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Abstract

We use intraday and daily data to examine the impact of cross-sectional return dispersion

on volatility forecasting in the Chinese equity market. We adopt the GARCH, GJR-GARCH,

and HAR models and, by augmenting them with return dispersion measures, provide empirical

evidence that the return dispersion exhibits substantial information in describing the volatility

dynamics by generating significantly lower forecasting errors at market and industry levels.

Furthermore, the information content of the return dispersion tends to offer economic gain to

a mean-variance utility investor. The findings are robust with respect to alternative volatility

proxies, subsample analysis, and alternative market-wide stock indices.
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1 Introduction

In this paper, we explore the information content of the cross-sectional dispersion of stock returns for

the purpose of volatility prediction. Specifically, we are interested in testing whether the information

contained in return dispersion, when incorporated in volatility models, is able to generate market-

and industry-level forecasts that are more accurate statistically and, if so, whether these forecasts

offer economic value to investors.

Our paper is motivated by the existing literature that examines the role of return dispersion

in financial markets. With regard to volatility, Stivers (2003) and Connolly and Stivers (2006)

clearly outline economic channels through which firm return dispersion impacts on future aggregate

volatility. First, from an economic perspective, the literature shows that return dispersion is related

to the macroeconomic environment and influences activities such as unemployment (Loungani et al.,

1990), economic expansion and recessions (Duffee, 2001), and financial integration (Bekaert and

Harvey, 1997). The evidence suggests that stock return dispersion is likely to contain information

for describing future state of the economy, part of which is captured by market volatility.

Another possible channel is the interpretation of return dispersion as an indicator of herding in

equity markets. Low cross-sectional dispersion implies that investors, both retail and institutional,

follow each other in and out of the same stocks due to information cascade or behavioral biases

especially during extreme market conditions (Chang et al., 2000; Choi and Sias, 2009; Christie and

Huang, 1995; Lakonishok et al., 1992; Li et al., 2017; Yao et al., 2014). This underscores another

inherent link between return dispersion and market volatility (Angelidis et al., 2015).

Finally, from a statistical perspective, Campbell et al. (2001) disaggregate volatility into the

market, industry, and stock components and document that firm-level volatility does not move in

tandem with the time-variation in market volatility. This implies that return dispersion, which mea-

sures dispersion in the cross section of individual stock returns, may offer incremental information

for the future time series of market volatility.
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In addition to forecasting market volatility, we are equally interested in volatility prediction at

the industry level. In the asset pricing literature, stock returns are shown to contain an industry-

specific component orthogonal to the market or the firm (Moskowitz and Grinblatt, 1999), and

industry characteristics play an important role in explaining asset returns and asset allocation

(Cavaglia et al., 2000; Choi and Sias, 2009; Diermeier and Solnik, 2001; Liu et al., 2014). With

regard to volatility modeling, Campbell et al. (2001) note that the time series variation in volatility

is more stable at the industry level compared to that at the market or the firm level; and across

industries, substantial distinctions exist in the volatility dynamics. This motivates us to study

whether the information in return dispersion is equally useful for predicting volatility at the industry

level.

In this paper, we focus on the Chinese equity market, an important emerging market in the

global financial arena. Despite its rapid growth in size - becoming the second largest equity market

with a capitalization of over $7 trillion within three decades (Carpenter and Whitelaw, 2017) -

it is still young and volatile (Jun et al., 2014), and its disproportionately large number of retail

investors exhibit strong behavior biases such as the disposition effect, overconfidence, and herding

(Chen et al., 2014; Feng and Seasholes, 2005; Hilliard and Zhang, 2015; Kim and Nofsinger, 2008;

Tan et al., 2008; Yao et al., 2014). Based on these characteristics and subsequent trading patterns,

we expect the return dispersion to contain rich information and exhibit substantial impact on the

volatility dynamics in this emerging market. Hence, our paper extends the literature that focuses

primarily on developed equity markets such as the US and UK in incorporating additional factors

in volatility prediction (Byun, 2016; Hwang and Satchell, 2005; Stivers, 2003), and the literature

that explores asset pricing implication of the dispersion measure (Chen et al., 2015; Maio, 2016).

We use daily data of component stocks in the Chinese CSI 300 index to construct equally- and

value-weighted cross-sectional dispersion measures: the cross-sectional standard deviation (CSSD)

and the cross-sectional absolute deviation (CSAD) following Chang et al. (2000).1 We also form

1 The CSI 300 index, launched in April 2005, represents the most widely followed and comprehensive index in the
Chinese stock market. Component stocks are chosen based on their market capitalization and liquidity from both
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equally- and value-weighted portfolio-based CSSD that avoids the influence of extreme stock re-

turns (Maio, 2016; Stivers and Sun, 2010). Furthermore, eight industry indices are constructed via

a value-weighting scheme from component stocks when there are at least six component stocks in

that industry at any point. In terms of volatility models, in addition to the popular generalized au-

toregressive conditional heteroskedasticity model (GARCH) of Bollerslev (1986) and Engle (1982),

we also implement the asymmetric GARCH (GJR-GARCH) model of Glosten et al. (1993), and the

heterogeneous autoregressive (HAR) realized volatility model of Corsi (2009). We augment these

traditional models with CSSD and CSAD measures to test the potential forecasting capability of

these measures. Our sample period is from 1 August, 2005, to 30 September, 2017.

Our empirical analysis reveals a host of interesting findings. First, the in-sample analysis shows a

significant improvement for GARCH-X, GJR-GARCH-X, and HAR-X models when the CSSD and

CSAD measures are incorporated. The coefficient for the CSSD/CSAD is positive and significant

for the augmented models, implying that a relatively low dispersion is associated with a lower

volatility. The results are consistent with findings in Hwang and Satchell (2005) and Byun (2016)

that adding information in the cross-sectional dispersion helps better specify the daily volatility

process. They are also in line with the evidence in Angelidis et al. (2015), Connolly and Stivers

(2006), and Stivers (2003), which document a positive relation between dispersion measures and

future market-level volatility. The implication is that a higher dispersion measure is linked to a

higher market volatility, indicating a deterioration of financial conditions.

Second, our out-of-sample forecasting results show that, by adding the dispersion measures in

augmented models, the performance of volatility forecasts is substantially improved for the CSI 300

index. The Diebold and Mariano (1995) test reveals that the augmented models, in particular the

GJR-GARCH-X model, produce significantly smaller prediction errors for the majority of volatility

model and dispersion combinations. Furthermore, the adjusted R2 of the Mincer and Zarnowitz

regression (Mincer and Zarnowitz, 1969) points to better model fit for the augmented models. This

the Shanghai Stock Exchange and Shenzhen Stock Exchange. The index is re-balanced every six months.
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result, however, is different from Hwang and Satchell (2005) using the FTSE 350 and S&P 500

indices or Byun (2016) with the S&P 500 data. This could result from different markets, sample

periods, or methodology.

Third, for industry-level volatility forecasts, there is a clear variation across industries over the

one-day ahead horizon. We observe that volatility forecasts from augmented models are significantly

improved for some sectors but fare poorly for others. However, over five- and 22-day ahead horizons,

the HAR-X model improves substantially across most industries in offering statistically more precise

volatility predictions.

Finally, we perform portfolio exercise to study whether statistically more precise volatility

forecasts add economic value to a mean-variance utility investor who allocates her wealth between

the CSI 300 index and the riskfree assets. We examine two alternative levels of investor risk

aversion and report annualized portfolio returns, the Sharpe ratio, and the manipulation-proof

portfolio measure (MPPM) of Goetzmann et al. (2007). Results are mixed as we examine different

levels of risk aversion, different measures for return dispersion, and different volatility models.

However, volatility predictions from augmented models consistently offer more economic value than

benchmark models if we focus on the MPPM. Further robustness check shows that our results in

the in-sample estimation and out-of-sample forecasts remain qualitatively the same with different

volatility proxies, subsample analysis, and different market-wide equity indices.

The contribution of our paper, as well as its novelty, lies in its comprehensive examination

of the statistical and economic value of return dispersion in predicting volatility in an important

emerging market. As the return dispersion reflects the degree to which traders follow market

movements rather than their own belief, it captures the expectation of future price variations

useful for volatility prediction. Our paper points to a clear channel for achieving this when the

cross-sectional dispersion measure appears in the variance equation for the volatility dynamics. It

thus sheds new light on the causes and consequences of asset volatility.
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Our paper is related to Byun (2016), Hwang and Satchell (2005), and Stivers (2003), all of

which examine the impact of return dispersion on volatility modeling in the US and/or UK mar-

kets. Our paper differs from these studies in a number of methodological specifications. First, we

implement the GARCH, GJR-GARCH, and the HAR models whereas only the GARCH model is

adopted in these studies; second, we use six different measures of stock return dispersion, which

is more comprehensive; third and importantly, we explore the relation between stock dispersion

and volatility in the biggest emerging market when these studies focus on the US and UK equity

markets; and finally, we examine volatility forecasts both in statistical and economic terms, whereas

the economic value of volatility forecasts is not considered in these related papers.

The rest of the paper is organized as follows. Section 2 outlines the methodology to construct

cross-sectional dispersion measures, and introduces volatility models and their performance eval-

uation metrics. Section 3 describes data, undertakes empirical analysis, and performs robustness

check. Finally, Section 4 concludes.

2 Methodology

In this section, we introduce the cross-sectional stock dispersion measures, outline the GARCH,

GJR-GARCH, and HAR volatility models, describe proxy for the latent volatility dynamics based

on intraday stock data, and summarize statistical and economic metrics for assessing volatility

forecasts.

2.1 Cross-sectional dispersion measures

Equally-weighted dispersion measures

We adopt two measures of the cross-sectional dispersion constructed from individual stocks

following Christie and Huang (1995). The first measure is the cross-sectional standard deviation
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(CSSD) defined as follows:

CSSDew,t =

√√√√ N∑
i=1

(ri,t − rm,t)2/(N − 1). (1)

The second measure is the cross-sectional absolute deviation (CSAD) defined as follows:

CSADew,t =

N∑
i=1

|ri,t − rm,t|/N. (2)

In both equations, ri,t is the return to stock i on day t, and rm,t is the cross-sectional average return

of N stocks in the portfolio on day t.

Value-weighted dispersion measures

In addition to the two equally-weighted cross-sectional dispersion measures, we also follow

Angelidis et al. (2015) and compute the market capitalization-weighted CSSD and CSAD as follows:

CSSDvw,t =

√√√√ N∑
i=1

wi,t(ri,t − rm,t)2, (3)

CSADvw,t =
N∑
i=1

wi,t|ri,t − rm,t|, (4)

where wi,t is the ratio between the market capitalization of stock i and the total market capital-

ization at time t-1, a predetermined weight for stock t over period t.

Portfolio-based dispersion measures

Furthermore, we create portfolio-based CSSD following Angelidis et al. (2015), Maio (2016),

and Stivers and Sun (2010). This portfolio-level dispersion measure is shown to be less noisy and

performs better than firm-level ones because it mitigates the influence of extreme individual returns.

We follow Maio (2016) to form 25 size- and BM-sorted portfolios from CSI component stocks based

on which daily portfolio returns are evaluated and used to construct equally- and value-weighted
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CSSD.

