Open Research Online

The Open University's repository of research publications and other research outputs

Genome Organization in Sponges

Thesis

How to cite:
Costantini, Maria (2003). Genome Organization in Sponges. PhD thesis. The Open University.

For guidance on citations see FAQs.
(c) 2003 Maria Costantini

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.

> oro.open.ac.uk

Genome Organization in Sponges

Maria Costantini

Laurea in Scienze Biologiche
Università degli Studi di Napoli 'Federico II', Italia

Doctor of Philosophy

Sponsoring Establishment Stazione Zoologica "Anton Dohrn" Napoli, Italia

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest C817189
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Director of Studies: Prof. Giorgio Bernardi
Superadvisor: Prof. Roberto Di Lauro
External Superadvisor: Prof. Charles Auffray
External Examiner: Prof. Michael Thorndyke
Internal Examiner: Prof. Mario De Felice

- Acknowledgements -

My foremost thanks go to Prof. Giorgio Bernardi, without whom this thesis would not have been possible. Throughout my thesis-writing period, he provided encouragement, sound advices, helpful teaching and stimulating ideas. I thank Giorgio Matassi for his tutoring of my thesis. I am grateful to Giuseppe D'Onofrio who convinced me, at the beginning of my thesis work, of the power of the CsCl profile parameters for phylogeny.

I am indebted to many people of my laboratory who taught me to use the tools I have applied in this thesis. First of all, I would like to thank Giuseppe Bucciarelli and Giuliana de Luca di Roseto for introducing me to the practical techniques in our laboratory. I would like to thank Oliver Clay and Nicolas Carels for very frequent discussions on the interpretation of the CsCl analytical profiles and for clarifying many technical questions regarding isochores and isochore families. I gratefully acknowledge Stilianos Arhondakis, Fabio Auletta and Giuseppe Torelli for their help in retrieving compositional content of coding sequences.

I would like to take this opportunity to extend my thanks also to Hector Musto, Fernando Alvarez-Valin, Kamel Jabbari and Adam Pavliček for several discussions on diverse topics relevant to this thesis.

I want to thank Miriam Di Filippo for her moral support during my experimental work. Thanks are also due to our technician, Salvatore Bocchetti, for his support in the analytical ultracentrifugation.

Many people at the Stazione Zoologica gave other important contributions to my thesis: Elisabetta Tosti, Marina Montresor and their group for cellular analysis, Alfonso Toscano's group and the fishing service of our Institute, in particular Pasquale Sansone, for the careful maintenance of the sponges.

Finally, I want to thank Gianna Di Gennaro and Romy Sole, for their extreme availability and for being so close to me in all circumstances during these four years.

Index

Chapter 1 - Introduction 3
1.1 Human genome organization 3
1.2 Sponges (Porifera) 13
1.3 Aim of work 31
Chapter 2 - Materials and Methods 32
2.1 Sponge collection 32
2.2 Extraction of genomic DNA 32
2.3 Separation of cells 34
2.4 Equilibrium centrifugation in CsCl density gradient 34
2.5 DNA fractionation and gene distribution 35
2.6 Amplification, cloning and sequencing of eukaryotic 5.8-28S rDNA, prokaryotic 16S rDNA and Archaea 16 S rDNA 39
Chapter 3 - Results and discussion 41
3.1 Heterogeneity of the base composition in sponge DNA 41
3.2 Identification of sponge DNA 47
3.3 Gene distribution 59
3.4 Identification of associated organisms 83
3.4.1 Bacteria 83
3.4.2 Archaea 94
3.4.3 Eukaryotes 101
Chapter 4 - Conclusions 104
References 111
Appendix A I
Appendix B XVII

Chapter 1

- Introduction -

1.1 Human genome organization

The most elementary property of the genome is the nucleotide composition of the DNA. Its variation along the chromosome (heterogeneity) has been used over the years in our laboratory to study the organization of the genome in a number of eukaryotes. Moreover, the heterogeneity of base composition is also an extremely useful parameter for evolutionary studies (see below).

From CsCl density gradient ultracentrifugation analysis of genomic DNA, used to study GC variation, several informations can be extracted for genomics and evolutionary studies. GC is defined as the molar fraction of guanine and cytosine in a molecule or segment of DNA (the proportion of its base pairs that are GC rather than AT). This most fundamental base compositional property of double-stranded DNA can be easily measured in an analytical ultracentrifuge (Clay et al., 2003a). The measurements are made in density gradients of heavy salts. Of these salts, cesium chloride is the most widely used. It is commercially available in optical-grade quality, it allows a faithful (linear) portrayal of GC distributions in an analytical centrifuge (AUC), and it permits high-resolution fractionation according to GC content in a preparative ultracentrifuge. The technique of density gradient ultracentrifugation was introduced in 1957 by Meselson, Stahl and Vinograd. The principle is simple: a heavy salt of low molecular weight in solution will, upon centrifugation,
establish a density gradient. At sedimentation equilibrium, double-stranded DNA molecules having a given GC will be found neither at the meniscus nor in the pellet, but in a narrow band within the density gradient. One therefore places the DNA together with the salt solution in the ultracentrifuge cell, and allows salt and DNA to reach equilibrium, which under standard conditions is attained within 24 hours. The GC level of the DNA can be read from its position in the cell. Soon after the first experiments, it was discovered (Sueoka et al., 1959; Marmur and Doty, 1959; Rolfe and Meselson, 1959: Schildkraut et al., 1962) that, in CsCl gradients, the GC level of a double-stranded DNA molecule exhibits a remarkably linear relationship to the position of the molecule at sedimentation equilibrium. More precisely, the GC level of the DNA molecule is linearly related to the density of the CsCl solution at its equilibrium position. This density is called buoyant density and is measured from the radial distance from the ultracentrifuge axis. One can therefore measure not only the GC level of a sample of compositionally similar molecules, but also the GC distribution of compositionally similar molecules, which spans in the human genome a GC range from just under 30% to just over 60% GC (at scales up to several megabases). Indeed the CsCl absorbance profile of high molecular weight DNA fragment is, after a linear transformation of the horizontal axis, to a very good approximation, the GC distribution of the fragment. Only when the fragment is smaller than about $15 \mathrm{~kb}\left(10 \times 10^{6}\right.$ Daltons) does diffusion seriously distort the profile. Similarly only when DNA fragments are heavily methylated or otherwise modified (as in T-seven phages), highly repetitive, or denatured do they shift from their expected equilibrium positions.

The power of the density gradient ultracentrifugation methodology is precisely that it allows DNA sequence information to be logically inferred without seeing the DNA sequence. In fact, the CsCl method has been of central importance in understanding compositional variation along mammalian chromosomes; some of the main conclusions were drawn well before any DNA sequences were known (Filipski et al., 1973; Thiery et al., 1976; Macaya et al., 1976). An early result was the discovery that mammalian genomes are organized into long, compositionally fairly homogeneous regions, called isochores. By comparing absorbance profiles of the same species for different fragment sizes (molecular weights), and by monitoring the profiles' resistance to narrowing as the fragment sizes are decreased, one can infer statistical properties of the mosaic GC variation along its chromosomes (Macaya et al., 1976; Cuny et al., 1981; Clay e al., 2001).

In the case of the human genome, the Gaussian components of the CsCl profile were called the "major components" and relative amounts of DNA were called the "compositional pattern" of the genome. In the human DNA profile (Fig. 1.1) four components can be identified $\mathrm{L}, \mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3$, which represent $62.9 \%, 24.3 \% \%, 7.5 \%, 4.7 \%$ of the genome, respectively. The remaining DNA corresponds to satellite and ribosomal sequences (Bernardi et al., 1985; Zerial et al., 1986; Zoubak et al., 1996). These components are made up of large DNA segments, more than 300 kb in size, called isochores (Cuny et al., 1981) and arranged in a mosaic-like fashion along the chromosome. Isochores are compositionally homogeneous regions. Compositional homogeneity of isochores means that the GC heterogeneity within an isochore is much smaller than the heterogeneity among isochores.

ISOCHORES $>300 \mathrm{~Kb}$

Fig. 1.1 (Top) Scheme of the isochore organization of the human genome. This genome, which is typical of the genome of most mammals, is a mosaic of large ($\gg 300 \mathrm{~kb}$, on average) DNA segments, the isochores, which are compositionally homogeneous (above a size of 3 kb) and can be partitioned into a number of families. Isochores are degraded during routine DNA preparations to fragments of approx. 100 kb in size. The GC-range f the isochors from the human genome is $30-60 \%$ (from Bernardi 1995). (Bottom) The CsCl profile of human DNA is resolved into its major DNA components, namely the families of DNA fragments derived from isochore families L (i.e., L1+L2), H1, H2, H3. Modal GC levels of isochore families are indicated on the abscissa (broken vertical lines). The relative amounts of major DNA components are indicated. Satellite DNAs are not represented (from Zoubak et al., 1996).

The heterogeneity of the base composition is a crucial parameter to study the organization of the eukaryotic genome and for evolutionary analyses. For example it is important to distinguish between the highly heterogeneous genomes of warm-blooded vertebrates and the much less heterogeneous genomes of cold-blooded vertebrates: Fig. 1.2 shows that the isochore patterns are remarkably different in cold- and warm-blooded vertebrates.

Isochores, i.e. genome compartments, have both structural and functional significance. An obvious question is whether there is any correlation between the compositional patterns of coding sequences (which represent as little as 3% of the genome in vertebrates) and the compositional patterns of DNA fragments (97% of which are formed by intergenic sequences and introns). Another question is whether there is any correlation within genes between the composition of the exons and that of introns.

Indeed, linear correlations hold between the GC levels (and the GC_{3} levels) of coding sequences and the GC levels of isochores in which coding sequences are located (see Fig. 1.3a, c). Interestingly, GC-poor coding sequences and their flanking sequences show very similar values, whereas GC-rich coding sequences are increasingly higher above the diagonal, essentially because GC_{3} values depart more and more from the intergenic sequences (Fig. 1.3c). Linear correlations (Fig. 1.3) also hold betweeen the GC levels of coding sequences and the GC levels of the introns of the same genes (Bernardi et al., 1985; Aïssani et al., 1991; Clay et al., 1996), the GC levels of the former being slightly higher than those of the latter. These differences are much larger in plants (Carels and Bernardi, 2000). As a final remark, one should note that the correlations of Fig. 1.3a and bare

Fig. 1.2 Compositional patterns of vertebrate genomes. Histograms showing the DNA relative amounts, modal buoyant densities and modal GC levels of the major DNA components (the families of DNA fragments derived from different isochore families; see Fig. 1.1) from Xenopus, chicken, mouse and man, as estimated after fractionation of DNA by preparative density gradient. Satellite and minor DNA components (such as ribosomal DNA) are not shown. (Modified from Bernardi, 1995).

Fig. 1.3 Correlation between GC levels of human coding sequences and (a) the GC levels of the large DNA fragments in which sequences were localized, or (b) the GC levels of the corresponding introns (top frames). The bottom frames show the correlations between GC_{3} of human coding sequences and (c) the GC levels of the DNA fractions in which the genes were localized (filled circles) and of 3' flanking sequences further than 500 bp from the stop codon (open circles; the solid and the broken lines are the regression lines through the two sets of points); or (d) $\mathrm{GC}_{1}+\mathrm{GC}_{2}$ values of human sequences. Diagonals (unity slope lines) are also shown (from Clay et al., 1996).
practically the same in the chicken genome (Musto et al., 1999), and possibly in other vertebrate genomes.

The correlation between GC_{3} levels of coding sequences and GC levels of isochores (Fig. 1.3c) is especially important, because it allows the positioning of the distribution profile of coding sequences relative to that of DNA fragments, the CsCl profile. In turn, this allowed us to estimate the relative gene density by dividing the percentage of genes located in given GC intervals by the percentage of DNA located in the same interval. Since it had been tacitly assumed that genes were uniformly distributed in eukaryotic genomes, it came as a big surprise that the gene distribution in the human genome is strikingly nonuniform (Fig. 1.4), gene concentration increasing from a very low average level in L isochores to a 20 -fold higher level in H3 isochores (Bernardi et al., 1985; Mouchiroud et al., 1991; Zoubak et al., 1996). The existence of a break in the slope of gene concentration at $60 \% \mathrm{GC}_{3}$ of coding sequences and at $46 \% \mathrm{GC}$ of isochores (see Fig. 1.4) defines two "gene spaces" in the human genome. In the "genome core" (Bernardi, 1993a, 1995), formed by isochore families H 2 and H 3 (which make up 12% of the genome), gene concentration is very high (one gene per 5-15 kb) and comparable to those of compact genomes of higher eukaryotes, whereas in the "empty space", formed by isochores families L and H 1 (which make up 88% of the gnome) gene concentration is very low (one gene per $50-150 \mathrm{~kb})$. Fig. 1.5 represents the density of gene sequences in isochore families. About 54% of human genes are located in the small "genome core", the remaining 46% being located in the large "empty quarter".

Fig. 1.4 Profile of gene concentration (red dots) in the human genome, as obtained by dividing the relative numbers of genes in each $2 \% \mathrm{GC}_{3}$ interval of the histogram of gene distribution (yellow bars) by the corresponding relative amounts of DNA deduced from the CsCl profile (blue line). The positioning of the GC_{3} histogram relative to the CsCl profile is based on the correlation of Fig. 1.3c. The apparent decrease in the concentration of protein-encoding genes for very high values (broken line) is due to the presence of ribosomal DNA in that region. The last concentration values are uncertain because they correspond to very low amounts of DNA (from Zoubak et al., 1996).

Fig. 1.5 Density of gene sequences in isochore families. Relative numbers of sequences over relative amounts of isochore families are presented in the histograms (from Zoubak et al., 1996).

1.2 Sponges (Porifera)

The transition from unicellular to multicellular organisms occurred in all five kingdoms of life: this process took place impressively in Fungi (Ascomycota), Plantae (Chlorophyta) and in Metazoa (Müller, 1998). The origin of plants appears to be well elucidated within the phylum Chlorophyta (Margulis and Schwartz, 1995), while the origins of Fungi and especially of Metazoa are perhaps still the most enigmatic of all phylogenetic problems.

The evolution of Metazoa from their protozoan ancestors has been considered, until recently, as the greatest puzzle of phylogeny (Willmer, 1994; Cavalier-Smith, 1991). The emergence of metazoan has been explained by two major theories: the syncytial theory (origin from a multinucleated ciliate) (Hadzi, 1963), or the colonial theory (origin from a colonial flagellate) (Haeckel, 1868). However, a di(poly)phyletic origin of Metazoa is assumed in both cases.

The phylogenetic relationship of the kingdom Animalia (Metazoa) has long been questioned. Initially, detailed descriptions of animal embryology and adult morphology were used to solve the evolutionary origins of distant groups such as phyla. Focusing on the lowest eukaryotic multicellular organisms, the metazoan phylum Porifera (sponges), it remained unclear if they independently evolved multicellularity from a separate protist lineage (polyphyly of animals) or derived from the same protist group as the other animal phyla (monophyly) (Müller, 1998). Based on constituent characters of the sponges a monophyletic origin of the Porifera can be deduced. The oldest complete fossil sponge has been described from the Early Cambrian, while the earliest spicules date from the late

Proterozoic, about 600 million years ago. It is suggested that the first sponges did not contain spicules. After having analyzed those genes from the sponge Geodia cydonium, which are typical for multicellularity, for example those coding for adhesion molecules/receptors and a nuclear receptor, it has to be concluded that all animals, including sponges, are of monophyletic origin. In this regards, Geodia cydonium might be considered as a "living fossil" not only suitable for the studies of adhesion molecules and receptors found in sponges and in eumetazoans, but also for the elucidation of other typical metazoan circuits for example functions in light-sensitive organs ($\beta \gamma$-crystallin has been cloned from Geodia cydonium) or the basis of the invertebrate immune system (immunoglobulin, subunits of proteasomes and heat shock proteins), as proposed by Müller (1997).

In fact, it should be stressed that evolution is a gradual process whereby new genes are formed primarily by either gene duplication (Ohno, 1970) or exon shuffling (Gilbert, 1978). In addition, new proteins can also be produced by overlapping genes, alternative splicing, or gene sharing (Li and Graur 1991). These facts imply that (a) proteins found for the first time in a given phylum contain elements, modules, which are present already in ancestral protein(s) of members of phylogenetically older phyla, and (b) that new combinations of modules create proteins that possess new functions.

Therefore Müller in 1998 postulated that animals, which are positioned at the base of Metazoa, such as sponges, are especially rich in ancestral modules for structural and functional molecules found also in higher Metazoa. This approach proved successful. As outlined, the structures of the characteristic metazoan genes and proteins required for (a)
tissue formation (galectin, collagen, integrin), (b) signal transduction (tyrosine kinase receptor RTK), (c) transcription (homeodomain and MADS box containing proteins), (d) immune reactions (heat shock proteins, proteasome, proteins featuring SRCR domains, and (e) sensory tissue (crystallin, glutammate receptor) have been identified in Geodia cydonium (Fig. 1.6) and found to display high similarity to sequences from members of higher metazoan phyla (Müller, 1997). Based on the available sequence data it is reasonable to place Porifera in the kingdom Animalia together with the Metazoa ((Müller et al., 1994; Müller, 1995; Müller, 1997). It addition, as taken from the first sponge genes, especially that coding for RTK, it is now established that modular proteins, formed by exon-shuffling, are common to all metazoan phyla. This mechanism of exon-shuffling is apparently absent in plants and protists (Patty, 1995). If this view can be accepted, the "burst of evolutionary creativity" during the period of the Cambrian explosion which resulted in the "big bang" of metazoan radiation (Lipps and Signor, 1992) was driven by the process of modularization. During this process the already existing domains were transformed into mobile modules allowing the composition of mosaic proteins (see Fig. 1.6).

In addition it was estimated that the adhesion molecules/receptors from sponges diverged from a common ancestor in the Precambrian, about 800 million years ago. It was hoped that nucleotide sequence data from rRNA would help to solve the question of metazoan phylogeny. Applying this approach and excluding the lowest metazoan phylum, the Porifera (sponges), several authors have assumed that multicellular animals have evolved only once (Field et al., 1988; Lake, 1990).

Choanoflagellats - ancestor

Fig. 1.6 Phylogenetic relationship of Porifera within the animal groups based on molecular biological data, obtained from sequences of "metazoan" proteins required for tissue formation, signal transduction, transcription, immune reaction (potential) and sensation (potential). It is proposed that the Cambrian explosion of metazoan radiation became possible after the creation of the evolutionary mechanism of modularisation of distinct protein domains, thus allowing the formation of mosaic proteins by exon-shuffling; this process happened approximately 1000 million years ago. It is thought that Metazoa originated from evolved Protozoa, for example, Choanoflagellata. (Modified from Müller, 1998).

However, when sequences derived from 18S (Field et al., 1998) or 28 S (Christen et al., 1991) rRNA from sponges are included, the assumption has been derived that the Radiata (including Porifera, Placozoa, Cnidaria and Ctenophora) and the Bilateria (other animal phyla) originated separately from different protozoan ancestors. Analyses of the 18S rRNA sequence have proved unsuitable for resolving deep branching in the phylogenetic tree, such as the positioning of the phylum Porifera within the kingdom of Metazoa (Rodrigo et al., 1994).

Willmer (1994) has pointed out that only a few (perhaps only two) developmental strategies would have allowed the transition from Protists to Metazoa; first, by aggregation of either mitotically related or unrelated cells, and second, by the formation of multinucleate cells after incomplete division of the cytoplasm. In both cases, the metazoan ancestor must have acquired the ability of interactions (1) between cells and (2) subsequently also between cells and the extracellular matrix.

Two alternative hypotheses have been proposed to explain the relationships between the major sponge classes. There are three sponge classes: Hexactinellidae, Demospongiae and Calcarea. One groups the Porifera into the adelphotaxa Hexactinellidae and Demospongiae/Calcarea (Fig. 1.7a) based on the gross difference in tissue structure and on differences in the structure of the flagella, whose beating generates the feeding current through sponges (Mehl and Reiswig, 1991). The other hypothesis assumes that the Demospongiae are more closely related to Hexactinellidae (Fig. 1.7b) based on presumed larval similarities (Boger, 1988).
a)

b)

Protozoa

Choanoflagellata

Fig. 1.7 Phylogenetic position between the major sponge classes: a) one hypothesis groups the Porifera into the adelphotaxa Hexactinellidae and Demospongiae/Calcarea, based on the gross difference in tissue structure and on differences in the structure of the flagella, whose beating generates the feeding current through sponges (Mehl and Reiswig, 1991); b) the other hypothesis assumes that the Demospongiae are more closely related to Hexactinellidae based on presumed larval similarities (Boger, 1988). (Modified from Müller, 1998).

The natural environmental factors exert strong pressure on the sponges. The success/failure to adapt to these various environmental conditions is one major factor that drives natural selection.

A critical parameter permitting the appearance of sponges was apparently oxygen. The emergence of metazoans and hence of Porifera as the first phylum, coincides with the increase in the atmospheric oxygen concentration from 10% to 100% of the present oxygen concentration in the atmosphere (Canfield and Teske, 1998). It may be proposed that the oxygenation of water is correlated with its use for collagen biosynthesis, for the hydroxylation of amino acids, one of the main novelties introduced by the sponges to the metazoan kingdom. The oxygen supply in sponges is maintained by the circulation of water through the efficient aquiferous channel system; it has recently been proposed that oxygen is a morphogenetic factor in these animals (Perovic et al., 2003). Besides oxygen, the supply of calcium ions $\left(\mathrm{Ca}^{2+}\right)$ is critical for metazoan animals. This ion is not only required for intracellular signal transduction but also for the establishment of cell-cell contacts, especially in sponges (Weinbaum and Burger, 1973; Müller and Zahn, 1973). The increase of Ca^{2+} in the oceans to the present-day level of $>10^{-3} \mathrm{M}$ only became possible after a decline in the alkalinity (Kemp and Kazmierczak, 1994).

Even though sponges inhabit almost all the substrata in the oceans from the Arctic to the Tropics (van Soest, 1994) to depths of over 2.000 m (Mehl, 1992), they can become very old (Gatti, 2002) and have been extremely successful survivors in Earth's history, they are sensitive to the effects of climate and anthropogenic changes. As a major factor, temperature increase can be postulated (Perez et al., 2000) as leading, for example, to mass
mortality events during the last few decades in the Mediterranean Sea (Pronzato, 1999). It is obvious, especially in tourist areas that the diversity of sponges has declined and continues to decline. Some sponges have the unique ability to etch the calcareous substratum and to penetrate into it. In particular, the species of the genus Cliona are well known for their ability to dissolve calcium carbonate and to excavate, burrow, or bore into calcitic/aragonitic substrata. The effective enzyme (carbonic anhydrase) was localized on the outer surface of the etching cell on the filopodia and between cell processes (Pomponi, 1979). It was hypothesized that the enzyme is secreted into the surrounding milieu (Rützler and Rieger, 1973).

Sponges are able to completely change their survival strategies, for example according to the food supply (carnivorous nutrition; Vacelet and Boury-Esnault, 1995) and to contribute to the stability of whole ecosystems, such as coral reefs, thus providing a major key to understanding the "coral reef paradox" (Richter et al., 2001).

The topic for an extensive number of studies has been the fact that the sponge fauna changes within an area strongly dependent on the surface of the ground where they attach (see Vatova, 1928; Rützler, 1965) and perhaps on the inorganic components in the surrounding water. This fact contributes to the overall species diversity of this taxon and perhaps also to the speed of the process of speciation, but also implies the inherent danger that well-adapted species may become extinct.

At one time, a diagnostic feature of the Porifera was the presence of spicules. The Hexactinellidae, or glass sponges, are characterized by siliceous spicules consisting of six rays intersecting at right angles. In particular, much of their tissues are syncitia, extensive
regions of multinucleate cytoplasm. Some discrete cell types do exist, including archaeocytes. Whereas other sponges possess the ability to contract, hexactinellidae do not. Hexactinellidae possess a unique system for rapidly conducting electrical impulses across their bodies, allowing them to react quickly to external stimuli. The Demospongiae are by far the most diverse sponge group. They are the most widespread and advanced class of sponges: greater than 90% of the 5,000 known living sponge species are demospongiae. However, the vast majority of living demospongiae do not possess skeletons that would easily fossilize, thus their fossil diversity, which peaks in the Creataceous, is probably an enormous underestimate of their true diversity. As their great number of species would suggest, demospongiae are found in many different environments, from warm high-energy intertidal settings to quiet cold abyssal depths. Indeed, all of the known freshwater poriferans are demospongiae. Demosponge skeletons are composed of spongin fibres and/or siliceous spicules, though one genus (Oscarella) has neither. Demosponge spicules, if present, are siliceous, have one to four rays not at right angles, and have axial canals that are triangular in cross section. Members of the group Calcarea are the only sponges that possess spicules composed of calcium carbonate. These spicules do not have hollow axial canals. Today, their diversity is greatest in the tropics, as is the case with most marine groups, they are predominantly found in shallow waters, though at least one species is known from a depth of 4,000 meters. The fossil record of the Calcarea indicates that it has always been more abundant in near-shore shallow water settings.

The Porifera are present both in the marine and the freshwater biotope. Some of them are able to filter their own body volume of water every 5 s in order to extract edible material
(Vogel, 1977). The flow speed of the water in the inhalant and exhalant canals is high; an output velocity of $20 \mathrm{~cm} / \mathrm{s}$ (Reiswig, 1971) has been estimated. They ingest particles of size between 5 and $50 \mu \mathrm{~m}$ through the cells of the mesohyl and the pinacoderm, and microparticles (0.3 to $1 \mu \mathrm{~m}$) via the cells of the choanocyte chambers. A sponge specimen of 1 kg may filter about 24000 litres d^{-1} (Vogel, 1997). Nutrients are acquired by phagocytosis of bacteria that are removed from the water column. Considering this amazingly large amount of water and all the adverse factors contained in it, it is surprising that sponges have survived over 500 My (Müller, 2003). It is even more impressive that they could resist severe ice periods, for example during Proterozoic or Phanerozoic (Knoll and Carroll, 1999).

Sponges have a cellular grade of organization. They do not possess any structures that can be considered organs. Instead, sponge cells of various types are responsible for bodily functions, the day-to-day activities that sustain life. Many of most common types of cells are illustrated in the cartoon view of the wall of a sponge (Fig. 1.8). The pinacocytes are the "skin cells" of sponges. They line the exterior of the sponge body wall. They are thin, leathery and tightly packed together. Choanocytes are distinctive cells that line the interior body walls. These cells have a central flagellum that is surrounded by a collar of microvilli. It is their striking resemblance to the single-celled protists called choanoflagellates that make many scientist believe that choanoflagellates are the sister group to the Animals. Choanocytes are versatile cells. Their flagella beat to create the active pumping of water through the sponge, while the collars of the choanocytes are the primary areas that nutrients are absorbed into the sponge. Furthermore, in some sponges the choanocytes develop into

Fig. 1.8 Microscopic view of a poriferan wall. Many of the most common types of cells are illustrated in a cartoon view oh the wall of poriferan (available at www.ucmp.berkeley.edu/porifera/pororg.html).
gametes. Between the two layers is a thin space called mesenchyme or mesohyl. The mesenchyme consists of a proteinaceous matrix, some cells and spicules. Archaeocytes are very important to the functioning of a sponge. These cells are totipotent, which means that they can change into all of the other types of sponge cells. Archaeocytes ingest and digest food caught by the choanocyte collars and transport nutrients to the other cells of the sponge. In some sponges, archaeocytes develop into gametes. The secretion of spicules is carried out by sclerocytes. Other cells, called spongocytes, secrete the spongin skeletal fibres when those are present. Sponges do not have any muscle cells, so their movement is rather limited. However, some poriferan cells can contract in a similar fashion as muscle cells. Myocytes and porocytes which surround canal openings and pores can contract to regulate flow through the sponge.

The above characteristics of the sponge system make it attractive as a model for investigating basic mechanisms of cell-cell and cell-matrix interactions.

Reproduction by sponges is by both sexual and asexual means. Asexual reproduction is by means of external buds. Some species also reproduce from internal buds, called gemmules, which can survive extremely unfavourable conditions that cause the rest of the sponge to die. Sexual reproduction takes place in the mesohyl. Male gametes are released into the water by a sponge and taken into the pore system of its neighbours in the same way as food items. Spermatozoa are "captured" by collar cells, which then lose their collars and transform into specialized, amoeba-like cells that carry the spermatozoa to the eggs. Some sponges are monoecious; others are dioecious. In most sponges for which developmental patterns are known, the fertilized egg develops into a blastula, which is
released into the water. The larvae may settle directly and transform into adult sponges, or they may be planctonic for a time. Adult sponges are always sessile.

Sponges are known as rich sources of bioactive secondary metabolites. Sponges are thought to live in a symbiotic relationship with one-celled organisms such as prokaryotes, bacteria and primarily cyanobacteria (Vacelet, 1971) as well as eukaryotes, zooxantellae (yellow symbiotic dinomastigotes) (Sará and Liaci, 1964) or zoochlorellae (green symbiotic algae) (Gilbert and Allen, 1973). These organisms occur extracellularly and intracellularly (Wilkinson 1978). Antimicrobial compounds have been isolated from sponge-associated bacteria on numerous occasions, and this has prompted the suggestion that microbial symbionts play a role in the defence of their host sponge (Webster et al., 2001). Marine sponges produce a wide array of other natural products and bioactive secondary metabolites. The diversity of the secondary metabolites produced has been highlighted in a large number of reviews (Faulkner, 1995; Sarma, 1993). They range from derivatives of amino acids and nucleosides to macrolides, porphyrins, terpenoids to aliphatic cyclic peroxides and sterols. This diversity reflects the efficient mechanisms of combinatorial biochemistry which the animals have acquired during their evolutionary history. The question arises of whether the sponges, being the host of associated/symbiotic bacteria, are the producers or whether it is the microorganisms which they harbour (Müller et al., 2003). Recent data strongly favour the view that the microorganisms are the main producers of the natural products which are stored and accumulated in the sponge as a chemical mechanism (Proksch et al., 2002), although sponge metabolites can also be produced by specific sponge cells (Salomon et al., 2001): as an example, the phosphatase
inhibitor okadaic acid can be cited (Tachibana et al., 1981). This compound was first isolated from the sponge Halicondria okadai and was later found to be produced by the free-living microalgae Prorocentrum lima and perhaps even by bacteria which are associated with them (Murakami et al., 1982) Sponges such as Suberites domuncula use okadaic acid as defence against foreign eukaryotic organisms while at the same time they possess a relative resistance against this compound. Furthermore, Suberites domuncula takes advantage of the inhibitory activity of the compound by activating its MAP (mitogenactivated protein) kinase pathway (Wiens et al., 2003). For example Vibrio spp. associated with the sponge Dysidea sp. were shown to synthesize cytotoxic and antibacterial tetrabromodiphenyl ethers (Elyakov et al., 1991). The diketopiperazines associated with the sponge Tedania ignis were found to be produced by a Micrococcus sp . (Stierle et al., 1988). Recently, the antifungal peptide theopalauamide, isolated from the marine sponge Theonella swinhoei, was shown to be contained in a novel δ-proteobacterial symbiont (Schmidt et al., 2000). Some of these chemicals have been found to have beneficial pharmaceutical effects for humans, including compounds with respiratory, cardiovascular, gastrointestinal, anti-inflammatory, antitumor and antibiotic activities.

