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Abstract
Climate change challenges societal functioning, likely requiring considerable adaptation to copewith
future alteredweather patterns.Machine learning (ML) algorithms have advanced dramatically,
triggering breakthroughs in other research sectors, and recently suggested as aiding climate analysis
(Reichstein et al 2019Nature 566 195–204, Schneider et al 2017Geophys. Res. Lett. 44 12396–417).
Although a considerable number of isolated Earth System features have been analysedwithML
techniques,more generic application to understand better the full climate systemhas not occurred.
For instance,MLmay aid teleconnection identification, where complex feedbacksmake characterisa-
tion difficult fromdirect equation analysis or visualisation ofmeasurements and Earth Systemmodel
(ESM) diagnostics. Artificial intelligence (AI) can then build on discovered climate connections to
provide enhancedwarnings of approachingweather features, including extreme events.While ESM
development is of paramount importance, we suggest a parallel emphasis on utilisingML andAI to
understand and capitalise farmore on existing data and simulations.

Introduction

Machine learning (ML) and artificial intelligence (AI)
increasingly influence lives, enabled by significant rises
in processor availability, speed, connectivity, and
cheap data storage. AI is advancing medical and health
provision, transport delivery, interaction with the
internet, food supply systems and supporting security
in changing geopolitical structures. Society is
approaching the era of self-driving cars, helping
medical practitioners avoid misdiagnoses, accurate
speech recognition, and receiving tailored purchase
suggestions.Most applications are beneficial, although
ethical issues exist, e.g. Bostrom (2014), New Scientist
(2017). Simultaneously, evolving lifestyles must inter-
act safely with climate change. There is a growing
realisation that climate change impacts are not an
isolated threat, instead needing more holistic

responses alongside addressing other societal issues.
Climate change is a complex scientific and multi-
faceted issue, amenable to ML and AI analysis, but in
general, this has not yet occurred. Many ML algo-
rithms have been available for decades, and possibly
most notably neural networks. However, until
recently, constraints of computational architecture
and power have restricted their application, and
especially for issues as data-intensive as climate
change.

Various names describe new computationalmeth-
ods, including big data, ML and AI. Big data is con-
cerned with using complex datasets, so large that
traditional analysis techniques are unsuitable. AI is a
form of computer science, where the goal is often to
teach a computer to complete tasks a human cannot
do, and generally involves decisionmaking in different
contexts. ML is a sub-area of AI where computers
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learn relationships from large training datasets. For
climate and weather applications, a simplistic char-
acterisation can be: (i) big data as the collection for
analysis of meteorological—or Earth System-related
measurements, and high spatial and temporal resolu-
tion Earth System model (ESM) outputs, (ii) ML as
refining or discovering new linkages between loca-
tions, times and quantities in the datasets (e.g. where
sea surface temperature features aid weather predic-
tion months later over land regions) and (iii) AI as
building on connections thatML discovers, to provide
automated warnings and advice to society of
approaching weather extremes. The recent ease of
application of ML methods through better computa-
tional capability is partly supported by novel use of
computer graphical processing unit (GPUs), noting
that GPU speed is increasing faster than standard cen-
tral processing units (Baji 2018). Others (e.g.
Burr 2019) suggest more inventive use of computer
memory, tomake calculations bothmore efficient and
muchnearer where the data is stored.

Since the 1950s, numerical weather forecasting has
advanced remarkably. Limited computational resour-
cesmeant that until recently, equationsmust be solved
on a course spatial grid. Representation of unresolved
small-scale processes is through simplified approaches
called ‘parameterisation schemes’, which can limit
forecast predictive skill. Recent increases in computer
power allow ultra-fine-resolution weather forecasting
models, with grid resolution at almost kilometre
scales. While many processes are still parameterised,
such finer grids enable explicit calculation of storm
tracks, mesoscale cloud systems, and deep convective
events. ESMs have much in common with weather
forecast models, including a dynamical core. ESMs are
forced by prescribed evolving concentrations of atmo-
spheric greenhouse gases (GHGs), and model their
interaction with atmospheric radiative fluxes through
the atmosphere, thus predicting climate change. As
ESMs operate for modelled century timescales, they
also include detailed descriptions of ocean circulations
and polar ice extents. Many ESMs describe the global
carbon cycle, linking known emissions and future pro-
jections to atmospheric GHGs levels, which then
become a model diagnostic. Unfortunately computers
remain not fast enough to allow ESM operation at the
high order kilometre resolution of weather forecasts—
to do so prevents modelled century timescales from
completing in a reasonable timeframe. Hence ESMs
still retain parameterisation of critical sub-grid pro-
cesses such as convection.

Approximately 20 research centres have developed
ESMs. An achievement of climatemodelling is the pla-
cement of model outputs in a shared database: Cou-
pledModel Intercomparison Project Phase 5 (CMIP5)
(Taylor et al 2012). These models capture two decades
of ESM development through inclusion of interac-
tions between physical climate and geochemical
cycles. However, climate research has partially failed

as, despite ESM improvements, the differences
between them remain large. Significant discrepancies
include for fundamental summary statistics such as
equilibrium climate sensitivity, i.e. global warming for
climate stabilised at atmospheric carbon dioxide dou-
ble pre-industrial levels (Flato et al 2013). Model dis-
crepancies cause difficulties for climate adaptation
planning, and for determining gas concentrations to
keep warming below target thresholds (e.g. 2 °C).
Many ESM differences may be due to the necessary
parameterisation of sub-grid processes. We discuss
how ML and AI methods may reduce inter-ESM
uncertainty.

In the context of measurements, planet Earth is
currently monitored at unprecedented levels, and
especially by satellites collecting climate-related data,
all of which requires advanced algorithms to char-
acterise any overall trends and behaviours. At the same
time, large uncertainty bounds revealed by the careful
application of ML to data may demonstrate situations
where the capture of more data would be helpful and
required.

