series covering the period from 10® timesteps 

t o  3 X 10® timesteps (2000 s to 6000 s).

It can clearly be seen that very soon after beginning the run of the model there are some high 

peaks followed by a gentle decline which merges into the steady state around 10® timesteps (2000  s). 

For this reason event-size, and other, distributions are calculated from data produced between 10® 

and 3 x 10® timesteps (2000 s and 6000 s).

3.2.10.3 Reconnection Method.

Simplified formalised reconnection between cells of anti-parallel magnetic flux is represented within 

the model, and is the method for releasing the magnetic energy within the cells. This release is 

manifested as events which are counted towards event-size distributions. The reconnection method
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Figure 3.8: Time series of total model and maximum magnetic reconnection energy release for period 

0 timesteps to 3 x 10® timesteps.



3.2 Features and Capabilities of Model. 74

14

13

12

cn

UJ  ̂ ^

cn

10

9
2000 3000 4000

Time [sec].
5000
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period 1 x 10  ̂ timesteps to 3 x 10® timesteps.
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is explained in detail in section 3.3. The reconnection may be turned on and off, and the detail of the 

reconnection module itself may be tinkered with. There are several variants explored by this model 

and these are detailed in section 3.3.

3.2.10.4 Emergence/Submergence of Magnetic Flux.

The standard model has the emergence and submergence set up such that the rate of material 

transfer into or out of a cell is equal to the initial mean cell mass per 10  ̂ seconds. In section

3.3.2 we show tha t this rate of material transfer gives a rate of flux emergence within two orders of 

magnitude of observed values. Lawrence, Cadavid &: Ruzmaikin (2001) find a typical coherence time 

of 1200 seconds for the granular scale : the smaller of the two distinct size scales which they find for 

photospheric cellular flows, ~  2 x 10® m.

We typically enable 10% of the cells in the model to be undergoing emergence or submergence at 

any time ( ac =  0.1 in section 3.3.2).

Further details may be found in section 3.3.

3.2.10.5 Time-step (6t).

After some experimentation, a discrete time interval of 1/500 s was settled upon. This is a com

promise between the need to overcome the tendency to numerical instability (increasing at larger St) 

and considerations of scarcity of CPU-time. This m atter is discussed in section 3.4.

3.2.11 Typical Initial Cell Parameter Values.

Now, let us clarify typical values for the various parameters associated with the initial state of the 

cells.

3.2.11.1 Magnetic Flux Density (and polarity), B .

B  varies through the Solar atmosphere as follows :
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large sunspot - 4 X 10  ̂ G

typical sunspot - 2 44 3 x 10  ̂ G

intense photospheric flux tube - 1-H- 2 x 10® G

active region - few x 100 G

corona - 144100 G

quiet region - 1 G

(lecture notes from introductory Solar physics course (Roberts 1999).)

The standard model run generates a flat random distribution of magnetic field density in the 

range ±100 G. The model does not allow sufficient orders of magnitude of the size range of cells 

which would be necessary to accurately simulate the full range of features from quiet network to 

intense flux tubes within the same run.

We are also able to generate magnetic field density values in a random power-law distribution. 

The highest (negative) power-law index we can use without onset of catastrophic numerical instability 

is -1. Figure 3.10 shows the distribution of \B\ for 10® cells, generated by a power-law (index =  -1) 

random distribution for the run described in section 3.4.4.4 (figures 3.28 and 3.29).

We needed to investigate the evolution of the size distribution of unipolar flux regions (see section 

4.2.5), therefore a run was made where the magnetic polarity of cells in the initial state alternated 

from one cell to the next along the grid. The cells have the same initial length therefore all unipolar 

regions are of length equal to one cell length (usually 10  ̂ m). Thus, the initial distribution of sizes 

of unipolar regions in this case is a delta function at the initial cell length.

The power-law distribution of magnetic field density is used to determine whether an initial power- 

law distribution of magnetic field density forces the event-size distributions to also be power-law in 

nature.

3.2.11.2 Temperature, T .

Given that the temperature at the photosphere is thought to be approximately 5785 K (K arttunen 

et al. (1996) gives the effective temperature of the photosphere, Tg,© =  5785 K , where Tg,© is the 

temperature calculated assuming a perfectly thermal wavelength distribution), an initial tem perature 

of 5785 K is attributed to each cell. Also, for the purpose of calculating the radiative cooling effect 

of the grid, we assume a background temperature at this level.
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Figure 3.10: Plot of values of \B\ for 10  ̂ cells where \B\ is distributed in a power-law with index 

-1. 1 < |B | < 100. Bin-size =  0.04.
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3.2.11.3 Total particle number, N .

We know N  — nAgn^L  and we take typically N  = 10^  ̂ particles (neutral hydrogen atoms),

3.2.11.4 Number Density, n.

Particle number density varies through succesive layers of the Solar atmosphere :

lower corona ~  10^  ̂ -H- 10^  ̂ m “ ^

chromosphere ~  10^  ̂ -H- 10^  ̂ m “ ^

photosphere 10^  ̂ m“ ^

(lecture notes from introductory Solar physics course (Roberts 1999).)

For the initial values of the number density through the grid we use the photospheric value 

10^  ̂ m “  ̂ for each cell. The photospheric gas will largely be un-ionised therefore we consider it to be 

atomic.

3.2.11.5 Pressure, P .

Now, as expressed in section 3.2.2, total pressure is comprised of thermal and magnetic components. 

As explained above, the photospheric material is treated as atomic gas. There is therefore only a 

single contribution of /cgT from each hydrogen atom. If it was ionised, there would be twice the 

thermal pressure since both electrons and hydrogen ions would contribute.

Thus, we have ;

P — Pth P Pmag

7 ^=  n k ^ T  +  - —
ZflQ

which will typically take values in the range 8009 < P  < 8049 Pa, given :

n  =  10^  ̂ m“ ^

T  =  5785 K 

B  = -100  G <4- +100 G

Our typical pressures are thus of the same order as tha t taken by Gary (2001), where he uses a 

photospheric gas pressure of 1250 Pa at a photospheric scale height of 250 km.
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3.2.11.6 Length, L.

The typical initial value is 10  ̂ metres. Section 3.2.2 explains why the cell length must have a 

minimum size. Where cells fall below 100 metres they are removed from the model, as explained 

earlier. An initial cell length of 10'̂  metres allows a significant amount of submergence of magnetic 

flux to occur before this minimum is reached.

Alternatively, initial cell length might be given a random value with a uniform distribution in the 

range 10  ̂ -B- 10“̂ m. Unfortunately unavoidable numerical instability results when this approach is 

made.

3.2.11.7 Alfven Speed, C'a -

Alfven speed is a function of |B| and the density of the medium, p :

C A = ^
\/ÂiôP

Let us consider the initial values in the model, given a mean modulus value of the magnetic field 

density of 50 G and the mass density p = nm  where n = 10^  ̂ m~^ and m  = rup. We will neglect 

mass of electrons.

We find tha t initially Ca  ~  340 m s~^

3.2.11.8 Cell Boundary Velocities, Vi „Vr .

Initially these are zero.

3.3 Detailed Description of some Specific Modules of the Model.

Figure 3.11 shows the ordering of the main processes of the model through the time-step. The model 

passes through this loop once per time-step.

We will now describe the detailed operation of some of these processes. We will address the major 

previously undescribed parts of the model. Only unduplicated information will be included.

3.3.1 Loading New Values into Old Values.

In order to use an iterative scheme with discrete time-steps it is vital that each time-step the functions 

of the program operate upon the values generated during the previous time-step to generate the new 

values. Correspondingly, these new values will then be the subject of the calculations during the
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Figure 3.11: Flowchart showing ordering of modules and processes within the cycle of the model. 

Each loop represents one time-step.

following time-step. Also, some parameters are used for several different functions during each time- 

step therefore the code must remember the old value. Thus, the code holds both  old and new values 

of cell parameters. During each time-step new cell parameters are generated from the old values, 

following which these new values are over-written on the old values, in readiness for the generation 

of further new values from these now old values.
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3.3.2 Emergence/ Submergence of Magnetic Flux.

On the actual Sun, we find that submergence of magnetic fiux occurs at sites of cancellation by 

reconnection (Harvey et al. 1999). We also find that magnetic fiux is capable of submergence and 

that submergence, which will occur even during the growth phase of active regions, is a strong process 

comparable to emergence (Rabin, Moore &; Hagyard 1984).

Calculations by Simon, Title Sz Weiss (2001) show that the total Solar unsigned magnetic fiux 

would decay through self-annihilation within a few days without the existence of a process for contin

ual renewal. It is well known tha t bipolar magnetic fiux emerges at a rate of ~  few x 10^  ̂ Mx day~^, 

and our model also features renewal of fiux by emergence.

Each time-step submergence takes place across the entire grid, followed by flux emergence (if the 

emergence/ submergence feature is turned on). Then the total fiux within the grid is summed and 

this is compared with the total fiux existing at the commencement of the run. Any deficit in fiux is 

divided between all cells undergoing fiux emergence, and the magnetic field density of these cells is 

increased to exactly account for this deficit.

The emergence/ submergence feature may be turned on or off, and also the rate of emergence 

and submergence can be altered by varying two parameters. The first parameter is the replacement 

timescale of emergence/submergence, given as ^em/sub- This tells the model how fast it must move 

material into fiux emergence cells and out of submergence cells. Specifically, ^em/sub gives the 

number of seconds which would be taken to emerge or submerge Mjnit, the average mass of cells at 

the commencement of the run. Given that the observed timescale of overturning of material on the 

Sun at the granular (~  2 x 10  ̂ m) level is something less than 20 minutes (Lawrence, Cadavid & 

Ruzmaikin 2001), the typical value used in the model is 10  ̂ seconds. Given that we must maintain 

conservation of mass, this flow rate is the same for each cell whether material is ingoing or outgoing.

Second, the emergence/ submergence proportion, given as k, tells the model what fraction of cells 

in the grid are involved in emergence and submergence. As the total number of cells in the model 

moves up or down the number of cells undergoing emergence/submergence will change pro rata. The 

typical value for this param eter is 0.1. Alternative values representing higher rates of flux emergence 

explored in the model are 0.2 and 0.4. For example, if there are 10  ̂ cells in a run and k =  0.1 

then there will initially be 50 cells undergoing emergence of magnetic fiux and the same number 

undergoing submergence.

For the simplification of maintaining the conservation of mass, energy and magnetic fiux, cells 

undergoing emergence or submergence are considered to act as a pair such that the same amount of 

material leaving one cell in a pair is added to the other cell at the same temperature.
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Let us now make a calculated guess at the emergence rate of Solar magnetic flux.

Schrijver et al. (1997) and Hagenaar (2001) estimate a total Solar ephemeral region magnetic flux 

emergence rate of ~  7 x 10^  ̂ Mx day~^ and ~  5 x 10^  ̂ Mx day“  ̂ respectively. We will take 

the most up-to-date estimate by Hagenaar (2001) of ~  5 x 10^  ̂ Mx day“ .̂

We will assume that this flux emergence occurs evenly across the Solar surface. Given tha t the 

area of the Solar surface, A q  =  1.5 x  10̂ ® m^, we have :

• _  5 X 10^  ̂ Mx day ^
® ~  1.5 X 1018

=  3.9 Gs " ^

Let us calculate, on the other hand, the emerging flux within a typical cell in the continuous 

model. The replacement timescale of emergence/ submergence, ^em/subj will typically be 10  ̂ seconds. 

Consequently, the number of particles emerged into a cell each time-step, ^em/sub, is calculated by :

A N  = N
^em/sub

where :

N  = mean of N[

Typically, for a cell of length 10  ̂ m we will have N  = 10^^. Thus, we take ;

N  = 10^  ̂ particles 

A m /sub =  10 S

and we know 6t — 0.002 s

This gives A N  =  2 x 10̂ ® particles per time-step.

So, each time-step our emerging cell gains ~  2 x 10^  ̂ particles to add to its reservoir of 

~  10^  ̂ particles. Because the magnetic field is attached to the cell material, we can assume the 

proportion of magnetic field remaining after each time-step is the same as the proportion of particles 

remaining.

Thus, to calculate the new magnetic field density given the proportional removal of particles, we 

have :
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and

A B  = B ' - B  
B A B  

~  N  
= 10“  ̂ G

where A B  = change in magnetic field density.

For the typical magnetic field density le t’s assume a single uniform value of : B  = 50 G 

This gives us :

^ m o d e l  =

Bmodei =  10“ ^̂ G (time -  step)~^

=  5.0 X 10~2 G s“ ^

Thus, to summarise, we have calculated :

B q =  3.9 G s“ *

Bmodci =  5.0 X 10"^ G

The rate of change of magnetic fiux produced by the model lies within two orders of magnitude 

of the figure believed for the sun.

We have arrived at this figure for the rate of change of magnetic fiux produced by the model by 

designating the values of three parameters :

• K = 0.1

Thus, at any given time 1 in 20 cells are undergoing fiux emergence, (add this to the 1 in 

20 undergoing submergence to give the value of k). The value of this parameter should not 

be too high otherwise the fiux emergence/ submergence will dominate the changing values of 

magnetic flux density. Rather, we wish the flux emergence to be present yet allow cells to 

persist sufficiently for magnetic reconnection to affect the magnetic fiux densities. Also, there 

is a danger of numerical instability if k, is much higher than 0.1.

•  ^ em /su b  — 1 0  S

As explained above, this value represents 1 cell-mass of material emerging or submerging within 

10  ̂ s, which is in agreement with the observed timescale for flux emergence (Lawrence, Cadavid 

& Ruzmaikin 2001).
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• Typical magnetic flux density, B  = 50 G.

This value lies somewhere in the range between coronal values {Bco % 1 -H- 100 G) and quiet 

region values (1 G).

Although we have chosen appropriate-seeming values for these parameters we can see a serious 

discrepancy between È q and B^odel ■ For this derivation we have assumed tha t the flux emergence 

taking place within cells within the model lattice is equivalent to that taking place within all the 

ephemeral regions but spread evenly over the whole Solar surface. Our model lattice may be closer to 

the quiet regions of the photosphere, in which case we have arrived at an unreasonably low estimate 

of Bmodei • We would be advised to allow emergence in a greater proportion of cells than the l-in-20 

we have supposed.

Let’s run through a brief description of the process of emergence and submergence before we 

consider it in detail. The first action carried out is to calculate, given a particular value of the 

timescale of emergence/submergence, the number of particles which must be transferred per time- 

step into an emerging cell.

Next, each cell undergoing submergence has its complement of particles reduced by this number. 

The new values of number density, magnetic field density and pressure are calculated using, respec

tively, new particle number and volume, a pro ra ta  reduction of magnetic field density in proportion 

with the reduction in particle number, and the ideal gas law.

When the submerging cell has so few particles tha t the present subtraction of particles causes its 

mass to drop below zero, the cell is removed from the grid. A replacement cell for the continuation 

of submergence of magnetic fiux is randomly selected and the two cells adjoining the removed cell 

are deemed to expand equally into the space formerly occupied by the submerged cell. The length, 

magnetic field density, number density and pressure of these cells are recalculated, given the new cell 

lengths.

Next, the present mass of the grid is summed and compared with the to tal mass remembered from 

the commencement of the run. The deficit is divided by the number of cells undergoing emergence of 

magnetic fiux and this amount of mass is added to these emerging cells. This ensures conservation 

of mass. The new value of number density is calculated given the new particle number. Given 

that Eth = ^NU-qT  the new value of temperature is calculated assuming equilibration of (1) the 

cell material prior to emergence and (2) the new emerged material, which enters the cell with the 

same tem perature as the cell from which it is considered to have submerged. The particle pressure 

parameter is calculated according to the Ideal Gas Law. The new magnetic field density of each cell 

is calculated, as described later in this section.
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Let’s describe the flux submergence process in further detail. This process is carried out prior 

to emergence. We showed earlier how we determine the number of particles A N  emerging into or 

submerging from a cell during a time-step. The number of particles within a submerging cell is 

diminished by A N  :

N ' = N - A N

The magnetic Reynolds number is high and so the field is attached to the plasma material. Therefore 

magnetic fiux is lost in the same proportion as the plasma. The new number density and pressure 

(thermal and magnetic pressure components) are then calculated :

N  

and

n ' -
L  Agrid

and
, N'kBT { f f f  

B^grid 2mo

Let’s now describe in detail the fiux emergence process. The number of particles increases by 

A N  in cells designated for the receipt of emerging magnetic fiux :

N ' = N - \-A N

Consequently, the number density and temperature are recalculated :

" ' =  7 ^ -L  .dgj-id

Each emergence cell is paired with a submergence cell, meaning that (for the energy conservation) 

the temperature of the material emerged into a cell is deemed to emerge at the temperature of the 

submerging cell.

Thus, calculating new tem perature of a cell, we have : thermal energy of a cell after emergence 

equals a weighted sum of its thermal energy prior to emergence plus the thermal energy of the 

emerged material.

Equivalently,

Hence,

T 'celijth ~  -^ cell,th  +  E e m ,th

% iV̂ eii kB Tceii =  -  iVceil kB Tcell +  -  A N  /cb Te
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Rearranging,
N ceW  Tcell +  A N  Temrpl _

cell

where,

Tem =  temperature of emerging material 

Also, we calculate new pressure :
^  ^  N 'kB T ' ^

L  Agrid 2/Zq

The new values of magnetic field density are now calculated according to a method which ensures 

conservation of magnetic fiux. We mentioned earlier tha t the model sums the total flux within the 

grid at the beginning of the model and remembers this figure. Let us remember tha t by this point

in the time-step the reconnection and submergence of magnetic fiux has already occurred. Thus,

the magnetic fiux within each cell is in a depleted state. The total magnetic fiux within the grid is 

summed and subtracted from the initial total magnetic fiux, ^grid.init , which the model remembers. 

The result, $  grid,lost , which represents the total loss of magnetic fiux (caused by reconnection and 

submergence) during the time-step is then divided equally between the cells which are emerging 

magnetic fiux.

Thus, we have A 0  for each emergence cell. The new magnetic field density w ithin each of the 

emerging cells is calculated according to these steps :

1. Sum fiux within model and subtract from remembered initial fiux to arrive at to tal fiux deficit.

ĝrid = E^i = E(^iii W)

^grid,lost — ^grid,init ~  ^grid

2. Divide fiux deficit equally between cells emerging fiux.

—  ^ g f id .lo s t  ^em —
^cells

3. Calculate new magnetic field density for each emerging flux cell.

B ' = B  -\- ^em
L W

3.3.2.1 Regular Flux-Collision Imposed upon the Model.

An element of randomness is introduced by the decision process which designates the locations of 

cells undergoing emergence and submergence of magnetic flux. Each time-step, a test is conducted 

to determine whether the locations of emergence/submergence sites should be re-allocated. If the
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re-allocation occurs the new sites of emergence and submergence are determined randomly. Also, 

the time allowed to elapse between successive re-allocations is itself random. Specifically, each time- 

step there is a random 1 in 10  ̂ chance of the re-allocation occurring. In practice this means 

that the waiting-time between successive re-allocations will be randomly distributed with a mean of 

~  8 X 10  ̂ time-steps, giving approximately 25 randomly distributed re-allocations during a typical 

model run.

The Solar convective motions in the photosphere cause the emergence, spreading, collision and 

consequent submergence of material at the top of the photosphere. Flux tubes gather at the edges 

of convection cells which results in regions of greater magnetic fiux density.

It seemed interesting to construct a form of the model such that the material was actively forced 

to emerge, spread, collide and submerge repeatedly throughout the grid in regular units (many units 

in order to average the statistics). This is done by alternating the sites of emergence and submergence 

along the grid and ensuring that these sites are regularly spaced (in terms of physical distance within 

each interval). The positions of the emergence and submergence cells is fixed at the commencement of 

a run such that there are 20 cells in each interval (between sites of emergence of magnetic flux). This 

corresponds to the distance, d, as shown in figure 3.12. However, once the model is running, while 

remaining the same physical distance, the interval may consist of a greater, or lesser, number of cells 

than 20 owing to the emergence and submergence of fresh magnetic flux which causes enlargement 

and shrinkage of cells. The physical positions of the emergence and submergence sites must remain 

fixed, therefore re-setting of the position of fiux emergence and submergence must occur frequently 

to maintain these positions. Therefore, each time-step there is a random probability of the re

allocation occurring. In this case the typical waiting-time between re-allocations of the emergence 

and submergence sites is only ~  100 time-steps.

Figure 3.13 shows how the forced alternation of emergence and submergence sites produces definite 

regions of collision.

Compare this to the alternating submergence and emergence caused by the photospheric gran

ulation and illustrated schematically in figure 3.14. Typical length-scales would be few x 10  ̂ m 

(Lawrence, Cadavid & Ruzmaikin 2001).

The main purpose of designing this particular specialised configuration of the model is to make 

comparisons with the unadulterated model using randomly determined locations of 

emergence/ submergence and see what effect the imposition of an emergence/submergence field has 

upon the results.
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Figure 3.12: Detail of model grid for fiux-collision configuration of the model.
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Figure 3.13: Drift of cell material caused by alternating emergence and submergence in collision 

model.
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Figure 3.14: Schematic of Solar granulation.

3.3.3 Calculate Alfven Speed.

The Alfven speed within each cell is necessary for the calculation of energy release through magnetic 

reconnection, therefore prior to running the reconnection module, Alfven speed is calculated for each 

cell in the grid according to :

Ca =
|B|

P

3.3.4 Reconnection.

Reconnection is the method by which magnetic energy is released in the grid and this occurs at the 

boundaries between pairs of cells. Further, reconnection is only allowed at each site where opposite 

polarity magnetic fluxes meet. Each time-step the grid is scanned for such sites, and at these places 

the reconnection mechanism performs its task. Where reconnection takes place at a boundary the 

energy release occurring in each cell is calculated. Thus, after the whole grid has been scanned for 

reconnection each cell will contain a parameter describing the total magnetic energy released within 

tha t cell during the reconnection process. This parameter has one component from reconnection 

taking place with each of the cell’s neighbours (one or both of these components may be zero).

The reconnection method which we will here describe at length is the one usually used in the 

model, and will henceforth be referred to as ‘standard’.

We will now run through the details of this method and consider a generic pair of cells, i and 

2 -t-1, which have anti-parallel magnetic flux.
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'A,i -

width = W

cell i+1cell i
area = A grid

Figure 3.15; Schematic of reconnection about a cell boundary.

