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SUMMARY

The response of cancer cells to treatment with anticancer agents is 

mediated by several factors, among which the functionality of proteins 

participating in the control of cell cycle progression and genomic integrity 

is an important one. The studies reported here were aimed at 

understanding the role of crucial proteins, participating in key processes 

in normal cells, in determining cellular sensitivity towards the cytotoxcity 

of anticancer agents. Four different proteins have been investigated: p53, 

p73 and the two cell cycle checkpoint proteins CHKl and CHK2.

P53 has been selected because of its undisputed role in tumor 

formation and development, for its high prevalence of mutations in 

hum an cancer and for its role in normal cells in response to different 

stimuli. P73 is a structural homologue of p53 which shares functions with 

p53 but in addition has other very distinct functions. The two checkpoint 

proteins CHKl and CHK2 control cell cycle progression subsequent to 

DNA damage, particularly during the S and 02  phases of the cell cycle, 

and their importance is currently under intensive elucidation.

The studies have been conducted in isogenic cell systems, to 

minimize as much as possible interference by other alterations invariably 

present when two different cell types are considered. Using two widely 

used anticancer agents, cisplatinum (DDP) and taxol, it was shown that for 

both drugs the presence of functional p53 was associated with resistance
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to drug-induced cytotoxicity. These results have been obtained in 

different experimental systems of human cancer cells of epithelial origin 

such as the colon carcinoma cell line HCT116 and the ovarian cancer cell 

line A2780. With respect to p73, the work took advantage of the 

availability in the laboratory of two subclones overexpressing p73 derived 

from a hum an ovarian cancer cell line by transfection with the p73 alpha 

cDNA. These two clones over-express DNA repair genes, particularly 

those participating in the nucleotide excision repair (NER). These cells are 

prone to repair lesions recognized by NER. Due to this fact, the p73- 

overexpressing clones were less susceptible to treatment with DDP and 

UV irradiation, as both lesions are recognized by NER.

Other drugs, such as doxorubicin and topotecan inducing damage 

which is not repaired by NER, exhibited similar activities in parental and 

p73-overexpressing clones. For both CHKl and CHK2, experiments 

which were performed using clones transfected with dominant negative 

mutants failed to show differences between transfected clones and 

parental cells in the cytotoxicity of DNA-damaging agents. However the 

use of inhibitors of these kinases resulted in increased activity of DDP, 

suggesting that both CHKl and CHK2 may play a role in determining 

sensitivity of cancer cells to drugs, but that the dominant negative m utants 

in some way masked these effects.

The potential involvement of CHKl in response to stress is 

underlined by evidence of a link between p53 and CHKl, implying that
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they mutually regulate each other in a way which controls both the 

activation and the repression of checkpoint response following DNA 

damage.
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1. INTRODUCTION
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1.1 Cancer and anticancer drug treatments

Cancer still represents one of the leading causes of death in western 

countries.

The currently available strategies for the treatment of cancer 

include surgery, radiotherapy and chemotherapy. Surgery and 

radiotherapy have been proved to be moderately effective in the treatment 

of different tumor types. For the majority of tumors, chemotherapy, either 

following surgery or radiotherapy, remains the treatment of choice. The 

majority of the drugs so far used in clinical practice as anticancer agents 

are broadly acting antiproliferative, cytotoxic drugs (Workman 2001; 

Zhang 2002). The mechanism of action of these drugs is relatively 

unspecific, as their activity is generally directed against the synthesis, 

structure and function of DNA, or against mechanisms of cell division.

Such cytotoxic drugs have helped to bring about the considerable 

improvement in treatment outcome in the case of many cancers observed 

in the last 2 decades (Adjei 1999; Bengtson and Rigas 1999; Thigpen 2000; 

Worden and Kalemkerian 2000). There is no doubt that, for example, the 

introduction of cisplatinum, a DNA-interacting agent, or taxanes, tubulin 

interfering drugs, has provided a dramatic improvement in morbidity and 

mortality over previously available therapies for patients suffering from 

cancer (Greco and Hainsworth 1999; Fossella 1999; du Bois et al. 1999; 

Belani 1999; Ozols 2000).
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The use of these compounds, however, has drawbacks. These 

drawbacks include their high toxicity against normal cells, which is 

responsible for the relatively low therapeutic index of these compounds, 

the sometimes limited activity and the susceptibility of cancer cells to 

induction of drug resistance by these molecules. A huge amount of work 

has been focussed on the synthesis of new analogues of clinically active 

anticancer agents, with the aim to identify molecules overcoming some of 

the detrimental effects of these compounds.

The widely used anticancer agent cisplatinum serves as an 

instructive example. Its major dose-limiting toxicity is nephrotoxicity 

(Meyer and Madias 1994; Alberts and Noel 1995). Different platinum 

containing analogues have been developed, which have shown reduced 

renal toxicity. One of these analogues, carboplatin is now in clinical use 

(Ozols 1992). Similarly, cisplatin or carboplatin have shown reduced 

activity in cancer cells with defects in genes involved in mismatch repair 

(MMR) (Fink et al. 1998; Durant et al. 1999). Since such defects are 

relatively frequent in human colon, gastric and endometrial cancers, 

research efforts are directed at the identification of molecules which are 

able to overcome this effect without loss of the potent antitumor activity of 

cisplatin or carboplatin.

Oxaliplatin, a 1,2 diaminocyclohexane containing derivative of 

cisplatin, has been reported in experimental systems to be equally active in 

cancer cells proficient or deficient in MMR (Raymond et al. 1998). This
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property is obviously an advantage, and opens up the possibility to use 

such analogues in tumors with specific and defined genetic defects 

(Cvitkovic and Bekradda 1999; Wiseman et al. 1999).

In addition to the search of analogues of currently used anticancer 

agents, much effort has been devoted in recent years to the discovery of 

new anticancer agents with possibly more specific, tumor-targeted 

mechanisms of action. The selection and synthesis of these molecules is 

now possible thanks to a better understanding of the molecular pathways 

regulating the function of normal cells and to the results of molecular 

studies dedicated to the elucidation of the molecular mechanisms 

responsible for the development of neoplasia. The increasing knowledge 

of the molecular targets to be hit in cancer cells, will enable the selection of 

new targeted drugs to be used alone or in combination in the treatm ent of 

tumors with suitable molecular characteristics.

The approach of defining gene defects in tumors in order to select a 

specific target-oriented drug for therapy is valid for gene alterations which 

are directly related to the initiation and progression of a tumor. In this 

case targeting this defect is likely to induce specific killing of the cancer 

cell. There are examples of tumors, specially leukemias, w ith characteristic 

chromosomal translocation producing constantly activated kinases, for 

example the bcr-abl fusion protein, which can be specifically hit by drugs 

acting against the aberrantly activated target (O'Dwyer and Druker 2000; 

Druker 2002; Capdeville et al. 2002; Barbany et al. 2002). Nevertheless the
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vast majority of malignancies present multiple gene defects which are not 

easily targeted by a single drug. If different mutations or gene alterations 

are present in the same tumor, the possibility to use combinations of 

target-oriented drugs is attractive. On the other hand, the knowledge of 

the gene and molecular pathway defects in tumors could also be used to 

select the best available conventional therapy for that specific tumor.

In this case, the increase in the knowledge of the molecular 

characteristics of a tum or needs to be associated with the knowledge of the 

action of anticancer agents and on the role of proteins known to be altered 

in tumors as determinants of their activity. This will be of help in selecting 

the best possible therapy with drugs with well established activity.

One of the areas which seems to be particularly attractive for the 

future selection of new molecules or new combinations of therapies is cell 

cycle regulation. It is in fact well established that cancer cells invariably 

harbor disrupted or aberrantly regulated pathways that mediate cell 

growth and cell death (Hall and Peters 1996; Sherr 2000; McDonald and 

El-Deiry 2001; Bunz 2001).

In normal cells there is a continuous balance between cell death and 

cell growth, which is finely regulated by proteins acting as checkpoints 

(Morgan 1995; Polymenis and Schmidt 1999; Kastan 2001; Bartek and 

Lukas 2001a). During the cell cycle, each step is rigorously controlled by a 

protein or by a group of proteins that verify that no alterations occurr 

before proceeding to the next step. In contrast, malignant cells are often
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characterised by the fact that this regulation is defective. Details of 

differences in cell cycle regulatory machinery between normal and 

malignant cells will be described in more detail in the following chapters.

1.2 Cell cycle progression and checkpoints in normal cells.

To divide and pass genetic material to daughter cells, a cell needs to 

replicate its DNA and to segregate the duplicated chromosomes thus 

formed. The phase in which DNA is replicated is called phase S 

(synthetic), while the division phase is called M phase (mitotic). Between 

the S and M phases, there are two gaps, G1 and G2, respectively, which 

are intermediate phases, in which a cell prepares itself for DNA synthesis 

(Gl) or mitosis (G2) (Nurse 1994; O'Connell and Nurse 1994) (Fig. 1.1).

From a molecular point of view, the progression through the 

different phases of the cell cycle is mediated by a highly conserved family 

of protein kinases, called cyclin-dependent kinases (cdk) (Pines 1994; 

Doree and Galas 1994). These kinases need to be activated through the 

binding with a specific regulatory subunit, called cyclin (Morgan 1995; 

Lees 1995; Arellano and Moreno 1997; Pavletich 1999). The different 

cyclins identified so far have been given letters A to T, while the different 

cdks are numbered 1 to 11 (Jessus and Ozon 1995) (Fig. 1.2). The 

cdk/cyclin complexes are universal cell cycle regulators, and each 

complex controls a specific transition between the different cell cycle
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Figure 1.1
Schematic represantation of the different phases of the cell cycle; 
synthesis (S), mitosis (M) gap 1 (Gl) and gap 2 (G2).
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CYCLINS CYCLIN-DEPENDENT
KINASES

A CDC2
B1,B2 CDK2
C CDK3
D1,D2,D3 CDK4
E CDK5
F CDK6
G CDK7
H CDK8
I CDK9
Tl,T2a, T2b CDKIO

CDK 11

Figure 1.2
List of the known cyclins and cyclin dependent kinases participating in cell cycle 
regulation in mammals.
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phases, although some redundancy exists. The cdk/cyclin complexes act 

by phosphorylating specific and distinct substrates which are mediators of 

their activity. Moreover, the activity of the complex between cdks and 

cyclins is further controlled by small proteins called cdk inhibitors 

(Elledge and Harper 1994; Harper 1997; Sherr and Roberts 1999), which 

can be divided into two groups, one of which works by directly inhibiting 

the catalytic function of the cdk / cyclin complex (p21, p27, p57), the other 

working by binding to the cyclin regulatory subunit and detaching it from 

the cdk (INK4 family) (Xiong et al. 1993; Carnero and Hannon 1998; 

Pavletich 1999). During the cell cycle, the levels of cdks are relatively 

constant, while cyclin levels fluctuate during the different phases (Morgan 

1995; Arellano and Moreno 1997). The fluctuation of the levels is one of the 

reasons why these proteins have been called cyclins. A common molecular 

feature of cyclins is the presence in their aminoacidic sequence of the so 

called cyclin box, an approximately 100 amino acid motif which is 

responsible for the interaction of cyclins with cdks (Nugent et al. 1991). A 

further mechanism of regulation of cdk activity is through post- 

translational modification. As an example, cdc2, working mainly in G2 

phase, is phosphorylated at threonine 161 by the cdk activating kinase 

CAK, and this modification results in activation of kinase activity (Rhind 

et al. 1997; Kaldis 1999). Two other modifications, i.e. phosphorylation at 

threonine 14 and at tyrosine 15, act as negative regulators of the kinase 

activity (Coleman and Dunphy 1994; Berry and Gould 1996; Fattaey and
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Booher 1997). This negative regulation mechanism is relieved by the action 

of specific phosphatases of the CDC25 family, which comprises CDC25A, 

CDC25B and CDC25C (Jessus and Ozon 1995; Draetta and Eckstein 1997). 

In particular, the two phospho residues at threonine 14 and tyrosine 15 of 

cdc2, are specifically removed by CDC25C. Phosphorylations at threonine 

14 and tyrosine 15 inhibit cdc2 activity, and the removal of these two 

modifications is m andatory for the cell to proceed through mitosis (Berry 

and Gould 1996; Fattaey and Booher 1997; Zachariae 1999).

The different cdk complexes act in concert throughout the cell cycle. 

The activation of one cdk follows the inactivation of the preceeding one 

(Figs 1.3 and 1.4).

All these processes are constantly monitored, and at the cross-road 

between one cell cycle phase and the next, there is a checkpoint that m ust 

ensure that all the processes have been correctly pursued (Nojima 1997; 

O'Connor 1997; Johnson and Walker 1999; Kastan 2001; Melo and Toczyski 

2002). It has in fact to be carefully checked that, during S phase, alterations 

in duplication of the DNA do not occur, to avoid the segregation of 

aberrant genetic material to the daughter cells. Similarly, during mitosis, 

the correct division of the genetic material is mandatory. If any of these 

conditions are not fulfilled, the different checkpoint proteins become 

activated, inducing cell cycle arrest, and, if the entity of the lesion is 

repairable, the damage is removed or, if the lesion is unrepairable, 

programmed cell death is activated.
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Figure 1.3
Temporal association between cyclins and cdks during the cell cycle. The scheme reports 
some important proteins participating in the passage between GO, G1 and S phases. R is 
the resctriction point; Rb retinoblastoma. The G1 checkpoint controlled by p53 is 
indicated
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Figure 1.4
Temporal association between cyclins and cdks during the cell cycle. The scheme reports 
some important proteins participating in the passage between S, G2 and M phases. The 
G2 checkpoint controlled by CHKl and CHK2 is indicated.
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For each phase of the cell cycle a distinct checkpoint has been 

characterized, although often there are overlapping functions between the 

different proteins participating in the checkpoints.

1.3 G1 checkpoint

This mechanism of control is essential, considering that during the 

G1 phase cells embark on critical decisions such as commitment to 

replicate the DNA and to complete the cell division cycle. If sufficient 

proliferation stimuli are present, at the so called "restriction point" 

(Planas-Silva and Weinberg 1997) in late G l, there is the decision to be 

made to enter into S phase. This decision appears to be irreversible in 

normal unstressed cells (Bartek and Lukas 2001b; Bartek and Lukas 2001c). 

Even if cells have passed this point, genotoxic stress can still activate 

checkpoints which delay the further progress before S phase. At the 

restriction point there is the passage between a mitogen-dependent 

growth to a mitogen-independent growth.

During G l phase, two temporally distinct checkpoints can be 

envisaged. A first, very rapid induction of G l arrest does not need to be 

dependent on transcription and protein synthesis (Bartek and Lukas 

2001b). Emerging evidence suggests that targeted ubiquitination of the 

phosphatase CDC25A, which normally abrogates the inhibitory 

phosphorylation of CDK2, is a rapid and efficient system to halt cell cycle
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progression. The signal activating the protesaome-mediated degradation 

of CDC25A is the phosphorylation of the phosphatase by protein kinases 

CHKl and CHK2 (Mailand et al. 2000; Falck et al. 2001; Bartek and Lukas 

2001b).

The second G l checkpoint is a late G l arrest, which is transcription 

dependent. This checkpoint is mainly governed by the product of the 

tumor suppressor gene p53. This nuclear protein is normally present at 

very low levels in undamaged cells, because it is rapidly exported to the 

cytoplasm and degraded by the proteasome (Haupt et al. 1997). The signal 

mediating the nuclear-cytoplasmic transport of p53 is its binding with the 

protein mdm2 (Haupt et al. 1997; Honda et al. 1997). Upon damage, a very 

rapid accumulation of p53 is observable in the nucleus. This accumulation 

requires the detachment of mdm2, and it is likely to be a consequence of 

post translational modifications of p53, particularly phosphorylation at the 

N-terminus, the region which binds mdm2 (Shieh et al. 1997; Banin et al. 

1998; Meek 1998).

1.3.1 The p53 gene and protein

The p53 gene has been discovered in the early 1980s as a gene 

product associated with the large T antigen. Initially thought to work as 

an oncogene, the crucial role of p53 in many different cellular functions 

became clear later on (Oren 1985; Oren and Prives 1996a; Levine 1997).
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The p53 gene, m apping on chromosome 17, encodes for a protein of 

393 aminoacids with an apparent molecular weight of 53 KDa. The cDNA 

encoding for p53 is highly conserved between different species. It 

consists of different domains (Fig 1.5) each characterized by a specific 

function (Haffner and Oren 1995). The central DNA-binding domain is 

crucial for the activity of p53. In fact, p53 acts mainly as a transcription 

factor and is able to recognize with relative specificity the DNA sequence 

5' -  PuPuPuCT/AT/AGPyPyPy- 3' (Levine 1997). The conservation 

through evolution of p53 is particularly evident in this region.

A second region, contained the first 60 aminoacids at the N- 

terminus, constitutes a transcriptional activation domain which is able to 

interact with the basal transcriptional machinery and positively regulates 

gene expression. The amino acids at position 13-23 of the hum an p53 

protein are highly conserved in different species, indicating that this 

feature is another critical region of the protein. This region is in fact the 

one responsible for the binding to the two TFIID subunit, TATA- 

associated factors TAF70 and TAF31 (Lu and Levine 1995; Baptiste et al. 

2002). Furthermore, this is the region in which the negative regulator of 

p53, mdm2, binds (Bottger et al. 1997). The crucial amino acids responsible 

for the binding of p53 to mdm2 have been identified thanks to the 

availability of the crystal structure of the N-terminal region of mdm2 with 

a p53-derived peptide containing aminoacids 13-29 (Kussie et al. 1996). 

This region has previously been shown by mutational analysis to be
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Figure 1.5
Structure and domains of the p53 protein.
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potentially involved in mdm2 binding (Freedman et al. 1997). 

Interestingly, this part of the protein contains different residues which can 

undergo phosphorylation.

The third region, the C-terminal region, contains the residues 

important for oligomerization, as the native p53 protein is present as a 

tetramer (Oren 1985; Haffner and Oren 1995). The C-terminus contains 

another DNA binding domain that recognizes various forms of DNA not 

in a sequence-specific way, but rather in a structure-specific manner (Ahn 

and Prives 2001). This part of the molecule can bind with high affinity to a 

wide variety of DNA structures, including three- and four-way junctions, 

stem-loops, single stranded ends, insertion or deletion mismatches, 

irradiated DNA and DNA aggregates (McKinney and Prives 2002).

The p53 molecule is present in two conformationally distinct forms, 

one latent and the other active in sequence specific binding to DNA. One 

of the functions of the C-terminus of p53 is thought to be the ability to 

drive the molecule toward these two forms (Hupp and Lane 1994; Ahn 

and Prives 2001).

1.3.1.1 Regulation of p53

In normal, unstressed conditions, levels of p53 are very low. 

Immediately after a stress, it is induced, and its levels rapidly rise and 

accumulate at nuclear site (Vogelstein and Kinzler 1992; Ko and Prives 

1996; Oren and Prives 1996a). This mechanism is mainly post-
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translational, and one of the crucial steps is mediated by the interaction of 

p53 with its regulator mdm2. In normal conditions, in fact, p53 is bound 

by mdm2, and this binding is a signal leading to nuclear export and 

ubiquitination (Haupt et al. 1997; Michael and Oren 2002), Once 

ubiquitinated, p53 is degraded through the proteasome.

The mechanism involved in mdm2-dependent degradation of p53 

has been partially elucidated. Mdm2 possesses activities of a ubiquitin 

ligase and is able to perform self-ubiquitination and ubiquitination of its 

substrates (Haupt et al. 1997; Buschmann et al. 2000). Mdm2 shows an E3 

ubiquitin ligase activity towards p53 (Honda et al. 1997). The role of 

mdm2, however, is not only that of simply adding ubiquitin molecules to 

p53, but recent evidence indicates that there are consecutive regulated 

steps that occur before degradation of p53 occurs. In fact p53 

ubiquitination occurs mainly in the nucleus, and p53 thus modified is then 

exported through an active mechanism controlled by mdm2 into the 

cytoplasm, where it is degraded by cytoplasmic proteasomes (Geyer et al. 

2000; Boyd et al. 2000). To support this mechanism, mdm2 indeed contains 

in its structure nuclear localization and export signals which are necessary 

for its shuttling between nucleus and cytoplasm (Roth et al. 1998). It is 

thought that ubiquitination is required for nuclear export of p53 (Inoue et 

al. 2001; Michael and Oren 2002). In addition recent evidence indicates 

that mdm2 can participate in p53 degradation through its acidic domain, 

hence by a mechanism distinct from its E3 ligase activity (Argentini et al.



34

2001). The activity of mdm2 is controlled by post-translational 

modifications such as phosphorylation and sumoylation, which add 

additional levels of complexity to the picture. (Buschmann et al. 2000; 

Maya et al. 2001; Goldberg et al. 2002)

The importance of mdm2 in the homeostasis of p53 has become 

clear when attempts to generate knock out mice for mdm2 failed due to 

embryo lethality. This lethality was shown to be avoided by preparing 

mdm2 knock out mice in a p53 null background (Montes de Oca Luna et 

al. 1995). The reason why mdm2 mice did not proceed to birth is probably 

because levels of p53 are constantly high (lacking its main negative 

regulator), thus inducing growth arrest an d /o r apoptosis in all cells in the 

absence of stress induction (de Rozieres et al. 2000).

1.3.1.2 Activation of p53

From all this evidence, it appears clear that activation of p53 

following damage needs a starting point: the detachment of p53 itself from 

mdm2. Two distinct mechanisms have been so far described. One is 

related to the ability of p53 to undergo phosphorylation at the N-terminus 

following stress induction (Lane 1998). This phosphorylation is a signal 

leading to the release of mdm2 from p53 (Prives 1998). The residues in p53 

important for interaction with mdm2 are mostly serine 15 and serine 20. 

These two sites can be phoshorylated in vitro by different kinases, 

including ATM, ATR, DNA-PK, CHKl and CHK2 (Meek 1998; Kapoor



35

and Lozano 1998; Banin et al. 1998; Chehab et al. 2000; Shieh et al. 2000). 

The involvement of a specific kinase is dictated by the kind of damage the 

cell has received. Serine 15 of p53, for example is clearly phosphorylated 

by ATM following IR and by ATR following UV (Meek 1998; Lane 1998; 

Kapoor and Lozano 1998).

It has been reported that different anticancer agents are able to 

induce phosphorylation of p53 in cells growing in culture, indicating that 

this is the mechanism responsible also for anticancer agent-dependent 

activation of p53 (Knippschild et al. 1996; Shieh et al. 1997; Giaccia and 

Kastan 1998). Interestingly, different anticancer agents could be able to 

activate different kinases which differently phosphorylate p53 depending 

on the lesion the agents induce.

Another mechanism which mediates the detachment of p53 from 

mdm2 has been reported in cells activated by oncogenic transformation. In 

this case the mechanism leading to dissociation of mdm2 from p53 

involves the pl4arf protein (Eischen et al. 1999). This protein is encoded by 

the INK4a gene, the same gene encoding the cdk inhibitor pl6; but, by 

using a different frame, a second protein product is synthetised which is 

completely different from p l6  (Quelle et al. 1995). p l4arf is able to bind 

mdm2 at residues different from those necessary for the interaction w ith 

p53. Once bound by pl4arf, mdm2 is localized to nucleolar structures and 

sequestered (Pomerantz et al. 1998; Weber et al. 1999), thus resulting in a 

release of p53 and in a rise in its levels.
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Besides the region important for binding to mdm2, p53 is 

phosphorylated at other N-terminal sites (Siliciano et al. 1997; Giaccia and 

Kastan 1998; Meek 1998). Moreover, the C-terminus also contains 

potentially phosphorylatable sites, which are indeed phosphorylated in 

cells (Oren and Prives 1996b; Lu et al. 1998) (Fig. 1.6). Different kinases 

responsible for these post-translational modifications have been identified, 

including Casein Kinase II (CKII), protein kinase C, cdks (Giaccia and 

Kastan 1998; Meek 1998). These modifications are thought to be important 

for stabilization of sequence specific DNA binding and possibly for 

determining the substrate specifcity in transcriptional activation of 

downstream genes (Oren and Prives 1996b).

Phosphorylation is not the only post-translational modification of 

p53. It has been reported in fact that p53 is a substrate of histone 

acetyltransferases (HATs) and is efficiently acetylated at the C-terminus 

(Gu and Roeder 1997). These acétylations, occurring at lysine 320, 372, 373, 

382 and 381 and mediated by the HATs P300 and pCAF were found in 

cells in response to various stimuli (Liu et al. 1999; Prives and Manley 

2001). The acétylation of p53 does not seem to stimulate the sequence 

specific binding, but could be important for the recruitment of 

transcriptional co-activators or for p53 localization (Prives and Manley 

2001), although this issue is yet to be defined.
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Figure 1.6
Post-translational modifications of p53.
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Figure 1.7
Schematic representation of the pathways activated by p53 following activation.
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1.3.1.3 Function of p53

p53 exerts its activity mainly as transcription factor. Following 

activation, it activates the transcription of distinct classes of genes. Two 

important classes of genes activated by p53 are those involved in cell cycle 

regulation and in apoptosis. As a result, p53 induction can lead either to 

cell cycle arrest or to apoptosis (Bates and Vousden 1996; Ko and Prives 

1996; Waldman et al. 1997a; Vogelstein et al. 2000) (Fig. 1.7). The critical 

decision between halting the cell cycle or activating cell death is depedent 

on the cell type and on the kind and extent of the damage induced (Ko 

and Prives 1996; Chen et al. 1996). This is conceptually rather simple: if the 

damage induced is sufficiently low to be managed by inducing cell cycle 

arrest to possibly allow the repair of the damage, then the cell cycle arrest 

is preferred. If the damage is thought to be unrepairable, the decision must 

be to induce apoptosis, in order to eliminate damaged cells which could 

pass aberrant material to daughter cells. Experiments have in fact shown 

that depending of the cell type or the extent of damage, p53 induces the 

activation of cell cycle-regulating or apoptosis-regulating genes. Two 

genes, p21 and bax, are among the most studied p53 downstream  genes 

responsible for p53 induction of cell cycle arrest or apoptosis, respectively 

(el Deiry et al. 1993; Miyashita and Reed 1995). Many other genes, 

however, have been implicated in p53-mediated cell cycle arrest or 

apoptosis, including the 14-3-3 sigma protein, GADD45, FAS, Noxa, 

PUMA, the family of PIGs, AIP (Kastan et al. 1992; Hermeking et al. 1997;



40

Muller et al. 1998; Vogelstein et al. 2000; Oda et al. 2000a; Oda et al. 2000b; 

Yu et al. 2001; Nakano and Vousden 2001). Among the downstream p53 

effectors, p21 and bax are probably the most important and most 

frequently studied, and they serve as paradigm of p53 ability to induce 

cell cycle arrest (p21) or apoptosis (bax). The p53 responsive elements 

present in the DNA regulatory sequences of either the p21 or the bax gene 

are different. The element present in the bax promoter, in particular, is less 

efficiently bound by p53 and, in transcription experiments using 

heterologous reporter genes, it has a weaker p53-transcriptional response 

compared to the analogous element in p21 (De Feudis et al. 2000). The 

relative propensity of p53 to activate p21 rather than bax could be one of 

the reasons why often p53-induced cell cycle arrest predominates over 

apoptosis. The critical decision between activating apoptotic or growth 

arrest inducing genes is however not only mediated by the sequence of the 

DNA element, but a growing body of evidence indicates that the different 

post-translational modifications of p53 are the key factors in determining 

the final decision. As an example, one of the p53 responsive genes 

involved in apoptosis, the AIP gene, is not efficiently transcribed, if p53 is 

not phosphorylated at residue serine 46, which probably induces a 

conformational change in p53 allowing efficient binding and 

transactivation ability for this specific gene (Oda et al. 2000b; Hofmann et 

al. 2002).
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This type of evidence might also explain the discrepancies in the 

literature concerning the role of p53 as a determinant of cellular response 

to damage. In some cells it has been reported that the presence of an intact 

p53 is associated with resistance to induction of damage, while in other 

cells the opposite was found (Fan et al. 1995; Morgan and Kastan 1997; 

Debernardis et al. 1997).

