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Abstract

We study equitable partitions of Latin-square graphs, and give a
complete classification of those whose quotient matrix does not have
an eigenvalue −3.
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classifying the equitable partitions of the bilinear-forms graph Bil2(2 × d)
[26]. This graph can be regarded as the Latin-square graph associated with
the Cayley table of the additive group of the d-dimensional vector space W
over the 2-element field. An equitable partition is associated with a matrix
whose spectrum is contained in that of the adjacency matrix of the graph;
the result was a complete classification in the case where the eigenvalue −3
of the adjacency matrix does not occur. The parts of such a partition must
be unions of rows, columns, or letters of the Cayley table, or subsquares
corresponding to subspaces of W of codimension 1.

Here we present an extension of the result, to construct and classify all
equitable paritions of arbitrary Latin-square graphs for which the eigenvalue
−3 (the smallest of the three eigenvalues of any Latin-square graph) does not
occur (see Theorem 5.4 below). Remarkably, a relatively small generalisation
of the subspace construction is required; we replace this by the notion of an
inflation of a “corner set” in the Cayley table of a cyclic group.

We begin in Section 2 with some preliminaries about equitable partitions,
including showing that, for the main theorem, it is enough to classify sets
of vertices which are parts of 2-part equitable partitions, and are minimal
subject to this condition. We define Latin-square graphs in Section 3, and
in Section 4 we give the inflation construction which is used to produce
examples. Section 5 contains the main substance of this paper: we construct
the examples, and prove that there are no more.

The paper concludes with three short sections discussing possible further
directions. Sections 6–7 explore equitable partitions which do involve the
eigenvalue −3. If the Latin square has order n then the other non-principal
eigenvalue is n−3 (see Section 2): we point to work on partitions which do not
involve this eigenvalue from both Statistics and Combinatorics, and observe
that some examples are connected with orthogonal arrays. Finally, Section 8
generalizes the ideas from Latin squares to sets of mutually orthogonal Latin
squares.

Equitable partitions of distance-regular graphs involving only the two
largest eigenvalues of the graph were considered by Meyerowitz [30], who
classified them for Hamming and Johnson graphs. In general, the classifica-
tion of equitable partitions seems a hard problem, since it includes questions
such as tight sets in polar spaces, see [4, 5, 6]. Another classification result
is given in [23].
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2 Equitable partitions

A partition ∆ = {∆1, . . . ,∆r} of the vertex set of a graph Γ is said to be
equitable if there is an r × r matrix M = (mij) such that the number of
vertices of ∆j joined to a vertex ω ∈ ∆i is mij, depending on i and j but not
on the choice of ω. This term is used by Godsil and Royle [25, §9.3]; Fon-
Der-Flaass [20] and Krotov [28] called such partitions perfect colourings. We
shall reserve the term perfect for a set which is a part of a 2-part equitable
partition, see below.

The spectrum of M is contained in the spectrum of the adjacency matrix
A(Γ) of the graph Γ: indeed, the characteristic polynomial of M divides that
of A(Γ) [25, Theorem 9.3.3]. Since this result is crucial to our approach, we
outline a proof. The matrix M is called the quotient matrix of the equitable
partition. When we speak of eigenvalues of an equitable partition, we refer
to eigenvalues of the corresponding quotient matrix.

We begin with some general information about equitable partitions. Let
Ω be the vertex set of Γ, with |Ω| = N ; and let V be the N -dimensional
vector space RΩ, whose basis vectors correspond to the vertices of Γ. Let
A(Γ) be the adjacency matrix of Γ, and let vi ∈ V be the characteristic
vector of the part ∆i.

From the definition of an equitable partition, we see that

viA(Γ) =
r∑

j=1

mjivj,

so that the space W = 〈v1, . . . ,vr〉 is invariant under the right action of
A(Γ), and the restriction of A(Γ) to this subspace has matrix M> relative
to the given basis. (Indeed this property is equivalent to the partition be-
ing equitable.) Hence, if the (pairwise orthogonal) eigenspaces of A(Γ) are
V0, . . . , Ve, then

W = (W ∩ V0)⊕ · · · ⊕ (W ∩ Ve),

so the spectrum of M is contained in that of A(Γ), and the cited result
follows.

From now on, we assume that Γ is a connected regular graph with valency
k. Then k is a simple eigenvalue of A(Γ). Moreover, the quotient matrix M of
an equitable partition has all row sums equal to k, so that k is an eigenvalue
of M . We call k the principal eigenvalue.
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We say that an equitable partition ∆ is µ-equitable if its quotient matrix
M has all non-principal eigenvalues equal to µ. Furthermore, we call a non-
empty proper subset S of Ω a µ-perfect set if the partition {S,Ω \ S} is
µ-equitable. Note that, if a set S is µ-perfect, then so is its complement
Ω \ S.

Proposition 2.1 Let ∆ = {∆1, . . . ,∆r} be a partition of the vertex set Ω of
the regular connected graph Γ.

(a) If ∆ is µ-equitable, then each set ∆i is µ-perfect.

(b) Conversely, if ∆1, . . . ,∆r−1 are all µ-perfect, then ∆ is µ-equitable.

Proof (a) Suppose that the hypotheses hold, and let vi be the characteristic
vector of ∆i. Then vi lies in the space V0 ⊕ V1, where V0 is the k-eigenspace
(spanned by the all-1 vector v0) and V1 the µ-eigenspace. Hence the span of
v0 and vi is A(Γ)-invariant, and the restriction of A(Γ) to this subspace has
eigenvalues k and µ; thus ∆i is a µ-perfect set.