1. Dere (1996) find that the Alfven speed more appropriately accounts for the rate of reconnection 

than the timescales of resistive diffusion or tearing-mode reconnection. Therefore, we consider 

that during one time-step the amount of magnetic fiux available for reconnection is determined 

by the Alfven speed. Either side of the boundary, we calculate the distance equal to the Alfven 

speed multiplied by the time-step. These distances are shown by arrows in figure 3.15. Let us 

note that although we use Agrid = 10  ̂ m^ and W  =  10  ̂ m these values have no effect on our 

conclusions since we might have set these equal to unity, in which case our calculated energy 

would be per unit cross-sectional area of the grid.

2. For either cell, if this distance exceeds the cell length :

> L[ or Li+i^Aif > Li+i

then we set this distance equal to the cell length.

3. Next, we calculate the amount of fiux represented contained within this length for each cell. 

We use

$i,Aif =  Li^AiîWBi

4. Magnetic fiux within the two interacting cells annihilates therefore the same amount of fiux 

within each cell must be destroyed during the reconnection process. Thus, we compare
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$ i,A lf and $ i+ i ,A if  and set them both equal to the value of the smaller of these. These parameters 

represent the flux available for reconnection.

5. Thus, we have now calculated available flux within the two cells either side of the boundary. 

Now, the magnetic flux for each cell is divided by the magnetic field density of each cell {B\ and 

5 i + i )  to give us equivalent lengths, and Aif? inside which the reconnection occurs.

Thus,
j ,  ^  ^i,A if

6. We are now in a position to calculate the energy released by the reconnection. The model 

assumes that all of the magnetic energy is released in the volume spanned by Tj Aif in cell i 

and Aif in cell î +  1 is released.

^ =  2^ ---------

The value £'i,rec is added to the energy release parameter of cell i, and Ei+i^rec to that of cell 

2 4" 1.

7. Next, we calculate the pre-reconnection magnetic energy stored in cell i and i-f 1.

and use the above-calculated values of energy-released to calculate post-reconnection magnetic 

energy remaining in the two cells :

total ~  total ~  -^i,rec n n d  -^i+1,total ~  -^i+1,total — -E'i+i^rec

8. Given the remaining magnetic energy in the cells, we must now calculate new B  for each cell :

Bi =
total ^0

L\4-tAi+l-^gridii^grid

Thus, the model has calculated, (1) the energy released with respect to the boundaries on each 

side of each cell, and (2) the new reduced magnetic fiux.

As explained earlier when we run the model we have the expectation of a single event occuring 

at any one time. Therefore, the reconnection module scans the grid each time-step after having 

performed the reconnection process and locates the cell within which the greatest energy release has 

occurred. We must consider this to be the location of the reconnection event. Also, the total energy 

released in the grid is summed each time-step.
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During the useful period of a run (10® to 3 x 10® time-steps (see section 3.2.10.2)) reconnection 

data, described below, is saved to file every 10 time-steps.

Thus, we are able to compare the total energy released in the whole grid with tha t released in the 

biggest event. Part of the justification for considering that only one event occurs and characterising 

it as the site of greatest energy release is that we find tha t the profiles of the total energy release 

and the greatest energy release are highly correlated, and tha t the total grid energy release can be 

characterised as a superposition of the energy released from the single largest reconnection event plus 

a background level. This is demonstrated in section 3.6.2. Also, in general there is typically only 

one large fiaring event taking place on the Sun itself at any given time. Energy released within other 

cells is much smaller and behaves like noise additional to the far greater contribution of the single 

greatest event in the grid.

During this interval of from 10® time-steps to 3 x 10® time-steps, data is saved to file every 

10 time-steps. The change over 10 time-steps (0.02 s) will be small. The saved data consists of : 

location in the grid of maximum energy release, value of tha t energy release and value of the total 

grid energy release. Thus, the reconnection mechanism produces three time-series. We will explain 

later how this is processed to give us event-size distributions.

We should note that this mechanism for representing reconnection in the model can obviously be 

altered as we see fit in order to determine what differences the details of the reconnection mechanism 

makes to the distributions produced. There are some particular variants used in the model. These 

arc :

• Threshold.

A threshold is introduced which must be exceeded for reconnection to occur. The modulus 

of the disparity between the values of the magnetic field densities of two adjacent cells must 

exceed 50 G or 20 G for reconnection to be allowed. As before, the magnetic flux of the two 

adjacent cells must be anti-parallel. In the Introduction we described self-organised criticality 

(SOC) and learnt that SOC requires the existence of a gradient which, when exceeded, results 

in the occurrence of an avalanche with a power-law distribution. The addition to reconnection 

of a threshold criterion may introduce an element of SOC into the model.

• Completely randomised energy release.

The calculated energy release which takes place between two adjacent cells is multiplied by 

a random number, ( , uniformly distributed in the range 0 < (  < 1. We recall tha t a single 

parameter value for a given cell represents an average of the magnetic field density for th a t cell, 

yet we would expect there to be a continuum of values throughout the cell, and also unresolved
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anti-parallel flux. We can consider this random element as reflecting this unresolved field, which 

would increase, reduce or curtail the reconnection in a way undeterminable by the model.

• Partially randomised energy release.

The energy release, E , calculated for each cell by the unaltered reconnection mechanism is 

multiplied by a random number, ( , uniformly distributed in the range 0.9 < C < 1.1.

We can imagine that any number of similar alternative methods might be used instead, each 

a variation on this theme. However, the purpose of the model is not to attem pt a complete and 

accurate physical description but to obtain the statistical essence of the problem. Thus, the method 

used satisfies the essential prerequisites insofar as there is a linear dependency upon the magnetic 

energy density and also upon the Alfven speed in the material (itself dependent upon magnetic field 

density).

3.3.5 Checking Procedures.

There are modules which perform the function of confirming tha t there is no obviously unphysical 

behaviour occurring. Such behaviour would show that the model has broken down and can no longer 

be relied upon. In particular, if any cell shows negative length or pressure then the model ceases 

running.

Since the size resolution can be taken to be approximately the mean cell length, we must prevent 

cells from growing to arbitrary lengths. For this reason, cells found to have length equal to or greater 

than 1.5 multiplied by the initial mean cell length of the grid are divided into two identical cells 

each with half the length and particle number of the original single cell. These cells retain the same 

magnetic flux density, number density and temperature of the original.

To justify the model being temporally discrete we must ensure that changes in the parameter 

values are smooth. The emergence/ submergence module ensures smoothness in N , and thus also in 

n. Smoothness in P  is dependent upon smoothness in A, since Volume oc L  and P ' = P  

Also, smoothness in B  is dependent upon smoothness in L  because B ' = B  . We have 

T ' = , therefore smoothness in T  also depends upon smoothness in L. Thus, to confirm smooth

ness in L  the model checks that changes in the velocities of the cell boundaries are smooth. In 

particular, the model will halt if the change in velocity of any cell boundary is greater than 1/10 of 

that boundary’s velocity.

We cannot rely upon our 1-D fluid laws unless the bulk motion within the grid is always subsonic 

(i.e. Vi,boundary < <  Q ). Therefore the model will check each time-step that we have ;
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Vi,boundary ^  J q

3.3.6 Updating Magnetic Field Densities.

Remembering tha t the parameters within a cell represent idealised averages of param eters along the 

entire length of the cell, the model must calculate the new magnetic field density within a cell to 

reflect the re-sizing of the cell and conservation of magnetic fiux within tha t cell.

Thus,

3.3.7 Flexibility in Im plem entation.

So, we can see that there are many ways in which we can introduce variations to the basic model. 

Some of these are :

• add noise to the pressure distribution. We can vary the level of this perturbation.

• use power-law (random) initial magnetic field density distributions instead of fiat (random) 

distribution.

• introduce random factors into the calculation of magnetic energy release.

• make alterations to the detail of the reconnection mechanism.

• introduce different methods of counting energy release events.

• use a variety of initial cell lengths.

• use different sized grids (number of cells).

• switch reconnection off.

• switch emergence/submergence off.

• change parameter values of emergence/submergence of magnetic fiux (fraction of cells undergo

ing this process, k , and replacement time-scale, tem/sub)-
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Figure 3.16: Demonstration of fluid behaviour in 1-D grid.
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3.4 Validation of Correct Functioning, Assumptions, Stability and Sensitivity 

Analysis.

3.4.1 Correct Fluid Behaviour.

We can show that the 1-D fluid behaviour of the model is accurate by dem onstrating correct propa

gation of pressure waves at the sound speed of the fluid.

In flgure 3.16 we have a simple run, without reconnection or emergence/ submergence. There are 

100 cells each of length 10  ̂ m. There is an initial perturbation in the pressure fleld of +5% in a cell 

near the centre position. The images shown are at intervals of 200 time-steps, equivalent to 0.4 s. 

We can see that the waves propagate approximately sinusoidally and can make an estimate of sound 

speed :

~  7.5 X 10  ̂ m s~^

Let us compare this with that calculated in section 3.2.2 from the thermo dynamic properties of 

the fluid :

~  8.9 X 10  ̂ m s“ ^

We can be pleased that the sound speed within the model grid is close to the value we would 

expect from a real physical fluid with the same properties. Thus, we find th a t the model behaves 

like a real fluid closely enough for our purposes.

3.4.2 Steady-State.

Where the parameter values and initial state are such that the model does not become numerically 

unstable the model enters a steady state. In every case it is found tha t the param eters settle into 

values which are not unphysical. Thus the particular values of these param eters provide persuasive 

evidence that the model is operating sensibly. The representative example of the model having settled 

into a steady state which we present in this section is one where our initial conditions and parameters 

are what we consider to be typical - a benchmark against which the results generated by other model 

runs may be compared. These parameters in the initial state take the typical values as given in the 

Definition Of Commonly Used Terms given at the beginning of the thesis.

Table 3.1 compares initial conditions against evolved stable cell param eter values. The rightmost 

column gives settled stable values. There is a small deviation around these values.

We define :
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^  M  =  total grid mass 

y ^ L  =  total grid length

({) = total grid magnetic flux 

Aceiig =  number of cells

Mean temperature has been weighted by number of particles, N , within each cell.

Thus the total mass and magnetic flux remain unchanged. As we have explained earlier, the 

model ensures tha t there is conservation of mass and magnetic flux. The total length of the grid 

remains unchanged. Were this not the case we could not trust the 1-D fluid laws within our model. 

The evolved settled number of cells settles to a value only marginally higher than the inital value and 

the remaining cell parameters are all also very close to the initial values. The mean cell boundary 

velocity is only 3.31 m s~^ compared with the mean of the absolute values of cell boundary vélocités, 

254 m s” ,̂ therefore the cells within the grid are not accelerating but remain stable. It is clear 

therefore that the grid settles into a steady equilibrium state.

3.4.3 Assumptions.

Let us itemise the assumptions made in the model.

• expansion/contraction of cells is reversible and adiabatic.

• bulk motion is always subsonic.

• photospheric material is unionised atomic gas, and we therefore do not need to consider a 

pressure contribution from electrons.

• it is meaningful to summarise in a single average value the whole range of values of each 

cell parameter within each cell, and it is acceptable that we can neglect smaller unresolved 

concentrations.

• for the reconnection mechanism to be meaningful we assume that magnetic reconnection prop

agates at the Alfven speed.

• radiative cooling mechanism is based upon the assumption that the top surface of the grid 

radiates a black-body spectrum.

• background tem perature of 5785 K.

• there is no net change in the total magnetic flux within cells.
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Parameters Initial Values {t = 0) Evolved Values {t = 6000 s)

E M 1.673 X 10  ̂ k g 1.673 X 10® k g

E L 10  ̂ m 10^ m

E<!> 4.780 X IQi^ Mx 4.780 X 10^  ̂ Mx

-^cells 10  ̂ cells 1175 ±  25 cells

P 8023.3 Pa 8138 Pa

a p 13.70 Pa 323.8 Pa

n 1023 j^-3 1.003 X 102® m -®

0.0 m~^ 6.9 X 10^1 m -®

T 5800 K 5868 K

(Tp OK 694 K

L 10'̂  m 8510 m

ĈL 0.0 m 2448 m

B 0.02 G 7.0 G

CTB 55.9 G 188 G

W \ 47.80 G 74.6 G

'Abound 0.0 m s“ ^ 3.31 m s“ ^

^̂ bound 0.0 m s“ ^ 304 m s“ ^

Inbound 1 0.0 m s“ ^ 254 m s“ ^

Table 3.1: Comparison of initial and evolved model parameters in a steady state (note tha t cr 

standard deviation).
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3.4.4 Sensitivity Analysis.

The figures in this section all use the same axes-ranges for ease of comparison. Each run of the 

model starts with the cells having a specific length allocated, usually 10  ̂ m, and a random uniform 

distribution of magnetic field density in the range —100 -H- +100 G (giving \B\ =  50 G). We can thus 

easily calculate the mean absolute initial magnetic field density and mean initial cell flux for each 

run. Where we include in the text plots showing the distributions of unipolar region sizes, magnetic 

flux density and magnetic flux, we have found it useful to also draw vertical dotted lines showing 

these mean initial values (Tunipoiar? <j)).

When plotting log-log distributions of magnetic fleld density and magnetic flux we have found 

that in the region above the initial levels (marked by dotted lines) where at the commencement of 

the run there were zero bin counts, there are often power-laws produced. These regions represent 

magnetic flux processed by the model and so we shall fit lines to only points lying above the dotted 

lines.

We will produce plots on log-log or log-linear axes giving distributions of cell parameters, such as 

magnetic field density and magnetic flux, where the y-values will give 4og(P.D.F.)’. ‘P.D.F.’ refers to 

‘probability density function’. This means that our data has been counted into bins then normalised 

according to the width of each bin. In other words, for each bin the number of counts is divided by 

the width of the bin. This flgure then gives us the y-value for that bin.

Where lines are fitted to plotted points, the least-squares method will be used.

3.4’4 'i  Effect of Noise upon the Model.

We would like to determine the effect that a degree of stochastic excitation has on the model. Perhaps 

the results are robust with respect to noise? Perhaps we need noise to obtain nice ordered power-law 

(or otherwise) distributions? Perhaps noise will complicate any nice ordered results?

Noise may be introduced into any of the cell parameters. We already have a system (emergence and 

submergence of magnetic flux) for continuously changing the magnetic flux within cell. Therefore we 

instead introduce noise into the thermodynamic properties of the model. Pressure embodies within it 

number density and tem perature therefore noise is introduced into the pressure fleld. If we consider 

the pressure at any point on the surface of the Earth at sea level as a stationary time-series we rarely 

find pressure differences from the mean greater than one part in a hundred. One part in a hundred 

would represent a severe atmospheric disturbance. We will therefore restrict the noise applied to less 

than or equal to one part in a hundred.

The noise is applied every 500 timesteps. This equates to one second of model time. When this
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occurs each cell in the grid individually has noise added to its pressure level. For cell i this addition 

takes the form of :

a  is a multiplier which is random and uniformly distributed within the following ranges, depending 

on the particular run chosen :

• —0.001 o  +0.001

• —0.005 44̂  +0.005

•  —0.01  44 + 0.01

We can run the model for each of these three noise regimes with the typical initial parameter 

values, as per the Definition of Commonly Used Terms given at the beginning of the thesis.

Figure 3.17 compares distributions of magnetic flux density for runs without noise and each of 

the three noise levels. The plots show power-law-like distributions although the gradients vary.

Figure 3.18 compares distributions of magnetic flux for runs without noise and each of the three 

noise levels. Again, the plots show power-law-like distributions although the gradients vary.

Figure 3.19 compares distributions on log-linear axes of sizes of unipolar regions for runs without 

noise and each of the three noise levels. D ata at the high end of these four plots is poor resulting in 

the large error bars, and the apparent turn-over at the far bottom  end of the plots might be due to 

edge effects.

Figures 3.20 and 3.21 compare distributions of event-sizes counted by peak release rate and inte

grated energy release, respectively. The distributions are reasonable power-law-like distributions and 

there is no substantial diflference in either the gradients or positions of the profiles between each of 

the different noise levels, although the x-ranges vary.

On balance, there is no indication of substantial dependence of the distributions upon the noise 

level.

3.4-4-2 Arbitrary Parameters.

The model contains parameters which are not meaningful in physical terms and yet are unfortunately 

necessary for the operation of the model. The values of these parameters are not derivable from 

observations but instead must be chosen by us. Therefore it needs to be true th a t the general 

properties of the results have very little dependency upon the particular values of these parameters.

Minimum Cell Size.
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Figure 3.17: Distributions of magnetic flux density in runs comparing different noise levels; 10  ̂ cells;

bin-size =  0.25. Dotted lines mark mean initial magnetic field density. Initial cell length =  10"̂  m.

Top: run without noise. Second: ^  =  0.001. Third: ^  =  0.005. Fourth: ^  =  0.01 .
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Figure 3.18: Distributions of magnetic flux in runs comparing different noise levels; 10  ̂ cells; bin-size

= 0.25. Dotted lines mark mean initial magnetic flux. Initial cell length =  10'̂  m. Top: run without

noise. Second: ^  =  0.001. Third: ^  =  0.005. Fourth: ^  =  0.01.
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Figure 3.19: Distributions of unipolar region sizes in runs comparing different noise levels; 10̂  cells;

bin-size =  0.25. Dotted lines mark initial unipolar region length. Initial cell length =  10“̂ m. Top:

run without noise. Second: ^  =  0.001. Third: ^  =  0.005. Fourth: ^  =  0.01 .
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Figure 3.20: Distributions of event-sizes comparing different noise levels; counted by peak energy

release method; 10  ̂ cells; bin-size =  0.4; initial cell length =  10  ̂ m. Top: No noise. Second: ^  =

0.001. Third: $  =  0.005. Fourth: $  =  0.01 .
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Figure 3.21: Distributions of event-sizes comparing different noise levels; counted by integrated energy

release method; 10  ̂ cells; bin-size .= 0.4; initial cell length = 10  ̂ m. Top: No noise. Second: ^ =

0.001. Third: $  =  0.005. Fourth: ÿ  =  0.01 .
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Figure 3.22 shows us event-size distributions counted by peak energy release rate for three runs :

1. a run using typical initial conditions (as defined earlier), (minimum cell length is 100 m)

2. a run using typical initial conditions (as defined earlier), where the minimum cell length is 200 

m

3. a run using typical initial conditions (as defined earlier), where the minimum cell length is 500 

m

Figure 3.23 shows us event-size distributions counted by integrated energy release for the same 

runs as figure 3.22.

Considering first figure 3.22, we can see that the three plots are the same shape and cover the same 

approximate range. There is an approximately power-law region between 10  ̂ J s~^ and ICP̂  J  s“  ̂

with a small dip near the upper end of this range. We also see the points tu rn  over at the lower 

end of the plots, from approximately 10  ̂ J s“  ̂ and below. We cannot trust tha t the end regions are 

reliable because we expect these to manifest edge eflfects. The gradients of the more reliable parts of 

the plots, lying between 10  ̂ J s“  ̂ and 10^  ̂ J s“ ,̂ are approximately equal.

Considering now the plots produced using integrated energy release (figure 3.23), we can see tha t 

these three plots are also generally the same shape over the same approximate range. These are 

approximately power-law between 10^ J and 10^  ̂ J. The three plots seem to have a slight but sharp 

break in their gradients at approximately 10^  ̂ J. The gradient above this point is slightly steeper 

than below. There are a few small deviations above and below this line.

It does not appear that changing the minimum cell length has a significant effect upon the peak 

or integrated energy release therefore we should trust our runs using a value of 100 metres for the 

minimum cell length. These event-size distributions are close to power-law or power-law-like and are 

in the same positions with similar ranges.

Maximum Cell Size.

We recall that typically we will use a value for the maximum cell length of 1.5 multiplied by 

the initial cell length. This means that when a cell expands to this size it will be divided into two 

equal cells. For comparison we have also performed runs using maximum cell lengths of 1.2 and 2.0 

multiplied by initial cell length.

The first plots on figures 3.24 and 3.25 show event-size distributions for the typical initial condi

tions and model parameters using a value for the maximum cell length param eter of 1.5 multiplied 

by the initial cell length. The second figures show event-size distributions for a run using a value 

for the maximum cell length parameter of 1.2 multiplied by the initial cell length. The th ird  figures
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Figure 3.22: Distribution of event-sizes, counted by peak energy release rate. Log-log axes; 10̂  cells;

initial cell length =  10  ̂ m; bin-size = 0.4. First: typical model parameters (minimum cell length =

100 m). Second: minimum cell length =  200 m. Third: minimum cell length = 500 m.
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Figure 3.23: Distribution of event-sizes, counted by integrated energy release. Log-log axes; 10  ̂ cells;

initial cell length =  lO'̂  m; bin-size =  0.4. First: typical model parameters (minimum cell length =

100 m). Second: minimum cell length = 200 m. Third: minimum cell length =  500 m.
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Figure 3.24; Distribution of event-sizes, counted by peak energy release rate. Log-log axes; 10  ̂ cells;

initial cell length =  10  ̂ m; bin-size =  0.4. First: typical model parameters (maximum cell length =

15000 m). Second: maximum cell length = 12000 m. Third: maximum cell length =  20000 m.
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Figure 3.25: Distribution of event-sizes, counted by integrated energy release. Log-log axes; 10  ̂ cells;

initial cell length =  m; bin-size =  0.4. First: typical model parameters (maximum cell length =

15000 m). Second: maximum cell length =  12000 m. Third: maximum cell length =  20000 m.



3.4 Validation of Correct Functioning, Assum ptions, Stability and Sensitivity  
Analysis. I l l
show event-size distributions for a run using a value for the maximum cell length parameter of 2.0 

multiplied by the initial cell length.

Considering first the plots showing peak energy release (figure 3.24), we can see again that the 

profiles are of the same form and cover the same range. There is an approximately power-law region 

between 10̂ "̂  J  s~^ and 10^  ̂ J  s~^. All three plots have a slight dip at a varying position between 

10 '̂^ J  s“  ̂ and 10 '̂^ J s“ .̂ The gradients of these plots are very similar. We see the usual turn-over 

at the lower end of these three plots, which may be caused at least in part by the Isliker effect.

Regarding figure 3.25, which shows the integrated energy release distributions, the plots all have 

very similar profiles, approximately power-law between 10  ̂ J and 10^  ̂ J with a few deviating points. 

The gradients are very similar.

We believe tha t these distributions are sufficiently similar that we can treat the model as not 

greatly dependent upon the maximum cell length.

Heating of Material by Magnetic Reconnection.