Despite their crucial position in evolution, there is not a lot of informations about the sponge genome. Using Feulgen staining the amount of DNA per cells has been estimated with 0.11 pg DNA in one sponge species, Dysidea crawshagi (Fasman, 1976). Applying the technique of flow cytometry and using DAPI as dye to stain the DNA quantitatively, the genome size of the haploid genome of marine sponges Suberites domuncula and Geodia cydonium results to be approximately 1.7 pg , corresponding to 1.7
$\times 10^{9} \mathrm{bp}$. This value is in the range of those found in some vertebrates, for example Gallus domesticus (chicken) in which the genome size is 1.2×10^{9} bp or Cyprinus carpio in which is $1.2 \times 10^{9} \mathrm{bp}$. In comparision, the size of the human haploid genome is $3.3 \times 10^{9} \mathrm{bp}(\mathrm{Li}$ and Graur, 1991). Chromosomes could only be visualized in the sponge Suberites domuncula. In the diploid state the karyotype of the Suberites domuncula is 32 chromosomes. They appear (Fig. 1.9) spherulous in shape under the microscope and their size is between 0.25 and $1.0 \mu \mathrm{~m}$. (Imsiecke et al., 1995). In the prophase (Fig. 1.9a and b) the chromosomes are very thin $(0.25 \mu \mathrm{~m}$ in maximum $)$ and condense with time $(0.5 \mu \mathrm{~m})$. With transition to metaphase (Fig. 1.9c and d) the chromosomes reach their maximum density and thickness; they showed a spheric to rod-like shape (0.75 to $1.0 \mu \mathrm{~m}$). In the early anaphase the chromosomes are obviously arranged into two groups of chromatids suggesting a spindle apparatus. In the late anaphase the chromosomes are separated into two different nuclei.

In comparison with chromosomes of the freshwater sponge Spongilla lacustris which have size between 0.7 and $2.1 \mu \mathrm{~m}$ (Imsiecke et al., 1993) the dimensions of the chromosomes from Suberites domuncula are smaller. It was not possible to identify unequivocally centromeres in the chromosome preparations from Suberites domuncula; the same difficulty was noticed already with the description of the chromosomes from Spongilla lacustris. A distinct banding pattern of the sponge chromosomes is not visible. No chromosomes could be identified in Geodia cydonium.

Fig. 1.9 Chromosomes of Suberites domuncula. The specimens have been spread after hypotonic treatment. a) prophase (the arrow points to the nucleous), b) interphase nucleous (n) on the left and prophase on the right, c) and d) condensed metaphases. The structures are visualized by bright field microscopy. Magnification $\times 4,000$. (From Imsiecke et al., 1995).

The chromosomes of the freshwater sponge Spongilla lacustris were visualized microscopically (Imsiecke et al., 1993). The shape and size of the chromosomes were determined and the karyotype of this sponge was established. The karyotype of a diploid cell comprises nine different chromosomes pairs, which can be subdivided into five size classes (Fig. 1.10): class1, chromosomes 1 and 2 with a length of $2.1 \mu \mathrm{~m}$; class 2, chromosomes $3,1.7 \mu \mathrm{~m}$; class 3 , chromosome $4,1.4 \mu \mathrm{~m}$; class 4 , chromosomes $5,1.0 \mu \mathrm{~m}$; class 5 , chromosomes 6 to $9, \leq 0.7 \mu \mathrm{~m}$. Owing to the very small size of the chromosomes it is difficult to state exactly the position of the centromeres. Chromosomes 1 and 2 were classified as metacentric, while all others seem to be telocentric. In prophase the chromosomes are arranged separately and are condensed. A large nucleolus, which is characteristic of archeocytes, is clearly visible and has a diameter of about $2.5 \mu \mathrm{~m}$. After the disappearance of the nucleolus and the nuclear envelope, the chromosomes are arranged in the middle of the spindle apparatus along the metaphase plate. A steady increase in condensation of the chromosomes occurs during progression to metaphase. During anaphase the chromosomes separate into the corresponding sister chromatids. In telophase the chromosomes are again arranged in a compact manner.

Fig. 1.10 Karyotype (diploid) of the sponge Spongilla lacustris. Magnification, x2900. (From Imsiecke et al., 1993).

1.3 Aim of work

The study of the genome organization in sponges is the goal of the experimental work for this research project.

Because of their basal position in the Metazoan phylogeny and of their being the simplest multicellular animals, sponges are the best system 1) to test whether the transition from unicellularity to multicellularity was accompanied by changes in the genome organization, and 2) to compare their gene distribution patterns with those of higher animals.

The first part of this investigation was devoted to the analysis of the GC level heterogeneity of the DNA in genomes of the two sponges, Suberites domuncula and Geodia cydonium, that belong to the class of Demospongiae. Secondly the gene distribution in the genome of Demospongiae was assessed. Because of the abundant presence of associated organisms with both sponges in analysis reported in literature, our attention was turned to the identification of these organisms, in particular Bacteria, Archaea and Algae.

Chapter 2

- Materials and Methods -

2.1 Sponge collection

The marine sponges Suberites domuncula (Porifera, Demospongiae, Tetractinomorpha, Hadromerida, Suberitidae) and Geodia cydonium (Porifera, Demospongiae, Astrophorida, Geodidae) were collected in the bay of Naples at a depth of 20 metres by the fishing service of our Institute. Individual specimens were placed separately into plastic bags and kept in seawater basins at a temperature of $15-20^{\circ} \mathrm{C}$.

2.2 Extraction of genomic DNA

Genomic DNA was extracted from the internal part of the sponge body to avoid contamination of associated epibionts. Sponges were cut into small pieces and 5 g of tissue was ground in liquid nitrogen and dissolved in 10 ml buffer NaCl 100 mM , EDTA 50 mM pH 8. Sodium dodecyl sulfate (SDS) solution (20\%) was added to a final concentration of 2% and the mixture heated to $60^{\circ} \mathrm{C}$ for 30 min (Bartmann et al., 1997). Proteinase $\mathrm{K}(3 \mathrm{~h}$ at $50^{\circ} \mathrm{C}$) and RNAse (3 h at $37^{\circ} \mathrm{C}$) treatments were done. Nucleic acids were extracted with phenol/chloroform, chloroform/isoamyl alcohol and after precipitation with NaAc 3 M pH 5.9 and ethanol. The DNA so extracted was dissolved in TE (10 mM Tris-HCl, EDTA 50 $\mathrm{mM} \mathrm{pH} 8)$ and stored at $4^{\circ} \mathrm{C}$. Genomic DNA so extracted was checked on an ethidium bromide-stained 0.7 \% agarose gel (Biorad) in TBE (see Sambrook et al., 1989), visualized on GelDoc 2000 (Biorad) and quantized using a spectrophotometer UV/Vis Spectometer

Lambda Bio40 (Perkin Elmer). The DNA was analyzed also on Pulsed-Field Gel Electophoresis (PFGE) to estimate the molecular weight distribution.

Genomic DNA was also extracted from dissociated sponge cells. After washing in artificial sea water (ASW: $\mathrm{Na}_{2} \mathrm{SO}_{4} 7 \mathrm{mM}, \mathrm{NaHCO}_{3} 2 \mathrm{mM}$, Tris- $\mathrm{HCl} 20 \mathrm{mM}, \mathrm{KCl} 10 \mathrm{mM}$, $\mathrm{NaCl} 540 \mathrm{mM}, \mathrm{MgCl}_{2} 50 \mathrm{mM}, \mathrm{CaCl}_{2} 10 \mathrm{mM}, \mathrm{pH} 8.2$), about 5 g of Suberites domuncula tissue was dissociated in 50 ml of calcium and magnesium-free artificial seawater containing EDTA (CMFSW-E: ASW minus MgCl_{2} and $\mathrm{CaCl}_{2}+20 \mathrm{mM}$ EDTA) (Müller et al., 1981) under gentle shaking at $20^{\circ} \mathrm{C}$. For the silicious sponge Geodia cydonium the dissociation was performed in CMFSW-E supplemented with trypsin ($100 \mu \mathrm{~g} / \mathrm{ml}$) (Müller and Zahn, 1973), penicillin ($100 \mathrm{IU} / \mathrm{ml}$) and streptomycin ($100 \mu \mathrm{~g} / \mathrm{ml}$) (Müller et al., 1999). The cellular suspension so obtained was filtered through $20 \mu \mathrm{~m}$ mesh nylon net. The cells obtained by centrifugation at 800 xg for 15 min and after washing twice with calcium and magnesium-free artificial seawater (CMFSW: ASW minus MgCl_{2} and CaCl_{2}) were dissolved in CMFSW. The lysis solution (4 M guanidinium thiocyanate, 25 mM sodium citrate $\mathrm{pH} 7,0.5 \%$ sarcosyl, 0.1 M 2-mercaptoethanol) was then added (0.1 ml from pellet of freshly dissociated sponge cells in 0.9 ml of lysis solution). As for DNA extraction, see above.

Genomic DNA extracted from Geodia cydonium was purified by equilibrium centrifugation in CsCl -Ethidium Bromide gradient (Sambrook et al., 1989).

2.3 Separation of cells

Dissociated cells were fractionated according to density via centrifugation (1000 x g for 15 min) across discontinuous Ficoll gradient centrifugation (Flowers et al., 1998; Müller et al., 1981). The Ficoll layers used were: $4 \%, 6 \%, 8 \%, 10 \%, 12.5 \%, 15 \%, 17.5 \%$, $20 \%, 25 \%, 30 \%$ in CMFSW. The bands of cells that accumulated at the density interfaces were isolated individually by pipette, washed twice with CMFSW to remove Ficoll and pelleted at 1000 xg and $4^{\circ} \mathrm{C}$ for 10 min . The genomic DNA was extracted following the protocol used for dissociated sponge cells (see above).

2.4 Equilibrium centrifugation in CsCl density gradient

The profile of the DNA distribution in a CsCl gradient was obtained by analytical ultracentrifugation to sedimentation equilibrium, as previously described (Thiery et al., 1976; Sabeur et al., 1993). Standard speed was 44,000 revs $/ \mathrm{min}$ for CsCl work using the XL-A analytical ultracentrifuge; standard wavelength was 260 nm . Concentrations of DNA should result in maximal absorbance (optical density or O.D.) between 0.3 and 1.0. 24 hours should be allowed for sedimentation equilibrium to be reached. The relationship of Schildkraut et al. (1962), $\rho=(\mathrm{GC} \mathrm{x} \mathrm{0.098)} / 100+1.66$, was used to convert buoyant densities into GC levels. Bacillus subtilis phage 2C DNA ($\rho=1.742 \mathrm{~g} / \mathrm{cm}^{3}$) was used as a density marker (Cocito, 1969).

2.5 DNA fractionation and gene distribution

DNA fractionation was performed using the "shallow gradient" method. This procedure, used first to estimate the GC content of yeast artificial chromosomes (De Sario et al., 1995), was modified for the fractionation of genomic DNA to obtain a preparative CsCl profile. Ten micrograms of DNA in $\mathrm{CsCl}+\mathrm{TE}$ solution (refractive index $=$ r.i. 1.3993) were loaded on each gradient. Centrifugation was carried out in a vertical VTi90 rotor at $20^{\circ} \mathrm{C}$ and $35,000 \mathrm{rpm}$ for 24 h , using a Beckman preparative ultracentrifuge with the brake off. About 60 fractions of $80 \mu \mathrm{l}$ each were collected using a Hitachi DGF-U instrument. The refractive index was read for the fractions from 10 to 55 and the value of buoyant density was obtained applying the relationship
(10.861x r.i.) - 13.4974.

The absorbance at 260 nm of 10μ l of each fraction was measured by UV/Vis Spectometer Lambda Bio40 (Perkin Elmer) to obtain the shallow gradient profile.

The shallow gradient fractions containing the DNA were purified from CsCl with MicroSpin S-200 HR columns pre-equilibrated in TE buffer (Amersham Pharmacia Biotech Inc) following the instructions of the manufacturers. The fractions so purified were analyzed on 1\% agarose gel and ethidium bromide-stained.

To assess the gene distribution, a PCR approach on the shallow gradient fractions was applied. The oligonucleotide primer sequences, used for the PCR, were designed on the basis of cDNA sequences in GenBank on TaxBrowser (Taxonomy available at www.ncbi.nih.nlm.gov). The base composition was determined using Codon W 1.3 (J. Peden; http://molbiol.ox.ac.uk/Win95.codonw.zip).

The selected primers were synthesized by the Molecular Biology Service of our Institute. The oligonucleotide primer sequences for Suberites domuncula and Geodia cydonium genes are reported in Table 2.1 and in Table 2.2.

The annealing temperature was calculated with PROLIGO - Oligos Parameter Calculation (available at www.gensetoligos.com/Calculation/calculation_frame.html).

PCR was performed using 3 ng of $\mathrm{DNA}, 25$ pmol of each primer, MgCl_{2} final concentration $2.0 \mathrm{mM}, 10 \mathrm{x}$ buffer, 2 mM dNTP and 2.5 U Taq DNA Polymerase (Invitrogen). PCR was conducted on GeneAmp PCR System 9700 (Perkin Elmer). Cycling conditions were as follows: initial denaturation at $94^{\circ} \mathrm{C}$, " n " cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, \mathrm{~T}$ ann for 1 min and $72^{\circ} \mathrm{C}$ for 1 min (" n " = number of cycles and $\mathrm{Tann}=$ annealing that depend on the used primers couple, see Table 2.1 and 2.2), and a final extension of 10 min at $72^{\circ} \mathrm{C}$. Each PCR product was checked by electophoresis in 1% agarose gel.

Table 2.1 Sequences of PCR oligonucleotide primers for Suberites domuncula.

Gene	Primers 5' - 3' (Tm)	Tann $\left[{ }^{\circ} \mathrm{C}\right]$	PCR cycles
Bcl-2 homolog	BHP1_Sd1 (I) CGGGAGAACCTCTCATACGA ($62^{\circ} \mathrm{C}$) BHP1_Sd2 (r) CTTGATATCTGGTGCGAGTG ($60^{\circ} \mathrm{C}$)	58	25
Ras protein	Ras_Sdl (f) GTGGTAGTCGGTGGAGGAG (62 ${ }^{\circ} \mathrm{C}$) Ras_Sd2 (r) CTGTGCTCTTCTAATGAC ($52^{\circ} \mathrm{C}$)	58	25
Cytochrome P450	$\begin{aligned} & \text { CytP450_Sd (f) GACCTAGATGTAATGATG (54 } \left.4^{\circ} \mathrm{C}\right) \\ & \text { CytP450_Sd (r) GATCGTCTCATCTGGAC }\left(54^{\circ} \mathrm{C}\right) \end{aligned}$	56	30
Calmodulin	Cal_Sd1 (1) CAAGGAGGCTTTCTCCCTCT ($62^{\circ} \mathrm{C}$) Cal_Sd2 (r) TTGCTTGTCATCATCCCAAC ($62^{\circ} \mathrm{C}$)	58	25
Serine/Threonine protein kinase	CPKC_Sd3 (f GTGTTTCTGGCTGAGCAA $\left(54^{\circ} \mathrm{C}\right.$) comPKCr (r) CCAAAGTCAGCTATCTTGA $\left(54^{\circ} \mathrm{C}\right)$	58	25
Glutatione peroxidase	Gluper_Sd (I) CATGACTGGCTTGGAGAC ($56^{\circ} \mathrm{C}$) Gluper_Sd (r) CaACTAAGTAGCACAATAC (520 $)$	56	30
Polyubiquitin	Polyu_Sd1 (I) GCTTCTGACACCATTGAG (54 ${ }^{\circ} \mathrm{C}$) Polyu_Sd2 (r) GACGGCATACATACATAC ($52^{\circ} \mathrm{C}$)	54	30
Tetraspanin-CD63 receptor	CD63R_Sd1 (f) CGTGCGGACACTGCCTGC ($62^{\circ} \mathrm{C}$) CD63R_Sd2 (r) CGGTGAATGCAGAGACACAC	58	25
Myol protein	Myol_Sd (f) GACATCGTCTGGCTAGGC (58 ${ }^{\circ} \mathrm{C}$) Myol_Sd (r) GAGAATGAGCAATAACTG $\left(50^{\circ} \mathrm{C}\right)$	54	30
Dermatopontin	Der_Sd () GCACTCCATGCTGTTGC ($62^{\circ} \mathrm{C}$) Der_Sd (r) CatGTGTACAGTCATAGTG (54 ${ }^{\circ} \mathrm{C}$)	54	35
Allograft inflammatory factor-1	Aif_Sd () CTGTGCTGTACCGATTC ($52^{\circ} \mathrm{C}$) Air_Sd (r) GAACTAAGGCAAGTCAGC $\left(54^{\circ} \mathrm{C}\right)$	56	35
Cortactin	Cor_Sd (f) CTGATCGACTCGACTGG (54 ${ }^{\circ} \mathrm{C}$) Cor_Sd(r) GTAGCACGTACTGCAGAC (56 6°)	56	45
C-jun N-terminal kinase	Jnk_Sd() CGACCGCCATAATGTCTTC ($60^{\circ} \mathrm{C}$) Jnk_Sd (r) CAGATGCACTGTTATTGTAC ($56^{\circ} \mathrm{C}$)	58	45
SNO protein	SNO_Sd (f) GTGGTCCACCTCAGATTGC ($60^{\circ} \mathrm{C}$) SNo_Sd (r) GTTGCTATGAGATGGTCCTG ($60^{\circ} \mathrm{C}$)	60	35
Col protein	Col_Sd (I) GCTGCAGTTACACTACTAG (56 6°) Col_Sd (r) GTGCAGACAACACAGTTG ($54^{\circ} \mathrm{C}$)	56	35
LAGL protein	LAGL_Sd () CTCTGATCGCATATCGATC (56 ${ }^{\circ} \mathrm{C}$) LAGL_Sd (r) GCTATTGGCGCCATTGGTC ($60^{\circ} \mathrm{C}$)	58	45
Profilin	Prof_Sd (I) GCACGAGAAGTCAAGGTG ($56^{\circ} \mathrm{C}$) Prof_Sd (r) GCATTACATGCCCAGACTC ($58^{\circ} \mathrm{C}$)	58	45

[^0]Table 2.2 Sequences of PCR oligonucleotide primers for Geodia cydonium.

Gene	Primers 5' - 3' (Tm)	Tann $\left[{ }^{\circ} \mathrm{C}\right]$	PCR Cycles
Bcl-2 homolog	BHP1_Ge1(n) ATGGCCACTGGGTCACTGAC ($64^{\circ} \mathrm{C}$) BHP1 Gc2 ($)$ TTATCTCCCTATGATGGTCC ($58^{\circ} \mathrm{C}$)	58	30
Protein kinase C	cPKC_Gel(i) TGGCAGAGCACAAGGAGT (560ㅇ) comPKCr (r) CCAAAGTCAGCTATCTTGA ($54^{\circ} \mathrm{C}$)	54	30
Heat shock protein 70	HSP70_Ge () GGCACGACGTACTCGTGTG ($62^{\circ} \mathrm{C}$) HSP70_Gc (r) GTCTCTGCAGCAGTGTCTG ($60^{\circ} \mathrm{C}$)	60	30
Polyubiquitin	Polyu_Gel () CTCAACCGTCGAAGCCTAC ($60^{\circ} \mathrm{C}$) Polyu_Gc2 (r) GCTAGCCTCGACCTCTAG ($58^{\circ} \mathrm{C}$)	60	30
$\begin{aligned} & \text { Tetraspanin_CD63 } \\ & \text { receptor } \end{aligned}$	CD63_Gc (1) GTGGTCAAGTCAAGCTGC (560) CD63_Gc (r) GTATAGTAGAGGTCCTCG (54 ${ }^{\circ} \mathrm{C}$)	60	30
Thioredoxin	Thio_Ge (() GCAGAGCGGATTCTGCCTG ($76^{\circ} \mathrm{C}$) Thio_Gc (r) CaCTTATACATGTTGAGC ($50^{\circ} \mathrm{C}$)	65	30
2-5A synthetase	2-SAsyn_Gc (n) CAGAGTCTCCAGAGCTAC (56 $6^{\circ} \mathrm{C}$) 2-5Asyn_Gc (r) CTATGAACTAATCCAATG (48 ${ }^{\circ} \mathrm{C}$)	56	30
DNA J protein	DNAJ_Gc (f) GTACGAGGTTCTGGAGCTG ($60^{\circ} \mathrm{C}$) DNAJ_Gc (r) GACAAGCAGCTGCTGCC ($56^{\circ} \mathrm{C}$)	60	30
Leukotriene B4 protein	LB4_Gc () CGCAAGTACGTACTCGC (54 ${ }^{\circ} \mathrm{C}$) LB4_Gc (r) GCCTTCAGTGACATGTTC ($54^{\circ} \mathrm{C}$)	54	30
Galectin	Gal3_Gc (f) CATGGCGCGGGATTAGG (520 ${ }^{\circ}$) Gal3_Gc (r) CAAGCTATGCATCCAACG (54 ${ }^{\circ} \mathrm{C}$)	56	40
Multiadhesive protein	Muad_Gc (f) CTGGTTCTTCTGCAGGTG (56 ${ }^{\circ}$) Muad_Gc (r) GTAGAGTTGGAGCATACG ($54^{\circ} \mathrm{C}$)	56	40
Cathepsin	Cat_Ge (f) GAGCACTCAGATAGTTCC (52 ${ }^{\circ} \mathrm{C}$) Cat_Ge (r) GCATTGTCTGTCACGG $\left(50^{\circ} \mathrm{C}\right)$	56	35
Mucus-like protein	Mu_Gc (f) CAGACGACCCTCTTCAC (54 ${ }^{\circ} \mathrm{C}$) Mu_Gc (r) CAGCTTGTTGAGATCCATAG (58 ${ }^{\circ} \mathrm{C}$)	56	35
LMP7-like protein	LMP7_Gc (\mathbf{n} GCAGAGCATTATTCGTCGC $\left(58^{\circ} \mathrm{C}\right.$) LMP7_Gc (r) GGGTATACAGTAGTACAG $\left(52^{\circ} \mathrm{C}\right)$	56	35
GDP-dissociation inhibitor	GDP_Gc (f) CATCATGGATGAGAAGTAC (54 $\left.{ }^{\circ} \mathrm{C}\right)$ GDP_Ge (r) CTCAGCTCCTCCTCGGG ($55^{\circ} \mathrm{C}$)	54	45
Beta-gamma-crystallin	Cry_Gc (f) CAGCAGCACTGAACTCCC ($58^{\circ} \mathrm{C}$) Cry_Gc (r) GTAAACTCTCTAGCTAGC ($52^{\circ} \mathrm{C}$)	58	45
Tubulin	Tub_Gc (I) CAGTGCGGCAACCAGATTG ($60^{\circ} \mathrm{C}$) Tub_Gc (r) GCTCTCCCTCCTCACACC ($60^{\circ} \mathrm{C}$)	62	45
Rh antigen-like protein	Rh_Ge (i) CAGGATTTCTGCTGGTGTTC ($60^{\circ} \mathrm{C}$) Rh_Gc (r) CAGCACTGCGGCCATCTC ($60^{\circ} \mathrm{C}$)	62	45

[^1]
2.6 Amplification, cloning and sequencing of eukaryotic 5.8S-28S rDNA, prokaryotic 16S rDNA and Archaea 16S rDNA

The amplification of eukaryotic $5.8 \mathrm{~S}-28 \mathrm{~S}$ rDNA was done with universal eukaryotic primers ITS3-D2 (Christen et al., 1991; Lafay et al., 1992), that of prokaryotic 16S rDNA with primers 27F-1385R (Grigioni et al., 1999), that of Archaea 16S rDNA with archaea specific-primers Ar4F-1119aR (Jurgensen et al., 2000) (Table 2.3). A 25 ng aliquot of DNA was amplified. PCR was performed using 25 pmol of each primer, MgCl_{2} final concentration $2.0 \mathrm{mM}, 10 \mathrm{x}$ buffer, 2 mM dNTP and 2.5 U Expand High Fidelity PCR System (Roche). PCR was done on GeneAmp PCR System 9700 (Perkin Elmer). Cycling conditions were as follows: initial denaturation at $94^{\circ} \mathrm{C}$, " n " cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, \mathrm{~T}$ ann for 1 min and $72^{\circ} \mathrm{C}$ for 1 min .

PCR products were analyzed by electrophoresis in 1% agarose gel. Purified PCR products (QIAquick PCR Purification Kit, Quiagen) were cloned into the pCR 2.1 plasmid vector and transformed into E. coli competent cells using the commercial kit Original TA Cloning (Invitrogen) following the instructions of the manufactures. Plasmid DNA was extracted using QiAprep Spin Miniprep Kit (Qiagen) and inserts were sequenced in a CEQ 2000 Beckman automatic sequencer by the Molecular Biology Service of our Institute.

Sequences were compared to those in databases using the Basic Local Alignment Search Tool (BLAST, Altschul et al., 1997) algorithm (available at www.ncbi.nih.nlm.gov) to identify known sequences with a high degree of similarity. The alignments between the sequences were done using MultAlin (available at prodes.toulouse.inra.fr/multalin/multalinl.html). Evolutionary trees were generated using
maximum parsimony algorithms in the PHYLIP package (version 3.4; J. Felsenstein, University of Washington, Seattle).

Table 2.3 Sequences of the oligonucleotide primers used for PCR.

	Primer 5'-3' (Tm)	T ann ["${ }^{\circ} \mathrm{C}$]
Eukaryotic 5.8-28S rDNA	ITS3 GTCGATGAAGAACGCAGC D2 TCCGTGTTCAAGACGGG	60
Prokaryotic 16S rDNA rDNA	27F GAGTTTGATCCTGGCTCAG 1385R GGGTGTGTRCAAGGCCC	55
Archaea 16S rDNA	Ar4F TCYGGTTGATCCTGCCRG 1119aR GGYRSGGGTCTCGCTCGTT	60

Chapter 3

- Results and discussion -

3.1 Heterogeneity of the base composition in sponge DNA

Before presenting the experimental work, it is relevant to give a brief introduction on the two sponges analyzed. Figs. 3.1 and 3.2 show Suberites domuncula and Geodia cydonium, respectively: both live in the sea of Naples. Suberites domuncula lives in the Gulf of Mergellina and Posillipo in Naples in a depth range from 14 to 16 metres. The body of Suberites domuncula (Fig. 3.1) has an orifice in which lives a hermit crab Pagurites oculatus (Decapoda: Paguridea), which resides inside shells of the mollusc Trunculariopsis trunculus (emerging in Fig. 3.1b). Because of the presence of this hermit crab, Suberites domuncula has the possibility to move.

Fig. 3.1 Photo of Suberites domuncula (a) The part in red is the body of Suberites domuncula that has an orifice in which lives a hermit crab Pagurites oculatus (Decapoda: Paguridea), which resides inside shells of the mollusc Trunculariopsis trunculus and emerging in b).

In contrast, Geodia cydonium lives in the Gulf of Bacoli and Baia, near Naples, in a depth range from 2-3 to 15 metres, on the sandy seabed and covered with mud. In fact, the surface of Geodia cydonium is always very dirty (see Fig. 3.2).

Fig. 3.2 Photo of Geodia cydonium.

The seawater around both sponges has an average temperature of about $20^{\circ} \mathrm{C}$.
It should be stressed that is very problematic to isolate pure sponges DNA, due to the associated bacterial and eukaryotic organisms which cannot be easily separated from the sponge tissues.

Genomic DNA was extracted from tissue of Geodia cydonium and Suberites domuncula and analysed by analytical ultracentrifugation. Fig. 3.3 shows the CsCl analytical ultracentrifugation profile of genomic DNA from Geodia cydonium.

Fig. 3.3 Profile of Geodia cydonium. DNA extracted from whole tissue as obtained by analytical ultracentrifugation to sedimentation equilibrium in a CsCl gradient. Bacteriophage 2 C is used as a marker (ρ $=1.742$). Density values are in $\mathrm{g} / \mathrm{cm}^{3}$. Experimental error of density values is 0.0005 .

Three peaks are visible and characterized by different values of buoyant density (ρ l= $\left.1.7031 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{\rho} 2=1.7173 \mathrm{~g} / \mathrm{cm}^{3}, \rho 3=1.7253 \mathrm{~g} / \mathrm{cm}^{3}\right)$. Previous analysis suggested that Geodia cydonium DNA is very heterogeneous (Bartmann et al., 1997). The authors claimed
that the profile could be described satisfactorily by the superposition of at least five components (Fig. 3.4), whose buoyant densities were $1.6972,1.7054,1.7128,1.7195$, $1.7262 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. The proportion of total DNA of these components were 8%, $16 \%, 12 \%, 30 \%, 34 \%$, respectively.

Fig. 3.4 Analytical density gradient centrifugation profile of total Geodia cydonium DNA. The curves represent: the measured profile (dashed line), the subcomponents, obtained from curve fit calculations (dashed-dotted lines), the profile from the sum of subcomponents (solid line). The human DNA profile is shown in green. (Modified from Bartmann et al., 1997).

Bartmann et al. (1997) excluded bacterial contamination of Geodia cydonium DNA based on the reassociation constants and genetic complexity of the five fractions as determined by reassociation kinetics. However, it was not possible to exclude contamination from other
eukaryotic organisms. Such an extreme heterogeneity of sponge DNA base composition, reported by Bartmann et al. (1997), is very puzzling since it has never been observed before for any organisms. Indeed, for example Geodia cydonium DNA would be more heterogeneous than human DNA (Fig. 3.4): the green profile in the fig. represents CsCl analytical ultracentrifugation profile for human DNA.

Fig. 3.5 shows the CsCl analytical ultracentrifugation profile of genomic DNA extracted from Suberites domuncula.

Fig. 3.5 Profile of Suberites domuncula DNA extracted from whole tissue as obtained by analytical ultracentrifugation to sedimentation equilibrium in a CsCl gradient.

This DNA also exhibits three peaks $\left(\rho 1=1.6879 \mathrm{~g} / \mathrm{cm}^{3}, \rho 2=1.6987 \mathrm{~g} / \mathrm{cm}^{3}, \rho 3=1.7095\right.$ $\mathrm{g} / \mathrm{cm}^{3}$) characterized by densities different from those found in Geodia cydonium DNA. This would suggest that the associated organisms are different in the two Demospongiae species.

Two explanations can account for the presence of the three peaks in two sponge DNAs:

1) these sponge DNAs are very heterogeneous as suggested by Bartmann et al. (1997);
2) only one peak is due to sponge DNAs and the other two peaks are from associated organisms, known from the literature that are present in these two sponges.

In order to address this issue, we attempted to purify sponge genomic DNA and to identify the potentially associated organisms.

3.2 Identification of sponge DNA

Concerning the identification of sponge DNA it was possible to obtain a partial purification by the dissociation of the sponge tissue.

For this purpose, the two sponges were cut into pieces, eliminating the external layer, and put into a basin with filtered water and kept in the dark to avoid the presence of bacteria and photosynthetic organisms. This treatment lasted for about four days. The tissue so treated was dissociated (see Materials and Methods) and DNA extracted analysed on CsCl analytical ultracentrifugation.

The CsCl analytical ultracentrifugation profile obtained for Suberites domuncula DNA is reported in the Fig. 3.6.

Fig. 3.6 Profile of Suberites domuncula DNA extracted from dissociated cells as obtained by analytical ultracentrifugation to sedimentation equilibrium in a CsCl gradient.

The single peak observed corresponds to a density value of $1.6987 \mathrm{~g} / \mathrm{cm}^{3}$ which corresponds to the second peak reported in Fig. 3.5. The other two peaks were almost completely eliminated (see below), and are not visible in the CsCl analytical ultracentrifugation profile.

Fig. 3.7 shows the CsCl analytical ultracentrifugation profile of Geodia cydonium DNA characterized by a main peak with a buoyant density of $1.7031 \mathrm{~g} / \mathrm{cm}^{3}$, which corresponds to the first peak reported in Fig. 3.3. The two other peaks found in the previous experiment (Fig. 3.3) were reduced in amounts.

