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ABSTRACT

Deregulation of the retinoblastoma protein (pRB) pathway is a hallmark of 

cancer, and in the absence of other genetic alterations, results in lack of 

differentiation, hyperproliferation and apoptosis. pRB acts as a transcriptional 

repressor by targeting the E2F transcription factors whose functions are 

required for S phase entry.

Increased E2F activity can induce S phase in quiescent cells and this fact is a 

central element of most models for the development of cancer. I provide 

evidence that E2F1 alone is not sufficient to induce S phase in diploid mouse 

and human fibroblasts. However, increased E2F1 activity can result in S 

phase entry in diploid fibroblasts in which the p53-mediated G l checkpoint is 

suppressed. Furthermore, I show that E2F1 can induce S phase in primary 

mouse fibroblasts lacking pRB. These results demonstrate that in addition to 

working as an E2F-dependent transcriptional repressor, pRB is also required 

for retaining the G l checkpoint in response to unprogrammed proliferative 

signals.

The role of E2F in cell proliferation is not completely understood because it is 

not known if the E2Fs mainly function as transcriptional repressors or
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activators. E2Fs need dimérisation with a DP protein to give rise to functional 

E2F activity and to regulate promoters containing E2F binding sites. I 

inactivated endogenous DP in tissue culture by RNA interference providing 

evidence that loss of DPI abrogates E2F DNA binding activity. DP is required 

for tumour and normal cell growth. In addition, the expression of E2F target 

genes is severely impaired. These results define a crucial role for DPI in cell 

proliferation.



INTRODUCTION

THE E2F FAMILY OF TRANSCRIPTION FACTORS

Eight human genes have been identified as components of the E2F 

transcriptional activity in mammals (Dyson, 1998). On the basis of sequence 

homology and functional properties, these genes have been divided into two 

distinct groups: the E2Fs {E2F1- E2F6) and the DPs {DPI and DP2). Their 

protein products have highly conserved DNA-binding domains and 

dimerization domains. The carboxy-terminal portion of E2F1-5 contains a 

potent transactivation domain but no equivalent activity has been found in 

E2F6 or in DP proteins (Figure A).

E2F and DP proteins heterodimerize to give rise to functional E2F activity and 

to regulate promoters containing E2F binding sites. All possible combinations 

of E2F-DP complexes exist in vivo: Chromatin-Immunoprecipitation (ChIP) 

assays have failed to detect any specificity for the association of individual 

E2F-DP complexes to various known E2F-responsive promoters (Takahashi 

et al., 2000). However, the individual E2F-DP species invoke very different 

transcriptional responses depending on the identity of the E2F moiety and the 

proteins that are associated with the complex.

On the basis of transcriptional properties, the E2F family can be divided into



three distinct subgroups. E2F1, E2F2 and E2F3 are potent transcriptional 

activators. By contrast, E2F4 and E2F5 seem to be primarily involved in the 

active repression of E2F responsive genes by recruiting the pocket proteins 

and their associated histone-modifying enzymes. Finally, E2F6 acts as a 

transcriptional repressor, but in a pocket-protein-independent manner.

Much less is known about the roles of the DPI and DP2 in vivo. DPI is 

ubiquitously expressed at high levels in tissues and in cell lines. DP2 is 68% 

identical to DPI and is expressed at low levels with alternative splicing in a 

restricted set of tissues and cell lines (Wu et al., 1995). When overexpressed 

with various E2F partners and pRB family members, DPI and DP2 function in 

the same way in in vitro assays, such as those for heterodimerization, DNA 

binding and transactivation.

DNA binding Dimerization Transactivation

— I I— *— y--------- ^ ^
pocket protein 

NLS binding
E2F1-2-3 I I I I I T T I

NES
E2F4-5 I I I  — I d  I  I I I

E2F6

DPl-2

Figure A - The E2F family o f transcription factors.



The ‘activating^ E2Fs

The founding member of this subclass, E2F1, was cloned by virtue of its 

ability to interact with pRB (Helin et ah, 1992; Kaelin et ah, 1992). E2F1 

binds to DNA in a DP-dependent manner, and the resulting complex is a 

potent transcriptional activator of E2F-responsive promoters (Bandara et ah, 

1993; Helin et ah, 1993b; Krek et ah, 1993). E2F2 and E2F3 are highly 

homologous to E2F1 in the domains that are responsible for DNA binding, DP 

dim erization and pRB binding (Figure A) and they show sim ilar 

transactivation properties. The E2F1, E2F2 and E2F3 expression is regulated 

by cell growth, with maximal accumulation at the G l/S  boundary. They 

associate exclusively with pRB and play a positive role in cell cycle 

progression.

The E2f3 locus expresses two distinct transcripts (Leone et ah, 2000). The 

longer transcript encodes the original E2f3 species, designated E2f3a. The 

second transcript, named E2f3b, is transcribed from a previously unrecognized 

promoter in the first intron of E2f3a, and its protein product is identical to 

E2f3a except that it lacks the amino-terminal domain (Leone et ah, 2000). 

E2F3b is not regulated by cell growth and can be found in both quiescent and 

proliferating cells, but its properties have yet to be described.

E2F1, E2F2 and E2F3 are potent transcriptional activators of E2F responsive 

genes (Helin et ah, 1992; Lees et ah, 1993). Overexpression of any of these



proteins alone or in combination with DPs is sufficient to induce immortalized 

quiescent cells to re-enter the cell cycle (Johnson et ah, 1993; Lukas et ah, 

1996; Qin et ah, 1994). This requires functional DNA-binding and 

transcriptional activity. Some evidences indicate that endogenous E2F1, E2F2 

and E2F3 control cellular proliferation. Microinjection of anti-E2F3 antibodies 

causes decreased S-phase entry in REF52 cells (Leone et ah, 1998). E2f3- 

deficient mouse embryonic fibroblasts (MEFs) are defective in the mitogen- 

induced activation of many E2F-responsive genes and this reduces the rate of 

proliferation of both primary and transformed cells (Humbert et ah, 2000b). 

Finally, the combined inactivation of E 2 fl , E2j2 and E2f3 blocks cellular 

proliferation (Wu et ah, 2001) suggesting that the activating E2Fs could have 

overlapping roles in the induction of cell-cycle entry.

E2F1, E2F2 and E2F3 could also contribute to the repression of E2F- 

responsive genes by recruiting pRB. However, overexpression assays and 

mutant mouse models indicate that the key role of these three E2Fs is the 

activation of genes that are essential for cellular proliferation and the induction 

of apoptosis.

To delineate the functional roles within the E2F family, mice deficient in 

individual £"2/genes have been generated. E2fl-/~ mice are viable and fertile, 

but they have various tissue-specific abnormalities due to defects in apoptosis 

(Field et ah, 1996; Yamasaki et ah, 1998; Yamasaki et ah, 1996): for instance.



they have an excess of T cells and develop testicular atrophy between 9 and 12 

months of age. Most surprisingly, the E 2fl deficient mice are tumour-prone 

and develop a broad spectrum of tumours (lymphoma, lung adenocarcinoma, 

uterine sarcoma) at an age between 8 and 18 months. However, loss of E2fl 

can reduce the pituary and thyroid tumorigenesis in Rb+/~ mice (Yamasaki et 

al., 1998) and can also reduce the nervous system and erythropoietic defects in 

the Rb-/- embryos (Tsai et al., 1998). Inactivation of E 2fl results in viable 

adults that, when crossed to E2fl deficient mice, are highly tumour prone with 

deep effects on hematopoietic cell proliferation and differentiation (Zhu et al., 

2001). By contrast, a significant proportion of the E 2f3-I- mice die in utero, 

and most of the adult survivors die prematurely of congestive heart failure 

without obvious tumour predisposition (Humbert et al., 2000b). Whereas mice 

null for E2fl and E2f2 are viable, mice null for E2fl and E2f3 or E2f2 and 

E2f3 die early during embryonic development pointing at a central role for 

E2f3 in mouse development (Cloud et al., 2002; Wu et al., 2001).

The ‘repressive^ E2Fs

The second subclass of the E2F family includes E2F4 and E2F5. These E2Fs 

were originally identified and cloned by virtue of their association with p i07 

and p i 30 (Hijmans et al., 1995; Vairo et al., 1995). Their sequences diverge 

considerably from those of the activating E2Fs (Figure A). E2F4 and E2F5 

lack most of the sequence that is amino-terminal to the DNA-binding domain 

and are regulated differently from the activating E2Fs in vivo. First, they are



not transcriptionally regulated in cell growth: whereas E2F1, E2F2 and E2F3 

are primarily restricted to actively dividing cells, significant levels of E2F4 

and E2F5 are detected both in quiescent (GO) and proliferating cells (Ikeda et 

ah, 1996; Moberg et al., 1996). Second, the E2F subgroups bind to different 

pocket proteins in vivo. The activating E2Fs are specifically regulated by pRB, 

E2F5 is mainly regulated by p i 30, and E2F4 associates with each of the 

pocket proteins at different points in the cell cycle. As E2F4 is expressed at 

higher levels than the other E2F family members, it accounts for at least half 

of the pRB-, pl07- and pl30-associated E2F activity in vivo. Because of the 

accumulation of E2F4 or E2F5 complexes in quiescent cells, together with the 

fact that many E2F target genes are subject to E2F-dependent repression in 

quiescent cells, these complexes have been suggested to function mainly as 

repressor.

In contrast to the activating E2Fs, E2F4 and E2F5 are poor transcriptional 

activators in overexpression assays, and they cannot drive quiescent cells to 

re-enter the cell cycle (Müller et al., 1997; Verona et al., 1997). The 

differential activity of the two E2F subgroups results from differences in their 

sub-cellular localization: E2F1, E2F2 and E2F3 are constitutively nuclear, 

whereas E2F4 and E2F5 can be found both in the nucleus and in the 

cytoplasm of quiescent cells, but relocate almost entirely to the cytoplasm 

once cells reach S phase. The nuclear localization of the activating E2Fs 

depends on a canonical basic nuclear localization signal (NLS) in their amino-
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terminal domain. On the other hand, some experiments suggest that E2F4 and 

E2F5 localize to the nucleus because of their interaction with pRB or p i 30 

(Verona et al., 1997). E2F4 has two leucine/isoleucine-rich hydrophobic 

nuclear export signals (NES) and its cytoplasmic localization is dependent on 

the nuclear export factor CRMl (Gaubatz et al., 2001).

In GO/Gl cells, E2F4 and E2F5 account for most of the nuclear E2F 

complexes. As these complexes associate with HDACs in vivo (lavarone and 

M assague, 1999), they are thought to be crucial for mediating the 

transcriptional repression of E2F responsive genes. MEFs mutant for E2f4, 

E2f4 and E2f5, or p l0 7  and p i 30 have defects in their ability to exit the cell 

cycle in response to various grow th-arrest signals, including p i 6 

overexpression and contact inhibition (Gaubatz et al., 2000). This correlates 

with the inappropriate expression of a subset of E2F-responsive genes 

(Hurford et al., 1997). However, these mutant cells can all respond 

appropriately to growth-stimulatory signals and there is no detectable change 

in their proliferative capacity.

E2F4 and E2F5 also play a role in the regulation of differentiation. 

Overexpression of E2F4 is sufficient to trigger the differentiation of neuronal 

precursors. Moreover, the developmental defects in the E2f4 and E2f5 mutant 

mouse strains result from lack of differentiation of various cell lineages. Loss 

of E2f4 leads to neonatal death with abnormal hematopoiesis and intestinal 

defects (Humbert et al., 2000a), while the newborn E2f5-I- mice die for



abnormal development and function of choroid plexus, where E2F5 is highly 

expressed (Lindeman et al., 1998). Finally, the simultaneous inactivation of 

E2f4 and E2f5 in mice results in neonatal lethality (Gaubatz et al., 2000).

A third group of the E2F family is defined by E2F6, the most recently 

identified member. Residues that are crucial for the DNA-binding and 

dimerization activities of the other E2Fs are conserved in E2F6, but it lacks 

the carboxy-terminal sequences, required for both pocket-protein binding and 

transactivation (Figure A).

Overexpression studies have demonstrated that E2F6 represses E2F- 

responsive genes (Cartwright et al., 1998; Gaubatz et al., 1998). It can behave 

as a dominant negative inhibitor through competition with other E2F family 

members (Trimarchi et al., 1998). A complex that contains E2F6, polycomb 

proteins (PcG) and chromatin modifiers has been shown to occupy target 

promoters in GO (Ogawa et al., 2002). Thus, it was suggested that one function 

of E2F6 is to inactivate E2F-dependent genes in quiescent cells. E2F6 

associates with many PcG proteins in vivo, including RYBP, Bm il, MEL-18, 

M phl and Ringl (Trimarchi et al., 2001). PcG proteins form large multimeric 

complexes needed to maintain stable transcriptional repression of Hox genes 

that are expressed along the antero-posterior axis in the vertebrate embryo. In 

addition to this function, PcG proteins also display other activities, for 

example Bmil is a critical regulator of proliferation, senescence and apoptosis 

(Jacobs et al., 1999).

10



E2f6 KO mice are viable and healthy, however they appear to be defective in 

spermatogenesis and, similarly to PcG mutant mice, they display homeotic 

transformations of their axial skeleton.

E2F AND CELL PROLIFERATION

Progression through cell-cycle phases is controlled by the sequential activation 

of the cyclin-dependent kinases CDK4/6, CDK2 and CDC2. Their activity is 

regulated by various mechanisms, including the synthesis and binding of a 

specific regulatory subunit (cyclin), both inhibitory and activating 

phosphorylation events, and the association/dissociation of inhibitory 

molecules called CDK inhibitors (GDIs). There are two families of GDIs: 

pl6INK4a, pl5INK4b, pl8INK4c, pl9INK4d belong to the INK4a family; the 

GIP/KIP family includes p21, p27, p57 (Sherr and Weber, 2000) (Figure B).

pl5/pI6  p21
p l8 /p l9  p27/p57

GDK4/6 GDK2 GDK2 
GycIinD 1/2/3 GyclinE Gy d in  A

GDG2 GDG2 
GyclinA GyclinB

V V V V V

01 s 02 M

Restriction point

Figure B - The mammalian cell cycle.
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In mammalian cells, proliferation control is mainly achieved in the G l phase 

of the cell cycle. After G l, cells become independent of extracellular signals 

and progress through the cell cycle to the next G l. The D-type G l cyclins, 

together with their associated kinases, CDK4 and CDK6, initiate the 

phosphorylation of pRB family members, inactivating their capacity to 

interact with the E2F transcription factors. This phosphorylation allows the 

accumulation of E2F1, E2F2, and E2F3 that activate the transcription of a 

large number of genes (Dyson, 1998; Harbour and Dean, 2000; Nevins, 1998). 

These include cell-cycle regulators, such as cyclin E, cyclin A, CDC2, 

CDC25, Myc, B-Myb, and products that are required for DNA replication, 

such as large subunit of DNA polymerase a , ribonucleotide reductase, 

proliferating nuclear antigen (PCNA) and minichromosome maintenance 

proteins (MCMs) (Helin, 1998). In addition, phosphorylation of pRB and p i 30 

disrupts complexes with E2F4 and E2F5 found in quiescent cells that function 

as transcriptional repressors of S phase genes as well as the genes encoding 

the E2F1, E2F2, and E2F3 proteins. E2F activation of cyclin E/CDK2 kinase 

activity leads to the further phosphorylation and inactivation of pRB, thus 

enhancing E2F activity and increasing the accumulation of cyclin E/CDK2.