We expect tha t the Solar magnetic reconnection makes a contribution towards heating of the 

photospheric gas. Energetic protons and electrons accelerated by reconnection will gyrate around 

field lines while travelling along them until the particles impact into the denser photospheric material, 

heating it by the conversion of kinetic energy into thermal. We do not however know the level of this 

heating effect in the Sun. We have designed the model to incorporate this heating effect.

Now, for a given cell we have :

Erec =  magnetic energy released in a cell during one time — step 

Let’s consider the therm al energy of the cell’s particles. We know :

Eth = ^  N  ^b T

Therefore, for constant N  :

and :

= ^ N k B S T

3 N  kB
Now, le t’s suppose SEn^ = a  x E^ec where a  is a constant. Therefore

3 N  kB

Using typical values and setting a  equal to 0.5 :

=  (3.7)

grec =  8.0 X  10® J 

N  = 10^  ̂ particles
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Thus, we have :

(5T ~  1.9 X 10“  ̂ K per time — step

In the model we assume even heating of the gas and tha t it can equilibrate completely within the 

duration of each time-step. We can do this provided tha t the change in cell tem perature is smooth. 

We have already addressed the m atter of smooth adjustment of thermodynamic properties in section

For comparison and testing of the robustness of the model to different values of a  we conducted 

four different runs of the model. Each of these used the same ‘typical’ initial parameters, as per the 

Definition of Commonly Used Terms given at the beginning of the thesis.

1. Run where there is no contribution to heating of gas by energy release from magnetic reconnec

tion (a  =  0).

2. Run where there is a contribution to heating of gas equal to exactly half the energy released by 

magnetic reconnection (a =  0.5). -

3. Run where there is a contribution to heating of gas equal to whole of energy released by magnetic 

reconnection {a = 1).

4. Run where the contribution to heating of gas is equal to whole of energy released by magnetic 

reconnection multiplied by (  where : (  =  uniformly distributed random number in the range 

0 1.

Regarding figures 3.26 and 3.27, the four plots on each figure show data produced by these four 

runs, in the same order as the list above. Figure 3.26 shows event-size distributions counted by peak 

energy release rate. Figure 3.27 shows event-size distributions counted by integrated energy release.

Comparing the peak energy release rate plots with each other (the plots on figure 3.26) we see 

that these have very similar profiles and cover the same approximate ranges. Between approximately 

10  ̂ J s”  ̂ and 10^  ̂ J s“  ̂ the profiles are nearly power-law in form with similar gradients. There is 

the usual turn-over at the lower end, perhaps caused, or enhanced by the Isliker effect.

Turning to the integrated energy released plots (figure 3.27), again these plots have no substantive 

differences and are approximately power-law with a slightly exponential shape, they cover approxi

mately the same range of 10® J to 10^  ̂ J and have similar gradients.

The distributions are all power-law-like in profile, covering similar ranges of x-values and y-values. 

Between different regimes of heating of the cell material, there is sufficient similarity in the event-size 

distributions to suggest that there is little dependency upon the detail of the heating mechanism. 

The most supportable conclusion is that we should not include heating derived from reconnection.
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Figure 3.26: Distribution of event-sizes, counted by peak energy release rate. Log-log axes; 10® 

cells; initial cell length =  lO'̂  m; bin-size =  0.4. First: typical model parameters (no heating of cell 

material by energy released in reconnection). Second: heating of cell material by half energy released 

in reconnection. Third: heating of cell material by entirety of energy released in reconnection. Fourth: 

a random fraction (uniformly distributed in the range 0 -H- 1) of the whole of the energy released by 

magnetic reconnection is channelled into heating the gas.
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Figure 3.27: Distribution of event-sizes, counted by integrated energy release. Log-log axes; 10® 

cells; initial cell length =  10'̂  m; bin-size =  0.4. First: typical model parameters (no heating of cell 

material by energy released in reconnection). Second: heating of cell material by half energy released 

in reconnection. Third: heating of cell material by entirety of energy released in reconnection. Fourth: 

a random fraction (uniformly distributed in the range 0 44 1) of the whole of the energy released by 

magnetic reconnection is channelled into heating the gas.
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Summary.

We note that the data in the first plot of each of figures 3.22, 3.24 and 3.26 is identical and 

pertains to a run using minimum cell length of 100 m, maximum cell length of 15000 m and zero 

heating of the cell material from the energy of reconnection (i.e. a  =  0). These three figures show 

event-size distributions counted by peak energy release rate. Each of these three figures demonstrates 

a different class of deviations from these model parameter values of Tceii,mirn ^cell,max and a, respec

tively. Remembering that the first plot of each of these three figures represents the same data, we 

can therefore evaluate the effects in the distributions produced by these variants on the values of

-f'cell,m in) A ce ll,m a x  a n d  OL.

Similarly, the three figures 3.23, 3.25 and 3.27, give the distributions of event-sizes corresponding 

to the same runs (and therefore model parameter values) as figures 3.22, 3.24 and 3.26.

Thus, considering the peak energy release rate and the integrated energy release event-size dis

tributions separately, the plots are all power-law-like and cover similar x and y ranges. They are 

all in similar positions on the graphs, indicating that each may represent a subset of an underlying 

distribution. In summary, there are no substantial differences between any of the plots on these 

three figures, either in the profiles or ranges of the binned data, and our model is robust in terms of 

minimum cell length, maximum cell length and heating by reconnection.

We conclude the following :

1. the particular values of minimum cell length, Tceii.min (100 m, 200 m and 500 m) are all suffi

ciently small compared with typical cell lengths (lO'̂  m) that within this range the model has 

no significant dependency upon the particular value selected. All further runs will use the value

-^cell,m in  ~  100 m.

2. the particular values of maximum cell length, I/ceii,max (Aceii,initX 1-2, 1.5 and 2.0 (for a value 

of Z/ceii,init =  lO'^m)) are such that the model has no significant dependency upon the particular 

value selected within this range. All further runs will use the value Tceii,max =  1-5 x Tceii,init

3. the particular heating level of the cell material by the energy of reconnection {a = 0, 0.5, 1.0, 

random) is insufficient to produce any significant dependency of the model upon the particular 

value selected. All further runs will incorporate zero heating.

3.4.4-3 Radiative Cooling.

We recall that the top surface of the grid radiates with a black-body spectrum into a background 

which has a temperature of 5785 K. We tested whether the exponent of temperature {È =  aT"‘,
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where a =  4) is important, or perhaps the model is robust to any reasonable value of the exponent. 

In fact, it was found that the model is stable only within the range : 3.5 < a <  5.0.

A surprising result, which we have investigated fully. We suspected tha t this may result from a 

resonance with another parameter also raised to a power in the range 3 44 5 however this is not the 

case. Certainly, T “ features nowhere else in the model.

We are trying to make a model of Solar surface behaviour as faithful to the reality as possible. 

We should therefore hope that any real physics coded into the model is not inconsistent with the 

operation of the model.

S.4-4-4 Initial Magnetic Field Distribution.

We should investigate the dependency of the results upon the initial field density P.D.F.s. We have 

so far run the model using a random flat distribution of magnetic density (|R | =  50 G). However we 

performed a run of the model with typical initial conditions although the initial field density used 

was random with power-law distributions, index =  -1, and B  values in the range 1 44 100 G with 

gradient -1. Event-size distributions were produced from the energy release time-series generated, 

and these distributions are shown in figures 3.28 and 3.29.

Each plot compares a P.D.F. produced by this run with that produced where the initial flux 

density is in the usual random fiat distribution {\B\ = 5 0  G).

We see that there is little difference between the profiles of the two plots on each figure and 

conclude that the profiles are fairly independent of the initial flux distribution.

3.4.5 N um erical Instability.

In order to enable the model to run without numerical instability a recurring problem which had to 

be overcome was numerical instability resulting from cell lengths becoming small and then negative. 

We have already discussed in section 3.2.2 the necessity of ensuring tha t A N  «  N . We cannot 

sustain A N  «  N  when cells become small, and consequently N  becomes small. For this reason 

the mechanism was developed, as already described, which removes cells with size below a critical 

threshold. We have already seen that this threshold is 100 m.

The radiative cooling mechanism provides a stabilising factor for the tem perature, and thus the 

thermodynamic pressure. Before this sensible component was included the thermodynamic pressure 

would become unstable within a short period of time.

We wanted to test whether power-law distributions in event-size can be driven by power-law 

distributions of magnetic field density and cell length.
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Figure 3.28: Evolved distributions of event-sizes, counted by peak energy release rate. Initial cell 

length =  10^ m; log-log axes; bin-size =  0.4; 10® cells. First: typical run. Second: power-law (index 

=  -1) distribution of initial magnetic field densities.
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Figure 3.29: Evolved distributions of event-sizes, counted by integrated energy release. Initial cell 

length =  10  ̂ m; log-log axes; bin-size =  0.4; 10® cells. First: typical run. Second: power-law (index 

=  -1) distribution of initial magnetic field densities.
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The model is capable of generating a power-law distribution of length with index =  -1 and 

index =  -2 and in the range 10® < L < 10'̂  m however it was not possible to run this without 

numerical instability setting in very quickly, producing cells with unphysical length values.

3.4.6 Edge effects.

There are several sources of errors which manifest themselves at the extremities of distributions and 

appear as knees or other deviations in the gradients of ht-lines. Some of the causes of these edge 

effects have been discussed in chapter 3 and will be discussed in section 4.2.

Let’s consider some factors which may produce our edge effects :

• Initial cell size.

The runs all commence with the same initial cell size, typically 10  ̂ m. Runs where the emer

gence/submergence of magnetic flux is switched on quickly revert to a state where the distri

bution of cell length is random with a finite and steady standard deviation. The initial cell size 

seems however to remain frozen into the model. We will see this later when considering the 

distribution of sizes of unipolar magnetic field regions.

• Minimum cell size.

As we learned in chapter 3, in order to obviate certain numerical instability problems it is 

necessary to have a feature of the model which removes cells from the grid which fall below 

100 m. When cells become smaller than this length they produce non-linear behaviour in 

the recalculation of cell pressures, which then feeds into the equation of motion for each cell, 

quickly causing instability. Also, the discrete time intervals over which the model runs implies 

tha t where a cell is undergoing submergence there will inevitably be an overshoot such that 

its length becomes negative. Therefore, it is necessary to have a safety measure to catch cells 

before becoming zero length.

• Maximum cell size.

It is a feature of the model that when a cell has grown to such a size that it is equal or greater 

than 1.5 multiplied by mean initial cell length the cell is split into two identical daughter cells. 

This is described in chapter 3. The purpose is to prevent arbitrarily large cells from forming 

and extending into the grid (which remains a constant length) thus reducing the number of 

extant cells and the usefulness of the output data. Clearly, this upper limit to the cell length is 

fixed throughout a run.
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• Initial mean magnetic field density level.

The typical routine used by the model for allocating initial magnetic field density , as described 

in chapter 3, generates a value between +100 and —100 G for each cell over a fiat random 

distribution. The magnetic energy stored within each cell, and available for reconnection, is 

proportional to the square of the magnetic field density within each cell. As we have learned from 

chapter 3, the routines which carry out the emergence of fresh magnetic fiux obey a principle of 

conservation of the magnetic fiux. Therefore, the initial mean magnetic fiux density, and also 

the total magnetic energy stored in the grid are, in effect, frozen into a run at its inception.

There is a systematic effect analysed by Isliker & Benz (2001) and described in more detail in 

the Introduction whereby sampling of time-series using finite time and frequency resolution samples 

causes a biasing effect in the P.D.F. In general terms, this effect manifests as an exponential roll-over 

of the P.D.F. profile at high amplitude and an artificial fiat extension of the P.D.F. at low amplitude. 

Amplitude in our model would be event-size, \B\, (j) oi any other param eter we choose.

Our event-size distributions are generated from sampled energy release rate time-series, therefore 

we would expect that the Isliker effect causes an element of roll-over at the edges of our event-size 

distributions (peak energy release rate, and integrated energy release). Where this effect is greater 

than our statistical errors we will see this as a clearly demonstrable effect in our plots. We note that 

our event-size distributions often show a low-end roll off, and suggest tha t this is caused at least in 

part by the ‘Isliker eflFect’. Also, given that our model uses a finite number of spatially finite and 

discrete cells whose parameter values are considered to summarise continuously varying parameters 

within the cells, we are justified in considering that the values of these param eters constitute data 

sampled at finite spatial intervals. Therefore, when considering P.D.F.s of B , (f) and Lunipolar we 

must remember that these distributions are subject to the Isliker effect.

W ith regard to the integrated energy release, there are other issues which are responsible for 

distortions of the distributions. The beginning and end of an event can’t be precisely specified. 

Figure 3.30 illustrates the energy release profile of an event within the model and shows how the 

integrated energy of an event as calculated differs from the actual. An event is only deemed to begin 

when the local energy release rate exceeds that taking place between any other pairs of cells in the 

grid. Therefore, events counted towards the integrated energy release and peak energy release rate 

distributions occur when energy release between two cells rises above the background level. This 

background level will also not remain exactly constant but is defined by the energy release level of 

the events previous to and after any given event. The reconnection between these cells will actually 

begin earlier and cease later than the temporal extent of the event, and so the to tal energy release will



3.5 Magnitude of 6t. 1 2 1

rate o f previous event
energy
release reconnection event

peak rate 
o f energy 
release

time

integrated energy release

Figure 3.30: Schematic of reconnection event showing energy release as a function of time.

be greater, than the integrated sum used to calculate the distribution. This approach was justified 

earlier, but nevertheless unavoidably distorts the distributions.

3.5 Magnitude of St.

Some testing was carried out to determine an appropriate value for the time-step interval. There are 

two competing factors at play here :

• Smoothness.

The time interval must be sufficiently small such that changes in cell parameter values are small 

enough to avoid catastrophic numerical instability.

• Running time.

The time interval must be large enough to complete a reasonable amount of model-time (hundred 

to thousands of minutes) during a tolerable amount of real time. If the interval is too small
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then the model’s runtime will be overlong.

The time-step settled upon was St = 0.002 s. A typical run of 3 x 10® time-steps takes four hours 

to run on the Open University Physics and Astronomy cluster.

3.6 Data Produced by Model.

We need to describe all the forms in which the model produces data. These can be grouped into two 

main types : cell parameters and magnetic reconnection event-size distributions.

3.6.1 Cell P aram eter D ata.

Let’s consider the cell parameter data. This consists of the following :

• -  Magnetic field density values for the entire grid at commencement of run.

— Magnetic field density values for the entire grid at completion of run.

— Time-series of magnetic field density values for each cell running from 10® time-steps to 

completion of run (typically 3 x 10® time-steps, sampled every 3333 time-steps).

• -  Pressure values for the entire grid at commencement of run.

— Pressure values for the entire grid at completion of run.

— Time-series of P  values for each cell running from 10® time-steps to completion of run 

(typically 3 x 10® time-steps, sampled every 3333 time-steps).

• — Cell length values for the entire grid at commencement of run.

— Cell length values for the entire grid at completion of run.

• — Total particle number values for the entire grid at commencement of run.

— Total particle number values for the entire grid at completion of run.

• -  Temperature values for the entire grid at commencement of run.

— Temperature values for the entire grid at completion of run.

These data allow us to generate distribution plots for the magnetic field density and the thermo

dynamic properties, L, P , n  and T. Having this data for the end and beginning of the runs allows

us to examine the distributions of the settled states of the cell parameters and check tha t these 

distributions are not frozen in at the commencement of the model runs.
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Figure 3.31: A unipolar region.

The complete pressure time-series data allowed us to construct figure 3.16 which demonstrates 

the authentic fluid dynamics of the fluid in the model, and allows us to compare the sound speed of 

the model fluid with tha t calculated according to Q  =  -y /^-

We have the complete energy release data and magnetic field density data across the grid as a 

function of time. These allow us to construct analyses of energy release, such as figure 4.3, and 

magnetic field density, such as figure 4.8, for different runs with distance along the grid on the y-axis 

and time on the x-axis. We are able to identify the different features of the model in these analyses. 

We can discern, for instance, emergence of flux, submergence, magnetic reconnection and the fluid 

behaviour of the gas. Clearly visible is new reconnection taking place between previously separated 

cells when the cell(s) acting as a barrier submerge and disappear from the grid.

We will find it useful later to consider distributions of sizes of ‘unipolar regions’. These are 

contiguous sections of the grid where the magnetic field of the cells are of the same sign (polarity). 

There will be no magnetic reconnection between cells in the unipolar region and reconnection will 

be localised to the ends of the region, or in other words, reconnection may only occur at boundaries 

between unipolar regions. Figure 3.31 illustrates a unipolar region.

3.6.2 Magnetic Reconnection Event-size Distribution Data.

In section 3.3.4 we explained the form of the time-series reconnection data. Here we will explain how 

this is processed to produce event-size distributions.
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First, the mechanism of counting of event-size distributions should be explained. Let’s begin by 

considering the notion of an ‘event’ for our purposes.

W ithin the continuous model reconnection is considered to take place between two adjacent cells 

which have anti-parallel magnetic flux (the magnetic flux of the two cells is of opposite magnetic 

polarities). If the two fluxes are parallel (the same magnetic polarity) then no reconnection can 

occur. Thus, the reconnection region is spatially localised.

When making observations of actual Solar flares, a flare is detected when the local energy release 

exceeds the background level and the temporal and energy resolution of the instrument. We flnd 

that the magnetic reconnection energy release of the continuous model can be characterised as the 

superposition of a backgound, which, when summed over the entire grid remains fairly constant, 

plus occasional significant events localised within single cells. The magnitude of these events is such 

that they are the largest events taking place within the model at any time and thus dominate the 

magnetic energy release within the grid.

Let us consider a cell where, at a given time, the highest rate of energy release within the grid is 

taking place. When the energy release rate of that cell drops below tha t of another cell within the 

grid and therefore no longer exhibits the highest rate of energy release, we consider the reconnection 

event to have terminated. However, the caveat here is that if the position of the cell where the new 

highest energy release rate occurs is one of those cells within a distance of two cells either side of 

the original cell, then that event is deemed not to have term inated but to continue. Although a 

reconnection event is considered to occur at only a single reconnection site/cell boundary, it may be 

the case that high levels of reconnection are occuring in several cells local to this site because this 

local area has a high magnetic field density and the field polarity is mainly oppositely directed. In 

this case it is correct that these other very local reconnection regions should be considered part of 

the same reconnection event. The location (as a consecutive number marking the position of the 

cell in the grid) of the cell with highest energy release reveals tha t this site very often migrates 

along the grid in steps of one cell at a time. It is conjectured that this is a result of a propagating 

pressure wave. The region of compression would raise the magnetic field density, increase the rate 

of magnetic reconnection and thus be centred upon the site of highest energy release. We take into 

account the fact that submergence of cells and division of large cells into two daughter cells changes 

the consecutive number of a cell.

We deem an event to commence at the point in time when the local rate of energy release produced 

by one cell reconnecting with one or both of its neighbours exceeds all others in the grid. Thus, 

throughout a model run, there will always be an event occuring and this will be located where the
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Figure 3.32: Schematic of reconnection region within the grid.

local energy release is greatest. Figure 3.32 illustrates what we mean by a reconnection region in 

spatial terms and 3.30 shows schematically the notion of an event in temporal terms. As we see in 

this figure, the event can be characterised either by the peak energy release or the integrated energy 

release after subtraction of the background energy release. The background level represents the total 

of many small energy releases occurring in the model and is represented by the horizontal line in 

figure 3.30. Hence, the shaded region represents the total energy release during the event less the 

background.

We saw in table 1.2 that in practice fiaring events are counted by both peak energy flux and 

integrated energy flux. Therefore, in order that the results of the model can be compared with real 

data, such as these, we are using concepts in the model analogous to peak energy flux and total 

energy. We refer to these as ‘peak energy release rate’ and ‘integrated energy release ’, respectively. 

Figure 3.30 clarifies the meaning of these terms in the context of our model.

The top plot in figure 3.33 shows the time series of the energy release from magnetic reconnection, 

summed over the whole grid, plotted against time. We can see a number of spikes in this time-series. 

The middle plot shows the time series of the energy release of only the cell within the grid which has 

the greatest rate of energy release at any given time during the model run. The lower plot shows 

the location at any given time of the cell where the greatest level of energy release is occurring. The 

y-axis represents the consecutive cell number of these cells. These plots cover the entirety of a run.
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except the initial settling period. It is clear that the profile of the top plot (total energy release for 

the entire grid) is sufficiently similar to that of the middle plot tha t it indicates tha t the total energy 

release given by the top plot consists of the middle plot plus a reasonably constant background level.

Figure 3.34 shows these plots expanded by a factor of 20 in the time direction such tha t a time 

region of 10® time-steps (200 seconds) is covered instead of 2 x 10® time-steps (4000 seconds). In 

figure 3.33 we can clearly see tha t each spike corresponds to one location in the grid. It is therefore 

meaningful to expect events behaving as represented schematically in figure 3.30, and countable by 

consideration of the time-series of energy release of the entire grid, to correlate to actual energy 

release events taking place within the model. The opposite of this statement would be tha t spikes 

in the total energy release rate correspond to simultaneous superpositions of the energy release at 

several sites. Figure 3.34 shows that this is not the case.

Thus, given that only one large event occurs at any one time, we can locate that event and sum 

the energy released from the time tha t the event exceeds the background level until the time when 

it sinks below the background level. We can then deduct the background energy released over the 

duration of the event to obtain the integrated energy released.

We can see tha t the total energy release rate consists of the sum of the single most significant 

reconnection event plus the background and therefore, this evidence in conjunction with the fact, 

clarified above, tha t each spike relates to an individual cell, allows us to conclude tha t we are justified 

in considering only the largest reconnection event to represent the flaring activity within the grid. 

In other words, the auto-correlation length of events is greater than the total length of the model 

lattice. This is an interesting result given that it is similar to the behaviour we observe on the Sun 

insofar as there will only be a single large event at any given time.

So, the energy release time-series is used to generate a list of events each of which has a peak 

energy release value and an integrated energy released value associated with it. We can then produce 

distributions of these values on log-log plots (using base 10). The bin sizes used have a width of 0.4 

(on log-log axes) and the counts within the bins are normalised according to the bin widths to give 

us P.D.F.s. Where we are comparing several plots we ensure tha t the bins are in the same positions 

to facilitate easy comparison.

Where we have fitted a line to a plot of event-sizes or cell param eter values, we also give a value 

of for the fit-line and error estimate for the fit-line gradient. This error on the gradient represents 

90%-confidence values.



3.6 Data Produced by Model. 127

50002000 3000 4000 
Time [sec].