Cells which are prone to activate mechanisms of apoptosis and in 

which the p53 activation is able to induce such cell death mechanism, will 

be more susceptible to damage if p53 is present, while in cells where the 

apoptotic response is compromised, the p53-dependent cell cycle effects 

will predominate.

The critical role of apoptotic versus cell cycle arrest response is 

underlined by the finding obtained using isogenic cell systems derived 

from the wild-type p53 expressing human cell line HCT116 in which the 

p21 or the bax gene have been inactivated through targeted homologous 

recombination (Waldman et al. 1997b; Zhang et al. 2000). Experiments 

with these cells have shown that inactivation of p21 was associated w ith 

an increased response to damage, and that bax removal was indeed 

associated with a decreased apoptotic response, yet both systems having a 

similar ability to respond to stress induction by activating p53 (Waldman 

et al. 1997b; Zhang et al. 2000). Results from our laboratory have shown 

that if p53 is forced to transcriptionally activate bax rather than p21, a 

massive apoptotic response and a marked increased response to treatm ent
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with anticancer agents are found (De Feudis et al, 2000). In this cellular 

system, the amount of p53 following treatment did not change between 

parental and "bax-forced" cells, and levels of p21 in the two sublines were 

similar. What was really changing was the ratio between bax and p21 

which was found important for triggering apoptotic response following 

anticancer agent treatment. Interestingly, these results have been 

confirmed in nude mice transplanted with these cells and treated in vivo 

with taxol (De Feudis et al. 2000). From these and other evidences, the role 

of p53 in determining cellular response to stress is hard to study without 

taking into account the upstream  and downstream processes taking place.

Another way p53 exerts its activity is via transcriptional repression 

(Vogelstein and Kinzler 1992; Vogelstein et al. 2000). This process is 

another mechanism responsible for its activity. The molecular mechanisms 

responsible for transcriptional repression have been less well elucidated, 

the ability of p53 to interfere with transcription factor sp l activity and 

binding to DNA has been discussed (Bargonetti and Manfredi 2002).

1.3.2 The p53 homologue p73

P53 was thought for a long time to be the only member of the p53 

protein family. Recently two further members have been discovered, p73 

and p63 (Kaghad et al. 1997; Kaelin 1999b; Yang et al. 2002). Both share a 

certain degree of homology with p53, particularly in the DNA-binding 

domain.
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p73 structure and homology between p53, p63 and p73.
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Human p73 has 65% sequence homology to hum an p53 in the DNA 

binding domain at amino acidic level (Kaghad et al. 1997) (Fig. 1.8). As a 

consequence, p73 is able to bind to the same DNA sequences which are 

recognized by p53, and to activate transcription of p53-downstream genes 

(Smith et al. 1997). There is evidence however which suggests that there 

could be differences between p53 and p73 with respect to the pathway of 

activation of downstream genes. Certain genes are better substrate for p73 

than p53 and vice versa (Zhu et al. 1998; Lee and La Thangue 1999). As an 

example, p73 is a stronger activator than p53 of genes such as GADD45, 

while p53 is stronger than p73 in activating the transcription of p21 (Lee 

and La Thangue 1999).

The p73 gene has been mapped in the region lp36 of chromosome 

1, a region frequently deleted in human tumors (Kaghad et al. 1997). This 

finding, together with the relative sequence homology with p53, led to the 

assumption that p73, like p53, could act as a tum or suppressor (Oren 

1997). There are, however, some important differences between p53 and 

p73, which cast doubt on the contention that p73 is a tumor suppressor 

(Grob et al, 2002; Stiewe and Putzer 2002). In contrast to p53, the p73 gene 

is rarely mutated in human cancers (Kaelin 1999b; Moll et al. 2001). 

Different reports in the literature show that the levels of wild-type p73 in 

hum an tumors are higher than in the normal tissues from which they are 

derived. In some normal tissues the p73 gene has been reported to be 

imprinted, and only one allele is expressed (Kaghad et al. 1997; Stiewe and
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Putzer 2002). In tumors both alleles can be expressed, again suggesting 

that the wild-type form of the protein can be overexpressed in tumors 

(Codegoni et al. 1999; Nozaki et al. 2001; Novak et al. 2001). It has to be 

noted that there are conflicting results concerning the imprinting of p73, 

and evidence has been reported indicating that the gene is not imprinted 

in normal hum an tissues (Kaelin 1999a; Marin and Kaelin 2000). 

Nevertheless, even if it is questionable if human tumors overexpress a 

wild-type form in respect to normal tissues, it is clear that the levels of p73 

are not decreased in tumors when compared to normal tissues. Another 

important difference between p53 and p73 is that mice, in which the p53 

has been deleted, invariably develop tumors, whilst p73 knock out mice 

display strong neurological and immunological defects, but do not 

develop cancer (Kaelin 1999a; Yang et al. 2000; Moll et al. 2001).

The p73 protein differs from p53 also in the way in which it 

responds to stress induction. While p53 rapidly accumulates following 

damage via a protein stabilization-mediated post-translational mechanism, 

p73 is probably regulated at the transcriptional level (Levrero et al. 1999; 

De Laurenzi and Melino 2000). Moreover, its regulation is quantitatively 

much less important than that of p53. In fact, depending on the damage 

induced and the cellular context, the levels of p53 can be increased by a 

factor of 10-50, while the levels of p73 have been reported either not to 

increase or to increase by a factor of only 2-4.
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1.3.2.1 Structure of the p73 gene

While p53 presents a relatively simple genomic structure, the p73 

gene has a more complex structure. The gene consists of 14 exons and its 

coding region is comprised between exons 2 and 14 (Kaghad et al. 1997). It 

uses two different promoters for its transcription, one 5' uptstream of the 

non coding exon 1 and the other one located in the large intron 3, 30 kb 

downstream to the first promoter (Yang et al. 2002). The use of these two 

distinct promoters leads to the synthesis of two proteins with sometimes 

opposite effects (Moll et al. 2001) (Fig. 1.9). The first promoter transcribes a 

protein harboring its intact and functional transactivation domain. When 

the transcription starts from the second, alternative promoter, the protein 

formed lacks the first amino acids containing the transactivation domain, 

and generates the so called DN forms (Yang and McKeon 2000; Moll et al. 

2001). The proteins with the intact transactivation domain retain their 

ability to transactivate p53 responsive genes, while the DN form could act 

as a dominant negative protein, inhibiting either the full lenght p73 

(TAp73) or other members of the family, and in particular p53 (Pozniak et 

al. 2000; Moll et al. 2001; Stiewe et al. 2002a). Studies on the relatively new 

DN forms are however at their inception, and further evidence is needed 

to better clarify the role of this particular isoform of p73. An additional 

level of complexity is added by the formation, through the use of the first 

promoter, of another transactivation-deficient form of p73, which is 

produced by alternative splicing via skipping of exon 2
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(delta2p73) (Fillippovich et al. 2001).

It is interesting to note that the DN form is transcribed using a 

promoter that contains in its DNA sequence a putative p53 responsive 

element (Kartasheva et al. 2002; Vossio et al. 2002). It has been reported 

that this DNA sequence is indeed able to respond to a wild type form of 

p53 in vitro and in cells transfected with a fragment of this promoter fused 

to the luciferase gene This finding suggests a mechanism by which p53 

could regulate this specialised form of p73 (Vossio et al. 2002). If the data 

showing that the DN form of p73 is able to interact and block p53 activity 

are confirmed and extended to different cell types, the evidence that p53 

can regulate one of its negative regulators is somewhat reminiscent of the 

interaction between p53 and its well-studied negative regulator mdm2 

(Haupt et al. 1997).

Furthermore, p73 undergoes different C-terminal splicing routes 

leading to different isoforms termed alpha (which is the full length), beta, 

gamma, delta, epsilon and zeta (Kaghad et al. 1997; De Laurenzi et al. 

1998; Zaika et al. 1999; De Laurenzi et al. 1999).

These isoforms arise through the skipping of one of several exons 

(Fig. 1.10). All the C-terminal isoforms maintain the DNA binding domain 

and the tetramerization domain. From a transriptional activation point of 

view the different isoforms display different behaviour (Ueda et al. 1999). 

In particular gamma p73, which has a short C-terminus tail and 

structurally resembles p53, is a weaker transcriptional activator compared
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to the full length alpha isoform (Levrero et al. 1999; Moll et al. 2001). 

Preliminary reports indicate that the different C-terminal isoforms could 

have different specificity towards the downstream genes to be activated. 

The alpha p73 isoform contains an additional domain, the SAM domain, 

which is generally found in those proteins involved in development 

(Kaghad et al. 1997; De Laurenzi and Melino 2000). The presence of this 

domain, which has been confirmed by crystal structure to be a canonical 

one, would suggest the possibility of homo and hetero oligomerization 

with other SAM-containing proteins, although evidence obtained so far 

would cast doubt on this possibility (Wang et al. 2001).

1.3.2.2 Regulation of p73

While p53 is rapidly activated following stress induction, through a 

transcription-independent mechanism, levels of p73 have been found 

either to be unchanged or only increased marginally (Levrero et al. 1999; 

Vikhanskaya et al. 2000). The mechanisms leading to p73 activation 

following stress induction are likely to be mediated by cofactors. It has 

been shown for example that following DNA damage, c-Abl kinase is 

activated, which is able to directly interact with p73 and to phosphorylate 

p73 (Yuan et al. 1999; Gong et al. 1999; Agami et al. 1999). Phosphorylation 

of p73 is indeed seen following gamma irradiation in c-Abl expressing, 

cells but not in c-abl-negative cells, and it seems to mediate the apoptotic 

response of p73 (Gong et al. 1999; Agami et al. 1999; Yuan et al. 1999). As
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has been suggested for p53, p73 is acetylated following induction of 

damage (Costanzo et al. 2002), and this post-translational modification is 

probably important for the p73-dependent activation of downstream 

apoptotic genes (Costanzo et al. 2002).

Transcriptionally, p73 has been found to be regulated by the E2F1 

factor (Levrero et al. 1999; Stiewe and Putzer 2000). In its promoter 

sequences there are multiple binding sites for E2F1 (Ding et al. 1999; 

Seelan et al. 2002). This fact would link the regulation of the expression of 

p73 to the cell cycle, E2F1 being released from retinoblastoma protein Rb 

in G1 phase to activate the transcription of genes necessary in S-phase 

(Nevins et al. 1991; Qin et al. 1995).

1.3.3 Interactions between p53 and p73

Sharing common DNA binding sites, p53 and p73 are likely to 

compete inside the cells for binding to DNA. Evidence has been reported 

that competition could happen between w t p53 and TAp73 (Ueda et al. 

1999; Vikhanskaya et al. 2000) resulting, when TAp73 is overexpressed, in 

a attenuated p53 response to damage induction.

Direct complex formation inside the cell between wtp53 and TAp73 

has never been shown. Interaction and complex formation between the 

different forms of w t p73 and mutated p53 or between DNp73 and w t p53 

have been reported (Di Como et al. 1999; Strano et al. 2000; Gaiddon et al. 

2001). Particularly intriguing is the observation that the physical
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interaction between mutants p53 and p73 does not occur through the 

oligomerization domain, as could be expected, but rather through the 

DNA binding domain of mutants p53 and the DNA binding and 

oligomerization domains of p73 (Moll et al. 2001; Gaiddon et al. 2001). 

These possible interactions, when the result is antagonism of function, 

must be considered as additional ways to inactivate p53 or p73 inside the 

cells.

1.3.4 Mechanism of control of the G1 checkpoint mediated by p53 and 

p73

The molecular mechanism through which p53 exerts its activity of 

G1 phase checkpoint involves its ability to activate the transcription of the 

cell cycle inhibitor p21/w afl (el Deiry et al. 1993). This small protein of 21 

Kda acts as a cyclin dependent kinase inhibitor, with a broad spectrum of 

activity, being able to bind and inactivate the activity of cdks complexed 

with different cyclins (Xiong et al. 1993; Harper 1997). Its main activity, 

however, is toward G l/S  cdks/ cyclin complexes; and in vitro experiments 

have shown that the affinity of p21 for cdks acting during G l/S  phases is 

higher than that for the G2 cdk cdc2 (Harper and Elledge 1996).

p21 was recognized as one of the first genes transactivated by p53, 

and it was shown that genomic sequences around the p21 /  w afl gene 

contain a canonical p53 responsive element located 2.4 Kb upstream  of the
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starting coding sequence, which was able to respond to p53 in different 

experimental systems (el Deiry et al. 1993).

Although there is evidence that p21 transcription can be induced 

following DNA damage even in the absence of p53 (Vikhanskaya et al. 

1995), its transcription is mostly controlled by p53, and cells lacking the 

DNA binding domain of p53 or presenting mutations in this domain, fail 

to activate p21 and have a strongly reduced ability to induce G1 arrest 

(Fan et al. 1995; Wahl et al. 1996).

p21 is able to form quaternary complexes in vitro and in the cell 

with PCNA, cdks and cyclins. When p21 complexes stoichiometrically 

with cdk and the cyclin complex, it completely abolishes cdk kinase 

activity, at least in vitro (Xiong et al. 1993). This mechanism of cell cycle 

arrest is different from that of other cdk inhibitors such as p l6  and other 

members of the INK4 family, which instead bind directly and sequester 

the cdk (Sherr and Roberts 1999; Roussel 1999).

The importance of p21 in mediating p53-induced G1 arrest has been 

further demonstrated by the generation of somatic p21-/- cells which lack 

the ability to induce G1 arrest follov/ing damage induction, even in the 

presence of a functional p53 (Waldman et al. 1997a).
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1.4 S phase checkpoint

The S phase checkpoint is a transient phenomenon which delays the 

rate of DNA synthesis in response to DNA damage. Differently from the 

G1 and G2 checkpoints, this checkpoint lacks a maintainance component 

which helps to delay, but does not permanently arrest, cells with an 

incompleteley duplicated genome (Rhind and Russell 2000a; Kastan 2001; 

Bartek and Lukas 2001b).

The existance of this checkpoint has been demostrated in yeasts and 

in mammalian cells. The proteins participating in this checkpoint in 

mammalian cells include ATM, nibrin and the recombinational repair 

protein M rell (Dasika et al. 1999; Petrini 2000; Rhind and Russell 2000a). 

These proteins are linked together since ATM has been shown to 

phosphorylate nibrin and phosphorylated nibrin is able to interact with 

M rell and Rad50 (Falck et al. 2002). This linkage, and the fact that a 

protein directly involved in DNA repair is required for the S-phase 

checkpoint, suggest that this particular checkpoint may actively regulate 

DNA damage repair during S phase. This suggestion would imply that the 

slow-down of DNA replication induced by the activation of the S-phase 

checkpoint not only provides time to repair, but hints at the existance of 

an active checkpoint-dependent association between replication, 

recombination and repair (Masai and Arai 2000; Rhind and Russell 2000a).
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The activation of the S-phase checkpoint, as already pointed out, 

does not block the cell cycle, but only slows it down. DNA synthesis 

proceeds in the presence of DNA damage at a lower rate thus allowing the 

machinery to better deal with the DNA lesions that m ight be encountered. 

A number of lesions will remain and will subsequently activate the G2 

checkpoint. A permanent arrest during DNA replication would be 

detrimental, because it would limit the amount of template for efficient 

repair by homologous recombination and could cause the re-start of DNA 

synthesis in areas where it was already started thus running the risk of 

over replication of partial genomic regions (Melo and Toczyski 2002; Falck 

et al. 2002).

1.5 G2 checkpoint

Looking at the data in the literature, it becomes evident that the 

cyclin dependent kinase cdc2 plays a central role in the progression from 

G2 phase to mitosis (O'Connor 1997; O'Connell et al. 2000). Im portant 

studies have been conducted in yeasts which had shown avenues to define 

DNA-damage checkpoint genes operating in this cell cycle phase. Many 

protein, in fact, have been shown to participate, at different levels, at this 

checkpoint (O'Connor 1997; O'Connell et al. 2000; Smits and Medema 

2001; Bulavin et al. 2002). Among these, the p53 protein, the role of which
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in the G1 checkpoint has been already examined, is also involved in the 

control of this cell cycle transition. (Taylor and Stark 2001)

Phosphorylation of tyrosine 15 residue of cdc2 is maintained during 

arrest of cells in the G2 phase following irradiation, either in yeast or in 

mammalian cells (Carr 1996). Keeping this residue phosphorylated is a 

way to prevent activation of the cyclin B/cdc2 complex associated w ith 

the inability of the cells to proceed out of G2 (O'Connell et al. 2000; 

Walworth 2000). As a proof of principle, introduction of a cdc2 variant 

with a m utant residue in position 15 resulted in the abrogation of G2 

arrest in yeast (Smits and Medema 2001).

The inhibition of cdc2 activation is achievable in different ways. 

There can be signals inducing the activity of kinase(s) phosphorylating the 

inhibitory site tyrosine 15 (weel), signals inducing the activation of 

specific phosphatases (CDC25) or signals binding an d / or sequestering the 

cdc2/cyclin B complex (Tourret and McKeon 1996; O'Connell et al. 2000; 

Molinari 2000; Smits and Medema 2001).

Although p53 has been mainly involved in regulating the G1 

checkpoint, it has also an important role in controlling the G 2/M  

transition (Taylor and Stark 2001). p53 is able to activate the transcription 

of three distinct genes interfering with the activity of cdc2. It strongly 

activates the cdk inhibitor p21 which inhibits the cdc2 kinase activity, 

although with a much less efficiency compared to other cdks (el Deiry et 

al. 1993). P53 transcriptionally activates the GADD45 gene, which is able
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to dissociate the complex between cdc2 and cyclin B (Wang et al. 1999; 

Zhan et al. 1999). GADD45, which has specific activity against the 

cdc2/cyclin B complex, does not efficiently inhibit the activity of the 

CDK2/cyclin E complex. This fact is likely to be the reason why its role in 

G1 arrest is negligible (Zhan et al. 1999). Immunoprécipitation studies 

showed that GADD45 associates with cdc2 and not w ith cyclin B, again 

indicating that it inhibits cdc2 activity by preventing its binding to cyclin B 

(Zhan et al. 1999).

The third p53 downstream gene inhibiting cdc2 activity is 14-3-3 

sigma. This gene is particularly reponsive to p53 in vitro (Hermeking et al. 

1997). Its product, the protein 14-3-3 sigma, inhibits cdc2 activity with a 

mechanism distinct from those of p21 or GADD45. The cdc2/cyclin B 

complex needs to be present in the nucleus to exert its activity and to 

activate mitosis, through a mechanism involving the binding of importin 

alfa and beta. The 14-3-3 sigma protein is able to bind cdc2 and to anchor 

the complex cdc2/ cyclin B in the cytoplasm (Chan et al. 1999; Taylor and 

Stark 2001). Prevention of nuclear translocation of cdc2/cyclin B is 

sufficient to halt the cells in G2.

An additional mechanism through which p53 can induce G2 arrest 

is through direct repression of cyclin B and cdc2 gene transcription. As 

already discussed (see chapter 1.3.1.3) p53 activates the transcription of 

different genes through direct binding to a recognition DNA sequence. It 

can also repress the transcription of different genes through several
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distinct mechanisms, including quenching of transcription factors, binding 

to proteins, such as the histone acetyl transferase p300 necessary for 

transcriptional activation of certain genes. P53 can also interfere with 

sequence specific transcription factors (Vogelstein and Kinzler 1992; 

Levine 1997). Among the genes repressed by p53 is cyclin B1 (Innocente et 

al. 1999; Krause et al. 2000). The cyclin B1 promoter region responsible for 

these effects of p53 has been m apped (Krause et al. 2000). As a 

consequence of cyclin B1 repression, the levels of cyclin B1 protein 

decrease, which is followed by a decrease in cdc2 protein levels. Even for 

cdc2 there are data suggesting a direct transcriptional repression by p53, 

and a promoter region of the cdc2 gene has been mapped and shown to be 

susceptible to p53 (Yun et al. 1999; Taylor et al. 2001).

The other, and probably most important, mechanism which blocks 

cdc2 activity is by interference w ith the removal of the inhibitory 

phosphorylation at tyrosine 15 (and threonine 14). The dephosphorylation 

of these sites is crucial to allow the activation of the kinase cdc2, and it is 

mediated by the activity of the CDC25C phosphatase (Russell 1998; Smits 

and Medema 2001; Mondesert et al. 2002). CBC25C is normally localized 

in the cytoplasm and translocates to the nucleus just before mitosis 

(Russell 1998; Raleigh and O'Connell 2000). The mechanism responsible 

for translocation of CDC25C between cytoplasm and nucleus implicates 

the association with 14-3-3 proteins (not the sigma isoform) (Dalai et al. 

1999; Lopez-Girona et al. 1999). When the phosphatase is bound to 14-3-3
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proteins, it remains cytoplasmic and the dissociation is necessary for 

nuclear import. The CDC25C amino acidic region responsible for the 

binding to the 14-3-3 protein has been mapped, and mutations in this 

region are indeed able to abolish the cytoplasmic localization of CDC25C 

(Dalai et al. 1999). The region of CDC25C interacting with 14-3-3 proteins 

contains a phosphorylation site, serine 216, which has been shown to be 

indeed phosphorylated throughout interphase but not during mitosis 

(Ogg et al. 1994). The phosphorylation of serine 216 of CDC25 is necessary 

for the association of this phosphatase with the 14-3-3 protein. The kinase 

responsible for the phosphorylation of CDC25C on serine 216 during 

interphase has been cloned and named C-TAKl (for Cdc Twentyfive C 

Associated protein Ifânase) (Peng et al. 1998). C-TAKl is ubiquitously 

expressed in the cytoplasm of human cells, where it would facilitate the 

phosphorylation of CDC25C while it is being synthetised in the cytoplasm 

(Dalai et al. 1999; Smits and Medema 2001). Altogether these results 

indicate that CDC25C can activate the cdc2/ cyclinB complex only if it can 

translocate to the nucleus, and the nuclear translocation is possible only if 

CDC25C is not phosphorylated at serine 216 (Smits and Medema 2001).

Following stress induction, increased phosphorylation of CDC25C 

is observed (Fig. 1.11), which prevents activation of cdc2/cyclin B complex 

and arrests cells in G2 (Smits and Medema 2001).

The kinases responsible for the phosphorylation of the serine 216 

residue induced by stress have been identified, and they are CHKl and
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Figure 1.11
CHKl and CHK2 dependent phosphorylation of cdc25C and regulation of cdc2/cyclin B 
complex activity.
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CHK2 (Furnari et al. 1997; Sanchez et al. 1997). These two kinases are both 

able to phosphorylate CDC25C at serine 216 in vitro, although in vivo 

evidence would suggest that the major kinase responsible for this 

phosphorylation is CHKl (Sanchez et al. 1997; Walworth 2001).

A further mechanism of control of G 2/M  transition is regulated by 

p38 MAP kinase (Bulavin et al. 2001). This kinase is activated following 

damage, particularly after UV radiation and, once activated, is able to 

phosphorylate different substrates including the phosphatase CDC25B. 

This phosphatase is important in the initiation of the G 2/M  checkpoint, 

rather then its maintainance (Bulavin et al. 2002). Phosphorylation of 

CDC25B increases the ability of the phosphatase to bind to the 14-3-3 

protein. Studies with specific inhibitors of p38 showed a decrease in 

initiation of G 2/M  checkpoint following UV radiation (Bulavin et al. 

2001). This mechanism has been clearly observed following UV radiation, 

but not with other types of damage suggesting that it could represent a 

"damage specific" checkpoint activation.

1.5.1 The checkpoint genes CHKl and CHK2

CHKl and CHK2 are two relatively recently discovered genes 

which are continuosly gaining importance with respect to their role as 

controller of cell cycle progression, particularly in response to damage 

(Walworth 2000; Rhind and Russell 2000b). The two proteins encoded by 

the genes have been initially discovered in yeasts and later in mammals.
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Although they share some common features, they have clearly distinct 

functions in controlling different phases of the cell cycle (Rhind and 

Russell 2000b).

1.5.1.1 CHK2

CHK2 belongs to a family whose founder, Rad53, was first 

identified in 1994 as a kinase involved in many checkpoint responses in 

budding yeast (Allen et al. 1994) . Homologues of Rad53 were 

subsequently found in Schizosaccharomyces pombe (cdsl) and in higher 

eukaryotes (Murakami and Okayama 1995; Brown et al. 1999). The overall 

structure of CHK2 proteins is similar in all eukaryotes (Fig. 1.12) with a 

degree of homology of the protein sequence across species that roughly 

reflects the evolutionary distance among the different organisms. Despite 

their overall structural homology and shared biological role as important 

transducers of cell cycle checkpoint signals, there are functional 

differences between the various CHK2 homologues. The mammalian 

CHK2 seems to respond primarily to the most lethal type of DNA 

damage, double strand breaks, which are caused by ionizing radiation and 

radiomimetic drugs (Terado et al. 1993).

