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Abstract

The divide—and—conquer method is extensively used for system design. For real-time 
systems the separated components execute concurrently using some common computa
tional infrastructure and this can lead to contention for system resources, such as pro
cessors, memory, communication channels, and so on. Unless the resource contention is 
accommodated, then a system built from the composition of components may not function 
as expected and the “proven” behaviour of the components can be invalid. To overcome 
this uncertainty a divide—conquer—and—system-composition method is required.

This thesis takes a different approach to many of the existing notations which focus 
on descriptions of behaviour. The Composite Transition System notation and algebra 
presented here enables the resource usage of the components to be specified and combined 
to form a composite system of concurrently executing components. By relating the com
posite system to the realisable behaviour of the system resources provided by the common 
infrastructure it becomes possible to determine any violation of the constraints imposed by 
the system resources. If the composite system model is then constrained by the resource 
behaviours then it is possible through an extraction operation to determine the modified 
behaviour of the components that will yield a system free of resource contention.

Component specification, concurrent composition, the application of system level con
straints and extraction are applied in this thesis to a system encountered in a commercial 
application. The purpose of this example is to demonstrate contention modelling and the 
mathematics of the notation, rather than to prove any specific properties of the applica
tion. Deployment of the notation to more complex applications will require the develop
ment of software tools to compute concurrent composition and extraction, and this is the 
motivation for the mathematical treatment in this thesis.
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Chapter 1

Introduction

Advances in microelectronic technology have led to the widespread embedding of pro

grammable devices in systems built with diverse technologies [97]. This has brought 

with it significant design, verification, implementation and validation problems [82, 90]. 

Traditional ad-hoc approaches to the implementation of em bedded  systems are no longer 

adequate.

The programming of any system must incorporate an algorithm, but an embedded 

system adds the problem of interaction through its interfaces. Interface interaction often 

requires the timely reaction to an input, which is fundamentally a matter of tim in g , and 

often requires a timely output response, which is fundamentally a matter of (algorithmic) 

perform an ce. The existence of these time related attributes often leads to the term real

tim e  as an interchangeable alternative for embedded.

Many definitions of a real-time system can be found in the literature, and, not surpris

ingly, the notion of response times is a common theme. Mathai and Goswami [56] describe 

a real-time system e l s  comprising an ex tern a l en viron m en t, with its sensors and actuators, 

and a program m able sy s te m  which registers events from the sensors and responds by pro

ducing actions to drive the actuators. It is because the sensor events are distributed in 

time that such a system is often classified as a real-time system. Young’s definition [100]



focuses on the temporal aspects and considers a real-time system to be any processing 

system which responds to externally generated input stimuli within a finite and specified 

period. Stankovic [90] though defines a real-time system to be one where the correctness 

of the system depends not only on the logical result of the computation, but also on the 

time at which the result occurs.

Other researchers [10, 69, 82, 92] embellish Stankovic’s definition by categorising fail

ures to meet timing requirements as hard, firm, or soft. Shin [82], for example, defines a 

hard timing requirement as one where the impact of a failure to meet the requirement is 

“catastrophic”, but a/zrm timing requirement is one where the result ceases to be “useful” 

if the requirement is not met. Burns [10] describes a soft requirement by applying a utility 

measure which begins to decay once the required deadline has been missed, so allowing a 

distinction between a soft deadline and no deadline.

The common themes of this genre of definitions are the existence of timing require

ments, or the significance of failure to meet timing requirements. But such themes are 

questionable because these definitions may be applied to many systems that embedded 

system engineers would not consider to have real-time properties. For example, a word 

processor may be required to respond to user input within a specified time. The conse

quence of failure might be that the application is not very useful.

Timing, and not performance, is often seen as important, yet Turski [94] asserts that 

time inordinately pre-occupies the designers of so called real-time systems. There is of

ten confusion between timing and performance, often because the problems of meeting a 

timing requirement are a consequence of inadequate performance. In other words, given 

enough performance, then the timing requirements can be met. For example, some imple

mentations have a single path of execution with a control loop which cycles through a set 

of input—compute—output operations. If the order of the input stimuli is predictable, 

then the program structure will be determined by this predictable order. Provided that



there is sufficient performance, the program will always be waiting for the next anticipated 

stimulus. Thus the ability to meet the timing and performance requirements of the set 

of operations is fundamentally determined by the structure of the program, the speed 

at which the processor executes instructions and an assertion about the minimum time 

interval between one stimulus and the next stimulus.

Very often it is not possible to predict the temporal order of input stimuli. However, 

it is realistic to assume that the set of inputs might include both some periodic stimuli 

with known repetition intervals and some aperiodic stimuli with known shortest repetition 

intervals. For example, consider an asynchronous serial communication channel used to 

communicate a string of characters. Arrival of the first character is aperiodic, that is, it 

is not possible to predict when it will arrive. The subsequent characters of the string are 

(quasi) periodic as the communication data rate is (quasi) constant.

The possibility of aperiodic and quasi-periodic stimuli, or, more generally independent 

stimuli, makes it impossible to predict the time of occurrence of a stimulus or guarantee a 

minimum time between any pair of stimuli. Consequently a program might be unable to 

respond to a stimulus because it is still processing the previous stimulus. In other words, 

there is contention for the processor resource because the processor is performance bound.

A very common approach to solving the problem of dealing with independent stimuli 

is to design a system by decomposition into (largely) independent components, where each 

component is individually testable and analysable [45]. This is the divide—and—conquer 

method, and relies on the premise that a system built by integrating proven components 

is likely to be functionally correct.

In a real-time system, each component may well be implemented as a single thread 

of execution which repeatedly deals with stimuli from a single input. The design of the 

integrated system then comprises a collection of concurrent threads of execution assumed



to be largely independent of one another. Underlying this decomposition method are the 

concepts of concurren t execution  and in depen den t ac tion  (freedom of constraints from other 

components). However, interdependence must exist for the composite to be considered a 

system [57], in other words, the components are not totally independent and some sort 

of interaction is essential. Interaction may occur between the components, although loose 

coupling of components is a common design objective. At least one of the components must 

interact with the application environment, if the system is to provide a useful function 

[81] and interaction may take place between components through the environment and 

infrastructure.

A composite system is established by the concurren t com position  of components, and 

the interdependence is achieved through in terac tion  between components.

Consider concurrent composition. Many mathematical notations based around con

current composition (including some reviewed in Chapter 2) assume m axim u m  para lle lism  

in their computational model. This model ensures that if two processes are ready to com

municate then communication is not delayed by a shortage of computational resource. 

Maximum parallelism enables “true” concurrency, that is, simultaneous execution and 

that assumes unbounded computational resources. Such an assumption is overtly opti

mistic [25] and very often invalid because generally there are more processes than process

ing resources. Instead, the processes compete for processor resource [56].

Many systems include a real-tim e kern el [89] which schedules the processes to the 

available processing resources according to a scheduling algorithm . The scheduler gives an 

illusion of concurrency by interleaving the execution of processes on a shared processor. 

Not surprisingly, scheduling theory  is a significant body of real-time systems research 

[10, 19, 35, 43, 72, 77]. Indeed Stankovic and Ramamrithan in [89] make the assertion 

that the most critical part of supporting real-time systems is the scheduling algorithm 

(and the design of the operating system). The maximum parallelism view avoids the need



for scheduling, but does not guarantee that real-time constraints are met because it says 

nothing about the required processor performance to ensure that the program will always 

be waiting for the next anticipated stimulus.

Thus the scheduler in a real-time kernel provides an example of a practical concurrency 

resolution mechanism, where the scheduling algorithm is used to resolve the contention 

that arises for a processing resource. Scheduling algorithms often use a priority associated 

with each process as the basis of choice in the resolution of contention for processor re

source. Real-time kernels often implement a priority pre-emptive scheduling policy where 

the highest priority contending process is chosen and immediately allocated to the proces

sor resource. In general, the higher the priority of a process the sooner it will be allocated 

to the processor in response to a stimuli.

Where a practical concurrency operation is not modelled accurately with a concurrency 

operator in a modelling notation, then the behaviour of a system implementation may differ 

from the behaviour determined by the system model. Thus the implementation behaviour 

may not necessarily meet the requirements of a system given in a specification even though 

a model derived from the same specification (but assuming an idealised computational 

model) indicates that the required behaviour is met.

Now consider interaction, the other fundamental characteristic of the decomposition 

and concurrent composition method. The specification of components and their interaction 

is not necessarily sufficient to guarantee a functionally correct system. Milner [57] provides 

a simple example to illustrate the problem.

Milner defines a jobber which may use (non-deterministically) either a mallet or a 

hammer to perform its job. Both tools are part of the modelled environment of the jobber, 

that is, there is a defined interaction between the jobber and the mallet, and between the 

jobber and the hammer. The mallet and the hammer do not interact. Now consider the



existence of a second jobber with identical behaviour. As neither jobber has the need 

to interact, the existence of another jobber does not alter the modelled jobber behaviour 

and both are independent. Since the jobbers have the same behaviour, they can both use 

either the mallet or the hammer. However, the availability of the hammer or the mallet 

to one jobber is now influenced by the other jobber. In other words, there is u n in ten d ed  

in te ra c tio n  when there is contention for shared resources.

This simple example, which illustrates a class of problems encountered in building real

time systems, can be attributed to the resource con ten tion  which arises from the unforseen 

interaction between concurrently combined processes. The concurrency operators provided 

by the process specification notations reviewed in Chapter 2 allow independent processes 

to be combined to execute concurrently. In many practical systems, these concurrent 

processes cannot be simply combined because they then make simultaneous demands for 

shared resources which cannot necessarily be fulfilled. It is not surprising that the compo

nent behaviour is in some way distorted when the implementation of the composition does 

not match the properties of the composition operator in the notation used to describe the 

system. This behavioural distortion is difficult to predict.

Surprisingly, resource con ten tion  has attracted very little research. This thesis focuses 

not on the specification of process behaviour, but rather on the modelling of process in

teraction resulting from shared resources and the subsequent prediction of behavioural 

distortion. This requires a machine algebra which assumes the overtly optimistic maxi

mum parallelism view of computation, but which can be restricted through the explicit 

modelling of the constraining behaviour of the shared resources. A notation, called Com

posite Transition Systems (CTS), is defined in Chapter 3, and the operations of m erge  

com position  and concurren t com position  of Composite Transition Systems are defined in 

Chapter 4. The operation of ex traction  determines the distorted behaviour of a Composite 

Transition System component and is defined in Chapter 5.



The Composite Transition System notation is applied in Chapter 6 to a data acqui

sition system which samples and de-multiplexes a quadrature multiplexed signal. De

multiplexing is in response to external stimuli. The de-multiplexed signal is then sampled 

using stimuli from a position transducer. This application is interesting because the intu

itive solution is to have one de-multiplexing process and a position sampling process. A 

design objective is to execute both processes on the same processor. Further, one process 

provides a data set that may be read by the other process, so the processes share some 

memory. However, the read and write access to the shared memory must not be inter

leaved as then a partially updated data set may be sampled. Finally, neither process may 

miss a stimulus, so there are timing constraints. The objective of the example of Chap

ter 6 is to illustrate the modelling of resource contention through the use of the Composite 

Transition System notation and its operators, rather than to prove any specific property 

of the system.

To conclude. Chapter 7 discusses the results of the research presented in thesis, reviews 

the definition of the operators, and discusses the important concepts and issues that arose 

during this research. Finally, areas for further work are identified.



Chapter 2

Formal N otations

Many notations can be found in the published literature that aim to provide some formal 

basis to the design of systems and, in particular, systems that must exploit concurrency in 

order to fulfil the real-time properties introduced in Chapter 1. This chapter is a selected 

review of some of those notations that provided the motivation for the development of the 

Composite Transition System (CTS) notation presented in Chapter 3 of this thesis.

First, a brief review of Graph Theory is given in section 2.1 as a precursor to the 

introduction of Labelled Transition Systems in section 2.2. Graph theory is a long es

tablished branch of mathematics concerned with the structure, and patterns within that 

structure, that results from the relationship between entities. It is of interest here because 

this thesis is concerned with the structure of processes modelled as a set of related entities. 

Published applications of the use of graphs include the study of system behaviour [14, 29], 

the specification of concurrency in the Ada programming language [42], task scheduling 

[35, 60], distributed process scheduling and load balancing [19, 96, 99], scheduling input 

and output operations [43], communication resource constrained scheduling [79, 83] and 

system fault diagnosis [73].

Graph theory permits a description of systems without the distraction of computer 

science derived notations, some of which are introduced later in this chapter. A problem



with such notations is that they often incorporate operators with semantics motivated by 

the objectives of the notation creators and these semantics are not necessarily equivalent 

to the semantics of the corresponding operators in the tools available to system builders. 

Indeed, some researchers assert that the objectives of formal notations often limit the 

bounds of their applicability [64, 84] and this will be corroborated in the context of the 

notations reviewed in this chapter.

Labelled Transition Systems (LTS), reviewed in section 2.2 (page 12), are a form of a 

graph with a structural and executional interpretation and which allow the description of 

sequential discrete event systems. Published applications of Labelled Transition Systems 

include the specification of Ada tasking [11], the study of Communicating Sequential Pro

cesses (CSP) (section 2.4), Calculus of Communicating Systems (CCS) [57] and concurrent 

programming languages [91]. Finite State Automata (FSA) are a classic form of Labelled 

Transition System used, for example, in formal language theory [31, 38].

Critical examination of Labelled Transition Systems shows their limited applicability 

to the description of concurrent systems and this has motivated the development of the 

Composite Transition System (CTS) notation presented in Chapter 3 and the operators 

presented in Chapters 4 and 5. Little published literature exists on the algebraic manipu

lation of Labelled Transition Systems, especially for concurrent composition, and this too 

motivated the definition of the Composite Transition System notation.

A further three notations are of interest for their treatment of concurrency, their defi

nition of algebraic operators, and their treatment of resources and consequent restriction 

on system behaviour. Although two of the notations define a wider set of operators, this 

review is restricted to the treatment of concurrency, communication and choice. Concur

rency is a clear requirement. Communication is of interest because it is used to describe 

interaction between concurrent processes. Choice is of interest because the resolution of 

resource contention requires some choice to made.



Communicating Real-Time State Machines (CRSM) [81], reviewed in section 2.3, is a 

“specification” notation based on the concurrent execution of sequential discrete event ma

chines that interact through explicit communication. Each machine is an obvious form of 

Labelled Transition System, although augmented to specify communication and timing re

quirements on the execution of transitions. Although the notation allows the specification 

of concurrency, it defines no operators for the algebraic manipulation of machines.

Communicating Sequential Processes (CSP) [36, 37], reviewed in section 2.4 (page 23), 

is probably one of the more significant contributions for specifying concurrent systems 

arising from computer science research. The notation defines a “Process Algebra” for 

describing the behaviour of discrete event sequential processes and their algebraic compo

sition to form a system. A timed model for CSP has been developed to explicitly includes 

a model of time [18, 76]. Applications have included the modelling of digital electronic: 

circuits [74].

Communicating Shared Resources (CSR) [25], reviewed in section 2.5 (page 29), isf

also based on the concurrent execution of discrete event processes that interact through '■ !
communication. This notation is of interest since it recognises that the behaviour of a 

system depends not only on any communication but also on the resource requirements 

and any resultant execution scheduling. Therefore, the Communicating Shared Resources 

notation assumes a resource limited computational model and uses event priority to resolve 

resource contention where events simultaneously occur on a shared resource.

The semantics of priority in CSR does not “lend itself to an equational characteri

sation” [26] and this led to the development of the Calculus of Communicating Shared 

Resources (CCSR) [26, 27, 28] and, more recently, the Algebra of Communicating Shared 

resources (ACSR) [51]. Both CCSR and ACSR are based on Milner’s Calculus of Commu

nicating Systems although the notion of communication is closer to that of Communicating 

Sequential Processes.
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Section 2.6 (page 34) provides a brief overview of some other formalisms and techniques 

of some related interest to the specification of real-time systems and, therefore, the work 

presented in this thesis. Finally, section 2.7 (page 40) summarises a crucial deficiency of 

the reviewed notations that limits their application to the problem of modelling resource 

contention.

2.1 Graph Theory

A graph, G = {V, E), has a finite non-empty set of vertices, V, and a possibly empty set 

of edges, E. Each Vi G F  is a vertex and each G D an edge. An edge connects two 

adjacent vertices and identifies a relationship between the two vertices. Useful texts on 

Graph Theory include Chartrand and Oellerman [14] and Gibbons [29].

Figure 2.1: A diagram of an undirected graph

One possible interpretation of the graph G =  {{vQ,vi,V2 ,vz,v^},{eo,e\,e 2 ,ez}) is il

lustrated in figure 2.1. In this interpretation the vertices uq and % are adjacent because 

of the edge es, but vertices vi and Vs are not adjacent. Other interpretations of G are 

possible because G gives only the vertex set and the edge set, specifically it does not 

state a relationship between the vertices. Each edge is often specified by a set of adja

cent vertices. For example, eo in figure 2.1 is an edge between the vertices vq and Vi, 

hence cq can be written as {uq, ui}, that is eo =  {%, ui}. Thus, E  can be written as 

E  =  {{î o, ui}, {î̂ o, ^2}, {̂ 2̂? Vs}? {̂ 0̂, In this example, there is no relationship be

tween V4  and any other vertex.
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From set theory [30, 52], the edges {vm-, and {%, Vm} are the same edge, in other 

words, there is no direction implied in any relationship, thus the term u n directed  graph  

is often used. Gibbons, in [29], uses the set theoretic pair notation but, for

undirected graphs, an edge {vm,Vn) cannot be distinguished from an edge written as 

(vn? Vm). However, in set theory, these pairs are not the same, that is (v^, v„) ^  (v„, Vm).

A directed  graph, or digraph, is used to define the direction of an edge. Edge direction 

can be specified by an ordered pair e* =  (vm,VrJ which states that vertex v^, the first 

vertex in the pair, is ad jacen t to  vertex and the second vertex in the pair, is a d ja cen t  

fro m  vertex v^. Each vertex may have zero or more adjacent to edges and zero or more 

adjacent from edges. Figure 2.2  illustrates the directed, graph given by V  =  {vq, Vi, Vg, vg} 

and E = {(vq, v%), (vq, V2 ), (v 2 , V3 ) , (vg, vq)}, where vertex v \  has one adjacent from edge 

and vertex vq has two adjacent to edges.

Figure 2.2: A diagram of a directed graph

Graphs and directed graphs define a relationship between vertices but neither offer an 

interpretation of an edge or a vertex. Labelled Transition Systems offer an interpretation.

2.2 Labelled Transition System s

A Labelled Transition System (LTS) is an interpretation of a directed graph where each 

vertex models a system sta te  and each edge models a state-to-state tra n sitio n .

12



A state is often a statement about the “present”. In other words, a state can be 

interpreted as the current value of a variable or set of variables [34, 61]. A state can also 

be considered to be an abstraction for detail where a state might model some activity with 

a duration with internal states and transitions [61]. Whatever interpretation is adopted, 

a state provides the opportunity for alternative behaviour, that is, from any state there 

may be several transitions that lead to different possible successive states.

Each transition describes an indivisible (atomic) state change and some Labelled Tran

sition System definitions define a transition to be instantaneous. A system is only observed 

to progress from state to state as the result of an event, identified by the transition label, 

that represents environmental interaction. This environmental interaction is abstract in 

the sense that no mechanism is visible. Further, the states that a system passes through 

are intended to be internal in that the states are not visible to the environment [1].

This thesis adopts the formal definition of a Labelled Transition System given by 

Stark [90]. An LTS is defined to be a tuple M  =  (Q, qo, S, A). The term is a finite non

empty set of states, % G Q is a distinguished start state, and S is a finite event set. Note 

that S does not contain a distinguished identity event e which represents non-progress of 

the transition system. Informally, Q is the vertex set and A the edge set in the graphical 

interpretation. The transition set A is bounded by Q x (SU{e}) xQ . Thus each transition 

(T G A is an ordered triple specifying the adjacent to state (vertex), the event label (edge), 

and the adjacent from state (vertex).

Figure 2.3 is a diagram of a Labelled Transition System, where Q = {%, Ç2, 93},

E =  {(To, (Ti,(T2, (Tg) and A =  {(%, o-q, Qi), (%, <̂1, %), (%, <̂2, %), (93, 0-3, 9o)}-

Each state may have zero or more adjacent to states. For the case where there is no 

adjacent to state, the system cannot progress, for example, state q\ in figure 2.3. Such a 

state is often called a terminal state. Where there is exactly one adjacent to state then
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Figure 2.3: A diagram of a Labelled Transition System

there is only one possible next state and the from and to states are ordered. For example, 

states Q2 and % are totally ordered because state % can only follow from Q2 , similarly 

state qo can only follow from %.
■!

For states with more than one adjacent to state the system is said to be deterministic 

and the states partially ordered if for each state with more than one adjacent to state, no 

two transition labels are the same. However, if two or more labels are the same then the 

system is said to be non-deterministic because it is not possible for the environment to 

determine the next state. Droste in [20] defines the disambiguation property, such that, if 

{q, (7, r) G A and [q, a, r') G A then r =  r'. In other words, no two event labels from any 

state are the same.

Various other definitions of a Labelled Transition System can be found, for example, 

Droste [20], Khendek and Bochman [45], LOTOS [41] and Peng and Purushothaman in 

[63]. Henzinger {et.al.) in [34] give a definition which elaborates the definition of a state. 

Specifically, S = (F, E, 0 ,T ), where F  is a finite non-empty set of variables, E is a finite 

non-empty set of states, 0  a non-empty set of initial states (such that 0  G E), and T is a 

set of transitions. Every state cr G E is an assignment to all the variables u G F , in other 

words, a state is a particular assignment of the variables.
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Peng and Purushothaman in [63] use finite state machines to describe processes where 

the events are treated as messages. A network of processes is built and the messages repre

sent communication. They define the shuffle product  ̂ denoted by F  0 Q , as a composition 

of the processes P  and Q which defines the global state and message buffers. For example, 

let p  -4- p' denote a transition of process P  and q q' denote a transition of Q. The 

transition [p,g] [p%g] is a transition of F 0  Q, where process P  has communicated

message a but process Q has not communicated because e denotes an empty message. 

And similarly for the transition [p, q] [p, q'].

Peyravian and Lea in [68] also use a form of communicating finite state machine, 

on which they define the Cartesian Cross Product Forming Algorithm (CCPFA) to form 

a composite of machines P  and Q. The state set of a composite machine is the set 

product of its components, however the message set is the set union Mp U M q  (where M  

denotes a message set), provided that the message sets Mp and M q  are disjoint, that is, 

MpOMq = {}. This latter condition ensures that the transitions of a composite machine 

only describe a state change of one of the components.

The shuffle product and the CCPFA, which have some similarity with the concurrent 

composition operator introduced in section 4.3 (page 74), cannot describe the simultaneous 

communication of both P  and Q. This limits the applicability of these forms of composition 

for the purposes explored in this thesis.

2.2.1 LTS Sum m ary

Labelled Transition Systems are a well established technique applicable to sequential event 

systems, however, it is an assumed property of concurrent systems that some events may 

occur simultaneously. As a sequential formalism a Labelled Transition System can act 

on just one event at any one instant and progress to just one next state. Thus, an LTS 

describes the existence of a system by just one state at any one instance.
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Like the other sequential formalisms reviewed in this chapter, event simultaneity is 

either prohibited or the system is non-deterministic because a non-deterministic choice 

must be made, even if the disambiguation property is met. Prohibition is a weak require

ment in that it does not enforce non-simultaneity and this is a restriction that limits the 

applicability of Labelled Transition Systems. The non-determinism approach is a failure 

to reason about simultaneity and this too is unrepresentative of systems which often in 

practice are required to exhibit deterministic behaviour. The disambiguation property can 

be thought of as ensuring a system with a deterministic structure, but it does not ensure 

non-deterministic execution. This problem arises because many existing definitions of La

belled Transition Systems do not deal with simultaneity and, therefore, do not recognise 

the difference between structure and execution.

Some researchers have explored the manipulation of Labelled Transition Systems to 

merge behaviours [45], or to describe concurrency. Stark in [91] observes that the parallel 

composition of two transition systems to form a new transition system requires the use of 

an interleaved execution model. Stark, and also Droste in [20], add concurrency relations- 

to describe how pairs of transitions commute, that is, they interleave to form concurrent 

progression. Droste augments a definition of an automata with a collection of irrefiexive, 

symmetric binary relations, denoted by )|. These relations define the concurrency infor

mation on each state g in the state set Q for all pairs of events in the event set E. Thus 

the relation ||g is a relation indexed on the states q. For example, if q £ Q and a,b £ E, 

then the concurrent relation a ||g b describes the interleaving of the transitions (q,a,r) 

and {r,b,p) with (q,b,s) and (s, a,p) for the system to progress by interleaved execution 

of the events a and b from state q to state p.

Cattani and Sassone in [13] use Higher Dimensional Transition Systems to describe 

concurrency where transitions are labelled with finite multisets of actions (events) that 

represent the “simultaneous performance of their component actions” . Using the example 

from the last paragraph, a simultaneous transition from state q to state p by the multi-set

16



{a, 6}, denoted (ç, {«,&},p), represents the simultaneous performance of the component 

actions a and b. The concept of a multi-set of events to describe simultaneity has some 

similarity with the Composite Transition System notation presented in Chapter 3.

Regrettably, much of the published research on concurrent transitions systems is mo

tivated by the proof of mathematical properties and this is often to the detriment of the 

applicability to all but the simplest systems.

2.3 Communicating Real-Time State Machines

Shaw in [81] describes Communicating Real-Time State Machines (CRSM) as a notation 

for the specification of concurrency, communication, synchronisation, timing and environ

mental interactions of real-time systems. Further, Shaw’s development goals included an 

executable notation enabling simulation where formal reasoning would prove difficult or 

intractable, and a simple (graphical) notation that would be familiar to system designers.

The CRSM notation has some similarities with Labelled Transition Systems, outlined 

in section 2.2. Specifically, both notations include a state set and a transition set. Further, 

both are sequential formalisms which cannot describe either state concurrency or event 

simultaneity. A formal definition of a CRSM would be closer to that of a Timed Transition 

System as defined by Henziger {et.al.) [34]. Additionally, Shaw asserts in [81] that a CRSM 

“bears some resemblance to a CSP process”; the CSP notation is outlined in section 2.4 

(page 23).

A CRSM may be defined by the tuple m =  (S, T, C, F), where 5 is a set of states, T  a 

set of transitions, C a set of communication channels, and F  is a set of variables local to m. 

For any state s £ S, s defines a set of possible values of the variables v £ V .  Transitions 

t £ T  model the execution of commands which make assignments to the variables v or 

which communicate on a channel c £ C with another CRSM.
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A system model is a set of CRSMs each executing independently except when they in

teract through explicit acts of communication. Such communication is the only mechanism 

to pass data as there are no shared variables, which, Shaw asserts, are the characteristics 

of distributed processing. Further, each CRSM is mapped to its own processor, thus the 

notation implicitly assumes a computational model with maximum parallelism.

Each command has an optional guard which is a predicate over the variables v. When 

a state s € S' is reached, the guards on all the transitions from that state are evaluated 

and only those commands whose guards evaluate true are eligible to execute. Of those 

eligible commands, a command that makes assignment to the variables v will be executed 

immediately the state is entered. Communication commands will execute only when the 

communicating partner is also ready to execute (section 2.3.2, page 19). Note that the 

sequential composition of commands, denoted A; B, describes the execution of A  imme

diately followed by the execution of B. There is no intermediate state between A  and B  

and, therefore, the execution of a sequential composition is indivisible.

Where timing must be described, time parameters can be applied to a command. 

These define either the minimum and maximum execution times of a command, or for 

communication commands, the earliest to latest times that the command can execute 

after entering the from state. For two CRSMs to communicate, the combination of the 

arrival time in their respective to states and the timing specified on their respective input 

and output commands must overlap, that is both must contemporaneously be willing to 

communicate. If this condition is not met then deadlock can occur. Timing in CRSM is 

not explored further in this thesis, except in the summary in section 2.3.4 (page 21).

2.3.1 Choice

States may be viewed as opportunities for alternative behaviour. Where there are two 

or more eligible commands, then the choice is made on the basis of the first command
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that is able to execute. In the event of two or more commands being able to execute 

(or simultaneously becoming able) then the choice is non-deterministic. Whilst a non- 

deterministic choice avoids the need to define a choice algorithm or policy, it is unrealistic 

as most designs assume a deterministic behaviour.

Note that the evaluation of any guard holds until the machine executes a command. 

Thus the set of transitions from a state that may actually be executed is invariant until the 

state is re-entered. This arises because the guard predicates range over the local variables 

of the machine and these variables can be changed only by the execution of the machine 

and not by the execution of any other machine.

2.3.2 Com m unication

Communication is specified with input and output commands which act on one-to-one 

uni-directional channels, where each channel connects exactly two machines. A command 

that outputs the value x to channel c is written c(æ)!. A command that assigns to the 

variable y a value input from channel c is written c(y)?. The result of this communication 

over channel c is equivalent to the assignment y := x.

The machine that first executes an input or output command on a channel must wait 

for the communicating partner to execute the corresponding output or input command 

on that same channel. Thus, a c(a;)! command will not progress until a c{y)l command is 

executed and vice-versa. Such a communication model is often referred to as synchronous 

because the progress of the communicating machines is synchronised by the act of the 

communication (rather than by the value of the data communicated). This means that 

no data are lost and data buffering is not required. Note that self communication would 

lead to deadlock because the sequential nature of the machines means any one machine 

cannot simultaneously execute an input and an output command.
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Restricting a channel to one-to-one communication avoids the specification of a choice 

policy that a many-to-one channel would necessitate. However, the CRSM notation is 

devoid of any mathematical foundation yet it is the mathematical foundation of other no

tations which justifies a non-deterministic choice. Note that although the CRSM commu

nication model is based on the Communicating Sequential Processes model, CSP assumes 

a one-to-one restriction only as a convention [37].

The motivation for uni-directional channels is not given by Shaw in [81]. Such a 

restriction prevents the specification of a many-to-one channel and avoids the need for the 

CRSM notation to define a choice of channel from which to input data. Note that the Ada 

accept statement is an example of a many-to-one channel with a first-come-first-served 

choice policy [5]. Further, a bi-directional many-to-one channel would require a one-to- 

many return channel. For a one-to-many channel it is necessary to either “broadcast” to 

all possible recipients, or to include some address protocol which identifies the intended 

recipient. In practical systems, one-to-many constructs typically represent the case of 

broadcast (to the many) where receipt is not guaranteed and acknowledgement is not 

required; that is, there is no return channel.

Alternative communication topologies can be modelled by a CRSM, for example, one- 

to-any-one (1 to 1-of-n) and broadcast (1 to n). A possible form of asynchronous commu

nication might allow a writer to progress even if no reader is awaiting a communication 

event. In this case the data must be buffered for the future reader and since an unbounded 

number of writes may occur before a read, the buffer must be infinitely large. Given a 

finite buffer then it is possible that the buffer will overflow and data will be lost. Such 

an asynchronous channel must be modelled by synchronous communication and message 

buffering within an intermediate CRSM, that is, a CRSM that specifically models an 

asynchronous communications channel.
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2.3.3 Concurrency

Concurrency within a CRSM cannot be described and concurrency between CRSMs as

sumes a maximum parallelism model of computation. There is no specific formalisation of 

concurrency within the CRSM notation and there is no defined operator for the concurrent 

composition of CRSMs.

Where command execution is assumed to occur in zero time then it is possible for two 

consecutive commands to execute simultaneously. In other words, they execute at the 

same time, rather than sequentially, and this gives apparent concurrency. To “reflect the 

reality that it always takes some non-zero amount of time” and to avoid this apparent con

currency, the CRSM notation assumes that there is some non-zero time interval between 

the execution of commands [81]. A similar mechanism is used in Timed CSP (TCSP) 

[18, 76], whilst CSP [36, 37] uses arbitrary sequentialisation of simultaneous events with 

some non-zero time gap.

2.3.4 CRSM  Summ ary

Although based on the concept of state machines, the syntax and semantics of the CRSM 

notation do not possess the rigour of state machines. Specifically, undefined choice mecha

nisms, the sequential composition of commands, synchronous communication, and timing 

parameters can all lead to problems. Further, state ambiguity can arise from the sequen

tial composition of commands that take a non-zero time to execute. During execution a 

machine is neither in the from state nor in the to state. Further, should a communication 

command not be matched by its partner then both communicating CRSMs can deadlock 

between states.

The undefined choice mechanisms make it difficult to analyse the behaviour of a system 

of CRSMs, and any timing parameters exacerbate this difficulty. Consider figure 2.4 which
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shows two states and possible transitions to some next state. For the left hand state the 

first communication command that is able to progress is chosen. Where both commands 

could progress the choice is non-deterministic. For the right hand state, the internal 

command c does not have to wait for a partner and is, therefore, always ready to execute. 

In this case the notation is unclear, but it would seem that the choice would be to execute 

c, unless a? or 6? are also ready and then the choice is non-deterministic.

Figure 2.4: Choice on input (left) and input and internal commands (right)

The actual choice seems to be an “earliest-to-execute” policy, but where this policy is 

inconclusive then the choice is non-deterministic. However, an earliest-to-execute policy 

introduces some difficulties with command sequences. A choice based only on the first 

command in a sequence to be able to execute does not necessarily lead to a progressing 

machine. Consider a choice between the sequential command a; 6? and the command c?. 

If the input command c? is not immediately able to execute then the command a; 6? will 

execute. After the execution of a, the input 6? may not be able to execute because it 

awaits its communicating partner, but perhaps c? could now execute. This now leaves the 

CRSM in an unspecified state.

An alternative approach could be to choose an “earliest-to-complete” policy, where a 

command or sequence of commands is deemed to complete only when the last command 

places the CRSM in the from state of the sequence. However, the ability to determine 

which sequence requires consideration of the behaviour of every other CRSM that partic

ipates in communication within the sequence. This is likely to be difficult to determine. 

Finally, in the case of internal only commands with timing parameters, then an earliest- 

to-complete policy would (unfairly) always choose the quickest executing sequence.
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It is clear that the CRSM notation lacks a formal definition and the behaviour of 

the constructs lacks rigour, None-the-less, it is a potentially useful graphical tool for 

simply expressing a design of a system, but without greater rigour and an algebra for the 

manipulation of machines it is very difficult to reason about the overall behaviour of a 

system of CRSMs.

2.4 Communicating Sequential Processes

Communicating Sequential Processes is a notation for describing a process as a mathemat

ical abstraction of the interactions between a system and its environment [36, 37]. CSP 

is an event based notation based on the concept of indivisible interaction [57]. An event 

represents an observation of the behaviour of a process where a process behaviour is all 

possible execution paths of the process. The environment engages in these observations. 

Communication between processes are also environmental observations.

Based on set theory and predicate calculus, CSP defines a notation for describing pro

cesses and a set of operators for composition of those processes. Every CSP process P  has 

an alphabet of events in which it will engage and this alphabet is a set denoted by aP. 

The notation (x —>■ P) states that the process (x —>■ P) engages in event x and then 

behaves like process P, and the alphabet of (x P) is denoted by a(x —>■ P). CSP 

requires q ; ( x  —̂ P ) = aP, rather than the more intuitive a(x —> P) =  aP  U {æ}, thus 

X 6  aP. Recursion can then simply be defined without alphabet expansion and the nota

tion P = (x P) can be expanded by substitution;

P  = (x -^ P )
=  (æ -> (æ —> P))
= (x (x (x —>■ p ) ) )  = (x —>■ X X -)■ p )
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Executed behaviour is described in CSP by a trace, for example, the trace (a, 6) de

scribes two events occurrences, an a event followed by a 6 event. For example, the trace of 

P = {x P), denoted trace{P), after three occurrences of the event x is written (x ,x ,x ). 

Traces are used in the following sections to illustrate the operation. Observe that simul

taneity of events cannot be recorded in a trace, and where events do occur simultaneously 

CSP defines that a non-deterministic choice is made.

2.4.1 Choice Operators

CSP defines three choice operators. Let P  and Q denote two arbitrary processes, with 

alphabets OiP and aQ respectively. The first choice operator, denoted |, states that if x 

and y are distinct events, that is x ^  y, then the process {x P  \ y ^  Q) is prepared to 

engage in event x or event y. If event x occurs then the behaviour is defined by process P, 

however, if event y occurs then the behaviour is defined by process Q. Note that it is 

required that a{x ^  P \ y Q) = aP  =  aQ.

The second choice operator, denoted [], states that the process (æ —>■ P[\y -> Q) is 

prepared to engage in event x or event y as determined by the environment, thus if x ^  y 

then {x -4- P\\y Q) = {x P  \ y Q). Conversely, if x and y are the same event, 

then the choice of which process follows, F  or Q, is not determined by the environment 

so is non-deterministic. Note that a{x —)■ P\}y —̂ Q) = aP = aQ.

The third choice operator allows for the case where the system behaviour should not 

be determined by the environment, resulting, for example, from a specific implementation. 

Choice in this case is expressed by the non-deterministic choice operator, f], which states 

that the process P\]Q behaves either like process F  or process Q and the environment 

must be prepared to engage in the first events from both F  and Q. If the initial events 

of F  and Q are the same then (æ—> F)|](y Q) =  (x —> P{\x —> Q). Note that 

a{P\\Q) =  aP  =  aQ.
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2 . 4 . 2  C o n c u r r e n t  C o m p o s i t i o n  O p e r a t o r s

Two concurrent composition operators are defined by CSP. Concurrent composition of 

processes P  and Q by the operator, ||, describes a process P \\ Q such that processes P  

and Q may progress simultaneously, but in a lock-stepped fashion for events common to 

the alphabets aP  and aQ. That is, process interaction is modelled by the simultaneous 

engagement of the processes in the same interaction event. The alphabet of P  \\ Q is 

a(P  II Q) =  OiP U aQ, thus the alphabets aP  and aQ are not necessarily the same and 

alphabet expansion can result. An interaction event, however, must be a member of both 

aP  and aQ, thus the set of interacting events is a P  fl aQ.

Four cases arise in the composition P  || Q. If aP  =  {a, x, y} and aQ =  {b, x, y}, then 

the interacting events are x and y, but a and b are independent events. Processes P  and 

Q are considered to execute in lockstep for interacting events, that is, both processes must 

engage in an interacting event to progress. Any event known only to one process allows 

that process to progress independently of the other process.

1. The process (a; -4 P) || {x — Q) will cause both processes to simultaneous engage in 

the interacting event x, and then concurrently proceed hence (x ^  P) || (x Q) = 

X  —> (P II Q). Thus the trace over the next event is (x).

2. The process {x —>■ P) || {y -> Q) will stop because x and y are different interacting 

events. This is denoted as (x —>■ P) || [y ^  Q) = STOP, where STO P  denotes a 

process that cannot engage in any events. Since the process cannot progress, the 

trace must be (}.

3. The process (a —)• F) || {x ^  Q) can only progress on the independent event a, hence 

(a —)■ F) II {x Q) = a (F || {x -4- Q)). Thus the trace over the next event is 

(a). Note that the || operator is commutative, thus trace{{a —>• F) || (z —> Q)) = 

trace{{x —)■ Q) || (a —>■ F)). Hence, trace{{x Q) || {a F)) = (a).
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4. Finally (a -> P) || (6 —)■ Q) defines a process of two independent processes and leads 

to either a ->  (P || (6 —> Q)) if an a event occurs first, or 6 —>• ((a — P) || Q) if a,b 

event occurs first. Thus, trace({a -> P) || (6 —>■ Q)) = (a) if an a event occurs first, 

or (6) if a 6 event occurs first.

Concurrent composition with the || operator describes the simultaneous progress of the 

processes P  and Q only for interacting events. Hoare, in [37], shows that such a process is 

equivalent to a single process without the concurrency operator. Should non-interacting 

events occur simultaneously then the behaviour of the system P  || Q is non-deterministic.

The second concurrent composition operator, |||, defines a process P \\\ Q such that 

the processes P  and Q progress in an interleaved fashion without process interaction. 

Moreover, only one process progresses on any one event. Note that o:{P ||| Q) = aP  = aQ. 

Consider the process {x P) ||| {y ^  Q), where aP  =  aQ = {x,y}.

1. Where x and y are distinct, that is x ^ y ,  the environment determines which process 

progresses. An æ event will lead to æ —> (P ||| (y —>• Q)), that is, progression of æ —> P  

to P, but y Q has not progressed because it is still awaiting a y event. Likewise, 

a y event will lead to y -)• ((a* -4- P) ||| Q).

2. Where x and y are not distinct, that is x = y, then the choice is not determined by the 

environment, but is non-deterministic. One possible outcome of (æ — P) ||| (x —)■ Q) 

is a; —)■ (P III {x Q)), that is, only {x -4 P) has progressed.

The two possible outcomes follow from the definition of the [] operator (section 2.4.1) 

and is written formally as follows.

(x -4. P) 111 ( v ^ Q )  = { x ^  (P 111(2,-4 Q ))D !, - 4  ((Z - 4  P)  III Q))
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2 . 4 . 3  C o m m u n i c a t i o n

Communication, an important element in describing the interaction between sequential 

processes, is a special form of event. Moreover, the act of communication requires syn

chronisation between the communicating processes.

Communicating the value v over the communication channel c is denoted by the c.v 

event. As an event, the (familiar) notation {c.v —)■ P) specifies a process that engages in 

the event c.v and then behaves like process P. The process P  can communicate on channel 

c those messages in the alphabet denoted by ac{P) which is defined to be a subset of the 

alphabet aP. In other words, process P  can communicate only those messages defined in 

the alphabet ac{P). Two processes that are composed concurrently in the system P \\Q 

and communicate (and synchronise) via the channel c must have the same alphabet at 

both ends of the channel, that is ac{P) =  ac{Q). By convention, a communication channel 

is uni-directional and connects exactly two processes.

The notation c\v describes the event c.v where the value v is output to the channel c. 

Hence, a process (civ —> P) behaves the same as the process (c.v —)■ P). The notation 

civ describes the event c.v where the a value v is input from the channel c. Thus the 

process (vie —> P(u)) describes a process that inputs a value v and then behaves like the 

process P{v). This output and input notation has been adopted by many other notations, 

including some reviewed in this chapter. Note that the occara programming language 

[40, 70], which is based on the concepts of CSP, uses this notation although the CSP 

convention of uni-directional channels between exactly two processes is enforced.

2.4.4 CSP Summ ary

Communicating Sequential Processes is a language for describing the behaviour of pro

cesses and for the composition of these processes to build systems. Unlike the CRSM
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notation (section 2.3), the behaviour of the operators is rigorously defined by a set of 

laws, giving a good basis for mathematical analysis. Some of the operators have been 

reviewed in this chapter and in particular the behaviour associated with the operators. 

However, there are some aspects of the behaviour of the language constructs which do not 

aid the analysis of resource induced constraints and, more generally, do not match the 

known behaviour of implementations.

Most notably, any simultaneity of events is treated by a non-deterministic choice. 

Whilst this is mathematically convenient, since it avoids reasoning about the behaviour, it 

is not necessarily representative of the behaviour of an implemented system. For example, 

if each process is executed on a separate processor then each process can progress simul

taneously, that is, no choice is necessary. Should, instead, the processes be executed on 

a shared processor then a deterministic choice will be made either, for example, by some 

hardware or perhaps by the operating system. In other words, in both the separate and 

shared processor cases, a non-deterministic choice will lead to a specification that is not 

representative of a real implementation of that system.

An attempt to address this limitation of CSP is presented by Lowe in [53]. Non- 

deterministic choices are replaced by probabilistic choices to model naturally probabilistic 

phenomena in practical systems, such as unreliable network communication. Of more 

relevance to the work presented in this thesis is the specification of priority on a choice, 

arguably the extreme case of probabilistic choice [78]. Fidge, in [23], also describes priority 

in CSP as a formal basis for the prioritising constructs PRI PAR and PRI ALT in Occam, and 

the PRIORITY pragma in Ada [9]. Priorities can be used, for example, to model interrupts, 

process priorities, and competition for shared resources.

CSP has undoubtedly been significant in influencing the development of other lan

guages developed in the domain of computer science research, of international specifi

cations such as LOTOS [41] and implementations such as Occam [40, 70]. Despite the
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specification of priorities in the work presented by Lowe, itself an extension of Timed 

CSP [18, 76], CSP and its derivatives remain a language for the specification of process 

behaviour and the composition of those processes. Further, there is little published work 

describing its application to implemented systems.

2.5 Communicating Shared Resources

Gerber and Lee in [25, 28] describe Communicating Shared Resources (CSR) as a language 

for specifying distributed real-time systems. Motivation for the development of CSR came 

from the recognition that most models are sufficiently abstract that resource details are not 

considered. Indeed, process based models often treat the execution of processes without 

consideration of their operating environments, yet these environments often have a signif

icant effect on the (timing) behaviour of the system. For example, assumptions about the 

underlying computational model vary from the optimistic maximum parallelism model to 

the pessimistic maximum interleaving view and such assumptions cannot be ignored [26].

