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Abstract 

For energy saving and CO2 emissions reduction, in addition to extending the range of 

suitable raw material sources for glass manufacture, compositional reformulation and 

alternative raw materials have been studied in the context of industrial container and 

float-type soda-lime-silica glasses. Lithium, potassium and boron were applied to 

modify benchmark glass compositions. Reformulation impacts on key glass properties 

including the viscosity-temperature relationship, thermal expansion, liquidus 

temperature, forming behaviour and colour. Compared to the benchmark glass, 

representative of commercial soda-lime-silica glasses, melting temperatures (taken as 

temperatures corresponding to log (viscosity/dPa∙s) = 2) of reformulated glasses are 

reduced by 11 - 55 
o
C. Investigation of four industrial by-products (seashell waste, 

eggshell waste, biomass ash and rice husk ash), and their potential suitability as 

alternative glass batch raw materials, was also conducted. Seashell waste and biomass 

ash were successfully introduced into representative green glass formulations.  
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1. Introduction 

 Historically, the sources and proportions of raw materials for soda-lime-silica 

(SLS) glass batches have evolved over a period of many years, and for a variety of 

reasons [1]. In ancient times, limited by geography, communication links and glass 

making knowledge, plant ashes, steatite, sand and natron were applied by the 

Egyptians and Romans in glass making [2]. Soda-lime-silica glass compositions have 

evolved over the intervening centuries, and current glass manufacturing practice uses 

a combination of man-made and mined raw materials with minimal variability in 

composition, with glass compositions largely unchanged for the past 50 years [1][3]. 

For flat, container and pressed glasses, a series of average compositional 

investigations between 1980 and 2000 were presented by Smrček [4][5][6]. This 

includes commercial glasses from Germany, France, Great Britain, Italy, Russia, USA 

and others (32 countries in total), thus presenting a truly global assessment. 

 As an energy-intensive industry, global commercial glass manufacture is a key 

sector that consumes 220TWh/yr of energy and emits 50-60MT/yr of CO2. In the UK, 

the sector produces more than 3 MT of glass per year and emits 2.2 MT of CO2, using 

4.5 TWh of energy at a (current) cost of more than ₤75M [7]. The UK and other 

countries are legally obliged to deliver the Paris Agreement through its domestic 

climate framework [7]. This framework sets a target to reduce greenhouse gas 

emissions by at least 80% by 2050, against 1990 levels, which places a great burden 

of responsibility on energy-intensive manufacturing sectors including the glass sector. 

To help coordinate and support achievement of this goal from a UK perspective, the 
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Glass Decarbonisation Roadmap 2050 was published in 2015 [8]. According to this 

plan, batch reformulation was highlighted as one key mechanism to help enable the 

glass industry to reduce its energy consumption and CO2 emissions. Low cost, 

environmentally-friendly, energy-saving, emissions-reducing and increased-recycling 

are now all major driving forces for exploration of commercial soda-lime-silica glass 

batch reformulation and alternative raw materials that could help to economically 

achieve this. 

 Any changes to glass making raw materials balances using new raw materials 

including but not restricted to those studied here, will require the availability of 

substantial tonnages (e.g. in the UK at 10% of batch mass to produce 3MT / year of 

glass would require up to ~300kT / year of the new raw material to be available at 

sufficiently low cost). This raw material would also need to be available in a 

sufficiently consistent form, both chemically and physically. The present, initial study 

focussed on investigating the potential of candidate raw materials for further 

development. Whilst outside our scope here, establishing the reproducibility and 

consistency of any new raw material, in addition to demonstrating its performance in 

glassmaking at scales larger than a laboratory and establishing a robust supply chain, 

will all be key requirements to develop and advance the raw material into the 

marketplace. 

 Previously, researchers have carried out many studies of the use opportunities for 

industrial wastes and by-products, with one aim being expanding the sources of raw 

materials for a range of high-volume manufactured products including glass 
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[9][10][11][12]. For example, as one of the most important agricultural products in 

the Far East since ancient times, rice paddies produce almost 100MT of rice husk per 

year [13][14]. Rice husk ash (RHA) is the product of incineration of this rice husk. In 

some regions, rice husk is used as a fuel for parboiling paddy in rice mills, whereas in 

other areas it is field-burnt as a local fuel [15]. Most of the evaporable components of 

rice husk are slowly lost during burning and the primary residues are thus rich in 

silicates [15]. Instead of being discarded as waste, rice husk ashes can potentially be 

used as raw materials for a number of products, as typically such wastes consist of 

~95% SiO2 and ~3% alkali / alkaline earth oxides, if carbonaceous content is 

discounted [14]. In the United States, rice production generated about 39.3 MT of 

food waste (15.1% of total municipal solid waste) in 2015 [16]. 

 Due to wide cultivation and high consumption of bananas and corn in the United 

States, Cornejo et al. [9] researched the possibility that recycled banana peels and 

corn husks could serve as a valuable and sustainable raw material resource for glass 

manufacture. In particular, the high K2O contents of ashes from combustion of banana 

peels (up to 67.6%) and corn husk (up to 20.2%) was considered beneficial for glass 

manufacture owing to the high cost of man-made alkali sources and the beneficial 

effects of alkalis in decreasing high temperature viscosity of silicate glasses. 

 Eggshell waste is a general food waste produced worldwide. In the UK, egg and 

egg-derivative consumption generates over 100kT of residual shells, which, if 

untreated, may pose a health threat as a result of microbial action. Cree et al. [17] 

investigated calcined eggshell powder at different temperatures for potential industrial 
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applications. Eggshells are rich in CaCO3: 96-97% by mass of eggshell is calcium 

carbonate with 3-4% organic matter. Tite et al. [2] reported many soda-rich and 

mixed-alkali ashes from the combustion of different plant species, which may have 

potential applications in glass manufacture. Indeed, plant-based ashes were used as 

alkali sources in antiquity, for example by some Roman glass makers [18]; and later, 

in the Middle Ages, for glass manufacture in Europe as the so-called “forest glasses” 

[18]. Broad and detailed compositional data on different plant ashes from the Near 

East (Syria, Iraq, Iran, Levant) and Western Europe (Sicily, Venice, England, France) 

were also reviewed by Tite et al. [2].  

 Following the impending scarcity of fossil fuels and their increased price in 

recent years, as well as environmental concerns relating to CO2 emissions, there is 

renewed interest in the use of biomass as a fuel sources for electrical power 

generation. In 2010, the European Climate Foundation estimated that across Europe 

the primary production of heat and power from biomass could double to 2000 TWh 

by 2020. Dodson et al. [19] studied the elemental and mineralogical compositions of 

ashes from the commercial combustion of miscanthus at Ely Power Station (UK), and 

their use for the formation of structured silicas. In total 7.2 wt% of the initial fuel 

remained as ash, with 86 wt% of this ash deposited as bottom ash and 14 wt% as fly 

ash. The process of energy generation by combustion of biomass is considered to have 

important environmental advantages compared with fossil fuel-based electricity 

generation [20]. However, it also has disadvantages, in that it still emits large volumes 

of CO2 and generates large volumes of ash that can affect the conversion process, 
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reducing the efficiency of combustion systems, increasing costs for boiler cleaning 

and maintenance and hindering wider utilization of biomass materials as fuels [20]. 

The increasing volumes of biomass ash generated globally, as a consequence of the 

increasing use of biomass to generate energy, supports recycling and reuse to reduce 

landfill burden and costs, and mitigate negative environmental impacts [21]. However, 

relatively few studies have yet considered biomass ashes as raw materials in other 

manufacturing applications, and fewer still in the context of glass manufacture.  