(b) Conversely suppose that ∆1, . . . ,∆r−1 are µ-perfect. Then the sub-
space spanned by v1, . . . ,vr−1 and v0 is contained in V0⊕V1; since this space
also contains vr, the conclusion follows. �

The following result was stated, without proof, by Krotov, as Lemma 2
in [28]. We include the proof here for completeness.

Corollary 2.2 Let S be a µ-perfect set, and T a non-empty proper subset of
Ω \ S. Then T is µ-perfect if and only if S ∪ T is µ-perfect.

Proof The forward direction follows immediately from Proposition 2.1(b):
if S and T are µ-perfect then {S, T,Ω \ (S ∪ T )} is µ-equitable, and so
Ω \ (S ∪ T ) (and also its complement S ∪ T ) is µ-perfect. For the converse,
if S ∪ T is µ-perfect, then two parts of the partition {S, T,Ω \ (S ∪ T )} are
µ-perfect; so this partition is µ-equitable, and all its parts are µ-perfect. �

Corollary 2.3 If ∆ is a µ-equitable partition then any non-trivial coarsening
of ∆ is µ-equitable.

Proof All parts of ∆ are µ-perfect, and so by Corollary 2.2 the same is true
for any non-trivial coarsening of ∆; then Proposition 2.1(b) applies. �
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3 Latin-square graphs

Let Λ be a Latin square of order n. Take Ω to be the set of cells of Λ, so
that N = |Ω| = n2. There are three partitions R, C and L of Ω into n parts
of size n (a partition with all parts of the same size is called uniform). The
parts of R are rows, the parts of C are columns, and the parts of L are letters.

If ω ∈ Ω, then R(ω), C(ω) and L(ω) denote the row, column and letter
containing ω (regarded as subsets of Ω).

As in Section 2, we denote by V the n2-dimensional vector space RΩ.
Let V0 be its one-dimensional subspace of constant vectors. The character-
istic vectors of all rows span an n-dimensional subspace VR containing V0.
Columns define a similar subspace VC , and letters a similar subspace VL.
Put V1 = (VR + VC + VL) ∩ V ⊥0 and V2 = (VR + VC + VL)⊥, so that V is the
orthogonal direct sum of V0, V1 and V2.

The projection matrix for partition R is the matrix of orthogonal projec-
tion onto VR. It replaces the entry v(ω) of any vector v in V by the average
of the entries over the row (part of R) containing ω. Projection matrices for
other partitions are defined similarly.

Statisticians say that two partitions are orthogonal to each other if their
projection matrices commute. An orthogonal block structure is defined in
[1, 2, 3] to be a set of pairwise-orthogonal uniform partitions of a finite
set which contains the two trivial partitions and is closed under join and
meet. Thus R, C, L and the two trivial partitions form an orthogonal block
structure on Ω.

The Latin square Λ defines a Latin-square graph Γ with vertex set Ω and
valency k = 3(n−1). Each vertex is joined to every other vertex in the same
row or column or letter. Denote the adjacency matrix of Γ by A. We refer
to the elements of Ω as cells or vertices, depending on the context.

Every edge of Γ is contained in n triangles, while, for every pair of vertices
of Γ which are not joined by an edge, there are six vertices joined to both of
them. This means that Γ is strongly regular and A satisfies

AJ = 3(n− 1)J and A2 = 3(n− 1)I + nA+ 6(J − A− I),

where I is the identity matrix of order n2 and J is the n2× n2 matrix whose
entries are all equal to 1: see [10, 25]. In other words, the matrices I, A and
J−A−I form the adjacency matrices of an association scheme of rank three:
see [2]. The common eigenspaces are V0 (of dimension 1), V1 (of dimension

5



3(n−1)) and V2 (of dimension (n−1)(n−2)). The eigenvalues of A on these
three spaces are respectively k = 3(n− 1), n− 3, and −3.

In the special case n = 2, the Latin square graph is the complete graphK4,
and the eigenspace V2 does not occur (the formula above gives its dimension
as zero).

4 Inflation

Here is a construction that we shall use several times.
Let Λ0 be a t× t Latin square on Ω0. Replace each occurrence of letter i

by an s× s Latin square on an alphabet Ai, where Ai ∩ Aj = ∅ if i 6= j, to
obtain a Latin square Λ1 of order st. There is no requirement for the t Latin
squares on alphabet Ai to be the same, or even isomorphic.

We call Λ1 an s-fold inflation of Λ0.
Let Ω1 be the underlying set of Λ1. Then Ω1 has size (st)2. The inflation

construction gives an orthogonal block structure on Ω1 whose non-trivial
partitions are

• rows (R), columns (C), letters (L), each with st parts of size st;

• fat rows (R̃), fat columns (C̃), fat letters (L̃), each with t parts of size
s2t, corresponding to the rows, columns and letters of Λ0;

• subsquares (Q), with t2 parts of size s2, where Q is the infimum of
every pair of R̃, C̃ and L̃.

Like every orthogonal block structure, this defines an association scheme on
Ω1. The partition Q is inherent in this, in the sense that its relation matrix is
a sum of some of the adjacency matrices of the scheme. Therefore it defines
a quotient scheme on the set of parts of Q: see [2, Chapter 10]. This quotient
scheme is precisely the original Latin square Λ0.

Theorem 4.1 The partition Q of Ω1 is equitable for the Latin-square graph
Γ1 defined by the Latin square Λ1.