The human CHK2 gene spans 50 kilobases of genomic DNA and 

contains 14 exons (Bartek et al. 2001). At protein level, the structure of the 

CHK2 kinases comprises several evolutionary conserved elements (Bartek 

et al. 2001): the SQ/TQ motif (located in the amino-terminal domain and



63

SQ/TQ FHA

1 20 75 115 165 225

KINASE

490 543

human

mouse

rat

X. laevis 

zebrafish 

S. pombe

543 aa

546 aa

545 aa 

517 aa 

503 aa 

460 aa

Figure 1.12
Structure of human CHK2 gene and homolgy with other eukaryotes. The SQ/TQ-rich 
domain, the FHA domain and the kinase domain are reported.
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containing a series of seven serine or threonine residues followed by 

glutamine), the forkhead-associated domain - FHA -  which seems to bind 

the phosphothreonine residues and to be involved in protein-protein 

interactions and the kinase domain, which occupies the entire carboxy 

terminal half of CHK2. An apparently unique feature of the human 

protein, not conserved in lower eukaryotes, is a c-Abl src homology 

domain without clear functional significance, at least as established so far.

In response to genotoxic damage, CHK2 is activated by ATM- 

dependent phosphorylation that targets its threonine 68 residue, which is 

a prerequisite for the subsequent activaton step attributable to its 

autophosphorylation on the residues threonine 383 and threonine 387 in 

the activation loop of the kinase domain (Matsuoka et al. 1998; Lee and 

Chung 2001; Ahn et al. 2002). Once activated, CHK2 propagates the 

checkpoint signal to several pathways leading to cell cycle arrest (in G l, S 

and G2 phases), to activation of DNA repair and, in some cases, to 

activation of apoptosis (Bartek et al. 2001).

The checkpoint mammalian downstream effectors which have been 

demonstrated to be substrates of CHK2 in vivo include p53, BRCAl, 

CDC25A and CDC25B, all proteins the activation of which might explain 

the above mentioned downstream effects of CHK2 checkpoint activation,

i.e cell cycle arrest, DNA repair or apoptosis (Bartek et al. 2001).

Immunocytochemical studies showed that in cultured mammalian 

cells CHK2 is predominantly a nuclear protein, this localization being
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expected for a protein involved in the regulation of the DNA-damage 

checkpoint (Tominaga et al. 1999; Lee et al. 2000). H um an neuronal cells 

constitute the only exception, in which CHK2 has been shown to have a 

predominatly cytoplasmic localization (Lukas et al. 2001). This localization 

is reminiscent of that of its upstream regulator, ATM (Barlow et al. 2000). 

It has been suggested that the ATM-CHK2 pathway in neurons might 

have a specialized cytoplasmic role related to protection of sensitive 

neurons against oxidative stress (Rotman and Shiloh 1997).

1.5.1.2 CHKl

The checkpoint kinase 1 (CHKl), initially identified in 

Schizosaccaromyces pombe (S. Pombe) is a G2/M  checkpoint protein that 

is conserved throughout the eukaryotic kingdom.

The function of CHKl has been studied both in S. Pombe and 

mammalian cells and found to be roughly similar. In S. Pombe, CHKl is 

essential for cell cycle arrest following DNA damage (Lindsay et al. 1998). 

It is phosphorylated in response to DNA damage in a manner dependent 

on the function of several Rad gene products, including Rad3, a fission 

yeast homologue of the human protein ATM (Chen et al. 1999; W alworth 

2001). Active CHKl phosphorylates CDC25C, which provides a binding 

site for the 14-3-3 family protein Rad 24 and is thus exported out of the 

nucleus. As a result the cdc2 kinase is kept inactive (Chen et al. 1999). 

Moreover, CHKl has been shown to phosphorylate the w eel kinase in
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vitro, implying that CHKl might also facilitate G2 arrest through weel, 

that inhibits cdc2 by phosphorylation at tyrosine 15 residue (Lee et al. 

2001). As already discussed, an analogous checkpoint pathway involving 

ATM/ ATR, CHKl and CDC25C has been identified in mammalian cells.

The CHKl gene has been mapped to chromosome 11 in the region 

llp 2 4  (Sanchez et al. 1997). The hum an protein encoded by the gene is a 

nuclear protein of 476 amino acids with a molecular size of 54 Kda (Fig. 

1.13). The predicted human CHKl protein is 29% identical and 44% 

similar to S. pombe CHKl, 40% identical and 56% similar to C. elegans 

CHKl, and 44% identical and 56% similar to Drosophila CHKl (Sanchez et 

al. 1997).

Sequence analysis revealed a highly conserved N-terminal kinase 

domain (residues 1-265), a flexible linker region and a less conserved C- 

terminal region with undefined function. The crystal structure of the 

human CHKl kinase domain revealed structural features im portant for 

kinase activity and substrate selectivity, suggesting that CHKl becomes 

fully active upon substrate binding, and that its activity is not regulated by 

phosphorylation within the kinase domain (Chen et al. 2000).

CHKl, differently from CHK2, is an unstable protein (with a half- 

life of less than two hours) (Bartek et al. 2001) and its expression is 

restricted to the S and G2 phases of the cell cycle, suggesting that CHKl 

might regulate the timing of mitosis by controlling the activity of CDC25 

during the normal cell cycle (Kaneko et al. 1999).
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CHKl -/- mice suffered an early embryonic death, indicating that CHKl is 

essential for cell growth and differentiation at an early stage of 

development (Takai et al. 2000; Liu et al. 2000). ATR /- mice have also been 

reported to be characterised by similar early embryonic death and mitotic 

catastrophes, further suggesting a link between ATR and CHKl (Brown 

and Baltimore 2000).

1.6 Mitotic checkpoint

Moving towards mitosis, cells m ust distribute their replicated 

genetic material evenly between the two daughter cells. In this phase 

microtubules organize into a bipolar spindle which segregates the 

duplicated chromosomes (Meier and Ahmed 2001). This process m ust be 

tightly controlled because mis-segregation of chromatids will lead to 

aneuploidy (Jallepalli and Lengauer 2001). In human cells, if centrosome 

separation (necessary for the bipolar spindle formation) does not occur, 

prometaphase is delayed and the mitotic checkpoint inhibits the 

chromatids separation until all the kinetochores are attached to the 

microtubules (Scolnick and Halazonetis 2000). Moreover, a further control 

checks the exit from mitosis and is able to block the network until 

completion of chromosome separation (Rudner and Murray 1996; Amon 

1999). The crucial steps in the progression through mitosis are controlled 

by the disruption of the mitotic inhibitory proteins, a phenomenon
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occuring when these proteins are ubiquitinated by APC/C (anaphase 

promoting complex /  cyclosome) and targeted to the proteosome for 

degradation (Morgan 1999; Harper et al. 2002). In order to ubiquitinate the 

substrates, APC/ C must be complexed w ith the protein cdc20 (Wassmann 

and Benezra 2001). The mitotic checkpoint directly inhibits the A PC/C 

function (Wassmann and Benezra 2001). Genes able to signal and activate 

this checkpoint have been discovered and include the Mad and Bub genes 

which have been well characterized in S. cerevisiae. Mammalian 

homologues have been discovered and also found to play a role in mitotic 

checkpoint control (Li and Benezra 1996; Taylor et al. 1998).

1.7 Modulation of checkpoints following DNA damage

Following the induction of damage, the different checkpoints are 

activated and prepared for the cascade of events eventually leading to cell 

cycle arrest or apoptosis (Fig 1.14). Both p53 and CHK1/CHK2 need to be 

activated in order to start the complex pathways they govern. These 

checkpoint proteins are not present at the site of damage and m ust be 

downstream to factors which are able to identify the lesion and to 

"inform" the checkpoint proteins (Khanna et al. 2001; Abraham 2001).

In vitro experiments have clearly shown that both p53 and 

CHK1/CHK2 are post-translationally modified by a number of kinases. 

p53 is phosphorylated at many sites by different kinases including CKII,
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ATM, ATR, DNA-PK (see 1.3.1.2), while CHK1/CHK2 were shown to be 

phosphorylated by ATM and ATR (Sanchez et al. 1997; Abraham 2001; 

Tian et al. 2002).

The post-translational modifications of p53 and CHKl, and 

particularly their phosphorylation are necessary for their ability to work 

as checkpoint proteins. In fact studies with mutants lacking serine 15 or 

serine 20 phosphorylable sites clearly showed that the response to damage 

in these cells was defective (Fiscella et al. 1993; Unger et al. 1999). 

Similarly, inability to phosphorylate CHK1/CHK2 was associated w ith a 

strong reduction of their activity (Guo et al. 2000).

Interestingly the p53 sites at serine 15 and serine 20, which are 

particularly important for p53 activation, since they are in the region 

bound by the negative regulator mdm2, are also phosphorylable by 

CHK1/CHK2 (Prives 1998; Chehab et al. 2000; Hirao et al. 2000; Shieh et 

al. 2000). This finding indicates again how the cellular response to damage 

is finely controlled, and how the key proteins participating in m ounting 

the response to damage are interconnected.

The activation of checkpoint proteins is therefore another crucial 

aspect that has to be considered when the checkpoint proteins activity is 

studied.
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1.8 Sensors of damage

One of the major problems for a cell is to detect rapidly a lesion 

present in its DNA. The proteins able to quickly recognize the presence of 

damage and to signal the damage to checkpoint proteins are called 

"sensors" of the damage. The different sensor proteins m ust specifically 

recognize the kind of damage occuring in order to be able to activate the 

appropriate checkpoint pathway and also must be able to recognize very 

low levels of damage such as those which occur endogenously. The 

ATM/ ATR protein kinases are the most studied sensors of damage in 

hum an cells (Lavin 1999; Khanna et al. 2001; Abraham 2001). Both belong 

to the family of phosphatidyl-inositol 3- kinase like protein kinases (Lavin 

et al. 1995; Durocher and Jackson 2001). They are able to be quickly 

recruited to sites of damages in DNA where they form complexes with 

other proteins such as the replication factor RF-C and PCNA (Shiloh 2001; 

Balajee and Geard 2001; Unsal-Kacmaz et al. 2002). The complex formation 

at sites of damage is a prerequisite for the activation of cellular response 

which is started by phosphorylation of checkpoint proteins (Lakin et al. 

1999; Durocher and Jackson 2001; Shiloh 2001). Evidence in vitro and 

particularly in vivo shows that ATM/ATR are able to phosphorylate two 

of the checkpoint proteins discussed in this introduction, p53 and CHKl 

(Hoekstra 1997; Tibbetts et al. 1999; Lakin et al. 1999). This step is crucial 

for the activation of both checkpoints and in fact cells lacking the ATM
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BRCAl is a breast cancer tumor suppressor gene encoding a protein 

containing a BRCT motif, generally found in many proteins implicated in 

DNA damage response and genome stability (Casey 1997; Bork et al. 

1997). BRCAl is phosphorylated upon DNA damage by ATM, ATR and 

CHK2 (Cortez et al. 1999; Tibbetts et al. 1999; Lee et al. 2000). BRCAl has 

been shown to be essential for activating CHKl, and in fact activation of 

CHKl kinase after exposure to ionizing radiation occurred only when the 

BRCAl protein was expressed (Yarden et al. 2002).

1.9 Checkpoint defects in cancer cells

Having established the fundamental role of checkpoint proteins 

and checkpoint control mechanisms in normal cells, a lot of evidence 

indicates that in cancer cells these mechanisms are invariably defective. 

The inactivation of control mechanisms, including cell cycle control and 

apoptotic réponse, is often included in the mechanisms responsible for the 

transition of a normal cell to a cancer cell. As already discussed, the gene 

encoding p53 is the gene most frequently found m utated in hum an cancer, 

and the accumulation of mutations in this gene are particularly frequent in 

advanced tumors (Harris 1996; Hollstein et al. 1997). More than 90% of the 

mutations found in the p53 gene are in the evolutionary conserved central 

DNA binding domain, which further underlines the importance of 

transcriptional activity in p53 overall activity (Harris 1996). Besides gene
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mutations and deletions, inactivation of p53 has been reported in human 

tumors by alternative mechanisms, including cytoplasmic sequestration 

(Moll et al. 1996), which blocks the potential activity of p53 as a 

transcriptional factor, and viral inactivation (Kessis et al. 1993; Crook et al. 

1994). The E6 gene of the human papilloma virus HPV16, for example, 

which binds p53 and allows its rapid proteasome-dependent degradation, 

is thought to be responsible for the p53 inactivation in cervical cancer, 

where inactivation by gene m utation/deletion is less im portant (Ngan et 

al. 1994). Additionally, germline mutations in the p53 gene predispose to 

cancer, as borne out by Li-Fraumeni patients, in whom the inactivation of 

one p53 allele strongly predisposes to cancer (Davison et al. 1998; 

Chompret 2002).

The CHKl and CHK2 genes have also been found m utated in 

cancer. Mutations of CHK2 have been reported in families w ith Li 

Fraumeni syndrome and in patients with hematopoietic vulval and breast 

tumors, all leading to inactivation of the protein (Bell et al. 1999; Lee et al. 

2001; Reddy et al. 2002; Ingvarsson et al. 2002; Hangaishi et al. 2002).

Mutations in the CHKl gene are much less frequent in hum an 

tumors than those found with respect to the CHK2 gene. The presence of a 

nucleotide stretch of nine consecutive nucleotides in the coding region of 

CHKl led to the hypothesis that tumors with defects in mismatch repair 

and hence with microsatellite instability could accumulate mutations 

around this region. This hypothesis was indeed found to be correct. In
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tumors of the colon and endometrium, in which microsatellite instability 

occurs frequently, insertion/ deletion of one nucleotide in the coding 

region of CHKl can be found (Bertoni et al. 1999; Vassileva et al. 2002; 

Furlan et al. 2002). The insertion/deletion of one nucleotide leads to a 

frameshift mutation that in the case of CHKl results in protein truncation 

and inactivation (Bertoni et al. 1999). It is important to note that these 

mutations are always heterozygous and that one w t allele is always 

present. This situation differs from that pertaining to other genes 

susceptible to the presence of microsatellite instability, such as the bax 

gene, in which case inactivation of both allele can be found (Rampino et al. 

1997). Is still unclear whether haploinsufficiency in CHKl can have 

detrimental effects for checkpoint response, particularly because there are 

no cellular models representative of the clinical situation, which can be 

used as a tool to investigate this point. Many attempts to disrupt and 

abrogate the CHKl gene in mammalian cells failed, and CHKl knock out 

mice do not develop due to embryo lethality (Takai et al. 2000).

Finally, inactivation of DNA damage sensors have been reported in 

human pathological conditions. Germline defects in ATM gene are 

responsible for ataxia telangectasia, a neurological disorder which also 

predisposes to cancer, due to a decreased ability to properly activate the 

DNA damage response (Delia et al. 2000; Yan et al. 2000).

If the altered expression of checkpoint proteins in hum an cancer 

can be regarded as one of the possible mechanisms responsible for the
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transformation of a normal cells into a cancer cell, we can take advantage 

of the different expression of these proteins between cancer cells and 

normal cells in order to study possible ways to increase the selectivity of 

anticancer agents. The lack of a proper cell cycle arrest following damage 

observable in certain cancer cells can be, for example, an advantage for 

those drugs able to activate an apoptotic response and for which a cell 

cycle arrest would be detrimental. Another attractive possibility would be 

to specifically target those factors which are aberrantly expressed in cancer 

cells. The combination of the knowledge of the molecular mechanisms 

responsible for the cellular response to stress and the effect of alterations 

of those proteins involved in the cellular response to a given drug could 

eventually help to optimise treatment with conventional drugs, design 

new combinations of conventional drugs with cellular response 

modulators and find new target-oriented drugs, with the final aim to 

improve selectivity and outcome of cancer treatment.
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2. AIMS
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During the last 2 decades the therapy of patients with cancer has clearly 

been improved implying alleviation of much hum an misery. Nevertheless 

there is still an urgent need to find new and better anticancer drugs, or 

new treatment schedules and combinations of currently used drugs, 

which offer high activity, exquisite specificity towards cancer cells, hence 

possess a high therapeutic index (see chapter 1.1 of the Introduction).

Theoretically the ideal anticancer drug should be a drug which 

exerts its activity against a specific molecular target present in cancer, but 

not in normal cells, has favourable characteristics of absorption, a 

pharmacokinetic profile allowing concentrations of active drug to reach 

the target, and, last not least, allows being formulated in a suitably dosage 

form. The knowledge of important molecular targets in cancer cells is 

indispensable for the rational design of new molecules (see chapter 1.1).

i) The present studies were undertaken with the overall aim of 

characterising, in human cancer cells growing in culture, the roles which 

certain proteins play in the control of cell cycle progression in the context 

of the cellular response to treatment with classical anticancer agents.

The choice of protein which was to be studied with this aim in 

mind was based on the evidence that, almost invariably, cancer cells are 

characterised by aberrant regulation of the cell cycle, due to m utation or 

inactivation of proteins acting as checkpoints and normally functioning as 

guardians of genomic integrity (see chapter 1.9 of the Introduction). The 

studies were therefore focussed on 1. the tumor suppressor gene p53.
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which is the gene that most frequently is found mutated in hum an cancer,

2. its recently discovered homolog p73, and 3. the checkpoint protein 

CHKl.

ii) To study properly the role of these proteins in the determination 

of cellular response to treatment, it was considered essential to generate 

and characterize appropriate cellular models. A substantial part of the 

work was therefore devoted to set up these systems and, in particular, to 

generate isogenic cellular systems, which have a similar genetic 

background and differ only in the presence, or expression, of the protein 

of interest.

iii) The cellular subclones selected with these particular 

characteristics were then studied in terms of phenotype and ability to 

grow, features which are also essential for the interpretation of drug- 

induced effects.

iv) For p73 and CHKl, which are relatively new genes, their 

regulation following damage has been taken into account. Information on 

the genomic structure and regulatory regions of the CHKl gene has not 

been available at the inception of the work described here. Therefore, the 

isolation and characterization of these sequences has been another 

important objective of the work.

v) Once the regulatory region of the CHKl gene was partially 

sequenced, two further aims of the project were to determine the
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transcriptional regulation of CHKl following DNA damage, and to 

identify the transcriptional factors possibly involved in this regulation.

vi) Another objective of the work was to study the differential 

activation of the N-terminal full length p73 and its N-teminal truncated 

form (DNp73) following DNA damage. It has been reported that these 

two isoforms originate from two distinct promoters which contain in their 

DNA sequences binding sites for different transcriptional factors. It can be 

hypothesised that different kinds of damage could lead to the differential 

activation of the two isoforms. Such differential activation is likely to be 

associated with different cellular responses due to different and 

sometimes opposite effects of the two isoforms.

vii) Finally, cross connections between the different checkpoint 

proteins and their reciprocal regulation, knowledge of which emanated 

from results obtained in the cellular systems used in the work described 

here or in previous studies, have been investigated. This aspect is 

particularly interesting considering that the different checkpoints, once 

activated following damage, and once the damage has been repaired, need 

to be reported to their basal level of activity (inactivated) in order to allow 

repaired cells to progress through the cell cycle. The complexity of the 

systems suggests a possible cross-talk and regulation of the different 

proteins involved in the checkpoints.

The study of the existence of such cross-talk and its preliminary 

molecular characterization have been two further aims of this work.
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3. MATERIALS AND METHODS
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3.1 Culturing of cells

3.1.1 Maintainance of cells in culture

All the cell culture procedures were carried out aseptically in laminar flow 

hoods. Cells were maintained in a humified incubator at 37°C with 5% 

CO2.

The hum an cancer cell lines used in these studies were: the hum an ovarian 

carcinoma cell lines A2780 and SKOV-3, the human colocarcinoma cell line 

HCT116, the human osteosarcoma cell line U20S, the hum an 

lymphoblastoids cell lines IARC1663, A T ll and AT13.

Each cell line was maintained in its culture medium which was RPM I1640 

medium supplemented with 10% calf serum for A2780, SKOV-3, U20S, 

IARC1663, A T ll and AT13 cells and ISCOVE's modified m edium  

supplemented with 10% calf serum for HCT116. The different media were 

purchased form Sigma and contained all the mineral and supplements 

necessary for the growth of the cells except for the serum, which was 

added when needed.

The clones derived from the hum an colon-carcinoma cell line HCT-116, 

clone 40.16 (p53 +/+), clone 379.2 originated by targeted deletion of the 

p53 gene (p53 - /  -) and clone p21-/ - originated by targeted deletion of the 

p21 gene (p21 -/-) were kindly supplied by Dr. Vogelstein from John 

Hopkins University (Baltimora, MA, USA). The HCT116-derived clone in 

which p53 has been inactivated by transfection with the E6 protein of the
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HPV16 virus was previously generated in the laboratory (Vikhanskaya et 

al. 1999).

Cells were passaged routinely before they reach confluence to maintain a 

logarithmic growth. The cells were renewed every four-five months of 

culture.

Procedures to detach and subculture cells were the same for all the cell 

lines used and consisted of two washes with warm  sterile phosphate 

buffer saline (PBS) and detachment w ith a solution of IX trypsin/EDTA 

(Mascia Brunelli). The trypsin activity was stopped by adding calf serum- 

containing medium. After centrifugation at 1200 rpm  for 10 minutes, cells 

were resuspended in the appropriate medium, counted at the cell culture 

counter (Coulter Counter, ZM), and seeded at the desired density.

3.1.2 Long term storage in liquid nitrogen

To generate and maintain batches of cells, exponentially growing cell were 

washed twice with PBS and centrifuged at 1200 rpm  for 10 minutes at 

room temperature. The cell pellet was resuspended in culture medium 

containing 50% of cryoprotective medium (Bio-Whittaker, Milan-Italy) 

and 20% of calf serum to a density of 5,000,000 cells/ml. Aliquots of 1 ml 

were kept on ice 30 minutes, cooled slowly for 3 h  in nitrogen liquid 

stream and then immersed in liquid nitrogen. Cells were recovered from 

the cell bank by rapid thawing to 37 °C in a water bath, centrifuged at 1200 

rpm for 10 minutes, resuspended in the appropriate culture m edium and
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transferred to a tissue culture flask. The day after the medium was 

removed and new, fresh medium was added.

3.1.3 Preparation of drug solutions

The drugs used in the experiments were cisplatinum (DDF, Sigma), taxol 

(obtianed through the NCI), roscovitin (Sigma), doxorubicin (DX, 

Pharmacia, Nerviano Italy), methyl-nitro-nitrosoguanidine (MNNG, 

Sigma), topotecan (Sigma), UCN-01 (Sigma), wortmannin (Sigma) and 

trichostatin A (TSA, Sigma).

DDP was prepared fresh for any experiment by preparing a solution of 0.5 

m g / ml in medium and allowing this solution to equilibrate with proteins 

present in the serum at 37°C for 30 minutes before treatments. Taxol was 

prepared as a 2 mM stock solution in DMSO and subsequently diluted in 

fresh medium the day of treatment. The stock solution was maintained at 

-20°C. MNNG, wortmannin, UCN-01, topotecan, roscovitine and TSA 

were also prepared as stock solutions in DMSO, at concentrations of 10-50 

mM, stored at -20°C and freshly diluted in medium just before treatment. 

DX was prepared as a 1 m g / ml solution in water and stored at -20°C in 

the dark.

After treatment, the medium containing the drugs and the remaining 

solutions were properly discarded.
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3.1.4 Cell growth inhibition induced by anticancer agents

The cytotoxic activity of anticancer agents was studied using two different 

methods. For A2780 and U20S cells, 100 pi of cells were seeded in 96 wells 

plates at a density of 20.000 cells/m l and allowed to attach for at least 72 

hours. A range of concentrations of each drug was used and each 

concentration was repeated in six replicate wells. Treatment was 

performed for one hour. For cell treatments, the stock solution of the drug 

was diluted in fresh medium to a concentration double the maximal 

selected. From this solution, 100 pi were added to 100 pi of m edium  

containing cells to have the final desired concentration. Subsequent 

concentrations were obtained by serial dilution in medium. Untreated 

cells were incubated with an equivalent volume of fresh medium.

At the end of 1 hour incubation, the medium was aspirated and replaced 

with 200 microliters of PBS to wash the cells. The PBS was then aspirated 

and 100 microliters of fresh medium added. The cells were then left in the 

incubator at 37°C for further 72 hours.

The degree of growth inhibition induced by a drug was evaluated w ith the 

MTT assay. This assay is based on the ability of mithocondrial succinato 

dehydrogenase enzyme to metabolise the tétrazolium salts (3-(4,5- 

dimethylthiazol-2-yl)-2,5diphenyl-tetrazolio bromide). Basically, 20 pi of a 

solution of MTT (6 m g/ ml diluted in sterile PBS) were added to each well 

and the plate incubated for at least 4 hours at 37 °C in the dark. The 

medium was then aspirated and the unsoluble salts resuspended w ith 100
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microliter of a solution of 0.25 N HCl in isopropyl alcohol. The absorbance 

of each well was then read using a Titertek equipped with a filter for 550 

nM. The absorbance value for each drug treated well was then compared 

with that of the untreated cells. The mean concentration inhibiting the 

growth by 50% (IC50) was determined for each drug from at two-three 

independent experiments.

For HCT116 cells, the activity of the different compounds was assessed by 

measuring the inhibition of colony formation. Cells were seeded at a 

density ranging from 200 to 400 cells/ml in 6 wells-plates (2 ml per well). 

24-48 hours after seeding the cells were treated w ith different 

concentrations of the drugs. In this case a 10 fold more concentrated 

solution of the drugs was prepared and 200 pi of this solution added to 

each well to give the final desired concentration. At the end of treatment, 

the medium was removed and the cells were incubated in drug-free 

medium for 10-12 days in 37°C incubator, to allow the formation of 

colonies. When in control cells the colonies were well visible under the 

microscope, the medium was aspirated and the wells washed w ith 1 ml of 

PBS. Then the colonies were stained with crystal violet by adding 1 ml of 

the commercially available solution, and, after extensive washings in 

water, with the final two washes in distilled water, the plates were air 

dried and the number of stained colonies counted by the Entry level 

Image System (Immagini & Computer, Italy). A background correction 

was made and the smallest control colony was taken as the minimum for
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the establishment of the cut-off point. Each experiment was repeated at 

least twice and consisted of three replicated per point.