One of the most striking properties of E2F proteins is their ability to drive 

cells into S phase. This is central to most models of E2F function and was first 

shown for E2F1 (Johnson et al., 1993). E2F1 overexpression overrides many
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different types of cell cycle arrest (including the effects of p l6 , p21, p27, y- 

irradiation, TGF(3 and dominant negative CDK2) and is able to drive 

immortalized quiescent cells into S phase (DeGregori et ah, 1995a; Johnson et 

ah, 1993; Lukas et ah, 1996; Mann and Jones, 1996; Schwarz et ah, 1995). 

The proportion of cells in G  ̂ is increased by the overexpression of dominant 

negative mutants of E2F1, DPI and DP2 (Wu et ah, 1996) or by the 

expression of com petitor RNA m olecules (Ishizaki et ah, 1996). 

Microinjection of antibodies to E2F3 reduces the percentage of REF52 cells 

entering S phase (Leone et ah, 1998) and E2/3 deficient MEFs have low levels 

of proliferation and deregulation in the expression of E2F responsive genes 

(Humbert et ah, 2000b). Finally, the combined mutation of E2/1, E2/2 and 

E2J3 blocks cellular proliferation (Wu et ah, 2001). Instead, E2F4 and E2F5 

are fully dispensable for cellular proliferation (Humbert et ah, 2000a; 

Lindeman et ah, 1998; Rempel et ah, 2000).

A further indication comes from the Drosophila genome that encodes just two 

E2F genes, de2fl and de2j2, dE2Fl is a potent activator of transcription: loss 

of de2fl results in the reduced expression of E2F-regulated genes (Frolov et 

ah, 2001) and in low levels of DNA synthesis (Duronio et ah, 1995). In 

contrast, dE2F2 represses the transcription of E2F reporters and the loss of 

de2j2 function results in increased gene expression. In the absence of both 

proteins, larval cell proliferation is relatively normal.
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E2F AND THE pRB PATHWAY

A conserved domain near the carboxyl terminus of the E2F proteins mediates 

binding to pRB-family members (Helin et al., 1993a). This binding domain is 

embedded in the transactivation domain of the E2F subunit.

The retinoblastoma gene encodes a 928-amino acid phosphoprotein. pRB 

contains several functional domains. Domains A and B interact with each 

other along an extended interdomain interface to form the central “pocket” 

which is critical to the tumour suppressor function of pRB (Qin et al., 1992). 

Viral oncoproteins and a number of endogenous pRB-binding proteins contain 

an LXCXE motif that allows them to bind pRB (Lee et al., 1998). The binding 

site for LXCXE is in domain B. Domain A allows domain B to assume an 

active conformation. E2Fs do not contain an LXCXE and thus bind pRB at a 

distinct site with points of contact in both the pocket and in the carboxy- 

terminal region. This allows E2F to recruit to a promoter the complexes 

containing pRB and other proteins, such as those with the LXCXE motif. 

Another functional domain of pRB is located within the carboxy-terminal 

region. This region contains binding sites for the c-Abl tyrosine kinase and 

MDM2, which appear to be distinct from the E2F site in the carboxy-terminal 

region (Xiao et al., 1995).

pRB is phosphorylated and dephosphorylated during the cell cycle: the 

hyperphosphorylated (inactive) form predominates in proliferating cells,

14



whereas the hypophosphorylated (active) form is generally more abundant in 

quiescent or differentiating cells (Buchkovich et al., 1989; Chen et al., 1989; 

DeCaprio et al., 1992). Cell cycle progression normally occurs when pRB is 

inactivated by phosphorylation catalyzed by CDKs in complex with their 

cyclin partners. Three different cyclin/CDK complexes have been suggested to 

phosphorylate pRB during the cell cycle. Cyclin D-CDK4/6 phosphorylates 

pRB early in G l, cyclin E-CDK2 phosphorylates the protein near the end of 

G l, and cyclin A-CDK2 may maintain phosphorylation of pRB during S 

phase (Sherr, 1996).

pRB regulates E2F-responsive genes through two distinct mechanisms. First, 

pRB binds to an 18-amino-acid motif within the transactivation domain of 

E2F, thereby blocking the ability of E2F to recruit the transcriptional 

machinery (Helin et al., 1993a). Second, the pRB-E2F complex retains its 

ability to bind to the promoters of E2F responsive genes and can enlist 

chromatin remodeling enzymes and lead to transcriptional repression (Zhang 

and Dean, 2001). These factors include histone deacetylase enzymes (HDACs) 

which remove acetyl groups from the tails of core histones in the nucleosome 

and the ATP-dependent remodeling complex SWI/SNF (the human SWI/SNF 

ATPases are BRG l and hBRM) (Harbour and Dean, 2000). pRB-E2F 

complexes can also recruit the histone methyltransferase SUV39H1 creating a 

high-affinity binding site for the heterochromatin protein 1 (H Pl) on E2F- 

responsive promoters (Nielsen et al., 2001) (Figure C).
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Figure C -  pRB controls E2F activity.
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Deregulation of the pl6INK4a/CDK4/cyclin D/pRB pathway is a prerequisite 

for oncogenesis. Although mutations in pRB and its upstream regulators 

(Figure C) are frequently found in human tumours, intragenic mutations in the 

genes encoding the E2F and DP transcription factors have not been isolated 

(Bartek et al., 1996; Weinberg, 1995). One reason for this may be that 

mutations in the pRB pathway are epistatic to E2F1 mutations. Indeed, most 

tumour-derived pRB mutants show a defect in their ability to regulate E2F 

function. However, low penetrance alleles of pRB  have been described which 

seldom lead to tumour development, despite loss of E2F binding function. 

Conversely, N-terminal mutants of pRB with preserved E2F binding 

capability are unable to fully rescue pRB deficiency in mice and give rise to
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human tumours, again with low penetrance (Riley et al., 1997). Therefore, loss 

of pRB function and gain of E2F function do not have equivalent 

consequences.

Oncogenes

INK4a

Mitogens
Ras

i
CycD/CDK4

T
p27kipi

T-Ag
ElA
E7

1
pRB E2F

T
CycE/CDK2

proliferation
or

apoptosis

Figure D - The pRB pathway.

Two other pocket proteins, p l07 and pl30, are homologous with pRB within 

the pocket, and they also bind viral oncoproteins and E2F. All three pocket 

proteins interact with histone deacetylases (HDACs) in vivo, and can therefore 

both inhibit transcriptional activation and mediate active repression of E2F 

responsive genes. They all arrest cells in G1 when overexpressed. The pocket 

proteins have also unique properties. First, they bind to different members of 

the E2F family in vivo. pRB can bind E 2 F 1 ^ , whereas pl07 and pl30 bind to 

E2F4 and E2F5 (Nevins, 1998). Second, these associations occur at distinct 

stages of the cell cycle: whereas pl30/E2F complexes are found mainly in 

quiescent or differentiated cells (pl30/E2F4 is the most abundant complex in 

GO), pRB binds to E2F in both quiescent and actively dividing cells, and p i07
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is mostly associated with E2F during S phase, but can also be found in G l.

The rare incidence of p l0 7  and/or p i 30 mutations in human tumours indicates 

that p i 07 and p i 30, unlike pRB, do not function as tumour suppressors. 

Mutant mice models have revealed dramatic differences in the biological roles 

of the pocket proteins (Mulligan and Jacks, 1998).

jR6-deficient embryos die at midgestation with inefficient erythropoiesis as 

well as abnormal cell cycle entry and cell death in the liver, lens and nervous 

system (Clarke et al., 1992; Jacks et al., 1992; Lee et al., 1992). These defects 

can be partially rescued through combined mutation of E 2fl, suggesting that 

increased E2F activity is responsible for many of the effects o f Rb deficiency 

in embryogenesis (Tsai et al., 1998). However recent studies have observed 

that Rb-/- mice show dramatic defects in the labyrinth layer of the placenta, 

characterized by marked hyperplasia of trophoblast cells and severe dysplasia 

of the labyrinth architecture, associated with a decrease in placental transport 

function (Wu et al., 2003). When supplied with a normal placenta, either via 

tetraploid aggregation or by genetic approaches, Rb-/- embryos are able to 

survive to full term, suggesting that an abnormal placenta is the primary cause 

for the embryonic lethality of Rb-/- animals. Like in Rb knockout embryos, 

rescued animals show a marked increase in DNA replication and cell division 

in the CNS. In sharp contrast, the typical widespread neuronal apoptosis is 

absent in Rb-deficient embryos reconstituted with a normal placenta. In lens 

fiber cells, however, the inappropriate proliferation and apoptosis that is
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normally observed in Rb-/- embryos persists (de Bruin et al., 2003b). Rescued 

animals died at birth with severe skeletal muscle defects.

Rb-\-/- mice and chimeric animals made with Rb-/- ES cells develop pituitary 

and thyroid tumours but not retinoblastoma or any of the tumours commonly 

associated with RB  mutation in humans. In contrast, mice that lack p i 07  or 

p l3 0  are viable and tumour free at an age of two years. Analysis of double­

mutant mice has provided evidence for overlapping roles of the three family 

members in mouse development and cell cycle control. Rb-/-, p l07-/-  and Rb- 

/-,p l30-/-  embryos die earlier during mouse development than Rb-/- embryos, 

with more pronounced cell cycle defects and increased cell death (Lee et al., 

1996). However differences in the genetic background of mice have been 

shown to be important determinants of the developmental consequences of the 

genetic loss of p l0 7  and p i 30. On a mixed 129/Sv x C57BL/6 genetic 

background, pl30-/-',p l07-/- mice die just after birth with defects in bone 

formation and abnormalities in chondrocyte proliferation (Cobrinik et al., 

1996). Mice with disruptions in p l0 7  and p i 30 in a BALB/c background have 

more severe phenotypes (LeCouter et al., 1998a; LeCouter et al., 1998b).

The effect of pRB family mutations has also been examined in mouse 

embryonic fibroblasts (MEFs) in culture. Rb-/- and p i 07-/-; p i 30-/- fibroblasts 

(Hurford et al., 1997) each have mild defects in cell cycle regulation and 

show differences in the inappropriate expression of cell cycle regulated genes. 

/?RZ?-deficient MEFs prematurely express both cyclin E  and p l07 , whereas the 

combined mutation of p i  07  and p i 30 causes the inappropriate activation of
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the DHFR, B-myb, cdc2, E2fl, TS, RRM2 and cyclin A2 genes during GO/Gl 

(Mulligan, 1998). In growth-limiting conditions, Rb-I- MEFs enter S phase, 

suggesting that expression of p i07 and p i 30 are not sufficient substitutes for 

pRb in the arrest of G l and in the repression of E2F target genes (Almasan et 

al., 1995). Yet, combined loss of pocket proteins immortalizes MEFs and 

abolishes G l arrest after y-irradiation, contact inhibition or serum starvation, 

demonstrating that they have some overlapping function in vivo (Dannenberg 

et al., 2000; Peeper et al., 2001; Sage et al., 2000).

E2F AND THE p53 PATHW AY

p53  is mutated in more than 50% of human cancers and accumulates in 

response to cellular stress from DNA damage, hypoxia and oncogene 

activation. When stabilized and activated, p53 starts a transcriptional 

programme that can either arrest the cell cycle allowing the repair of damaged 

DNA or commit cell to death (Vogelstein et al., 2000).

For example, p53 levels and activity increase after DNA damage (Figure E), 

in part as a result of de novo phosphorylation and conformational changes. 

Phosphorylation at serine 15 prevents the interaction of p53 with MDM2, 

which mediates p53 export from the nucleus and targets it for ubiquitin- 

mediated proteasome degradation. MDM2 is, in turn, negatively regulated by 

ARE (Sherr and Weber, 2000).
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Figure E -  The p53 pathway.

Oncogenes can also induce p53 (Figure E), leading to increased apoptosis or 

premature senescence (Serrano et al., 1997). The adenovirus E lA  oncoprotein 

induces p53 and promotes apoptosis in primary cells, which is reflected by the 

remarkable ability of E lA  to enhance radio- and chemo-sensitivity (Lowe et 

al., 1993). Although E lA  is a mitogenic oncogene, p53 acts to limit its 

oncogenic potential: p53-deficient primary fibroblasts expressing E lA  are 

resistant to apoptosis and become oncogenically transformed (Lowe et al.,

1994). The ability of E lA  to activate p53 is not unique, as c-Myc activates 

p53 to promote apoptosis and oncogenic RAS induces p53, leading to 

premature senescence (Serrano et al., 1997).

Like p53, ARF is a potent tumour suppressor. As mentioned above, ARF is

induced by oncogenes (de Stanchina et al., 1998; DeGregori et al., 1997;
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Palmero et al., 1998). This results in p53 activation and commits cells that 

have sustained oncogenic damage to either growth arrest or apoptosis. ARF 

provides an important connection between E2F1 and p53. Its expression is 

slightly elevated in Rb-/- cells (de Stanchina et al., 1998), consistent with the 

possibility that A RF  is an E2F responsive gene (DeGregori et al., 1997). 

Indeed, enforced expression of E2F1 induces ARF and conversely, Ar/-null 

cells are resistant to E2F1 induced apoptosis (Bates et al., 1998). The A R F  

transcript derives from the same genomic locus as the pl6INK4a  transcript. 

Even though they share sequences in exons 2 and 3, exon 1 is different and 

causes translation in different reading frames. Consequently, pl6INK4a and 

ARF are unrelated at the protein level (Sherr, 1998). Nevertheless, they both 

can mediate cell cycle arrest. While p l 6-induced cell cycle arrest is dependent 

on functional pRB, ARF-mediated cell cycle arrest depends on functional p53 

(Kamijo et al., 1997). Several observations suggest that ARF may function in 

a genetic and biochemical pathway that involves p53. The consequences of 

deleting p53 and Arfdcco remarkably similar. In either case, the mutant mouse 

develops normally, but is highly predisposed to malignant tumours of a similar 

overall pattern and latency. MEFs null for A r f  or p53  do not undergo 

replicative senescence and can be transformed by RAS alone in the absence of 

an immortalizing oncogene (Harvey and Levine, 1991; Kamijo et al., 1997). 

Established MEF cell lines that lacked A t/preserved p53 function, whereas 

those that retained A r/had sustained p53 mutations. Cells lacking a functional 

p53 gene are resistant to ARF induced cell cycle arrest, impling that p53 acts
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downstream of ARF (Kamijo et al., 1997). Nevertheless, ARF is not the only 

activator upstream of p53: cells lacking ARF have an intact p53 checkpoint in 

response to UV and ionizing radiation. Indeed, p53 is induced upon DNA 

damage via the ATM and ATR protein kinases, directly or indirectly through 

the CHK2 kinase (Hirao et al., 2000). The phosphorylation of p53 by 

ATM/ATR then blocks the ability of MDM2 to target p53 destruction. E2F1 

might also be involved in the DNA-damage-response pathway. Treatment of 

cells with chemotherapeutic agents increases E2F1 protein levels. The 

induction of E2F1 in response to DNA damage similarly involves the 

ATM/ATR kinases (Lin et al., 2001), which phosphorylate and stabilize E2F1, 

inhibiting its degradation. The specificity of ATM and ATR for E2F1, rather 

than other E2F proteins, reflects a unique phosphorylation site within the N- 

terminal domain of E2F1. The upregulation of E2F1 in response to DNA 

damage likely provides a synergistic activation of p53 through the induction of 

ARF  or contributes to p53-independent apoptosis, possibly via p73.