14

12

10I5
I

8

61_
2000 50003000 4000

Time [sec].

I
I

Figure 3.33: Top: total magnetic reconnection energy release time-series for whole grid. Second: 

magnetic reconnection energy release time-series for cell producing greatest energy release at any 

given time. Bottom: location of greatest energy release at any given time. (2 x 10  ̂ time-steps (4000 

seconds)).
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Figure 3.34: Top: total magnetic reconnection energy release time-series for whole grid. Second: 

magnetic reconnection energy release time-series for cell producing greatest energy release at any 

given time. Bottom: location of greatest energy release at any given time. (10^ time-steps (200 

seconds)).



Chapter 4

General Results from the Continuous Model.

“Somewhere outside, out under the apple trees, the Nocturnal Goatsucker asked his ques

tion again.”

Kurt Vonnegut.

“Can’t I deduct liquor if I have to get high to talk and talking’s my business?”

Andy Warhole.

4.1 Introduction.

As we discussed earlier in the Introduction the Sun exhibits power-laws in the various parameters used 

to measure flare-sizes and these continue over at least eight orders of magnitude. In the Introduction 

we also discussed the findings of Meunier (1999), who identified self-similarity of magnetic field regions 

in the photosphere. We must now ask whether the continuous model is capable of producing similar 

power-laws. In fact, we have already described in chapter 3 a variety of power-law and power-law-like 

distributions produced by the model in every variant of the basic conditions used so far.

We start by making a brief comparison between the energy release time-series data  produced by 

the model and the Solar fiare X-ray time-series. We will next discuss colour diagrams illustrating 

magnetic field density and rate of energy release as functions of time and position along the model grid. 

These diagrams demonstrate some gross behaviours of the model. We examine some distributions 

of magnetic field density produced by the model using a variety of initial cell lengths ranging from
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3 X 10  ̂ m to 4 X 10^ m and models using 10  ̂ cells and 5 x 10  ̂ cells in the initial state. 

We discover, for both B  and that we can divide the distributions into two regions and fit power- 

laws to the regions of the plots lying above the initial B  and (j) values. We then find that the 

distributions of unipolar region size are exponential and try to determine if this is an effect frozen 

into and persisting from the initial state. For five variations of the parameters determining level of 

emergence/submergence we look at distributions of B , (f), ^unipolar and event-sizes to ascertain the 

role of emergence and submergence. Event-size distributions are next obtained for the flux-collision 

scheme. We look at peak and integrated energy event-size distributions for the typical conditions, 

although with initial cell lengths of both 10  ̂ m and 5 x 10  ̂ m. The power-law and power-law

like distributions are collected into a table and briefly discussed following which an attem pt is made 

to determine whether either or both reconnection and emergence/ submerge of flux are necessary 

and/or sufficient for production of power-law-like distributions. This is done by comparing B , (j) 

and event-size distributions for (1) typical initial conditions, (2) reconnection turned off, and (3) 

emergence/ submergence rate reduced by a factor of 10. These comparisons are made for initial cell 

lengths of both 10^ m and 5 x 10  ̂ m. Finally we summarise and compare in tabular form the 

basic properties of the event-size distributions obtained in chapters 4 and 3.

Except where exceptions or variants are specifically mentioned or described, all data plotted in 

this chapter, and any further results outside this chapter, will be produced by runs using the standard 

initial parameter values as per the Definition of Commonly Used Terms given at the beginning of 

the thesis. For convenience of reference we will repeat those here once :

Number of cells =  10^

Cell length =  10  ̂ m

Reconnection : standard mechanism

Emergence/Submergence : activated

Cell fraction for emergence/submergence, k: =  0.1

Flux replacement timescale, tem/sub =  10  ̂ s

Noise level, ^  =  zero

Each run of the model starts with the cells having a specific length allocated and a random uniform 

distribution of magnetic field density in the range —100 -H- 4-100 C (giving |.B| =  50 C). We can 

thus easily calculate the mean initial magnetic field density and mean initial cell flux for each run. 

Where we include in the text plots showing the distributions of unipolar region sizes, magnetic flux 

density and magnetic flux, we have found it useful to also draw vertical dotted lines showing these
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mean initial values (Tunipolar? ^).

4.2 Cell Parameter Distributions.

In this section we address some general features of some of the data and provide comparison with 

real data.

4.2.1 Time-Series of Energy Release.

Figure 4.1 shows a time-series generated by the model, using the typical initial conditions and param

eter values, of the energy release from magnetic reconnection integrated over the whole model grid. 

Figure 5.3 shows soft X-ray, hard X-ray and gamma ray emission from a single large flare recorded 

by the SMM (‘Solar Maximum Mission’) spacecraft at the time of the last Solar maximum.

These plots are included to compare the model results and real data. The timescales are com

parable between the two graphs, figure 5.3 covering a span of ~  1 hour, and figure 4.1 is of 4000 

seconds. The first plot of figure 5.3 is soft X-rays, which is therm al emission from m aterial heated 

by the impulsive hard X-rays. The second plot is of hard X-rays, which will originate from free-free, 

electron-ion bremsstrahlung. The third plot is for gamma-rays, which originate from nuclear particle 

and high energy free-free interactions. The hard X-ray and gamma-ray plots rnay be compared with 

our results in figure 4.1. In figure 4.1 and hard X-ray and gamma-ray plots of (figure 5.3), we see 

spikey events with extremely impulsive increases followed by slower (though still fast) decays. The 

plots are log-linear, therefore since the decays of our model-generated data are concave in shape we 

recognise them as faster than exponential. In chapter 5 we will determine the form of these decays 

using an analytical approach. Where we see discontinuity in the line on figure 4.1, this is a result 

of the suddenness of the increases. The time-series on both of these figures ranges over a little less 

than two orders of magnitude, with a few exceptions. W hat we are looking at in figure 4.1 is a 

superposition of a few large events at any one time superposed upon a much lower background of 

many small reconnection events.

4.2.2 Energy Release Analysis.

Let’s have a look now at a diagram showing the energy release from cells in the model : figure 4.3. 

This diagram demonstrates the rate of energy release by magnetic reconnection as a function of both 

distance along the grid and time. Thus we have time along the x-axis, running from zero to 2 x 10® 

time-steps (4000 seconds) and the y-axis represents position within the grid of the model. The to tal 

length of the grid (i.e. total length of cells) remains constant. This diagram only shows 1/10 the full
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Figure 4.1: Total magnetic reconnection energy release time-series for whole grid. (2 x 10® time-steps 

(4000 seconds)).
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Figure 4.2: Solar X-ray flux measured by SMM.

length of the grid (i.e. approximately 100 cells, or 10® m). The grey regions represent cells where 

no energy release is taking place. This occurs when the cell is not undergoing reconnection with 

either of its immediate neighbours, i.e. its magnetic flux is parallel with th a t of both  neighbours. 

Red and blue regions represent energy release, where red equates to low energy release rate, and blue 

equates to high energy release rate. Thus, the more blue and the less red a pixel is, the higher the 

energy release rate. Uniformly coloured bands are recognisable as individual cells. Oscillations of 

the cells due to the fluid dynamical behaviour are clearly evidenced by the waves we can see in the 

cell positions. Cells lower in the diagram appear to undergo smaller amplitude oscillations, tending 

to zero at the very bottom  of the diagram. This is an artefact caused by the fact th a t the diagram 

shows the position of cells relative to the lower-most cell.

Thus, the flgure shows us a range of energy release rates occuring simultaneously. We see sites 

(circles A, B and D for example) where energy release suddenly switches on within a cell. Com

mencement of energy release is visible within several adjacent cells, up to five in the energy release 

analysis.

There are examples where energy release suddenly switches oflF (circle C). Additional to the wave 

behaviour, we see the spacing between groups of cells increase and decrease. These behaviours are
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m .

Figure 4.3: Magnetic energy release analysis. Energy release is given as a function of time and grid 

position. The x-axis shows time, the positive direction being to the right. The y-axis shows cell 

position within the model grid and is directly proportional to physical distance. Covers a complete 

run (4000 seconds) and 10® metres. Grey regions correspond to zero energy release. Red and blue 

regions correspond to non-zero energy release (blue : high energy release rate; red : low energy release 

rate).

explained by the emergence and submergence of magnetic flux.

Where energy release is not occurring within a cell, the emergence of a new cell beside it which 

has anti-parallel flux will allow reconnection and therefore energy release to commence. See figure 

4.4. Similarly, the submergence of a cell which is preventing anti-parallel flux from meeting and 

reconnecting, will allow reconnection to commence. See flgure 4.5. The corollary of this is that 

energy release can be arrested by emergence and submergence of cells. Occasionally there will be 

a cell with anti-parallel flux compared with its neighbours (see figure 4.6) and therefore undergoing 

magnetic reconnection with both neighbours. If the cell is submerging then when the submergence 

is complete one of its neighbours may become surrounded by cells with parallel flux, and therefore 

stop undergoing energy release. Also, as we can see in flgure 4.7, the emergence of a new cell can act 

to prevent reconnection.
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1.

no energy release
in this cell

new emerging cell

energy release occurring 
in all cells now

Figure 4.4: Emergence facilitating commencement of energy release.

submerging cell

no energy release 
in this cell

energy release occurring 
in all cells now

Figure 4.5: Submergence facilitating commencement of energy release.
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1.

energy release occurring 
in all cells

submerging cell

2.

no energy release 
in this cell

Figure 4.6: Submergence causing energy release to cease.

1.

energy release occurring 
in all cells

2.
new emerging cell

no energy release 
occuring in this cell

Figure 4.7: Emergence causing energy release to cease.
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m

Figure 4.8: Magnetic field density analysis. Field density is given as a function of time and grid 

position. The x-axis shows time, the positive direction being to the right. The y-axis shows cell 

position within the model grid and is directly proportional to physical distance. Covers a complete 

run (4000 seconds) and 10® metres. Red pixels correspond to positive magnetic field, and green 

corresponds to negative magnetic field. The colour intensity corresponds directly to the magnetic 

field density.

Wherever we see events starting, if we follow the cell through increasing time the colour on the 

diagram changes from blue through to red. This is due to the progressive depletion of magnetic 

energy stored in that cell and the neighbour(s) with which reconnection is occuring. We can see 

some areas where a cell becomes very narrow and the colour moves towards blue. The cause of 

this is the increase in magnetic field density resulting from compression of the cell. We expect such 

enhanced field density to cause more rapid energy release.

4.2.3 M agnetic Field Analysis.

Now, figure 4.8 shows a plot for the same run of the model and covering the same part of the grid. 

However, the colours of this diagram express magnetic field densities. Positive field density is shown 

in red, and negative in green. The greater the magnitude of the field the greater the red, or green.



4.2 Cell Parameter Distributions. 138

value at tha t pixel. Thus, we expect grey regions of the energy release analysis to correlate to cells 

where the magnetic field polarity on either side is the same as tha t adjacent to the cell, and therefore 

where no reconnection can occur. These grey regions will therefore correlate to regions of figure 4.8 

where there are blocks of uniform colour (in the y-direction).

The squares and circles in figures 4.8 and 4.3 are located in the same positions and show some 

features worthy of note. The cells marked by a square in figure 4.3 show a region where there is no 

energy release, and this correlates to the region marked by a square in figure 4.8, where we can see 

that the magnetic field is unipolar. Circle A shows a region where jfiesh magnetic flux emerges in the 

middle of a previously unipolar region, suddenly providing opportunity for magnetic reconnection 

and energy release. Similarly, circles B and D both show areas where emergence occurs, facilitating 

the commencement of energy release. Circle C shows the submergence of magnetic flux causing the 

energy release to stop. If we look carefully, we can see the magnetic field density of cells reduce owing 

to the reduction of their magnetic flux by the process of reconnection. Although it is diflScult to see, 

we would expect the colour intensities of red and green in figure 4.8 to fluctuate according to the 

compression and expansion of cells.

Thus, although these two figures show only approximately one tenth of the cells in the full grid. 

We can observe a range of fluid behaviour and its effect upon magnetic reconnection between the 

cells.

4.2.4 Distribution of Magnetic Flux Density.

For a given run, if we look at the state of the grid at the completion of the run there will be a 

distribution of magnetic field density values from which we can produce a P.D.F.

Let’s first look at the initial distribution of magnetic field density so tha t we can establish tha t the 

distribution in the settled state isn’t simply the initial state frozen into the model. Now, figure 4.9 

shows us the initial distribution of magnetic field densities for this run. The upper plot uses linear 

axes and the lower uses log axes. W ith regard only to the lower plot, the upper end of the highest 

bin is not coincident with the upper end of the range of data, therefore this bin is only partially filled 

and we expect the bin-count to be anomalously low after normalisation of the bin. Therefore we 

shall discard this point when considering the profile of the distribution as shown in this lower plot. 

We expect these distributions to be flat since they are random and uniformly distributed. We can 

see tha t this is the case.

Now le t’s look at the magnetic field density distribution for runs at a point after the run has 

settled into a steady state. The top plot of figure 4.10 uses data from the same run as figure 4.9.
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Figure 4.9: Initial distribution of magnetic field density, 10  ̂ cells. Top: linear axes; normalised;

bin-size =  10 G. Bottom: log axes; bin-size =  0.2.
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Regarding P.D.F. plots for magnetic field density distribution and magnetic flux distribution, the 

magnetic field density data only pertains to cells with length (at the completion of the run) greater 

or equal to the initial cell length. We discussed earlier that smaller cells are considered to lie below 

the resolution of the model therefore we must discard these prior to calculating any statistics.

Figure 4.10 shows the magnetic field density distributions for two runs with different numbers 

of cells (10^ and 5 x 10  ̂ cells, all other conditions the same). We can see that the process of 

running the model has had the eflfect of moving the distribution of magnetic field density from a 

flat one to a more complicated profile. The range of field densities has increased, reaching more 

than ~  log(400 G)=2.6. Dips have appeared at ~  log(6.3 G)=0.8. Above ~  log(40 G)=1.7 

we see a power-law profile. The initial magnetic field density is uniformly distributed in the range 

— 100 -H- +100 G and the mean absolute value, in common with every run of the model is therefore 

~  log(50 G)=1.7 at the commencement of the run. Vertical lines have been drawn at these points 

on the plots of figure 4.10 to show this flux density. We can see that above this flux density there 

are power-law distributions in both plots. Thus it appears that some of the magnetic flux has been 

redistributed by the processing of the model into small numbers of cells with higher flux densities, 

and with power-law distributions. Both plots on figure 4.10 have the same general form, as we would 

expect. The bottom  plot is different in origin only in that the data produced is higher quality since 

we have more points - the run commencing with 5 x 10  ̂ cells compared with 10^. We see the same 

gradient for both plots of figure 4.10 which is not surprising since the only difference is the initial 

number of cells. Of particular interest to us is the power-law-like range on the right-hand side of 

these plots. On both top and bottom plots log \B\ = 1.7 is the point where the power-law distribution 

ends. This is clearer on the bottom  plot, for which the data are more reliable.

Figure 4.11 shows the same type of results plotted where we have varied the initial cell length 

to 3 X 10  ̂ m, 5 X 10  ̂ m and 8 x 10  ̂ m, all other conditions remaining the same. We see similar 

profiles again. There is the same dip and redistribution of magnetic flux from the mid-range to above 

~  log(50 G) =  1.7. Also there is the power-law distribution produced from log(50 G) =  1.7 

upwards and where the initial length is 8 x 10  ̂ m we again find the phenomenon of the power-law 

commencing at an x-value of ~  log(50 G)=1.7.

Figure 4.12 shows three plots giving P.D.F.s of magnetic field density for cell lengths IT^ m,

2 X 10^ m and 4 x 10^ m, running from top to bottom. Again, we see a power-law-like distribution 

above the mean initial flux density.

Thus, over a range of initial cell lengths, from 3 x 10  ̂ m to 4 x 10'̂  m we see production of 

power-law-like distributions in the region immediately upwards from the initial mean flux density.
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Figure 4.10: Evolved distributions of magnetic field density. Initial cell lengths are 10  ̂ m; bin-size

= 0.2. Dotted lines mark mean initial magnetic field density. Top: 10  ̂ cells. Bottom: 5 x 10  ̂ cells.
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Figure 4.11: Evolved distributions of magnetic field density. Bin-size =  0.2; 10  ̂ cells. Dotted lines

mark mean initial magnetic field density, initial cell lengths are : Top: 3 x 10̂  m. Second: 5 x 10̂

m. Third: 8 x 10  ̂ m.
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Figure 4.12: Evolved distributions of magnetic field density. Bin-size =  0.2; 10  ̂ cells. Dotted lines

mark mean initial magnetic field density, initial cell lengths are : Top: 10  ̂ m. Second: 2 x lO'̂  m.

Third: 4 x 10  ̂ m.
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Because we see these power-laws above the mean initial flux density in a region of the plots where 

the bin count would be zero in the initial conditions of the model, we shall fit a line to the data 

points lying above the mean initial flux density whenever we have a plot showing distributions of 

magnetic flux density and exhibiting these power-law features. Unless there is a good reason (such 

as a point relates to a bin straddling the end of the distribution and therefore produces an artifically 

low count) we will not discard any point within this range in making the fit. Therefore we will have 

the same basis for comparison across all the plots.

In all three figures 4.10, 4.11 and 4.12 we see a peculiar distribution in the x-range lying below 

the initial mean flux density. In fact, the shape of this part of the plots is similar between all our 

plots which show distributions of magnetic flux and magnetic flux density. The running of the model 

has produced a re-distribution of magnetic flux where flux around the log |B| =  0.6 -(-> 1.0 range 

has become depleted. We expect this flux has been moved, by the emergence/submergence and 

reconnection processes, to above log [J5| =  1.7 and to below log \B\ =  0. It is not clear how this may 

be analysed. We see the same phenomenon in every plot showing a P.D.F. of flux density in the 

thesis including figures 3.17 and 3.18 shown in chapter 3. From now on we will therefore restrict our 

x-axis to show only the range of interest.

In figures 4.10 and 4.11 the magnetic field density reaches values of several hundred Gauss, far in 

excess of the initial values (between —100 G <4 -MOO G).

We can conclude tha t the model produces power-laws in the distribution of magnetic flux density 

above a threshold of approximately |B| =  50 G.

4.2.5 D istribu tion  of M agnetic Flux.

Let us now consider the distribution of cell magnetic fluxes produced by the model. The initial 

distributions will be fiat since =  B\ L \W  and initially, all L\ will take a single identical value, 

the width of the grid, W, does not alter from 10  ̂ m and B\ takes a uniform random distribution. 

We can see this clearly in the top plot of figure 4.13 confirming the initial distribution is fiat. We 

should note that the same effect occurs here as in figure 4.9 : the upper end of the highest bin is not 

coincident with the upper end of the range of data, therefore this bin is only partially filled and we 

expect the bin-count to be anomalously low after normalisation of the bin. Therefore we can ignore 

this point. The second and third plots in figure 4.13 are equivalent to the two plots in figure 4.10 

insofar as both show results for 10  ̂ cells and 5 x 10  ̂ cells. Figure 4.13 shows magnetic flux whereas 

figure 4.10 shows magnetic flux density. Again we see similar profiles in the evolved distributions, 

with power-laws at the high end of the plot. There is data missing from the lower ends of the plots



4.2 Cell Parameter Distributions. 145

owing to the fact tha t we ignore cells which are shorter in length than the initial 10^ m. Such cells 

are considered to fall below the resolution of the model.

Now, let’s consider the mean initial flux in the cells of the model. The initial magnetic field density 

is uniformly distributed in the range —100 G -H- +100 G and the mean absolute value is therefore 

50 G. Figure 4.14 shows the typical cell we are considering here, and for a cell of length 10  ̂ m a 

flux density value of 50 G gives a total magnetic flux for the cell of 5 x 10^  ̂ =  2q12.70 Vertical 

dotted lines have been drawn on the plots of figure 4.13 to show this level of flux density. This point 

appears suprisingly far to the right of these plots, however this is an effect of the log x-axis. We can 

see that above this level there is a power-law distribution in both the second and th ird  plots. This 

indicates that the processing of the model produces a power-law distribution in the magnetic flux 

distributions. The run which produced the second plot of figure 4.13 used cells with initial length of 

10'̂  m. Figure 4.15 shows comparable plots, initial lengths 3 x 10  ̂ m, 5 x 10  ̂ m and 8 x 10  ̂ m.

Thus, figure 4.15 shows us plots of magnetic flux distribution over a range of initial cell lengths 

from 3 X 10  ̂ m to 8 X 10  ̂ m and in all of these we see similar power-law-like distributions upwards 

of the mean initial flux.

Therefore we conclude that the model produces power-laws in the distribution of magnetic flux 

above the mean initial levels.

Because we see these power-laws above the mean initial flux in a region of the plots where the 

bin count would be zero in the initial conditions of the model, we shall fit a line to the data points 

lying above the mean initial flux whenever we have a plot showing distributions of magnetic flux and 

exhibiting these power-law features. Unless there is a good reason (such as a point relates to a bin 

straddling the end of the distribution and therefore produces an artifically low count) we will not 

discard any point in making the fit. Therefore we will have the same basis for comparison across all 

the plots.

The profiles of figures 4.11 (flux density) and 4.15 (flux) are almost identical. These plots were 

produced from the same runs. Again, these plots were produced from the same runs. We conclude 

that there is very little correlation between B  and L.

In both figures 4.13 and 4.15 we see that below the initial mean flux the distribution has changed 

from the initial fiat distribution as a result of running the model. We have commented up this in 

section 4.2.4. From now on we will restrict our x-axis to show only the range upwards from the value 

of the initial mean flux.
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Figure 4.13: Distributions of magnetic flux; initial cell length =  10'̂  m; bin-size =  0.25. Dotted lines

mark mean initial magnetic flux. Top: initial distribution; 10  ̂ cells. Second: evolved distribution;

10  ̂ cells. Third: evolved distribution; 5 x 10̂  cells.
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Figure 4.14: Typical cell in inital state where cell length =  10  ̂ m.

4.2.6 D istribu tion  of U nipolar Region Sizes.

In addition to looking at magnetic field density and total magnetic fiux we should also consider the 

sizes of the islands of same-polarity (‘unipolar’) magnetic flux. The notion of a unipolar region was 

explained in section 3.6.1. We can produce distributions of the sizes of these regions and so have a 

measure of the way they scale.