3.2 Generation of cell clones with selected gene alterations

3.2.1 Preparation of constructs

To transfer the gene of interest in the genome of host cells, the cDNA was 

excised from the plasmid of origin by restrictrion endonuclease digestion 

and subcloned in the appropriate expression vector. The expression vector 

used in our experiment was essentially the pCDNA3 produced by 

Invitrogen. The principal features of this plasmid are: the presence of a 

strong viral promoter (CMV) driving the transcription, a polylinker 

sequence containing the DNA recognition sequence for many restriction 

enzymes to facilitate the subcloning of the gene of interest, a bacterial 

resistance gene (ampicillin) for selection of recombinants and a eukaryotic 

resistance gene (neomycin) for selection of cells containing the plasmid. 

The procedure to subclone the gene of interest we used followed the 

general mocelular biology techniques reported in Sambrook et al. ( 1989). 

In summary, the gene of interest is excised from the plasmid of origin by 

digestion with the appropriate restriction enzymes for 1 hour at 37°C in a 

buffer supplied with the enzyme. The entire reaction is loaded on 1% 

agarose gel to separate the cDNA insert from the plasmid. Agarose gel is
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prepared by dissolving Ig  of ULTRA pure agarose (Sigma) in 100 ml of Ix 

TAB buffer:

TAE Buffer (50x) final concentration

242 g Tris hase 2 M

100 ml EDTA 0.5M, pH 8 50 mM

57.1 ml glacial acid acetic

to i  I with deionised water. The solution was stored at room temperature.

The solution is heated in a microwave and boiled until all the agarose is 

dissolved. The solution is then cooled to approximately 50°C before 

pouring in a casting tray. The gel was then stained in a solution of 1 

microgram /ml of ethidium bromide in TAE buffer for 30 minutes and the 

DNA bands visualized with a UV transilluminator.

When the two expected bands were present, the appropriate band 

containing the cDNA was excised from the gel and the DNA extracted 

from the agarose slice using the QIAgel kit (Qiagen) exactly following the 

manufacturer's instruction. The cDNA so obtained was stored at 4°C. The 

pCDNA-3 plasmid was digested with the same restriction enzymes used 

to excise the cDNA from the original plasmid. After digestion, the plasmid 

was treated with shrimp alkaline phosphatase at 37°C for 60 minutes to 

remove the 5' phosphates and to reduce the probability of the plasmid to 

recirculate without insert. The reaction was then heated at 70 °C to
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inactivate the phosphatase. The linearized pCDNA3 plasmid was ligated 

with the excised cDNA insert in 20 microliters of a solution containing lU  

of T4 DNA ligase (Promega) and IX ligase buffer (30 mM Tris-HCl, pH 

7.8,10 mM MgC12,10 mM DTT and 1 mM ATP, supplied with the ligase) 

for 4 hours at room temperature. Five microliters of this solution were 

then used to transform competent bacteria.

3.2.2 Preparation of competent bacterial cells for transformation

Fifty ml of sterile bacterial cellular suspension (XLl-blue, Stratagene) were 

mixed, in a sterile 50 ml conical tube, with 10 ml of sterile LB medium:

Luria-Bertani Broth (LB) final concentration

10 g hacto-tryptone 1% (w/v)

5 g hacto-yeast extract 0.5% (w/v)

lOgNaCl 1% (zo/v)

to a final volume o fl I ivith deionised zuater. The medium zvas then autoclaved for 

15 min and the antibiotic of selection (for pCDNAS dereived plasmids, ampicillin 

at the final concentration of 50 jug/ml) zvas added once it had cooled to 55° C.

and allowed to grow in a 37°C heated shaking incubator (Folabo) at 225 

rpm  overnight. One ml of such liquid bacterial culture was then 

transferred into a sterile 500 ml bottle containing 100 ml of sterile LB
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medium and the bottle was placed into the 37°C heated shaking incubator 

at 225 rpm.

To harvest bacterial cells in logarithmic growth phase, 2 hours later, 1 ml 

of liquid culture was transferred, under a laminar flow in a disposable 

cuvette and the absorbance at 600 nm  wave-length was read on the 

spectrophotometer. E. coli concentration in the liquid culture was 

calculated by considering that 1 A600 nm  unit corresponds to about 8x log 

bacterial cells/ml. When the 600 nm  absorbance reached A 0.3 units 

(corresponding to roughly 2.4 x 10  ̂cells/ml;) the bacterial suspension was 

transferred in two ice-cold sterile 50 ml conical tubes and the cell growth 

was stopped by placing the tubes on ice for 15 minutes. E. coli cells were 

pelleted by centriguation at 3,000 rpm  for 10 minutes at 4°C and, after the 

removal of LB medium, cell pellets were pooled in the same tube by gentle 

resuspension in 10 ml of ice-cold sterile 0.1 M CaCb solution. After 

addition of 40 ml of ice-cold sterile 0.1 M CaClz solution, bacterial 

suspension was incubated on ice for 30 minutes and subsequently 

centrifuged at 3,000 rpm  for 10 minutes at 4°C. The supernatant was then 

removed and the cell pellet was carefully resuspended in 5 ml of an ice- 

cold sterile 0.1 M CaClz containing 15% (v/v) glycerol (Sigma). This 

bacterial suspesion was dispensed in 1.5 ml eppendorf tubes (400-500 pi 

aliquots for each tube) and kept at 4°C for 24 hours after which the tubes 

were quickly frozen in liquid nitrogen and stored at -80°C. The cells
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maintained their competence for transfection for 1-2 months when kept at 

-80°C.

Fifty pi of freshly prepared competent cells were transformed w ith 50 ng 

of a DNA vector able to confer ampicillin resistance and 1/100,000 

(dilution factor, 10^) of the bacterial suspension was plated as described in 

agar plates. Transformation efficiency, calculated on the basis of the 

formula (NUMBER OF COLONIES) x (1(P) X (DILUTION FACTOR) /  50 

ng, was expressed as the number of colony forming units (CFU) per pg of 

plasmid DNA. Generally, 10^-10  ̂ CFU per pg of plasmid DNA were 

indicative of a good preparation of competent bacterial cells.

3.2.3 Transformation of bacteria

In an ice-cold 10 ml Falcon tube (Falcon, Becton Dickinson), 50 pi of 

competent bacterial cells were diluted to a final volume of 100 pi w ith 0.1 

M CaCl2 and 20 pi of the ligation reaction (3.2.1) were then added. The 

mixture was gently mixed by tapping and the tube was chilled on ice for 

30-40 minutes, incubated for 120 seconds at 42°C in a water bath and for 2 

minutes again on ice. After a 5 minute incubation at room temperature, 

900 pi of LB medium were added and tube was placed into a 37°C heated 

shaking incubator at 225 rpm  for 1 hour. The tube was then centrifuged at

3,000 rpm  for 5 minutes at room temperature, most of the supernatant LB 

removed and the bacterial cell pellet resuspended in the remaining fluid 

and spreaded into 90-mm dish (Corning-Costar Italia-Milan, Italy)
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containing LB agar medium plus the antibiotic of selection: (LB medium 

was prepared as previously described. Agar (1.5% w/v) (Life Technologies) was 

added before autoclaving and the solution poured on 90-mm dish (Coming- 

Costar, Milan-Italy) and allow to dry under sterile hood) and incubated 

overnight at 37°C without agitation.

3.2.4 Identification of recombinant clones

Each colony, representing antibiotic-resistant/transformed growing 

bacterial cells, was picked-up with a sterile disposable loop, and spread to 

another agar plate containing LB agar plus selection antibiotic and 

incubated overnight at 37°C. Each colony was numbered and half of each 

was dissolved in a 1.5 ml eppendorf tube containing 20 pi of Ix  STE:

Ix STE final concentration

0.2 ml EDTA 0.5 M 10 mM

0.2 ml TRIS.HCl pH 7.5 IM  20 mM

0.2 ml NaCl 5M 100 mM

to a final volume of 10 ml of deionised zuater.

j

To this solution, an equal volume of phenokchloroform (SIGMA) 1:1 was 

added. The tubes were vortexed and centrifuged for 2 min at 12000 rpm. 

10 microliters of the upper, aqueous solution were transferred to another 

eppendorf tube containing 2 pi of 6x loading buffer:
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Loading Buffer (6x) final concentration

1ml EDTA 0.5 M 0.1 M

2.5 g sucrose 50% (w/v)

100IÀ hromophenol blue 10% 0.25% (w/v)

100 jul xylene cyanol 10%> 0.25% (w/v)

to a final volume of 5 ml of deionised zuater. 10 jul of ethidium bromide (10 mg/ml) 

zuere then added and the solution zvas stored at 4°C.

and the entire solution loaded on 1% agarose gel. The gel was run  for 1 

hour at lOOV, and DNA visualized under UV transilluminator. The 

samples containing bands migrating differently from control non-ligated 

plasmid, which was processed together with the ligated colonies, were 

considered positives. The remaining half of the spreaded colony of these 

positive clones was taken and dissolved in a 15 ml falcon tube containing 

3 ml of liquid LB medium supplemented with antibiotic (ampicillin, 50 

p g / ml final concentration) and allowed to grow over night at 37°C with 

shaking at 225 rpm.

3.2.5 Purification of DNA from bacteria

Plasmidic DNA was purified from bacterial suspension using the 

miniprep system (Qiagen). The procedure, starting from 1.5 ml of bacterial 

suspension was exactly as described by the manufacturer. The recovered 

DNA, in 50 pi of water, was subjected to restriction digestion with
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appropriate restriction enzymes to verify that the insert was indeed 

present in the colony isolated. After digestion and separation on agarose 

gel, the fragments of DNA were visualized by using an UV 

transilluminator. The positive colonies containing the right insert were 

stored at -80°C after the addition, to 0.8 ml of the bacterial suspension 

used for the enzyme digestion, of 0.2 ml of ultra pure glycerol (Sigma). 

When necessary, the remaining DNA was used for confirmation by DNA 

sequencing, which was performed through custom sequencing services 

(through a core facility available at Mario Negri Bergamo, Bergamo, Italy). 

Once verified that the plasmid contained the right insert and sequenced, if 

necessary, a large scale preparation of DNA was performed, using the 

Qiagen midi preparation kit following the procedures reported in the 

instruction manual.

The DNA recovered from the midi preparation was quantified at the 

spectrophotometer by reading the absorbance at 260 nm and 280 nm. The 

quality of the DNA prepared was determined by the ratio between 260 nm  

and 280 nm  absorbances, which should be 1.8

For quantification the extinction coefficient was used. The amount of DNA 

was calculated considering that a solution of 50 micrograms of D N A /m l 

would give a reading of 1 at 260 nm.
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3.2.6 DNA-Transfection

Transfection of DNA in the different cell lines used was performed by 

using the calcium phosphate precipitate method. With this method, DNA, 

dissolved in sterile water is mixed with a solution of 2 M CaCb (prepared 

by dissolving 14.7 g of CaCh in 100 ml H 2O and filtering the solution with 

a syringe equipped with a 0.2 pm filter ) to give a final concentration of

0.25 M CaCh in a volume of 250 pi. In the meantime, for each transfection 

to be performed a 4 ml transparent tube (Falcon) is prepared by adding 

250 pi of a 2x HEPES-Buffered Saline (HEBS 2x) :

HEBS 2x final concentration

1.ôgNaCl 280 mM

0.074gKCl 10 mM

0.027g Na2HP0 4 *H2 0  1.5 mM

0.02g Dextrose 12 mM

Ig HEPES 50 mM

The salts are dissolved in 50-70 ml of distilled water and the pH of the 

solution is then adjusted to 7.2 with 0.5 M NaOH and then brought to 100 

ml with sterile water.

Then a 1ml sterile pipette fixed to an automatic pipettor is placed at the 

bottom of the tube containing the HEBS solution and the air forced inside 

the tube. While the solution is bubbling, the DNA-CaCL solution is added 

dropwise. When all the DNA has been added, the tube is vortexed for 20



97

seconds and kept in a tube holder for 30 minutes. The solution is then 

added dropwise to the cells seeded in a 25 cm^ flask and incubated 16 

hours at 37°C.

The cells with the DNA-CaP0 4  solution are then visualized under the 

microscope to verify the presence of small precipitates of CaP0 4  on all the 

surface of the flask. Once verified this, the medium is removed and the 

cells extensively washed with PBS (three four times, with the PBS left on 

the cells 5 minutes to help in removing as much as possible the crystals). 

After washing, the cells are resuspended in complete medium.

3.2.7 Isolation of cell clones stably expressing the gene of interest

When clones of cells stably expressing the gene of interest have to be 

recovered, 48 hours after the end of transfection the medium is removed 

and the cells detached with trypsin EDTA solution. After counting, the 

cells are seeded in 9 mm plates at a density of 5000 cells/m l in m edium  

containing the selection antibiotic (500 micrograms/  ml of G418 for 

neomycin resistance gene containing plasmids, or 400 micrograms/  ml of 

hygromycin, for plasmid contianing the hygromycin resistance gene). At 

these antibiotic concentrations parental cells are killed and the only cells 

growing are likely to be those which have integrated in their DNA the 

transfected plasmid. The plates are then kept at 37°C and the m edium  

renewed every two-three days. When colonies are formed, they are 

visualized under the microscope and isolated from the plate by using
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plastic rings which are made aderhent to the plate with vaselin. Once 

isolated, 20 microliters of a trypsin EDTA solution are added and the cells 

of the single colony detached and placed in a 24 wells plates containing 1 

ml of medium plus selection antibiotic. The different clones picked up 

from the original plates are grown and passed in duplicated in 6 well 

plates. One plate is used to verify the presence of the gene of interest and 

the other is used to maintain the cell clone for further studies and for long 

term storage. Depending on the system available, the clones can be 

screened by western blotting or northern blotting, to verify the 

overexpression of the protein or of the mRNA of the gene of interest, 

respectively.

The clones overexpressing the gene inserted are then expanded and stored 

in different aliquots in liquid nitrogen.

3.3 Transient transfections and luciferase activity

Transient transfection experiments are performed following the same 

procedure described in 3.2.6. These experiments are performed to 

evaluate the promoter activity of DNA fragments subcloned in 

appropriate vectors. The constructs used utilize the non mammalian gene 

luciferase, which is inserted in a promoterless plasmid. For our 

experiments we have used the pGL2 vector from Promega, which contains 

the luciferase gene followed by a viral enhancer and a multiple cloning
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site at its 5'. The transfection and transient expression of this plasmid in 

mammalian cells results in a very low level of luciferase (due to the 

absence of a promoter), which is detected in cell lysates using a 

commercially available kit (Dual luciferase system, Promega). The 

genomic fragments to be analyzed are subcloned in the multiple cloning 

sites of pGL2 vector using restriction enzymes-based ligations. Once 

verified the exact insertion and orientation of the fragment using the 

procedures reported in 3.2.5, the plasmids are transfected in mammalian 

cells growing in culture. 48-72 hours following transfection, the m edium  is 

removed and the cell processed as reported in the manual of instruction of 

the kit. The luciferase levels are measured in a luminometer and the 

values corrected for the expression of a control plasmid co-transfected 

with the plasmid under examination, which encodes for a renilla 

luciferase distinguishable from the fire-fly luciferase utilized in these 

experiments.

3.4 Host cell reactivation assay

This method is used to determine the ability of a cell to repair the damage 

induced in a plasmidic DNA. In the experiments reported here, the 

plasmids utilized are the pGL2 control vector (Promega) which is 

composed by a viral SV40 promoter followed by a luciferase gene, a 

polyadenylation signal and a viral enhancer and PG13-luc (kindly
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supplied by Dr. Vogelstein) which is a pGL2-derived plasmid in which the 

luciferase gene is under the control of 13 copies of the p53 consensus 

binding site. When transfected in mammalian cells this vector allows the 

expression of luciferase driven by the SV40 viral promoter or by the p53- 

dependent promoter.

To measure the repair capability of a cell, the plasmid is damaged with 

DDP in vitro, by incubating 50 micrograms of the plasmid with 20 or 200 

micromolar DDP for 2 hours at 37°C in final volume of 100 pi of PBS. To 

remove unbound DDP, at the end of the reaction the plasmid DNA is 

precipitated by adding 10 pi of 3M sodium acetate and two volumes of 

ethanol and centrifuging the solution at 12000 rpm  for 20 minutes at 4°C. 

The pellet is washed in cold 70% ethanol (300 pi), dried, resuspended in 

100 pi of water and quantified at the spectrophotometer. Equal amounts (5 

pg) of undamaged or damaged plasmid are then transfected in cultured 

cells using the calcium phosphate technique. 24 and 48 hours after 

transfection, the cells are harvested and the luciferase activity measured as 

described in chapter 3.3.

Again, as an internal control the undamaged renilla luciferase encoding 

plasmid is used. The luminometer values are then reported to the values 

obtained in undamaged plasmid-transfected cells and a percentage value 

of the repair in cells can be obtained.
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3.5 RNA analysis

3.5.1 Isolationof total RN A

3.5.1.1 Cesium Chloride Method

Cells growing in culture to be analyzed for RNA expression were washed 

twice with ice-cold PBS and directly scraped in 1 ml of GTC:

4 M  Guanidine thiocyanate (GTC) final

concentration

25 g guanidine thiocyanate 4 M

Dilute in 30 ml of warm HiO and then add:

367 mg sodium citrate 25 mM

Adjust to pH to 7 with NaOH.

833 jul sarcosyl 30% 0.5%

350 jul p-mercapto-ethanol 0.1 M

to a final volume of 50 ml with sterile water. Filter with Millipore HA 0.45 jum 

filters and store in the dark at room temperature.

Scraped cells were collected into a 15 ml polypropylene tube, and the 

DNA was destroyed by vigorously vortexing and by passing the solution 

through a disposable syringe equipped with a 18 g needle three-four 

times. The suspension was carefully layered on top of 2 ml of 5.7 M 

cesium chloride :
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5.7 M Cesium Chloride (CsCl) final concentration

95.99 g CsCl 5.7M

830 jul NaAc 3M, pH 5.4 25 mM

to a final volume of 100 ml with 0.1 M EDTA, pH 7.5. The solution is then 

autoclaved. The final density should hel.7 g/l.

in polyallomer tubes (Beckman Polyallomer 13 x 51 nun). The tubes were 

then centrifuged using a swing rotor (SW40) at 48000 rpm  (50000xg) for 16 

hours at room temperature in a Beckman centrifuge. The supernatant was 

carefully removed and the upper section of the tube was cut off leaving 

only approximately 1 cm of the bottom which was immediately inverted 

to drain the remaining fluid. The purified total RNA stayed at the bottom 

of the tube. It was vigorously resuspended with two 100 pi aliquots of ice- 

cold water and transferred to a 1.5-ml Eppendorf tube, then precipitated 

with NaAc (final concentration 0.3 M) and two volumes of 96% ice-cold 

ethanol. After at least 1 hour at -80°C, the tube was then centrifuged for 30 

min at 4°C at 15000xg (Eppendorf centrifuge), and the pellet washed w ith 

70% ice-cold ethanol. The pellet was dried in a speed-vacuum centrifuge 

and resuspended in 50-100 pi of pure water. RNA concentration and 

purity was determined spectrophotometrically detecting the absorbance at 

280 nm and 260 nm. Pure RNA should have a 260 nm /280nm  absorbance 

ratio of 2.0. The RNA concentration was calculated considering that a
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solution of 40 micrograms of RNA per ml has a 260 nm  absorbance value 

of 1. Samples were then stored at -80°C.

3.5.1.2 Purification of RNA on columns

The SV total RNA isolation kit (Promega) was used for isolating total RNA 

as an alternative to the time consuming cesium chloride method when the 

amount of RNA to be recovered was not a limiting factor. In fact, with this 

method is possible to isolate pure RNA from few cells in a limited time (1- 

2 hours). The cells are lysed in a GTC containing solution which maintains 

the integrity of RNA while disrupting cells and dissolving cell 

components. RNA was then prepared following exactly the manufacture's 

instructions. The purified RNA is then eluted with a small volume of 

water (generally 50 microliters). An aliquot of this solution was then used 

to determine the RNA concentration are described above. Samples were 

stored at -80°C until use.

3.5.2 RT-PCR

Techniques based on the polymerase chain reaction (PGR) follow the 

principles in which a pair of primers (forward and reverse) define the 

region to be amplified. After dénaturation (generally at 95°C), primers are 

allowed to anneal to their complementary strand by lowering the 

temperature to their optimal annealing temperature (AT) which is specific 

for each set of primers and is linked to the oligonucleotides sequence. AT
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can be calculated on the basis of the following formula: AT = 4x (G+C) +2x 

(A+T).

An elongation step allows the Taq DNA polymerase to start the 

polymerisation reaction downstream of the 3' ends of the primers. These 

three steps are then repeated for "n" cycles to allow exponential 

amplification of the target sequence.

RT-PCR has been shown to be several thousand-fold more sensitive than 

traditional RNA blot techniques. The technique involves the 

transformation of RNA to cDNA strand, followed by PCR amplification. 

Amplification is measured by resolving products through agarose gel 

electrophoresis. Since by increasing the number of amplification steps the 

reaction reaches a plateau, when a semi-quantitative analysis is needed, is 

necessary to keep the cycles at a relatively low number to ensure 

sensitivity without reaching saturation. An internal control, in general a 

housekeeping gene is used when semiquantitative data are needed.

For RT-PCR analysis, in these experiment the RNA-PCR core KIT 

(Applied biosystems) was used:

1 pg of total RNA is retrotranscribed to cDNA in 0.5 ml eppendorf tubes, 

using random hexamers and MMLV reverse transcriptase enzyme. The 

reaction was performed at 23°C for 10 min, followed by 45 min at 42°C 

and 10 min at 99°C. Reaction products were kept at 4°C until the PCR 

steps.
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PCR reaction master mix was made in a final volume of 25 pi following 

the manufacturer's instructions. Forward and reverse primers were added 

to a final concentration of 500 nM. Primers were designed on the basis of 

the sequence reported in the gene-bank database. The "GeneFisher" 

software free available online (web address: h ttp :/ / bibiserv.techfak.uni- 

bielefeld.de/ genefisher/) was used to design the best set of primers to be 

used for each gene. Synthesis of oligonucleotides used as primers was 

performed by Sigma.

A drop of mineral oil (Sigma) was layered on the top of the reaction and 

the mixture quickly spinned in a microfuge to recover all the fluids at the 

bottom of the tube and placed in DNA thermal cycler. Amplification 

conditions and cycle numbers were selected each time according to the AT 

of the pair of primers.

At the end of the amplification 10 pi of the reaction (carefully avoiding the 

removal of the mineral oil) were placed in another eppendorf tube and 

mixed with 1 / 6* of the volume (2 pi) of loading buffer :

Loading Buffer final concentration

1ml EDTA 0.5 M 0.1 M

2.5 g sucrose 50% (w/v)

100 jul bromophenol blue 10%> 0.25% {w/v)

100 jul xylene cyanol 10% 0.25% (w/v)

http://bibiserv.techfak.uni-
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to a final volume of 5 ml of deionised water. 10 jul ofethidium bromide (10 mg/ml) 

were then added and the solution was stored at 4°C.

The mixture was then loaded on agarose gels, prepared by dissolving 1 g 

of agarose in 100 ml of TAB Ix:

TAE Buffer (50x) final concentration

242 g Tris base 2 M

100 ml EDTA 0.5M, pH 8 50 mM

57.1 ml glacial acid acetic

to 1 1 with deionised water. The solution was stored at room temperature.

The solution was boiled to completely dissolve the agarose and cooled at 

room temperature before pouring in an horizontal electrophoresis 

chamber.

Samples were electrophoresed at 100 V for approximately 30 min in TAE 

Ix  buffer. DNA bands were visualised under UV light. The assessment of 

the expected DNA fragment length was achieved using molecular weight 

markers solutions (Fermentas) which were loaded in a lane parallel to that 

of the samples and electrophoresed together with the samples.
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3.5.3 Northern blotting analysis

Northern blotting is electrophoresis and transfer of RNA to a membrane 

followed by hybridisation to a specific probe. It provides a measure of the 

levels of an RNA species within a cell.

3.5.3.1 Sample preparation and gel analysis

During gel electrophoresis RNA molecules must be completely unfolded 

by the addition of a denaturing agent. Formaldehyde denatures RNA by 

reacting with amine groups preventing the formation of G-C and A-T base 

pairs. A formaldehyde agarose gel was prepared in MOPS (Sigma) buffer 

following the scheme here reported:

Formaldehyde Agarose Gel final concentration

0.8 g ultra pure agarose 1 %

8 ml MOPS buffer lOx Ix

14.4 ml formaldehyde 37% 6.66%

57.6 ml water

The agarose is dissolved in water by boiling. The other reagents are added when 

the gel reached approximately 60°C.
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MOPS Buffer (lOx) final concentration

93 g MOPS 0.2 M

20.51 g NaAc 0.5 M

1.86 g EDTA 10 mM

to 500 ml with deionised zvater. The pH zvas adjusted to 7 zvith NaOH and the

solution autoclaved.

The gel was poured in a chemical hood and let until solidified.

Equal amounts of RNA (generally 10 pg) were mixed with 3 volumes of a 

RNA denaturing solution prepared just prior to use following the receipt:

RNA Denaturing Solution final concentration

2.5 ml deionised formamide 50%

0.5 ml MOPS lOx Ix

806 jul formaldehyde 37% 6 %

to a final volume of 5 ml zvith sterile zvater.

Formamide is deionised to remove ionic contaminants which could 

hydrolyse RNA. To do this commercially available Formamide was added 

to mixed-bed resin (BioRad) (5 g res in /100 ml formamide) and stirred for 

at least 1 h in the dark. Formamide was filtered from the resin w ith 

Whatman paper, aliquoted and stored at -20°C.
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RNA samples were denatured at 65°C for 15 min and quickly chilled on 

ice. Then 1 /6*  of the volume of loading buffer was added to the mixture 

immediately before loading.

The RNA loading buffer consists of:

final concentration 

500 jul glycerol 50%

25 jul bromophenol blue 10% 0.25%

475 /// of zvater

1 jul of ethidium bromide (10 mg/ml) is added to 29 /jI of this solution. The 

solution is aliquoted and stored at -20°C.