2.2 Volatility models

(GJR-)GARCH and (GJR-)GARCH-X models

For the GARCH model, we implement the most parsimonious ARMA(1,1)-GARCH(1,1) spec-

ification as follows:

rt = µ+ γrt−1 + εt + θεt−1, εt||Ωt−1 ∼ Dv(0, ht)

σ2
t = ω + αε2

t−1 + βσ2
t−1 (5)

where the error term εt,n follows a normal distribution Dv with zero mean and variance σ2
t with v

degrees of freedom conditional on the information set Ωt−1.

In addition, we also consider the asymmetric properties of volatility and implement the GJR-

GARCH(1,1) model of Glosten et al. (1993) specified as follows:

rt = µ+ φ1rt−1 + εt + φ2εt−1, εt||Ωt−1 ∼ Dv(0, ht)

σ2
t = ω + (α+ γIt−1)ε2

t−1 + βσ2
t−1 (6)

where

It−1 :=


0, if rt−1 ≥ µ,

1, if rt−1 < µ.

The indicator function It−1 captures the leverage effect. When the coefficient γ = 0, the GJR-

GARCH(1,1) reduces to the standard GARCH(1,1) model.

To incorporate cross-sectional dispersion measures into the (GJR-)GARCH model, we modify
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the variance equation to produce out-of-sample volatility forecasts as follows:

σ2
t = ω + (α+ γIt−1)ε2

t−1 + βσ2
t−1 + θHk

t−1, (7)

where Hk
t represents daily, weekly, or monthly cross-sectional dispersion variable on day t over

horizon k and is computed as a simple average of daily CSSD and CSAD:

Hd
t = CSDt, (8)

Hw
t =

1

5
(CSDt + CSDt−1 + · · ·+ CSDt−4), (9)

Hm
t =

1

22
(CSDt + CSDt−1 + · · ·+ CSDt−21), (10)

where CSDt is either CSSD or CSAD on day t.

HAR and HAR-X model

The third model we adopt is the popular heterogeneous autoregressive (HAR) model of real-

ized volatility proposed by Corsi (2009). Müller et al. (1993) document a strong seasonality and

autoregressive heteroskedasticity of the foreign exchange market due to non-homogeneous market

participants, which supports the Heterogeneous Market Hypothesis (HMH). This hypothesis pro-

poses different trading behavior by market participants due to their difference in risk preferences,

constraints and the way information is interpreted. The HAR model is designed to capture these

behaviors by constructing a multi-component volatility structure. It is also able to capture stylized

observations of time series volatility dynamics such as long memory. It is specified as follows:

RVt,t+h = α+ βdZ
d
t + βwZ

w
t + βmZ

m
t + εt+h, (11)

where Zdt , Z
w
t , Z

m
t denote the daily, weekly and monthly volatility components on day t, which are
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given by the simple average as follows:

Zdt = RV d
t (12)

Zwt =
1

5
(RV d

t +RV d
t−1 + · · ·+RV d

t−4) (13)

Zmt =
1

22
(RV d

t +RV d
t−1 + · · ·+RV d

t−21). (14)

RV d
t represents the 5-minute realized volatility computed in equation (16); RVt,t+h on the left-hand

side of equation (11) is the day h (h = 1, 5, 22) 5-minute ahead realized volatility, representing the

volatility 1, 5, and 22 days ahead.

A number of studies include additional components into the HAR model and report improved

empirical performance, such as the leverage effect (Corsi and Reno, 2012), jumps (Anderson and

Vahid, 2007), and lunch-break returns (Wang et al., 2015). In this paper, we include the dispersion

measures into the HAR model and form a HAR-X model as follows:

RVt,t+h = α+ βdZ
d
t + βwZ

w
t + βmZ

m
t + θHk

t + εt+h, (15)

where Hk
t represents daily, weekly, or monthly cross-sectional dispersion variable defined above in

equations (8)-(10).

2.3 Proxy for volatility dynamics

Since volatility is a latent variable that cannot be observed, we follow Andersen and Bollerslev

(1998) and construct realized volatility (RV) based on 5-minutes return series as proxy for the true

volatility process. RV is a widely used non-parametric volatility estimator (see Andersen et al.,

1999; Bandi and Russell, 2006; Chortareas et al., 2011, for example). It is easy to implement and
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can be constructed by aggregating intraday squared returns as follows:

σ2
rv,t =

N∑
n=1

r2
t,n, (16)

where σ2
rv,t is the day t realized variance, and r2

t,n (n = 1, 2, · · · , N th) is the 5-minute squared return

on day t where rt,n = lnPt,n − lnPt,n−1. We use this proxy to evaluate precision of out-of-sample

volatility forecasts of alternative models.

2.4 Evaluation metrics

We use the first 1000 days, approximately one-third of the sample period, for the in-sample esti-

mation and the remaining data for the out-of-sample prediction via a one-day rolling scheme. The

forecasting accuracy is evaluated using three popular loss functions: the root mean squared error

(RMSE), the mean absolute percentage error (MAPE), and the mean absolute error (MAE). They

are defined as follows:

RMSE =

√√√√ 1

T

T∑
t=1

(σ̂2
t+h − σ2

t+h)2, (17)

MAPE =
100

T

T∑
t=1

∣∣∣∣∣ σ̂2
t+h − σ2

t+h

σ2
t+h

∣∣∣∣∣ , (18)

MAE =
1

T

T∑
t=1

∣∣σ̂2
t+h − σ2

t+h

∣∣ , (19)

where T is the number of days in the out-of-sample period, σ̂2
t+h is the forecasted variance over

horizon h, and σ2
t+h is the proxy for true variance.

To assess the precision of volatility forecasts, we implement the Diebold and Mariano (1995) test

because a smaller forecasting error does not necessarily indicate significantly improved volatility

predictions. The Diebold-Mariano test conducts a pairwise comparison to determine whether the

difference between two forecast errors is statistically significant. The test statistic is defined as
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follows:

DM =
d̄√

L̂RV d̄/T

, (20)

where d̄ is the mean of the loss differential process {dt}Tt0 , and LRVd̄ = γ0 + 2
∑∞

j=1 γj , γj =

cov(dt, dt−j). The null hypothesis is that the forecasting difference is equal to zero.

Furthermore, we follow Andersen and Bollerslev (1998) and Wang et al. (2015) and conduct

the Mincer-Zarnowitz regression test (Mincer and Zarnowitz, 1969). Known as the predictive power

test, it is specified as follows:

σ2
t+h = α+ βσ̂2

t+h + εt+h, (21)

where σt+h is the true volatility proxy at time t + h, and σ̂t+h is the forecasted volatility at time

t+ h. The forecasting accuracy is captured by the adjusted R2 that reflects the overall goodness-

of-fit of the regression. The higher the adjusted R2 of the regression, the stronger the explanatory

power of volatility forecasts.

Portfolio exercise

We not only investigate the statistical performance of volatility forecasts, but also assess their

economic value to investors as statistically improved volatility forecasts do not necessarily deliver

economic gains in a portfolio setting. Following Wang et al. (2016), we construct a mean-variance

utility framework whereby an investor allocates her wealth between a portfolio of stocks and the

riskfree asset with specified level of risk aversion as follows:

Ut(r̃t) = Et(wtr̃t + rr,f )− 1

2
Γ vart(wtr̃t + rt,f ), (22)

where r̃t and rr,f are the excess return to the portfolio and the risk-free asset, respectively, at

time t, wt is the weight of the portfolio at time t, and Γ is the level of investor risk aversion. By

maximizing Ut(r̃t) with respect to wt, we obtain the ex ante optimal weight, w∗t , at time t+1 given
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the excess return forecast r̂t+1, and the volatility forecast σ̂t+1:

w∗t =
1

Γ
(
r̂t+1

σ̂2
t+1

). (23)

The return forecasts, r̂t+1, are proxied by the historical average following Neely et al. (2014) and

Rapach et al. (2010). Furthermore, we pose restrictions on the optimal weight in order to rule out

short sale and more than 50% leverage so that 0 ≤ w∗t ≤ 1.5. As a result, portfolio returns to a

risk averse investor at time t+ 1 can be written as Rt+1 = w∗t rt+1 + rt+1,f .

We evaluate the portfolio performance using the Sharpe ratio (SR), SRp =
µ̂p
σ̂p

and the manipulation-

proof performance measures (MPPM) (Goetzmann et al., 2007) in addition to overall portfolio

excess returns, where µ̂p and σ̂p are the mean and standard deviation of portfolio returns. The

MPPM is expressed as follows:

Θ =
1

(1− Γ)∆t
ln

(
1

T

T∑
t=1

[(1 + r̄t)/(1 + rf,t)]
1−Γ

)
, (24)

where r̄t is portfolio un-annualized rate of return at time t, T is the number of observations, and

∆t is the time interval between two observations. The use of the MPPM is particularly powerful

in performance measurement as it avoids manipulation especially by hedge fund managers whose

compensation package is based on fund performance.

3 Data and empirical analysis

Our intraday and daily data come from the China Security Market Trade & Quote (Level 1) of the

China Stock Market & Accounting Research (CSMAR) database. They include all 300 component

stocks as well as the CSI 300 index itself with stock ID, tick prices, date, and time. The sample

period is from 1 August 2005 to 30 September 2017.

Table 1 summarizes the descriptive statistics of selected stocks from the sample. The number
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of daily observations ranges from 2757 to 3038 due to different starting dates and stock suspensions

during the sample period. The mean and median of daily returns are positive for most stocks with

mostly positive skewness and excess kurtosis. The last column reports the number of observations

for intraday data, which is used to calculate the proxy for latent volatility dynamics. It is interesting

to note that the stocks in our sample vary in terms of market value that ranges from RMB 25 billion

for the non-ferrous metal producer NONFEMET to RMB 319 billion for the giant carmaker SAIC.

Firms also differ in their book-to-market ratio and turnover. Hence, our sample stocks provide a

good spread of firms in the Chinese equity market.

To investigate the information content of the cross-sectional dispersion at the industry level,

we tabulate the industrial classification in Table 2 alongside the number of stocks in each industry.

We require an industry to have at least six firms to be included in our empirical exercise to avoid

potential small sample bias. Hence, we focus on the following eight industries: (1) Mining (B); (2)

Manufacturing (C); (3) Utilities (D); (4) Wholesale and retail (F); (5) Transportation, storage and

post (G); (6) Information technology (I); (7) Finance (J); and (8) Real estate (K). We construct

industry equally- and value-weighted 5-min RV using 5-minute stock returns for the out-of-sample

volatility forecasting exercises.

Table 3 describes the time series of cross-sectional dispersion measures CSSD and CSAD. The

two measures are weakly correlated with the realized volatility of the CSI index as can be seen from

the last column of the table, but highly correlated with each other with a significant correlation of

0.99, which can be viewed from Figure 1. The two measures move in tandem with each other but

much less so with the CSI 300 index except during the stock market crash in autumn 2015 and

early 2016 when the two measures go up and down very much in line with the market index. This

suggests the existence of herding during the crash period.

13



3.1 In-sample volatility estimation

Table 4 reports the in-sample volatility estimation result of the benchmark and augmented models

for the CSI 300 index over the full sample period. The X variable is the CSSD and CSAD, both

equally and value-weighted from individual stocks, and equally and value-weighted CSSD based on

size- and BM-sorted portfolios, that capture the cross section of stock return dispersion.