DEREGULATED ACTIVITY OF E2F 

Oncogenic activity ofE2F

The first indications that E2F1 has oncogenic potential come from classical 

oncogene cooperation studies in vitro. E2F1 cooperates with activated RAS in 

soft agar assays and the transformed cells produce tumours in nude mice. This 

effect is more pronounced in cells expressing a pRB-binding deficient 

E2F1/VP16 chimera that retains transactivation activity (Johnson et al., 1994)
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or a point mutant of E2F1 specifically defective in pRB binding (Shan et al., 

1996). This suggests that pRB counteracts the oncogenic effect of E2F1. The 

expression of E2F1-2-3 alone is sufficient to transform NIH3T3 (Xu et al.,

1995). Targeted expression of E2F1 in transgenic mice has demonstrated that 

E2F1 overexpression promotes tumorigenesis in vivo (Pierce et al., 1998). 

Finally, tumours phenotypes resulting from the inactivation of pRB are 

impaired when the mice are backcrossed into an E2fl-/~ background (Tsai et 

al., 1998; Yamasaki et al., 1996), suggesting that tumour growth depend on 

the E2F1 that is released when pRB function is blocked. Free E2F1 may 

become essential for tumour cells by providing them with a proliferative 

advantage when growth factors are limiting.

Surprisingly, E 2fl knockout mice develop a broad spectrum of tumours such 

as lymphomas, lung adenocarcinomas and tumours of the reproductive tract 

(Yamasaki et al., 1996), suggesting that E2F1 behaves also as a tumour 

suppressor.

E2F-induced apoptosis

In addition to inducing proliferation, de-regulated E2F activity can trigger 

apoptosis (Bates et al., 1998; Hsieh et al., 1997; Phillips et al., 1997; Qin et al., 

1994; Shan and Lee, 1994). The E2F1-induced apoptosis is potentiated by the 

presence of wild-type p53. However, both overexpression experiments and 

mutant mouse models indicate that death can be induced through either p53- 

dependent or p53-independent mechanisms (Phillips et al., 1997; Phillips et
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al., 1999). E2F triggers p53-dependent apoptosis through the transcriptional 

activation of ARF, a known E2F-target gene (Bates et al., 1998; DeGregori et 

al., 1997). However, studies of mutant mouse models suggest that E2F can 

induce p53-dependent apoptosis in both embryonic tissues and epithelial brain 

tumours in the absence of ARF (Tolbert et al., 2002). In addition, ectopic 

expression of ARF results in cell cycle arrest rather then apoptosis (Sherr, 

1998). So alternative mechanisms must exist besides ARF for the p53- 

dependent apoptosis.

It is widely believed that loss of pRB results in apoptosis as a consequence of 

higher E2F activity. Rb-deficient mice die in midgestation with widespread 

apoptosis (Clarke et al., 1992; Jacks et al., 1992; Lee et al., 1992), whereas 

embryos that are mutants for both Rb and E2fl show a significant reduction in 

apoptosis and down-regulation of the p53 pathway (Tsai et al., 1998). This 

suggests that the E2fl resulting from loss of pRb function mediates most of 

the p53-dependent apoptosis (Bates et al., 1998), and it could explain why 

E2F1 overexpression alone is not sufficient for tumorigenesis. A direct link 

between E2F-induced apoptosis and the apoptosome has been shown. The 

expression of A P A F l is regulated by E2F and A P A F l is required for E2F- 

induced apoptosis (Moroni et al., 2001). In combination with cytosolic 

cytochrome c and the caspase 9 protease, APAFl forms the apoptosome and 

activates the downstream caspase proteases.
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E2Fs can trigger p53-independent apoptosis, but unlike p53-dependent 

apoptosis, it does not require E2F transactivation and can be triggered by 

expression of the E2F DNA-binding domain alone (Hsieh et al., 1997; Phillips 

et al., 1997). This occurs in functionally RB  negative cells, so the role of the 

E2F DNA-binding domain may be to displace free E2F rather than pRB-E2F 

repressor complexes from promoters. At least two distinct pathways have been 

proposed for the induction of p53-independent apoptosis. These include 

transcriptional activation of the p53 family member, p73  (Irwin et al., 2000; 

Lissy et al., 2000) and a non-transcriptional mechanism that involves 

inhibition of the tumour-necrosis factor receptor (TNFR)-associated survival 

response (Phillips et al., 1999). Both p53 dependent and independent apoptosis 

has been observed in vivo. In the central nervous system (CNS) of Rh-/- mice 

apoptosis is p53-dependent, since cells in the CNS of Rb-/-, p53-/- embryos 

continue to ectopically enter S-phase, but do not die. The apoptosis that occurs 

in the peripheral nervous system (PNS) is p53-independent (Macleod et al.,

1996).

Previous studies have shown that E2F1 is somewhat unique among the E2F 

family members in its ability to trigger apoptosis (DeGregori et al., 1997). 

More recent studies suggest that apoptosis can be triggered by ectopic 

expression of E2F1, E2F2, or E2F3 (Vigo et al., 1999) and that nuclear 

localization and DNA binding are required for the apoptotic activity of the 

E2Fs (Loughran and LaThangue, 2000). Expression of E2F4 at elevated levels 

induces growth arrest and caspase-dependent apoptosis through a mechanism
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distinct from E2F1 (Chang et al., 2000). Mutant mouse embryos that lackpRh, 

and either E2fl or E2f3, show a significant reduction in the levels of apoptosis, 

as well as the number of ectopic S-phase cells relative to those seen in mice 

lacking only pRb (Tsai et al., 1998; Ziebold et al., 2001). Restoration of pRb 

function in extra-embryonic lineages (Wu et al., 2003) is sufficient to rescue 

many of the embryonic defects of pRb knockout fetuses, suggesting that 

inactivation of E2F1 or E2F3 from Rb-/- placental may be sufficient to rescue 

early lethality.

TRANSCRIPTIONAL ACTIVITY OF E2F 

E2F target genes

A role for E2F in the activation of several G l/S transition, S phase and DNA 

replication genes has been well established. Typical targets include those 

encoding cell cycle regulators that trigger S-phase entry (such as cyclin E, c- 

Myb, and CDK2), products involved in the assembly of the pre-replication 

complex at origins of replication (such as ORC proteins, MCMs and CDC6), 

and enzymes needed for the direct synthesis of DNA (ribonucleotide 

reductase, thymidine synthase and DNA polymerase a ) . (Helin, 1998; 

Nevins, 1998).

E2F regulates the expression of several genes with mitotic functions. For 

example, cyclin B1 and B2, Bubl and cdc2, genes involved in the progression 

through M-phase, and RanBMP, a gene required for centrosome duplication 

(Ishida et al., 2001; Müller et al., 2001). In the survey of promoters that co-
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immunoprecipitate with E2F1 or E2F4 (Ren et al., 2002) were found not only 

cdc2 and cdc25a, but also promoter fragments for genes with a variety of M- 

phase functions, including smc2 and smc4 (chromosome condensation), bub3 

and mad2 (spindle checkpoints), centromere protein and securin (chromosome 

segregation). Some of these genes are known to induce aberrant spindle 

behavior when overexpressed, and, potentially, misexpression of these targets 

may contribute to the chromosomal instability observed in transformed cells. 

Continual E2F activity during S phase allows the maintenance of high levels 

of cyclinA-CDK2 that are responsible for the inactivation of the anaphase 

promoting complex (APC). APC is a ubiquitin ligase that targets cyclin B1 for 

degradation. By keeping the APC inactive, E2F allows the accumulation of 

cyclin B1 at the end of S phase that is required for the progression of mitosis 

(Lukas et al., 1999).

Recent studies suggest that E2F1 has a physiological role in DNA-damage 

responses. Upon DNA damage, E2F1 is directly phosphorylated and stabilized 

by the ataxia-telangiectasia protein (ATM), a key player of the cellular 

response to DNA damage (Lin et al., 2001).

E2F1 is known to downregulate the expression of anti-apoptotic factors 

(Phillips et al., 1999), and several pro-apoptotic genes have been proposed to 

be induced by E2F1, including Apaf-1, Caspase 3 and Caspase 7 (Müller et 

al., 2001). E2F1 expression leads to stabilization of p53, an effect that was 

thought to be mediated by transcriptional upregulation of p l4 /p l9 ^ ^ .  

Mutation in the p i 9^^, however, failed to suppress the neuronal apoptosis
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phenotype of mouse pRb  mutant embryos (Tsai et al., 2002), indicating that 

other connections to p53 must also exist. E2F proteins are present at the 

promoters of chkl (Ren et al., 2002), which encodes a kinase that is activate 

by ATM and required for the cellular response to DNA damage, and p53. 

Other groups found that the transcription of p73, a p53 homologue, is E2F- 

inducible, and showed that the levels of p73 can influence rates of E2F1- 

induced apoptosis (Irwin et al., 2000; Lissy et al., 2000; Stiewe and Putzer, 

2000).

Xenopus and Drosophila E2F activity are required for axis determination in 

early development (Duronio et al., 1995; Suzuki and Hemmati-Brivanlou, 

2000). It has been suggested that the E2Fs regulate axis determination through 

homeobox-containing proteins in Xenopus (Suzuki and Hemmati-Brivanlou, 

2000) and an EGF-receptor ligand, Gurken in Drosophila (Myster et al., 

2000). In mammals, the E2Fs regulate the expression of several proteins that 

are involved in early development, including homeobox proteins, transcription 

factors involved in cell fate decision, a number of proteins that determine 

homeotic gene transcription, and signaling pathways such as the TGF(3 and 

Wnt pathways that are essential for early development. Several PcG genes 

were identified, like Enhancer of Zeste 2 (EZH2), Embryonic Ectoderm 

Development protein (EED) and Homolog of Polyhomeotic {EDR2/HPH2) 

(Müller et al., 2001).

The pRB/E2F pathway is known to be central in the regulation of various 

types of cellular differentiation (Lipinski and Jacks, 1999). For example, pRB
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is required for erythroid, neuronal, eye, muscle, and adipocyte differentiaton 

(Lipinski and Jacks, 1999). Both p l07  and p l30  are required for normal 

endochondrial bone development (Cobrinik et al., 1996). In addition, E2F4 is 

known to contribute to hematopoetic lineage and to craniofacial development 

(Humbert et al., 2000a; Rempel et al., 2000), whereas loss of E2f5 leads to 

overproduction of cerebrospinal fluid and to hydrocephalus (Lindeman et al., 

1998). In my laboratory (Müller et al., 2001) a number of transcription factors 

that are involved in cell fate decisions, such as Hairy/enhancer of split related 

{HEYl), Paired-like homeodomain {PTXl), ID4, MAF family members, and 

Sox9 were found. In addition, E2F activation led to a dramatic change in the 

expression of genes in the TGFp pathway.

In summary, the E2F-regulated genes code for proteins whose activity control 

cell cycle progression, proliferation, apoptosis, differentiation, and 

development.

E2F-mediated repression

The analysis of E2F-responsive genes shows that E2F-DP-pocket-protein 

complexes are involved in the repression of E2F target genes (Hateboer et al., 

1998; lavarone and Massague, 1999; Johnson et al., 1994). Mutation of the 

E2F-binding sites within known E2F-responsive promoters (B-Myb, CDC2, 

E2F1, cyclin E, CDC25A, CDC6 and ORCl) leads to increased transcription 

after serum starvation or treatment with TGF(3. In some cases, deacetylase 

activity is required for repression of transcription. In vivo footprinting studies
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with the B-Myb, cyclin A  and CDC2 promoters detected E2F site occupancy in 

quiescent cells only in the repressed state (Zwicker and Muller, 1997), while 

the promoters are unoccupied during the G l/S transition when the genes are 

actively transcribed. These data have led to the model that E2F can participate 

in repression of transcription by tethering pocket proteins to E2F target 

promoters, which in turn recruit chromatin remodeling factors including 

histone deacetylases (HDACs), members of the ATP-dependent chromatin 

remodeling complex SWI/SNF, DNA methyltransferase 1 (DMNTl) and the 

histone-methyltransferase SUV39H1 (Figure C). For a number of genes, the 

replacement of endogenous E2F by dominant negative E2F1 leads to 

activation of transcription, meaning that the endogenous E2F complexes 

normally repress the expression of the gene. Overexpression of this dominant 

negative form of E2F1 (which can bind to DNA, but cannot transactivate or 

bind to pocket proteins) compromises the ability of cells to arrest in G l in 

response to pl6INK4a, TGFp and contact inhibition (Zhang et al., 1999). In 

another study the same E2F mutant results in immortalization, bypasses 

RASV12 induced senescence and rescues ARF- and p53- induced cell cycle 

arrest (Rowland et al., 2002). This has been interpreted as a result of 

transcriptional derepression of E2F target genes, whose downregulation is 

critical for the establishment of G l arrest.
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E2F-mediated transactivation

A number of experiments support the view that E2F is a transcriptional 

activator. E2F proteins activate transcription of simple reporter constructs with 

multiple E2F-binding sites (Helin et al., 1992; Shan et al., 1992), they contain 

conserved domains that activate transcription when transferred to other DNA 

binding domains (Kaelin et al., 1992) and there is a strong correlation between 

the ability of E2F to activate transcription and to drive cell cycle progression 

(Johnson et al., 1993; Qin et al., 1995; Shan and Lee, 1994). Viral 

oncoproteins target the pocket proteins to release free, transcriptionally active 

E2F rather than to displace E2F repressor complexes. In vivo footprinting 

studies have detected E2F site occupancy in phases of the cell cycle when 

pocket proteins are largely inactivated (Hateboer et al., 1998). Finally, E2F- 

DNA binding activity is downregulated in S phase when DP is phosphorilated 

by cyclin A-CDK2 and E2Fs are degraded (Krek et al., 1995). The loss of 

E2F-DNA binding activity correlates with decreased transcriptional activity of 

a number of E2F target genes at this point of the cell cycle, such as cyclin E. 

How E2F activates transcription is not known. At least three different 

mechanisms have been suggested. In vitro, E2F1 can bind to TBP (TATA 

binding protein) (Hagemeier et al., 1993). Biochemical studies show that the 

transcriptional activation domain of E2F1 can interact with CBP (CREB 

binding protein), potentially recruiting histone acetylase activity (HAT) to the 

promoter (Tronche et al., 1996) and the transcriptional activity of E2F1 is 

potentiated by the overexpression of CBP. Alternatively, the ability of E2F
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complexes to bend DNA may be important for transcriptional activation 

(Cress and Nevins, 1996).
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MA TERIALS AND METHODS

CLONING TECNIQUES

Agarose gel electrophoresis. DNA samples were loaded on 1% agarose gels 

along with DNA markers. Gels were made in TAB (Tris-acetate-EDTA) or 

TBE (Tris-borate-EDTA) buffer containing 0.3 p-g/ml ethidium bromide and 

run at 80V until desired separation was achieved. DNA bands were visualized 

under a UV lamp.

M inipreps. Cells picked from individual transformed colonies were used to 

inoculate 2 ml 2xLB (containing ampicillin at 25 (xg/ml) and grown overnight 

at 37°C. 1ml of cells was taken from each tube and pelleted for 4 min at 14000 

rpm, resuspended in 100 p,l cold solution 1 (50 mM Glucose, 25 mM Tris-HCl 

pH 8,10 mM EDTA pH 8), vortexed and incubated at room temperature for 5 

min. 200 \x\ o f solution 2 (0.2 N NaOH, 1% SDS) was added and the tubes 

incubated on ice for 5 min. Following the addition of 150 [xl 3M potassium 

acetate, pH 4.8 (solution 3) the tubes were incubated on ice for a further 5 min 

and then centrifuged at 14000 rpm for 5 min. The supernatants were retained 

and 400 fxl of a 1:1 mix of phenol: chloroform was added to each. After 

vortexing, the mixtures were separated by centrifugation at 14000 rpm for 2 

min. The aqueous layers were removed to fresh tubes and the DNA was 

ethanol precipitated. Pellets were washed in 70% ethanol and then dried under
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vacuum. The DNA was resuspended in 5 fxl TE which contained 0.1 fxg/ml 

RNase A (Boehringer Mannheim).