After loading, the gel running was performed in MOPS buffer (Ix) at 

constant voltage of 80 V, for 2-3 h. At the end of the run the gel was briefly 

visualised under UV-light to visualize the two distinct, abundant, 

ribosomal bands (18S and 28S) which are indicative of a good separation 

and absence of degradation. The RNA was then blotted onto a membrane.

3.5.3.2 Blotting procedure

A capillary blot was set up using a solution of 20 x SSC (175.3 g NaCl, 88.2 

g sodium citrate in 11 of water) as transfer buffer.

The wick was made up of 2 pieces of 3MM paper with each end dipping 

into the transfer solution. The gel was placed on the wick with wells facing 

down, and air bubbles were gently removed. A nylon membrane
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(GeneScreen plus, NEN) of exactly the same size of the gel was soaked in 

20xSSC for at least 10 minutes and carefully placed on top of the gel and 

gently squeezed to remove air bubbles. Three sheets of 3MM paper where 

then added over the membrane followed by kleenex towels. The blot 

system was left for 16-24 hours after which the membrane was removed, 

washed by immersion in deionised water, left to dry at room temperature 

for approximately 30 min and examined under UV light to mark the 

position of the RNA 18S and 28S fragments. The membrane was then 

baked at 80°C for 2 hours to remove any residual formaldehyde from the 

RNA, as this could affect the efficiency of the hybridisation. The blot was 

stored at 4°C until ready for hybridisation.

3.S.3.3 Preparation of probes for northern blot analysis 

Probes suitable for determining the level of the message of the gene of 

interest were prepared either by directly labeling the entire plasmid 

containing the gene insert, by using the gene insert excised by the plasmid 

by restriction enzyme digestion or by using PCR amplified fragments. 

l^Tiatever the starting material was, the radioactive probe was prepared 

using a klenow fragment of polymerase I -  based method. A commercially 

available kit (Rediprime, Amersham) was used for this purpose. For 

labeling, 50 ng of DNA as starting material were used and all the steps 

described in the manual were followed using as radioactive nucleotide the 

32P-labeled dCTP (Amersham, 3000 C i/mmole). Purification of the probe
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from unlabelled nucleotide was performed using Sephadex G50 columns 

(Boehringher-Mannheim) exactly following the manufacturer instructions. 

The incorporated radioactivity detected by cherenkov counts and the 

probe was diluted to have a final concentration of 500000 cpm /m l of 

hybridisation solution.

3.5.3.4 Hybridisation

The membrane prepared as described in 3. was pre-hybridised for at least

4 hours at 42°C in a glass bottle containing 10-15 ml of hybridisation 

solution:

final concentration 

2 ml NaCl 5M 2M

5 ml deionised formamide 100% 50%>

2 ml dextran sulphate 50%> 10% (w/v)

250IÀ Salmon sperm DNA 10 mg/ml 100 jug /ml

The salmon sperm DNA was prepared by boiling the solution for 10 min, 

chilling on ice and storing in aliquots at -20°C.

The radiolabeled probe was denatured by boiling for 5 min and quickly 

chilling on ice. The glass bottle containing the membrane was removed 

from the hybridization oven and the probe directly added to the solution, 

carefully trying not to touch the membrane. The mixture was gently mixed 

and the incubation performed overnight at 42°C.
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The membrane was washed twice at room temperature for 10 minutes 

with 2x SSC, followed by two 2 washes of 15 min each at 65°C with 2 x 

SSC + 1% SDS and a final wash in 2x SSC wihtout SDS for 10 minutes. 

The blot was kept humid by wrapping it in Saran wrap and either exposed 

to film at -80°C or exposed to a phosphorimager screen at room 

tem perature for at least 5 h.

W hen necessary, the probe was stripped from the membrane by boiling 

the blot for 10 min in 0.5% (w /v) SDS solution. The blot was again kept 

humid, checked for radioactivity and either stored at 4°C or hybridised 

with another probe.

3.5.4 Gene expression by microarray technology

The gene expression profile in parental A2780 cells and in the two clones 

overexpressing p73 (A2780/ p73.4 and A2780/p73.5) has been evaluated 

using the ATLAS gene expression system (Clontech BD, ATLAS hum an 

cancer filter set). Total RNA from the three different cells lines has been 

isolated from logarithmically growing cells using the SV total RNA system 

(Promega), see 3.5.I.2. Ten micrograms of total RNA were then 

retrotranscribed to cDNA in the presence of a radiolabeled nucleotide. The 

procedure was performed following the user manual's instructions.

In a 0.5 ml eppendorf tube Ipl of CDS primer mix (a mix of primers 

specific for each filter set) and 2 pi of total RNA (5 pg/m l) were mixed and 

incubated for 2 minutes at 70°C in a thermal cycler. The tem perature was
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then reduced to 50°C and the incubation continued for further 2 minutes. 

Then 8 pi of master mix, prepared by mixing 2 pi of 5x reaction buffer (250 

mM Tris.HCl pH  8.3, 375 mM KCl, 15 mM MgCh ) 1 pi of dNTP Mix (5 

mM each dCTP, dGTP, dTTP), 3.5 pi of 32p-dATP (10 pCi/pl), 0.5 pi of 

DTT (100 mM) and 1 ml of MMLV reverse transcriptase, were added and 

the reaction incubated at 50°C for 25 minutes. At the end 1 ml of 

termination mix (0.1 M EDTA, Im g /m l glycogen) was added and the 

probes purified on sephadex columns (3.53.3).

Atlas filters were prehybridized for 30 minutes with 10 ml of the solution 

supplied with the filters at 68°C. To this solution, 5-10 x 10  ̂cpm of probes 

were added and the hybridization performed at 68°C for 16 hours. Filters 

were then removed from the oven and washed as described in 3.5.3.4 

The filters were immediately placed in srana wrap and exposed using a 

phosphoimager. The image imported from the phosphoimager was then 

analyzed with the ATLAS software using the grid relative to filters used 

(ATLAS hum an cancer). When analyzed, the differences in expression 

levels between p73 overexpressing clones and parental cells were 

considered significant if showing at least a two fold difference.
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3.6 Western blotting

Western blot analysis involves separating proteins using sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS/PAGE), transferring 

them to nitro-cellulose electrophoretically and then using specific 

antibodies to detect the protein of interest.

3.6.1 Preparation of cellular proteins

Total proteins were extracted from cells growing in culture through a lysis 

method. Basically cell cultures were washed twice with ice-cold PBS and 

then scraped with a disposable scraper in 500 pi of PBS. The solution was 

then centrifuged at 1200 rpm  for 10 minutes and after centrifugation, the 

pellet was resuspended in 100 pi of lysis buffer (for cells growing in 

suspension the pellet obtained after the second wash was directly 

resuspendend in the lysis buffer):

Lysis Buffer final concentration

20 jul Triton X-100 1%

20 jul Tris IM, pH 7.4

60 /// NaCl 5 M

8 jul leupeptin, 5 mg/ml

5 jjI aprotinina 2 mg/ml

20 jul PMSF100 mM

to a final volume of 2 ml with sterile water.

10 mM 

150 mM 

20 Mg/ml 

5 jug/ml 

1 mM
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and incubated on ice for 30 minutes in an orbital shaker. After 10 min of 

centrifugation at 12000 x g at 4°C, cellular debris were pelleted and the 

total protein present in the supernatant was recovered and placed in a 

fresh Eppendorf tube (1.5 ml). An aliquot (10 pi) was used for 

determination of protein concentration (see section 3.6.1.2).

3.6.1.1 Calibration curve preparation

Solutions of bovine serum albumin (BSA) (ranging between 1 and 20 

pg/200 pi) were prepared from a stock solution of BSA obtained by 

dissolving powdered BSA (Sigma) in water. In a 1.5 ml tube, 200 pi of each 

BSA solution were mixed with 600 pi of distilled water and 200 pi of 

BioRad protein assay dye (BioRad). In the blank sample, 800 pi of distilled 

water was mixed with 200 p i of BioRad Protein assay dye. Samples were 

rapidly transferred into disposable cuvettes (PBI International, Milan- 

Italy) and the absorbance at 595 nm  was measured in the 

spectrophotometer. The absorbance value corresponding to the blank 

sample was subtracted from the values obtained in the BSA-containing 

samples. Each calibration sample was run in triplicate. The calibration 

curve obtained in such a way, allows extrapolation of the exact absorbance 

value corresponding to 1 pg of proteins present in the solution.
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3.6.1.2 Determination of protein concentration in cellular extracts 

Protein concentration in the total cellular extract was determined 

according to Bradford protocol.

The concentration of proteins in the samples was determined by mixing in 

a 1.5 ml tube 10 pi of protein extract with 200 pi of BioRad protein assay 

dye and distilled water in a final volume of 1 ml. Samples were processed 

as for the calibration curve and the amount of proteins calculated from the 

absorbance value corresponding to 1 pg of proteins (obtained from the 

calibration curve).

3.6.2 SDS-PAGE

An aliquot (20 pg) of protein of each sample was mixed with the same 

amount of 2x SDS loading buffer :

SDS Loading Buffer (2x) final concentration

200 jul Tris 1 M, pH 8.8 100 mM

400 jul DTT IM  200 mM

300//Z SDS 10% 4%

400 jul glicerol 20%

40 jul bromophenol blue 10%> 0.2%

to a final volume of 2 ml with sterile water
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and the mixture was boiled for 5 min. Samples were loaded onto 5% 

stacking gel and 12% separating gel:

Stacking Gel final concentration

2.5 ml Tris-HCl 0.5 M, pH 6.8 125 mM

0.1 ml SDS 10% (w/v) 0.1%) (w/v)

1.62 ml 30%) acrylamide/bis 37.5:1 5%o (w/v)

To a final volume of 10 ml with deionised zvater.

50 jul ammonium persulphate 10% (zv/v) 0.05% (zv/v)

5julTEMED

Separating Gel final concentration

5.0 ml Tris-HCl 1.5 M, pH 8.8 750 mM

0.2 ml SDS 10% (zv/v) 0.1% (zv/v)

5.36 ml 30% acrylamide/bis 37.5:1 3% (zv/v)

To a final volume of 10 ml zvith deionised zvater.

100 jul ammonium persulphate 10% (zv/v) 0.05% (zv/v)

7.5julTEMED

Stacking and separating gels zvere prepared shortly before pouring. Ammonium 

persulphate catalyses polymerisation and TEMED accelerates the reaction and so 

these tzvo reagents zvere added last.
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Proteins were resolved on a minigel apparatus (BioRad) and run for 2 h  at 

50V in IxTGE buffer:

Running Buffer (TGE 5x) final concentration

15.15 g Tris hase 25 mM

72 g glycine 192 mM

5gSDS 0.1%(z(yb)

to a final volume of 5 I zvith deionised zvater. The buffer zvas stored at room

temperature.

Electrophoresis progress was followed using pre-stained molecular weight 

markers (14.3-200 KD), prepared following the m anufacturer's 

instructions (BioRad).

3.6.3 Protein transfer and detection

The separated proteins were transferred onto nitro-cellulose ( at 60V for 3 

h) using BioRad Mini transfer blot equipment in Ix  transfer buffer:

Transfer Buffer Ix . final concentration

24.2 g Tris Base 50 mM

28.5 g glycine 100 mM

4 ml SDS 10% O.Or/o

800 ml methanol 20%
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to a final volume of 4 I with deionised zvater. The solution zvas stored at room 

temperature.

Filters were stained with Ponceau red solution (Sigma) to check sample 

loading. Blots were placed in TBS-T 0.1% with 10% non-fat dried milk:

TBS-T 0.1% final concentration

2.42 g Tris base 20 mM

8 g NaCl 137 mM

lgTzveen20%> 0.1%) (zv/v)

to a final volume of 1 I zvith deionised zvater. The pH zvas adjusted to 7.6 zvith

concentrated HCl and stored at 4°C.

and shaken o /n  at 4°C to block non-specific binding. All following 

procedures were carried out at room temperature on a shaker. Blots were 

exposed for 1 h  at room temperature to the desired antibodies diluted to 

the optimal working solution in TBS-T 0.1%. After incubation, the blots 

were washed twice with TBS-T 0.1% and incubated w ith the appropriate 

horseradish-peroxidase linked anti-mouse or anti-rabbit IgG secondary 

antibody (Amersham) for 1 h  using dilutions. Blots were washed as 

previously described, and detection was performed with enhanced 

chemiluminescent detection system (ECL, Amersham-Life Science). 

Briefly, the horseradish peroxidase acts as a catalyst for the oxidation of a
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luminol substrate, which subsequently emits small but sustained 

quantities of light. This chemiluminescence is specifically enhanced 

allowing an image to be recorded on photosensitive film. Blots were 

exposed to film for different time ranging from 15" to 3 min and 

developed using X-o graph compact x-2 developer with Kodak GBX 

developer and fixer.

3.7 Evaluation of kinase activity

Activity of DNA-dependent protein kinase (DNA-PK) was determined 

using a commercially available kit (SignaTECT DNA-PK Assay System, 

Promega) following the instructions. Cell extracts were prepared as 

described in 3.6.1 and kinase activity determined in triplicate, either in 

absence or in the presence of double-strand DNA .

ATR activity was determined after immunoprécipitation with anti ATR 

antibodies. Briefly 100 pg of protein extracts (prepared as in 3.6.1) were 

incubated at 4°C with 1 pg of anti ATR antibody (SantaCruz 

Biotechnology) overnight with continuous, gentle rocking. To this 

solution, 50 pi of agarose beads (Santa Cruz Biotechnology) were added 

and the incubation continued for 1 hour. Agarose bound kinase was 

collected by centrifugation at 13000 rpm  in an eppendorf tube for 5 min 

and washed twice with 500 pi of PBS. Kinase reaction was performed in 25 

pi reaction containing: 1.5 pg of histone H I (Sigma, used as substrate).
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5pCi of 32p.yATP (Amersham), 1 pM ATP, 0.5 mM DTT, 50mM Tris HCl, 

10 mM MgCb. After 20 minutes incubation at 30°C, 25 pi of 2x loading 

buffer (see 3.6.2) are added and the mixture heated at 90°C for 5 minutes, 

cooled on ice and loaded on 10% SDS-PAGE gels. The gel was run for 16 

hours at 30 V after which the gel is removed and directly exposed to 

autoradiographic films to detect phosphorylated H I histone. The intensity 

of the bands was determined using a densitometer (Immagini & 

Computer, Italy).

3.8 Screening of genomic libraries

Genomic clones containing the genomic CHKl sequences were isolated by 

screening a genomic library spotted on filters obtained through the UK 

Human Genome Mapping Project Resource Centre (UK-HGMP-RC).

The human PAC library RPCIl has been constructed in the vector, 

pCYPAC2N. The source is a normal male blood donor, and the insert size 

is about 110 kb.

The library consists of approximately 120,000 clones which have been 

spotted on 22.2 x 22.2 cm Hybond N nylon membranes (Amersham). Each 

clone has been spotted twice to give 36,864 (18,432 x 2) spots on each 

membrane. 7 filters cover the whole library.

The 7 filters were prehybridized at 65°C in 25 ml of a solution containing 

6x SSC, 100 pg/m l of salmon sperm, 0.5% SDS and 5x Denhardt's solution
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( a 50 X Denhart solution is prepared by dissolving 1 g of Ficoll 400,1 g of 

polyvinylpyrrolidone and 1 g of BSA fraction V in 100 ml of water; the 

solution is then filtered and stored at -20°C) with gentle, continuous 

agitation. To this solution, radiolabeled CHKl cDNA probe (prepared as 

reported in 3.5.4.3) was added and the incubation continued for further 16 

hours at 65°C. The filters were then washed twice at room tem perature in 

2x SSC, followed by two 2 washes of 15 min each at 65°C with 2 x SSC + 

1% SDS and a final wash in 2x SSC wihtout SDS for 10 minutes and 

exposed to autoradiographic films. Once developed, the films were 

oriented with the grid supplied with the filters and the positive clones 

identified. This procedure was facilitated by the double spotting of each 

clone. The identified, positive clones, where requested to the UK-HGMP- 

RC and obtained as glycerol stock. From these stocks, the PAC clones were 

isolated using the Qiagen midi preparation kit following the procedures 

reported in the instruction manual. To isolate shorter genomic fragments 

containing the CHKl gene, an aliquot of the genomic DNA isolated was 

digested with different restriction enzymes in their appropriate buffer, 

supplied together with the enzyme, for 16 hours at 37°C and the entire 

reaction loaded on 0.8% agarose gels. After 16 hours running at 30 V, the 

gel was visualized under UV and a picture collected for subsequent 

identification fo the positive bands, blotted to a nylon membrane 

(Amersham) and hybridized with a radiolabeled CHKl cDNA probe. 

Hybridization and washing conditions were the same used for the
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screening of the genomic filters. The autoradiograph was compared to the 

ethidium bromide picture and the bands which hybridized with the probe 

identified. A second digestion was performed on the remaining genomic 

DNA maintaining exactly the same conditions previously used. Once 

separated on gel, the bands corresponding to the previously selected 

positive bands were excised and isolated using the QIAgel extraction kit 

(Qiagen). The band was ligated in pGL2 vector in the multiple cloning site 

using the same restriction enzyme used for the digestion of the plasmid 

and sequenced using the primers available from the manufacturer to 

detect the oreintation. The clones containing sense and antisense 

constructs were further amplified and DNA isolated and used in transient 

transfection experiments for the determination of luciferase activity.

3.9 Flow cytometric analysis of cell cycle phases distribution

The experiments aimed at evaluating the effects of drugs on cell cycle 

phase distribution were performed by Eugenio Erba and his team in our 

department.

For this purpose they received the cells either from untreated or treated 

samples and the treatment conditions were essentially those reported for 

the evalution of cytotoxic activity (as described in section 3.1.4).

To analyze cell cycle phase distribution, at the end of treatment or at the 

end of incubation in drug-free medium, the medium was removed by
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aspiration and replaced with 5 ml of PBS. After a gentle wash, the PBS was 

removed and new PBS added. The cells were gentle scraped in PBS and 

recovered by centrifugaton at 1200 rpm  for 10 minutes. The cells were 

fixed in ice-cold ethanol 70%, washed in PBS and resuspended in 2 ml of a 

solution containing 2.5 m g/m l of propidium iodide and 25 m g/m l of 

RNase and stained overnight in the dark at 4°C. At least 500.000 cells per 

sample were analyzed using the FACSORT system (Becton Dickinson). 

Analysis of cells' distribution in the different phases of the cell cycle was 

calculated following a previously published procedure (Broggini et al. 

1991).
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4.RESULTS
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4.1 p53 and its effect on cellular response to anticancer agents

4.1.1 Introduction

p53 is one of the key proteins participating in the control of 

genomic integrity (Levine 1997; Vogelstein et al. 2000). In the majority of 

human tumors the gene is inactivated (Harris 1996; Hollstein et al. 1997). 

The lack of expression of a functional p53 in tumors, could be an 

advantage for those anticancer agents showing an increased activity 

towards cells with inactivated p53. To test the effect of p53 on the response 

of epithelial-derived cancer cells, isogenic cell systems differing only for 

the expression of p53 (or of p53-regulated genes such as p21) were 

obtained. These systems, in which two cell lines w ith the same genetic 

background are compared, are probably the best systems in which the 

"true" effect of p53 can be evaluated.

In the majority of the experiments reported in this section, the 

focus of attention was on comparing the in vitro growth inhibitory activity 

and the ability to activate checkpoint proteins of two widely used 

anticancer agents acting by different mechanisms of action, cisplatinum 

(DDP) and taxol. They were selected not only for their widespread use in 

the clinical practice, but also as paradigms of drugs which differ in their 

ability to induce DNA damage. DDP does, in fact, induce multiple lesions 

at the level of DNA, including DNA strand breaks and DNA inter- and
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intra- strand crosslinks, while taxol does not directly interact with DNA 

and acts by inhibiting microtubule depolymerization (Eastman 1983; 

Horwitz 1992).

Throughout the different experimental systems, directly generated 

in our laboratory or obtained by other laboratories, these two drugs were 

compared in isogenic cell pairs in terms of their in vitro cytotoxic activity 

and their ability to induce differential cell response. In some cases the 

different cell systems were also tested with other new promising 

anticancer drugs acting by yet unknown mechanisms or selected to hit 

specific molecular targets.

4.1.2 p53 and DDP

Initially the HCT116-derived cell system was used, which is defined 

by the parental colon cancer cell line and its sublines differing with respect 

to p53 status, to evaluate the effect of p53 expression on the cytotoxic 

activity of anticancer agents. This system is particularly interesting since 

two independent sublines were available in which p53 was inactivated by 

transfection with the E6 protein of the human papilloma virus HPV16 

(leading to HCT116/E6) or by targeted homologous recombination 

(HCT116 p53-/-).
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In both cases the activity of anticancer agents was tested by using 

the colony assay. Figure 4.1 shows the results obtained with DDP in 

HCT116 HCT116/E6 cells. The figure shows the percentage of inhibition 

of colony formation in the two cell lines treated with different 

concentrations of the drug for 1 hour. HCT116/E6 cells were more 

sensitive to treatment with DDP than parental cells. The IC50, calculated 

from different experiments is approximately 5 pM for parental cells and 15 

pM for E6-transfected cells. Similar results were obtained when cells, in 

which p53 had been inactivated at the genomic level, were used (figure 

4.2). Here the cells without p53 were more sensitive to DDP at all 

concentrations tested. The calculated IC50 values for HCT116 parental and 

HCT116 p53-/ - cells were 5-10 pM and 20-25 pM, respectively.

In these two independent systems, the expression of p53 and of p21, 

selected as an indicator of the activation of p53 downstream genes, was 

checked by Western blotting. The results are shown in figure 4.3. As 

expected, DDP was able to induce the expression of p53 in parental cells, 

but not in the p53-inactivated cells. The p53 downstream gene p21 was 

also nicely detectable in parental cells, but not in HCT116/E6 or HCT116 

p53-/- cells after DDP treatment. These results confirm not only that in 

both systems p53 was indeed undetectable, but also that there was no p53- 

dependent activation of downstream genes.
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Figure 4.1
In vitro cytotoxic activity of DDP in HCT116 parental (©) and in HCT116/E6 cells (o).
Cells were treated with different concentrations of DDP for 1 hour. At the end of treatment 
the drug was removed and the cells incubated in drug free medium for 14 days.
The percentage of colonies in treated cells was calculated relative to untreated cells.
The results are the mean + /- SD of three independent experiments each 
performed in triplicate.
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Figure 4.2
In vitro cytotoxicity of DDP in HCT116 p53 +/+(©) and in HCT116 p53 - /-  cells (o).
CeUs were treated with different concentrations of DDP for 1 hour. At the end of treatment 
the drug was removed and the cells incubated in drug free medium for 14 days.
The percentage of colonies in treated cells was calculated relative to untreated cells.
The results are the mean + /-  SD of two experiments each consisting of three replicates.
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Figure 4..3
Representative western blot showing the effect of DDP treatment on p53 and p21 protein 
levels in HCT116 p53+/+, and in HCT116 p53-/- (upper panel) and in HCT116 and 
HCT116/E6 cells (lower panel).
Cells were treated with 25 pM DDP for 1 hours and cellular extract taken after 24 hours 
incubation in drug-free medium.
The blot was hybridized with anti p53 and anti p21 antibodies.
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To see whether the effect of p53 on DDP activity was due to the strong 

p53-induced activation of the cell cycle inhibitory gene p21 observed in 

these cells, we used a p21-/- clone derived from parental HCT116 cells.

In these cells the p53 protein is normal and functional and it is the 

p21 gene which has been inactivated by targeted homologous 

recombination. The in vitro growth-inhibitory activity of DDP in parental 

and p21-/- cells is shown in figure 4.4. Cells lacking p21 were more 

susceptible to DDP treatment, as were cells lacking p53. The ratio between 

the IC50 deduced from the growth inhibition curves in parental and p21- 

/ -  cells is approximately 2-3, similar to the ratio found between p53+/+ 

and p53-/- cells.

These data have been confirmed in the system derived from the 

hum an ovarian carcinoma cell line A2780. In this genetic background the 

virally inactivated p53 containing cells were available, which were 

obtained in our laboratory using the same plasmid and methods used to 

select the HCT116/E6 clone. A2780 cells did not sustain targeted 

homologous recombination, as HCT116 cells did, and it was therefore not 

possible to inactivate the p53 gene genetically in these cells. In the 

A2780/E6 clone, (figure 4.5) DDP showed increased activity in the absence 

of p53. The calculated IC50 values were in fact 30-40 pM for parental 

A2780 cells and 15 pM for A2780/E6 cells. It is noteworthy that in the
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Figure 4.4
In vitro cytotoxicity of DDP in HCT116 parental (o) and in HCT116 p21 - /-  cells (o).
Cells were treated with different concentrations of DDP for 1 hour. At the end of treatment 
the drug was removed and the cells incubated in drug free medium for 14 days.
The percentage of colonies in treated cells was calculated relative to untreated cells.
The results are the mean + /-  SD of two experiments each consisting of three replicates.
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Figure 4.5
In vitro cytotoxicity of DDP in A2780 parental («) and in A2780/E6 cells (o).
Cells were treated with different concentrations of DDP for 1 hour. At the end of treatmei 
the drug was removed and the cells incubated in drug free medium for 72 hours.
The percentage of 540nM abs in treated cells was calculated relative to untreated cells. 
The results are the mean + /-  SD of two experiments each consisting of six replicates.
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A2780-derived system, the absolute concentration of drug able to inhibit 

the growth by 50% was slightly higher than in the HCT116 cells. This 

difference could be due either to the different cellular background or to 

the different system used to evaluate the cytotoxic activity, which was the 

MTT test for A2780 cells and the colony assay for HCT116 cells. 

Nevertheless, the ratio between p53 inactivated and parental cells was 

roughly the same in the two systems.

4.1.3 p53 and taxol

The results described in the above section dealt with the use of an 

anticancer agent which induces DNA damage. Here the hypothesis was 

tested whether another compound, not interacting directly with DNA, 

would give the same results. Taxol was selected for its outstanding 

activity in experimental systems and in the clinic. From the data reported 

in the literature, including those obtained at the National Cancer Institute 

(USA), taxol was found consistently more active in cells lacking functional 

p53 (Wahl et al. 1996; O'Connor et al. 1997). The activity of this compound 

was tested in our system and the results are shown in figure 4.6. In the 

ovarian cancer-derived system, taxol showed marked differential activity 

between parental and A2780/E6 cells. The IC50 in the latter (3.9 nM) was 

10 times lower than that found in parental cells (41 nM). Again this effect 

was mostly related to the cell cycle effects induced by p53.