Fig. 3.7 Profile of Geodia cydonium DNA extracted from dissociated cells as obtained by analytical ultracentrifugation to sedimentation equilibrium in a CsCl gradient.

To proceed further in DNA purification, the sponge tissue was dissociated (see Materials and Methods). Figs. 3.8 and 3.9 display photos for Geodia cydonium and Suberites domuncula dissociated cells, respectively: in both cases different cellular types are present. Indeed, cells are different in dimensions. In Suberites domuncula granular cells are present, in Geodia cydonium are still present bacteria.

Fig. 3.8 Light microscopy picture of Geodia cydonium cells showing large cells and bacteria.

Fig. 3.9 Light microscopy picture of Suberites domuncula cells: as it is visible there is the presence of granular cells.

Dissociated cells from both sponges were loaded on Ficoll discontinuous gradient. Fig. 3.10 presents a scheme of cell fractionation for the two sponges. Eight cell layers (red layers) were obtained for Suberites domuncula, whereas five cell layers (blue layers) for Geodia cydonium. Microscopic analysis of each cell layers obtained showed again the presence of bacteria, suggesting that they are associated with Geodia cydonium and

Suberites domuncula (see below). Genomic DNA was extracted from each of these cell layers and analyzed by analytical ultracentrifugation. The profiles so obtained showed the same peaks reported in Figs. 3.6 and 3.7.

Fig. 3.10 Cell fractionation in Ficoll discontinuous density gradient. Layers of dissociated cells of Suberites domuncula (red cell layers) and of Geodia cydonium (blue cell layers) are schematically drawn. (Modified from Müller et al., 1981).

To obtain an even further purified DNA, the Geodia cydonium DNA was centrifugated in $\mathrm{CsCl}-E t h i d i u m$ bromide gradient (see Materials and Methods). Fig. 3.11 shows the CsCl analytical ultracentrifugation profile of Geodia cydonium DNA obtained after this experiment: the single peak observed corresponds to the predominant peak ($\rho=1.7030$ $\mathrm{g} / \mathrm{cm}^{3}$) found previously (Fig. 3.7) and the other two peaks (Fig. 3.3) were eliminated even if not completely, however they are not visible in the CsCl analytical ultracentrifugation profile (see below).

Fig. 3.11 Analytical ultracentrifigation profile of Geodia cydonium DNA extracted from dissociated cells after purification by equilibrium centrifugation in CsCl -Ethidium bromide gradient: the single peak found corresponds to the predominant peak ($\rho=1.7030 \mathrm{~g} / \mathrm{cm}^{3}$) found previously.

Fig. 3.12 shows the CsCl analytical ultracentrifugation profile of Geodia cydonium DNA in comparison with the DNA of Suberites domuncula.

Fig. 3.12 Comparison of CsCl analytical ultracentrifugation profiles of Geodia cydonium and Suberites domuncula DNAs.

The Bartmann et al. (1997) profile for Geodia cydonium DNA has been reported in Fig. 3.13 for comparison with the range of heterogeneity found in this work.

Fig. 3.13 Bartmann's profile for Geodia cydonium DNA in comparison with the CsCl analytical ultracentrifugation profile (in red) found in this work. (Modified from Bartmann et al., 1997).

Indeed, Fig. 3.14 shows the analytical profile of Geodia cydonium DNA in comparison with human DNA and Xenopus laevis profiles just to compare their range of heterogeneity.

Fig. 3.14 Analytical profile of Geodia cydonium DNA in comparison with human DNA (green profile) and Xenopus laevis (blue profile) profiles.

These results indicate that the profile of Geodia cydonium DNA, reported by Bartmann et al. (1997), was not corresponding to sponge DNA. Probably only one was the peak due to Geodia cydonium DNA and whereas the other peaks were due to the presence of associated organisms that could not be eliminated from sponge DNA (see below). Probably this problem was due to the method used to extract the DNA. In fact the genomic DNA was extracted from total tissue without the type of treatment carried out in the current study.

Since a brownian diffusion was observed in the CsCl analytical ultracentrifugation profile for both sponge DNAs we determined the molecular weight of both DNAs to understand and explain their CsCl analytical ultracentrifugation profile. Both sponge DNAs were analysed by ethidium bromide gel electrophoresis: as it is possible to see in the Fig. 3.15 the molecular weight of the two DNA is about the same as Lambda (λ) DNA (48.5 kb), used as a marker but there are DNA fragments of low molecular weight.

Fig. 3.15 Image of Suberites domuncula and Geodia cydonium genomic DNA observed on an ethidium bromide-stained 0.7% agarose gel.
Lane $1=$ Suberites domuncula genomic DNA
Lane 2 = Geodia cydonium genomic DNA
Lane $3=\lambda$ DNA (used as molecular weight marker)
Lane 4 = SmartLadder, molecular weight marker (Eurogentec)

Since this was not an occasional event but occur in each extraction, we thought that these fragments were due to an endonuclease activity of the sampled species. An analysis on pulsed-field gel electrophoresis (PFGE) was also done for both DNA: in this case the range of the fragments is between 48.5 kb and 23.1 (Fig. 3.16). According to these results, the molecular weight of these sponge genomic DNAs is not so low as to justify the observed diffusion, which is probably due to the presence of the associated organisms (see below).

123

Fig. 3.16 Analysis of Suberites domuncula and Geodia cydonium genomic DNA on pulsed-field electophoresis (PFGE).
Lane $1=$ Suberites domuncula genomic DNA
Lane 2 = Geodia cydonium genomic DNA
Lane 3 = Low Range PFG Marker (Biolabs)

From the buoyant density of the CsCl analytical profile for the two genomic sponge DNA, so extracted, it has been possible to calculate the GC\% of both DNA, using the equation of Schildkraut et al. (1962). The GC\% corresponds to 39.6 for Suberites domuncula DNA and 43.9 for Geodia cydonium DNA.

3.3 Gene distribution

The second part of this investigation was devoted to assessing the gene distribution in the genomes of Geodia cydonium and Suberites domuncula. The first step was the fractionation of DNA. The base composition heterogeneity of sponge DNA allows this DNA to be fractionated by CsCl density gradient centrifugation, using the "shallow gradient" technique (see Materials and Methods). This approach was originally developed to estimate the $\mathrm{G}+\mathrm{C}$ content of yeast artificial chromosomes and then modified for the fractionation of genomic DNA. Fig. 3.17 shows the fractionation for Geodia cydonium DNA: 19 fractions were obtained, characterized by different buoyant densities (i.e. GC content).

Fig. 3.17 DNA profile of Geodia cydonium using the shallow gradient method. Ten micrograms of genomic DNA were loaded. Numbers in blue represent the GC content ($\mathrm{GC} \%$) of each fraction.

Fig. 3.18 shows the fractionation for Suberites domuncula DNA: 25 fractions were obtained. In the two graphs the GC level increases from left to right. The modal buoyant densities of the two sponges' DNA, as obtained from shallow gradient fractionations, match those obtained by analytical centrifugation.

Fig. 3.18 DNA profile of Suberites domuncula using the shallow gradient method. The numbers in blue represent the GC content (GC\%) of each fraction.

The following step was to analyse the gene sequences available in GenBank for the sponges.

The number of sponge genes in GenBank is very small: for the Demospongiae class, 57 coding sequences (cDNA or CDS) are available for Suberites domuncula and 78 for Geodia cydonium, 34 for Ephydatia fluviatilis (a freshwater sponge); only 8 sequences can be found for Sycon raphanus belonging to the Calcarea class; no cDNA sequences exist for the Hexactinellidae. Genomic DNA sequences were available only for the Demospongiae. Even if the number of genes is small, the genes available for Suberites domuncula and Geodia cydonium should have been sufficient to provide preliminary information on the gene distribution, since they cover a wide range of GC contents in third codon positions: $32-60 \%$ for Suberites domuncula and $28-68 \%$ for Geodia cydonium. For the sake of comparison, the range of GC contents in third codon positions for human DNA covers 3095\% and for Xenopus laevis 21-86\%.

PCR amplification with specific primers used to localize genes of interest in DNA fractions.

Fig. shows an example of localization for the Geodia cydonium gene Hsp70: this gene was centered in fraction 30 of the shallow gradient.

Fig. 3.19 Image of an example of localization for the Geodia cydonium gene Hsp70 observed on an ethidium bromide-stained 0.7% agarose gel: the gene is localized on the shallow gradient fraction 30 (blue arrow).

PCR conditions were optimized for 17 genes of Suberites domuncula and for 18 of Geodia cydonium, chosen according their GC_{3} values so as to cover the distribution range of all available coding sequences of these two sponges. Tables 3.1 and 3.2 list the analysed genes for Suberites domuncula and for Geodia cydonium, with their accession numbers, lengths in amino acids, total $\mathrm{GC} \%$ and GC_{3} levels were reported respectively. Each gene reported in the table was localized on the shallow gradient fractions.

Table 3.1 Accession number, length in amino acids, $\mathrm{GC}_{\mathrm{C}}, \mathrm{GC}_{3} \%$, localization on shallow gradient fractions (with GC\%) of the 17 coding sequences for Suberites domuncula.

Gene	Accession No.	Length (aa)	$\begin{array}{\|c\|} \hline \mathrm{GC}, \% \\ \mathrm{CDS} \\ \hline \end{array}$	GC3, \%	Fraction	
					\#	GC\%
BHP1 protein	Y19158	219	41.9	39.7	30	36.8
Ras protein	Y18167	192	42.7	45.3	30	36.8
Cytochrome P450	Y17816	482	45.4	46.3	23	31.2
Calmodulin	Y18166	150	46.2	48	21	30.1
Serine/Threonine protein kinase	Y13099	674	47.2	51.9	31	37.2
Glutatione peroxidase	Y18438	218	49.1	55.0	21	30.1
Polyubiquitin	Y12081	381	49.5	55.0	32	37.9
Tetraspanin-CD63 receptor	Y18100	249	50.1	57.8	25	33.5
Myol protein	AJ252240	121	44.0	38.8	26	33.8
Dermatopontin	AJ299722	185	43.4	50.2	23	31.2
Allograft inflammatory factor-1	AJ410885	145	41.1	47.5	30	36.8
Cortactin	Y18027	478	45.8	35.1	24	32.4
C-jun N-terminal kinase	AJ291511	362	45.2	49.2	26	33.8
SNO protein	AJ277954	234	45.3	41.9	30	36.8
Col protein	AJ252241	283	48.8	28.6	30	36.8
LAGL protein	AJ250580	331	44.8	50.7	26	33.8
Profilin	Y18900	141	46.8	38.3	25	33.5

Table 3.2 Accession number, length in amino acids, $\mathrm{GC} \%, \mathrm{GC}_{3} \%$, localization on shallow gradient fractions (with GC\%) of the 18 coding sequences for Geodia cydonium.

Gene	Accession No.	Length (aa)	$\begin{array}{\|c\|} \hline \text { GC, \% } \\ \hline \text { CDS } \\ \hline \end{array}$	GC3, \%	Fraction	
					\#	GC\%
BHP1 protein	Y19157	256	54.2	59.0	29	38.5
Protein kinase C	Y17882	678	53.2	64.3	30	39.0
Heat shock protein 70	X94985	664	54.8	68.2	30	39.0
Polyubiquitio	X70917	458	54.9	71.6	30	39.0
$\begin{aligned} & \text { Tetraspanin_CD63 } \\ & \text { receptor } \end{aligned}$	Y19156	256	54.2	58.9	33	42.3
Thioredoxin	Y17147	107	53.6	77.6	26	35.7
2-5A synthetase	Y18497	328	42.3	37.8	26	35.7
DNA J protein	Y09037	413	54.2	59.6	29	38.5
Leukotriene B4 protein	Y19102	336	47.2	48.2	30	39.0
Galectin	X93925	191	44.3	38.7	38	46.8
Multiadhesive protein	Y14243	702	49.1	49.4	38	46.8
Cathepsin	Y10527	323	53.7	64.4	39	47.9
Mucus-like protein	AJ299721	539	45.9	39.7	31	40.1
LMP7-like protein	X97728	281	55	64.4	31	40.1
GDP-dissociation inhibitor	X94983	449	47.0	50.5	38	46.8
Beta-gamma crystallin	Y08771	164	49.0	51.8	35	44.5
Tubulin	Y17002	450	54	66.2	38	46.8
Rh antigen-like protein	Y12397	524	52.2	60.7	35	44.5

Figs. 3.20a) and b) shows the localization of the genes on the shallow gradient fractions.
a)

$\begin{array}{llllllllllllllllllllllllllllllll}\text { GC\% } & 29.0 & 29.6 & 30.1 & 30.9 & 31.2 & 32.4 & 33.5 & 33.8 & 34.0 & 34.6 & 35.7 & 36.8 & 37.2 & 37.9 & 39.0 & 39.7 & 40.1 & 41.2 & 42.3 & 43.4 & 43.9 & 44.5\end{array}$
b)

Fig. 3.20 Localization of the genes on a) Suberites domuncula and b) Geodia cydonium shallow gradient fractions. The GC\% of the fractions is also shown.

The localization of the analysed coding sequences from both Suberites domuncula and Geodia cydonium showed a nearly symmetrical distribution almost coinciding with the DNA distribution. In this property, the genome of the Demospongiae seems to be very different from those of vertebrates, ranging from fishes to mammals and birds, since the latter are characterized by an asymmetry in the distribution of genes, these features being much more pronounced in warm-blooded vertebrates.

An unexpected result was, however, found when we localized homologous genes shared by the two sponges on the shallow gradient. Tables 3.1 and 3.2 show that there are three pairs of homologous genes in the two sponges: those encoding tetraspanin-CD63R, BHP1 protein and polyubiquitin (the two genes cPKC are not homologous). The sequences of these supposedly orthologous genes extracted from GenBank were aligned with BLAST 2 Sequences (available at www.ncbi.nlm.nih.gov/BLAST/): the two tetraspanin-CD63R genes and the two polyubiquitin genes showed good alignments. Fig. 3.21 shows the localization of these three gene pairs on the Suberites domuncula and Geodia cydonium shallow gradients, respectively. Contrary to all expectations, the genes BHP1 protein and polyubiquitin are localized on the two fractions in the GC-rich region for Suberites domuncula. In contrast, these two genes in Geodia cydonium are localized in the GC-poor region of the shallow gradient. Similarly, the tetraspanin-CD63R gene is localized in the GC-poor region of the gradient for Suberites domuncula and in the GC-rich region for Geodia cydonium.
a)

b)

Fig. 3.21 Comparison of localization of the three supposedly orthologous genes (BHP1, PolUBQ and CD63-R) on a) Suberites domuncula and b) Geodia cydonium shallow gradient.

To understand what happened in the gene distribution, we analyzed the correlations between GC_{3} levels of the coding sequences of Suberites domuncula and Geodia cydonium that had been used in the PCR experiments, and the GC levels of the DNA fractions in which genes were localized. The scatterplots of Fig. 3.22 showed that the slopes of the lines are negative and the correlation coefficients are extremely low.

Fig. 3.22 Correlations of GC_{3} levels of coding sequences (CDS) versus the GC\% of Suberites domuncula (blue triangles) and Geodia cydonium (red squares) shallow gradient fractions in which the genes are localized.

These results are very unusual because they suggest that there are no correlations between the GC\% of the shallow gradient fractions and the GC_{3} levels of Suberites domuncula and

Geodia cydonium coding sequences. In other words, in these sponges the GC_{3}-rich genes do not appear to be preferentially located in GC-rich region of DNA, and the GC_{3}-poor genes do not appear to be preferentially in GC-poor regions.

Since these results may seem surprising, it is relevant to recall what it is known about these types of correlations at this point.

In vertebrate genomes, linear relationships exist between the levels of GC (the molar fraction of guanine + cytosine) or GC_{3} (the GC levels of third codon positions) of the coding sequences and the GC levels of the isochores embedding them (Bernardi et al., 1985). Moreover, a correlation exists between GC_{3} and GC of coding sequences, which was found to be essentially the same for genes from a number of genomes ranging from bacterial to human (Bernardi and Bernardi, 1985). This was the first suggestion of a general linear relationship between GC_{3} and GC_{1+2} (the GC levels of first + second codon positions). In addition, points from different compositional compartments (isochores) of compositionally heterogeneous genomes, such as the genomes of warm-blooded vertebrates, fall on the line of the intergenomic correlations of homogeneous genomes, such as bacterial genomes, showing that the same correlation exists not only intergenomically, but also intragenomically. Further work (Bernardi and Bernardi, 1986) showed that: 1) $\mathrm{GC}_{1}, \mathrm{GC}_{2}$ and GC_{3} values (GC are values pooled from individual prokaryotic and eukaryotic genomes or genome compartments) are positively correlated with the GC levels of the corresponding genomes, a result also reported by Muto and Osawa (1987) for a small sample of bacterial genomes; 2) the slopes of the compositional correlations between individual codon positions and coding sequences were very similar for all classes of
organisms; 3) the frequencies of amino acids change with increasing GC of coding sequences, a point originally made by Sueoka (1961) for bacteria and also reported by Jukes and Bhushan (1986) for bacteria and mitochondria. Further investigations showed that the same correlation holds between GC_{3} and GC_{1+2} for human genes (Aïssani et al., 1991; D'Onofrio et al., 1991) and for genes from cold-blooded vertebrates, lower eukaryotes, viruses and bacteria (Bernardi and Bernardi, 1991). Finally, investigations by D'Onofrio and Bernardi (1992) led to the definition of a universal correlation among codon positions both inter- and intra-genomically. The universal correlation was re-analysed on a vastly larger sample of coding sequences and revealed that, in the high GC range of the GC_{3} versus GC_{1} correlation, there are differences between prokaryotes and eukaryotes. Fig. 3.23 shows the orthogonal regression lines of GC_{3} versus GC_{1} and GC_{2}, for prokaryotes, and eukaryotes.

Fig. 3.23 Intergenomic compositional correlations. GC_{3} values of genes averaged by genome or genome compartments (in the case of heterogeneous genomes) are plotted against the corresponding GC_{1} and GC_{2} values. Plots for prokaryotes (red dots), eukaryotes (blue dots) and prokaryotes + eukaryotes are shown, along with the equations of orthogonal regression lines and correlation coefficients (from D'Onofrio et al., 1999).

High correlation coefficients were found in GC_{3} versus GC_{2} plots for both prokaryotes and eukaryotes. The slopes and intercepts of the orthogonal regressions were slightly higher in eukaryotes compared to prokaryotes, but a standard test (Jolicoeur, 1990) showed that the differences were not significant. The correlations between GC_{3} and GC_{1} also showed high
coefficients for all prokaryotes and eukaryotes, and the slopes were different for the two groups. Fig. 3.23 also shows the correlation obtained when prokaryotes and eukaryotes are pooled together. Clearly, on a first approximation, a universal correlation still exists between GC_{1} and both GC_{2} and GC_{3}. In fact, the equation of the regression line of GC_{3} versus GC_{1+2} is not significantly different from that previously published using a small number of genes (D'Onofrio and Bernardi, 1992).

It should be considered that in genes, second position of codons are largely constrained by the amino acids they encode, whereas third positions reflect constraints in base composition. The scatterplot of the frequencies of GC base pairs in the second $\left(\mathrm{GC}_{2}\right)$ and third $\left(\mathrm{GC}_{3}\right)$ positions of genes from a given genome defines a correlation that is well conserved from prokaryotes to eukaryotes (D'Onofrio et al., 1999). In all species, represented by a large set of experimentally sequenced genes, analyzed to date, the axis is far away from the diagonal $\left(\mathrm{GC}_{2}=\mathrm{GC}_{3}\right)$. This conservation was apparently violated in the recently sequenced and annotated rice genome (Yu et al., 2002), which showed many genes aligning along the expected axis, but also many extending along the diagonal. Such behaviour would simply indicate contamination of the data set by intergenic or other noncoding DNA (Cruvellier et al., 2003). Furthermore, 50.6\% of genes reported for rice had no orthologs in Arabidopsis thaliana. Almost all the genes clustering along the diagonal (Fig. 3.24) were in fact annotated as predicted or putative, whereas the large majority of the experimentally determined genes lined up along the axis that is expected for coding sequences.

Fig. 3.24 Scatterplot of GC_{2} versus GC_{3} levels in predicted and experimentally identified rice genes. The diagonal $\left(\mathrm{GC}_{2}=\mathrm{GC}_{3}\right)$ is indicated. Complete coding sequences from Oryza sativa were extracted from GenBank (release 129; retrieved 31 May 2002) using ACNUC software. Redundancies were removed on the basis of protein alignments using as a cutoff 90% identity for an overlap of 90%. The resulting gene set ($\mathrm{N}=$ 10.087) was partitioned into five classes according to the annotations (real genes, not experimental, unknown, pseudogenes and hypothetical) in the informative fields product, gene name, evidence and note, using a script written in Perl (from Cruvellier et al., 2003).

Many, if not most, of the points appearing along the main diagonal in the figure are likely to represent rice sequences that are not translated into proteins. This may have led to
considerably overestimating the proportion of coding sequences that lack orthologs in Arabidopsis. Simple GC_{2} versus GC_{3} scatterplots can, therefore, serve as a quick check to identify computationally predicted or expressed sequence tag-based genes that are unlikely to code for proteins.

On this basis, complete coding sequences were taken from start codon (ATG) to stop codon and we tested the correlations of GC_{1} and GC_{2} of Suberites domuncula and Geodia cydonium coding sequences available in GenBank versus GC_{3} (Figs. $3.25 \mathrm{a}-\mathrm{b}, 3.26 \mathrm{a}-\mathrm{b}$, respectively). The orthogonal regression lines that characterize them are shown, together with the main diagonal of slope $1\left(\mathrm{GC}_{1}=\mathrm{GC} 3, \mathrm{GC} 2=\mathrm{GC}_{3}\right)$ as a comparison.
a)

b)

Fig. 3.25 Scatterplot of a) GC_{1} versus GC_{3} and b) GC_{2} versus GC_{3} levels of Suberites domuncula coding sequences available in GenBank. The main diagonal is also shown.

Fig. 3.26 Scatterplot of a) GC_{1} versus GC_{3} and b) GC_{2} versus GC_{3} levels of Geodia cydonium coding sequences available in GenBank. The main diagonal is also shown.

The correlation coefficient is significant only for the correlation of GC_{2} versus GC_{3} levels for gene sequences of Suberites domuncula, and in this case the correlation seem to be negative. These scatterplots indicate that the universal correlations are not respected in these two sponges and these data go against what it is known in literature. In particular not only we didn't find the universal positive correlations that are well conserved from prokaryotes to eukaryotes (D'Onofrio et al., 1999) but also we are not in the case of the rice genome (Cruvellier et al., 2003) in which this conservation was apparently violated due to contamination of the data set by intergenic or other noncoding DNA.

In Figs. 3.27a-b and $3.28 \mathrm{a}-\mathrm{b}$ the same correlations reported in Figs. 3.25a-b and 3.26a-b were reported considering only the genes localized experimentally on the shallow gradient fractions.

Fig. 3.27 Scatterplot of a) GC_{1} versus GC_{3} and b) GC_{2} versus GC_{3} levels of Suberites domuncula coding sequences experimentally localized on shallow gradient fractions. The main diagonal is also shown.
a)

b)

Fig. 3.28 Scatterplot of a) GC_{1} versus GC_{3} and b) GC_{2} versus GC_{3} levels of Geodia cydonium coding sequences experimentally localized on shallow gradient fractions. The main diagonal is also shown.

As it is possible to see from these scatterplots, the negative correlations found for Suberites domuncula is less strong because the points with high GC_{2} values didn't localize on shallow gradient fractions; for the others correlations the situation didn't change in a significant way.

For a comparison we can also consider the correlations of coding sequences for human and Escherichia coli (Fig. 3.29).

Fig. 3.29 Scatterplots of GC_{2} versus GC_{3} for non-redundant, representative collections of coding sequences for human (left, 10,128 sequences) and E. coli (right, 4,286 sequences). In each scatterplot, the main diagonal and orthogonal regression line are shown. (From Cruvellier et al. 2003).

For human and Escherichia coli all the points are along the orthogonal regression line making a very dense cloud and only a small number of points is formed by outliers. Comparing our results with these last correlations, it is possible to observe that in the case of the sponges only a small number of the genes is in the cloud. Considering that there are not a lot of sequences, there are a great number of outliers.

Because of these unusual compositional properties, we tried to understand what happened with the sponge genes. We decided to examine in detail the sequences in GenBank. We analysed the amino acid composition of these genes. In particular we tested the percent of each amino acid because it is known that there are some amino acids that are rare in the usual proteins (for example the aromatic amino acids). From this analysis result only some proteins that have a content of tryptophan, or methionine different from protein usual content.

An analysis at protein levels was done by BLASTX (available at www.ncbi.nlm.nih.gov.). It should be stressed that there were a little number of gene sequences in GenBank of others sponges with which Suberites domuncula and Geodia cydonium sequences could be aligned. Furthermore, the only significant alignments that we found had a low percentage of identity. As example, was reported the protein tyrosine kinase of Geodia cydonium that had 33% of similarity with the protein tyrosine kinase of Ephydatia fluviatilis, another sponge that belongs to the class of Demospongiae. Low values of identity (of about 30$40 \%$) were also found with homologous proteins in others organisms, for example with Drosophila melanogaster, Danio rerio, Caenorabditis elegans, Xenopus laevis and Homo sapiens, that especially due to the phylogenetic distance.

At this point we don't known which type of sponge sequences are those in GenBank. After these analyses it is possible to conclude that Suberites domuncula and Geodia cydonium coding sequences available in GenBank have problems but it is difficult to understand of which type because there are not enough terms of comparison. It is possible to hypothesize that for some sequences there were problems of frame shift that can be the cause of the reversal of correlations found. On the other hand, we can hypothesize that, concerning the sponge genes, the strange correlations found is because we are in the case of predicted genes.

3.4 Identification of associated organisms

Sponges are probably an extreme example of "infested" organisms because, unlike most other invertebrates, there are no sterile areas in a sponge (Pomponi and Willoughby, 1994). The upper surface area of the sponge (the cortex) is particularly exposed to the contamination. They have two distinct layers, the outer ectosome and the inner endosome. It is in the endosome that some sponges also harbour vast numbers of others organisms (Webb and Maas, 2002). Sponges provide an ideal habitat for microorganisms. Marine sponges frequently contain a complex mixture of bacteria (both symbiotic and incidental), fungi, unicellular algae and cyanobacteria (also both symbiotic and incidental). Significant progress has been made in the documentation of sponge-associated microorganisms and their possible function as endosymbionts.

3.4.1 Bacteria

A brief introduction on the possible type of association among the sponges and their associated organisms will precede the results obtained from this experimental work. Sponge-bacteria interactions are probably among the oldest host-bacteria interactions known, dating back more than 500 million years (Wilkinson et al., 1984). Several recent studies have revealed that permanent associations exist between certain host sponges and specific micro-organisms, their interactions remaining largely, however, unknown (Preston et al., 1996; Schumann-Kindel 1997; Althoff et al., 1998; Friedrich et al., 1999; Schmidt et al., 2000). Sponges are thought to live in a symbiotic relationship (Simpson, 1984) with unicellular organisms such as prokaryotes, bacteria (Vacelet, 1970) and primarily
cyanobacteria (Vacelet, 1971), eukaryotes, zooxanthellae (yellow symbiotic dinomastogotes) (Sarà and Liaci, 1964) or zoochlorellae (green symbiotic algae) (Gilbert and Allen, 1973). These organisms occur both extracellularly and intracellularly (Wilkinson, 1978).

Virtually all sponges contain endosymbiotic micro-organisms, and these symbionts often contribute considerably to the total sponge biomass (Wilkinson, 1978; Brantley et al., 1995). Before summarising the different type of organisms that have been isolated from Suberites domuncula and Geodia cydonium, it is necessary to give a few definitions. All micro-organisms found in association with the sponge host will be termed "associated organisms" (Osinga et al., 2001). These can be microbes that are coincidentally present in the sponge, microbes that grow in the mesohyl and microbes that permanently live inside the sponge cells. In addition, it is possible to use the term "symbionts" for those microorganisms that are always found in association with the same host species. The sponge symbiont relationship can be classified as obligatory mutualism (i.e. the symbionts play an essential role in the metabolism of their host), facultatively mutualism (they have a beneficial effect on their host, but the host will survive without the symbiont) or commensalisms (they are present without providing obvious beneficial effects to their host). In all cases, it is assumed that the sponge host provides a sheltered habitat for their symbionts. A further distinction is made between "epibionts" (micro-organisms living on the sponge surface) and "endosymbionts" (micro-organisms that either live in the sponge mesohyl or inside the sponge cells). A logical question to ask is "why do sponges tolerate micro-organisms inside their body?" The most obvious answer might be that the micro-
organisms provide a source of food or other useful metabolic products to their host. It has been suggested that growth of these useful micro-organisms may be under the control of the sponge host (Muller el al., 1981). This growth of beneficial micro-organisms is termed "gardening" or "farming" and may occur frequently among sponges.

In addition to a transient seawater population serving as a food source, sponge harbor large amounts of bacteria in their tissues that can amount to 40% of their biomass (Vacelet, 1975). Furthermore, sponges may also succumb to microbial and fungal infections which result in the disintegration of the sponge fibers/tissue and ultimately lead to sponge death (Lauckner, 1980; Vacelet et al., 1994).

A very powerful method extensively used to identify symbiotic organisms, especially from those living in a marine ecosystem (Giovanni 1991), is based on PCR amplification of 16S rRNA using universal prokaryotic-specific primers for bacteria 27F-1385R (see Materials and Methods): a fragment of about 1400 bp was amplified. PCR amplification, cloning and subsequent sequencing were performed as described in "Materials and Methods".

Possible correlations between the bacterial population which lives associated with Suberites domuncula and Geodia cydonium and that of their surrounding water column were investigated. The seawater surrounding the two sponge (15-20 metres in depth) was collected and filtered through a Millipore 0.22μ filter. These filters were placed on LB (Luria-Bertani medium) agar in ASW plate at $20^{\circ} \mathrm{C}$. In this case two bacterial species were isolated from Suberites domuncula (Table 3.3, SdB3 and SdB4) and only one from Geodia
cydonium (Table 3.4, GcB3). Database searches using the BLASTN program revealed their highest similarity of these clones with the bacterial sequences in GenBank.

The Suberites domuncula and Geodia cydonium cell suspensions obtained from the dissociated tissue were centrifuged at low speed (600 xg) and both supernatants were plated on LB agar in ASW (artificial seawater) and incubated at $20^{\circ} \mathrm{C}$ to allow the marine bacteria growth, since these two sponges were collected at this temperature of water column. Five colonies, identifiable from their different colours on the growth plates, were obtained from Suberites domuncula (Table 3.5 SdB5, SdB6, SdB7, SdB8, SdB9) and 5 from Geodia cydonium (Table $3.6 \mathrm{GcB} 4, \mathrm{GcB} 5, \mathrm{GcB} 6, \mathrm{GcB} 7, \mathrm{GcB} 8$): they belong to a different bacterial species than those obtained from surrounding water column.

In addition, the bacterial populations of cell suspensions obtained from both dissociated tissue and centrifuged at low speed (600 xg) were analysed. The two genomic DNA were extracted from these two pellets, obtained at $600 \times \mathrm{g}$, and PCR amplification was done. Three clones were isolated from Suberites domuncula (SdB10, SdB11, SdB12) and two from Geodia cydonium (GcB9 and GcB10). A part of both pellets was also placed on LB agar in ASW plates: three types of colonies were identified for Suberites domuncula (SdB13, SdB14 and SdB15) and three for Geodia cydonium (GcB11, GcB12 and GcB13).