Diagnostic DNA restriction. Between 1-3 fxg DNA was digested for 2 hours 

at 37°C with 10 units o f restriction enzyme (New England Biolabs). For 

digestion, the volume was made up to 20 fxl with the appropriate buffer and 

ddH20.

Large scale plasmid preps. Cells containing transfected DNA were expanded 

into 500 ml cultures overnight. Plasmid DNA was isolated from these cells 

using the Qiagen Maxi-prep kit according to the manufacturer’s instructions.

Transformation o f competent cells. Fresh competent cells (Invitrogen) were 

thawed on ice prior to the addition of 1-2 \il of plasmid DNA in 50 fxl o f cells. 

Either water or cut plasmid was included in one transformation as a negative 

control to determine transformation efficiency. Cells were incubated with 

DNA on ice for 30 min and then subjected to a heat shock for 1 min at 42°C. 

The cells were then returned to ice for 2 min and then at 37°C for further 30 

min before plating onto ampicillin plates. Two plates for each reaction were 

used, one treated with 5 \xl of the transformed bacterial cells and the remainder 

plated on the other. Plates were incubated overnight at 37°C.
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Site directed mutagenesis. Site directed mutagenesis was performed using the 

Quick Change mutagenesis kit (Stratagene), following m anufacturer’s 

instructions. Briefly, a sense and an antisense oligo of about 30 nucleotides 

each, carrying the desired mutation, were generated and used in a PCR 

reaction using the wild type construct (20 ng). PCR was performed using the 

Turbo Pfu polymerase, to reduce the chance of introducing unwanted 

mutations. After amplification, 1 pi o f Dpnl restriction enzyme, which 

selectively cuts methylated DNA at the GATC sequence, was added to digest 

the wild type construct. After one-hour incubation at 37°C, the PCR product 

was used to transform competent Escherichia Coli cells and single colonies 

were sequenced for the presence of the desired mutation and the absence of 

other, unwanted, base changes. For the generation of the pCMVDPl and 

pBabeMYDPl point mutants the following oligos were synthesized: 5'-GAA 

TGG CAA GGG CTT ACG GCA TTT CTC-3' as forward primer and 5'- 

GAG AAA TGC CGT AAG CGC TTG CCA TTC-3' as reverse primer. This 

results in a silent mutation of DPI in the target sequence for the siRNA. For 

the amplification step, 16 PCR cycles were performed with a dénaturation step 

of 30” at 95°C followed by an annealing step of 1’ at 55°C and an extension 

step of 20’ at 68°C.

PLASM IDS

pC M V E 2Fl, pCM VE132, pC M V E 2F l(l-374), pC M V ElA 12S and 

pBabePuroHAER-E2Fl were described previously (Fattaey et al., 1993; Helin
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et al., 1993a; Helin et al., 1993b; Vigo et al., 1999). I generated 

pBabeHygro2HA-BM Il by subcloning the Notl/X hol fragment o f the 

pMT2HA-BMIl (a gift of M. van Lohuizen) into pBabehygro2. L. Laimins 

provided pCB6-E6, and S. Polo provided pCMVMDM2. pCMVDPl was 

described in (Helin et al., 1993b). pRetroSUPER-DP 1 was generated by 

annealing of forward primer (5’GATCCCCTGGCAAGGGCCTACGGCA 

TTTCAAGAGAATGCCGTAGGCCCTTGCCATTTTTGGAAA3 ’) and 

reverse primer (5’AGCTTTTCCAAAAATGGCAAGGGCCTACGGCATT 

C T C T T G A A A T G C C G T A G G C C C T T G C C A G G G 3’). In bold is the 

sequence of siRNA for DPI respectively in the sense and anti-sense 

orientation. The annealed oligos were ligated into pRetroSUPER vector 

(Brummelkamp et al., 2002a; Brummelkamp et al., 2002b).

PRIMARY MOUSE EMBRYONIC FIBROBLASTS

C. Sherr kindly provided Arf^" mice (Kamijo et al., 1997). T. Jacks kindly 

provided Rbl^^" (Jacks et al., 1992), Trp53^^' (Jacks et al., 1994) and Cdknla^^" 

(Brugarolas et al., 1995) mice. All mice were of a mixed C57BL/6-129/Sv 

genetic background. For preparation of primary mouse embryo fibroblasts 

(PMEF) we set up matings between heterozygous parents. We considered the 

morning a vaginal plug was observed as d E0.5. PMEFs were established from 

12.5 d embryos. Embryos were harvested, the brain and internal organs were 

removed and the carcasses were minced and incubated with trypsin for 30-45 

min at 37°C. Tissue culture media was added to the cell suspension and the
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cells were further disaggregated. Genotyping was done by PCR. We 

considered plating after disaggregation of embryos as passage 1. PMEFs were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% 

Fetal Bovine Serum (FBS), 2 mM L-glutamine, 100 U/ml penicillin G, 100 

pg/ml streptomycin, and incubated in a humidified chamber at 37°C, 9% CO2.

CELL CULTURE

We maintained WI38 human fibroblasts in DMEM supplemented with 10% 

North American FBS, penicillin/streptomycin and glutamine, in a humidified 

chamber at 37°C, 5% CO2. We generated ER-E2F1 pools by infecting early 

passage (6-7) WI38 cells with retroviruses produced in Phoenix cells 

transfected with pBabePuroHAER-E2Fl (Vigo et al., 1999). To induce 

activation of the ER-E2F1 fusion protein, we treated cells for 24 h with 4- 

hydroxytamoxifen (OHT, 600 nM) after 72 h o f starvation in DMEM without 

serum.

We maintained NIH3T3 in DMEM supplemented with 10% Calf Serum 

Colorado, penicillin/streptomycin and glutamine, at 37°C, 5% CO2. We 

generated ER-E2F1 and ER-E2F1(132) expressing NIH3T3 cells in the same 

way as WI38 cells. NIH3T3 were starved in 0,1% serum for 24 hours.

HeLa, U20S and SA0S2 cells were cultured in DMEM supplemented with 

10% South American FBS, VA13 and IMR90 fibroblasts in 10% North 

American FBS.
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TRANSFECTIONS

For transfection using the calcium phosphate procedure, 10-15 pg DNA was 

diluted in 439 pi of ddH20 , 61 pi of 2 M CaCl2 were added and the solution 

was added, drop-wise, to 500 pi of 2XHBS. After 15 min incubation, the 

precipitate was added to cells plated on 10-cm-dishes and removed after 7 h. 

Transfections using the Lipofectamine (Gibco BRL) method or Fugene 

method were performed following manufacturer’s instructions.

RETROVIRAL INFECTIONS

Retroviruses were produced by transfecting the Phoenix helper cell line 

(plated at a density of 2 million cells per 10-cm-diameter dish two days 

before) with 10 pg o f DNA. Supernatants were collected 48 h after 

transfection, filtered (0.45 pm), and used to infect WI38 cells. The viral 

supernatant was left on the cells for 3 h, and the procedure was repeated twice 

to increase the efficiency of infection. Two days after infection, the target cell 

cultures were split and puromycine-resistant cells were selected in medium 

supplemented with 1 pg/ml o f puromycine for 4 d. For the experiments 

presented in Fig. 6c, we infected ER-B2F1 expressing WI38 cells with 

pBabeHygro2HA-BMIl and we selected with 100 pg/ml hygromycin B for 10 

days.

39



SMALL INTERFERING RNA (siRNA)

From a given cDNA sequence we selected a targeted region 5’-AA(N21) 

(Elbashir et al., 2001) with approximately 50% G/C-content beginning 100 nt 

downstream of the start codon to avoid that regulatory proteins and translation 

initiation complexes could interfere with binding of the siRNP. The selected 

siRNA sequences were blasted (NCBI database) against human EST libraries 

to ensure that only a single gene was targeted. siRNA duplexes were prepared 

by annealing two pairs o f 21-ribonucleotides synthesized by Dharmacon 

Research in annealing buffer (100 mM potassium acetate, 30 mM HEPES- 

KOH pH 7.4, 2 mM magnesium acetate) for 1 min at 90°C, followed by 1 h at 

37°C. Tumour cells were transfected with siRNA duplexes using 

OLIGOFECTAMINE (Invitrogen). For a well of a 12-well plate, we mixed 3 

pi 20 pM siRNA duplex (0.84 pg, 60 pmol) with 50 pi OPTI-MEM 1. In a 

separate tube, we added 3 pi OLIGOFECTAMINE to 12 pi OPTI-MEM 1 and 

we incubated for 7-10 min at room temperature. The two solutions were 

combined, mixed gently by inversion and incubated for 20-25 min at room 

temperature to allow for formation of liposome complexes. Then we added 32 

pi fresh OPTI-MEM 1 to obtain a final volume of 100 pi. The liposome 

complexes were added to cultured cells (50% confluent) seeded the previous 

day in 500 pi of DMEM supplemented with 10% serum without antibiotics. 

The plate was incubated for 1-2-3 days at 37°C. If  necessary, multiple rounds 

of transfection were performed.
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Diploid fibroblasts were transfected using LIPOFECTAMINE 2000 

(Invitrogen). For a well o f a 12-well plate, we mixed 3 pi 20 pM siRNA 

duplex with 50 pi OPTI-MEM 1. In a separate tube, we added 1,5 pi 

OLIGOFECT AMINE to 48,5 pi OPTI-MEM 1 and we incubated for 5 min at 

room temperature. The two solutions were combined, mixed gently by 

inversion and incubated for 20 min at room temperature to allow for formation 

of liposome complexes. The liposome complexes (100 pi) were added to 

cultured cells (80% confluent) seeded the previous day in 500 pi of DMEM 

supplemented with 10% serum without antibiotics.

Immunofluorescence or Western blotting was performed to analyse the 

depletion of the target protein. When no antibodies were available, the level of 

the targeted mRNA was monitored by RT/PCR to control for the specificity of 

the knockdown. As control we transfected cultures with a siRNA duplex 

targeting firefly luciferase (GL2) or buffer, both of which had no detectable 

effect on cell growth or morphology. The human targeted sequences (cDNA) 

were: for DPI (oligo 1: 5’-AATGGCAAGGGCCTACGGCATTT-3% oligo2: 

5’-AAGCAGCTCTTGCCAAAAACC-3 ’), for DP2 (5’-AAA TCC CTG GTG 

CCA AAG GCT TT-3’).

MICROINJECTION EXPERIMENTS

We plated early passage (3-5) PMEFs of the indicated genotypes on 0.5% 

gelatine coated glass coverslips and made them quiescent by cultivation in
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medium containing 0.05% serum for 48-72 h. At the time of microinjection, 

the cells had reached 60 to 80% confluence. We observed similar levels of S 

phase induction in wild type PMEFs prepared from littermates o f p53, 

pl9ARF, p21 and pRb deficient embryos. We prepared PMEFs and tested 

them from at least two independent litters. We observed no significant 

differences between the various litters. We cultured sub-confluent WI38 cells 

and when specified they were starved in serum free medium for 72 h. We 

injected cells with 50 ng/pl o f expression plasmids (unless otherwise 

specified) together with 2 pg/pl rabbit IgG (Jackson Laboratories) directly into 

cell nuclei using a Zeiss automatic injection system. We added BrdU (100 

pM) 4 h after injection and fixed cells 20 h after the addition of BrdU. For 

WI38ER-E2F1, we added 600 nM OHT 6 h after injection, and BrdU 2 h later. 

We fixed cells 16 h after the addition of BrdU. For each experiment, between 

100 and 150 injected cells were counted. The experiments were repeated at 

least three times.

IMMUNOFLUORESCENCE

Cells grown on coverslips (pre-incubated with 0.5% gelatine at 37°C for 30 

min) were fixed in PIPES buffer (PIPES 400 mM pH 6.8, EGTA 500 mM pH 

8, MgCl] IM) containing 4% paraformaldehyde for 10 min, washed in PBS 

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HP04, 2 mM KH2PO4, pH adjusted 

to 7.4 with KCl) and permeated with 0.1% Triton X-100, 10% goat serum in 

PBS. To detect the injection marker (rabbit IgG), cells were incubated in
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blocking buffer (10% goat serum in PBS) containing FITC-conjugated donkey 

anti-rabbit antibody (Jackson Laboratories). After washing in PBS, cells were 

fixed again in 4% paraformaldehyde. BrdU incorporation was detected by 

incubation in blocking buffer containing anti-BrdU antibody (Beckton 

Dickinson BD347580), 3 mM MgCl2 and 100 U/ml DNase I (Roche). Cells 

were washed extensively before incubation with Cy3-conjugated donkey anti­

mouse IgG (Jackson Laboratories). Nuclei were counterstained with DAPI. 

Some coverslips were stained with antibodies specific for human pl4ARF 

(14P02, NeoMarkers), anti-p53 (DO-1, Santa Cruz), anti-p21 (CP74, kind gift 

o f E. Harlow) or anti-E2Fl (KH20 or KH95 (Helin et al., 1993b)). Cy3- 

conjugated donkey anti-mouse IgG (Amersham) was used as secondary 

antibody.

FLOW CYTOMETRY

At the indicated times, 10  ̂ cells per sample were trypsinized, combined with 

any floating cells, pelleted, washed with PBS, repelleted and resuspended in 

PBS. The cells were fixed in cold ethanol (70%, final concentration) and 

stored for at least 30 min at 4°C. The fixed cells were centrifuged, washed 

twice with PBS-BSA 1%, and resuspended in 0.5 ml of PBS containing 

propidium iodide (50 pg/ml) and RNase A (6.25 pg/ml). Samples were 

incubated for 3h at room temperature or overnight at 4°C prior to analysis by 

flow cytometry with a Becton Dickinson FACScan.
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For BrdU FACS, 3X10^ cells were pulsed for 20 min in medium containing 33 

pM BrdU, trypsinized and fixed as above. Cell pellet was incubated in 1 ml of 

denaturating solution (2 M HCl) for 20 min at room temperature. 2ml of 0,1 M 

Sodium Borate pH 8,5 was added and cells were incubated for 2 min at room 

temperature. After two washes in PBS 1% BSA, the pellet was resuspended in 

50 pi anti BrdU (Beckton Dickinson BD347580) diluited 1:5 (1 hour 

incubation at RT), and then in anti-mouse FITC (Sigma) diluited 1:50. Finally 

PI (2,5 pg/ml overnight at 4 C) was added.

WESTERN BLOTTING

Cells were collected in RIPA lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 

1% NP40, 0.5% Sodium Deoxicolate, 0.1% SDS, proteases and phosphatases 

inhibitors). After clearing of the lysates by centrifugation, the protein content 

was determined (Biorad Protein Assay). Equal amounts o f proteins were 

separated on a sodium dodecyl sulfate polyacrylamide gel using an 

appropriate acrylam ide concentration (stock 40%, 30:1 m ix o f 

acrylamide:bisacrylamide) to resolve the molecular weight o f the targeted 

proteins.