First, we observe that the maximum likelihood values of GARCH-X and GJR-GARCH-X models

with CSSD and CSAD are higher than that of the benchmark GARCH and GJR-GARCH models,

and the differences are highly significant at the 1% level. For example, the maximum likelihood

value is 8116 for the GARCH-X with value-weighted CSAD in Panel A but 8107 for the GARCH

model. This suggests a much improved goodness-of-fit with the additional dispersion measure and

underlines its information content. Second, we note that the θ coefficient is highly significant for

the augmented models, indicating that the dispersion measure plays a substantial role in describing

daily volatility process. This result is consistent with the findings of Hwang and Satchell (2005)

and Byun (2016) that incorporating the cross-sectional dispersion is able to improve daily and

monthly return volatility specification, respectively. It also implies that, at the market level, a

relatively high return dispersion predicts a high future market volatility and vice versa. This

result is in line with Angelidis et al. (2015), Stivers (2003) and Connolly and Stivers (2006), all of

which document a positive relation between the cross-sectional stock return dispersion and future

market-level volatility.

A similar pattern can be observed when we implement the HAR and HAR-X models in Panel

C. In this panel, the θ coefficient is also positive and highly significant at the 1% level across

different dispersion measures, consistent with results in Panels A and B. This also implies that a

relatively large cross-sectional dispersion predicts a high future market volatility, in line with the

implication from the GARCH and GJR-GARCH models. Furthermore, we note that the adjusted

R2 is improved from 0.659 for the HAR model to between 0.662 and 0.665 for the HAR-X models.
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3.2 Out-of-sample forecasting

As the in-sample parameter significance does not always translate to out-of-sample forecasting

improvement, we conduct a number of out-of-sample tests at the market and industry levels to

examine the forecasting performance of benchmark and augmented models. Table 5 summarizes

volatility prediction results for the CSI 300 index. We report three loss functions of forecasting

errors: RMSE, MAPE and MAE, and perform the Diebold and Mariano (1995) pairwise com-

parison to evaluate whether the difference in forecasting performance between volatility models is

significant. We also show the adjusted R2 of the Mincer-Zarnowitz regression.

For the two GARCH models in Panels A and B, the results suggest that the forecasting perfor-

mance of augmented models is usually significantly better than that of benchmark ones for both the

RMSE and MAE. For example, the Diebold and Mariano t-statistic for the difference in forecast-

ing error is 4.36 and 5.68 when the GJR-GARCH is augmented by the value-weighted CSSD and

CSAD, respectively, as measured by the MAE in Panel B. The Mincer-Zarnowitz adjusted R2 also

improves from 0.34 to 0.44 and 0.45 when value-weighted CSSD or CSAD, respectively, is added

to the model. Meanwhile, we notice that when the portfolio-based CSSD is added to the GARCH

model in Panel A, the MAPE significantly increases. It is interesting to note that the improvement

generated by the GJR-GARCH-X model relative to the GJR-GARCH is more evident compared

with the improvement of the GARCH-X relative to the GARCH model.

Results are similar for the HAR and HAR-X models in Panel C. We conduct forecasting exer-

cises over one-, five-, and 22-day ahead horizons to correspond to different volatility components

underlying the HAR model. By adding different measures of cross-sectional dispersion, the aug-

mented models exhibit reduced forecasting error, in many cases significant at the 1% level. For

example, over 22-day ahead horizon, the t-statistic of the Diebold-Mariano test for the RMSE

is always significant at the 1% level regardless of the specific cross-sectional dispersion measure.

Moreover, according to the adjusted R2 of the Mincer-Zarnowitz regression, the augmented HAR-X
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model exhibits stronger explanatory power with higher R2 except for one case.

Overall, at the aggregate market level, we provide clear evidence that the information content

in the cross-sectional stock return dispersion helps improve the forecasting performance of the

benchmark models. This finding is different from the evidence in Hwang and Satchell (2005) and

Byun (2016) perhaps due to different methodology or the test market. It is worth noting that

the equally-weighted CSSD and CSAD seem to capture more information and thus are better at

helping to generate more precise volatility forecasts.2

At the industry level, we construct eight industry indices from intraday component stock returns

based on the value-weighting scheme and report out-of-sample forecasting performance in Table

6 with the six cross-sectional dispersion measures.3 In this table, it is noteworthy that, at the

industry level, the performance of GARCH-X and GJR-GARCH-X models are rather mixed cross

the industries. The augmented models tend to perform significantly better for the finance industry

but significantly worse for the mining, manufacturing, and utilities industries. For the HAR models

in Panel C, however, the HAR-X model tends to outperform the benchmark over all industries and

dispersion measures, especially over the 22-day ahead horizon.

Taken together, results in this table suggest that the information content of the cross-sectional

dispersion is more pronounced at the weekly and monthly horizons, and that it represents a useful

source of information for some industries as far as volatility prediction is concerned. We note that

at the industry level, volatility prediction with the dispersion measure does not work well over

the next day. One possible way to rationalize this relates to the use of CSSD/CSAD in detecting

herding in equity markets (Chiang and Zheng, 2010; Christie and Huang, 1995; Tan et al., 2008) and

at the industry level (Lee et al., 2013). Choi and Sias (2009) argue that as institutional investors

receive industry signals at different times, they act on signals and trade sequentially. As a result,

2 We conjecture that this is in the spirit of Timmermann (2006) and Rapach et al. (2010), which show that
the simple 1/N-weighting scheme outperforms more sophisticated weights in the presence of complex and evolving
data-generating processes.

3 We only report the RMSE and the corresponding t-statistics for the Diebold and Mariano test to conserve space.
Results based on the MAPE and MAE are available upon request from the authors.
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we are more likely to observe forecasting advantage at the industry level over weekly and monthly

horizons.

3.3 Economic value

Statistical improvement does not necessarily lead to economic gains to investors when volatility

predictions are used in trading strategies. Hence, we conduct a simple portfolio exercise to gauge

the economic value of volatility forecasts for augmented GARCH-X, GJR-GARCH-X, and HAR-X

models. As we assume that expected returns to individual assets are the same as their historical

average, overall portfolio returns as well as weight for the stock portfolio hinge upon the accuracy

of volatility forecasts and investor risk aversion.

In Table 7, we summarize average annualized portfolio returns, the Sharpe ratio, and the

manipulation-proof performance measure (MPPM) at the market level with two different risk aver-

sion levels and different dispersion measures. Results are quite mixed. If we focus on the Sharpe

ratio, when Γ = 6 for moderate investor risk aversion, in six out of nine cases the augmented

models exhibit higher Sharpe ratio than the corresponding benchmark models, whereas for Γ = 9,

the benchmark model dominates in generating higher portfolio returns. However, when we move

to the MPPM, we notice that for all combinations of volatility model and dispersion measure, the

augmented model shows higher MPPM value. This suggests that the information contained in

stock return dispersion tends to add value to investors in a portfolio exercise.

3.4 Robustness check

We conduct three robustness tests to show that our baseline results discussed above are not due to

specific choices we make in terms of methodology, sample period, or the test asset. In the first test,

we use different proxies for the latent volatility process; in the second robustness check, we break

the sample period into two and perform subsample analysis; finally, we examine the performance
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of two other market-wide indices: the Shanghai Stock Exchange (SSE) composite index and the

Shenzhen Stock Exchange (SZSE) composite index. Our results remain qualitatively the same in

these robustness tests.

Different volatility proxies

We adopt two different volatility estimators to capture the true volatility dynamics. They are

the realized median of Andersen et al. (2012) and the realized range of Parkinson (1980). The

realized median takes jumps in underlying returns as well as small (or zero) returns into account.

It is defined as follows:

σ2
med,t =

π

6− 4
√

3 + π
(

N

N − 2
)×

N−1∑
n=2

med(|∆rn−1|, |∆rn|, |∆rn+1|)2, (25)

where rn is the absolute return for the nth interval on day t. The realized range considers large

price movements within a day that the realized volatility measure may fail to capture. Thus, it is

expected to infer more information and improve upon the realized variance estimator by replacing

each intraday squared return with the high-low range as follows:

σ2
rng,t =

1

4 ln 2

N∑
n=1

(lnHt,i − lnLt,i)
2, (26)

where Ht,i and Lt,i are the highest and lowest prices for the nth interval on day t. Martens and

Van Dijk (2007) show that, despite market frictions, it outperforms the realized volatility in terms

of forecasting accuracy. Considering large price movements in the volatile Chinese stock market

and microstructure biases, these two volatility proxies represent suitable alternative proxies.

Our empirical results are summarized in Tables 8 and 9 at the market and industry level, respec-

tively, when the realized median is used as the volatility estimator.4 In Table 8, the performance

of augmented GARCH-type models is very similar to that in Table 5, as the augmented models

4 Results based on the realized range as volatility proxy are qualitatively the same. They are available from the
authors upon request.
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outperform the benchmark models in the majority of volatility model and dispersion measure com-

binations and significantly better in many cases. The HAR-X model continues to dominate the

HAR model in Panel C, especially when the forecasting errors are computed via the MAPE and

MAE.

At the industry level in Table 9, we again observe rather mixed results across the sectors.

However, the HAR-X model tends to offer significantly reduced RMSE, especially over the five-

and 22-day ahead horizons. Taken together, when we implement the same forecasting exercises

with popular alternative volatility proxies, our main findings remain unchanged: the cross-sectional

dispersion of stock returns contains useful information that helps improve volatility prediction.

Subsample analysis

Our second robustness test is to break the whole sample period almost equally into two: the

first subsample is from August 2005 to December 2011, and the second subsample is from January

2012 to the end of the sample period. Interestingly, each subsample contains a market downturn:

the Great Recession in the middle of the first subperiod, and the Chinese stock market crash of

2015/2016 during the second subsample.

The performance of the benchmark and augmented models is summarized in Tables 10 and 11,

respectively, for the two subsamples. It is interesting to note that the GARCH-X, GJR-GARCH-X,

and HAR-X models perform very strongly in generating significantly reduced volatility forecasts

in most volatility model and dispersion measure combinations. Our results are consistent with

evidence in the literature that, when the market is in agitation, investors tend to herd the market

more (see Christie and Huang, 1995; Yao et al., 2014, for example), thus the dispersion measures,

which capture herding in the market, are more informative and perform better in the volatility

prediction exercises .

Alternative indices
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In addition to the CSI 300 index, we have also examined the SSE and SZSE composite indices,

which contain 1381 and 2057 stocks, respectively, during our sample period, and tested whether

cross-sectional dispersion helps generate more precise volatility forecasts in these markets. Table 12

summarizes the results for the SSE composite index. In this table, we again observe qualitatively

similar results in that the dispersion measures continue to offer information content that helps

reduce volatility prediction error, in many cases significantly, and improves the adjusted R2 for the

Mincer-Zarnowitz regressions. Furthermore, we have conducted the same exercise for the SZSE

composite index (Table A1), and the subsample analysis for the SSE composite index (Tables A2

and A3) and the SZSE composite index (Tables A4 and A5) in the appended tables. All results

attest to the importance of incorporating cross-sectional dispersion in volatility forecasting.