 The use of any new raw material in glass manufacture, if proven suitable, may 

not only reduce dependency on man-made or mined carbonates (e.g. sodium 

carbonate and limestone, respectively), but it could also enable chemical 

reformulation of the final glass composition. The impact of such reformulation may 

be to enable lower furnace operating temperatures, leading to reduced energy 

consumption, lower raw material-derived and fuel-derived CO2 emissions, and also 

reduced thermal NOx emissions [1]. However, the current forms of commercial 

soda-lime-silica glass batches are stable because they strike a balance between 

oft-competing factors including raw materials availability, cost, furnace lifetime, 

melting and fining characteristics, glass durability and glass quality, among other 

factors [3]. Above all glass production, as a highly mature technical process, has 

many sophisticated details and strict process parameters that must be maintained in 

order to ensure problem-free continuous operation in glass manufacturing plants. 

Changing or modifying such parameters is never performed lightly, as it can have 

negative impacts on production if the effects and resulting impacts on production are 
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not first thoroughly developed, tested and demonstrated. Previous reviews and 

research in this area have been published on the (re)formulation of container glasses 

[3], commercial fibre and E-glass [22] and float glass [1]. 

 The viscosity-temperature (η-T) relationship is fundamentally important to 

sodium-lime-silica glass manufacture. It is determined by the chemical composition 

of the glass and impacts on melting, forming, softening, working and annealing 

temperatures. Several models exist for η-T behavior of sodium-lime-silica glass 

systems, and a common approach uses the Vogel-Fulcher-Tammann (VFT) equation 

which describes the viscosity of Newtonian fluids [1]. Lakatos et al. [23][24][25] 

developed a model to accurately estimate the η-T relationship within the variation of 

glass compositions considered relevant at that time (1970’s) to commercial 

soda-lime-silica glasses. The Mauro–Yue–Ellison–Gupta–Allan (MYEGA) model for 

equilibrium viscosity was derived in 2009 [26] and shown to provide certain 

advantages compared to the previous VFT viscosity expressions in terms of both 

fitting accuracy and the predictive capabilities at low temperature, however, there are 

to date limited published composition-related parameters. Other notable models 

include those developed by Fluegel [27], Hrma [28] and Priven [29]. Arrhenius 

models were developed by Hrma [28] for glass viscosity within the processing 

temperature range for six types of commercial glasses; and Fluegel [27] developed a 

viscosity model for predicting the complete viscosity curve using a global statistical 

approach and more than 2200 composition-viscosity data for silicate glasses collected 

from over 50 years of scientific literature. For container, and particularly for float 
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glass manufacture, an important issue may arise if glass is subject for a sufficient 

length of time to temperatures that produce crystallization. To minimize the likelihood 

of unacceptable levels of crystal nucleation and growth during conditioning, forming 

and post-processing, it is commonly accepted that the liquidus temperature (TLiq) 

should typically be 10-20
o
C below the working point (Tw: for container glass, Tw is 

the temperature at viscosity log(η/ dPa∙s) = 4) [1]. For modern container and float 

glasses, TLiq is typically 980-1050
o
C [1][30]. The parameter ΔTFL, the difference in 

temperature between the forming temperature (TF) and the liquidus temperature (TLiq), 

is an important criterion in the development and manufacture of all SLS glass 

formulations. This criterion has been used successfully in the reformulation of 

container glass [1] [3] [31] and fiberglass [1] compositions. 

 Specific to the ingredients of soda-lime-silica glass compositions, some oxides 

generate attention for their effectiveness in reducing the melt viscosity and therefore 

the temperatures required to melt, homogenize, condition and form the glass. 

Compared to sodium oxide (Na2O), some authors have suggested that molar 

replacement by potassium oxide (K2O) may have the dual effects of increasing the 

glass melt viscosity at high temperatures (e.g. melting temperature, log (η / dPa∙s) = 2) 

and reduce viscosities at lower temperatures (e.g. near the glass transition temperature, 

log (η / dPa∙s) = 13) [1][32], providing a “longer” glass. Potassium strongly decreases 

surface energy [32]. It can reduce the surface energy of lithium silicate glass from 

317×10
-3 

N/m to 212×10
-3 

N/m by introducing 33wt% K2O) [23][32][33], but it is 

more volatile than Na2O [1]. Boron oxide (B2O3) is among the most effective melting 
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accelerants and fluxes when added to soda-lime-silica glasses at levels of up to a few 

weight percent [1][4][5][6]. Important studies of the effects of B2O3 in 

soda-lime-silica glass [34][35] have demonstrated that B2O3 reduces glass melt 

surface energy, viscosity, and liquidus temperature [5][6]. Whilst health and safety 

considerations make boron compounds and raw materials more difficult to handle 

than other glass raw materials, boron remains a key component in the manufacture of 

borosilicate glasses and, as noted above, strong precedent exists for its application in 

other forms of glassmaking [1, 3, 4-6]. Typical boron-bearing compounds used in 

glassmaking include man-made borax pentahydrate and decahydrate (Na2B4O7.5H2O 

and Na2B4O7.10H2O) or boric acid (H3BO3); and also naturally-occurring minerals 

such as Colemanite (Ca2B6O11.5H2O) or Ulexite (NaCaB5O6(OH)6.5H2O). Boric 

oxide (B2O3) has rarely been used as a glassmaking raw material due to its 

hygroscopic nature and relatively high toxicity. Although expensive, lithia (Li2O) is 

the strongest oxide melting flux and accelerant for soda-lime-silica glass and small 

additions of only 2.1wt% Li2O [32]) produce large decreases in melt viscosity. Tang 

and Frischat [36] studied soda-lime-silica container glasses with molar substitution of 

Li2O for Na2O, introducing Li2O contents of 0.09–0.43 wt%. Chemical durability was 

also substantially improved upon addition of only 0.18 wt% Li2O. This improvement 

may be attributable to the so-called “mixed alkali effect” and to the high field strength 

of Li
+
 by comparison with Na

+
, which strengthens the glass network. The decreases in 

furnace temperature made possible by the addition of Li2O also provided a decrease in 

refractory corrosion rates. The addition of 0.26 wt% Li2O led to a decrease in 
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refractory corrosion rate from 2.35×10
-2

 to ~1.40×10
-2

 mm h
-1

 at a constant viscosity 

of log (η / dPa∙s) = 2.24), as shown by Tang and Frischat [36]. In the present study we 

have combined the effects of chemical modification of soda-lime-silica glass 

compositions with the effects of introducing new, sustainable raw materials derived 

from industrial by-products, with the aim of reducing the environmental impact of 

glass manufacture. 

 In this study, four by-products from industrial processes were obtained and 

characterized in this research: biomass ash from a biomass power station; eggshell 

waste; seashell waste and rice husk ash. As shown in literature for biomass ashes 

[37][38][39], eggshells [40][17], seashells [41] and rice husk ashes [39], the feedstock 

and subsequent treatment/s of these materials (e.g. combustion / heat treatment) can 

significantly impact on the chemical components that are available post-process - i.e. 

the source and process of the waste influences its' chemical composition. As noted 

earlier, this initial study aimed to investigate the potential of candidate raw materials 

for further development and it is recognised that further work would be required to 

establish consistency and suitability of any such materials before they could be 

commercialised as glass making raw materials. However, strong precedence exists for 

such an approach, as demonstrated by the now-worldwide use of blast furnace slag 

(metallurgical industry by-product) as a glassmaking raw material since the 1970's 

[1]. 

 A growing number of power stations (UK and worldwide) are using biomass fuel 

sources to generate electricity. These sources include wood pellets, waste wood (of 
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various grades), wheat straw, miscanthus, poultry litter and meat and bone meal [42]. 

Biomass plants generate >2MT / year of waste ash in the UK alone; a small 

percentage is used in higher value products such as fertilisers, however, the majority 

is either used in low grade products (aggregates and construction product fillers), or is 

sent to landfill. Each power station typically uses one type of waste stream. There is 

likely to be some variability in the nature of the feedstock over time (e.g. due to 

seasonal variations in weather, different soil types etc.). Biomass ashes are typically 

rich in valuable alkali and alkaline-earth metals (K, Na, Ca, Mg) and other 

components depending upon the plant and processes used.  