Running gel mix: 6% 8% 10% 15%

acrylamide mix (ml) 5 6 7.5 11.25
1.5M Tris pH8.8 (ml) 7.5 7.5 7.5 7.5
Distilled water (ml) 16.9 15.9 14.4 10.65
10% SDS (ml) 0.3 0.3 0.3 0.3
10% APS (ml) 0.3 0.3 0.3 0.3
TEMED (ml) 0.03 0.03 0.03 0.03
TOTAL (ml) 30 30 30 30
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stacking gel mix: acrylamide mix 1.7
IM Tris pH6.8 (ml) 1.25 
Distilled water (ml) 6.8 
10% SDS (ml) 0.1 
10% APS (ml) 0.1 
TEMED (ml) 0.01 
TOTAL (ml) 10

Gel running buffer: Tris-base (pH 8.3) 25 mM
Glycine 192 mM
SDS 0.1%

Proteins were transferred onto nitrocellulose membrane and processed for 

Western Blotting in transfer buffer (20% methanol, 192 mM glicine, 25 mM 

Tris-base) at lOOV for 1 h. We incubated the membrane in 5% milk powder in 

TBST (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.2% Tween-20) for 1 h at 

RT. The blots were probed with the following antibodies: mouse monoclonal 

anti-DP 1 (TED 10), anti-vinculin (Sigma), anti-actin a  (Sigma), anti-pRB 

(PharMingen); rabbit polyclonal anti-CDK2 (Santa Cruz, sc-163). After 

incubation with the appropriate horseradish peroxidase-conjugated secondary 

antibody, the signal was revealed using the ECL (Enhanced 

Chemiluminescence) method (Amersham).

CDK2 KINASE ASS A Y

Infected cultures were lysed by resuspension in lysis buffer (50 mM HEPES 

pH 7.5, 20 mM NaCl, 1 mM EDTA, 2.5 mM EGTA, 1 mM DTT, 0.1% Tween 

20, 10% glycerol, 0.1 mM sodium orthovanadate, 1 mM NaF, 1 mM PMSF, 

10 pg/ml of leupeptin, 5 pg/ml of aprotinin, 10 mM (3-glycerophosphate) for 

30 min at 4°C and cleared by centrifugation at 14.000 rpm for 5 min at 4°C.
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Supernatants were assayed for protein concentration (Biorad Protein Assay). 

Protein samples of 0.2-0.5 mg were then precleared and immunoprecipitated 

for 2 h at 4°C with protein A-Sepharose beads (Amersham Pharmacia 

Biotech), precoated with saturating amounts of anti-CDK2 antibody (5 pg of 

SC-163 from Santa Cruz, 1 h of preincubation at 4°C). Immunoprecipitated 

proteins on beads were washed twice with 1 ml of lysis buffer and twice with 

1 ml of wash buffer (50 mM HEPES pH 7.5, 1 mM DTT, 10 mM MgCl], plus 

the protease inhibitors as described above). The beads were resuspended in 

25 pi o f kinase buffer (50 mM HEPES pH 7.4, 10 mM MgCl], 2.5 mM 

EGTA, 1 mM DTT, 10 mM |3-glycerophosphate, 0.1 mM Na3V04 , 1 mM 

NaF, 1 mM PMSF, 10 pg/ml leupeptin, 5 pg/ml aprotinin) containing 1.5 pg 

of histone HI (Roche) as substrate, 20 pM ATP, and 10 pCi of [y-^^P]ATP. 

After incubation for 30 min at 30°C, the samples were boiled in 5X Laemmli 

buffer, separated by SDS-PAGE 12%, and transferred to a nitrocellulose filter.

GEL RETARDATION ASSAY

Double-stranded oligonucleotides containing a wild type E2F DNA binding 

site were end labelled with [y-^^P]ATP by using T4 polynucleotide kinase, 

purified on a 12% polyacrylam mide gel and used as probe. The 

oligonucleotide E2F-sense (the E2F binding site is underlined) was 5 ’- 

ATTTAAGTTTCGCGCCCTTTCTCAA-3 ’. We performed gel retardation 

assays on whole cell extracts (Hepes 20 mM pH 7.5, NaCl 0.42 M, MgCli 1.5 

mM, EDTA 0.2 mM, PMSF 0.5 mM, DTT 0.5 mM, 25% glycerol) from
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interfered HeLa cells by incubating 5-20 pg of cell extract with 1 pg of 

salmon sperm DNA (sonicated to 500 bp single and double stranded) and 5X 

gel shift buffer (Hepes 100 mM pH 7.6, MgCl] 5 mM, EGTA 0.5 mM, NaNg 

0.1%, KCl 200 mM, glycerol 50%) in a 12.5 pi total volume for 10 min at 

room temperature; 1 pi of ̂ ^P-labelled oligonucleotide probe (0.1 ng/pl in TE, 

20000 cpm) was then added and the mixture was incubated for a further 20 

min. To control for binding specificity, a 100-fold excess o f unlabelled 

oligonucleotide was added to the binding reaction. The DNA-protein 

complexes were separated on a 4% polyacrilammide gel containing 0.25X 

Tris-borate-EDTA buffer at 4°C. The gel was dried and autoradiography was 

performed.

NORTHERN BLOTTING

WI38-ERE2F1 infected cells were grown with or without 600 nM OHT and/or 

10 pg/ml cycloheximide (CHX) to inhibit protein synthesis. Cells were 

harvested in guanidium thiocianate 4 M, sodium acetate 20 mM pH 5.2, 

Sarkosyl 0.5%, DTT 0.1 mM and lysed by passage through a 20-gauge needle 

eight times. RNA was isolated by CsCl ultracentrifugation method as 

described (Ausubel et al., 1988). Poly A+ RNA was isolated with the Oligotex 

reagents from Quiagen using a batch protocol as described by the 

manufacturer. 1-4 pg of poly A+ RNA were resolved by elettrophoresis on a 

1% agarose gel containing 1.9% formaldehyde and IX MOPS and they were 

transferred to a nylon membrane. We sequentially hybridised the blot with
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^^P-labeled probes (obtained by random primer method) specific for ARF, 

CCNEl, CDKNIA, or GAPDH.

RT-PCR

Total RNA was isolated from cells using the Rneasy extraction kit (Quiagen) 

according to the manufacturer’s instructions. After DNase treatment, 1 pg of 

RNA was used for cDNA synthesis using the Superscript II Reverse 

Transcriptase (GIBCO) following m anufacture’s instruction. PGR was 

performed in an ABI PRISM 7700 Sequence detection system on lOng of 

cDNA, 0.5 pi of a 10 pM primers mix and 2X SYBR Green PGR Master Mix 

(Applied Biosystem) in a 25 pi volume. The reaction was performed at 50°C 

for 2 min, 95°C for 10 min, then 40 cycles at 95°C for 15 sec, 60°C for 1 min. 

We evaluated on agarose gel that the products were of the expected size. 

GAPDH was used as endogenous control. Quantification was expressed 

relative to the untreated control. The following sets o f primers were designed 

using Primer Express Software:
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gene amplicon forward primer reverse primer

CDC6 111 bp AGCACTGGATGITIGCAGGIAG GGGAA1G\GAGQCICAGAAQG

CCNEl 75 bp TOCAGAGOGITGGAlCICKnG GQOGGAAQCAGQ̂AGIAmOC

RRM2 113 bp TICAGG\a03GAAIC]GCIG GGCIAAATCXOOCAOCAAG

DHFR 66 bp GAGAACIŒAGGAACiaŒACAAG AGl'lTlAAGGCATĜ TCmGACTICIGG

MCM3 100 bp IGGAGGGCATIGmĜCTAAATG AGAATAACma3CICIAIGGICnC

DPI 71 bp ATITOGGQGATaOjIMCATG IGAAGAOCTIGAGITCIGGGriG

DP2 79 bp AAAGAAATCAAGIGGATIGGOC 10C]GCOCIGCT]OCmTCIC

E2F1 47 bp CAlOXniAaACAGATOGC AACAGCGGITCTIGCIOCAG

TK 51 bp GOCAAAGACAOGGCIACAGC TGGIGnODGGICATGrlGIG

CDC25A 105 bp TGGCATCIGITITCAAIGGC AOGCACXrTIGATGIGGC

GAPD 87 bp GOCICAAGAICAICAGCAAIGC OCACGAmCXAAAGnGKAIGG

Table 1 - Primers used in quantitative PCR.
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RESULTS -  PARTI

AIM

One of the most striking properties of E2F proteins is their ability to drive 

cells into S phase. Short-term expression of E2F1, E2F2, or E2F3 is sufficient 

for the induction of DNA replication in immortalized quiescent rodent 

fibroblasts in the absence of growth factors (Dimri et al., 1994; Johnson et al., 

1993; Lukas et al., 1996; Qin et al., 1994; Shan and Lee, 1994) and requires 

functional DNA binding and transcriptional activity. This is central to most 

models o f E2F function and was first shown for E2F1 (Johnson et al., 1993). 

In immortalized cells, E2F1 overexpression overrides many different types of 

cell cycle arrest, including the effects of p l6 , p21, p27, y-irradiation, TGF(3 

and dominant negative CDK2 (DeGregori et al., 1995b; Lukas et al., 1996; 

Mann and Jones, 1996; Schwarz et al., 1995). The proportion of cells in Gi is 

increased by the overexpression of dominant negative mutants o f E2F1, DPI 

and DP2 (Wu et al., 1996) or by the expression of competitor RNA molecules 

(Ishizaki et al., 1996). Despite this, I observed that overexpression of E2F1 in 

diploid fibroblasts results in cell cycle arrest in G l and apoptosis. Therefore, I 

decided to study the effects of inducible E2F1 activation in primary mouse 

embryo fibroblasts (PMEFs) and non-immortal human diploid fibroblasts 

(WI38), two well-defined cell types that have been widely used to study 

normal cell cycle control since they have not accumulated mutations.
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RESU LTS

E2F1 is not sufficient to induce S phase in diploid fibroblasts 

I microinjected serum-starved PMEFs with expression vectors containing 

E2F1 or adenovirus E1A12S cDNAs driven from the strong cytomegalovirus 

promoter (Fig. \a). The expression of E2F1 from this promoter has been 

reported to induce S phase in quiescent Rati fibroblasts (Lukas et al., 1996). 

In agreement with published results, I observed that E1A12S was sufficient to 

induce S phase in primary rodent cells (Quinlan et al., 1987; Zerler et al., 

1987). This indicates that the cells can enter S phase and are not irreversibly 

blocked by serum starvation. However, the expression of E2F1 in PMEFs did 

not result in an increase in the number of cells entering S phase (Fig. la).

To investigate if the lack of S phase induction by E2F1 was specific for 

primary mouse fibroblasts, I tested whether E2F1 could induce S phase in 

human diploid fibroblasts. I microinjected serum-starved WI38 cells with 

E2F1 or E1A12S expression plasmids and I measured S phase entry. As 

shown in Fig. lb , human diploid fibroblasts expressing E1A12S efficiently 

entered S phase, whereas cells expressing E2F1 were unable to do the same. 

These results indicate that E2F1 is not sufficient to induce S phase in diploid 

fibroblasts, and are in agreement with previous results showing that E2F1 

cannot induce S phase in WI38 cells (Dimri et al., 1994).
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Figure 1 E2F1 is not sufficient to induce S phase in diploid fibroblasts, a, 
BrdU incorporation in wildtype PMEFs. E2F1 or E1A12S expression 
plasmids were micro-injected into serum-starved cells along with IgG as an 
injection marker. Mock-injected or non-injected (Control) cells were negative 
controls. Serum was added for 24 h as a positive control. DNA synthesis was 
assessed by BrdU labeling, b, BrdU incorporation in WI38 fibroblasts. 
Quiescent cells were injected as in (a), c, BrdU incorporation in WI38 ER- 
E2F1 fibroblasts. Quiescent cells were either untreated (Control) or treated 
with OHT or serum for 24 h. Error bars indicate standard deviation of the 
mean of at least three independent experiments.
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My laboratory recently generated cell lines expressing E2F1 fused to the 

estrogen receptor ligand-binding domain (ER) (Moroni et al., 2001; Müller et 

al., 2001; Vigo et al., 1999). The ER-E2F1 fusion protein is expressed at 

relatively low levels as an inactive protein in the cytoplasm. Upon addition of 

the ligand (4-hydroxytamoxifen, OHT), ER-E2F1 translocates to the nucleus 

and transactivates E2F-dependent promoters in a DNA-binding and 

tr ans activation domain dependent manner. The activation of ER-E2F1 

faithfully reproduces all phenotypes associated with expression of native 

E2F1, including induction of S phase and apoptosis in Rati cells (Vigo et al., 

1999) and induction of apoptosis in PMEFs and W138 cells (Moroni et al., 

2001). To understand the biochemical mechanisms that prevent S phase 

induction by E2F1, 1 tested the ability of ER-E2F1 to induce S phase in 

quiescent W138 cells in the absence of serum (Fig. Ic). Consistent with the 

results obtained by microinjection of E2F1 expression plasmid, ER-E2F1 

activation was not sufficient to induce S phase in quiescent normal diploid 

fibroblasts. The expression of ER-E2F1 in the W138 cell line has been shown 

previously (Moroni et al., 2001) and 1 checked it by immunofluorescence (Fig. 

2b). Furthermore, to verify that ER-E2F1 was activated after OHT addition, 1 

examined the expression of two known E2F target genes. Activation of E2F1 

led to a strong increase in CCNEl (Cyclin E l) and ARF  (p i4"^^) expression 

independent of de novo protein synthesis, suggesting that these genes are 

direct targets of E2F1 (Fig. 2a). Activation of E2F1 also induced C D KNIA  

(p21) mRNA levels. However, in contrast to the increased expression of AiRF
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Figure 2 Activation o f E2F1 leads to increased levels o f p i  4^^, p53 and p2L  
a. Northern blot analysis of mRNA isolated from WI38 cells expressing ER- 
E2FL Cells were incubated with OHT, cycloheximide (CHX) or both for the 
indicated times. The blot (2 pg of poly A+ RNA) was probed for C C N E l, 
ARE, CDKNIA  or GAPDH expression, b. Immunofluorescence of WI38 ER- 
E2F1 cells. Quiescent cells were incubated for 24 h in the absence or presence 
of OHT. Cells were stained with antibodies specific for E2F1, p i4^^^, p53 or 
p21 on independent coverslips. Nuclei were stained with DAPI.
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and CCNEl, the increase in CDKNIA level was dependent on de novo protein 

synthesis (Fig. 2a\ 1.8-fold induced in lane 2 versus 1.1-fold in lane 4). The 

activation of E2F1 led to increased levels of ARF, p53 and p21 proteins (Fig. 

26).

Since the lack of S phase induction by E2F1 could be due to limiting amounts 

of DPI, the dimerization partner of E2F1, 1 coexpressed DPI with E2F1. 

However, E2F1 did not induce S phase in PMEFs even when co-expressed 

with DPI (Fig. 3).

Loss o f function in the p53 pathway is required for E2F1-induced S phase 

1 next sought to understand the genetic changes that allowed E2F1 to induce S 

phase in immortalized, but not diploid, fibroblasts. p53 is a critical component 

of the arrest pathway activated by a multitude of DNA damaging agents. 