4 Conclusion

In this paper, we explore the impact of the cross-sectional stock return dispersion on volatility mod-

eling and forecasting. Motivated by the prior theoretical and empirical evidence in the literature

documenting the forecasting ability of this measure for stock returns, we are interested in investi-

gating whether it also helps improve volatility prediction. Employing equally- and value-weighted

cross-sectional standard deviation (CSSD) and cross-sectional absolute deviation (CSAD) of com-

ponent stocks of the Chinese CSI 300 index, as well as the equally- and value-weighted CSSD based

on size- and BM-sorted portfolios, the empirical results confirm our conjecture that, by augmenting

the GARCH, GJR-GARCH, and HAR models with the dispersion measure, the augmented models

offer a better fit in the in-sample estimation tests and improve out-of-sample volatility forecasting

accuracy. The dispersion measure also tends to offer economic value to a mean-variance utility

investor. Similar results hold when we study volatility forecasts at the industry level. Further ro-

bustness check corroborates the main findings with different volatility proxies, subsample analysis,

and for SSE and SZSE composite indices. Our paper thus extends the literature by highlighting

the role that cross-sectional stock return dispersion plays in modeling equity market volatility.

20



References

Andersen, T.G., Bollerslev, T., 1998. Answering the skeptics: Yes, standard volatility models do

provide accurate forecasts. International Economic Review 39, 885–905.

Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P., 1999. (Understanding, optimizing, using

and forecasting) Realized volatility and correlation. Working paper, Northwestern University.

Andersen, T.G., Dobrev, D., Schaumburg, E., 2012. Jump-robust volatility estimation using nearest

neighbor truncation. Journal of Econometrics 169, 75–93.

Anderson, H.M., Vahid, F., 2007. Forecasting the volatility of Australian stock returns: Do common

factors help? Journal of Business & Economic Statistics 25, 76–90.

Angelidis, T., Sakkas, A., Tessaromatis, N., 2015. Stock market dispersion, the business cycle and

expected factor returns. Journal of Banking & Finance 59, 265–279.

Bandi, F.M., Russell, J.R., 2006. Separating microstructure noise from volatility. Journal of

Financial Economics 79, 655–692.

Bekaert, G., Harvey, C.R., 1997. Emerging equity market volatility. Journal of Financial Economics

43, 29–77.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econo-

metrics 31, 307–327.

Byun, S.J., 2016. The usefulness of cross-sectional dispersion for forecasting aggregate stock price

volatility. Journal of Empirical Finance 36, 162–180.

Campbell, J.Y., Lettau, M., Malkiel, B.G., Xu, Y., 2001. Have individual stocks become more

volatile? An empirical exploration of indiosyncratic volatility. Journal of Finance 56, 1–43.

Carpenter, J.N., Whitelaw, R.F., 2017. The development of China’s stock market and stakes for

the global economy. Annual Review of Financial Economics 9, 233–257.

21



Cavaglia, S., Brightman, C., Aked, M., 2000. The increasing importance of industry factors.

Financial Analysts Journal 56, 41–54.

Chang, E.C., Cheng, J.W., Khorana, A., 2000. An examination of herd behavior in equity markets:

An international perspective. Journal of Banking & Finance 24, 1651–1679.

Chen, C.D., Demirer, R., Jategaonkar, S., 2015. Risk and return in the Chinese stock market: Does

equity return dispersion proxy risk? Pacific-Basin Finance Journal 33, 23–37.

Chen, J., Jiang, F., Tu, J., 2014. Asset allocation in Chinese stock market: The role of return

predictability. Journal of Portfolio Management 41, 71–83.

Chiang, T.C., Zheng, D., 2010. An empirical analysis of herd behavior in global stock markets.

Journal of Banking & Finance 34, 1911–1921.

Choi, N., Sias, R.W., 2009. Institutional industry herding. Journal of Financial Economics 94,

469–491.

Chortareas, G., Jiang, Y., Nankervis, J.C., 2011. Forecasting exchange rate volatility using high-

frequency data: Is the Euro different? International Journal of Forecasting 27, 1089–1107.

Christie, W.G., Huang, R.D., 1995. Following the pied piper: Do individual returns herd around

the market? Financial Analysts Journal 51, 31–37.

Connolly, R., Stivers, C., 2006. Information content and other characteristics of the daily cross-

sectional dispersion in stock returns. Journal of Empirical Finance 13, 79–112.

Corsi, F., 2009. A simple approximate long-memory model of realized volatility. Journal of Financial

Econometrics 7, 174–196.

Corsi, F., Reno, R., 2012. Discrete-time volatility forecasting with persistent leverage effect and

the link with continuous-time volatility modeling. Journal of Business & Economic Statistics 30,

368–380.

22



Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. Journal of Business & Eco-

nomic Statistics 13, 253–265.

Diermeier, J., Solnik, B., 2001. Global pricing of equity. Financial Analysts Journal 57, 37–47.

Duffee, G.R., 2001. Asymmetric cross-sectional dispersion in stock returns: Evidence and implica-

tions. Working paper, Federal Reserve Bank of San Francisco.

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of variance of

United Kingdom inflation. Econometrica 50, 987–1008.

Feng, L., Seasholes, M.S., 2005. Do investor sophistication and trading experience eliminate be-

havioral biases in financial markets? Review of Finance 9, 305–351.

Glosten, L.R., Jagannathan, R., Runkle, D.E., 1993. On the relation between the expected value

and the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779–1801.

Goetzmann, W., Ingersoll, J., Spiegel, M., Welch, I., 2007. Portfolio performance manipulation

and manipulation-proof performance measures. Review of Financial Studies 20, 1503–1546.

Hilliard, J., Zhang, H., 2015. Size and price-to-book effects: Evidence from the Chinese stock

markets. Pacific-Basin Finance Journal 32, 40–55.

Hwang, S., Satchell, S.E., 2005. GARCH model with cross-sectional volatility: GARCHX models.

Applied Financial Economics 15, 203–216.

Jun, X., Li, M., Shi, J., 2014. Volatile market condition and investor clientele effects on mutual

fund flow performance relationship. Pacific-Basin Finance Journal 29, 310–334.

Kim, K.A., Nofsinger, J.R., 2008. Behavioral finance in Asia. Pacific-Basin Finance Journal 16,

1–7.

Lakonishok, J., Shleifer, A., Vishny, R.W., 1992. The impact of institutional trading on stock

prices. Journal of Financial Economics 32, 23–43.

23



Lee, C.C., Chen, M.P., Hsieh, K.M., 2013. Industry herding and market states: Evidence from

Chinese stock markets. Quantitative Finance 13, 1091–1113.

Li, W., Rhee, G., Wang, S., 2017. Differences in hearding: Individual vs. institutional investors.

Pacific-Basin Finance Journal 45, 174–185.

Liu, X., Pong, S.Y., Shackleton, M.B., Zhang, Y., 2014. Option-implied volatilities and stock

returns: Evidence from industry-neutral portfolios. Journal of Portfolio Management 41, 65–77.

Loungani, P., Rush, M., Tave, W., 1990. Stock market dispersion and unemployment. Journal of

Monetary Economics 25, 367–388.

Maio, P., 2016. Cross-sectional return dispersion and the equity premium. Journal of Financial

Markets 29, 87–109.

Martens, M., Van Dijk, D., 2007. Measuring volatility with the realized range. Journal of Econo-

metrics 138, 181–207.

Mincer, J., Zarnowitz, V., 1969. The evaluation of economic forecasts, in: Economic forecasts and

expectations, New York, NBER.

Moskowitz, T., Grinblatt, M., 1999. Do industries explain momentum. Journal of Finance 54,

1249–1290.
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Figure 1: The time series of the cross-sectional return dispersion

This figure shows the time series of daily equally-weighted CSSD and CSAD measures. They are constructed from

component stocks of the CSI 300 index. The left axis shows the magnitude of the CSSD and CSAD, whereas the

right axis is the CSI 300 index level. The sample period is from 1 August 2005 to 30 September 2017.
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Table 1: Descriptive statistics for selected sample stocks

This table reports descriptive statistics for the CSI 300 index and selected component stocks. It summarizes the stock code, name, industry code, number of

daily observations, the scaled mean, median, and standard deviation, skewness and excess kurtosis of daily returns. It also shows the Ljung-Box statistics for

autocorrelation for 10 lags. The average market value (MV in 10 billion RMB), the book-to-market ratio (B/M), and turnover in percent of as 2017 are also

summarized. In the last column, we report the total number of intraday observations. The sample period is from from 1 August 2005 to 30 September 2017.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Code Name
Industry

Code
Daily Obs

Mean
(×104)

Median
(×104)

Stdev
(×102)

Skewness Kurtosis LB[10] MV B/M Turnover
Intraday

Obs

000300 CSI300 3038 4.426 9.984 1.803 -0.537 6.659 37.53*** 8,053,943
000002 VANKE K 2840 14.85 0.000 2.842 0.348 5.135 15.76 26.27 0.629 0.928 9,667,989
000009 BAOAN S 2837 12.89 17.89 3.357 -0.025 4.454 16.04* 1.828 0.444 3.487 9,198,265
000060 NONFEMET C 2963 14.01 10.66 3.445 0.024 4.401 41.35*** 2.496 0.319 3.917 9,411,585
000063 ZTE C 2942 9.346 2.645 2.794 0.357 7.730 24.73*** 9.841 0.452 3.529 9,500,170
000069 OCT K 2915 10.45 0.000 3.032 0.042 4.875 45.11*** 5.124 0.708 1.502 8,949,343
000157 ZOOMLION C 2912 13.06 0.000 2.903 0.225 5.420 39.85*** 3.500 1.080 1.299 9,658,432
000402 FS K 2982 9.935 9.500 2.934 0.047 5.174 34.18*** 3.422 0.912 1.721 9,150,438
000425 XCMG C 2922 12.20 0.000 3.263 0.635 8.578 48.45*** 2.646 0.776 2.634 8,776,418
000568 LZLJ C 2933 16.69 7.790 2.737 0.267 5.194 32.47*** 7.058 0.163 1.806 8,755,814
000625 CHANGAN C 2812 13.15 6.455 3.042 0.258 4.932 31.77*** 6.216 0.630 1.427 9,071,481
000630 TNMG C 2825 8.453 0.000 3.121 0.090 5.785 26.48*** 2.873 0.559 3.086 8,817,564
000651 GREE C 2842 18.94 6.885 2.658 0.333 5.115 40.38*** 21.51 0.262 2.836 8,605,026
000709 HBIS C 2834 8.396 0.000 2.880 0.042 5.772 45.76*** 4.565 1.034 5.178 8,956,200
600009 SHIA G 3001 6.549 3.680 2.353 -0.019 6.373 36.61*** 3.962 0.333 1.526 7,099,140
600010 BSU C 2938 9.716 0.000 2.977 0.330 5.555 17.36* 5.286 0.439 1.547 8,026,793
600019 BIS C 2899 6.111 0.000 2.501 0.133 6.506 35.92*** 15.89 0.845 1.000 7,843,187
600021 SPIC D 2877 8.652 0.000 2.775 0.191 6.528 27.55*** 2.533 0.626 1.030 6,650,640
600028 SINOPEC B 2995 6.765 0.000 2.301 0.195 7.261 24.35*** 71.90 1.159 0.239 8,188,145
600029 CSA G 2941 9.297 0.000 3.115 0.140 5.213 50.34*** 8.443 0.651 1.765 7,852,472
600031 SANY C 2991 14.46 0.000 3.008 0.292 5.086 45.16*** 5.842 0.402 2.281 7,773,123
600050 UNICOM I 2902 7.991 0.000 2.558 0.363 6.874 24.02*** 15.49 1.365 2.102 7,817,792
600085 TRT C 3008 9.787 4.495 2.607 0.134 5.935 32.1*** 4.422 0.274 1.202 7,101,100
600100 THTF C 2822 10.91 14.87 3.260 0.017 4.634 21.57** 2.770 0.668 2.069 7,242,916
600104 SAIC C 2933 13.99 9.810 2.794 0.206 5.224 22.19** 31.91 0.705 0.648 7,826,882
600153 CDN F 2757 12.86 14.08 2.735 -0.029 5.458 14.01 3.316 0.988 2.327 6,667,571
600170 SCG E 2932 11.33 12.80 2.830 0.076 5.782 30.7*** 3.234 0.745 1.285 7,196,133
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Table 2: Industrial classification

This table summarizes industrial classification and the number of stocks in each industry for constructing industrial indices.