Proof A vertex in a part of Q is joined to 3(s− 1) further vertices in that
part, since the induced subgraph is a Latin-square graph from a square of
order s. It is joined to s vertices in each other part of Q in the same fat row,
fat column, or fat letter, and to no vertex in any other part of Q. So the
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partition is equitable. Its quotient matrix has the form M = 3(s− 1)I + sA,
where A is the adjacency matrix of the Latin-square graph corresponding to
Λ0. The eigenvalues of A are 3(t − 1), t − 3 and −3; so the eigenvalues of
M are 3(s − 1) + 3s(t − 1) = 3(st − 1), 3(s − 1) + s(t − 3) = st − 3, and
3(s − 1) + s(−3) = −3, the correct values for an equitable partition of a
Latin-square graph with n = st. Moreover, their multiplicities are those of
the Latin-square graph from Λ0, namely 1, 3(t− 1), and (t− 1)(t− 2). �

Example 1 When t = 2, there is a unique Latin square Λ0 on an underlying
set Ω0 of size four. The corresponding graph Γ0 is complete, and so all
partitions of Ω0 are equitable for it. Their s-fold inflations give equitable
partitions of some Latin squares of order 2s. In this case, the multiplicities
stated in the proof of Theorem 4.1 show that all non-principal eigenvalues of
the partition are 2s− 3.

Indeed, if a Latin square of order 2s contains a subsquare of order s,
then it necessarily arises as an inflation of the order-2 square. This includes
Cayley tables of groups of order 2s having subgroups of order s.

If ∆0 is a partition of Ω0 then the s-fold inflation gives a partition ∆̃0 of
Ω1 with the same number of parts.

Theorem 4.2 Let Λ be an s-fold inflation of a Latin square Λ0 of order t.
Let Γ and Γ0 be the Latin-square graphs defined by Λ and Λ0 respectively.

(a) If ∆0 is an equitable partition for Γ0 then ∆̃0 is equitable for Γ.

(b) If P is a (t− 3)-perfect subset of the vertex set of Γ0 then the union of
the Q-parts corresponding to the cells in P is an (st− 3)-perfect subset
of the vertex set of Γ.

The proof is almost identical to that just given.

5 (n− 3)-perfect sets

We return to the case where Γ is the graph defined by a Latin square of
order n. Our goal is to describe the equitable partitions of Γ, especially
those with all non-principal eigenvalues equal to n − 3. The preliminary
results we have given about equitable partitions show that every part of such
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a partition is an (n− 3)-perfect set, and any partition all of whose parts are
(n−3)-perfect is (n−3)-equitable. So our job is to describe the (n−3)-perfect
sets.

Suppose that an equitable 2-partition has quotient matrix

M =

[
p b
c q

]
.

Then
p+ b = c+ q = k = 3(n− 1). (1)

Furthermore, if the non-principal eigenvalue is n− 3 then

p+ q = k + n− 3 = 4n− 6. (2)

Moreover, if the first part is S, then counting edges between S and its
complement gives |S| b = (n2−|S|)c, so (since b+ c = 2n from Equations (1)
and (2)) we have

2 |S| = nc. (3)

5.1 Construction 1

Proposition 5.1 Any row, column or letter is an (n− 3)-perfect set.

Proof Let S be a row. (The other cases are similar.) The induced subgraph
on S is complete, and so any vertex in S is joined to 2(n−1) vertices outside S;
and any vertex outside S is joined to two vertices of S (one with the same
column and one with the same letter). So {S,Ω \ S} is equitable, and its
quotient matrix is

M =

[
n− 1 2(n− 1)

2 3n− 5

]
.

Thus the trace of M is 4n − 6; since it has an eigenvalue k = 3n − 3, the
other eigenvalue is n− 3, as required. �

It follows that any set which is a union of rows, or of columns, or of
letters, is (n − 3)-perfect; and hence any partition all of whose parts are of
this form is equitable.

Another consequence of Corollary 2.2 is the following:
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Corollary 5.2 If an (n − 3)-perfect set S properly contains a row T , then
S \ T is (n− 3)-perfect; and similarly for a column or letter.

So, in our search for the (n−3)-perfect sets, we may assume without loss
that such a set contains no row, column, or letter. We will call such a set
slender.

5.2 Slender sets and slices

Given a slender subset S of Ω, call a slice the intersection of S with any
row, column or letter of Λ. Now we introduce some notation for the size of
a slice. For each vertex ω in Ω, put ρ(ω) = |R(ω) ∩ S|, κ(ω) = |C(ω) ∩ S|,
and λ(ω) = |L(ω) ∩ S|. Then

ρ(ω) + κ(ω) + λ(ω) = c if ω /∈ S. (4)

In particular, no slice has size greater than c. Also, Equations (1)–(2) show
that

ρ(ω) + κ(ω) + λ(ω) = 3 + p = k + n− q = n+ c if ω ∈ S. (5)

Equation (5) shows that if ω ∈ S then at least one of ρ(ω), κ(ω) and λ(ω) is
greater than or equal to (n+ c)/3.

5.3 Construction 2

Here is a construction of an equitable partition with three parts, two of which
are slender sets.

Let Λ be the (back-)cyclic Latin square of order n, the Cayley table of
the cyclic group Zn of order n. We take the rows, columns, and letters to be
indexed by the set {0, 1, . . . , n − 1} of integers modulo n, so that the letter
in row i and column j is i+ j (with addition modulo n).

Consider the partition ∆ with three parts ∆−1, ∆0 and ∆1, consisting of
the cells (i, j) with i+ j < n− 1, i+ j = n− 1, and i+ j > n− 1 respectively
(using integer addition here).