Among other genetic changes, either Arf or Trp53 inactivating mutations are 

the most common single events in the spontaneous conversion of PMEFs into 

continuously growing cell lines (Sherr, 1998). Since ARE is a known E2F1 

target gene (Sherr, 1998), and increased ARF levels induce a p53-mediated 

checkpoint response, 1 investigated whether inactivation of either A r/or Trp53 

would allow E2F1 to induce S phase. 1 prepared PMEFs from A rf- f-  or 

Trp53-f- mouse embryos, 1 serum-starved and microinjected them with E2F1 

or E1A12S expression plasmids. As shown in Fig. 4a, b, expression of E2F1
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Figure 3 The E2F1-DP1 heterodimer does not induce S phase in wildtype 
PM  EE s. Quiescent cells were injected with plasmids expressing E1A12S, 
E2F1, DPI or coinjected with E2F1 and DPI. IgG was used as an injection 
marker. DNA synthesis was assessed by BrdU labeling. Error bars indicate 
standard deviation of the mean of two independent experiments.
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Figure 4 Loss o f function in the ARF-MDM2-p53 pathway allows E2F1- 
induced S-phase in PMEFs. E2F1 induces S phase in Trp53~'~ {a) and ARF^'~ 
{b) PMEFs. Quiescent cells were injected with plasmids expressing E1A12S, 
E2F1 or E2F1 mutants (E132 and 1-374).
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in these cells was as potent as E1A12S at inducing S phase. S phase induction 

was dependent on the DNA binding and transactivation functions of E2F1, 

since DNA binding mutant (E l32) or transactivation mutant (1-374) alleles 

did not induce DNA synthesis. Similarly, in quiescent NIH3T3, which lack 

pl9A R F, the microinjection of E2F1 or E1A12S expression plasmid 

efficiently induced S phase (Fig. 5a, b). Consistent with this, ER-E2F1 

activation was sufficient to induce S phase in quiescent NIH3T3, while ER- 

E132 was not (Fig. 56), although they both localized into the nucleus upon 

OHT addition (Fig. 5c).

I performed several experiments to confirm these results and to understand the 

likely mechanism. First, I coexpressed E2F1 and Bm il. Bm il is involved in 

the regulation of senescence and tumourigenicity (Jacobs et al., 1999; van 

Lohuizen et al., 1998). It was originally identified as a common insertion site 

in Moloney murine leukemia virus (MoMLV)-induced B-cell lymphomas in 

E//-Myc transgenic mice (Adams et al., 1985; van Lohuizen et al., 1991) and 

was only subsequently shown to be a m am m alian PcG protein. 

Overexpression of Bm il in PMEFs results in downregulation of pl6INK4a  

and p l9A R F , causing extension of cellular lifespan, increased proliferation 

and neoplastic transformation in cooperation with oncogenic Ras or Myc 

(Jacobs et al., 1999). Conversely, the absence of Bmil causes de-repression of 

p l6 IN K 4 a  and p  19ARF, leading to premature senescence of PMEFs and 

severe proliferation defects in lymphoid organs and cerebellum. When I co-
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Figure 5 E2F1 induces S phase in NIH3T3 fibroblasts, a, B r d U  
incorporation in NIH3T3. E1A12S, E2F1 or E2F1 mutants (E l32 and 1-374) 
expression plasmids were micro-injected into serum-starved cells along with 
IgG as an injection marker. Mock-injected or non-injected (control) cells 
were negative controls. Serum was added for 24 h as a positive control. DNA 
synthesis was assessed by BrdU labeling, b, BrdU incorporation in NIH3T3 
ER-E2F1 and NIH3T3 ER-E132 fibroblasts. Quiescent cells were either 
untreated (control) or treated with OHT or serum for 24 h. c, 
Immunofluorescence of NIH3T3 ER-E2F1 and NIH3T3 ER-E132. Cells were 
stained with antibodies specific for E2F1. Nuclei were stained with DAPI.
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expressed E2F1 and Bmil in PMEFs, I observed S phase induction (Fig. 6a). 

Since Bmil is a repressor of ARF expression (Jacobs et al., 1999), my result 

is consistent with the notion that ARF is required to block E2F1-induced S 

phase. Second, coexpression of E2F1 and the human papilloma virus E6 

protein or the MDM2 oncoprotein, two proteins that target p53 for 

degradation, induced S phase in serum-starved wildtype PMEFs (Fig. 66). 

This indicates that p53 is needed to block E2F1 induced S phase. Diploid 

human fibroblasts also required the presence of functional ARF and p53, since 

the expression of Bmil (Fig. 6c), E6 (Fig. 6d), or MDM2 (Fig. 6c) in WI38 

cells cooperated with E2F1 to induce S phase entry.

Loss o f p21 allows E2F1 to induce S phase

Activation of p53 in response to unprogrammed growth stimuli results in G l 

and G2 cell cycle arrest, and in some circumstances to apoptosis (Vogelstein 

et al., 2000). The induction of cell cycle arrest is the most common response in 

diploid fibroblasts, and p21^^^^^^^ an inhibitor of cyclin dependent kinases, 

acts as an important effector in the p53-mediated G l arrest induced by DNA 

damaging agents (Vogelstein et al., 2000). For instance, cells lacking 

functional C dknla  (p21) alleles fail to arrest in response to DNA damage 

(Brugarolas et al., 1995) and exhibit reduced growth factor requirements. p21 

and pRb double deficient cells have the ability to grow in soft agar 

(Brugarolas et al., 1998). The analysis of a single p21-/~ clone of human
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Figure 6 Loss o f function in the ARF-MDM2-p53 pathway allows F2F1- 
induced S-phase in Wt PMFFs and WI38 cells, a, b E2F1 cooperates with 
BM Il, E6 or MDM2 to induce S phase in wildtype PMEFs. Quiescent cells 
were injected with E2F1, E6, MDM2 or increasing amounts of BM Il (10-25- 
50 ng ml'^). c, d  E2F1 cooperates with BM Il, E6 or MDM2 to induce S phase 
in WI38 cells. WI38-ER-E2F1 cells were infected with empty vector or 
pBabeHygro2HA-BMIl, made quiescent and incubated with/without OHT. In 
(d) cells were injected with E6 or MDM2 and incubated with/without OHT. 
Error bars indicate standard deviation of the mean of at least three independent 
experiments
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fibroblasts obtained after selection for two independent homologous 

recombination events had led to the conclusion that the loss of p21 gene is 

sufficient to bypass senescence (Brown et al., 1997). Finally, p21 is 

upregulated in association with cell cycle arrest induced by constitutive 

activation of the Ras/Raf/MEK pathway (Serrano et al., 1997).

To understand if p21 was required to prevent E2F1-induced S-phase, PMEFs 

were prepared from C dknla-I-  embryos, serum-starved and microinjected as 

before. As shown in Fig. 7, E2F1 induced S phase in C d k n la - /-  PMEFs. 

These results show that p21 is necessary for sustaining a G l arrest and are 

consistent with the observation that the G l arrest mediated by p21 cannot be 

bypassed either by inactivation of pRB or by overexpression of E2F family 

members (Mann and Jones, 1996).

Loss ofpRB allows E2F1 to induce S phase

Ectopic cell cycle entry and elevated apoptosis levels are apparent in both 

CNS and PNS of R b l- i-  embryos. The inappropriate cell cycle entry is 

accompanied by elevated activity of free E2F proteins and overexpression of 

E2F transcription targets, such as cyclin E (Macleod et al., 1996). 

Additionally, p53 protein levels and p53 DNA binding activity are enhanced 

in the brains of R bl-i-  embryos, leading to increased expression of the p53 

transcriptional target p21. Despite higher levels of p53, inactivation of pRB is 

sufficient for ectopic S phase in Rbl-i- embryos (Macleod et al., 1996).
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Figure 7 Loss o f p21 is required for E2F1-induced S-phase. E2F1 induces S 
phase in Cdknla~^~ PMEFs. Quiescent cells were injected with plasmids 
expressing E1A12S, E2F1 or E2F1 mutants (E l32 and 1-374). Cells injected 
with IgG (Mock) or non-injected (Control) were negative controls. Serum was 
added for 24 h as a positive control. DNA synthesis was assessed by BrdU 
labeling.

Q. 40

-  30

Control Serum Mock E1A E2F1 E132 1-374

Figure 8 Loss o f pRb is required for F2F1-induced S-phase. E2F1 induces S 
phase in Rbl~‘~ PMEFs. Cells were injected as in Fig. 7. Error bars indicate 
standard deviation of the mean of at least three independent experiments.
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To test whether E2F1 was sufficient to induce S phase entry in the absence of 

pRB, PMEFs were prepared from R b l- /-  embryos, serum-starved and 

microinjected with E1A12S and E2F1 expression plasmids. As demonstrated 

in Fig. 8, both E1A12S and E2F1 induced S phase in pRb-deficient PMEFs, 

showing that in addition to causing deregulation of E2F activity, loss o f pRB 

also abrogates the E2F1-induced G l checkpoint. These data suggest that the 

G l/S arrest imposed by E2F expression in Wt PMEFs requires p53-triggered, 

p21-mediated, inhibition of pRB phosphorilation. In addition, the E2F1A^P16 

mutant was unable to release quiescent WI38 cells in S phase, suggesting that 

the interaction between pRB and E2F1 is not required to arrest primary cells in 

G l (Fig. 9). The E2F1A/^P16 chimera cannot interact with pRB since the 

transactivation domain of E2F1 is replaced by the transactivation domain of 

the herpesvirus VP 16, but it is fully transcriptionally active in an E2F 

dependent manner (Johnson et al., 1994). These findings strongly suggest that 

pRB may regulate the G l/S transition through direct binding to other activities 

(proteins) in addition to E2Fs such as ID2, H B Pl, c/EBPa or MyoD 

(Lasorella et al., 2000; Lipinski and Jacks, 1999). I focused my attention on ID 

proteins. They function as dominant negative inhibitors of basic helix-loop- 

helix (bHLH) transcription factors since they lack a DNA binding domain. In 

addition to E2F1, ID2 is the only protein described so far able to disrupt the 

anti-proliferative effect o f pocket proteins, thus allowing cell cycle 

progression (Lasorella et al., 1996). This function correlates with the ability of 

ID2 to associate with hypophosphorylated pocket proteins. To test whether
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Figure 9 pRB and E2F interaction is not required to arrest cells in G L  
WI38-ER-E2F1 and WI38-ER-E2F1/VP16 cells were made quiescent and 
incubated with/without OHT or with serum as positive control for 24h. DNA 
synthesis was assessed by BrdU labeling. Error bars indicate standard 
deviation of the mean of two independent experiments.
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Figure 10 ID2 does not cooperate with E2F1 to induce S phase in Wt 
PMEFs. Quiescent cells were injected with plasmids expressing E2F1, ID l, 
ID2 or ID2 mutant (delta 41-71). Non-injected cells (Control) were negative 
control. Serum was added for 24 h as a positive control. DNA synthesis was 
assessed by BrdU labeling.
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pRB could induce G l arrest through direct binding and regulation of some 

bHLH transcription factor in addition to E2F1 binding, I expressed E2F1 in 

quiescent Wt MEFs along with ID2, and, as negative control, ID2A41-71 

mutant, which lacks HLH domain, or ID l, which is not able to disrupt the 

anti-proliferative effect o f pRB. However, none of the constructs was able to 

cooperate with E2F1 to induce S phase (Fig. 10).

Biochemical Mechanism

My data suggest that the G l block imposed by E2F1 overexpression is 

ultimately mediated by pRB, downstream of p21. The role of p21 in this 

pathway raised questions regarding the mechanism. Ample evidence suggests 

that p21 can inhibit both CDK2- and CDK4- associated activity (Gu et al., 

1993; Harper et al., 1993; Xiong et al., 1993). However, after y irradiation, 

p21 allows a pRB-mediated G l arrest (Brugaloras et al., 1999) by inhibiting 

CDK2- and not CDK4- activity. In Cdknla-/- PMEFs, CDK2 activity but not 

CDK4 activity is elevated two to fourfold compared with wildtype cells 

(Brugarolas et al., 1998).

To elucidate the mechanism more fully, I tested the relative kinase activity of 

CDK2 when E2F1 is overexpressed in quiescent Wt or Trp53-I- PMEFs and 

the status of pRB phosphorylation in the same cells. Expression of E2F1 did 

not result in increased level of CDK2 activity in quiescent wildtype PMEFs, 

whereas E2F1 expression increased CDK2 activity in 77pJ3-deficient PMEFs
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Figure 11 Abrogation o f the p53-dependent G1-checkpoint increases Cdkl 
activity and pRb phosphorylation. Wildtype and Trp53 '~ PMEFs were 
infected with pBabePuro HABR-E2F1, made quiescent and incubated 
with/without OHT or serum for 24 h. a, DNA synthesis was assessed by 
BrdU labeling, h. Relative Cdk2 kinase activity was measured using histone 
HI as a substrate, c, Aliquots of cell lysates were run on a 6% SDS-PAGE 
and the level of pRb phosphorylation was assessed by probing the Western 
blot with a specific antibody to pRb (PharMingen). Equal loading was 
confirmed using an antibody to Vinculin (Sigma).
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(Fig. 1 lb). E2F1 expression in p53-deficient, but not in wildtype, PMEFs gave 

hyperphosphorylation of pRB (Fig. 11c).

Cyclin E l and cyclin A2 have been shown (although in tumour cells) to 

override a pRB-mediated G1 block (Hinds et al., 1992; Horton et al., 1995). 

As expected their overexpression along with E2F1, and the consequent 

increase in E2F activity, is sufficient for S phase induction in wildtype PMEFs 

(Fig. 12).

E2F2 and E2F3 induce S phase in ARE- and p53- deficient fibroblasts

E2F2 and E2F3 are highly homologous to E2F1 and, if overexpressed, they 

can induce immortalized quiescent cells to re-enter the cell cycle. When I 

expressed in normal diploid fibroblasts E2F2 and E2F3 they didn’t induce S 

phase. However, they induced S phase in ARF- and p53-deficient fibroblasts 

(Fig. 13a). Consistent with this, I observed that activation of the three E2Fs 

directly induces ARF  expression (Fig. 13b).

Quiescent diploid fibroblasts are not apoptotic in response to E2F1 

I was also interested in studying why E2F1 blocks quiescent primary 

fibroblasts in G l. One possibility is that the G1 arrest observed upon E2F1 

expression in wildtype cells leads to an increase in apoptosis and that cells go 

into S phase because they do not die in a p53-/-, ARF-/- or p21-/- background.
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Figure 12 Coexpression o f Cyclin E l or Cyclin A2 with E2F1 overrides the 
pRb-mediated GI block. Quiescent wildtype PMEFs were injected with 
plasmids expressing E2F1, CDK2, Cyclin A2 (CycA), or Cyclin E l (CycE) 
either alone or in combination. BrdU incorporation was measured 24 h after 
injection. Error bars indicate standard deviation of the mean of two 
independent experiments.
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Figure 13 E2F2 and E2F3 induce S phase when the p53-dependent G l 
checkpoint is disabled, a. Quiescent wildtype, Arf~'~ or Trp53 '' PMEFs were 
injected with plasmids expressing E2F1, E2F2 or E2F3 and BrdU 
incorporation was measured after 24 h. b, Northern blot analysis of mRNA 
isolated from WI38 cells expressing ER-E2F1, ER-E2F2, ER-E2F3 or ER- 
E132. Cells were incubated with OHT, cycloheximide (CHX) or both for the 
indicated times. The blot (2 pig of poly A+ RNA) was probed for pl4A R F 
(short and long exposure in the pannel) or GAPDH expression.
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Another possibility is that the G l block induced by E2F1 protects cells against 

cell death, suggesting an anti-apoptotic role of some pathway-regulated gene. 