Table 3.3 Isolated bacterial clones from Suberites domuncula.

| Bacterial isolate | Source | Highest similarity
 (\%) | Accession
 number | Buoyant
 density |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SdB3 | Water column | Photobacterium sp. KT0248
 95% | AF235127 | - |

Table 3.4 Isolated bacterial clones from Geodia cydonium.

Bacterial isolate	Source	Highest similarity (\%)	Accession number	Buoyant Density
GcB3	Water column	North sea bacterium H 120	AF069667	-
		99\%		
GcB4	Supernatant cell dissociated	Pseudoalteromonas sp.	AF530129	1.6931
		93\%		
GcB5	Supernatant cell dissociated	Alpha proteobacterium MBIC3368	AF218241	1.7105
		98\%		
GcB6	Supematart cell dissociated	Bacterium str. 47083	AF227837	1.6988
		99\%		
GcB7	Supermatant cell dissociated	Bacillus hwajinpoensis	AF541966	1.701
		99\%		
GcB8	Supernatant cell dissociated	Alpha proteobacterium MBIC3368	AF218241	1.6999
		98\%		
GcB9	DNA from pellet 600 xg	Uncultured gamma proteobacterium HOC2	AB054136	-
		97\%		
GcB10	DNA from pellet 600 xg	Uncultured gamma proteobacterium HOC27	AB054161	-
		94\%		
GcB11	Pellet plated	Alpha proteobacterium MBIC3368	AF218241	1.7135
		99\%		
GcB12	Pellet plated	Vibrio sp. Os53	AB038028	1.7037
		99\%		
GcB13	Pellet plated	Vibrio sp. QY101	AY174869	1.7038
		99\%		

All these clones were subjected to phylogenetic analysis. In total, 13 independent sequence profiles were obtained from Suberites domuncula and 11 from Geodia cydonium. The sequence results indicate that a high diversity of bacterial phylotypes was present within the two sponges. In particular for Suberites domuncula 7 clones clustered within the γ subdivision of the Proteobacteria and 6 clones within Bacillus (Fig. 3.30).

Fig. 3.30 Phylogenetic tree for bacterial clones extracted from Suberites domuncula.

For Geodia cydonium 3 clones clustered within the α-subdivision of the Proteobacteria, 2 within Bacillus and 6 within the γ-subdivision of the Proteobacteria (Fig. 3.31).

Fig. 3.31 Phylogenetic tree for bacterial clones extracted from Geodia cydonium.

In total from the two sponges were isolated 13 of the clones clustered within the γ subdivision of the Proteobacteria, 3 within the α-subdivision of the Proteobacteria and 8 within Bacillus (see phlylogenetic tree Fig. 3.32).

Fig. 3.32 Phylogenetic tree for bacterial clones extracted from Suberites domuncula and Geodia cydonium.

Webster et al. in 2001 reported similar data. Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The community structure was extremely diverse with representatives of the Actinibacteria, low GC gram-positive bacteria, the β - and γ - subdivisions of the Proteobacteria, Cytophaga/Flaviobacterium, green sulphur bacteria, green nonsulphur bacteria, planctomycetes, and other sequence types with no known close relatives.

Firstly, these results strongly suggests that Proteobacterium sp. Kt0248 and Alteromonas sp. MS23 (SdB3 and SdB4, respectively) which lives in the Suberites domuncula sorrounding water column, are not being utilised as a food source and have not a specific association with Suberites domuncula, because they were not found in Suberites domuncula (see the other bacterial clones isolated). It is possible to make the same comment on North sea bacterium H 120 (GcB3) in regard to Geodia cydonium.

For the analysis of the other bacterial clones it is important to consider the different cellular composition among supernatant and pellet after centrifugation at 600 x g. In particular the pellet seems to be enriched for the most part with big (granular) cells, whereas in the supernatant stay small cells. This can explain the different bacteria found when the supernatant and the pellet have been analyzed. On this basis it is possible to suppose that there are some bacteria that prefer living in association with big cells $(10 \mu \mathrm{~m})$ and others that prefer living in association with small cells ($2-5 \mu \mathrm{~m}$). It is possible to suppose that the different sponge cellular populations produce various secondary metabolites that could select between the different bacteria or vice versa. Furthermore, in the supernatant it should be possible to find also the bacteria that live in the intercellular space: they are released
after the tissue dissociation. On the basis of the different sponge symbiont relationship the bacteria SdB5, SdB6, SdB7, SdB8, SdB9, SdB13, SdB14, SdB15 from Suberites domuncula and GcB4, GcB5, GcB6, GcB7, GcB8, GcB11, GcB12 and GcB13 from Geodia cydonium could be considered extracellular associated organisms or epibionts. On the contrary, only the bacteria $\mathrm{SdB} 10, \mathrm{SdB} 11, \mathrm{SdB} 12, \mathrm{GcB} 9$ and GcB 10 could be considered intracellular associated organisms or "endosymbionts" for Suberites domuncula and Geodia cydonium respectively, because they are released after the cellular lysis that occurs to DNA extraction. These bacteria should be good candidates to be possible obligate symbionts for the two sponges in analysis.

Concerning the bacteria isolated from supernatant of cells dissociated and from pellets after centrifugation at $600 \times \mathrm{g}$ plated on LB agar in ASW, their extracted DNA were analyzed by CsCl analytical ultracentrifugation: the buoyant densities of each bacterium are reported in the Table 3.3 for Suberites domuncula and in Table 3.4 for Geodia cydonium. As it results, all the bacterial ultracentrifugation profiles are under the range of the heterogeneity of Suberites domuncula and Geodia cydonium. That can explains the diffusion that was observed before in the Fig. 3.6 and in the Fig. 3.11. Under the analytical profiles of both sponges are in hiding the profile of at least 8 bacteria. For these reasons the Suberites domuncula and Geodia cydonium analytical profiles show 1) a large diffusion, 2) a basiline not on the zero and 3) a tail on the right part.

3.4.2 Archaea

Archaea, one of the three major domains of extant life, are thought to comprise predominantly microorganisms that inhabit extreme environments, inhospitable to most Eucarya and Bacteria. They comprise cultivated members that span a fairly limited range o phenotypes, represented by extreme halophiles, sulfur-metabolizing thermophiles, thermophilic sulfate-reducers and methanogens (DeLong et al., 1992). In the marine environment, archaeal habitats are generally limited to shallow or deep-sea anaerobic sediments (free-living and endosymbiotic methanogens), hot springs or deep-sea hydrothermal vents (methanogens, sulfate reducers, and extreme thermophiles), and highly saline land-locked seas (halophiles).

However, molecular phylogenetic surveys of native microbial assemblages are beginning to indicate that the evolutionary and physiological diversity of Archaea is far greater than previously supposed. Preston et al. in 1996 reported the discovery and preliminary characterization of a marine archeon (Cenarchaeum symbiosum gen. no., sp. nov.) that inhabits the tissues of temperate water sponge. The association was specific, with a single crenarchaeal phylotype inhabiting a single sponge host species. This partnership represents the first described symbiosis involving Crenarchaeota. The symbiotic archaeon grows well at temperatures of $10^{\circ} \mathrm{C}$, over $60^{\circ} \mathrm{C}$ below the growth temperature optimum of any cultivated species of Crenarchaeota. Archaea have been generally characterized as microorganisms that inhabit relatively circumscribed niches, largely high-temperature anaerobic environments. In contrast, data from molecular phylogenetic surveys, suggest that some crenarchaeotes have diversified considerably and are found in a wide variety of
lifestyles and habitats. Cenarchaeum symbiosum is a symbiotic archaeon closely related to other nonthermophilic crenarchaeotes that inhabit diverse marine and terrestrial environments.

Margot et al. in 2002 described the association between filamentous Archaea and three Mediterranean species of sponges from the family Axinellidae (Porifera: Demospongiae). Axinella damicornis, A. verrucosa and Axinella sp. harbour a high concentration of filamentous Archaea in the collagen that surrounds the siliceous spicules that form their skeleton. Molecular studies have revealed that the filamentous Archaea from the three Axinella are closely related and are species specific, with a single phylotype inhabiting each sponge species. They are closely related to C. symbiosum, the archaeon found in a sponge from the same genus, A. mexicana, although this sponge harbours two phylotypes of the archaeon and they seem to be unicellular (Preston et al., 1996; Schleper et al., 1998). Several attempts have been made to cultivate these Archaea, with no success, suggesting that they may have metabolic needs perhaps only provided by their host sponges.

PCR amplifications with Archaea-specific primers for 16S rDNA (Ar4F/1119aR see Materials and Methods) were done on partially purified Suberites domuncula and Geodia cydonium genomic DNA. A PCR product of about 1100 bp was obtained only on Geodia cydonium DNA. This Geodia cydonium PCR product was cloned and 18 clones were sequenced: 11 of these isolated clones resulted closely related to Uncultured marine archaeal group I crenarchaeote clone ST-3k4A (Accession number AJ347774; similarity of 97%, see phlylogenetic tree Fig. 3.33) and 7 to Uncultured marine archaeal group 1
crenarchaeote clone ST-12k16A (Accession number AJ347776; similarity of 97%, see phlylogenetic tree Fig. 3.34), two different strains of single species.

Fig. 3.33 Phylogenetic tree in which are reported 11 of archaea isolated clones closely related to Uncultured marine archaeal group 1 crenarchaeote clone ST-3k4A (Accession number AJ347774).

Fig. 3.34 Phylogenetic tree in which are reported 7 of archaea isolated clones closely related to Uncultured marine archaeal group 1 crenarchaeote clone ST-12k16A (Accession number AJ347776).

Fig. 3.35 shows the total phylogenetic analysis between all the archaea clones isolated.

Fig. 3.35 Total phylogenetic tree between all the archaea clones isolated from Geodia cydonium.

After a phylogenetic analysis done also in relationship with Cenarchaeum symbiosum found by Preston it was possible to state that the clones isolated in this study are not correlated.

The marine "group 1" crenarchaeotes is a newly found group of non-cultivable Archaea that are significant components of marine picoplankton assemblages (DeLong, 1992; DeLong et al., 1999). Several attempts have been made to cultivate these Archaea with no success suggesting that they may have metabolic needs perhaps only provided by their host sponges. The results of this study suggest a novel example of a species-specific symbiosis between Geodia cydonium and Archaea in the sea of Naples. It is important to keep in mind that the growth temperature of Geodia cydonium in its natural habitat ranges from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$, and these sponge (and its crenarchaeal symbionts) have remained healthy for months when maintained in laboratory aquaria of our Institute at about $15-20^{\circ} \mathrm{C}$. This observation provides strong evidence that the marine crenarchaeotes, whose closest cultivated relatives are all thermophilic or hyperthermophilic, can thrive at low temperatures. Available phylogenetic and ecological data suggest that ancestral variants of hyperthermophilic crenarchaeotes, perhaps originally inhabiting marine hydrothermal systems, became welladapted for growth in surrounding cold seawater. This colder environment may have been gradually exploited, initially by mesophilic crenarchaeal genetic variants, whose descendants eventually adapted to even lower temperatures of contemporary seas (Preston el al., 1996). Subsequently, mesophilic or psycrophilic crenarchaeotes apparently radiated into many diverse habitats, becoming widespread in marine plankton (Fuhrmann et al., 1992; DeLong et al., 1994), entering into symbiotic associations with metazoa, and
eventually invaded terrestrial environments (Ueda et al., 1995). In analogy to other marine prokaryotic species, nonthermophilic marine Crenarhaeota occupy a wide variety of habitats, ranging from planktonic to symbiotic niches.

3.4.3 Eukaryotes

Suberites domuncula and Geodia cydonium genomic DNA extracted from whole tissue was used to amplify and clone the rDNA fragment between two universal eukaryotic primers (ITS3 and D2), corresponding to a highly variable region of the molecule (Fig. 3.36).

Fig. 3.36 Structure of rDNA and localization of two universal eukaryotic primers, ITS3 and D2.

Cloning and sequencing of the ITS3-D2 fragment should allow to verify whether eukaryotic DNA other than that of the sponge is present in the preparation. A PCR product of about 1200 bp was obtained. At present, 20 clones have been sequenced: all clone sequences result identical to the sequence of Suberites domuncula. Probably that means

Eukaryotes are not present in Suberites domuncula. Similar analysis done on Geodia cydonium revealed the presence of two eukaryotic clones, called GcEu1 and GcEu2 respectively. BLAST search showed that GcEul displays the highest similarity to Chattonella subsalsa (Eukaryota; Stramenopiles; Raphidiphyceae; Chattonella) with approximatively 92% similarity, instead GcEu2 has the highest similarity to Chlorarachnion CCMP621 (Eukaryota; Cercozoa; Chlorarachniophyceae; Chlorarachnion) with approximatively 89% similarity. Concerning Chattonella subsalsa is an heterokont alga and may be involved in harmful algal blooms. Indeed, concerning Chlorarachnion CCMP621 belongs to the Chlorarachniophytes that are green amoeboflagellate algae that are primarily distinguished by the presence of a plastid of secondary endosymbiotic origin (Keeling 2001). Primary plastids (those of plants, green algae, red algae and glaucocystophytes) arose through the endosymbiotic uptake of a cyanobacterium by a eukaryote, but the ancestor of chlorarachniophytes acquired its plastid by swallowing a photosynthetic eukaryote and, rather than simply digesting it as food source, retaining the alga to perform photosynthesis. Now the algal endosymbiont is severely reduced and is completely integrated with its amoeboflagellate host such that the two are regarded as a single organism (McFadden and Gilson 1995). The origins of both the host and the endosymbiont components of chlorarachniophytes have proved to be quite puzzling, since both are unusual and extremely highly adapted to their endosymbiotic association. Before secondary endosymbiotic plastid origin was understood, it was thought that Chlorarachnion was likely a relative of heterokont algae (Keeling, 2001); however, plastid pigmentation eventually suggested that the endosymbiont was some kind of green alga.

This has recently been confirmed by molecular phylogeny (Ishida et al., 1997), but still no strong evidence from either pigmentation or molecular data could demonstrate conclusively what kind of green alga it was. Indeed, when Chlorarachnion was first discovered, the presence of a plastid naturally tempted investigators to suggest that the whole cell was related to other algal groups. However green algal origin of chlorarachniophyte plastids was recognized.

There is in the literature some evidence of sponge/algae association. For example Ephydatia fluviatilis is a freshwater sponge that harbours algae. In particular, this sponge shows variations of its green pigmentation according to light intensity and seasonality (Corallini and Gaino, 2001). Sponge pigmentation is related to the presence of endocellular zoochlorellae that are restricted to the mesohyl cells (mainly archeocytes) of the outermost layers of the sponge. Symbionts reside in individual membrane-limited cytoplasmic vacuoles; commonly there is only a single element per cells. The ultrastructural organisation of the algae within these cells testifies to their progressive digestion by the host. Occasionally, intact zoochlorellae appear between sponge cell pseudopodia before becoming included into vacuoles.

Bugni et al. in 2002 reported the data about the association of the red macro alga Ceratodictyon spongiosum and its sponge symbiont Haliclona cymaeformis.

Chapter 4

- Conclusions -

The first part of this research project was devoted to analyse the GC level heterogeneity of the DNA in genomes of the two sponges Suberites domuncula and Geodia cydonium that belong to the class of Demospongiae.

Because in the literature there were some evidences of organisms that live in symbiosis with these two sponges which cannot be easily separated from the sponge tissue, the first step was the purification of sponge DNA. Firstly we obtained two CsCl analytical ultracentrifugation profiles for both sponges in analysis (Figs. 3.3-3.5) that showed three peaks, suggesting an extreme heterogeneity of both DNA or the presence of associated organisms. It should be consider that the only data present in the literature about the heterogeneity of the sponge DNA were reported from Bartmann et al. in 1997 concerning Geodia cydonium DNA. The authors showed an analytical profile having an extreme heterogeneity never observed before for any organism. Applying different protocols with particular precaution, it was possible to obtain partial DNA purification for both sponges. In particular, it was possible for us, for the first time, to obtain CsCl analytical ultracentrifugation profiles for Suberites domucula (Fig. 3.6) and Geodia cydonium (Fig. 3.11) DNA that showed one peak that is due to the sponge DNA, characterized by different values of buoyant density ($\rho=1.6987 \mathrm{~g} / \mathrm{cm}^{3}$ for Suberites domuncula; $\rho=$ $1.7031 \mathrm{~g} / \mathrm{cm}^{3}$ for Geodia cydonium). The other two peaks, due certainly to the presence of associated organisms, were eliminated although not completely. However they are not visible in CsCl analytical ultracentrifugation profiles. We calculated from the buoyant
density of the CsCl analytical profiles, using the equation of Schildkraut et al. (1962), the GC\% of both DNA, corresponding to 39.6 for Suberites domuncula DNA and 43.9 for Geodia cydonium DNA.

The second aim of this experimental work was to assess the gene distribution in the genome of these two sponges. The base composition heterogeneity of sponge DNA allows this DNA to be fractionated by CsCl density gradient centrifugation, using the "shallow gradient" technique. As results we obtained shallow gradient fractionations which showed 19 fractions for Geodia cydonium DNA (Fig. 3.17) and 25 fractions for Suberites domuncula DNA (Fig. 3.18).

The next step was the analysis of the gene sequences in GenBank to choose the genes to analyse. PCR amplification with specific primers was used to localize genes of interest in GC-poor or GC-rich genome DNA fractions. PCR conditions were optimized for 17 genes for Suberites domuncula and 18 for Geodia cydonium. Each of these genes was localized on the shallow gradient fractions (see Fig. 3.20a-b). After this type of the analysis we have a series of strange results. The localization of the analysed coding sequences from both Suberites domuncula and Geodia cydonium showed a nearly symmetrical distribution almost coinciding with the DNA distribution. In this property, the genome of the Demospongiae seems to be very different from those of vertebrates, ranging from fishes to mammals and birds, since the latter are characterized by an asymmetry in the distribution of genes, these features being much more pronounced in warm-blooded vertebrates.

An unexpected result was, however, found when homologous genes shared by the two sponges on the shallow gradient were localized. Tables 3.1 and 3.2 show that there are
three pairs of homologous genes in the two sponges: those encoding tetraspanin-CD63R, BHP1 protein and polyubiquitin. Fig. 3.21 shows the localization of these three gene pairs on the Suberites domuncula and Geodia cydonium shallow gradients, respectively. Contrary to all expectations, the genes BHP1 protein and polyubiquitin are localized on the two fractions in the GC-rich region for Suberites domuncula. In contrast, these two genes in Geodia cydonium are localized in the GC-poor region of the shallow gradient. Similarly, the tetraspanin-CD63R gene is localized in the GC-poor region of the gradient for Suberites domuncula and in the GC-rich region for Geodia cydonium.

To understand what happened in the gene distribution, we analyzed the correlations between GC_{3} levels of the coding sequences of Suberites domuncula and Geodia cydonium that had been used in the PCR experiments, and the GC levels of the DNA fractions in which genes were localized (Fig. 3.22): the slopes of the lines are negative and the correlation coefficients are extremely low. These data went against the universal correlation existing of GC_{3} versus GC_{1} and GC_{2} (D'Onofrio el al., 1999). In fact, high correlation coefficients were found in GC_{3} versus GC_{2} plots for both prokaryotes and eukaryotes. The correlations between GC_{3} and GC_{1} also showed high coefficients for all prokaryotes and eukaryotes. These correlations resulted well conserved from prokaryotes to eukaryotes (Fig. 3.23). It needs to be considered that this conservation was apparently violated only in the rice genome (Fig. 3.24), which showed many genes aligning along the expected axis, but also many extending along the diagonal, indicating contamination of the data set by intergenic or other noncoding DNA (Cruvellier et al., 2003).

On this basis, we tested the correlations of GC_{1} and GC_{2} of Suberites domuncula and Geodia cydonium coding sequences available in GenBank versus GC_{3} (Figs. 3.25 a-b,
$3.26 \mathrm{a}-\mathrm{b})$. The orthogonal regression lines that characterize them are shown, together with the main diagonal of slope $1\left(\mathrm{GC}_{1}=\mathrm{GC} 3, \mathrm{GC} 2=\mathrm{GC}_{3}\right)$ as a comparison. The correlation coefficient is significant only for the correlation of GC_{2} versus GC_{3} levels for gene sequences of Suberites domuncula, and in this case the correlation seem to be negative. These scatterplots indicate that the universal correlations are not respected in these two sponges and these data go against what it is known in literature. In particular not only we didn't find the universal positive correlations that are well conserved from prokaryotes to eukaryotes (D'Onofrio et al., 1999) but also we are not in the case of the rice genome (Cruvellier et al., 2003) in which this conservation was apparently violated due to contamination of the data set by intergenic or other noncoding DNA. Moreover, it should be stressed that that we are in an unusual case in which for the first time the range of the GC_{2} is about the same of that of GC_{3} (with a range of about 30%): usually in all the organisms till now studied $\mathrm{GC}_{2}<\mathrm{GCl}$ and $\mathrm{GC}_{2} \ll \mathrm{GC}_{3}$ (except viruses which show the same degree of constraint at all the three codon position because of the overlapping reading frame). Also considering only the sponge genes localized experimentally (Figs. $3.27 \mathrm{a}-\mathrm{b}, 3.28 \mathrm{a}-\mathrm{b}$), the scatterplots showed that the negative correlations found for Suberites domuncula is less strong because the points with high GC_{2} values didn't localize on shallow gradient fractions; for the others correlations the situation didn't change in a significant way.

Because of these unusual compositional properties we decided to examine in detail the sequences in GenBank. We analysed the amino acid composition of these genes. In particular we tested the percent of each amino acid and from this analysis result only
some proteins that have a content of tryptophan, or methionine different from protein usual content.

An analysis at protein levels was done by BLASTX It should be stressed that there were a little number of gene sequences in GenBank of others sponges with which Suberites domuncula and Geodia cydonium sequences could be aligned. Furthermore, the only significant alignments that we found had a low percentage of identity, that especially due to the phylogenetic distance.

At this point we don't known which type of sponge sequences are those in GenBank. After these analyses it is possible to conclude that Suberites domuncula and Geodia cydonium coding sequences available in GenBank have problems but it is difficult to understand of which type because there are not enough terms of comparison. It is possible to hypothesize that for some sequences there were problems of frame shift that can be the cause of the reversal of correlations found. On the other hand, we can hypothesize that, concerning the sponge genes, the strange correlations found is because we are in the case of predicted genes.

The last part of the study was devoted to the identification of associated organisms, in particular bacteria, Archaea and Algae. The advances in molecular biology have provided new and important diagnostic possibilities, not only for the classification of prokaryotes but also for the determination of phylogenetic relationships among animals. The gene sequences, which most commonly have been used, are 16 S rRNA for the analysis of bacteria. The preceding observations, made in species that are markedly different systematically, morphologically, and ecologically, show that the occurrence of intimately associated bacteria is a general phenomenon in sponges and that various
aspects of the association are different to the species studied. One of surprising findings that come out of this study is the discovery of a sponge-specific, yet phylogenetically diverse, microbial community. The phylogenetic signature of the sponge-associated microbial consortium is distinctly different from that of typical seawater. The molecular taxonomic analysis of sponge-associated bacteria from Suberites domuncula and Geodia cydonium indicates that there is a diverse assemblage of bacteria residing within these sponges; however, none of these previously cultured microorganisms were identified in the present study. In particular, 13 bacterial clones were isolated from Suberites domuncula and 11 from Geodia cydonium: 13 of the clones clustered within the γ subdivision of the Proteobacteria, 3 within the α-subdivision of the Proteobacteria and 8 within Bacillus (see phlylogenetic tree Fig. 3.32). It was possible to hypothesize the different types of relationships that these bacterial clones had with the sponges. Bacteria SdB5, SdB6, SdB7, SdB8, SdB9, SdB13, SdB14, SdB15 from Suberites domuncula and $\mathrm{GcB} 4, \mathrm{GcB5}, \mathrm{GcB} 6, \mathrm{GcB} 7, \mathrm{GcB} 8, \mathrm{GcB} 11, \mathrm{GcB} 12$ and GcB 13 from Geodia cydonium could be considered extracellular associated organisms or epibionts (see Tables 3.3-3.4). Bacteria SdB10, SdB11, SdB12, GcB9 and GcB10 could be considered intracellular associated organisms or "endosymbionts" for Suberites domuncula and Geodia cydonium respectively and should be good candidates to be possible obligate symbionts. The observed microbial pattern reflects instead an adaptation to the specific conditions of the sponge mesohyl tissue. Environmental factors are responsible for the creation of this ecological niche.

Concerning the Archaea, only in Geodia cydonium were isolated. In particular, 11 of these isolated clones resulted closely related to Uncultured marine archaeal group 1
crenarchaeote clone ST-3k4A (Fig. 3.32) and 7 to Uncultured marine archaeal group 1 crenarchaeote clone ST-12k16A (Fig. 3.33). Several attempts have been made to cultivate these Archaea with no success suggesting that they may have metabolic needs perhaps only provided by their host Geodia cydonium.

Lastly, searching for the presence of Eukaryotes we found two algal clones Chattonella subsalsa, an heterokont alga involved in harmful algal blooms, and Chlorarachnion CCMP621, that is a green amoeboflagellate alga.

References

Aissani, B., D'Onofrio, G., Mouchiroud, D., Gardiner, K., Gautier, C., Bernardi G., 1991. The compositional properties of human genes. J. Mol. Evol., 32, 497-503.

Althoff, K., Schütt, C., Steffen, R., Batel, R., Müller, W.E.G., 1998. Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar. Biol. 130, 529-536.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Ac. Res. 25, 3389-3402.

Bartmann-Lindholm, C., Geisert, M., Gungerich, U., Muller, W.E.G., Weinblum, D., 1997. Nuclear DNA fractions with grossly different base ratios in the genome of the marine sponge Geodia cydonium. Progr. Colloid. Polym. Sci. 107, 122-126.

Bernardi, G., 1965. Chromatography of nucleic acids on hydroxyapatite. Nature (London), 206, 779-783.

Bernardi, G., 1989. The isochore organization of the human genome. Annu. Rev. Genet. 23, 637-661.

Bernardi, G., 1990. Le Génome des Vertébrés: organisation, function et evolution. Biofutur 94, 43-46.

Bernardi, G., 1993a. The human genome organization and its evolutionary history - A review. Gene 135, 57-66.

Bernardi, G., 1993b. Genome organization and species formation in vertebrates. J. Mol. Evol. 37, 331-337.

Bernardi, G., 1993c. The vertebrate genome: isochores and evolution. Mol. Biol. Evol. 10, 186-204.

Bernardi, G., 1995. The human genome: organization and evolutionary history. Annu. Rev. Genet. 29, 445-476.

Bernardi, G., 2000. Isochores and the evolutionary genomics of vertebrates. Gene 241, 3-17.

Bernardi, G., Bernardi, G., 1986. Compositional constraints and genome evolution. J. Mol. Evol. 24, 1-11.
Bernardi, G., Bernardi, G., 1990a. Compositional patterns in the nuclear genomes of cold-blooded vertebrates. J. Mol. Evol. 31, 265-281.

Bernardi, G., Bernardi, G., 1990b. Compositional transitions in the nuclear genomes of cold-blooded vertebrates. J. Mol. Evol. 31, 282-293.

Bernardi, G., Bernardi, G., 1991. Compositional properties of nuclear genes from coldblooded vertebrates. J. Mol. Evol. 33, 57-67.
Bernardi, G., Mouchiroud, D., Gautier, C., Bernardi, G., 1988. Compositional patterns in vertebrate genomes: conservation and change in evolution. J. Mol. Evol. 28, 7-18.

Bernardi, G., Olofsson, B., Filipski, J., Zerial, M., Salinas, J., Cuny, G., MeunierRotival, M., Rodier, F., 1985. The mosaic genome of warm-blooded vertebrates. Science 228, 953-958.

Blumbach, B., Diehl-Seifert, B., Seak, J., Steffen R., Müller, I.M., Müller, W.E.G., 1999. Cloning and expression of the new receptor belonging to the immunoglobin superfamily from the marine sponge Geodia cydonium. Immunogenetics 49, 751-763.
Blumbach, B., Pancer, Z., Diehl-Seifert, B., Steffen, R., Münkner, J., Müller, I.M., Müller, W.E.G., 1998. The putative sponge aggregation receptor. Isolation and characterization of a molecule composed of scavenger receptor cysteine-rich domains and short consensus repeats. Journal of Cell Science 111, 2635-2644.

Böger, H., 1988. Versuch über das phylogenetische System der Porifera. Meyniana 40, 143-154.

Böhm, M., Hentschel, U., Friedrich, A.B., Fieseler, L., Steffen, R., Gamulin, V., Müller, I.M., Müller, W.E.G., 2001. Molecular response of the sponge Suberites domuncula to bacterial infection. Mar. Biol. 139, 1037-1045.

Borchiellini, C., Manuel, M., Alivon, E., Boury-Esnault, N., Vacelet, J., Le Parco, Y., 2001. Sponge paraphyly ant the origin of Metazoa. J. Evol. Biol. 14, 171-179.

Brantley, S.E., Molinski, T.F., Preston, C.M., DeLong, E.F., 1995. Brominated acetylenic fatty acids from Xestospongia sp., a marine sponge-bacteria association. Tetrahedron 51, 7667-7672.

Bugni, T.S., Concepcion, G.P., Mangalindan, G.C., Harper, M.K., James, R.D., Ireland, C.M., 2002. P-sulfooxyphenylpyruvic acid from the red macro alga Ceratodictyon spongiosum and its sponge symbiont Haliclona cymaeformis. Phytochemistry 60, 361-363.

Cacciò, S., Perani, P., Saccone, S., Kadi, F., Bernardi, G., 1994. Single-copy sequence homology among the GC-richest isochores of the genomes from warm-blooded vertebrates. J. Mol. Evol. 39, 331-339.

Canfield, D.E., Teske, A., 1998. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127-132.

Carels, N., Bernardi, G., 2000. Two classes of gene in plants. Genetics 154, 18191825.

Cavalier-Smith, T., 1991. Intron phylogeny: a new hypothesis.Trends Gen. 7, 145-148.
Cavalier-Smith, T., Alsopp, M.T.E.P., Chao, E.E., Boury-Esnault, N., Vacelet, J. 1996. Sponge phylogeny, animal monophyly, and the origin of the nervous system:18S rRNA evidence. J. Zool. 74, 2031-2045.

Christen, R., Ratto, A., Baroin, A., Perasso, R., Grell, K.G., Adoutte, A., 1991. An analysis of the origin of metazoans, using comparisons of partial sequences of the 28 S RNA, reveals an early emergence of triploblasts. European Molecular Biolgy Organization Journal 10, 499-503.

Clay, O., Cacciò, S., Zoubak, S., Mouchiroud, D., Bernardi, G., 1996. Human coding and non-coding DNA: compositional correlations. Mol. Phylogenet. Evol. 5, 212.

Clay, O., Douday, C.J., Carels, N., Hughes, S., Bucciarelli, G., Bernardi, G., 2003a. Using analytical ultracentrifugation to study compositional variation in vertebrate genomes. European Biophysics Journal 32(5), 418-26.

Clay, O., Douday, C.J., Carels, N., Hughes, S., Bucciarelli, G., Bernardi, G., 2003b. Points to watch in CsCl work. European Biophysics Journal (in press).
Clay, O., Carels, N., Douady, C., Macaya, G., Bernardi, G., 2001. Compositional heterogeneity within and among isochors in mammalian genomes. I. CsCl and sequence analyses. Gene 276, 15-24.
Cocito, C. 1969. The Action of Virginiamycin on Nucleic Acid and Protein Synthesis in Bacillus subtilis Infected with Bacteriophage 2C. J. Gen. Microbiol. 57, 195206.