Dimension reduction

Mathematical modelling, e.g. Fowler (1997), Ocken-
don et al (2003), strives to explain observations by
governing equations. These are often partial differ-
ential equations, continuous in space and time,
coupled through any source and sink terms, as for the
climate system (Vallis 2006). After confirming
equations reproduce measurements, predicted
changes are assumed robust for at least modest
perturbations to forcings. Alongside the overarching
requirement of appliedmathematics to predict change
is the quest for dimension reduction. Such reductions
are powerful, illustrating dominant processes ‘moving
together’ and defining robust interconnections within
a complex system. Knowledge of controlling processes
points to model parameters that most strongly influ-
ence projections, guiding measurement campaigns to
aid uncertainty reduction.

Historically, dimension reduction utilises three
approaches. Firstly nondimensionalisation deter-
mines the magnitudes of equation terms, yielding a
reduced set of linked equation parts that dominate.
The balance of equation terms for the climate system
is, however, complex, varying by location and season.
Furthermore, climate research has at least nine funda-
mental base dimensions (table 1). Yet, with climate
equations known and coded in ESMs, more progress
should be possible to determine dominant terms
(Huntingford 2017). We suggest the relentless pres-
sure on climate research to make projections with
ever-newer ESMs, unfortunately, restricts available
time for the detailed examination of the internal calcu-
lations implicit within existing simulations. Secondly,
dimensional analysis is a technique to both collapse
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the complexity within, and relate different strands of
data, even without an initial underlying model (e.g.
Barenblatt 2003, Lemons 2017). Confirmed linkages
can aid the construction, parameterisation or testing
of related climate model components to ensure they
reproduce discovered data-based relationships. These
two approaches have notable similarities, despite one
being model-led and the other data-led. The third
approach is through statistical techniques (Storch and
Zwiers 2010), e.g. spatial reduction by empirical
orthogonal functions, known to characterisemany cli-
matemodes of variability, such as the tropical El Niño-
SouthernOscillation.

A fourth new technique is emergent constraints
(ECs) (Hall et al 2019), which targets a reduction in the
dimension of inter-ESM spread to refine projections.
This approach searches across ESM ensembles (e.g.
CMIP5, Taylor et al 2012) for regressions between
modelled climate system quantities and that can also
be measured now, and other climate system features
relevant to projecting future change. Such regressions
utilise the contemporary measurement to constrain
estimates of the future variable. Examples (Hall et al
2019) include physical parts of the climate system, e.g.
reducing uncertainty on equilibrium climate sensitiv-
ity (Cox et al 2018), and geochemical or ecological fea-
tures, e.g. refining Amazon ‘die-back’ risk (Cox et al
2013). Although the method has received some scepti-
cism, such as by Caldwell et al (2014), a review by Hall
et al (2019) notes thatmany have physical justification,
whilst other robust regressions are worthy of invest-
igation to search formechanistic understanding. Some
ECs may be difficult to discover by physical intuition,
e.g. teleconnections where the measurable quantity is
for a different location, season and climate attribute to
the component of future interest.

All four approaches to dimension reduction rely to
some extent on foreknowledge to find related quan-
tities. We suggest ML and AI techniques, integrated
into these dimension-reduction frameworks, will aid
further discoveries.

Climate science gaps

Knowledge gaps overview
We concur with Schneider et al (2017) and Reichstein
et al (2019) that as ML and AI algorithms develop,
these will open vast opportunities to aid climate
research, facilitating and going beyond dimension
reduction. We expand on this, presenting an over-
arching view of climate analysis. We review existing
applications, summarise ML algorithms, describe
three potential applications (UK summer 2018
drought, the ‘warming hiatus’, and equation building
where their form is currently unknown), and address
how AI can help society to adapt to climate changes
with a focus on drought.

Borrowing terminology from a military context,
issues of climate are amenable to three classifications.
‘Known knowns’ are aspects coded accurately as
equations into ESMs, where ML could reduce dimen-
sions to elucidate dominant interactions. ‘Known
unknowns’ are where an effect influences climate
changes, but uncertain equation parameterisation
causes inter-ESM spread. Alternatively, data shows an
effect to be important, but equations are not yet avail-
able to represent its inclusion in ESMs. A particular
concern for climate change is the risk of ‘unknown
unknowns’, generating unwelcome surprises. The
most commonly suggested are tipping points (Lenton
et al 2008), where the Earth System changes dis-
proportionately for small atmospheric GHG increases,

Table 1.Nine basic dimensions of climatemodelling. These include geographical location, themany configurations of ESMs, and alternative
future trajectories in emissions policy.

Dimension Comment

Longitude direction Extensive regional variations occur in climate, even at the same latitudes.

Latitude direction Key climate attributes, such as temperature and rainfall, have strong gradients in latitudinal position.

Vertical direction Allmeteorological variables showmajor height dependencies, and including interactionwith atmospheric

radiative fluxes and clouds.

Time All climatemodelsmake predictions of human-induced change as well as simulating natural variability, for

location and height, and at timescales from century down to sub-hourly.

Different climatemodels There are approximately 20 global climate research centres, generating around 40 ESMvariants in theCMIP5

database.

Climatemodel ensembles Internal chaotic variability of the climate system in any given decade can give quite different projections, even

from the sameESM. Ensembles are built by initialising identicalmodel structure, but with extremely small

perturbations to initial conditions.

Different initial state ESMs are often operatedwith different initial states. For instance, initial oceanic state at the beginning of the

industrial revolution can be uncertain.

Perturbed physics runs Where processes are not fully understood, potential ranges of associated parameters are instead known. Some

ESMgroups havemade simulationswith alternative parameterisations, scanning these parameter ranges to

determine their impact on future projections.