Figure 1 shows this partition for n = 5 and for n = 6, with ∆−1 in bold
and ∆0 in calligraphic font. For ease of reading, the letters indexed by 0, 1,
2, etc. are shown as A, B, C, etc.
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A B C D E
B C D E A
C D E A B
D E A B C
E A B C D

A B C D E F
B C D E F A
C D E F A B
D E F A B C
E F A B C D
F A B C D E

Figure 1: Equitable partitions of cyclic Latin squares, using Construction 2

Theorem 5.3 With the above notation, the partition ∆ is equitable, with
both non-principal eigenvalues equal to n− 3.

Proof We prove this by direct counting, see Figure 2.

�
�

�
�

�
�
�

�
�

r
�

�
�
�

�
�

(0, 0) (0, j) (0, i + j) (0, n − 1)

(i, 0) (i, j) (i, n − 1 − i)

(i + j, 0)

(n − 1 − j, , j)

(n − 1, 0)

Figure 2: Counting neighbours in Theorem 5.3

Take a cell (i, j) in ∆−1. Within ∆−1, there are n− i−2 cells in the same
row, n− j− 2 in the same column, and i+ j with the same letter (excluding
the cell (i, j) itself); so it has 2n− 4 neighbours in ∆−1. The cells in ∆0 all
have letter n − 1, which never occurs in ∆−1; so (i, j) is joined to two cells
in ∆0, namely (i, n− 1− i) (in the same row) and (n− 1− j, j) (in the same
column). The remaining n− 1 neighbours are in ∆1.

A cell (i, n− 1− i) in ∆0 is joined to the other n− 1 cells in ∆0 (all have
the same letter), and to n−1 cells in ∆−1 (of which n− i−1 are in the same
row and i in the same column).

The other matrix coefficients follow by symmetry between ∆−1 and ∆1.
Thus the partition is equitable, with quotient matrix

M =

 2n− 4 2 n− 1
n− 1 n− 1 n− 1
n− 1 2 2n− 4

 .
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This matrix has trace 5n− 9; so its eigenvalues are 3n− 3, n− 3, n− 3. �

In particular, the parts of the partition are (n− 3)-perfect. The part ∆0

is a letter, but the other two parts are obviously slender. Further partitions
of this type can be found by changing the roles of rows, columns, and letters.

We will call sets of the form ∆−1 in this example, possibly after re-
labelling of rows, columns and letters, corner sets. Note that a corner set
is disjoint from a row and a column as well as a letter, and so is a part
of three different partitions of this type: as well as the one given, we have
{∆−1,∆2, (∆0∪∆1)\∆2}, where ∆2 is either the last row or the last column.

Theorem 4.2 now shows that if Λ is an s-fold inflation of a cyclic Latin
square of order t then the inflation of the partition ∆ in Theorem 5.3 is
equitable with non-principal eigenvalues n− 3, where n is the order of Λ.

In particular, a single cell in a Latin square of order 2 is a corner set,
and inflation gives subsquares of order n/2 in Latin squares of even order n.
Hence such subsquares are (n− 3)-perfect sets.

5.4 The main theorem

Theorem 5.4 Let Γ be the Latin-square graph defined by a Latin square of
order n, and ∆ a partition of the vertex set of Γ. Then ∆ is (n−3)-equitable
if and only if each part of ∆ is a disjoint union of rows, columns, letters, or
inflations of corner sets.

We know from the results of Section 2 that it is enough to describe the
(n− 3)-perfect sets, and moreover that it is enough to show the following:

Theorem 5.5 A slender (n−3)-perfect set in the Latin-square graph defined
by a Latin square of order n is an inflation of a corner set.

The proof of the theorem is somewhat involved, so we begin with a sum-
mary and some comments on the notation. Let S denote a slender (n− 3)-
perfect set.

An inflation of a corner set, after suitable row and column permutations,
resembles the starred region shown in Figure 3, which also shows fat rows
and fat columns.

We begin by identifying the subsquare in the top right of the figure: it
is the intersection of the fat row consisting of those rows meeting S in the
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∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

Figure 3: Sketch of the proof

maximum number of columns and the fat column consisting of those columns
not meeting S. Then, inductively, we work down and to the left, identifying
the subsquares on the boundary of S. The notation is introduced as the
proof proceeds.

Parts (a)–(b) of the induction successively find rows whose slice sizes are
strictly decreasing. These rows are numbered 1∗, 2∗, . . . , by their position of
occurrence in the inductive proof. Row u∗ is the first row to be named after
fat row R̃u−1 is identified in part (f).

Part (c) of the induction uses row u∗ and fat column C̃1 (on the right of
Figure 3) to define the fat letter L̃u and find some properties of it. Then
part (d) uses row u∗ and fat letter L̃1 to define fat column C̃u in such a way
that L̃1 is on the back-diagonal of the square. Thus fat columns are numbered
from right to left. We do not really have a viable way of numbering them
that matches the reader’s expectations, because we do not know at the start
of the proof that, for example, the size of the subsquares divides n.

The remainder of parts (d) and (e) identify the letters in the intersection
of row u∗ with fat column C̃v for v < u.

Finally, part (f) shows that there is a fat row R̃u which contains row u∗

and which has the properties necessary for an inflated square.
Once the fat letters have been assigned to the subsquares outside S, the

Latin square property forces their allocation to the subsquares in S, working
upwards from the penultimate fat row. However, the information gathered
during the proof gives a more direct way of doing this, as we show at the end
of this section.

We now embark on the details. Recall that c is the (constant) number
of neighbours in S of any vertex outside S, so that Equations (1)–(5) hold.
The proof makes frequent use of Equations (4) and (5).
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Lemma 5.6 If there is a slice of size z then either z = c or there is a slice
of size at least (n+ z)/2.