 Egg and egg-derivative consumption generates ca. 180kT / year of residual shells 

in the UK, which pose an environmental pollution as a result of microbial action. An 

important ingredient of eggshells is calcium carbonate which can be potentially used 

in various material applications [17]. Eggshell waste primarily contains magnesium, 

calcium carbonate (limestone), and protein. The calcium oxide obtained from calcined 

eggshells can be potentially used in various applications including glassmaking 

[9][17]. Eggshells were considered as a substitute for limestone for use in the 

production of both clear and green SLS glass in this study. 

 Growth of global mussel and other seashell farming industries has increased the 

amounts of shell waste, and there have been a number of studies on developing new 

applications for seashell waste. Given that seashells are a calcium-rich material, they 

can represent an alternative source for calcium carbonate. A detailed report on UK 

shellfish by-products was compiled in 2006 [43]. 
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 Rice husk (RH), an agricultural waste, is abundantly available in rice producing 

countries. In recent years, many rice mills in rice producing countries have started 

using RH for energy production for mill operations and household lighting in rural 

regions. Burning of RH produces rice husk ash (RHA). RHA has been widely used in 

various industrial applications such as processing of steel, cement, refractory and 

silicon industries [37][38][39]. Suitability of RHA for a particular process partly 

depends on the chemical composition of the ash, predominantly its silica content. 

RHA is not readily available in the UK, which is not a rice-producing nation. 

However, its use in lab-scale production of coloured glass has been previously 

reported [9]. Hence, from a scientific perspective, RHA was considered an interesting 

material for use in the production of glass and was considered in this study. 

 

2. Experimental Procedures 

 Four by-products were sourced from UK and international industrial processes 

and characterized in this research: biomass ash from a UK biomass power station; UK 

eggshell waste; UK seashell waste and rice husk ash from the Far East. The biomass 

ash was derived from mixed wood fuel; the eggshell waste had been processed to 

remove the protein; the seashell waste was from mixed shell sources; and the RHA 

had been combusted prior to receipt. All as-received samples were ground in an agate 

mortar in preparation for XRD and other analyses. As-received wastes were used in 

glassmaking. Fused beads were created by mixing finely powdered (<75μm) samples 

with lithium tetraborate flux at a flux/sample ratio of 5:1 and then melted at 
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900
o
C-1000

o
C in a platinum crucible the poured to form fused beads for XRF 

measurement. 

 Industrial glassmaking raw materials and cullet were provided by a UK glass 

manufacturer as follows: white silica sand (colourless container glass and float glass), 

brown silica sand (green container glass), soda ash Na2CO3, limestone CaCO3, 

dolomite MgCO3.CaCO3, salt cake Na2SO4, chromium oxide Cr2O3 (used in green 

glasses only), Calumite blast furnace slag (used in container glasses only) and iron 

silicate (used in green glasses only). Additionally, the aforementioned four waste 

by-products were used and also some glass batches contained commercial 

glassmaking grade spodumene (lithium aluminosilicate) or colemanite (calcium 

borate), and / or analytical grade (>99.9% purity) potassium carbonate (K2CO3) in 

order to introduce Li2O, B2O3 or K2O, respectively, into the resulting glasses. Raw 

materials were dried at 110°C for 24 hours prior to weighing and mixing. For all glass 

samples, raw materials were weighed using a 3 decimal place balance to create 

batches to produce a theoretical 1300.000g glass. Batches were thoroughly mixed for 

several minutes using a Turbula mixer and were then placed in recrystallized Al2O3 

crucibles. Crucibles were heated in a standard electric furnace at a heating rate of 

5
o
C/min from room temperature to a temperature of 1450°C. Glass melts were not 

stirred or agitated during melting, however, the (relatively) large size of the 

laboratory-scale melts provided enhanced mixing and homogenisation by comparison 

with smaller (e.g. 100g) laboratory-scale glass melts, as observed in terms of levels of 

glass homogeneity. After 4 hours at 1450 
o
C, the crucibles were removed from the 
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furnace and fibres were drawn from each melt for Littleton softening point 

measurement according to ASTM C338-93. After fibre drawing, the crucibles were 

immediately placed back into the furnace and the remaining glass was briefly reheated 

to 1450 
o
C prior to pouring into a preheated steel mould, and then placed in an 

annealing furnace at 520
o
C for 1h to relieve internal stresses. Glasses were then 

cooled slowly to room temperature. 

 Three benchmark glasses were prepared in this research, one each for colourless 

container glass (CC_B), float glass (F_B) and green container glass (GC_B). To 

improve the energy efficiency of glass manufacture through optimising mixtures of 

feed materials, a series of compositional reformulations was applied to the colourless 

container (CC series) and float (F series) glasses, aimed at reducing the 

high-temperature viscosity in addition to substitution of some virgin (mined or 

man-made) raw materials with biomass ashes. For the green container (GC series) 

glasses, a series of alternative glass batch raw materials, consisting of by-products 

(seashell waste, eggshell waste, biomass ash and rice husk ash), were reviewed and 

blended with other batch ingredients for melting and analysis. The two most 

promising wastes were taken forward into melting trials with partial replacement of 

raw materials in GC_B glass batch without a deliberate variation in final glass 

composition: GC_B_SS (with 12.99 wt% seashell waste), and GC_B_WA (with 1.77 

wt% biomass ash). All glass batches are presented in Table 2. All raw materials and 

resulting glasses were characterized using XRF and XRD. The high-temperature 

viscosity, liquidus temperature and other physical properties of all glasses were 
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measured and / or modelled. Finally, selected CC and GC series glasses were 

measured by UV-Vis spectra to assess colour and redox. 

 The Society of Glass Technology provides a series of Certified Reference 

Material (CRM) glasses for compositional analysis of commercial SLS type glasses. 

However, as discussed by Smrček [4][5][6], commercial glass compositions continue 

to evolve with time and also vary slightly between different manufacturers. A brief 

survey of current UK container and float glass compositions was carried out to 

establish representative benchmark compositions against which reformulated 

candidate glasses could be assessed. The survey revealed differences in compositions 

both between colourless and coloured (green) container glass systems and float glass 

formulations; there was also variation in composition within each type of glass, as 

expected between different manufacturers. A number of commercial glass 

compositions for each glass type were acquired and analysed by XRF; and the 

averaged results are presented here in order to provide a representative glass 

composition for each glass type (see Table 3). All reformulated glass compositions 

are also listed in Table 3. These were compared against the benchmark colourless 

container (CC series) and float (F series) glasses. For green container (GC series) 

glass, the addition of four different alternative raw materials (biomass ash, eggshell 

waste, seashell waste and rice husk ash) was studied. 

 For the reformulated glasses, the furnace temperature for melting each glass was 

changed, in accordance with the revised melting temperature predicted by the Lakatos 

model in Table 5. For example, the ‘CC_R6’ glass had a melting point (i.e. 
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temperature corresponding to a log (viscosity / dPa∙s) of 2.000) that was 7°C lower 

than the benchmark CC_B glass, so for this glass the furnace temperature was set to 

1443°C. 

 X-ray diffraction (XRD) was carried out on finely-powdered samples from all 

studied by-products and glasses using a Panalytical X'Pert Pro X-Ray Diffractometer. 

Measurements were taken from diffraction angles (2θ) between 10° and 90° at a rate 

of 0.02°2θ per second. Phase identification was performed using Jade software and 

ICDD powder diffraction files (International Center for Diffraction Data).  

 The four studied by-products and all glasses were analysed using X-ray 

fluorescence (XRF) spectroscopy (wavelength dispersive Philips PW2440 sequential 

X-ray fluorescence spectrometer) and results are presented in Table 1, 2 and 4. 