Industry Code Industry Name Number of stocks

Min Median Max

B Mining 13 19 34
C Manufacturing 115 147 159
D Utilities 8 20 27
F Wholesale and retail 10 13 16
G Transportation, storage and post 10 28 35
I Information technology (IT) 6 11 30
J Finance 10 26 56
K Real estate 11 18 29
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Table 3: Descriptive statistics of the CSSD and CSAD

This table summarizes the number of observations, mean, standard deviation, minimum and maximum value of the return dispersion measures. They are equally-

and value-weighted measures constructed from individual stock returns as well as from stock portfolios. The table also reports the serial correlation for 1, 3,

5, 20 lags together with t-statistics of the Augmented Dickey-Fuller (ADF) test. The last column shows the correlation between CSSD/CSAD and the realized

volatility of the CSI 300 index based on 5-minute return series. The sample period is from 1 August 2005 to 30 September 2017.

Code Obs. Mean S.D. Min Max Serial correlation at lag ADF Corrrlation

1 3 5 10 20 t-stat

Panel A: Equally-weighted
CSSD 3,038 0.021 0.007 0.003 0.066 0.740 0.661 0.647 0.622 0.534 -6.159 0.194
CSAD 3,038 0.015 0.006 0.000 0.057 0.725 0.647 0.635 0.607 0.528 -7.200 0.200

Panel B: Value-weighted
CSSD 3,038 0.019 0.007 0.002 0.070 0.753 0.701 0.669 0.626 0.550 -7.265 0.182
CSAD 3,038 0.014 0.006 0.000 0.062 0.737 0.690 0.651 0.599 0.530 -8.588 0.172

Panel C: Portfolio CSSD
EW 3,038 0.009 0.004 0.001 0.050 0.613 0.530 0.517 0.468 0.408 -10.28 0.247
VW 3,038 0.008 0.005 0.001 0.052 0.547 0.482 0.465 0.408 0.337 -12.98 0.231
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Table 4: The in-sample volatility estimation

This table reports the in-sample volatility estimation of the GARCH and GARCH-X models (Panel A), the GJR-

GARCH and GJR-GARCH-X models (Panel B), and the HAR and HAR-X models (Panel C) for the CSI 300 index.

The exogenous X variable θ is the CSSD/CSAD. The maximum likelihood (LL) and the adjusted R2 are also reported.

Standard errors are in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Equally-weighted Value-weighted Portfolio CSSD

Benchmark CSSD CSAD CSSD CSAD EW VW

Panel A: GARCH estimation
ω 4.3E-07** -4.2E-06*** -4.1E-06*** -2.5E-06*** -2.0E-06*** -3.0E-06*** -1.9E-06**

(2.1E-07) (1.1E-06) (9.7E-07) (7.9E-07) (6.7E-07) (8.3E-07) (6.8E-07)
α 0.054*** 0.050*** 0.050*** 0.050*** 0.050*** 0.051*** 0.051***

(0.004) (0.005) (0.005) (0.004) (0.004) (0.005) (0.004)
β 0.947*** 0.942*** 0.940*** 0.945*** 0.944*** 0.942*** 0.944***

(0.004) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004)
θ 3.3E-04*** 5.0E-04*** 2.5E-04*** 3.2E-04*** 6.4E-04*** 4.7E-04***

(7.7E-05) (1.1E-04) (6.5E-05) (8.3E-05) (1.5E-04) (1.4E-04)

LL 8107 8115*** 8116*** 8112*** 8112*** 8113*** 8111***

Panel B: GJR-GARCH estimation
ω 4.3E-07** -5.3E-06*** -5.6E-06*** -3.1E-06*** -2.4E-06*** -3.8E-06*** -2.3E-06**

(2.2E-07) (1.2E-06) (1.1E-06) (8.2E-07) (7.0E-07) (8.9E-07) (7.2E-07)
α 0.053*** 0.043*** 0.041*** 0.045*** 0.044*** 0.044*** 0.046***

(0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
γ 4.4E-04 0.018** 0.024*** 0.014** 0.015** 0.017** 0.013*

(0.006) (0.008) (0.008) (0.007) (0.007) (0.008) (0.007)
β 0.947*** 0.936*** 0.931*** 0.941*** 0.940*** 0.937*** 0.941***

(0.004) (0.005) (0.006) (0.004) (0.004) (0.005) (0.004)
θ 4.4E-04*** 7.0E-04*** 3.1E-04*** 4.0E-04*** 8.4E-04*** 6.0E-04***

(8.8E-05) (1.3E-04) (7.0E-05) (9.1E-05) (1.7E-04) (1.5E-04)

LL 8107 8116*** 8118*** 8113*** 8113*** 8114*** 8112***

Panel C: HAR estimation
α 0.013*** -0.009* -0.006 -0.002 0.001 0.003 0.007

(0.003) (0.005) (0.005) (0.004) (0.004) (0.005) (0.004)
βd 0.399*** 0.346*** 0.338*** 0.345*** 0.338*** 0.362*** 0.363***

(0.042) (0.042) (0.044) (0.043) (0.043) (0.043) (0.042)
βw 0.345*** 0.330*** 0.328*** 0.324*** 0.322*** 0.327*** 0.333***

(0.066) (0.065) (0.065) (0.065) (0.065) (0.063) (0.064)
βm 0.192*** 0.179** 0.180** 0.183*** 0.183** 0.190*** 0.189***

(0.043) (0.042) (0.042) (0.042) (0.041) (0.042) (0.042)
θ 0.117*** 0.154*** 0.111*** 0.142*** 0.158*** 0.126***

(0.023) (0.032) (0.019) (0.024) (0.043) (0.036)

Adj.R2 0.659 0.664 0.665 0.665 0.666 0.663 0.662
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Table 5: Out-of-sample volatility forecasting performance: CSI 300 index

This table reports the out-of-sample forecasting performance between the GARCH, GJR-GARCH, and HAR models and the corresponding GARCH-X, GJR-

GARCH-X, and HAR-X models for the CSI 300 index. The root mean square error (RMSE), the mean absolute percentage error (MAPE), and the mean absolute

error (MAE) are used. The t-statistic of the Diebold and Mariano (1995) (DM) test between forecasts from the benchmark and augmented models, and the

adjusted R2 of the Mincer-Zarnowitz (M-Z) regression are also reported. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Equally-weighted Value-weighted Portfolio CSSD

Benchmark CSSD CSAD CSSD CSAD EW VW

Panel A: GARCH estimation
RMSE (×102) 6.668 6.423 6.409 6.437 6.597 6.529 6.672
DM t-stat 6.159*** 3.383*** 4.375*** 0.504 1.890* -0.026
MAPE (%) 143.5 144.7 139.3 148.4 142.5 146.9 145.9
DM t-stat -0.845 2.879*** -3.315*** 0.617 -2.364** -1.667*
MAE (×102) 3.616 3.507 3.372 3.475 3.383 3.522 3.505
DM t-stat 4.212*** 7.146*** 4.355*** 5.683*** 2.840*** 2.688***
Adj.R2 of M-Z regression 0.336 0.369 0.363 0.364 0.320 0.348 0.313

Panel B: GJR-GARCH estimation
RMSE (×102) 6.739 6.147 6.067 6.084 6.009 6.169 6.179
DM t-stat 6.693*** 5.572*** 5.107*** 5.086*** 4.826*** 4.207***
MAPE (%) 148.2 142.8 139.5 147.9 143.9 150.0 150.5
DM t-stat 2.801*** 4.225*** 0.148 1.922* -0.861 -1.104
MAE (×102) 3.744 3.422 3.289 3.348 3.257 3.482 3.469
DM t-stat 7.788*** 8.965*** 7.660*** 8.392*** 5.237*** 5.104***
Adj.R2 of M-Z regression 0.344 0.428 0.435 0.435 0.448 0.430 0.427

To be continued
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Panel C: HAR estimation
1-day ahead

RMSE (×102) 5.170 5.154 5.156 5.164 5.168 5.168 5.174
DM t-stat 0.754 0.488 0.269 0.074 0.088 -0.173
MAPE (%) 49.25 47.82 47.64 48.52 48.23 48.98 48.52
DM t-stat 4.752*** 5.330*** 2.823*** 4.238*** 1.233 3.696***
MAE (×102) 1.902 1.866 1.857 1.871 1.871 1.883 1.884
DM t-stat 4.550*** 4.778*** 3.929*** 3.639*** 2.634*** 2.305**
Adj.R2 of M-Z regression 0.555 0.560 0.561 0.558 0.557 0.556 0.555

5-day ahead
RMSE (×102) 3.949 3.851 3.836 3.897 3.919 3.917 3.949
DM t-stat 2.756*** 2.424*** 1.482 0.867 1.020 -0.005
MAPE (%) 41.34 39.19 39.06 40.22 39.71 40.94 40.11
DM t-stat 4.809*** 5.049*** 2.992*** 4.787*** 1.283 4.735***
MAE (×102) 1.573 1.507 1.492 1.515 1.516 1.546 1.545
DM t-stat 5.421*** 5.461*** 4.919*** 4.787*** 2.563** 2.647***
Adj.R2 of M-Z regression 0.583 0.602 0.606 0.592 0.588 0.588 0.582

22-day ahead
RMSE (×102) 3.592 3.190 3.099 3.295 3.346 3.338 3.424
DM t-stat 5.570*** 5.429*** 4.439*** 3.831*** 4.300*** 2.888***
MAPE (%) 48.39 45.00 45.77 48.88 48.79 50.35 51.13
DM t-stat 4.316*** 3.261*** -0.738 -0.625 -3.308*** -5.200***
MAE (×102) 1.709 1.529 1.507 1.555 1.560 1.626 1.646
DM t-stat 9.080*** 8.429*** 7.938*** 7.828*** 4.600*** 3.578***
Adj.R2 of M-Z regression 0.422 0.514 0.542 0.483 0.468 0.474 0.452
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Table 6: Out-of-sample volatility forecasting performance: Industry level, value-weighted

This table reports the out-of-sample forecasting performance between the GARCH, GJR-GARCH, and HAR models and corresponding augmented GARCH-X,

GJR-GARCH-X, and HAR-X models at the industry level constructed via the value-weighting scheme from stocks in the industry. Realized volatility is calculated

from 5-min value-weighted intraday component stock returns. The root mean square error (RMSE) is used. The t-statistic of the Diebold and Mariano (1995)

(DM) test between forecasts from the benchmark and augmented models is also reported. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Mining Manufacturing Utilities Wholesale
and retail