Proof Without loss of generality, assume that the slice of size z is contained
in a row. Because S is slender, there is a vertex α in this row which is
not in S. Then Equation (4) shows that κ(α) + λ(α) = c − z. If z 6= c
then at least one of C(α) ∩ S and L(α) ∩ S is not empty. Without loss of
generality, there is a vertex β in C(α) ∩ S. Then Equation (5) shows that
ρ(β) + λ(β) = n+ c− κ(β) ≥ (n+ c)− (c− z) = n+ z. Hence at least one
of ρ(β) and λ(β) is at least (n+ z)/2. �

Applying Lemma 5.6, if no slice has size c then for any slice we can find a
strictly larger one, which is impossible. So we obtain the following corollary.

Corollary 5.7 There is at least one slice of size c.

By the symmetry among rows, columns and letters in a corner set, we
may assume without loss of generality that the slice in this corollary is a row
slice. From the corollary and the fact that S is slender, we see that c < n.
We put s = n− c.

Slightly abusing notation, write ρi, κj and λ` for the size of the slice in
row i, column j and letter ` respectively. Without loss of generality, we may
assume that ρ1 = c. Let L1 be the set of s letters whose cells in row 1 are
not in S; and let C1 be the set of the s columns whose intersection with
row 1 is not in S. If α is in row 1 and a column in C1 then ρ(α) = ρ1 = c
and so Equation (4) shows that λ(α) = 0 = κ(α). (See Figure 4, which also
incorporates part (f) of the following theorem for the case u = 1.)

The statement of the following theorem introduces further notation like
Lu, Cu and Ru, analogous to the notation L1 and C1 already defined, to
denote various sets of letters, columns or rows. In each case, we use the same
notation with a ˜ on top to denote the subset of Ω formed by the union of
all letters or columns or rows in that set.

Theorem 5.8 Assume that S is slender and ρ1 = c. Let t be a positive
integer. If n > (t − 1)s and 1 ≤ u ≤ t then the following are true. Hence
n ≥ ts.

(a) There is no row i with n− us < ρi < n− (u− 1)s.
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C1

R1 L1 }s

︸ ︷︷ ︸
s

Figure 4: What we know when u = 1: all vertices in R̃1 to the left of the
subsquare marked L1 are in S, while all those in C̃1 are outside S

(b) There is a row u∗ with ρu∗ = n − us. We may label the rows so that
u∗ = (u− 1)s+ 1.

(c) If u > 1, let Lu be the set of s letters in the intersection of row u∗ from
part (b) with C̃1. If u ≥ 1 then every letter ` in Lu has λ` = (u− 1)s.
Hence Lu and Lv are disjoint if 1 ≤ v < u.

(d) If u > 1, let Cu be the set of s columns where row u∗ from part (b)
contains letters in L1. If 1 ≤ v ≤ u then every vertex in the intersection
of C̃v with row u∗ is outside S. Hence, for every column j in Cu,
κj = (u− 1)s. Moreover, every vertex in row u∗ outside C̃1 ∪ · · · ∪ C̃u

is in S.

(e) If 1 ≤ v < u then the letters in the intersection of row u∗ with C̃v are
precisely those in Lu−v+1.

(f) There are precisely s rows whose slice has size n − us. We may label
these u∗, u∗+1, . . . , us without affecting the labelling of the rows in Rv

for v < u. If Ru denotes the set of these rows, then R̃u ∩ C̃1 is a Latin
square on the letters in Lu. Moreover, if 1 < v ≤ u then R̃u ∩ C̃v is a
Latin square on the letters in Lu−v+1. Also R̃u \ (C̃1 ∪ · · · ∪ C̃u) ⊂ S.

Proof We use induction on u. First, we comment on starting the induction.
Corollary 5.7 gives parts (a) and (b) for u = 1. The remarks following that
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C2 C1

R1 L1 }s
R2 L1 L2 }s

︸︷︷︸ ︸︷︷︸
s s

Figure 5: What we know when u = 2: all vertices to the left of, or above,
subsquares marked L1 are in S, while all those in, or below, those subsquares
are outside S

give parts (c) and (d) for u = 1, and part (e) is vacuous for this case. Thus
part (f) needs to be proved for u = 1 before the induction can proceed. This
is proved by the same argument as the inductive step for part (f) below, since
at this point we know that parts (a)–(e) all hold.

Parts (b), (d) and (f) for u = 1 give the situation summarized in Figure 4.
For higher values of u we assume parts (a)–(f) for all smaller values. For

each value of u, parts (a)–(f) are proved in order, so that earlier parts may
be assumed for the given value of u.

If t ≥ 2, then parts (b) to (f) give Figure 5 for u = 2. Part (b) for u = t
gives the conclusion that n ≥ ts.

We now turn to the proofs of parts (a) to (f).

(a) If u = 1 this is true because no slice has size greater than c.

If u > 1, assume that parts (a)–(f) are true for all v with 1 ≤ v < u.
These give the situation summarized in Figure 6.

Let α be a vertex in C̃1 \ (R̃1 ∪ · · · ∪ R̃u−1). The definition of Rv for
v < u shows that ρ(α) 6= n− vs if 1 ≤ v < u. Thus part (b) for smaller
values of u shows that ρ(α) < n− (u− 1)s.

Part (f) for v with 1 ≤ v < u shows that L(α) is not in L1∪ · · · ∪Lu−1,
and so L(α) occurs in every row of R̃v ∩ S for 1 ≤ v ≤ u− 1, by parts
(d) and (e) for those values of v. Then part (f) for those values of v
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shows that λ(α) ≥ (u− 1)s. Moreover, α /∈ S, and so ρ(α) + λ(α) = c.
Therefore ρ(α) ≤ c− (u− 1)s = n− us. This proves part (a) for u.