Uncertainties associated with these measurements are conservatively estimated to be 

±2% of measured concentrations. Optical absorption spectra were measured using a 

Varian 50Scan UV-Visible-near-IR spectrophotometer over the wavelength range 

300-1100 nm. The repeatability of measured absorbance data was confirmed by 

measuring each sample three times. 

 Liquidus temperature (Tliq) was measured using a temperature gradient furnace. 

Pieces of sample glass were placed in a platinum boat and held for 24 h in the furnace, 

with a known temperature gradient measured for each sample with a calibrated 

thermocouple. Liquidus temperature was measured by observing the sample using a 

polarised light microscope and deriving the corresponding temperature above which 

no crystals were present.  
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 Thermal expansion coefficient, dilatometric softening point (Td) and glass 

transition temperature (Tg) measurements were obtained from dilatometric analysis of 

bulk samples and are given in Table 5. A calibrated Netzch DIL-402PC dilatometer 

connected to a computer was used for these measurements, with a heating rate of 10 

o
C / minute. 

 Measured densities of all glasses are shown in Table 5. Densities were measured 

by the Archimedes method using distilled water as the suspension medium. Densities 

were calculated using: 

ρ = [
WA

WA−WW
]δw                                        

where ρ= density in g cm
-3

; WA= weight in air; WW= weight in water and δW = water 

density with temperature correction. 

 Key viscosity points including melting point, working point, softening point and 

annealing point, were modelled using the Lakatos and Fluegel models and are listed in 

Table 5. The relative machine speed (RMS), working range index (WRI) and 

devitrification index [1][3] were also calculated for each glass and are included in 

Table 5. Relative machine speed (RMS) is a term widely used in glass manufacturing, 

and is defined as the relative average speed at which articles can be produced using a 

particular glass composition. Compositional changes have previously been used to 

modify RMS [1]: 

 

RMS =
S − 450

(S − A) + 80
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where S = softening point / ◦C, defined as log (η / dPa∙s) = 7.65 and A = Annealing 

Point / ◦C, defined as log (η / dPa∙s) = 13.0. Working range index (WRI) is defined as 

the temperature difference in temperature between the softening point S and the 

annealing point A [32]. WRI is used as an indicator of the working range and should 

not be confused with the actual working range. For most commercial soda-lime-silica 

container glasses, WRI > 160
o
C [44]: 

WRI = (S − A) 

The devitrification index (D) has previously been used to estimate the likelihood of 

devitrification problems [44]. A positive value of D indicates relative freedom from 

devitrification while a negative value of D indicates increasing likelihood of 

devitrification, particularly if the glass is fed to the forming machine at relatively low 

temperatures or high viscosities, for example, during the manufacture of large articles 

[1]: 

D = WRI − 160℃ 

 

where WRI = working range index, as defined above. Values of D vary; however, +15 

is now common in the global container glass industry [1]. 

 

3. Results 

 The normalized XRF analyses for four samples industrial by-products (seashell 

waste, eggshell waste, rice husk ash and biomass ash) are given in Table 1. More than 

98wt % of the oxide composition of seashell waste and eggshell waste is analysed to 
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be CaO, although XRD confirms this is in fact present in the form of CaCO3 (XRF 

does not detect carbon). For rice husk ash, more than 95wt % of the oxide 

composition is SiO2, and biomass ash can be considered a source of Al2O3, SiO2 and 

CaO, amongst several other oxides. Toxic or undesirable elements such as Pb or Cl 

are present at such small levels so as to be below the limits of detection for the XRF 

programme used. The content of Fe is also very low in seashell waste and rice husk 

ash. By comparison, the Fe content of the biomass ash sample is somewhat higher. 

 To improve understanding of the waste materials and how they might perform as 

raw materials in the glass melting process, samples of each waste were analysed using 

X-ray diffraction in order to identify the nature of crystalline phases and the degree of 

crystallinity present within the waste. For phase identification, a summary of the 

results is shown in Figure. 1.  

 It can be seen that both the eggshell and seashell wastes have a high degree of 

crystallinity and that the calcium is present in the form of CaCO3; this suggests that 

these materials seem likely to have similar (although not necessarily identical) effects 

on the glass melting characteristics as limestone. The majority of the biomass ash and 

nearly all of the rice husk ash is in the amorphous phase, with some level of 

crystalline phases including quartz and mullite also identified. The presence of high 

levels of amorphous content suggests that these materials may form liquid phases 

more readily than the crystalline materials they partially replace during glass melting, 

and thus may require less energy to melt (owing to the absence of latent heats of 

melting associated with changes of state, combined with no decomposition reactions 
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to drive) compared with the standard raw materials such as silica sand, soda ash or 

limestone. This could conceivably enable specific energy consumption (SEC) savings 

through reducing the time the raw materials need to spend in the furnace in order to 

fully dissolve sand grains and completely form the liquid phase [45][46].  

 Table 4 shows the compositions of all benchmark and modified / reformulated 

glasses, analysed by XRF. As expected, the GC series glass compositions show little 

variation with partial replacement of raw materials. For the CC and F series glasses, 

the variation of final glass composition is consistent with that of the nominal 

compositional design. The XRF results indicate that any contamination of the glasses 

from dissolution of the Al2O3 crucibles in which they were melted, is small to 

negligible. This was evidenced by a lack of clear corrosion "fluxline" attack on the 

crucibles post-melting， and supported by the low surface area (crucible) to volume 

(glass melt) ratio for these large 1.3kg glass melts. It is also important to note that the 

Li2O and B2O3 contents of the glasses could not be analysed by XRF, and hence we 

have assumed zero losses due to volatilisation during melting. Whilst there is some 

evidence that relatively small amounts of alkali and boron species can indeed be 

evolved in gaseous forms during glass melting (e.g. see [1] and references therein), 

again we believe that the low surface area (crucible) to volume (glass melt) ratio for 

these large 1.3kg glass melts can reasonably be expected to reduce such volatilisation 

to very low levels, under the melting regime used here. However, the possibility of 

low levels of Li and B losses cannot be discounted entirely. 

 Table 5 shows the measured and modelled properties of the glasses produced. It 
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is important to note that all viscosity models will give an overall view of trends in 

viscosity, but only measured values can be guaranteed to be absolutely accurate. For 

example, as shown in Table 5, measured mid-point glass transition temperatures, Tg, 

for each glass are generally higher than the corresponding modelled value (TLog13, 

or the temperature corresponding to log (η / dPa∙s) = 13). Although the measured 

mid-point Tg values are typically ca. 20 
o
C greater than corresponding modelled Tg 

values, the overall trends in Tg are mirrored. All glass samples have been confirmed 

by XRD to be X-ray amorphous, with no detectable levels of crystallinity. Measured 

glass densities exhibited values close to 2.50 g/cm
3
, and small variations above and 

below this value can be attributed to the effects of variations in glass composition. 

Glass transition temperature, dilatometric softening point and coefficient of thermal 

expansion exhibit modest variations between glass samples. To display the 

composition modification impacts on the glass viscosity-temperature relationship, the 

η-T curves for each glass in CC series were plotted in Figure 3. UV-Visible-near-IR 

spectra of glass samples are presented in Figure 2. As shown in Figure 2 (a), the 

absorption spectra of samples CC_B, CC_R1 and CC_R6 are closely similar, 

indicating equally similar colouration and redox properties (e.g. Fe
2+

/Fe ratios). In 

Figure 2 (b), the absorption spectra of the green GC series glasses, produced with 

varying types of additions, are presented. The intensities of the absorption bands 

centred at 450 nm and 660–700 nm in samples GC_B and GC_B_SS are lower than 

those of sample GC_B_WA, and the broad absorption band centred at 1050 nm is 

present in all three samples. 
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4. Discussion 

4.1 Glass composition reformulation  

 As discussed in the previous section, the purpose of glass compositional 

reformulation here was to reduce the melting temperature of SLS glass by comparison 

with the benchmark compositions. The action of alkaline and alkaline earth elements 

on SLS glass melts is well understood [1] and it is possible to predict their effects on 

the η-T properties of the final glass melt [23][24][25].  