The plots in figure 4.16 which use a linear scale on the x-axis, are produced by counting and 

binning the sizes of the regions of unipolar field. The bin-size is lO'̂  m, the same as the initial 

cell length. The top plot shows the initial distribution for a run with 10^ cells, the second shows 

the evolved distribution for this same run. The third plot shows the evolved distribution for a run 

starting with 5 x 10  ̂ cells. Typically, these runs will commence with the magnetic field density 

of each cell being determined by a uniformly random distribution in the range —100 -H- 4-100 G. 

Given this random distribution the unipolar region sizes will initially be exponentially distributed. 

The argument for this is explained fully in chapter 5. The second and third plots show us tha t the 

processing of the model has not destroyed the profile, although the gradient has changed in both 

cases to ~  —0.38. We must ask ourselves whether the exponential profile is frozen into the initial 

conditions of the run and remains thereafter.

To ascertain the answer to this question we will consider a run where the initial distribution is 

not exponential but is instead a delta function. In the initial state the polarity of the magnetic 

field is made to alternate every three cells. Since the initial cell length is constant at lO'̂  m we are
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Figure 4.16: Distributions of sizes of regions of unipolar magnetic flux, using log-linear axes; initial

cell length = 10“̂ m; bin-size =  10'̂  m. Dotted lines mark initial cell length. Top: initial distribution;

10  ̂ cells. Second: evolved distribution; 10  ̂ cells. Third: evolved distribution; 5 x 10  ̂ cells.
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therefore ensuring tha t the unipolar regions are uniformly of length 3 x lO'̂  m. We can then see where 

the distribution settles to after this initial state. Figure 4.17 shows this data for initial cell lengths 

of 10  ̂ m and and 5 x 10  ̂ m. The top plot of this figure shows (this is the same data as the top 

plot of figure 4.16) tha t the model has produced a fairly smooth exponential distribution, however 

the second plot of figure 4.17 shows us that the distribution has also evolved to an exponential-like 

distribution, although from a delta function, yet it retains after running for 3 x 10® time-steps a 

memory of the initial unipolar region size. The same can be said more obviously of the third plot. 

In fact, we realise tha t the third plot is of the same profile as the second plot when we consider that 

the only difference is the halving of the initial cell length. This is why the third plot looks like the 

second although compressed in the x-direction by a factor of two. Either (1) these two distributions 

are tending towards the exponential but 3 x 10® time-steps is insufficient to reach that point, or (2) 

the distributions have reached steady states and there are two regimes frozen into the distributions 

: below and above the initial unipolar region sizes (dotted lines).

Figure 4.18 clarifies what happens for three different cell lengths shorter than 10  ̂ m. These three 

plots show straight lines on log-linear axes for three different initial cell lengths, 3 x 10  ̂ m, 5 x 10  ̂

and 8 x 10  ̂ m. The initial lengths (below which we should disregard the data) are shown by vertical 

dotted lines.

4.2.7 Effect of Varying Em ergence/Subm ergence rate.

We saw in section 3.3.2 tha t the continuous model emerges fiux such that the magnetic fiux density 

increases at a mean rate of ~  3.9 G s~^. A typical run of the model uses the parameter value k =  0.1. 

We recall that this means tha t 1 in 10 cells are involved in emergence and submergence. There are 

equal numbers of cells emerging fiux and submerging fiux, therefore 1 in 20 cells are undergoing 

emergence, and likewise submergence. Also, ^em/sub =  10  ̂ s. We recall that this (the ‘replacement 

timescale’) means tha t the rate of change of cell material is such that it would take 10  ̂ s for Ainit 

particles to emerge or submerge.

We are interested to see if variations of k and ^em/sub produce effects, expected or otherwise in 

the distributions of unipolar region size, magnetic field density, magnetic fiux and event-sizes. Table

4.1 shows the range of parameters investigated.

We will see below tha t we can’t obtain sufficient data to produce useful distributions of fiux 

density for runs 2, 3 and 4, and therefore can’t obtain a useful idea of the effect upon B  of varying 

the level of reconnection. We therefore performed runs 6 and 7 in order to give two further levels of 

reduced emergence/ submergence activity.
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Figure 4.17: Evolved distributions of sizes of regions of unipolar magnetic flux, using log-linear axes; 

initially 10  ̂ cells; bin-size =  2.5 x 10  ̂ m. For first plot, dotted line shows initial cell length. For 

second and third plots, dotted lines mark initial unipolar region size. Top: run commenced with 

(usual) random initial flux density; initial cell length =  10  ̂ m. Second: run commenced with a 

uniform single value of size of unipolar region : ^unipolar =  3 x Linit,ceil ; initial cell length =  10'̂  m. 

Third: run commenced with a uniform single value of size of unipolar region : T u n ip o ia r  =  3 x I /in it ,c e ll  

; initial cell length =  5 x 10  ̂ m.
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Figure 4.18: Evolved distributions of size of regions of unipolar magnetic flux, using log-linear axes;

bin-size =  10  ̂ m; 10  ̂ cells. Dotted lines mark mean initial magnetic flux. Top: initial cell length =

3 X 10  ̂ m. Second: initial cell length =  5 x 10  ̂ m. Third: initial cell length =  8 x 10  ̂ m.
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4.2.7.1 Distribution of Unipolar Region Sizes.

A reduction of ^em/sub and/or an increase in k will produce greater emergence/submergence turn

over of cell material and therefore breaking up of cells to smaller sizes and greater numbers of cells. 

Therefore there will be fewer large unipolar regions and more smaller regions. Figure 4.19 compares 

distributions of unipolar region sizes of these five runs. The initial cell length is marked by vertical 

dotted lines.

It is clear from the second, third and fourth plots tha t raising the level of emergence and sub

mergence by increasing n and reducing ^em/sub produces gradients steeper than -0.36 which implies 

enhanced proportions of smaller unipolar regions compared with the larger regions caused by the 

increased emergence/ submergence. We see the opposite effect in the fifth plot.

4 .2.7.2 Distribution of Magnetic Field Density.

We have already seen in figures 4.12 and 4.11 tha t for the length range we have considered (3 x 10  ̂

m to 4 X 10'^ m) power-law-like distributions in magnetic field density are produced for fiux densities 

upwards from the initial mean fiux density. The second to fourth plots of figure 4.20 shows us that 

increasing the rate of emergence and submergence by increasing tz to 0.2 or 0.4 or decreasing tem/sub 

to 500 s disturbs the form of this power-law. The increased rate submerges cells at a higher rate and 

thus brings together opposite polarity cells with greater frequency. These cells will suffer depleted 

magnetic fiux and so we would expect significant numbers of cells with low magnetic fiux density. 

This might explain the slight lowering we see of the minimum x-axis value from log(0.5 G) =  -0.3 

to log(0.28 G) =  -0.55.

Run No. A m /sub [®] K effect

1. 1000 0.1 typical

2. 1000 0.2 increased emergence/submergence

3. 1000 0.4 increased emergence/submergence

4. 500 0.1 increased emergence/ submergence

5. 2000 0.1 decreased emergence/ submergence

6. 4000 0.1 decreased emergence/ submergence

7. 8000 0.1 decreased emergence/ submergence

Table 4.1: Runs performed to test variation in parameters controlling rates of emergence and sub

mergence.



4.2 Cell Parameter Distributions. 154

EK: reduced c h i-s q u a re d  = 1.8 
g rad ien t =  —0.36  + / -  0.01

2 x 1 0 4x10̂
S iz e  o f  u n ip o la r  r e g io n s  [ m ]

6x10̂

reduced c h i-s q u a re d  =  3.3 
g rad ien t =  - 0 .3 8  + / -  0.01

2 x 1 0 4 x 1 0
S iz e  o f  u n ip o la r  r e g io n s  [ m ]

reduced c h i-s q u a re d  = 2.0 
g rad ien t =  - 0 .4 2  + / -  0.01

2x10̂  4x10̂
S iz e  o f  u n ip o la r  r e g io n s  [ m ]

6x10̂

- 1 . 5  

^  -2.0 
d  - 2 . 5  

&  - 3 . 0  

•2 - 3 . 5  

- 4 . 0

reduced c h i-s q u a re d  = 2.3 
g rad ien t — —0.39  + / — 0.01

i f -
" I '

2x10̂ 4x10̂
S iz e  o f  u n ip o la r  r e g io n s  [ m ]

6x10̂

reduced c h i-s q u a re d  = 0.9 
g rad ient =  - 0 .3 3  + / -  0.01

2 x 1 0 4x10̂
S iz e  o f u n ip o la r  r e g io n s  [ m ]

Figure 4.19: Evolved distributions of size of regions of unipolar magnetic flux, using log-linear axes;

bin-size =  10“̂ m. Dotted lines mark the initial unipolar region size. First: typical initial conditions.

Second: n =  0.2. Third: k, =  0.4. Fourth: 4m/sub == 500 s. Fifth: 4m/sub =  2000 s.
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Figure 4.20: Evolved distributions of magnetic flux density, using log-log axes; bin-size =  0.2. Dotted

lines mark mean initial magnetic fleld density. First: typical initial conditions. Second: k =  0.2.

Third: k =  0.4. Fourth: tem/sub =  500 s. Fifth: êm/sub =  2000 s.
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Figure 4.21: Evolved distributions of magnetic flux density, using log-log axes; bin-size =  0.2. Dotted

lines mark mean initial magnetic fleld density. First: tem/sub =  500 s. Second: typical rate. Third:

tem /sub =  2000 S. Fourth: tem /sub =  4000 s. Fifth: ^em/sub = 8000 s.
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Figure 4.21 shows us plots of P.D.F.s for |B| for the following runs, from the upper-most plot 

downwards : t e m /s u b  =  500 S, te m /s u b  =  1000 s, t e m /s u b  =  2000 s, ^ em /su b  =  4000 s, t e m /s u b  =  8000 s.

There is insufficient data on the first plot to give a useful distribution in the region of interest, 

above the mean initial flux density of log(50 G)=1.70. The second plot shows the data produced by 

our run using typical initial conditions and is consistent with a power-law, although only five points. 

The fifth plot shows a complete breakdown in the data. The emergence/ submergence rate is at its 

lowest in this run. Our third and fourth plots also show a more complicated distribution than the 

power-law of the second plot. We have fitted straight lines to these data however and found tha t the 

gradient increases with decreasing emergence/submergence. We will refer to this later in chapter 5.

4-2.7.3 Distribution of Magnetic Flux.

We would expect that reducing î em/sub or increasing k would tend to produce smaller cells with 

consequently less flux contained within them. In the same way, increased convection in a fluid 

results in disruption of convection cells from quasi-steady state into smaller length-scales and chaotic 

behaviour.

The typical run gives us a power-law-like distribution in the distribution of magnetic flux, more 

specifically in the range extending upwards from the mean initial flux value and covering 0.8 of an 

order of magnitude (figure 4.22). The figure shows that like the magnetic flux density distributions 

(figure 4.20) increasing the rate of emergence and submergence by increasing k to 0.2 or 0.4 or 

decreasing ^em/sub to 500 s destroys power-law-like distribution.

The profiles of figures 4.20 (flux density) and 4.22 (flux) are almost identical. These plots were 

produced from the same runs. We conclude that there is very little correlation between B  and L.

4.2.7.4 Distribution of Magnetic Reconnection Event-sizes.

We would expect the increased emergence/ submergence to reduce cell lengths, and therefore increase 

the number of cells. There would thus be a greater number of boundaries between cells. The 

background level of total energy release would be enhanced. Conversely therefore, the fifth run 

of figure 4.23 (reduced replacement timescale tem/sub =  2000 s) should therefore have a reduced 

background level. This reduced background level will be reflected in the lowest value of the peak 

energy release rate. The background rate of energy release effectively draws a lower limit across our 

plots on figure 4.23 and prevents events from occurring below the background level. See figure 3.30 

for clarification of this point. We see this occurring in the x-range of the fifth plot of figure 4.23 

insofar as the x-range reaches down to 1.5 orders of magnitude below the other plots. This run has
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an increased replacement timescale (^em/sub =  2000 s) therefore the rate of flow of cell material into 

and out of the emerging and submerging cells is reduced by half compared with the typical run. 

We expect a lower background level for the fifth run (^em/sub =  2000 s) and a correspondingly lower 

lower-limit, which we in fact see here.

It is unclear whether the energy release rate in the individual reconnection events would be 

enhanced or not. If not, then the counts of integrated energy release would be reduced (given that 

the background level of energy release rate integrated over the duration of an event is subtracted 

from the total integrated energy release during an event to give the integrated energy release, which 

is then binned etc. See figure 3.30). Also it is unclear whether the peak rate of energy release of 

individual reconnection events would be enhanced.

Figures 4.23 and 4.24 demonstrate no changes to the positions nor profiles of the (peak energy 

release rate and integrated energy release) event-size distributions caused by changing the emer

gence / submergence rates. Neither plots two, three or four show the expected enhanced background 

level.

We discuss in section 4.2.9 an analytical approach to deriving mean and maximum event-sizes. 

4.2.8 Flux-Collision Model.

The figures in section 4.2.8 show comparisons between results generated by a run commencing with 

the typical initial parameter values (as per the Definition of Commonly Used Terms given at the 

beginning of the thesis) and results generated by the model as described in section 3.3.2.1, where 

a regular pattern of submergence and emergence is imposed upon the model. Our purpose is to 

ascertain whether this ‘flux-collision’ approach, a variant of the continuous model, gives different 

results from the typical run.

W ithin each figure the upper plot shows data for the typical run and the lower shows that for the 

flux-collision scheme.

The dotted vertical line on figure 4.25 marks the initial cell length. Use of the flux-collision scheme 

doesn’t produce a power-law profile. The flux emergence in this flux-collision scheme is different only 

in the location of the emergence, not in the level or distribution.

Regarding figure 4.27, the flux collision scheme appears to complicate the exponential profile in 

the region to the right of the initial flux. However the gradients of the fit lines of the upper and 

lower plots of figure 4.27 are very similar. This has little statistical significance however, given how 

few points there are in these plots. We note that the plots of figures 4.26 and 4.27 corresponding 

to the same runs are almost identical. Given that cc we know that B  and L  are not well
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Figure 4.24: Evolved distributions of sizes of events, counted by integrated energy release. Log-log

axes; bin-size =  0.4. First: typical initial conditions. Second: k =  0.2. Third: hc =  0.4. Fourth:

^em/sub ~  500 S. Fifth: tem /sub — 2000 S.
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Figure 4.25: Evolved distributions of size of regions of unipolar magnetic flux, using log-log axes; bin-

size =  0.1. Dotted lines mark initial unipolar region size. Top: run using typical initial conditions.

Bottom: run using flux-collision initial conditions.
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correlated.

We have fitted a line to the second plot of figure 4.28, taking into account every data point. We 

have also fitted a line to the first plot, however, we discarded the last three points on this plot. Given 

that the second plot looks like the first plot up to 10.5 on the x-axis, we fitted to these points in order 

to only consider the data which lie in the x-range common to both plots. We have applied the same 

approach to figure 4.29 and discounted the last three data points of the upper plot in performing the 

line fitting.

On figures 4.28 and 4.29 we can see that the flux collision scheme leaves the positions and gra

dients of the peak energy release rate and integrated energy release profiles unchanged apart from 

introducing small dips in the bin counts in the middle of the respective x-ranges and reducing the dy

namic ranges by eliminating some of the larger events. The changes in these event-size distributions 

are small.

Thus, we find only small changes caused by the flux-collision scheme, probably due to the way 

in which it forces the emergence/submergence pattern into artificial regular alternating bands of 

colliding and spreading magnetic flux.

4.2.9 Distributions of Event-sizes.

As explained by Crosby et al. (1998), the largest Solar flaring events are approximately 10^  ̂ J  and 

the magnitude of flares recorded extends down to the limits of the instruments, and certainly down to 

10^  ̂ J. Also, they show the HXRB/SMM and ICE data which gives the distribution of this param eter 

as a power-law with an index of -1.534:0.02 and -1.674:0.02, respectively. The run from which we have 

generated figure 4.1 produced events ranging in size from 3.8 x 10  ̂ to 1.9 x 10^  ̂ J  s“  ̂ regarding 

peak energy release rate, and from 5.7 x 10  ̂ to 3.1 x 10^  ̂ J regarding integrated energy release. 

Thus the model produces events ranging over eight orders of magnitude. However, our model has a 

finite number of cells (initially 10  ̂ cells) and a uniform initial cell length of 10^ metres. As discussed 

in section 3.2.2, there will be no cells in the model with length less than 100 metres, and no cells 

with length greater than 1.5 x Linit thus we expect these to limit the maximum and minimum events 

occuring within the model.

Figures 4.30 and 4.31 show profiles of the peak energy release (figure 4.30) rate and integrated 

energy release (figure 4.31) for a run (typical initial parameters) with initial cell length of 10^ m (top 

plot) and 5 x 10  ̂ m (bottom plot). Distributions for 10'̂  m and for 5 x 10  ̂ m are almost identical 

in both cases. These distributions are not strictly power-law though have a power-law-like profile. 

Both show regions of approximate power-law form lying between edge effects. The region between
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Figure 4.28: Evolved distributions of sizes of events, counted by peak energy release rate. Log-log

axes; bin-size =  0.4. Top: run using typical initial conditions. Bottom: run using flux-collision initial

conditions.
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Figure 4.31: Evolved distributions of sizes of events, counted by integrated energy release. Log-log

axes; 10̂  cells; bin-size =  0.4. Top: initial cell length =  10  ̂ m, second: initial cell length =  5 x 10^

m.
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edge effects on figure 4.30 shows a range of 10  ̂ J s“  ̂ to 10^  ̂ J  s“  ̂ : four orders of magnitude.

Similarly, figure 4.31 shows a range of 10^ J to 10^  ̂ J. Again, the model has produced data ranging 

over four orders of magnitude. As we have already elaborated, satellite data in terms of integrated 

flux presently covers at least eight orders of magnitude, ranging from lÔ '̂  J  to 10^  ̂ J.

In chapter 5 we will consider some simple analytical approaches to the event-sizes our model- 

generates.

4.3 Power-Laws Obtained from the Model.

4.3.1 Power-Laws Produced.

Table 4.2 lists the runs and parameters where we have found power-law and power-law-like distri

butions produced by the model. The table notes the power-law index and the relevant figure. We 

have included the various power-law and power-law-like distributions generated by the different runs 

explored in chapter 3.

We saw in section 4.2 a few examples of power-laws generated by the model, although we find 

exponential distributions for the size of unipolar regions.

Of note was the production of power-laws in the magnetic field density and magnetic flux dis

tributions. In particular, the distributions of event-size counted by integrated energy are close to 

power-law in profile.

Figure 4.10 shows tha t the new part of the magnetic field density distribution above the initial 

magnetic field density is in a power-law form. The upper plot shows data for 10  ̂ cells whereas the 

lower plot shows data for 5 x 10  ̂ cells. Other parameters were as per the typical initial parameter 

values detailed in the Definition of Commonly Used Terms given at the beginning of the thesis.

Figure 4.11 shows us similar plots to figure 4.10 although with 10  ̂ cells and three different cell 

lengths : running from the top plot to the bottom plots, 3 x 10^, 5 x 10  ̂ and 8 x 10  ̂ m. Again we 

see approximately a power-law distribution in the new part of the x-range, generated by the model. 

The distribution is most clearly manifest as a power-law in the third, 8 x 10  ̂ m, plot.

Considering figures 4.20 and 4.22 in section 4.2.7, it appears that increasing 

the emergence/ submergence rate destroys power-law distributions in B  and 0. Power-laws are evident 

in the magnetic field density and magnetic flux distributions generated by the run using typical 

conditions, as shown in the first plots on figures 4.20 and 4.22.

We should ask whether these power-law-like distributions in B, ^ and event-size are transient 

distributions reached before the distributions have reached any quasi-steady state, in which case we
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would expect longer runs to produce different, more evolved distributions. We performed a run using 

the typical initial conditions and parameter values but running the model for 10  ̂ time-steps (2 x 10"̂  

s) with 5 X 10  ̂ cells instead of the usual 3 x 10  ̂ time-steps (6 x 10  ̂ s) and 10  ̂ cells.

Figures 4.32, 4.33, 4.34, 4.35 and 4.36 show distributions of flux density, magnetic flux, event-size 

distribution counted by peak energy release rate and counted by integrated energy release. The lower 

plots show the distributions obtained for the extended run (10^ time-steps), and the upper plots show 

distributions for the usual run of 3 x 10® time-steps. We recall that vertical dotted lines reflect the 

initial values of mean flux density (figure 4.32), mean flux (figure 4.33) and initial cell size (figure 

4.36).

M agnetic  f lu x  density  in  E xtended  R un .

Considering figure 4.32, for the extended run there remains two regimes in the flux distribution : a 

region generally below the initial mean flux and one above that level, the fiat distribution in the 

lower part of the x-range extends approximately 0.2 into the upper regime. After running for 10  ̂

time-steps it appears tha t this distribution is in a settled state. The region between log |B| =  1.9 

and log |jB| =  2.3 is power-law-like.

M agnetic  f lu x  in  E x tended  R un .

Considering figure 4.33, the distribution of flux is very similar in form to that of the flux density. 

Since we know tha t (f) = B  L, this indicates that there is very little correlation between cell length 

and flux density. The region below log 4> = 12.9 is a fiat distribution.

E ven t-s izes  in  E x tended  R un .

Regarding the peak energy release rate event-size distribution (figure 4.34) the extended model has 

generated events down to Êpeak =  4 compared with 5.5 for the typical run. The total dynamic range 

for the extended run is eight orders of magnitude. The distribution for the extended run is broken 

into 3 regimes as we can see in figure 4.34. The gradient of the central part of the distribution is 

-0.88 compared with -0.97 for the typical run.

Regarding the integrated energy release event-size distribution (figure 4.35) we find a very similar 

profile (for the extended run) to that of the figure 4.34, with the smallest events being around E'int =  1 

compared with 4 for the typical run. The total dynamic range for the extended run is ten orders of 

magnitude. The gradient of the central part of the plot is almost identical, at -0.84, with that of the 

typical run.
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Figure 4.32: Evolved distributions of magnetic flux density. Bin-size =  0.1; initial cell length =  10^

m. Dotted lines mark mean initial magnetic flux density. Upper: typical run (3 x 10® time-steps and

10® cells). Lower: extended run (10  ̂ time-steps and 5 x 10®) cells
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Figure 4.33: Evolved distributions of magnetic flux. Bin-size =  0.1; initial cell length =  10  ̂ m.
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Thus, it appears tha t we can generate larger dynamic ranges when the model is run for 10  ̂ rather 

than 3 X 10® time-steps, although the ranges for the typical run are anyway around six and eight 

orders of magnitude, respectively, for the peak and integrated energy release.