Gerber and Lee have developed the Calculus of Communicating Shared Resources 

(CCSR) process algebra and a proof system [26, 27] to enable algebraic manipulation 

of CSR processes derived by translation into the CCSR language. Automatic translation 

is presented in [28]. The treatment of time is extended in the Algebra of Communicating 

Shared Resources [51] by defining the behaviour of a process not just as a sequence of 

events, but a sequence of event-time pairs (in a similar manner to [85]).

Communicating Shared Resources uses a resource based computational model. Each 

resource can execute only a single action at any one time, thus, each resource can be 

considered to be inherently sequential. A resource may host a set of processes and at 

any instance any of these processes may compete for the resource. Hence the actions of
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multiple processes must be interleaved on any one resource, where arbitration between 

competing processes is resolved by a priority ordering scheme. True concurrency, that 

is, maximum parallelism, can only take place between processes executing on different 

resources.

Timing is expressed in the CSR language either as an implicit property of an operator 

or through explicit timing parameters. For example, the statement wait t is a delay of t 

time units, whilst the statement exec (a, denotes the execution of the event a

where is the lower bound on the execution time and t̂ nax the upper bound.

The CSR language also includes constructs to specify periodic processes, temporal 

scope, time-outs and interrupt handlers. Execution of an interrupt handler is determined 

by the priority of the interrupting event, thus, only if the event has the highest priority 

will the handler execute immediately.

2.5.1 Choice Operators

Alternative behaviours in a process are permitted only with guarded statements. Each 

guard is either a local computation event denoted a, an input event denoted a?, or an 

output event denoted a!. A local computation is an event that is confined to a resource. 

Associated with each event is a priority and functions of the form P R I  6 S —> A/", where E 

is the set of events and M  is the set of natural numbers, maps an event to its priority. The 

function PRIi{a) returns the priority of the input event a?, PRIo(a) returns the priority 

of the output event a!, and PRIi{a) returns the priority of the internal event a.

In the case of two or more guards simultaneously being matched by their communi

cating partners then the statement associated with the highest priority matching guard 

is executed. Whilst the statement executes it does so with the priority of the guard. If 

there are any computation guards then any priority arbitration takes place immediately.
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It is assumed that no two event priorities are equal, and this avoids the non-deterministic 

choice seen in many other notations.

Additionally, there is a construct that allows alternative behaviours but which also 

provides a timeout mechanism. This is a simple syntactic extension with a statement 

preceded with a wait t guard.

2.5.2 Concurrent Com position Operators

There are two concurrency operators and these arise naturally from the mapping of pro

cesses to resources. Consider the following section of the grammar of the CSR notation;

(system) (resource) | (system) || (system)
(resource) =  {(process),...}
(process) =  (statement) | (process) & (process)

The symbol || denotes the true concurrency composition operator, thus a system com

prises one or more resources which execute with true concurrency. However, a resource 

is a set of processes, and processes are defined to execute with interleaved concurrency, 

denoted by the symbol &. The symbol | indicates a syntactic alternative.

Arbitration between resources is not necessary, the maximum parallelism view of com

putation means that guarded alternative commands are the only model of competition for 

a resource. However, arbitration between processes is necessary. The use of guard priority 

to determine which statement is executed when matching guards are simultaneously sat

isfied also appears to resolve the simultaneous need for the resource. First consider that 

the alternatives are expressed as alternatives of a process and not alternatives between 

processes. Recall that processes are interleaved, thus if two processes are simultaneously 

satisfied by two other resources, then distinct events are involved because of the one-to-one 

communication and because all events are unique a unique priority can be resolved.
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Gerber and Lee in [28] present a configuration language, motivated by the need to 

define the relationship between CSR processes, which are without “concurrent context”, 

and the overall system. Configuration schema map processes to resources, assign priorities 

to events, and create channels between processes. Mapping processes to resources with a 

configuration schema means that the CSR language no longer includes the || concurrency 

operator. However, the interleaved concurrency operator & is retained for intra-process 

concurrency, that is, the operands of & are always bound to the same resource.

2.5.3 Com m unication

The (familiar) notation a? is used to represent an input (read) event, a\ an output (write) 

event, and a a computation event. When both processes agree to communicate then both 

simultaneously execute the event a. A computation event a requires possession of the 

resource.

All communication between resources, is defined as one-to-one and performed by syn

chronising on an event with a shared label. Thus a? must be matched by exactly one 

al. Note that all events are taken from the global event set E. However, the interleaved 

execution of processes makes it impossible for matching a? and a\ actions to simultane

ously execute if the two processes are allocated to the same resource. Cerber and Lee 

in [25] suggest that such communication can be modelled by using another resource as an 

intermediary.

In practice many systems do have communication between interleaved processes. Ex

tensions to the basic CSR notation provide an asynchronous communication channel 

through a communication system. This communication system is simply an abstraction of 

another resource, however, this approach does allow the behaviour of the communication 

system to be explicitly modelled.
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2.5.4 CSR Summ ary

The motivation behind the development of CSR was the recognition that existing formal 

models treated the execution of a process without regard for the significant effect the 

system resources have on the behaviour of the individual processes in the system. As a 

process specification language, CSR seeks to address resource specification through the 

explicit mapping of processes to resources. Execution of those processes mapped to a re

source must be interleaved, whilst true concurrency can occur between processes executing 

on different resources. This treatment of resources leads only to an indirect specification 

of interleaved concurrency, the & operator, or true concurrency, the || operator.

The CSR notation requires all communication between processes, regardless of the 

mapping to resources, to be via matching input and output events. The behaviour of such 

communication is defined by the notation, yet it may be unrealistic for the communica

tion behaviour of the implementation to be equivalent. Indeed, the example application 

presented in Chapter 6 requires different communication behaviour.

In many practical systems, communication through shared memory is deployed for 

reasons of performance, and this makes the communication channel model less appropriate. 

For example, consider the implementation of the software for a serial communication port. 

There is likely to be an executing thread that requests data and an asynchronous interrupt 

service routine that delivers data. The interface between the thread and the interrupt 

service routine will likely be via shared memory with some form of locking to ensure the 

correct operation where the interrupt service routine pre-empts the executing thread. This 

form of communication is not unrepresentative of techniques required in practical real-time 

systems, yet it does not fit easily with a distributed model of computation.

However, CSR adopts a distributed system view of real-time systems and so denies 

communication through memory shared between processor resources. Denying shared
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memory, even between processes mapped to the same resource, is a limitation that can 

detract from the application of CSR to practical real-time systems.

Mapping processes to resources, adopting the interprocess communication strategy, 

and the application of priorities for resolving simultaneity of events leads to a notation 

that can be used to specify certain classes of real-time system. Yet, it is not clear how 

this leads to full understanding of the interaction between processes, the problem that 

this thesis seeks to address. Cerber and Lee, in [25], suggest that the mapping of CSR to 

communicating finite state machines might enable state exploration techniques to detect 

the presence of properties such as live-lock or deadlock, however the “complexities” of 

CSR gave them cause for concern.

2.6 Related Research

Many other notations and techniques for describing concurrent systems can be found in 

the published literature. This section gives a short summary of some of those briefly 

explored for the purpose of modelling resource contention. Finally, this section includes a 

brief summary of related reading.

Petri Nets

Petri’s Net Theory is perhaps the earliest general theory of concurrency [57] and one of its 

uses has been in the modelling of discrete event systems that may exhibit asynchronous 

and concurrent activities [66]. Peterson provides an introductory text in [67]. Applications 

of Petri Nets include the analysis of deadlock in the Ada programming language [22, 

80], the design of complex synchronous controllers where concurrency is present [33], the 

specification and analysis of real-time, embedded systems or parallel systems [44, 62, 95], 

and the modelling of LOTOS ([41]) expressions [84].

34



A Petri Net graph comprises places and transitions and models the static properties of 

a system. Dynamic properties result from the execution of a “marked net” where one or 

more “tokens” move from place to place. A system exhibits concurrency when there are 

two or more tokens.

A place is similar to a state in a Labelled Transition System, however transitions are 

dissimilar in that they may have more than one input and more than one output. One or 

more places input to a transition, and a transition outputs to one or more places. When 

there is a token on all the input places of a transition, the “firing” of that transition is 

enabled. Where several transitions are enabled, a choice must be made and this is usually 

non-deterministic. When a transition fires, the tokens on the input places are moved to 

the output places and where there is more than one output place then each input token is 

replicated in each output place. Note that each place can be marked with more than one 

token. Enabled transitions are said to be “in conflict” if the firing of one transition moves 

an enabling token of another transition.

The non-deterministic choice of which transition to fire complicates the analysis of 

Petri Nets. A typical simplification is to assume that transition firing is instantaneous 

and the probability that any two or more events occurring simultaneously is zero.

Generalised and sub-classes of Petri Nets have been defined depending upon the mod

elling or analysis objectives. One such sub-class is a state machine where each transition 

has exactly one input and one output and where labels are applied to the transitions. 

Cortadella (et.al.) in [17] describe a technique for deriving a place-irredundant Petri Net 

from a transition system such that the behaviours are bisimiliar. Their motivation is the 

belief that the Petri Net representation simplifies the “representation of concurrency and 

causality” in the system. Further, their technique is claimed to support the automatic 

generation of Labelled Petri Nets not only from finite state machines but also CSP pro

cesses and Milner’s CCS agents ([57]). Other variants include Predicate/Transition Nets,
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Coloured Petri Nets, Timed Petri Nets, Extended Timed Petri Nets and Higher Level 

Petri Nets.

Z Specification Language

The Z language is a mathematical notation for the specification of data or information 

systems through the description of state and logical conditions. Spivey and Ince [88, 39] 

provide introductory texts and a complete reference can be found in [86]. Applications of 

Z include the specification of a real-time kernel [87], analysis of the implications of priority 

in process scheduling [69], and the specification and verification hardware [75].

The language is based on mathematical data types, rather than those naturally found 

in computer systems, and a collection of operators defined by predicates with unambigu

ous mathematical properties. A system can be decomposed into schemas which describe 

both static and dynamic properties. Each schema defines any variables, any included 

schema(ta), any pre-conditions that must hold for a state change to occur, and the defi

nition of the operation on the variables that reflect a state change. The values after the 

state change are called the post-conditions and the state values are called observations.

State descriptions in Z and the interpretation of a CSP specification as a state ma

chine prompted Benjamin in [8] to use a combination of CSP and Z to describe a system 

with communication and concurrency. Duke and Smith in [21] use a combination of Z 

and Temporal Logic to explore properties such as fairness and progress in communication 

protocols modelled as event driven state transition systems.

Temporal Logic

Temporal logics have been applied to the specification and proof of the correctness proper

ties of concurrent programs. This leads some researchers to observe that reasoning about
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the subtle timing properties of a system concurrent programs is easier using an abstrac

tion such as temporal logic than “imperative” programming languages such as Pascal 

[32, 49, 59]. Lamport in [49] expresses the belief that an algorithm specified and proven 

using an abstract form should be compilable and the need to code the algorithm in a 

programming language is unnecessary.

Ben-Ari in [7] provides a simple introduction to temporal logic. The expression Up 

asserts that p is at all times true and is often called the safety property. The expression 

Op asserts that p is true either now or at some time in the future and is often called 

the liveness property. Hence, the expression OOp asserts that at now or at some time 

in the future, p will become true,and stay true. Kroger in [46] provides an extensive 

mathematical treatment.

Moszkowski in [59] provides a good introductory text of “Interval Temporal Logic” 

(ITL), which includes, amongst others, the operators □, 0 and Q  (where Qp asserts that 

p will hold true at the next interval). Moszkowski also introduces Tempura, a logic pro

gramming language based on ITL, which is then illustrated by application to a multiplier 

circuit, a simple SR latch, and synchronised communication between two parallel pro

cesses. Hale, in [32], uses Tempura to illustrate its application to the “Towers of Hanoi” 

problem and the specification of the RS-232 asynchronous communications protocol.

Dealing with real-time constraints has led to extensions to temporal logics, typically 

by specifying interval bounds to temporal operators (for example, 0 [o,6]P asserts that p will 

hold true at some interval between a and 6), or by adding expressions that allow timing 

bounds to be specified against a global clock [4]. This latter approach was adopted by 

Ostroff in [61] who uses Real-Time Temporal Logic as a proof system for parallel discrete 

event systems specified using his Extended State Machines notation, itself a form of Timed 

Transition System.
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Protocol Conversion

Protocol conversion is a research topic that has some synergy with the research presented 

in this thesis. Pengelly and Ince, in [65], have followed research in quotient machines and 

developed a technique to solve the interface equation. Although their work was motivated 

by the application to protocol conversion, they believed that the interface equation was 

applicable more generally to concurrent systems that interact via an interface described 

by observable events or actions.

The objective was to construct a converter A4r, such that the parallel composition of 

the protocol Mp with the converter is in some way equivalent to the protocol Mq. In 

other words, the required behaviour is defined hy Mq, and the behaviour of Mp must 

be modified in some way to be equivalent to Mq. This modification is achieved by the 

derived converter Mr>

The interface equation takes the form (M p\M r)\A  ~  Mq, where the protocols Mp 

and Mq, and the protocol converter M r  are all described by labelled directed graphs. The 

operators are those defined by Milner’s CCS notation [57]; that is, | is parallel composition, 

the set A defines the interaction between Mp and M r^ \A  hides the interaction events, 

and ~  defines some form of observational equivalence.

Pengelly determined that the definition of the CCS parallel composition operator was 

closely related to the graph Cartesian product (GCP) from which a quotient machine 

can be determined. Informally, M r  is the quotient machine of Unfortunately, the 

interaction results in directed arcs in a graph of M p \ M r  that describe simultaneous state 

changes of Mp and Mr> These simultaneous state changes cannot be formed by the GCP 

and thus a quotient machine cannot be extracted. The introduction of interaction breaks 

the symmetry of the graph Cartesian product and the technique presented in [65] is based 

on restoring the symmetry.
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Background Reading

In the field of concurrent and real-time systems there are many texts. Laplante in [50], 

Burns and Wellings in [12] and Ben-Ari in [7] are comprehensive texts aimed at an engineer. 

Magee and Kramer in [55] also deal with concurrency and use the Java programming 

language (a language not often associated with concurrent or real-time systems) in their 

examples. A more mathematical or formal method approach has been taken by Hoare 

for CSP (section 2.4) and Milner for CCS [57] and for the Polyadic t:-Calculus [58]. Like 

Hoare’s CSP, Milner’s CCS has been significant in stimulating further work, for example, 

Chen in [15] defines Timed CCS and Cleaveland and Hennessy in [16] introduce the notion 

of process priority.

The mathematical approach taken in the work presented this thesis uses set theory and 

predicates. Green in [30] and Lipschutz in [52] provide good introductory texts and Ayers 

in [6] covers more on the theory of groups and rings. Quine in [71] discusses logic largely 

through the analysis of written phrases (and so of value to those involved in translating 

written specifications into an implementation).

There is much published work that takes a broad or philosophical view of real time 

systems. Kurki-Suonio [47] makes the observation that all criteria for distinguishing “real 

time” from “non-real time” in the real world are artificial and depend on what we decide 

to consider “real time”. Kurki-Suonio then questions some of the commonly accepted 

attributes of real time systems, for example, the need for deterministic constructs in 

programming languages, and the applicability of interleaving models. Lamport in [48] 

deals with the ordering of events in a distributed system, a point also touched on by 

Kurki-Suonio.
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2.7 Summary o f Formal Notations

Of the many published notations, Labelled Transition Systems (LTS), Communicating 

Real-Time State Machines (CRSM), Communicating Sequential Processes (CSP) and 

Communicating Shared Resources (CSR) were reviewed not only for comparison of their 

treatment of concurrency, choice and interaction, but also because each has some of the 

attributes required (see page 42) of a notation applicable to modelling resource contention. 

Notably, the CRSM notation, as a form of Labelled Transition System, is fairly intuitive 

and immediately applicable to an engineer. The CSP process algebra naturally takes an 

algebraic approach which is supported by stated mathematical laws for the operators, and 

the CSR notation is one of few that incorporates the notion of resources.

However, there is a significant impediment to the applicability of all the reviewed no

tations. Concurrent composition is limited to an assertion that the sequential components 

execute concurrently; this is clear with the CRSM notation, but is true also of CSP and 

CSR despite their syntax including a concurrent composition operator. Therefore, con

current composition does not generate a system model that can then be restricted by the 

application of system level resource constraints. Additionally, the components are always 

explicit which obviates the need for a component extraction operator. Without compo

nent extraction from a restricted system, the method of resource modelling cannot take 

the significant step from composition to generation of the required components.

This significant impediment is true also of Labelled Transition Systems. However, 

Labelled Transition Systems are defined using set theory, and these definitions can be 

refined to describe concurrency and operators can be defined for their algebraic manipu

lation. Also, Labelled Transition Systems have the constructs necessary to describe the 

use of a resource by a sequential process without the distraction of guarded execution, 

communication channels, input and output operations, sequential composition, and so on, 

found in the other reviewed notations.
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Chapter 3

Com posite Transition System s

This chapter defines the Composite Transition System (CTS) notation which has been 

developed to enable the description of the behaviour of (real-time) systems that comprise 

multiple processes which can involve concurrency, simultaneity, and synchronisation. In 

this thesis, concurrency implies the contemporaneous coexistence of independent compo

nents, thus, the concurrent composite is a description of all the possible combinations of 

the states of existence of the components. Moreover, independence implies asynchronous 

progress and the possibility that progress occurs simultaneously. It will be seen later in 

this chapter that concurrency relates to the “states” of a Composite Transition System, 

and asynchrony and simultaneity to the “events”.

Simultaneity is the recognition that it is possible that two or more components will, 

by coincidence, progress. Many notations, including some of those reviewed in Chapter 2, 

deny the possibility or choose to make a non-deterministic choice about the consequent 

system behaviour in the case of simultaneity. Simultaneity is a real phenomenon in im

plemented systems, moreover, any choice made in the case of simultaneity is likely to be 

the outcome of some determined arbitration policy, typically priority, and thus a non- 

deterministic choice is not representative of an implemented system. The ability to de

scribe simultaneity is an important requirement and it will be seen later that simultaneity 

relates to the “events” of a Composite Transition System.
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Synchronisation is required when otherwise independent components must be con

strained, typically to ensure co-ordination to achieve the system requirements. Depen

dence can arise in the interaction between components originally designed in isolation, 

often through the modelled interfaces of the component. Examples include function calls, 

access to shared data, any semaphore or mutex structures, any message queues, and so 

on. Further, there are often un-modelled system level constraints such as the access to 

shared memory, the competition for processor resource, or the hardware behaviour if two 

interrupts occur either simultaneously or contemporaneously. It will be seen later that 

synchronisation relates to the “events” of a Composite Transition System.

The objectives for the Composite Transition System notation developed in this thesis 

are as follows;

1. The notation must be able to represent concurrency, asynchrony, simultaneity and 

synchronicity because these are properties that characterise real-time systems.

2. The notation should not assume any specific computational model. In particular, a 

distributed model should not be assumed since the modelling of interaction through 

(synchronous) communication channels is not always applicable.

3. The notation must have algebraic operators to add behaviour to a component, to 

form a model that describes the concurrent composition of components, and to 

extract a component from a system. This latter operator is a consequence of the 

recognition that components are specified in isolation, but system level limitations 

may constrain the behaviour of the components and hence redefine them.

4. The creation of software tools to aid the system designer in describing a system 

algebraically is essential. Creation of such software requires thorough formalisation 

of the definition of the notation and of the operators of the notation.

5. The notation must be applicable to an engineer tasked with designing and imple

menting a system for deployment.
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The design of the Composite Transition System notation follows from the objectives 

and this chapter describes the notation. Chapter 4 defines operators to perform merge 

composition and concurrent composition, and Chapter 5 defines the extraction of compo

nents. Merge extends the behaviour of a machine and provides the basis for the concurrent 

composition and extraction operators. Concurrent composition deals with combining the 

specifications of component machines to form a system which may then have system level 

resource constraints applied which restricts the system behaviour. The extraction oper

ator deals with determining the required specification of the components such that their 

integration meets the restricted system behaviour.

Although the Composite Transition System notation enables the description of systems 

with asynchronous, simultaneous and synchronous progress, for a variety of reasons a CTS 

may be unrealisable. The use of the algebra of CTS’s may therefore involve stages in which 

realisability has to be confirmed before an implementation of a Composite Transition 

System is attempted.

The remainder of this chapter is organised as follows. Composite Transition Systems 

and the concepts of composition and extraction are introduced in section 3.1. A formal 

definition of a CTS is presented in section 3.2 (page 56). Widespread use of Labelled 

Transition Systems makes it useful to consider the translation of a Labelled Transition 

System into a CTS, and vice-versa, and this is presented in section 3.3 (page 65). Ex

cept for formal definition or where ambiguity might arise, the terms concurrent state and 

state, the terms simultaneous event and event, and the terms simultaneous transition and 

transition are interchangeable.

3.1 Overview

This section is an overview of the Composite Transition Systems concept, notation and 

operators that are defined fully in the subsequent sections of this chapter.
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Every concurrent state of a CTS is a set of one or more states, one from each com

ponent machine, and gives a system view of the contemporaneous state of existence of 

the components. Every simultaneous event is a set of one or more events, one from each 

component machine, that simultaneously occur in those components. The progression of 

a Composite Transition System occurs because of simultaneous transitions, that is, a si

multaneous transition is a collection of transitions simultaneously executed by each of the 

component machines.

Figure 3.1 is a diagram of a Composite Transition System; at this stage it is not 

necessary to know how such a system may be formed. In such diagrams, the states are 

represented by circles, the transitions by directed arcs and the extent of any CTS is given 

by a bounding rectangle. Note that throughout this thesis, the state and event identifiers, 

and their ordering within the sets, have been chosen to aid readability only. i

{ab,cd}

Figure 3.1: A Composite Transition System

The concurrent state {a, c} represents the contemporaneous existence of two com

ponents, one component in state {«}, the other component in state {c}. Likewise the 

concurrent state {b,d} represents the contemporaneous existence of one component in 

state {b} with the other component in state {d}. Initial concurrent states are identified by 

a double circle, hence, there is one initial concurrent state, {a, c}. The example will react 

to one simultaneous event {ab,cd}, representing simultaneity of the event {ab} from one 

component with the event {cd} from the other component. Thus, should the CTS be in 

the concurrent state {a, c} and the events {ab} and {cd} from the two components occur 

simultaneously then the CTS will progress to the concurrent state {b,d}.
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3.1.1 Asynchronous and Coincidental Progression

Concurrency within systems may require the asynchronous progression of components, in 

other words, not all components may progress at the same instant. The CTS notation 

uses idle events^ denoted by {7n} (for component n), which can be thought of as an event 

which is always prepared to occur simultaneously with any non-idle event. Idle events 

provide the basis for describing asynchronous progress. Alternatively some components 

may coincidently and simultaneously progress and such progress can be thought of as 

coincidental asynchronous progress. In other words, the components happen to progress 

at the same instance, where this is neither a design objective nor is it enforced.

Figure 3.2: Asynchronous and simultaneous progress

Consider figure 3.2 which illustrates a CTS that exhibits asynchronous and simultane

ous progress; at this stage it is not necessary to know how such a system may be formed. 

Let component Cq contribute a transition labelled {«6} from state {a} to state {6} and 

component C\ contribute a transition labelled {cd} from state {a} to state {d}. Should 

the system be in the concurrent state {a, c} and the component events {ab} and {cd} 

occur simultaneously then the system will progress to the concurrent state {6, d}. How

ever, should only the event {ab} occur then the system will progress to the concurrent 

state {6, c} because the simultaneous event {06, 71} includes the idle event 71. In other 

words, component Cq hcis asynchronously progressed from state {0} to state {6} because
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component Ci has idled and stayed in state {c}. Similarly, if only the event {cd} occurs 

then the system will progress to state {a, d} because of the simultaneous event {70, cd}.

Any event that includes a component idle event and a component non-idle event, 

such as {70, cd}, may occur when the non-idle component event occurs. In other words, 

the occurrence of the component event {cd} is sufficient for the event {70, cd} to occur. 

However, any non-idle event contributed by a component will take precedence over an 

idle event also contributed by that component. Consider again figure 3.2. Should the 

system be in the state {a, c} and the events {a6} and {cd} occur simultaneously then the 

system will always progress simultaneously to state {6, d}. The system will not progress 

asynchronously to either the state {a, d} by event {70, cd}, because {ab} takes precedence 

over {70}, or the state {6, c} by event {<26,71} because {cd} takes precedence over {71}.

Given that an idle event is always prepared to execute, then if the events {ab} and {cd} 

occur simultaneously then the events {ab, cd}, {ab, 71} and {70, cd} all appear to occur 

simultaneously. The consequence of the precedence of a non-idle event over an idle event 

is that only the simultaneous event {ab, cd} is deemed to occur, rather than the events 

{(26,71} and {70, cd}. Thus the description of asynchronous and simultaneous progress 

does not require the non-deterministic choice often found in other notations.

Now consider figure 3.3 (page 47) which shows the composite system, Co||Ci, formed 

by concurrent composition of the components C q (top) and C i  (left). The concurrent 

composition operator, ||, is described in detail in section 4.3 (page 74). The states of the 

concurrent system are constructed by pairing states from the components. For example, 

the pairing of component states {a} with {e} gives the concurrent composite state {o, e}, 

the pairing of {a} with {/} gives {a,f},  and so on.

If the transitions of the components are considered to be asynchronous, then Co should 

be able to progress from state {a} to state {6} whatever the state of Ci, that is, it does
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{ab}

m

C.IIC,

Figure 3.3: Asynchronous and simultaneous concurrent composition

not matter if C \  is in state {e}, {/}, {^} or {h} .  Likewise C i must be able to progress 

from {/} to { g}  whatever the state of Cq. This means that the system must describe 

simultaneous progress when both components can progress and asynchronous progress 

when one component progresses and the other idles.

The asynchronous transitions of the composite system are constructed by the pairing 

of transitions from one component with implied idle transitions on each state of the other 

component. For example, the pairing of the C q transition from {a} to {6} labelled {a6}, 

with an implied C \ idle transition from {e} to {e} labelled {71} leads to the transition 

from {a, e} to {6, e) labelled {«6,71}. The remaining five asynchronous transitions of 

C q\\C\ are formed from the other five possible pairings.
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The simultaneous transitions of the composite system are constructed by the pairing 

of explicit transitions of the components. In this example there is only the pairing of 

the C q transition from { a }  to { 6} labelled { a 6} with the C \ transition from {/} to {g }  

labelled {fg}.  This pairing gives the simultaneous transition from {a, /}  to {h,g} labelled 

{ a 6, f g } .  Observe, for example, that there is no transition from { a , e}  to { 6 , /}  because 

there is no C\  transition from {e} to {/} to pair with the Cq transition from { a }  to { 6}.

3.1.2 Synchronous Progression

All the previous examples have used event names that are unique to a component. Under 

concurrent composition, the Composite Transition System notation uses the convention 

that event names common to the components are synchronous. Synchronisation is required 

for two reasons. First, many systems comprise components that by design synchronise on 

certain events, indeed, this is how they co-ordinate to meet the overall system require

ments. Second, section 3.1.4 (page 50) introduces the concept of behaviour restriction and 

the extract operator which may introduce transitions with common event names specifi

cally to coerce synchronisation in order to avoid, for example, resource contention.

Where component transitions progress on a common event name, then those transitions 

must be synchronously executed, in other words, there can be neither coincidental nor 

asynchronous progress. This means that a common event name cannot be paired with any 

other event name, including idle event names. Consider figure 3.4 (page 49) where the 

event name {«} is common to both Co (top) and Ci (left). The synchronous transitions 

are constructed by pairing transitions from each component provided that the pairing has 

a common event name. For example, the pairing of C q transition from { a }  to { 6} , labelled 

with the event name {s}, with the Ci transition from {/} to (g), also labelled with the 

event name {5} leads to the transition from { a , / }  to {à,gj labelled {5} . Since the event 

name {5} is common to both components, {5} has not, unlike asynchronous pairings, been 

paired with any implied idle transitions.
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Figure 3.4: Concurrent composition of synchronous transitions 

3.1.3 Concurrent Com position

The CTS notation defines a concurrent composition operator that takes two components, 

which together may incorporate asynchronous, simultaneous or synchronous transitions, 

and forms a system that describes their concurrent composition. However complex the 

components, the concurrent composition of such components is the “superposition” of 

each asynchronous, simultaneous and synchronous pairing as previously described in sec

tions 3.1.1 and 3.1.2. Additionally, the Composite Transition System notation defines 

a merge composition operator which provides the formal basis of superposition. These 

operators are defined in Chapter 4 (page 68).
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3.1.4 R estriction and Extraction

Asynchronous and simultaneous progress describe component behaviour where there is no 

interaction. Conversely, synchronisation describes component behaviour where interaction 

occurs and the behaviour of a component that exhibits interaction will be constrained by 

the components with which it interacts.

Consider, for example, a writer component that repeatedly writes data to a shared 

buffer, and a reader component that repeatedly reads the data from the shared buffer. 

If these components do not synchronise then their execution can result in an arbitrary 

write and read ordering. Thus it is possible that the writer over-writes data that has not 

been read or, perhaps, written data is re-read by the reader before new data has been 

written. This may well be the required behaviour. If, instead, the required behaviour 

is to allow a write if and only if the previous data has been read, then this implies that 

the behaviour of the writer must be restricted to prevent over-writing and therefore the 

behaviour of the writer is restricted by the behaviour of the reader. Further, if a strict 

write-read-write-read (and so on) behaviour is required then the behaviour of the reader 

must also be restricted to prevent re-reading.

The above example may be modelled with writer and reader components that are 

independent and the system may be modelled by their concurrent execution. Access to the 

buffer, a shared resource, will impose some restriction on the concurrent system, depending 

upon the required resource behaviour. Further, the allocation of the components to either 

their own processor or a shared processor will also determine any restrictions on the system 

behaviour.

Introducing system level constraints has the effect of removing transitions from the 

system model, and these system constraints also force constraints on the specification of 

the components of the system. The objective of the extraction operator is to determine the
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required modified behaviour of the components such that the behaviour of the constrained 

system is met. In other words, the removal of transitions from a system Cq\\Ci gives a 

restricted system denoted Co||Ci. Extraction of Cq and C\ from Cq\\C\ will yield modified 

components Cq and C\. The behaviour of these modified components is such that their 

concurrent composition, Cb||Ci, gives a behaviour that is in some way congruent with the 

restricted system Cq\\Ci .

The CTS notation imposes no rules on which transitions can be removed as this might 

unnecessarily constrain the designer and so limit the applicability of the notation to de

scribe a system. For example, it is possible that the system shown in figure 3.2 (page 45) 

describes a complete system or it could be the specification of a restricted system which is 

to be formed from interacting components. Therefore, a restricted system might comprise 

transitions that can be formed by asynchronous, simultaneous or synchronous pairings, as 

introduced in sections 3.1.1 and 3.1.2, under concurrent composition, but also transitions 

that cannot. Indeed, the example system of figure 3.2 cannot be formed by the concurrent 

composition of independent components, specifically, there are two absent asynchronous 

transitions. Further, the system cannot be formed by the concurrent composition of de

pendent components, specifically, the presence of the two asynchronous transitions causes 

difficulties. Consequently, the required interaction between components, which cannot 

always be determined by a simple set of interactions, can be determined by the extraction 

operator. However, required interaction may not always lead to a viable implementation.

Concurrent composition creates a form of symmetry in a concurrent model that might 

be broken by the removal of transitions in the formation of a restricted system. The extract 

operation introduces synchronisation to re-assert that symmetry while ensuring that the 

concurrent composition of the extracted components leads to a composite model with a 

behaviour congruent to that of the restricted system. This is achieved by the introduction 

of State Dependent Synchronisation and Progressive Synchronisation.
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State Dependent Synchronisation

State dependent synchronisation is introduced when one or more of the anticipated transi

tions of the concurrent composition of independent components do not exist in a composite 

system. In other words, there are absent simultaneous or asynchronous transitions. Ex

traction creates reflexive state dependent synchronisation transitions which synchronise 

with transitions of the other component of the concurrent composition as a consequence 

of a common event name. (In a reflexive transition, the from and to states are the same.)

1. Absent Simultaneous Transition. Consider the example of the system in flgure 3.5 

where the component Cq contributed a transition from state {a} to state {6} by 

event {ab} and Ci contributed a transition from state {c} to state {d} by event 

{cd}.

{a,rf} { b , d }

C .IIC .

Figure 3.5: Cb||Ci with absent simultaneous transition

The anticipated simultaneous transition from state {a, c} to {6, d} labelled {ab, cd} 

is absent, thus the simultaneous progression of Cq from state {a} to {6} by event 

{ab} and of Ci from state {c}  to state {d}  by event {cd} is denied. However, the 

progression of Cq from state {a} to {6} by event {a6} while Ci stays in state {c}  or 

stays in state {d} is not denied. Similarly, the progression of Ci from state {c} to 

{d} by event {cd} while Cq stays in state {a} or stays in state {6} is not denied.
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Figure 3.6: Co, C\ and Cq||Ci for absent simultaneous transition

Figure 3.6 illustrates C q, C i  and their composition C q| |C i . Included in C q are two 

state dependent transitions, one from state {o} to state {a} and one from state {6} 

to state {6}, both labelled with the C\ event name {cd}. Thus the event name 

{cd} has become common to both C q and Ci, and hence synchronous. The Ci 

transition ({c}, {cd}, {d}) can only progress if C q is in and stays in state {a} or 

in state {6}. Hence, for example, the synchronous transition from state {6, c} to 

state {6, d} labelled {cd} in Co||Ci is formed in place of the transition from state 

{6, c} to state {b,d} labelled with the asynchronous event name {70, cd} of Co||Ci 

in figure 3.5.

Similarly, Ci includes the state dependent synchronising transitions ({c}, {a6}, {c}) 

and ({d}, {ab}, {d}). Thus the Co transition ({a}, {ab}, {6}) can only progress if Ci 

stays in the state {c} or state {d}.
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2. Absent Asynchronous Transition. Consider the example of the system in figure 3.7. 

Again, component Cq contributes a transition from state {a} to state {6} by event 

{ab} and Ci contributes a transition from state {c} to state {d} by event {cd}.

{a,d} {b,d}

C .IIC .

Figure 3.7: Co||Ci with absent asynchronous transition

The anticipated asynchronous transition from state {a, c} to {6, c} labelled {a6,71} 

is absent, thus the progression of Cq from state {a} to {6} by event {ah} while C\ 

idles in state {c} is denied. However, the progression of Cq from state {a} to {6} by 

event {ab} while C\ stays in state {d} is not denied because Ci is prepared to idle in 

state {d}. Hence, the progress of Cq from state {a} to {6} is no longer asynchronous 

as it depends upon the state of Ci.

Figure 3.8 illustrates Cq, Ci and their composition Co||Ci. Included in Ci is a state 

dependent transition from state {d} to state {d} labelled with the Cq event name 

{ab}. Thus the event name {ab} has become common to both Cq and Ci, and 

hence synchronous. The Cq transition ({a}, {a6}, {6}) can only progress if Ci is in 

and stays in state {d}. Hence, the synchronous transition from state {a, d} to state 

{6, d} labelled {ab} in Co||Ci is formed in place of the transition labelled with the 

asynchronous event name {06,71} of Co||Ci in figure 3.7. Concurrent composition 

will not form a transition from {a, c} to {6, c} labelled {ab, 71} because {06} will 

not be paired with {71}. Note that transitions labelled {cr} arise from progressive 

synchronisation (page 55).
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{a,d}
{ah}

C„||C

Figure 3.8: Co, C\ and Co||Ci for absent asynchronous transition

Progressive Synchronisation

Since the event name {ali] of figure 3.7 has become common to Cq and C\  due to state 

dependent synchronisation, the event names {ah} and {cd} will not be paired and no 

simultaneous transition from state {a, c} to state {6, d} labelled {ah, cd} will be formed, 

yet this transition is required because it exists in CoUC'i in figure 3.7. As a substitute a 

simultaneous transition from {a, c} to {6, d} can be formed by using a new common event 

{cr} derived from {ah} and {cd}, as illustrated in figure 3.8. This is called progressive 

synchronisation and requires the extracted component Cq to include a transition from {a} 

to {6} labelled {cr}, and C\ to include a transition from {c} to {d}  also labelled {cr}. 

These transitions are illustrated in figure 3.8.

Every composite system reveals the set of events to which the components of that 

composition will react. Progressive synchronisation introduces a new event name to the 

event name set, expanding the system interface. Unless the environment of the system is
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also changed, it is not obvious that any instances of the new event will occur and, there

fore, progressive synchronisation transitions may never execute. Instead, interpretation of 

progressive synchronisation event names is required.

Consider figure 3.8 which illustrates Cq and Ci, and their concurrent composition 

Cq\\Ci . The new event name {a} asserts that if the events {ab} and {cd} occur simulta

neously then the composite system (and the components) will progress. Now if the events 

{ab} and {cd} occur simultaneously when the system is in state {a, c}, then the events 

{cd} and {a} appear to occur simultaneously. Consequently, progressive synchronisation 

appears to introduce non-determinism.

In an analogous way to the precedence of explicit events over idle events (page 46), 

let the simultaneous occurrence of both events take precedence over the individual events. 

For example, if the composite system is in state {a, c}, then the simultaneous occurrence 

of the events {ah} and {cd} causes the system only to progress from state {a, c} to {6, d} 

by event {a} and not from state {a, c} to {a, d} by event {70, cd}. This interpretation of 

progressive synchronisation avoids the apparent introduction of new events to the interface 

of a system, and avoids the non-deterministic choice often found in other notation.

Comparison of the composite system Co||Ci illustrated in figure 3.8 with the composite 

system Co||Ci illustrated in figure 3.7 shows that both have the same structure, that is, 

they are congruent, but they are not identical. Therefore the system designer has to 

determine if the system Co||Ci in fact meets the requirements.

3.2 Formal Definition o f a CTS

A Composite Transition System (CTS) is defined as a quin-tuple comprising a concurrent 

state set, Q, an initial concurrent state set, Q, a simultaneous event name set, E, a 

simultaneous idle event, F, and a simultaneous transition set, A.
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{ab,cd}

Figure 3.9: Concurrent CTS

Consider the CTS of figure 3.9. The concurrent state set comprises the concurrent 

states {a, c} and {6, d}, thus Q =  {{a, c}, {6, d}}. The initial state set comprises the initial 

states, thus Q =  {{a, c}}. The event name set comprises the event names, in this case the 

single event name {ab, cd}, hence È =  {{ab, cd}}. The idle event name cannot be read from 

figure 3.9, however, for now it is sufficient to state that it is of the form {7 ', 7"}, noting 

that it is not, unlike the previous terms, a set of sets. Finally, each transition is written 

as an ordered triple, the first term defining the from state, the second term the event 

name and the third term the to state. Thus the single transition in figure 3.9 is written 

as ({a, c}, {ab, cd}, {b, d}). Hence the transition set is Â =  {({a, c}, {ab, cd}, {b, d})}.

In the example of figure 3.9 the states and the event name comprise two identifiers, 

called component identifiers, for example ab and cd in the event name {ab, cd}. Where there 

are two or more component identifiers then concurrency and simultaneity are described. 

However, a component may be described where each state and event name comprises a 

single component identifier. For example, the state set of Cq in figure 3.3 (page 47) is

{W , W } '

A Composite Transition System is formally defined in Definition 3.1. Much of the 

motivation for this definition becomes apparent when considering concurrent composition 

later in this chapter.

Definition 3.1 CTS Definition.

c ' ÿ  (Q ,Q ,s,r,A )
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1. Q is the concurrent state set, where each concurrent state Q  E Q is a set. Each 

Ç G Q is called a component state identifier. Both Q and Q may be empty.

2. Q is the initial concurrent state set such that Q CQ , where each initial concurrent 

state Q E 0  is a set. Each ç E Q is called a component initial state identifier. This 

definition allows a set of initial concurrent states. Both Q and Q may be empty.

3. E is the simultaneous event name set, where each simultaneous event name E G E 

is a set. Each cr G E is a called a component event identifier. Both S and E may be 

empty.

4. r  is the simultaneous idle event name such that F ^ E. Each 7 G F is called 

a component idle event identifier. By convention simultaneous idle event names 

should be unique and distinguishable from all other idle event names of every other 

Composite Transition System in a system.

5. A is the simultaneous transition set, where A Ç Q X Ê  X Q. Each simultaneous 

transition A G A is an ordered triple, (Q, E, P) G Q xÊ xQ , which, in order, specifies

a. from concurrent state, Q, a simultaneous event name, E, and a to concurrent state, 

P. A  may be empty.

3.2.1 Concurrent State Set Q

The concurrent state set, Q, is a set of concurrent states Q. A concurrent state is a set 

of component identifiers, q, thus q £ Q. A  concurrent state Q exhibits state concurrency 

when it specifies two or more component state identifiers, that is > 2. The Composite 

Transition System notation can be also used to describe a non-concurrent component.

The concurrent state set may be empty, that is Q =  {}. This property is not useful 

in describing a realisable system because without any states there can be no transitions 

and, therefore, no progress. A concurrent state may also be empty, that is Q = {}. This 

property is not useful either in describing a realisable system as it contains no identified
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component state. The value of these properties is in the exploration of the mathematical 

properties of the calculus of CTS’s and this is discussed in Chapter 7. Note that the 

empty concurrent state is called the anonymous state. From set theory, {} ^  {{}}, thus 

if the anonymous state is specified, then the concurrent state set Q is not empty because 

it contains at least the anonymous state, that is {} G Q-

3.2.2 In itia l S ta te  Set Q

The Composite Transition System notation defines a set of initial states. Three interesting 

cases arise based on the cardinality of the initial state set. The case of a single initial state, 

that is =  1, is well understood from Labelled Transition System notations which 

permit only a single initial state [20, 45, 55, 91]. When a single initial state is specified 

the actual initial state can be uniquely determined from the specified single initial state.

The case of two or more initial states, that is ffQ  > 2, is permitted in the Composite 

Transition System notation. Some w-automata notations also define a set of initial states. 

When two or more initial states are specified then such automata are considered to be non- 

deterministic [3]. Non-determinism arises because the notation is interpreted as defining 

the actual initial state(s) and not the possible initial states. Therefore, it is not possible to 

determine the actual initial state should two or more (possible) initial states be specified.

An alternative interpretation implies that before the first transition the system simul

taneously exists in all of the specified initial states. Consequently the system is prepared 

to execute any transition from any of those states. (After the first transition, a system is 

considered to exist in exactly one state at any one time and therefore will execute only the 

transitions from that state.) However, this interpretation does not avoid non-determinism 

because the behaviour of the model is not defined if any pair of transitions from any two 

or more of the initial states have a common event. Consider, for example, the transitions 

({«}, {a6}, {6}) and ({c}, {a6},{d}), where both {a} and {c} are initial states. Should
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the common event {ah} occur then the model does not determine whether the system 

progresses to state {6} or to state {d}. Further, if some interpretation is given to each 

state, for example, the value of a variable x, then the initial states {a} and {c} might have 

contradictory interpretations, perhaps æ =  1 in state {a}, but æ =  2 in state {c}.

One further possible interpretation of initial states is that a system is not in any state 

and it is the first event, E, that places the system momentarily into an initial state, Q, 

the from state, before the immediate transition (Q, E, P) is executed to progress to the 

to state P. This interpretation only overcomes the contradictory state problem, but does 

not overcome the problem of non-deterministic behaviour in the case of common events.

In practice, many implemented systems have several potential initial states, for exam

ple, the initialisation parameters of some software or the setting of configuration registers 

of some hardware give different initial states. Contrary to the non-determinism assumed 

in some notations, each of these initial states is often well defined, indeed, it is probably 

only these initial states that are fully determined.

Removal of the ambiguity over the semantics of initial states is important, and the 

Composite Transition System notation achieves this by defining the initial state set as 

the set of possible initial states. Thus the Composite Transition System notation can be 

used to model implementable systems, where the actual initial state is determined by the 

environment. For example, the environment provides initialisation parameters to software 

or sets the configuration registers of some hardware.

Finally, for an empty initial state set, that is =  0, then no initial state is defined. 

Progression of a Composite Transition System requires execution of a transition from the 

current state. Without an initial state a CTS is never able to progress. However, an 

empty initial state is of use in extending the behaviour of a CTS by merge composition 

(section 4.1). Conversely, concurrent composition (section 4.3) with a component without
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an initial state will result in a CTS without an initial state, and so it is unable to progress. 

Also, the value of an empty initial state set is in the exploration of the mathematical 

properties of the calculus of CTS’s and this is discussed in Chapter 7.