 For colourless glass CC_R6, a fraction of the MgO was substituted by K2O. 

Addition of MgO to commercial container and float-type glasses in the SLS system 

can enable reductions in Tliq and crystallization rate [1]. This is the principal reason 

why float glass typically has a considerably higher MgO and lower CaO content than 

container glass. As MgO replaces CaO on a weight % basis in SLS glasses, the melt 

viscosity increases at high temperatures close to the melting temperature [1][47], 

whilst it tends to decrease melt viscosity at lower temperatures closer to Tg [23]. 

Additions of MgO tend to decrease the activation energy for viscous flow and provide 

a ‘longer’ glass. For potassium additions, the field strength of K
+
 is lower than that of 

Na
+
. K2O decreases viscosity at high and lower temperature,[47][48] but not as drastic 

as Na2O, also providing a ‘longer’ glass. It can strongly decrease surface tension and 

is more volatile than Na2O [47]. Meanwhile, K2O, as an alkali metal, is more capable 

of providing non-bridging oxygens and depolymerising the Si-O-Si network than CaO, 

as an alkaline earth metal. To reduce the melting temperature of glass without 

negatively affecting the features or shape of the η-T curve, a limited amount of K2O 
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was added to replace MgO. As shown by the modelled viscosity for glass CC_R6 in 

Table 5, the viscosity of glass CC_R6 is lower than that of the benchmark glass CC_B 

at each point by 17 
o
C to 7 

o
C, which indicates that viscosity decreases overall as the 

composition was modified from glass CC_B to glass CC_R6, but with small changes 

in the overall profile of the η-T curve. From measured properties, the Tliq, Td, Tg and 

Littleton softening point of glass CC_R6 are lower than those of, but not greatly 

different from, the benchmark glass CC_B. The thermal expansion coefficient of glass 

CC_R6 is also, somewhat surprisingly, not significantly higher than that of glass 

CC_B upon substitution of MgO by K2O. The temperature difference between the 

forming temperature and the liquidus temperature of glass CC_R6, ΔTFL, is -11
o
C. 

For container glass, liquidus temperature is generally 10-20
o
C below the working 

point (TLog4, where log(η/ dPa∙s) = 4), and hence the likelihood of crystallization 

during forming is kept to a minimum [3]. Compositional changes may be sufficient to 

produce a negative value of ΔTFL, increasing the risk of devitrification problems 

during forming. Whether this problem occurs during glass production depends on how 

long time the glass stays within, or how quickly the glass passes through, this 

temperature range during conditioning and forming, which reflect the structure and 

pull rate of the furnace and forming operations. Some of the present authors have 

received anecdotal evidence that some manufacturers can operate with negative ΔTFL 

quite safely in the UK [3] and China. This may partly explain why the specific 

process parameters between different manufacturers and even different furnaces and 

forming operations can be different from one another, with each having good reasons 
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based on experience, but all still processing container glasses satisfactorily for that 

particular furnace and glass composition, conditioning and forming operation. Whilst 

flexibility in production clearly exists, nevertheless the ΔTFL parameter remains an 

excellent guide and reference point for risk analysis (and mitigation) in glass 

manufacture. The RMS, WRI and DI of glass CC_R6 are all in the appropriate range. 

However, the thermal expansion coefficient is the highest among those four different 

glasses. 

 Lithium ions, like potassium ions, have a similar effect on reducing the viscosity 

of molten glass; therefore, direct substitution of sodium ions by either lithium or 

potassium can provide alternative routes to reducing the melting point. Previous 

research [49] has indicated that SLS glass batches containing Li2CO3 reacted at lower 

temperatures and more completely before melting compared with Li2CO3-free batches. 

Secondly, unlike the alkalis Na
+
 and K

+
, Li

+
 tends to increase the surface energy [50]. 

For glass melts containing Li
+
, the surface energy increases more noticeably when the 

temperature is decreased. Container glasses containing Li2O set more quickly in a 

mold without viscosity changes for Li2O increasing the surface energy and its 

temperature dependence. A small amount of Li2O could give a noticeable surface 

energy variation that may benefit the glass forming controlling process [50]. Lithia 

(Li2O) is a strong melting flux and accelerant for SLS glass and small additions 

produce large decreases in melt viscosity. In Tang and Frischat’s [36] research, 

chemical durability of SLS glass was substantially improved upon addition of only 

0.18 wt% Li2O. This improvement was attributed to the mixed alkali effect and to the 
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high field strength of Li
+
 by comparison with Na

+
, which strengthens the glass 

network. 

 For colourless container glass CC_R1, 0.3 wt. % Li2O was introduced in addition 

to increasing K2O content from 0.33 wt. % to 0.65 wt. % to substitute for SiO2. From 

the property modelling results, the overall CC-R1 viscosity curve shifts to lower 

temperature compared to the benchmark glass CC_B. The value of ΔTFL is 37
o
C, 

which is strongly positive; Td and Tg are lower than those of glass CC_B. However, 

the thermal expansion coefficient is higher than that of the benchmark glass (CC_B). 

The RMS, WRI and DI of glass CC_R1 are all in the appropriate range. 

 For glass CC_I4, reformulation included introduction of 1 wt. % B2O3 to 

substitute for a proportion of the MgO. This was combined with substituting a 

proportion of the Na2O by CaO. It is known that B2O3 enables melting acceleration in 

SLS glass melts at low addition levels [51]. The peak period for incorporating small 

amount of B2O3 for UK and USA container glass manufacturers was from the 1920s 

to 1930s [1][3][51]. Nowadays, B2O3 has generally been removed from most Western 

container glass batches for it needs to be imported (e.g. Turkey), and is therefore 

costly, and its potential H&S issue in bottle glass manufacture. Previous research 

indicated the benefits of adding low levels of B2O3 and borate raw materials, such as 

reduced melting and refining times, decreased liquidus temperatures, and reduced 

crystallization rates [1][51]. All of these conclusions can be explained from a glass 

chemistry perspective [47][48]. B2O3 can exist in oxide glasses as [BO3] triangles or 

[BO4] tetrahedra, the interconversion of [BO3] and [BO4] units with each other under 
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different conditions could affect several glass properties, an effect named the ‘boron 

anomaly’. At high temperatures and low contents in silicate glasses, boron usually 

exists as [BO3] trigonal units, and reduce the high temperature viscosity and melting 

temperature [47][48]. However, B
3+

 can also form [BO4] tetrahedral by acquiring 

charge balance from, for example, alkali cations, and can thereby join the 

(boro)silicate network increasing glass melt viscosities at lower temperatures, and 

enhancing the chemical durability of the glass. Additions of B2O3 can also decrease 

the surface energy of glass melts [1]. Calcium ions, Ca
2+

, introduces non-bridging 

oxygens and depolymerizes the silicate network and thus can reduce high temperature 

viscosity of silicate melts [48]. Typically, CaO in container glass compositions is 

higher than CaO contents float glass, one reason being in order to ‘shorten’ the glass 

η-T profile to meet glass article forming process requirements. In typical boro-silicate 

glasses, the CaO contents are kept to a minimum or to reduce the tendency for 

devitrification [47]. However, the amount of B2O3 added to the SLS glasses studied 

here is very low (ca. 1 wt. %), thus there was no need to substitute part of Na2O with 

CaO in glass CC_I4 to further reduce melting temperature, enhance chemical 

durability or counter the effects of B2O3 in “shortening” the η-T profile. From the 

modelled viscosity of glass CC_I4 in Table 5, the temperatures at viscosity (TLog2, 

TLog3 and TLog4) are all lower than that of the benchmark glass, CC_B. Above 

TLog6, the temperatures are almost the same as for glass CC_B. Measured Td and Tg 

are almost the same as for glass CC_B. However, the ΔTFL of glass CC_I4 is -31
o
C. It 

is the lowest among these 4 colourless container glasses studied, which indicate an 
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increased risk of devitrification issues arising during forming.  