Corallini, C., Gaino, E., 2001. Peculiar digestion patterns of sponge-associated zoochlorellae in the cadisfly Ceraclea fulva. Tissue and Cells 33(4), 402-407.

Christen, R., Ratto, A., Barion, A., Perasso, R., Grell, K.G., Adoutte, A., 1991. An analysis of the origin of metezoan, using comparisons of partial sequences of the 28 S RNA, reveals an early emergence of triphoblasts. Eur. Mol. Biol. Org. J. 10, 499-503.

Cruveiller S., Jabbari, Clay O., Bernardi G., 2003. Compositional features of eukaryotic genomes for checking predicted genes. Briefings in Bioinformatics 4(1) 43-52.

Cruveiller S., Jabbari, Clay O., Bernardi G., 2003. Incorrectly predicted genes in rice? Science (in press)
Cuny, G., Soriano, P., Macaya, G. and Bernardi, G., 1981. The major components of the mouse and human genomes. I. Preparation, basic properties and compositional heterogeneity. Eur. J. Biochem. 115, 227-233.

Custodio, M.R., Prokic, I., Steffen, R., Koziol, C., Borojevic, R., Brümmer, F., Nickel, M., Müller, W.E.G, 1998. Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell froliferation and cell death. Mechanism of Ageing and Development 105, 45-59.

DeLong, E.F., 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685-5689.

DeLong, E.F., Taylor, L.T., Marsh, T.L., Preston, C.P., 1999. Visualization and enumeration of marine planktonic Archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridisation. Appl. Environ. Microbiol. 65, 5554-5563.

DeLong, E.F., Wu, K.Y., Prezelin, B.B., Jovine, R.V.M., 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371, 695-697.

De Sario, A., Geigl, E.M., Bernardi G., 1995. A rapid procedure for the compositional analysis of yeast artificial chromosomes. Nucleic Acid Research 23 (19), 40134014.

D'Onofrio, G., Bernardi, G., 1992. A universal compositional correlation among codon positions. Gene 110, 81-88.

D’Onofrio, G., Jabbari, K., Musto, H., Alvarez-Valin, F., Cruveiller, S., Bernardi, G., 1999a. Evolutionary genomics of vertebrates and its implications. Ann. N.Y. Acad. Sci. 870, 81-94.
D'Onofrio, G., Jabbari K., Musto H., Bernardi G., 1999. The correlation of protein hydropathy with the base composition of coding sequences. Gene 238, 3-14.
D'Onofrio, G., Mouchiroud, D., Aïssani, B., Gautier, C., Bernardi, G., 1991. Correlation between the compositional properties of human genes, codon usage and amino acid composition of proteins. J. Mol. Evol. 32, 504-510.
Dubilier, N., Amann, R., Erséus, C., Muyzer, G., Park, S.Y., Giere, O., Canavaugh, C.M., 1999. Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochete Olvius loisae (Anellida). Mar. Ecol. Prog. Ser. 178, 271-280.

Elyakov, G.B., Kuznetsova, t., Kikhailov, V.V., Maltsev, I.I., Voinov, V.G., Fedoreyev, S.A., 1991. Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experientia 47, 632-633.
Fasman, G.D., 1976. Handbook of Biochemistry and Molecular Biology; $3^{\text {rd }}$ Edition; volume II, CRC Press; Cleveland, Ohio; p. 290.

Faulkner, D.J., 1995. Marine natural products. Nat. Prod. Rep. 13, 259-302.
Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R., Raff, R.A., 1998. Molecular phylogeny of the animal kingdom. Science 239, 748-753.
Filipski, J., Thiery, J.P., Bernardi G., 1973. An analysis of the bovine genome by $\mathrm{Cs}_{2} \mathrm{SO}_{4}-\mathrm{Ag}+$ density gradient centrifugation. J. Mol. Biol. 80, 177-197.

Flowers, A.E., Garson, M.j., Webb, R.I., Dumdei, E.J., Charan, R.D., 1998. Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res. 292, 597-607.
Friedrich, A.B., Mekert, H., Fendert, T., Hacker, J., Proksch, P., Hentschel, U., 1999. Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar. Biol. 134, 461-470.
Fuhrmann, J.A., McCallum, K., Davis, A.A., 1992. Novel major archaebacterial group from marine plankton. Nature 356, 148-149.
Gast, R.J., Caron, D.A., 1996. Molecular phylogeny of symbiotic dinoflagellates from planktonic foraminifera and radiolaria. Mol. Biol. Evol. 13(9), 1192-1197.

Gatti, S., 2002. High Antarctic carbon and silicon cycling: how much do sponges contribute? Boll. Mus. Ist. Biol. Univ. Genova 66-67 (2000-2001), 76.
Gilbert, J.J., Allen H.L., 1973. Chlorophyll and primary productivity of some green, freshwater sponges. Int. Revue Ges Hydrobiol. 58, 633-658.

Gilbert, W., 1978.Why genes in pieces? Nature 271, 501.
Giovanni, S.J. 1991. The polymerase chain reaction. In: Stackebrandt E, Goodfellow M (Eds) Nucleis acid techniques in bacterial systematics. John Wiley and Sons Ltd, New York, pp. 177-203.
Grigioni, S., Boucher-Rodoni, R., Demarta, A., Tonolla, M., Peduzzi, R., 2000. Phylogenetic characterisation of bacterial symbionts in the accessory nidamental glands of the sepioid Sepia officinalis (Cephalopoda: Decapoda). Marine Biology 136, 217-222.

Grigioni, S., Boucher-Rodoni, R., Tonolla, M., Peduzzi, R., 1999. Symbiotic relations between bacteria and cephalopods. Boll. Soc. Ticinese Sci. nat. 97, 51-53.

Hadzi, J., 1963. The evolution of the Metazoa. Pergamon, Oxford.
Hackel, E., 1868. Natürliche Schöpfungsgeschichte. Reimer, Berlin.
Hentschel, U., Hopke, J., Horn, M., friedrich, A.B., Wagner, M., Haecker, J., Moore, B.S., 2002. Molecular evidence for a uniform microbial communityvin sponges from different oceans. Applied and Environmental Microbiology 68, 4431-4440.

Ilan, M., Contini, H., Carmeli, S., Rinkevich, B., 1996. Progress towards cell cultures from a marine sponge that produces bioactive compounds. J. Mar. Biotechnol. 4, 145-149.

Imsiecke, G., Pascheberg, U., Muller, W.E.G., 1993. Preparation and kayotype analysis of mitotic chromosomes of the freshwater sponge Spongilla lacustris. Chromosoma 102, 724-727.

Imsiecke, G., Custodio, M., Borojevic, R., Steffen, R., Moustafa, M.A., Muller, W.E.G. 1995. Genome size and chromosomes in marine sponges [Suberites domuncula, Geodia cydonium]. Cell Biology International 19(19), 995-1000.
Ishida, K., Cao, Y., Hasegawa, M., Okada, N., Hara, Y., 1997. The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu. J. Mol. Evol. 45, 682-687.

Jolicoeur, P., 1990. Bivariate allometry: interval estimation of slopes of the ordinary and standardized normal major axes and structural relationship. J. Theor. Biol. 144, 275-285.
Jukes, T.H., Bushan, V., 1986. Silent nucleotide substitutions and G+C content of some mitochondrial and bacterial genes. J. Mol. Evol. 24, 39-44.

Jurgens, G., Glockner, F., Amann, R., Saano A., Montonen, L., Likolammi, M., Munster, U., 2000. Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridisation(1). FEMS Microbiol. Ecol. 34(1), 45-56.

Keeling, P.J., 2001. Foraminifera and Cercozoa are related in actin phylogeny. Two orphans find a home? Mol. Biol. Evol. 18(8), 1551-1557.

Kelly-Borges, M., Pomponi S.A. 1994. Phylogeny and classification of lithistid sponges (Porifera: Demospongiae): a preliminary assessment using ribosomal DNA sequence comparisons. Mol. Mar. Biol. Biotech. 3(2), 87-103.

Kemp, S., Kazmierczak, J., 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living system, and biocalcification processes. Bull. Inst. Ocean Monaco 13, 61-117.

Knoll, A.H., Carroll, S.B., 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284, 21229-2137.

Koziol, C., Borojevic, R., Steffen, R., Müller, W.E.G., 1998. Sponges (Porifera) model system to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mechanism of Ageing and Development 100, 107-120.

Krasko, A., Lorenz, B., Batel, R., Schröder, H.C., Müller, I.M., Müller, W.E.G., 2000. Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotropin. Eur. J. Biochem. 267, 48784887.

Krasko, A., Scheffer, U., Koziol, C., Pancer, Z., Batel, R., Badria, F.A., Müller, W.E.G., 1997. Diagnosis of sublethal stress in the marine sponge Geodia cydonium: application of the 70 kDa heat-shock protein and a novel biomarker, tha Rab GDP dissociation inhibitor, as probes. Aquatic toxicology 37, 157-168.
Krasko, A., Schröder, H.C., Hassanein, H.M.A., Batel, R., Müller, I.M., Müller, W.E.G., 1998. Identification and expression of the SOSresponse, aidB-like, gene in the marine sponge Geodia cydonium: implication for the phylogenetic relationship of metazoan acyl-coA deydrogenases and acyl-coA oxidases. J. Mol. Evol. 47, 343-352.

Krasko, A., Schröder, H.C., Perovic, S., Steffen, R., Kruse, M., Reichert, W., Müller, I.M., Müller, W.E.G., 1999. Ethylene modulates gene expression in cells of the
marine sponge Suberites domuncula and reduces the degree of apoptosis. The Journal of Biological Chemistry 29, 31524-31530.

Kruse, M., Gamulin, V., Cetkovic, H., Pancer, Z., Müller, I.M., Müller, W.E.G., 1996. Molecular evolution of the metazoan protein kinase C mutigene family. J. Mol. Evol. 43, 374-383.

Lafay, B., Boury-Esnault N., Vacelet, J., Christen, R., 1992. An analysis of partial 28S ribosomal RNA sequences early radiations of sponges. Biosystem 28, 139-151.

Lake, J.A., 1990. Origin of Metazoa. Proc. Natl. Acad. Sci. U.S.A. 87, 763-766.
Lauchner, G., 1980. Diseas of Porifera. In: Kinne, O., (ed) Diseases of marine animals. Wiley, Chichester.
Li, W.H., Graur, D. 1991. Fundamentals in molecular evolution. Sinnaeur, Sunderland.
Lipps, J.H., Signor, P.W., 1992. Origin and early evolution of Metazoa. Plenum Press, New York.

Macaya, G., Thiery, J.P., Bernardi G., 1976. An approach to the organization of eukaryotic genomes at a macromolecular level. J. Mol. Biol. 108, 237-254.

Margot, H., Acebal, C., Toril, E., Amils, R., Fernandez Puentes, J.L., 2002. Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Marine Biology 140, 739-745.

Margulis, L., Schwartz, K.V., 1995. Five kingdoms: an illustrated guide to the phyla of life on earth. Freeman. New York.

Marmur, J., Doty, P., 1959. Heterogeneity in deoxyribonucleic acids: I. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature 183, 1427-1429.

McFadden, G., Gilson, P.R., 1995. Something borrowed, something green: lateral transfer of chloroplast by secondary endosymbiosis. Trends Evol. Ecol. 10, 1217.

Medina, M., Collins, A.G., Silberman, J.D., Sogin, M.L., 2001. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. . PNAS 98(17), 9707-9712.

Medlin, L.K., Williams, D.M., Sims, P.A., 1993. The evolution of the diatoms (Bacillariophyta). Eur. J. Phycol. 28, 261-275.

Mehl, D, Reiswig H.M., 1991. The presence of flagellar vanes in choanomeres of Porifera and their possible phylogenetic implications. Z. Zool. Syst. Evol. Forsch. 29, 312-319.

Mehl, D., 1992. Die Entwicklung der Hexactinellida seit dem Mesozoikum; Paläobiologie, Phylogeneie und Entwicklungsökologie. Berl Geowiss Abh (E) 2, 1-164.

Meselson, M., Stahl, F., Vinograd, J., 1957. Equilibrium sedimentation of macromolecules in density gradients. Proc. Natl. Acad. Sci 43, 581-588.
Moscona, A.A., 1968. Cell aggregation: properties of specific cell-ligands and their role in the formation of multicellular systems. Developmental Biology 18, 250277.

Mouchiroud, D., Bernardi, G., 1993. Compositional properties of coding sequences and mammalian phylogeny. J.Mol.Evol. 37, 109-116.

Mouchiroud, D., D'Onofrio, G., Aïssani, B., Macaya, G., Gautier, C., Bernardi, G., 1991. The distribution of genes in the human genome. Gene 100, 181-187.

Müller, C. I., Blumbach, B., Krasko, A., 2001. Receptor protein-tyrosine phosphatases: origin of domains (catalytic domain, Ig-related domain, fibronectin type III module) based on the sequence of the sponge Geodia cydonium. Gene 262, 221230.

Müller, W.E.G., 1995. Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwissenschaften 82, 321-329.

Müller, W.E.G., 1997. Origin of metazoan adhesion molecules and adhesion receptors as deduced from cDNA analyses in the marine sponge Geodia cydonium. Cell Tissue Res. 289, 383-395.

Müller, W.E.G., 1997. Evolution of Protozoa to Metazoa. Theory Bioscienc. 116, 145168.

Müller, W.E.G., 1998. Origin of Metazoa: Sponges as Living Fossils. Naturwissenschaften 85, 11-25.

Müller, W.E.G., 1999a. Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Marine Ecology Progress Series 178, 205-219.

Müller, W.E.G., 1999b. 16S rRNA sequences as diagnostic tools to elucidate potential symbiotic relationship between bacteria and the marine sponge Halicondria panicea: eply to Stackebrandt and Pukall. Marine Biology 134, 213-215.
Müller, W.E.G., 2001. Review: how was metazoan threshold crossed? The hypothetical Urmetaoza. Comparative Biochemistry and Physiology Part A 129, 433-460.

Müller, W.E.G., 2003. Molecular biodiversity. Case study: Porifera (sponges). Naturwissenschaften 90, 103-120.
Müller, W.E.G., Böhm, M., Grebenjuk, V. A., Skorokhod, A., Müller, I.M., Gamulin, V., 2002. Conservation of the positions of metazoan introns from sponges to human. Gene 295, 299-309.

Müller, W.E.G., Müller, I., Kurelec, B., Zahn, R.K., 1976. Species-specific aggregation factor in sponges. Exp. Cell Res. 98, 31-40.

Müller, W.E.G., Müller, I., Pondeljak, V., Kurelec, B., Zahn, R.K., 1978. Speciesspecific aggregation factor in sponges. Differentiation 10, 45-53.
Müller, W.E.G., Müller, I.M., Gamulin, V., 1994. On the monophyòetic evolution of the Metazoa. Brazil. J. Med. Biol. Res. 27; 2083-2096.

Müller, W.E.G., Zahn, R.K., 1973. Purification and characterization of a speciespecific aggregation factor in sponges. Exp. Cell Res. 80, 95-104.
Müller, W.E.G., Zahn, R.K., Müller I 1981. Cell aggregation of the marine sponge Geodia cydonium. Identification of lectin-producing cells. Eur. J. Cell Biol. 24, 28-35.

Müller, W.E.G., Wiens, M., Batel, R., Steffen, R., Schröder, H.C., Borojevic, R., Custodio, M.R., 1999. Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar. Ecol. Prog. Ser. 178, 205-219.

Müller, W.E.G., Wimmer, W., Schatton, W., Böhm, M., Batel, R., Filic, Z., 1999. Initiation of an aquaculture of sponges for the sustainable production of bioactive metabolites in open system: example, Geodia cydonium. Mar. Biotechnol. 1, 569-579.

Murakami, Y., Oshima, Y., Yasumoto, T., 1982. Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocenrum lima. Nihon Sisan Gakkaishi 48, 69-72.

Musto, H., Romero, H., Zavala, A., Bernardi, G., 1999. Compositional correlations in the chicken genome. J. Mol. Evol. 49, 325-329.

Muto, A., Osawa, S., 1987. The guanine and cytosine content of genomic DNA and bacterial evolution. Roc. Natl. Acad. Sci. USA 84, 166-169.

Nübel, U., Garcia-Pichel, F., Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from Cyanobacteria. Applied and Environmental Microbiology 63(8), 3327-3332.

Ohno, S., 1970. Evolution by gene duplication. Springer, Berlin Heidelberg New York.

Osinga, R., Armstrong, E., Burgess, J.G., Hoffmann, F., Reitner, J., Schumann-Kindel, G., 2001. Sponge-microbe associations and their importance for sponge bioprocess enginnering. Hydrobiologia 461, 55-62.

Osinga, R., Tramper, J., Wijffels, R.H., 1999. Cultivation of marine sponges: a (re)view. Mar. Biotechnology 1, 509-532.

Pahler, S., Blumbach, BG., Müller, I.M., Müller, W.E.G., 1998. Putative multiadhesive protein from the marine sponge Geodia cydonium: cloning of the cDNA encoding a fibronectin-, an SRCR-, and a complement control protein module. The Journal of Experimental Zoology 282, 332-343.

Pancer, Z., Kruse, M., Müller, I.M., Müller, W.E.G., 1997. On the origin of metazoan adhesion receptors: cloning of integrin α subunit from the sponge Geodia cydonium. Mol. Biol. Evol. 14, 391-398.

Pancer, Z., Skorokhod, A., Blumbach, B., Müller, W.E.G., 1998. Multiple Ig-like featuring genes divergent within and among individuals of the marine sponge Geodia cydonium. Gene 207, 227-233.

Patthy, L., 1995. Protein evolution by exon-shuffling. Springer Verlag, New York.
Peppard, J.V., Loo, P., Sills, M.A., Munster, D., Pomponi, S.A., Wright, A.E 1996. Characterization of an interleukin 6 cytokine family antagonist protein from a marine sponge, Callyspongia sp. J. Biol. Chem. 271(13), 7281-7284.

Perez, T., Garrabou, J., Sartoretto, S., Harmelin, J.G., Francour, P., Vacelet, J., 2000. Mortalitè massive d'invertèbrès marins: un èvènement san precedent en Mediterranée nord-occidentale. CR Acad. Sci. Paris (Sci Vie) 323, 853-865.

Perovic, S., Krasko, A., Prokic, I., Muller, I.M., Muller, W.E.G., 1999. Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABAlike receptor from the marine sponge Geodia cydonium. Cell Tissue Res. 296, 395-404.

Perovic, S., Schröder, H.C., Sudek, S., Grebenjuk, V.A., Batel, R., Stianic, M., Müller, I.M., Müller,W.E.G., 2003. Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol. Devel. (in press).

Pfeifer, K., Frank, W., Schröder, H.C., Gamulin, V., Rinkevich, B., Batel, R., Muller, I.M., Muller, W.E.G. 1993. Cloning of the polyubiquitin cDNA from the marine sponge Geodia cydonium and its preferential expression during reaggreation of cells. J. Cell Science 106, 545-554.

Pomponi, S.A., 1979, Ultrastucture and cytochemistry of the etching area of boring sponges. In: Levi, C., Boury-Esnault, N. (eds) Biologie des spongiaires. Colloq. Int. CNRS 2914, 319-323.

Pomponi, S.A., Willoghby, R., 1994. Sponge cell culture for production of bioactive metabolites. In Van soest, R.W.M., Van Kempen M.G. and Braekman, J.C. (eds) Sponge in Time and Space. A.A. Balkema, Rotterdam: 395-400.

Preston, C.M., Ke Ying Wu, Molinski, T.F. De Long, E.F., 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov. Proc. Natl. Acad. Sci. USA 93, 6241-6246.

Proksch, P., Edrada, R.A., Ebel, R., 2002. Drugs from the seal: current status and microbiological implications. Appl. Microbiol. Biotechnol. 59, 125-134.

Reiswig, H., 1971. In situ pumping activities of tropical demospongiae. Mar. Biol. 9: 38-50.

Ricther, C., Wunsch, M., Rasheed, M., Kötter, I., Badran, M.I., 2001. Endoscopic exploration of Red Sea coral reefs dense populations of cavity-dwelling sponges. Nature 413, 726-730.

Rolfe, R., Meselson, M., 1959. The relative homogeneity of microbial DNA. Proc. Nat. Acad. Sci. USA 45, 1039-1043.

Rodrigo. A.G., Bergquist, P.L., Reeves, R.A., 1994. Are sponges animals? An investigation into the vagaries of phylogenetic interference. Soest RWM v, Kempen TMG V, Braekman JC (eds) Sponges in time and space, Balkema, Rotterdam, pp. 47-54.
Rottmann, M., Schröeder, H.C., Gramzow, M., Renneisen, K., Kurelec, B., Dorn, A., Friese, U., Müller, W.E.G., 1987. Specific phosphorilationof proteinsin pore complex-laminae from the sponge Geodia cydonium by the homologous aggregation factor and phorbol ester. Role of protein kinase C in the phosporilation of DNA topoisomerase II. Embo J. 6(13), 3939-3944.

Rowan, R., Powers, D.A., 1991. Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar. Ecol. Prog. Ser. 71, 65-73.

Rützler, K., 1965. Systematik und Okologieder Poriferen aus Litoral-Schattengebieten der Nordadria. Z. Morphol. Oekol Tiere 55, 1-82.

Rützler, K., Reiger, G., 1973. Sponge burrowing fine structure of Cliona lampa penetrating calcareous substrata. Mar. Biol. 21, 144-162.

Sabeur, G., Macaya, G., Kadi, F., Bernardi, G., 1993. The isochore patterns of mammalian genomes and their phylogenetic implications. J.Mol.Evol. 37, 93108.

Salomon, C.E., Deerinck, T., Ellisman, M., Faulkner, D.J., 2001. The cellular localization of dercitamide in the Palauan sponge Oceanapia sagittaria. Mar. Biol. 139, 313-319.

Sambrook, J., E.F. Fritsch, Maniatis, T. 1989. Molecular cloning: a laboratory manual, Second edition. 3 Volumes. Cold Spring Harbor Laboratory Press, New York.
Sarà, M., Liaci, L., 1964. Symbiotic association between zooxanthellae and two marine sponges of the genus Cliona. Nature 203, p. 321.

Sarma, A.S., Daum, T., Müller, W.E.G., 1993. Secondary metabolites from marine sponges. Akademie gemeinnütziger Wissenschaften zu Erfurt, Ullstein-Mosby, Berlin.
Scheffer, U., Krasko, A., Pancer, Z., Müller, W.E.G., 1997. High conservation of the serum response factor within Metazoa: cDNA rom the sponge Geodia cydonium. Biological Journal of the Linnean Society 61, 127-137.

Schleper, C., DeLong, E., Preston, C.M., Feldman, R.A., Ke Ying Wu, Swanson, R.V., 1998. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum sumbiosum. Journal of Bactreriology 180(19), 5003-5009.
Schildkraut, C. L., Marmur, J., Doty, P. (1962). Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl . J. Mol. Biol. 4, 430443.

Schmidt, E.W., Obraztsova, A.Y., Davidson, S.K., Faulkner, D.J., Haygood, M.G., 2000. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, "Candidatus Entotheonella paluensis". Mar. Biol. 136, 969-977.

Schröder, H.C., Kruse, M., Batel, R., Müller, I.M., Müller, W.E.G., 2000. Cloning and expression of the sponge longevity gene $S D L A G L$. Mechanisms of Development 95, 219-220.

Schuhmann-Kindel, G., Bergbauer, M., Reitner, J., 1997. Bacteria associated with Mediterranean sponges. In: reitner, J., Neuweiler, F., Gunkel, F. (eds) Global and regional controls on biogenic sedimentation. Reef evolution. Research Reports. Goett Arb Geol Paläont 8b2, 125-128.

Schütze, J., Skorokhod, A., Müller, I.M., Müller, W.E.G., 2001. Molecular evolution of the metazoan extracellular matrix: cloning and expression of structural proteins from the Demosponges Suberites domuncula and Geodia cydonium. J. Mol. Evol. 53, 402-415.

Seack, J., Kruse, M., Müller, W.E.G., 1998. Evolutionary analysis of G-proteins in early metazoan: cloning of α - and β-subunits from the sponge Geodia cydonium. Biochimica et Biophysica Acta 1401, 93-103.

Seack, J., Pancer, Z., Müller, I.M, Müller, W.E.G., 1997. Molecular cloning and primary structure of a Rhesus (Rh)-like protein from the marine sponge Geodia cydonium. Immunogentics 46, 493-498.

Soest, R.W.M. van, 1994. Demosponge distribution patterns. Soest RWM van, Balkema AA (eds) Sponges in time and space. Brookfield, Rotterdam, pp 213223.

Stierle, A.C., Cardellina, J.H.I., Singleton, F.L., 1988. A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44, 1021.

Sueoka, N., 1959. A statistical analysis of deoxyribonucleic acid distribution in density gradient centrifugation. Proc. Natl. Acad. Sci. USA, 45, 1480-1490.

Sueoka, N., 1961. Correlation between base composition of the deoxyribonucleic acid and amino acid and composition of proteins. Proc. Natl. Acad. Sci. USA, 47, 1141-1149.

Sueoka, N., Marmur, J., Doty, P., 1959. Heterogeneity in deoxyribonucleic acids: II. Dependence of the density of deoxyribonucleic acids on guanine-cytosine content. Nature 183, 1429-1433.

Tachibana, K., Scheuer, P.J., Tsukitani, Y., Kikushi, H., Engen, D.V., Clardy, J., Gopichand, Y., Schmitz, F.J., 1981. Okadaic acid a cytotoxic polyether from the marine sponges of the genus Halichondria. J. Am. Chem. Soc. 103, 2469-2471.

Thiery, J.P., Macaya, G., Bernardi, G., 1976. An analysis of eukaryotic genomes by density gradient centrifugation. J. Mol. Biol. 108, 219-235.

Ueda, T., Suga, Y., Matsuguchi, T., 1995. Molecular phylogenetic analysis of a soil microbial community. Eur. J. Soil. Sci. 46, 415-421.

Vacelet, J., 1970. Description de cellules à bactèries intranuclèaires chez des èponges Verongia. J. Microscopy 9, 333-346.

Vacelet, J., 1971. Ètude en microscopie èlectronique de l'association entre une cyanophycèe chroococcale et une èponge du genre Verongia. J Microscopy 12, 363-380.

Vacelet, J., 1975. Etude en microscopie electronique de l'association entre bacteries et Spongiaires du genre Verongia. J. Microscopie, T. 23, 271-288.

Vacelet, J., Boury-Esnault, N., 1995. Carnivorous sponges. Nature 373, 333-335.
Vacelet, J., Donadey, C., 1977. Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol. Ecol. 30, 301-314.

Vacelet, J., Vacelet, E., Gaino, E., Gallissian, M.F., 1994. Bacterial attack of sponging skeleton during the 1986-1990 Mediterranean sponge disease. In: Van Soest R.W.M., Van Kempen, T.M.G, Braekman JC (eds) Sponges in time and space. Balkema, Rotterdam, 355-362.

Vatova, A., 1928. Compendio della flora e fauna del Mare Adriatico presso Rovigno. C. Ferrari, Venezia.

Vogel, S., 1977. Current-induced flow through living sponges in nature. Proc. Natl. Acad. Sci USA 74, 2069-2071

Wagner, C., Steffen, R., Koziol, C., Batel, R., Lacorn, M., Steinhart, H., Simat, T., Müller, W.E.G., 1998. Apoptosis in marine sponges: a biomarker for environmental stress (cadmium and bacteria). Marine Biology 131, 411-421.

Webb, V.L., Maas, E., 2002. Sequence analysis of 16 S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiology Letters 207, 43-47.

Webster, N.S., Webb, R.I., Ridd, M.J., Hill, R.T., Negri, A.P., 2001. The effect of copper on the microbial community of a coral ref sponge. Environ. Microbiol. 3(1), 19-31.

Weinbaum, G., Burger, M.M., 1973. A two-component system for surface guided reassociation of animal cells. Nature 244: 510-512.

Wiens, M., Koziol, C., Batel, R., Müller, W.E.G., 1998. Phenylalanine hydroxylase from the sponge Geodia cydonium: implication for allorecognition and evolution of aromatic amino acic hydroxylase. Developmental and comparative immunology 22 (5/6), 469-478.

Wiens, M., Koziol, C., Batel, R., Müller, W.E.G., 1999. Prolidase in the marine sponge Suberites domuncula: enzyme activity, molecular cloning, and phyloenetic relationship. Mar. Biotechnol. 1, 191-199.

Wiens, M., Krasko, A., Müller, I.M., Müller, W.E.G., 2000. Molecular evolution of apoptotic pathways: cloning of key domains from sponges (Bcl-2 homology domains and death domains) and their phylogenetic relationship. J. Mol. Evol. 50, 520-531.

Wiens, M., Krasko, A., Perovic, S., Müller, W.E.G., 2003. Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from Metazoa. Biochimica et Biophysica Acta, 1593, 179-189.

Wiens, M., Kuusksalu, A., Kelve, M., Müller, W.E.G.,1999. Origin of the interferoninducibile ($2^{\prime}-5$ ')oligoadenylate synthetases: cloning of the ($2^{\prime}-5$ ')oligoadenylate synthetase from the marine sponge Geodia cydonium. FEBS letters 462, 12-18.

Wiens, M., Luckacs, B., Brümmer, F., Shokry, M., Ammar, A., Steffen, R., Batel, R., Diehl-Seifert, B., Schröeder, H.C., Müller, W.E.G., 2003. Okadaic acid: a potential defense toxin for the sponge Suberites domuncula. Mar. Biol. 142, 213223.

Wilkinson, C.R., 1978. Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar. Biol. 49, 169-176.

Wilkinson, C.R., Garrone, R., Vacelet, J., 1984. Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc. R. Soc. Lond. B 220, 519-528.

Willmer, P., 1994. Invertebrate relationship. Cambridge University Press, Cambridge.
Wimmer, W., Perovic, S., Kruse, M., Schröeder, H.C., Krasko, A., Batel, R., Müller, W.E.G., 1999. Origin of the integrin-mediated signal transduction. Functional studies with cell cultures from the sponge Suberites domuncula. Eur. J. Biochem. 260, 156-165.
Yu, J. et al., 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92.

Zerial M., Salinas, J., Filipski, J., Bernardi, G., 1986. Gene distribution and nucleotide sequence organization in the human genome. Eur. J. Biochem. 160, 479-85.

Zoubak, S., Clay, O., Bernardi, G., 1996. The gene distribution of the human genome. Gene 174, 95-102.

Appendix A

Alignment of the 24 sequences of bacterial clones showed in Tables 3.3 and 3.4.