Different future emissions Scenarios of alternative future emissionswill cause different evolutions of atmospheric greenhouse gas levels,

in turn triggering contrasting climatic states.
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Table 2.Existing application ofmachine learning algorithms to climate science. Listed is the part of the Earth System studied, the discovery
from the application ofML/AI,methods used and reference.

Component of cli-

mate change research Finding or development

Technique usedwith the standard

acronym References

Earth System

modelling

Improve convection parameterisations

usingmachine learning emulators.

Artificial NeuralNetworks (ANN). Gentine et al (2018)

Earth System

modelling

Improve the speed of global climatemodel

parameterisations.

Artificial NeuralNetworks (ANN). Krasnopolsky et al

(2005)
Earth System

modelling

Emulate climatemodels to increase the

range of parameter values inwhich a cli-

matemodel canwork.

A range of inversionmethods, includ-

ing Ensemble Kalman inversion

and theMarkovChainMonte

Carlo (MCMC) algorithm.

Schneider et al (2017)

Earth System

modelling

Classify land cover from earth observation

data (satellites).
RandomForest (RF). Rodriguez-Galiano et al

(2012)
Earth System

modelling

Identify preferred regions of phase-space

for a numerical weather prediction

model for the Euro–Atlantic region.

Clustering. Dawson et al (2012)

Earth System

modelling

Emulate complex atmosphericmodels of

aerosols to test different potential values

of effective parameters.

Gaussian process (GP) emulation. Lee et al (2013)

Teleconnections Capture the dynamics and structure of the

Madden–JulianOscillation (MJO).
Self-OrganisingMap (SOM). Chattopadhyay et al

(2013)
Teleconnections Identify terrestrial tropical connections

with the PacificDecadalOscilla-

tion (PDO).

Clustering, empirical orthogonal

functions (EOFs).
Yang et al (2019)

Teleconnections Identify SST indices and their impacts on

terrestrial climate.

SharedReciprocalNearest Neigh-

bours (SRNN), and graph-based
approaches.

Liess et al (2017)

Weather forecasting Use AI for post-processing of weather fore-

casts to aid human forecasters.

RandomForests (RF), Gradient Boos-
ted Regression Trees (GBRT).

McGovern et al (2017)

Future climate

scenarios

Mergemultiple seasonal climate predic-

tions byweightingmodels by skill.

Bayesian linear regression. Luo et al (2007)

Future climate

scenarios

Weighting climatemodels by their skill pro-

duce better performance than ensemble

averages.

GeneralizedHiddenMarkovMod-

els (HMM).
Monteleoni et al (2011)

Climate impacts Assess the impact of climate change on

above-ground biomass.

Support VectorMachines (SVM),
Artificial NeuralNetworks (ANN),
Generalised RegressionNeural

Network (GRNN).

Wu et al (2019)

Climate impacts Assess the impact of climatic change on the

global hydrological cycle, with an

emphasis on changes in

evapotranspiration.

Model Tree Ensemble (MTE). Jung et al (2010)

Climate impacts Assess the impact of future climate change

on hydrology in India, and including for

riverflow.

Principal Components Analysis

(PCA) and fuzzy clustering. Rele-
vanceVectorMachine (RVM).

Ghosh andMujum-

dar (2008)

Climate impacts Predict hydrological variables (evapo-
transpiration) from inputs ofmeteor-

ological variables (precipitation,
temperature) in India.

Fuzzy logic, Least Squares Support

Vector Regression (LS-SVR), Arti-
ficial NeuralNetworks (ANN),
AdaptiveNeuro-Fuzzy Inference

System (ANFIS).

Goyal et al (2014)

Climate impacts Determine the impact of water scarcity

(drought) in different climatic systems.

Model Tree Ensembles (RandomFor-

ests, RF).
Yang et al (2016)

Climate impacts Estimate crop yields from satellite data. ConvolutionalNeuralNetwork

(CNN). Gaussian Process (GP)
Regression.

Azzari et al (2017),
Burke and

Lobell (2017)
Climate impacts Determine the influence of climate drivers

on sand-deposition in semi-arid regions.

Artificial NeuralNetworks (ANN). Buckland et al (2019)

Climate datasets Produce a long-term, globally consistent

runoff dataset for assessing hydrological

trends and variability.

RandomForest (RF). Ghiggi et al (2019)

Climate datasets Use satellite-based retrievals (PERSIANN)
to provide globally consistent estimates

of precipitation.

Artificial NeuralNetwork (ANN). Hsu et al (1997), Hong

et al (2007), Nguyen
et al (2018)
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even potentially triggering runaway climate change
(Steffen et al 2018). However, climate models disagree
as to their potential location, GHG-level trigger point
or ESM component affected (Drijfhout et al 2015). We
suggest ML can improve identification of tipping ele-
ments and advance precursor analyses (Dakos et al
2008). If ML-based research discovers emerging mea-
sured climatic anomalies that cannot be explained by
current process understanding, this indicates an
‘unknown unknown’ needing investigation and mod-
elling in ESMs. Similarly, Chen et al (2018) and Raissi
et al (2019) raise the appealing prospect of building the
underlying differential equations from application of
neural networks to data. Should these equations be
substantially different to those expected, the new
equation terms may also point to the existence of
‘unknownunknowns’.

Identifying teleconnections (i.e. intricate connec-
tions between Earth System components) offers espe-
cially powerful applications of ML, discovering
connections hidden within the many dimensions
(table 1) of climate that human-based visual inspec-
tion is unlikely to recognise. Some teleconnections
have time offsets, potentially generating societal warn-
ings of approaching extreme weather events. The
extent to which teleconnections exist in extreme rain-
fall patterns has only recently been recognised, noted
as worthy of significant additional investigation (Boers
et al 2019). One example is the winter 2013/14 severe
flooding across the southern United Kingdom (Hun-
tingford et al 2014), potentially initiated by earlier
anomalous tropical precipitation.