 As an important sub-sector of the glass industry, float glass was also included in 

this study. Compared to container glass compositions, the CaO/MgO ratio of float 

glass is lower, in order to achieve ‘longer’ glass to adapt to the float glass forming 

process, combined with the beneficial effects on liquidus temperature and 

crystallisation rates noted earlier. Based on a typical commercial UK float glass 

composition in the benchmark glass, F_B, it was decided to substitute 3 wt.% SiO2 by 

a combination of CaO, MgO and Na2O (glass F_R4). The melting temperature 

(TLog2) of glass F_R4 was decreased from 1471
o
C to 1416

o
C. From the modelling 

results, the overall η-T curve for glass F_R4 shifts towards lower temperatures 

compare to glass F_B. The measured liquidus temperature of glass F_R4 increased 

from 914
o
C to 972

o
C, but the measured Td and Tg temperatures decreased. Although 

the ΔTFL of glass F_R4 is positive, it decreases from +123 
o
C for glass F_B to +36 

o
C 

for glass F_R4. The thermal expansion coefficient of glass F_R4 was slightly 

increased due to increases in the alkali and alkali earth contents. The WRI and DI 

decreased but remain in an appropriate range. 

 

4.2 Alternative glass raw materials/waste streams and impact on glass properties 

4.2.1 Selected alternative raw materials/waste streams 

 There is a great potential for both agri-food and industrial waste streams to be 

recycled as effective and sustainable resources for the raw materials used to produce 

glass and the valorisation of waste in the manufacture of glass has been previously 
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considered [2][52]. The mineral content and chemical composition of waste streams 

are key factors determining the potential feasibility and extent of use of such 

by-products in an economical and energy-efficient manner for the manufacture of 

glass at industrial scale. 

 Following the impending scarcity of fossil fuels and their increased price, as well 

as environmental concerns has led to renewed interest in the use of biomass for power 

generation, with the additional promise of employment in rural economies. There are 

a growing number of biomass power stations within the UK using biomass sources to 

generate electricity, including the large Drax power station in the north of England 

which supplies 7-8% of all UK electricity. There are wide range of biomass fuels that 

are used in biomass power generation, including wood pellets, waste wood (of various 

grades), wheat straw, miscanthus, poultry litter and meat and bone meal. Biomass 

power plants generate between 1.5-2MT of waste ash each year [53]. Each power 

plant will typically only use one type, or at most 2-3 types, of waste stream. Ashes 

from different plants may thus differ significantly. There may also be some variability 

in the nature of the fuel feedstock over time (e.g. due to seasonal variations in weather, 

different suppliers or different soil types). A number of UK biomass ash generators 

were identified and ash samples were collected for analysis in this research. It was 

found that the surveyed UK biomass ashes are rich in useful (for glass manufacture) 

alkali and alkali-earth metals (K, Na, Ca, Mg) and contain widely varying levels of 

other components depending upon the plant and processes used. A typical UK 

biomass ash was studied as a potential alternative raw material for glass 
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manufacturing in this research, and further studies on biomass ashes as potential 

glassmaking raw materials are in progress [42]. 

 Seashells have been historically used within concrete to make a specific type of 

building material called “Tabby”. The material was mainly used during the late 1800's 

in coastal areas. Tabby is made from equal parts of lime, water, sand, oyster shells, 

and ash [54]. Seashells were also historically present in many of the sand sources used 

for Roman glassmaking, and were thus at least partly responsible for the CaO contents 

of the resulting glasses [55]. More recently, given the fast growth of the mussel and 

other seashell farming industries around the world, and the subsequent increased 

amounts of seashell waste, there have been several studies into developing new 

applications for seashell wastes. Given that seashells are a relatively pure, 

calcium-rich material, they can represent an alternative source for calcium carbonate 

for potential application in the pharmaceutical, agricultural, construction and / or 

paper industries. A detailed report on the potential applications of shellfish 

by-products was compiled by ADAS UK in 2006 [43]. Wastes arising from the UK 

seafood industry are widely dispersed, largely around the coastline of the UK, with no 

particular region dominant and no organised collection / recycling system. The largest 

quantities are produced in South West Scotland, Eastern England, Northern Ireland, 

Central Scotland and South West England. Although the average disposal cost per 

tonne varied somewhat between areas, the typical cost was £40 - £45 per tonne of 

waste.  Use of seashell-based by-products in SLS glass production would not 

constitute a high-value application but it would be an effective, resource-efficient 
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re-use option for the increasing volumes of this waste stream. Therefore, in this study, 

seashells supplied by an UK commercial supplier were used to replace limestone in 

the representative SLS glass batches.  

 Egg and egg derivative consumption generate a great volume (>100 kT / year in 

the UK alone) of residual shells. An important ingredient of eggshells is calcium 

carbonate which can be potentially used in various applications as a source of calcium 

oxide or calcite. Eggshell wastes primarily contain magnesium and calcium 

carbonates, and protein [56][57]. The calcium oxide obtained from calcined eggshells 

could be potentially used in various applications such as in the starting materials for 

dielectrics such as CaSiO3, CaTiO3, CaAl2O4, and also in gypsum (CaSO4) or as 

bio-catalysts [58]. Given the purity of eggshell powder obtained for this study (the 

heavy metal content was extremely low); eggshells were considered as a substitute for 

limestone for use in the production of both clear and green container glass, in this 

study. 

 Rice husk (RH), an agricultural waste, is abundantly available in rice producing 

countries including China, India, Brazil, US, and throughout South East Asia. Rice 

husk ash (RHA) has been widely considered for its potential applications in industrial 

applications such as processing of steel, cement and refractory industries [59]. RHA is 

not, at present, readily available in the UK and therefore must be imported. However, 

its potential use in the production of coloured glass has been previously reported [13]. 

Hence, from a scientific perspective, RHA was considered an interesting material for 

use in the production of clear container glass in this study. 
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4.2.2 Alternative raw materials impact on green container glass melting 

 According to the XRD and XRF analysis results of the obtained waste materials, 

the composition and degree of crystallinity present within each waste are presented. 

For seashell and eggshell wastes, more than 98 wt. % are calcium oxide. These could 

therefore be quite pure sources of CaO, with low levels of iron; the main crystalline 

phases present are identified as calcite and aragonite respectively. For rice husk ash, 

98 wt.% is SiO2 (mostly amorphous). This material could thus provide the potential 

for a pure, lower energy consumption, alternative SiO2 source for glass manufacture. 

The composition of biomass ash is relatively complex and it is thus more challenging 

to be recycled as glass raw materials. From the XRF results, RHA also contains 

chloride and phosphate which are not currently present in commercial SLS glass 

compositions. Chloride can be volatile and can increase corrosion of furnace 

refractories. Its emissions are also limited by emissions regulations. Uncontrolled 

phosphate in SLS glass can lead to phase separation and crystallization during melting 

process, if present at levels above approximately 1.5 weight % [60] .The 9.5 wt. % 

Fe2O3 present in this RHA sample will impart a green / blue glass colour; the 1.07 wt. % 

TiO2 will slightly decrease melt viscosity whilst the 18.17 wt. % of Al2O3 will 

substantially increase the melt viscosity. From XRD analysis, the presence of the high 

temperature phase, mullite, could potentially cause defects in final glass products 

unless it is present as very small crystallites that can rapidly dissolve in the glass melt. 

Another issue may be the presence of residual carbon, which was not detected by 
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XRF. Arising from incomplete combustion of the fuel, there may be 

carbon-containing residues in biomass ashes which can impact on the redox status of 

the melting glass.  