It was previously reported that in A2780 cells taxol induces a "classical"
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Figure 4.6
In vitro cytotoxicity of taxol in A2780 ( füled circle ) and in A2780/E6 ( open circle ) cells. 
Cells were treated with different concentrations of taxol for 1 hour. At the end of treatment 
the drug was removed and the cells incubated in drug free medium for 72 hours.
The percentage of 540nM abs in treated cells was calculated relative to untreated cells.
The results are the mean + /- SD of two experiments each consisting of six replicates.



137

6

3
§
H
ZOO
u_O

120

100

80

60

40

20

0
41 2 3 6 9 100 5 7 8

TAXOL CONCENTRATION (nM)

140

120

100

§t-z
8
LLO
55

41 2 3 6 9 100 5 7 8
TAXOL CONCENTRATION (nM)

Figure 4.7
Panel A: In vitro cytotoxicity of taxol in HCT116 (®), and in HCT116 p53-/- (o) cells.
Panel B: In vitro cytotoxicity of taxol in HCT116 (o), and in HCT116 p21-/- (o) cells.
Cells were treated with different concentrations of DDP for 1 hour. At the end of treatment 
the drug was removed and the cells incubated in drug free medium for 12 days.
The percentage of colonies in treated cells was calculated relative to untreated cells.
The results are the mean + /-  SD of three replicates.
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p53-mediated G1 arrest, while in E6-transfected cells it induces an 

accumulation of cells in the G2-M phases of the cell cycle (Vikhanskaya et 

al. 1998). The abrogation of p53-induced G1 arrest following taxol 

treatment was also previously found to be associated with an increased 

apoptotic rate (Vikhanskaya et al. 1998). Similar results were obtained in 

the HCT116-derived system (figure 4.7 panel A), even if the difference in 

activity of this drug between p53-inactivated and parental cells was m uch 

lower than that found in A2780 cells. As was done for DDP, the activity of 

taxol was also tested in p53-functional but p21-inactivated HCT116 cells 

(figure 4.7 panel B). Removal of p21 was associated with a m arked 

increase in sensitivity to taxol compared to parental HCT116 cells.

4.1.4 Post-translational p53 modifications

To verify whether the two drugs used were able to induce post- 

translational modifications of p53, and eventually different pattern of 

phosphorylation, p53 N-terminal modifications were studied, and 

specifically phosphorylations at serine 15 and serine 20, in cells treated 

with DDP or taxol. Both serine residues have been shown to be 

phosphorylated after UV and IR damage. Figure 4.8 shows a 

representative Western blot obtained after DDP and taxol treatm ent in 

HCT116 cells. Cells were treated for 24 hours with drug concentrations 

close to their IC50. At the end of treatment, medium containing the drug 

was removed, and the cells were incubated in drug-free medium. Total
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Figure 4.8
Phosphorylation of p53 at serine 15 and serine 20 in HCT116 cells following treatment 
with 25 pM DDP or 50 nM taxol.
Cells were treated for 24 hours with the drugs and proteins extracted after 6, 24 and 48 
hours incubation in drug-free medium. Proteins were separated on SDS-PAGE and 
blotted on nitrocellulose filters.
Blots were probed with anti serl5 and ser20 p53 specific antibodies. The same membrane 
was then blotted with anti p53 antibodies.
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cellular extracts were prepared 6, 24 and 48 hours after treatment and the

levels of total p53 and of serine 15 and serine 20 modified-p53 were 

compared to those of untreated cells. Both drugs were able to induce, as 

expected, an increase in the levels of p53, and both drugs, although with 

some quantitative differences, were able to induce phosphorylation at 

serine 20. Differences were found when phosphorylation of serine 15 was 

analyzed. In this case only DDP treatment was able to induce a 

modification at this residue, and it was unaffected by taxol. As a further 

control of p53 activation, the blot was hybridized with anti p21 antibodies, 

and after DDP or taxol an increase in the levels of this p53 downstream 

gene was found.

Similar experiments were performed in A2780 cells, which were 

treated with DDP or taxol at concentrations close to their IC50 (15 pM and 

50 nM, respectively) for 1 hour. Again, both drugs did induce an increase 

in the levels of p53 and of p21 (figure 4.9), and both drugs were able to 

induce phosphorylation of p53 at serine 20, but only DDP did induce 

phosphorylation of serine 15 of p53.

Thus it was established that DDP but not taxol, was inducing post- 

translational modification of p53 at serine 15. As discussed in the 

introduction (see chapter 1, paragraph 1.3.1.2) the upstream  kinases 

possibly involved in this post translational modification are ATR, ATM or 

DNA-PK. Therefore it was investigated which of these kinases was 

directly activated by DDP and responsible for serine 15 phosphorylation
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Figure 4.9
Phosphorylation of p53 at serine 15 and serine 20 induced by 25 pM DDP or 50 nM taxol 
m human ovarian carcinoma cells A2780.
Cells were treated for 24 hours with the drugs and proteins extracted after 6, 24 and 48 
hours incubation in drug-free medium. Proteins were separated on SDS-PAGE and 
blotted on nitrocellulose.
Blots were probed with anti serl5 and ser20 p53 specific antibodies. The same membrane 
was then blotted with anti p53 antibodies.
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of p53. To address this issue different approaches were used. The rather 

unspecific inhibitor of PI3 kinases, wortmannin, which has been described 

to be more specific for DNA-PK than for ATM or ATR was used. 

Pretreating the cells with this inhibitor, no significant decrease in the 

degree of p53 phosphorylation induced by DDP either at serine 15 or 20 

(figure 4.10, panel A) was observed. The concentration of wortmannin 

used in these experiments (35.5 pM) was able to reduce DNA-PK activity 

by more than 90% (figure 4.10, panel B).

The possible involvement of ATM in DDP-induced 

phosphorylation of p53 was assessed using lymphoblastoid cell lines, 

obtained by transformation with the SV40 virus, which are defective in 

ATM. Two cell lines derived from patients suffering from AT and one 

from a normal patient were treated with DDP, and the am ount of total p53 

and of serine 15-phosphorylated p53 was assessed by W estern blotting. As 

can be seen in figure 4.11, panel A, DDP was able to induce 

phosphorylation at serine 15 of p53 in all three cell lines irrespective of the 

presence or absence of ATM.

The possible DDP-dependent activation of ATR was assessed by 

measuring protein levels and kinase activity. We found that DDP did not 

modify the protein expression of ATR (figure 4.11 panel B) on the 

contrary, the ATR kinase activity determined after immunoprécipitation 

from cells untreated and treated with DDP (figure 4.11 panel C) was 

significantly increased by DDP treatment. Altogether these results indicate
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Figure 4.10
Effect of the PI3 kinase inhibitor wortmannin on DDP-induced 
phosphorylation of p53.
Panel A. Cells were treated for 24 hours with DDP in the absence or 
presence of 35.5 micromolar wortmannin (W) and proteins extracted after 24 
hours incubation in DDP-free medium (containing or not wortmannin).
Blots were probed with anti serl5 and ser20 p53 specific antibodies. The 
same membrane was then blotted with anti p53 antibodies (monoclonal DO- 
! ) •
Panel B. DNA-PK activity in cells treated or untreated with wortmannin 
(same conditions as in panel A). Values are the mean + /-  SD of pmolATP 
incorporated per minute per mg of protein in the biotinylated substrate in 
the absence (black bars) or presence (white bars) of double strand DNA
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Figure 4.11
Role of ATM and ATR kiknases on DDP-induced phosphorylation of p53.
Panel A. WT (IARC1663) and AT (ATll and AT13) cells were treated with DDP 
and proteins extracted after 6,24 and 48 hours incubation in DDP-free medium. 
Blots were probed with anti serl5 and ser20 p53 specific antibodies. The same 
membrane was then blotted with anti p53 antibodies (monoclonal DO-1).
Panel B. ATR, DNA-PK and CHK2 protein levels in HCT-116 cells untreated (lane 
1) or treated with DDP (lane 2) or taxol (lane 3).
Panel C. ATR kinase activity in HCT-116 cells untreated (lane 1) or treated with 
DDP (lane 2) or taxol (lane 3). ATR was immunoprecipitated with anti ATR 
antibodies and kinase activity determined using PHAS as substrate as reported in 
methods section. The amount of ATR protein in each reaction was determined by 
western blot and reported in the lower part of the panel.
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that DDP, differently from taxol, activates the ATR kinase thus enabling it 

to phosphorylate p53 at serine 15.

4.1.5 p53 and "̂new"" drugs

The results reported in sections 4.1.1-4.1.3 deal with two clinically 

used anticancer agents. These drugs were originally selected in large 

screening programs aimed at identifying new potentially active molecules 

irrespective of their mechanism of action. As discussed in chapter 1.1, the 

increased knowledge of the molecular pathways important for normal 

cellular functions, has helped in identifying potential targets for the 

development of new anticancer agents. Even if these drugs have been 

selected to hit a specific target, often not related to DNA, their action is 

likely to involve the activation of checkpoint proteins and signal 

transduction pathways. We therefore examined the role of p53 in 

determining the cytotoxic activity of two "new" compounds which have 

shown promising activity either because of the target they have been 

selected for, or for the particular impressive preclinical activity shown. 

These compounds are the cdk inhibitor roscovitine and the histone 

deacetylase inhibitor trichostatin A (TSA).

Their activity has been compared in the pair of HCT116-derived cell 

lines with differential p53 expression. Their cytotoxic activity was tested 

using the same experimental procedures used for DDP and taxol and the 

results are shown in figure 4.12. The cell cycle inhibitor roscovitine and the
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Figure 4.12
In vitro cytotoxicity of TSA and roscovitine in HCT116 p53+/+ ( closed circles ) and 
in HCT116 p53-/- (open circles) cells.
Cells were treated with different concentrations of the drugs for 24 hours. At the end of 
treatment the drugs were removed and the cells incubated in drug free medium for 2 weeks. 
The percentage of colonies in treated cells was calculated relative to untreated cells.
The results are the mean + /-  SD of three experiments each consisting of three replicates.
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histone deacetylase inhibitor TSA were equally active in p53 expressing or 

in p53 - /-  cells, figure 4.12 panels A, and B.

4.1.6 Discussion

The results reported in this section clearly indicate that the DNA 

damaging agents DDP and taxol are more active in cells not expressing 

wild type p53. The results have been obtained in isogenic cell systems 

which differ only for the status of p53, thus allowing unequivocal 

evaluation of its role.

Previous experiments obtained in our laboratory, in which p53 

status and DDP and taxol sensitivities were compared in different ovarian 

cancer cell lines with different p53 status, did not reveal any relationship 

between p53 and response to either drug, most likely because other factors 

dictated the overall response to treatment in vitro (Debernardis et al. 1997; 

De Feudis et al. 1997).

It is interesting to note that these cell lines are epithelial in origin 

with a quite low propensity to activate apoptotic processes. In these cells, 

the activation of p53 mainly induces the cell cycle arrest pathway, thus 

potentially allowing, whenever this is possible, the repair of the lesions 

induced. The removal of p53, and hence of its ability to induce cell cycle 

arrest, would probably facilitate the induction of apoptosis. This 

contention is in line with previous observations (in our laboratory) 

showing that in one of this cell lines (A2780) if p53 is forced to activate the
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proapoptotic gene bax rather than the cell cycle inhibitor p21, massive 

p53-dependent apoptosis and strong increase in cellular sensitivity to 

taxol occur (De Feudis et al. 2000). These findings indicate that these cells 

have the potential to activate the apoptotic processes but that their 

commitment to do this is somehow blocked. The results obtained with 

DDP and taxol in these epithelial cancer cells are also in agreement with 

what has been previously found by other laboratories in other cellular 

systems, such as breast cancer cells (Fan et al. 1995; Wahl et al. 1996). In 

other cells, particularly leukemic cells, the activation of p53 is instead 

associated with a marked induction of apoptosis, and hence its presence 

may contribute to the desired activity of anticancer agents (Chen et al. 

1996; Bates and Vousden 1996; Waldman et al. 1997b).

The difference in ability to induce aminoterminal phosphorylation 

in p53 observed between DDP and taxol as shown above, is consistent 

with the different mechanisms of action of these drugs, but it does not 

explain the lack of induction of apoptosis. In fact the ATR-dependent 

serine 15 phosphorylation observed after DDP but not after taxol, is in line 

with the strong DNA damage induced by DDP, which is an event 

sufficient to activate ATR. It is plausible that, at least in these cells, neither 

taxol nor DDP induces the phosphorylation of p53 at other specific sites, 

which would lead to the possible preferred activation of p53-dependent 

proapoptotic genes.
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The fact that other drugs such as the cdk inhibitor roscovitine and 

the HD AC inhibitor trichostatin A did not show differences in activity 

between p53-expressing or p53-deficient cells, would suggest that these 

compounds do not activate the p53 pathway, or if they did activate it, the 

result of this activation would not interfere directly with the mechanism of 

action an d /o r repair of the lesions induced by the drugs.

4.2 p73 and its effect on cellular response to anticancer agents

4.2.1 Introduction

The p53 gene is one of the primary response genes in cells following 

stress induction. Most of its activities are linked to its ability to bind to 

DNA and to activate the transcription of downstream genes. The p73 gene 

shares relatively high sequence homology with p53 in the central DNA 

binding domain, thus enabling it to bind and activate the same 

downstream genes which are activated by p53 (Kaghad et al. 1997; Kaelin 

1999a). This similarity between p73 and p53 would predict that p73 shares 

common roles in activating downstream pathways following stress 

induction, eventually leading to cell cycle arrest or apoptosis. Even if 

marked differences between p53 and p73 have been outlined (see 

introduction, chapter 1.3.2), relatively few data are available on the 

possible role of p73 in determining the cellular response to treatm ent w ith
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anticancer agents. This fact is mostly due to the lack of suitable models 

specifically addressing this question. For this reason, experiments were 

designed with the aim of understanding which role p73 could have in 

determining cellular sensitivity to anticancer agents. Initially, as discussed 

in the following sections, the focus was on the characterization of the 

isogenic cell system differing in the expression of p73 previously 

generated in our laboratory (Vikhanskaya et al. 2000).

4.2.2 Characterization of stable p73 overexpressing clones

In an attempt to understand the role, if any, of p73 as a determinant 

of cellular sensitivity to anticancer agents, it was important to obtain 

cellular systems as close as possible to the clinical situation. As discussed 

in the introduction (section 1.3.2),

p73 is rarely mutated or deleted in human cancer, but rather is 

frequently overexpressed in its wild-type form. Therefore two clones were 

selected from the human ovarian cancer cell line A2780, which were 

established by transfecting A2780 cells with the human p73 alpha cDNA 

subcloned in the pCDNA3 expression vector. These two clones, named 

A2780/p73.4 and A2780/ p73.5, were compared with a clone obtained by 

transfecting parental cells with the empty vector used to subclone the 

human p73 gene (pCDNA3), these cells were named A2780/pCDNA3. 

Cells were tested for expression of exogenous p73 RNA and protein, and 

they were found to stably overexpress p73, either at the level of mRNA or
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protein (Vikhanskaya et al. 2000). The in vitro growth rates of the two p73 

overexpressing clones and of the A2780/ pCDNA3 clone were compared. 

The number of cells measured at different days after seeding was plotted 

against time, and the three different sublines grew at similar rates with 

doubling times of approximately 24, 25 and 26 hours for A2780/ pCDNA3, 

A2780/p73.4 and A2780/p73.5 cells, respectively (figure 4.13). Having 

established that the overexpression of p73 does not induce differences in 

growth rate, the initial approach which was choosen was to characterize 

the effects of p73 overexpression on overall cell behaviour. To that end the 

gene expression profile of cells was analysed using microarray 

methodology. Cells in exponential growth were lysed and total RNA 

extracted as described in section 3.5.1. Equal amounts of RNA were 

retrotranscribed to cDNA in the presence of ^^pq^beled dATP and 

hybridized onto filters containing 588 cDNAs corresponding to hum an 

genes with known function.

Replicates of the filters obtained from A2780/pCDNA3, 

A2780/p73.4 and A2780/p73.5 cells were analyzed by phosphoimager, 

and the image was acquired using an appropriate software supplied by 

the manufacturer. On the basis of these sets of data, the expression profiles 

of the two p73 overexpressing clones were compared with that of vector- 

transfected cells. Figure 4.14 shows a pseudocolor image resulting from 

the comparative analysis of expression between each p73 overexpressing 

clone and the vector-transfected clone.
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Figure 4.13
In vitro growth of A2780/ pCDNAS cells (ê  and of the two p73-overexpressing 
clones A2780/p73.4 (o) and A2780/p73.5 (n). Cells were seeded at 100.000 cell/m l 
and counted at different intervals as indicated.
Results are the mean + /-  SD of four replicates.
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Figure 4.14
Pseudocolor representation of the gene expression profiles obtained from A2780/p73.4 
(upper panel) and A2780/ p73.5 (lower panel) cells. For each clone the expression level 
has been compared with A2780/  pCDNA3 cells. Red and blu colors indicate those genes 
upreguiated or downregulated, respectively, in the clones compared to parental cells. In 
green are reported those genes whose levels do not change. The six different panels 
present on each filter (A,B,C,D,E and F see section 4.2.2) are shown in the upper panel.
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Red coloration indicates genes having an expression level greater in p73 

overexpressing cells than in parental cells, in blue those w ith lower 

expression and in green those whose expression did not change 

significantly between the two clones. Both clones showed a relatively high 

number of genes with an expression pattern different from parental cells. 

It was estimated that approximately 20% of the genes in the two p73 

overexpressing clones displayed a more than two fold change in 

expression compared to parental cells. The filters we used to analyse gene 

expression were organized in six panels each spotted with cDNAs of 

genes with common function. The six panels (Fig. 4.14), from left to right, 

include genes known to participate in cell cycle control (panel A), stress 

response (panel B), DNA repair and response to damage (panel C), 

angiogenesis and cell structure (panel D), signal transduction (panel E) 

and miscellaneous function (panel F).

Differences in the pattern of expression between the two clones 

could be detected. Of particular interest, in the two lower right panels 

(panel E and F), there are a significant number of genes with increased 

expression in A2780/p73.5 clone compared to parental cells, and 

decreased expression in A2780/p73.4 clone. The expression of many other 

genes was similarly altered in both clones.

Attention was focussed on the upper left panel of each filter, in 

which a high number of genes were found to be upreguiated at significant 

levels for both clones. This panel contained cDNAs corresponding to
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Graphie representation of the relative RNA expression levels.
Gene expression data obtained by microarrays in A2780/p73.4 and 
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genes belonging to cellular response pathways, including DNA repair and 

DNA damage response genes, particularly relevant in the context of this 

thesis. Figure 4.15 shows a graphical view of the results, in which the level 

of expression of each gene in parental cells (abscissa, data expressed as 

logarithms) was plotted against the expression in A2780/p73.4 or 

A2780/p73.5 cells (ordinate, data expressed as logarithms). In these 

figures, the bisector is reported as a solid line, which helps in identifying 

those genes with a comparable expression in the two clones, together with 

the dotted lines representing a 2 fold variation (either in positive or in 

negative direction) in gene expression level between p73- and vector- 

transfected clones. This value is an arbitrary value, but it is considered 

sufficient for this technique to indicate a change in gene expression that, 

with more than 95% of probability, can be confirmed by other methods. 

The genes relating to DNA repair and DNA damage response pathways 

which showed a significant variation in expression are indicated, and they 

are all in the part of the graph containing those genes with an expression 

level in p73 overexpressing clone more than two fold greater than in 

parental cells. Interestingly, both clones were found to overexpress p73 at 

similar levels, which were 10-11 times higher than in parental cells, thus 

confirming our initial results. Some of the genes found to be upreguiated 

are listed in table 4.1. The observed changes in gene expression were 

confirmed using the Northern blot. Figure 4.16 shows the results obtained 

in a representative experiment, in which both clones overexpressed two
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GENE_______________________ A2780/p73.4____________ A2780/p73.5

p73 10 11
DNA-PK 5 6
ATM 3.2 2.3
XRCC6 2.2 3.5
XPD 3.9 4.4
XPG 2.3 2.1
XPB 4.5 3.3
XRCCl 2.5 1
MGMT 2.7 2.6
hMLHl 1.7 2
BAX 2.1 2.3
GADD45 3.5 2.8
PIG3 1.4 2.6
PIG12 2.3 1.8

Table 4.1

Partial list of genes upreguiated in A2780/p73,4 and A2780/p73.5 cells.

Data were generated from microarray experiments (figure 4.14) and represent the ratio 

between the RNA expression in the two clones and in parental A2780/ pCDNA3 cells.
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Figure 4.16
RNA levels of the NER belonging genes XPA, XPB and XPD in A2780/pCDNA3, 
A2780/ p73.4 and A2780/ p73.5 cells. Total RNA was extracted from exponentially 
growing cells, electrophoresed and transferred to nylon membrane; The filter was 
then hybridized with ^^P-labeled probes. The lower panel reports the ethidium 
bromide staining of the gel with the two major ribosomal RNAs as an indication of 
the loading.
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genes belonging to the nucleotide excision repair family, XPB and XPD 

which were found overexpressed using microarrays. The figure shows 

another NER gene, XPA, which was not present in the sets of filters used 

in microarray experiments, which was also found overexpressed in both 

p73-overexpressing clones. These results suggest a possible concerted 

activation of all the genes belonging to this particular DNA repair family, 

and hence the possibility that these clones could have a more efficient 

repair of the lesions recognized by NER.

It is noteworthy that the lesions induced by DDP are recognized 

and repaired by NER (Damia et al. 1996; Lindahl and Wood 1999), and, as 

a consequence one would expect increased resistance against this 

particular drug in the two overexpressing clones. The experimental data 

which were obtained confirmed this hypothesis.

4.2.3 DNA repair capacity of the p73 overexpressing clones 

The host cell reactivation assay is a validated method to measure the DNA 

repair capacity of cell lines (Poll et al. 1984; Damia et al. 1998). In this assay 

a plasmid coding for a reporter gene is damaged in vitro with DDP or UV, 

and after extensive washing it is transfected into cells. At different time 

points, the activity of the reporter plasmid (in this case the luciferase gene) 

is determined in cell extracts. The data are expressed as a percentage of 

luciferase activity in cells transfected with damaged plasmid calculated 

against luciferase activity of cells transfected with undamaged plasmid.



H

i
I
u
U5

<

125

100

0 50 100 200150

160

DDP (^M)

PG13LUC

P 100
<

 ̂ 75

g
u
p
p

>

0 50 100 150 200

DDP (jiiM)

Figure 4.17
DNA repair activity of parental A2780/pCDNA3 (8), A2780/p73.4 (O) and A2780/p73.5 
(c) cells. Repair activity was assessed using the host cell reactivation assay (see section 3). 
Two different DDP-damaged plasmids (pGL2, upper panel and PG131uc, lower panel) 
were used. The plasmids were damaged in vitro with 20 or 200 pM DDP for 2 hours as 
described in chapter 3.4, precipitated and then transfected in the different cell lines. 
Luciferase activity was determined 24 hours later.
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Using this assay, both p73-overexpressing clones were found to repair 

DNA more efficiently than parental cells when a plasmid damaged in 

vitro with DDP was used as substrate (figure 4.17). The results were 

obtained using two different constructs, both containing the luciferase 

reporter gene but each under the control of a different promoter sequence.

The two promoter sequences were derived from a SV40 promoter 

region and from a p53 responsive element repeated 13 times, and they are 

shown in upper and lower panels of figure 4.17, respectively.

The percentages of repair in A2780/pCDNA3, were 30 and 70%, 

when the SV40 or p53 responsive elements, respectively, were analyzed. 

In the two p73 overexpressing clones the percentage of repair was higher, 

being 60 % in A2780/p73.4 and 65 % in A2780/ p73.5 with the SV40 

promoter, and 100% in both A2780/p73.4 and A2780/p73.5 cells w ith the 

p53 responsive element.

These data were obtained using as a substrate to a plasmid 

damaged with 20 pM DDP. Increasing the concentration of DDP to 200 pM 

(a supra-pharmacological concentration) the repair ability of all three cell 

lines was much reduced, and the differences between the p73 

overexpressing clones and parental cells were less evident, although still 

present.



162

4.2.4 Sensitivity of p73 overexpressing clones to several anticancer 

treatments

Once verified that the two p73 overexpressing clones are 

characterized by augmented NER-dependent repair ability, the hypothesis 

was tested that they were resistant against treatment w ith drugs which 

produce DNA lesions that are known to be substrates of this repair 

pathway, but not against drugs inducing lesions which are not repaired by 

this pathway. In order to test this hypothesis, the MTT test was used (see 

chapter 3.1.4), which allows detection of growth inhibition induced by a 

drug in cells growing in culture. P73-overexpressing clones and parental 

cells were treated with different concentrations of DDP, and with different 

doses of UV-C, all treatments known to induce lesions recognized by NER 

(Cleaver et al. 1995; Damia et al. 1996; Lindahl and Wood 1999).

As controls, the topoisomerase I inhibitor topotecan and the 

microtubule depolymerization inhibitor taxol, the activity of which is 

independent of the NER status, were selected. The concentration versus 

growth inhibition curves for these four different treatments are shown in 

figure 4.18. The two p73-overexpressing clones were more resistant to 

"NER-sensitive" treatments (DDP and UV, figure 4.18 panels A and B, 

respectively) than the vector transfected clone, while topotecan and taxol, 

whose lesions are not recognized by the NER system, showed comparable 

activity in the three sublines (figure 4.18 panels C and D). The degree of 

resistance ranged from 3 to 4 for DDP and 2 to 3 for UV. Other drugs
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Figure. 4.18

In vitro cytotoxicity of DDP, UV, taxol and topotecan in A2780/pCDNA3 (s), A2780/p73.4 (ü) and 
A2780/p73.5(o)ceIIs.
Cells were treated with different concentrations of the drugs for 1 hour (DDP) or 24 hours (taxol and 
topotecan). At the end of treatment, the drugs were removed and the cells incubated in drug-free 
medium for further 72 hours.
The percentage of 540nM abs in treated cells was calculated relative to untreated cells usign the MTT 
test. The results are the mean + /- SD of six samples.
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In vitro cytotoxicity of DX and roscovitine in A2780/pCDNA3 (n), A2780/p73.4 (d) and 
A2780/p73.5 ( o )  cells.
Cells were treated with different concentrations of the drugs for 24 hours. At the end of 
treatment the drugs were removed and the cells incubated in drug-free medium for 
further 72 hours.
The percentage of 540nM abs in treated cells was calculated relative to untreated cells 
usign the MTT test. The results are the mean + /-  SD of six replicates.
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tested for their activities in differentially p73 overexpressing cells, such as 

the cdk inhibitor roscovitine and the anthracycline antibiotic doxorubicin, 

exerted comparable in vitro cytotoxicity in the three sublines, independent 

of level of expression of p73 (see figure 4.19).