3.2.3 Sim ultaneous Event N am e Set Ê

The simultaneous event name set, S, is a set of simultaneous event names S. A si

multaneous event name, E, is a set of component event identifiers, c, thus cr G E. A 

simultaneous event name E describes event simultaneity when it specifies two or more 

component event identifiers, that is ^ E  > 2. However, concurrent composition of event 

names with common component event identifiers will lead to a CTS which describes syn

chronised progression but where # E  < 2. The example shown in figure 3.10 (page 63) 

illustrates a CTS where the components used in its formation have a common event name. 

In this example #{(%, 71} =  2, but #{cr} =  1.

The simultaneous event name set may be empty, that is Ê =  {}. This property is 

not useful in describing a realisable system because without any events there can be no 

transitions and, therefore, no progress. A simultaneous event name may also be empty, 

that is E =  {}. This property is not useful either in describing a realisable system as it 

contains no identified component event. The value of these properties is in the exploration 

of the mathematical properties of the calculus of CTS’s and this is discussed in Chapter 7. 

Note that the empty simultaneous event name is called the anonymous simultaneous event.

3.2.4 Idle Event N am e F

The idle event name, F, is used in concurrent composition (see section 4.3) to form reflex

ive simultaneous idle transitions that enable a Composite Transition System to describe 

asynchronous progress. Idle transitions do not, by convention, have to be shown in a 

diagram of a CTS. Execution of an idle transition does not constitute progress of a CTS,
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thus idle transitions are reflexive, taking the form (Q, F, Q), that is, the to and from states 

are the same state. Non-reflexive idle transitions, that is (Q, F, P) where Q ^  P, are not 

permitted because they represent progression by an idle event. In other words, a CTS is 

permitted to progress only with those events in the event set E.

Further, the exclusion of the idle event name from the event name set, asserted by 

F 0 E in Definition 3.1, prevents the specification of an idle transition and so ensures that 

there is no confusion with reflexive (but non-idle) transitions of the form {Q, E,Q), where 

Some notations [3, 45, 57] define transitions in the (CTS) form Q x (EUF) xQ, but 

such a definition requires rules to prohibit the specification of transitions which contain 

the idle event name. Definition 3.1 obviates the need for such rules.

The idle event name may be empty, that is F =  {}, and is called the anonymous idle 

event. This property is only of use in describing a realisable system if the anonymous 

event does not exist, that is, the condition F ^ S must hold. The value of these properties 

is in the exploration of the mathematical properties of the calculus of CTS’s and this is 

discussed in Chapter 7.

3.2.5 Sim ultaneous Transition Set A

The simultaneous transition set. A, is a set of simultaneous transitions. A, where a simul

taneous transition is an ordered triple comprising a from concurrent state, a simultaneous 

event name, and a to concurrent state. Thus transitions are written in the form {Q, E, P), 

for example, ({a,c}, {ab,cd}, {b,d}) is a transition of the system illustrated in figure 3.9 

(page 57).

Some transition system and automata notations allow transitions of the form (Q, E, P) 

and (Q, E, P') only if P  =  P'. In other words, no two transitions from a state may have 

the same event name unless the transitions progress to the same to state. This is called the
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disambiguation property and it is often defined to ensure that there is no non-determinism 

in the (o state [20]. Disambiguation is not defined for the CTS notation. Non-deterministic 

Composite Transition Systems can be specified, but, this does not prevent specification 

of a deterministic CTS. In other words, the CTS notation places no restrictions on the 

possible behaviours that may be described, rather, any restrictions are determined by the 

form of the specific description.

Consider the possible progression of the following two examples. The first, illus

trated in figure 3.10, implies two components but because the asynchronous transitions 

({a, c}, {<7,7i}, {6, c}) and ({a, c}, {70, (%},{«, d}) exist, the common event {o-} has not 

been treated as synchronising. The treatment of shared events as synchronising is a con

vention adopted in the definition of the concurrent composition operator (section 4.3) but 

is not required by Definition 3.1. Thus the system of figure 3.10 may be specified but it 

cannot be created by the concurrent composition operator.

Figure 3.10: Common event, asynchronous progress

This example system is deterministic because the same from state is found in all 

three transitions and no two of the three share the same event name, that is, {cr} ^  

{or, 71} {70, <t}. Further, the system is deterministic because priority is always given

to the execution of non-idle events over idle events. Hence, the common event {a}, as a 

Co event, takes priority over the C q idle event {70}. Similarly, the common event {cr}.
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as a Cl event, takes priority over the Ci idle event {71}. Consequently, the transitions 

({a, c}, {<7,71}, {6, c}) and ({a, c}, {70, a}, {a, d}) are redundant as they will never execute.

{a,c}

Figure 3.11: Common event, non-synchronous CTS

Now consider the system illustrated in figure 3.11 which, like the previous system, may 

be specified but cannot be created using the concurrent composition operator. This ex

ample is non-deterministic in the sense that it meets the dis-ambiguation property because 

{fj} /  {(7, cc] {aa, cr}. However, if the component events {a} and {cc} occur simultane

ously when in the state {a, c} then it is not determined if the system progresses to {6, c} 

or to {6, d}. In other words, the definition of a CTS means that a system specification 

can be non-deterministic even if the disambiguation property is met. Any computer based 

tool might, however, detect and indicate any non-determinism in a system specification.

If the concurrent state set includes the anonymous concurrent state, that is {} G Q, 

and the simultaneous event name set includes the anonymous simultaneous event, that 

is {} E Ê, then the transition set may include the anonymous simultaneous transition 

( { } ,  { } , { } )  E A. Both the empty simultaneous transition set and the anonymous simulta

neous transition are only useful in the exploration of the mathematical properties of the 

calculus of CTS’s and this is discussed in Chapter 7.
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3.3 Translation between an LTS and a CTS

This thesis presents the CTS notation for the manipulation of machines and not as an 

intermediate formulation in the manipulation of Labelled Transition Systems. However, 

translation of a Labelled Transition System into a Composite Transition System, denoted 

C ■<— L, is of value because Labelled Transition Systems have been used to describe the 

behaviour of implemented systems and recent software design methods, such as the Unified 

Modelling Language [2, 24], include transition system models. Translation of a Composite 

Transition System into a Labelled Transition System, denoted T f-  (7, is shown to be 

possible only under the condition of no concurrency and no simultaneity. This translation 

can be useful for making comparisons with existing Labelled Transition System models 

and with examples published in the literature.

Various formal definitions of a Labelled Transition System can be found, for example, 

Droste [20], Khendek and Bochman [45] and Stark [91]. Stark defines a Labelled Transi

tion System as the tuple M  =  (Q, %, 2, A). To aid comparison with the definition of a 

Composite Transition System, the symbols in the definition from Stark have been changed 

in this thesis to L = ^ l)- The term Qf, is the state set, ql is a distinguished

start state (where Ql ^ Ql )^ ^ l is the event set, which does not contain the distinguished 

event cl, and Ajr, Ç Ql X (Si, U {ci,}) X Ql is the transition relation.

A trace is an event sequence <To,ai,... , cr„, for any (Tk G Si,, that may be observed when 

a machine executes [3]. Note that the events in a trace do include the symbol cl which 

represents an unobservable (or internal) event. Such unobservable events are also defined 

in other notations. Milner’s CCS [57], for example, uses unobservable actions (events) as 

an abstraction of those actions considered irrelevant to the purpose of the model, thus 

allowing overall simplification of the model. There is no equivalent of the distinguished 

event ei, in the CTS definition. In translation, ei could be included in the event set E, 

enabling it to be retained in the CTS model, without imparting any interpretation onc&.
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Translation of an LTS into a CTS is defined in Definition 3.2 and illustrated with the 

example shown in figure 3.12. Note that an LTS is drawn without a bounding rectangle. 

In this example, Ql =  {«, 6}, q = a, El = {ah, ha} and A l =  {(&, ab, 6), (6, ba, a)}.

Definition 3.2 LTS to CTS translation, C <— L.

(Q ,Q ,È ,T ,Â ) <r- (Ql , ql, A l)

1. Q i -  Ql is defined by Q {{ç}|ç £ Ql }, for example, {{o}, {b}} f -  {a, b}.

2. Q ^  Q l is defined by Q ^  {{%}}, for example, {{a}} <- a.

S. È <- El is defined by È {{<T}|(T G E l U {^l}}, for example, {{ab},{ba}} A- 

{ab,ba}.

4. r  {7}. Note that the distinguished symbol êl is not used in this definition.

5. A A l is defined by A ^  {(W, {<7'},{9̂ })l(9, o",ç̂ ) G Al}. Hence, for the given

example, {({a}, {a6}, {6}), ({6}, {6a}, {a})} 4-  {(a, ab, 6), (6,6a, a)}.

Thus, the LTS and CTS definitions of the example can be written as follows;

L =  ({a, 6},a, {a6,6a},{(a,a6, 6), (6, 6a, a)})

C  =  ({{a}, {6}}, {{a}}, {{a6}, {6a}}, {7}, {({a}, {a6}, {6}), ({6}, {6a}, {a})}

A Composite Transition System, unlike a Labelled Transition System, can describe 

concurrency and simultaneity. This advantage of a Composite Transition System renders 

translation of a CTS into an LTS impossible, except in the case where a CTS does not 

exhibit concurrency and simultaneity. However, translation is briefly explored in this 

section because of the extensive use of Labelled Transition Systems in modelling systems.

Translation of a CTS into an LTS, denoted T <- C, is straightforward for a Compos

ite Transition System that describes neither concurrency nor simultaneity because every
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ab

ha

{ab}

{ha}

Figure 3.12: Example LTS (top) and its corresponding CTS (bottom)

concurrent state and simultaneous event is itself a singleton set, that is, =  1, for 

all Q E Q, and =  1 for all S 6 Ê. The translation Ql <— can be defined as 

Ql ‘= {9 I 9 G Q A Q E Q}, for example, the Composite Transition System concurrent 

state set Q = {{a}, {6}} yields the Labelled Transition System state set Ql = {&,&}. 

Likewise, the translation Af, A can be defined as A l ^= {{q,a,p) \ q E Q Aa E Ti Ap E 

P A (Q, E, P) E A}. Thus if A =  ({a}, {a6}, {6}) then Af, =  (a, a6, b). Translation of the 

other terms follows a similar form.

Since a Labelled Transition System cannot describe simultaneity and concurrency, any 

translation L C when C exhibits simultaneity and concurrency would necessarily lose 

information. Any likely translation leads to the result C' ^  C, rather than the anticipated 

C' =  C, for the operation C' <- (L E- C). This problem is of no relevance to the objective 

of this thesis and will not be explored further.
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Chapter 4

Com position

The composition operators presented in this chapter act on Composite Transition Sys

tems and allow expressions incorporating Composite Transition Systems to be written. 

The merge composition and concurrent composition operators, respectively denoted by 

the symbols and ||, and expressions based on these operators, denoted by the forms 

C  -f- C" and C'||C" respectively, yield Composite Transition Systems. The mathematical 

properties of these operators are examined in Appendix B (page 196).

A Composite Transition System, C, is a quin-tuple (Q, Q, Ê, P, Â) formed by some 

expression incorporating Composite Transition Systems. Let the functions, Q(C), Q(C), 

E(C), r(C) and A(C) respectively give the concurrent state set, the concurrent initial 

state set, the simultaneous event name set, the simultaneous idle event name and the 

simultaneous transition set from C. For example, the function Q (C) gives the concurrent 

state set from the Composite Transition System, C, and the function E(C"||C") gives the 

simultaneous event set from the Composite Transition System, C'\\C '.

The remainder of this chapter is organised as follows. Merge composition is presented in 

section 4.1 with an example in section 4.2 (page 72). Concurrent composition is presented 

in section 4.3 (page 74) with an example of the composition of independent components 

in section 4.4 (page 84), and of dependent components in section 4.5 (page 88).
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4.1 Merge Composition

The motivation for defining the merge composition operator, -f, is to introduce new be

haviour to a Composite Transition System, in other words, merge composition is expected 

to change the behaviour of a CTS by adding states, events and transitions. Merge is 

important because it provides the basis for the “superposition” of Composite Transition 

Systems formed under concurrent composition (section 4.3, page 74). The mathematical 

properties of merge are presented in Appendix B.l (page 196).

Merge composition of the components C" and C" is denoted by C' -f C", where the 

components C  and C” may have common states and may have common events. An 

example is presented in section 4.2 (page 72).

4.1.1 M erge S ta te  Set Q(C'

The merge state set, Q {C  of the merge composition of the components C  and C '\

is defined in Definition 4.1.

Definition 4.1 Merge state set.

Q {C  +  C") Q(C')\JQ (C")

States common to the concurrent state sets of the components, that is Q £ Q {C') D 

Q{C"), yield a merge composite system that, from the common states, can follow the 

behaviour of either C' or C". If there are no common states, that is Q{C') nQ(C") =  {}, 

then the merge composite system exhibits only the behaviour of C' if the actual initial 

state is Q' G Q{C')^ or only the behaviour of C" if the actual initial state is Q" G Q{C").
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4.1.2 M erge Initial S tate Set Q{C’ -\-C")

The initial concurrent state set, Q {C  of the merge composition of the components

C" and C", is defined in Definition 4.2.

D efinition  4.2 Merge initial state set.

Q (C  + C") Q (C") U Q (C )

Definition 3.1 defines the initial state set Q to be a subset of the state set Q, that is 

Q ÇQ , thus the merged initial state set Q{C' + C") must be a subset of the merged state 

set Q{C' -i-C"), that is Q(C'-\-C") Ç Q{C' + C"). Consider as an example the case where 

Co and Ci specify the initial state sets Q{Cq) = {{a}} and Q{Ci) =  {{e}}. The merged 

initial state set Q{Cq + Ci ) is {{o}}U{{e}} =  {{a}, {e}}. From Definition 4.1, the merge 

composite state set Q{Cq +  C\) is { ... , {a},...}  U { ... , {e}, {a}, {e},..

Hence Q{Cq +  Ci) QQ(Cq-\- Ci ) because {{a}, {e}} Ç { ... , {a}, {e},...} .

The Composite Transition System notation allows a set of possible initial states. If 

instead a single initial state had been adopted, as found in the definition of a Labelled 

Transition System in [91], then the merge operator would have to choose an initial state if 

the components did not specify the same initial state. For the above example, the merge 

operator would have to make the choice between {a} or {e}. Thus the merge operator 

would influence the system description. The CTS notation overcomes this limitation 

inherent in notations which define only a single initial state.

4.1.3 M erge Event N am e Set E((7'4-(7")

The simultaneous event name set, È{C'+C"), of the merge composition of the components 

C' and C", is defined in Definition 4.3.
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Definition 4.3 Merge event name set.

S(C ' +  c")  “*= S(C') U S(C"')

Unlike the concurrent composition of event names (section 4.3.3, page 76), merge 

composition does not result in a set of event names where each event name describes 

simultaneity of events from the components C’ and C". Thus an event name common to 

both C  and C” is not considered to be synchronising.

4.1.4 M erge Id le  E ven t N am e T{C' C")

The idle event name., V{C' of the merge composition of the components C  and C",

is defined in Definition 4.4 to be a new unique idle event name determined by the function

A7(r(c')ur(c"0).

Definition 4.4 Merge idle event name.

T (C  +  c") '‘= M{T(C) u r(c " ))

Since the idle event name is defined as a set, rather than a set of sets, a definition 

that followed the form of the event set, thus a definition of the form r(C ') u r(C "), would 

incorrectly yield an idle event that described simultaneity of the component idle event 

names. For example, if r(C") =  {7'} and V(C") =  {7"} then F(C') U F(C"') =  {7^ 7^̂ }, 

which describes the simultaneity of {7'} with {7''}. However, merge composition does not 

introduce simultaneity.

4.1.5 M erge T ransition  Set A (C ' +  C")

The simultaneous transition set, A{C'-\-C"), of the merge composition of the components 

C' and C", is defined in Definition 4.5.
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D e f i n i t i o n  4 .5  Merge transition set.

A (C + c") 'ÿ  A (C) u A (C")

Since the transition set is defined using the other terms of the CTS, the from and 

to states specified in each merge transition must be a member of the merge concurrent 

state set. Likewise, the event name specified in each merge transition must be a member 

of the merge event name set. The merge composite transition set is A(C') U A(C"') Ç 

Q{C'  + C") X S(C" +  C") X Q (C '  + C"). Thus A(C' +  C") is a subset of all possible 

transitions and there need not be a transition from every from state to every to state.

4.2 Example o f Merge Composition

Merge composition is illustrated with the following example which comprises the two 

components Co =  (Qo,Qo,So,ro, Aq) and Ci =  Ai) defined below and

illustrated in figure 4.1.

<3 (Co) =  {{«},{&}},
Q(Co) =  {{«}},
S(Co) =  {{a5},{6u}},
r(Co) =  {70},
A (Co) =  {{{a},Ub},{b}),{{b},{ba],{a})}

Q(Ci) =
Q(Ci) =  {{e}} 
è(Ci) =  {{ee},{e/}}  
r(C i) =  {71}
A(Ci) =  { ({ e } ,W ,W ),(W ,W } ,{ /} )}

The merge composite Cq +  Ci is defined below and illustrated in figure 4.2.

Ç(Co + Ci) =  {{a},{6},{e},{/}}
Q{Co + Ci) = {{a},{e}}
è(C'o-f-Ci) =  {{ab}j{ba},{ee},{ef}} 
r(Co +  Ci) =  AT({7o}U{7i})
A (Co +  Cl) =  {({a}, {ab}, {6}), ({6}, {6a}, {a}),

({e>, {ee}, {e}), ({e>, {e/}, { /})}
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{ab}

{ee}

Figure 4.1: Cq (top) and Ci  (bottom)

{ab}

Figure 4.2: Cq + C\

In this example there are no states common to both components, that is QqDQi = {}. 

Merge composition of components with no common states gives a system with no possible 

transitions between the states contributed by one component and the states contributed 

by the other component. Thus, if Q(C')nQ{C") = {}, then C  -\-C” exhibits a behaviour 

the same as C  if the CTS is placed into an initial state contributed by C", or, the same 

as C" if the CTS is placed into an initial state contributed by C". While this example 

is unrepresentative of the expected use of the merge composition operation, it illustrates 

the operation and will permit merge to be contrasted with the concurrent composition 

operation on the same components, performed in section 4.4 (page 84).
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4.3 Concurrent Composition

The concurrent composition operator, ||, constructs the Composite Transition System of a 

system comprised of components that exhibit asynchronous, simultaneous (co-incidental) 

and synchronous progress. Indeed, much of the motivation of the formal definition of 

a Composite Transition System given in Definition 3.1 (page 57) becomes apparent in 

considering concurrent composition. Concurrent composition of the components C  and 

C" is denoted by C'\\C'.

Under concurrent composition, pairs of terms from the components C' and C" are 

formed and the concurrent composite system is the merge composition of all the pairings. 

These pairings describe state concurrency and event simultaneity. The components should 

not have common states, that is Q(C') DQ{C") = {}. The components may have common 

event names, that is S 6 S(C') fl È{C"), and the concurrent composition operator will 

treat these as synchronous, denying the formation of asynchronous and simultaneous events 

based on them. This treatment of common event names as synchronising is a convention 

adopted for the concurrent composition operator.

There are three forms of transition formed under concurrent composition. Asyn

chronous transition pairings and simultaneous transition pairings are formed to describe 

the independent progress of the components within the composite. This was illustrated in 

figure 3.3 (page 47). Synchronous transition pairings are formed to describe the dependent 

progress of the components within the composite system and is illustrated in figure 3.4 

(page 49).

4.3.1 Concurrent State Set Q{C'\\C'')

The concurrent state set, Q(C'\\C")^ of the concurrent composition of the components C  

and C"', is defined in Definition 4.6.
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D e f i n i t i o n  4 .6  Concurrent state set.

Q {C'\\C") {Q' U Q"\Q' €  Q (CO AQ"eQ  (C " )}

Definition 4.6 forms pairings of states Q' with Q", that is, every state Q' £ Q {C') is 

paired with every state Q" G Q{C"). For each pairing, the concurrent state is defined as 

the union of the pairing and this defines the state concurrency of component pairs.

Consider the following example. Let Q{Co) = {{«},{&}} and Q(Ci) = {{c}, {d}}, 

then Q(Co\\Ci) =  {{a, c}, {b, c}, {a, d}, {6, d}}. Note that the composite state set can also 

be written as Q (Co\\Ci) =  {{a, c}} U {{6, c}} U {{a, d}} U {{6, d}}, which, by definition, is 

isomorphic to the merge composition {{a, c}} -f- {{6, c}} +  {{a, d}} +  {{6, d}}.

To avoid ambiguity in the interpretation of a composite state there should not be 

more than one state name that is common to the components. If Q{Co) = {{a}, {6}} 

and Q{Ci) =  {{a}, {6}}, then Q(Co||Ci) =  {{a}, {a, 6}, {6}}. The single composite state 

{a, b} describes two situations. It describes the state concurrency of Cq in state {a} with 

Cl in state {6}. It also describes state concurrency of Cq in state {6} with Ci in state 

{a}. Ambiguity arises because the state does not determine which of the two situations 

is a representation of the current state of the components. This ambiguity is avoided by 

ensuring that there are no common states.

4.3.2 Concurrent Initial State Set Q{C'\\C")

The initial concurrent state set, Q{C'\\C"), of the concurrent composition of the compo

nents C  and C", is defined in Definition 4.7.

Definition 4.7 Concurrent initial state set.

Q{C'\\C") {Q’UQ"\Q‘ € Q(C) A Q" 6  Q(C"))
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Definition 4.7 forms pairings of initial states, and for each pairing defines the initial 

concurrent state as the union of the elements. From Definition 3.1, the initial state set 

is defined to be a subset of the concurrent state set, that is Q(C) Ç Q(C), therefore, the 

concurrent composite initial state set must be a subset of the concurrent composite state 

set, that is, Q{C’\\C") Ç g(C'||C"0. This holds because Q {a) Ç Q{C) and Q{C") Ç 

Q(C").

4.3.3 Concurrent Event N am e Set E((7'||(7")

The simultaneous event name set, S(C'||C"), of the concurrent composition of the compo

nents C  and C", is defined in Definition 4.8. Unlike the operation of merge composition 

of event names (section 4.1.3, page 70), concurrent composition will generate new event 

names that describe simultaneity.

Asynchronous events are formed by pairing events from the event set of one component 

with the idle event of the other component. Let such pairings be denoted by and

where A  denotes “asynchronous” and, for example, denotes an event pair

ing of the component events S ' with F". Both simultaneous and synchronous events are 

formed by the pairings of events of one component with the events of the other component. 

Let simultaneous (coincidental) pairings be denoted CSs/,s«, hence C denotes “coinciden

tal”, and synchronous pairings be denoted «5Ss',s», hence S  denotes “synchronous” .

1. ASx)/,r" pairings.

The concurrent composition of an event name S ' with an idle event name F" is formed 

by set union, that is. S ' U F". However, for the event name S ' to be asynchronous, 

the event name S ' must not be common with any event name S" G S((7"). This 

suggests that an asynchronous pairing must only be formed if a conjunction of the 

form S ' 0 S(C") holds. As an alternative, a conjunction of the form S ' H T =  {} 

is used, where T G S(C") and T is universally quantified, that is, the conjunction
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must hold for all event names T in È(C"). In this section it is sufficient to note 

that the conjunction S ' n T =  {}, unlike S ' ^  S(C"'), ensures the associative law of 

concurrent composition, law B.4 (page 201).

Term 4.1 gives the set of asynchronous pairings.

{ S ' U r(C") I S ' G S(C') A VT G S(C") • S ' fl T =  {} } (4.1)

Consider the following example, where S(C"') =  {{c}, {d}} and r(C ") =  {7"}.

(a) Let S ' =  {a}. The conjunction S 'flT  =  {} holds for all event names T G S((7") 

because the component identifier a is neither common with {c} nor {d} in 

S(C"). Therefore, the pairing AT,^a},{'y"} will give the asynchronous event 

name {a,7"} G S(C'||C").

(b) Let S ' =  {c}. The component identifier c is common with the C" event name 

{c}. Therefore, the conjunction S 'n T  =  {} does not hold for all event names T 

in S(C"), specifically, it does not hold when T = {c}. Thus the asynchronous 

pairing .4S|c},{^«} will not generate an asynchronous event name {c, 7"} be

cause c is a synchronous event name.

Note that the idle event names are by Definition 3.1 unique and therefore not com

mon. In other words, it is not necessary to determine if the idle event name of one 

component is common with any event name of the other component.

2. ASs//,r' pairings.

The derivation of this set of asynchronous pairings follows exactly from the derivation 

of Term 4.2 gives the set of asynchronous pairings.

{ r(C ') U S" I S" G è(C") A VT G S(C') •  S" n T =  {} } (4.2)

3. C S s '.s"  pairings.

Simultaneous (co-incidental) event names are formed by pairing C  event names with 

C" event names. Any specific pairing can only form a simultaneous event
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name S ' U E" if the event name E' is not common with any event name T G Ê (C"'), 

and the event name E" is not common with any event name T G Ê (C'). The form of 

the constraints follow directly from the derivation of AEs',r" and AEs//,r'- Term 4.3 

gives the set of CEs',s" simultaneous pairings.

{E 'U E " |  E 'g Ê(C') A V TG S(C "') .E 'nT  =  { }A  , .
E" G Ê(C") A VT G Ê(C') •  E" n T =  0  }

Note that there are two bound variables, both named T, where one is bound to the 

predicate E' fl T =  {} and the other to the predicate E" fl T =  {}. In other words 

the two T variables are independent.

4. <SEs ',e'' pairings.

Synchronous event names are formed by pairing C' event names with C" event 

names. Any specific pairing <SE£/̂ s” can only form a synchronous event name E'UE" 

if the event names E' and E" have a common event identifier. The derivation of 

the set of synchronous pairings follows from event name pairings only if there is 

a common component event identifier in that specific pairing. The conjunction 

E' n E" {} will hold if the component event identifier a is common to E' and S", 

that is E' n E" =  {(%}. Term 4.4 gives the set of synchronous pairings.

{ E' U E" I E' G Ê(C') A E" G S(C") A E 'n  E" ^  {} } (4.4)

The event name is of the form E'UE", because E' and E" are not necessarily identical. 

Consider the formation of the event name set S(Co||(C'i||C2)), where E(Co) =  {{«}}? 

S(Ci) =  {{a}} and Ê(C2) =  {{c}}. First, the event name set Ê(C'i||C'2) evaluates as 

{{a, c},...}  due to the pairing CE^^j Second, the event name set Ê(Co||(Ci||C2)) 

evaluates as {{a, c},...}  due to the synchronous pairing ($Ê a},{a,c}- Iii this latter 

pairing the component event identifier a is common, but {a} ^  {a, c}. For complete

ness, the event name set evaluates as {{a, c}, {a, 72}, {70,7i, c}} where the terms 7» 

are the component idle event names.
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The concurrent composite event name set, given in Definition 4.8, is the union of the 

sets of asynchronous pairings, terms 4.1 and 4.2, simultaneous pairings, term 4.3, and 

synchronous pairings, term 4.4.

Definition 4.8 Concurrent event name set.

s(C'||c") { s'ur(c") I s'€S(c')a
V Ï 6 Ê (C " ')» E 'n ï  =  {}}

U { r(C') us" I E " e s (C " )A
VTeS(C')»s"nr = {}}

U { E 'U E " I E 'eS (C '')A
V ï e s ( C " ) » E ' n ï  =  {}A 

E" 6 S(C") A
V ï € Ê ( C ' ) . E " n ï  =  {}}

U { s'us" I E ' e  s(C") A s" e S(C"') A
E' n E" ^  }

T h e fo llow ing exam p le illu stra tes th e  form ation  o f  a concurrent even t n am e se t. L et 

S (C o )  =  {{ab}, { s } }  and Tq =  {7 0 } . L et S ( C i )  =  {{cd}, { 5 } }  and T i =  {7 1 } . S ix  o f  th e  

tw elve  possib le  pairings are described  in d eta il. N o te  th a t  th e  un iversal q u an tifica tion  o f  T  

requires th e  p red icates o f  th e  form  VT G Ê(C") # E ' n T  =  { }  to  hold  tru e  for all va lues o f  

T . T h u s, if  T  G E (C 'i), then  T  G { { c d } , { s } } .  H ence b oth  E 'D { c d }  =  { }  and E 'n { ^ }  =  { }  

m u st hold  true. T h is is equivalent to  a  pred icate E ' n  {cd} = { }  A E ' fl { s }  =  { } .  Such  

equivalent p red icates are used in th e  fo llow ing descrip tions.

1. AE{tt{,},{7i>- The predicate VT G S(C"') • E' fl T =  {}, which is equivalent to 

{ab} n {cd} =  {} A {ab} n {s} =  {}, holds true and the asynchronous event name 

{ab, 71} is formed from this pairing.

2. The predicate VT G Ê(C") • E' D T =  {} is equivalent to {&} D {cd}  =

{} ^  D {s} =  {}. This does not hold true and this pairing does form an event 

name.

3. CT,̂ ab},{cd}- The predicate VT G Ê(C") • E' n T =  {}, which is equivalent to {ab} D 

{cd} =  {}A{a6}n{5} =  {}, holds true. Likewise, the predicate VT G Ê(C ')«TnE" =
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{ } ,  w hich is equivalent to  {ab} fl {cd} =  { }  A {&} D {cd} =  { } ,  h o ld s true. S ince  

th e  term s are conjoined  and b oth  hold true, th e  sim u ltan eou s ev en t n am e {ab, cd} 

is form ed from  th is pairing.

4. T h e  pred icate VT G Ê(C") •  E' fl T =  { } ,  w hich  is equ iva len t to  {ab} n 

{c d }  =  { }  A { a 6} n { s }  =  { } ,  holds true. H ow ever, VT G Ê(C")*TnE' =  { }  exp an d s  

to  {ab} n { s }  =  { }  A {5 }  n {5} =  { } ,  w hich d oes n ot hold . S ince th e  term s are  

conjoined  and on ly  on e holds true, no sim u ltan eou s even t n am e is form ed  from  th is  

pairing.

5. T h e  pred icate E ' H E" ^  { }  becom es {5 }  (1 { 5 }  ^  { } .  T h is  h o ld s tru e  so  

th e  sim u ltan eou s even t nam e { s }  is form ed from  th is pairing.

6. T h e pred icate E 'f lE "  ^  { }  becom es { s } f l { c d }  /  { } .  T h is d o es n o t hold  

tru e and no sim u ltan eou s even t nam e is form ed from  th is  pairing.

T here are a  further s ix  pairings to  eva lu ate th e  co m p o site  even t n am e se t. O nly  

th e  pairing AE{cd},{7o} holds, g iv in g  th e  asyn chron ou s even t n am e {70 , c d } . N on e  o f  th e  

rem ainder, Ci:{s},{cd}i ^^{s},{s}, ^^{ab},{cd} nor hold , h en ce  th e

concurrent co m p o site  even t nam e se t is T,{C'\\C") =  {{ab, 71}, {ab, cd}, { s } ,  {70, c d } } .

4.3.4 Concurrent Idle Event N am e V{C‘^C")

T h e idle event name, r(C"||C"), o f  th e  concurrent com p osition  o f  th e  co m p o n e n ts  C' 

and C , is defined in D efin ition  4.9. U nlike m erge com p osition  o f  id le ev en t n am es (sec

tion  4.1.4, page 71), th e  concurrent com p osite  idle even t nam e describes th e  con cu rren t  

id ling o f  th e  com p on ents .

D efinition 4.9 Concurrent idle event name.

r ( c '| |c " ) ''= r(c ')  u r(c")
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From Definition 3.1 (page 57), the component idle event names F(C') and F(C") must 

be unique, that is F (C') DF (C") =  {}. Definition 4.9 is sufficient to ensure that F(C'||C"') 

is unique if F {€') and F {C") are unique.

If Definition 3.1 had allowed common idle event names then concurrent composition 

must not treat them as synchronising as this prevents the description of asynchronous 

progress. Additionally, interpretational difficulties can arise if the component idle event 

names are not unique. Consider the following example where Ê(Co) =  {{(To}} and F (Co) =  

{7}, and F (Cl) =  {7}. The asynchronous pairing yields the event name {(Tq, 7}.

This event name contains more than one event identifier from the component event name 

set, that is {cq} G E(Co) and {7} G Ê(Cq). Since one of the component identifiers is the 

idle event name, transitions can be formed where it appears that a component can progress 

due to an idle event, that is, the component contributed a non-reflexive idle transition to 

the concurrent composition.

4.3.5 Concurrent Transition Set Â(C'||C")

The concurrent transition set, A(C'||C"), of the concurrent composition of the components 

C' and C", is defined in Definition 4.10. Concurrent composition will generate transitions 

that describe asynchronous, simultaneous and synchronous progress of the components.

Asynchronous transitions are formed by pairing transitions from the transition set of 

one component with implied idle transitions of the other component. Idle transitions, 

which are formed under concurrent composition, are reflexive, taking the form (Q,T,Q). 

Let such pairings be denoted by AAA',(Q",r»,(3") &nd AAA'/,(Q/,r\Q9- Both simultaneous 

(coincidental) and synchronous transitions are formed by the pairings of event names of 

one component with the event names of the other component. Let such pairings be denoted 

by C«SAa>,a''-
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Concurrent composition adopts the convention that event names common to compo

nents are synchronising, consequently not all pairings of event names are included in the 

event name set Ê(C"||C") (section 4.3.3, page 76). The formation of transitions in the 

concurrent transition set A(C"||C") must therefore be restricted to the event names of the 

event name set.

1. AAA/,(Q//,r'/,QW) pairings.

The concurrent composition that creates the asynchronous pairings of the C' tran

sitions A' =  {Q',E',P') with implied idle transitions of the form {Q",T{C"),Q") is 

(Q'UQ", E'ur(C"), P'UQ"), provided that the event name E' G Ê(C') does not con

tain a component event identifier that is common with any event name E" G È(C"). 

Any common component event name is treated as synchronous so that the event 

name E'U F(C") will not be in the event name set S(C'||C"). Synchronous event 

names can be excluded by a test of the form E' U F(C") G S(C'||C").

Term 4.5 gives the set of AAA',(g",r",Q") asynchronous pairings.

{{Q 'U Q ",E 'U T{C "),P 'U Q ")\
(Q% E', f ') G A(C') A Q" G Q(C") A (4.5)
E'UT{C") e t {C'\\C")}

Observe that this set defines the “horizontal” transitions in the concurrent compo

sition Co||Ci illustrated in figure 3.3 (page 47).

2. .4AA",(Q',r',Q') pairings.

The derivation of this set of asynchronous pairings is similar to the derivation of

asynchronous pairings. Term 4.6 gives the set of .4AA",(Q',r',Q')

asynchronous pairings.

{ (Q' U Q",T{C') U E", Q' U P") I
Q' G Q (C') A (Q", E", f  ") G A (C") A (4.6)
F (C ')U E "g Ê(C"||C")}

Observe that this set defines the “vertical” transitions in the concurrent composition 

Co 11 C l illustrated in figure 3.3 (page 47).
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3. C<SAa',a" pairings.

The creation of the simultaneous and synchronous transitions from C' transitions 

A' =  (Q', E', P') and C" transitions A" =  (Q", E", P") generates transitions of the 

form (Q' U Q", E' U E", P ' U P"), provided that the event name pairing E' U E" is in 

the event name set E(C"||C"). From terms 4.3 (page 78) and 4.4 (page 78) it can be 

seen that such an event name pairing is required for both simultaneous event name 

pairings, CEs',s", and synchronous event name pairings, <SEs',s"-

Term 4.7 gives the set of C«SAa',a" simultaneous and synchronous pairings.

{ (g 'u g " ,E 'u E " ,p 'u P " ) l
(Q', E', P') G A (CO A (g", E", P'O G A(C'0 A (4.7)
E 'U E " g E(C'||C")}

Observe that this set defines the “diagonal” transitions in the concurrent composition 

Co||Ci illustrated in figures 3.3 (page 47) and 3.4 (page 49).

The concurrent composite transition set, given in Definition 4.10, is the union of the 

sets of the asynchronous pairings, terms 4.5 and 4.6, and the simultaneous and synchronous 

pairings, term 4.7.

Definition 4.10 Concurrent transition set.

A(C"||C") {(Q'uQ",s'ur(c'"),p'uQ")|
(Q’, S', P) e Â(C') A Q" e Q(C") A 
s'ur(C") es(c'||c")}

U {«?' u Q", r (C) u s", Q' u P') I 
Q' e Q(C) A (Q",s",P') e Â(C") A 
r(c') u 2 " 6 s(c'||c")} 

u {(Q'uQ",s'us",f'uf")| 
(Q',s',P) 6 A(C') A (Q",s",P') e A(C")a
S 'U S ''€S (C '||C " )}

Including or excluding transition pairings by reference to the event name set, rather 

than by reference to the event names in the transitions, avoids the duplication of the 

terms to determine the three forms of pairings. Moreover, it avoids the following problem. 

From Definition 3.1, transitions are formed using event names from the event name set.
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however, there are no constraints on the number of transitions labelled with any event 

name. Consequently an event name set Sa deduced from the transition set, that is 

Ea =  {E I (g ,E , P) 6 A (C ")} , may be a subset of the defined event name set, thus 

Ea Ç Ê (C ") . If the event name {«} is common to t(C ')  and È(C") then the composite 

event name set will include the event name {s} but will exclude any event names that 

describe asynchrony or simultaneous progression with {s}. For example, the event names 

{70, s} and {s, 71} will be excluded. If only one of the components has a transition defined 

with { s }  then, from the event names deduced from the transitions, {5} would appear to 

be asynchronous. Thus transitions would be formed enabling asynchronous progress, for 

example, transitions would be formed with the event names {70, 5} and {s, 71}. Thus an 

event name set deduced by extraction from the transition set would be a superset of the 

defined event name set.
•i

A practical consequence of the reference to the event name set is that the absence of 

a transition with a synchronising event name will result in a composite model that will 

not progress on that event. This scenario can occur in implemented systems where, for 

example, a process is waiting on a semaphore that never gets signalled. (Ben-Ari in [7] 

gives an explanation of semaphores and their use in protecting shared resources from 

concurrent access.)

4.4 Example of Concurrent Com position o f Independent 
Components

Concurrent composition is illustrated with two examples. The example in this section 

concurrently composes two components that exhibit only asynchrony. Both components 

are identical to those used to illustrate merge composition in section 4.2 (page 72). In 

the example of section 4.5 (page 88) the components have the same structure as in this 

example, but have a common event name which describes synchronisation.
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This example forms the concurrent composition of Cq = (Qo? Qo? So, To, Aq) and C\  = 

(QiiQi) Si, Fl, A l), as specified below. These Composite Transition Systems were first 

defined in section 4.2 and are illustrated in figure 4.1 (page 73).

Co =  ( {{a}, {6}}, {{a}}, {{a6}, {ba}}, {70},
{(W , M ) ,  W ), ({4, {W , W )}  )

Cl = ( {{e}, {/}}, {{e}}, {{ee}, {e/}}, {71},
{ ({ e } ,{ e e } ,{ e } ) ,( { e } ,{ e /} ,{ / } ) } )

From Definition 4.6, each member of the state set g(Co||Ci) is formed from the set 

union of each pairing of states from Q(Co) =  {{«}, {6}} with Q(Ci) =  {{e}, {/}}. Like

wise, each member of the initial state set g(Co||Ci) is formed from the set union of each 

pairing of initial states from Q{Cq) =  {{a}} with Q(Ci) =  {{e}}. Hence the state set and 

the initial state set of Co||Ci are as follows;

Q(C'ollC'i) =  {{a ,e ] ,{b ,e } ,{a j} ,{b ,f}}
Q(Co||Ci) =  {{a,e}}

Definition 4.8 generates the following forms of pairings in forming the composite event 

name set S(C"||C"). In this example there are no common component identifiers, thus all 

terms of the form T fl S =  {} hold true in the pairings of the form AE  and CE.

1. describes the asynchronous pairings AE{o6},{7i} and AS^ta},{7i}- These 

pairings respectively yield {«6,71} and {6a, 71}.

2. describes the asynchronous pairings AE^ee},{7o} “̂ ^{e/},{7o}’ respec

tively yielding {70, ee} and {70, e/}.

3. CEs'.s» describes the simultaneous pairings of CÊ ab},{ee}̂  ^^{ab},{ef}^ ^S{6a},{ee} 

and CE{ta},{e/}j respectively yielding {ab,ee}, {a6, e/}, {6a, ee} and {6a, e/}.

4. (SEg/̂ E// gives no synchronous pairings since the conjunction E' fl E" {} does not 

hold for any pairing of E' G Ê(C') with E" G Ê{C"). This is expected since there 

are no common event identifiers.
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T h e concurrent com p osite  even t nam e se t E (C o ||C i)  is g iven  by D efin ition  4.8 as th e  

union o f  th e  four form s o f  even t nam e pairings. T h e concurrent co m p o site  id le even t nam e  

r (C o ||C i)  is g iven  by D efin ition  4.9 as th e  union o f  th e  com p on en t id le even t n am es {7 0 }  

and {7 1 } . H ence th e  even t nam e se t and th e  id le even t n am e are as follow s;

è ( C o ||C i)  =  { { a 6, 7i } , { K 7i } }  U { { 7o , e e } , { 7o , e / } } U
{{ab,ee],{ab,ef],{ba,ee},{ba,ef}} U { }

=  {{ab, 71}, {6a , 7i} ,  {70, ee}, {70, e f j ,
{ab, ee}, {ab, ef}, {ba, ee}, {ba, ef}}

r(Co||Ci) =  {70,71}

T h e tran sition  se t , A (C o ||C i) ,  is defined in D efin ition  4.10. T h is d efin ition  g en era tes  

th e  fo llow ing form s o f  pairings. N o te  th a t  sin ce th ere are no com m on  even t id en tifiers all 

asyn ch ronou s and sim u ltan eou s pairings are form ed.

1. .4 AA',(Qz/,r»,g") y ield s th e  fo llow ing asyn chron ou s tran sition s.

yi^Ws ({« , e } ,  {ab, 71}, {b, e}),

^^{ { a Ua b } , { b } U{ f } , M, { f } )  yields ({ a ,/} ,{06,71},{&,/}),

yield s ({6 , e } ,  { 6 a ,71}, {a , e } )  and

({6, {6a, Ti}, {a, /})•

2. A A A //,(gz,r',g ') y ield s th e  fo llow ing asynchronous tran sition s.

({a, e},{7o, ee},{a,e}),

^A ({e},{ee},{e}),({6},{7o},{U ) ( { 6 , e } ,  { 7 0 , e e } ,  { 6 , e } ) ,

“̂ ^ ({e } ,{e /} ,{ /» ,(W d 7 o },{a }) y^^id® ({a, e } , {70, e / } ,  { a , / } )  and  

^ ^ ({e } ,{ e /} ,{ /} ) .(W .{7o},W ) yi^^^® ( { 6 , e } , { 7 o , e / } , { 6 , / } ) .

3. C«SAaz,a" y ie ld s th e  follow ing sim u ltan eou s tran sition s. S ince th ere  are n o com m on  

even t identifiers in th is  exam ple, there are no syn chronou s even ts. 

^^^{{a},{abUb}),{{e},{ee},{e}) yieW s ({&, e } , {ab, ee}, {6 , e } ) ,

yi®̂ ®̂ ({^’ 4 , {a6, ef}, {6, /}),
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^ ‘̂ (̂{i>},{6a},{a}),({e},{ee},{e}) Yields ({6, e}, {bü, ee}, {a, e}) and 

^^^{{b},{ba},{a}),{{e},{ef},{f}) Yields ({6, e}, {Ôtt, e/}, {a, /}).

The concurrent composite transition set A (C o ||C i)  given by Definition 4.10 as the 

union of the three forms of transition pairings given above. Hence the transition set is as 

follows;

è(Co||Ci) = { ({a,e},{a&,7i},{6,e}), ({a,/} ,  {a6,71}, {6 ,/}),
({6, e}, {6a, 71}, {a, e}), ({6, /} ,  {6a, 71}, {a, /} )  }

U { ({a,e},{7o,ee},{a,e}), ({6, e}, {70, ee}, {6, e}),
({«, 4 ,{70, ef}, {a, /} ) , ({6, e}, {70, e/} , {6, /} )  } 

U { ({a, e},{a6,ee},{6 , e}), ({a, e}, {a6, e/}, {6,/}),
({6, e}, {6a, ee}, {a, e}), ({6, e}, {6a, ef}, {a, /}) }

= { {{a,e},{ab,ji},{b,e}), ({a,/} , {a6,71}, {6 ,/}), 
({6, e}, {6a, 71}, {a, e}), ({6, /} ,  {6a, 71}, {a, /}),
({a, e}, {70, ee}, {a, e}), ({6, e}, {70, ee}, {6, e}),
({«, e}, {70, ef}, {a, /} ) , ({6, e}, {70, ef}, {6, /} ) ,
({a, e}, {a6, ee}, {6, e}), ({a, e}, {a6, ef}, {6, /} ) ,
({6, e}, {6a, ee}, {a, e}), ({6, ej, {6a, ef}, {a, /} )  }

The concurrent composite, Co||Ci, is illustrated in figure 4.3 and can be compared 

with the merge composition of the same components illustrated in figure 4.2 (page 73).