 Based on a typical GC_B green glass composition, seashell (GC_B_SS) and 

biomass ash (GC_B_WA) were added without significant variation of final glass 

composition. As shown in Table 4, the heavy metal contents of glasses made with the 

waste-derived raw materials were not substantially greater than the benchmark glass. 

The P2O5, Cl and TiO2 present in biomass ash were diluted and not present at 

significant levels in glasses GC_B_WA and GC_ B. The viscosity of the green GC 

series of glasses was also modelled based on the XRF results. The η-T curve of glass 

GC_B_SS is close to that of the benchmark glass, GC_B. However, the viscosity of 

glass GC_B_WA increased for the compositional variation due to the introduction of 

the biomass ash. The ΔTfl of glass GC_B_WA also decreased from +35 to -9 
O
C, 

which indicates an increased risk of devitrification problems during conditioning or 

forming. 

 As new raw materials, seashell and biomass ash have characteristic effects on 

final glass quality. The alternative raw materials can have a moderately reducing 

effect on redox conditions during melting due to organic residual protein in seashell 

and unburned residual carbon in biomass ash. This reductive carbon affects the partial 

pressure of oxygen (pO2) in and above the glass melt in the furnace and can, in some 

circumstances, potentially lead to problems with final glass colour and refining. Most 

importantly, glass colour will be affected, as the Fe
2+

/Fe
3+

 ratio varies with pO2 [61] 



33 

 

and under strongly reducing conditions the well-known Fe
3+

-S
2-

 amber chromophore 

can form [62][63][64]. Under less reducing conditions than those required to form full 

amber colour, an olive-green colour can form [63][64]. Such colours may be 

undesirable if the aim is to manufacture a green glass. On the other hand, such 

behaviour may actually prove beneficial in amber glass production, although this was 

outside the scope of the present study. 

 The UV-Vis spectra for the colourless container (CC series) and green container 

(GC series) glasses are presented in Figure 2. The spectra indicate that the 

reformulated CC glass composition is almost the same, in terms of optical 

transmission properties, as the benchmark glass. A weak optical absorption band 

centred at 380 nm appears in all three spectra, which can be attributed to the 
6
A1(S)→

4
E(D) transition of tetrahedrally coordinated Fe

3+
 cations [45]. Theoretically, network 

modifiers in silicate glass can produce a significant shift of the UV edge to longer 

wavelengths [65]. However, the impurities and colourants in glass produce 

considerably greater impacts on UV edge position. For example, Fe
3+

 and Fe
2+

 both 

produce very strong oxygen-metal charge-transfer (OMCT) bands centred in the deep 

UV. These have tails which reach into visible regions, thus UV edge positions and 

profiles in commercial silicate glasses tend to be dominated by the effects of iron 

impurities (clear container and float glass) and both iron and chromium impurities 

(green container glass). 

 For some transition metal ions UV-Vis absorption spectra can not only 

characterize the colour properties of glass, but also help to assess the redox state of 



34 

 

different glasses from the relative intensity of spectral components. In Figure 2 (b), as 

a practical commercial green container glass, GC_B shows a typically UV-Vis 

absorption spectrum. It is well known that glass redox status can be estimated through 

the Fe
2+

/Fe
3+

 or Fe
2+

/ΣFe ratio [66][67]. The optical absorption band centred at 380 

nm is attributable to the 
6
A1(S)→4

E(D) transition of tetrahedrally coordinated Fe
3+

 

cations [65][67]; A broad optical absorption band cantered at a wavelength of slightly 

higher than 1000 nm is attributable to the 
5
A2(S)→5

E(D) transition of octahedrally 

coordinated Fe
2+

 cations [65][67]. For the small amount of Cr that does exist in glass, 

Cr
3+

 exhibits a distinctive absorption spectrum with a strong, split, broad band centred 

at 660–700 nm attributable to the A2g(F)→4
E2g(F) transition; and another band with 

similar intensity occurring at ~450 nm, attributable to the A2g(F)→4
E1g(F) transition 

[68]. For glass GC_B_SS, the strength of the ~1000 nm absorption band is greater 

than for the benchmark glass, GC_B, which indicates increasing Fe
2+

/ΣFe ratio. The 

absorption band at ca. 450nm moves towards shorter wavelengths and can be 

attributed to the appearance of a new absorption band centred around 410 nm, which 

has been attributed to tetrahedrally-coordinated Fe
3+ 

ions surrounded by three O
2-

 ions 

and one S
2-

 ion [69]. This combined presence of Fe
3+

 and S
2-

, which can occur in 

silicate melts prepared under reducing conditions. (pO2 < ~10
-6

 bar) [70][71] gives 

rise to the well-known ‘amber’ chromophore. For glass GC_B_WA, the intensity of 

absorption at 410 – 450 nm increases and moves towards shorter wavelengths 

compared to the benchmark glass, GC_B. 

 The redox status of the green container GC series glasses that contained the 
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studied waste streams are thus shown to be melted under more reducing conditions 

than the baseline glass. Combining with the characterization results and discussion of 

seashell and biomass ash wastes discussed previously, it is clear that these impure, 

carbon containing, alternative materials do have impact on the redox status of SLS 

green glass. As an exploratory study, this issue has been fully demonstrated and 

discussed. However, it is also clear that such effects can be mitigated, and also 

suggest potential applications for these wastes in amber glass manufacture. Moreover, 

this result may serve as a guide to help biomass power plants “tailor” their 

by-products to minimise carbon contents through process control, thereby valorising 

their by-products to generate additional revenue whilst enabling more widespread 

applications for the products of their processes. 

 

5. Conclusions 

 Exploratory reformulation research based on representative industrial colourless 

container and float soda-lime-silica glasses was delivered with the aim of modifying 

properties to enable energy-saving, CO2-reducing glass manufacture. Four different 

reformulation methods (including partially replacing SiO2 with other alkali and/or 

alkali earth oxides; or introducing new oxides Li2O and B2O3) were applied. 

Compared to the benchmark glasses, melting temperatures (the temperatures 

corresponding to log (η / dPa∙s) = 2) of reformulated glasses were reduced by up to 

55
o
C. Reformulation impacts on multiple properties of glass, including 

viscosity-temperature relationship, thermal expansion, forming performance and 
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colour. These effects are non-negligible and need delicate balance. A general waste 

investigation and review studied the introduction of four different wastes (seashell 

waste, eggshell waste, biomass ash and rice husk ash), into glass manufacture. 

Samples of each waste were identified and characterized. Seashell and biomass ash 

were exploratorily introduced into a representative green container glass as alternative 

raw materials. Both additions impacted on the colour and redox status of the glasses, 

highlighting both the need to control carbon content in such ashes; and the potential 

opportunities to use such wastes in amber glass manufacture.  
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Figure caption  

Figure 1:  XRD patterns for (a) Eggshell waste, (b) Seashell waste, (c) Biomass ash, 

(d) Rice husk ash. 

 

Figure 2 a) UV-Vis spectra for base and reformulated green container (GC series) 

glasses; b) base and introduced waste stream green glasses. 

 

Figure 3 Fitted viscosity curves of CC group glasses by Lakatos' viscosity modelling 

results in Table 5. 

 

Table caption  

Table 1. Analysed (XRF) oxide composition (weight %) of studied waste materials. 

 

Table 2. Glass batch recipes for each glass type (weight %) 

 

Table 3. Nominal benchmark glass compositions (weight %) for each glass type. 

 

Table 4. XRF-analysed compositions (weight %) of benchmark and modified / 

reformulated glasses. 

 

Table 5. Results from viscosity modelling and characterization of glasses (viscosity in 

dPa∙s) 
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Table 1. Analysed (XRF) oxide composition (weight %) of studied waste materials. 