4.2.5 Discussion

Taken together these results indicate that, at least in the 

experimental system used here, the two p73 overexpressing clones are 

specifically resistant against "NER-sensitive drugs" and that this 

resistance is due to increased repair ability of the two p73 overexpresisng 

clones, which in turns is the likely consequence of the increased 

expression of different NER genes. To my knowledge, these clones are so 

far the only ones available stably overexpressing p73. Therefore it is 

difficult to judge the general applicability of the consequences of these 

findings and to compare results with data available in the literature. It is 

important that the observed increased resistance against DNA-damaging 

agents whose lesions are recognized by NER was found in both p73 

overexpressing clones, which supports the robustness of the data.

Moreover, these clones were not resistant to all the drugs, rendering 

unlikely the possibility that they are the result of a selection of particularly 

resistant clones independently of the overexpression of p73. The relatively 

recent discovery that a particular form of p73, called DN, which lacks the 

transactivation domain, could exert effects opposite to those seen w ith
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wild-type p73 (also called TA p73), argues against the possible relevance 

of the results obtained by overexpressing TA p73 (Melino et al. 2002; 

Stiewe and Putzer 2002; Ishimoto et al. 2002; Stiewe et al. 2002b).

It has been postulated that it is the overexpression of this 

"oncogenic" form of p73 which accounts for the high overall p73 levels 

found in human tumors. However, simultaneous measurment of the levels 

of the two p73 forms in different cancer cell lines and hum an tumors, 

showed that the DN form is overexpressed compared to normal cells, but 

levels of TA p73 are anyway higher than those of the DN form (Zaika et al. 

1999; Grob et al. 2001). Another relevant observation is the finding that 

the DN form is transcribed through an alternative promoter, different 

from that of TA p73 (Yang and McKeon 2000; Moll et al. 2001). 

Intriguingly, the DN promoter contains a p53 responsive element and is 

activatable by p53 (Vossio et al. 2002; Kartasheva et al. 2002).

It is not yet clear why p53 would activate an "oncogenic" form of 

p73, and what impact this activation might have for tumor development. 

Intuition dictates that in tumors in which p53 is inactivated, i.e. the 

majority, the levels of DN p73 should be reduced compared to tumors or 

normal tissues expressing wild-type p53. In A2780 parental cells, levels of 

DN p73 are lower than those of TA p73 (Marabese M. et al, personal 

communication). This further confirms that the observation in the two 

A2780 clones is likely to constitute a genuine corollary of overexpression 

of the TA form of p73.
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4.3 CHKl and its effect on cellular response to anticancer 

agents

4.3.1 Introduction

CHKl is an important protein participating in and controlling the 

G2 checkpoint. In normal cells the function of CHKl is to prevent the 

entry of damaged cells into mitosis by phosphorylation the CDC25C 

phosphatase (Sanchez et al. 1997; Kaneko et al. 1999). CHKl protein needs 

to be activated by upstream proteins acting as sensors of damage, such as 

ATR and ATM, mainly through phosphorylation (Abraham 2001; Tian et 

al. 2002). As a pivotal protein in controlling G2 checkpoint, it was 

considered likely that the presence or absence of CHKl can modulate the 

response to treatment with anticancer agents.

As discussed in the Introduction, CHKl seems to play an essential 

role in the life cycle, at least during development. The absence of CHKl is 

in fact incompatible with life, and knock out mouse embryoes do not 

survive to birth (Takai et al. 2000; Liu et al. 2000). Only very recently the 

generation of a B-lymphoma cell line w ith CHKl gene disruption has been 

achieved (Zachos et al. 2003). Therefore to investigate the role of CHKl in 

determining the response to treatment with anticancer agent, different 

strategies had to be used trying to overcome the lack of availability of cells



168

without CHKl gene. Instead, dominant negative mutants and inhibitors of 

the kinase activity of CHKl were employed.

4.3.2 The effect of overexpression of m utant CHKl in hum an osteosarcoma 

cells

Initially a U20S-derived cellular systems was used, which has been 

generated at the European Institute of Oncology, Milan, Italy in the 

laboratory directed by Dr. G. Draetta. These cells overexpress the wild- 

type form of human CHKl or a mutated form of CHKl. The latter is a 

construct (named D130A), in which the hum an CHKl cDNA contains a 

single mutation leading to a single aminoacid change in the protein in its 

catalytic domain, the aspartic acid at position 130 has been replaced via 

site directed mutagenesis by an alanine. Posisiton 130 is inside the kinase 

domain of the human CHKl protein and, in vitro, this m utation abolishes 

almost completely the kinase acitvity of the protein.

Overexpression of this m utant form could result in a dominant 

negative function, with a non functioning protein sequestering all the 

factors otherwise used by the endogenous, wild-type protein. In these 

experiments the availability of this couple of sublines which overexpress 

the wild-type or mutated form of CHKl was exploited. The cells 

originated from the human osteosarcoma line U20S. In the U20S-derived 

system, the activity of DDP was tested using the MTT test. Table 4.2 shows 

the results of four independent experiments.
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DDP IC50 (pM)

Exp. U20S/pCDNA3 U20S/CHK1 U2OS/D130

1 74.0 167.0
2 62.2 79.5 144
3 66.0 135.0 167.0
4 104.0 171.0 235.0

MEAN 76.5 128.5 184.0
SD 16.0 27.0 17.0

Table 4.2

Activity of DDP in U20S-derived clones. U20S/pCDNAS, U20S/CHK1 and 

U2OS/D130 cells were treated with different concentrations of DDP for 2 hours. 72 hours 

after, the cells were analyzed with the MTT test. For each experiment, the IC50 of DDP 

was determined. Values reported in the table are IC50 of single experiments each 

consisting of six replicates.
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The data are presented as IC50, i.e. concentrations able to inhibit the 

growth by 50% and are derived from the concentrations versus % of 

control curves. In vector transfected U20S cells, the IC50 of DDP was 77 

+ /-  16 pM. The w t CHKl overexpressing clone was more resistant with a 

value of 129 + /-  27 pM. In D130-CHK1 overexpressing cells the IC50 for 

DDP was 184 +/-17 pM.

The differential sensitivity observed with DDP was not seen with 

other compounds. Figure 4.20 shows the data obtained with the 

anthracycline antibiotic doxorubicin (DX) and with the methylating agent 

MNNG. The concentration vs % of controls curves for DX for parental 

cells, w t CHKl overexpressing cells and mutated CHKl overexpressing 

cells are superimposable.

The calculated IC50 values for DX in the three cell lines were 12.3,

12.3 and 11.9 pM, respectively. MNNG showed a slightly different pattern 

of potency. This compound had similar potency in vector transfected and 

in w t CHKl overexpressing cells with IC50s of 203 and 210 pM, 

respectively, but showed a relatively reduced activity in the clone 

overexpressing the m utated form of CHKl (IC50 353 pM).
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In vitro cytotoxicity of DX (upper panel) and MNNG (lower panel) in U20S/pCDNA3 
( e ) , U20S/CHK1 ( o )  and U2OS/D130 (^ cells.
Cells were treated with different concentrations of the drugs for 24 hours. At the end of 
treatment, the drugs were removed and the cells incubated in drug-free medium for 
further 72 hours.
The percentage of 540nM abs in treated cells was calculated relative to untreated cells 
usign the MTT test. The results are the mean + /-  SD of six replicates.
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4.3.3 The effect of overexpression of m utant CHKl in hum an colon cancer 

cells

Clones analogues to those available in U20S cells, were generated 

with the HCT116 background. Parental HCT116 colon cancer cells were 

transfected with w t CHKl cDNA or w ith D130A m utant CHKl cDNA, 

both subcloned in the pCDNA3 expression plasmid. After transfection, the 

cells were seeded at very low density in medium containing the selection 

antibiotic (in this case G418). Different colonies growing in this m edium 

containing antibiotic were selected and collected from the plates and 

transferred into 24 wells plates. Once the well was confluent, cells were 

detached and seeded in duplicate in T25 flasks. One flask was used to 

freeze the clone while the other was used to allow extraction of total 

cellular proteins. Proteins were separated on poliacrylamide gel and 

transferred to nitrocellulose filters. These filters were used to detect by 

western blotting the presence of the protein coded for by the exogenous, 

transfected cDNA, using specific anti CHKl antibodies. The two 

constructs contained a tag epitope HA at 5" end, which facilitates the 

detection of the transfected protein and helps in distinguishing between 

exogenous and endogenous protein. Figure 4.21 shows a Western blot 

analysis, in which clones selected in the antibiotic-containing medium 

(G418), were tested for presence of HA-tagged proteins. The two clones 

selected from the initial screening clearly express the transfected CHKl, 

visible in the blot as a slightly lower, compared to the endogenous CHKl,
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Figure 4.21
Western blot showing the expression of endogenous CHKl in HCT116 cells.
Total proteins extracted from HCT116/pCDNA3 (lane 1), HCT116/CHK1 (lane 2) and 
HCT116/D130 (lane 3) were separeted on SDS-PAGE, transferred to nitrocellulose and 
the blot hybridized with anti CHKl antibodies which detect both endogenous (lower 
band) and exogenous (upper band) proteins as shown.
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Figure 4.22
In vitro growth of clones derived from HCT116 cells by transfection with empty vector 
(pCDNA3,fl5>) with wild-type CHKl (O) or with D130A mutant CHKl (G).
Cells were seeded in 6 well plates and cell growth evaluated at the indicated times 
counting the number of cells per well. Values are expressed as mean + SD of three 
replicates.
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migrating band in the gel. The blot was reprobed with anti CHKl 

antibody to confirm the presence of CHKl. The clones were tested for 

their ability to grow in vitro. They grew at similar rates (figure 4.22) and 

they were used for further characterisation. A HCT116-derived clone, 

transfected with the pCDNA3 empty vector, was used as control.

The three clones were investigated for their sensitivity towards 

DDF. In contrast to the results obtained in U20S-derived system, 

overexpression of either the wild-type form or of the m utant form of 

CHKl did not significantly alter the cellular response to DDF. In fact, 

when number of colonies was plotted against the concentration of DDF, 

the curves obtained in parental HCT116 cells and in the two clones 

overexpressing CHKl cDNA were superimposable and resulted in 

comparable IC50 values (Table 4.3).

4.3.4 The effect of CHKl inhibition on cellular response to DDF

An alternative approach to the study of the effect of CHKl on 

anticancer drug sensitivity entailed the use of inhibitors of CHKl kinase 

activity in combination w ith DDF. For these studies the compound UCN- 

01 was selected, as it has been reported to be effective in inhibiting CHKl 

kinase activity, although lacking specificity for this kinase (Busby et al. 

2000; Graves et al. 2000). These experiments were performed in the U20S 

parental cells, which were treated with DDF in the absence or presence of 

UCN-01. Treatment with UCN-01 was maintained also in post-treatment-
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DDPIC50 (pM)

Exp. HCT116/pCDNA3 HCT116/CHK1 HCT116/D130

1 17.2 13.8
2 15.2 16.6
3 19.7 19.4
4 16.9 14.8
5 14.7 15.9
6 21.1 15.0

MEAN 17.5 16.6 15.2
SD 2.5 2.8 0.6

Table 4.3

Activity of DDP in HCT116-derived clones. HCT116/pCDNA3, HCT116/CHK1 and 

HCT116/D130 cells were treated with different concentrations of DDP for 2 hours. 10-14 

days after colonies were stained and the analyzed with image analyzer. For each 

experiment, the 1C50 of DDP was determined. Values reported in the table are IC50 of 

single experiments each consisting of three replicates.
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In vitro cytotoxicity of DDP alone or in combination with UCN-01 in U20S cells. 
Cells were treated with different concentrations of DDP for 2 hours in the absence (0 
) or in the presence (D) of 0.1 pM UCN-01. At the end of treatment, the drugs were 
removed and the cells incubated in drug-free medium for further 72 hours. In the 
DDP+ UCN-01 group, UCN-01 was also added in the post-incubation time 
The percentage of 540nM abs in treated cells was calculated relative to untreated 
cells usign the MTT test. The results are the mean + /-  SD of six replicates.
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time after washing and removal of DDP, in order to keep CHKl activity 

low for a long time. The concentration of UCN-01 used in these 

experiments, slightly reduced the growth of these cells (approximately 

25%). When DDP activity was compared between cells untreated or 

pretreated with UCN-01, this slight effect of UCN-01 was considered and 

the values normalized.

The results obtained are reported in figure 4.23. DDP was, as 

expected, cytotoxic in these cells, and the combination of DDP w ith UCN- 

01 was more cytotoxic than DDP on its own.

These results are in agreement with previously reported studies, 

which showed that UCN-01 at concentrations similar to those used here 

increased the cytotoxicity of the anticancer agents mitomycin C, bis 

chloroethyl-nitrosourea and DDP (Akinaga et al. 1993; Pollack et al. 1996; 

Bunch and Eastman 1996; Sugiyama et al. 2000; Monks et al. 2000).

4.3.5 Discussion

The results obtained with CHKl dominant negative m utants did 

not allow clear conclusions to be drawn concerning the role of CHKl in 

determining cellular sensitivity to anticancer agents. In particular, the 

overexpression of mutant CHKl had different effects in the two cellular 

systems utilised. It is possible that the observed effects in the U20S cell line 

were not caused directly by the CHKl dominant negative mutation. In 

fact, in the U20S cell line the overexpression of wild-type CHKl per se was
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sufficient to alter the cellular response to anticancer agents. The conclusion 

expected from these experiments was that abrogation of CHKl, i.e. of an 

important G2 checkpoint participant, would sensitize cells to DNA 

damaging agent treatment. This was indeed observed when the CHKl 

inhibitor UCN-01 was used in combination with DDP, which is in 

agreement w ith other data in the literature (Bunch and Eastman 1996; 

Husain et al. 1997).

The dominant negative effect exerted in vitro using CHKl m utant 

cells was not reproducible in the various transfected cell types examined. 

One possible explanation for this unexpected result is that the levels of 

m utant protein were not sufficiently elevated above the levels of 

endogenous CHKl. Alternatively it might be difficult to saturate the 

transcription/ translation machinery used by the CHKl gene in cells in 

which the endogenous kinase activity is left intact. On the other hand, the 

result obtained w ith UCN-01, an inhibitor of CHKl kinase activity, has 

been recently confirmed by experiments performed using "small 

interference RNAs" (siRNA), small RNA molecules able to shut down the 

expression of the gene of interest (Paddison and Hannon 2002; McManus 

and Sharp 2002; Scherr et al. 2003).

In a very recent publication, the use of siRNA specific for CHKl 

was able to reduce the expression of CHKl protein and to increase the 

cellular sensitivity to gamma ray irradiation (Zhao et al. 2002; Xiao et al. 

2003).
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4.4 CHK2 and its effect on cellular response to anticancer 

agents

4.4.1 Introduction

As outlined in the Introduction (Chapter 1), CHK2 and CHKl share 

some common functional features although they have been reported to 

participate in distinct checkpoints (Walworth 2000; Rhind and Russell 

2000b). CHK2 seems to be mostly involved in the S phase checkpoint, 

although some activity in the G2 and M checkpoints has also been 

documented (Rhind and Russell 2000b; Bartek et al. 2001).

Here two questions were addressed. Firstly it was surmised that, by 

analogy to the hypothesis tested with CHKl, abrogation of CHK2 function 

affects the response of cells towards treatment with DNA-damaging 

agents, such as DDP. Secondly the question was studied whether 

introduction of a dominant negative CHK2 gene into a cellular subline 

harboring a dominant negative CHKl elicits the acquisition of additional 

sensitivity.

4.4.2 Generation and properties of cells overexpressing dominant negative 

CHK2

U20S pCDNA3 cells and U20S-CHK1 D130A cells were transfected 

with either the w t form or the mutated form of human CHK2 cDNA. By
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analogy to the procedure used for CHKl, the CHK2 m utant was selected 

in the region containing the kinase domain. The mutated CHK2 cDNA 

contains a mutation at DNA level generating a protein with a lysine (K) 

instead of an arginine (R) at position 249. This mutant was previously 

found in vitro to have lost kinase activity (Matsuoka et al. 1998). Both the 

wild-type and K249R m utant CHK2 cDNAs were inserted in the pCDNA3 

vector and co-transfected with a plasmid encoding a hygromycin 

resistance gene. Using the same method utilized for the generation of 

clones overexpressing CHKl, different clones were selected from parental 

and CHKl D130A cells by double antibiotic selection.

Positive clones growing both in G418 and hygromycin containing 

media were analyzed for the overexpression of CHK2 by Northern blot 

analysis, using as a probe the entire CHK2 cDNA (figure 4.24). Five clones 

were selected, three derived from U20S/pCDNA3 cells, "UpS.lO" 

overexpressing the w t form of CHK2, "Up6.1" and "Up6.21", 

overexpressing the K249R form of CHK2, and two derived from U20S- 

CHK1D130A cells, "D130 6.2" and "D130 6.6", both overexpressing the 

K249R form of CHK2. The in vitro growth characteristics of the selected 

clones was studied and compared w ith that of the parental cells from 

which they were derived.

Figure 4.25 shows growth curves for the U20S/  pCDNA3-derived 

clones (panel A) and the U20S-CHKlD130A-derived clones (panel B). The 

different clones were able to grow at rates similar to their parental cells or
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Figure 4.24
Representative Northern blot showing the expression of CHK2 in clones derived 
from U20S and U2OS/D130 cells.
Total RNA extracted from U20s/pCDNA3 (lane 1), U2OS/Up5.10 (lane 2) 
U20S/Up6.1 (lane 3) U2OS/D130 6.2 (lane 4) and U2OS/Di30 6.6 (lane 5) was 
separeted on agarose gel, transferred to a nylon filter and the blot hybridized with 
a CHK2 cDNA probe.
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Figure 4.25
In vitro groth of clones derived from U20S cells and overexpressing CHK2.
Panel A: Cell growth of U20S parental cells (o) and of clones derived from them Up5 ( o ) ,  

Up6.1 (c) and Up6.21 (a). Cells were seeded in 96 well plates and cell growth evaluated at 
the indicated times using MTT. Values are expressed as mean 540 nm absorbance.
Panel B: Cell growth of D130 cells (®) and of clones derived from them D130 6.2 (o) and 
D130 6.6 (c). Cells were seeded in 96 well plates and cell growth evaluated at the 
indicated times using MTT. Values are expressed as mean 540 nm absorbance.
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clones. These clones were tested for their ability to respond to DDP 

treatment. Cells were seeded from exponentially growing cultures and 

treated with appropriate concentrations of the drug 48 hours after seeding. 

DDP treatment was for 1 hour, after which the cells were kept in drug-free 

medium for a further 72 hours, before the MTT solution was added.

The OD obtained for control cells and treated cells were compared 

and concentration versus % of controls curves were depicted. The 

overexpression of the dominant form of CHK2 did not substantially alter 

the cellular response to DDP treatment, reflected by similarity of the 

curves describing parental cells and the different clones (Fig 4.26).

4.4.3 Discussion

As observed for CHKl, the results obtained with the dom inant 

negative m utant of CHK2 do not allow clear conclusions to be draw n w ith 

respect to the relative role of CHK2 in determining cellular sensitivity.

The kinase-dead mutants, while being unable to exert activity in 

vitro, may well not to be able to inactivate completely the endogenous 

kinase. Again, it is noteworthy that these mutants were effectively 

reported to act as dominant negative stimuli in cell free systems in which 

they were able to block the wild-type form of both CHKl and CHK2 

(Sanchez et al. 1997; Matsuoka et al. 1998).
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Figure 4.26
In vitro cytotoxicity of DDP in U20S-derived clones (panel A) and in D130-derived 
clones (panel B).
Panel A: U20S parental cells (ê , and clones Up 5.10 ( ja ) , Up 6.1 (o) and Up 6.10 (d), were 
treated with different concentrations of DDP for 2 hours. At the end of treatment, the 
drug was removed and the cells incubated in drug-free medium for further 72 hours. 
Panel B: U20S/D130 cells (o), clone D130 6.2 (o) and clone D130 6.6 (u) were treated with 
different concentrations of DDP for 2 hours. At the end of treatment, the drug was 
removed and the cells incubated in drug-free medium for further 72 hours.
The percentage of 540nM abs in treated cells was calculated relative to untreated cells 
usign the MTT test. The results are the mean + /-  SD of six replicates.
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4.5 Cross-talk between p53 and CHKl

4.5.1 Introduction

The interconnection between different checkpoints may be an 

important determinant of the cellular response to a given stress such as 

that exerted by cytotoxicants. This notion is particularly pertinent with 

respect to a cellular response elicited by an external stress which needs to 

be abrogated once the damage has been removed, and when constant 

checkpoint activation would be detrimental for cell life. The removal of 

checkpoint activation is therefore a mechanism which could involve the 

reciprocal control between proteins directly participating in checkpoints. 

The next set of experiments described in this chapter were aimed at 

evaluating the connections, if any, between p53 and CHKl.

4.5.2 p53 status and CHKl protein levels

In experiments performed to evaluate the effect of DNA damage on 

levels of CHKl in HCT116 cells, it was noticed that at relatively long time 

periods after treatment with DDP there was a decline in the levels of 

CHKl. By comparing this effect in the clone HCT116/E6, which does not 

express p53, the decrease in the levels of CHKl was unexpectedly found 

to be much smaller, if not absent, compared to that observable in parental, 

wild-type p53 expressing cells. This phenomenon was particularly evident
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24 and 48 hours after DDP treatment (figure 4.27). The same blot was 

probed with anti p53 antibodies, to verify the inactivation of p53, and with 

antibodies against actin, to normalize for potential differences in loading. 

The experiments were repeated several times and the intensity of the 

CHKl band relative to the internal standard actin was measured by 

densitometry and the degree of inhibition is shown in figure 4.28. Forty- 

eight hours after treatment with DDP in HCT116 wild-type p53 cells the 

levels of CHKl were only 5% of control values, while in the p53- 

inactivated clone these levels were 65% of controls. As expected, p53 was 

present only in parental cells after treatment with DDP, while it was 

almost undetectable in the E6-transfected clone.

To verify whether the differential decline in CHKl levels observed 

in parental and E6-transfected cells was really due to the presence of p53, 

we repeated the experiments in another HCT116-derived subline in which 

p53 has been inactivated by targeted homologous recombination. In this 

clone the p53 gene has been directly inactivated and there was no 

production of RNA and protein. The treatment conditions and 

experimental procedure were identical to those utilized for the 

experiments in the HCT116-E6 clone. As reported in figure 4.29, a time 

dependent decrease in CHKl protein levels in parental HCT116 cells 

treated with DDP was again observed, which was not present in HCT116 

p53-/- cells. Again, the blot was probed with anti actin antibody to 

normalize for loading differences and with anti p53 antibody to further
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Figure 4.27
Representative western blot showing the effect of DDP treatment on CHKl protein levels 
in HCT116 parental and HCT116/E6 cells.

/mile* rc treated with 25 pM DDP for 24 hours and cellular extract taken before
treatment and after 0, 6, 24 and 48 hours incubation in drug-free medium.
The blot was hybridized with anti CHKl and anti p53 antibodies. Actin was used to 
normalize for differences in loading.
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F igure  4.28
Quantitative analysis of the inhibition of CHKl levels induced by DDP in HCT116 (grey 
bars) and HCT116/E6 cells (white bars).
Blots of three independent experiments were analyzed with the image analyser and the 
mean + /- SD of the intensities, normalized for the actin leves calculated.
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Figure 4.29
Representative western blot showing the effect of DDP treatment on CHKl protein levels 
in HCT116 p53+/+ and HCT116 p53-/- cells.
Cells were treated with 25 pM DDP for 24 hours and cellular extract taken before 
treatment and after 0, 6 ,  24 and 48 hours incubation in drug-free medium.
The blot was hybridized with anti CHKl and anti p53 antibodies. Actin was used to 
normalize for differences in loading.
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check the presence of p53 in parental cells and the absence in p53-/- cells.

The HCT116 p53-/- cells lacked expression of p53, either before or 

after treatment with DDP. In contrast in parental cells the levels of p53, 

which was almost undetectable under basal conditions, were rapidly and 

consistently increased after treatment with DDP.

4.5.3 Cell cycle analvsis and CHKl levels following treatment with DDP

Next the question was addressed whether the decrease in CHKl 

levels induced by DDP in a p53-dependent way was due to a different cell 

cycle effect induced by the drug in cells with or without p53. To do this, 

HCT116 parental and HCT116/E6 cells were treated with 25 pM DDP for 

24 hours under the same conditions used for the Western blot analysis. At 

the end of treatment and after 6, 24 and 48 hours incubation in drug-free 

medium, untreated or DDP-treated cells were removed, washed in PBS, 

fixed, stained with propidium  iodide as described in material and 

methods section, and analyzed by flow cytometry (figure 4.30, panel A). 

In parental HCT116 cells, DDP induced initially an arrest of cells both in 

the G1 and G2-M phases of the cell cycle, and at longer times (24 and 48 

hours incubation in drug-free medium) a prevalent G2-M arrest was 

found. In HCT116/E6 cells, the initial G1 arrest was not observable, while 

the G2-M arrest at 48 hours incubation in drug-free medium was similar to 

that achievable in parental HCT116 cells. At this time point, the ratio of
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Figure 4.30
Panel A. Cell cycle phases distribution in HCT116 and HCT116/E6 cells treated with 25 
pM DDP for 24 hours. Cell cycle analysis was performed at the end of treatment and after 
6, 24 and 48 hours incubation in drug-free medium.
Panel B. Cell cycle perturbation induced by nocodazole in HCT116 and HCT116/E6 cells. 
Panel C. CHKl protein levels in HCT116 and HCT116/E6 cells treated with nocodazole.
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percentages of cells in G2-M and G1 phases was 3.1 for HCT116 and and 

2.7 for HCT116/E6 cells.