In the experiments described above, I didn’t see apoptosis within the 24 hours 

of E2F1 activation. Interestingly, I also observed that quiescent cells 

(independent of the genetic background), didn’t undergo apoptosis within a 72 

hours time period, whereas E2F1 induced very efficient apoptosis in 

asynchronously growing cells even at 24 hours after E2F1 activation (data not 

shown). Therefore, it is unlikely that the inability of E2F1 to induce S phase in 

normal diploid fibroblasts is due to induction of apoptosis. This also suggests 

that E2F1 can induce apoptosis independently of an intact p53 pathway, 

confirming the results of our and other laboratories. Moreover, it shows that 

quiescent cells are less prone to apoptotic signals, maybe because they need to 

be in a phase different from G l to become apoptotic in response to E2F1, 

rather than serum supplies some protein(s) that cooperates with E2F1 to 

induce apoptosis.

DISCUSSION

By analyzing primary cell lines lacking the p53- or pRB-regulated G l 

checkpoint, I have investigated the mechanism required for E2F1 to induce S 

phase (Fig. 14a).

E2F1 is fully competent as a transcriptional activator in diploid cells. Its 

induction in diploid fibroblasts results in the robust activation of several
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E2F target genes (as shown here for A R F  and CCNEl, and by microarray 

analysis (M, Giro’, H. Müller and K. Helin, unpublished results) in the 

absence of S phase entry. It is unlikely that the inability of E2F1 to induce S 

phase in normal diploid fibroblasts is due to induction of apoptosis. Indeed, I 

did not observe any apoptotic effects of E2F1 in the experiments presented 

here (i.e. 24 h of E2F1 expression). However, apoptosis is induced 36-48 h 

after E2F1 activation in growing diploid mouse and human fibroblasts 

(Moroni et al., 2001). Hence, the consequence of increased E2F1 activity in 

diploid cells is G l arrest or apoptosis, and not DNA replication, unless other 

genetic alterations occur. In contrast, E2F1 efficiently induced DNA 

replication in cells that are impaired in the p53- or pRB-mediated G l 

checkpoint.

My results are consistent with a model (Fig. 146) whereby increased E2F 

activity results in direct activation of A R F  transcription, and subsequent 

upregulation of p53 and p21 levels. The increased levels of p21 in diploid 

fibroblasts appears necessary to block cells in G l since C d kn la -/-  PMEFs 

efficiently entered S phase after E2F1 activation.

I have performed several experiments to test the validity of the model. First, I 

have shown that expression of E2F1 did not result in increased level of CDK2 

activity in quiescent wildtype PMEFs, whereas E2F1 activity resulted in 

increased CDK2 activity in p53-deficient PMEFs (Fig. 116). Second, E2F1
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expression in p53-deficient, but not in wildtype, PMEFs resulted in 

hyperphosphorylation of pRB (Fig. 11c). Third, I have shown that increased 

CDK2 activity is sufficient to cooperate with E2F1 in inducing S phase in 

wildtype PMEFs (Fig. 11a). These observations suggest that p21 imposes G l 

arrest by inhibiting CDK2 activity and by preventing inactivation of the 

growth suppressive properties of pRB tumour suppressor.

It has been shown that expression of E2F1 is sufficient to induce DNA 

synthesis in immortalized REF52 cells (Johnson et al., 1993), even though 

these cells appear to contain functional ARF and p53. REF52 cells may 

contain hitherto unidentified genetic alterations that contribute to 

immortalization and allow the cells to escape the E2F1-induced G l 

checkpoint.

My results are in accordance with previous findings that E2F1 does not induce 

S phase in WI38 cells (Dimri et al., 1994), and that short-term activation of 

E2F1 in proliferating WI38 cells induces Gl arrest (M. Lomazzi, M.C. Moroni 

and K. Helin, unpublished results). In contrast to the work of Dimri and 

colleagues (Dimri et al., 1994), who found that E2F1 was unable to induce S 

phase in NIH3T3 cells that lack pl9ARF, I have shown that expression of 

E2F1 or activation of ER-E2F1 efficiently induced S phase in NIH3T3 cells 

(Fig. 5). The reason for this discrepancy is not known.
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My results are not in contrast with the observation that inactivation of pRB 

can result in increased levels o f p21 independently of p53, as has been 

described in the peripheral nervous system in R b l- / -  embryos (Macleod et ah, 

1996). Rather, I show that the presence of wildtype pRB is required for 

maintaining the G l arrest imposed in response to unprogrammed E2F1 

induction. This result appears mechanistically similar to previous work 

showing that the DNA damage induced G 1-checkpoint, which is dependent on 

functional p53 and p21, is in part mediated by pRB (Brugaloras et al., 1999; 

Harrington et al., 1998). However, my findings are significantly different, as 

they suggest that pRB regulates normal cell proliferation by two independent 

mechanisms: one that actively represses E2F-dependent promoters, and 

another one that ensures cells arrest if  E2F activity should increase as a result 

o f genetic alterations. Indeed, E2F1 overexpression is not sufficient to 

overcome the pRB-dependent G l checkpoint in non-transformed cells, 

suggesting that pRB may regulate the activity of proteins in addition to E2F 

that regulate the G l-S transition. Like wildtype E2F1, a pRB-binding deficient 

but transactivation-competent mutant o f E2F1 (E2F1-VP16) is unable to 

stimulate S phase in diploid fibroblasts (Fig. 9), again suggesting that pRB 

regulates S phase entry through proteins in addition to E2F. In agreement with 

previously published data obtained in immortalized fibroblasts (Johnson et al., 

1993; Qin et al., 1994; Shan and Lee, 1994), E2F1 induction of S phase in 

cells deficient in the G 1-checkpoint requires both the transactivation and DNA 

binding function of E2F1, suggesting that entry into S phase is not caused by
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sequestration of pRB, but rather is caused by transactivation of E2F-dependent 

promoters. Since E2F1 can induce S phase in C dkn la -/-  PMEFs, it is likely 

that the G l checkpoint function of pRB is regulated by a CDK-dependent 

phosphorylation mechanism and may involve direct binding of pRB to other 

potential pRB targets such as ID2, HBPl, C/EBPa, and MyoD (Lasorella et 

al., 2000; Lipinski and Jacks, 1999). O f these proteins, only ID2 has been 

connected to the induction of S phase. However, my results show that 

coexpression of ID2 and E2F1 is not sufficient to induce S phase in serum 

starved PMEFs (Fig. 10), suggesting that other as yet unidentified pRB- 

regulated proteins are involved in regulating the G 1/S transition.

E2F2 and E2F3, like E2F1, cannot induce S phase in normal diploid 

fibroblasts. I found that they are capable o f inducing S phase in ARF- and 

p53-deficient fibroblasts to the same extent o f E2F1 (Fig. 13a). Consistent 

with this, I have observed that activation of these three E2Fs directly induces 

expression (Fig. 136).

In conclusion, I demonstrate the molecular mechanisms by which p53 and 

pRB govern E2F activity to control the G 1/S transition in mammalian cells. 

Since the deregulation o f the pRB pathway is a common event in cancer 

(Hanahan and Weinberg, 2000), my results are important for understanding 

the etiology of uncontrolled cell division in this disease.
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RESULTS -  PART2

A IM

“E2F” is a composite activity that is generated by a large number of 

interrelated complexes. In mammals, six E2Fs (E2F1-6) contain two highly 

conserved domains that are involved in sequence specific DNA binding and 

dimérisation with DP proteins. Association of these E2Fs with one of the two 

known DP proteins is required for high affinity, sequence specific DNA 

binding, and, in the case of E2F1-5, association with members of the pRB 

family (Trimarchi and Lees, 2002). The recently identified E2F7 do not bind 

to the DP transcription factors, and it interacts efficiently with the E2F DNA 

consensus site without DP. This binding requires both of the two DNA 

binding domains of E2F7. It lacks also a transcriptional activation and a 

retinoblastoma-binding domain. E2F7 is able to repress transcription of E2F 

promoters in vitro and it binds to E2F regulated promoters in vivo (de Bruin et 

al., 2003a; Di Stefano et al., 2003).

DPI is a phosphoprotein ubiquitously expressed at high levels in tissues and

cell lines (Girling et al., 1993; Wu et al., 1995), structurally related to E2F, yet

devoid of an E2F-like pRB-binding domain (Girling et al., 1993; Helin et al.,

1993b). By contrast, DP2 is expressed at low levels with alternative splicing in

a restricted set of tissues and cell lines (Rogers et al., 1996; Wu et al., 1995;

Zhang and Chellappan, 1995). Despite their distinct pattern of expression,
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DPI and DP2 function indistinguishably in in vitro assays, such as those for 

heterodimerisation, DNA binding and transactivation, when overexpressed 

with various E2F patterns and pRB family members.

Many evidences indicate that E2F activity is not required for cell proliferation. 

First, promoters mapping and in vivo footprinting studies detected E2F/pRB 

repressor complexes on promoters at GO/Gl while the promoters were not 

occupied in S phase. This would suggest that the E2F in complex with pocket 

proteins represses target genes and keeps cells in G l. Disruption of E2F- 

mediated transcriptional repression by an E2F-DNA-binding deficient mutant 

(Rowland et al., 2002; Zhang et al., 1999) has been reported to lead to 

immortalization of primary MEFs, while control-infected MEFs loose their 

replicative potential. Derepression of E2F target genes was observed, whose 

downregulation was critical for the establishment of Gl arrest by either p i6 or 

TGF|3. Importantly, the authors of the paper claim they have knocked out all 

E2F DNA binding activity, which they show by band shift. It is also not clear 

whether immortalized clones are rare. In contrast to the milder phenotypes 

resulting from inactivation of E2fs, loss o i D p i  in mice leads to early 

embryonic lethality owing to a failure of extra-embryonic tissues development 

(Kohn et al., 2003). Surprisingly, no differences in DNA synthesis can be seen 

in the embryonic compartment, suggesting that many cells cycles and DNA 

replications can occur without DPI. However, the biochemical effect of the 

absence of DP was not analysed with respect to E2F transactivation. In
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Drosophila, where only two d e lf  and one dDP exist, the loss of d e lfl  function 

compromises cell proliferation (Frolov et al., 2001). The defects are due to the 

unchecked activity of de2f2, since they can be suppressed by mutation of 

de2f2. Examination of eye discs from de2fl ;de2j2 double mutant animals 

reveals that relatively normal patterns of DNA synthesis can occur in the 

absence of both E2F proteins. Thus, the net effect of E2F on cell proliferation 

is null. Similarly, the pattern of DNA synthesis and cell proliferation are not 

severely affected in dDP mutant embryos or dDP mutant larvae, but they do 

not survive (Duronio et al., 1998; Royzman et al., 1997).

Other studies suggests that E2F activity is required for cell proliferation. 

Overexpression of E2F1-2-3 strongly correlates with its ability to drive the 

cells into S phase (Johnson et al., 1993; Lukas et al., 1996; Qin et al., 1994). 

TKO cells for E 2fl, E2f2, E2f3 (derived from a conditional triple knockout 

mouse) are defective for S-phase entry and progression through the cell cycle 

and show a dramatic decrease in the expression of many E2f-regulated genes 

(Wu et al., 2001). This supports the belief that E2F transactivation activity is 

required for cell proliferation. However, there is the possibility that the defects 

observed when E2fl, E2f2, E2f3 are missing are due to a gain in activity of 

the remaining E2f complexes which are believed to repress transcription and 

whose inactivation could suppress the proliferation defects. A dominant- 

negative mutant of DPI has been reported to inhibit the progression of 

SA0S2, C33A and U20S cells into S phase (Wu et al., 1996), supporting the
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idea that interaction of E2F/DP with promoters is important for cell cycle 

progression.

To understand whether E2F transactivating activity is required for cell 

proliferation and to examine the changes in gene expression that occur when 

E2F-DNA binding activity is lost, I decided to knock out endogenous DP in 

normal and tumour cells by RNA interference. To inactivate all E2F 

complexes I depleted DP, the common heterodimeric partner for E2Fs, 

required for high affinity DNA binding and functional E2F activity. In 

addition, DP depletion was more efficient than the co-depletion of the 

individual E2Fs.

RESULTS

siRNAforDP as a tool to study E2F-DNA binding activity 

I designed siRNA oligonucleolides specific for the human sequence of DPI or 

DP2 according to Elbashir et al. (see Material and Methods). I transfected the 

two siRNAs alone or in combination in HeLa cells. A non-specific siRNA 

targeting the firefly luciferase gene (GL2 siRNA) was used as control. At the 

mRNA level, DPI siRNA efficiently inhibited DPI expression (Fig. 15a). 

Similarly DP2 siRNA interfered with the abundance of DP2 mRNA (Fig. 

156).
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The efficiency of depletion at protein level was assessed by Western blotting. 

Fig. 15c shows that DPI is a stable protein. Upon cycloheximide (CHX) 

treatment (which inhibits proteins synthesis) DPI half-life is around 10 hours 

in HeLa cells and 13 hours in IMR90. Geminin, an unrelated protein, was 

degraded faster (5 hours half-life). The level of DPI was greatly reduced upon 

DPI siRNA treatment compared to cells treated with a non-specific control 

(luciferase) (Fig. \5d, e). I was not able to detect endogenous DP2 in Western 

blot using different commercial antibodies. However, transfection of DP2 

siRNA caused a slight increase in DPI protein level and taken together with 

the observation that DP2siRNA reduced the mRNA level o f DP2, it could 

suggest that the DP2 siRNA oligo was functional and that loss of DP2 was 

compensated by DPI (Fig. 15/and Fig. 20a).

To investigate whether lack of DP could abrogate E2F DNA binding activity, I 

performed a gel retardation assay (EMSA) with HeLa cells extracts. HeLa 

cells express the oncoprotein E7 and thus almost all o f E2F is in the free, 

transactivating form. HeLa cells were transfected with DPI siRNA and DP2 

siRNA either alone or in combination. As negative control the reaction was 

performed in the absence of lysate (no lysate) or with not transfected cells 

(mock). As positive control cells were transfected with E2F1 and DPI. An 

excess of cold probe was added to compete for the hot probe (competitor) 

(Fig. 16a). Little or no DNA-binding activity was generated following 

transfection with DPI siRNA either alone or in combination with DP2 siRNA,
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F igure 16 Loss o f  D P I abrogates E2F DNA binding activity, 
a, Gel retardation assay using whole extract from  HeLa cells transfected 
with D PI siRNA and DP2 siRNA either alone or in com bination. As 
negative control the reaction was perform ed in the absence o f lysate (no 
lysate) or with not transfected cells (mock). As positive control cells 
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while upon DP2 siRNA transfection most of E2F DNA binding activity was 

retained. These results show that loss of DPI, but not o f DP2, abolishes E2F 

DNA binding activity and are in agreement with the fact that DPI is 

ubiquitous and is the major protein family expressed.

Recently, our laboratory has generated an efficient system by which E2Fl(-2- 

3) activity can be manipulated. In this systhem E2Fl(-2-3) is fused to the 

estrogen receptor ligand-binding domain (Moroni et al., 2001; Millier et al., 

2001; Vigo et al., 1999). To test in vivo the ability of DPI siRNA to abrogate 

E2F activity in tumour and normal cells, I transfected U20SER-E2F1 (Fig. 

166, c) and WI38ER-E2F1 (Fig. 16J, e) with DPI siRNA and, after 48 h, I 

treated them for a period of 24 h with OHT to activate E2F1. In accordance 

with the result obtained by EMSA, ER-E2F1 activation induced C C N E l 

expression in mock-transfected cells. This activity was significantly reduced 

in DPI siRNA interfered cells.