{ab,ee}

{ba,ee}

Figure 4.3: Independent Co||Ci
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4.5 Example o f Concurrent Compbsition o f Dependent Com
ponents

In the example of this section the components have the same structure as the compo

nents in the example of section 4.4 (page 84), but have a common event name which 

causes synchronisation. Specifically, the event names in the transitions ({a}, {u6}, {6}) 

and ({e}, { e f } ,  {/}) are replaced by the shared event name {«}, hence Cq and Ci  are as 

defined as follows and illustrated in figure 4.4.

Co =  ( {{a}, {b}},  {{a}}, { {s} ,  {ba}},  {70},
{(W , {4, W ), ({4, {W , {«})} )

Cl = ( {{e}, {/}}, {{e}}, {{ee}, {s} } ,  {71},
{({e},{ee},{e}),({e},{^},{/})})

{6a}

Figure 4.4: Cq (top) and Ci (bottom) with shared event {s}

Since the change of event name does not alter the structure of either Co or Ci then it 

follows from the previous example that;

Q(Co||Ci) =  {{a,e},{6,e},{a,/},{5,/}}
Q(Co||Ci) =  {{a,e}} 
r(Coi|Ci) =  {70, 71}



Definition 4.8 generates the following forms of pairings in forming the concurrent com

posite event name set T,{C%C"). In this example some asynchronous and some simulta

neous pairings cannot be formed, while some synchronous pairings will be formed.

1. gives the following asynchronous pairings;

(a) yields no event name because the event identifier s is common with 

the event name {s} G S(Ci).

(b) yields the event name {6a, 71} because the event identifier ba is not 

common with any event name in S(Ci).

2. gives the following asynchronous pairings;

(a) ^S^ee},{7o} yields the event name {70, ee} because the event identifier ee is not 

common with any event name in Ê (Co).

(b) yields no event name because the event identifier s is common with 

the event name {s} G S(Cq).

3. CSe'.s '' gives the following simultaneous pairings;

(a) CS{ta},{ee} yields the event name {6a, ee} because the Co event identifier ba is 

not common with any event name of S(C i), and the Ci event identifier ee is 

not common with any event name of E(Co).

(b) and CE{{,a},{s} yield no event names because the event 

identifier s is common. Note that this CÊ gĵ ^gj a synchronous pairing, but CE 

determines simultaneous pairings.

4. <SEs/,s// gives the following simultaneous pairings;

(a) ($E{g].̂ ĝj. yields event name {5} because the event identifier s is common in this 

pairing, that is {s} n {s} =  {s}.

(b) «SE|g}̂ ĝgj, <SÊ i,oĵ {ggj and «SEĵ {,a},{5} yield no event name because there is no 

common event identifier in these specific pairings, that is {s} fl {ee} =  {}, 

{6a} n {ee} =  {} and {6a} fl {s} =  {} respectively.
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The concurrent composite event name set Ê(<7o||Ci) given by Definition 4.8 as the 

union of the sets of the four forms of event name pairings given above. Hence the event 

name set is as follows;

&(Co||Ci) =  {{6a, 7i}} U {{70, ee}} U {{6a, ee}} U {{s}}
= {{6a ,7i},{7o,ee},{6a,ee},{s}}

The transition set, A(Co||C'i), is defined in Definition 4.10. This definition generates 

the following forms of pairings.

1. ^AA/,(Q«,r»,Q") yields the following asynchronous transitions.

(a) transition 

because the event name pairing {s} U {71} =  {s, 71} 0 S(Co||Ci).

(b) ^^d ^A({(,},{6a},{a}),({/},{7i},{/}) respectively yield

the transitions ({6, e}, {6a, 71}, {a, e}) and ({6,/} , {6a ,7i}, {a,/}) because the

event name pairing {6a} U {71} =  {6a, 71} G Ê(Co||Ci).

2. ^ A ^ / /( Q /p /g/) y ie ld s th e  fo llow ing asynchronous tran sition s.

(a) .4 A(̂ e},{ee},{e}),({a}»{7o},{a}) ^̂ d̂ •̂ A(̂ ej.̂ êe},{e}),({6},{7o},{̂ }) respectively yield the 

transitions ({a, e}, {70, ee), {a, e}) and ({6, e), {70, ee}, {6, e}) because the event 

name pairing {70} U {ee} =  {70, ee} G S(Co||Ci).

(b) ^A({e},{»},{e}),({«},{7o},{a}) and ^A({e},{,},{e}),({6},{7o}.{l'}) transitions

because the event name pairing {70} U {s} =  {70, 5} 0 Ê(Co||C'i).

3. C<5Aa',a" yields the following simultaneous and synchronous transitions.

(a) yields no transition because the event name pairing

{s}U{ee} =  {g,ee}02(Co||Ci).

(b) C5A({t},{6a},{a}),({e},{ee},{e}) yields the transition ({6, e}, {6a, ee}, {a, e}) because 

the event name pairing {6a} U {ee} =  {6a, ee} G Ê(Co||Ci).
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(c) ^̂ «̂ A({a},{s},{6}),({e},{s},{/}) yieWs the transition ({a, e}, {«}, {6,/} )  because the 

event name pairing {&} U {s} =  {s} G Ê(Co||Ci).

(d) ^̂ <̂ A(̂ 6},{6a},{a»,({e},{s},{/}) yields no transition because the event name pairing 

{6a}u {s} =  {6a,s}^S(C'o||Ci).

The concurrent composite transition set A(Co||Ci) is given by Definition 4.10 as the 

union of the sets of the three forms of transition pairings given above. Hence the transition 

set is as follows and Co||Ci is illustrated in figure 4.5 (c./. figure 4.3 page 87).

t{Co\\Ci) = { ({6,e},{6a ,7i},{a,e}), ({6,/} , {6a ,7i}, {a,/}) }
U { ({a,e},{7o,ee},{a,e}), ({6, e}, {70, ee}, {6, e}) }
U { ({6,e},{6a,ee},{a,e}), ({a, e}, {s}, {6,/} ) }

=  { ( A  e } ) , { { b , f } , { b a , y i } , { a , f } ) ,
({a,e},{7o,ee},{a,e}), ({6, e}, {70, ee}, {6, e}),
({6, e}, {6a, ee}, {a, e}), ({a, e}, {s}, {6, /}) }

{ba,ee}

{ba,y,} (

Figure 4.5: Co||Ci with the shared event {s}

The interpretation of a common event name as synchronising is the intended conse

quence of concurrent composition but not the definition of a Composite Transition System. 

Thus, for example, a transition ({a, e}, {s, ee}, {6, e}) based on an event name {s, ee} could 

be merged with the system illustrated in figure 4.5. This would introduce asynchrony or
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ambiguity with a shared event name {s}. For example, the transition ({a, e}, {5}, {b,f}) 

and the merged transition ({a, e},{s,ee},{6, e}) enables Cq and Ci to progress either 

synchronously for event { s} , or asynchronously, but simultaneously, with events {5} and 

{ee} respectively. This is not denied because in a concurrent composition of the form 

{C'\\C")\\C"’, the event name {s} may be common only to C  and C" and not to C ”. 

This is explored further in Appendix B.2 (page 198).

Observation of figure 4.5 shows that the state {6, e} is not reachable. In other words, 

starting from the initial state {a,e} there is no trace that leads to the state {b,e}. Of 

course it is possible that {b, e] could be an initial state. This shows that concurrent 

composition (with synchronisation) yields a composite machine that does not take into 

account the reachability of states. Moreover, it illustrates that the initial state is simply 

a form of state decoration.
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Chapter 5

Extraction

The extraction operator, denoted <], generates a Composite Transition System that de

scribes a system component. If C|| is taken to be a system specification and C  a speci

fication of a prototype component, the extraction operation C|| <1 C  generates an extract 

which is a component with a specification that is close to the specification of the proto

type C. The specification of the extract can be combined with the specification of another 

component using concurrent composition to form the system C||.

Let a restricted (or modified) form of any Composite Transition System C  be denoted 

C, for example, the restricted form of C"||C"' is denoted by C'\\C". Given the system 

C'\\C"^ then the extraction operation (C'\\C") <\ C  yields the extract C', which can be 

taken to be a modified form of C'. Likewise (C’\\C") <1 C" yields the extract C". The 

components C' and C" define the modified behaviour of C  and C" such that the concurrent 

composition, C'\\C"^ yields a behaviour that is congruent to the restricted system C'||C". 

The systems C'||C" and C'||C" are expected to have the same structure, although the 

interpretation of the events associated with the transitions is likely to be different. Note 

that where a system has not been restricted, then the extraction operation < C

will yield C', and the extraction operation (C"||C"') <1 C" will yield C".
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The remainder of this chapter is organised as follows. The principles of extraction are 

presented in section 5.1 and the extraction operator is defined in section 5.2 (page 105). An 

example of extraction applied to a composite system that has not been restricted by system 

level constraints is presented in section 5.3 (page 124). In section 5.4 (page 130), system 

level constraints have been applied to an example system and the extraction operation is 

used to determine the modified components. An analysis of the results is also presented 

in section 5.4. The mathematical properties of the extraction operator are examined in 

Appendix B.3 (page 214).

5.1 Principles o f Extraction

Extraction proves to be an unexpectedly complicated operation, the complications arising 

from three significant problems consequent on the definition of the Composite Transition 

System notation and, more generally, of variants of Labelled Transition System notations.

Definition 3.1 (page 57), allows each event name to label one or more of the explicit 

transitions of a component. Further, the component idle event name is used to label every 

implied idle transition of a component. Therefore, the event names and the idle event name 

do not necessarily identify a specific transition. Concurrent composition forms composite 

transitions from combinations of the component transitions with the result that some of 

the composite transitions may be labelled with the same composite event name. In other 

words, any composite event name can label more than one of the composite transitions. 

Consequently, there is not a one-to-one relationship between individual transitions of a 

composite system and the individual transitions of the components of that composition. 

For an example, consider the system Co||Ci in figure 3.3 (page 47), in which the compos

ite event name {a6,71} labels four transitions, although there is only a single transition 

labelled {ab}  in C q. This replication occurs because the component idle event name {71} 

labels an implied idle transition on each of the four states {e}, {/}, and { h }  of Ci .

94



Restrictions on the system of components due to resource constraints makes specific 

transitions invalid and these restrictions are modelled by the removal of the invalid tran

sitions from the composite system. The removal of composite transitions needs to be 

refiected in modified descriptions of the components, but the required modification is dif

ficult to determine because of the lack of a one-to-one relationship between the individual 

component transitions and the individual composite transitions. Consider again the sys

tem <7o||Ci in figure 3.3 (page 47). The removal of the composite transition from state 

{a, h]  to state {b, h],  labelled with the composite event name {ab,  71}, cannot simply lead 

to the removal of the Cq transition from state {a} to state {6} labelled with the event 

name {ab}.  The consequence would be the failure of concurrent composition to generate 

the remaining transitions labelled {«6, 71} and the transition labelled { a b , f g } .

Composite event synchronisation, described in section 5.1.1, is an elaboration of some 

of the CTS conventions that helps explain the extraction process. The objective is to 

replace the asynchronous events of the components of a composite system by equivalent 

sets of synchronous events so the removal of any transition from the composite system 

eliminates only one transition from each of the components. That is, composite event 

synchronisation leads to a synchronous representation in which there is a one-to-one re

lationship between the individual component transitions and the individual composite 

transitions, thus reducing this first significant problem.

Determining which transitions in the composite require a transition in a particular 

extract is the second significant problem resulting from the CTS conventions. Composite 

event synchronisation ensures the concurrent composition of the modified synchronous 

components will not generate the transitions removed in the design of the modified com

posite system. Hence, the remaining transitions in the synchronous representations of the 

components are sufficient to form the restricted composite system and, therefore, form the 

basis of the transitions in an extract. The solution to this second problem follows from the 

interpretation and categorisation of each of the (remaining) transitions as either leading
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to an existing transition of a component of the composition, or leading to a State De

pendent Synchronisation transition (page 52), or leading to a Progressive Synchronisation 

transition (page 55). This categorisation is presented in section 5.1.2 (page 100).

The third significant problem arises because some transitions in an extract are required 

because of the absence of other transitions. More specifically, in the extraction operation 

C|| < C ,  the transitions of C'y that are absent in Cy are not explicitly stated in the 

description of Cy. Instead, the absence of any transition from Cy must be deduced from 

the presence of related transitions in Cy that would have been formed by the concurrent 

composition of the components of Cy. The problem is exacerbated because the system 

specification Cy does not reveal the components used in its formation. These problems 

lead to significant complexities in the algebra of the extraction operator.

Although the concept of composite event synchronisation helps explain the principles 

of extraction, it is, in effect, internal to the extraction operation. Consequently it does 

not figure explicitly in the algebra of the extraction operator that operates on Composite 

Transition System descriptions.

5.1.1 C om posite Event Synchronisation

Composite event synchronisation represents the components C' and C" of the composition 

C'||C" as comprehensively synchronised components denoted D' and D" respectively. The 

concurrent composition of D' with D", denoted D'\\D", is required to generate a composite 

system that describes a behaviour equivalent to that of the composite system C"||C"'. 

Additionally, a one-to-one relationship is required between each composite transition of 

D'\\D" and each transition of D' and D". Hence, for each transition in the composite 

system D'\\D" there will be one transition in D' and one in D".
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Each event name in a CTS may label several transitions, thus an event name can be 

considered to identify a class of instances of that event name. Let each transition be 

uniquely renamed. For example, if the event name E labels two transitions, then let Eq 

be the instance in the class identified by E that labels one transition, and let Ei be the 

instance that labels the other transition. Thus, each transition is labelled with a unique 

event name instance which uniquely identifies the transition.

Similarly, the idle event name F of a CTS labels every implied idle transition. Thus 

the idle event name can be considered to identify a class of instances of that idle event 

name. Let each instance be uniquely indexed by a component state name. Each idle 

transition will, therefore, be uniquely labelled because there is only one idle transition per 

component state. For example, let Fq be the idle event name in the class of idle event 

names identified by F that labels the idle transition on state Q, and let Fp be the idle 

event name in the class identified by F that labels the idle transition on state P.

Consider the example illustrated in figure 5.1 (page 98). Each instance of an idle event 

name Fg is denoted Fg, where Q is the instance index and n identifies the component (7». 

For example, the C q idle event name indexed by the state {a} is denoted F°^y Similarly, 

each instance of an event name E% of a component Cn may be denoted Ef. However, 

because there is only one instance of each of the C q event names AP and BP, and only one 

instance of the C \  event name the instance index will be omitted.

The component Cq comprises two transitions, one labelled with the event name AP, 

and one labelled with the event name B^. Additionally the state indexed idle event 

name instances F°^j and F°̂  ̂ label the explicit idle transitions on the states {a} and 

{6} respectively. The component C \  comprises a transition labelled with the event name

and the explicit idle transitions are labelled with the state indexed idle event name 

instances Fj^  ̂ and Fjyy
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Figure 5.1: Cq and C i with explicit indexed idle transitions.

The event names and transitions in a composition C’\\C" are formed from pairings 

of the component event names and transitions. If every component transition is labelled 

with a unique event name, then it follows that every composite transition will be labelled 

with a unique composite event name. For the example components in figure 5.1, the event 

names of the composition Co||Ci are \J A® U U U E^, U Fj^^,

u u E \  %  u E \  r°„j u u r|̂ j, u and %  u r‘̂ ,. The

concurrent composition is shown in figure 5.2 {cf. figure 5.9, page 131). Note that the 

composite refiexive idle transitions are not drawn though it would be useful to do so if the 

composite system were a component in some larger composition.

Now every component transition A is associated with a specific component event name 

E which can be used to define a subset of the composite event name set. Let a component 

event name E define a subset of the composite event name set comprised of just those 

composite event names that include the component event name E. Consider the example 

of figure 5.2 where the subset defined by the component event name contains just 

those composite event names that include A^, that is A^ U E^, A^ U Fj^j and A^ U F^yy 

Likewise, the subset defined by the idle event name Fj^  ̂ comprises the composite event 

names A^ U F̂ ^̂  and U F^^y
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C,||C

Figure 5.2: Co||Ci with unique composite events.

Since every component event name identifies a specific component transition, it follows 

that each composite event name in a subset defined by a component event name E identifies 

the same component transition A. Therefore, the component state change labelled by the 

event name E can be replaced by parallel transitions each labelled with one composite 

event name from the subset of the composite event name set defined by E.

Consider the transition labelled from state {a} to state {6} in figure 5.1. The event 

name subset defined by comprises the composite event names A^ U A^ U r|e}’ 

A^ U each uniquely identifying a transition in the composite system illustrated in 

figure 5.2. Thus the Co transition labelled A^ can be replaced by three parallel transitions, 

one labelled with the composite event name A^ U one with U and one with 

In a similar way, the event name subset defined by comprises the composite 

event names A^ U Fj^y and U F^^y Thus the explicit Ci idle transition labelled F̂ ^̂  

in figure 5.1 can be replaced by two parallel transitions, one labelled with the composite 

event name A^UF^^y the other with B^UF^^y The other transitions of Cq and Ci follow 

in a similar way. The resulting synchronous components Dq and Di are illustrated in 

figure 5.3.
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n „ u £

Figure 5.3: Do and D\ synchronous representations of Co and C\ j

-A

Composite event synchronisation can be applied to the components of any composite 

system. The result is the decomposition of each component transition into distinct but 

synchronous transitions that synchronise with one transition in the other component. As 

a consequence of the definition of concurrent composition, the concurrent composition 

of such synchronous transitions generates one transition in the composite system. The 

removal of a transition from the composite system, therefore, has the effect of removing one 

transition from each of the components. For example, if the transition labelled A°UF^y^ is 

removed from the composite system of figure 5.2 then the transitions also labelled 

must be removed from both the synchronous components in figure 5.3.

5.1.2 Interpretation of the Transitions in a Synchronous R epresentation

There are three forms of transition in a composite system C'\\C"^ and these can be distin

guished by the form of the composite event name label and thus also in the transition labels 

in the synchronous representations D' and D" of the components C' and C". One form of
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transition encompasses the original transitions of the component, a second form leads to 

the State Dependent Synchronisation tvdiiiûtions introduced in section 3.1.4 (page 52) and 

a third form leads to the Progressive Synchronisation iTansitions introduced in section 3.1.4 

(page 55).

Original Component Transitions

Transitions of the form (Q\ 2 ^  U T q „ , P ' )  describe the progress of D' while the compo

nent D" idles in state Q". From the conventions on asynchronous progress (section 3.1.1, 

page 45) and the elaboration of section 5.1.1, an event name of the form U Vq„ as

serts that if the component event E' occurs alone then the component idle event F" 

will be deemed to have simultaneously occurred, and the composite system will progress. 

However, the combination of an event name E' with the idle event name F" arises as a 

consequence of concurrent composition. Thus, a transition of the form (Q% E^ UFg//, P’) 

leads to a transition of the form {Q', E', P') in the extract C|| <I C', and this is determined 

by Definition 5.5 (page 110). Observe that any transition of the form (Q', E', P ') is an 

explicit transition of the original component C'.

For the example of D q illustrated in figure 5.3, both the transitions ({a}, A°UF|g^, {b})  

and ({a}, A° U F^y.p {6}) are forms of the C q transition ({a}, A°, {6}), {cf. figure 5.1, 

page 98). Likewise, both the transitions ({a}, P° UF^^p {6}) and ({a}, P° U Fjyp {6}) are 

forms of the C q transition ({a}, P°, {6}).

State Dependent Synchronisation Transitions

Transitions of the form (Q', Fg/ UE", Q') describe the idling of the component D' in state 

Q' whilst the component D" progresses by event E{[. The combination of the idle event 

name F' with the event name E" arises as a consequence of the CTS conventions on
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asynchronous progress (section 3.1.1, page 45). Thus, in an extract of the form C|| < C', a 

transition of the form {Q', F' U12", Q') leads to an idle transition of the form {Q',

Since idle transitions are implied, explicit inclusion in an extract C|| < C' is not required 

(inclusion is also prohibited by Definition 3.1, page 57).

Now the combination of the idle event name F' with an event name 12" arises only 

if 12" is determined through a CTS convention on event names to be “asynchronous” to 

every event of C'. If the condition for asynchrony holds, concurrent composition combines 

the event 12" with every instance of the idle event name V'q, of C’. For the example of 

C q illustrated in figure 5.1 (page 98), the C\ event name is combined with the C q idle 

event names F°^  ̂ and to form the composite event names Fj^^ U and F°^j U E^ 

respectively.

Similarly, when the condition for asynchrony holds, then concurrent composition com

bines the C" event name 12" with every event name of C" that is determined by the same 

convention to be “coincidental” to every event of C". For the example of Co illustrated in 

figure 5.1, the C\ event name E^ and C q event names A° and are combined to form 

the composite event names AP U E^ and \J E^. These event combinations each label 

one transition in each of the synchronous representations D q and D \  which are illustrated 

in figure 5.3.

The absence of one or more of the transitions labelled with an asynchronous or coinci

dental combination of any event name 12" with the any event name S ' or F' of C ' means 

that the concurrent composition of the extracts Cy <1 C  and C|| < C" must not generate 

the absent transitions. This requires the suppression of the absent event combinations, 

but without additional rules, the asynchronous and coincidental combinations are auto

matically generated by the concurrent composition operator. The solution is to make the 

remaining asynchronous combinations synchronous.
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Now, every composite event name exposes the set of component events that must occur 

simultaneously for progress to occur. The idle event name F of a component C  names an 

event that implicitly occurs simultaneously with events not named in the event set of C. 

For the example of figure 5.3 the composite event named F°^  ̂U occurs when the idle 

event Fq occurs simultaneously with the Ci event E^. Likewise, any composite event name 

that describes synchronous progress exposes the set of component events that must occur 

simultaneously. Thus the combination F' U E" can be considered to be synchronising.

Let those instances of the idle event name Fg, in combination with the event name E% 

adopt the event name E". Thus each transition of the form (Q', Fg, U EJ[, Q') becomes a 

transition of the form (Q', E", <5'), which itself is from a class of transitions of the form 

(Q', E", (50- These transitions, where the event name E" is now common to the extracts 

(7|| < C' and C'y <] C", are the State Dependent Synchronisation transitions introduced 

when an asynchronous or coincidental combination is absent (section 3.1.4, page 52).

If, for example, the asynchronous transition ({a}, F°^jUD^, {a}) of D q in figure 5.3 was 

absent, then the transition ({6}, {6}) leads to the transition ({6}, E^, {6}) in the

extract Cy <  C q. If the coincidental transition ({a}, A° U E^, {6}) was absent, then both 

the transitions ({a}, E^, {a}) and ({6}, E^, {6}) are contributed to the extract C'y <  C q.

Absent asynchronous combinations are determined by Definition 5.8 (page 118) and 

absent coincidental combinations are determined by Definition 5.9 (page 123).

Progressive Synchronisation Transitions

Transitions of the form (Q', E^ U E%, P') describe the progress of the component D' by 

event E(  ̂whilst the component D" progresses by event E%. Following the reasoning from 

the previous section, a transition of the form {Q', E^UE^, P') is an instance of a transition 

of the form (Q', E' U E", P'). Combinations of an event name E ' with an event name E"
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arise only if both the event names are “coincidental”. By the same convention, concurrent 

composition also combines the event name E' with every instance of the idle event name 

Tq„ of C", and the event name E" with every instance of the idle event name Vq, of C . 

These latter two forms are the “asynchronous” event names.

In the previous section on State Dependent Synchronisation, the absence of one or more 

of the related transitions labelled with an asynchronous event name resulted in synchroni

sation between the extracts Cy < C  and C'y < C". Concurrent composition of the extracts 

then generates synchronous combinations in place of the asynchronous combinations, but 

a consequence of this synchronisation is the suppression of coincidental combinations. In 

other words, coincidental combinations need also to be explicitly synchronous.

Let the coincidental event name E^ U E" be replaced with a new unique and explicitly 

synchronous event name denoted W(E' U E")m,n- Therefore, each transition of the form 

(Q', E^ U 12", P') in a synchronous representation D' becomes a transition of the form 

{Q',M{12' U 12")m,n̂  P '), which itself is an instance from a class of transitions of the form 

{Q',Af(12'[Jl2"), P'). These transitions, where the event name jV(E'UE") is common to the 

extracts Cy O C  and Cy <! C", are the Progressive Synchronisation transitions introduced 

when an asynchronous combination is absent (section 3.1.4, page 55).

If, for example, the asynchronous transition ({a}, Ty^yUE^,{a}) of Dq in figure 5.3 was 

absent, then the transition ({a}, A^UE^, {6}) leads to the transition ({a}, W(A°UP^), {6}) 

in the extract Cy <1 Cq. Because of the one-to-one relationship between the transitions, 

the asynchronous transition ({e}, U P^, {/}) of Di would also be absent, thus the 

transition ({e},A^UE^, {/}) leads to the transition ({e},M{A^\JE^), {/}) in the extract 

C y d C i.

Absent asynchronous combinations are determined by Definition 5.7 (page 116).
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5.2 Extraction Operator

The states, event names and transitions of a composite system Cy are formed by the set 

union of pairings of states, event names and transitions from the components C  and C", 

as described in detail in section 4.3 (page 74). The extraction operation Cy <C" determines 

those states, event names and transitions of C' that contributed to the formation of Cy. 

A state of C  is said to exist in a Cy state, if the C  state was used in the formation 

of a Cy state. For example, the C' state {a} exists in the Cy state {a,c}, but does not 

exist in the Cy state {b,d}. Event names are treated in a similar way. A C' transition 

is said to exist in a Cy transition if the from state, the event name and the to state of a 

C  transition exist, respectively, in the from state, the event name and the to state of a 

Cy transition. For example, the C' transition ({a}, {a6}, {6}) exists in the Cy transition 

({^, ) but does not exist in the Cy transition {{a, f},{'yo, fg},{a ,g}).

5.2.1 Extract S tate Set Q{C\\ <1 C')

The extract state set, Q(Cy OC'), is defined in Definition 5.1. This definition compares all 

the states Qy E Q(Cy) with states Q' G Q{C') and contributes the state Q' to Q(Cy < C') 

but only if Q' exists in Qy, that is, if the intersection of Q' and Qy is not empty.

Definition 5.1 Extract state set.

Q ( q j  < C )  =' { Q ' 13<9 || .  (Q || 6  (9 ( q j )  A Q ' 6  Q{C]  a  Q̂  ̂n Q ' j t  { } ) }

Consider the following example. Let ($(Cy) =  {{a,c}} and Q(C') =  The

pairing of Qy = {a, c} with Q' = {a} gives Qy C\Q' = {a, c} fl {a} =  {a}, thus {a} 

exists in {{a, c}} and hence {a} G Q(Cy <J C'). However, the pairing of Qy =  {a,c} with 

Q' =  {6} gives Qy f]Q' = {a,c} fl {6} =  {}, thus {6} does not exist in {{a, c}}. Thus

Q (qj< iC ') =  {W }.
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When C || incorporates no modifications it can be replaced with C'y and then the simple 

definition of Q  (C'y < C ")  =  Q (C") would suffice. However, as the above example illustrates, 

the advantage of Definition 5.1 is that it does not generate states in Q (C'y < C ")  that are not 

in the composite C'y but are in the component C". This is useful in considering expressions 

of the form Q(Ca\\b < C 'c ), that is, the extraction of a machine that is radically different 

from the components of the system. Observe that the conjunction Qy H Q' {} has the 

effect of excluding the anonymous state, that is {}, from the extract state set even if the 

anonymous state was included in C". This is discussed in Appendix B.3.

5.2.2 Extract Initial State Set Q{C\\ < C')

The extract initial state set, <5 (C'y < C ), which is defined in Definition 5.2, follows from 

Definition 5.1.

Definition 5.2 Extract initial state set.

Q(C\\< C) {<9' 13Q|| . (Q|| € A Q' € Q{C) A n Q' 5̂  {}) }

The Composite Transition System definition (page 57) defines the initial state set as 

a subset of the concurrent state set, therefore, the extract initial state set must be a 

subset of the extract state set, that is, Q{C\\ <I C") Ç Q(C'y < C ). This holds because 

Q (q |)Ç Q (5y)and(g(C ")Ç Q (C ").

5.2.3 Extract Event Nam e Set E(Cy < C")

The extract event name set, S(C 'y < |C "), is defined in Definition 5.3. This definition follows 

from Definition 5.1. However, the event names of an extract cannot wholly be determined 

by event name existence since the transitions of an extract (section 5.2.5, page 107), can
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include progressive synchronisation transitions (page 55) and state dependent synchronisa

tion transitions (page 52). Specifically, a transition of the extract A((7|| <C") may include 

a new event name, or a C" event. In both cases, the event names exist in neither C  

nor C||. Thus the extract event name set È(C|| < C )  must include event names used in

any transition (Q,12,P) of the extract transition set A (C'y <3 C ). Therefore, the extract

transition set must be evaluated before the extract event name set.

Definition 5.3 Extract event name set.

2(C|j <  C )  {  S ' I 3 S|| •  (S|| 6 S(C||) A ^ 6  S (C ') A S,, n S ' , ^  {} )  }u { S | 3 Q , F .  (<9,s,P)6Â(q|<ic')}

5.2.4 Extract Idle Event N am e r((7y < Cy)

Definition 5.4 defines the extract idle event name as a new unique event name. The extract 

C' is a modified form of the operand C  in the extraction operation Cy < C', hence the 

new name is derived from the idle event name F(C') of C .

Definition 5.4 Extract idle event name.

r(C|j < C) V(r(c'))

5.2.5 Extract Transition Set A(Cy <  C')

The extract transition set A(Cy < C') must include those C  transitions that exist in Cy 

asynchronous and synchronous transitions. Additionally, the extraction operation A(Cy <  

C )  must determine and contribute any required progressive synchronisation and state 

dependent synchronisation transitions.
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In this section, four different cases of transition generation under the extraction opera

tor are described and then a combined definition for the extract transition set A (C'y 0  C') 

is given in Definition 5.10 (page 123). Each of the cases incorporates a transition existence 

test, where a transition G A(C') is said to exist in a transition (Qy,Sy,f]|) G

A(Cy) if the from state Q' exists in Qy, the event name S ' exists in S y , and the to state 

P' exists in f]|.

The following conventions are adopted in this section. First, to aid readability, the 

terms “vertical”, “horizontal” and “diagonal” refer to transitions as drawn in the pictorial 

representations of a CTS. Second, concurrent composition forms, for example, a concurrent 

state Qy from the union of Q' and Q", contributed by C' and C" respectively. For the 

extraction operation Q (Cy < C') it is necessary to deduce Q" because the operands of the 

extraction operator are Cy and C', and not C". The deduced C" terms are denoted using 

calligraphic symbols, hence, Q", 5’" and %" are the deduced counterparts of Q", S" and 

r" respectively.

E xtract Asynchronous Transition Set, A(Cy <C')a

For a Cy transition Ay to describe the asynchronous progress of a C  transition A', the 

transition A' must have been paired with an implied idle transition of C" under concurrent 

composition. Thus, the event of the transition Ay will be of the form S ' U F" as a 

consequence of an event pairing of the form ASs/,r" (page 76).

The extraction of the asynchronous transitions of C' requires a C  transition A' to 

exist in a transition Ay of Cy, provided that the event Sy included in Ay is of the form 

S' U F". For example, the bold transitions of figure 5.4 illustrate that the Co transi

tion ({a}, {ab}, {6}) exists in the Cy asynchronous transitions ({a, c}, {ab,'yi}, {b, c}) and 

({a,d},{ab,yi],{b,d}).
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Figure 5.4: Asynchronous extraction of Co (right) from C|| (left)

The comparison of the from state, event and to state of the transitions A' and Ay take 

the form of term 5.1.

(Qll,S||,f||) e Â(C||) A (Q ',S ',P ’) € A(C') A 
(Qll n Q' 5̂  {}) A (S|| n S ' {}) a  (fj, n p ' # {}) (5.1)

A transition A' that exists in a transition Ay is contributed to A(C|| < C ')^  only if C" 

contributed the idle event F" to Ey. The expression A(Cy < C')a  references Cy and the 

component C' but not the component C", specifically it does not reference F''. Let the 

event contributed by C" to Cy be denoted by S" and let the idle event contributed by C" 

to Cy be denoted X". The terms S" and X" are evaluated as follows;

1. S": From Definition 4.8 (page 79), Sy =  E' U S*’. Using set diiference, Ey — E' =

(E' U S") -  E' and hence Ey -  E' =  S".

2. X": From Definition 4.9 (page 80), Fy =  F' \JX". Using set difference, Fy — F' =

(F' U X") -  F' and hence Fy -  F' =  X".

Therefore, term 5.2 holds true if C" contributed the idle event F". 

3^" =  Ey -  E', X" =  F(Cy) -  F(C') • S" =  X" (5.2)
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The extract asynchronous transition set A(C||<C")^, which is defined in Definition 5.5, 

follows from terms 5.1 and 5.2 and contributes the A' transition

Definition 5.5 Extract Asynchronous Transition Set A(C|| < C')a-

A(5i|<C 'U  = {(Q',S',F')|3Q||,Sh^/^| .  (
(Q ||,S ||,P ||) € A(C||) A (Q '.S '.P ')  e  A(C') A
(<3ll n Q V  {}) A (E|| n {}) A ( f | |n P '^  {}) a  
3S" = S|| -  s', I"  = r(C||) -  r(c") • e" = i"  )

}

Consider the following two cases that can arise with a subsequent concurrent compo

sition of C|| < C’ with C|| < where a transition A' has been contributed to the set

A (C y<lC % .

1. In the absence of state dependent synchronisation (page 52), the concurrent compo

sition of (7|| with C|| generates asynchronous transitions because of pairings 

of the form yhq̂») and Y\Q>y

2. In the presence of state dependent synchronisation, the concurrent composition of 

C|| < C  with C|| <1 C" generates synchronous transitions as a consequence of pair

ings of the form C<SA /̂^a"- Asynchronous transitions cannot be generated because 

the restricted system Cy denies asynchronous progress. Consider again figure 3.8 

(page 55). The concurrent composition of the C\ state dependent synchronisation 

transition ({d}, {a6}, {d}) with the Cq transition ({a}, {a6}, {6}) gives the Co||Ci 

synchronous transition ({a, d}, {«6}, {6, d}) rather than the expected asynchronous 

transition ({a, d}, {a6,7i}, {6, d}), see figure 3.7 (page 54).

Observe that the absence or presence of state dependent synchronisation has no con

sequence on the inclusion of a transition A' in the extract asynchronous transition set

A (C y<]C % .
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Extract Synchronous Transition Set, A(C|| <C')s

For a C|| transition A|| to describe the synchronous progress of a C  transition A', the 

transition A' must have been paired, under concurrent composition, with a C" transition 

with a shared event. Thus the event of the transition A|| will be of the form S ' U S" as a 

consequence of an event pairing of the form <SSs',s» (page 78).

The extraction of the synchronous transitions of C' requires a C’ transition A' to exist 

in a transition A|| of C'y, provided that the event Sy included in Ay is of the form S'U S". 

For example, the bold transitions of figure 5.5 illustrate the existence of the Cq transition 

({a}, {(%}, {6}) in the Cy transition ({a, c}, {(%}, {6, d}).

{a,c}

{a,rf} {b4}

Figure 5.5: Synchronous extraction of Cq (right) from Cy (left)

The comparison of the from state, event and to state of the transitions A' and Ay take 

the form of term 5.3.

(Q ll,s ,|,P ||)  6 A(C||) A (Q ',S ',P ')  e A(C') A 
(<3 |ln Q ' ^  { } )  A (S | |n S '#  { } )  a  ( f j , n P '^  { } )

(5.3)

A transition A' that exists in a transition Ay can only be contributed to the extract 

A(Cy < C')s if Ay is a synchronous transition. Since the expression A(Cy < C')s  only 

references Cy and the component C', it would seem to follow from the derivation of A(Cy <  

C')a that a term of the form 35" = Ey — E' is required so that a term of the form E' =  5"
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can be included to determine a synchronous transition. Instead, term 5.4 will be used to 

determine if E' =  E" when Ey was formed and the implications of this will be discussed 

in section 7.1.1 (page 185).

Ey =  E' (5.4)

The extract synchronous transition set Â((7y < C ')5 , which is defined in Definition 5.6, 

follows from terms 5.3 and 5.4 and contributes the A' transition (Q', E', P').

Definition 5.6 Extract Synchronous Transition Set A(Cy <1 C')s-

A(Cj| <5 C')s = { (Q‘, S', P') I 3 <3||, .  (
(Q ||,S||,/]|) 6 A(C||) A (Q ',S ',P ') e A(C') A 
(<9 |l n <9' #  {}) A (S|| n s ' ^  {}) a  (fj, n f f  {}) a  
S|| =  E ')

}

The concurrent composition of the extract Cy <1 C' with the extract Cy <1 C" will 

generate the synchronous transition Ay. Existing synchronous pairings are not changed 

by the introduction of progressive or state dependent synchronisation.

E xtract Progressive Synchronisation Transition Set, A(Cy <C')p

Progressive synchronisation is introduced when a transition Ay that describes the simulta

neous (coincidental) progress of the components of Cy is present in the composite system 

Cy, but one or more of the related asynchronous transitions is absent.

For a Cy transition Ay to describe the simultaneous (coincidental) progress of a C  

transition A', the transition A' must have been paired, under concurrent composition, 

with a C" transition without a shared event. Thus the event of the transition Ay will be 

of the form E' U E", for E' D E" =  {}, as a consequence of an event pairing of the form 

CEs'.s" (page 77).
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Determining the need for progressive synchronisation transitions requires a C  transi

tion A' to exist in a transition Ay of Cy, provided that the event Sy included in Ay is of 

the form S ' U S". For example, the bold transitions of figure 5.6 illustrate the existence 

of the Co transition ({«}, {ab}, {b}), in the C\\ transition ({«, c}, {ab, cd}, {b, d}).

Figure 5.6: Progressive extraction of C q (right) from C'y (left)

The comparison of the from state, event and to state of the transitions A' and Ay take 

the form of term 5.5.

(Q y ,S j , ,F | |)  e & ((:„)  A (Q%2%fO E A(C") A 
( Q l in Q V O )  A ( S i i n s ' ^ 0 ) a  (f], n  P ' 5̂  { } )

(6.5)

Further, it is necessary to determine that a transition A' that exists in a transition 

Ay describes simultaneous (coincidental) transitions. In other words, asynchronous and 

synchronous transitions must be ignored. Term 5.2 (page 109) holds true for an asyn

chronous transition pairing, hence, £" ^  X" will hold true if the transition pairing is not 

asynchronous. Likewise, term 5.4 (page 112) holds true for a synchronous transition pair

ing, hence, Ey ^  S ' will hold true if the transition pairing is not synchronous. Hence a 

term of the form given in term 5.6 determines the simultaneous transitions of C'y.

(0||,S||,P\\) e Â(q,) A (Q',S ',P-) e A(C') a 
(Qll n Q ' f  { } )  A (S|| n  E ' #  { } )  A (/]| n  P ' ^  { } )  a 
E | |# S 'A  _
3S" =  E|, -  S', I" = r(C||) - r(C'). s" ^ i"

(5.6)
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Concurrent composition generates the related asynchronous transitions from pairings 

of the form for all S" G Q(C") (page 82), and from pairings of the form

for all S' G Q(C') (page 82). These asynchronous transitions are, respec

tively, the horizontal and vertical transitions of Cy in figure 5.6. Recall from figure 3.3

(page 47) that Q(C') and Q(C") may contain many states.

Progressive synchronisation, which will synchronise the extract Cy with the extract 

Cy < C" under concurrent composition, arises only when one or more of the related asyn

chronous transitions is absent. Therefore, it is necessary to determine if a 

pairing transition is absent, or if a -4A^//(5/ p / p a i r i n g  transition is absent.

1. Absent pairing transitions.

For every state S" G Q{C"), concurrent composition will generate an asynchronous 

transition of the form (Q' U S",T,' U V",P' U S") G Â(Cy). Thus a term V<5" G 

Q(C") • ( Q ' \ J S " \ J X " , P'\J S") G A(Cy) would hold true only if all the expected 

asynchronous transitions exist in Cy.

However, extraction is concerned with the absence of one or more asynchronous 

transitions. If p{x) is a predicate over x, then by DeMorgan, -Nx G X  • p{x) and 

3x G X  • -^p{x) are equivalent [52]. Therefore, it follows that a term of the form 

3S" G Q(C") • (Q' U S", E' U X", P' U S") 0 A (Cy) will hold if one or more of the 

expected asynchronous transitions is absent. The evaluation of X" is included in 

term 5.6. The evaluation of S" requires the evaluation of the state set Q{C") rather 

than a single state. Therefore, Q(C") is the set of the set difference of all the pairings 

of states 5'y G Q(Cy) with the states S' G Q{C'), provided S' exists in 5y.

Hence, term 5.7 determines if any expected “horizontal” asynchronous transition is 

absent.

35" € {5|| -  5' 15|| e Q(C||) A S’ ^Q(C) A n S ' j t  {}} .  , ,
iQ' U 5", E' U J", F ' U5") 0Â(C||)  ̂ ^
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2. Absent transitions.

For every state S' G Q{C'), concurrent composition will generate an asynchronous 

transition {S' U Q",T' U Ti",S' U P") G A(C||). It follows from the previous case 

that a term 3S' G Q{C') • {S' U Q", F' U S", S'  U V") 0 A(C||) will hold if one or 

more of the expected asynchronous transitions is absent. The evaluation of S" is 

included in term 5.6. The evaluation of Q" and V" follow from set difference, hence 

a "  =  Qll -  g 'a n d  P" =  F|| -  P'.

Hence, term 5.8 determines if any expected “vertical” asynchronous transition is 

absent.

35 ' g Q  ( C ) , Q "  =  Q „ - Q ' , P "  =  F „ - P ' .

(S' u s", r(C') u s", S'u V") i  A(C||)  ̂ ■ ’

Where an asynchronous transition is absent then a transition (Q̂ , U E"),P ') is 

included in the extract A(C|| < C")p. The new event name, A/’(E' U E"), is common to 

the extract Ê(C|| < C') and the extract E(C|| <1 C") to ensure synchronisation under con

current composition. Hence, the extract progressive synchronisation transition set, which 

is defined in Definition 5.7, follows from the conjunction of term 5.6, which determines a 

simultaneous transition, with the disjunction of terms 5.7 and 5.8, which determine absent 

“horizontal” or “vertical” transitions respectively.
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Definition 5.7 Extract Progressive Synchronisation Transition Set A(C|| < C')p.

A ( C | |< c ' ) p

(Q||, E„, P||) E A(C||) A (Q% E\ PO G A(CO A 
(Q lin Q V O ) A (E ||n E '# {})  A (;i|nP'^6{})A  
E|| ^  E' ^ r  =  E ||-E 'A  
3J" =  r ( q | ) - r ( c ' ) *

(g y /e  {q, - 6 " Iq, eQ (q i)  A 5 '^ e Q M  A q , n y  {}}, 
{Q' U S \  E' U P", P ' U 5") 0 A  (C||) V 

35' e Q(C'), Q" = Q|| -  g ', V" =  P ' .
(5'u g",r(c') u 5",5'u p") 0 A(q|) ) )

) }

Note that the use of an event of the form E' U E" rather than W(E' U E") does not give 

the desired result, for example, if {a, h} = {c}U{5} had been used instead of A7({a}U{5}). 

Let So =  {{a}, {n, 6}} and Ei =  {{«,6}}, then Ê(Co||(7i) would incorrectly evaluate as 

{{a, 6}}. Specifically the expected event {a, 71} would be absent because the pairing of 

{a} G Sq with {a, b} G Si would be treated as synchronous because of the common 

component event identifier a.

Extract S tate Dependent Synchronisation Transition Sets, A (q | <3 C')d a  and
A (C || <  C')d c

The definition of the extract A (C || < C ")p , in the previous section, dealt with the introduc

tion progressive synchronisation transitions as a consequence of the denial of asynchronous 

progress caused by the absence of asynchronous transitions. Likewise, the definition in 

this section of the extract A (C|j <  C")da deals with the introduction of state dependent 

synchronisation transitions also as a consequence of an absent asynchronous transition. 