Copyright I.N.R.A. France 1989, 1991, 1994, 1996						
Published research using this software should cite						
Multiple sequence alignment with hierarchical clustering						
F. CORPET, 1988, Nucl. Acids Res., 16 (22), 10881-10890						
Symbol comparison table: blosum62						
Gap weight: 12						
Gap length weight: 2						
Consensus levels: high=90\% low=50\%						
Consensus symbols:						
! is anyone of IV						
\$ is anyone of LM						
$\%$ is anyone of FY						
\# is anyone of NDQEBZ						
MSF 1502 C	Check: 0					
Name: SdB3	Len:	1502	Check:	8906	Weight:	2.59
Name: SdB4	Len:	1502	Check:	9834	Weight:	0.68
Name: GcB3	Len:	1502	Check:	3559	Weight:	0.68
Name: SdB11	Len:	1502	Check:	6669	Weight:	0.82
Name: SdB12	Len:	1502	Check:	3282	Weight:	0.94
Name: SdB5	Len:	1502	Check:	2169	Weight:	0.71
Name: GcB13	Len:	1502	Check:	8100	Weight:	0.71
Name: GcB12	Len:	1502	Check:	5810	Weight:	0.94
Name: GcB4	Len:	1502	Check:	6893	Weight:	1.18
Name: SdB10	Len:	1502	Check:	9106	Weight:	0.68
Name: GcB10	Len:	1502	Check:	9570	Weight:	0.68
Name: GcB9	Len:	1502	Check:	5244	Weight:	0.85
Name: GcB8	Len:	1502	Check:	1742	Weight:	1.15
Name: GcBIl	Len:	1502	Check:	8866	Weight:	1.15
Name: SdB7	Len:	1502	Check:	3604	Weight:	0.71
Name: SdB15	Len:	1502	Check:	2596	Weight:	0.71
Name: SdB9	Len:	1502	Check:	992	Weight:	0.52
Name: SdB13	Len:	1502	Check:	9399	Weight:	0.52
Name: SdB14	Len:	1502	Check:	8320	Weight:	0.66
Name: GcB6	Len:	1502	Check:	7265	Weight:	0.68
Name: SdB8	Len:	1502	Check:	9068	Weight:	1.01
Name: GcB7	Len:	1502	Check:	1366	Weight:	1.18
Name: SdB6	Len:	1502	Check:	5364	Weight:	1.79
Name: GcB5	Len:	1502	Check:	6440	Weight:	2.45
Name: Consensus	Len:	1502	Check:	4529	Weight:	0.00

//

1

GcB3
SdB11
SAB12 . GGCTMGA
SdB5 . GGCTTGA

GCB4 CGGCTTGA

GcB10

```
        GcB9
        GcB8 .......... ........... . . . . . . . . . . . . . . . . . . . . .GGCTTTGA
```



```
        SdB7 .......... .......... ........... ........... ............................
```



```
        SdB9 .....CGGAT CCACTAGTAA CG.CCGCCAG TGTGCTGGAA TTCGGC..GA
```



```
    GcB6 .......... .......... .G.CCACCAG TGTGCTGGAA TTCGGC..GA
    SdB8 ........... ........... ........... ........... ..........GA
    GcB7 .......... .......... ...CCGCCAG TGTGCTGGAA TTCGGC..GA
    SaB6
    GcB5
Consensus
    GAGCTCGGAT CCACTAGTAA CGGCCGCCAG TGTGCTGGA. .TCGGCTTGA
    5 1
        100
    SdB3
    SdB4 GTT.GATCCT GGCTCAGATT GAACGCTGGC GGCAGGCCTA ACACATGCAA
    GcB3 ..............CTCAGATT GAACGCTGGC gGCAGGCCTA ACACATGCAA
    SdB11 ....GATCCT GGCTCAGATT GAACGCTGGC GGCAGGCCTA ACACATGCAA
    SdB12 GTTTGATCCT GGCTCAGATT GAACGCTGGC GGCACGCTTT ACACATGCAA
    SdB5 GTT.GATCCT GGCTCAGATT GAACGCTGGC GGCAGGCCTA ACACATGCAA
    GcB13 ....gATCCT GGCTCAGATT GAACGCTGGC GGCAGGCCTA ACACATGCAA
    GcB12 GITTGATCCT GGCTCAGATT GAACGCTGGC GGCAGGCCTA ACACATGCAA
        GcB4 GTTTGATCCT GGCTCAGGAT GAACGCTGGC GGCGTGCCTA ATACATGCAA
    SdB10 GTTTGATCCT GGCTCAGATT GAACGCTGGC GGCAGGCCTA ACACATGCAA
    GcBIO ...TGATCCT GGCTCAGATT GAACGCTGGC GGCAGGCCTA ACACATGCAA
        GcB9 ..TTGATCCT GGCTCAGATT GAACGCTGGC GGCAGGCCTA ACACATGCAA
        GcB8 GTTTGATCCT GGCTCAGAAC GAACGCTGGC GGCAGGCCTA ACACATGCAA
    GcB11 GTTTGATCCT GGCTCAGAAC GAACGCTGGC GGCAGGCCTA ACACATGCAA
        SdB7 GTT.GATCCT GGCTCAGGAC GAACGCTGGC GGCGTGCCTA ATACATGCAA
    SdB15 GTTTGATCCT GGCTCAGGAC GAACGCTGGC GGCGTGCCTA ATACATGCAA
        SdB9 GTTTTGATCCT GGCTCAGGAC GAACGCTGGC GGCGTGCCTA ATACATGCAA
    SdB13 GTTTGATCCT GGCTCAGGAC GAACGCTGGC GGCGTGCCTA ATACATGCAA
    SdB14 GTTTGATCCT GGCTCAGGAC GAACGCTGGC GGCGTGCCTA ATACATGCAA
        GcB6 GTTTGATCCT GGCTCAGGAT GAACGCTGGC GGCGTGCCTA ATACATGCAA
        SdB8 GTTTGATCCT GGCTCAGGAC GAACGCTGGC GGCGTGCCTA ATACATGCAA
        GcB7 GTTTGGATCCT GGCTCAGGAC GAACGCTGGC GGCGTGCCTA ATACATGCAA
        SdB6 .......... ................................................
        GcB5 GTTTGATCCT GGCTCAGAAC GAACGCTGGC GGCAGGCCTA ACACATGCAA
Consensus gtttgatcct ggctcaga.. gaacgctggc ggca.gccta acacatgcaa
    1 0 1
        150
    SdB
    SdB4 GTCGAGCGGT AACAGAAAGT AG....CTT. .....GC.TA CTTTTGCTGAC
    GcB3 GTCGAGCGGT AACAGAGAGT AG....CTT. ......GC.TA CTTTTGCTGAC
SdB11 GTCGAGCGGA AACGAAGAGT AG....CTT. .....GC.TA CTCTGGCGTC
SaB12 GTCGAGCGGC AGCGCAGGGG TG....CTT. .....GC.AC CCTTGGCGGC
    SdB5 GTCGAGCGGA AACGAGTTAA CTGACCCTTC GGGTGACGTT AACGG.CGTC
GcB13 GTCGAGCGGA AACGACACTA ACAATCCTTC GGGT.ACGTT AATGGGCGTC
GcB12 GTCGAGCGGT AACAGAAAGA AAG...CTT. ......GCTTT CTTTGCTGAC
    GcB4 GTCGAGCGAA CAGATAAGGA G.....CTT. ......GC.TC CTTMGACGTT
SdB10 GTCGAGCGGT AACAGGACTA G.....CTT. .....gC..T AGTTGCTGAC
GcB10 GTCGAGCGGT AACAGGACTA G.....CTT. ......GC..T AGTTGCTGAC
    GcB9 GTCGAGCGGT AACAGGACTA G......CTT. ......GC..T AGTTTGCTGAC
```



```
    SdB7 GTCGAGCGGA CAGAA.GGGA G.....CTT. .....GC..T CCC.GGATGT
SdB15 GTCGAGCGAA TCAAT.GGGA G.....CTT. .....GC..T CCC.TGAGAT
```

```
        SdB9
        SdB13
        SdB14
        GcB6
        SdB8
        GcB7
        SdB6
        GcB5
Consensus
        sdB3
        SdB4
        GcB3
    SdB11
    SdB12
        SdB5
    GcB13
        GcB12
        GCB4
        SdB10
        GcB10
        GcB9
        GcB8
    GcB11
        SdB7
    sdB15
        SdB9
    SdB13
    SdB14
        GcB6
        SdB8
        GcB7
        SdB6
        GcB5
Consensu
        SdB3
        SdB4
        GcB
    SdB11
    SdB12 ATAACTTTGG GAAACCAGAG CTAATACCGC ATAC...... .GCTCT.ACG
    SdB5 ATAACCATTG GAAACGATGG CTAATACCGC ATAA...... .CGCCT.TCG
    GcB13 ATAACCATTG GAAACGATGG CTAATACCGC ATGA....... .TGCCT.ACG
    GcB12 ATAACAGTTG GAAACGACTG CTAATACCGC ATAC...... . .GCCCT.ACG
    GcB4 ATAACTTCGG GAAACCGGAG CTAATACCGG ATAACATATT GAACCTCATG
    SdB10 ATAGCCCGGA GAAATTCGGA TTAATACCGC ATAC...... .GCCCT.AAG
    GcB10 ATAGCCCGGA GAAATTCGGA TTAATACCGC ATAC....... .GCCCT.AAG
    GcB9 ATAGCCCGGA GAAATTCGGA TTAATACCGC ATAC...... .GCCCT.AAG
    GcB8 ACAACAGTTG GAAACGACTG CTAATACCCT ATGA....... .GCCCT.AAG
    GcB11 ACAACAGTTG GAAACGACTG CTAATACCCT ATGA...... .GCCCT.ATG
    SAB7 ATAACTCCGG GAAACCGGAG CTAATACCGG ATAGTTCCTT GAACCGCATG
    SdB15 ATAACTTCGG GAAACCGGAG CTAATACCGG ATACGTTCTT TTCTCGCATG
    SdB9 ATAACTCCGG GAAACCGGAG CTAATACCGG GTAATACATC GCACCGCATG
    SdB13 ATAACTCCGG GAAACCGGAG CTAATACCGG GTAATACATC GCACCGCATG
    SdB14 ATAACTCCGG GAAACCGGGG CTAATACCGG ATAACATTTT CCACTGCATA
    GcB6 ATAACTCCGG GAAACCGGGG CTAATACCGG ATAACAAGAG AAGAAGCATT
    SdB8 ATAACTCCGG GAAACCGGGG CTAATACCGG ATAATATCTA TTTATACATA
```

GcB7	ATAACTCCGG	GAAACCGGAG	CTAATACCGG	gTaAtacatc	G
SdB6		AAACGGCTG	CTAATACCGC	ATAC	. GCCCT. ACG
GcB5	ACAACAGTTG	GAAACGACTG	CTAATACCCT	ATGA	GCCCT. ATG
Consensus					
	251				300
SdB3					
SdB4	GACCAAAGGG	GG. CT	TCG. .G. . CT	CTCGCCTTTA	GATTGGCCCA
GcB3	GACCAAAGGG	GG. CT	TCG. .G. . CT	CTCGCCTTTA	GATTGGCCCA
SdB11	GGGGAAAGGA	GGGGAC. . CT	TCG. . GGCCT	TTCGCGATTA	GATGTGCCCA
SdB12	GAGGGAAGCG	GGGGAT . . CT	TTT. . GACCT	CGCGCTATTA	GAGTAGCCCA
SdB5	GGCCAAAGAG	GGGGAT . . CT	TCG. . GACCT	CTCGCGTCAA	GATTAGCCCA
GcB13	GGCCAAAGAG	GGGGAC . . CT	TCG. .GGCCT	CTCGCGTCAA	GATATGCCTA
GcB12	GGGGAAAGGA	GGGGAC . . CT	TCG. .GGCCT	TTCGCGATTG	GATGAACCTA
GcB4	GTTCAATAGT	GAAAGG . . CG	GCT. . TTGCT	GTCACTTATA	GATGGATCCG
SdB10	GGGGAAAGAT	GGCCTCTTCT	TGA. . AAGCT	ATCACTATCC	GATGAGCCTG
GcB10	GGGGAAAGAT	GGCCTCTTCT	TGA. . AAGCT	ATCACTATCG	GATGAGCCTG
GcB9	GGGGAAAGAT	GGCCTCTUCT	TGA. . AAGCT	ATCACTATCG	GATGAGCCTG
GcB8	GGGGAAAGAT		TT	ATCGCCATGA	GATGTGCCCG
GcB11	GGGGAAAGAT			ATCGCCATGA	GATGTGCCCG
SdB7	GTTCAAGGAT	GAAAGACGGT	TTC...GGCT	GTCACTTACA	GATGGACCCG
SdB15	AGAGAAGATG	GAAAGACGGT	TTA. . . CGCT	GTCACTTATA	GATGGGCCCG
SdB9	GTGCAATGTT	GAAAGTTGGC	TTTC.GAGCT	AACACTGCAG	GATGGGCCCG
SdB13	GTGCAATGTT	GAAAGTTGGC	TTTCTGAGCT	AACACTGCAG	GATGGGCCCG
Sab14	GTGGAGAATT	AAAAGATGGC	TTC. . .GGCT	ATCACTTACA	GATGGGCCCG
GcB6	TCTTCTTTTT	GAAAGTCGGC	ATCT. . CGCT	GACACTTACA	GATGAGCCCG
SdB8	TAATTAGATT	GAAAGATGGT	TCT. . . GCT	ATCACTTACA	GATGGGCCCG
GcB7	GTGCAATGTT	GAAAGTTGGC	TTTC.GAGCT	AACACTGCAG	GATGGGCCCG
SdB6	GGGGAAAGCA	GGGGAT. . CT	TCG. .GACCT	TGCGCTATTG	GATGAGCCTA
GcB5	GGGGAAAGAT		TT	ATCGCCATGA	GATGTGCCCG
Consensus	ggggaaag.t			tcget.t.a	gatg.gcccg
	301				350
SdB3					
SdB4	AGTGGGATTA	GCTAGTTGGT	GAGGTAATGG	CTCACCAAGG	CAACGATCCC
GcB3	AGTGGGATTA	GCTAGTTGGT	GAGGTAATGG	CTCACCAAGG	CAACGATCCC
SdB11	AGTGGGATTA	GCTAGTTGGT	GAGGTAATGG	CTCACCAAGG	CGACGATCCC
SdB12	TGTCCGATTA	GCTAGTTGGA	GGGGTAACAG	CCCACCAAGG	CGATGATCGG
Sab5	GGTGGGATTA	GCTAGTTGGT	GAGGTAATGG	CTCACCAAGG	CGACGATCCC
GcB13	GGTGGGATTA	GCTAGTTGGT	GAGGTAATGG	CTCACCAAGG	CGACGATCCC
GcB12	GGTGGGATTA	GCTAGTTGGT	AAGGTAATGG	CTTACCAAGG	CGACGATCCC
GcB4	CGCCGTATTA	GCTAGTTGGT	AAGGTAACGG	CTTACCAAGG	CAACGATACG
Sab10	CGTCGGATTA	GCTAGTTGGT	GGGGTAAAGG	CCTACCAAGG	CAACGATCCG
GcBIO	CGTCGGATTA	GCTAGTTGGT	GGGGTAAAGG	CCTACCAAGG	CAACGATCCG
GcB9	CGTCGGATTA	GCTAGTTGGT	GGGGTAAAGG	CCTACCAAGG	CAACGATCCG
GcB8	CGTTAGATTA	GCTAGTTGGT	AAGGTAATGG	CTTACCAAGG	CGACGATCTA
GcB11	CGTTAGATTA	GCTAGTTGGT	AAGGTAATGG	CTTACCAAGG	CGACGATCTA
SdB7	CGGCGCATTA	GCTAGTTGGT	GAGGTAACGG	CTCACCAAGG	CGACGATGCG
SdB15	CGGCGCATTA	GCTAGTTGGT	GAGGTAATGG	CTCACCAAGG	CGACGATGCG
SdB9	CGGCGCATTA	GCTAGTTGGT	AAGGTAATGG	CTTACCAAGG	CGACGATGCG
SdB13	CGGCGCATTA	GCTAGTTGGT	AAGGTAATGG	CTTACCAAGG	CGACGATGCG
SdB14	CGGCGCATTA	GCTAGTTGGT	GAGGTAAGGG	CTCACCAAGG	CGACGATGCG
GcB6	CGGCGCATTA	GCTAGTTGGT	GAGGTAACGG	CTCACCAAGG	CGACGATGCG
SdB8	CGGCGCATTA	GCTAGTTGGT	GAGGTAACGG	CTCACCAAGG	CGACGATGCG
GcB7	CGGCGCATTA	GCTAGTTGGT	AAGGTAATGG	CTTACCAAGG	CGACGATGCG
SdB6	AGTCGGATTA	GCTAGITGGT	GAGGTAAAGG	CTCACCAAGG	CGACGATCCG
GcB5	CGTTAGATTA	GCTAGITGGT	AAGGTAATGG	CTTACCAAGG	CGACGATCTA
Consensus	cgtcggatta	gctagttggt	gaggtaatgg	ct.accaagg	cgacgatccg

SdB3
TAGCT
TAGCTGGTTT GAGAGGATGA TCAGCCACAC TGGAACTGAG ACACGGTCCA
tagctegttu gagaggatga tcagccacac tgganctgag acacggtcca
tagctggtct angaggatga tcagccacac cgggactgag acacgaccce
thgctegtct gagaggatga tcagccacac tgganctgag acacgatcca
TAGCTGGTCT GAGAGGATGA TCAGCCACAC TGGAACTGAG ACACGGTCCA
TAGCTGTTCT GAGAGGATGA TCAGCCACAC TGGGACTGAG ACACGGCCCA
TAGCCGACCT GAGAGGGTGA TCGGCCACAC TGGAACTGAG ACACGGTCCA
TAGCTGGTCT GAGAGGATGA TCAGCCACAC TGGGACTGAG ACACGGCCCA
tagctggtct gagaggatga tcagccacac tgggactgag acacgaccca
TAGCTGGTCT GAGAGGATGA TCAGCCACAC TGGGACTGAG ACACGGCCCA
tagctggtct gagaggatga tcagccacac tgggactgag acacgacccea
tAGCTGGTCT GAGAGGATGA TCAGCCACAC TGGGACTGAG ACACGGCCCA
tAGCCGACCT GAGAGGGTGA TCGGCCACAC TGGGACTGAG ACACGGCCCA
tagccgacct gagagggtga tcgeccacac tgggactgag acacggccce
tAGCTGGTTT GAGAGGATGA TCAGCCACAT CGGGACTGAG ACACGGCCCG
TAGCTGGTCT GAGAGGATGA TCAGCCACAC TGGGACTGAG ACACGGCCCA
tagctggtct gagaggatga tcagccacac tgggactgag acacggccea
401
450

SdB3
SdB4
sdB11
SdB12
SdB5
GcB13
GcB12
GcB4
Sab10
GcB10
GcB9
GcB8
GcB11
SdB7
SdB15
SdB9
SdB13
SdB14 GcB6 SdB8 GCB7 SaB6 GcB5
Consensus
...........CAAGCC gactcctacg ggaggcagca gtgggganta ttgcacaitg ggcganaccc gactcctacg ggagccacca gtggggaita ttgcacaitg ggcccaiccc gactcctacg ggaggcagca gtggggaita ttgcacaitg ggcccaigcc GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGGACAATG GGGGCAACCC GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGCACAATG GGCGCAAGCC GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGCACAATG GGCGAAAGCC gactcctacg ggaggcagca gtgggganta trgcacantg gggeanaccc gactcctacg ggaggcagca gtagggaita tugcacaitg ggcgcaigcc GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGCACAATG GGCGCAAGCC gactcctacg ggaggcagca gtggggaita tugcacaitg ggccgcaiccc GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGCACAATG GGCGCAAGCC GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGGACAATG GGGGCAACCC GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGGACAATG GGGGCAACCC gactcctacg ggagccagca gTagggaitc ttccgcantg gacgaiactic gactcctacg ggagccacca gtaggaantc tuccgcantg gacgaiagtc gactcctacg gaigccacca gtagggaitc ttccgcaitg gaccaiagtc
 GACTCCTACG GGAGGCAGCA GTAGGGAATC TTCGGCAATG GGCGAAAGCC gactcctacg gangccagca gtagggaitc tTCGGcantg ggccaiagcc GACTCCTACG GGAGGCAGCA GTAGGGAATC TTCCGCAATG GACGAAAGTC gactcctacg ggagccagca gtagggaitc ttccgcantg gacgaiagic AACTCCTACG GGAGGCAGCA GTGGGGAATA TTGGACAATG GGGGCAACCC GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGGACAATG GGGGCAACCC gactcctacg ggaggcagca gtggggaata ttgcacaatg ggcgcAAgcC

SdB3 TGATGCAGCC ATGCCGCGTG TATGAAGAAG GCCTTCGGGT tGTAAAGTAC
SdB4
GcB3
Sab11

TGATGCAGCC ATGCCGCGTG TGTGAAGAAG GCCTTCGGGT TGTAAAGCAC tGAtGCAGCC ATGCCGCGTG TGTGAAGAAG GCCTtCGGGT TGTAAAGCAC tGAtGCAGCC ATGCCGCGTG TATGAAGAAG GCCTtCGGGT TGTAAAGTAC

SdB12
SdB5
GcB13
GcB12
GcB4
SdB10
GcB10
GcB9
GcB8
GcB11
SdB7
SdB15
SdB9
SdB13
SdB14
GcB6
SdB8
GcB7
SdB6
GcB5
Consensus
tgatccagcg atgccgcgtg agtgangang gctctcgegt tgranagctc tgatgcagcc atgccgcgig tgtgangaig gcctucgegt tgranagcac tGATGCAGCC ATGCCGCGTG TATGAAGAAG GCCTTCGGGT TGTAAAGTAC tGATGCAGCC ATGCCGCGTG TGTGAAGAAG GCCTTAGGGT TGTAAAGCAC tGATGCAG..GCGTG TGTGAAGAAG GCTCTAGGGT TGTAAAGCAC TGATGCAGCC ATGCCGCGTG TGTGAAGAAG GCTCTAGGGT TGTAAAGCAC tGATGCAGCC ATGCCGCGTG TGTGAAGAAG GCTCTAGGGT TGTAAAGCAC tGATGCAGCC ATGCCGCGTG TGTGAAGAAG GCTCTAGGGT TGTAAAGCAC tGATCCAGCC ATGCCGCGTG TGTGATGACG GCCTTAGGGT TGTAAAGCAC tAATCCAGCC ATGCCGCGTG TGTGATGACG GCCTTAGGGT TGTAAAGCAC tgacggagca acgccgcgig agtgatgang grrtucgget cgranaicctc
 TGACGGAGCA ACGCCGCGTG AGTGACGAAG GCCTTCGGGT CGTAAAGCTC TGACGGAGCA ACGCCGCGTG AGTGACGAAG GCCTTCGGGT CGTAAAGCTC tGACCGAGCA ACGCCGCGTG AGCGATGAAG GCCTTCGGGT CGTAAAGCTC tgaccgagca acgccgcgig agcgatgang gcctucgegt cgranagctc TGACGGAGCA ACGCCGCGTG AGTGATGAAG GTTTTTCGGAT CGTAAAACTC tGACGGAGCA ACGCCGCGTG AGTGACGAAG GCCTTCGGGT CGTAAAGCTC tGATCCAGCC ATGCCGCGTG TGTGAAGAAG GCTTTCCGGGT TGTAAAGCAC tGATCCAGCC ATGCCGCGTG TGTGATGACG GCCTTAGGGT TGTAAAGCAC TGAtgcagCc AtGCCGCGTG tgTGAaGAag GCct'tcgegt tgranagcac

SdB3
SdB4
GcB3
SdB11
SdB12
sdB5
GcB13
GcB12
GcB4
SdB10
GcB10
GcB9
GcB8
GcB11
SdB7
SdB15
SdB9
SdB13
SdB14
GcB6
SdB8
GcB7
SdB6
GcB5

Consensus

TTTCAGTTGT GAGGAA.GGG GGTGTCGTTA ATAGCGGCAT CTCTTGACGT tTTCAGTCAG GAGGAA.AGG GTGTGAGTTA ATACCTCACA TCTGTGACGT TTTCAGTCAG GAGGAA.AGG TTAGTAGTTA ATACCTGCTA GCTGTGACGT tTTTCAGCGAG GAGGAA. AGG TTAGTAGCTA ATAACTGCTA GCTGTGACGT tTTTCGCAGGG AAAGAA. ACG GCAATGGTAA ATAGCTATTG CAACTGACGG tttceagtcgu gaggai.ggt ggtgtagtta atagctgcat tatttgacgt tTTCAGTTGT GAGGAA.GGG tGTGTAGTTA ATAGCTGCGC ATCTTGACGT tTTCAGTAGG GAGGAA.AGG TAATGGCTTA ATACGCTATT ACTGTGACGT tTTCAGGGAG GAGGAA.AGG TTAGTAGTTA ATACCTGCTA GCTGTGACGT tTTCCAGCGAG GAGGAA.AGG TTGAAGATTA ATACTCTTTA GCTGTGACGT tTTTCAGCGAG GAGGAA.AGG TTGAAGATTA ATACTCTTTTA GCTGTGACGT tTTCCAGCGAG gAgGAA. AgG trgangatta atactctrta gctgtgacgr
 tTTCAGCAGT GAAGAT.AA. TGACAT tGTtGTtag gangaicang tgcaigagta actgct.tgc accttgacgg tgttgittag gaigaicaig taccagagta actgct.ggt accttgacgg tGTtGTtag gaigaicaig taccettcca ataggecget accttcacga tGTTGTTAGG GAAGAACAAG tACCGTTCGA ATAGGGCGGT ACCTTGACGG TGTtGTtAGG GAAGAACAAG TACCGTTCAA ACAGGGCGGT ACCTTGACGG tgrtggttaga gangaicaig tacgagagta actgctcg.t accttgacgg tgTtGttagg gaigancaig tatcggagta actgcc..gT accttgacgg tgttgttagg gaigaicaig taccettcga atagggcgec accttgacga tTTCCAGCGAG GAGGAA.GGC TCTAAAGTTA ATACCTTTAG GGATTGACGT TTTCAGCAGT GAAGATAA. TGACAT TtTcagt.gg GAgGAa.agg t......tta ata.c..... .c..TGACgt 551 600
SaB3 TAGCAACAGA AGAA.GCACC GGCTAACTCC GTGCCAGCAG CCGCGGTAAT tactgacaga agan. gCACC gGctanctcc gtgccagcag ccgcggtant tactgacaga agai.gCacc gcctaictcc gtgccagcag ccgcgatant tactcccaga agan. gGacc gcctanctcc gtgccagcag ccgcgatant taccctgata agan. gCacc ggctanctac gtgccagcag ccgcgatait tagcgacaga agan. gcacc ggctanctcc gtgccagcag ccgcgatait tagcaicaga agan. gcacc ggctanctcc grgccagcag ccgcgatanat tacctachas agai.ggacc ggctaicttc gtgccagcag ccgcgatant tactgacaga agan.gCACC ggctaictcc gtgccagcag ccgcgetait

SdB10
GcB10
GcB9
GcB8
GcB11
SdB7
SdB15
SdB9
SdB13
SdB14
GcB6
SdB8
GcB7
sdB6
GcB5
Consensus

TACTCGCAGA AGAA. GCACC GGCTAACTCC GTGCCAGCAG CCGCGGTAAT TACTCGCAGA AGAA.GCACC GGCTAACTCC GTGCCAGCAG CCGCGGTAAT TACTCGCAGA AGAA. GCACC GGCTAACTCC GTGCCAGCAG CCGCGGTAAT TAACTGCAGA AGAA.GCCCC GGCTAACTTC GTGCCAGCAG CCGCGGTAAT TAACTGCAGA AGAA.GCCCC GGCTAACTTC GTGCCAGCAG CCGCGGTAAT TACC.TAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT TACC.TAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT TACCCTAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT TACC.TAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT TACC.TAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT TACC. TAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT TACC.TAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT TACC. TAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT TACTCGCAGA AGAA.GCACC GGCTAACTCC GTGCCAGCAG CCGCGGTAAT TAACTGCAGA AGAA. GCCCC GGCTAACTTC GTGCCAGCAG CCGCGGTAAT TAcc.. cAga AGAA. GCacC GGCTAACT.C GTGCCAGCAG CCGCGGTAAT

650
SdB3 ACGGAGGGTG CGAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGCATGCAG
SdB4 ACGGAGGGTG CGAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTACGCAG
GcB3 ACGGAGGGTG CGAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTACGCAG
SdB11 ACGGAGGGTC CGAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTACGCAG
SdB12 ACGGAGGGTC CGAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTACGCAG
SdB5 ACGGAGGGTG CGAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGCATGCAG
GcB13 ACGGAGGGTG CGAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGCATGCAG
GcB12 ACGAGGGGTC CAAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTACGCAG
GcB4 ACGGAGGGTG CGAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTACGCAG
SdB10 ACGGAGGGTG CAAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTGCGTAG
GcB10 ACGGAGGGTG CAAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTGCGTAG GcB9 ACGGAGGGTG CAAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTGCGTAG GcB8 ACGAAGGGGG CTAGCGTTGT TCGGAATCAC TGGGCGTAAA GAGTACGTAG
GcB11 ACGAAGGGGG CTAGCGTTGT TCGGAATCAC TGGGCGTAAA GAGTACGTAG SdB7 ACGTAGGTGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GGGCTCGCAG
SdB15 ACGTAGGTGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GCGCGCGCAG SdB9 ACGTAGGTGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GCGCGCGCAG
SdB13 ACGTAGGTGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GCGCGCGCAG
SdB14 ACGTAGGTGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GCGCGCGCAG
GcB6 ACGTAGGTGG CAAGCGTTAT CCGGAATTAT TGGGCGTAAA GCGCGCGCAG
SdB8 ACGTAGGTGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GCGCGCGCAG
GcB7 ACGTAGGTGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GCGCGCGCAG
SaB6 ACGGAGGGTG CAAGCGTTAA TCGGAATTAC TGGGCGTAAA GCGCGCGTAG
GcB5
Consensus ACGAAGGGGG CTAGCGTTGT TCGGAATCAC TGGGCGTAAG ACTACGTAGG
ACGgAGGgtg C.AGCGTTaa tCGGAATtAC TGGGCGTAAa gcg..cgcag

SdB3
SdB4
GcB3
SdB11
SAB12
SdB5
GeB13
GcB12
GcB4
SdB10
GcB10
GcB9
GcB8
GcB11 GCGGTCTGTT AAGCAAGATG TGAAAGCCCG GGGCTCAACC TCGGAACAGC GCGGTTTGTT AAGCGAGATG TGAAAGCCCC GGGCTCAACC TGGGAACTGC GTGGTTCGTT AAGTCAGATG TGAAAGCCCG GGGCTCAACC TCGGAACTGC GTGGTTCATT AAGTCAGATG TGAAAGCCCG GGGCTCAACC TCGGAACTGC GCGGTTCATT AAGCCAGATG TGAAATCCCC GGGCTCAACC TGGGAATTGC GCGGTTTGTT AAGCGAGATG TGAAAGCCCC GGGCTCAACC TGGGAACTGC GCGGCTTGTT AAGTTGGATG TGAAAGCCCC GGGCTCAACC TGGGAACTGC GCGGCTTGTT AAGTTGGATG TGAAAGCCCC GGGCTCAACC TGGGAACTGC GCGGCTTGTT AAGTTGGATG TGAAAGCCCC GGGCTCAACC TGGGAACTGC GCGGACTGAT AAGTTAGGGG TGAAATCCCA AGGCTCAACC TTGGAACTGC GCGGACTGAT AAGTTAGGGG TGAAATCCCA AGGCTCAACC TTGGAACTGC

SdB7
SdB15

GCGGTTTCTT AAGTCTGATG TGAAAGCCCC CGGCTCAACC GGGGAGGGTC GTGGTTCCTT AAGTCTGATG TGAAAGCCCA CGGCTCAACC GTGGAGGGTC GCGGTCTTTT AAGTCTGATG TGAAAGCCCA CGGCTCAACC GTGGAGGGTC GCGGTCTTTT AAGTCTGATG TGAAAGCCCA CGGCTCAACC GTGGAGGGTC GCGGTCTCTT AAGTCTGATG TGAAAGCCCA CGGCTCAACC GTGGAGGGTC GCGGTCTCTT AAGTCTGATG TGAAAGCCCA CGGCTCAACC GTGGAGGGTC GCGGTTCTTT AAGTCTGATG TGAAAGCCCA CGGCTCAACC GTGGAGGGTC GCGGTCTTTT AAGTCTGATG TGAAAGCCCA CGGCTCAACC GTGGAGGGTC GTGGTTTGTT AAGCGAGATG TGAAAGCCCC GGGCTTAACC TGGGAACGGC GCGGACTGAT AAGTTAGGGG TGAAATCCCA GGGCTCAACC TTGGAACTGC GcGGtttgtT AAGt.agatG TGAAAgCCC. gGGCTCAACC t.GGAactgC