 

Wt% Seashell Eggshell Biomass Ash Rice Husk Ash 

SiO2 0.34 0.00 39.13 95.05 

Al2O3 0.15 0.00 18.17 0.00 

Na2O 0.54 0.31 1.46 0.19 

K2O 0.00 0.12 8.87 1.15 

CaO 98.30 98.43 14.55 0.97 

MgO 0.04 0.52 2.41 0.84 

TiO2 0.00 0.00 1.07 0.00 

Fe2O3 0.00 0.00 9.60 0.15 

SO3 0.11 0.20 2.09 0.16 

P2O5 0.03 0.24 1.29 1.25 

Cl 0.06 0.11 0.17 0.00 

Others 0.43 0.07 1.19 0.24 

SUM 100.00* 100.00* 100.00* 100.00* 

*XRF analysis does not include any C or H present in these materials, e.g. carbonate or water. 
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Table 2. Glass batch recipes for each glass type (weight %) 

Wt % 

Colourless 

Container Glass 

Benchmark 

Reformulated Colourless 

Container Glass Batches 

Green Container Glass and 

Waste Blended Glass Batches 

Float Glass 

Benchmark 

Reformulated 

Float Glass 

Batch 

CC_B CC_I4 CC_R6 CC_R1 GC_B  GC_B_SS GC_B_WA F_B F_R4 

Brown Sand - - - - 61.18 61.23 61.13 - - 

White Sand 58.92 57.13 55.92 56.87 - - - 59.56 55.64 

Soda Ash 18.63 18.93 19.40 19.79 18.26 18.18 18.12 18.91 19.72 

Limestone 13.33 16.09 17.62 17.72 12.90 - 13.93 8.59 5.97 

Eggshell Waste - - - - - - -   

Seashell Waste - - - - - 12.99 - - - 

Nepheline Syenite 2.80 2.81 2.81  - - - 1.02 1.06 

Saltcake 0.37 0.37 0.37 0.39 0.27 0.22 0.17 0.35 0.34 

Dolomite 3.32 - - - 2.85 2.85 3.70 11.57 17.27 

Colemanite - 2.07 - - - - - - - 

Biomass Ash  - - - - - - 1.77 - - 

Iron Silicate - - - - 0.43 0.40 - - - 

Calumite 2.63 2.60 2.60 0.98 4.08 4.10 1.15 - - 

Spodumene - - - 3.47 - - - - - 

Cr2O3 - - - - 0.03 0.03 0.03 - - 

K2CO3  - - 1.28 0.78 - - - - - 

SUM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 3. Nominal benchmark glass compositions (weight %) for each glass type. 

 

Wt % 

Colourless Container 

Glass Benchmark 

Reformulated Colourless 

Container Glass Batches 

Green Container 

Glass andWaste 

Blended Glass 

Batches 

Float Glass Benchmark 
Reformulated Float Glass 

Batch 

CC_B CC_I4 CC_R6 CC_R1 GC_B (SS and WA) F_B F_R4 

SiO2 72.00 70.00 69.00 71.00 71.00 72.06 68.92 

Al2O3 1.50 2.00 1.50 1.00 2.00 0.70 0.70 

Fe2O3 0.05 0.05 0.05 0.05 0.50 0.00 0.08 

CaO 11.25 12.00 13.00 12.25 11.25 10.10 10.70 

MgO 1.15 0.65 0.70 0.15 1.15 3.00 4.56 

Na2O 13.30 13.55 14.00 14.00 13.30 13.60 14.50 

K2O 0.50 0.50 1.50 0.80 0.60 0.30 0.30 

SO3 0.25 0.25 0.25 0.25 0.17 0.24 0.24 

Cr2O3 0.00 0.00 0.00 0.00 0.03 0.00 0.00 

P2O5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

B2O3 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

Li2O 0.00 0.00 0.00 0.50 0.00 0.00 0.00 

SUM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 4. XRF-analysed compositions (weight %) of benchmark and modified/reformulated glasses. 

 

wt % CC_B CC_I4 CC_R6 CC_R1 GC_B GC_B_SS GC_B_WA F_B F_R4 

SiO2 73.14 72.89 72.43 71.96 72.02 71.84 72.69 73.96 70.99 

Al2O3 1.34 1.34 1.37 1.36 2.23 2.21 2.23 0.44 0.45 

Fe2O3  0.03 0.03 0.03 0.02 0.47 0.48 0.35 0.04 0.05 

CaO 10.79 11.05 11.12 11.50 10.36 10.77 10.06 9.19 9.73 

MgO  1.05 0.35 0.30 0.15 1.08 1.07 1.04 2.62 3.90 

Na2O  13.14 12.80 13.21 13.79 12.70 12.50 12.38 13.48 14.47 

K2O  0.33 0.32 1.33 0.65 0.97 0.97 1.09 0.13 0.15 

TiO2 0.05 0.05 0.05 0.03 0.09 0.09 0.08 0.02 0.02 

SO3 0.13 0.16 0.15 0.23 0.05 0.04 0.04 0.22 0.22 

Cr2O3 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.00 0.00 

Pb (ppm) 9.3 10.5 9.3 21.8 15.3 13.6 15.0 9.9 8.8 

Cd (ppm) 1.6 5.0 4.3 4.1 4.2 5.7 3.3 1.6 2.7 

Li2O 0.00 0.00 0.00 0.30† 0.00 0.00 0.00 0.00 0.00 

B2O3 0.00 1.01† 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P2O5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SUM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

† Lithium and boron contents were not analysed and the percentages shown are based on theoretical contents from batch calculations. 
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Table 5. Results from viscosity modelling and characterization of glasses (viscosity in dPa∙s) 

      CC_B CC_I4 CC_R6 CC_R1 GC_B GC_B_SS GC_B_WA F_B F_R4 

M
o
d
el

le
d
 P

ro
p
er

ti
es

 

V
is

co
si

ty
 (

o
C

) 

ca
lc

u
la

te
d
 b

y
 

L
ak

at
o
s 

m
o
d
el

 TLog2 1463 1452 1446 1413 1475 1470 1492 1471 1416 

TLog3 1190 1177 1175 1146 1198 1197 1211 1192 1152 

TLog4 1035 1025 1023 998 1041 1041 1051 1037 1008 

TLog6 806 809 796 775 813 814 818 805 788 

TLog7.6 743 741 735 716 744 747 749 739 724 

TLog13 563 560 556 545 564 566 566 556 552  

Relative Machine Speed  1.125 1.116 1.102 1.061 1.132 1.139 1.136 1.1 1.086 

Working Range Index (oC) 181 181 178 170 180 180 183 182 172 

Devitrification Index (oC) 21 21 18 10 20 20 23 22 12 

V
is

co
si

ty
 (

o
C

) 

ca
lc

u
la

te
d
 b

y
 

F
lu

eg
el

 m
o
d
el

 TLog2 1459 1440 1444 1436 1467 1465 1479 1458 1416 

TLog3 1200 1191 1188 1183 1205 1204 1215 1200 1166 

TLog4 1034 1030 1024 1020 1037 1037 1045 1033 1005 

TLog6 834 834 825 824 835 836 840 829 809 

TLog7.6 736 738 729 729 736 738 739 729 714 

TLog13 564 569 561 562 563 566 564 552 546 

M
ea

su
re

d
 P

ro
p

er
ti

es
 XRD amorphous amorphous amorphous amorphous amorphous amorphous amorphous amorphous amorphous 

ρ±0.005/g cm-3 2.496 2.517 2.516 2.511 2.515 2.511 2.497 2.491 2.508 

a x 10-6 / oC ±2/oC 7.63 7.77 8.44 8.02 7.83 7.99 7.75 7.7 7.85 

Tliq (
oC) ±10/oC 995 1057 1034 961 1006 984 1060 914 972 

Td (
oC) ±2/oC 650 644 630 627 636 644 635 632 628 

Tg (
oC) ±2/oC 598 596 583 573 582 586 586 582 577 

Littleton softening point ±5/oC 750 760 740 725 745 750 745 745 730 

ΔTfl /
oC (calculated from Tlig and Tf) 41 -31 -11 37 35 57 -9 123 36 

 