Transportation,
storage and post

IT Finance Real estate

Panel A: GARCH estimation
Benchmark 14.05 17.37 17.75 18.89 20.90 21.82 13.53 18.40
CSSD EW 14.12 17.54 18.04 19.07 20.89 22.63 13.21 18.78
DM t-stat -0.864 -3.599*** -3.460*** -0.787 0.609 -4.014*** 5.697*** -2.030**
CSAD EW 14.26 17.64 18.27 19.30 20.93 22.68 13.26 19.03
DM t-stat -1.991** -3.715*** -2.499** -1.323 -1.066 -4.131*** 4.323*** -2.595***
CSSD VW 14.27 17.63 18.10 19.04 20.92 22.62 13.25 18.86
DM t-stat -2.009** -4.229*** -3.560*** -0.669 -0.995 -3.915*** 4.628*** -2.124**
CSAD VW 14.42 17.70 18.31 19.10 20.95 22.67 13.36 18.81
DM t-stat -2.260** -3.860*** -2.700*** -0.879 -2.691*** -4.050*** 2.209** -1.895*
Port CSSD EW 14.27 17.55 18.27 19.21 20.89 22.56 13.19 18.80
DM t-stat -1.893* -2.620*** -2.536** -1.013 0.372 -3.313*** 5.315*** -1.702*
Port CSSD VW 14.44 17.63 18.30 19.14 20.93 22.47 13.28 18.64
DM t-stat -2.267** -2.421** -2.609*** -0.887 -1.534 -3.788*** 3.731*** -1.141

Panel B: GJR-GARCH estimation
Benchmark 14.29 16.94 18.06 18.78 21.26 22.20 13.56 18.52
CSSD EW 14.32 16.91 18.32 18.28 21.24 22.58 13.19 18.67
DM t-stat -0.535 0.208 -3.387*** 1.429 0.356 -3.490*** 4.734*** -1.032
CSAD EW 14.42 17.02 18.52 18.35 21.33 22.67 13.23 18.96
DM t-stat -2.122** -0.596 -2.467** 1.229 -1.800* -2.814*** 3.859*** -1.953*
CSSD VW 14.43 17.04 18.33 18.28 21.30 22.57 13.22 18.63
DM t-stat -2.167** -0.723 -3.303*** 1.399 -1.048 -1.951* 3.653*** -0.679
CSAD VW 14.38 17.13 18.49 18.27 21.41 22.59 13.35 18.71
DM t-stat -0.543 -1.299 -2.568** 1.442 -5.075*** -2.145** 2.053** -0.962
Port CSSD EW 14.40 16.84 18.39 18.24 21.28 22.59 13.16 18.59
DM t-stat -1.670* 0.725 -2.076** 1.608 -0.399 -2.001** 4.508*** -0.307
Port CSSD VW 14.47 16.96 18.39 18.21 21.31 22.50 13.25 18.53
DM t-stat -1.265 -0.130 -2.111** 1.730* -1.242 -1.636 3.387*** -0.071

To be continued
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Panel C: HAR estimation
1-day ahead

Benchmark 11.59 10.98 13.35 13.28 14.39 14.76 9.828 13.46
CSSD EW 11.50 10.92 13.31 13.23 14.36 14.72 9.739 13.40
DM t-stat 1.485 1.202 0.635 1.179 1.078 1.125 3.114*** 2.000**
CSAD EW 11.47 10.91 13.30 13.24 14.36 14.72 9.721 13.39
DM t-stat 1.441 0.987 0.577 1.004 0.979 1.105 2.882*** 1.769*
CSSD VW 11.52 10.93 13.32 13.25 14.37 14.75 9.759 13.42
DM t-stat 0.977 1.356 0.554 1.225 1.607 0.633 2.618*** 0.986
CSAD VW 11.53 10.93 13.32 13.26 14.37 14.76 9.759 13.44
DM t-stat 0.793 1.239 0.542 1.051 1.441 0.356 1.841* 0.488
Port CSSD EW 11.53 10.95 13.33 13.27 14.38 14.76 9.755 13.43
DM t-stat 0.986 0.849 0.317 0.400 1.134 0.331 1.469 0.906
Port CSSD VW 11.56 10.94 13.34 13.27 14.36 14.76 9.778 13.46
DM t-stat 0.427 0.851 0.212 0.453 1.684* 0.211 1.148 -0.013

5-day ahead
Benchmark 8.576 8.563 9.848 10.57 10.97 11.88 7.855 10.21
CSSD EW 8.252 8.387 9.706 10.42 10.88 11.70 7.671 9.978
DM t-stat 2.571** 2.166** 1.463 2.501** 2.036** 3.034*** 3.610*** 4.249***
CSAD EW 8.170 8.372 9.680 10.44 10.89 11.73 7.641 9.934
DM t-stat 2.582*** 1.901* 1.442 2.535** 2.164** 3.212*** 3.345*** 3.973***
CSSD VW 8.373 8.472 9.797 10.50 10.96 11.85 7.747 10.08
DM t-stat 1.548 1.622 0.672 2.864*** 0.587 1.575 2.722*** 2.614***
CSAD VW 8.441 8.499 9.835 10.53 10.92 11.88 7.783 10.14
DM t-stat 1.054 0.984 0.239 3.012*** 1.543 0.228 1.546 1.260
Port CSSD EW 8.444 8.557 9.832 10.57 10.98 11.89 7.792 10.14
DM t-stat 1.043 0.123 0.230 0.296 -0.123 -0.217 1.008 1.404
Port CSSD VW 8.601 8.568 9.885 10.58 10.90 11.89 7.843 10.25
DM t-stat -0.179 -0.083 -0.636 -0.401 1.987** -0.701 0.233 -0.689

22-day ahead
Benchmark 8.116 8.889 10.11 9.636 11.66 11.08 7.170 10.25
CSSD EW 7.245 8.276 9.648 9.022 11.31 10.44 6.860 9.328
DM t-stat 4.669*** 3.853*** 3.652*** 4.831*** 4.238*** 5.528*** 3.240*** 6.567***
CSAD EW 7.005 8.186 9.551 9.043 11.35 10.52 6.842 9.151
DM t-stat 4.904*** 3.754*** 3.809*** 5.463*** 4.572*** 6.018*** 2.765*** 6.190***
CSSD VW 7.365 8.569 9.924 9.276 11.66 10.93 7.004 9.493
DM t-stat 4.243*** 4.231*** 2.495*** 5.895*** 0.003 4.747*** 2.112** 6.269***
CSAD VW 7.493 8.746 10.07 9.408 11.67 11.07 7.138 9.621
DM t-stat 3.694*** 2.053** 1.316 7.430*** -0.13 0.912 0.385 5.298***
Port CSSD EW 7.538 8.776 9.944 9.434 11.71 11.03 7.121 9.605
DM t-stat 3.555*** 1.577 2.229*** 3.030*** -1.842 1.939* 0.420 5.625***
Port CSSD VW 7.796 8.965 10.12 9.601 11.68 11.11 7.228 9.825
DM t-stat 1.903* -1.323 -0.266 1.075 -0.596 -3.067*** -0.637 3.907***

34



Table 7: Economic value of volatility forecasts: CSI 300 index

This table reports portfolio excess return (Ret), the Sharpe ratio (SR), and the manipulation proof performance

measure (MPPM) of portfolios under a mean-variance utility framework with Γ as investor risk aversion level. The

bold font highlights the best economic performance among the three forecasting models.

Γ=6 Γ=9

Ret SR MPPM Ret SR MPPM

Panel A: Equally-weighted
GARCH -0.456 -0.045 0.037 -0.628 -0.086 0.031
GARCH+CSSD -0.466 -0.043 0.041 -0.693 -0.085 0.038
GARCH+CSAD -0.682 -0.063 0.043 -0.895 -0.109 0.041

GJR-GARCH -0.144 -0.014 0.032 -0.424 -0.059 0.028
GJR-GARCH+CSSD -0.048 -0.004 0.037 -0.634 -0.077 0.039
GJR-GARCH+CSAD -0.387 -0.036 0.040 -0.953 -0.115 0.042

HAR -0.156 -0.011 0.068 -0.077 -0.007 0.058
HAR+CSSD -0.018 -0.001 0.070 -0.086 -0.007 0.063
HAR+CSAD -0.086 -0.006 0.071 -0.177 -0.015 0.065

Panel B: Value-weighted
GARCH -0.456 -0.045 0.037 -0.628 -0.086 0.031
GARCH+CSSD -0.341 -0.031 0.041 -1.121 -0.136 0.043
GARCH+CSAD -0.321 -0.029 0.042 -1.057 -0.126 0.044

GJR-GARCH -0.144 -0.014 0.032 -0.424 -0.059 0.028
GJR-GARCH+CSSD 0.055 0.005 0.037 -1.015 -0.121 0.043
GJR-GARCH+CSAD 0.214 0.019 0.037 -0.941 -0.110 0.044

HAR -0.156 -0.011 0.068 -0.077 -0.007 0.058
HAR+CSSD -0.161 -0.011 0.073 -0.209 -0.018 0.065
HAR+CSAD -0.222 -0.015 0.074 -0.268 -0.023 0.066

Panel C: Portfolio CSSD
GARCH -0.456 -0.045 0.037 -0.628 -0.086 0.031
GARCH+CSSD EW -0.848 -0.080 0.043 -1.098 -0.136 0.042
GARCH+CSSD VW -0.734 -0.068 0.043 -1.208 -0.149 0.043

GJR-GARCH -0.144 -0.014 0.032 -0.424 -0.059 0.028
GJR-GARCH+CSSD EW -0.524 -0.050 0.039 -1.234 -0.154 0.043
GJR-GARCH+CSSD VW -0.338 -0.032 0.037 -1.243 -0.154 0.043

HAR -0.156 -0.011 0.068 -0.077 -0.007 0.058
HAR+CSSD EW -0.310 -0.021 0.071 -0.338 -0.030 0.064
HAR+CSSD VW -0.404 -0.027 0.073 -0.365 -0.032 0.065
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Table 8: Robustness: Volatility forecasting with realized median as true volatility proxy, CSI 300 index

This table reports the out-of-sample forecasting performance between the GARCH, GJR-GARCH, and HAR models and the corresponding GARCH-X, GJR-

GARCH-X, and HAR-X models using the realized median as the volatility proxy for the CSI 300 index. The root mean square error (RMSE), the mean absolute

percentage error (MAPE), and the mean absolute error (MAE) are used. The t-statistic of the Diebold and Mariano (1995) (DM) test between forecasts from

the benchmark and augmented models, and the adjusted R2 of the Mincer-Zarnowitz (M-Z) regression are also reported. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Equally-weighted Value-weighted Portfolio CSSD

Benchmark CSSD CSAD CSSD CSAD EW VW

Panel A: GARCH estimation
RMSE (×102) 6.755 6.448 6.398 6.443 6.566 6.532 6.655
DM t-stat 6.958*** 4.397*** 5.306*** 1.143 2.781*** 0.494
MAPE (%) 184.9 186.0 179.5 190.6 183.3 188.8 187.3
DM t-stat -0.730 3.015*** -3.270*** 0.815 -2.247** -1.415
MAE (×102) 3.868 3.726 3.583 3.687 3.586 3.747 3.715
DM t-stat 4.360*** 7.415*** 4.677*** 6.031*** 2.782*** 2.936***
Adj.R2 of M-Z regression 0.321 0.345 0.340 0.341 0.300 0.327 0.293

Panel B: GJR-GARCH estimation
RMSE (×102) 6.879 6.263 6.150 6.178 6.083 6.278 6.274
DM t-stat 7.249*** 5.998*** 5.524*** 5.489*** 5.081*** 4.437***
MAPE (%) 190.9 184.4 180.5 190.9 185.9 193.2 193.6
DM t-stat 2.914*** 4.306*** 0.083 1.985** -0.835 -1.012
MAE (×102) 4.004 3.645 3.512 3.576 3.476 3.717 3.694
DM t-stat 8.170*** 9.141*** 7.778*** 8.467*** 5.241*** 5.150***
Adj.R2 of M-Z regression 0.321 0.392 0.398 0.397 0.411 0.393 0.393