ExistingAI applications to climate
Many climate researchers have adopted ML methods
to advance understanding of specific Earth System

components (table 2). We now argue that there is
enormous potential for using ML approaches also to
find the more connected behaviours betweenmultiple
Earth System components, and how they aggregate to
overall climate responses.

MLalgorithms

We first give an eclectic overview of ML methods and
suggest further climate applications. ML methods are
(semi) automated approaches to data inference that
make few or no prior assumptions. Generally, ML
approaches are of two types: supervised and unsuper-
vised (Murphy 2012). Supervised methods rely on
a priori specification of a response variable and map
inputs to system outputs. Inputs are explanatory
variables, e.g. large-scale forcings such as GHG levels,
teleconnection drivers, or observations of a particular
part of the Earth System. Outputs are response
variables of interest e.g. local climatic impacts. Super-
vised approaches use a training data set, where both
measured inputs and outputs are available. Unsuper-
vised approaches only take outputs of collected data,
and the aim is to discover interesting patterns in the
data and links to inputs, but where these are not listed
beforehand. Unsupervised learning may aid the dis-
covery of novel relationships, or teleconnections,
across the different dimensions of climate modelling
(table 1). A subsequent challenge for the Earth System
community would be where an unsupervised
approach reveals new system connections, requiring
mechanistic understanding. The large flexibility ofML
approaches allows strong nonlinearities to be encapsu-
lated, affecting many features of climate change
(Dijkstra 2013), which cannot be described with
standard regression approaches.

Table 2. (Continued.)

Component of cli-

mate change research Finding or development

Technique usedwith the standard

acronym References

Climate datasets Improving estimates ofmin andmax tem-

peratures for incomplete timeseries.

Generate better estimates of dailymax-

imumandminimum temperatures,

based on information fromother nearby

measurements andwhere accurate time

of recording is undertaken.

Gaussian Process (GP)model fitted

with aMarkovChainMonte Carlo

(MCMC)method.

Rischard et al (2018)

Climate datasets Downscale GCMprecipitation fields to

scales appropriate for impact assessment.

Kernel Regression (KR). Salvi et al (2017)

Climate extremes Identify extremeweather events in the out-

put of a global climatemodel.

ConvolutionalNeuralNetwork

(CNN); 3DConvolutional enco-

der-decoder.

Liu et al (2016)

Climate extremes Predict a drought index usingmeteor-

ological and climate indices as inputs.

Extreme LearningMachine&Con-

volutionalNeural Network (CNN).
Deo and Sahin (2015)

Climate extremes Predictmeteorological and agricultural

drought conditions from satellite data.

RandomForest (RF); Gradient Boos-
ted Regression Trees (GBRT).

Park et al (2016)

Climate extremes Forecastmeteorological droughts using

antecedentmeteorological information

in Ethiopia.

Artificial NeuralNetwork (ANN);
Support Vector Regression (SVR);
Wavelet Transforms.

Mishra andDesai

(2006), Belayneh et al
(2016)
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Supervised learning methods focus on classifica-
tion problems: in the simplest case is binary, distin-
guishing between two types (say ‘0’ and ‘1’). Examples
are the existence of ice cover and changes (Boe et al
2009) or land use classification (Helber et al 2018) to
facilitate monitoring of changes. Another example
involves the identification of ship tracks in satellite
images (Segrin et al 2007). These polluted regions pro-
vide a ‘natural laboratory’ for the interaction between
aerosol and cloud processes (Chen et al 2015), to
understand aerosol impact on cloud radiative forcing
and climate sensitivity (Stevens and Feingold 2009).
Probabilistically:

= =ˆ ( ∣ ) ( )y P y c xmax , D , 1

where predicted outputs ŷ maximize the probability
that the true value of y is c (e.g. ‘0’ or ‘1’ in our simple
classification), given (i.e. ‘|’) inputs x and dataset D.
For ship tracks, the training dataset D is multiple sub-
images classified as c=‘ship track’ or c=‘not ship
track’; x is a sub-image from outside the training
dataset which we wish to classify; and ŷ is the
predicted classification of the new image, x. Method
extension allows multinomial classification (e.g. ‘0’,
‘1’, ‘2’,K) or pre-specified meteorological classes e.g.
the Beaufort scale. If the response variable is real-
valued continuous, then the problem is a regression.

Unsupervised learning is a discovery or data
mining approach. It constructs empirical models of
the data, and is probabilistically written:

( ∣ )p x D .

The probability density p (given x is now a vector of
inputs) depends only on data, D. This differs from
supervised learning where the output(s) are condi-
tional on inputs and data (equation 1). Unsupervised
ML approaches might identify the number of clusters
or groups in a dataset. If V represents the number of
clusters and D a given dataset then, probabilistically,
the aim is to estimate the distribution, p(V|D). An
application in climate sciences of this unsupervised
approach would be estimating the number of distinct
North Atlantic weather regimes (Dawson et al 2012).
Four common ML methods are now described, and
illustrated in schematic form (figure 1).

Gradient descentmethod
UnderpinningmanyML approaches, gradient descent
relates to standard linear regression and aims to
minimize the error (‘cost function’, F), formulated as:

g+ = +( ) ( ) ( ( ))
( )

U n U n
F U n

U n
1

d

d
.

U(n) is a differentiable point (or vector), γ is a scaling
that ensures the cost function reduces with each
iteration, F(U(n))>F(U(n+1)), and n is iteration
time. Parameter γ can be thought of as a learning
parameter (or a step size) which determines the speed
of the gradient descent approach. Poor optimisation of
γ causes inefficient algorithms that either do not

converge to the optimal solution, or over-correct the
cost function.