Cu−1 Cu−2 · · · C2 C1

R1 L1 }s
R2 L1 L2 }s
...

...
...

Ru−1 L1 L2 · · · Lu−2 Lu−1 }s

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
s s s s

Figure 6: What we know after u − 1 steps in the induction: all vertices to
the left of, or above, subsquares marked L1 are in S, while all those in, or
below, those subsquares are outside S

(b) Since ρ1 = c = n− s, this is true when u = 1.

If u > 1, assume that parts (a)–(f) are true for all v with 1 ≤ v < u.
Suppose that the vertex α in the proof of part (a) is chosen to minimize
λ(α). If λ(α) > (u − 1)s then ρ(α) < c − (u − 1)s, and so there is
a vertex β in R(α) \ S \ (L̃1 ∪ · · · ∪ L̃u−1) \ C̃1. Then κ(β) > 0 and
c = ρ(β)+κ(β)+λ(β) = ρ(α)+κ(β)+λ(β) = c−λ(α)+κ(β)+λ(β). It
follows that λ(α) > λ(β). But β is not in L̃1∪· · ·∪L̃u−1, so there is some
vertex γ in C̃1 \ (R̃1 ∪ · · · ∪ R̃u−1) with L(γ) = L(β). This contradicts
the choice of α to minimize λ(α). It follows that λ(α) = (u− 1)s and
so ρ(α) = c− (u− 1)s = n− us.
The rows in R̃1 ∪ · · · ∪ R̃u−1 are numbered 1, . . . , (u− 1)s. Because α
is not in that set, we may renumber the remaining rows so that α is in
row (u− 1)s+ 1. This proves part (b) for u.

(c) Assume that part (b) is true for u. If ` ∈ Lu then there is a vertex
α in C̃1 with ρ(α) = n − us and L(α) = `. Since κ(α) = 0 and
ρ(α) + κ(α) + λ(α) = c, this shows that λ` = λ(α) = (u− 1)s.
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If u > 1, assume that part (c) is true for all v with 1 ≤ v < u. Then,
for any such v, any letter m in Lv has λm = (v−1)s. Therefore Lu and
Lv are disjoint. Thus part (c) is true for u.

(d) Assume that parts (b) and (c) are true for u, and that part (d) is true
for all v with 1 ≤ v < u. If 1 ≤ v < u and α is in C̃v and row
u∗ then ρ(α) = n − us and κ(α) = (v − 1)s. Since v < u, we have
ρ(α) + κ(α) ≤ n− 2s < n. If α ∈ S then ρ(α) + κ(α) + λ(α) = n + c,
and so λ(α) > c. This cannot happen, and so α /∈ S.

If α is in C̃u and row u∗ then α is in L̃1. Then ρ(α) = n−us and λ(α) =
0. If α ∈ S then ρ(α) + κ(α) +λ(α) = n+ c, and so κ(α) = c+ us > c.
This cannot happen, and so α /∈ S. Therefore ρ(α) + κ(α) + λ(α) = c,
which shows that κ(α) = (u− 1)s.

Finally, since ρu∗ = n − us and all vertices in the intersection of row
u∗ and C̃1 ∪ · · · ∪ C̃u are outside S, all the remaining vertices in row u∗

must be in S. Thus part (d) is true for u.

(e) If u > 1, assume that parts (c), (d) and (f) are true for all v with
1 ≤ v < u. If ` is a letter outside L1 ∪ · · · ∪ Lu−1 then part (d) shows
that it occurs in S in every row in R̃1∪· · ·∪ R̃u−1, and so λ` ≥ (u−1)s.

If 1 ≤ v < u and α is a vertex in the intersection of row u∗ with C̃v,
then part (d) shows that α /∈ S. Therefore c = ρ(α) + κ(α) + λ(α) =
(n − us) + (v − 1)s + λ(α) and so λ(α) = (u − v)s. If v = 1 then
u − v + 1 = u and by definition the letters in the intersection of row
u∗ with C̃1 are those in Lu. If v > 1 then λ(α) ≤ (u − 2)s and so
L(α) ∈ L1 ∪ · · · ∪ Lu−1. Then it follows from part (c) for integers less
than u that L(α) ∈ Lu−v+1. Hence part (e) is true for u.

(f) Assume that parts (c), (d) and (e) are true for u.

Let ` be a letter in Lu. This occurs in s rows of C̃1, all of whose slices
have size n−us. When u = 1, each letter m outside L1 has λm > 0 and
the argument in part (c) shows that m cannot occur in the intersection
of any of these rows with C̃1. For u > 1, parts (d) and (e) show that,
for each of these rows, the letters outside S ∪ C̃1 are precisely those in
L1 ∪ · · · ∪ Lu−1. Suppose that a letter m in Lu occurs on a vertex α
in S in such a row. Then ρ(α) + λ(α) = n− us + (u− 1)s = n− s so
κ(α) = n + c − n + s = n, which is impossible because S is slender.

17



Hence each of these s rows intersects C̃1 in a set of vertices whose letters
are the set Lu.

If u = 1 then we are free to relabel the rows of R1 after the first as rows,
2, . . . , u. When u > 1 then none of these rows is in R̃1 ∪ · · · ∪ R̃u−1, so
we may relabel those other than u∗ as u∗ + 1, . . . , u∗ + s = us.

If there are any more rows with slice size n−us then they must contain
each letter of Lu in their slice. The foregoing argument shows that this
cannot happen.

Now applying the arguments in parts (d) and (e) to each row in Ru

completes the proof of part (f) for u.