The definition in this section of the extract A  (C|| <  C")dc also deals with the introduc

tion of state dependent synchronisation transitions but as a consequence of an absent 

simultaneous (coincidental) transition.
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Determining the need for state dependent synchronisation transitions requires a C' 

implied idle transition of the form to exist in a transition A[[ of C[| that

describes the asynchronous progress of C", that is, A|| is of the form {Q' U Q", F' U 

Ti" F o r  example, figure 5.7 illustrates, with the bold directed arcs, the existence 

of the Cq implied transitions ({«}, {to}, {«}) and ({6}, {70}, {^}), in the Cy transitions 

({a, c}, {70, cd}, {a, d}) and ({6, c}, {70, cd}, {6, d}) respectively.

Figure 5.7: State Dependent extraction of C q (right) from Cy (left).

The comparison of the from state, event and to state of the implied idle transitions 

{Q',r{C'),Q') of Q{C') and the transitions Ay of C'y take the form of term 5.9.

(%Ey,F||)EÂ(Cy)
(Q|l n Q' 7̂  {}) A (Ey n r(C) 9  ̂{}) A (ĵ , n Q' # {}) (5.9)

Observe from Definition 3.1 (page 57) that the event Sy cannot be the idle event F (C 'y ), 

that is, Ey ^  F (C ") U F (C " ') . Thus the event E '' contributed by C" to the formation of 

Ey =  F ( C ')  U E "  cannot be the C" idle event, that is E "  ^  F ( C " ) .  In other words, it is not 

necessary to assert that the event contributed by C" is not the idle event F  ( C ' ' ) . Hence a 

term of the form given in term 5.9 is sufficient to determine those transitions of C'y that 

describe the asynchronous progress of C".

State dependency arises under two conditions and results in the introduction of a 

reflexive state dependent synchronisation transition of the form (Q', 5",Q0-
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1. Absent pairing transitions.

Term 5.10 determines if any expected “vertical” transition is absent. This case 

follows exactly from the absent ^A^//^(5/ r̂',5') case in the definition of the extract 

A(C|| < C')p (page 115).

35' e Q(C'), Q" =  Q|| -  Q', V" = P \ \ - P '»  
( 5 'u â " , r ( C " ) u 5 " ,5 'u p " ) ^ Â ( q |)  ’

The evaluation of S" follows from the set difference Ey — r(C"). Observe that the

derived event S” 6 Ê(Cy < C )  and the event E" £ Ê(Cy OC") are common, that is,

S" — T,". Therefore, unlike progressive synchronisation which requires the generation

of a new common event name in both E((7y <C") and S(C'y <C ''), it is not necessary

to also determine if any ,T",S") pairing asynchronous transitions are absent.

In other words, it is not necessary to determine if there is also an absent related

“horizontal” transition.

Where an .4A^//(5/ p/̂ 5/) asynchronous transition is absent then a transition of the 

form must be included in the transition set A (C'y < C')d a - Hence, the

extract state dependent synchronisation transition set, which is defined in Defini

tion 5.8, follows from the conjunction of term 5.9, the evaluation of E" and term 5.10 

which determines any absent “vertical” transitions.

Definition 5.8 Extract State Dependent Transition Set A (C'y < C')d a -

A ( q |  <  c ’)da =
{(Q ',5",(3 ') |3Q ||,S „ ,/] | .  (

(Q ||,S ||,/] |)6 Â (q |) A Q '6 Q(C')A
(Q|InQ' #  {}) A (S|| n r (C ')  #  {}) a  {p̂  ̂n Q ' j t  {}) a
s" = Sji -  r(C ') A
35' e Q(C'), S" = Q|| -  Q', P" = P\isQ'»

(S' u e", r(c") u  s", S' u V") i  A (qp  
)}

2. Absent C«SAa',a" pairing transitions.

Concurrent composition also generates a related simultaneous transition from a 

C5Aa',a" pairing (page 83), the absence of which introduces state dependent syn

chronisation to the extract transition set A (C'y < C')d c -
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Unlike the absence of an expected asynchronous transition, as determined for the 

extract transition set Â{C^^<]C')da , a simultaneous transition may be absent because 

it has been removed, or because it never existed. The latter case arises when the 

state of either or both of the components is terminal, that is, state Q is terminal 

if there is no transition with a from state of Q. This leads to the observation that 

the presence or absence of a simultaneous transition in C'jjC" depends upon the 

transitions of both and C".

In the extraction operation Cjj <1 C ,  the transitions of C  are known, therefore, it is 

necessary to determine the transitions A" of C". If a state dependency comparison 

determines that an implied C’ idle transition exists in a Cy “vertical” transition 

then the from state Q", the event E", and the to state V" of a transition A" can be 

evaluated. In other words, a non-terminal C” transition A" =  [Q!',E",V") can be 

deduced.

Two cases of related simultaneous transition arise. Consider, for example, fig

ure 5.7 (page 117). The simultaneous transition ({a,c},{ah,cd},{b,d}) is related to 

the asynchronous (vertical) transition ({a, c}, {70, cd}, {a, d}) because they have the 

same from state, {c}, and by the contribution of the C" transition ({c}, {cd}, {d}). 

The same simultaneous transition is also related to the asynchronous transition 

({6, c}, {70, cd}, {b, d}) because they have the same to state, {d}, and by the contri

bution of the same C" transition ({c}, {cd}, {d}). Hence;

(a) From a comparison of an implied C' idle transition, with a C'y

transition, (Qy, Ey, Fj|) =  (Q' U Q", F' U E " , Q' U P"), the C" transition A'' =  

{Q",E",V") can be deduced, where Q" =  Qy -  Q', E" =  Ey — E ' and V"  =  

Py — Q'. The pairing of A" with each of the transitions (Q', E ',  P ')  £  Â (C ") 

gives a simultaneous transition C«SAa',a"- Hence, term 5.11 will hold true if 

an expected simultaneous transition is absent.

(Q' U Q", E' U E”, P' U V") ^ A(Cy) (5.11)
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In other words, the deduced transition A", with a from state Q", is paired 

with every C' transition with a from state Q' to form each possible related 

simultaneous transition that would, by concurrent composition, exist in the 

transition set A(C||), but which may not necessarily exist in the transition set

A (q,).

(b) From a comparison of an implied C  idle transition of the form (P', F', P') with 

a C|| transition of the form (Qy, Ey, Fj|) =  (P ' U Q", F' U E", P' U P"), the C" 

transition A" =  [Q", S", V )  can be deduced, where Q'  ̂=  Qy—P', S" — Ey — E' 

and V" =  P]| -  P'.

The pairing of the deduced transition bJ' with each of the C  transitions 

(Q% E', P') e Â(C') gives a simultaneous transition C($AA\A"' Hence, term 5.12 

will hold true if an expected simultaneous transition is absent.

{Q' U Q!', E' U E”, P ' U V") i  A(Cy) (5.12)

In other words, the deduced transition A", with a to state P", is paired with 

every C  transition with a to state P ' to form each possible related simultaneous 

transition that would, by concurrent composition, exist in the transition set 

A(Cy), but which may not necessarily exist in the transition set A(Cy).

Pairing with C’ simultaneous transitions is required because, under concurrent com

position, all simultaneous pairings will generate the same “vertical” transition. Fig

ure 5.8 illustrates two components and their concurrent composition CojlCi. The 

composition is illustrated as the merge of the concurrent composition of the Cq 

transition ({a}, {ct6}, {6}) with the C\ transition ({e}, {e/}, {/}) and the concur

rent composition of the Cq transition ({a}, {ac}, {c}) also with the C\ transition 

({e}, {e/}, {/}). This example shows that both of these pairings generate the same 

“vertical” transition ({a, e}, {70, e/}, {a,/}) in which the C' implied idle transition 

(W , { to} ,  {«}) exists.
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Pairing with C  synchronous transitions must be excluded. Concurrent composition 

will not generate a transition from a pairing of a C  synchronous transition with a 

C" asynchronous transition, that is, with the deduced C" asynchronous transition 

Term 5.4  (page 112) asserts that Ey = E ',  where Ey £ Ê (C y ) , is 

sufficient to determine a synchronous pairing in the formation of E y. In this case it 

is necessary to determine that the event E ' is not an event of C'y, that is E ' ^  Ey for 

any Ey. This leads to term 5.13.

E '0E(C y) (5.13)

Where a simultaneous transition is absent for case 2a (page 119), a transition of the 

form (Q', £*",(5') must be included in the extract transition set A (C'y <] C')d c - This 

contribution is the first term of the set union in Definition 5.9. The contribution follows 

from term 5.9, the evaluation of terms Q", 8 " and V", and the conjunction of term 5.11 

with {Q', E ',  P') £ Q{C') and term 5.13 which constrains the combinations of Q' £ Q{C'), 

E ' £  E (C ") and P' £ Q{C') to the simultaneous (and not synchronous) transitions of

A(CO.

Likewise, where a simultaneous transition is absent for case 2b (page 120), a transition 

of the form (P', 8 ", P') must be included in the extract transition set A (C'y <C')dC‘ This 

contribution, which is the second term of the set union in Definition 5.9, differs from the 

first term in that P' and Q' have been exchanged.
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{ac}

{ab}

 ̂r

{ b / }

C„||C,

Figure 5.8: Duplication of related transitions under concurrent composition.
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Definition 5.9 Extract State Dependent Transition Set A (Cm < C')dc- 

Â  (C || <1 C')dc “=

( ( ? l | ,S | | , f i | )  e A ( C | | )  A Q ' 6 Q ( C ' ) A
( Q | I n Q ' ^ { } )  A ( S | | n r ( C ' ) ^ { } )  a  ( f j , n Q ' # { } ) a
s" = S y  -  r ( C ')  A
BP' e  Q (C ') , S '  e  s ( C ' ) ,

Q" =  (5 | | - Q ' ,  =  _
{{Q' U S " , S '  U P' U V") ^  A  (C ||) A

( Q ' , S ' , ^ )  6  A ( C ') A  
S ' 0 S (C ||) )

) }u
{ ( P ', r ,P ') |3 Q | | ,S j i , i^ |  .  (

( Q l l , S | | , f | | ) e A ( C | | )  A p ' e Q ( C ' ) A
(Q\ln P ' f  { } )  A ( S | | n r ( C ' ) { } )  A { } ) a
£” =  Sy -  r ( C ')  A
3(3 ' e  Q (C ') , S ' e  s ( C ' ) ,

Q" =  ( 3 | | -P ',  P "  =  P | | - P ' .  _
HQ' U S " , S '  U £ " ,  P' U V " )  i  A (Cy) A 

( Q ' , s ' , ^ ) 6 A ( C ' ) a  
S ' i  s ( C | | ) )

)}

E xtract Transition Set A (Cy <5 C')

The terms A(Cj| <1 C')a,  A(Cj| <1 C')s, A(Cy <1 C')p , A(C|] <1 C ')d a  and A ( q |  <1 C ') d c  

contribute transitions to the extract transition set A(Cy <1C') given in Definition 5.10.

Definition 5.10 Extract Transition Set

A(q, 4 C) A (^ < ic 'U  
U  A ( C y < C ' ) s  

U  A ( C y < lC ' ) p  

U A(CyCC'W  
U A ( C | |< l C ' ) c c
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5.3 Example o f Extraction from an Unrestricted System

This example illustrates the application of the extraction operator on the unrestricted 

composite machine Co||Ci. As an unrestricted machine, the extract C|| < Cn and the 

component Cn should be the same.

Consider the system Co||Ci, illustrated in figure 4.5 (page 91), formed from the concur

rent composition of Cq and Ci, illustrated in figure 4.4 (page 88). Observe that one of the 

components has a reflexive non-idle transition, illustrating that the so called “diagonal”, 

“vertical” and “horizontal” transitions still exist. For reference, the definition of C o ||C i is 

repeated here;

Q{Cq\\Ci ) =  {{a,e},{6,e} ,{a,/} ,{6,/}}
9 ((:o||Ci) =  {{a,e}}
à(Co||Ci) =  {{ha, 7i}, { to, ee}, {ha, ee), {a}} 
r(C o||C i) =  {To,T i}
A(Co||Ci) =  {({6, e}, (6a, ti}, {a, e}), ({6, /} , {6a ,71}, {a, /}),

({«, e}, {70, ee}, {a, e}), ({6, e}, {70, ee}, {6, e}),
({6, e}, {6a, ee}, {a, e}), ({a, e}, {s}, {6, /})}

5 .3 .1  E x tr a c tio n  o f  Cq from  Cq\\Ci

Let the extraction operation C q = Co||Ci <] C q be written as Co =  C|| <I C q , where C q is 

given below. Carefully note that for this extraction operation, any C  term in any of the 

definitions of the extraction operator refers to Co, and any derived C" term infers C\.

<9 (Co) =  {{«},{»}}
Q(Co) = {{«}}
Ê(Co) =
r (C o )  =  { to}

A(Co) =  {({«},{«},{('}), ({6}, { H .W ) }

From Definition 5.1 (page 105), each state of Q (C || o C o )  must exist in both Q (C ||)  and 

Q{Cq).  Hence, the pairing of {a, e} G Q{Ĉ \) with {a} G Q{Cq) gives {a, e} D {a} =  {a}.
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thus the conjunction Q\\C[Q’ ^  {} holds true and {a} is included in Q(C||<iCo). Conversely, 

the pairing of {a, e} with {6} gives the empty set {}, thus the conjunction Q|| fi Q' ^  {} 

does not hold and hence {6} is not included in Q(C|| < Co). Evaluation of all pairings in 

accordance with Definition 5.1 is required to determine the state set. Likewise, the initial 

state set follows from Definition 5.2 (page 106). Hence;

Q(C||<lCo) =  { W ,{ 6}} 
Q(C,|<Co) =  {{a}}

From Definition 5.3 (page 107), each event name of S(C|| < Co) must exist in both 

S(C||) and S(Co), or may be a synchronising event resulting from the extraction. In this 

example, the system C|| has not been restricted and therefore extraction does not generate 

any synchronising events, thus the set 2(C|| < Co) is formed only from the existence of 

S(Co) event names in È(C||) events. Hence;

S (q |< C o ) =  {{«},{6a}}

From Definition 5.4 (page 107), the extract idle event name F(C|| <I Co) is a new idle 

event name A/’({7o}). For simplicity, {70} will be used as the system C|| has not been 

restricted. Hence;

r(C |,< C o) =  {70}

From Definition 5.10 (page 123), the transition set is formed from the union of the 

contributions of A (C||<C')a, A(C||<]C^)g, A(C||<]C')p , A(C||<C')d^ and A(C||<C')ipc'-

1. A(C|| < Co)a

Of all the possible transition pairings, table 5.1 lists only those where a transition 

A (Co) exists in a Ay transition. However, only those pairings where 6 " = X" con

tribute the transition A (Co) to A(C|| <C')a- The contributing pairings are marked
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in th e  con trib ution  (C) colum n. In th is exam p le, on ly  th e  tran sition  ( {6 } , {ha}, { a } )  

con tr ib utes to  A (C || <3 C ' )a ‘

^11 A (Co) E" X” c
( { 6 , e } , { 6 a ,7 i } , { a , e } )

({6 } , {6 a } , {a } )
{T i }

{T i }
'k

( { 6 , / } ,  {6a , 71}, { « , / } ) {71} k
({6, e},{6a,ee},{a,e}) {e e }

( { a , e } , { s } , { 6 ,  / } ) ( { « } ,{ « } ,{ & } ) { } {T i }

Table 5.1: E x isten t and con trib utin g  pairings o f  A (C || <1 Cq)a 

2. A (C „ < iC o ) ^

T able 5.2 lists  th o se  tran sition s A  (Co) th a t  ex is t  in a A y tra n sitio n . H ow ever, on ly  

th o se  pairings w here Ey =  E ' con trib ute th e  tran sition  A  (C o) to  A (C y  <  C’)s- In 

th is  exam p le, on ly  th e  tran sition  ( { a } ,  {« } , {6 } )  is con trib uted  to  A  (Cy <  C ')^ .

1̂1 A (Co) E' C
({6 , e } ,  {6a , 71}, {a , e })

({6 } , { 6 a } ,{ a } )
{6a , 71}

{6 a }( { 6 , / } ,  {6a , 71}, { a , / } ) {6a , 71}
( { 6 ,e } , { 6 a ,e e } , { a , e } ) { 6 a ,e e }

( { a , e } , { 5 } , { 6 ,  / } ) ( { « } , { « } ,  W ) {a} {a} ★

T able 5.2: E xisten t and con trib utin g  pairings o f  A (C y  <  C o )5  

3. A (C y < lC o ) p

T able 5.3 lists  th o se  tran sition s A  (C o) th a t  ex is t  in a Ay tra n sitio n . H ow ever, on ly  

th o se  pairings w here Ey /  E ' and S” ^  X" lead to  term  5.6 hold ing  tru e , and  th e se  

pairings are m arked in th e  E  (ex isten ce) co lu m n. In th is  exam p le, term  5.6 h old s  

tru e for th e  third pairing b ecau se {ha, ee} ^  {ha} and { e e }  ^  {71 }•

All A (C o ) 4 i E ' E" X” E
({6 , e } ,  {6a , 71}, {a , e } )

({6 } , { 6 a } ,{ a } )
{6a , 71}

{6 a }
{71}

{71}( { 6 , / } ,  {6a , 71}, { a , / } ) {6a , 71} {71}
({6 , e } , { 6 a ,e e } , { a , e } ) { 6 a ,e e } { e e } t

( { a , e } , { s } , { 6 , / } ) ( W , { a } , { 6 } ) {a } {a } { } {71}

Table 5.3: E x isten t pairings o f  A (C y  <  C o )p
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From the existence of the transition ({6}, {6a}, {a}) in the coincidental transition 

({6, e}, {6a, ee}, {a, e}) it is necessary to determine the absence of any related asyn

chronous transitions. For this pairing the following terms may be deduced by set 

difference of the corresponding Cy and Cq terms, hence Q" =  {e}, E” =  {ee}, 

V" =  {e} and X” =  {71}.

(a) Absent transitions: Term 5.7 (page 114) forms transi

tions of the form {Q' U S " U  X", P' U <S"), where S"  G Q{C"), to determine 

absence from the transition set A(C'y). The evaluation of Q{C") is formed 

by pairing, for example, the pairing of {a, e} G Q(Cy) with {a} G Q{Cq) 

contributes the state {e} to Q{C") by {a, e} — {a} and because the predicate 

{a, e}n  {a} {} holds true. However, the pairing of {a, e} G Q(Cy) with

{6} G Q{Co) does not contribute {a, e} by {a, e} — {6} because the predicate 

{a, e} n {6} 7̂  {} does not hold. The evaluation of all the pairings yields 

{{€},{/}}.

Table 5.4 lists the pairings and the transition formed for each pairing. Absent 

transitions are marked in the absence (A) column. Since none of the formed 

transitions is absent from A (C y), progressive synchronisation is not introduced.

{Q'US",E'UX",P'US") A
({6} ,{6a},{a}) ({e},{7i},{e}) ({6, e}, {6a, 71}, {a, e})

({/},{Ti },{/}) (A  /} ,{ 6a ,7i},{a, /})

Table 5.4: Absent .4A(.ft},{6a},{a}),(5",2:",s») pairings for A (Cy < C o) p

(b) Absent transitions: Term 5.8 (page 115) forms tran

sitions of the form {S' U Q", F' U E", S'  U V"), where S' G Q{C'), to determine 

absence from the transition set A(C'y). Table 5.5 lists the pairings and the tran

sition formed for each pairing. Since none of the formed transitions is absent 

from A (C y), progressive synchronisation is not introduced.
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(g % r,so {S '^Q",V '\JE",S 'i^V") A
(W , W ,  {a}) ({e},{ee},{e}) ({«, e}, {70, ee},{a,e})
(W ,W ,{ 6 } ) (A  e},{7o, ee},{6,e})

Table 5.5: Absent X A ({e},{ee},{e}),(S'',r,gO  pairings for A (C || <1 Co)p 

4 . A ( C | |< C o ) d a

Table 5.6 lists those implied idle transitions (Q',V',Q') of A  (Co) that exist in a Ay 

transition, and lists the derived terms Q", 8 ” and V". Recall that there will be an 

implied idle transition for every state Q' E Q (C q).

1̂1 a " E" 'pn

(W ,{7o},{4) ({«,e},{7o, ee},{a,e}) ( 4 {ee} ( 4
( W , W , W ) ({^e},{7o, ee},{6,e})

Table 5.6: Derivation of A" transitions for A (C y  < 1  C o ) D A

Table 5.7 lists the deduced C" transitions {Q", S",V"), the implied idle transitions 

{S', r ',  s') and the formed transition for each pairing. Recall that there will be 

an implied idle transition for every state S' G Q (C o ) . Since none of the formed 

transitions is absent from A (C y ) ,  state dependent synchronisation is not required.

Q' ( ^ ' , r , y ) (g //^ // p//) {S'UQ",T'UE",S'UV") A
{«} ( M , W , { 4 ) ({e},{ee},{e}) ({«,e},{7o, ee},{a,e})

({6} , W ,{ 6}) (A  e},{7o, ee},{6,e})
{b} ({a}, {70}, {a}) ({e},{ee},{e}) ({«,e},{7o, ee},{a,e})

({6},{7o},{6}) ({6, e},{7o, ee},{6, e})

Table 5.7: .4 A a,,,(5',p ,5') pairings for A (C y  <  C o) DA 

5. A (C y  <  C q)d C

Table 5.6 showed that the implied idle transitions ({a}, {70}, {«}) and ({6}, {70}, {6}) 

of C  determine the existence of the A" transition {Q", 8 ",V") =  ({e}, {ee}, {e}). 

The existence of the related simultaneous transitions must be determined, that is, 

pairings of the transition ({e}, {ee}, {e}) with C  transitions with a from state or to 

state of {a} or {6}.
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(a) Related from state simultaneous transitions: Table 5.8 lists the deduced C" tran

sitions (Q", S", V"), and the C q transitions {Q', E', P') where the from state Q' 

is either {a} or {6}. Each pairing is then formed, provided that the event E' 

is not synchronous, to determine its absence from A(C||). In this example, the 

formed transition is not absent from A(C7||), thus state dependent synchronisa

tion is not required.

Q' {Q'UQ",i: 'US",P'UV") A
{ a } ( W ,  W ,  W ) ({e},{ee},{e}) Note: E' 0 E(C||) is false
{b} { { b } , { b a } , { a } ) { { b , e } , { b a , e e } , { a , e } )

Table 5.8: Related from state transitions for A(C|| < C q)d c

(b) Related to state simultaneous transitions: Table 5.9 lists the deduced C" tran

sitions (Q", S", V"), and the Co transitions (Q', E', P') where the to state P' is 

either {a} or {6}. Each pairing is then formed, provided that the event E' is 

not synchronous, to determine its absence from A ( C ||) .  In this example, the 

formed transition is not absent from A (C ||) ,  thus a state dependent synchroni

sation transition is not required.

P' ( Q ' U Q " , E ' u r ' , P ' U P " ) A
{«} { { b } , { b a } , { a } ) ( {e } ,{e e} ,{e } ) ( {6 ,e } ,{6 a ,e e} ,{a ,e } )
{b} ({«},{«}, W ) Note: E' ^  E(C||) is false

Table 5.9: Related to state transitions for A (C || <1 C o)d c

From cases 1 and 2, the transition set A (C || <  C o) is as follows.

A(q|<iCo) =  { ({a} ,W ,W ),({ft} ,{M ,W )}

Finally, the complete extraction Co = C o ||C i <  Co can be written as follows. Com

parison of Co and C q shows that they describe the same machine. Since C o ||C i was not 

restricted, this is the expected result.
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Co = (Q(c„<]Co),0(C||<]Co),È(C||<iCo),r(C||<iCo),Â(qi<iCo))
=  ({{«}, W }, {{«}},

{ { s } , { a 6} } , { 7o},

5.3.2 Extraction of C\ from Co||Ci

T h e ex tra ctio n  C i =  C o ||C i <  C i follow s th e  sam e process as th e  ex tra c tio n  C o ||C i <  Co- 

Since C o ||C i w as n ot restricted , it  is exp ected  th a t  C i =  C i.

R  = (Q(C||<lCi),Q(C„<lCi),Ê(C|j<lCi),r(C||<Ci),A(C„<Ci))
=  ({{«},{/}}-{{«}},

{ { s } , { e e } } , { 7 i } ,
{ ( W . W , { / } ) , ( { e } , { e e } , { e } ) } )

5.4 Example o f Extraction from a Restricted System

T h is second  exam p le illu stra tes ex traction  from  a  restricted  com p o site  m ach ine C o ||C i and  

th u s th e  in trod u ction  o f  progressive and s ta te  d ep end ent syn ch ron isa tion . A s a  restricted  

m achine, th e  ex traction  Cy <  Cn should  g ive Since there is no prior k n ow led ge o f  th e  

ex tra cted  m achines, an an alysis o f  th e  resu lts o f  ex traction  is p resen ted  in se c tio n  5.4.3 

(page 142).

C onsider th e  exam p le sy stem  illu strated  in figure 5.9 and defined below . N o te  th a t  

th e  d o tted  tran sition s in d icate  th ose  rem oved from  C o ||C i to  form  C o ||C i an d , therefore, 

th e y  are n o t considered  in th e  ex traction  o f  Cq and C\.

Q (C o ||C i)  =  { {a ,e } ,{b ,e } ,{a j] ,{b j} }
Q ( ^ i )  =  {{6,e}}
è (C o |!C i)  =  { { a 6, 7i } , W , 7i } , { 7o , e / } , { a 6, e / } , { c d , e / } }
r ( ( ^ )  =  {70,71}
A (C o ||C i)  =  { ( { a ,  e } , {ab,71}, {b, e } ) ,  ({a , e } , {cd, 71}, {6 , e } ) ,  

( { a , e } , { a 6 , e / } , { 6 , / } ) ,
({« , 4 ,  {70, e / } ,  {a , / } ) ,  {{b, e}, {70, ef},  {b, / } ) ,
({a , /} ,W ,7 i} ,{6 , /} ) }
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{ab}

Figure 5.9: Co||Ci (left), C q (top right) and C\  (bottom right)

Two transitions have been removed from Co||Ci to illustrate, i) the absence of simul

taneous progression, and ii) that there is no ambiguity if any two or more transitions 

share the same from and to states. Although this example is quite simple, it demonstrates 

the difficulty in determining the required interaction between two components to give the 

(desired) restricted behaviour and how the CTS notation provides an effective solution.

5 .4 .1  E x tr a c tio n  o f  Cq from  Cq\\C\

Let the extraction C q = Co||Ci O C q be written as Co =  Cy < C q, where C q is given below. 

Carefully note that for this extraction, any C  term in any of the definitions of extraction 

refers to C q, and any derived C" term infers C\.

Q(Co) =  {W ,{6 }}
Q(Co) =  {{6}}
È(Co) =  {{a6},{cd}}
r(Co) =  {70}
^ { ^ 0 ) =  {({«}, {6}), ({a}, {cd}, {6})}

Evaluation of the state set and initial state set follow from the example of section 5.3 

(page 124). The idle event name is determined by A/’({7o}), and in this case {70} will be 

used.
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Hence;

Q{Ç^<Co)
Q(0 [)<iCo)
r(C||<iCo)

{W , m  
m )
{7 0 }

Unlike the unrestricted example of section 5.3 (page 124), this example generates 

progressive and state dependent synchronising transitions and, therefore, shared event 

names. By Definition 5.3 (page 107), the evaluated event name set, which depends upon 

the transition set A (C || <1 C o), evaluates as S (C || < Co) = {{«&}, {cd}, {ef},  {abef}}. The 

event name {abef} is contributed by the transition {{a}, {abef}, {b}) G Â (C || < C o )p  

(page 133), and {ef}  is contributed by the transitions {{a},{ef},{a}) G Â (C || <  Cq)dc 

and ({6}, {ef},  {6}) G A (C || < C o)DC (page 136).

From Definition 5.10 (page 123), the transition set is formed from the union of the

contributions of A(C||<C')^, A(C||<lCQg, A(C||<C')p, A (C||<C ')d>i and A (C ||<C ')d c -

1. A (C |[ < Cq)a

Table 5.10 lists those transitions A  (Co) that exist in a A y transition. However, 

only those pairings where S" =  X" contribute the transition A  (C o) to A (C y  <  

C')a - The contributing pairings are marked in the contribution (C) column. In this

example, the first and last two pairings contribute the transitions ({«}, {ab}, {6})

and ({a}, {cd}, { 6})  to A (C y  < C')a -

1̂1 A  (C o) S" X" C

{{a,e},{ab,yi},{b,e}) ({a}, {ab}, {6}) {7 1 } {7 1 } *
{{a,e},{ab,ef},{b, /}) { e / }
({a,e},{cd,7i},{6,e}) {{a},{cd},{b}) {7 1 } {7 1 } *
({«,/},{cd,7i},{6,/} ) ★

Table 5.10: Existent and contributing pairings of A (C y  <  C o )^
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2. Â(C|| <1 Co)s

Table 5.11 lists those transitions A  (Co) that exist in a A y transition. However, only 

those pairings where Ey = E ' contribute the transition A  (C o) to A (C y  < C')s-  In 

this example there are no synchronous pairings, thus no transitions are contributed 

to A ( Cy<C%.

1̂1 A (Co) S || E' C
({a,e},{a6,7i},{6, e}) ({a},{a6},{6}) {ab, 71} {ab}
({a,e},{ab,ef},{b, /}) {ab, ef}
({a,e},{cd,7i},{6,e}) {{a},{cd},{b}) {cd, 71} {cd}
({a,/},{cd,7i},{6,/} )

Table 5.11: Existent and contributing pairings of A (C y  <  C o)s'

3. A (C y  <  C o )p

Table 5.12 lists those transitions A  (Co) that exist in a A y transition. However, only 

those pairings where Ey /  E ' and S" ^  X" lead to term 5.6 holding true, and these 

pairings are marked in the E  (existence) column. In this example, term 5.6 holds 

true for the second pairing because {ah, ef}  ^  {ah} and {ef}  /  {ti}.

A|| A (Co) S|| E' S” X" E
({a,e},{a6,7i},{6,e}) ({«}, {«&}, {6}) {«6,71} {ab} {Ti } { 7 1 }
{{a,e},{ab,ef},{b, /}) {ab, ef} {e/} t
({a,e},{cd,7i},{6,e}) ({a},{cd},{6}) {cd, 71} {cd} {7 1 } { 7 1 }
({a,/},{cd,7i},{6, /})

Table 5.12: Existent pairings of A (C y  < Co)p

From the existence of the transition ({«},{«&},{&}) in the coincidental transition 

{{a, e}, {a6, ef},  {b, /}) it is necessary to determine the absence of any related asyn

chronous transitions. For this pairing the following terms may be deduced by set 

difference of the corresponding Cy and Co terms, hence Q" = {e}, S" =  {ef},  

V" =  {/} and X” =  {71}.
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(a) Absent transitions: Term 5.7 (page 114) gives Q(C") =

{{e}, {/}}, and forms transitions of the form {Q'\JS”, E'UX", P'U<S"), where 

S" G Q{C"), to determine absence from the transition set A (C ||) . Table 5.13 

lists the pairings and the transition formed for each pairing. Absent transitions 

are marked in the absence (A) column.

The pairing marked ★ is absent from the transition set A (C ||) and progres

sive synchronisation must be introduced. Thus the transition ({a}, A^({a6} U 

{ef}),  {6}) must be contributed to the transition set A(C||<(7o)p. Let A^({a6}U 

{ef}) =  {abef}, hence the contributed transition will be ({a}, {abef}, {6}).

( Q 'u s " , i : ' u x " ,p ' \ j s " ) A
{{a},{ab},{b}) ({e},{t i},{e}) ({a,e},{ab,ji},{b,e})

({/}, {71}, {/}) {{a,f},{ab,j i} ,{b,f}) ★

Table 5.13: Absent .AA({(,},{6a},{o}),(5'«^",g") pairings for A (C || < Co)p

(b) Absent .4A(^e},{e/},{/»,(S'',r',5') transitions: Term 5.8 (page 115) forms tran

sitions of the form (S' U Q", F' U S", S' U V"), where S' G Q(C'), to determine 

absence from the transition set A (C ||). Table 5.14 lists the pairings and the 

transition formed for each pairing. Since none of the formed transitions is 

absent from A (C[|), progressive synchronisation is not introduced.

(S 'UQ",T 'US",S 'UV") A
( W J 70}, W ) (W ,W } ,{ /} ) ({«,e},{7o, e f} ,{a , f } )
({6},{7o},{6}) ({b,e},{jo, e f} ,{b , f} )

Table 5.14: Absent > ^ ^ { { e } , { e f } , { f } ) , { S ' , r , s ' )  pairings for A (C || <1 C o)p 

4. A (C || < C q ) d a

Table 5.15 lists those implied idle transitions (Q', T',Q') of A  (Co) that exist in a Ay 

transition, and lists the derived terms Q", £" and V". Recall that there will be an 

implied idle transition for every state Q' E Q (C q )  .
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A|| Q" 8 " j pff

(W , W ,  W ) ({«,e},{7o, ef} ,{a , f} ) ( 4 {e/} {/}
( W , W , { 6}) {{b, e},{7o, ef},{b, f} )

Table 5.15: Derivation of A" transitions for A(C|| < C q)d a

Table 5.16 lists the deduced C" transitions (Q",£",V"), the implied idle transitions 

[S',T',S') and the formed transition for each pairing. Recall that there will be 

an implied idle transition for every state S' E Q{Cq). Since none of the formed 

transitions is absent from A (C ||), state dependent synchronisation is not required.

Q' iQ",8",V") {S'UQ",r'u8",S'UV") A
{«} W ) ({o,e},{7o, e f} ,{a , f } )

({6}, {70}, {&}) ( f t  4 , {70, ef},{b,  /})
{b} ( N ,  {70}, {«}) (ft, e},{7o, e /} , f t , / } )

(W ,{ 7o},W ) (ft, 4 , ( 70, ef} ,{b , f} )

Table 5.16: pairings for A (C || < Cq)da

5. A(C|| < Cq)dc

Table 5.15 showed that the idle transitions ({«}, {to}, {«}) and ({6}, {70}, {&}) of 

Co determine the existence of the A" transition [Q",E",V") = ({e}, {e/}, {/}). 

The existence of the related simultaneous transitions must be determined, that is, 

pairings of the transition ({e}, { e f } ,  {/}) with C q transitions with a from  state or 

to state of {a} or {6}.

(a) Related from state simultaneous transitions: Table 5.17 lists the deduced C" 

transitions (Q", S", V"), and the C q transitions (Q', E', P') where the from state 

Q' is either {a} or {6}. Each pairing is then formed, provided that the event E' 

is not synchronous, to determine its absence from A (C |j). Note that there are 

no C q transitions with a from state of {6}. In this example, the formed tran

sition {{a,e},{cd,ef},{b, f})  is absent from A (C ||), thus the state dependent 

transition (Q', S",Q') = ({a}, {ef}, {a}) is contributed to A (C || 0 C q)d c -
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Q' (Q \S ',P 0 (Q//,^/,,p//) iQ'UQ", 12'U8",P'UV") A
{«} {{a},{ab},{b}) ({e},{e/},{/}) {{a,e},{ab, ef},{b, /})

({a},{cd},{b}) {{a,e},{cd, e f} ,{b , f} ) *
{b}

Table 5.17: Related from state transitions for Â(C|| < Co)dC'

(b) Related to state simultaneous transitions: Table 5.18 lists the deduced C" tran

sitions {Q",E",V"), and the Cq transitions (Q', E', P ') where the to state P ' 

is either {a} or {6}. Each pairing is then formed, provided that the event E' 

is not synchronous, to determine its absence from A(C||). Note that there are 

no C o  transitions with a to state of {a}. In this example, the formed tran

sition {{a,e},{cd,ef},{b,f}) is absent from A(C||), thus the state dependent 

transition (P', S", P') = ({6}, {ef},  {6}) is contributed to A(C|| < C o ) d c -

P ' (Q%2 \ f O (Q//^,/,p//) iQ'UQ", i : 'US",P 'UV") A
{a}
{b} ({a},{a6},{6}) ({4 ,{e /} ,{ /} ) {{a,e},{ab,ef},{b, /})

({a},{cd},{6}) (ft,e} ,ftd , e /} ,f t, /}) -k

Table 5.18: Related to state transitions for A(C|| < C o ) d c

From cases 1, 3a, 5a and 5b the transition set A(C|| <1 Co) is as follows.

A(C||<Co) =  {({«},{«&},ft}), (ft},{cd},{6}),
{ {a} ,  { a b e f } ,  {b}) ,
( f t ) , f t /} ,W ) ,  (ft} ,{e/} ,ft} )}

Finally, the complete extraction Co =  Co||Ci <1 Co, which is illustrated in figure 5.10 

(page 143), can be written as follows;

Cb = (Q(Cy<Co),Q(qj<Co),2(q,<iCo),r(q,<Co),A(cij<iCo))
= ({ f t} ,  ft}},

{{6}},
{ { a b } , { c d } , { a b e f } , { e f } } ,

{%},
{({«}, {ab} ,  f t} ) ,  ({a}, {cd} ,  f t} ) ,

({a},ft6e/},ft}),
(ft}, ft/}, ft}), ({̂ }, {€/},{&})}

)
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5.4.2 Extraction of C\ from Co||Ci

Let the extraction C\ =  Co||Ci < C\ be written as C\ =  Cy < C\, where C\ is given below. 

Carefully note that for the extraction Cy <3 Ci, any C  term in any of the definitions of 

extraction refers to Ci, and any derived C" term infers Cq.

^(C i) =
Q(Ci) =  {{e}}
S(Ci) =  {{e/}} 
r(C i) =  {71}
A(Ci) =

Evaluation of the state set and initial state set follow from the unrestricted example 

of section 5.3 (page 124). The idle event name is determined by A/’({7i}), and in this case 

{71} will be used. Hence;

Q ( g < l C i )  =
Q(Cÿ<Ci)  =  {{e}} 
r c q i c C i )  =  {fi}

Unlike the unrestricted example of section 5.3, this example generates progressive 

and state dependent synchronising transitions and, therefore, shared event names. By 

Definition 5.3 (page 107), the evaluated event name set, which depends upon the transition 

set A(Cy < Cl), evaluates as;

S(Cy<Ci)  =  {{ab},{cd},{ef},{abef}}

The event name {ef}  is a consequence of the event name set existence test. However, 

the event name {abef} is contributed by the transition {{e},{abef},{f})  E A(Cy < 

Ci)p by case 3b (page 139). The event name {ab} is contributed by the transition 

({e}, {ab}, {e}) E A(Cy < Ci)d^ (page 140). Finally, the event name {cd} is contributed 

by the transitions ({e}, {cd}, {e}) E A(Cy < Ci )dc and ({/}, {cd}, {/}) E A(Cy 0 C i )dc 

(page 141).
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From Definition 5.10 (page 123), the transition set is formed from the union of the 

contributions of A (C'y <C") a, A(C'y<C')5, A(Cy<lC')p, A{C^^c\C')da and A(C'||<iC')dc'-

1. A ( C y < l C i ) ^

Table 5.19 lists those transitions A(Ci) that exist in a Ay transition. However, only 

those pairings where S" = X" contribute the transition A(Ci) to A(Cy <1 C')a- In 

this example, the last two pairings both contribute the transition ({e}, {ef},  {/}) to 

A ( C y < C % .

A|| A(Ci) E" J " C
{{a,e},{ab,ef},{b,f})

(ft} ,f t/} ,{ /} )
{ab}

{to}{{a,e},{jo, ef } , {a, f }) {to} *
{{b,e},{jo, ef }, {b, f }) {to} ★

Table 5.19: Existent and contributing pairings of A(Cy <1 C{)a 

2. A ( q < C i ) g

Table 5.20 lists those transitions A(Ci) that exist in a Ay transition. However, only 

those pairings where Sy =  S ' contribute the transition A(Ci) to A (C'y < C')s> In 

this example there are no synchronous pairings, thus no transitions are contributed 

to A(Cy <1 C')g.

Ay A (Cl) 1̂1 S ' C
{{a,e},{ab,ef},{b,f})

({e},{e/},{/})
{ab, ef}

{e/}({«,«}, {70, ef } , {a, f }) {to, e/}
{{b,e},{jo, ef }, {b, f}) {to, ef}

Table 5.20: Existent and contributing pairings of A(Cy < Ci)s  

3. A(Cy<Ci)p

Table 5.21 lists those transitions A(Ci) that exist in a Ay transition. However, only 

those pairings where Sy /  S ' and E" ^  X" lead to term 5.6 holding true, and these
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pairings are marked in the E (existence) column. In this example, /erm 5.6 holds 

true for the first pairing because {ab, ef} ^  {ef}  and {ab} /  {70} •

1̂1 A (C i) S || E' 8 " X" E
{{a,e},{ab,ef},{b, /}) {ab, ef}

{e/}
{ab}

{70}
t

{{a,e},{jo, ef } , {a, f }) {70, ef} {70}
( f t  4 ,  {70, e /} , f t / } )

Table 5.21: Existent pairings of A(C|| < C i)p

From the existence of the transition ({e}, {e/}, {/}) in the simultaneous transition 

({a, e}, {ab, ef},  {b, /}), it is necessary to determine the absence of any related asyn

chronous transitions. For this pairing the following terms may be deduced by set 

difference of the corresponding Cy and Ci terms, hence Q" = {a}, S" =  {ab}, 

V"  =  {6} and X" = {70}-

(a) Absent transitions: Term 5.7 (page 114) gives Q {C )  =

{{a}, {&}}; and forms transitions of the form (Q' U S " , E' U X", P'  U S ”), where 

S"  6 Q{C"), to determine absence from the transition set A(Cy). Table 5.22 

lists the pairings and the transition formed for each pairing. Since none of 

the formed transitions is absent from A(Cy), progressive synchronisation is not 

introduced.

(,S",X",,$") iQ 'US",E 'UX",P'US") A
(ft} ,W } ,{ /} ) (ft}, {70}, ft}) (ft, 4 , {70, ef } , {a, f } )

({6}, {70}, ft}) {{b,e},{yo,ef},{b,f})

Table 5.22: Absent ^A(^e},{e/},{/}),(5",2:",5") pairings for A(Cy <1 Ci)p

(b) Absent transitions: Term 5.8 (page 115) forms transi

tions of the form (<S" U Q", F' U S", S' U V"), where S'  G Q(C'), to determine 

absence from the transition set A (C'y). Table 5.23 lists the pairings and the 

transition formed for each pairing. The pairing marked k is absent from the 

transition set A(Cy) and progressive synchronisation must be introduced. Thus
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a transition of the form {{e},Af{{ab}\J {ef}), {/}) must be contributed to the 

transition set A(C|| < Ci)p. Let Af{{ab} U {ef}) =  {abef}, hence the con

tributed transition will be ({e}, {aôe/}, {/}).

{S 'UQ",T 'U 8 " ,S 'UV") A
(W ,{7i},{e}) ({a},{a6},{6}) ({a,e},{a6,7i},{6,e})
({/}, {71}, {/}) ({a,/} ,{a6,7i},{6, /}) *

Table 5.23: Absent .4A({a},{a6},{6}),(5',r',50 pairings for A (C || < Ci )p  

4. A (C || < Ci)da

Table 5.24 lists those implied idle transitions (Q', T'^Q') of A ( C i)  that exist in a Ay 

transition, and lists the derived terms Q", S" and V". Recall that there will be an 

implied idle transition for every state Q' G Q(C\).

Ay Q" 8 " p'f

(W ,{ 7 i} ,W ) ({a,e},{a6,7i},{6,e}) {«} {ab} {*-}
({a,e},{cd,7i},{6,e}) {«} {cd} {b}
({«,/},{cd,7i},{6, /}) {a} {ab} m

Table 5.24: Derivation of A" transitions for A  (C'y < C i)da

Table 5.25 lists the deduced transitions the implied idle transitions

(5', r ',  S') and the formed transition for each pairing. Recall that there will be an 

implied idle transition for every state S'  G Q(C\). In this example, the formed 

transition ({«,/}, {a&,7i}, {&,/}) is absent from A (C 'y), thus the state dependent 

transition (Q'^S",Q') =  ({e}, {a6}, {e}) is contributed to A  (C'y < Ci)da^

5. A (C y  <  C i )dc

Table 5.24 showed that the idle transitions ({e}, {71}, {e}) and ({/}, {71}, {/}) of 

Cl determine the existence of the A" =  (Q",8 ",V") transitions ({a}, {o6}, {6}) 

and ({a}, {cd}, {6}). The existence of the related simultaneous transitions must be
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Q' iS'UQ",r'u8",S'UV") A
{e} (W,{Ti},{e}) {{a},{a6} ,{6}) {{a,e},{ab,yi},{b,e})

({/}, {7i}, {/}) ( k  /} , M ,7 i} , {6, /}) •k
({e}, {Ti}, {e}) ({a},{cd},{6}) ({a,e},{cd,7i},{6,e})

({a,/},{cd,7i},{6,/})
{/} (M,{Ti},{e}) {{a},{cd},{b}) ({a,e},{cd,7i},{6,e})

({ « ,/} ,W ,7 i},{6,/})

Table 5.25: pairings for Â(C|| < Ci)£>^

determined, that is, pairings of the transitions ({a}, {ab}, {6}), ({&}, {cd}, {6}) with 

Cl transitions with a from state or to state of {e} or {/}.