An example of gradient descent is supervised
(probabilistic) classifier applications. Logistic regres-
sion is a popular approach for classification problems
and while maximum likelihood methods are fre-
quently used, gradient descent methods generally
solve supervisedMLproblemsmore efficiently.

Gaussian processes
In nonlinear regression, a first attempt might involve
fitting increasingly complex polynomials, Y=f (x, ai),
where Y is an observation, x is a potential predictor of
Y, and ai are parameters. However, in a nonlinear
system such as the climate, we might not understand
the precise parametric process, as this would require
consideration of all possible nonlinear functions. As a
supervised ML method, Gaussian processes (Rasmus-
sen and Williams 2006) are an alternative to such
(linear) regression approaches. A Gaussian process is a
collection of random variables, Y, (e.g. data observa-
tions) such that any subset of these variables has a
multivariate normal distribution. Notable is the Gaus-
sian process is defined over the observation functions,
Y, rather than input state, x. The process is specified by
amean function and a covariancematrix.

Combining the Gaussian process prior with a
(Gaussian) likelihood based on the data, where some
data is observed and some not, produces a Gaussian
posterior distribution. This method enables out-of-
sample predictions, y*:

ò* * = * *( ∣ ) ( ∣ ) ( ∣ )p y x p y x f p f f, , D D d ,

where f now represents a Gaussian process and D is
again an observed data set. These non-parametric
approaches allow explicit representation of uncer-
tainty and prior beliefs, and are powerful ML
approaches in nonlinear regression analyses. Out-of-
sample capability is necessary for climate science,
predicting future planetary states never before realized
due to on-going fossil fuel burning. Lee et al (2013) use
a Gaussian process to emulate the impact of parameter
uncertainty on climate model output, to determine
sources of uncertainty in cloud-aerosol processes.
Rischard et al (2018) demonstrate their ability to
improve estimates of historical climate data, by using
neighbouring stations to correct for inhomogeneities
in data collection practices.

Nonlinear, non-Gaussian inferences
This uses ML for prediction and inference from
spatio-temporal processes, with the goal of parameter-
ising hiddenMarkovmodels. Climate science contains
state-space problems, where the mechanisms are
latent or ‘hidden’ and only observations on surrogate
data is available. For example, tuning of parameters in
climate models using observational or high-resolution
model data is often laboriously performed by hand,
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suggesting the potential for utilizing ML (Schneider
et al 2017).

Themost straightforward problem is a Kalman fil-
ter:

e= +( ) ( )Y t A t ,1

e= - +( ) ( )A t A t 1 ,2

whereY(t) is observation at time t (withGaussian error
ε1) and latent state A(t). Here A is a stationary process,
such as invariant internal parameters in the climate
system which require estimation (Schneider et al
2017). Many state-space problems are nonlinear and
non-Gaussian, requiring ML methods based on Baye-
sian inference. Sequential Monte Carlo and Bayesian
hierarchical methods combined with hidden mechan-
istic models provide another class of statistical models
forML applications. SequentialMonte Carlo are based
around importance of sampling approaches, e.g.
Tokdar and Kass (2010), to determine goodness of fit

and numerically propagate posterior distributions
through both space and time. Practically, parameter
updates are made as new data become available, and
for a stationary process this enables the convergence to
be tracked. This approach also has the potential for
developing non-stationary models for changing pro-
cesses such as the climate system under anthropogenic
forcing.

Adapted sequential Monte Carlo methods,
through the Metropolis–Hasting algorithm, allow
evolving model parameterisation. Currently, ESMs
combine numerical code describing climate system
components. These are operated from modelled pre-
industrial times to contemporary, and onwards
corresponding to future GHG scenarios. Yet most
ESMmodelling centres do not revise projections when
compared to historical measurement records, i.e.
employ ‘adaptive learning’. This is a computational
challenge, needing the embedding of ESMs in an

Figure 1. Schematic of differentMLmethods, with potential applications. Each box in thefirst column shows simulations for the same
model framework and forcings, evolving in time, and for different ESMs (ESM1, ESM2,K), and so representing thefirstfive
dimensions of table 1. The two different boxes (background yellow or green) represent two sets of simulations selected to span one of
the four extra dimensions of table 1, as also indicated in the grey column: ensemblemembers capturing internal chaotic features,
different large-scale estimates of initial state, perturbed-physics experiments and different socio-economic estimates ofGHG
emissions. The third column shows as illustrations the fourmain identifiedML/AImethods. The fourth column is schematics of
potential applications. The gradient descentmethod can determine functional responses, e.g. ecosystem attribute responses to
temperature. Gaussian processes can allow extrapolation of sparse weather station data (black dots) to generate gridded datasets of
historical weather features. Nonlinear non-Gaussian inferences can refine key ESMparameters, updated incrementally asmore data
becomes available. Deep learning approaches (e.g. NNs) can emulate computationally expensive components of ESMs, which impact,
e.g. vertical profiles of the predicted variables including temperature. Such emulation enables longer simulations, larger ensembles, or
added functionality. RefinedML-based understanding of ESMdiagnostics and assessment of performance against data will then
support better simulations by the next generation of climatemodels—as indicated by the bottom right-to-left arrow.
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iterative framework, and so far only achieved for dec-
adal forecasting (Dunstone and Smith 2010).

Deep learning approaches
Recent excitement around ML approaches often
centres on the use of deep neural networks and
graphical structures to uncover relationships in non-
linear data. Deep learning methods utilise a directed
graph. Data are input at the base, transformed by
hidden layers, and output at the top of the graph.
Graphs have weights associated with the edges, and so-
called ‘biases’ associated with the neurons (nodes),
where the weights determine the strength of connect-
edness between neurons from different layers, and the
bias is an offset that regulates the sensitivity of the
neuron. An activation function scales the signal at each
neuron, given the weighted input from the previous
layer. Training data sets update these weights and
biases to given error tolerances. Once trained, these
directed graphs can give out-of-sample predictions on
test data. Similar to Gaussian processes, for climate
research this ability of a model to capture features of
recent extremes (i.e. ‘out of sample’ events) raises
confidence in projection of future anomalies, which
may become commonplace.