Unipolar Region S izes in  E xtended  R un .

The distribution of unipolar region sizes remains exponential with approximately the same gradient 

(-0.41 compared with -0.36) although the dynamic range has increased from 5 x 10  ̂m (largest regions 

are five times the initial cell size) to 8 x 10  ̂ m (largest regions are eight times the initial cell size).

Conclusion.

Thus, we have determined tha t the profiles of the distributions remain generally unchanged although 

with enlarged dynamic ranges. We expect this enlargement of dynamic range given that the run uses 

an initial state with 5 x 10® cells compared with the usual 10® cells.

4.3.2 Power-Laws Caused by Reconnection or Emergence/ Submergence.

Where there are power-laws in the data, we should seek to establish whether :

1. these are a result of power-laws frozen into the model at the beginning of a run, or

2. the power-laws are caused by the reconnection process, or

3. the power-laws are caused by the emergence/ submergence process.

4. the power-laws are caused by a combination of reconnection and the emergence/submergence 

process.

We will examine the power-laws we have obtained from the model with a view to answering this 

question.

We will compare magnetic field density, magnetic flux and event-size distributions for the following 

runs ;

1. ‘typical’ initial conditions, as per the Definition of Commonly Used Terms given at the beginning 

of the thesis.

2. same as above, but reconnection turned off.

3. same as ‘typical’, but emergence/ submergence reduced by setting flux replacement timescale, 

4m/sub =  10^ S instead of ^em/sub =  10® s.
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The three plots on each figure will relate to these three runs in the same order. Thus, the second 

plot allows us to compare the typical behaviour with a run where there is no effect from the depletion 

of magnetic field density caused by reconnection. The third plot allows us to compare the typical 

run with one where the effect of the emergence/submergence is reduced. We cannot obtain event-size 

distributions when the reconnection process is turned off, so figures showing the peak and integrated 

energy release will only compare two plots (1. and 3. above).

In order to check the dependency upon initial cell length we also produced these distributions for 

the same conditions but initial cell length of 5 x 10® m.

W ith regard to distributions of magnetic field density let us look again at figure 4.20.

Now, the second, third and fourth plots show us that increasing the emergence/submergence rate 

by decreasing the flux replacement timescale (^em/sub) or increasing the fraction of cells undergoing 

emergence/submergence (k) has the effect of destroying the model-produced power law in the upper 

part of the x-range.

Similarly, with regard to distributions of magnetic flux, figure 4.22, second, th ird  and fourth 

plots, shows us that increasing the emergence/submergence rate again has the effect of destroying 

the model-produced power law in the upper part of the x-range.

Figures 4.37 and 4.38 show us magnetic field density data from the three runs described above, 

but for initial cell lengths 10̂  m and 5 x 10® m respectively. The first plots in each of these two 

figures shows data from the typical run, as described above, with (1) reconnection turned on, and 

(2) ^em/sub =  1000 s, n = 0.1. We can see power-law distributions on the far right-hand sides, above 

the mean initial magnetic flux densities. The second plots on these figures show data  from a run 

where the reconnection has been turned off. We can see that the power-laws have been destroyed 

and there is evidence of no discernable distribution. The third plots on these figures show data from 

a run where the emergence/submergence rate has been reduced by a factor of 10 by setting the flux 

replacement timescale, ^em/sub =  10'̂  s. Again, the power-laws have been destroyed and there are 

no noteworthy distributions. Thus, whether cell length is 10̂  m or 5 x 10® m, the effect upon the 

magnetic field density of removing the reconnection process, or reducing the emergence/submergence 

is the same : obliteration of the power-law distributions.

Figures 4.39 and 4.40 show us magnetic flux data from the three runs described above, but for 

initial cell lengths 10  ̂ m and 5 x 10® m respectively. The first plots in each of these two figures shows 

data from the typical run, as described above, with reconnection turned on, ^em/sub =  1000 s and k 

= 0.1. We can see power-law-like distributions on the far right-hand sides, above the initial magnetic 

flux levels. The second plots on these figures show data from a run where the reconnection has been
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Figure 4.37: Evolved distributions of magnetic field density. Bin-size =  0.2; 10̂  cells; initial cell

length =  10  ̂ m. Dotted lines mark mean initial magnetic field density. Top: typical run. Second:

reconnection turned off. Third: emergence/submergence activity reduced, flux replacement timescale,

^em /su b  ~  f  0  S.
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Figure 4.38: Evolved distributions of magnetic field density. Bin-size =  0.2; 10^ cells; initial cell 

length =  5 x 10  ̂ m. Dotted lines mark mean initial magnetic field density. Top: typical run. 

Second: reconnection turned off. Third: emergence/ submergence activity reduced, fiux replacement 

timescale, tem/sub =  10  ̂ s.
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turned off. We can see tha t turning off the reconnection results in obliteration of the power-law-like 

distributions. The third plots show data from a run where the emergence/submergence rate has been 

reduced by a factor of 10 by setting the flux replacement timescale, ^em/sub — 10  ̂ s- While reducing 

the emergence/ submergence seems to produce a different distrubution at levels of magnetic flux below 

the mean initial level (marked by a dotted line), the power-law-like distribution at a level above the 

dotted line has been complicated although it appears to preserve the skeleton of a power-law. Thus, 

we find again that whether cell length is 10  ̂ m or 5 x 10  ̂ m, the effect upon the total magnetic flux of 

removing the reconnection process is to destroy power-laws. Reducing the emergence/ submergence 

rate however does not destroy the power-laws.

Figures 4.23 and 4.24 show five plots each relating to the five runs referred to in table 4.1. These 

two figures show tha t increasing the emergence/submergence rate by increasing k. or decreasing 

^em /sub ^as no effect upon the profiles of event-sizes, although the dynamic range may be slightly 

reduced. The last plot on both of these figures shows data for reduced emergence/ submergence rate 

(^em /sub  =  2000 s, instead of 1000 s) and again we see no substantial difference in the distribution.

Let’s look at figures 4.41 (initial cell length of lO'̂  m) and 4.42 (initial cell length of 5 x 10  ̂

m) which show peak energy release rate event-size distributions. On each figure, the first plot 

shows event-size data for the typical run. The second plot shows event-size data for the reduced- 

emergence/ submergence run. The first plots on these figures are not power-law but exhibit power- 

law-like behaviour for at least part of the x-range.

In figure 4.41, where the initial cell length is 10'̂  m, the second plot shows us that reduced emer

gence / submergence complicates further the distribution in the peak energy release rate distribution. 

Likewise for figure 4.42, where the initial cell length is 5 x 10  ̂ m, in respect of the power-law-like 

distribution in the peak energy release rate event-sizes of this figure. In the upper plot of figure 4.41 

we have reduced =  7.4 whereas in the lower plot, where emergence/submergence is reduced, we 

have reduced =  4.4. Similarly, in the upper plot of figure 4.42 we have X^ =  4.2 whereas in the 

lower plot, where emergence/ submergence is reduced, we have X^ =  2.1. These values of X^ are 

misleading because the lines are fits to all of the points on each plot.

It appears thus tha t without emergence/submergence the distribution of event-sizes becomes more 

scattered.

Figures 4.43 (initial cell length of 10'̂  m) and 4.44 (initial cell length of 5 x 10  ̂ m) show event-size 

data for these two runs again, although we are now looking at event-size distributions counted by 

integrated energy release. The first plot on each of these two figures shows power-law-like distributions 

stretching over at least six orders of magnitude. In fact, if we compare the first plots on these two
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Figure 4.39: Evolved distributions of magnetic flux. Bin-size =  0.2; 10  ̂ cells; initial cell length =  10^

m. Dotted lines mark mean initial magnetic flux. Top: typical run. Second: reconnection turned

off. Third: emergence/submergence activity reduced, flux replacement timescale, tem/sub =  10  ̂ s.
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Figure 4.40: Evolved distributions of magnetic flux. Bin-size =  0.2; 10  ̂ cells; initial cell length =  

5 X 10^ m. Dotted lines mark mean initial magnetic flux. Top: typical run. Second: reconnection 

turned oflF. Third: emergence/ submergence activity reduced, flux replacement timescale, 4m/sub — 

10  ̂ s.
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Figure 4.41: Evolved distributions of sizes of events, counted by peak energy release rate. Initial

cell length =  10  ̂ m; log-log axes; bin-size =  0.4; 10  ̂ cells. First: typical run. Second: emer

gence/submergence activity reduced, flux replacement timescale, ^em/sub =  10  ̂ s.
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Figure 4.42: Evolved distributions of sizes of events, counted by peak energy release rate. Initial

cell length =  5 x 10  ̂ m; log-log axes; bin-size =  0.4; 10̂  cells. First: typical run. Second: emer

gence / submergence activity reduced, flux replacement timescale, tem/sub =  10  ̂ s.
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figures we can see tha t despite the factor of two difference in the mean initial cell length the two 

profiles are in almost the same position with the same slope. Figure 4.43 shows us tha t the power- 

law-like distributions and their dynamic ranges are maintained for reduced emergence/ submergence 

although the profile has become more complicated. Looking at figure 4.44 however, we see tha t the 

dynamic range is slightly shortened in the second plot although the profile remains the same.

Thus, it seems tha t the power-law-like profiles of event-size distributions are highly robust al

though the presence of reconnection, and to a lesser extent emergence/ submergence is necessary to 

maintain the power-law-like distributions in \B\ and (j).

4.4 Summary.

4.4.1 M agnetic Field Density.

Regarding the magnetic field density, it thus appears tha t in order to obtain at least a power-law 

distribution both reconnection and a certain level of emergence/ submergence is required. If there 

is too much emergence then power-laws will be destroyed, i.e. tem/sub =  500 s, or k =  0.4 (see 

figure 4.20). If there is too little emergence/ submergence, i.e. tem/sub =  2000 s then the power-law 

distribution will also break down. It is clear from figures 4.38 and 4.37 tha t both energy release from 

reconnection and at least the standard level of emergence/submergence ( te m /s u b  =  1 0 ^  s and k = 0.1) 

are necessary for power-laws in magnetic field density. The distributions are not robust in respect 

of the values of n  and te m /s u b -  Figures 4.39 and 4.40 indicate that reconnection is essential for the 

generation of power-law distributions in B.

4.4.2 M agnetic Flux.

Figure 4.22 shows us tha t more than or less than the standard level of emergence/ submergence will 

cause the power-law in the magnetic fiux to break down. The distributions are not robust in respect 

of the values of k  and ^em/sub- Also figures 4.40 and 4.39 show tha t destruction of magnetic fiux 

and/or heating by reconnection is necessary to maintain the power-law-like distribution in (f) shown 

on the first plot of figure 4.22. Thus, again we find tha t both energy release from reconnection 

and the standard level of emergence/submergence ( te m /su b  =  1 0 ^  s and « =  0 . 1 )  are necessary for 

power-laws in magnetic field density and neither specifically drive the power-law distribution.

It is interesting that in many parts of the parameter space which we have explored we obtain 

power-law-like distributions in B  and 0 yet these run from and above the initial mean levels on the 

plots. W ithout exception the distributions below these levels, marked by vertical dotted lines, are
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Figure 4.43: Evolved distributions of sizes of events, counted by integrated energy release. Initial

cell length =  10'̂  m; log-log axes; bin-size =  0.4; 10  ̂ cells. First: typical run. Second: emer

gence / submergence activity reduced, flux replacement timescale, êm/sub =  s.
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emergence/ submergence activity reduced, flux replacement timescale, ^em/sub =  10  ̂ s.
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Peak energy release rate [J s Integrated energy released [J]

Dynamic range 10^ 4 4  1Q12 10  ̂ 4 4  10^^

Gradient -0.88 4 4  -1.09 -0.83 44  -0.91

Table 4.7: Dynamic ranges and power-laws in peak and integrated energy release.

not power-law-like and have no noteworthy profile.

4.4.3 Event-sizes.

The second plots of figures 4.41, 4.42, 4.43 and 4.44 show profiles similar to the typical run (uppermost 

plots), although the distributions are more complicated. This might indicate that the reconnection is 

largely responsible for the nice profiles of the uppermost plots, but tha t there is a contribution from 

the emergence/submergence. Reducing the emergence/submergence changes neither the position nor 

slope of the distributions. Perhaps a requirement of the peak and integrated energy release event-size 

distributions is a small level of emergence/submergence, and ^em/sub — 10  ̂ s and K =  0.1 is sufficient.

Table 4.7 shows the event-size dynamic ranges and power-law indexes obtained from the model. 

We find that power-law-like peak and integrated energy event-size distributions are invariably pro

duced. We also find tha t between the many parts of the parameter space we have explored, not 

only in this chapter but also in chapter 3 the profiles of these distributions are extremely similar and 

robust, with dynamic ranges and gradients in general terms as given in table 4.7.



Chapter 5

Discussion and Future Work.

“This really happened.” 

Kurt Vonnegut.

“Come off it!”

Jeremy Paxman.

We will first discuss a number of specific m atters before returning to the specific questions we 

posed in the Introduction. These matters are :

1. An explanation of the initial distribution of unipolar region sizes.

2. An analytical approach explaining aspects of the event-size distributions generated by the model

and energy release time-series.

3. A comment upon the robustness of B, (f), Tunipolar and event-size distribution profiles-.

4. The variation of |B | with the Solar cycle.

The questions we posed in the Introduction were as follows :

1. How does the power-law flux density distribution arise?

2. How does the power-law event-size distribution arise?

3. Do we see sufficient dynamic range and appropriate power-law indexes in the data?
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Figure 5.1: (a) Schematic of unipolar region of length N  cells, (b) and (b) Two possibilities of 

unipolar region flux polarities.

4. Can features of flaring events be obtained with this model?

5. How do the results depend on the details of the reconnection mechanism?

6. W hat is the relevance of Self-Organised Criticality?

Finally, we will briefly discuss possible future work.

5.1 Unipolar Region Sizes.

We recall tha t we saw plots in section 4.2 demonstrating that the initial distribution of unipolar 

region sizes is exponential. Speciflcally, the top plot of figure 4.16 gives the initial distribution, the 

gradient being —0.30. We will now derive analytically the profile and gradient of this distribution.

If we consider a long series of cells and choose any consecutive group of N  cells from these at 

random, we can find the probability of these N  cells being a unipolar region.

Assuming every cell has magnetic flux attached to it, the polarity of the flux is a random variable 

with probability p = 0.5 of the flux in each cell being positive. Therefore, (1 — p) is the probability 

of negative flux.
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To find the probability P{N)  of obtaining a unipolar region with negative flux (diagram (a) in 

figure 5.1), we have :

P { N ) = p ^  ( 1 - p ) N

Diagram (b) is the same as (a) except with reversed polarity. There are therefore two ways of 

obtaining a unipolar region of size N.

Thus, we have :

P( N)  = 2 p 2 ( i _ p ) W

=  (0.5) (0.5)" (5.1)

If our grid is long enough to ignore edge effects we can take this to be the P.D.F. of unipolar 

region size. Therefore,

logioP(iV) =  logioO.5 +  N  logio 0.5

=  -0 .30  -  0.30 N  (5.2)

Thus, equation 5.1 implies an exponential P.D.F. for N and equation 5.2 tells us th a t if we plot 

logio -V- N  we would expect the distribution to be a straight line of gradient % —0.3. Both of 

these results are found in the results of the model as shown in figure 4.16. Thus, we are clear that 

unipolar regions will initially be exponentially distributed with a gradient of -0.3.

5.2 An Analytical Approach to Peak Energy Release Rate and Integrated 

Energy Release Event-size Distributions.

Using a simplified approach we can attem pt to generate order-of-magnitude approximations to the 

features of the model-generated distributions and compare these to the results generated. We will do 

this for the run using the typical initial parameter values. We will calculate estimated values of peak 

energy release rate and integrated energy release. We will also obtain an estimate of event duration 

and algebraic expressions for rate of energy release and field density during reconnection. These will 

allow us to produce decay curves for the energy release rate.

Let us first establish the values of some supporting parameters. Now, the first plot of figure 4.20 

indicates tha t magnetic field density reaches a maximum of |Bmax| ~  10 '̂^ G. Also, given the initial
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distribution of magnetic field density in the range —100 -H- +100 G, we can take a mean value of 

|j(5| ~  50 G. Where n % 10^  ̂ m “  ̂ and m  = mp =  1.673 x 10~^^ kg we have p 1.7 x 10“  ̂ kg m~^ 

typically. Also, /io =  1.256 x 10~® H m“ h 

We know tha t :

a -  l" i
y/WP

Thus, where magnetic field density is a mean we have Ca ~  345 m s“  ̂ and when magnetic field 

density is a maximum we have Ca ~  2.18 x 10  ̂ m s~^

For the calculations made in this section we will use the following values :

L = 10'̂  m

P i  =  50 G

PmaxI =  10 '̂^ G =  316 G

Agrid =  10  ̂ m^

p =  1.7 X 10"^ kg m “  ̂

fiQ =  1.256 X 10"® H m"^

6t = 0.002 s

C'a =  345 m s"^

C'a,max =  2.18 X 10® m s"^

We will now obtain an estimate of the typical duration, D, of events. For reasons which will 

become clear below, this duration has the sense of a half-life because it represents the timescale of 

the decaying energy release rate, or equivalently, the decaying fiux density.

Generally through these analytical investigations of section 5.2 we assume the following :

1. during an event the entire magnetic energy within a cell is destroyed in the reconnection process. 

Thus, B  will drop to zero during the progress of the event.

2. during an event magnetic energy is released at a constant rate.

3. as mentioned earlier, we are treating each cell as being of constant length 10  ̂ m.

The two assumptions mean tha t events would have square profiles if represented on a plot of 

E  -V -  t ,  i.e. tha t when the event overtakes the background level it will instantaneously increase to 

a level above the background, then persists for a while at that level before instantaneously dropping
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below the background. In fact B  will never reach zero before the culmination of an event because 

prior to that point it will be overtaken by another reconnection site. The rate of energy release,

is dependent upon B  and as B  reduces we would expect E  to attenuate accordingly, nevertheless for

simplicity we assume constant E.

We know that :

E b ~ L  Agrid (5.3)

È  ^  - C l  Agrid (5.4)

Typically, where a run commences with 10® cells and the cell length is uniformly 10^ m we find 

that the model settles into a state where there are ~  1,4 x 10® cells. Therefore we have :

10V(1.4 X 10®)  ̂
345 ^

% 20.70 s

Over a model run of 4000 s we might therefore expect the number of events :

4000

In fact, during the run (typical parameter values) which generated figure 3.9 there were 171 events. 

Our estimate is remarkably close to this value.

We recall in table 1.2 that the threshold duration of the instruments SMM and ICE were 200 s 

and 100 s respectively and we might therefore consider these figures to be upper limits upon event 

duration. These figures tie in with our estimated mean duration of 20.70 s.
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E stim a te  o f In tegrated E nergy Release.

We will calculate a typical value for integrated energy release, E'int- Let us assume that the whole 

of the magnetic energy of a cell is consumed by a perfect reconnection event with zero background 

energy release : irrespective of whether the cell reconnects with one or both neighbours, it completely 

exhausts the magnetic energy it contains.

When we say ‘typical cell’, we must remember that only cells with very high rate of energy release 

are counted towards the event-size distribution, therefore we should consider our result here to be 

highly tentative.

We know that the magnetic energy contained by a cell is :

E b  ^  L  Agrid
2/io

Thus, for our typical cell we have instead :

F- ~  T AE i n t  ~  L A ^ m  2^^

10^ X  10® X  (5 X  10“ ®)̂
“  2 X 1.256 X 10-6

«  10" J

Considering figure 4.24 we can see tha t we have a result reasonably in line with the largest events 

produced by the typical run of the model.

E stim a te  o f P eak E nergy Release Rate.

We will now obtain an estimate for the maximum value of the peak fiux occurring in an individual 

reconnection event. In other words, the likely highest value obtained for energy release where re

connection is occurring between two adjacent cells. This will occur where Ca  and B  are both high. 

Similarly to equation 5.4 we have :

I 7?l ~  Â l^niaxl\Jl/\ ~  tvA,max -Agrid «
Z flQ

PmaxI A l-^maxl
VJIÔP 2fo
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The lower plot of figure 3.9 shows us that this is a good estimate for the upper limit of peak 

energy release rate.

In a sense, the lower limit for peak energy release rate is the background rate since it is at the point 

that an event significantly exceeds the background energy release tha t a cell undergoing reconnection 

becomes a reconnection event. However, it is unlikely that any events will be as small as this minimal 

size because the event occurring at any particular time during the run will by definition be the site 

of greatest energy release at tha t time in the model.

We can attem pt to calculate a likely mean value for peak energy release. Taking mean values for 

alfven speed and magnetic field density we know : :

\E\ K Ca .4grid ^

% 10®-®̂  J s ' l

This value lies in the middle of the data on the top plot of figure 4.30, and as we would expect,

also sits at the mean level of the lower plot on figure 3.9.

Decay of Rate of Energy Release, E .

We have already mentioned tha t È  will diminish during an event. Let’s now consider this in more 

detail and obtain expressions showing how E  and B  vary with time, t.

Figure 5.5 shows that the energy available for release by reconnection is the volume

multiplied by the magnetic energy density, given by 

Thus,

B^
E  — C'a Agrid

2 /io

VRo p 2 /io

=  _  (5.5)
2 \/p  Po
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Also,

However, we know : (f) — \B\ L  W  

Therefore :

dB  _  Ca  \B\ 
dt L

Let C be a constant, where :

L y/PO P

We recall tha t L  is the cell length. So, we have :

d . -

j §  -  - /< ■ •
-  — = - C  {t + to)

where is a constant of integration. 

When t = 0, let B  = B q, hence :

i  =
1

to C B o

So,

Thus, rearranging
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Therefore, B  decreases as where the half-life of the magnetic field density, tb  = b^  

Substituting equation 5.6 for R in equation 5.5 gives :

E  = —

Therefore we find tha t :

1̂ 1 (X (5.7)
(1 +  +

-3This represents a rapid decay. Where t »  r  , \E\ oc t'

Now, le t’s consider the half-life of the magnetic field density, t b , where B q = 50 G.