(a) Related from state simultaneous transitions: Table 5.26 lists the deduced C" 

transitions {Q", 8 ", V"), and the Ci transitions {Q', D', P') where the from state 

Q' is either {e} or {/}. Each pairing is then formed, provided that the event 

S ' is not synchronous, to determine its absence from A(C||). Note there are no 

Cl transitions with a from state of {/}. In this example, the formed transition 

{{a,e},{cd,ef},{b,f}) is absent from A(C||), therefore, the state dependent 

transition {Q', 8 ", Q') =  ({e}, {cd}, {e}) is contributed to A(C|| < C i ) d c -

Q' (Q " ,r ,p " ) {Q'UQ",E'U 8 ",P'\JV") A
{ 4 {{a},{ab},{b}) {{a,e},{ab, e f} ,{b , f})

{{a},{cd},{b}) {{a,e},{cd, e f} ,{b , f} ) k
{/}

Table 5.26: Related from state transitions for A(C|| < C i ) d c

(b) Related to state simultaneous transitions: Table 5.27 lists the deduced C" tran

sitions (Q",8 ",V"), and the Ci transitions (Q',T,',P') where the to state P' 

is either {e} or {/}. Each pairing is then formed, provided that the event E' 

is not synchronous, to determine its absence from A(C||). Note there are no 

Cl transitions with a to state of {e}. In this example, the formed transition 

{{a,e},{cd,ef},{b, f})  is absent from A(C||), therefore, the state dependent 

transition (P', 8 ", P') = ({/}, {cd}, {/}) is contributed to A(C|| O Ci)i?c-
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P' {Q'UQ' ' ,E'U€",P'UV") A
{ 4
{/} (W , {ah}, {6}) {{a,e},{ab,ef},{b,f})

{{a},{cd},{b}) {{a,e},{cd, e f} ,{b , f}) k

Table 5.27: Related to state transitions for A (C'y < Ci )dc

From cases 1, 3b, 4, 5a and 5b the transition set A (C'y <3 Ci) is as follows. 

A (C y < lC i) =  { ( { e } ,{ e /} ,{ /} ) ,
({e},{a6e/},{/}),
({e},{a6},{e}),
({e}, {cd}, {e}), ({/}, {cd}, {/}) }

Finally, the complete extraction Ci =  Co||Ci <3 Ci, which is illustrated in figure 5.10 

(page 143), can be written as follows;

Q  =  ( Q ( C y < C i ) , Q ( C y < C i ) , Ê ( C y < C i ) , r ( C y < C ' i ) , A ( C y < l C ' i ) )
= ({{<},{/}}, 

{{<}},
{{a6},{cd},{e/},{a6e/}},
{fi},

({e},{a6e/},{/}),
{{e},{ah},{e}),
({e},M },{e}), ( { /} ,M } ,{/})})

5.4.3 Comparison of CoIjCi and Co HQ

The extracted machines Co, evaluated in section 5.4.1, and C i,  evaluated in section 5.4.2, 

are illustrated in figure 5.10. In this particular example both extracts are fully syn

chronous, that is, every event is common to both extracts. From the four event names, 

the five transitions in each extract can be interpreted as follows;

1. {a6}: Co can only progress from state {a} to {6} when C\ remains in state {e}. 

This combination gives the transition ({a, e}, {a6}, {6, e}) in the composition Co||Ci 

illustrated in figure 5.11.
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{abej}

M}

{abeJ}
{ef)

{cd}

Figure 5.10: Co = C'q||C'i < Co (top) and Ci =  Cq\\Ci <1 C\ (bottom)

2. {cd}: Co can only progress from state {a} to {b} when Ci remains in state {e} or re

mains in state {/}. These two combinations give the transitions ({a, e}, {cd}, {6, e}) 

and ({a, /} , {cd}, {6, /}) in the composition Co||Ci.

3. {abef}: Co progress from state {a} to {6} synchronously with the progress of Ci 

from state {e} to {/}. This combination gives the transition ({&, e}, {a6e/}, {&, /}) 

in the composition Co||Ci.

4. {ef}: Cl can only progress from state {e} to {/} when Cq remains in state {a} or re

mains in state {6}. These two combinations give the transitions ({&, e}, {ef},  {a, /}) 

and ({6, e}, {ef}, {6, /}) in the composition Co||Ci.

Concurrent composition of the extracts Cq and Ci leads to the system Co||Ci, which, 

along with the restricted system Co||Ci, is illustrated in figure 5.11. Observe that these two 

composite systems have the same structure, but they are not equal. Since asynchrony has 

been denied through the removal of some transitions, some synchronisation is expected. In 

particular, the asynchronous composite event names have been replaced by synchronous 

composite event names as follows; {ab} replaces {ab, 71}, {cd} replaces {cd, 71} and {ef}  

replaces {yo,ef}.
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m{cd)

C .I I C

Figure 5.11: Cq\\Ci (left), Co||Ci (right)

Any composite system reveals a set of events to which the components of that com

position will react. In this example the events are {ab}, {cd} and {ef}.  However, the 

composition Cq\\Ci , reveals not only the events {ah}, {cd} and {ef}  but also the new event 

{abef} which arises from progressive synchronisation. From the convention on precedence 

of progressive synchronisation (page 56), the event name {abef}, which is derived from 

M{{ab} U {ef}), asserts that if the events {a6} and {ef}  occur simultaneously then the 

system Co||Ci will progress from state from state {a, e} to {6, /}  by event {a6e/}. Specif

ically, the system will not react to just the event {ab} or just the event {ef}  through some 

non-deterministic choice.

The system designer now has to determine if the extracts Cq and C\ can be imple

mented and if the system defined by Co||Ci meets the requirements.

In this example, the original components Cq and Ci, illustrated in figure 5.9 (page 131), 

describe the same behaviour as the example components used to illustrate the principles 

of extraction in section 5.1.1, cf. figure 5.1 (page 98). Therefore, the remaining transitions 

in the synchronous representations Dq and Di, illustrated in figure 5.3 (page 100), can be 

used to confirm the extracts Co and Ci, which are illustrated in figure 5.10.
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Figure 5.12: Dq (top) and Di (bottom)

Figure 5.12 replicates figure 5.3, but the dotted arcs labelled U and U 

indicate removed transitions. Let the event name represent the event name {ab}, 

represent {cd}, represent {ef} and represent the Ci idle event name applied 

to the Cl state {/}. Hence, the dotted arcs represent the removed transition labelled 

{cd, ef}  and the removed transition labelled {ah, 71} between state {a, /}  and {b, /}  in 

the system Co||Ci in figure 5.9 (page 131). Table 5.28 confirms the relationship between 

each Do and Di transition and each extract transition A (Co) and A (C i) . Note that the 

“type” columns indicate if the extract transition is an original (O), state dependent (S), 

or progressive (P) transition.

A(Do), A(Di) A (Co) type A(Ci) type
A^UE^ {{a}, {abef}, {b}) P ({e},{a6e/} ,{ /}) P

{{a},{ab},{b}) 0 {{e},{ab},{e}) S
B ^U T ly (W ,{cd},{6}) 0 {{e},{cd},{e}) S
B^UT\,y s

( W ,W } ,  W ) s ({e},{e/},{/}) 0

(W ,W } ,{6 } ) s

Table 5.28: Relationship between A (Do) and A (Co), and A(D%) and A(Ci)
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5.5 Summary o f Extraction

The extraction operator correctly generates an extract from a system which comprises 

two concurrent components, therefore, the extraction operator can be used to derive the 

required specification of the components.

Now, any extraction Cy <j C' defines how C  interacts with an unidentified component 

(or composite system), say X,  where Cy = X\\C.  This raises two important questions 

given a system of three or more concurrent components.

First, the expression C'\\C"\\C' " d e t e r m i n e s  how the extract C' interacts with the 

system C'’\\C"'. Likewise, the expression < (C"||C'") also determines how the

extract C"\\C" interacts with the component C .  It is not clear whether or not these two 

expressions yield the same result. Further analysis of the mathematical properties of the 

extraction operator is required.

Second, the expression C'\\C"\\C'" < C  (as stated above) determines how the extract 

C  interacts with the system C"\\C"', more significantly, the expression does not determine 

how the extract C  interacts with C" and C*" as separate entities. It is not clear if the 

concurrent compositions C'\\C"\\C"' and C’\\C”\\C" are congruent. Again, further analysis 

of the mathematical properties of the extraction operator is required.

Dealing with synchronous transitions in extraction reveals a limitation in the current 

definition of the extraction operator and a deficiency in the CTS notation. Consider 

term 5.4 (page 112) which determines a synchronous event name in the components of 

a composite system by the test Sy = S'. Where the event name Sy is formed under 

concurrent composition from the synchronous event names S' and S", then S' =  S". This 

correctly contributes a synchronous transition to an extract. Now, where Sy is formed 

from the component event names S', S" and S'" then the method of detecting the presence
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of a C' transition synchronous with, say a C" transition in a composite system C'\\C"\\C" 

is not always sufficient. Only when S' =  S" =  S'" will the test Sy =  S' hold in the 

extraction (C'||C"||C'") < C'.
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Chapter 6

Exam ple o f an Application

This chapter illustrates a method of modelling resource contention using the Composite 

Transition System notation and the operators introduced in Chapter 4 and Chapter 5. 

A simple, application has been chosen because the method is applied using the algebra of 

the operators rather than computer based tools. Note that there is no objective to draw 

any specific conclusion about the application.

Each of the component processes of the system is specified in isolation, consequently, 

no consideration is given to any required co-ordination with the other components of 

the system. Such an approach simplifies the design of each component, but can lead to 

resource contention, that is, violation of the permitted behaviour of the shared resources. 

To prevent resource contention, the concurrent system formed from the components must 

be restricted just to the permitted behaviour of the shared resource. Component extraction 

based on the resource restricted system is then used to derive component specifications 

that are consistent with the restricted system and are devoid of resource contention.

Section 6.1 (page 151) describes a data acquisition system encountered in an commer

cial application. The component processes are modelled by Composite Transition Systems 

where the states describe the use and non-use of resources shared by the processes. Often 

only a single non-use state is required between any two use states. It will be seen in the
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following analysis that process models that reflect resource use and non-use can result in a 

small number of states and transitions. Minimising the number of component states and 

transitions minimises the number of states and transitions when all the possible combi

nations are created through concurrent composition, a phenomenon often referred to as 

state space explosion.

Section 6.2 (page 157) defines the permitted behaviour of the resources shared between 

the component processes of the system. To avoid introducing another notation, the re

source models will be presented using the conventions of the CTS notation though they 

will not be subjected to any of the CTS operators.

The method adopted in this chapter takes the following steps;

1. Component Specification: Models of the component processes are derived from the 

description given in section 6.1. Let such component models be denoted U and V.

2. System Composition: The concurrent composition C/||V is formed.

3. Application of Resource Constraints: Restriction of the composite system U\\V ac

cording to the permitted behaviour of a shared resource, denoted R, is achieved as 

follows;

(a) The states of U\\V are mapped to the states of the resource model R. Consider 

the example illustrated in figure 6.1 (page 150) in which the resource states are 

shaded and the resource transitions are the bold directed arcs with open arrow 

heads. Thus, for this example, the U\\V states {%o, and {%i, %} map to the 

resource state {r}, the U\\V state {%o, vi} maps to the resource state {«}, and 

the U^V state {ui,V\} maps to the resource state {t}.

(b) The from and to states of the transitions of the resource model R  are replaced 

by the mapped states of U\\V. For the previous example, the resource transi

tion ({s}, { ...}, {0) would become ({wq? {• • •}, {%i, î^i}). Where a resource
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Figure 6.1: Mapping resource states and transitions to a composite system

state does not map to any state of Î7||F, then that resource state is not permit

ted and any transitions to or from that state must be removed. For example, if 

resource state {r} did not map to any U\\V state, then any resource transition 

({r}, {•••},{•••}) must be removed. This step leads to a new resource model 

that is defined in terms of the states of U\\V. Let the transitions of this new 

model be denoted A r .

(c) The transitions of the resource model A r  define the permitted transitions be

tween the states of U\\V. The U\\V transition ({wq, uq}, { ...} , {tfo? î î})î for 

example, is allowed in U\\V only because the resource model A r  includes a 

transition from state {'Ug, to state Thus restricting the transi

tions of A(t/||V') by A r  takes the following form and determines the restricted 

transition set A(t/||F). Hence;

=  { ( Q , 2 , P ) | ( Q , 2 , f ) E A ( ( 7 M A
3 T . ( Q , { T } , f ) E  A ^ }

(6 .1)

4. Extraction: The required components U and V  are evaluated by U\\V < U and

< V.

5. Verification: The concurrent composition of the extracts U and V  is performed in 

order to verify that the system meets the requirements.
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For brevity, only the result of each of the steps in the analysis will be presented unless 

any specific observations are made.

6.1 System  Description

The example application is the radar data acquisition system illustrated in figure 6.2 as a 

block diagram.

'PD
Realtime
DisplayData

clk
•PH Host

Flow
Control■•cllc

PclkPosition
Numeric
'Display

•PN

Position
Monitor

Host
Computer
Comms

Numeric
Display

Processing

Real-time
Display

ProcessingRadar Sample 
and 

Quadrature 
Demodulate

Position
Sample

Figure 6.2: Acquisition System Block Diagram

In response to the clock signal the Radar Sample and Quadrature Demodulate 

process, denoted R, samples anti-alias filtered quadrature multiplexed analogue signals 

via an analogue to digital converter. No samples may be missed as this will compromise 

the quadrature de-multiplexing of the sampled data (see section 6.1.1). The sample clock 

rdk is periodic and of frequency, /^. The execution time required to process the sampled 

data is assumed never to exceed the period of the highest possible sample clock frequency.

A sampling signal pdk is generated by the Position Monitor which continuously mon

itors the position of the radar using data from a positional transducer. In response to 

the Pdk signal, the de-multiplexed data are sampled by the Position Sample process, de

noted P. Note that the frequency of the pdk depends upon the position sampling interval
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and the velocity of the radar. The maximum position sampling frequency fp is known, 

and is much lower than the radar data sampling frequency, hence fp fr-

The asynchrony of the rdk and pdk sampling clocks makes simultaneous access a pos

sibility. From the sampling frequency inequality fp fr, it can be deduced that the time 

available to process the radar data is much less than that for the position sampling. Hence, 

in the event of simultaneity, preference should be given to data sampling. Thus, notations 

based upon a non-deterministic choice in the event of simultaneity are not appropriate.

Further, as fp fr, not all the radar data samples are position sampled. This means 

that only the newest radar data samples must be position sampled and any old data must 

be ignored, therefore, communication via the resource C r p  must be asynchronous and 

buffered. Hence, a model based on synchronous communication channels (such as those 

explored in Chapter 2), is not applicable, and the buffering cannot follow the first-in-first- 

out policy often assumed for such communication.

Communication of sampled data between processes R  and P  is via the shared resource 

denoted C r p . The application of C r p  resource constraints to the processes R  and P  is 

presented in section 6.3 (page 160).

Position sampled data output by process P  are required by process D which outputs 

derived data via a digital to analogue converter; none of the data may be lost. Commu

nication between P  and D is via the resource denoted CpD and the application of CpD 

resource constraints to the processes P  and D is presented in section 6.4 (page 170).

The analysis of the interaction via the shared resources C r p  and Cpu is sufficient to 

illustrate the use of the notation for modelling resource level constraints and the derivation 

of the required process behaviours i?, P  and D. Interaction via the shared resources Cpjj 

and Cpiv is not presented.
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6 .1 .1  D a ta  S a m p lin g  and  Q u ad ratu re D e -m u lt ip le x in g , R

In the actual system there are multiple anti-alias filtered input signals. The rdk sampling 

signal simultaneously sets a sample-and-hold circuit on each input to the hold state and 

indicates that sampling should be performed. Use of sample-and-hold circuits ensures 

that the multiple inputs are all captured simultaneously as this is a requirement of the 

application. A single Analogue-to-Digital converter is used in turn to sample each of the 

multiple inputs before the sample-and-hold circuits are returned to the sample state. This 

introduces some latency in sampling the analogue signal. Provided ti -\-ts < where ti 

is the sampling latency, tg is the sampling time (from start to finish), and fr is the data 

sampling clock frequency, then no rdk signal will be missed.

The input, s{t), is a signal in which a(t) and b{t) have been quadrature multiplexed 

[54, 93]. Quadrature multiplexing enables two signals to be transmitted simultaneously 

over a single linear transmission channel and is achieved by multiplying a{t) and b{t) by 

the carriers cos(wc )̂ and sin(wct) respectively, and summing the result. Hence, s(^) =  

a{t). cos{(jJct) +b{t).sm{ujct). De-multiplexing requires the signal s(t) to be multiplied by 

cos(wct) and sin (w t̂) and then low-pass filtered (the multiplication also generates terms at 

2oJct). Any phase difference between the multiplexing and de-multiplexing carriers results 

in interference between a(t) and b(t) [93]. For example, an error of |  will interchange a{t) 

and b(t).

In this application, a{t) and b{t) represent quadrature components where the amplitude 

and phase change are important. Both a{t) and b{t) are very low frequency signals and, 

without quadrature multiplexing, two matched low-pass filters would be required for each 

channel. Quadrature multiplexing means that a single analogue band-pass filter centred at 

(jJct is required. In the actual application, there are multiple inputs and matched band-pass 

filters are easier to build than low-pass filters.
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The data sampling clock rdk is coincident with carrier phases of forn = 0,1,2,3, . . .  

Hence there are 4 clocks per cycle of the carriers. The sampled quadrature multiplexed 

signal coincident with each clock, can be written as follows, and an algorithm is used 

to compute a value for a» and for tz =  0, 1, 2,3 ,__

,n7T . 7Z7T
5 n  =  « n - C 0 S ( — ) +  6 n - S m ( — )

Note that the clock rdk does not indicate if the carrier phase is 0, f , tt, or This 

impacts the absolute phase but not the amplitude of the signal represented by the quadra

ture components and 6̂ . This phase impact is actually not important because the 

application requirement is to measure phase change. However, if m consecutive sample 

clocks were missed then the phase will step by ^  and so give erroneous phase change 

measurements, unless m happens to be a multiple of 4. Hence, no rdk samples must be 

missed.

Figure 6.3 (page 155) is a simplified fiow chart for the data sampling process R, where 

rdk is the sample clock, ra+ib is the quadrature multiplexed signal from which and 

are the obtained by demodulation. In another form of implementation it would be possible 

to move the demodulation into the position sampling process so that demodulation is only 

performed on each position sample. This would require the sampling process to deliver 

ra+ib and n, where n increments, modulo 4, on each rdk‘ Since fp <C fr, the overall 

processor usage might be expected to be reduced.

Observe that the communication of the demodulated data between process R  and the 

position sample process P  has been separated into two steps. This has been done because 

the design choice was a shared memory interface where the possibility of simultaneity of 

rdk and pdk can lead to interleaved read and write operations on and rj. Failure to 

prevent such interleaving may result in the data set taken in response to one position clock 

comprising some undefined mix of current and previous radar data.

154



NO

YES

^  'e l k  ^
missed?̂

initialise

error!

wait
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output r*

output r„

calc r,, r,

Figure 6.3: Data Sampling Process Flow Chart

6.1.2 P osition  Sam pling , P

At each required position, the position sampling process must read the data provided by 

the demodulation process R  and make this available to its recipients. At each sample 

position, the amplitude and phase represented by a(p, t) and 6(p, t) are required. From 

this data, phase change is calculated as the phase at the current sample position minus 

the phase at the last sample position (modulo tt) .  Therefore, if a position sampling point 

is missed then errors in the phase change measurement can result.

Figure 6.4 is a flow chart for the position sampling process F, where pclk is the po

sition sampling clock, and and are the demodulated sample data. These data are 

output and the recipients signalled with the clock tdk- In the actual system, the position 

sampling process annotated the sample data with position information. The real-time 

display and host processes, D and F , must not miss the data suggesting synchronous 

communication based on tdk- The numeric display process N  can loose data but, because
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error!
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output

signal r„,rj

Figure 6.4: Position Sampling Flow Chart

it calculates phase change, then either phase change data must be provided, or process N  

must guarantee to collect data from two consecutive position samples.

6.1.3 R ea l-tim e  D isplay, D

Figure 6.5 (page 157) is a flow chart for the real-time display process D (the flow chart for 

process H  is identical). The data are read on each and every tciki processed and output. 

For process D, the output is to a digital-to-analogue converter which, for the purpose of 

this analysis, can be considered to be a write operation to a hardware register. In this 

way some timing relationship to the position sampling process P  is maintained. For the 

process H, the data would be buffered to ensure efficient communication to the host.
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Figure 6.5: Real-time Display Flow Chart

6.2 Shared Resource M odels

This section presents models of the shared resources C r p  and C p d - These models will 

be used in the derivation of a restricted CTS model in sections 6.3 (page 160) and 6.4 

(page 170).

6.2.1 C r p  Com m unication

Figure 6.6 (page 158) is a model of the communication resource C r p  which is the interface 

between the processes R  and P. Input and output accesses must not be interwoven, 

however, the ordering of input and output operations is arbitrary as a consequence of the 

requirement for asynchronous access and the recognition that not all input data will be 

used. The states of are interpreted as follows;

1. State {/}, the initial state, indicates that the resource is free, that is, C r p  contains 

no new data and is not being accessed.

2. Output of Tfl, denoted by the state {oq}, must always be followed by the output 

of rt, denoted by the state {o^}. Meeting the requirement of no interwoven access
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Figure 6.6: C r p  Resource Model

means that the state {oj,} is the only possible to state of state {oa}- Likewise, the 

input of rt, denoted the state {zj}, is the only possible to state of the state {z‘a} 

which denotes the input of

3. The transition ({oj}, {ojia}, {*a}) represents {o^} completing and {ia} commencing 

simultaneously. This simultaneity can be either a coincidence or as a consequence 

of synchronisation.

4. The transition {{ob},{ob/ } , { / } )  represents the case where {oj} completes but {z'a} 

is not yet ready to commence. Observe that this return to state {/} allows further 

{oa} and {o(,} operations before any input operations and meets the requirement 

that not all input data are read.

5. The transition ({/}, {/*a}? {*a}) allows input operations to be performed except 

during output operations. This transition also means that input operations can be 

performed after n =  0, 1, 2, . . .  output operations.

6. Once and have been input, there are two possibilities. First, the transition 

({h}){hoa}'>{oa}) represents {*(,} completing and {oa} commencing immediately. 

Second, the transition ({*(,}, {hf}i  {/}) represents the case where {%(,} completes, 

but {oa} is not yet ready to commence.
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6 . 2 . 2  CpD C o m m u n i c a t i o n

Figure 6.7 is a model of the communication resource between processes P  and D. A strict 

output—then—input ordering is required, however, there is no requirement for the input 

operation to immediately follow the output operation.

{fo}
{oi}

{io}

Figure 6.7: CpD Resource Model 

The states of Cpp are interpreted as follows;

1. State {/}, the initial state, indicates that the resource is /r ee , that is Cpd  contains 

either no valid data or valid data have already been input. From the requirement 

for an output—then—input ordering, the only possible to state is {o}.

2. Following an output, an input, {«}, must be performed. This can be either imme

diately reached by transition ({o}, {of}, {*}), or later by transition ({o}, {o f} ,  {/^}) 

to the state {/'}, followed by transition ({/'}, { f i } ,  {«}) state {%}.

3. The state {/'} indicates that the resource contains valid data but these data are 

awaiting an input operation.

4. Following an input, another output can be performed. This output can be immedi

ate, by transition ({i}, {%o}, {o}), or later by transition ({%}, {if},  {/}) to state {/} 

followed by transition ({/}, {fo}, {o}) to state {o}.
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6.3 Interaction between R and P  due to resource Crp

This section determines the required interaction between processes R  and P  to meet the 

constraints of the shared resource C r p . Hence the modified components R  and P  are 

derived using the expressions R  =  (i2||P) < R  and P — (i2||-P) < P. The method follows 

the five steps given on page 149.

6.3.1 Specification of Com ponents R and P

The states of process R  inferred from the flow chart of figure 6.3 (page 155) include waiting 

for Tc/fc, sampling ra+iĥ  calculating and rj, and checking if rdk has been missed. These 

operations do not use the shared resource C r p  and will be abstracted to form a single 

state {r^}. The asynchronous execution of the processes R  and P  means that consecutive 

access to the a  and b elements of the shared resource C r p  must be guaranteed. Therefore, 

it is important that the output of and rj is modelled as separate states. A process R  

resource C r p  use model is illustrated in figure 6.8.

Figure 6.8: Process R  resource C r p  use model

The states of process P  inferred from the flow chart of figure 6.4 (page 156) include 

waiting for pdk, delivery of Va and rj, and checking if pdk has been missed. These op

erations do not access the shared resource C r p  and will be abstracted to form a single
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State {ptü}. The input of and r i  does require access to the resource C r p  and this will be 

modelled by the states {po} and {pb}-  A process P  resource C r p  use model is illustrated 

in figure 6.9.

Figure 6.9: Process P  resource C r p  use model

6.3.2 C om position of System  R\\P

The composition i?||P leads to the following CTS, where j r  and j p  are the idle event 

name identifiers for R  and P  respectively. The composite system jR||P is not illustrated.

T{R\\P)
A{R\\P)

Q (^||T*) — Piü}) Pa}) Pb}; at Pw}t Pa}; {^aj ?
{ n t P w } t { n t P a } t { n t P h } }

: {{rwtPw}}
: { { r w a t j p } ,  { r a b t l p } ,  { n w , l p } t  { ' j R t P w a } t  { j R t P a b } ,  { l f R t P b w } t

wa t Pwa} t {.^wat Pab} t {.^wat Pbw} t \XabtPwa}t {PabtPab} t \Pabt Pbw} t 
\Pbw'iPwa}t Pab} j \fbwt Pbw} }

{ i R t I P }

{({^ a ,P a }, { l R t P a b } t  { r a t P b } ) ,  ({^o,P a}, {^«6, 7 p } ,  { r b t P a } ) t  

{ ra b t P a b} ,  { r b t P b } ) ,  { { r a , P b } t  i l R t P b w } ,  { r a t P w } ) ,  

{ { ^ a t P b h  { r a b , 7 p } ,  { r b t P b } ) ,  { { r a t P b } ,  { r a b tP b w } ,  { H t P w } ) ,  

{ { r a , P w } t  { j R ^ P w a } ,  { r a t  P a } ) ,  [ { r a t P w } ,  {^a6, 7 p } t  { r b t P w } ) ,  

( { r a t P w } ,  { r a b t P w a } ,  { r b t P a } ) ,  { { r b t P a } ,  { j R t P a b } ,  { r b t P b } ) ,

({^6? P a } t  { rbw t  y p } t  { r y j t  Pa}) j ({^6? P a }  t { rbw t  Pot} t P t} ) t
{ { r b t  Pb } t  i l R t  Pbw} t  {r t, P w } )  t ({r t, Pb } ,  { rbw ,  7 p } ,  P b } ) ,

{{rb, Pb}, {rbwt Pbw} t {rwt Pw}) t {{rbt Pw} t {yPtPuia}, {^tjPo})?
{ { r b t  P w }  t { rbwt  y p } t  { r w t P w } ) ,  { { r b ,  P w } , { rb w ,  P w a } ,  {^lojPa})? 
{ { r w t P a } ,  { j R t P a b } ,  { r w t P b } ) ,  ({?'tP,Pa}, { r w a t j p } ,  { r a t  P a } )  t 
{ { r w t P a } ,  { r w a t P a b } ,  { r a t P b } ) ,  { { r w t P b } ,  { ^ R t P b w } ,  { r w t P w } ) ,  

{ { r w t P b } ,  { rw a t  y p } t  {^ajPt}}) { { r w t  Pb }  t { r w a t  Pb w}  t { r a t  P w } )  t 

{ { r w t P w }  t { y R t P w a } ,  { r w t P a } ) ,  { { r w t  P w }  t { r w a t  7 p } t  { r a t  P w } ) t  

{ { r w t P w } t  { rw a t  P w a } t  {^o; P a })}
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6 . 3 . 3  A p p l i c a t i o n  o f  C r p  R e s o u r c e  C o n s t r a i n t s  t o  g i v e  R\\P

Restriction of the behaviour of R ||P by the shared resource C r r  requires analysis of the 

behaviour of the resource and the relationship between the resource transitions and the 

transitions A(P||P) of P ||P . From figure 6.6 (page 158), the C r r  states can be mapped 

to the states of P ||P  as follows.

1. State {/} indicates that Cjjp is free, that is, neither process R  nor P  are accessing 

the resource. Hence, process R  must be in the state and process P  must be in 

state {ptv}- Hence {/} maps to {r^tPw}-

2. State {oo} indicates that C r p  is being accessed for the output of the value r^, thus 

process R  must be in state {r^}. Further, process P  must not be accessing C r p , 

thus P  must be in state {pw}^ Hence {o^} maps to {ra,Pw}-

3. State follows in a similar way to state {oa}, hence {o{>} maps to {rb,Pw}>

4. State {ia} indicates that C r p  is being accessed for the input of the value Tq, thus 

process P  must be in state {pa}- Further, process R  must not be accessing C r p , 

hence process R  must be in state Hence maps to {ryj,Pa}.

5. State {%(,} follows in a similar way to state {z’a}, hence {ob} maps to {r^tPb}-

From the state mappings, the restricted form of P ||P  can be determined from the tran

sition relationship. In other words, transitions between the states of the shared resource 

C r p  determine the permitted transitions between the states of P ||P . The transitions of 

C r p , as illustrated in figure 6.6 (page 158), are as follows;

A (C fip ) = {({/}, {fOa}, {O a }) ,  ({ o j, {OaOb}, {Ob}), ({o&}, {Obia}, {«a}),
({*a}, {iJb}, W ) ,  i{h}t {hf} ,  {/}), ({/}, {fia}, W ) ,
{{0b},{0bf},{f}), ({«6},{«>a},{0a})}
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Figure 6.10 illustrates the relationship between the states of C r p  and R\\P, and the 

permitted transitions of A(C/?p). The outer circles are the states of the resource C r p  

and the directed arcs are the transitions of the resource C r p . The inner circles are the 

states of i l̂l-P but, for clarity, the transitions of R\\P have been omitted. Note that the 

C r p  transitions only define possible transitions of i^l|P, in other words, there may be 

zero, one or many i?||P transitions. For example, the C r p  transition from {/} to {fa} 

permits i?||P to progress from state {rw,Pw} to state {rw,Pa}. Conversely, the absence of 

a C r p  transition from {fj,} to {z’a} would deny the progress of P ||P  from state {rw,Pb} to 

{j'w^Pa} if there was such an R\\P transition.

Figure 6.10: C r p  permitted states and transitions of R\\P

By substitution of the mapped states o î Q { C r p ), a transition set Ac'^p can be deduced. 

For example, consider the transition, ({/}, {/Oa}, {oa}) E A { C r p ) .  The state 

can be substituted for state {/}. Likewise, the state {ra,Pw} can be substituted for state 

{oa}. This is the first transition in Acj^p, the complete set is as follows;
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({^6? P w } ) } ^ b f } 5 {^ui) Piü})î ({^W) P w }5 { /* a } Î {^w; P a}) )
({^tüîPo}? \}a%}i {^lüjPè}}) ({^lüîPè}? i^è/}? {^w,Pw}))
({ri/,,P6}, { % } ,  {r« ,P w }), ( { n , P w } ,  {Oh ia} ,  { r w , P a } ) }

The set Acj^p defines those transitions between the states of Q{R\\P) that are permit

ted by the states and transitions of the shared resource C r p . In other words, the structure 

represented by the set Âc^p defines the extent of the permitted behaviour and must be 

applied to R\\P to form R\\P. Specifically, the transition set A(i?||P) must only contain 

transitions that are permitted by the set Ac^p. Hence the transition set A (i2||P) can be 

stated and evaluated as follows. Figure 6.11 illustrates P ||P .

A ( ^ )  = {(Q,2,P)|(Q,2,P)EA(P||P)A3T.(Q,{T},P)EAc;,;,}
— { P w }; Tf}) Pw}) ) ({^a; Pw }; T f}; {^6; P w }) ;

( { ^ 6 )P iy } î  {^6w; T p }?  } ^ w ^ P w } ) ^  P w } ? {V A ; P w a } ;  { ^ lü îP a } )?

({^iwjPa}) Pab}i  P^}); P&}; { i fRiPbw}^  Pw});
P&}) i,^wai Pbw}^ Pw}); P w }; {,^bwi P w a } i  P a })}

Figure 6.11: P ||P
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Finally, observe that R\\P can be defined as follows, noting that only the transition 

set has been restricted;

S j|F  =  {Q{R\\P) ,QiR\\P)MR\\P) ,^(R \ \P) .M '^) )

6.3.4 E x tra c tio n  to  derive R  and  P  

Evaluation of  R = R\\P < R

In the extraction R = R\\P < R the state set Q{R), the initial state set Q{R), and the 

idle event name F (R) evaluate as follows.

Q(R) =  {{^w],{^a}A^b}}
Q(B) =  ( W )
r(-R) =  {Tiî}

From Definition 5.3 (page 107), the event name set includes terms from the transition 

set. Therefore the transition set must be evaluated prior to the evaluation of the event 

name set.

1. Â((i2||P) < R)a ' All the asynchronous transitions of Â{R)  exist in the transitions 

of A(i?||P), hence;

A ((i? ||P ) <  R)a =  { ( { W ,  {r^a}, { r j ) ,  { {ra},  {rab},  W ) ,
({^t} 5 {rtiü}, {^w})}

2. A ((P ||P )  < R)si There are no synchronous transitions so there is no contribution 

to the transition set.

3. A((P||P) < R)p: Progressive synchronisation arises because some of the expected 

“horizontal” and “vertical” transitions related to the {{ruj,Pb}A'^wa,Pbw},{^a,Pw})  

“diagonal” transition, formed from ({r^}, {r^a] ,  {^a})? do not exist in A (P ||P ). The 

required progressive synchronisation transition will use the new synchronising event
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name {wahw} =  M({r^a} ^  {phw})> Similarly, the ({rh,Pw},{nw,Pwa},{rw,Pa}) 

“diagonal” transition, formed from ({r^}, {r^}), must become progressive, in

this case the new synchronising event name will be {hwwa} =  M{{rhw] U {pwa})^ 

hence;

A((P||P) <1 R)p =  {({r^}, {wahw}, { r j ) ,  ({r^}, {hwwa},

4. A((P||P) < R)d '- State dependent synchronisation arises because some of the ex

pected asynchronous transitions are absent from A (P||P), For example the “ver

tical” transition from state to state by event name {'yR,Pwa} ex

ists, but the related “vertical” transition from state {ra,Pw} to state {va,Pa} by 

event name {jR,Pwa} is absent, hence the state dependent synchronisation transi

tion {pwa}, {^w}) is required. Likewise, the expected transitions from {vaiPa}

to {ra^pb} by event name {'yR,Pab} and from {va^pb} to {vaiPw} by event name 

{iR'iPhw} are also absent. Hence;

A((P||P) < R)d =  {({r^}, {Piua}, ({W , {Pab}i {W ),
{Pbw}) {^w})}

Recall that state dependent synchronisation also arises from absent simultaneous 

transitions (Definition 5.9, page 123). This cause of state dependent synchronisation 

also occurs in this extraction and contributes the same set of transitions.

Finally, the complete extract transition set can be written as follows, and the event 

name set evaluated;

A ((P ||P )< P )  =  {({r«;},{r«;a},{ra}), ({ra},{ra6},{ri,}),
({W, {rbw}, {rw}), ({r^}, {wahw}, { r j ) ,  
({rt}, {hwwa}, {r^}), ({r^}, {p^a}, {W ), 
({ ^ w } ) {Pab}^ { ^w } )) ({ ^ w } , {Pbw}'i { ^ w } )}

S ((P ||P ) <1 P) =  {{r^a}, {rat},
{wahw}, {hwwa},
{Pwa} 1 {Pab}, {Pbw}}
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Figure 6.12 illustrates the extracted component R. The three reflexive state dependent 

transitions on state {r^} require R  to stay in this state if component P  progresses by events 

{Pwa}, {Pot} or {pbw}‘ In this application this synchronisation prevents component R  from 

accessing the shared resource C r p  if component P  is accessing the resource.

{b w w a } {wabw]

Figure 6.12: R  =  < R

The progressive synchronisation transition from state to state {r^} by event 

name { w a h w }  allows component R  to start accessing the resource Crp^ if component P  

simultaneously stops accessing the resource by simultaneously progressing from state {pi} 

to state {piy}. Similarly, the progressive synchronisation transition from state {r?,} to state 

by event name { h w w a }  allows component P  to start accessing the resource C r p  by 

progressing from state {pw} to state {pa}? if component R  simultaneously stops accessing 

the resource. The extracted component P  is described in the next section.

Evaluation of P  =  P ||P  < P

In the analysis of the use of resource C r p , component P  has the same structure as com

ponent R  and because of the symmetry in the restricted machine R\\P, the extraction 

P = R\\P <1 P  follows in a similar way to the extraction of R.
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The state set, the initial state set, and the idle event name evaluate as follows.

Q(P) =
Q{P) = {{p»}}r(f) = {Tp}

The transition set also follows in a similar way, but with the following notable differ

ences. First, because some of the transitions related to the {rwaiPhw}^ {f'a^Pw})

and {{rb,Pw}, {nw^Pwa}^ {f'wiPa}) “diagonal” transitions do not exist in A(i?||P), progres

sive synchronisation is required. The new event names are {wahw} = W({rwa} U {p(,w}) 

and {hwwa} =  M{{rbw} U respectively. Hence;

A((P||P) < P)p =  {({pè}, {wahw}, {p^}), ( { p j ,  {hwwa}, {p j)}

Second, state dependent synchronisation arises because the expected “horizontal” 

asynchronous transitions ({r^,Po}, {r^a, }, {r^,p^}), {{ra,Pa},{rab,7 p}An,Pa})  and

{{n, Pa}, {rbwi 7P}, {i^w, Pa}) are absent. Hence;

' (̂(-^11- )̂ -̂ )-D — {({Pw}, {^wa}, {Pw}), ({Pw}, {^a^}, {Pw}),
({Pw}, {^6w}, {Pw})}

Finally, the complete extraction transition set can be written as follows, and the event 

name set evaluated;

A((P||P) <1 P) =  {{{Pw}, {Pwa}, {Pa}), ({Pa}, {Pab}, {P6>),
({P6}, {Pbw}, {Pza}), ({Pz/,}, {hwwa}, {pa}),
({P6>, {wahw}, {p,^}), ({P u ,} ,  {r^a}, {Pza}),
({Pzu}, {^ab}, {Pw}), ({Pzu}, {^6zu}, {Pzu}) }

Ê((P||P) < P) =  {{p«,a}, {Pab}, {P6za},
{hwwa}, {wahw},
{̂ zua}, {^ab}, {̂ 6zu}}

Figure 6.13 illustrates the extracted component P. The three reflexive state dependent 

transitions on state {pw} require P  to stay in this state if component R  progresses by events 

{î'züo}, {̂ ab} or {^bw}’ In this application this synchronisation prevents component P  from 

accessing the shared resource C r p  if component R  is accessing the resource.
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{wabw} {bwwa}

Figure 6.13: P  =  (i^||P) 0  P

The progressive synchronisation transition from state {pw} to state {pa} by event 

name {hwwa}  allows component P  to start accessing the resource Crp, if component R  

simultaneously stops accessing the resource by simultaneously progressing from state {r̂ ,} 

to state {r^}. Similarly, the progressive synchronisation transition from state {pt} to state 

{Pw} by event name {wahw}  allows component R  to start accessing the resource C r p  by 

progressing from state {r^j} to state {r^}, if component P  simultaneously stops accessing 

the resource.

6.3.5 V erification of R\\P

Figure 6.14 illustrates the concurrent composition R\\P of the extracted components. In 

this example, all the event names of the components are shared and hence all the transi

tions are synchronous. Comparison with figure 6.11 (page 164) shows that the behaviour 

of the composite R\\P does not violate the intended behaviour of the shared resource C r p .
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i i

{wabw}

{bwwa}

Figure 6.14: R\\P

6.4 Interaction between P  and D due to resource Cpd

This section presents a detailed analysis of the expressions P = ( f  ||D) < P  and D =  

(P||J9) <] D, where P\\D is P\\D constrained by the resource Cpd as defined in figure 6.7 

(page 159). The method follows the five steps given on page 149.

6.4.1 Specification of Com ponents P  and D

Processes P  and D use the shared resource CpD- Therefore the use of this resource must 

be described in the states and transitions in the CTS model of P  (and D). This results 

in a model of P  that is different to the model of P  presented in section 6.3.1 (page 160).

The states of process P  inferred from figure 6.4 (page 156) include waiting for pdk, the 

input of ra and and checking if a pdk has been missed. These operations do not use 

the shared resource Cpd and will be modelled by the single state {pw}- The operation of
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data output will be modelled by a state {po} and the act of generating the tdk signal will 

be modelled by a synchronous transition. Due to the synchronisation, the output of the 

data will be modelled by a single state rather than the two states used in the model of P  

in section 6.3.1 (page 160). Process P  (and process D) is illustrated in figure 6.15.

i p j

Figure 6.15: Processes P, D and P\\D resource CpD use model

Process D uses the shared resource CpD and this must be described in the states and 

transitions of the Composite Transition System model of D for the analysis of P\\D.

The states of process D inferred from figure 6.5 (page 157) include waiting for tdk, 

the calculation and output of data, and the check for a missed tdk- These operations do 

not use the shared resource CpD and will be modelled by the single state {d^}. As a 

consequence of the synchronisation of the processes P  and D, the input of and ri will 

also be modelled as a single state, {dî). Process D is illustrated in figure 6.15.

6.4.2 C om position of System  P\\D

The concurrent composition P||D, which is illustrated in figure 6.15, leads to the following 

Composite Transition System, where 7p and 7p> are the idle transitions for P  and D re

spectively. Observe that from state {po, d^j} the system can only progress as a consequence 

of tdk synchronisation.

171



Q(P|[Z))   {{Pîü? diy}, {Poj dty}, {Piy, dj}, {Po, dj}}
Q(P||D) =  {{p«,,d^}}

à ( P |lD )  =  {{PlüOî 7l?}î {PîüOj djiy}, {7P5 d^u;}, {^c/fc}}
r(P||D) = {7P,7p}

A (P |lZ )) =  {({Piyj diy}, -{pwo, Ti?}î {.Po, diy}), { { p w ,  d i} , {pwo, Tr>}î {Po? d^}), 
({Pivî {TPj dju;}, { p w ,  du , } ) ,  { \Po ,  d*}, { “y p ,  d i w } ,  {Po ,  du j } ) ,  
{^{Pw, d i } ,  { Pwo,  diu, } ,  {Po ,  du j } ) ,  ({Poj duj}^ { t c l k } ,  {Pw ,  d*}')}'

6.4.3 A pplication of Cpd Resource Constraints to  give P\\D

Restriction of the behaviour of P||D  by the shared resource C p D  requires the evaluation 

of the relationship between the resource transitions and the transitions of A(P||D). From 

figure 6.7 (page 159) the C p p  states can be mapped to the states of P\\D as follows.

1. State {/} indicates that CpD is free, that is, neither process P  nor D are accessing 

the resource, and either no data have been written or the written data have been 

read. Hence, process P  must be in the state {pw} and process D must be in state 

{dw}. Hence {/} maps to {pu,,du,}.

2. State {0} indicates that Cpp is being accessed for the output of data. Hence process 

P  must be in state Further, process D must not be accessing C p d , hence process 

D must be in state {dt^}. Hence {<?} maps to {po, d^}.

3. State {/'} indicates that CpD is not being accessed, but data has been written which 

has not been read. This state causes some difficulty. For process P, the state {pw} 

indicates that data has been written, assuming the state {po} has been reached at 

least once. For process P , the state {du,} indicates that data has not yet been read. 

However, if the state {/'} were mapped to the composite state {p^, d^} then the 

requirement for a strict write-read sequence is not met as a write-write sequence is 

forced as a consequence of the transition from {/} to {o}. In other words, there is no 

transition from {/} to {%}. However, such a transition would incorrectly allow both
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write-write and read-read sequences. In this example, the use of synchronisation 

between P  and D and the Cpn transition from state {o} to state {z} leads to the 

decision to not map {/'}•

4. State {i} indicates that CpD is being accessed for the input of data. Hence process 

D must be in state {di}. Further, process P  must not be accessing CpD, hence 

process P  must be in state Hence {z} maps to {p^, d{}.