Deep learning and neural net approaches avoid
specifying a process-based model (e.g. as needed for
the Sequential Monte Carlo and Bayesian methods).
This more data-led approach can improve our under-
standing of multivariate relationships in nonlinear
systems. Recent application of neural nets to climate
sciences include dryland disturbance (Buckland et al
2019), inverse problems for remote sensing (Krasno-
polsky and Schiller 2003) and replacing costly compo-
nents of climate models (Gentine et al 2018). This
learning subsequently aids mechanistic model con-
struction. A compelling and emerging concept in
hydrological modelling is a hybrid approach, where
neural networks utilise data to characterise short-term
rainfall-runoff relationships, yet additionally are con-
strained by prescribed prior knowledge of physical
catchment attributes (Kratzert et al 2019). Static but
location-specific modelled processes can include, for
instance, parameterisation of topography, soil proper-
ties and landcover.

Potential applications

Table 2 presents applications of ML and AI to under-
stand Earth System features. We suggest three further
illustrative potential examples. First is a recent extreme
event, likely caused by multiple forcings to be deter-
mined. Second is a major uncertainty in overall
climate response, again likely due to many Earth
System interactions. The final example is building
unknown ecological-climate interaction equations.

UKsummer 2018 drought
The UK experienced a hot dry year through the
summer of 2018. EuropeanCentre forMedium-Range
Weather Forecasts (ECMWF) ERA-Interim re-ana-
lyses (Dee et al 2011) for mean July and August
temperature, rainfall and soil moisture, show strong
anomalies for the southern UK, compared to mean
conditions of these two months (figure 2). ECMWF
uses a state-of-the-art forecasting model, initialised
from earlier forecasts, to provide prior estimates of
meteorological conditions, which are then modulated
by data assimilation from satellite observations,
weather stations and radiosondes. Such assimilation
(‘4D-Var’ optimisation) encapsulates measurement
error, avoids overly distorting modelled atmospheric
physics, (Dee et al 2011) and arguably is a form of ML.
Emerging studies place the drought in context, and
emphasize that amplified global Rossby waves likely
have an important role in these climatic processes
(Kornhuber et al 2019). These wave attributes may
cause simultaneous extremes elsewhere, and there is
evidence that such wave patterns are becoming more
frequent (Kornhuber et al 2019). However, mechan-
isms remain unknown, requiring isolating and under-
standing possible parallel forcings such as antecedent
soil drying, general background warming rates, and
warming-circulation change interconnections, all of
which ML may elucidate. Any discovered inter-
seasonal connections linking drought risk to spring-
time soil moisture or oceanic temperature features
aids drought adaptation planning, e.g. timing of crop
planting. Optimum crop timing itself may gain from
ML applications through combined analysis of simul-
taneous crop yield and climate datasets.

Explaining changes to different extreme event fre-
quencies is valuable knowledge. Most extreme events
cannot be wholly attributed to anthropogenic activity,
or verified as being unaffected by human behaviour,
leading to characterising anthropogenic influence as
fraction of attributable risk (FAR) (Allen 2003). As
extreme events are by definition rare, FAR calculation
requires supplementing data by many simulated years
with ESMs. The FAR statistic uses simulations for pre-
industrial and contemporary GHG levels, capturing
thermodynamic (i.e. global warming), and circulation
changes (e.g. Otto et al 2016). However only one
research group has performed massive ensembles
(Massey et al 2015), and while highly informative, this
makes the FAR statistic strongly ESM-dependent. To
complement this approach, we argue for greater
understanding of the physical drivers and interactions
leading to extremes, as a ‘storyline’ (Shepherd 2016),
and by utilising ML to perform targeted searches in
ECMWF re-analysis data. Deeper post-extreme
understanding enables rigorous assessment of the
CMIP5 ensemble (Taylor et al 2012) building an inter-
ESM consensus on the extent to which anthropogenic
forcings alter particular extreme likelihoods.
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Climate ‘Hiatus’
Knowledge of global-scale variability remains incom-
plete. Between 1998 and very recently, there has been
little additional global warming (the ‘hiatus’), noted by
those sceptical of global warming. Ascertaining the
statistical likelihood of such an occurrence from the
broad features of decadal variations has generated
multiple studies, reviewed by Risbey et al (2018).
Hypotheses for the general deviation of ESMs from
measurements during this period include incorrect
prescription of radiative forcing for aerosols, wrong
climate sensitivities of ESMs, features of decadal
variability and how temperature measurements are
aggregated globally; Medhaug et al (2017) argue these
are not necessarily contradictory to each other. For a
climate feature so prominent, all strands of evidence
should be combined to generate a more definitive
answer. As the ‘hiatus’ is likely a function of simulta-
neous interactions in the climate system,ML can aid in
the characterisation of any modelled deficiencies in
parallel drivers.

Equations unknown
Atmospheric equations are arguably well-known (Val-
lis 2006), describing fluid dynamics, thermodynamics
and water phase change. Challenges remain in the
parameterisation of very high resolution sub-grid
processes for ESMs, e.g. storm events (Kendon et al
2014) and localised convection, with ML suggested as
aiding the latter (Gentine et al 2018). Less known are
the deterministic equations of biological responses,
despite the need for mathematical representation in
ESMs. Various models are available, but their applic-
ability to a range of biomes is uncertain.