701
750
SAB3 ATTTTGAACT GGCAGACTAG AGTCTTGTAG AGGGGGGTAG AATTTCAGGT SdB4 ATTTCGAACT GGCAAACTAG AGTGTGATAG AGGGTGGTAG AATTTCAGGT GcB3 ATTTCGAACT GGCAAACTAG AGTGTGATAG AGGGTGGTAG AATTTCAGGT SdB11 ATTTCGAACT GACAAACTAG AGTTTTGTAG AGGGTGGTAG AATTTCAGGT
SdB12 ATTTCGAACT GACAAACTAG AGTTTTGTAG AGGGTGGTAG AATTTCAGGT SdB5 ATTTGAAACT GGCGGACTAG AGTACTGTAG AGGGGGGTAG AATTTCAGGT GcB13 ATTTGAAACT GGTGAACTAG AGTACTGTAG AGGGGGGTAG AATTTCAGGT
GcB12 ATTTGGAACT GGTGAACTAG AGTCTTGTAG AGGGGGGTAG AATTTCAGGT GcB4 ATTTCGAACT GGCAAACTAG AGTGTGATAG AGGGTGGTAG AATTTCAGGT
SdB10 ACCCAAAACT GACAAGCTAG AGTGCGGAAG AGGAGTGTGG AATTTCCTGT
GcB10 ACCCAAAACT GACAAGCTAG AGTGCGGAAG AGGAGTGTGG AATTTCCTGT

GcB9
GcB8
GcB11 sdB7
SdB15 SdB9
SdB13
SdB14 GcB6 SdB8 GcB7 Sab6 GcB5
Consensus ACCCAAAACT GACAAGCTAG AGTGCGGAAG AGGAGTGTGG AATTTCCTGT CTITGATACT GTCAGTCTTG AGATCGAGAG AGGTGAGTGG AACTCCGAGT CTTTGATACT GTCAGTCTTG AGATCGAGAG AGGTGAGTGG AACTCCGAGT ATTGGAAACT GGGAAACTTG AGTGCAGAAG AGGAGAGTGG AATTCCACGT ATTGGAAACT GGGGAACTTG AGTGCAGAAG AGGAAAGTGG AATTCCAAGT ATTGGAAACT GGAGGACTTG AGTGCAGAAG AGGAGAGTGG AATTCCACGT ATTGGAAACT GGAGGACTTG AGTGCAGAAG AGGAGAGTGG AATTCCACGT ATTGGAAACT GGGGGACTTG AGTACTGGAG AGGAGAGTGG AATTCCATGT ATTGGAAACT GGGAGACTTG AGTGCAGGAG AGAAAAGTGG AATTCCACGT ATTGGAAACT GGGGAACTTG AGTGCAGAAG AGGAAAGTGG AATTCCAAGT ATTGGAAACT GGAGGACTTG AGTGCAGAAG AGGAGAGTGG AATTCCACGT ATTTCGAACT GGCAAGCTAG AGTGTGGTAG AGGGTAGTGG AATTTCCTGT CTTTGATACT GTCAGTCTTG AGATCGAGAG AGGTGAGTGG AACTCCGAGT aTrtgaaACT GgcaaaCTaG AGt.c.g.AG AGG.gaGTgG AAtTtCa.GT 751

800

SdB3 SdB4
GcB3
SdB11
SdB12 SdB5
GcB13
GcB12 GcB4
SdB10
GcB10 GcB9 GcB8
GcB11 SdB7 SdB15 SdB9 sdB13
SdB14

GTAGCGGTGA AATGCGTAGA GATCTGAAGG AATACCGGTG GCGAAGGCGG GTAGCGGTGA AATGCGTAGA GATCTGAAGG AATACCGATG GCGAAGGCAG GTAGCGGTGA AATGCGTAGA GATCTGAAGG AATACCGATG GCGAAGGCAG GTAGCGGTGA AATGCGTAGA GATCTGAAGG AATACCAGTG GCGAAGGCGG GTAGCGGTGA AATGCGTAGA GATCTGAAGG AATACCAGTG GCGAAGGCGG GTAGCGGTGA AATGCGTAGA GATCTGAAGG AATACCGGTG GCGAAGGCGG GTAGCGGTGA AATGCGTAGA GATCTGAAGG AATACCAGTG GCGAAGGCGG GTAGCGGTGA AATGCGTAGA GATCTGAAGG AATACCGGTG GCGAAGGCGG GTAGCGGTGA AATGCGTAGA GATCTGAAGG AATACCGATG GCGAAGGCAG GTAGCGGTGA AATGCGTAG. TATAGGAAGG CACACCAGTG GCGAAGGCGA GTAGCGGTGA AATGCGTAGA TATAGGAAGG CACACCAGTG GCGAAGGCGA gTAGCGGTGA AATGCGTAGA TATAGGAAGG AACACCAGTG GCGAAGGCGA GTAGAGGTGA AATTCGTAGA TATTCGGAAG CACACCAGTG GCGAAGGCGG GTAGAGGTGA AATTCGTAGA TATTCGGAAG AACACCAGTG GCGAAGGCGG GTAGCGGTGA AATGCGTAGA GATGTGGAGG AACACCAGTG GCGAAGGCGA GTAGCGGTGA AATGCGTAGA GATTTGGAGG AACACCAGTG GCGAAGGCGA GTAGCGGTGA AATGCGTAGA TATGTGGAGG AACACCAGTG GCGAAG.CGG GTAGCGGTGA AATGCGTAGA TATGTGGAGG AACACCAGTG GCGAAGGCGG GTAGCGGTGA AATGCGTAGA TATATGGAGG AACACCAGTG GCGAAGGCGG

GcB6
SdB8
GcB7
Sab6
GcB5
Consensus

GTAGCGGTGA AAtGCGTAGA GATGTGGAGG AACACCAGTG GCGAAGGCGG gtagcggtga antgcgtaga gattutgagg ancaccagtg gcgaiggcca gtagcgatga antgcgtaga tatgtggagg ancaccagtg gccaiagccga gTAGCGGTGA AAtGCGTAGA tataggangg ancaccagtg gccaaggcgg GTAGAGGTGA AATTCGTAGA TATTCGGAAG AACACCAGTG GCGAAGGCGG GTAGcGGTGA AATgCGTAGA gAT.tGaAgG aAcACCagTG GCGAAGGCgg

CCCCCTGGAC AAAGACTGAC GCTCAGATGC GAAAGCGTGG GGAGCAAACA CCACCTGGGT CAACACTGAC GCTCATGTAC GAAAGCGTGG GGAGCAAACG CCACCTGGGT CAACACTGAC GCTCATGTAC GAAAGCGTGG GGAGCAAACA CCACCTGGAC AATAACTGAC GCTCATGTAC GAAAGCGTGG GGAGCAAACA CCACCTGGAC AATAACTGAC GCTCATGTAC GAAAGCGTGG GGAGCAAACG CCCCCTGGAC AGATACTGAC ACTCAGATGC GAAAGCGTGG GGAGCAAACA CCCCCTGGAC AGATACTGAC ACTCAGATGC GAAAGCGTGG GGAGCAAACA CCCCCTGGAC AAAGACTGAC GCTCATGTAC GAAAGCGTGG GGAGCAAACA CCACCTGGGT CAACACTGAC GCTCATGTAC GAAAGCGTGG GGAGCAAACA CACTCTGGTC TGACACTGAC GCTGAGGTAC GAAAGCGTGG G.AGCAAACA CACTCTGGTC tGACACTGAC GCTGAGGTAC GAAAGCGTGG GGAGCAAACA CACTCTGGTC TGACACTGAC GCTGAGGTAC GAAAGCGTGG GGAGCAAACA CTCACTGGCT CGATACTGAC GCTGAGGTAC GAAAGCGTGG GGAGCAAACA CTCACTGGCT CGATACTGAC GCTGAGGTAC GAAAGCGTGG GGAGCAAACA CTCTCTGGTC TGTAACTGAC GCTGAGGAGC GAAAGCGTGG GGAGCGAACA CTTTCTGGTC TGTAACTGAC ACTGAGGCGC GAAAGCGTGG GGAGCAAACA CTCTCTGGTC TGTAACTGAC GCTGAGGCGC GAAAGCGTGG GGAGCAAACA CTCTCTGGTC TGTAACTGAC GCTGAGGCGC GAAAGCGTGG GGAGCAAACA CTCTCTAGCC AGTAACTGAC GCTGAGGCGC GAAAGCGTGG GGAGCAAACA CTTTTTGGGCC TGTAACTGAC GCTGAGGCGC GAAAGCGTGG GGAGCAAACA CTTTCTGGTC TGTAACTGAC GCTGAGGCGC GAAAGCGTGG GGAGCAAACA CTCTCTGGTC TGTAACTGAC GCTGAGGCGC GAAAGCGTGG GGAGCAAACA CTACCTGGAC CAGCACTGAC ACTGAGGTGC GAAAGCGTGG GGAGCAAACA CTCACTGGCT CGATACTGAC GCTGAGGTAC GAAAGCGTGG GGAGCAAACA Ctc.CTGG.c .ga.ACTGAC gCTgAggtaC GAAAGCGTGG GGAGCAAACA GGATTAGATA CCCCGGTAGT CCACGCCGTA AACGATGTCT ACTAGAAGCT GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGTCT ACTAGAAGCT gGAttagata ccctggtagt ccacgccgta ancgatgtct actagaigct gGAtragata ccccggtagt ccacgccgta ancgatgtca actagccgac Ggattagata ccctggtagt ccacgccgta ancgatgtct actiggagg t GGAttagata ccctggtagt ccacgcceta ancgatgtct acttggaggit GGATTAGATA CCCTGGTGGT CCACGCCGTA AACGATGTCT ACTCGGAGTT GGATtAGATA CCCTGGTAGT CCACGCCGTA AACGATGTCT ACTAGAAGCT ggattagata ccctggtagt ccacgccgta ancgatgant gctagttget gGattagata ccctggtagt ccacgccgta ancgatgant gctagtigtc GGAttagata ccctggtagt ccacgccgta ancgatgtct actagtcgtc GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGAAT GCTAGTTGTC gGattagata ccctggtagt ccacgccgta ancgatgant gctagttgat GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGAGT GCTAAGTGTT gGattagata ccctggtagt ccacgccgta ancgatgagt gctanagtgtt gGattagata ccctggtagt ccacgc.gta ancgatgagt gctaggtgtt gGattagata ccctggtagt ccacgcceta ancgatgagt gctaggigrt gGattagata ccctgatagt ccacgccgta ancgatgagt gctaggtgit GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGAGT GCTAGGTGTT GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGAGT GCTAAGTGTT GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGAGT GCTAGGTGTT GGATtAGATA CCCTGGTAGT CCACGCCGTA AACGATGTCA ACTAGCCGTT GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGAAT GCTAGTTGTC

Consensus GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGa.t gCTag.tGtt
901950
 SdB4 CGGAACCTCG .GTTC.TGTT TTTCAAAGCT AACGCATTAA GTAGACCGCC GcB3 CGGAACCTCG .GTTC.TGTT TTTCAAAGCT AACGCATTAA GTAGACCGCC SdB11 CGGAACCTCG .GTTC.TGTT TTTCAAAGCT AACGCATTAA GTAGACCGCC SdB12 TGGTGCCTTG AGCGC.TGGG TGGCGCAGCT AACGCATTAA GTTGACCGCC SdB5 tGTGGCCTTTG AGCCG.TGGC TTTCGGAGCT AACGCGTTAA GTAGACCGCC GcB13 TGTGGCCTTG AGCCG.TGGC TTTCGGAGCT AACGCGTTAA GTAGACCGCC GcB12 TGGTGCCTTG AGCAC.TGGG CTCCCAAGCT AACGCATTAA GTAGACCGCC GcB4 CGGAACCTCG .GTTC.TGTT TTTCAAAGCT AACGCATTAA GTAGACCGCC SdB10 AGGTAGCTTG CT.AT.TTGG TGACGCAGCT AACGCATTAA GCATTCCGCC GcB10 AGGTAGCTTG CT.AT.TTGG TGACGCAGCT AACGCATTAA GCATTCCGCC GcB9 GGGTCTCTTG CAGAC.TTGG TGACGAAGCT AACGCGATAA GTAGACCGCC GcB8 AGGTAGCTTG CTATT.tGg. TGACGCAGCT AACGCATTAA GCATTCCGCC GcB11 AGGTAGCTTG CTATT.TGG. TGACGCAGCT AACGCATTAA GCATTCCGCC SdB7 AGGGGGTTTC CGCCCCTTAG TGCTGCAGCT AACGCATTAA GCACTCCGCC SdB15 AGAGGGTTTC CGCCCTTTAG TGCTGCAGCT AACGCATTAA GCACTCCGCC SdB9 GGGGGGTT. C CACCC.TCAG TGCTGAAGTT AACACATTAA GCACTCCGCC SdB13 GGGGGGTT.C CACCC.TCAG TGCTGAAGTT AACACATTAA GCACTCCGCC SdB14 GGGGGGTT.C CACCC.TCAG TGCTGACGTT AACACATTAA GCACTCCGCC GcB6 GGGGGGTT.C CACCC.TCAG TGCTGAAGTT AACACATTAA GCACTCCGCC SdB8 AGAGGGTTTC CGCCCTTTAG TGCTGCAGCA AACGCATTAA GCACTCCGCC GcB7 GGGGGGTt.C CACCC.TCAG TGCTGAAGTT AACACATTAA GCACTCCGCC sdB6 GGGGATCTTG AATCC.TTAG TGGCGCAGCT AACGCACTAA GTTGACCGCC GcB5 AGGTAGCTTG CTAT..TTGG TGACGCAGCT AACGCATTAA GCATTCCGCC Consensus .Gg..gcTtg c...c.T.gg Tg.cg.AGcT AACgCattAA Gca.tCCGCC

SdB3
SdB4
GcB3
SdB11
SdB12
SdB5
GcB13
GcB12
GcB4
SdB10
GcB10
GcB9
GcB8
GcB11
SdB7
SdB15
SdB9
SdB13
SdB14
GcB6
SdB8
GcB7
SdB6
GcB5
Consensus

TGGGGAGTAC GGTCGCAAGA TTAAAACTCA AATGAATTGA CGGGGGCCCG tGGGGAGTAC GGCCGCAAGG TTAAAACTCA AATGAATTGA CGGGGGCCCG tgGggagtac gaccgcang tranaictca antganttga cgggegccce TGGGGAGTAC GGCCGCAAGG TTAAAACTCA AATGAATTGA CGGGGGCCCG tGGGGAGTAC GGCCGCAAGG TTAAAACTCA AATGAATTGA CGGGGGCCCG tgGgGagtac ggtcceanga ttanaictca antganttga cggggaccec tGgGGagtac ggtcccaiga ttanaictica antganttga cgggagcccc TGGGGAGTAC GGCCGCAAGG TTAAAACTCA AATGAATTGA CGGGGGCCCG tGGGGAgTAC GGCCGCAAGG TTAAAACTCA AATGAATTGA CGGGGGCCCG tGGGGAgTAC GGTCGCAAGA TTAAAACTCA AAGGAATTGA CGGGGGCCCG TGGGGAGTAC GGTCGCAAGA TTAAAACTCA AAG.AATTGA CGGGGGCCCG tGGGGAgTAC GGCCGCAAGG TTAAAACTCA AATGAATTGA CGGGGGCCCG TGGGGAGTAC GGTCGCAAGA TTAAAACTCA AAGGAATTGA CGGGGGCCCG tGGGGAGTAC GGTCGCAAGA TTAAAACTCA AAGGAATTGA CGGGGGCCCG TGGGGAGTAC GGTCGCAAGA CTGAAACTCA AAGGAATTGA CGGGGGCCCG tGGGGAGTAC GGCCGCAAGG CTGAAACTCA AAGGAATTGA CGGGGGCCCG TGGGGAGTAC GACCGCAAGG TTGAAACTCA AAGGAATTGA CGGGGGCCCG tGGGgAgtac gaccgcaigg ttganactca anggantrga cgggggccccg tGGGGAgTAC GGCCGCAAGG CTGAAACTCA AAGGAATTGA CGGGGGCCCG TGGGGAGTAC GACCGCAAGG TTGAAACTCA AAGGAATTGA CGGGGGCCCG tGgGgagtac gaccgcaigg ttgaiaictca angganttga cgggagccccg TGGGGAgTAC GACCGCAAGG TTGAAACTCA AAGGAATTGA CGGGGGCCCG tGGGGAGTAC GGCCGCAAGG TTAAAACTCA AATGAATTGA CGGGGGCCCG TGGGGAGTAC GGTCGCAAGA TTAAAACTCA AAGGAATTGA CGGGGGCCCG tgGggagtac ggccgcaigg tTaAAACTCA AAgGAATTGA CggGggcccg

SdB3 CACAAGCGGT GGAGCATGTG GTTTAATTCG ATGCAACGCG AAGAACCTTA
SdB4 CACAAGCGGT GGAGCATGTG GTTTAATTCG ATGCAACGCG AAGAACCTTA

GcB3
sdB1I
SdB12
SaB5
GcB13
GcB12
GcB4
SdB10
GcB10
GcB9
GcB8
GcB11
SdB7
Sab15 SdB9
SdB13
SdB14
GcB6
SaB8
GcB7 SdB6
GcB5
Consensus

SdB3
SdB4
GcB3
SdB11
SdB12
SdB5
GcB13
GcB12
GcB4
SdB10
Gcb10
GcB9
GcB8
GcB11
SdB15
SdB13
SdB14
GcB6
SdB8
GcB7
SdB6
GcB5
Consensus

CACAAGCGGT GGAGCATGTG GTtTAATTCG ATGCAACGCG AAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG ATGCAACGCG AAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG ATGCAACGCG AAGAACCTTAA CACAAGCGGT GGAGCATGTG GTTTAATTCG ATGCAACGCG AAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG ATGCTACGCG CAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG ATGCTACGCG CAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG AAGCAACGCG AAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG AAGCAACGCG CAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG ATGCAACGCG AAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG AAGCAACGCG AAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG AAGCAACGCG AAGAACCTTA CACAAGCAGT GGAGCATGTG GTTTAATTCG AAGCAACGCG AAGAACCTTA CACAAGCAGT GGAGCATGTG GTTTAATTCG AAGCGACGCG AAGAACCTTA CACAAGCAGT GGAGCATGTG GTTTAATYTCG AAGCAACGCG AAGAACCTTA CACAAGCAGT GGAGCATGTG GTTTAATTCG AAGCAACGCG AAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG AAGCAACGCG AAGAACCTTA CACAAGCAGT GGAGCATGTG GTTTAATTCG AAGCAACGCG AAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG ACGCAACGCG AAGAACCTTA CACAAGCGGT GGAGCATGTG GTTTAATTCG AAGCAACGCG CAGAACCTTA CACAAGCgGT GGAGCATGTG GTTTAATTCG A.GCAACGCG aAGAACCTTA

CCTACTCTTG ACATCCAGAG AA.tTCGCTA GAGATAGCTC AGTGCC.TTC CCTACACTTG ACATACAGAG AA.CTTACCA GAGATGGTTT GGTGCC. TTTC CCTACACTTG ACATACAGAG AA.CTTACCA GAGATGGTTT GGTGCC.TTC CCTACACTTG ACATACAGAG AA.CTTACCA GAGATGGTTT GGTGCC.TTC CCTACTCTTG ACATCCACAG AA.CTTTTCA GAGATGAATT GGTGCC.TTC CCTACTCTTG ACATCCAGAG AA.CTTAGCA GAGATCGTTT GGTGCC.TTC CCTACTCTTG ACATCCAGAG AA.GCCAGCG GAGACGCAGG TGTGCC. TTC CCTACTCTTG ACATCCAGAG AA.tTCGCTA GAGATAGCTT AGTGCC. TTC CCTACACTTG ACATACAGAG AA.CTTACCA GAGATGGTTT GGTGCC.TTC CCAAGCCTTG ACATCCTTGG AAtCTCGCAG AAACGCGAGA G.tgCC.tTC CCAAGCCTTG ACATCCTTGG AATCTCGCAG AAACGCGAGA GGTGCC.TTC CCTGGCCTTG ACATCCTGCG AA.CTTTCTA GAGATAGATT GGTGCC.TTC CCAGCCCTTG ACATTTGACG CT.ACAACCG GAGACGGTTG GTTCCC.TTC CCTGCCCTTG ACATACTGAG AA.CTTACCA GAGATGGTTT GGTGCC.TTC CCAGGTCTTG ACATCCTCTG AC.AACCCTA GAGATAGGGC TTTCCC.TTC CCAGGTCTTG ACATCCTCTG AC.AACCCTA GAGATAGGGC TTTCCCCTTTC CCAGGTCTTG ACATCCTCTG AC. AATCCTG GAGACAGGAC GTTCCCCTTC CCAGGTCTTG ACATCCTCTG AC. AATCCTG GAGACAGGAC GTTCCCCTTC CCAGGTCTTG ACATCCTTCG CT.ACTTCTA GAGATAGAAG GTTCCCCTTC CCAGGTCTTG ACATCCTCTG AC.CACTCTA GAGATAGAGC TTTCCCCTTC CCAGGTCTTG ACATCCTCTG AC. AATCCTA GAGATAGGAC TTTCCCCTTTC CCAGGTCTTG ACATCCTCTG AC. AATCCTG GAGACAGGAC GTTCCCCTTC CCTGGCCTTG ACATGCAGAG AA.CTTTCCA GAGATGGATT GGTGCC.TTC CCAGCCCTTG ACATTTGACG CT.ACAACCG GAGACGG.TT GGTTCCTTTC CCtgc.CTTG ACATcc.gag aa..tt.Cca GAGAt.G.tt ggTgCC.TTC GGGA.ACTCT GATAC.GGTG CTGCATGGCT GTCGTCAGCT CGTGTTGTGA GGGA. ACTCT GATACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTTGTGA GGGA. ACTCT GATACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTTGTGA GGGA. ACTGT GAGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTTGTGA GGGA. ATTCT GAGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTTGTGA GGGA.GCTCT GAGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTTGTGA

GcB12 GcB4
SdB10
GcB10 GcB9 GcB8
GcB11 SdB7
SdB15 SdB9
SdB13
SdB14
GcB6 SdB8 GcB7 SdB6 GcB5

Consensus

SdB11
SdB12 SdB5
GcB13
GcB12
GcB4
SdB10
GcB10 GcB9
GcB8
GcB11 SdB7
SdB15 SdB9
SdB13
SdB1.4
GcB6
SdB8
GcB7
SdB6
GcB5
Consensus

GGGA. ACTCT GAGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTTGTGA GGGA. ACTCT GATACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTGCTGA GGGA.ACCAG GTGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTCGTGA GGGA. ACCAG GTGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTCGTGA GGGA. ACGCA GTGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTCGTGA GGGG. ACGTC AGGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTCGTGA GGGA. ACTCA GATACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTCGTGA GGGG. ACAGA GTGACAGGTG GTGCATGGTT GTCGTCAGCT CGTGTCGTGA GGGGGACAGA GTGACAGGTG GTGCATGGTT GTCGTCAGCT CGTGTCGTGA GGGGGACAGA GTGACAGGTG GTGCATGGTT GTCGTCAGCC CGTGTCGTGA GGGGGACAGA GTGACAGGTG GTGCATGGTT GTCGTCAGCT CGTGTCGTGA GGGGGACGAA GTGACAGGTG GTGCATGGTT GTCGTCAGCT CGTGTCGTGA GGGGGACAGA GTGACAGGTG GTGCATGGTT GTCGTCAGCT CGTGTCGTGA GGGGGACAGA GTGACAGGTG GTGCATGGTT GTCGTCACCT CGTGTCGTGA GGGGGACAGA GTGACAGGTG GTGCATGGTT GTCGTCAGCT CGTGTCGTGA GGGA. ACTCT GACACAGGTG CTGCATGGCC GTCGTCAGCT CGTGTCGTGA GGGG. ACGTC AGGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTCGTGA GGGa. ACtc. gagACAGGTG cTGCATGGcT GTCGTCAGCT CGTGTcGTGA

AATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCCTATCC TTAGTTGCTA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCCTATCC TTAGTTGCTA AATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCCTATCC TTAGTTGCTA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCCTATCC TTAGTTGCTA AATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCCTATCC TTAGTTGCCA AATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTATCC TTGTTTGCCA AATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTATCC TTGTTTGCCA AATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCCTATCC TTATTTGCCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTAAGC TTAGTTGCCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCCTATCC CTATTTGCCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCCTATCC CTATTTGCCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTGTCC TTAGTTACCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTCGCCC TTAGTTGCCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCCTATCC TTATTTGCCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTGATC TTAGTTGCCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTGACC TTAGTTGCCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTGATC TTAGTTGCCA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTGATC TTAGTTGCCA GATGTTGGGT TAAGTCCCGT AACGAGCGCA ACCCCTATCC TTGGTTGCTA GATGT.GGGT TAAGTCCCGC AACGAGCGCA ACCCTCGCCC TTAGTTGCCA gATGTtGGGT TAAGTCCCGC AACGAGCGCA ACCCttatcC TTagTTGCcA

SdB3
SdB4
GcB3
SdB11
SdB12
SaB5
GcB13
GcB12 GcB4
SdB10
GcB10
GcB9 GCAGGTAATG CTGAGAACTC TAAGGAGACT GCCGGTGATA AACCGGAGGA GCGAGTAATG TCGGGAACTC TAGGGAGACT GCCGGTGATA AACCGGAGGA GCGAGTAATG TCGGGAACTC CAGGGAGACT GCCGGTGATA AACCGGAGGA GCGAGTCATG TCGGGAACTC CAGGGAGACT GCCGGTGATA AACCGGAGGA GCACGTTATG GTGGGAACTC TAGGGAGACT GCCGGTGATA AACCGGAGGA TCA. .TTAAG TTGGGCACTC TAAGTTGACT GCCGGTGACA AACCGGAGGA GCAC.TTCGG GTGGGAACTT TAGGGAGACT GTCGGTGATA ATTCGAAGGA GCAC.TTCGG GTGGGAACTI TAGGGAGACT GTCGGTGATA AT.CGAAGGA GCACGTTATG GTGGGCACTC TAGGGAGACT GCCGGTGACA AACCGGAGGA
GcB8 GCATTTAGT. .TGGGCACTC TAGGGGGACT GCCGGTGATA AGCCGGAGGA GcB11 GCACGTAATG GTGGGAACTC TAGGGAGACT GCCGGTGATA AACCGGAGGA SdB7 GCA. .TTTAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA SdB15 GCA. .TTCAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA SdB9 GCA..TTCAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA SdB13 GCA. .TTCAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA SdB14 GCA. TTTAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA GcB6 GCA. .TTCAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA SdB8 GCA. .TTTAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA GcB7 GCA. .TTCAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA SdB6 GCAGGTAATG CTGAGAACTC CAGGGAGACT GCCGGTGACA AACCGGAGGA
GcB5 GCA..TTTAG TTGG......
Consensus GCA..TtatG .TGggaactc ta.ggagact gccggtga.a aaccggagga
1251
1300
SdB3 AGGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGTGTA GGGCTACACA SdB4 AGGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGTGTA GGGCTACACA GcB3 AgGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGTGTA GGGCTACACA SdB11 AGGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGTGTA GGGCTACACA SdB12 AGGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGTGTA GGGCTACACA SdB5 AGGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGAGTA GGGCTACACA GcB13 AGGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGAGTA GGGCTACACA
GcB12 AGGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGAGTA GGGCTACACA GcB4 AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGATTT GGGCTACACA SaBlo AGGTGGGGAT GACGTCAAGT CATCATGGCC CTTATGGCTT GGGCTACACA GcB10 AGGTGGGGAT GACGTCAAGT CATCATGGCC CTTATGGCTT GGGCTACACA GcB9 AGGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGGCCA GGGCTACACA GcB8 AGGTGGGGAT GACGTCAAGT CCTCATGGCC CTTACGGGCT GGGCTACACA
GcB11 AGGTGGGGAC GACGTCAAGT CATCATGGCC CTTACGGGCA GGGCTACACA SdB7 AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA
SdB15 AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA
SdB9 AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA
SdB13 AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA
SdB14 AGGTGGGGAC GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA GcB6 AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA SdB8 AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA GcB7 AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA SdB6 AGGTGGGGAT GACGTCAGGT CATCATGGCC CTTACGGCCA GGGCTACACA
GcB5
Consensu
aggtgggga. gacgtcaagt catcatggcc cttacg.... gggctacaca
1301
1350
SdB3 C.TGCTACAA TGGCGCATAC AGAGTGCTGC GAACCTGCGA AGGTAAGCGA SdB4 CGTGCTACAA TGGCGCATAC AGAGTGCTGC GAACCTGCGA AGGTAAGCGA GcB3 CGTGCTACAA TGGCGCATAC AGAGTGCTGC GAACTCGCGA GAGTAAGCGA SaB11 CGTGCTACAA TGGCGCATAC AGAGTGCTGC GAACTCGCGA GAGTAAGCGA
sdB12 CGTGCTACAA TGGCGCATAC AGAGTGCTGC GAACTCGCGA GAGTAAGCGA SdB5 CGTGCTACAA TGGCGCATAC AGAGGGCAGC CAACTTGCGA AAGTGAGCGA GcB13 CGTGCTACAA TGGCGCATAC AGAGGGCAGC AAGCTAGCGA TAGTGAGCGA
GcB12 CGTGCTACAA TGGCGTATAC AGAGGGTTGC AAAGCCGCAA GGTCTAGCTA GcB4 CGTGCTACAA TGGACAATAC AAAGGGCAGC TAAACCGCGA GGCCAAGCAA
SdB10 CGTGCTACAA TGGCCGGTAC AATAGGTCGC TAACCCGCGA GGGGGAGTAA
GcB10 CGTGCTACAA TGGCCGGTAC AATAGGTCGC TAACCCGCGA GGGGGAGTAA GcB9 CGTGCTACAA TGGTGCATAC AGACGGTTGC CAAGCCGCGA GGTGGAGCTA GcB8 CGTGCTACAA TGGCGGTGAC AGTGGGCAGC GACCTCGCGA GGGGAAGCTA
GcB11 CGTGCTACAA TGGCATGTAC AGAGGGATGC GAACTCGCGA GAGCAAGCGG SdB7 CGTGCTACAA TGGACAGAAC AAAGGGCTGC GAGACCGCAA GGTTTAGCCA SdB15 CGTGCTACAA TGGATGGTAC AAAGGGCTGC AAACCTGCGA AGGTAAGCGA SdB9 CGTGCTACAA TGGACGGTAC AAAGGGCAGC AACACCGCGA GGTGAAGCGA
SdB13 CGTGCTACAA TGGACGGTAC AAAGGGCAGC AACACCGCGA GGTGAAGCGA
SdB14 CGTGCTACAA TGGATGGTAC AAAGGGCAGC AAAACCGCGA GGTTGAGCGA GcB6 CGTGCTACAA TGGATGGTAC AAAGGGTTGC GAAGCCGCGA GGCCAAGCCA SdB8 CGTGCTACAA TGGATGGTAC AAAGGGCTGC AAGACCGCGA GGTTTAGCCA
GcB7
SdB6
GcB5
Consensus
cgtgctacaa tggc...tac agagggctgc .aacccgcga gggt.agc.a
13511400
SdB3 ATCACTTAAA GTGCGTCGTA GTCCGGATTG GAGTCTGCAA CTCGACTCCA sdB4 ATCACTTAAA GTGCGTCGTA GTCCGGATTG GAGTCTGCAA CTCGACTCCA GcB3 ATCACTTAAA GTGCGTCGTA GTCCGGATTG GAGTCTGCAA CTCGACTCCA
SdB11 ATCACTTAAA GTGCGTCGTA GTCCGGATTG GAGTCTGCAA CTCGACTCCA
SdB12 ATCACTTAAA GTGCGTCGTA GTCCGGATTG GAGTCTGCAA CCCGACTCCA
SdB5 ATCCCAAAAA GTGCGTCGTA GTCCGGATTG GAGTCTGCAA CTCGACTCCA
GcB13 ATCCCAAAAA GTGCGTCGTA GTCCGGATTG GAGTCTGCAA CTCGACTCCA
GcB12 ATCTCACAAA GTACGTCGTA GTCCGGATTG GAGTCTGCAA CTCGACTCCA
GcB4 ATCCCATAAA GTTGTTCTCA GTTCGGATTG TAGTCTGCAA CTCGACTACA
SdB10 ATCCGAAAAA GCCGGTCGTA GTCCGGATCG AAGTCTGCAA CTCGACTTCG
GcB10 ATCCGAAAAA GCCGGTCGTA GTCCGGATCG AAGTCTGCAA CTCGACTTCG
GcB9 ATCTGAGAAA GTGCATCGTA GTCCGGATTG GAGTCTGCAA CTCGACTCCA
GcB8 ATCTCTAAAA GCC.GTCTCA GTTCGGATTG TTCTCTGCAA CTCGAGAGCA
GcB11 ACCCCAAAAA GCATGTCGTA GTCCGGATCG GAGTCTGCAA CTCGACTCCG
SdB7 ATCCCACAAA TCTGTTCTCA GTTCGGATCG CAGTCTGCAA CTCGACTGCG
SdB15 ATCCCATAAA GCCATTCTCA GTTCGGATTG CAGGCTGCAA CTCGCCTGCA SdB9 ATCCCATAAA GCCGTTCTCA GTTCGGATTG CAGGCTGCAA CTCGCCTGCA SdB13 ATCCCATAAA GCCGTTCTCA GTTCGGATTG CAGGCTGCAA CTCGCCTGCA SdB14 ATCCCATAAA GCCATTCTCA GTTCGGATTG CAGGCTGCAA CTCGCCTGCA GcB6 ATCCCAAAAA GCCATTCTCA GTTCGGATTG TAGGCTGCAA CTCGCCTACA SđB8 ATCCCATAAA ACCATTCTCA GTTCGGATTG TAGGCTGCAA CTCGCCTACA
ATCCCTTAAA GTGCGTCGTA GTCCGGATCG CAGTCTGCAA CTCGACTGCG