From the state mappings, the restricted form of P ||P  can be evaluated. The transitions 

of CpD, as illustrated in figure 6.7 (page 159), are as follows. Figure 6.16 (page 174) 

illustrates this state mapping and the transitions of A (Cpd). For clarity, the transitions 

of P\\D have been omitted.

H C pd) = W ).(W .{ o /'} . {/'})>
({/'}, {/'*■}- {0). ({*■}, W ,  W ), ({0. { if} ,  {/})}

By substitution of the mapped states of Q{Cpd), the transition set Acp^y can be 

determined, hence;

^CfpD ~  { { {Pw,  duj}, { f o }^  {po,  duj }) , {{po,  dyj}j  { o i } ,  {pu;, d i } ) ,
{{Pw, di}, {io}, {po, du,}), ({ptu, di}, {if} , {Pw, dw})}

The set Acp^ defines the transitions between the states of Q[P^D) that are permitted 

by the states and transitions of the shared resource CpD- Specifically, the from state set 

of Acpp defines the permitted from states of P ||P . Likewise, the to state set of Âcpp,

defines the permitted to states of P\\D. Hence the transition set A (P ||P ) evaluates as

follows, and P ||P  is illustrated in figure 6.17 (page 174).

A(pjiS) =  { (Q ,S ,P )|(Q ,S ,P )eÂ (P ||r> )A 3 r.(< 3 ,{ r} ,P )6 Â cp „}
— {({Ptpj du,}, {Pwo, T-d}? {Po, duj}), {{Pw, di}, {yp, diu,}, {Pw, duf}),

i\.Pw, df},  {Pwo, diuj}, {Po, du,}), {{Po, du,}, {tclk}, {Pw, di})}
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Figure 6.16: Cpo permitted states and transitions of P\\D

PU P

Figure 6.17: P\\D

Finally, observe that P\\D can be defined as follows, noting that only the transition 

set has been restricted;

Fp = (Q(F||F),Q(F||F),è(F||Z3),r(F||£)),Â(pj]D))

174



6.4.4 E x tra c tio n  to  derive P  and  D 

Evaluation o f P = P\\D < P

In the extraction P  =  P\\D <l P  the state set Q{P), the initial state set Q{P), and the 

idle event name F (P) evaluate as follows.

9 0  {Po}}
Q{P) = {{Pw}} 
r(P ) =  m

From Definition 5.3 (page 107), the event name set will include terms from the tran

sition set. Therefore the transition set must be evaluated first.

1. A((P||D) < P)a '- The asynchronous transition {Pwo}  ̂{Po}) of Â(P) exists in 

the transitions of A(P||Z)), hence;

A ( ( ^ ) < P ) A  =  {({p.},{pW,{Po})}

2. A ((P ||D )<P)5: The synchronous ({po}? {Pw}) of A(P) exists in the transition

({Po, du,}, {tclk}, {Pw, di}) of A(P||D), hence;

A ( ( ^ ) < P ) g  = {({pJ,{W ,{P i.})}

3. A ((P||P) < P)p- Progressive synchronisation arises because some of the expected 

“horizontal” and “vertical” transitions related to the {{pw,di},{pwo,diw}, {Po,dw}) 

“diagonal” transition, formed from ({Pw},{Pu,o}, {Po}), do not exist in A(P||D). 

The required progressive synchronisation transition will use the new synchronising 

event name {woiw} = Af{{pwo} U Hence;

A ( ( ^ ) < p ) f  = {({Pu,},{woM,{Po})}
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4. Â((F||D) <1 P)d- State dependent synchronisation because some of the expected 

asynchronous transitions are absent from A (P ||D ) .  Specifically, the “vertical” tran

sition from state {pw,di} to state {pw,dw} by the event name {"yp, exists, but 

the related transition from state {po, d{] to state {po, d ,̂} by the event name {7^, di^} 

is absent. Hence the state dependent synchronisation transition ({Pu,}, {d{yj}, {Pw}) 

is required.

A ( ( ^ ) < P ) D  =  {({p.}, {d,

State dependent synchronisation also arises from absent simultaneous transitions 

(Definition 5.9, page 123). This cause of state dependent synchronisation does not 

occur in this extraction.

Finally, the complete extraction transition set can be written as follows, and the event 

name set evaluated;

A((P||D) < P) =  { { { P w } ,  { P w o } ,  {P o}), ({Po}, {tclk}, {p«,}),
(W ), {woiw}, {p j), ({pu,}, {diu,}, { P w } ) }

S((P||D) < P) =  {{pu,o}, {tclk}, {woiw}, {diu,}}

Figure 6.18 illustrates the extracted component P. The reflexive state dependent 

transition on state {pw} requires P  to stay in this state if component D progresses by 

the event {diu,}. In this application, this synchronisation prevents component P  from 

accessing the shared resource CpD if component D is not accessing the resource following 

the previous tdk synchronisation. In other words, synchronisation on tdk is not sufficient 

to ensure that the shared resource is accessed correctly. This situation is often called a 

race hazard.

The progressive synchronisation transition from state { p w }  to state {po} by event 

name {woiw} allows component P  to start accessing the resource Cpd, if component D
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{woiw}

{p.}

Figure 6.18: P  =  (P\\D) < P

simultaneously stops accessing the resource by simultaneously progressing from state {di} 

to state {dui}. Elimination of the transition from {z} to {o} by {zo} in the behaviour of 

the resource C r p  would remove this synchronising transition.

Evaluation of D = P\\D <\D

In this application, component D has the same structure as component P  and because of 

the symmetry in the restricted machine P\\D, the extraction D =  P\\D <! D follows in a 

similar way to the extraction of P.

The state set, the initial state set, and the idle event name evaluate as follows.

Q(D) =
Q{D) = {{d„}}
r(£>) = {%}

The transition set also follows in a similar way, but with following notable differences. 

First, because some of the transitions related to the {{pw, di}, {pwot dm}, {po, dyj}) “diagor 

nal” transition do not exist in A(P||D), progressive synchronisation is required. The new 

event name is {woiw} = J\f{{pwo} U {diiy}). Hence;

A ( ( ^ ) < i D ) p  =  { ( W ,{ w o M ,W ) }

Second, state dependent synchronisation arises because the expected “horizontal” 

asynchronous transition ({pw, d j ,  Tc}, {Po, d j)  is absent. Hence;

A ( ( ^ ) < D ) D  =  {({d^},{p«,o},{d^})}
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Finally, the complete extraction transition set can be written as follows, and the event 

name set evaluated;

{{di}, {woiw}, {d^}), ({d^}, {Pwoh Ww})}

È ((f||D ) <D) =  {{d:u,}, {tclk}, {woiw}, {pyjo}}

Figure 6.19 illustrates the extracted component D. The reflexive state dependent tran

sition on state {d^} introduces synchronisation that enables component P  to commence 

accessing the shared resource CpD if component D is not accessing the resource.

{woiw}

Figure 6.19: D = (P\\D) < D

The progressive synchronisation transition from state {di} to state {d^} by event 

name {woiw} allows component P  to start accessing the resource Cp d , if component D 

simultaneously stops accessing the resource by simultaneously progressing from state {di} 

to state {dw}.

6 .4 .5  V erifica tion  of P\\D

Figure 6.20 illustrates the concurrent composition P\\D of the extracted components. 

In this example, all the event names of the components are shared and hence all the 

transitions are synchronous. Comparison with figure 6.17 (page 174) shows that the 

behaviour of the composite P\\D does not violate the intended behaviour of the shared 

resource Cp d -
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{woiw}

Figure 6.20: P\\D
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Chapter 7

Summary, Discussion and 
Conclusion

Concurrency is a common design choice for real-time systems but co-ordinated use of the 

system-level resources shared between the concurrent components is essential. Failure to 

co-ordinate correctly may lead to violation of the required use of a resource — resource 

contention — and a system that does not function as the designer intended. Consequently, 

an implementation may not always meet its specification and the indeterminacy of con

current systems can make the cause of the problem difficult to determine [63].

Many notations for specifying concurrent systems exist. Typically, these notations have 

a rich syntax designed for specifying the behaviour of sequential components. Concurrent 

composition of the components though is often limited to some assertion that the compo

nents execute concurrently and interact through the interfaces exposed at the component 

level. The result is a concurrent system specified by the behaviour of its components that 

is inadequate for dealing with system-level resource contention and this renders many of 

the existing notations inappropriate.

The Composite Transition System notation developed in this thesis provides ways 

to derive components that respect the system-level resource constraints abstracted away 

during the design process.
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7.1 Summary o f the CTS N otation

Descriptions of the behaviour of concurrent systems require constructs to describe con

currency, asynchrony, simultaneity and synchronicity; constructs that are absent in La

belled Transition Systems. Despite this, the development of a notation with similarities 

to Labelled Transition Systems seemed a natural choice because they are well understood, 

especially by engineers developing embedded systems, and are embodied in standards such 

as the Unified Modelling Language [2, 24], LOTOS [41] and Z [86]. The Composite Tran

sition System diagrams in this thesis are recognisable as state transition diagrams and 

section 3.3 (page 65) showed that translation from an LTS into a CTS is straightforward.

The Composite Transition System notation achieves the required refinement of La

belled Transition Systems by labelling each state and event name with a set of identifiers 

(rather than an unstructured identifier) and by the explicit definition of the semantics of 

internal idle events. Each system state describes the contemporaneous state of existence 

of the system components. Similarly, each system event name describes the component 

events that must occur simultaneously for the system to progress. Synchronicity is a form 

of simultaneity which is distinguished through a convention on component event names, 

and asynchrony is transformed into a form of simultaneity by the idle events. This specific 

use of idle events is a significant difference to not only Labelled Transition Systems, but 

also notations which, for example, use internal events to represent, perhaps, a minimal 

delay, or the internalisation of some interaction.

Operators that act on Composite Transition Systems have been defined to enable 

the modelling resource contention. The operational steps are component specification, 

concurrent composition, restriction and extraction.

The concurrent composition operator takes CTS descriptions of the system components 

and generates a CTS that describes the behaviour of the concurrent composition of the
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components. Conversely, no operator has been defined to restrict the behaviour of a 

concurrent system as a consequence of the application of system-level resource constraints. 

Analysis of each specific application is required and, therefore, the algebra of a restriction 

operator is not likely to be generic.

The method for applying resource constraints adopted in the applied example of Chap

ter 6 was to map the permitted states of a shared resource to the states of the composite 

system to derive a transition “mask”, for an example see A r  in term 6.1 (page 150). 

Other forms of restriction may be required, for example, when two processes share a sin

gle processor and cannot simultaneously progress, then simultaneous transitions must be 

prohibited. Or, perhaps, there are prohibitions on specific transitions between states.

A system model incorporating resource constraints is not sufficient to ensure that an 

implementation will meet the system specification. It is also necessary to determine the 

behaviour of the required components and their interaction which is only revealed at 

the system-level. The extraction operator can be used to generate the CTS descriptions 

of the required components. Verification that the restricted system and the extracted 

components meet the system requirements must be performed by the system designer. 

Extraction is a significant contribution of the CTS notation because it is crucial to the 

verification that an implementation will meet its specification.

The CTS notation was applied in Chapter 6 to an example system as a demonstration of 

a method of modelling resource contention. The example illustrated that the use of shared 

resources can be modelled with few states and transitions, preventing an unmanageable 

state-space and transition-space. A system model was formed by concurrent composition 

of the components. A “mask” defined the system states and changes in system state per

mitted by a system-level resource and the extraction operator was applied to determine the 

required modified behaviour of the components. Verification was performed by comparing 

the restricted system and the concurrent composition of the extracted components.
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Manual calculation of concurrent composition is relatively straightforward but can 

become error prone as the number of states and transitions increases. Manual calculation of 

extraction is very difficult, even for simple systems. Without software tools the complexity 

of the computations would be an impediment to the adoption of the notation by system 

designers. Therefore, the operators have been comprehensively defined and, although it 

was not the aim of this work to design and build a software package, some use of the 

Mathematica [98] tool was sufficient to demonstrate the feasibility of generating software 

tools.

7.1.1 Operators

The CTS notation can describe asynchronous, simultaneous and synchronous progress. 

However, making the distinction introduces significant complexity into the algebra of the 

concurrent composition and extraction operators. Moreover, this algebraic complexity 

limits the mathematical properties of these operators. The mathematical properties are 

explored in Appendix B (page 196) and summarised in table B.2 (page 219).

M erge C om position

Merge composition is fundamental to the “superposition” of machines (Chapter 3) and the 

algebra of the operator proves to be quite straightforward, largely because it is unnecessary 

to distinguish synchronous progress from simultaneous or asynchronous progress.

Merge composition necessitates a set of initial states. Each initial state is a decoration 

identifying a possible starting point. The notion of an actual initial state is useful in 

considering state reachability, that is, the ability of a machine to reach certain states and 

to execute transitions from that state; a consequence of this is discussed in section 7.2 

(page 186).
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Concurrent Composition

Concurrent composition, in contrast to merge composition, generates both synchronous 

and asynchronous forms of progress and this introduces algebraic complexity to the op

erator. The complexity, which arises from determining if an event name is synchronous, 

means that the operator is only associative under certain conditions, while the property 

of distribution over merge is denied. These limitations restrict the expressions that can be 

written over Composite Transition Systems.

If, instead, only asynchronous progress were to be described, then the tests for syn

chronous event names would be unnecessary and all combinations of component event 

names and transitions would be formed. The concurrent composition operator would then 

be associative and would distribute over merge. But the absence of any form of descrip

tion of synchronous progress would render the notation useless because synchronisation is 

a common technique for co-ordinating concurrent processes. Indeed, this is why real-time 

operating systems have synchronisation primitives such as semaphores and mutexes. Fur

ther, the absence of a description of synchronisation would prohibit the definition of the 

extraction operator, without which, the objective of modelling resource contention could 

not be met.

Similarly, if only synchronous progress were to be described, then term 4.4 (page 78) 

is sufficient to define concurrent composition. But only those event names synchronous 

to every component of a composition and which label at least one transition in every 

component would yield a transition in the composite system. Such strong synchronisation 

would significantly restrict the applicability of the notation.

Despite the complexity and limitations to the mathematical properties, the concur

rent operator generates a concurrent system which incorporates state concurrency and 

asynchronous, simultaneous and synchronous progress.
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Extraction

Development of the extraction operator proved to be difficult in two respects. The first 

difficulty was to determine the synchronising transitions required to suppress the con

current composition of transitions absent from a restricted system. Various techniques 

based upon additional “intermediate” states were explored. However these still required 

synchronisation and altered the structure of a restricted system. Moreover, the concur

rent composition of the extracts and the restricted system would differ significantly unless 

additional complexity was added to the algebra of concurrent composition.

The second development difficulty was to determine the conditions for the introduction 

of the synchronising transitions. Much of this difficulty arises because an expression of 

the form Cy < C  specifies neither the components of Cy nor the transitions of C'y that 

are absent in Cy. If Cy is the composition of C  with some (unknown) component, say J f ,  

then the extraction operator attempts to determine X  such that C'\\X, that is C y, can be 

formed and compared with Cy.

Now, simplifications could be made if the extraction operation was defined as a func

tion, perhaps of the form < ( C ' ,  C", C'\\C",C"). Such a function reads as the extraction of 

C "  (which may or may not be the same as C  or C ") from C '||C " , where the operands of 

the unmodified concurrent composition C'||C" are explicitly given. Such an approach was 

not adopted because a design objective was to be able to determine an extract where the 

components of the composite system may not be known. Additionally, binary operators 

lead more naturally to algebraic expressions, for example ((Co||Ci -I-C3) <1 Ci)||(C4-f C5), 

and hence the notation could form a machine algebra.

The extraction operator correctly generates an extract from a system which comprises 

two concurrent components. Interpretational difficulties arise when a composite system 

comprises three or more components and this is discussed in section 5.5 (page 146).
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7.2 Discussion

structure and Execution

Translation of asynchrony into a form of simultaneity reveals that a CTS is a model of a 

sequential machine. Therefore, progress (execution) of the system can be non-deterministic 

if two or more system events occur simultaneously (this should not be confused with the 

simultaneous occurrence of any two or more component events).

Section 3.1.1 (page 45) revealed that a composite event name that incorporates a 

component idle event name leads to apparent simultaneity of system events. This apparent 

simultaneity, an artifact of the notation, was suppressed with a precedence rule (page 46), 

hence the notation does not introduce non-deterministic execution. More significantly, the 

need for the precedence rule identifies a distinction between “executional” and “structural” 

determinism. The dis-ambiguation property [20] only ensures that the structure of a 

system is deterministic.

This distinction between structure and execution is often overlooked and this is a 

consequence of the misuse of the nomenclature of events. In the Composite Transition 

System notation, the term event name identifies the name of an event to which a system 

will react. These event names label transitions which describe a change of state if the 

named event occurs. Within the structure of a CTS (or indeed any Labelled Transition 

System) an event name may label more than one transition. The labelling of a transition 

in a CTS with an event name makes no assertion about how many times, if any, the 

named event will occur. However, each time an event occurs then the event name can be 

appended to the trace of events (page 65) that have occurred. Thus, the labelling of a 

transition with an event name relates to the “structure” of a CTS, but the occurrence of 

an event relates to its “execution”.
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This distinction between structure and execution is important because the identifica

tion of resource contention involves the derivation of the required structure of a component 

rather than the proof of any specific properties of the execution of a component. The CTS 

notation and its operators have been defined to provide structural analysis rather than 

the executional analysis that is often the design objective of existing notations.

One further observation arising from this distinction is that while the execution of 

a process may be expected to be infinite, the process specification -  its structure -  is 

almost certainly finite. In many of the notations that are mathematically motivated, this 

distinction can be significant; Aczel in [1], however, also noted the distinction and uses 

the Anti-Foundation Axiom with non-well-founded sets as a basis for describing the finite 

structure of a Labelled Transition System but its infinite execution.

Unreachable States

Removal of unreachable states simplifies a component and any concurrent system formed 

from a component. Unreachable states are most obvious in the structure of a CTS. With 

the exception of an initial state, any state that is not the to state of any transition cannot 

by be reached. The ability of a CTS to reach a state by execution is less obvious and 

depends upon the actual initial state and the analysis of all possible execution traces.

The removal of any transitions from unreachable states in a composite system, might 

lead the extraction operator to introduce synchronisation that might not otherwise be 

required. Recall that synchronisation is introduced by the absence of certain transitions 

and not whether they are reachable. In other words, the extract operator acts only on 

the structure of the component. Hence, retaining any unreachable states and transitions 

that will not or cannot be executed might result in fewer synchronisation transitions. But 

arguably the removal of transitions creating the need for additional synchronisation makes 

for a more robust system.
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Abstraction

System complexity leads designers to partition systems into idealised entities each of a 

manageable complexity. Abstraction and idealisation introduced in this partitioning has 

the effect of hiding aspects of the system complexity deemed irrelevant to the specific 

analysis being performed. In a CTS the abstraction is manifest in the states, the events 

to which the system may react, and the state changes defined by the transitions.

A state represents “something” — perhaps some resource consuming activity, reaction 

to events or even inactivity — but that “something” is not revealed. Consequently, a 

state is commonly understood to represent some form of indivisibility. In a Composite 

Transition System every state of a component is likely to be subsumed into a number of 

composite states. For example, the component state {e} in figure 3.2 (page 45) is subsumed 

in the composite states {a, e} and {5, e}. Consequently, a composite state change does 

not necessarily mean a change in component state. Therefore, any divisibility apparent at 

the system level does not necessarily mean divisibility at the component level. In other 

words, any familiarity with Labelled Transition Systems may lead to misinterpretation of 

a Composite Transition System.

A system state change in which a component does not change state is a consequence 

of component idle event names and the implied reflexive idle transitions. Component idle 

transitions enable other components in a composition to progress, specifically, the other 

components progress by their defined transitions. More generally, the abstraction repre

sented by a state is assumed to be completely independent of any implicit idle transitions 

and any explicit transitions of other components. Consequently, internalising a common 

event through abstraction in a component state may make the event asynchronous ac

cording to the conventions of concurrent composition. Thus different abstractions of the

behaviour of a component may significantly alter the structure and execution of a com

posite system formed from that component.
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Computational M odel

A commonly held interpretation of Labelled Transition Systems is that a transition be

tween states is instantaneous, or at leaist indivisible, and that a state represents some 

form of activity that consumes processor resource (which, given finite processing perfor

mance, cannot be instantaneous). Interpretations of this form raise the question about 

the underlying computational model. For systems that exhibit true concurrency, the max

imum parallelism computational model is often assumed and this implies one processor 

resource for each process. The CTS concurrent composition operator is a true concurrency 

operator.

However, each state is an abstraction for something that is not defined by the con

structs of the Composite Transition System notation (or indeed any form of state machine 

notation). A composite state defines the contemporaneous state of existence of the compo

nents of the composite system, but does not necessarily describe executional concurrency. 

Consequently, the required processing resource depends upon the specific interpretation 

of each component state and this interpretation cannot be gleaned from the constructs 

included in the CTS notation.

Since it is the interpretation of each state in a Composite Transition System model that 

defines the required processing resource, the notion of an underlying computational model 

is actually irrelevant. The objective of the requirement on page 42 that the notation 

should not assume any specific computational model really requires that the notation 

itself should not impose any constraints on the behaviour of a composite system. Thus an 

implementation may range from one processor per process through to a single processor 

for all the processes. A processor is a shared resource for which the processes compete, 

therefore, the resulting resource contention should be explicitly modelled. Note that the 

definition of an interleaved concurrency operator which generates a composite system that 

does not include simultaneous progress, would be feasible.
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Anti-events

The method adopted in Chapter 6 (page 148) to derive a restricted system was to apply 

a “mask” to remove certain transitions, and this can be thought of as the “inverse” of 

merge composition. Extraction from the restricted system then introduces synchronisation 

transitions. Observe that restriction removes transitions from the structure of a system, 

yet the extraction operator, in general, adds transitions to the structure of an extract that 

is a required component of that restricted system.

An alternative approach is to form a transition that removes transitions under merge 

and concurrent composition. Consider the concept of anti-event names and anti-transitions. 

Any event name E could have a counterpart anti-event name, perhaps denoted E. The 

occurrence of an event E would not cause any transition labelled with the anti-event name 

E to progress. In effect, a transition labelled with an anti-event name is the same as an 

absent transition. Thus, an anti-transition is a transition that is a constituent part of the 

structure of a component but not of the execution of a component.

Restricting the behaviour of a system Cy to form the system Cy would require the 

conversion of the event name label on those prohibited transitions to the corresponding 

anti-event name label. Thus the “absent” transitions in the system C'y would be exposed 

and this might lead to a simpler extraction operator and alternative techniques for the 

introduction of synchronisation. However, much of the complication of extraction comes 

from determining the other component of a composition and determining which transitions 

exist and which do not. If anti-events were used then a similar algorithm would likely be 

required but the determination would be based on the presence of transitions labelled with 

the related anti-event name rather than the absence of related transitions.
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Algebraic Structures

The concept of anti-events can be extended to the other terms in the definition of a 

Composite Transition System. Since merge composition is commutative and associative 

(Appendix B.1.1 and B.1.2), then the existence of a unique merge composition identity 

GTS denoted such that C -f =  U'^ -f- C =  C, and the existence of an inverse C of 

a GTS C, such that C-\-C = C -^C  = U'^, would give the merge operator the property of 

a group [6]. Indeed, a merge identity and the inverse of a GTS can be defined using the 

anonymous states, events, and so on, introduced in Chapter 3. However, the definition of 

each term of the merge composition C  -f C" becomes more complex, for example;

t{ C ' + C") { S |(S 6 Ê (C ")A Ë ^Ê (C "))V (S eÊ (C " ')A Ë ^Ê (C '))}U
{SKS 6 S(C') A E ^ S(C")) V (S 6 S(C") AE{^ S(C"))}

A similar approach can be taken with the concurrent composition operator, but not 

without significant complexity.

The advantage of relating the operators of the Composite Transition System notation 

to well-known algebraic structures such as a group or a ring is that well-established theo

rems can then be applied to determine different properties of the systems. Now, to have 

the property of a ring, an “addition” operator (merge) and a “multiplication” operator 

(concurrent composition) are required. But, both operators need to have the proper

ties of a group and concurrent composition must distribute over merge. Appendix B.2.3 

(page 209) shows that the law of distribution only holds for specific conditions. Therefore, 

the advantages of algebraic structures cannot be exploited without changes to the algebra 

of the operators.
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7.3 Conclusion

The concept of resource contention, its impact on the interaction of independently spec

ified processes, and the importance of modelling resource contention were examined in 

detail in this thesis. Some existing notations were reviewed, but their applicability to pro

cess specification made them less than appropriate for the purpose of modelling resource 

contention. This motivated the development of the Composite Transition System notation 

which enables a system designer to describe the behaviour of sequential components and 

calculate the behaviour of their concurrent composition. The concurrent system can then 

be constrained by the application of system-level resources and the specifications of the 

required components can be computed.

However, five significant areas for further work have been identified.

The first area concerns the interpretation of a Composite Transition System and its 

translation into an implementation. Interpretation can be difficult for all but the simplest 

of systems and the synchronisation introduced by the extraction operator exacerbates the 

problem. Understanding how to interpret a CTS requires further investigation and the  ̂

application of the notation to further case studies.

The second area concerns the minimisation of synchronisation. One possible technique 

that should be investigated is to extend the convention on common event names to include 

specific states, thus tightening the criteria for determining synchronisation during concur

rent composition. However, such a change would likely require significant re-definition of 

the notation and the algebra of the operators.

The third area concerns the impact to an extract as a consequence of removing tran

sitions that will not or cannot execute in a restricted system. Detecting such transitions 

is the subject of reachability analysis, however, techniques that are more sophisticated
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than a simple “mask” that determines the structure of the extract without regard for the 

execution of the system could lead to useful simplification.

The fourth area concerns the development of “remainder” operator. For any expression 

C|| < C', the algebra of the extraction operator determines with what C' would have been 

combined to form C'y, in other words, extraction determines the “other” component of 

Cy. This suggest that a “remainder” operator should be defined to determine the “other” 

component. This is of use in an expression of the form (Ca \\Cb ) <3 Cc, which determines 

C c’ The “remainder” operator would generate Cd , such that Cd \\Cd — Ca \\Cb - The 

application of this proposed operator is the study of alternative components of a system.

The final area also concerns the extraction of components not used in the formation 

of a restricted system. The motivation is to reason about alternative sets of component 

processes. In other words, there may be other component specifications that would meet 

the system requirements but with less resource contention and, therefore, less interaction 

between the components. One approach might be to evaluate partitioning algorithms that 

arise in the domain of graph theory. Similarly, theorems based on algebraic structures 

could be investigated if solutions can be found to the limitations of the mathematical 

properties of the operators.
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A ppendix A

Definitions

A .l  Merge Composition

r(c' + c") 
A (c ' +  c '0

d e f

d e f

d e f

d e f

d e f

Q(C')UQ{C")
Q{C')UQ{C")
S(C")US(C")
Af{r{C) u r(c")) 
A(C") u Â(C")

A .2 Concurrent Composition

Q(C'\\C')
Q{C'\\C")
S(C'||C")

r(c'||c")
A {C '||C " )

d e f

d e f

d e f

d e f

d e f

{(?' U Q"\Q' € Q{C) A Q" € Q{C")}
{Q' U Q''\Q' e Q(C") A Q" 6 Q(C")}
{S' u r(C")|s' e s(C') a  Vï € s(C"). s' n ï  = {}} (J 
{r(C') u s"|s" 6 s(C") A VT e s(C") * s" n t  = {}} U 
{S' u s"|s' e s(C') A VT e s(c"). s' n T = {} a

s" e S(C") A VT 6 s(C"). s" n T = {}} u
{S' U S"|S' 6 S(C') A S" 6 S(C") A s' n S" ^{}} 
r(C')ur(C")
{(Q'u<5 ",s'ur{C"),p'uQ")|(Q',s',F') e A(C')a 

Q" € S(C") A S' u r(C") e S(C'||C")> {J 
{(Q' U Q",r(C') U S",Q 'U P")\Q' € S(C") A

(Q",s", p') 6 A (C ") A r(C') u s" € s(C'||C")} u
{(Q 'U Q ",S'U S",P'U P")|((3',S',P') 6 A(C")A 

(Q", S", P") € A (C ") A S' U S" e S(C'||C")}
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A .3 Extraction Operator

Q ( q < C ' )  { Q ' | 3 Q|| .  ( Q | | € Q ( q )  A Q ' 6 <3 (C") A Q | | n Q ' ^ { } ) }
Q(q| <1C) { Ô' I 3 Q|| . (Q || 6  ë ( C | |)  A Q ' e  Q{C) A Q,, nQ'^  {})}
s(q|<iC') {S' 13 s,| . (S|| e s(C||) A s(C') A s„ n S' f  {})} u_  {S|3 Q,F. (0 ,s,P)eA(q|<iC')}
r(qi<ic') W #(r(c"))
A(qi<ic') Â(qj<c")AUÂ_( <̂c")sUÂ(qj<c')pU

A(C|| 0  C') d a  U A(C|| <] C')d c
d e f {(Q',S',P')|3Q||,%P|| . (

(qil,S||,P||) 6 A(q,) A (Q',S',P') e A(C') a 
{Q\\ n q' ̂  {}) A (S|| n {}) a (î , n P' 5̂  {}) a 
35" = S|| -  S', I" = r(q,) - r(c") • s" = %")} u

{(q',S',P')|3Q||,Sj ,̂/]| . (
(Q||,S||, P||) 6 A(q,) A (Q', S', P') 6 A(C') a 
(Qll nq' 5̂ {}) A (S|| ns' # {}) a (P|| nP'  ̂{}) a 
S|| = S')}U

{(q',V (S'u5"),p'H 3q||,S ||,P || .  (
(qil,S||,Pi|) € A(q,) A (q',s',p') e A(C') a 
{Q\\ nq'ÿ̂  {}) a (S|| n s'f {}) a (/]| nP’^ {}) a 
S|| ^ S' = S|| -  S' A 
3 1 " = r(q|) -  r(c") • ( 5" a

(35" 6 {S|| -  S' I S|| e q(q|) a s ' €Q(C) a s,, ns'i= {}} • 
(q' u 5", S' u z", P' u 5")  ̂A(q,) v 

3S' e Q(C), Q" = q,, -  q', p" = •
(S' u s", r(C') u 5", S' u P")  ̂A(q,) ) ) )} U 

{ (q ',5 " ,q ') |3 q ||,S jj^ P |i .  (
(qii,S||,P||)6A(q|) Aq'eq(c')A
{Q\\nq ' 7̂ {}) A (S||nr(C')^ {}) a (/]|nq'^{})a
5" = Sji -  r(C') A
3S' € q(c'), e" = q,! -  q', p" = q' •
(S' u Q", r(c") u 5", S' u p") i  A(q,) )} (j 

{(q',5",q')|3q||,Sj,P|| . (
(qil,S||,P||)6A(q|) A q'eq(C')A
(q,! nq'ÿ̂  {}) a (s,, n r(C') # {}) a (Pj, n q' # {}) a
5" = Sji - r(C') A
3P' 6 q(C'), S' 6 s(c'), Q" = q,, y?', p" = pj, -  q' . (

(q'u Q'̂ s' u 5",P'uP") i  A(q,) a (q',s',p') e A(C') a
s'^s(qi))}U

{(P',5",P')|3q||,Sj|,P]| . (
(qil,S||,P||)eA(q,) a P'eq(c')A
iQ\\ nP'^ {}) A (S|| n r(C') # {}) a (P], np'f {}) a
5" = Sy -  r(C') A
3q' € q(C"), S' 6 s(C'), e" = q,, ^p', p" = p̂, -  p' . (

(q' u s'̂ s' u 5", P' u p")  ̂A(qi) a (q', s', p') e A(C') a 
s'^s(q,)))}
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A ppendix B

M athem atical Properties

This appendix examines the mathematical properties of the merge, concurrent composi
tion and extract operators defined in Chapters 4 and 5. Although not explicitly used in 
this thesis, the merge composition operator defined in section 4.1 is extremely important 
because it forms the basis of the “superposition” of machines introduced in Chapter 3 
and, therefore, the basis of the concurrent composition and extraction operators.

Every composite transition system C comprises a set of states, a set of initial states, 
a set of event names and a set of transitions. Any set can be written as the union of 
the members of that set, in other words, if A =  {a, 6, c ,...}  then A can be written as 
A — {a} U {b} U {c} U —  Since the terms of merge composition are defined by set union, 
it follows that any system C  can be expressed as the merge composition of machines, 
that is A =  {a} -f {b} -|- {c} -}-..., provided that merge composition is commutative and 
associative in the same way as set union.

Merge composition, concurrent composition and extraction have been defined with set 
theoretic operators, the logical operators of conjunction and disjunction, and universal 
and existential quantification. The laws of these operators are well defined [6, 30, 52, 71].

B .l  M erge Composition

The section proves the commutative and associative properties of merge composition, 
defined in section 4.1 (page 69).
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B .1 .1  C om m u tative  P rop erty  o f M erge

Law B.l states that the merge composition operator is commutative, in other words, the 
order of the operands is irrelevant.

Law B.l a  + c"  = c"+ a

Proof follows from the proof that the merge composition of every term of a Composite 
Transition System is commutative according to the laws of set union, that is, AUB =  BUA.

1. From Definition 4.1 (page 69), Q{C'-\-C") Q{C')UQ{C"), which, by commutivity
of set union and Definition 4.1, can be written as Q{C") U Q{C') Q{C" +  C"). 
Eence,Q{C' + C") = Q{C'' + C').

2. Q{C' +  C") =  Q{C" +  C') follows from the same reasoning.

3. S(C ' +  C") =  S(C" +  C') follows from the same reasoning.

4. From Definition 4.4 (page 71), T{C' -\-C") Af{T{C') UF(C"')). Since set union is
commutative, it can be defined that U P(C")) and A/’(F(C") U F(C")) will
generate the same new event name. Hence F(C' +  C”) = V{C" +  C').

5. Â{C' +  C") = Â{C" +  C') follows from the same reasoning as item 1 above.

Since the merge composition of every term of C  +  C" is commutative, it follows that 
merge composition is commutative, thus C  +  C '  =  C" +  C .

B .1.2 A ssociative Law of M erge

Law B.2 states that the merge composition operator is associative. This law and law B.l 
justify the notational convenience of Co +  Ci + . .  . +  (7n-i, where there is no defined order 
of composition, and provides the basis of the “superposition” of Composite Transition 
Systems.

Law B.2 (C  +  C") + C" =  C' + {C" + C”')

Proof follows from the proof that the merge composition of every term of a CTS is 
associative according to the laws of set union, that is, (A U B) U C =  A U (B U C).
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1. From Definition 4.1 (page 69) and by substitution, Q{{C' +  C") +  C'") {Q{C') U
Q{C")) UQ{C*") which, by associativity of set union and Definition 4.1, becomes 
Q ( C 0 U ( Q ( C 3 U Q ( C ' 0 )  Q ( C '  +  (C ''  +  C n ) .  H e n c e ,  ^ ( ( C '  +  C ^ + C n  =
Q ( C ' + ( C '  +  C n ) .

2. Q{{C' +  C") +  C'") =  Q{C' +  {C" +  C'")) follows from the same reasoning.

3. è((C" +  C") +  C'") =  È{C' +  (C" +  C"")) follows from the same reasoning.

4. From Definition 4.4 (page 71) and by substitution, F((C" +  C") +  C"') Af{(T{C')U 
r(C")) u r(C"0). since (F(CO U T(C")) U V(C’”) is associative, it can be defined 
that M({V(C) U F(C'O) U F(C'")) and M(T{C') U (F(C") U F(C""))) will generate 
the same event name. Hence F((C" +  C") +  C") =  F(C" +  {C" +  C")).

5. A((C" +  C") +  C'") =  K (C  +  (C" + C"')) follows from the same reasoning as item 1 
above.

Since the merge composition of every term of (C  +  C") +  C"’ is associative, it follows 
that merge composition is associative, thus (C" +  (7") +  C"" =  C" +  (C" +  C"').

B.2 Concurrent Composition

This section proves the commutative property of concurrent composition and examines the 
associative and distributive properties. Concurrent composition is defined in section 4.3 
(page 74).

B .2.1 C om m utative Law of Concurrent C om position

Law B.3 states that the current composition operator is commutative, in other words, the 
order of the operands is irrelevant.

Law B.3 C'lIC" = a '\\C

Proof follows from the proof that the concurrent composition of every term of a Com
posite Transition System is commutative according to the commutative laws of set union, 
that is, A U B =  B U A, and the commutative laws of conjunction, that is a A 6 =  6 A a.
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1. Q{C'\\C") =  Q(C"||C') follows from Definition 4.6 (page 75),

Q(C'\\C") W  {Q’ liQ ’’\Q’ eQ {C ')A Q ''eQ {C ")}
= {Q" U Q'\Q" € Q (C") A Q ' e Q  (C')}
= Q(C"IIC)

2. Q{C'\\C") =  Q{C"\\C) follows from the same reasoning.

3. The event name set S(C"||C") is defined in Definition 4.8 (page 79) as the set union 
of term 4.1 through to term 4.4. Consider term 4.1 repeated below;

{ S' u r(C") I S' e s(C ') a vt  g s(C") • s '  n t  =  { } }

Set union and intersection are commutative, the scope of the universal quantification 
includes an equality which is commutative, and conjunction is also commutative. 
Hence, by induction, term 4.1 is commutative. For similar reasons, the event names 
formed by terms 4.2, 4.3 and 4.4 are also commutative. The four commutative terms 
are combined by set union, which is commutative and associative, hence it follows 
t h a t  S ( C ' | |C " )  =  S ( C " | |C ' ) .

4. From Definition 4.9, r(C"||C"') ^  F(C') U F (C"). Since set union is commutative it 
follows that, F(C'||C") = F(C"||C").

5. The transition set A(C'||C") is defined in Definition 4.10 (page 83) as the set union 
of terms 4.5, 4.6 and 4.7. Consider term 4.5 repeated below;

{(Q'UQ", S 'u F (C " ),f'U Q " )|
(<P', S ' ,  f ')  G A ( C ' )  A  Q "  G S ( C " )  A  S '  U  F ( C " )  G S ( C ' | |C " )  }

The from state, event name and to state of the formed transition are commutative 
because they are formed by set union. Additionally, the term S'UF(C") G S(C'||C") 
is commutative by item 3 above, and conjunction is commutative and associative. 
Hence, term 4.5 is commutative. For similar reasons, the transitions formed by 
terms 4.6 and 4.7 are also commutative. Since all three contributions to the transition 
set A(C'||C") are commutative and the contributions are combined by set union, 
which is commutative and associative, it follows that A(C'||(7") =  A(C"'||C").

Since the concurrent composition of every term of C'||C" is commutative it follows 
that concurrent composition is commutative, thus C'||Ç" = C"'||C'.

B .2 .2 A ssociative Law of Concurrent C om position

The associative properties of concurrent composition follow from the substitution for all 
terms of a Composite Transition System except for the event name set S((C'||C"')||(7")
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and th e  tran sition  se t A ((C " ||C " )||C " ). For th e  even t nam e se t, su b stitu tio n  is com p lex  
b ecau se o f  th e  un iversally  quantified  term s used to  d eterm ine th a t  an even t n am e pairing  
shou ld  be su b jec t to  asyn ch ronou s com p osition , and b ecause o f  th e  num ber o f  su b stitu tio n s  
required in each o f  th e  four term s defined in D efin ition  4.8 (page 79). For th e  tran sition  
se t, su b stitu tio n  is com p lex  b ecau se th e  num ber o f  su b stitu tio n s and b ecau se  th e  defin ition  
exp lic itly  in clu d es th e  even t n am e se t.

Let th o se  even t n am es o f  C  th a t  are asynchronous to  all th e  even t n am es o f  C", 
be d en oted  A S ^ /, and le t th o se  event nam es o f  C  th a t  are syn ch ron ou s w ith  an even t  
n am e o f  C" be d en oted  B S g /.  In th is  w ay each and every even t n am e in an ev en t n am e  
se t is ca tegorised  as eith er an asynchronous even t nam e or a  syn ch ron ou s ev en t nam e. 
Sim ilarly, le t th o se  even t n am es o f C" th a t  are asynchronous to  all th e  ev en t n am es o f  C ', 
be d en oted  , and le t th ose  even t nam es o f  C" th a t  are syn ch ron ou s to  C  b e d en o ted  
S S s " .  T herefore, in general, th e  even t n am e se ts  Ê  (C ') , S (C " )  and S (C " ||C " ) can  be  
w ritten  as follow s;

S(C ") =  { A S ^ / ,  A S s / , . . . }  +  {<SEM'j«5E;vq • . . }
=  {A E ^ /}  +  {A E jg /} +  . . .  +  {tSE ^f'} +  +  • • •

S ( (7") =  {A E ^ //, A E g / / , . . . }  +  {<SEjvf",<SE/^«,. . . }
=  {A E ^ //}  +  { A E g //}  +  . . .  +  { S S m "J T  {<$Ejy//} +  . . .

S ( C ' | |C '0 =  ( { A E ^ ,}  +  { A E g ,}  +  . . .  +  { J E M /}  +  {.SE jv/} +  . . .  ) ||
({A E ^ //}  +  {A E jg//} +  {<SEjvf«} +  {<SEjv"} +  • • • )

R ecall from  C hap ter 4 th a t concurrent com p osition  form s all even t n am e p airin gs and  
te s ts  each pairing for asynchrony or syn ch ron y such th a t  an a syn ch ron ou s ev en t n am e  
or syn ch ron ou s even t nam e can be con tributed  to  th e  co m p o site  even t n am e se t . R eca ll 
also  th a t  any se t  can be defined by th e  se t  union o f  each o f  th e  m em b ers o f  th a t  se t  and , 
further, th a t  se t  union can  be w ritten  as m erge com p osition . T h u s, th e  ev en t n am e se t  
S(C "||C "'), w hich can  be w ritten  as in term  B . l ,  is th e  “su p erp osition ” o f  each  in d iv id u a l 
even t n am e pairing.

S (C '||C " )  =  ( { A E ^ /} |U { A E ^ 4 ) +  ( { A E ^ /} |U { A E s 4 ) +  - - .
+ ( { A E j3/} |U { A E ^ 4 ) +  ( { A E B /} ||x { A E B " } )  +  . . .  ( B . l )

+ ( { 5 S m '} | |5 {<5S m " } )  +  ({<SEat/}||5 {<SEjv"}) +  • . •

O bserve th a t  \\a  form s all pairings o f  asynchronous even t n am es, b u t | | j  form s a 
synch ron ou s even t nam e from  a pairing o f {«SEm '} w ith  {«SEm »} on ly  if  th ere  is a t  lea s t  
on e com m on  com p onen t identifier in th e  even t nam es M ' and M". T h u s, \\a  d is tr ib u te s  
over +  in accordance w ith  th eory  [6], se t union over se t  in tersection , co n ju n ctio n  over  
d isju n ction , and m ultip lication  over addition  [6, 52, 71]. H ow ever, | | j  d o es n o t d istr ib u te  
in th is  way.
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In the definition of the concurrent event name set, section 4.3.3 (page 76), terms 4.1,
4.2 and 4.3 generate asynchronous and simultaneous event names, that is, the event 
names generated by the operator \\a - Term 4.4 (page 78) generates synchronous event 
names, that is, the event names generated by the operator ||^. Therefore, by Defini
tion 4.8 (page 79), the operators \\a  and ||g are defined as follows, and hence Ê(C'||C") =
Ê(C')||xÊ(C") U È(C')||6Ê(C").

Ê(C')iUS(C"') { S'ur(C"') I S '6S (C ') A V Ï 6 Ê (C " )» S 'n ï  =  { } }
u  { r(C")us" I s" eS (C " ) A V ï6  Ê (C ')» s" n T  = { }}
U { S'UE" I S '€Ê (C ') A V Ï 6 S (C " )« S 'n r  =  {}A

S" e Ê(C') A VT 6 Ê(C') • S" n T =  0  }

Ê(C')i|sÊ(C") 11/ { S'UE" I E '€ S(C') A E" e S(C") A
S 'n E " 7‘ { }}

Each synchronous event name pairing will contribute an event name of the form S'US" 
provided that S 'flS "  ^  {}. Each asynchronous event name pairing, may contribute some 
or all of the following event names;

1. S ' U r  (C") is contributed only if the event name S ' has nothing in common with any 
event name of C", that is, the test VT G S(C") • S ' D T =  {} in term 4.1 (page 77) 
holds true. In other words. S ' is asynchronous to every event name of S(C").

2. r(C')US" is contributed only if the event name S" has nothing in common with any 
event name of C", that is, the test VT G S(C') • S" D T =  {} in term 4.2 (page 77) 
holds true. In other words, S" is asynchronous to every event name of S(C').

3. S ' U S" is contributed only if both the event names S ' U T{C") and r(C") U S" are 
contributed. This is a consequence of term 4.3 (page 78).