Key ecological-climate feedbacks are known, e.g.
terrestrial ecosystem photosynthesis, respiration and
decomposition. These are described with physiologi-
cal models representing phenomena operating at indi-
vidual tree level (Fischer et al 2016) and roughly valid
when aggregated to the Earth System scale (Fisher et al
2018). Less known are equations that fully capture
complex canopy structures and temperature-depen-
dent variation in leaf properties and processes, causing
uncertainty in predicted global carbon fluxes (Rogers
et al 2017). Data are typically used to calibrate and
validate existing models, but not inform the under-
lying structure, which is an opportunity for novel AI
application. For example, Shiklomanov et al (2016)
use a Bayesian inversion framework to infer radiative
transfer model parameters from remotely-sensed
reflectance data, resulting in bettermodel structures.

A ‘known–unknown’ at the Earth System scale is
faithful nutrient limitation representation in terres-
trial ecosystems. Eventual strong nitrogen limitation
of the global carbon cycle (Thomas et al 2015) could
weaken terrestrial systems’ ability to offset partially
CO2 emissions. ESMs have different approaches for
incorporating nitrogen limitation, but model

Figure 2.UK July andAugust year 2018 temperature, rainfall
and soilmoisture anomalies.Meanof twomonths of ECMWF
re-analysis data for July andAugust, for the year 2018,minus
themean of the same twomonths and averaged over period
1979–2017. Shown are for (a) temperature at 2 m above
ground, (b) rainfall and (c) soilmoisture in the top soil level,
which has a depth of 0.07 m.
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evaluation is challenging due to few global-scale obser-
vations. Furthermore high variability in nutrient lim-
itation and plant-soil feedbacks by environmental
context (Thomas et al 2015), restricts knowledge of
which models apply in particular conditions. Given
this complexity, a bottom-up approach of learning the
mechanisms of nutrient limitation from available data
may provide a better strategy than building nitrogen
cycle models before comparing to data. While there is
a general dearth of observational datasets relative to
the wide variability in space and time in nitrogen cycle
processes (Thomas et al 2015), long-term records of
plant growth and nitrogen availability can be recon-
structed from analysis of natural archives such as tree
rings (McLauchlan et al 2017) and sedimentary depos-
its (McLauchlan et al 2013). These time-series data
offer a mostly untapped yet powerful resource for
deriving long-term plant-N interactions and how
these vary over space and time. For example, Jeffers
et al (2011) and (2015) used a maximum likelihood-
based model-fitting and model-selection method to
infer the most likely mechanisms by which plants
interacted with available nitrogen over a 6000 year
period; the results provided evidence for plant-soil
feedbacks operating over millennia. However, while
the maximum likelihood method searches for the best
set of parameters, this can only be for a given model.
When, as here, we additionally need to determine
which model(s) provide the best fit to the data, the
process becomes time- and computationally-inten-
sive. Such a high need for numerical calculation is not
feasible for fine resolution calculations across large
spatial scales with strong heterogeneity. A combina-
tion of new computing structures and novel algo-
rithms, (e.g. symbolic regression, Martin et al 2018),
may instead offer increased efficiency for finding the
best model(s) for describing available data. Notwith-
standing the possible high computational cost, we also
suggest the proposed use of neural networks to return
governing equations (Raissi et al 2019) will further aid
improved numerical characterisation of terrestrial
ecosystems in ESMs. AI may then be able to harness
new insights from the model output to suggest the
most suitable locations for tree planting for carbon
sequestration.

How to represent plant feedbacks to soils and thus
biogeochemical cycling and global climate in ESMs are
even less well known (e.g. Arneth et al 2010). A poten-
tially important process missing from ESMs is the
release of plant secondary metabolites into soils and
subsequent changes in litter decomposition and nutri-
ent recycling (Chomel et al 2016). Similarly, the release
of volatile secondary metabolites induces changes in
atmospheric chemistry with important feedbacks on
plant health (Rap et al 2018). For example, plant pro-
duction of oxalates is a key driver of nutrient and bio-
geochemical cycles (Graustein et al 1977), and can
directly affect local and regional climate via formation
of cloud condensation nuclei (Zhou et al 2015) and

indirectly via feedbacks to carbon sequestration
(Tooulakou et al 2016). Plant production of oxalates is
highly sensitive to atmospheric chemistry and climate,
with increased accumulation under rising ozone con-
centrations (Fink 1991) and drought (Brown et al
2013). However, like other secondary metabolites,
both the type and amount of oxalates produced varies
significantly by plant species and ecological conditions
(Holopainen et al 2018); therefore future work is nee-
ded tomeasure these ecologically relevant compounds
according to their expected range of variation in nat-
ural ecosystems. Where data exist, we suggest that ML
can help identify links between plant chemical traits,
environmental conditions and feedbacks on biogeo-
chemical cycling, thus enabling the development of
process-based equations for use in ESMs. We note a
direct impact on human well-being too, as changing
protein and defence compounds in plants influence
food quality and thus human health (Zhu et al 2018).
Advances, therefore, in data collection and modelling
of plant nutrient and secondary compound produc-
tion dynamics combined with AI has the potential to
help identify risks to food production associated with
changes in climate and atmospheric chemistry.

AI to support climate adaptation, with an
emphasis on droughtwarning

The IPCC has been collating climate change knowl-
edge into reports on an approximately seven year
cycle, and recently the 5th assessment (IPCC 2013).
These underpin the annual Conference of Parties
(COP), which focus on measures to avoid dangerous
climate change. Recent COP meetings called for
constraining global warming to 2 °C above pre-
industrial levels, or even 1.5 °C. This challenge is
tremendous. Despite evidence of the climate changing,
emissions have grown, showing little evidence of
reducing (Huntingford and Friedlingstein 2015). After
a short plateau, CO2 emissions have resumed growth
(Jackson et al 2018). Furthermore, equilibrium global
warming even for current greenhouse gas concentra-
tionsmight already be at or very near 1.5 °C (Hunting-
ford and Mercado 2016), and over land, warming will
be even higher (Huntingford andMercado 2016). Yet,
wealth per capita is tightly linked to energy use (Brown
et al 2011), so meeting societal goals of more people
leading a wealthier lifestyle will increase energy
demand. Conversation from fossil fuels to different
energy sources remains challenging (York 2012). AI
may aid developing non-fossil fuel energy supplies,
but it is also prudent to prepare adequately for climate
change.