�

Theorem 5.8 shows that a Latin square Λ with a slender set has fat
rows R̃u, fat columns C̃v and fat letters L̃w, all of size s, so that n must
be some multiple ts of s. Parts (c), (d) and (e) of the theorem explicitly
assign L1 to each intersection R̃u ∩ C̃u on the back-diagonal, and Lu−v+1 to
each intersection R̃u ∩ C̃v below the back-diagonal. If R̃u ∩ C̃v is above the
back-diagonal then u < v because of the non-standard labelling of the fat
columns. In this case, parts (b) and (d) show that if row i is in Ru and
column j is in Cv then ρi = n − us and κj = (v − 1)s, so Equation (5)
gives λ(α) = n − (v − u)s = (t − v + u)s if α ∈ R̃u ∩ C̃v. Then part (c)
shows that the letters which occur in R̃u∩ C̃v are precisely those in Lt−v+u+1.
Relabelling fat row u as u−1, fat column v as t−v and fat letter w as w−2,
all modulo t, gives the back-cyclic Latin square of order t in Construction 2.
Therefore Λ is an s-fold inflation of a back-cyclic Latin square of order t.

The elementary abelian 2-group has no cyclic quotient of order greater
than 2, and so the only inflation of a corner set which occurs in its Cayley
table is a subsquare corresponding to a subgroup of index 2. Thus we recover
the result of Gavrilyuk and Goryainov [26] which was the starting point.

6 −3-perfect sets

Let ∆1 be a non-empty proper subset of the set Ω of vertices of a Latin-
square graph, where |Ω| = n2 and |∆1| = m. Let ∆2 be the complement of
∆1, so that |∆2| = n2−m. The contrast between ∆1 and ∆2 is defined to be
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any non-zero multiple of the vector z which takes the value n2 −m on each
element of ∆1 and the value −m on each element of ∆2. Now ∆1 and ∆2 are
−3-perfect sets if and only if this contrast is in V2, which happens if and only
if the entries in z sum to zero on each row, column and letter. This means
that the partition ∆ is strictly orthogonal to each of R, C and L: see [3, p. 8].
In the special case that |∆1| = |∆2|, this means that {R,C, L,∆} forms an
orthogonal array of strength two on Ω.

If ∆1 is any transversal for Λ (a set of cells meeting each row, column and
letter just once) then ∆ satisfies this condition. More generally, ∆ satisfies
this condition if ∆1 meets each row, column and letter of Λ in a constant
number ` of cells. Such a subset was called an `-plex by Wanless in [32].
Freeman called 2-plexes and 3-plexes duplexes and triplexes respectively in
[21, 22]. Thus a −3-perfect set is precisely a plex, that is, an `-plex for some
value of `. A partition of Ω is −3-equitable if and only if its parts are plexes.
In [16, 17, 18], Finney called such a partition an orthogonal partition of the
Latin square Λ, and found such partitions for Latin squares of orders 4, 5
and 6. Thus, we have the following:

Theorem 6.1 A −3-perfect subset of the Latin square graph Γ of Λ is the set
of cells of a plex in Λ. A −3-equitable partition of Γ arises from a partition
of the set of cells into plexes, that is, an orthogonal partition of Λ.

Egan and Wanless called such a partition indivisible in [15] if no proper
refinement is−3-equitable. Just as our Section 5 finds minimal (n−3)-perfect
sets, some minimal −3-perfect sets are found in [9, 14].

The remainder of this section gives a few examples of −3-perfect sets and
−3-equitable partitions.

Example 2 Figure 7(a) shows a Graeco-Latin square of order 4. Let Λ be
the Latin square defined by the Latin letters. Let ∆1 be the union of Greek
letters α and β. Then ∆1 and its complement give the equitable partition
for Γ shown in Figure 7(b).

When ` > 1, it may be possible to find an `-plex which is not a union
of disjoint transversals. Then ∆1 is −3-perfect, and gives an equitable par-
tition of Γ. Figure 8 shows an example. It is not isomorphic to the one in
Figure 7(b), even though both have n = 4, k = 9, p = 3 = q and c = b = 6.

In a similar way we can give partitions with more than two parts, where
the parts are not unions of transversals.

19



A α B β C γ D δ
B δ A γ D β C α
C β D α A δ B γ
D γ C δ B α A β

A B C D
B A D C
C D A B
D C B A

(a) (b)

Figure 7: The Greek letters α and β in the Graeco-Latin square of order 4 in
(a) give the equitable partition shown in (b), where the elements of ∆1 are
shown in bold

A B C D
B C D A
C D A B
D A B C

Figure 8: An equitable partition of the cyclic Latin square of order 4, which
has no transversal (the elements of ∆1 are shown in bold)

Example 3 Figure 9 shows the Latin square of order 7 defined by the Steiner
triple system of order 7. The three different fonts show a −3-equitable par-
tition with parts of sizes 7, 14 and 28. This is strictly orthogonal to each of
the partitions into rows, columns and letters.

Example 4 If ∆ is uniform and strictly orthogonal to each of R, C and L
but the size of the parts of ∆ is not n, then {R,C, L,∆} is a mixed orthogonal
array. These are discussed in [27, Chapter 9], whose Table 9.25 gives many
examples with n = 6 in which ∆ has three parts of size twelve.

One of these examples is shown in Figure 10. The natural order from [27]
is used, but the underlying Latin square is isotopic to the Cayley table of a
cyclic group.

Table 12.7 of [27] shows that Finney gave more examples for these num-
bers in [19], and that examples with n = 10 and parts of ∆ having size 20
were given in [29, 33].