This treatment of event names is sufficient for a proof of Law B.4 that states that 
concurrent composition operator is associative, in other words, the order of composition is 
irrelevant. Further, this law justifies the notational convenience of Co||. . .  ||Cn,_i, where, 
there is no defined order of composition.

Law B.4 (C'||C")||C'" = C'||(C"||C'")

Proof follows from the proof that the concurrent composition of every term of a Com
posite Transition System is associative.
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1. From Definition 4.6 (page 75) and by substitution the state set Q((C"||C")||C"') is 
{(Q' U Q") U Q'" I (Q' U Q") G Q(C'||C") A Q'" G Q(C'")}. The states (Q' U Q") G 
Q{C’\\C") are given by Definition 4.6, hence the state set Q((C"||C")||C"") can be 
written as {(Q'UQ")UQ"'|(Q' G Q(C') AQ" G Q(C")) AQ''' E Q(C")}. Noting that 
conjunction is associative, that is («A6 )A c = aA(hAc), the state set can be written as 
{g 'U (g"ug'")|Q ' g Q (C)h(Q ” g Q{C")AQ"' g Q{C"'))}, which, by Definition 4.6, 
can be written as {Q'U (Q"UQ"') | Q' G Q(C') A (Q"UQ"') G Q(C'"||C'")}. Hence,
g((c'||c")||cn = g(c'||(c"||c'")).

2. g((C"||C")||C'"') =  Q(C'\\(C"\\C"')) follows from the same reasoning.

3. To prove that S((C"||C")||C"") =  S(C"||(C"||C""), the following four cases of substi
tution must all be associative. By the principle of “superposition”, it is sufficient to 
consider the composition of individual event names.

(a) ({S'}m{E"})m{S"'} =  {S'}m({E"}m{S'"}), where the event name sets 
S(C'), E(C") and S(C'") have no component event name identifers in common.

i. {E'}m{E"} contributes the event names {E 'ur"}-|-{r'U E "}-f {E'UE"}.

ii. By substitution and distribution ({E'}||^{E"})m{E'"} can be written as;

({E' U r"} -f- {T' U E"} + {E' U E"}) |U{E'"}
=  ({S' U r"}|U{E'"}) + ({F' U E"}|U{E'"}) -I- ({E' U E"}|U{E'"})

and contributes the following event names, note that {(F' U F") U E'"} is 
contributed three times;

{(E'U F") U F'"} U{(F'U F") U E'"} U{(E'U F") U E"}
U{(F'U E") U F'"} U{(F'U F") U E'"} U{(F'U E") U E"}
U{(E'U E") U F'"} U{(F'U F") U E'"} U{(E'U E") U E"}

which, by associativity of set union, can be written as;

{E'U (F" U F'")} U {F' U (F" U E'")} U {E' U (F" U E'")}
U{F'U (E" U F'")} U {F' U (F" U E'")} U {F' U (E" U E'")}
U {E' U (E" U F'")} U {F' U (F" U E'")} U {E' U (E" U E'")}

iii. Two of the {F'U(F"UE'")} terms can be deleted. However, in a composition 
of the form {E'}m({E"}m{E'"}), the term {E' U (F" U F'")} would be 
repeated three times. Hence, with some re-ordering, the contributed event 
names can be written as;

{E' U (F" U F'")} U {F' U (E" U F'")} U {E' U (E" U F'")}
U {E'U (F" U F'")} U {F'U (F" U E'")} U {E'U (F" U E'")}
U{E'U (F" U F'")} U {F' U (E" U E'")} U {E' U (E" U E'")}
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iv. The contributed event names would also be contributed by;

({E'}|U{E" u r'"}) + ({E'}|U{r" u e "'}) +  ({e '}|U({e " u e '"}) 
=  {E'}|U({E" u  r'"} + {r" u E"'} +  {E" u  e "'})

and the terms {E" U F"'} +  {F" U E'"} +  {E" U E'"} would also be con
tributed by {E"}||x{S"'}, hence the contributed event names would also 
be generated by a composition of the form {E'}m({E"}m{E'"}).

Hence ({E'}|U{E"})|U{E'"} =  {E'}|U({E"}|U{E'"}).

(b) ({E'}m{E"})||^{E'"} =  {E'}||^({E"}m{E'"}), where only the event names E' 
and E'" have some component event name identifier in common. Hence, E' 
must synchronise with E'", but E" is asynchronous to both C  and C " .

i. {E')m{E"} contributes the event names {E'UF"}-l-{F'UE"}-f {E'UE"}.

ii. By substitution and distribution ({E'}m{S"})||^{E'"} can be written as 
({E'UF"}||5{E'"})4- ({F'UE"}|U{E'"}) +  ({E'UE"}||5{E'"}), where the 
expected {F'UE"}||^{E'"} composition has become asynchronous because 
both F' and E" are asynchronous to E'".

The two synchronous compositions contribute the event names (E' U F") U 
E'" and (E' U E") U E'". The asynchronous composition contributes the 
event name (F' U E") U F'" because the event name (F' U E") has nothing 
in common with any of the event names of S(C"") (item 1, page 201). 
However, an event name (F' U F") U E'" is not contributed because the 
event name E'" includes a component event name which is common with 
some event name in E(C"||C"), specifically, (E'U F") (item 2, page 201). 
Hence, the event names contributed by ({E'}m{E"})||j{E'"} are;
{(E' U F") U E'"} U{(F'U E") U F'"} U{(E'U E") U E'"} 

which, by associativity of set union, can be written as;
{F' U (E" U F"')} U {E' U (F" U E'")} U {E' U (E" U E'")}

iii. The event names E" U F'", F" U E"' and E" U E'" would also be con
tributed by {E"}m{E'"} if the event name sets E(C") and E(C"") have no 
component event name identifiers in common. Consider the evaluation of 
{E'}||5 ({E"}|U{E'"}), that is, {E'}||^({E"UF'"}-b{F"UE"'}-h{E"UE"'}) 
which can be written as follows;

({E'}|U{E" U F"'}) -h ({E'}||5{F" U E'"}) 4- ({E'}||6{E" U E"}) 
where the expected composition {E'}||^{E" U F'"} has become an asyn
chronous composition because both E" and F'" are asynchronous to E'. 
However, as an asynchronous composition only the event name F' U (E" U
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r'") is contributed because the event name E "u r" ' has nothing in common 
with any event name of E(C") (item 2, page 201). Conversely, an event 
name E' U (F" U F"') is not contributed because the event name E' has 
something in common with the event names of S(C'"||C""), for example, 
the event name E" U E'" (item 1, page 201). The synchronous composi
tions contribute E' U (F" U E'") and E' U (E" U E"'). Hence the event names 
contributed by {E'}||j({E"}m{E'"}) are as follows;

{F' U (E" U F'")} U {E' U (F" U E"')} U {E' U (E" U E"')}

These event names are the same as item 3(b)ii above, and, likewise, require 
E" to be asynchronous to both E' and E'".

Hence ({E'}m{E"})||j{E'"} =  {E'}||5 ({E"}|U{E'"}). In this analysis of asso
ciativity, observe that the asynchronous composition {E"}m{E"'} contributed 
event names of the form E"UF'", F"UE'" and E"UE'". Therefore, not only are 
the specific event names E" and E'" required to be asynchronous, but E" can
not be synchronous with any event name of O ” and E'" cannot be synchronous 
with any event name of C".

(c) ({E'}||j{E"})m{E'"} =  {E'}||j({E"}m{E'"}), where only the event names 
E' and E" have some component event name identifier in common. Hence, E' 
must synchronise with E", but E'" is asynchronous to both C  and C".

i. {E'}||j{E"} contributes {E'U E"}, hence ({E'}||j{E"})m{E'"} can be 
written as {E'U E"}m{E'"} which contributes the event names;

{(E' U E") U F'"} 4-{(F'U F") U E'"} 4-{(E'U E") U E'"}
=  {E'U (E" U F'")} -b {F' U (F" U E'")} -h {E' U (E" U E'")}

ii. The event names E" U F'", F" U E'" and E" U E'" would also be con
tributed by {E"}m{E'"} if the event name sets S((7") and Ê(C'") have no 
component event name identifiers in common. Consider the evaluation of 
{E'}||6 ({E"}||x{E'"}), that is, {E'}||j({E"UF'"}4-{F"UE'"} +  {E"UE'"}) 
which can be written as follows;

({E'}||5{S" U F'"}) +  ({E'}|U{F" U E'"}) -b ({E'}||5{S" U E'"})

where the expected term {E'}||j;{F" U E'"} has become an asynchronous 
composition because both F" and E'" are asynchronous to E'. However, 
as an asynchronous composition only the event name F' U (F" U E'") is 
contributed because the event name F" U E'" has nothing in common with 
any event name of E(C') (item 2, page 201). Conversely, an event name 
E'U(F"UE'") is not contributed because the event name E' has something in
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common with the event names of Ê(C"||C"'), for example, the event name 
S" U E'" (item 1, page 201). The synchronous compositions contribute 
E' U (r" U E'") and E' U (E" U E'"). Hence the event names contributed by 
{E'}||5 ({E"}|U{E"'}) are as follows;

{E' u (E" u r"')} u { r ' u (r" u e "')} u {e ' u (e " u e "')}

These event names are the same as item 3(c)i, above, and, likewise, require 
E"' to be asynchronous to both E' and E".

Hence ({E'}||5{E"})|U{E'"} =  {E'}||j({E"}m{E'"}). In a similar way to 
case 3b (page 203), C’" must be asynchronous to both C' and C”.

(d) ({E'}||g{E"})||^{E"'} =  {E'}||5 ({E"}||5{E'"}), where the event names E', E" 
and E'" have some component event name identifier in common, that is, E' D 
E" n E'" /  {}.

i. {E'}||j{E"} contributes {E'UE"}.
ii. By substitution, ({E'}||^{E"})||^{E"'} becomes ({E'UE"}) ||j{E'"}, which 

contributes {(E' U E") U E"'}.
iii. By associativity of set union, the contribution {(E' U E") U E'"} can be 

written as {E' U (E" U E"')}, which would be contributed by;
{E'}||5({E"UE"'})

iv. Since E" synchronises with E'", the term {E" U E'"} would be contributed 
by {E"}||j{E'"}. Hence, {E'}||j({E" U E'"}) can be written as;
{E'}||^({E"}||^{E"'})

Hence ({E'}|k{E"})||^{E"'} =  {E'}||^({E"}||^{E"'}).

Since all four combinations of asynchronous and synchronous composition are as
sociative, it follows that E((C'||C")||C"") =  S(C'||(C"||C'"), however, the following 
conditions arose;

(a) There is no synchronisation between any of the components. Proof of this fol
lows from case 3a, the proof of ({E'}m{E"})||^{E"'} =  {E'}m({E"}m{E'"}).

(b) There is synchronisation between only two of the components. Proof of this fol
lows from case 3b, the proof of ({E'}m{E"})||^{E'"} =  {E'}||j({E"}m{E'"}), 
and from case 3c, the proof of ({E'}||^{E"})m{S"'} =  {E'}||5 ({E"}m{E'"}). 
Note that this condition makes case 3d, the proof of ({E'}||j{E"})||j{E'"} =  
{E'}||^({E"}||g{E'"}), irrelevant.

4. By substitution and associativity of set union, proof that the composition of the idle 
event name is associative is as follows;
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r((c'||c")||c"") = r(c '||c" ')ur(c"") = ( r (c ')u r (c " ) )u r (c " ')  
= r (c ')u ( r (c " )u r (c " ') )  
= r(c'||(c"||c""))

5. The formation of the transition set A((C'||C")||C'") requires the substitution of 
the transition set A(C"||C") for the Ci term in the formation of the transition set 
A((7/11(7"'). The transition sets A((7'||(7") and A(C/||C'") are defined as the union 
of terms 4.5, 4.6 and 4.7 (page 82 et.seq.); consider the substitutions required in each 
of these terms.

(a) Term 4.5, repeated below in terms of (7/ and (7'", gives the set of AA^ 
asynchronous transitions.

{ ( g u g '" ,E u r '" ,P u Q '" ) |
(g, E, P) e A(C/) A g'" g g(C"') a  e  u r'" g ê (C/||C'") }

The Cl contribution is a transition (g,E,P) that under the substitution of (7/ 
terms is a A((7'||(7") transition, itself formed by the union of terms 4.5, 4.6 
and 4.7, thus there are three substitutions to perform. For brevity, only the 
substitution of term 4.5 is described in detail as the substitutions of term 4.6 
and 4.7 follow in a similar way.

i. Term 4.5 generates transitions of the form {Q' U g", E' U F", P' U Q"). 
Substituting Q' U Q" for Q, E' U F" for E, and P' U g" for P gives;

{((g 'u  g") u g'", (e ' u f") u f '", (p ' u g") u g'") |
(g' u g", E' u F", p ' u g") g A (C'||C") a  g'" g g  (C'") a
(E' U F") U F'" G Ê(((7'||(7")||(7'") }

ii. Term 4.5 forms the substituted transition, (g'ug", E'UF", P'ug"), when 
(g', E ',P ') G A(C'), g" G g(<7"), and E' U F" G Ê((7'||C"). Hence;

{ ((g' U g") u g'", (E' u F") u F'", (p' u g") u g'") |(g', E', P') G A(C') A g" G Ê((7") A g'" e g(C"') A
(E' U F") U F'" G Ê((C'||(7")||(7'") }

„  which, by associativity of the concurrent composition of event name sets 
and associativity of set union, yields;

{ (g' u (g" u g'"), e ' u (f" u f '"), p ' u (g" u g'")) |(g', E', P') G A (C') A g" G Ê ((7") A g'" G g ((7'") A
E'U (F"U F'") G S(C'||(C"||(7'")) }

iii. A transition of the form (Q" U g'", F" U F'", g" U g'") is an implied idle 
transition of (7"||C'". By Definition 4.6 (page 75), the state g" U g'"
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is a state of Q{C"\\C"'), which is formed by a conjunction of the form 
Q" e g(C") AQ'" G Hence;

{ (Q' u (Q" u Q"'), E' u (r" u r'"), p ' u (Q" u g"0 ) I
( g \  E', P') G A(C') A (Q" U g"') G g(C"||C"') A
E' u (r" u r'") G t{c'\\{c"\\c"'))}

iv. Substituting Q for Q" U Q'", V for F" U F"' and Cr for gives the
following, which is of the same form as term 4.5.

{ ( g ' u g , E ' u F , p ' u g ) |
(g', E', P') G A(C') A g  G g(C r) A E' U F G Ê(C'||Cr) }

The other two substitutions in a term 4.5 transition are as follows. Substitution 
of term 4.6 gives ((g' U Q”) U Q"', (F' U E") U F"', [Q' U P") U Q"'), which, by 
set associativity, is (g' U {Q" U Q'"), F' U (E" U F'"), Q' U (P" U g"')). The latter 
form is a C"||C'" term 4.5 transition, that is {Q" U g"', E" U F"', P" U Q'”), 
substituted in a term 4.6 transition, that is {Q' u g ,F 'U E ,g 'U P ) .  

Substitution of term 4.7 gives ( (g 'u g " )  u g '" , (E'UE") UF'", (P 'U P") u g '" ), 
which, by set associativity, is (Q‘ U [Q" U Q'"), E' U (E" U F'"), P' U (P" U Q'")). 
The latter transition is also of the form of a C "||(7"'^rm  4.5 transition, but 
substituted in a term 4.7 transition, that is (Q' U g, E' U E, P ' U P).

(b) Term 4.6, repeated below in terms of C \  and C ' " ,  gives the set of AA^///.^g^r,(5) 
asynchronous transitions.

{ ( g u g '" ,F u E '" ,g u p '" )  I
g  G Q { C i )  A (g" ',E " ',P "0 G A(C"0 a  FU E'" g t { C i \ \ C " )  }

The C l  contribution is the implied transition (g ,F ,g) ,  thus the implied idle 
transition (g ' U Q ” , F' U F", Q '  U Q " )  is the only applicable substitution.

i. Substituting Q '  U Q "  for Q ,  and F' U F" for F gives;

{ (g ' u Q " )  u g"', (F' u F") u e'", (g ' u g") u p '" ) )  I(g'ug") G g(c'||c") A (g '" ,E '" ,p '" ) G A(c'") A
(F 'U F") U E'" G E((C'||C")||C'") }

ii. By Definition 4.6 (page 75), the state g(C '||C") is formed by a conjunction 
of the form g ' G Q { C )  A Q ” G Q { C ” ) .  Hence;

{ (g ' u g") u g'", ( f '  u f " )  u e'", (g ' u g") u p '" )  |g' G g(c') A g" G g(c") A (g'",E'",p'") G A(c'") A
(F' U F") U E'" G S((C'||C")||C"") }
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which, by associativity of the concurrent composition of event name sets 
and associativity of set union, yields;

{ g ' u (g" u g "0, r '  u (r" u e"') , g ' u (g" u p '")) I
g ' G g (c ')  A g "  e g (c " )  A (g"', E '",p"') e A
r  u ( r "  u E"o G s ( c '| | ( c " | |c " 0 ) }

iii. Term 4.6 contributes a transition of the form (g"ug '" , r"UE'", g"UP'") to 
the transition set A(C"||C"") when g "  G Q{C"), (g '" , E'", P '") G A(C""), 
and the event name F" U E"' is in the event name set E(C"||(7'"). Hence;

{ Q' u (g" u g"0, F' u (F" u E"0, g ' u (Q" u p "')) I
Q' G Q{C') A (g" U g'", F" U E'", Q" U P'") G A(C"||C"0 A 
F' U (F"U E"0 G S(C'||(C"||C"0) }

iv. The transition (g "u g '" , F"UE'", g"U P'") represents progress of C"\\C'". 
Therefore, substituting Q for Q" U Q'", E for F" U E'", P  for Q" U P '" and 
Cr for C"\\C'" gives the following, which is of the same form as term 4.6;

{ g 'u g , F 'u E , g 'u P )  I
g ' G g (c ')  A (g ,E ,p )  G g(Cr) A r u  E G 6 (c '||C r)}

(c) Term 4.7, repeated below in terms of <7/ and C"", gives the set of 
simultaneous and synchronous transitions.

{ ( g u g " ',E U E '" ,P U P " ')  I
(g, E, P) G A (Q ) A (g'", E'", P"') G A ((7"') A E U E"' G E(Q||(7"') }

Here, the (7/ contribution is a transition {Q, E, P) that under a substitution of 
C"||(7" for Cl terms is a transition of A((7'||(7") which is formed by the union of 
terms 4.5, 4.6 and 4.7. Thus there are three substitutions to perform, however, 
these follow in a similar way to those presented for case 5a (page 206, et.seq.). 

Substitution of term 4.5 gives ( (g 'u g " )  u g " ', (E'UF") UE'", (P 'u g " )  UP"'), 
which, by set associativity, is (g 'u (g "u g '"), E'U(F"UE'"), P 'U(g"UP'")). The 
latter form is a C"||(7'" term 4.6 transition, that is (g "u g '" , F"UE'", g"U P '"), 
substituted in a term 4.7 transition, that is {Q' U g , E' U E, P ' U P). 
Substitution of term 4.6 gives ((g 'u g " )  u g '" , (F'UE") UE'", (g 'U P ")U P '"), 
which, by set associativity, is (g 'U (g"ug"'), F'U(E"UE'"), g'U(P"UP'")). The 
latter form is a C"'||(7"' term 4.7 transition, that is (g "u g '" , E"UE'", P"U P'"), 
substituted in a term 4.6 transition, that is (g ' U g , F' U E, g ' U P ) . 
Substitution of term 4.7 gives ((g 'u g " )  u g '" , (E'UE") UE'", (P 'U P") UP'"), 
which, by set associativity, is (g 'U (g"ug'"), E'U(E"UE'"), P'U(P"UP'")). The
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latter form is a term 4.7 transition, that is (g "u g " ', S"US'", F"UP'"),
substituted in a term 4.7 transition, that is [Q' U Q, E'U E, P ' U P).

Associativity is proven if the definition of the transition set A((C'||C")||C'") gener
ates the same transitions as the transition set A(C'||(C"||C'")), itself formed by a 
substitution of the transition set A(C"||C'") for the Cr term in the transition set 
defined by A(C'||Cr). Since all combinations of transition substitution are associa
tive, subject to the associativity constraints of the event name set, it follows that
A((C'||C")||C'") =  A(C'||(C"||C'")).
Table B.l summarises the cases of transition substitution based upon the event 
names because it is the evaluation of the event name set that determines the forma
tion of asynchronous or synchronous event names. The figures in parenthesis refer 
to the defining terms in section 4.3.5 (page 81).

case t(C ,\\C") Cl =  S(C'||C") Composite Cr = E(C"||C"') s ( c ' i ia )

(5a) s,r" ' (4.5)
S',r" (4.5) E',r",r"' r",r"' (idle) E',r (4.5)
r ,S "  (4.6) r', E", r'" E",r"' (4.5) r',E  (4.6)
S',S" (4.7) E',s",r'" E",r"' (4.5) E',E (4.7)

(5b) r,E"' (4.6) r',r" (idle) r', r", E'" r",E"' (4.6) r',E  (4.6)

(5c) S,S"' (4.7)
S',r" (4.5) E',r",E"' r",E"' (4.6) E',E (4.7)
r',S" (4.6) r', E", E'" E",E"' (4.7) r',E  (4.6)
S',S" (4.7) E', E", E'" E",E"' (4.7) E', E (4.7)

Table B.l: Associativity of concurrent composition of transitions based on event names.

B .2.3  D istributive Law of Concurrent C om position

Law B.5 states that current composition distributes over merge composition, however, 
it will be shown that distribution leads to congruence rather than equality and only if 
the components are asynchronous, that is, there are no event names common to the 
components.

Law B .5  C'IKC" +  C'") =  (C'||C") -j- (C'||C"')

Proof follows from the proof that the concurrent composition of every term of a Com
posite Transition System is distributive.
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1. Proof that Q(C'\\{C"AC"')) = g(C '||C") +  g(C '||C"'), is as follows;

(a) From Definition 4.6 (page 75), the state set Q(C"||(C" +  C"")) can be written 
as { g 'u g  Ig ' E g(C") A g g g(C "+C "")}. From Definition 4.1 (page 69), the 
state set g (C " +  C'") is Q{C") U g  (C""). Therefore, by substitution, the state
s e tg ( c '| |( c " + c '" ) )  becomes { g ' u g j g ' G g ( c ' )  A g  G g (c " )u g (c '" )} .

(b) Set union is defined as A U B = {x\x G A V æ G B} [52], therefore, the term 
g  G g  (C") u g  (C"") can be expressed as g  G g  (C") V g  G g  (C'"). Hence,
g ( c '| |( c " + c " ') )  =  { g 'u g ig ' G g (c ')  A (g G g (c " )  v g  G g (c '"))} , which,
by distribution of conjunction over disjunction, that is, aA(6Vc) =  (aA6)V(aAc),

yields {g ' u g |( g ' G g (c ')  A g  G g (c")) v (g ' G g (c ')  A g  G g (c" '))} .

(c) The conjunction Q' G Q(C) A g  G Q{C") defines the state set of g(C '||C"), 
and g ' G Q{C) A g  G g  (C'") defines the state set of g(C"||C'"). Hence, the 
state set can be written as;

{ g ' u g | g ' u g G g ( c ' | | c " ) v g ' u g G g ( c ' | | c ' " ) }
which, from the definition of set union, can be written as;

g ( c ' | |c " ) u g ( c ' | |c '" )

(d) From Definition 4.1 (page 69) g(C"||C") U g(C"||C'") defines the merge com
posite state set g(C"||C"') 4- g(C"||C'").

Hence g(C '||(C " 4- C'")) = g(C '||C") 4-g(C '||C '").

2. g(C '||(C " 4- C'")) =  g(C"||C") 4- g(C'||C"") follows from the sanie reasoning.

3. Analysis of the distributive properties of the concurrent composition of the event 
name set follows from the notation introduced in section B.2.2 (page 199) which 
asserted that for the expression S(C'||C"'), concurrent composition distributes over 
merge composition of each of the event names of C". Thus for Ê(C"||C) written in 
terms of C' and C\

Ê(C'||C) =  ({AS^.}4-{AS5/}4-... +  {5SM4 +  {<5SAr'} +  *--)ll
({AEyi} 4" {AEg} 4-.. .  4" {«SEjvf} 4- {<SE/v} 4- • • • )

=  ({AE^,}||{AE^}) -h ({AE^.}||{AEs}) 4-. . .
+({AEB,}||{AE^}) 4- ({AEb ,}||{A E b }) 4-.. .

4-({5Em '} ||{5E m }) 4- ({5EAr4ll{«5SAr}) 4- • ..

which, by distribution, may also be written as;

S(C'||C) =  ({AE^,}||({AE^} -b {AEg} +  . . . ) )+
({AEj3/}||({AE^} 4- {AEg} 4-.. .))4-

({<SEm '}||({«5Em } 4-. . .))+
({<SE/v/}||({«SE/v} 4-.. .))  T • • •
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Now consider the composition denoted C'\\C^, where denotes the merge com
position a '  + C". Let t(C ")  =  {A} and È{C"') =  {B} and, therefore, Ê(C+) =  
{A} -h {B}. Let r(C+) =  Af{T{C") U r(C '")).

(a) Consider the composition {E'}m({A}-|-{B}), where the event name sets S(C') 
and E(C'^) have no component event name identifers in common.

From term B.l (page 200), the composition {E'}m({A}-f{B}) can be written 
as ({AEs/}m{AE]J})+({AEs/}|U{‘'4Ej}), where AE]J and A E j denotes that 
the (asynchronous) event names A and B  are drawn from the event name set 
E(C^). Consequently, the composition ({AEs'}|U{AE]J}) can determine that 
the event name E' is asynchronous to A and to B. Likewise, the composition 
({AEs'}|U{AEJ}) can determine that E' is asynchronous to A and B. 

Asynchronous event names contributed by this form of composition include the 
idle event name r(C") and r((7'^), both components of the idle event name of 
r(C"||(C" +  C'")), see case 4a (page 212).

(b) Now consider the composition ({E'}m{A}) -j- ({E'}m{B}), where the event 
name sets E(C"), S(C") and E(C'") have no component event name identifers 
in common.

From term B.l (page 200), the composition ({E'}m{A}) -j- ({E'}m{B}) can 
be written as ({AEs'llUfAEjJ}) -f ({AEs,}m{AEg}), where AE^ and AEg 
denote that the (asynchronous) event names A and B  are drawn from the event 
name sets Ê (C") and È{C"') respectively.

Unlike case 3a above, the composition ({AEs'}m{AE^}) can only determine 
if the event name E' is asynchronous to the event names of the event name set 
E((7"), which includes the event name A but not B. Therefore, E' will be com
bined with A as an asynchronous pairing, even though E' may be synchronous 
with the event name B. Similarly, the composition ({AEs/}||^{AE^'}) can 
only determine if E' is asynchronous to the event names of Ê(C""), which in
cludes the event name B  but not A. Therefore, E' will be combined with B  as 
an asynchronous pairing, even though E' may be synchronous with the event 
name A.

Asynchronous event names contributed by C'||C" include the idle event names 
r(C ') and r(C"), while C'\\C'" contributions include F(C') and T{C'"). How
ever, the idle event name {C'\\C") 4- (C"||C"') is Ar(F(C") U F(C") U F(C"')), 
see case 4b (page 212).

The differences between the composition {E'}||>t({A} 4- {B}) and the “distributed” 
form ({E'}m{A}) 4- ({E'}m{B}) are the event name set used in the test for asyn-
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chrony and, therefore, which event names are contributed, and the idle event names. 
Specifically, the distributed form may generate asynchronous event names when the 
non-distributed form would not because of synchronisation and different idle event 
names are used.

Consequently, Ê(C"||(C'" +  C'")) and Ê(C'||C") +  Ê(C'||C"") can be said to be con
gruent only for asynchronous components and because the idle event names in the 
distributed form are incorrect.

4. Concurrent composition does not distribute over merge for the evaluation of the idle 
event name, that is T{C'^(C" A C’")) ^  r({C"||(7")-l-(C"||C"")). This arises because 
the idle event names of the components C" and C " , respectively r(C ") and r(C""), 
must be different by Definition 3.1 (page 57).

(a) Consider the evaluation of r(C"||(C" 4- C"")). From Definition 4.4 (page 71) 
the idle event name of C” 4- C ” is U T{C"')). From Definition 4.9
(page 80) and by substitution, the idle event name of r(C '||(C " 4- C"')) is 
F(C") U AT(r(C") U F(C"0). i

(b) Now consider the evaluation of F((C"||C") 4- (C"||C"")). From Definition 4.9 
the idle event names of C'||C" and C"\\C" are F(C") U F(C") and F(C") U 
F(C"') respectively. From Definition 4.4 and substitution, the idle event name 
of (C'lIC") 4- (C"||C'") is M{V{C) U F(C") U F(C'")). /

' i

5. Analysis of the distributive properties of the concurrent composition of the transition 
set A(C'||(C" 4- C'")) follows from substitution of the transition set A (C" 4- C"") for 
the C term of the transition set A(C"||C). However, the definition of the concurrent 
composite transition set explicitly includes the concurrent composite event name set, 
the distributive properties of which were determined in case 3, above, to be limited.

The definition of the concurrent composite transition set comprises the set union of 
terms 4.5, 4.6 and 4.7. For brevity, only the substitution in term 4.5 is described as 
the other substitutions follow in a similar way.

(a) Term 4.5, repeated below in terms of C  and C, gives the set of AAA',(g,r,Q) 
asynchronous transitions.

{ ( g ' u g , E ' u F , p ' u g ) |
(Q', E', P') G A(C') A g  G g(C ) A E 'U F G 2(C'||C) }

i. The C contribution is an implied transition (g,F, g) that under substitu
tion is an implied idle transition of a C" -f- C " , denoted C'^. Hence;
{ ( g ' u g , E ' u F ( c + ) , p ' u g ) |

(g ',E ',p') G A(C') A g  G g (c + ) a  E' UF(C+) g Ê(C'||C+) }
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ii. The state set Q(C^), that is Q(C" +  C"'), is, by Definition 4.1 (page 69), 
Q{C") u q ( C ') .  Thus, Q e Q(C+) becomes Q 6 Q(C")UQ(C"'), which, 
from the definition of set union, see item lb (page 210), can be written 
Q 6 Q{G") V Q 6 Q{C"). Hence;

{(Q 'U Q ,S'ur(C +),P 'U Q )|(q',s',p') 6 A(c') A (Q 6 Q(c") V g e g(c"')) a
s 'u r (c '+ )6 S (c " ||c + )}

which, by distribution of conjunction over disjunction, yields;

{(Q'ug,s'ur(c+),p'uQ)|
{{Q', S', P') 6 A(C') AQ S Q(C") A S' U r(C+) € S(C'||C+))V 
((Q',S',P') € A(C')AQ eQ (C '")A S'ur(C +) GS(C'||C+))}

iii. From the definition of set union, disjunction can be written as set union;

{(Q'ug,s'ur(c+),p'uQ)|
(Q', S', P') e A (O') A Q e Q(C") A S' u F(C+) 6 S(C"||C+)} U{(Q'ug,s'ur(c+),p'uQ)| 
(O', S', P') 6 A(C') A Q 6 Q {C " ) A S' U T(C+) 6 S(C'||C+)}

iv. Now consider term 4.5 in terms of (C'||C") +  (C'||C'"), which gives the 
merge composition of the set of U A A ^i tQm ri",Qi") asyn
chronous transitions.

{(g'uQ,s'ur(c"),p'ug)|
(Q', S', P') € A(C") A g e Q(C") AS'U T(C") € S(C'||C") } U{(g'ug,s'ur(c'"),p'ug)|
(Q',S',p') e A(C') AQ e Q(C'") a s'ur(C'") e s(C"||C'")}

With the exception of the idle event names, the compositions A(C'||(C" -h C'")) 
and A(C'||C") -|- A (C'||C'") are the same. Thus, the compositions can be said 
to be congruent as a consequence of the event name set, in other words, only for 
asynchronous components and because the idle event names in the distributed 
form are incorrect.

(b) Substitution in term 4.6 follows in a similar way, and, for the composition 
A(C'||(C"-t-C'")),yields;

{ (Q 'u g ,r 'U E ,Q 'U P ) |  
Q' € g(C') A (Q, S, P) 6 A(C") AT'use S(C'||C+)} (j{(g'ug,F'us,g'up)|
Q' 6 Q(C') A (Q,S,P) e A(C'") A F' U S 6 Ê(C'||C+)}

and, for the composition A(C'||C") 4- A(C'||C'"), yields;
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{ ( g ' u Q , r ' u s , g ' u P ) |
Q' 6 g(C') A (Q, S, P) € A(C") A r' U S 6 Ê(C'||C")>U{ ( g ' u g , r ' u s , Q ' u p ) |
Q' 6  Q iC ) A (Q, s, p) e A(C"") A r' u s € s(C'i|C"')}

(c) Substitution in term 4.7 follows in a similar way, and, for the composition 
A(C'||(C" +  C"")),yields;

{ ( g 'u g .  S 'U S, P'UP) I
(g', s',p ') 6 A(C') A (g, s, P) e A(c") A S ' u s e  s(C"||C'+)} 

( j { ( g ' u g , s ' u s , p ' u p ) |(g',s,p') e A(c') A (g,s,p) 6 A(c"") a  s 'us e s(c'||c+)}
and, for the composition A(C"||C") + A(C'||C'"), yields;

{ ( g ' u g , s ' u s , p ' u p ) |
(g'. S', p') e A(c') a  (g, s ,  p) € A(c") a  s '  u s  e s (c '||c" )}  

U { ( g ' u g , s ' u s , p ' u p ) |(g'. S', p') e g(c') A (g, s, p) e A(C"") A S ' u s e  s(C'||C"")}
All three terms in the concurrent composition of the transition set depend upon the 
event name set, otherwise concurrent composition distributes over merge. In other 
words, distribution in the concurrent composition of transitions is limited only by 
the distribution in the concurrent composition of the event name set.

In general, concurrent composition does not distribute over merge composition. Con
gruence can be found only when the components are asynchronous.

B.3 Extraction

This section briefly examines the mathematical properties of the extraction operator which 
is defined in section 5.2 (page 105).

B .3.1 C om m utivity

Consider the extract state set given in Definition 5.1 and repeated below;

g (q | <1 c") t /  { g ' I a g ,! .  (g,, e g(q ,) a  g ' e g (c ') a  g,, n g ' ^  {})}

The extract state set comprises the elements Q' drawn from the state set of the right 
hand operand, g(C"), subject to the conjunction Qy OQ' ^  {} which determines the
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existence of Q' in Qy. Hence the state set of the expression Q{C' < Cy) would also 
comprise elements from the right hand operand, that is, Qy drawn from Q(Cy). Except 
when C'y =  C", (5(C'y <C") will not yield the same set as <5(C"<Cy), that is, this definition 
is not commutative. However, if the contribution of Q' is changed to Qy fl Q', which is 
commutative, then the formation of the state set Q{C\\ < C") can be re-written in the 
following commutative form;

Q(5||<C') = ^ {Q ||n Q '|Q ||€Q (q |) A Q'€Ô(C") A QynQ'T^O} (B.2)

A similar modification can be made to the initial state set Q(^|| < C"), given by 
Definition 5.2 (page 106), and the event set S(Cy <C"), given by Definition 5.3 (page 107). 
The definition of initial state set would then be commutative. However, the event set, given 
below in the modified form, would not be commutative because the transition extraction 
operation which generates A (C'y <1 C‘) will be seen later not to be commutative.

Ê(5|j<c') {S||ns'|S|| 6S(C||) A s'^s(c') A S||ns',^{}}
u { S | 3 Q , P .  (Q,s,p)eA(q|<iC')}

The extract idle event A/"(r(C")), from Definition 5.4 (page 107), is not commutative. 
However, as a new idle event, the definition could be changed to be a new idle event based 
on some commutative operation on Cy and C', for example, Â (r(Cy) U F(C')).

Now consider each of the contributions to the extract transition set A (C'y < C'), given 
by Definition 5.10 (page 123).

1. The extract asynchronous transition set A (C'y < C')ai repeated below, is defined in 
Definition 5.5 (page 110).

A ( g | |< c " U  =  { ( ( 9 ' , s ' ,P ' ) 1 3 < 3 | | ,% f l i  •  (
(Q||, S||, P||) e A (C||) A (Q', S', P') 6 A (C) A 
(<3ll r \Q 'i^  {}) A (S|| n - S f  {}) A (/], n P '^  {}) a 
3£" =  S|| -  S', I"  = r(C||) -  r(C') • £" = x" )

}

In a similar way to the state set, the existence tests for the from state the event E' 
and the to state P ', allows the formation of the transition (Q', E ', P') to be replaced 
by the commutative form (Qy fl Q', Ey fl E ',  Tj| fl P'). Despite this, the set difference 
operator is not commutative, thus the terms E” =  Ey — E ' and X” =  r(C'y) — T(C") 
are not commutative. Hence the operations A(Cy < C')a and A (C " < ^\\}a will not 
generate the same contribution.
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2. The extract synchronous transition set A(C'||<C'^)5, which is defined in Definition 5.6 
(page 112), can be made commutative by the formation of a transition of the form 
(Q|| n Q', E|| n E', Tj| n P'), hence the definition would become;

A(C||<C')s {((9||nQ',E||ns',PynP')l
(Qll,S||,f||) e A(q,) A (Q',S',P') e A(C') A 
(Qll n  <9 ' ^  {}) A (S|| n  s v  {}) a  (p„ n P ' ^  {}) a
E,| =  E' )

3. The remaining three terms, A(C|| < C')p (page 116), A (C'y < C')da  (page 118) and 
A (C'y < C ')d c  (page 123) follow from case 1, above, and are not commutative.

The extraction operation is not commutative. Even with the modified definition of the 
terms of a Composite Transition System, commutivity is found only in the very limited 
case where the extract synchronous transition set is the only contribution to the extract 
transition set.

B .3.2 A ssociativ ity

Consider the revised term, term B.2, for the extract state set, but written in terms of the 
operands C and D', and in terms of the operands D and E.

Q{C<D') {Q cr \Q D '\Q o ^Q (C ) ^Q D '^Q {D ')  ^ Q c r \ Q D '^ { } )  
Q{D<iE) "= {Q d <^Qe \Q d € Q {D )/\ Qe  €Q {E) A Qd CiQe  ^  {}}

Substituting the extraction D <\ E  fov the D' term in the extraction Q{C < D') gives the
extraction Q(C < {D <] E)) which can be written as follows;

{ Qc n {Qd n Qe) I Qc E Q (C) A
Qd n Qe E { Qd n Qe I Qd E Q (D) A Qe E Q {E) a  Qd n Qe 9̂  {} } A
Qc n (Qd n Qe) 7̂  {} }

and which can be simplified to give;

{ Qc n (Qd n Qe) I Qc E Q (C) A 
Qd E Q (D) a  Qe E Q (E) A Qd n Qe 9̂  {} A 
Qc n (Qd n Qe) 9̂  {} }

Observe that the term Qd HQe 9̂  {} must hold true if the term Qc H (Qd HQe) 9̂  {}
is to hold true. Therefore, the term Qd H Qe 9̂  {} is redundant and the extraction
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Q(C<{D <\ E)) can be written as follows. Similar steps for the extraction Q{(C < D)<\E) 
also lead to the following expression. Hence, the extract state set as defined by term B.2 
(page 215) is associative.

{  Qc n Q d n Q e  | Qc G Q {C) A Q d  E Q {D) A Q e  E Q (E) A 
Qc n Qd n Qe 9̂  {} }

A similar approach to the definition of the extract initial state Q((7|| <1 C') also leads 
to an associative operation. However, a similar approach to the event set Ê(C|| < C') does 
not lead to associativity because the event set depends upon the transition extraction 
operation, see Definition 5.3 (page 107), which will be seen later not to be associative.

The extract idle event A/’(r(C')) is not associative, see Definition 5.4 (page 107). 
However, the definition could be changed to follow that proposed in Appendix B.3.1, and 
elaborated to ensure that Af{CuAf{D U E)) generates the same new idle event name as 
Af{Af{CUD)UE).

' 4

Appendix B.3.1 showed that with the exception of the extract synchronous transition 
set, A(C|| < C ' ) s ,  all other terms of the extract transition set cannot be commutative 
because set difference is not commutative. Similarly, the same terms of the extract tran
sition set cannot be associative because set difference is not associative. Any set B  can 
be defined by B  =  {æ|æ G B}. The complement of any set B  is denoted B' and̂  is de
fined as B' = {x\x 0 B}, thus A — B A n  B' [6, 52]. Hence, A  — (Y  — Z) can 
be written as A n (F fl Z')' which, by DeMorgan, can be written as X  D {¥' U A"), 
and, by the complement laws, can be written as A n {¥' U Z). Finally, by distribution, 
A n (y ' U A) =  (A n y ') U ( a  n a). Similar steps on the expression (X — Y) — Z  lead 
to (A n y ') U (A n z '). Since (A n F') U (A D Z) /  (A n Y') U (A D Z'), set difference 
is not associative, and therefore extraction cannot be associative. The stated laws on the 
complement of a set can be found in [6] and [52].

B .3 .3  D istribution

Distribution of extraction over merge is briefly discussed in this section. Consider the 
expression (C D) <\E = {C < E) (D <\ E ).

Where E  incorporates state and event identifiers only present in C (for example) then 
{C + D) <1 E is congruent with (C < E). The extraction operation D < E  generates a 
component comprising an empty state set, an empty initial state set, an empty event 
name set, and an empty transition set. The idle event name fov D <] E  will take on the
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form M{T{E)).  Therefore, D < E  = ({},{}, {},A/’(r(B)), {}). The merge composition
(C < B) -}- (D < E) can be written as follows and, term by term, the merge composition
can be formed;

{ Q i C < E ) , Q { C < E ) ,  È{C<E) ,  T{C<E) ,  A (C < B ) )  +
({}, {}, {},

= (Q(C <lE) + {}, Q(C<lB) + {},
S(C <1 £) + {}, r(C < E) +M{T{E)),

Â(C<]E) +  {})
= ( Q(C < E), Q(C <1 E), Ê(C <1 E), W(r(C <1 g) U r(E)), A(C<i E))
=  ( Q(C < 1  E), Q(C < 1  E), S(C <1 E), r(C <1 E), A(C <1 E) )

Now consider the case where E  incorporates state and event identifiers present in both 
C  and D. Distribution cannot be assumed because extraction depends upon the existence 
or absence of related transitions which may be contributed by C or D. In other words, 
the extraction C < E  might lead to synchronisation because a transition in C +  D may 
be determined to be “absent” in considering only C, that is, the “absent” transition is 
contributed by D. Thus {C D) <\ E  ^  (C < E) + (D <\ E)^ and hence distribution is 
denied.

If the component E  can be partitioned such E  =  Ec+Edi where Ec  incorporates state 
and event identifiers related only to C, and Ed incorporates state and event identifiers 
related only to D, then (C+D) < {Ec -\-Ed ) should be equivalent to {C< Ec) + {D<Ed )- 
More generally, any component C can be partitioned such that C =  +  . . .  +
Likewise, any concurrent composite Cy can be partitioned into components combined by 
merge composition, that is. C'y =  Cy +  C'y -|-. . .  +  Cy, where the partition Cy comprises 
all those elements of Cy related to the component partition C \ Note that a composite 
partition Cy may comprise elements of other partitions, Cjj. Thus Cy OC can be written as 
follows and distributes as follows, although this form of distribution is not in accordance 
with ring theory [6];

Cy O C =  (Cy +  Cy -j- . . . +  Cy') <] (C*̂  +  Ĉ  "b . . . +  C^)  

=  (C,9<C°) +  (C ,|< C i) +  . . . +  (C |î<C")
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B.4 M athem atical Properties Summary

The mathematical properties of the merge composition, concurrent composition and ex
traction operators are summarised in table B.2. Idempotent laws, that is C -f C, C||C, 
and C < C  have not been investigated, however the expected results are also summarised 
in table B.2.

Idempotent C + C = C
c\\c 

c < c  = c
Commutativity c  +  C" = C" +  c  

C'\\C" =  C"\\C  
C|| C||

Associativity (C  +  C") +  C "  =  C' + (C" + C") 
(C'||C")||C"' = C'||(C"||C"')

(C|| <1 C ) < C" ^  C|| <1 (C  < C")
Distribution C'\\(C" +  C") = {C'\\C") +  (C"\\C") 

(C|| <1C ) < C" 5̂  C|| < (O' 4  C")

<— Note 1

Note 2 

4— Note 3

Table B.2: Summary of Mathematical Properties.

Notes:

1. States common to the operands are denied, see page 74, hence C\\C is a prohibited 
expression.

2. Only if there is synchronisation between no more than two of the operands.

3. Congruence can be found only when the components are asynchronous, otherwise 
distribution does not hold.
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