1401
1450

SdB3
SdB4
GcB3
SdB11
SdB12
SdB5
GcB1
GcB12
GcB
SdB10
GcBI
GcB9
GcB8
GcBI
SdB7
SdB15
SdB9
SdB1
SdB1
GcB
SdB8
GcB7
TGAAGTCGGA ATCGCTAGTA ATCGCGTATC AG.AATGACG CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGCGTATC AG.AATGACG CGGTGAATAC TGAAGTCAGA ATCGCTAGTA ATCGCGTATC AG.AATGACG CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGCGTATC AG. AATGACG CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGCATATC AG. AATGATG CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGTGGATC AG.AATGCCA CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGTGAATC AG.AATGTCA CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGTAGATC AG.AATGCTA CGGTGAATAC TGAAGCTGGA ATCGCTAGTA ATCGTAGATC AG.CATGCTA CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGCGAATC AGCAATGTCG CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGCGAATC AGCAATGTCG CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGTGAATC AG.AATGTCA CGGTGAATAC TGAAGTTGGA ATCGCTAGTA ATCGCGTAAC AG.CATGACG CGGTGAATAC TGAAGTCGGA ATCGCTAGTA ATCGTAGATC AG. AATGCTA CGGTGAATAC TGAAGCTGGA ATCGCTAGTA ATCGCGGATG AG.CATGCCG CGGTGAATAC TGAAGCCGGA ATCGCTAGTA ATCGCGGATC AG.CATGCCG CGGTGAATAC TGAAGCCGGA ATTGCTAGTA ATCGCGGATC AG.CATGCCG CGGTGAATAC TGAAGCCGGA ATTGCTAGTA ATCGCGGATC AG. CATGCCG CGGTGAATAC TGAAGCCGGA ATTGCTAGTA ATCGCGGATC AG.CATGCCG CGGTGAATAC TGAAGCCGGA ATTGCTAGTA ATCGCGGATC AG.CATGCCG CGGTGAATAC TGAAG

```
        SdB6
        GcB5
Consensus
        tgaagtcgga atcgctagta atcgcg.atc ag.aatg.cg cggtgaatac
        1451
        1500
        SdB3 GTTCCCGGGC CTTGCACACA CCG
        SdB4 GTTCCCGGGC CTTGCACACA CCG..GCCGA TTCCAGCACA CTGGCGGCCG
        GcB3 GTTCCCGGGC CTTGCACACA CC
    SdB11 G.
    SdB12 GTTCCCGGGC CTTGCACACA CCGAAGCCGA A......................
    SdB5 GTTCCCGGGG CTTGCACACA CCG
    GcB13 GTTCCCGGGC CTTGTACACA CCG....... .........................
    GcB12 GTTCCCGGGC CTTGCACACA CCG
    GcB4 GTTCCCGGGC CTTGCACACA CCG
    SdB10 GTTCCCGGGC CTTGCACACA CCG
    GcB10 GTTCCCGGGC CTTGCACAC.
    GcB9 GTTCCCGGGC CTTGCACACA CCG
    GTTCCCGGGC CTTGCACACA CC
    GcB11 GTTCCCGGGC CTTGTACACA CCGAAGCC.
    SdB7 GTTCCCGGGC CTTGCACACA CC
    SdB15 GTTCCCGGGC CTTGCACACA CCGAAGCC
    SdB9 GTTCCCGGGC CTTGCACACA CCGAAGC.
    SdB13 GTTCCCGGGC CTTGCACACA CC.
    SdB14 GTTCCCGGGC CTTGTACACA CCG
    GcB6 GTTCCCGGGC CTTGTACACA CC......... ...........................
    SdB8
        GcB7
        SaB6
        GcB5
Consensus gttcccgggc ettgcacaca ccg
```


Appendix B

Alignment of the 18 sequences of Archaea clones utilized for the phylogenetic three showed in Figs.3.33-3.34-3.35.

Multalin version 5.4.1
Copyright I.N.R.A. France 1989, 1991, 1994, 1996
Published research using this software should cite Multiple sequence alignment with hierarchical clustering
F. CORPET, 1988, Nucl. Acids Res., 16 (22), 10881-10890

Symbol comparison table: blosum62
Gap weight: 12
Gap length weight: 2
Consensus levels: high $=90 \%$ low $=50 \%$
Consensus symbols:
! is anyone of IV
\$ is anyone of LM
$\%$ is anyone of $F Y$
\# is anyone of NDQEBZ

MSF: 1453	Check:					
Name: AJ347776	Len:	1453	Check:	6697	Weight:	0.55
Name: AJ347774	Len:	1453	Check:	7786	Weight:	0.55
Name: GcAr1	Len:	1453	Check:	649	Weight:	0.88
Name: GcAr11	Len:	1453	Check:	961	Weight:	0.88
Name: GcAr13	Len:	1453	Check:	604	Weight:	0.88
Name: Gcarl	Len:	1453	Check:	1029	Weight:	0.88
Name: Gcar2	Len:	1453	Check:	1862	Weight:	0.91
Name: GcAr17	Len:	1453	Check:	389	Weight:	0.91
Name: Gcar4	Len:	1453	Check:	741	Weight:	0.91
Name: Gcar3	Len:	1453	Check:	1352	Weight:	0.91
Name: Gcar8	Len:	1453	Check:	672	Weight:	0.91
Name: GcAr14	Len:	1453	Check:	2144	Weight:	0.91
Name: GcAr15	Len:	1453	Check:	5042	Weight:	0.91
Name: GcAr7	Len:	1453	Check:	2336	Weight:	0.91
Name: Gcarl2	Len:	1453	Check:	4589	Weight:	0.88
Name: GcArl6	Len:	1453	Check:	3608	Weight:	0.88
Name: GcAr9	Len:	1453	Check:	2097	Weight:	0.91
Name: GcArl0	Len:	1453	Check:	3775	Weight:	0.94
Name: GcAr5	Len:	1453	Check:	9895	Weight:	1.37
Name: GcAr6	Len:	1453	Check:	3881	Weight:	3.07
Name: Consensus	Len:	1453	Check:	1029	Weight:	0.00

//

AJ347776 . TCCGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
AJ347774 . . CTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr1 TTCCGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
Gcarl1 tTCCGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr13 TTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr18 tTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr2 TTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcArl7 TTCCGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr4 tTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr3 tTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr8 tTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr14 TTCCGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr15 TXXXGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr7 TTCCGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr12 TTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr16 TTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr9 TTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA
GcAr10 TXXXGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA

GcAr5
GcAr6
Consensus

AJ347776
AJ347774
GcAr1
GcAr11
GcAr13
GcAr18
GcAr2
GCAr17
GcAr4
GcAr3
GcAr8
GcAr14
GcAr15
GcAr7
GcArl2
GcAr16 GcAr9
GcAr10 GcAr5 GcAr6
Consensus

AJ347776
AJ347774
GcAr1
GcArl1
GcArl3
GcAr18
GcAr2
GcAr17
GcAr4
GcAr3
GcAr8
GcAr14
GcAr15
GcAr7
GcAr 12
GCAr16
GcAr9
GcAr10
GcAr5
GcAr6
Consensus

TTCCGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA TTCTGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA TtCtGGTTGA TCCTGCCGGA CCTGACTGCT ATCGGATTGA TACTAAGCCA

51

100
tGCGAgTCAT TGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tGCGAGTCAT TGTAGCAATA CAAGGCATAC GGCTCAGTAA CGCGTAGTCA TGCGAGTCAT TGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tGCGAgTCAT tGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA TGCGAGTCAT TGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tGcgagtcat tgtagcaata canggcagac ggctcagtan cgcgtagtca tGCGAGTCAT TGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tGCGAGCCAT TGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tGCGAGTCAT TGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCATAGTCA tGCGAGTCAT TGTAGTAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tGCGAGTCAT TGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tGCGAGTCAT TGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tgcgagtcat tgragcaita cangccagac ggctcagtan cgcgtagtca tGCGAGTCAT TGTAGCAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tGCGAGTCAT TGTAGTAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA tGCgagtcat tgtagcanta canggcagac ggctcagtan cgcgtagtca tGCGAGTCAT TGTAGcAATA CAAGGCAGAC GGCTCAGTAA CGCGTAGTCA

ACCTAACCTA TGGACGGGAA TAACCTCGGG AAACTGAGAA TAATGCCCGA ACCTAACCTA TGGACGGGAA TAACCTCGGG AAACTGAGAA TAATGCCCGA ACCTACCCTA TGGACGGGAA TAACCTCGGG AAACTGAGTA TAATGCCCGA ACCTACCCTA TGGACGGGAA TAACCTCGGG AGACTGAGTA TAATGCCCGA ACCTACCCTA TGGACGGGAA TAACCTCGGG AAACTGAGTA TAATGCCCGA

TAGAACACTA TACCTGGAAT GGTTTGTGTT CCAAATGATT TATCGCCGTA TAGAACATTG TGCCTGGAAT GGTTTATGTT CCAAATGATT TATCGCCGTA TAGAACACTA TGCCTGGAAA GGTTTGTGTT CCAAACGATT TATCGCCGTA

GcAr4
GcAr3
GcAr8
GcAr14
GcAr15
GcAr7
GcAr12
GcAr16
GcAr9
GcAr10
GcAr5
GcAr 6
Consensus

AJ347776
AJ347774
GcArl
GcAr11
GcAr13
GcAr18
GcAr2
GcAr17
GcAr4
GcAr3
GcAr8
GcAr14
GcAr15
GcAr7
GcAr12
GcAr16
GcAr9
GcArl0
GcAr5
GcAr 6
Consensus

AJ347776
AJ347774
GcAr1
GcAr11
GcAr13
GcAr18
GcAr2
GcAr17 GcAr4 GcAr3 GcAr8
GcAr14
GcAr15 GcAr7
GcAr12
GcAr16 GcAr9
GcAr10 GcAr5 GcAr6
Consensus

TAGAACACTA TGCCTGGAAA GGTTTGTGTT CCAAACGATT TATCGCCGTA TAGAACACAA TGCCTGGAAC GGTTTGTGTT CCAAATGATT TATCGCCGTA TAGAACACTA TGCCTGGAAA GGTTTGTGTT CCAAACGATT TATCGCCGTA TAGAACACTA TGCCTGGAAa GGTTTGTGTT CCAAACGATT TATCGCCGTA

201
250
GGATGGGACT GCGGCCTATC AGTTTGTTGG TGAGGTAATG GCCCACCAAG GGATGGGACT GCGGCCTATC AGTTTGTTGG TGAGGTAATG GCCCACCAAG

ACTATTACAG GTACGGGCTC TGAGAGGAGT AGCCCGGAGA TGGGTACTGA ACTATTACAG GTACGGGCTC TGAGAGGAGT AGCCCGGAGA TGGGTACTGA

AJ347776

AJ347776
AJ347774 GcAr1
GcAr11
GcAr13
GcAr18 GcAr2 GcAr17 GcAr4 GcAr3 GcAr8
GcAr14
GcAr15 GcAr7
GcAr12
GcAr16 GcAr9 GcAr10 GcAr5 GcAr6
Consensus
gacacgancc Caggacctat ggggcgcagc aggcgagana actutcceant GACACGGACC CAGGCCCTAT GGGGCGCAGC AGGCGAGAAA ACTTTGCAAT GACACGGACC CAGGCCCTAT GGGGCGCAGC AGGCGAGAAA ACTTTTGCAAT GACACGGACC CAGGCCCTAT GGGGCGCAGC AGGCGAGAAA ACTTTGCAAT gacacgancl caggccctat gggccgcagc aggcgagana actutgcait gacacggacc caggccctat ggggcgcagc aggcgagana actttgcait gacacgancc CagGccctat ggggcccacc aggccagana actutgcant GACACGGACC CAGGCCCTAT GGGGCGCAGC AGGCGAGAAA ACTTTGCAAT GACACGGACC CAGGCCCTAT GGGGCGCAGC AGGCGAGAAA ACTTTTGCAAT GACACGGACC CAGGCCCTAT GGGGCGCAGC AGGCGAGAAA ACTTTGCAAT GACACGGACC CAGGCCCTAT GGGGCGCAGC AGGCGAGAAA ACTTTGCAAT GACACGGACC CAGGCCCTAT GGGGCGCAGC AGGCGAGAAA ACTTTGCAAT

GTGCGAAAGC ACGACAAGGT TAATCCGAGT GGTTTCTGCT AAAGGAACCT GTGCGAAAGC ACGGCAAGGT TAATCCGAGT GGTTTCTGCT AAAGGAACCT GTGCGAAAGC ACGACAAGGT TAATCCGAGT GGTTTCTGCT AAAGGAACCT GTGCGAAAGC ACGACAAGGT TAATCCGAGT GGTTTCTGCT AAAGGAACCT GTGCGAAAGC ACGACAAGGT AAATCCGAGT GGTTTCTGCT AAAGGAACCT GTGCGAAAGC ACGACAAGGT TAATCCGAGT GGTTTCTGCT AAAGGAACCT
tTTGTTAGTC CTAGAAACAC TAACGAATAA GGGGTGGGCA AGTTCTGGTG
TTTGTCAGTC CTAGAAACAC TGATGAATAA GGGGTGGGCA AGTTCTGGTG
tTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG
TTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG
TTTGACAGTC CTAAAAACAC TGTCGAATAA GGGGTGGGCA AGTTCTGGTG TTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG tTTGGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG

GcAr14
GeAr15
GcAr7
GcAr12
GcAr16 GcAr9
GcAr10 GcAr5
GcAr6
Consensus

AJ347776
AJ347774
GcAr1
GcAr11
GcAr13
GcAr18
GcAr2
GcAr17
GcAr4
GcAr3
GcAr8
GcAr14
GcAr15
GcAr7
GcAr12
GcAr16
GcAr9
GcAr10
GcAr5
GcAr6
Consensus

AJ347776
AJ347774
GcAr1
GcAr11
GcAr13
GCAr18
GcAr2
GcAr17
GcAr4
GcAr3
GcAr8
GcAr14
GcAr15
GcAr7
GcAr12
GcAr16
GcAr9
GcAr10
GcAr5
GcAr6
Consensus

TTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG TTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG tTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG tTTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG TTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG tTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG tTTGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG tTTGGACAGTC CTAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG tTTGACAGTC CCAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG tTTGACAGTC CtAAAAACAC TGTTGAATAA GGGGTGGGCA AGTTCTGGTG

451
500
TCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT.TAT. tCAgCcGccg cggtadan. C cagcacctca agtggtcagg atgat. tat. TCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT. TAT. tCAgCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT. TAT. TCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT.TAT. TCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAC.TAT. tCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT.TAT. tCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGATATATA ttatccgccg cgetanai.c cagcacctca agtggtcagg atgatatata TCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT.tat. tCAGCCGCCG CGGTAAAA.c CAgCACCTCA AgTGgTCAGG Atgatatata tCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT.TAT. TCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT.TAT. tCATCCGCCG CGGTAAAAAC CAGCACCTCA AGTGGTCAGG ATGATATATA tCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT.TAT. tCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT. TAT. tCAGCCGCCG CGGTAAAA.C CAGCACCTCA AGTGGTCAGG ATGAT.tAT.

501
 550

TGGGCCTAAA GCATCCGTAG CCGGCTCTGT AAGTTTTCGG TTAAATCTGT TGGGCCTAAA GCATCCGTAG CCGGCTCTGT AAGTTTTTCGG TTAAATCTGT TGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTTCGG TTAAATCTGT tGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTCGG TTAAATCTGT tGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTMTTCGG TTAAATCTGT TGGGCCTAAA ACATCCGTAG CCGGCTCTGT TAGTTTTCGG TTAAATCTGT tGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTCGG TTAAATCTGT TGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTTCGG TTAAATCTGT tGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTTCGG TTAAATCTGT tgGgcctana gcatccgrag ccgactetgr tagtuttcge tranatctat TGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTTCGG TTAAATCTGT tGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTTCGG TTAAATCTGT tgGGCCtaA GCATCCGTAG CCGGCTCTGT TAGTTTTTCGG TTAAATCTGT TGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTITTCGG TTAAATCTGT tGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTCGG TTAAATCTGT TGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTCGG TTAAATCTGT tGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTCGG TTAAATCTGT TGGGCCTAAA GCATCCGTAG CCGGCTCTGT TAGTTTTTCGG TTAAATCTGT

AJ347774
GcAr1
GcAr11
GcAr13
GcAr18 GcAr2
GcAr17 GcAr 4 GcAr3 GcAr8
GcAr14
GcAr15
GcAr 7
GcAr12
GcAr16 GcAr9
GcAr10 GcAr5 GcAr 6
Consensus

AJ347776
AJ347774 GcAr1
GcAr11
GcAr13
GcAr18
GcAr2
GcAr17 GcAr4 GcAr 3 GcAr8
GcAr14
GcAr15 GcAr7
GcAr12
GcAr16 GcAr9
GcAr10 GcAr5 GcAr6
Consensus

AJ 347776
AJ347774
GcAr1
GcAr11
GcArl3
GcAr18 GcAr2
GcAr17 GcAr4 GcAr3 GcAr8 GcAr14 GcAr15 GcAr7

ACGCTCAACG TACAGGCTGC CGGGAATACT GCATAGCTAG GGAGTGGGAG ACGCTCAACG TACAGGCTGC CGGAAATACT GCAGAGCTAG GGAGTGGGAG ACGCTCACCG TACAGGCTGC CGGAAATACT GCAGAGCTAG GGAGTGGGAG ACGCTCAACG TACAGGCTGC CGGAAATACT GCAGAGCTAG GGAGTGGGAG GCGCTCAACG TACAGGCTGC CGGAAATACT ACAGAGCTAG GGAGTGGGAG ACGCTCAACG TACAGGCTGC CGGAAATACT GCAGAGCTAG GGAGTGGGAG ACGCTCAaCG TACAGGCTGC CGGAAATACT GCAGAGCTAG GGAGTGGGAG 601

650
AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA. . . .TCCT TrGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA. . . .TCCT TTGATCTATT AgGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA. . . .TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA. . . TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTGA GAGATATCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTAA AA....TCCT TTGATCTATT AGGTAGACGG TACTCGGTAG GAAGGGGTaA aA. . . .TCCT TTGATCTATT

700
GATGACC.CC TGTGGCGAAG GCGGTCTACC AGAACACGTC CG.ACGGTGA GATGACCACC TGTGGCGAAG GCGGTTTACC AGAACACGTC CG.ACGGTGA GATGACCACC TGTGGCGAAG GCGGTCTACC AGAACACGTC CG.ACGGTGA GATGACCACC TGTGGCGAAG GCGGTCTACC AGAACACGTC CG.ACGGTGA GATGACCACC TGTGGCGAAG GCGGTTTACC AGAACACGTC CG.ACGGTGA GATGACCACC TGTGGCGAAG GCGGTCTACC AGAACACGTC CG.ACGGTGA

GcAr12
GcAr16
GcAr9
GcAr10 GcAr5 GcAr6
Consensus

AJ347776
AJ347774 GcAr1 GcAr11
GcAr13
GcAr18 GcAr2 GcAr17 GcAr4 GcAr3 GcAr8
GcAr14
GcAr15 GcAr7
GcAr12
GcAr16 GcAr9
GcAr10 GcAr5 GcAr6
Consensus

AJ347776
AJ347774 GcAr1
GcAr11
GcAr13
GcAr18 GcAr2
GcAr17 GcAr 4 GcAr3 GcAr8 GcAr14 GcAr15 GcAr7
GcAr12
GcAr16 GcAr9 GcAr10 GcAr5 GcAr6
Consensus

AJ347776
AJ 347774 GcAr1 GcAr11

GATGACCACC TGTGGCGAAG GCGGTCTACC AGAACACGTC CG.ACGGTGA GATGACCACC TGTGGCGAAG GCGGTCTACC AGAACACGTC CG. ACGGTGA GATGACCACC TGTGGCGAAG GCGGTCTACC AGAACACGTC CGTACGGTGA GATGACCAC. TGTGGCGAAG GCGGTCTACC AGAACACGTC CG.ACGGTGA GATGACCACC TGTGGCGAAG GCGGTTTACC AGAACACGTC CG.ACGGTGA GATGACCACC TGTGGCGAAG GCGGTCTACC AGAACACGTC CG.ACGGTGA GATGACCACC TGTGGCGAAG GCGGTcTACC AGAACACGTC CG.ACGGTGA

GGGATGAAAG CTGGGGGAGC AAACCGGATT AGATACCCGG GTAGTCCCAG GGGATGAAAG CTGGGGGAGC AAACCGGATT AGATACCCGG GTAGTCCCAG GGGATGAAAG CTGGGGGAGC AAACCGGATI AGATACCCGG GTAGTCCCAG GGGATGAAAG CTGGGGGAGC AAACCGGATT AGATACCCGG GTAGTCCCAG GGGATGGAAG CTGGGGGAGC AAACCGGATT AGATACCCGG GTAGTCCCAG GGGATGAAAG CTGGGGGAGC AAACCGGATT ATATACCCGG GTAGTCCCAG GGGATGAAAG CTGGGGGAGC AAACCGGATT ATATACCCGG GTAGTCCCAG GgGATgAAAG CTGGGGGAGC AAACCGGATT ATATACCCGG GTAGTCCCAG GGGATGAAAG CTGGGGGAGC AAACCGGATF ATATACCCGG GTAGTCCCAG GGGATGAAAG CTGGGGGAGC AAACCGGATT AGATACCCGG GTAGTCCCAG GGGATGAAAG CTGGGGGAGC AAACCGGATT AGATACCCGG GTAGTCCCAG GGGATGAAAG CTGGGGGAGC AAACCGGATT AGATACCCGG GTAGTCCCAG GGGATGAA.
GGGATGAAag ctgggggagc aaaccggatt agatacccgg gtagtcccag

CTGTAAACTA TGC. AAACTC AGTGATGCAT TGGGCTTGTG GCCAATGCAG CTGTAA. CTA TGC. AAACTC AGTGATGCAT TGG.CTTGTG .CCAATGCAG CTGTAAACTA TGC.AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC. AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC. AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC.AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC.AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC.AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC. AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC.AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC.AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC. AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC. AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGCATAACTC AGTGATGCAT TGG.CTTGTG GCCA.TGCAG CTGTAAACTA TGC.TAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC.AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC.AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC. AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG CTGTAAACTA TGC.AAACTC AGTGATGCAT TGG.CTTGTG GCCAATGCAG
ctgtaaacta tgc.aaactc agtgatgcat tgg.cttgtg gccaatgcag

TGCTGCAGGG AAGCCGTTAA GTTTGCCGCC TGGGAAGTAC GTACCCAAGT TGCTGCAGGG AAGCCGTTAA GTTTGCCGCC TGGGAAGTAC GTACGCAAGT TGCTGCAGGG AAGCCGTTAA GTTTGCCGCC TGGGAAGTAC GTACGCAAGT TGCTGCAGGG AAGCCGTTAA GTTTGCCGCC TGGGAAGTAC GTACGCAAGT

GcAr13
GcAr18
GcAr2
GcAr17
GcAr4
GcAr3
GcAr8
GcAr14
GcAr15
GcAr7
GcAr12
GcAr16
GcAr9
GcAr10
GcAr5
GcAr6
Consensus

AJ347776 AJ347774

GcAr1
GcAr11
GcAr13
GcAr18
GcAr2

GcAr17

GcAr4
GcAr 3
GcAr8
GcAr14
GcAr15
GcAr7
GcAr12
GcAr16
GcAr9
GcAr10 GcAr5
GcAr6
Consensus

AJ347776 AJ347774

GcAr1
GcAr11
GcAr13
GcAr18
GcAr2
GcAr17
GcAr4
GcAr3
GcAr8
GcArl4
GcAr15
GcAr7
GcAr12
GcAr16
GcAr9

TGCTGCAGGG AAGCCGTTAA GTTTGCCGCC TGGGAAGTAC GTACGCAAGT tgctgcagge angccgttan gtttgccgcc tgggangiac gtacgcaigt tGCTGCAGGG AAGCCGTTAA GTTTGCCGCC TGGGAAGTAC GTACGCAAGT
 tGCTGCAGGG AAGCCGTTAA GTTTGCCGCC TGGGAAGTAC GTACGCAAGT
 TGCTGCAGGG AAGCCGTTAA GTTTGCCGCC TGGGAAGTAC GTACGCAAGT tGCTGCAGGG AAGCCGTTAA GTTTGCCGCC TGGGAAGTAC GTACGCAAGT
tgctgcaggg aagccgttaa gtttgccgcc tgggaagtac gtacgcaagt

$851 \quad 900$

ATGAAACTTA AAGGAATTGG CGGGGGAGCA CCACAAGGGG TGAAGCCTGC ATGAAACTTA AAGGAATTGG CGGGG.AGCA CCACAAGGGG TGAAGCCTGC ATGAAACTTA AAGGAATTGG CGGGGGAGCA CCACATAGGG TGAAGCCTGC ATGAAACTTA AAGGAATTGG CGGGGGGGCA CCACAAGGGG TGAAGCCTGC ATGAAACTTA AAGGAATTGG CGGGGGAGCA CCACAAGGGG TGAAGCCTGC
atgaaactta aaggaattgg cgggggagca ccacaagggg tgaagcctgc

GGTTC. AATT GGAGTCAACG CCAAAAATCT TACCCGGAGA GACAGCAGAA GGTTC.AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC.AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC.AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC.AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGG GACAGCAGAA GGTTC.AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTCCAATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC.AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA

GcAr10
GcAr5
GcAr6
Consensus

AJ347776
AJ347774
GcAr1
GcAr11
GcAr13
GcAr18
GcAr2
GcAr17
GcAr4
GcAr3
GcAr8
GcAr14
GcAr15
GcAr7
GcAr12
GcAr16 GcAr9
GcAr10
GcAr5
GcAr6
Consensus

AJ347776
AJ347774
GcAr1
GcAr11
GcAr13
GcAr18
GcAr2
GcAr17
GcAr4
GcAr3
GcAr8
GcAr14
GcAr15
GcAr7
GcAr12
GeAr16
GcAr9
GcAr10 GcAr5 GcAr6
Consensus

GGTTC.AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA GGTTC. AATT GGAGTCAACG CCAGAAATCT TACCCGGAGA GACAGCAGAA ggttc.aatt ggagtcaacg ccagaaatct tacccggaga gacagcagaa

TGAAGGTCAA GCTGAAGACT TTACCAGACA AGCTGAGAGG TGGTGCATGG TGAAGGTCAA GCTGAAGACT TTACCAGACA AGCTGAGAGG TGGTGCATGG TGAAGGTCAG GCTAAAGACC TTACCAGACA AGCTGAGAGG TGGTGCATGG TGAAGGTCAG GCTGAAGACC TTACCAGACA AGCTGAGAG. TGGTGCATGG TGAAGGTCAG GCTGAAGACC TTACCAGACA AGCTGAGAGG TGGTGC..
tgaaggtcag getgaagacc ttaccagaca agctgagagg tggtgcatgg

1001

1050
CCGTCGCCAG CTCGTGCCGT GAGATGTCCT GTTAAGTCAG GTAACGAGCG CCGTCGCCAG CTCGTGCCGT GAGATGTCCT GTTAAGTCGG GTAACGAGCG CCGTCGCCAG CTCGTGCCGT GAGATGTCCT GTTAAGTCAG GTAACGAGCG
ccgtcgccag ctcgtgccgt gagatgtcct gttaagtcag gtaacgagcg
1051
1100
AJ347776 AGATCCCTGC CTCTAGTTGC CTCCATTACT CTCAGGAGTA GTGGGGCGAA GcAr1
GcAr11
GcAr13
GcAr18
GcAr2

AJ347774 AGATCCCTGC CTCTAGTTGC CACCATTACT CTCAGGAGTA GTGGGGCGAA AGA. AGA. AGA.
AGA.
AGA.

```
    GcAr17 AGA....... .......... ......................................
    GcAr4 AGA....... ...........................................................
    GcAr3 AGA....... ........... ........... ........... ................
    GcAr8 AGA....... .......... ........... ........... .............
GcAr14 AGA....... .......... .....................................
GcAr15 AGA....... .......... ........... ........... .............
    GcAr7 AGA
    GcAr12 AGA
GcAr16 AGA
    GcAr9 AGA
GcAr10 AGA
    GcAr5
Consensus aga
```


[^0]: $\mathrm{Tm}=$ melting temperature of the primer
 Tann = annealing temperature for PCR
 PCR cycles $=$ number of cycles for PCR

[^1]: $\mathrm{Tm}=$ melting temperature of the primer
 Tann = annealing temperature for PCR
 PCR cycles $=$ number of cycles for PCR