So the problem of −3-perfect sets in Latin-square graphs is equivalent to
that of indecomposable plexes, on which work is ongoing.
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A C B E D G F
C B A G F E D
B A C F G D E
E G F D A C D
D F G A E B C
G E D C B F A
F D E B C A G

Figure 9: A Latin square of order 7 with a −3-equitable partition into three
parts, one of size 7 (calligraphic letters), one of size 14 (bold), and one of
size 28

A B C F D E
B C A D E F
C A B E F D
D E F C A B
E F D A B C
F D E B C A

Figure 10: A mixed orthogonal array, giving a uniform −3-equitable partition
of a Latin square of order 6 into three parts (indicated by bold, calligraphic
and normal fonts)
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7 Mixed equitable partitions

We content ourselves with two examples of equitable partitions of Latin-
square graphs where both non-principal eigenvalues occur.

Example 5 As in any strongly regular graph, the distance partition with
respect to a vertex α (whose classes are {α}, the vertices adjacent to α, and
the rest) is equitable: all three eigenvalues occur [25, §4.5].

Example 6 In Theorem 4.1, we observed that, if Λ is an s-fold inflation
of a Latin square Λ0 of order t, then the partition of Λ into subsquares is
equitable, and has t2 parts. We saw that all three eigenvalues occur if and
only if t > 2.

8 Mutually orthogonal Latin squares

If Λ1, . . . ,Λm−2 are mutually orthogonal Latin squares of order n, then we
can form a graph whose vertices are the cells, two vertices being joined if
they lie in the same row or column or have the same letter in one of the
squares. This graph is strongly regular with valency m(n − 1) and other
eigenvalues n − m and −m. This raises the possibility of determining the
(n −m)-perfect sets in this graph, as a generalisation of the main theorem
of this paper. However, we expect that this will be more difficult.

Example 7 The set of cells given by any row, column, or letter in any of
the squares Λi is (n−m)-perfect.

Example 8 There is an inflation construction for sets of m − 2 mutually
orthogonal Latin squares, as follows. We are given m − 2 MOLS of order
t, say Λ1, . . . , Λm−2. Let s be a number for which m − 2 MOLS of order s
exist. Choose (m− 2)t pairwise disjoint alphabets Akl, for k = 1, . . . ,m− 2
and l = 1, . . . , t. Each square of the inflation will be partitioned into t × t
subsquares each of size s × s. For the (i, j) subsquare, we choose m − 2
MOLS of order s, where the alphabet for the kth square is Akl, where l is
the symbol in position (i, j) in Λk. If t = m− 1, then each s× s array is the
set of cells of an (n−m)-perfect set, where n = st. Hence any union of such
sets is (n−m)-perfect.
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Figure 11 shows a pair of orthogonal Latin squares of order 3, and a 3-fold
inflation. For convenience we have used the same orthogonal squares (apart
from choice of alphabet) in each of the 3 × 3 positions except the bottom
right.

11 23 32
22 31 13
33 12 21

aα bγ cβ dη eι fθ gδ hζ iε
bβ cα aγ eθ fη dι hε iδ gζ
cγ aβ bα fι dθ eη iζ gε hδ

dδ eζ fε gα hγ iβ aη bι cθ
eε fδ dζ hβ iα gγ bθ cη aι
fζ dε eδ iγ gβ hα cι aθ bη

gη hι iθ aδ bζ cε dα fβ eγ
hθ iη gι bε cδ aζ eβ dγ fα
iι gθ hη cζ aε bδ fγ eα dβ

Figure 11: An inflation of a pair of mutually orthogonal Latin squares of
order 3, partitioned into nine 5-perfect sets

Example 9 Recall that a Cameron–Liebler line class L is a set of lines of
the 3-dimensional projective geometry PG(3, q) such that every spread of
PG(3, q) shares the same number, say x, of lines with L. It follows from [31,
Theorem 1(vii)] that every line ` of PG(3, q) intersects (q+ 1)x+ q2− 1 lines
of L if ` ∈ L, and (q + 1)x lines if ` /∈ L. Thus, L is a (q2 − 1)-perfect set of
a strongly regular graph Γ (known as the Grassmann graph Jq(4, 2)) defined
on the set of lines of PG(3, q) with two distinct lines being adjacent if they
intersect in a point.

For a vertex `, let Γi(`), denote the set of vertices of Γ at distance i from
`, for i ∈ {1, 2}. It is also shown in [31, Theorem 1(viii)] that

|Γ1(`) ∩ Γ1(`′) ∩ L| = x+ q |{`, `′} ∩ L|

holds for any two non-adjacent vertices `, `′ of Γ. Since `′ ∈ Γ2(`) and

|Γ1(`′) ∩ Γ2(`) ∩ L| = |Γ1(`′) ∩ L| − |Γ1(`) ∩ Γ1(`′) ∩ L|

holds, one can see that, for given line `, |Γ1(`′) ∩ Γ2(`) ∩ L| takes on only two
values, which depend on whether `′ ∈ L, and thus Γ2(`) ∩ L is a perfect set
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of the graph Σ induced on Γ2(`). A straightforward calculation shows that
it is a (q2− q− 1)-perfect set, while the graph Σ, which is the bilinear forms
graph Bilq(2 × 2) (see, for example, [7, Chapter 9.5.A]), can be viewed as a
graph of q − 1 mutually orthogonal Latin squares of order q2.

Many non-trivial (and non-isomorphic) examples of Cameron–Liebler line
classes have been found recently, see [8, 11, 12, 13, 24], which thus give rise
to various examples of perfect sets in the corresponding graphs of mutually
orthogonal Latin squares.

We do not know of any analogue of a corner set in this situation.
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