DP is required for tumour cell proliferation

I was interested in studying whether DP had a role in cell proliferation. So, I 

transfected HeLa cells with DPI siRNA and DP2 siRNA alone or in 

combination: cells interfered for DPI, but not for DP2 did not grow compared 

to mock transfected cells ( Fig. 17a). The intensity of BrdU signal was
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Figure 17 DPI is required fo r  HeLa cell proliferation.
DPI or DP2 siRNA oligos were transfected in asynchronous HeLa cells alone 
or in combination. GL2 siRNA was negative control, a , The number of cells 
was assessed at the indicated time points by Trypan blue exclusion, by DNA 
synthesis was assessed by BrdU incorporation (1 h pulse) after 24 h / 48 h of 
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the same profile.
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measured in situ and by FACS analysis (Fig. llb ,c), suggesting that cells 

lacking DPI accumulated in G l at 48 h and 72 h.

To control the specificity of the siRNA oligo for DPI, I designed another DPI 

siRNA oligo and I compared the phenotypes generated by the two oligos in 

HeLa cells. Both of them downregulated DPI protein level at 48 h (Fig. 18a) 

led to growth inhibition (Fig. 18c) and reduced the rate of BrdU incorporation 

(Fig. ISb). These results show that loss of DPI impairs cell proliferation due 

to a defect in cell cycle progression.

It has been reported (Elbashir et al., 2001) that even a single mismatch 

between a siRNA and the target mRNA sequence abrogates silencing. Thus, I 

mutagenized DPI in the target sequence of the siRNA oligo (oligo 1), 

introducing a silent point mutation (see Material and Methods). I transfected 

HeLa cells with expression vectors containing mutant DPI or Wt DPI cDNAs 

driven from the strong cytomegalovirus promoter and then I interfered the 

cells with DPI siRNA. In transient transfection, DPI siRNA decreased the 

level of DPI in cells transfected with Wt D PI, but not with DPI mutant 

protein (Fig. 19a). By G418 selection, I established stable pools expressing 

mutant DPI and then I transfected the cells with DPI siRNA or with a control 

oligo. DPI mutant expression did not vary (Fig. 19b), the number of viable
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cells did not vary significantly (Fig. 19c), and BrdU incorporation did neither 

(Fig. 19d). This result confirms that the growth arrest observed upon DPI 

siRNA transfection is a specific response.

Then, I asked whether the growth arrest due to loss of DP expression was 

specific to HeLa cells or was a common response in tumour cell lines. SAOS2 

cells are transformed cells that express neither pRB nor p53. Loss of pRB 

increases the level of E2F activity. I transfected SA0S2 cells with DPI siRNA 

and DP2 siRNA, either alone or in combination. The protein level of DPI was 

strongly reduced at 48 h (Fig. 20a). Transfection of DP2 siRNA caused an 

increase in DPI protein level: the compensation effect suggests that DP2 

siRNA oligo is functional. The number of BrdU positive cells was 

significantly reduced after DPI siRNA transfection (48 h and 72 h), alone or 

in combination with DP2 (Fig. 20Z?), in accordance with the phenotype 

observed in HeLa cells.

DP is required fo r  normal cell proliferation

I was also interested in studying whether depletion of DP had an effect on 

normal cell proliferation. I did not succeeded in transfecting human diploid 

fibroblasts with high efficiency by oligofectamine reagent (Invitrogen). This 

did not allow me to collect clear evidences that DP was required for cell 

proliferation in normal cells.
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A system for stable expression of short interfering RNAs in mammalian cells 

has been reported (Brummelkamp et al., 2002a; Brummelkamp et al., 2002b). 

I infected WI38 and U20S cells with pRetroSuper DPI or empty vector but I 

could not see any variation in DP protein level (Fig. 21a). U 20S cells 

expressing the murine ecotropic receptor were generated (Brummelkamp et 

al., 2002a) to allow infection by ecotropic virus. This resulted in a 50% 

reduction of DPI protein level (Fig. 2lb), but it was not enough to observe a 

significant growth arrest (Fig. 21c). In my hands stable expression of short 

interfering RNAs was no as efficient as transient transfection that completely 

downregulated protein level (Fig. 21d) and led to growth arrest (Fig. 21c/). A 

possible reason for this discrepancy is that during infection there is a selection 

against the cells that express low level of DPI, since they do not grow.

Transient transfection with lipofectamine 2000 (see Material and Methods) 

allowed me to achieve a 70% of transfection efficiency in diploid fibroblasts. 

Recent papers suggest that the specificity of siRNA is concentration 

dependent (Chi et al., 2003; Semizarov et al., 2003) and a concentration of 100 

nM siRNA non specifically induces a significant number of genes, many of 

which are involved in apoptosis and stress response. I did titration experiments 

(with 100 nM siRNA, 50 nM and 20 nM) to optimize transfection in TIG3 

cells. A concentration of 20 nM siRNA was inefficient in inhibiting protein 

expression. Using a concentration of 50 nM siRNA allowed me to abolish 

DPI protein expression to the same extent of 100 nM (Fig. 22a) and to
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Figure 21 Expression o f pRetroSuper DPI.
a, WI38 and U20S cells were infected with pRetroSuper vector expressing 
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appreciate differences in cell viability between mock and DPI siRNA 

interfered cells (Fig. 22b).

IMR90 cells transfected with 50 nM DPIsiRNA did not grow compared to 

control cells (Fig. 23a). Loss of DPI in WI38 (Fig. 23d) or TIG3 (Fig. 23e) 

reduced BrdU incorporation (Fig. 23b,c,f) and the number of cells (Fig. 23g).

As additional control, I compared the effect of suppression of DPI between 

WI38 fibroblasts and VA 13 cells (which are derived from WI38 after SV40 

transformation and thus do not express p53 and pRB) (Fig. 24a). In both cases 

the growth rate of cells lacking DP expression was around 50% compared to 

control cells (Fig. 24b,c).

Loss o f  DP results in targets repression

Since loss of DPI compromises E2F-DNA binding activity (Fig. I6a), I 

wished to determine whether it altered the expression of E2F responsive 

genes. These changes in gene expression identify transcriptional events that 

depend on the endogenous DP protein. I used parallel cell extracts where I 

measured BrdU incorporation or cell viability (above experiments). RNA was 

isolated from depleted and control cells, and changes in gene expression of 

known E2F target genes were monitored by qPCR analysis. Gene expression 

was normalized according to the level of GAD P. I verified that DPI mRNA 

was decreased upon DPI siRNA transfection. Known E2F responsive gene
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Figure 23 DPI is required for cell proliferation in diploid fibroblasts, 
a, IMR90 fibroblasts were transfected with 50 nM of DPI siRNA or GL2 
siRNA (mock) and the number of cells was assessed by Trypan blue 
exclusion, by c, d  WI38 fibroblasts were transfected as in (a), BrdU 
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and vinculin protein levels were detected (d). The results are representative of 
three independent experiments. e ,f ,  g  TIG3 cells were transfected as in (a). 
DPI protein level, BrdU incorporation and the number of cells were assessed. 
The results are representative of two independent experiments.
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transcripts were tested, such as CCNEl, CDCISA, CDC6, RRM2, TK, DHFR, 

and E2F1. Loss of DPI produced a significant reduction in all transcripts 

compared to control in HeLa cells (Fig. 25a), in WI38 (Fig. 256) and TIG3 

fibroblasts (Fig. 25c). These data indicate that loss of DPI significantly 

impairs the expression of most E2F responsive genes both in tumour and in 

normal cells.

DISCUSSION

I present evidence that loss of DPI compromises E2F DNA binding activity, 

impairs the rate of cell proliferation of both primary and transformed cell lines 

and represses the expression of E2F responsive genes. In stark contrast to the 

milder phenotypes that result from inactivation of the E2Fs, loss of D PI in 

mice leads to death in utero because of dramatic DNA replication defects in 

extra embryonic tissues (Kohn et al., 2003). Unlike extra-embryonic tissues, 

no proliferation defects are observed in the DPI deficient embryos prior to 

lethality suggesting that many cell cycles and DNA replication can occur 

without DPI. However, the biochemical effect of DP depletion was not 

analyzed with respect to E2F transactivating activity, so we do not know the 

amount of E2F left. In addition, we cannot exclude that DP1/DP2 levels in the 

embryo can be influenced through a maternal effect. To study the requirement 

of DPI in embryonic development it would be useful to get DPI floxed mice.
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Figure 25 Loss o f DPI results in E2F targets repression, 
a, DPI siRNA or GL2 siRNA (mock) were transfected in asynchronous HeLa 
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In the literature several evidences arise stressing that E2F mainly functions as 

a repressor. Classic promoter mapping and in vivo footprinting studies 

concluded that repressive E2F complexes regulate many E2F-responsive 

genes during GO/Gl and that the promoters are unoccupied during G l/S  

transition when the genes are actively transcribed (Dalton, 1992; Huet et al., 

1996; Le Cam et al., 1999; Neuman et al., 1994; Tommasi and Pfeifer, 1995; 

Zwicker et al., 1996) (Fig 26a). Plasmids containing multiple E2F-binding 

sites were used to titrate RB-E2F repressor complexes (He et al., 2000) and 

the cells failed to arrest in G1 following accumulation of endogenous 

hypophosphorylated RB. A dominant-negative mutant of E2F1, which 

contains the DNA-binding domain but lacks the RB-binding site and 

transactivation domain, was used to displace RB-E2F complexes from E2F- 

responsive genes. The expression of this mutant prevented RB-dependent 

arrest in G 1 by either p i 6 or TGF-P (Zhang et al., 1999). This has been 

interpreted as a result of transcriptional derepression of E2F target genes, 

whose downregulation is critical for the establishment of G1 arrest. These 

studies, however, do not show that E2F does not have a role in transcriptional 

activation in the cell cycle and it is unclear whether or not the binding of free 

E2F to endogenous promoters was completely eliminated.

My results agree with previous findings showing, through overexpression 

systems, that transcriptional activation by E2F is important for the progression 

of cells through the cell cycle (Johnson et al., 1993; Qin et al., 1995). In these
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Figure 26 Models for the regulation o f transcription by the E2Fs. 
a, Displacement of repressive pRB-E2F complexes at G l/S transition results 
in targets derepression, b, E2F allows a burst of gene expression as cells enter 
S phase, c, In E2F1-2-3 TKO MEFs there is no S phase and gene expression is 
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mediated by DPI, arrests the cells and decreases gene expression, e, E2F7 
binds DNA in a DP independent manner, may replace the missing E2Fs on 
promoters and repress transcription.
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studies expression of Wt E2F1 induced S phase (Fig. 266). This induction was 

dependent on the ability of E2F1 to bind DNA and to transactivate E2F 

dependent promoters, since the DNA binding deficient mutant (E2F1 E l32) 

and the transactivating deficient mutant (E2F1 1-374) did not induce S phase. 

However, the system leads to loss of target specificity resulting from 

secondary changes in gene expression due to progression through the cell 

cycle. My experiments performed in HeLa and in VA13 cells suggest that the 

transactivation by free E2F is required for proliferation (Fig. 266). Indeed, 

HeLa cells express the oncoprotein E7, while VA13 are SV40-transformed, 

thus in both cases almost all of E2F is in the free transactivating form.

Studies in which E 2 f  genes have been deleted in mice have failed to 

demonstrate that transactivation is the primary function of E 2 f  in cell cycle 

regulation, because of redundancy and functional compensation among the 

£"2/family members. An evidence that E 2fl, E2f2, and E2f3 are required to 

induce S-phase and activate E2F target gene expression has been provided 

recently by the generation of a conditional E 2fl, E2f2, E2f3 triple knockout 

(TKO) mouse (Wu et al., 2001). TKO cells are defective for S-phase entry and 

progression through the cell cycle and show a dramatic decrease in the 

expression of many E2f-regulated genes. However, the phenotypes seen when 

E 2fl, E2f2, E2f3 are removed could be viewed as a gain in activity of the 

repressor E2f complexes (Fig. 26c). By DPI siRNA I knocked-out all E2F 

DNA binding activity mediated by DP proteins including the ‘repressive’
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E2F4, E2F5 and E2F6 (Fig. 16a). My results are in agreement with data 

obtained by overexpression of a dominant negative form of DPI (that retained 

E2F binding, but not DNA binding), which arrested SA0S2, C33A and U20S 

cells in the G1 phase of the cell cycle (Wu et al., 1996) (Fig. 26d).

I did not observe any apoptotic effect of the DPI siRNA in the experiments 

presented here up to 72 hours of DPI siRNA expression. In tumour cell lines 

that lack p53 expression (SAOS2, VA13) and thus cannot undergo p53 

dependent apoptosis, DPI produced the same phenotype as observed in 

diploid fibroblasts (Fig. 20 and 24). These results are in agreement with the 

fact that inactivation of p53  in mice is unable to rescue the DP7-dependent 

embryonic lethality (Kohn et al., 2003). Thus, the consequence of loss of DP 

in diploid and in tumour cells is G1 arrest and not apoptosis or DNA 

replication. Moreover, intact p53 and pRB are not required to prevent the 

growth arrest upon loss of DPI and DPI is rate limiting both for the 

proliferation of tumour and normal cells. The G1 arrest induced by DPI 

siRNA is rescued by coexpression of a silent DPI mutant (Fig. 19).
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CONCLUDING REMARKS

Although mutation in genes encoding pRB or upstream regulators of pRB is 

frequently found in human tumours, intragenic mutations in the genes 

encoding the E2F and DP transcription factors have not been isolated. This 

may be due to functional compensation by related E2F / DP activity (Dyson, 

1998).

Current models o f deregulation of DNA replication in cancer cells are based 

on the observation that increased E2F activity is sufficient to induce DNA 

replication in immortalized quiescent cells in the absence of growth factors 

(Dimri et al., 1994; Johnson et al., 1993; Lukas et al., 1996; Qin et al., 1994; 

Shan and Lee, 1994). I determined the effect o f E2F activation in diploid 

fibroblasts and I found that suppression of the p53- or pRB- mediated G1 

checkpoint is required for E2F- induced S phase entry. In addition to act as an 

E2F-dependent transcriptional repressor, my data suggest that pRB is required 

to retain the G1 checkpoint in response to unprogrammed proliferative signals. 

This raises the possibility to investigate whether the mechanism involves 

direct binding of pRB to other potential pRB targets in addition to E2F, such 

as HBPl, C/EBPa or MyoD (Lipinski and Jacks, 1999).

To understand how cell proliferation is regulated, it is important to know if  the
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E2F/DP heterodim ers function either as activators or repressors of 

transcription. My studies provide a further understanding in this direction, 

defining a crucial role for DPI in cell proliferation. This is essential for a 

number o f pharmaceutical companies that are developing drugs to the E2F 

transcription factors. siRNA against DP will be a useful tool to test whether 

E2F/DP activity is required in biological responses other than proliferation, 

such as apoptosis and differentiation. We have yet to understand how E2F like 

proteins that bind DNA in a DP independent manner fits into the model. It is 

unclear whether, for instance, E2F7 can replace the missing E2F activities and 

can repress E2F target genes in the absence of DP (Fig. 26e).

The results discussed in this thesis enlight two aspects of E2F activity, first 

demonstrating the molecular mechanism by which p53 and pRB govern E2F 

activity to control the transition from G1 to S phase, second analysing how 

cell proliferation is regulated by E2F activity.
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