To be continued
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Panel C: HAR estimation
1-day ahead

RMSE (×102) 5.028 5.013 5.014 5.022 5.025 5.027 5.032
DM t-stat 0.682 0.462 0.264 0.111 0.053 -0.174
MAPE (%) 51.34 49.51 49.25 50.24 49.93 50.77 50.27
DM t-stat 5.615*** 6.326*** 3.981*** 5.505*** 2.427** 5.101***
MAE (×102) 1.754 1.720 1.711 1.721 1.721 1.736 1.736
DM t-stat 4.857*** 4.947*** 4.597*** 4.408*** 2.849*** 2.579**
Adj.R2 of M-Z regression 0.550 0.555 0.556 0.554 0.553 0.552 0.550

5-day ahead
RMSE (×102) 3.837 3.737 3.717 3.781 3.802 3.802 3.835
DM t-stat 2.490** 2.252** 1.410 0.919 0.986 0.057
MAPE (%) 43.27 40.49 40.25 41.54 41.04 42.38 41.51
DM t-stat 5.716*** 6.089*** 4.464*** 6.357*** 2.766*** 6.571***
MAE (×102) 1.473 1.404 1.390 1.410 1.411 1.441 1.440
DM t-stat 5.927*** 5.927*** 5.731*** 5.702*** 3.203*** 3.330***
Adj.R2 of M-Z regression 0.572 0.591 0.596 0.581 0.577 0.577 0.571

22-day ahead
RMSE (×102) 3.435 3.059 2.966 3.160 3.213 3.199 3.288
DM t-stat 5.176*** 5.088*** 4.073*** 3.501*** 3.911*** 2.502**
MAPE (%) 51.20 47.07 47.81 51.03 51.04 52.59 53.59
DM t-stat 4.880*** 3.891*** 0.249 0.247 -2.231** -4.585***
MAE (×102) 1.589 1.420 1.398 1.448 1.459 1.511 1.538
DM t-stat 9.053*** 8.414*** 7.899*** 7.611*** 4.622*** 3.191***
Adj.R2 of M-Z regression 0.417 0.507 0.537 0.475 0.460 0.467 0.443
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Table 9: Robustness: Volatility forecasting with realized median as true volatility proxy, industry level, value-weighted

This table reports the out-of-sample forecasting performance between the GARCH, GJR-GARCH, and HAR models and corresponding augmented GARCH-X,

GJR-GARCH-X, and HAR-X models at the industry level constructed via the value-weighting scheme from stocks in the industry. Realized median is calculated

from 5-min value-weighted intraday component stock returns. The root mean square error (RMSE) is used. The t-statistic of the Diebold and Mariano (1995)

(DM) test between forecasts from the benchmark and augmented models is also reported. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Mining Manufacturing Utilities Wholesale
and retail

Transportation,
storage and post

IT Finance Real estate

Panel A: GARCH estimation
Benchmark 12.51 14.88 15.88 17.32 17.84 18.29 12.35 15.02
CSSD EW 12.54 14.99 16.07 17.29 17.78 18.90 12.02 15.38
DM t-stat -0.383 -2.188** -2.254** 0.101 2.498** -2.967*** 5.872*** -1.989**
CSAD EW 12.65 15.07 16.23 17.48 17.81 18.95 12.06 15.48
DM t-stat -1.378 -2.436** -2.087** -0.488 0.959 -3.134*** 4.602*** -2.277**
CSSD VW 12.65 15.07 16.11 17.26 17.82 18.88 12.05 15.37
DM t-stat -1.328 -2.881*** -2.299** 0.248 0.973 -2.856*** 4.928*** -1.914*
CSAD VW 12.76 15.12 16.26 17.32 17.86 18.94 12.18 15.32
DM t-stat -1.613 -2.667*** -2.289** 0.007 -0.808 -3.043*** 2.402** -1.664*
Port CSSD EW 12.69 14.99 16.22 17.42 17.79 18.83 12.02 15.37
DM t-stat -1.637 -1.534 -2.086** -0.302 2.017** -2.450** 5.416*** -1.812*
Port CSSD VW 12.84 15.06 16.25 17.36 17.84 18.76 12.11 15.25
DM t-stat -1.960** -1.542 -2.125** -0.141 0.293 -2.750*** 3.736*** -1.338

Panel B: GJR-GARCH estimation
Benchmark 12.72 14.49 16.16 17.23 18.16 18.64 12.39 15.17
CSSD EW 12.72 14.40 16.35 16.37 18.12 18.88 12.02 15.33
DM t-stat -0.070 0.788 -2.499** 2.212** 1.148 -2.167** 4.612*** -1.054
CSAD EW 12.80 14.48 16.49 16.43 18.19 18.95 12.06 15.46
DM t-stat -1.383 0.074 -2.182** 2.064** -0.735 -1.867* 3.896*** -1.583
CSSD VW 12.81 14.50 16.35 16.37 18.17 18.87 12.06 15.27
DM t-stat -1.494 -0.096 -2.245** 2.186** -0.293 -1.212 3.746*** -0.641
CSAD VW 12.76 14.59 16.45 16.36 18.28 18.89 12.19 15.26
DM t-stat -0.305 -0.625 -2.166** 2.237** -3.832 -1.385 2.052** -0.535
Port CSSD EW 12.80 14.33 16.36 16.36 18.14 18.86 12.01 15.21
DM t-stat -1.344 1.208 -1.561 2.315** 0.421 -1.166 4.368*** -0.242
Port CSSD VW 12.85 14.43 16.35 16.34 18.20 18.82 12.11 15.20
DM t-stat -1.114 0.360 -1.473 2.425** -0.812 -1.016 3.177*** -0.191

To be continued
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Panel C: HAR estimation
1-day ahead

Benchmark 11.03 10.12 12.12 13.03 12.80 13.17 9.079 11.20
CSSD EW 10.95 10.06 12.07 12.98 12.76 13.12 9.003 11.15
DM t-stat 1.597 1.034 0.632 1.138 1.036 1.007 2.776*** 2.088**
CSAD EW 10.93 10.06 12.06 12.99 12.76 13.13 8.993 11.14
DM t-stat 1.596 0.835 0.569 0.975 0.976 0.964 2.597*** 1.893*
CSSD VW 10.97 10.06 12.08 13.00 12.77 13.15 9.021 11.17
DM t-stat 1.011 1.242 0.522 1.261 2.244** 0.686 2.347** 0.989
CSAD VW 10.98 10.07 12.09 13.01 12.77 13.16 9.026 11.18
DM t-stat 0.814 1.184 0.445 1.100 1.639 0.485 1.736* 0.438
Port CSSD EW 10.98 10.09 12.10 13.02 12.78 13.16 9.021 11.17
DM t-stat 0.887 0.690 0.302 0.525 1.382 0.369 1.468 0.883
Port CSSD VW 11.01 10.09 12.11 13.02 12.78 13.16 9.043 11.20
DM t-stat 0.348 0.733 0.138 0.536 1.593 0.221 1.097 -0.047

5-day ahead
Benchmark 7.510 7.759 8.939 10.14 9.665 10.27 7.120 8.612
CSSD EW 7.248 7.569 8.781 9.960 9.533 10.09 6.977 8.411
DM t-stat 2.942*** 2.005** 1.268 2.444** 2.080** 2.915*** 3.205*** 4.348***
CSAD EW 7.183 7.551 8.754 9.979 9.540 10.12 6.962 8.373
DM t-stat 3.005*** 1.751* 1.226 2.473** 2.243** 3.053*** 2.977*** 4.125***
CSSD VW 7.343 7.647 8.868 10.06 9.630 10.23 7.038 8.490
DM t-stat 1.727* 1.963** 0.663 2.733*** 1.579 1.707** 2.261** 2.533**
CSAD VW 7.403 7.681 8.909 10.09 9.636 10.26 7.068 8.546
DM t-stat 1.112 1.476 0.340 3.056*** 1.095 0.648 1.320 1.209
Port CSSD EW 7.419 7.734 8.900 10.11 9.664 10.27 7.073 8.549
DM t-stat 0.969 0.488 0.399 0.825 0.052 0.131 0.905 1.411
Port CSSD VW 7.555 7.764 8.966 10.14 9.643 10.28 7.116 8.647
DM t-stat -0.415 -0.104 -0.302 0.024 0.929 -0.881 0.110 -0.602

22-day ahead
Benchmark 7.140 7.903 9.217 8.802 10.23 9.339 6.485 8.846
CSSD EW 6.402 7.267 8.730 8.145 9.748 8.741 6.244 8.067
DM t-stat 4.969*** 3.852*** 3.423*** 4.666*** 4.218*** 5.569*** 2.813*** 6.276***
CSAD EW 6.197 7.169 8.628 8.162 9.791 8.825 6.246 7.909
DM t-stat 5.274*** 3.775*** 3.544*** 5.173*** 4.555*** 6.013*** 2.348** 5.978***
CSSD VW 6.463 7.508 8.967 8.412 10.12 9.175 6.361 8.200
DM t-stat 4.806*** 4.155*** 2.365*** 5.492*** 3.310*** 4.986*** 1.719* 5.951***
CSAD VW 6.568 7.676 9.092 8.556 10.23 9.308 6.462 8.300
DM t-stat 4.307*** 4.466*** 1.891* 7.003*** -0.054 2.215** 0.309 5.028***
Port CSSD EW 6.641 7.712 8.983 8.549 10.20 9.277 6.456 8.286
DM t-stat 3.814*** 2.076*** 2.324*** 3.413*** 1.042 2.207** 0.280 5.404***
Port CSSD VW 6.848 7.907 9.158 8.727 10.27 9.370 6.540 8.476
DM t-stat 2.170 -0.088 0.828 2.032 -1.396 -3.192*** -0.706 3.696***
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Table 10: Robustness: Subsample volatility forecasting performance: CSI 300 index from 2005 to 2011

This table reports the subsample forecasting performance between the GARCH, GJR-GARCH, and HAR models and the corresponding GARCH-X, GJR-

GARCH-X, and HAR-X models for the CSI 300 index from August 2005 to December 2011. The root mean square error (RMSE), the mean absolute percentage

error (MAPE), and the mean absolute error (MAE) are used. The t-statistic of the Diebold and Mariano (1995) (DM) test between forecasts from the benchmark

and augmented models, and the adjusted R2 of the Mincer-Zarnowitz (M-Z) regression are also reported. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Equally-weighted Value-weighted Portfolio CSSD

Benchmark CSSD CSAD CSSD CSAD Equal-weighted Value-weighted

Panel A: GARCH estimation
RMSE (×102) 8.112 7.292 7.120 7.052 6.895 7.283 7.173
DM t-stat 8.771*** 9.595*** 9.858*** 10.56*** 7.387*** 7.256***
MAPE (%) 142.7 122.8 118.9 121.3 118.5 124.9 125.8
DM t-stat 9.254*** 11.44*** 9.938*** 11.74*** 7.425*** 7.090***
MAE (×102) 6.133 5.394 5.235 5.216 5.072 5.407 5.335
DM t-stat 9.524*** 11.25*** 10.74*** 12.17*** 8.225*** 8.058***
Adj.R2 of M-Z regression 0.413 0.430 0.433 0.428 0.429 0.412 0.405