Furthermore, the compound nocodazole, which induces a G2-M 

arrest interfering with tubulin polymerization, was used. Both HCT116 

and HCT116/E6 cells were treated with 400 ng /m l of nocodazole for 24 

hours, which caused a clear G2-M accumulation of both cell types (figure 

4.30, panel B). However this G2-M arrest was not associated with a 

decrease in CHKl protein levels, as shown in figure 4.30 panel C. These 

results indicate that the observed DDP-induced decrease in CHKl levels is 

not merely a consequence of accumulation of cells in the G2-M phase of 

the cell cycle, but rather is the consequence of the activation of G2 damage 

checkpoint.

4.5.4 Mechanism of p53-induced downregulation of CHKl levels

The subsequent step was to try to clarify the reason for the p53 

dependency in CHKl downregulation induced by DDP. First it was 

investigated whether the observed decline in CHKl protein levels was 

also observable at the mRNA level. By using the same treatment 

conditions utilised for the Western blot and flow cytometry experiments, 

we isolated total RNA from untreated cells or from cells treated with DDP 

for 24 hours and incubated in drug-free medium for 0, 6 24 and 48 hours. 

The RNA was purified and treated as described in Chapter 3.5 and, after 

transfer to a nylon membrane, hybridized with a radioactive probe
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derived from the human CHKl cDNA. The autoradiograph of a 

representative experiment is shown in figure 4.31 panel A, in which two 

bands, corresponding to two different transcript isoforms of CHKl are 

clearly visible. In parental HCT116 cells a clear reduction in CHKl RNA 

levels following DDP treatment was observed, which was much less 

evident in E6-transfected cells. By densitometric analysis, the percentage 

of decrease of CHKl levels was calculated in both cell lines. After 24 

hours incubation in drug-free medium, CHKl RNA levels were decreased 

by approximately 80% in parental cells, while no effect was found in 

HCT116/E6 cells. At 48 hours the inhibition was more than 90% in 

parental cells and only 35% in p53-inactivated cells (figure 4.31 panel B).

The decrease in CHKl RNA levels following DDP treatment 

preceeded the decrease in protein levels, indicating that the primary effect 

was indeed at the RNA level and that the decrease in protein levels was 

the consequence of a decreased abundancy of the template used for 

translation.

A different system was used to analyse whether the DDP-induced 

downregulation of CHKl mRNA was caused by a transcriptional or 

posttranscriptional effect. The availability of a construct was taken 

advantage of in which the human CHKl cDNA was subcloned in an 

expression vector in frame with an HA epitope tag consisting of 36 

nucleotides, leading to a 12 amino acid peptide located directly at 5' to the 

CHKl gene. This construct was stably transfected in U20S cells, and the
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Figure 4.31
Upper panel. Northern blot showing the effect of DDP treatment on CHKl mRNA levels 
in HCTiio parental and HCT116/E6 cells.
Cells were treated with 25 pM DDP for 24 hours and cellular extract taken before 
treatment and after 0, 6 ,  24 and 48 hours incubation in drug-free medium.
The blot was hybridized with a cDNA CHKl probe. Actin was used to normalize for 
differences in loading.
Lower panel. Quantitative analysis of the inhibition of CHKl RNA levels induced by 
DDP in HCT116 (grey bars) and HCT116/E6 cells (white bars).
Blots of three independent experiments were analyzed with the image analyser and the 
mean + /- SD of the intensities, normalized for the actin levels, calculated. The bigger 
RNA form of CHKl was considered.
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Figure 4.32
Effect of DDP on the levels of endogenous (CHKl) and exogenous (HA-CHKl) CHKl 
levels in U20S cells treated with DDP. Extract were taken at the end of DDP treatment 
and after 6 ,  24 and 48 hours incubation in drug free medium. Lane - corresponds to 
untreated cells and lane H corresponds to extracts obtained from untreated HCT116 cells. 
The blot was probed with anti CHKl antibody and subsequently with anti actin 
antibody. Actin has been used as internal control for normalization.
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selected clone, expressing both endogenous CHKl and exogenous HA- 

CHKl, was treated with DDP. Figure 4.32 shows the results obtained. The 

ratio between the exogenous HA-CHKl and the endogenous CHKl 

changed with time in favour of exogenous CHKl, indicating that the 

observed decrease in CHKl was likely to be due to a transcriptional effect, 

not observed when the RNA of the exogenous gene is under the control of 

a viral promoter.

It was reasoned that if the transcription of the gene was important 

for the observed decrease in CHKl RNA and protein in a p53 dependent 

manner, then it should be possible to see the same effect when the 

genomic sequences responsible for CHKl transcription in the hum an 

genome are isolated and placed 5' to an exogenous gene normally not 

present in mammalian cells. By using this construct it should be possible 

to render observable the modulation of endogenous gene expression 

mediated by the hum an CHKl promoter.

4.5.5 Isolation of CHKl genomic sequences

To isolate the genomic DNA regions possibly involved in the 

regulation of CHKl gene, a human genomic library spotted in duplicate in 

seven different filters, obtained through the UK Human Genome Mapping 

Project Resource Centre (UK-HGMP-RC) was used. These filters contain 

genomic DNA clones and can be hybridized with different probes derived 

from the human CHKl cDNA to isolate the genomic sequence of interest.
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For the purpose of this study, a probe from the 5' region of the human 

CHKl cDNA was selected in order to allow isolation the 5' genomic 

region which is likely to contain the promoter region of the gene. Figure 

4.33 shows an example of an autoradiograph indicating the presence of 

two positive spots. On the whole set of seven filters, the use of this cDNA 

probe led to the identification of two positive clones which could be 

univocally identified through the coordinates of the filters and requested 

to the UK-HGMP-RC. The two positive clones (53P13 and 253) thus 

obtained were grown in LB media and the DNA was isolated from the 

overnight culture using procedures described in the materials and 

methods section (chapter 3.2.5). Since each of this clone contained 

approximately 100 Kb of DNA, it was necessary to pinpoint smaller DNA 

fragments containing the CHKl gene for further characterization. To do 

this, DNA was digested with different appropriate restriction enzymes 

and half of it loaded on 0.8% agarose gels to separate the fragments of 

different length. At the end of the run the gel was stained with ethidium 

bromide and the bands visualized under UV light. Figure 4.34, shows 

fragments of the two clones digested with the restriction enzymes B am H l, 

EcoRl and Hindlll (panel A). The gel was blotted overnight to nylon filter 

and hybridized with a small cDNA CHKl sequence to identify the 

fragments inside the genomic sequence present in the clone which 

contains the CHKl gene. The results of the hybridization are shown in the 

panel B of figure 4.34, from which one can deduce that few digested
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Figure 4.33
Screening of a genomic library.
The figure shows a representative autoradiography obtained from a filter containing 
genomic DNA that was probed with a ^^P-labeled CHKl cDNA fragment.
Each clone is spotted in double on the filter. The arrow points to a CHKl positive clone 
which has been selected from this screening.
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Figure 4.34
Southern blot from a genomic clone isolated from the screening of a genomic library.
DNA isolated from the clone was digested with different restriction enzymes and 
separated on agarose gel.
Panel A. Ethidium bromide staining of the gel. The two clones (53P13 and 253) have been 
digested with BamHI (B), EcoRI (E) or Hind III (H). M is the molecular weight marker. 
Panel B Autoradiography of the gel transferred to a nylon membrane and hybridized 
with a 32p-labelled CHKl probe. Numbers on the left are derived from molecular weight 
markers and are bp of DNA. The arrow points to the 10 Kb fragment of the 53P13 clone 
digested with EcoRI isolated for furhter studies.
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fragments gave positive hybridization and hence contained the sequence 

of CHKl used to hybridize. From these experiments a DNA fragment of 

approximately 10 Kb, obtained from clone 53P13 after digestion with Eco 

RI was isolated for further characterization.

This DNA fragment was subsequently subcloned in the Eco RI site 

contained in the multiple cloning site of the pBluescript plasmid. This 

recombinant plasmid was used to sequence the DNA inserted. Initially the 

first sequences were obtained using as primers the sequences contained in 

the plasmid. From these DNA sequences, other oligonucleotides primers 

were synthetized and used to further sequence the inserted clone. After 

two steps of sequencing, the obtained sequence was aligned and matched 

with the hum an genomic sequences present in the NCBl gene bank 

databse. A complete overlap with a genomic sequence was found, and this 

sequence was located near to CHKl cDNA sequence. Once it had been 

verified that the 10 Kb cloned sequence was indeed a sequence 

corresponding to the genomic region around the CHKl cDNA, two 

oligonucleotide primers were designed and used in PCR reactions to 

amplify a smaller DNA fragment containing the initial non coding part of 

the CHKl gene and a genomic region immediately 5' to this non coding 

part. The amplified DNA was subcloned in the multiple cloning site of the 

promoter-less pGL2 vector. This vector contains the luciferase cDNA and 

a multiple cloning site 5' of the cDNA without promoter and is generally 

used to determine the efficiency of putative genomic promoter regions to
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drive the transcription of the luciferase gene. Using the method reported 

in sections 3.23-3.25 recombinant clones were selected and the DNA 

partially sequenced to further verify the presence of the right insert and to 

determine the orientation. The sequence of the insert isolated and used in 

subsequent experiments is reported in figure 4.35. This fragment of the 

genomic CHKl gene contained a small sequence of the 5' cDNA and a 

genomic region of 867 bp. Two different colonies, presenting the same 

sequence subcloned in opposite direction were selected. The colony 

containing the genomic CHKl region subcloned in antisense orientation 

with respect to the luciferase cDNA was used as negative control because 

it should not be able to drive its transcription.

The ability of p53 to induce downregulation of CHKl promoter was 

tested by co-transfecting an expression vector containing hum an p53 

cDNA with the construct containing the luciferase gene under the control 

of the hum an CHKl promoter fragment of 867 bp isolated as described 

above. From figure 4.36 it appears that p53 reduces the activity of the 867 

bp-CHKl genomic construct. The same construct inserted in antisense 

orientation, i.e. used as negative control was not affected by p53. The 

transcriptional repression exerted by p53 on CHKl promoter fragment 

was more evident if compared with the transcriptional activation induced 

on another promoter fragment isolated from the human p21 gene and 

known to be activated by p53, which was obtained from Dr Carol Prives, 

Columbia University, NY.
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5'

ATTCTCCTGCCCTCGCCTTCCCAAAGTGCTGGAATTACAGGCAGGA
GCCACTGGCCCGGCCAGTGCTGGAGAATGTAATGGAGATGATCCT
GCCTATCCCTGAGTTCCAGTCTAGTTTACTGTCAGAGAATACTTATT
TCCATTTTTCCTATTTTGTTCTTGAGTCTCTTTCCTCAGAATTTACTTT
TCCACTTAAATGACGTACGCAGCTTTTAAATTTGCGTTGTAAGATTT
ATTTTGGCTCTCCCCGCCTGTTCTTTGCACATTAAAAATGAAAAAGT
TTGTAGAACTAAGCTAAGCAGATGGTCTTCCTGCAAAAAGACCGG
GCTGAAGTAAAGCATTGTTTTGGAGCTGGTTCACAGAAAAAAGGC
AAAACTGGTTATCCTGACTTCAAGCTCCAACATAAACTGCTCGCTT
TCTCCGGGAAACTTGCCCCGCCACATACACTTGACTGCGTGGCCA
GTTCTTTCGAAGCCTCTCGCTCCCAACACGGAGTTCCTCCCATTT
CTTCACAGTCGGCTCTCAGCAGCTGCTGCTGGTTTCTCGGCTCC
AGCACCACGAGTACCGCACTCTGAGGTTTACAAAGCACTCTGCT
TCACCGACTGTGATCCTCACAGTCCTGTCCGGTGGCCTCACGCA
GGTGGCGGTGCAGCCTTTCAGGCCCAGAGCGGCCAGGAGCGA
AGCCCGCAGCCCCGCCTGGAAGCGCAGCGCGGTCGGTCGCGCG
CCCCTGAGGCTTGGAGGCCTGGGCTTCCCCCAGCAGCGCTCGA
GCACCGCCCAGTCGAGCCTCACACCGGATGCCACTTCATATTTG
GGCCCAGAGCTCAATTCGCGCCGATGCGGTCCGCCGTCCTTAA
ATCTCTTCAGCC 3'

Figure 4.35
Sequence of the genomic DNA fragment isolated from the genomic library and used for 
the determination of CHKl promoter activity. The sequence is oriented 5'-3'. In bold are 
sequences of the 5' untranslated region of the gene.
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Figure 4.36
Luciferase activity in cells transfected with the 864bp CHKl construct in sense (CHKl) or 
antisense (CHKl-A) orientation. As controls, empty vector (pGT,2) and the p53- 
responsive element present in p21 promoter (p21).
Skov-3 cells were co-transfected with the indicated plasmids together with human p53 
expressing plasmid (grey bars) or control vector (white bars). Luciferase activity was 
assessed 48 hours after transfection.
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4.5.6 Discussion

The results presented in this section clearly suggest that there is a 

strict relationship between p53 and CHKl. On one side, CHKl is activated 

by phosphorylation following damage (Abraham 2001; Tian et al. 2002), 

with ATR being one of the kinases responsible for this event. Once 

activated, CHKl is able to phosphorylate different substrates, among 

which CDC25 is probably the most important and best studied (Sanchez et 

al. 1997; Kaneko et al. 1999). Additionally CHKl is able to phosphorylate 

p53 at the amino terminus, at position serine 15 (Shieh et al. 2000). This 

phosphorylation is thought to be an important event in the activation of 

p53 thus indicating that the two checkpoint proteins are interrelated. The 

results presented here indicate that in a wild-type p53 background 

following DNA damage, and hence implying a p53 dependent 

mechanism, CHKl is downregulated, mainly transcriptionally. This 

notion intimates that there is a cross talk between the two proteins, which 

in concert could co-operate in the onset of damage-activated checkpoint, 

through cell cycle arrest, which could then be removed through repression 

of CHKl. Repression of CHKl is likely to occur in cells w ith moderate 

damage, in which repair of the lesion has occurred and hence the cell cycle 

needs to be restarted after the transient block. In the case of severe and 

persistent damage, which renders the repair of the lesions impossible and 

which entails activation of apoptotic processes, this phenomenon, i.e. 

repression of CHKl to resume the cell cycle, might not be relevant.
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Moreover, these findings are consistent with the observation that in 

cancer cells lacking p53 there is a more prolonged and sustained arrest in 

the G2 phase of the cell cycle than in cells expressing a functional wild- 

type p53 (Pollack et al. 1996; Sugiyama et al. 2000). In fact, according to the 

model proposed here, cells lacking functional p53, or expressing mutated 

p53, would not be able to trigger the signal for downregulation of CHKl, 

levels of which would thus remain relatively high for prolonged times.

As a consequence, inactivation of both p53 and the CHKl 

checkpoint is likely to result in a increased sensitivity to anticancer agents. 

Such an increase could be a particular therapeutic advantage in the case of 

cancer cells lacking p53 expression, in which the p53-dependent 

checkpoint is already compromised, and where therefore the inhibition of 

the CHKl-dependent checkpoint could result in a more pronounced 

increase in ability of agents to damage DNA compared to normal cells in 

which abrogation of the CHKl-dependent checkpoint could leave the p53- 

dependent checkpoint unaltered.

In addition, the results of this chapter, suggest that different 

pathways of cell signalling, following damage induction, have to be 

regarded as a complex cascade of events likely to be interlinked, rather 

than as a single event dependent on one protein only.



207

5. GENERAL DISCUSSION
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This thesis is concerned with experiments which are aimed at 

investigating the role of different proteins in the mediation of cellular 

responses to cytotoxic stress. The proteins considered were p53 and its 

analogue p73 and the two cell cycle checkpoint proteins CHKl and CHK2. 

The underlying rationale of the work was to delineate the role of these 

proteins in the antitumor activity of certain anticancer agents. It needs to 

be stressed that in all the experiments performed, particular attention has 

been paid to the selection and use of appropriate cellular systems.

The underlying idea was to reduce, as much as possible, any 

interference by other genetic alterations likely to be present when two cells 

of different origin are used. For this reason, isogenic cell systems were 

characterized when already available, or generated in the case that cells 

with the desired genetic alteration were not available. In the case of p53, 

starting from wild-type p53 expressing cells, two different inactivation 

methods and two different cell lines were used. The results outlined in 

section 4.1 suggest that in all cases the presence of p53 was associated w ith 

resistance to treatment with the anticancer agents DDF and taxol.

P53 has been reported by many laboratories to play an important 

role in determining cellular sensitivity to treatment with anticancer agents. 

There is no doubt that wild-type p53 plays an essential role in controlling 

the genomic integrity of the cells. The importance of this notion is 

underlined by the evidence that the majority of hum an tumors harbor 

inactivated protein, inactivated either via gene mutation, cytoplasmic
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sequestration, viral inactivation or other mechanisms (Harris 1996; 

Hollstein et al. 1997; Vogelstein et al. 2000).

A potential therapeutic application arising from these findings is 

reflected by attempts to restore p53 function in cancer cells. In cancer cells 

growing in vitro, the re-introduction of a functional p53 is associated with 

growth arrest and cell death (Vogelstein and Kinzler 1992; Levine 1997). 

However, the possibility to use such gene therapy-based approaches in 

humans, needs additional improvements to be made concerning the 

currently available delivery systems. Nevertheless clinical trials 

exploring adenovirus-mediated transfer of wild-type p53 in hum an cancer 

have been activated (Merritt et al. 2001; Duller et al. 2002a; Duller et al. 

2002b).

Moreover, the finding that tumors often present defects in p53 

could offer an advantage for those therapeutic regimens which are 

characterised by enhanced activity in the absence of p53. Probably the 

best example is the modified adenovirus which is inactivated in cells 

expressing wild-type p53, but not in those without p53, in which the virus 

can replicate, lyse the cells and diffuse to neighboring cells (Heise et al. 

1997). This "smart" virus has so far shown promising results, although 

experience dictates to limit one's enthusiasm concerning such an approach 

(Nemunaitis et al. 2001; Hecht et al. 2003). In addition, some reports 

suggest that the virus could also affect cells harboring wild-type p53 (Dix 

et al. 2001; Geoerger et al. 2002).
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Theoretically, any drug treatment able to preferentially kill cancer 

cells with inactivated p53 should have a favourable therapeutic index, 

since its cytotoxic activity against normal and wild-type p53 expressing 

cells should be reduced. However, there are examples of drugs, the 

activity of which is increased or decreased by the presence of p53, 

depending on the cellular context.

One might argue that this fact is not surprising, since the activation 

of p53 can lead either to activation of apoptosis or to activation of cell 

cycle arrest. If the latter predominates, it is to be expected that a drug 

causing DNA damage will have more chances to be active in cells w ithout 

p53, as the lack of cell cycle arrest reduces the possibilities to repair the 

lesion. The data reported in sections 4.1.2-4.1.5, which were obtained in 

epithelial-derived cancer cells, are in agreement with this hypothesis.

In the case of the p53 homologue p73 the situation is somewhat 

different, in that its role as a tumor suppressor and as a checkpoint control 

protein is still shrouded in mistery (Grob et al. 2002; Melino et al. 2002; 

Stiewe and Putzer 2002). The observation that in different tumors the wild 

type form of p73 is overexpressed (Novak et al. 2001; Nozaki et al. 2001; 

Moll et al. 2001) mitigates against its function as tumor suppressor. It is 

not easy to study the effect of overexpression of p73 in isogenic systems, 

since the introduction of a wt p73 form in cancer cells growing in culture 

leads to growth arrest and apoptosis (Kaghad et al. 1997).
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How human tumors can grow with relatively high levels of p73, 

compared to normal adjacent tissue, is not yet clear. The evidence 

reported here (sections 4.2.2 and 4.2.3) using two clones overexpressing 

p73, in which increased expression of DNA repair genes (and particularly 

of the NER system) was found, would suggest that tumors with high 

levels of p73 have a better DNA repair capacity, hence a lower chance to 

respond to chemotherapy involving drugs inducing lesions that are 

recognized by the NER system. This notion is only speculative, as the 

evidence has been observed in only one experimental system, due to the 

difficulty in obtaining clones overexpressing p73. It seems particularly 

important to verify whether these results can be generalised, because, if 

confirmed, they could have a strong impact on the selection of the 

therapeutic regimens for those tumors overexpressing p73.

DDF, one of the most active and widely used anticancer agent 

available, is a drug characterised by "sensitivity" to the presence of high 

DNA repair capability. Therefore the impact of the presence of high p73 

levels, in relation to the adjacent normal tissue, would be particularly 

important concerning the activity of DDF.

Nevertheless, the evidence presented here with respect to p53 or 

p73 implies that new molecules selected to inhibit targets, such as the 

cyclin dependent kinases, more specifically than the traditional 

cytotoxicants, might show antitumor activity independently of the status 

of p53 or p73. Such new drugs would offer an interesting alternative with
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respect to treatment of tumors for which the currently available therapies 

posses only low efficacy.

The observation that the truncated DN form of p73 could have 

effects opposite to those of wild-type p73 (Furnari et al. 1999; Moll et al. 

2001), raises the possibility to test the impact of overexpression of DNp73 

on the cellular response to anticancer agents. In order to test this 

possibility clones with high levels of DN p73 will have to be isolated, and 

this is one of the experiments planned on the basis of the results of the 

studies presented here.

The data obtained with the two checkpoint proteins CHKl and 

CHK2 (sections 4.3.2, 4.3.3, 4.4.2) cast doubt on the prudence to use of 

dominant negative mutants indiscrimately. At least in the HCT116 colon 

cancer system, they have been hardly useful. Nevertheless the data 

reported in chapter 4.3.4 supports the idea that abrogation of the G2 

checkpoint could result in increased responsiveness of cancer cells 

towards treatment with anticancer agents.

CHKl and CHK2 are considered potential targets for the 

development of new anticancer agents based on the interesting results 

obtained so far with UCN-01 (Bunch and Eastman 1996; Husain et al. 1997; 

Monks et al. 2000). The action of UCN-01, however, is not restricted to 

inhibition of CHKl and CHK2, and molecules with high specificity for 

CHKl or CHK2 would be desirable to allow testing of the relative 

contribution of these kinases to the overall G2 checkpoint.
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The possibility of selectively abrogating the G2 checkpoint in cancer 

cells is even more attractive considering that in cells lacking p53 (i.e. one 

of the key proteins governing this checkpoint) the effect of G2 abrogation 

should be more detrimental than in normal cells, in which the G1 

checkpoint is functional and can work as a defense mechanism.

A logical consequence of this hypothesis would be an increased 

therapeutic index when conventional anticancer agents are combined with 

G2 abrogators. Another interesting result derived from the experiments 

reported in chapter 4.5, is the evidence that there is a clear link between 

proteins participating in different checkpoints. The observation that 

CHKl and p53 are mutually regulated is a new finding. It is indicative of 

a concerted action of these proteins in normal cells throughout the entire 

cell cycle to ensure the maximal efficiency of control of genomic integrity. 

Again, the lack of p53 in the majority of hum an tumors deregulates this 

connection, which in turn might confer increased vulnerability on to cells 

towards inhibition of CHKl.

Increasing the knowledge on the links between different 

checkpoints is an important and suitable topic of study in the future with 

the aim to allow the selection of better targets for the testing of new drugs 

with improved specificity to kill cancer cells. The availability of new 

techniques such as microarray and proteomics offers tremendous 

increases in the knowledge not only of single gene alterations, but also of 

cellular pathways which are compromised in a defined pathology.
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The increased knowledge of the biology of the tumors is certainly 

one of the "smartest" ways to identify potential new targets for the 

development of new anticancer agents. The exploitation of the emerging 

knowledge of the molecular biology of tumors and of the response of cells 

defective in a specific gene or pathway, combined with the development 

of more target-oriented drugs, might render the idea of a "patient- 

targeted" therapy for individual patients possible. Such an approach 

might ultimately result in high efficacy and better tolerability of 

treatments, and hence in achieving the "optimal way" to combat cancer.
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7.1 List of abbreviations

APC anaphase promoting complex

ATM ataxia-telangectasia mutated gene

ATP adenosine 5' triphospate

ATR ATM-realted gene

bp base pairs

BRCAl breast cancer-associated gene 1

BSA bovine serum albumin

CAK cdk activating kinase

cDDP cis-dichloro-diamine-platinum

CDK cyclin-dependent kinase

cDNA complementary deoxyribonucleic acid

CPU colony forming unit

CKII casein kinase II

CMV cytomegalo virus

dCTP deoxy-cytidine-5'-triphospate

DMSO dimethylsulphoxide

DNA deoxyribonucleic acid

DNA-PK DNA-dependent protein kinase

DTT dithiothreitol

DX doxorubicin

ERCC excision repair cross complementing

ECL enhanced chemiluminescence

EDTA ethylenediaminetetraacetic acid

ECS foetal calf serum

FHA forkhead-associated domain

CTC guanidine thiocyanate

HAT Histone acetyl transferase
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ICso

Kb

KDa

MDR

MGMT

MOPS

MMR

MNNG

mRNA

MTT

NaAc

NER

CD

PAC

PAGE

PBS

PGR

PHAS

PMSF

Rb

RNA

RT

SAM domain

SD

SDS

TBS

TEMED

TSA

UV

concentration inhibiting the growth by 50%

kilobase pairs

kilodaltons

multi drug resistance

O^-methylguanine-DNA methyltransfrases

3-(N-morpholino) propanesulfonic acid

mismatch repair

N-methyl-N'-nitro-N-nitrosoguanidin 

messenger ribonucleic acid 

(3-[4,5-dimethyltiazol-2-yl]-2,5-diphenyl 

tétrazolium bromide 

sodium acetate 

nucleotide excision repair 

optical density 

PI artificial chromosome 

polyacrylamide gel electrophoresis 

phosphate buffered saline 

polymerase chain reaction 

phosphorylated, heat and acid stable protein 

phenylmethylsulphonyl fluoride 

Retinoblastoma 

ribonucleic acid 

reverse trascription 

sterile alpha-motif domain 

standard deviation 

sodium dodecylsulphate 

tris buffered saline

N',N,N',N'-tetramethylethylenediamine 

Trichostatin A 

ultra violet
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