Improvement of forecasts is essential to aid prep-
aration for extreme events. McGovern et al (2017)
assessed AI methods in predicting high impact
weather events, including the duration of storms,
using a historical database. They operationalised the
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Gradient Boosted Regression Trees (GBRT) algorithm
in theNational Oceanic andAtmospheric Administra-
tionHazardousWeather Testbed (Karstens et al 2015).
Studying how often professional forecasters used the
output of the GBRT, it was found that in 75% of cases,
the AI-based forecast was selected over human intui-
tion, providing evidence that AI-based forecasts in
‘human-in-the-loop systems’ can aid decision making
(McGovern et al 2017). Directly enhancing forecasts is
difficult due to their high resolution and lead times.
However, ML and AI methods can post-process fore-
cast model output by accounting for missing model
resolution and correcting the resulting biases (Novak
et al 2014). Similar ML-based disaggregation, but of
ESM projections, may provide bespoke climate ser-
vices at a very fine spatial scale (Knusel et al 2019).
Such disaggregation could link climate outputs to agr-
onomy models to then aid decisions that ensure high
crop efficiency in a changing climate.

Droughts are high impact weather events, esti-
mated to have cost $1.5 billion globally between year
1998–2017, and representing 33% of the costs of
weather hazards over that period. AI offers the poten-
tial to leverage recent advances in drought forecasting
accuracy (Belayneh et al 2016) to improve decision-
making. The Horn of Africa drought in 2011, for
instance, impacted over 9 million people and the
resulting food insecurity likely caused between
143 000 and 273 000 deaths in Somalia alone (Checchi
and Robinson 2013). Improving early warning of these
events allows for targeted drought response and better
emergency preparation. Drought forecasting systems
exist that utilise atmospheric forecasts to force hydro-
logical models (Shukla et al 2014). Noting the success
of methods such as GBRT for improving real-time
decisionmaking for other high-impact weather events
(McGovern et al 2017), it makes sense to utilise
drought predictive skill (Belayneh et al 2016) com-
bined with ML and AI methods to ensure optimal
water resource allocation and disseminating informa-
tion ahead of drought events.

Discussion and conclusions

Evidence is accumulating that fossil fuel burning is
adjusting climate (IPCC 2013), as projected by many
e.g. Broecker (1975), requiring accurate projections to
aid adaptation. ESMs estimate climate variation, with
discretised equations describing the Earth System. A
climate research success is the pooling of ESM simula-
tions (Taylor et al 2012), but unfortunately substantial
differences exist between them, even for identical
GHG concentration scenarios. This lack of agreement
complicates adaptation planning. The perception that
ESMs are ‘black boxes’, alongside pressures to use
researcher time to create, continuously, new model
versions, discourages efforts to understand their inter-
nal calculations, feedbacks, teleconnections and

criticallymodel differences. Such an approach circum-
navigates standard scientific procedures, where build-
ing numerical models should occur with parallel
analytical understanding. Yet the Earth System is
hugely complicated, and it is challenging to achieve the
dimension reduction necessary to identify dominant
processes. We believe this makes climate research a
perfect application for utilising ML methods. This
suggestion is, though, conditional on the algorithms
being applied thoughtfully, selecting the most appro-
priate one for each research question, and with a full
appreciation of any underlying assumptions implicit
within them. We have summarised many existing
applications, noting these relate predominantly to
specific climate system parts. Our call is to go much
further and employ MLmethods to the entirety of the
Earth System, analysing gridded datasets (e.g.
ECMWF) and theCMIP5 ensemble.

We present an overview of ML methods and sug-
gest three potential applications where system inter-
connectivity is likely complex; a UK extreme event, the
‘warming hiatus’, and terrestrial ecosystem equation
building. Where the governing mechanisms are
uncertain, a recent advance of interest is a formulation
of how neural networks enable data-based evaluation
of features of hidden ordinary differential equations
(Chen et al 2018) and partial differential equations
(Raissi et al 2019). We suggest these methods to have
enormous potential to advance process description of
new components that are currently less understood,
and for inclusion in Earth System models. Addition-
ally, AI can utilise model- and data-based ML to pro-
vide warnings and aid decision support, for instance
during approaching extremes such as droughts. The
routine availability of climate data implies that ML-
based research papers should have sufficient clarity
that others can be encouraged to reproduce, or test,
using their ownML algorithms. In other instances, the
actual ML code can additionally be made available to
enable replication of findings. The first approach pro-
vides a more robust and independent check. The issue
of reproducibility versus replicability, and in an AI
context, is discussed inDrummond (2009).

In summary, many scientific disciplines advocate
routine adoption of MLmethods, which will have dif-
fering levels of success. We believe ML application to
the Earth System will fall in the successful category,
delivering new insights into the incredibly rich diver-
sity of interconnected Earth System behaviours and
their multiple interactions with biochemical cycles. AI
is, presently, a commonly used expression in society,
but for climate analysis we consider it to be well
defined. While ML will reveal climate system attri-
butes and enhance forecasting across time scales, it is
AI that can then adopt this information to support
decisions. It is the instructing of actions required to
ensure safety through environment extremes where
ML becomes AI. For general climate policy, embracing
ML will likely aid the step-change needed to generate
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refined advice about the climatic states expected for
raisedGHGconcentrations.
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