Panel B: GJR-GARCH estimation
RMSE (×102) 8.297 6.778 6.691 6.569 6.517 6.792 6.673
DM t-stat 7.603*** 7.735*** 8.289*** 8.254*** 7.336*** 7.287***
MAPE (%) 153.1 113.9 111.6 111.3 110.3 117.2 118.6
DM t-stat 13.18*** 14.39*** 14.78*** 15.15*** 12.17*** 11.56***
MAE (×102) 6.415 4.900 4.816 4.682 4.622 4.966 4.865
DM t-stat 10.76*** 11.16*** 11.88*** 11.94*** 10.06*** 10.05***
Adj.R2 of M-Z regression 0.135 0.447 0.449 0.435 0.432 0.425 0.412

To be continued
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Panel C: HAR estimation
1-day ahead

RMSE (×102) 5.193 5.183 5.185 5.197 5.202 5.197 5.211
DM t-stat 0.693 0.451 -0.151 -0.339 -0.166 -0.666
MAPE (%) 48.53 44.86 44.54 44.28 44.25 46.06 45.98
DM t-stat 9.343*** 9.831*** 11.58*** 12.22*** 6.715*** 8.060***
MAE (×102) 2.691 2.622 2.616 2.608 2.606 2.648 2.642
DM t-stat 5.010*** 5.043*** 5.081*** 4.988*** 2.832*** 2.826***
Adj.R2 of M-Z regression 0.447 0.451 0.451 0.450 0.450 0.447 0.446

5-day ahead
RMSE (×102) 3.420 3.359 3.362 3.371 3.376 3.415 3.433
DM t-stat 2.968*** 2.430** 1.629 1.296 0.174 -0.377
MAPE (%) 39.89 35.56 35.14 34.30 34.08 37.14 36.68
DM t-stat 8.515*** 9.150*** 10.89*** 11.67*** 5.757*** 7.268***
MAE (×102) 2.204 2.100 2.092 2.073 2.066 2.16 2.148
DM t-stat 5.256*** 5.355*** 5.363*** 5.411*** 2.004** 2.255**
Adj.R2 of M-Z regression 0.561 0.573 0.572 0.571 0.570 0.559 0.554

22-day ahead
RMSE (×102) 2.958 2.845 2.846 2.787 2.769 3.010 2.976
DM t-stat 6.204*** 6.178*** 6.806*** 7.391*** -1.805 -0.544
MAPE (%) 49.04 42.61 41.99 39.65 38.88 45.34 44.68
DM t-stat 9.932*** 10.84*** 13.36*** 14.79*** 5.778*** 7.181***
MAE (×102) 2.392 2.206 2.196 2.107 2.079 2.354 2.308
DM t-stat 8.030*** 8.464*** 10.26*** 11.34*** 1.389 2.982***
Adj.R2 of M-Z regression 0.552 0.571 0.568 0.575 0.577 0.536 0.531
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Table 11: Robustness: Subsample volatility forecasting performance: CSI 300 index from 2012 to 2017

This table reports the subsample forecasting performance between the GARCH, GJR-GARCH, and HAR models and the corresponding GARCH-X, GJR-GARCH-

X, and HAR-X models for the CSI 300 index from January 2012 to September 2017. The root mean square error (RMSE), the mean absolute percentage error

(MAPE), and the mean absolute error (MAE) are used. The t-statistic of the Diebold and Mariano (1995) (DM) test between forecasts from the benchmark and

augmented models, and the adjusted R2 of the Mincer-Zarnowitz (M-Z) regression are also reported. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Equally-weighted Value-weighted Portfolio CSSD

Benchmark CSSD CSAD CSSD CSAD EW VW

Panel A: GARCH estimation
RMSE (×102) 8.945 8.095 8.182 8.079 8.078 8.234 8.202
DM t-stat 3.044*** 2.572** 3.189*** 3.259*** 2.479** 2.810***
MAPE (%) 144.4 126.1 122.6 130.3 126.9 127.2 128.2
DM t-stat 5.785*** 6.553*** 4.692*** 5.614*** 5.460*** 5.395***
MAE (×102) 4.348 3.460 3.427 3.487 3.482 3.576 3.633
DM t-stat 7.007*** 6.966*** 6.729*** 6.993*** 6.083*** 5.956***
Adj.R2 of M-Z regression 0.391 0.478 0.468 0.480 0.474 0.452 0.451

Panel B: GJR-GARCH estimation
RMSE (×102) 8.991 7.547 7.521 7.453 7.484 7.539 7.586
DM t-stat 5.006*** 4.903*** 4.850*** 4.707*** 4.825*** 4.575***
MAPE (%) 150.2 150.3 149.4 158.7 154.6 150.3 149.7
DM t-stat -1.083 -0.870 -2.506** -1.737* -1.118 -1.021
MAE (×102) 4.399 3.516 3.479 3.573 3.571 3.594 3.683
DM t-stat 6.052*** 6.106*** 5.403*** 5.520*** 5.448*** 4.968***
Adj.R2 of M-Z regression 0.153 0.549 0.553 0.556 0.547 0.543 0.534

To be continued
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Panel C: HAR estimation
1-day ahead

RMSE (×102) 7.141 7.120 7.119 7.120 7.111 7.133 7.119
DM t-stat 0.457 0.379 0.635 0.873 0.290 0.727
MAPE (%) 54.86 52.34 52.72 54.16 53.94 53.96 53.67
DM t-stat 4.420*** 4.063*** 2.443*** 3.588*** 3.603*** 3.723***
MAE (×102) 2.567 2.504 2.500 2.535 2.547 2.546 2.565
DM t-stat 3.417*** 3.027*** 2.319** 1.407 1.647* 0.144
Adj.R2 of M-Z regression 0.581 0.586 0.587 0.584 0.585 0.582 0.583

5-day ahead
RMSE (×102) 5.584 5.429 5.412 5.524 5.551 5.559 5.592
DM t-stat 1.796* 1.655* 1.053 0.766 0.447 -0.177
MAPE (%) 51.09 46.91 47.71 49.99 49.67 49.24 48.67
DM t-stat 3.973*** 3.453*** 2.192*** 3.807*** 4.353*** 6.282***
MAE (×102) 2.245 2.133 2.128 2.195 2.218 2.216 2.245
DM t-stat 3.278*** 2.896*** 2.140* 1.313 1.243 -0.019
Adj.R2 of M-Z regression 0.601 0.619 0.621 0.605 0.604 0.601 0.599

22-day ahead
RMSE (×102) 5.145 4.319 4.193 4.678 4.793 4.714 4.880
DM t-stat 4.556*** 4.511*** 3.194*** 2.696*** 3.137*** 2.149**
MAPE (%) 65.69 56.34 59.13 68.22 70.44 65.53 67.15
DM t-stat 3.808*** 2.849*** -1.696* -3.824*** 0.111 -1.759*
MAE (×102) 2.495 2.081 2.065 2.263 2.332 2.285 2.372
DM t-stat 6.412*** 5.792*** 4.362*** 3.454*** 3.805*** 2.629***
Adj.R2 of M-Z regression 0.438 0.582 0.616 0.500 0.477 0.494 0.464
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Table 12: Robustness: Out-of-sample volatility forecasting performance: SSE composite index

This table reports the out-of-sample forecasting performance between the GARCH, GJR-GARCH and HAR models and the corresponding GARCH-X, GJR-

GARCH-X, and HAR-X models for the SSE composite index. The root mean square error (RMSE), the mean absolute percentage error (MAPE), and the mean

absolute error (MAE) are used. The t-statistic of the Diebold and Mariano (1995) (DM) test between forecasts from the benchmark and augmented models, and

the adjusted R2 of the Mincer-Zarnowitz (M-Z) regression are also reported. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Equally-weighted Value-weighted Portfolio CSSD

Benchmark CSSD CSAD CSSD CSAD EW VW

Panel A: GARCH estimation
RMSE (×102) 6.013 5.815 5.681 5.852 5.798 5.746 5.811
DM t-stat 6.373*** 6.536*** 5.735*** 3.564*** 5.650*** 3.524***
MAPE (%) 141.9 156.6 150.6 150.7 143.4 145.4 143.9
DM t-stat -10.75*** -6.331*** -6.825*** -1.133 -2.454*** -1.607
MAE (×102) 3.161 3.163 3.050 3.128 2.978 3.038 3.029
DM t-stat -0.091 4.246*** 1.631 6.746*** 4.215*** 4.537***
Adj.R2 of M-Z regression 0.376 0.410 0.431 0.397 0.396 0.412 0.396

Panel B: GJR-GARCH estimation
RMSE (×102) 6.141 5.776 5.550 5.720 5.391 5.478 5.523
DM t-stat 5.356*** 6.150*** 5.737*** 5.593*** 5.197*** 4.845***
MAPE (%) 150.6 159.5 150.5 151.6 143.2 149.6 148.6
DM t-stat -5.246*** 0.048 -0.576 3.681*** 0.517 1.094
MAE (×102) 3.297 3.200 3.037 3.099 2.826 3.046 3.030
DM t-stat 3.624*** 7.660*** 6.368*** 9.575*** 5.512*** 5.528***
Adj.R2 of M-Z regression 0.361 0.428 0.463 0.429 0.484 0.477 0.464

To be continued
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Panel C: HAR estimation
1-day ahead

RMSE (×102) 4.863 4.806 4.798 4.851 4.856 4.866 4.858
DM t-stat 2.882*** 2.482** 0.855 0.396 -0.221 0.372
MAPE (%) 48.34 50.51 48.63 47.53 47.26 48.18 47.76
DM t-stat -6.370*** -1.002 2.934*** 3.831*** 1.117 3.287***
MAE (×102) 1.691 1.677 1.662 1.661 1.656 1.687 1.688
DM t-stat 1.819* 3.226*** 4.896*** 5.143*** 0.783 0.571
Adj.R2 of M-Z regression 0.550 0.563 0.565 0.554 0.554 0.550 0.551

5-day ahead
RMSE (×102) 3.537 3.310 3.253 3.459 3.463 3.556 3.552
DM t-stat 5.188*** 5.061*** 3.473*** 2.610*** -0.974 -0.880
MAPE (%) 41.20 45.51 41.91 40.13 39.89 40.98 39.97
DM t-stat -7.960*** -1.600 2.828*** 3.348*** 1.419 5.562***
MAE (×102) 1.416 1.387 1.347 1.363 1.356 1.414 1.409
DM t-stat 2.395** 4.560*** 5.644*** 5.622*** 0.388 1.004
Adj.R2 of M-Z regression 0.613 0.658 0.671 0.627 0.626 0.609 0.610

22-day ahead
RMSE (×102) 3.273 2.667 2.482 2.923 2.876 3.183 3.236
DM t-stat 6.263*** 6.335*** 6.304*** 5.822*** 2.280** 1.169
MAPE (%) 47.02 56.57 49.38 47.37 47.88 49.48 47.77
DM t-stat -9.579*** -3.108*** -0.568 -1.282 -5.691*** -2.794***
MAE (×102) 1.514 1.414 1.317 1.387 1.376 1.511 1.515
DM t-stat 4.395*** 7.205*** 8.095*** 7.337*** 0.289 -0.008
Adj.R2 of M-Z regression 0.490 0.641 0.685 0.564 0.575 0.508 0.493
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