Tb  = Ro C
1

“̂ 0 ( l vâUt )

L Æ I  (5.8)
Rn

Thus :

t b \b o =50  g  =  29 s

and, where B  = B^

T b \b o = 3 1 6  g  =  4.6 s

An examination of figure 3.34 shows that these values for tb are realistic for the model. So, we 

find that the rate of energy release and fiux density will decay quickly. Figure 5.2 shows us the time- 

series of rate of energy release by reconnection for a run using the typical conditions and parameter 

values. The half-life values we have calculated explain the steep decay curves we see in figure 5.2. 

By way of comparison figure 5.3, already referred to in section 4.2.1, shows us soft and hard X-ray 

and gamma-ray photon count time-series for a typical Solar fiare during Solar maximum.

We can see some similarities between the profiles of figures 5.2 and 5.3 : both have a continuum 

background on to which are superimposed individual large events. These events each peak very 

rapidly then decay rapidly. The time-scales are very similar : the model-generated data  covers 4000
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seconds and the events have half-lives of a few seconds where the Solar flare data covers 3600 seconds. 

Our model is bound to produce many small events and no large events for the following reasons. The 

notion of an event means the interaction (reconnection) between a cell and both, or either, or its 

neighbours. An event cannot extend into a larger region. Therefore we cannot simulate an active 

region, for instance, without changing the deflnition of an event to mean perhaps something like 

the sum of all the reconnections occuring within a specifled local region. We also can’t simply use 

very large cells because there will then be fewer boundaries, or interactions, between the cells and 

reconnection cannot by deflnition occur within cells. In both synthetic and real data (flgures 5.2 and 

5.3) we flnd tha t the events typically raise above the background by up to two orders of magnitude.

We will now plot some example synthetic decay curves, for E, generated according to our derived 

expression :

\É\ a
(1 +

This will allow us to compare these synthetic curves with the decay curves of the real Solar X-ray 

photon flux. We must remember though that whereas flgure 5.3 shows photon counts our expression 

for È  is in terms of J s“ .̂

Figure 5.4 shows plots of energy release rate. We have the first 200 seconds of flgure 5.2 (top-left 

plot), which shows the total energy release rate for the entire grid; the first 200 seconds of the energy 

release rate for the largest events in the same run (top-right plot); the calculated decay profile for 

the energy release rate of a cell with length, L  = 10“̂ m, p =  p =  1 . 7x  10“  ̂ kg m~^ and initial 

B q =  10  ̂ G (bottom-left plot); same as previous but with B q = 10  ̂ G (bottom-right plot).

The top-left and top-right plots match, indicating that the total grid energy release is dominated 

by at most one individual large event occurring at any time. Looking at the lower plots we see that 

the greater the value of B q the smaller the half-life, as we would expect from equation 5.8. A drop 

of 0.3 on the logarithmic y-axis represents a halving of the energy release rate. These plots all have 

the same axes therefore we can compare these easily. It seems that many, if not all, of the decaying 

line-segments on the upper two plots could be represented by sections of the profiles given on the 

lower plots. Certainly, by visually matching these plots, it appears plausible that the energy release 

profiles generated by our model undergo decay in accordance with equation 5.7 :

1̂ 1 "  ( T ^

Now, these upper plots of figure 5.4 appear similar to the profiles in the SMM data (figure 5.3). 

We conjecture tha t the Solar X-ray photon flux also undergoes decay according to something similar 

in form to equation 5.7 and this might indicate a similar underlying process, i.e. release of magnetic
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energy from the plasma following the rule tha t : \E\ oc , which underpins the reconnection

mechanism of the model.

The smallest events counted by the integrated energy method would in principal be marginally 

more than zero (after subtraction of the background level). Given an extremely long run time we 

might expect to see such events, however, we are unlikely to see such events over shorter periods 

because where there are many cells (certainly > 10^) there will always be events whose energy release 

rate lies significantly above the background level and it is, by definition, only the largest of these 

events which will be counted towards the event-size distribution.

Now, we will make further order-of-magnitude calculations regarding the energy release rate of 

the model. Let us assume tha t each cell is identically m in length, and tha t the evolved steady 

state has ~  1.4 x 10  ̂ cells present in the grid at any time (section 5.2).

As we have seen, reconnection in the model requires calculating the volume of a cell swept out at 

the Alfven speed during a single time-step and determining the energy stored within the magnetic 

field of that volume. This energy is assumed to be available for reconnection. This is the method 

we will use here in our estimate. Figure 5.5 illustrates the volume we are considering within the cell. 

Where ^mag is the magnetic energy density, the average energy release within a typical cell is given 

by :

mag

----2

345 X 10« X
2 X 1.257 X 10-6

% -3.43 X 10  ̂ J s"^

We are considering a typical run where there are ~  1.4 x 10  ̂cells present in the steady state

(section 5.2), thus the total background level of energy release :

•^background ~  1.4 X 10  ̂ X 3.43 X 10  ̂J S ̂

% 4.80 X 10i2 J s~^
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Figure 5.2: Total magnetic reconnection energy release time-series for whole grid. (2 x 10  ̂ time-steps 

(4000 seconds)).
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Figure 5.3: Solar X-ray flux measured by SMM.

% 10^2.68 J  g-1

Now, figure 5.2 shows a background level of % 10^° ® J  s~^, which is much smaller than  our derived 

value. Our derivation however rests on assuming a constant level of energy release per cell. We saw 

earlier however tha t for any given reconnection event the energy release rate decays approximately 

as per :

1̂ 1 oc
(1 +  t )^

Figure 5.6 shows a pictorial representation of our problem here. Area ABCD (shaded region) rep

resents the actual integrated energy flux of an event, whereas area ABCE represents the integrated 

flux assumed by our calculation. Area ABCD divided by A t  gives the true mean energy flux. Given 

the decay profiles which we see in flgures 5.4 and 5.2 we can appreciate tha t figure 5.6 considerably 

understates the problem. Equation 5.7 indicates tha t |E | falls as and we have already deter

mined that Tg 1^0=50 G =  29 s. The largest events in the grid will have flux density values larger 

than 50 G and will therefore have shorter half-lives, thus we expect \E\ will decay on a timescale of
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Figure 5.4: Comparisons of energy release rate profiles. Top-left: to tal energy release for typical 

conditions, first 200 s only of run. Top-right: energy release of largest event in grid, for typical 

conditions, first 200 s only of run. Lower-left: calculated approximate decay of energy release rate 

for a cell of length lO'̂  m, density 1.7 x 10“  ̂ kg m “  ̂ and initial flux density, B q =  10^ G. Lower- 

right: calculated approximate decay of energy release rate for a cell of length 10^ m, density 1.7 x 

10"^ kg m “  ̂ and initial flux density, B q = 10^ G.
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Figure 5.5: Schematic of approach to calculating magnetic energy release rate.
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Figure 5.6: Representation of the difficulty of assuming constant energy release rate when calculating 

background flux.

seconds.

Therefore in this case assumption of constant \E\ will give a greatly over-estimated value of the 

typical energy release rate for a single cell, and hence the whole grid.
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Figure 5.7: Schematic of results distributions, î unipoiar? (f), event-sizes counted by peak and 

integrated energy release. Vertical dotted lines represent initial mean values.

5.3 A Comment upon the Robustness of J5, ÿ, I/unipoiar and Event-size Dis

tribution Profiles.

Throughout the examination of runs utilising a variety of variations of initial conditions and param

eters, we have seen tha t the recurring form of these distributions are as shown schematically in figure

5.7. The only exceptions are the event-size distributions for the run using a random multiplier on the 

energy release rate of 0.9 < (  < 1.1. These two distributions are S-shaped. The weight of evidence 

suggests nevertheless tha t in the face of the numerous variations in the initial conditions which we 

have explored, the underlying structure of the model produces these distributions : power-law in B,  

(}) and event-sizes, exponential in unipolar region size.

5.4 Variation of |B| with the Solar Cycle.

We mentioned in the Introduction that Schrijver & Harvey (1989) produced distributions of fiux 

density for six different points in the Solar cycle with maximum around the year 1980. These are 

shown again in figure 5.8. The x-axis represents magnetic field density in Gauss. We can see that
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Figure 5.8: P.D.F. of \B\ (despite the use of 0 in the figure) at different times in the Solar cycle. 

Bin-size =  1 G. Time interval ‘d ’ represents Solar maximum. (Schrijver &; Harvey 1989).
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the distributions become decreased in steepness approaching Solar maximum and steeper afterwards. 

This is possibly caused by the increased flux emergence during Solar maximum bringing flux to the 

photosphere at a higher rate than usual. Thus by varying k and tem/sub we might expect our model 

to produce data showing this same pattern.

Referring back to figure 4.20 in section 4.2.7, the first plot has a gradient of -2.8 in the typical 

initial conditions. The second plot shows us tha t raising the rate of emergence and submergence 

by increasing the proportion of cells undergoing these processes, K, from 0.1 to 0.2 has the effect 

of increasing the gradient to -3.7. The flux distribution has broken down in the third plot, where 

K = 0.4. In the fourth plot we have increased the emergence/ submergence activity by reducing the 

replacement time-scale, tem/sub? to 500 s from 1000 s. The gradient of the flux distribution has 

broken down. In the fifth plot we have reduced the emergence/ submergence activity by increasing 

^em/sub to 2000 s from 1000 s. This has also increased the gradient, to -3.1. Thus, our flux density 

data on changing the emergence/submergence rate is limited to increasing k from 0.1 to 0.2 (second 

plot, increasing emergence/submergence rate) and increasing tem/sub from 1000 s to 2000 s (fifth 

plot, decreasing emergence/submergence rate). The second plot is contrary to our expectation that 

increasing the level of flux emergence/submergence reduces the gradient.

We can supplement this data with figure 4.21. The third and fourth plots show successively lower 

rates of flux emergence/submergence and increasing gradients, in agreement qualitatively with figure

5.8. We must however qualify this evidence : firstly these plots do not show smooth distributions, 

and secondly there are only four or five bins within the region of the plot which is of interest (region 

above mean initial flux density).

Thus, we can see tha t it is difficult to produce a useful distribution of fiux density by varying 

K or tem/sub- The model emerges fiux with a uniform spatial distribution each time-step, since 

each emerging cell receives the same dose of flux. The fiux density emerged therefore depends 

inversely upon the length of each cell. Increased emergence will result in increased reconnection, but 

it is unclear given the data, what effect reconnection will have upon the fiux density distribution. 

Simply increasing k or decreasing tem/sub will not represent the increase of fiux emergence moving 

towards Solar maximum if it is the case that Solar fiux emergence occurs with a power-law, or 

other, distribution. Our model would need to emulate this distribution in order to test if increased 

emergence directly results in the model in a flattening of the flux density distribution gradient (and 

therefore gives confirmation that the model is a useful representation of the relevant Solar processes).

Looking generally at the shape of the curves of figure 5.8 we can see a likeness with the general 

shapes of the distributions of flux density given in figure 4.21 and other figures showing distributions



5.5 How do the Power-law-like Distributions of Flux D ensity and Event-size 
Arise? 213

heating

magnetic
pressure

opposite 
polarity 
field /

depletion of
magnetic
energy

magnetic
structure

reconnection
rate

fluid behaviour 
and properties

emergence and 
submergence

Figure 5.9: Schematic of self-interaction of model.

of flux density throughout the thesis. We mean that these distributions, observed and produced 

by our model, have two regimes ; a lower non-power-Iaw region and an upper steeper power-law or 

power-law-like region. We recall our schematic flgure 5.7 illustrating this profile.

Schrijver & Harvey (1989) used synoptic magnetic field maps for the period 1975 to 1984 with 

resolution of 1° in longitude and 1/90 in sine-latitude. These maps were produced by smoothing 

l"-resolution daily magnetograms in order to reduce noise. The data used by Schrijver & Harvey 

(1989) was obtained by discrete sampling, although of smoothed data. We would therefore expect 

the Isliker effect to be present and contribute at least partly towards the roll-over at the low end. 

Also, as discussed in section 3.4.6, our model-generated distributions of flux density are subject to 

the Isliker effect.

Thus, our conclusion here is that there is some limited evidence for agreement between the model 

and the observed changes in the distributions of |B| with the Solar cycle.

5.5 How do the Power-law-like Distributions of Flux Density and Event-size 

Arise?

We will discuss the magnetic flux density and event-sizes together. The reason for this is th a t the 

spatial distribution of flux and the reconnection process feed into each other. Let’s discuss in qual

itative terms the relationships between the different processes in the model. Figure 5.9 summarises
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schematically and in simple terms how the different aspects of the model interact qualitatively. The 

model produces power-law-like flux density distributions in the upper regions of the plots and ar

guably power-law-like event-size distributions over the majority of the x-range of plots. The figure 

illustrates that the fact of whether or not reconnection occurs, and (if it does occur) the rate of 

energy release, are both functions of the distribution of flux and its polarity. Reconnection will only 

occur where there is a meeting of anti-parallel flux at a boundary between cells. The reconnection 

affects the magnetic fields by the depletion of magnetic energy which results from reconnection. The 

magnetic fleld distribution affects the fluid behaviour by the presence of pressure resulting from the 

magnetic fleld. This magnetic pressure does not follow the adiabatic identity :

Pth =  constant

where V  oc L. 

Instead,

and

P mag OC B

| B | « i

therefore

P m a g  OC j^ 2

We know tha t reconnection feeds directly into the thermodynamic properties of the cells by heating 

the material. We also know tha t the fluid motions of the cells affect the reconnection rate : the rate 

of reconnection is dependent upon and C'a (see section 5.2) and therefore upon B  and p which 

both depend inversely upon L. The emergence and submergence processes aflect the magnetic field 

density distributions and polarities, and the thermodynamic properties of the cells by creating and 

eliminating material which has magnetic fleld attached to it. In the extreme case, submergence will 

remove a cell and allow two cells to have a new common boundary at which reconnection will occur 

if the fleld polarities are antiparallel. Similarly, when emergence occurs to the point where the length 

of a cell, L{ is such tha t L\ > 1.5 Linit , we have seen that the cell will be divided into two equal 

halves. The magnetic polarity of one of the two new cells will be random, and therefore reconnection 

will start if the polarity is anti-parallel. As we have already explained, this is equivalent to a new 

cell coming into being at the boundary between two pre-existing cells.
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Now, given that there are no power-law distributions expressly input into the model we must 

conclude that scale free behaviour is being generated by the self-interaction of the model. Given the 

dependencies of event-size upon B  : [J^peakl oc \B\^ and Fint <x L B “̂ , the power-law distributions in 

event-size may be caused by the power-law-like distributions in \B\, although these distributions are 

rarely smooth power-laws and only cover a small part of the upper x-range.

5.6 Can Features of Flaring Events, Sufficient Dynamic Range and Appro

priate Power-law Indexes be Obtained with this Model?

In section 5.2 we compared the time-series of the energy release from the model with GOES X-ray 

photon flux time-series and flnd similarity in some features. Both have a stationary background level 

with many large events superimposed. These events exhibit an initial very rapid climb followed by a 

slower, though still rapid decay. We showed using flgure 5.4 tha t the events generated by the model 

decay as ;

\É\ a
(1 +

and that it is plausible that the Solar flare events whose data were shown in table 1.2 also 

undergo this decay profile. Both have dynamic ranges of approximately two orders of magnitude, 

however Solar flares have so far been observed ranging in total integrated energy flux over eight 

orders of magnitude (10^^ 10^  ̂ J). Events generated by our model have been much smaller

(10^ -H- 10^  ̂ J) although the dynamic range generated was nevertheless large : approximately

seven orders of magnitude. We could consider the model-generated flaring events to be equivalent 

to the unobservably small events which merge together to form the background X-ray flux. We 

must remember tha t the smallest events observed are limited by the time resolution of observing 

instruments. If the time interval between events is comparable or less than  the time resolution of 

the instrument then these events will not be resolvable but will merge with the background. Also, 

if the time interval between events is comparable to the duration of the events then they won’t be 

distinguishable from each other irrespective of spatial resolution but will appear to merge together 

to form a single event (i.e. see flgure 5.10). Thus, when new instruments with higher time resolution 

are built we may flnd that these power-law distributions of Solar flare event-sizes continue down to 

smaller sizes and the dynamic range of the power-law is therefore greater than the observed eight 

orders of magnitude.

Regarding observed power-law indexes of flare size counted by peak energy release rate and in

tegrated energy, SMM and ICE (table 1.2) found values for these in the range —1.53 -H- —1.92. By
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Figure 5.10: Schematic of flaring event photon count (energy release) time series where time interval 

is comparable to event duration.

Peak energy release rate [J s Integrated energy released [J]

Dynamic range 10  ̂ <4- 10^2 10  ̂ 44 10^1

Gradient -0.88 44- -1.09 -0.83 44 -0.91

Table 5.1: Power-law indexes in peak and integrated energy release.

contrast, our model produced values in the ranges given in table 5.1.

There may be many reasons for the relative flattening of our fit-lines compared with actual 

observations. The fact tha t our model has a finite cell size means that it cannot reproduce the large 

number of infinitesimal reconnections which are undoubtedly occurring in the Solar atmosphere. 

There may be a strong selection effect based upon the fact that by definition the model only counts 

the largest event at any one time, and therefore only large events will be counted in the distributions.

It is interesting that, as explained in section 3.6.2, we only find one very large event occur ing at 

any one time, and this event is sufficiently large that it dominates the time-series for total energy 

release of the whole grid. It is accepted that there will occur in the Solar atmosphere only a single 

large event at any one time, as opposed for example to several comparably large simultaneous events.

The fact that these event-size gradients given in table 5.1 are all close to unity is some cause for 

concern. We must ask ourselves if there is a process or statistical feature within the model which 

naturally causes this. Given the complexity of the model it is difficult to see how this might come 

about.

We have found tha t the general features of observed flares are reproduced, i.e. power-law distri-
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bution of event-sizes, qualitatively similar time-series profiles and large dynamic ranges. We have 

found tha t the profile and indexes of our distributions, in particular those of event-size are very ro

bust, varying little regardless of the particular conditions of the run in question (see table 4.7). Our 

event-size results diverge from observed data in that the power-law indexes of the model-generated 

data are significantly less than those observed. The range of event-sizes examined by our model are 

smaller by ~  10̂ '̂  however, the observed distributions are power-law which means they are scale free 

with no typical size, therefore we take the view that our model may effectively be looking at a part 

of the x-range below that of the observed fiare-sizes.

5.7 How do the Results Depend Upon the Details of the Reconnection Mech

anism?

5.7.1 In troduction . —

In the exploration of this model we presupposed that the results are not dependent upon either the 

detailed spatial structure or physics of the im portant processes involved in the energy release. By 

using discrete cells and varying the parameters integral to emergence/ submergence and reconnection 

we have sought to investigate this supposition. By examining the results generated by runs utilising 

variations in initial conditions and parameters we have attem pted to determine the general profiles 

of the distributions of our results and the effects of these variations.

We recall that MHD modelling attem pts realistic simulation of reconnection yet can neither effec

tively tackle complex problems with many null-points or current sheets, nor is MHD able to bridge 

the range of length scales between the metre scale necessary for reconnection (Foukal 1990) and 10  ̂

m over which the largest flares occur. Our continuous model attem pts to obviate this problem by 

not concerning itself with the detailed spatial structure nor the detailed physics.

In this section we investigate the extent to which the structure of the reconnection process deter

mine the distributions of event-sizes.

Now, we recall from section 3.3.4 that broadly the model’s reconnection mechanism is designed 

such that the energy release rate is :

È  oc (7a ^mag 

cc
VMo P 2/io 

oc - | B | '
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We can neglect density, p, because we find that this parameter varies very little throughout a run. 

Thus, counting by peak energy release rate we can say that the size of events depends as follows :

lÆpeakI CX |B|^ (5.9)

We recall tha t Êpeak is the maximum rate of energy release during a reconnection event, and we 

use this value when counting the events for the production of a distribution of event-sizes. Thus, 

our point is tha t in the model : \E\ oc Ca |R p , which represents a proportionality to the Alfven 

speed and to the magnetic energy density. Our variations on the basic reconnection mechanism will 

not alter this property of the model at the level of calculation of the energy released prior to the 

modifications introduced in this section. These modifications consist of additional modules ‘bolted 

on’ to the model and, as will become obvious to us, because of the nature of these modules we will 

find that some cause deviation, in the final calculation of energy released, from the principle of : 

|Ê | oc Ca  |R|^. Thus, some of the changes in reconnection are severe and the results are therefore 

surprising insofar as the manifold variations in reconnection mechanism result generally in similar 

distributions.

We will show event-size distributions counted by peak energy release and integrated energy for 

runs using the typical conditions/initial parameter values (as per the Definition of Commonly Used 

Terms given at the beginning of the thesis). The runs incorporating variations in reconnection 

mechanism will be characterised by the following particular differences :

1. Standard reconnection method.

Use mechanism detailed in chapter 3 unadulterated.

2. Partially randomised energy release: multiplied by random factor (, (0.9 < (  < 1.1).

Each time-step the total energy released within a cell by reconnection (using the standard 

mechanism) with one or both of the cell’s neighbours is totalled and multiplied by the realisation 

of a random variable uniformly distributed within the range 0.9 44 1.1.

3. Completely randomised energy release: multiplied by random factor (, (0 < (  < 1).

Same as previous method, except we have : 0 < (  < 1.

4. Energy release through a reconnection interaction between two cells is only recorded when the 

difference in magnetic field density between the two cells exceeds a threshold value of 20 C (in
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addition to the usual requirement of flux being anti-parallel) at which point the energy release 

is calculated using the standard mechanism)

5. Same as immediately above, threshold value of 50 G.

We have already seen tha t the characteristics of energy release observed in flares is power-law 

distributed. Thus, the question is : while ensuring that the energy release rate remains broadly 

proportional to C'a is it likely that varying the details of the simulated reconnection process in 

the model will still result in power-law distributions in our event-sizes?

5.7.2 Results.

Following the precedent established by earlier figures in this thesis we will present figures of the 

following :

• distributions of size of unipolar field regions.

• distributions of magnetic field density.

• distributions of magnetic fiux.

• event-size distributions counted by peak energy release rate.

• event-size distributions counted by integrated energy release.

Each of these figures will allow comparison between the distributions for the five different runs. 

Unipolar Field Region Sizes.

Figure 5.11 shows us that the usual exponential distributions of unipolar region size are obtained 

with very typical gradients around the value -0.35.

Magnetic Field Density.

Figure 5.12 shows that the distributions of |R| appear very typical with power-laws for the range 

greater than the initial fiux density and gradients in the range —2.7 -H- —3.1. This range is only 

slightly less than one decade but apart from the fourth plot the distributions are very close to 

power-law.

Magnetic Flux.

The distributions of magnetic flux shown by figure 5.13 are very similar to distributions shown in 

figure 5.12 therefore we conclude that there is poor correlation between B  and L.
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Event-Sizes.

The third, fourth and fifth plots of figure 5.14 show good power-law-like distributions with very 

similar gradients around -1.0. This value is of course a typical value given the other peak energy 

release rate event-size distributions we have already seen (see table 1.2). The third and fourth plots 

show data over approximately six orders of magnitude whereas data on the fifth plot ranges over 

approximately ten orders of magnitude. The second plot has an S-shaped profile.

5.7.3 Discussion.

The similarity between each of the different plots on figures 5.11, 5.12 and 5.13 indicates that the 

detail of the reconnection mechanism is not important in determining the distributions of Tunipoiar? 

B  and Even the gradients hardly vary, ranging between -2.7 and -3.1 for B  and ranging between 

-2.6 and -3.1 for (j).

Figures 5.14 and 5.15 again show similar power-law-like profiles for the distributions, apart from 

the second plot in each case. The gradients are very similar again, around -1.0 for peak energy release 

rate and -0.90 for integrated energy release. Regarding the second plots on each figure, we see close 

correspondence between them. The second plots are not power-law-like yet they are very similar 

between the peak and integrated energy release. Let’s look closer at this.

In terms of peak energy release, we found (equation 5.9) that the size of an event depends as 

follows ;

ISpeaki OC |B|3

Similarly, the size of an event in terms of integrated energy release depends upon the total magnetic 

energy within a cell. Thus :

R in t  (X L ^ b

oc L
2/io 

oc L B^

Where as usual L  is cell length. Thus, we have

|R p e a k | OC |R |^
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Figure 5.11: Distributions of size of regions of unipolar magnetic flux, using log-log axes; 10  ̂ cells; 

initial cell length =  10  ̂ m; bin-size =  10  ̂ m. Dotted line mark initial cell length. Top: typical 

conditions. Second: cell energy release multiplied by the realisation of a random variable in the 

range 0.9 1.1. Third: cell energy release multiplied by the realisation of a random variable in

the range 0 -H- 1. Fourth: reconnection only allowed if difference in magnetic field density between 

adjacent cells exceeds 20 G (|Ri -  Ri+i| > 20 G). Fifth: reconnection only allowed if difference in 

magnetic field density between adjacent cells exceeds 50 G (|Ri — Ri+i| > 50 G).
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Figure 5.12: Evolved distribution of magnetic field density with initial mean absolute magnetic field 

density =  50 G. Bin-size =  0.2; 10  ̂ cells; initial cell length =  lO'̂  m. Dotted line marks mean 

initial magnetic flux density. Top: typical conditions. Second: cell energy release multiplied by 

the realisation of a random variable in the range 0.9 44 1.1. Third: cell energy release multiplied 

by the realisation of a random variable in the range 0 44 1. Fourth: reconnection only allowed if 

difference in magnetic field density between adjacent cells exceeds 20 G ( | R i  — R i + i |  > 20 G). Fifth: 

reconnection only allowed if difference in magnetic field density between adjacent cells exceeds 50 G 

( | R i - R i + i |  > 5 0  G).
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Figure 5.13: Distributions of magnetic flux with initial mean absolute magnetic field density =  50 G. 

Bin-size =  0.2; 10  ̂ cells; initial cell length =  lO'̂  m. Dotted line marks mean initial magnetic flux. 

Top: typical conditions. Second: cell energy release multiplied by the realisation of a random variable 

in the range 0.9 44 1.1. Third: cell energy release multiplied by the realisation of a random variable 

in the range 0 44 1. Fourth: reconnection only allowed if difference in magnetic field density between 

adjacent cells exceeds 20 G (|Ri -  Ri+i| > 20 G). Fifth: reconnection only allowed if difference in 

magnetic field density between adjacent cells exceeds 50 G (|Ri — Ri+i| > 50 G).
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Figure 5.14: Distributions of sizes of events, counted by peak energy release rate. Initial cell length 

=  10^ m; log-log axes; bin-size =  0.4; 10  ̂ cells. Top: typical conditions. Second: cell energy release 

multiplied by the realisation of a random variable in the range 0.9 44 1.1. Third: cell energy release 

multiplied by the realisation of a random variable in the range 0 4 4  1. Fourth: reconnection only 

allowed if difference in magnetic field density between adjacent cells exceeds 20 G (|R i—Ri+i| > 20 G). 

Fifth: reconnection only allowed if difference in magnetic field density between adjacent cells exceeds 

50 G ( |R i-R i+ i | > 50 G).
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Figure 5.15: Distributions of sizes of events, counted by integrated energy release. Initial cell length 

=  10  ̂ m; log-log axes; bin-size =  0.4; 10  ̂ cells. Top: typical conditions. Second: cell energy release 

multiplied by the realisation of a random variable in the range 0.9 44 1.1. Third: cell energy release 

multiplied by the realisation of a random variable in the range 0 44  1. Fourth: reconnection only 

allowed if difference in magnetic field density between adjacent cells exceeds 20 G (|R i—R;+i| > 20 G). 

Fifth: reconnection only allowed if difference in magnetic field density between adjacent cells exceeds 

50 G (|Ri - R i+ i | > 50 G).
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and :

R in t oc

Thus, we see tha t both have a component of R^ and we also know tha t R and L  are poorly 

correlated, therefore L  is not a function of R. We expect therefore a strong correlation between 

Rpeak and Rint and it may be in this tha t we have found the reason for the close correspondence 

between the two distributions for each run.

It is interesting tha t the run which incorporates a R threshold of 50 G (fifth plot on each figure) 

shows a dynamic range of ten orders of magnitude. It seems very strange that this particular dynamic 

range is so much greater than the others. The events recorded for these distributions are by definition 

the largest events in the grid, and we know that there is a dependency upon R^, therefore we expect 

|R| to be large for these events. The neighbouring cells with which these cells are reconnecting will 

by definition have magnetic polarity opposite to the cells associated with the events. Therefore we 

do not expect tha t this threshold requirement would make very much difference in terms of field 

densities of the cells associated with the events recorded. We find however that a great many more 

very small events enter into the data, presumably substituted for other larger events which featured 

in the other four distributions on each of these two figures.

It must be emphasised tha t aside from event-size distributions produced by the run incorporating 

partially randomised energy release, the runs using: a random multiplier of 0 < (  < 1, threshold 

of 20 G and 50 G produce power-law-like distributions with little variation between them. This 

tells us that the detail of the reconnection mechanism may not actually be very im portant and the 

determining feature of reconnection is that energy release is proportional to C'a R^.

We should ask why we use |R | oc Ca |R|^ as the basis of our energy release rate and not 

another formula? Petscheck (1964) suggested a mechanism where magnetic fields may reconnect 

at a rate approaching the Alfven speed. Certainly the Petschek Model (Petscheck 1964) involves 

an incompressible inflow of magnetic fiux into an ‘X’-point current-sheet region, as we saw in the 

Introduction. Considering the rate of flow of this flux into the ‘X’-point diffusion region, the natural 

rate of propagation of magnetic waves along a magnetic field is the Alfven speed and we have already 

noted in section 3.3.4 tha t Dere (1996) find that the Alfven speed more appropriately accounts for the 

rate of reconnection than the timescales of resistive difi’usion or tearing-mode reconnection. Certainly, 

the Alfven speed is considered to provide a natural timescale for the reorganisation of magnetic field 

within a magnetic structure of a given size (Roberts 1999) and we consider reconnection to be a 

process causing change to the topology of a field (Dere 1996). Also, it appears from Dere (1996) 

tha t the Alfven speed is considered the maximum limit upon the rate of propagation of reconnection
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and Parker (1973) suggested tha t ‘reconnection rates are universally of the order of 0.1 C'a’- Thus, 

we consider it sensible in the model that flux is being consumed by the reconnection process at the 

Alfven speed, and we therefore quantify the rate at which magnetic flux is destroyed as Ca |R | W  

(equation 5.2) and the rate at which magnetic energy is destroyed : Agrid Ca Cmag- We find no 

grounds in the literature for any other basis expressing the rate of energy release.

5.8 What is the Relevance of Self-Organised Criticality?

In the Introduction we described the phenomenon of SOC. SOC is easier to describe than to define 

and there are many different interpretations of its fundamental features, therefore in this section we 

will only concern ourselves with the specific definition we give here. SOC has several components :

1. Stochastic excitation of a parameter within the system.

2. We can establish a gradient at each point in the system in relation to this param eter and there 

exists a critical threshold which the local gradient will eventually exceed somewhere in the 

model.

3. When the gradient reaches this threshold there will be a re-distribution, or relaxation of the 

system triggered such that the new gradients exceed the threshold at no point in the system.

There is no doubt that some researchers familiar with SOC would dispute these points, however 

we are not concerned here with precise abstract definitions but rather we must consider these as 

providing a working definition for our purposes.

Now, both the discrete and continuous models have produced many power-law and power-law-like 

distributions. We recall tha t regarding SOC, when a system has been excited to the point where 

it is everywhere in a minimally stable state any further excitation will produce relaxation events in 

accordance with point (3), with no intrinsic size scale. This scale-invariance will cause the relaxation 

events to have a power-law distribution. Thus, we may speculate tha t one or both of our models are 

fundamentally SOC in nature, or contain elements of SOC.

The classic example of such a system is the sand-pile model. Our model cannot be simply reduced 

to a sand-pile and is far more complex, yet it may be possible tha t it contains the relevant elements 

of the sand-pile model. The continuous model produces event-size distributions which are power-law 

except for edge effects. Therefore we must examine the question of whether these distributions can 

be attributed to any underlying SOC-like nature of our model, and to this end we will now examine 

these three points in relation to the model.
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5.8.1 Stochastic Excitation.

We can view the emergence of magnetic flux as being a stochastic driving of the sustem. We recall that 

the flux emergence/submergence mechanism of the model varies the rate of emergence such that the 

total magnetic flux within the grid is maintained at a constant level. Flux is destroyed by magnetic 

reconnection. The sites of the emergence are random, and change frequently. Submergence causes 

cells to disappear from the model and cells will appear at cell boundaries as a result of emergence. 

These emerged cells have random magnetic polarity. Thus, there is a stochastic charging action upon 

the magnitude and polarity of the magnetic flux.

5.8.2 Gradient Threshold.

The model has no equivalent of the sand-pile’s minimally stable state, where a small increase in a 

given parameter causes breach of the threshold and commencement of an event. Rather, we have a 

situation where the existence of anti-parallel flux at a cell boundary will allow an event to begin or 

continue. Thus, the threshold consists of the sign of the product of the two fluxes at a boundary. If 

Bi Ri+i < 0 then reconnection is allowed.

This is different however from the notion of threshold in the sand-pile model where the threshold 

prevents or allows the event, or ‘avalanche’, to continue and to propagate further through the system. 

We know from equation 5.9 tha t :

I Rpeak I OC |R |^

and that :

Rint o c L  B ^

Thus, in the case of integrated energy release, there is also a dependency upon L, the size of 

the cell. The size is a function of the initial length plus effects of emergence and submergence. In 

neither case is the size of the event related to the number of cells through which the event propagates. 

Whereas in the sand-pile model the size of an event is literally the number of cells through which 

the event/ avalanche propagates, in our model there can be no propagation of an event beyond the 

immediate cell.

We carried out runs where the reconnection mechanism was only triggered if :

\B[ — R i+ i |  > 20 G or 50 G, however these thresholds do not act as a gate upon the propagation of 

the event to another cell.
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Thus even though there are runs which explicitly include a threshold it doesn’t seem that there 

is triggering of events by the exceeding of a threshold in the sense necessary for SOC.

5.8.3 R e-distribution.

Re-distribution means a relaxation, in some sense, of the system (the grid in the model) such that 

parameter values in some cells are reduced and increased in others. This must be carried out such 

that (1) there is conservation of the total quantity of this parameter, and (2) there is reduction of 

the local gradient in this parameter-held.

The action of reconnection destroys magnetic hux, which is emerged the same time-step into 

one of the emerging-hux cells in the grid. Thus, the magnetic hux is made available again for 

reconnection, however there is no prohibition against hux emerging into a cell which already has a 

high hux density and thus increasing it further. In the sand-pile model the redistribution causes local 

increases in gradient at the periphery of a propagating event. This local gradient, if greater than the 

critical gradient, will produce more redistribution, and so on. Thus, the re-distribution is directly 

responsible for the continuing propagation of an event. We can agree tha t there is redistribution of 

some form caused by reconnection, however this will not obviously lead to further reconnection.

Conclusions.

In relation to the specihc dehnition given above we have found tha t there is little evidence for SOC 

characteristics in the model, and if they exist they would be subtle. Any SOC effects would be very 

indirect and difhcult to express analytically.

5.9 Future Work.

We have found that the continuous model is capable of producing power-law-like distributions over 

limited x-ranges, but not smooth power-law distributions. Nevertheless we have seen tha t in regard 

of the wide range of initial conditions and parameter values selected for running the model, it has 

robustly produced similar power-law-like distributions. To further test the robustness of the dis

tributions we could perform further runs in the following manner. We might perform a number of 

runs, of the order of fifty perhaps, and for each we would randomly select each param eter value, 

although we would stipulate a reasonable range for each parameter. Thus, we can test the robust

ness of the power-law event-size distributions (simulated hare-size distributions) while ensuring that 

there is equal spacing of runs within the parameter space of the model with little clumping. These 

parameters would be : initial cell length, mean initial magnetic field density, standard deviation of
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initial field density, initial number density, heating by energy released by reconnection, minimum cell 

length, maximum cell length, initial mean temperature, standard deviation of initial temperature, 

noise and field density threshold for reconnection. The production of similar distributions by this 

method would further support the suggestion that the details of the physics and/or specification of 

precise initial conditions are not critical for the production of self-similar fiare-sizes.

Where distributions produced by the model are not power-law but we expect power-law distri

butions in observed data, this must mean one or more of the following (1) there is unknown or 

incompletely understood im portant physics, (2) power-law energy release of the Solar atmosphere is 

dependent on and driven by bulk fiows emerging from below the photosphere, which are themselves 

in a power-law distribution, or (3) One or more features or mechanisms of the model do not match 

the physical reality as we understand it.

Regarding point (1), SOC behaviour causes power laws, and it may be that some type of SOC 

behaviour is responsible for causing the power-law event-size distributions. Certainly some workers 

in the field think so.

Regarding point (2), our model is designed to explore the self-interaction of the grid and the data 

produced arises solely from this self-interaction. Therefore, it may be that the solar convection drives 

the flare distributions, and by definition this cannot be explored by the model.

Regarding point (3), perhaps the dimensionality of the model is, fatal to the generation of data in 

power-law form with correct indexes. It may be that non-local communication or the 3-D nature of the 

Solar atmosphere are essential features of any accurate model. Some researchers argue that secondary 

fiaring events may be triggered remotely by fast particle beams emitted from the footpoints of primary 

flaring events. Litvinenko & Somov (1991) have determined that fast particle generation occurs as 

a result of magnetic energy dissipation by magnetic reconnection, and Khodachenko, Haerendel & 

Rieger (2000) have studied the reaction of a flux tube containing photospheric plasma when injected 

with a beam of fast non-thermal electrons and find that there is complex behaviour in the plasma- 

magnetic field system, which gradually returns to an equilibrium state. Triggering/communication 

processes like this may make possible some form of SOC in the Solar atmosphere and/or explain the 

very fast and sudden events observed such as the Bastille Day flare (a class M3 flare on 14 July 1998). 

In such flares there occurs a co-ordinated energy release over a large spatial scale, and communication 

occurs at speeds much higher than the Alfvenic speeds typically used in Solar flare models.

Communication between non-adjacent parts of the grid is in effect the introduction of a higher 

dimensionality therefore we can change the dimensionality of a model by incorporating non-local 

communication. Interestingly however Litvinenko (1998) applied branching theory methods to the
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model by Macpherson & MacKinnon (1997) and proved tha t the distribution of flare energies pro

duced by tha t model, power-law with index of -3/2, is independent of dimension. Therefore, if we 

believe tha t the mechanics of the model by Macpherson & MacKinnon (1997) is relevant to the size 

and propagation of flares then we must accept that the number of physical dimensions of any useful 

model should not be relevant.

However, we might yet explore the possibility of higher dimensionality by constructing a 2-D model 

with as far as possible similar concepts and mechanisms as the present continuous model. Such a 

model could contain cells which tessellate a 2-D surface, as shown in flgure 5.16. Such tessellation 

would be simplest using triangular cells.

Such a grid would contain thermodynamic and magnetic properties. In the same way as we do 

in the 1-D model each time-step we would recalculate the param eter values, assuming adiabatic 

behaviour and a simple equation of motion. The model would be Lagrangian and therefore the 

distortion and motion of the triangular cells will reflect the velocity fleld of the material contained 

within the cells. Each vertex has a velocity associated with it and this is updated each time-step. 

The vertex velocities allow motion of the vertexes, which naturally will change the volume, and 

consequently the thermodynamic properties of each cell. Regarding the calculation each time-step 

of the new acceleration of each vertex, we can notionally partition each cell such tha t a polygon 

straddles each vertex and calculate its mass and the net force upon it and hence the acceleration of

cell

Figure 5.16: 2-D grid tessellated by triangular cells.
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the polygon, which we can take to be a proxy for the vertex itself. This method is analogous to the 

method used in our present model.

Figure 5.17 shows a polygon formed from the centres of a group of cells ringing a vertex. For the 

purpose of finding the new velocity of the vertex in the figure we can determine the mass of such a 

polygon and calculate the pressure forces upon its sides. We may then find the acceleration during 

each timestep and assume the motion of the polygon is a proxy for the motion of the vertex.

We can use a simple parameterised mechanism for reconnection occurring at the cell boundaries.

If a triangular cell is within an expanding region and therefore is itself expanding, we can use an 

adaptive scheme analogous to the cell bifurcation used in the 1-D model. Such a scheme can increase 

the resolution in and around this triangle, as demonstrated in figure 5.18.

Such a model would be a 2-D version of our present model, which we can use to perform similar 

runs generating distributions of magnetic field density, magnetic fiux, unipolar region sizes and event- 

sizes. We can simulate a variety of Solar phenomena including active regions and ephemeral regions, 

beginning the runs with magnetic field densities spatially distributed to represent those of ARs and 

ERs.

We know tha t the magnetic field dominates the behaviour of the Solar atmosphere and recon

nection provides a useful mechanism for large and small scale reorganisation of the magnetic field 

in addition to heating of the corona. However, the process by which reconnection gives rise to the 

fast energy release observed in fiares is not well understood despite nearly forty years of work in this 

area. Nor is it understood whether and/or how the observed characteristics of flares, and other Solar

polygon polygon polygon

acceleration 
o f polygon

vertex
~ net pressure force 

upon polygon

centre of cell
mass o f  
polygon

m

polygon

Figure 5.17: Polygon used with equation of motion for calculation of acceleration of vertex.
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new  sub-cells  

Figure 5,18: Adaptive subdividing of a tumescent cell.

activity such as sunspots and CMEs arise as a result of the reconnection. The models explored in this 

project (and also the 2-D model described above) provide mechanisms for the^.production of flaring 

events together with distributions of event-sizes and flux densities without relying upon the necessity 

of understanding the detailed physics of the emergence and reconnection processes nor on knowing 

the spatial distribution of the thermodynamic properties and magnetic fields within the model. The 

model also does not rely upon power-law emergence of fresh magnetic flux or input into the grid of 

any power-law distributions. -

Full 3-D MHD is not yet possible over the eight orders of magnitude of length-scales from a few 

metres for reconnection diffusion region sizes to 10  ̂ m required for large fiares. Our models occupy 

a different niche from MHD modelling in that they show tha t some of the statistical properties can 

broadly be reproduced and that therefore there may be correct principles within the model, such 

as the dependence of the energy release rate upon and the simplicity of the fiux emergence

mechanism, for example. The model will not in its present form allow exploration of large-scale 

time-dependent behaviour, such as the Solar cycle, nor other features such as CMEs, however the 

simplicity of the model means that additional modular features can easily be built into it. For 

example, we might include the notion of fiux connectivity (from the discrete model). In the 2-D 

model, outlined above, we would then be able to make reconnection partially dependent upon simple 

formalised braiding and stretching of the field-lines, and where there are open field-lines these might 

lead to the shedding of plasma along the field-lines (if facility for this is built into the model).

A 2-D model allows for more possibilities for interaction between cells than our 1-D model. Non

local communication, justified as remote triggering of events, would also cause greater possibilities 

for interactions.



5.9 Future Work. 234

As already mentioned, a limitation of the model is the fact that an event consists of the interactions 

of a single cell with one or both neighbours. Therefore it is not possible to generate large extended 

events where a high level of reconnection is simultaneously occurring amongst many spatially localised 

cells. This places an upper limit upon the event-sizes. By using a suitable definition of reconnection 

events the 2-D model could incorporate this notion of spatially extended yet localised events.

It may be tha t the Solar convective motions feed flux into the magnetic carpet and photospheric 

fields with a particular distribution, exponential or power-law for example, and that this is impor

tant for the production via reconnection of event-sizes with the observed power-law indexes 1.5 

(Crosby et al. 1998)). The 1-D or 2-D model could include fiux emergence with specifically power- 

law and exponential distributions however, if there is a specific index or profile to the Solar fiux 

emergence distribution, this may change between Solar minimum and maximum. Therefore actual 

data concerning any such changing features of the Solar fiux emergence will be required if an attem pt 

is made to use an improved model to investigate whether, in accordance with observations, as we 

increase the fiux emergence rate (as if moving towards Solar maximum) we obtain a changed flux 

density distribution power-law index, more complicated flaring events, CMEs along open field-lines, 

or global reversal of magnetic field polarities. A search of the literature has not revealed the existence 

of data regarding the detail of distributions of emerging Solar fiux. We believe that modelling of 

any of these behaviours would require the inclusion of field connectivity into the model, and hence 

notions of field directionality between cells parallel to the grid. Thus, net toroidal and poloidal fields 

would be capable of representation within the model.

It was the intention during this project to never explicitly code into the model Solar behaviour 

nor supporting physical properties such as power-law fiux emergence, granule or super-granule size, 

convective spreading/convergence or energy-release time-scales et al. The development of the 2-D 

model however would be a good environment for inclusion of features such as field connectivity, 

emergence of fiux with particular distributions etc. Changes such as these would make the model 

more closely mimic real Solar physics and we could look for Solar-like behaviour and features such 

as sunspots, CMEs and global field reversal.
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